

The World Leader in High Performance Signal Processing Solutions

Industry's Performance Leading Ultra-Low-Power DSP Solution

The New ADSP-BF70x Series of DSP Processors

June 12, 2014 v4.0

Processor Market Trends Driving Change

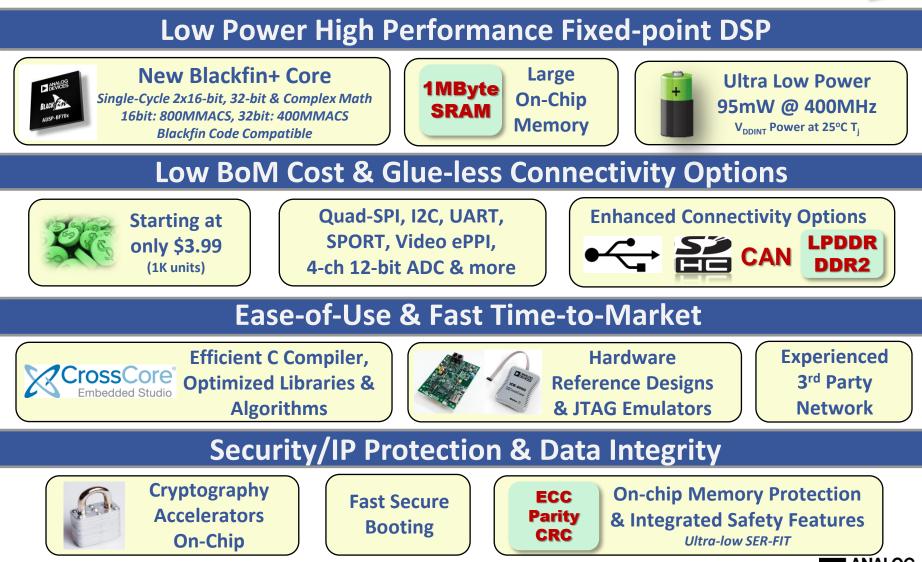
Ever Increasing Need for Cost Effective Real-time Processing

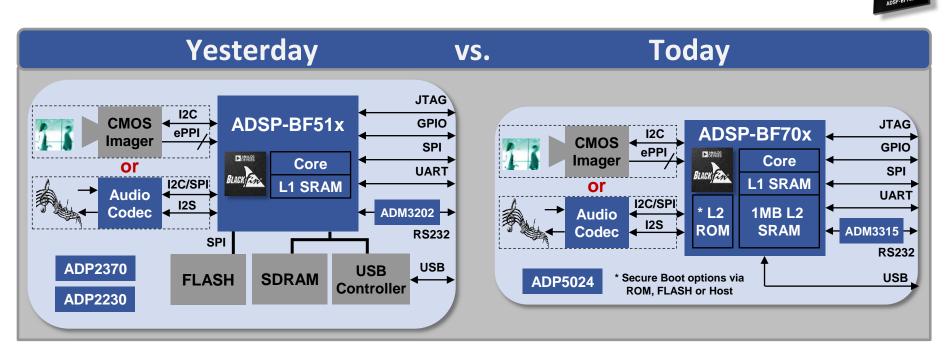
- Low latency, deterministic performance
- Access to low power 32-bit processing
- Demand for cost effective machine intelligence
 e.g. real-time image analysis & detection
- Faster time-to-market & optimized algorithms

Lowest Power Solutions

- More portable equipment, extended battery life
- Shrinking power budgets (limited bus power)
- Green energy products & regulation.....

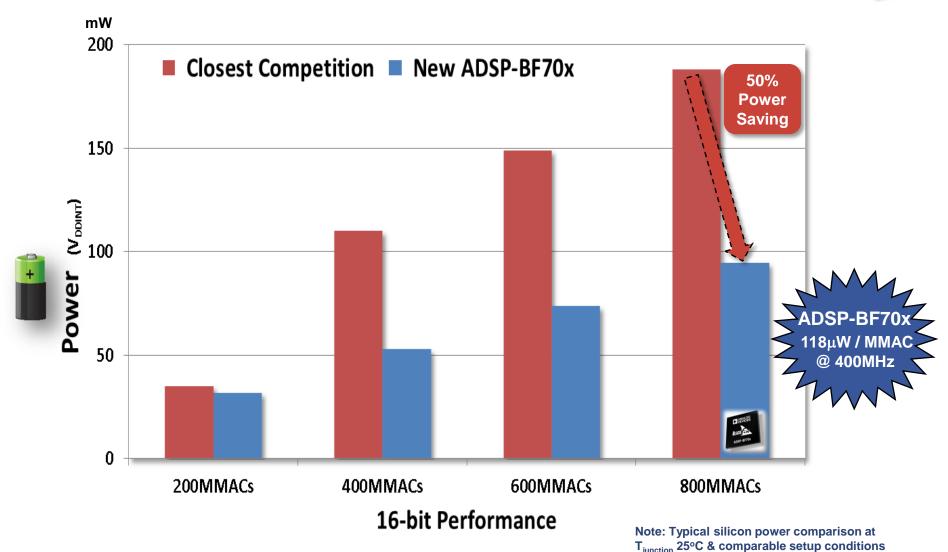
System integration


- Reduced footprint & BOM cost requirements
- Glue-less peripheral connectivity
- Software IP Protection & fast boot time
- Handling of soft-error issues in safety critical systems



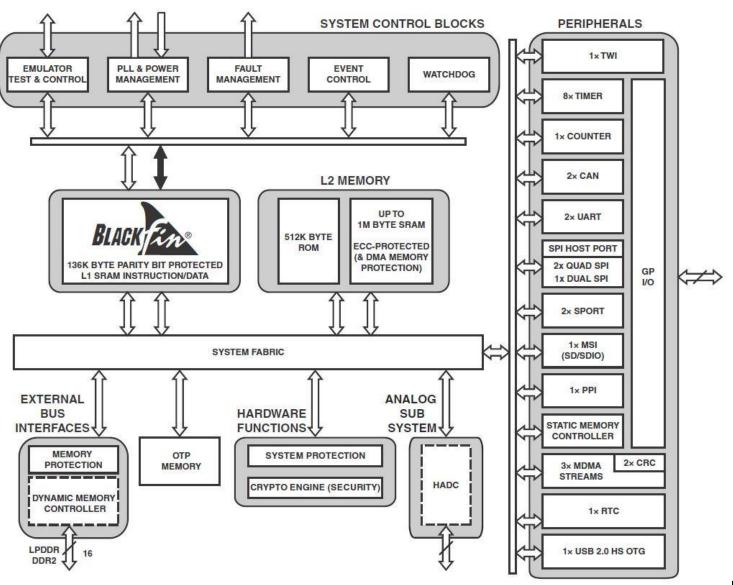
BF70x Series : Next Generation Blackfin

Example Use Case Comparison


Example Imaging Use Cases

- Occupancy Sensing
 Access Monitoring
- People Counting
 Barcode Reader
- **Example Audio Use Cases**
 - Guitar Effects
 - Portable Audio/Voice Recorders

Banknote Reader


ADSP-BF70x Series : Lowest Power Blackfin Extending ADI's Leadership Position for Low Power DSP Performance

RI ACK BA

ADSP-BF70x Processor Architecture

Enhanced Blackfin+ DSP Core

Evolved Blackfin core: "Blackfin+":

- Single-cycle 32 x 32-bit Multiply/MAC (with 72-bit accumulate)
- 16-bit complex multiplication and MAC
- Cache enhancements & parity on L1 memory
- Branch prediction, memory system & instruction set enhancements
- Provides performance increase with benefits in power
 - Equivalent or better performance per cycle vs. previous Blackfin core
 - 30% improved 16-bit CFFT benchmarks due to complex math improvements
 - Improved 32-bit benchmarks e.g. 2-3x filtering benefit for FIR & IIR
 - 20% improvement in subset of typical benchmark suites
 - Additional performance increases due to major enhancements in device fabric and internal/external memory system

Instruction set compatibility with low software impact & full binary backward compatibility

Key New Features to Blackfin

D ANALOG DEVICES BLACK RAN ADSP-BF70x

First use of Blackfin+ core

40nm low power technology

• 35% lower power than previous Blackfin products at the same MHz

Improved memory bandwidth compared to previous Blackfins

- More cache fill buffers, internal 64-bit data paths, support for misaligned access and improved choices to accelerate cache fills
 - Large L2 SRAM with 1.5x-3x improved cache throughput
 - DDR cache throughput increased by up to 2x
 - Memory-to-memory DMA up to 800 MBytes/sec
- High-speed memory-mapped Quad-SPI (25MBytes/sec)
 - With HOST & Execute-in-Place modes
- Advanced Security for IP protection & more
- Integrated house-keeping ADC
- ◆ ARM[®] CoreSight[™] & SWD Debug enabling trace capability

plus many other performance & usability enhancements.....

Advanced Security Features Safeguarding software & algorithm investments

IP Protection via on-chip Cryptography Accelerators

- Intended Use Cases include
 - Fast Secure Boot with Authentication and Decryption
 - Options for Authentication Only
- Memory-based encryption/decryption
 - Providing fast run-time security options
- Power optimized hardware design
 - Ultra-low power when inactive

Key Hardware Blocks & Performance

- Ciphers: AES128..256, DES/3DES
 - Performance : AES-128 decrypt 2.46 bits/cycle
- HASH Functions: SHA-1, SHA-2 (224/256)
 - Performance : SHA-224 7.88 bits/cycle
- Public Key Acceleration
 - ECC Verify (224-bit ECDSA) in 1.7M cycles
- True Random Number Generator
- OTP Memory 4KBytes

512KByte secure boot with Decrypt & Authentication in < 55ms

Best-in-Class Memory Protection Performance Providing ultra-low "Soft-Error-Rates" for harsh environments

Soft Errors are due to external ambient radiation sources

- Causing transient errors in processor execution or data results
- Examples include Alpha Particles & Cosmic Rays
- Not due to design or manufacturing defects & no permanent damage to device

Growing awareness & demand for low SER-FIT in Safety Critical Apps

- Automotive
- Military, Space & Avionics
- Industrial 24/7 safety critical apps

ADSP-BF70x: Data Integrity features provide significant SER-FIT reduction

- On-chip SRAM Protection
 - Detection for L1 (Parity) & Correction for L2 (ECC)
- Peripheral memory protection & CRC engine for off-chip traffic
- Effective SRAM SER-FIT can be reduced to significantly below 1 FIT

Note: SER = Soft Error Rate, FIT = Failures in Time (Faults per 10⁹ Device Hours) Example : 1 SER-FIT equals approx. 114,100 years between device failures

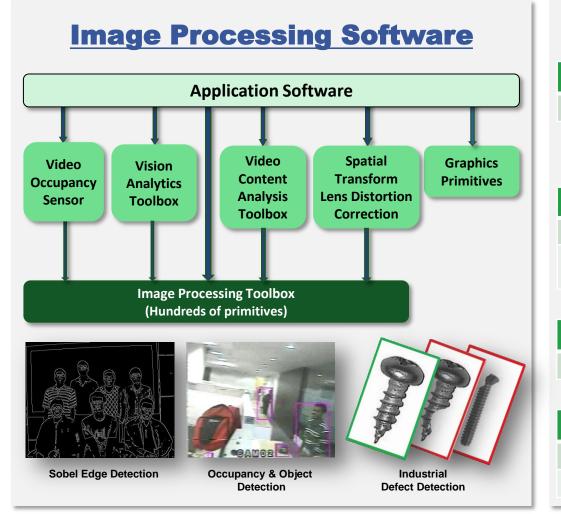
ADSP-BF70x Product Feature Matrix

Generic Device	DSP Core Performance	On-chip Memory	External Memory	Key Connectivity Options	Other Features	Package
ADSP-BF700 ADSP-BF702 ADSP-BF704 ADSP-BF706	100MHz to 400MHz 800MMACs 16-bit 400MMACS 32-bit	132KB L1 SRAM/Cache L2 SRAM options of 128KB 256KB 512KB 1MBytes 512KB L2 ROM	N/A	ePPI, SPORT(2), Quad/Dual SPI(3), I ² C, UART(2), CAN2.0B (2) SD/SDIO/MMC(4-bit) SD/SDIO/MMC(4-bit) SD/SDIO/MMC(4-bit) SD/SDIO/MMC(4-bit)	OTP, Security Accelerator, Data Integrity (with L1 parity & L2 ECC), WDT, RTC	QFN 88-lead 12x12mm
ADSP-BF701 ADSP-BF703 ADSP-BF705 ADSP-BF707			16-bit LPDDR DDR2	<u>Above options plus</u> SDIO/MMC/eMMC (8-bit) SSIO (8-bit) SSIO (8-bit) SSIO (8-bit) SSIO (8-bit) A-ch 12-bit ADC		BGA 184-ball 12x12mm 0.8p

Price range (1K):	$3.99 \rightarrow 10$ (with different variants & features) Support for Commercial / Industrial / Automotive grades				
Product Status :	Sample availability CCES, EZ-KIT, ICE Production	June 2014 June 2014 3Q 2015			

CrossCore® Embedded Studio 1.1.0

r: • 🖩 🛍 👜 🐘 🔅 • 💁	• 💩 🛷 • 🚺 🔮 • 🤪 • 🍫	(þ • 🖒 •			😰 🕸 Debug 😳 C/C+	
Debug 13	00- Variables 😂	• Breakpoints				
🧏 M 🕹 🗈 🗉 🔳 M 🔅	Name Type		Value	ti math.h ti ccblkfn.h		
surface_Core0 Debug [CrossCore 8	xindex	xIndex int 21				
ADSP-BF707	yIndex int		21	adi_initialize.h		
Device 0 [core 0] [Debug\si	x	double	10.0	u surface_Core0.h # ROWS		
main() at surface_Cores	У	double	10.0	# COLS zdata : double[][] main(void) : int		
Project Explo 😫 🔍 🗖 💽 😘	urface_Core0.c 🕄 🛐 app_startup.s		° 0	Disassembly 23		
	/**		*	Enter	location here 🔹 👔 👔 🕼 😨 🐼 🖆 😁	
LaS surface Core0	* The default startup code does	not include any	functionality to a	•42 return @:		
Binaries				<pre> ffa014a8: R0 = 0; ffa014aa: SP += 12; </pre>		
S Includes	- /			[SP ++] ;		
😂 system	adi_core_0_enable();			ffa014ae: UNLINK ;	1	
😂 src Debug				ffa014b2: RTS ;		
readme.html	/==			ffa014b4: [SP] =	(P5:3) :	
System.svc	* Calculate the z-axis values up	sing the formula		ffa014b6: P1 = [P0 ++] ; ffa014b6: P2 = 0 ; ffa014b8: P4 = P0 + (P1 << 2) ;		
•	<pre>* z = x * sin(y) + y * sin(x). */</pre>		100			
	for (int yIndex = 0; yIndex < RO	S; ++yIndex) {		ffa014bc: P4 += 4 ;	(PI ((2))	
	y = yIndex - 10.0;			ffa014be: LSETUP (BEGINbinary_search ,LASTbinary_sear	
	<pre>for (int xIndex = 0; xIndex -</pre>	COLS; ++xIndex	0 {	BEGINbinary_search: ffa014c2: CC = P1 <= P2 ;		
	<pre>x * sin(y) + y *</pre>	sin(x);		END .binary search ;		
	}			ffa014c6: P3 = P1 + F		
	} • xIndex ; int			ff=014+8+ 03 - 03 - 1		
3	return 0; • y: double			Plot S	8 < < < ⊂ = [−] [−] [−]	
-)	vIndex : int	N		Piot as		
	he.	-		Surface Plot		
🛛 Co 🖉 Tas 🔝 Pro 💽 Exe 🚺 Mi	e 🖾 👘 🖬 🕴 – Finf : const _Dcon		7 - 0			
2 in a	Finan: const_Dco				20	
	50 New Tab					
	Inf: Dconst		- 1		10	
hain : 0xFFA013E8 < Hexadecimal>	LDenorm : const	Dconst	-	20		
		s 'Ctrl+Space' to show	w Template Proposals	10-	0	
FFA013E8 00 E8 01 00 FFA013EC 60 05 A6 61	IIII B	FFE012				
FFA013EC 00 05 A0 01 FFA013F0 FF E3 E4 FI	asat MU	000000		State	5	
FFA013F4 29 E1 08 64	ASAS INTA	2D8A4		-10 -		
FFA013F8 49 E1 CA F		D14424 518240		-20	10 X-Axis	
FFA013FC 08 91 08 44		000000		0	15	
FFA01400 08 93 28 E		000000		5	10 15 20	
FFA01404 84 F0 48 E	1 1111 L2	000000	000		Y-Axis 20	
FFA01408 C1 FF 01 64	0 IIII L3	000000	* 000			
		111				



- CrossCore® Embedded Studio is ADI's New Eclipse™ based Tool Chain
 - IDE
 - Debugger
 - Compilers
 - Assemblers
 - Linker
 - Loader
 - Algorithm & DSP Libraries
- Add-ins enable graphical configuration and code generation
 - System Services and Device Drivers
 - And much more...

Blackfin Software Module Examples

Optimized and available with no ADI license-fee

Imaging & SD Video

Encode & Decode

JPEG, H.264 BP/MP, MPEG-4, WMV9

<u>Audio</u>

Audio Decoders & Post Decoders

DTS Neo:6; 5.1 Decoder

Dolby Digital (AC-3) 5.1 Decoder; Headphone v2; Virtual Speaker; Pro Logic IIx Decoder

Audio Encoder & Decoders

MP3, MPEG-4 AAC-LC/HE-AACv2, WMA9

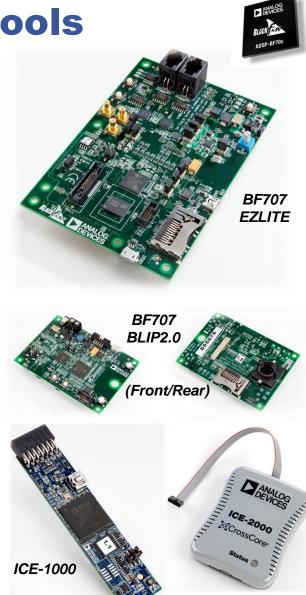
Audio Post Processing

Asynchronous Sample Rate Converter

Multi-band Graphic Equalizer

For complete list & latest info: www.analog.com/BlackfinModules

dts


ADI Hardware Development Tools

Low Cost BF70x Development Boards

- 400MHz BF707 EZKIT board with DDR and key peripherals supported
 - Optional EZ-Extenders for increased features
 - ADZS-BF707-EZLITE (includes CCES & ICE-1000)
- Blackfin Low-Power Imaging Platform (BLIP)
 - Advanced Occupancy Detection Solution

New USB based JTAG Emulators

- \$150 Low Cost ICE-1000 (ADZS-ICE-1000)
- High Performance ICE-2000 (ADZS-ICE-2000)
- USB-bus powered & JTAG/SWD up to 46MHz
- ARM[®] CoreSight[™] based trace for program & system debug
- Watch out for future announcements of additional hardware platforms.....
 - Including ultra-low-cost Audio

Example Blackfin 3rd Party Support

www.analog.com/3rdParty

BLUETECHNIX Embedding Ideas

VOCAL TECHNOLOGIES, LTD. DOI SYSTEMS SYSTEMS SYSTEMS

Recent ADSP-BF70x Solution Partners

- EBSYS Europe
 - Vision & Image algorithm expertise in Industrial, Consumer & Automotive
- DSP Concepts North America
 - Accelerating the development of embedded audio products & technology
- Twisthink North America
 - Image Processing & Algorithm Development for Industrial Applications

ADSP-BF70x Summary

Broad Range of Markets with Strong Feature Alignment

Feature

Scalable Performance

Up to 400MHz Blackfin+ core Single-Cycle 2x16-bit, 32-bit & complex math

Best-in-Class Power Efficiency

 $118 \mu W$ / MMAC @ 400MHz 95mW at 800MMACs

Lowest BOM Cost

Starting at \$3.99, Large SRAM (up to 1MByte), Glue-Less Connectivity, ADC & DDR Option & Cost Optimized Packaging

Advanced Security IP Protection with Fast Secure Boot

< 55msec for 512KByte Boot Image

Memory Protection

SRAM Parity & ECC for Safety Providing Best-in-Class SER-FIT Performance

Industry Standard Connectivity Options

USB2.0HS, SDIO/eMMC, CAN2.0 & more...

Fast Time-to-Market

Efficient C Compiler, Optimized Libraries, Blackfin Family Code Compatibility & Hardware Reference Designs

Key Markets Addressed

Industrial Imaging Barcode, Biometrics, Cameras

Industry's Performance Leading Ultra-Low-Power DSP Solution

Delivering High Performance, Lowest Power, Low BOM Cost And Fast Time-to-Market

For More Information on the ADSP-BF70x DSP Processor Products

visit

www.analog.com/BF70x

