

ANALOG DEVICES, INC.

www.analog.com

A2B STACK USER GUIDE

Document Status Approved

Approved by Siva S

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 2 of 56

Revision List

Table 1: Revision List

Revision Date Description

0.1 29-Sep-2016 Draft Version – EVAL Release of A2B Stack

0.2 12-Oct-2016 Incorporated Review comments and elaborated relevant sections.

1.0 21-Oct-2016 Approved for 13.0.0_EVAL

1.1 08-Nov-2016 Draft Version of 13.0.0

1.2 10-Nov-2016 Incorporated Review comments

2.0 10-Nov-2016 Approved and baselined for Rel 13.0.0

2.1 30-Nov-2016 Updated Diagnostics and debugging for sample demo – Rel 13.1.0

2.2 02-Dec-2016 Incorporated review comments

3.0 09-Dec-2016 Approved and baselined for Rel 13.1.0

3.1 17-Jan-2017
Updated document to include BERT, disabling power diagnostics for Rel
14.0.0

3.2 18-Jan-2017 Addressed review comments

4.0 20-Jan-2017 Approved and baselined for Rel 14.0.0

4.1 23-Feb-2017 Minor changes in section 5.2.1.2.1 and 4.1.1

5.0 03-Mar-2017 Baselined for Rel15.0.0

5.1 30-Apr-2018 Document re-written

5.2 09-May-2018 Review comments incorporated

6.0 06-Jun-2018 Baselined for Rel19.0.0

6.1 24-Oct-2018 Updated for release 19.1.0

7.0 31-Oct-2018 Baselined for Rel19.1.0

7.1 31-Aug-20 Updated for release 19.4.0

8.0 02-Sep-20 Baselined for Rel19.4.0

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 3 of 56

Copyright, Disclaimer Statements

Copyright Information

Copyright (c) 2009-2020 Analog Devices, Inc. All Rights Reserved. This software is proprietary and
confidential to Analog Devices, Inc. and its licensors. This document may not be reproduced in any
form without prior, express written consent from Analog Devices, Inc.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information
furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under the
patent rights of Analog Devices, Inc.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 4 of 56

Table of Contents

Revision List .. 2

Copyright, Disclaimer Statements ... 3

Table of Contents .. 4

List of Figures ... 6

List of Tables ... 6

List of Code Snippets ... 6

1 Introduction .. 8

1.1 Scope .. 8

1.2 Organization of the Guide .. 8

2 A2B Software Stack ... 9

2.1 Host-Target Software Workflow ... 10

3 Building an A2B Application on a custom platform .. 12

3.1 Designing A2B schematic on SigmaStudio .. 12

3.2 Building Target software for a custom platform .. 13

3.2.1 Porting A2B Software Stack to a custom platform ... 15

3.2.2 Apply A2B Network configuration .. 19

3.2.3 Modify Application call back functions ... 20

 Discovery completion Callback function ... 20

 Power/Line Fault Callback function .. 22

 Interrupt Callback function .. 25

 Node Discovery Callback function .. 26

3.3 Summary of Building A2B Application on custom platform ... 28

4 Application Integration .. 29

4.1 Stack States .. 32

4.1.1 Initialize/Allocate ... 32

4.1.2 Load .. 32

4.1.3 Start .. 32

4.1.4 Discover .. 32

4.1.5 Interrupt Poll ... 32

4.1.6 Stop .. 33

4.1.7 Free .. 33

4.2 Application Extensions to Environment control block ... 34

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 5 of 56

4.3 Plugin Architecture ... 35

4.3.1 Plugin Examples ... 35

 Master Plugin ... 35

 Generic Slave Plugin .. 35

4.3.2 Handling Interrupts in a Plugin .. 35

4.3.3 Writing a Custom Plugin .. 36

4.3.4 Loading Plugins into the Stack .. 38

4.4 Using A2B Stack for Multi-Master Network .. 38

4.5 Inter-Processor Communication over A2B Mailbox .. 39

4.5.1 Pre-Requisites for Inter-Processor Communication ... 40

4.6 Post discovery APIs ... 43

5 Appendix A: Diagnostics and Debugging .. 44

5.1 Generating Sequence Diagrams .. 44

5.1.1 Sequence diagram support in the Stack .. 44

5.1.2 Enabling Sequence Chart in Sample Demo Applications .. 45

5.2 Capturing Trace Messages .. 47

5.2.1 Trace support in the Stack .. 47

5.2.2 Enabling Trace in Sample Demo Applications ... 48

5.3 Stack scalability and optimization options .. 49

6 Appendix B: Messages .. 50

6.1 Request Message .. 50

6.2 Notify Message .. 51

6.3 Sending custom messages and notifications ... 52

6.4 Receiving custom messages and notifications ... 53

7 Appendix C: Target Debug Features .. 54

7.1 Bit Error Rate Test (BERT) .. 54

8 Appendix D: Auto Configuration from EEPROM .. 55

Terminology .. 56

References... 56

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 6 of 56

List of Figures

Figure 1: A2B Software Stack Architecture .. 9

Figure 2: Host Tool – Target Software Workflow ... 11

Figure 3: A2B Target Software Examples .. 13

Figure 4: A2B Target Project directory structure .. 14

Figure 5: a2bapp_onDiscoveryComplete callback registration... 21

Figure 6: a2bapp_onPowerFault callback registration ... 23

Figure 7: a2bapp_onInterrupt callback registration .. 25

Figure 8: a2bapp_onNodeDiscovery callback registration ... 26

Figure 9: Building A2B Application on a Custom Platform ... 28

Figure 10: Message exchange between Master and Slave node processor 39

Figure 11: A2B Target project directory structure with communication channel includes 41

Figure 12: A2B Target project directory structure with communication channel sources 42

Figure 13: Setting Path in Environment Variables.. 46

Figure 14: Sample Sequence Chart... 47

Figure 15: Request Message Example .. 50

Figure 16: Notify Message Example .. 51

List of Tables

Table 1: Revision List .. 2

Table 2: Target Example Projects ... 13

Table 3: PAL Functions to be Re-implemented ... 16

Table 4: ECB components ... 34

Table 5: Plugin Functions .. 36

Table 6: Supported post discovery APIs .. 43

Table 7: PAL Logging Functions – Info .. 45

Table 8: Trace Levels Description ... 48

Table 9: Trace Domains Description.. 48

Table 10: Request Message Commands ... 50

Table 11: Notify Message Commands ... 52

Table 12: Terminology ... 56

Table 13: References .. 56

List of Code Snippets

Code Snippet 1: a2bapp_onDiscoveryComplete sample implementation 22

Code Snippet 2: a2bapp_onPowerFault sample implementation ... 24

Code Snippet 3: a2bapp_onInterrupt sample implementation ... 25

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 7 of 56

Code Snippet 4: a2bapp_onNodeDiscovery sample implementation ... 27

Code Snippet 5: Wrapper Services Layer 1 usage .. 30

Code Snippet 6: a2b_pluginInterrupt dummy implementation .. 36

Code Snippet 7: Custom PluginInit implementation ... 37

Code Snippet 11: Sending Custom Message Example.. 53

Code Snippet 12: Receiving Custom Message Example ... 53

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 8 of 56

1 Introduction

This document guides the user in porting A2B Stack on to custom platforms. The document provides
details of stack layers which needs to be reused and the layers which needs to be re-implemented
when porting to a custom platform. The document also provides code snippets to enable user in
building an A2B application on a custom platform using the stack.

A2B Stack is a highly portable and flexible framework for developing and deploying A2B networks in
automotive environments. The Stack embodies the following set of features:

• Full power and line fault diagnostics

• Extensive logging and debug capability

• Modular plugin architecture

• Well defined Platform Abstraction Layer (PAL)

• Message based command and control

• Extensible command set

1.1 Scope

The scope of this document is to briefly illustrate the steps to integrate the A2B Stack (Core A2B
Network stack referred in Figure 1) to any platform and build an A2B application using exported ‘Bus
configuration files’ from SigmaStudio.

Refer to [2] for the steps to draw customized A2B schematics using SigmaStudio tool.

Refer to [3] for the detailed API documentation for A2B Stack.

1.2 Organization of the Guide

Section 1 : Introduction to A2B Stack and the organization of the document.

Section 2 : A2B Software Stack architecture and workflow with Target software.

Section 3 : Building an A2B Application on a custom platform.

Section 4 : Application Integration.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 9 of 56

2 A2B Software Stack

A2B Software Stack or simply referred as A2B Stack is a collection of functional blocks designed to
efficiently configure, troubleshoot, and deploy A2B networks. Figure 1 shows the architecture of the
stack software.

A2B Stack is platform agnostic. The functionalities of the core stack remain same irrespective of the
target platform. The stack can be used to build applications specific to any platform by re-
implementing the Platform abstraction layer (PAL) as per the targeted platform.

Figure 1: A2B Software Stack Architecture

* PAL and Application layers need to be re-implemented depending on the target platform and the
end application requirements.
** Wrapper Services Layer helps in easy stack integration. It is integrator’s choice to use it as-is or
can be re-implemented. This layer can be further visualized as Wrapper Services Layer 1 (top-most
layer) and Wrapper Services Layer 2 (layer just above the A2B stack and below Wrapper Services
Layer 1).

The Stack is comprised of the following subsystems.

1. Scheduler

o The scheduler is designed to efficiently coordinate network activities, especially
during the discovery and configuration phase, and execute units of work encapsulated
in messages and jobs.

Application*

A2B Network Stack Public API

PAL*

Core A2B Network Stack

I2C

Comm.
GPIO

Network
Configuration

Scheduler Tracing
Messaging &
Notification

Network
Interrupt
Handler

Diagnostics
Plugin

Management

Network
Statistics

Sequence
Charts

Timer
Services

Plugin API

 Master
 Plugin

Discovery

PWR Fault

Slave
Plugin A

Slave
Plugin B

Slave
Plugin C

…
Slave

Plugin X

Wrapper Services**

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 10 of 56

2. Plugin Management

o Plugin Management initializes and integrates a single master plugin and zero or more
slave plugins into the Stack.

3. Diagnostics

o The diagnostic APIs provide a uniform means for slave plugins, and the Stack itself,
to transfer diagnostic information to the Application software.

4. Logging/Tracing

o The logging and tracing subsystems provide a uniform way for plugins, and the Stack
itself, to log interesting events throughout the network lifecycle.

5. Bus Configuration Parsing

o The bus configuration parsing subsystem, which is external to the Stack, is
responsible for parsing the output (BCF/BDD) of the Host Tool like SigmaStudio.

6. Slave I2C communication

o The slave I2C communication subsystem provides a more direct interface for plugins
to communicate with slave devices. Depending on the role of software entity (e.g.
master plugin, slave plugin, or application) protective limits are placed on device
access over I2C to minimize the potential of I2C issues.

7. Logging/Tracing

o Optional Trace Support
▪ Trace domains (e.g., I2C, Plugin, Stack) and severity levels

o Optional Sequence Chart Generation
▪ Utilize PlantUML for Presentation
▪ Preprocessing support for enhanced charts

o Stack APIs
▪ Register dumps, BER counts, node GPIO manipulation

2.1 Host-Target Software Workflow

Target software is a framework which hosts A2B Stack, Application and other components specific
to the targeted processor platform.

A2B stack, running on the Target Software framework, requires a bus configuration file produced by
a Host network design tool like SigmaStudio to configure an A2B network. Refer [2] for more details
on drawing customized A2B schematics using SigmaStudio.

Once an A2B schematic, corresponding to the Target system, is modelled and validated in
SigmaStudio, the schematic information is then exported (adi_a2b_busconfig.c file) and added to
the Target software project. The Stack running on the Target parses the information in this file and
programs the A2B network accordingly.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 11 of 56

The Host-Target software workflow in building an A2B application is as shown in Figure 2.

Figure 2: Host Tool – Target Software Workflow

Download
software over
JTAG

Bus Configuration
File (BCF)

SigmaStudio – Host Network Design Tool

Target Software

Target Processor

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 12 of 56

3 Building an A2B Application on a custom platform

Building an A2B application on a custom platform involves two major steps

1. Step-1 (Concept): Designing A2B schematic on SigmaStudio.

2. Step-2 (System Implementation): Building Target software for the custom platform.

3.1 Designing A2B schematic on SigmaStudio

This step is required to create a bus configuration file that stores the complete A2B network
information required by the Target software running on the custom platform. An A2B schematic,
corresponding to the Targeted application shall be designed and validated on SigmaStudio before
exporting the bus configuration file. The steps involved in this process are as follows

1. Build an A2B Schematic on SigmaStudio matching your final A2B system

o Refer [2] for drawing an A2B schematic on SigmaStudio. Ensure

▪ Audio streams are defined and assigned for the network.

▪ Configuration is provided for all A2B nodes and connected peripheral devices.

2. Validate A2B Schematic using PC as the host processor

o Refer to the example in Section 5 of 1 to discover A2B network using PC as Host

o Link-compile-download and confirm successful network discovery, configuration and
audio routing.

o Debug discovery issues (if any) using ‘Tracing’, ‘Sequence Chart’ and other features.

3. Perform Network analysis to ensure the drawn schematic matches requirements of the end
system

o Check for Bandwidth usage per Node/Network.

o Run Bit error Test for the network.

o Check Power usage for the network.

4. Define application response to line faults (if required)

o Auto-rediscovery upon faults, no. of attempts etc.

o Verify line fault handling/rediscovery upon line faults.

5. After successful validation, export Bus Configuration .C file for the validated A2B

schematic.

6. Bus configuration file can also be exported as a binary file using “Dump as .dat” option.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 13 of 56

3.2 Building Target software for a custom platform

The next step is to build Target software for a custom platform that hosts A2B stack and the
application. The A2B stack is responsible for discovering and configuring the A2B network as per
the configuration provided and to handle any run-time events/faults. The subsequent sections
describe the steps involved in porting the Stack. It may be necessary to implement additional
responsibilities in the Target software depending on the end-system requirements which is beyond
the scope of this document.

The best way of building Target software for a custom platform is to port a matching demo project
(available in A2B Software package under .\Target). Figure 1Figure 3 shows Target software
examples on different ADI platforms available within the software package.

Figure 3: A2B Target Software Examples

Table 2 provides A2B controller, audio host details for each example. Refer to Section 5 of [1] to
run the example projects.

Table 2: Target Example Projects

Example Project Name Platform A2B Controller Audio Host

a2bapp-bf SDP-B + EVAL-AD242xWDZ BF527 ADAU1452

a2bapp-adsp-sc58x ADSP-SC584 Ez Kit ARM A5 (Core 0) SHARC (Core 1)

a2bapp-linux ADSP-SC584 Ez Kit ARM A5 (Core 0) SHARC (Core 1)

All Target example projects provided in the A2B Software package have a similar directory structure
as shown in Figure 4. The figure also shows the folders which constitute core A2B “Stack” and

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 14 of 56

“Application” files. When porting Stack on to a custom platform, modifications are required only for
the files under ‘a2bstack-pal’ and ‘Application’ folders while the rest shall be moved as-is.

Figure 4: A2B Target Project directory structure

► a2bstack

▪ The generic or target agnostic portions of the A2B Stack. Holds a scheduler designed
to efficiently coordinate network activities, especially during the discovery and
configuration phase, and execute units of work encapsulated in messages and jobs.

► a2bplugin-master

▪ The sources for the A2B Stack master node plugin. The A2B network discovery
algorithms and line fault diagnostics are encapsulated within these sources.

► a2bplugin-slave

▪ The sources for simple A2B stack slave node plugin. These sources are a simple
example of a slave plug-in for use as a launching pad for developing custom plugins.

► a2bstack-pal

▪ The platform adaptation layer (PAL) for the A2B Software Stack.

► a2bstack-protobuf

▪ The source code for parsing A2B Bus Configuration File (BCF) from ADI SigmaStudio
tool.

▪ Source code for parsing and decoding Google Protobuf (Nanopb) encoded A2B
configuration file generated by Host Tool.

The steps involved in porting A2B stack and defining application response to A2B events/faults are
as follows

1. Port A2B Software Stack to a custom platform. [3.2.1].

A2B Stack Files

Application Files

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 15 of 56

2. Apply A2B system configuration. [3.2.2].

3. Modify the application callback code (if necessary). [3.2.3].

3.2.1 Porting A2B Software Stack to a custom platform

Step-by-step approach in porting A2B stack on to a custom platform are as follows

1. Copy all files from folders a2bplugin-master, a2bplugin-slave, a2bstack, a2bstack-
protobuf, a2bstack-pal, app, inc of demo software to corresponding folders of your target
platform project “as-is”.

2. Re-Implement adi_a2b_SystemInit() in main() to perform Target platform specific
initializations as required.

o Replace ADI platform specific Board Support Package (BSP) with Target platform
BSP.

o Ensure to generate and provide Bit Clock and SYNC signals for the master A2B
Transceiver chip.

o Define the stack and heap memory for the Target platform project using the options
provided by your development environment (IDE).

▪ 4K stack and 5K heap are the typical requirements. If the number of nodes in
the system is fixed, then memory can be statically allocated instead of using
the Heap.

▪ Enabling the macro A2B_APP_STATIC_MEMORY_FOR_STACK, makes
use of static memory allocation instead of dynamic memory allocation as
preferred by many automotive customers (set to typical values with margin
in .\Target\examples\demo\app-plugin\src\a2bapp.c)

• Stack memory - A2BAPP_STACK_NW_MEMORY (4864 bytes)

• Plugin memory - A2BAPP_PLUGIN_NW_MEMORY (704 bytes)

• BCF File/EEPROM buffer (optional) -
A2BAPP_E2PROM_BLOCK_MEMORY (4096 bytes)

3. Optionally, configure A2B Stack for the Target platform by modifying necessary macros in

o “features.h” in Target/examples/demo/<a2b-xx>>/a2bstack-pal/platform/a2b/

o “conf.h” in Target/examples/demo/<a2b-xx>>/a2bstack-pal/platform/a2b/

4. Re-Implement PAL functions in the file a2bstack-pal\adi_a2b_pal.c

o This would require implementing drivers (I2C, Timers, SPORT etc) specific to the
Target platform under a2bstack-pal folder. The list of PAL functions to be re-
implemented are listed in Table 2.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 16 of 56

o Refer for the implementation in the Example projects provided within the software
package.

o Each re-implemented function shall be unit tested to confirm that it is working as per
the function description before going to the next step.

In the table below, those functions marked as “Required” must be implemented to have a minimally
functional Stack. The remaining functions provide developers with convenient points in the Stack
operation to insure portability to a wide array of platforms.

Table 3: PAL Functions to be Re-implemented

PAL Function Required Description

I2C Functions

a2b_pal_I2cInit No This routine is called to do initialization
required by the I2C subsystem.

a2b_pal_I2cOpenFunc No This routine is called to do post initialization of
the I2C subsystem during the Stack allocation
process. This routine is called immediately
following a successful call to the pal_i2cInitFunc.

a2b_pal_I2cCloseFunc No This routine is called to de-initialize the I2C
subsystem.

a2b_pal_I2cReadFunc No This routine reads bytes from an I2C device.

a2b_pal_I2cWriteFunc Yes This routine writes bytes to an I2C device.
Application can implement either a blocking or
a non-blocking platform I2C driver call. Non-
blocking is preferred since it saves CPU cycles as
I2C speed is typically in kHz.

a2b_pal_I2cWriteReadFunc Yes This routine performs an atomic repeated start
I2C write/read transaction to an I2C device.
Application can implement either a blocking or
a non-blocking platform I2C driver call. Non-
blocking is preferred since it saves CPU cycles as
I2C speed is typically in kHz.

a2b_pal_I2cShutdownFunc No This routine is called to shut down the I2C
subsystem.

Timer Functions

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 17 of 56

a2b_pal_TimerInitFunc No This routine is called to do initialization the
timer

a2b_pal_TimerGetSysTimeFunc Yes This routine returns the current "system" time
in milliseconds. The underlying system time is
platform specific.

a2b_pal_TimerShutdownFunc No This routine is called to shut down the timer
subsystem during the Stack destroy process.

Audio Functions

a2b_pal_AudioInitFunc No This routine is called to do initialization the
audio subsystem during the Stack allocation
process.

a2b_pal_AudioOpenFunc No This routine is called to do post-initialization the
audio subsystem during the Stack allocation
process. This routine is called immediately after
a successful call to the pal_audioInitFunc.

a2b_pal_AudioCloseFunc No This routine is called to de-initialization the
audio subsystem during the Stack destroy
process.

a2b_pal_AudioConfigFunc No This routine is called to configure the audio
subsystem master node during the discovery
process. This routine is called during the
"NetComplete" process after all nodes are
discovered and before the master node
"NodeComplete" process which fully initializes
the master A2B registers and starts the
up/downstream flow.

a2b_pal_AudioShutdownFunc No This routine is called to shut down the audio
subsystem during the Stack destroy process.
This routine is called immediately after a
successful call to the pal_audioCloseFunc.

Memory Functions

(only when A2B_FEATURE_MEMORY_MANAGER is disabled in features.h)

a2b_pal_MemMgrInitFunc No This routine is called to do initialization
required by the memory manager service during
the Stack allocation process. A PAL
implementation has the option of implementing
their own (or custom) memory allocation
strategy. Another option is to leverage the built-
in memory manager feature of the generic Stack
if A2B_FEATURE_MEMORY_MANAGER is
defined. This manager allocates memory blocks

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 18 of 56

from a fixed size heap whose size is derived in
part from settings in ‘conf.h’.

a2b_pal_MemMgrOpenFunc No This routine opens a memory managed heap
located at the specified address and of the
specified size. If the Stack's heap cannot be
opened and managed at the specified location
(perhaps because the size is insufficient) then
the returned handle will be A2B_NULL. The
(optional) built-in memory manager enabled via
the

A2B_FEATURE_MEMORY_MANAGER definition
will use memory pools to avoid fragmentation
within a managed region.

NOTE: If A2B_NULL is returned, memory
allocation must have failed, and the Stack
allocation will fail.

a2b_pal_MemMgrMallocFunc Yes This routine is called to allocate a fixed amount
of memory.

Note: Only needed if
A2B_FEATURE_MEMORY_MANAGER is
disabled.

a2b_pal_MemMgrFreeFunc Yes This routine is called to free previously
allocated memory.

Note: Only needed if
A2B_FEATURE_MEMORY_MANAGER is
disabled.

a2b_pal_MemMgrCloseFunc No This routine is called to de-initialization the
memory management subsystem during the
Stack destroy process. All resources associated
with the heap are freed.

a2b_pal_MemMgrShutdown No This routine is called to shut down the memory
manager subsystem during the Stack destroy
process. This routine is called immediately after
a successful call to the pal_memMgrCloseFunc.

Logging Functions

(only when A2B_FEATURE_SEQ_CHART or A2B_FEATURE_TRACE is enabled in features.h)

a2b_pal_LogInitFunc No This routine is called to do initialization the log
subsystem during the Stack allocation process.

a2b_pal_LogOpenFunc No This routine opens a log channel.

a2b_pal_LogCloseFunc No This routine is closes a log channel.

a2b_pal_LogWriteFunc No This routine writes to a log channel.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 19 of 56

a2b_pal_LogShutdownFunc No This routine is called to shut down the log
subsystem during the Stack destroy process.
This routine is called immediately after a
successful call to the pal_logCloseFunc

Plugin Functions

(Generally not required to be modified. Default implementation should suffice)

a2b_pal_PluginsLoadFunc No This routine returns a list of all available plugins.
The plugins returned are queried during
discovery as slave nodes are found.

a2b_pal_PluginsUnloadFunc No This routine is called to unload previously
loaded plugins from pal_pluginsLoad.

a2b_pal_PalGetVersionFunc No This routine returns version information related
to the PAL.

a2b_pal_PalGetBuildFunc No This routine returns build information related to
the PAL.

File read Functions

(only when A2B_BCF_FROM_FILE_IO is enabled in features.h)

a2b_pal_FileOpen No This routine opens the binary file in read mode
and shall be modified as per the file system used.

a2b_pal_FileRead No This routine reads the binary file and shall be
modified as per the file system used.

a2b_pal_FileClose No This routine closes the binary file.

3.2.2 Apply A2B Network configuration

After completing all steps as mentioned in Section 3.2.1 , the next step is to apply bus configuration
to the Target software.

1. In the Target platform project, include the validated bus configuration file
(adi_a2b_busconfig.c), exported by following Section 3.1 .

o Replace the existing in .\Target\a2bstack\demo\<a2b-xx>\app.

2. Optionally, if bus configuration is read from a binary file, replace the exported .dat format of

bus configuration file into the file system path (A2B_CONF_BINARY_BCF_FILE_URL).

3. Optionally, audio routing table (.\app\adi_a2b_audioroutingtable.c) may need to be
modified if the audio streams are to be routed by the audio host.

o In case where the A2B controller is also the audio host for the network then modify
the audio routing table as explained in Section 5.3.7 of [1]. Otherwise, the routing has
to be modified in the audio host. Section 5.1.1 of [1] explains this process when using

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 20 of 56

ADAU1452 as audio host on ADI A2B evaluation boards such as EVAL-AD2425WDZ
and EVAL-AD2428WD1BZ.

Note: This step is not required if stream definition, routing is defined in SigmaStudio where
streams are sourced and consumed within A2B nodes and not routed by the Audio Host.

4. Build and Run the Target project.

o Use the build/flash tools provided by your development environment (IDE) to build
and run the executable image.

o A2B Network should get discovered and configured as per the added bus
configuration file. Refer to Section 5 for Debugging help.

3.2.3 Modify Application call back functions

By this time, we should have completed the porting of A2B Stack as explained in Section 3.2.1 . At
this stage, the A2B Stack ported on the custom platform should be capable of discovering and
configuring a connected A2B network as per the added bus configuration file.

The A2B Stack offers provision for the application running on the Target software to register callback
functions for important network activities. Three important application callback functions are
registered with the Stack. These functions can be modified by the user to perform an action specific
to the application.

Note: All examples provided in A2B Software package come with default implementations for these
callback functions. Modifications to these functions are required only if the default implementation
doesn’t match with your targeted system requirement. When requiring additional functionality, it is
recommended to add on top of the existing implementation unless rewriting completely.

The three application callback functions are explained in the following sub-sections.

 Discovery completion Callback function

The discovery completion callback function is invoked by the stack upon completing the discovery
and configuration of the whole A2B network. Figure 5 shows the application registration of a
discovery completion callback function with the stack. The status of the discovery is notified by this
function allowing the application to perform any additional tasks based on the notified status.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 21 of 56

Figure 5: a2bapp_onDiscoveryComplete callback registration

Note: a2bapp_onDiscoveryComplete() comes with default implementation for post discovery

bus drop monitoring and rediscovery upon faults (if it was set in SigmaStudio while exporting bus
configuration file). Modify this function only to override default functionality (if required).

Code Snippet 1 shows a sample implementation of this callback function.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 22 of 56

Code Snippet 1: a2bapp_onDiscoveryComplete sample implementation

 Power/Line Fault Callback function

The power fault callback function is invoked by the stack upon detecting a power related fault in any
node of the network. An application callback function can be registered with the Stack for power fault
notifications as shown in Figure 6.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 23 of 56

Figure 6: a2bapp_onPowerFault callback registration

The Stack provides callback function to the application layer upon the occurrence of a fault in the
A2B System. The stack performs necessary diagnostics and fault localization (in case of concealed
faults) and reports the fault type and location to the application for further handling.

Note that the Stack performs all necessary actions to handle the fault as recommended by A2B
Transceiver Programmer’s reference manual and finally invokes the application callback.

The function is invoked under the following fault conditions during and post discovery.

➢ Critical faults
▪ Cable terminal shorted to GND
▪ Cable terminal shorted to VBat

➢ Non-Critical faults
▪ Cable terminals shorted together
▪ Cable disconnected or open circuit
▪ Cable is reverse connected

➢ Indeterminate faults
➢ Bus/Node drop condition

Code Snippet 2 shows a sample implementation of a2bapp_onPowerFault callback function.

The information about the presence of local powered slave is made known to the stack through the
BDD (please refer SigmaStudio user guide – node properties description to set “Local powered”). In
case of critical faults (Cable terminal shorted to GND, Cable terminal shorted to VBat), the stack
switches of the bus from the immediate upstream local powered slave onwards.

Partial bus operation is possible between master and this upstream local powered slave.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 24 of 56

Code Snippet 2: a2bapp_onPowerFault sample implementation

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 25 of 56

 Interrupt Callback function

The Interrupt callback function is invoked by the Stack upon seeing any interrupts at the master
node. Figure 7 shows the application registration of an interrupt callback function with the Stack.

Figure 7: a2bapp_onInterrupt callback registration

Code Snippet 3 shows a sample implementation of this callback function.

Code Snippet 3: a2bapp_onInterrupt sample implementation

Note: Any interrupt on the slave node can be handled within a2bplugin_slave\

a2bslave_plugin.c file in the function a2b_pluginInterrupt as explained in Section 4.3.2

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 26 of 56

 Node Discovery Callback function

The node discovery callback function is an optional callback, which is invoked by the stack upon
each node discovery or when node authentication fails. Figure 8 shows the application registration
of this callback function with the Stack.

Figure 8: a2bapp_onNodeDiscovery callback registration

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 27 of 56

Code Snippet 34 shows a sample implementation of this callback function. The application can
decide whether to continue with discovery or not and has more control with this callback function.

Code Snippet 4: a2bapp_onNodeDiscovery sample implementation

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 28 of 56

3.3 Summary of Building A2B Application on custom platform

Figure 9: Building A2B Application on a Custom Platform

SigmaStudio
Schematic

• Design and validate A2B Schematic in SigmaStudio
• Export the Bus Configuration File -adi_a2b_busconfig.c

• Refer Section 3.1

Port A2B Stack

• Build Target Software on Custom Platform
• Port A2B Software Stack

• Reimplement PAL Functions

• Refer Section 3.2.1

Apply Bus
Config File

• Apply A2B Network Configuration.
• Include Bus Configuration File in Target Project

• Modify Audio Routing Table (if necessary)

• Refer Section 3.2.2

Application

• Modify/Implement Application behaviour to Network
Events/Faults
• Refer Section 3.2.3

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 29 of 56

4 Application Integration

Integrator can take 3 approaches to integrate A2B stack:

1. Using Wrapper Services Layer 1
2. Using Wrapper Services Layer 2
3. A2B Network Stack Public APIs

1. Using Wrapper Services Layer 1:

This is the top-most layer below Application (refer Figure 1). This provides ease of integration
with minimal service APIs. Example implementation of this layer is available
in .\Target\examples\demo\app-plugin\src\a2bapp.c.

The main services provided in this layer are:

1. A2B network setup - a2b_setup()
▪ Implements the higher level service of network setup including stack memory

allocation, initialization and discovery

2. A2B fault monitor - a2b_fault_monitor()
▪ If line diagnostics is enabled this function checks if a line fault occurred post

discovery and initiates re-discovery.

3. A2B stack time tick - a2b_stackTick()
▪ Stack tick function ensures that the stack is periodically called to keep all the

processes/states rolling within the stack.

4. A2B stop - a2b_stop()
▪ This function stops stack, un-registering call-backs, turning off interrupt

polling, disabling sequence charts, and freeing resources associated with the
application context.

Below code snippet shows a sample usage of Wrapper services layer 1 APIs as
in .\Target\examples\demo\a2b-bf\appc\a2bapp_bf.c.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 30 of 56

Code Snippet 5: Wrapper Services Layer 1 usage

void main(int argc, char *argv[])
{
 a2b_UInt32 nResult = 0;
 bool bRunFlag = true;
 A2B_SPI_RET eSpiRet;

adi_initComponents();

 /* system/platform specific initialization */
 nResult = adi_a2b_SystemInit();
 if(nResult != 0)
 {
 assert(nResult == 0);
 }

 /* A2B Network Setup. Performs discovery and configuration of A2B nodes and its peripherals */

 nResult = a2b_setup(&gApp_Info);

 if (nResult)
 {
 /* failed to setup A2B network */
 assert(nResult == 0);
 }

 while(1)
 {

 /* Monitor a2b network for faults and initiate re-discovery if enabled */

 nResult = a2b_fault_monitor(&gApp_Info);

 /* tick keeps all process rolling.. so keep ticking */

 a2b_stackTick(gApp_Info.ctx);
 }
}

a2b_UInt32 a2b_fault_monitor(a2b_App_t *pApp_Info)
{
 a2b_UInt32 nResult = 0;
 a2b_UInt8 nChainIndex;

 /* If line diagnostics enabled and non-zero re-attempts configured */
 /* If fault has occurred */
 if ((pApp_Info->bRetry == A2B_TRUE) && (pApp_Info->bfaultDone == A2B_TRUE))
 {

/* delay between re-discovery attempt */
 a2b_ActiveDelay(pApp_Info->ctx, pApp_Info->pTargetProperties->nRediscInterval);

/* stop a2b stack */

 nResult = a2b_stop(pApp_Info);

 /* Re-discover the network */
 pApp_Info->ecb.palEcb.nChainIndex = nChainIndex;

 nResult = a2b_setup(pApp_Info);
 }
 return (nResult);

}

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 31 of 56

2. Using Wrapper Services Layer 2:

.\Target\examples\demo\app-plugin\src\a2bapp.c provides wrapper services for achieving
stack functionality. The services of this layer is invoked by Wrapper Services Layer 1. This
layer invokes the A2B Network Stack Public APIs, which are core A2B stack services.

Figure 10 shows the state transition diagram for different Stack states at Wrapper Services
Layer 2. The stack starts network discovery after it has been allocated and loaded with the
configuration file. After discovery, the stack continues to poll indefinitely for interrupts/events
until it is stopped or encounters a critical error in any of the earlier states.

Figure 10: Application Level State Transition Diagram

Each Stack state is explained in the following sub section.

3. A2B Network Stack Public APIs:

Once an integrator is familiar with the wrappers services like Initialize, Load, Discover, etc.
as described above, he/she can implement his/her own services using the A2B Network
Stack Public APIs directly (refer Figure 1).

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 32 of 56

4.1 Stack States

4.1.1 Initialize/Allocate

The Stack requires the application to allocate and initialize one or more contexts to run. Each
individual context maintains the complete Stack state for an A2B network. Multiple contexts allow
the Stack to manage multiple A2B networks simultaneously.

This state corresponds to the function a2b_allocate() in the application file a2bapp.c.

4.1.2 Load

This application state loads A2B bus configuration data into the Stack context. A bus configuration
file exported from SigmaStudio (or Bus Description Data from Mentor A2B Analyzer Application)
contains all of the information needed to perform a successful discovery and configuration of an A2B
network.

SigmaStudio generated BCF file can be optionally encoded in a Google Protocol Buffer (Protobuf)
format. Mentor generated BDD file is always encoded in Protobuf format. More information on
Google Protocol Buffers can be found here: https://developers.google.com/protocol-buffers/. This
function decodes and loads bus configuration when the included file is protobuf encoded.

This state corresponds to the function a2b_load() in the application file a2bapp.c.

4.1.3 Start

Starting the Stack involves instructing the Stack to begin polling for interrupts, enabling sequence
charts and debugging output, and hooking in application level call-backs.

This corresponds to the function a2b_start() in the application file a2bapp.c.

4.1.4 Discover

Discovery starts when the application sends an A2B_MSGREQ_NET_DISCOVERY message to the
Stack. Once this message has been sent, the application should transition to the Polling state in
order to complete the discovery process.

This state corresponds to the function a2b_discover() in the application file a2bapp.c.

4.1.5 Interrupt Poll

Polling for system events is simply calling the tick function of the Stack on a regular basis. The Stack
will enforce the interrupt poll time established in the Start state if called too often.

https://developers.google.com/protocol-buffers/

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 33 of 56

The calls to a2b_stackTick() drive the internal scheduler which ultimately drives all aspects of

the Stack. The internal scheduler runs every A2B_CONF_SCHEDULER_TICK_MULTIPLE ticks as
defined in conf.h .

By default, A2B_CONF_SCHEDULER_TICK_MULTIPLE is set to two (2). Therefore, if
a2b_stackTick() is called every 5ms a job will be scheduled every 10ms. Change this value to

one (1) to have the scheduler run on each tick. While the Stack itself is neither thread nor interrupt
safe, it can be called as a result of an interrupt to minimize system latency to A2B events. Following
an interrupt, one should call a2b_intrQueryIRQ() . This call into the Stack must be from the same

thread of execution as all of the other Stack calls.

This call will service up to A2B_CONF_CONSECUTIVE_INTERRUPTS as defined in conf.h.

We can also have interrupt-based event handling instead of polling system events by enabling the
macro ENABLE_INTERRUPT_PROCESS. The a2b_processIntrpt()function will periodically

check if a pin interrupt is latched and will process them. An example is provided in.
\Target\examples\demo\app-plugin\src\a2bapp.c. Platform specific interrupt callback shall be
implemented by the integrator to latch the pin interrupt.

4.1.6 Stop

Stopping the Stack involves un-registering call-backs, turning off interrupt polling, disabling
sequence charts, and freeing resources associated with a particular network configuration.

This state corresponds to the function a2b_stop() in the application file a2bapp.c.

4.1.7 Free

Freeing the Stack is simply a matter of freeing the application context container.

This state corresponds to the function a2b_free() in the application file a2bapp.c.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 34 of 56

4.2 Application Extensions to Environment control block

The environmental control block (or ECB) is the container for all platform and environment data
passed throughout the Stack. Most PAL functions receive a pointer to the ECB making this a central
data structure for the PAL.

The core Stack ECB is defined by the a2b_Ecb structure which is comprised of two other sub

structure definitions as shown in Table 4.

Table 4: ECB components

Data Type Description

a2b_BaseEcb

This contains the basic platform independent

environment parameters. This structure must be

defined first in the ECB structure.

a2b_PalEcb

These are the platform specific environment

properties defined by the PAL. This structure

must be defined second in the ECB structure.

Application specific extensions can be added to the standard Stack ECB by adding custom
application fields in the appropriate structures of a2b_Ecb.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 35 of 56

4.3 Plugin Architecture

One of the most powerful elements of the Stack is the plug-in architecture for initializing and
managing slave nodes throughout an A2B network lifecycle. Plugins can initialize peripheral
hardware on slave nodes, manipulate GPIO, communicate directly with I2C devices, create timers
for periodic events, service interrupts, and monitor A2B diagnostic registers. Plugins can also
send/receive notifications to/from the application to enable rich interactive system features. Custom
plugins can be developed to support new A2B hardware.

4.3.1 Plugin Examples

The Stack in all example Target projects comes with a Master and a generic Slave plugin designed
using the plugin architecture.

 Master Plugin

Slave node discovery and diagnostics are coordinated and enabled by the Master plugin. The Master
plugin supports a variety of discovery modes, line diagnostics, as well as slave EEPROM
configuration processing and custom node authentication.

If necessary, the Master plugin can be customized. It is always recommended to add customizations
on top of the existing implementation rather than replacing with a newer version as the Master plugin
is responsible for some important functions like discovery, diagnostics etc.

 Generic Slave Plugin

The default slave plugin provided with the Stack example projects is generic in nature and has
minimal command handling with support for initializing and de-initializing peripherals connected on
slave nodes. The plugin always responds affirmately to query requests during discovery making it
“default” plugin when included within a system.

A Custom Slave plugin may be necessary only in cases where the slave node needs to run a complex
functionality specific to the slave board capabilities. Otherwise, a common generic slave plugin may
be sufficient for all cases as used in Stack example projects in the software package.

4.3.2 Handling Interrupts in a Plugin

In some cases, it may be necessary for the plugins to handle interrupts generated by A2B nodes.
The function a2b_pluginInterrupt() in the plugin shall be implemented to handle such

interrupts. The Stack takes care of passing the interrupt to appropriate plugin depending on the
interrupt type and location.

The Master plugin in the Stack comes with default implementation to handle master interrupts and
to invoke appropriate application callback functions if registered.

The generic Slave plugin in the Stack doesn’t come with default implementation for interrupts
generated by a slave node (GPIO pin). If a specific functionality is required on a slave node upon an

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 36 of 56

interrupt, it can be implemented in a2b_pluginInterrupt() function of the slave plugin after

checking the Interrupt Type and Source node as shown in Code Snipper 6.

 Code Snippet 6: a2b_pluginInterrupt dummy implementation

4.3.3 Writing a Custom Plugin

A custom plugin can be developed to support a new A2B hardware based on an example plugin. A
Stack plugin must export a set of functions as indicated in Table 5.

Table 5: Plugin Functions

Function Name Use

a2b_pluginInit()

Called by the Stack once to initialize the a2b_PluginApi structure allowing the
plugin to register the remaining entry-point functions. This is the only function
that should be exported by a plugin.

a2b_pluginOpen()
Called during network discovery to see if the plugin handles a specific node. Any
plugin related resources should be allocated here.

a2b_pluginExecute() Called when a job needs to be processed by this plugin.

a2b_pluginInterrupt()
Called to process an interrupt for the slave associated with this plugin. Slave
plugins only receive GPIO related interrupts.

a2b_pluginClose() Called to close the plugin. Any plugin related resources should be freed here.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 37 of 56

A typical a2b_pluginInit() function for a plugin looks like this:

 Code Snippet 7: Custom PluginInit implementation

Implementation details for other plugin functions can be referred in file .\a2bplugin-
slave\src\a2bslave_plugin.c.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 38 of 56

4.3.4 Loading Plugins into the Stack

Plugins are loaded into the Stack through the a2b_PluginsLoadFunc PAL function. This function

returns a structured list of pointers pointing to the a2b_pluginInit() function of each plugin.

During the discovery process, each registered plugin is queried, in order, when a new slave node is
discovered to determine whether or not that plugin can service the node. The first plugin to respond
affirmatively by returning a non-NULL value, will be assigned by the Stack to that node.

Since each discovered slave node carries its own context, a single plugin can service more than
one slave node concurrently. It’s important to note, however, that each slave plugin instance is
responsible for maintaining its context.

4.4 Using A2B Stack for Multi-Master Network

In cases where the Host processor is controlling multiple A2B Masters, it is necessary to maintain
multiple stack instances. One stack and application context is mapped per network master. Each
individual context maintains the complete Stack state for an A2B network. Multiple contexts allow
the Stack to manage multiple A2B networks simultaneously.

Each application context can either register separate callback functions (for Discovery completion,
Power Fault or Interrupt events) or have single function with unique callback parameter for each
network chain.

An example project to demonstrate multi-master bus set up is provided in ‘ADI_A2B_Software-
RelX.Y.Z\Target\examples\advancedapp\multimaster’ of the A2B Software package. This example
uses ADSP-SC584 processor to discover and route the audio between two A2B networks. In the
example project, the structure a2b_App_t represents application level context. Separate objects

of this structure are created for each network instance. Each instance is identified with an index –
‘nChainIndex’, starting with 0. This parameter is used inside notification callback & PAL functions
to differentiate the handling between two A2B networks.

Note that when requiring to support multiple A2B Masters on a different platform, it is not just
sufficient to change the macro ‘A2B_CONF_MAX_NUM_MASTER_NODE’ in
Target/examples/demo/<a2b-xx>>/a2bstack-pal/platform/a2b/conf.h but also would require
modifications to the functions in adi_a2b_pal.c.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 39 of 56

4.5 Inter-Processor Communication over A2B Mailbox

The Stack running on the master node target processor can communicate with an intelligent slave
node having a connected processor. This can be achieved by using the Mailbox Communication
Channel module. The module enables exchange of control and command messages between the
two processors.

An example project for demonstrating the inter-processor communication using mailbox
communication channel is provided in ‘ADI_A2B_Software-RelX.Y.Z\ Target\examples\
advancedapp\mboxcommch of the A2B Software package. Refer [4] for more details on running the
demo. The document also provides details of the module APIs and the integration approach.

One example use case of this module is when Custom node authentication using Mailbox option is
set in SigmaStudio. In this case, the Stack running on the Target/Host processor queries a slave
node processor for Node Identifier using A2B_COMMCH_MSG_REQ_SLV_NODE_SIGNATURE and the

slave node responds with A2B_COMMCH_MSG_RSP_SLV_NODE_SIGNATURE using the module API

as shown in Figure 10. The figure also shows an example sequence of exchange when the slave
initiates a request message transmission with message ID say
A2B_COMMCH_MSG_REQ_MSTR_VERSION and the master responds back with the response
message ID A2B_COMMCH_MSG_RES_MSTR_VERSION.

Figure 10: Message exchange between Master and Slave node processor

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 40 of 56

Every message communicated has a unique ID assigned that is common across master and slave
nodes. Message ID is 6 bits in length. Message IDs up to 0xA are reserved to be used for
communication with the Master Plugin and should not be used by the application. All these message
IDs are defined in ‘ADI_A2B_Software-RelX.Y.Z/Target/a2bcommchannel/
inc/adi_a2b_commch_interface.h’ file.

The Target example projects in ‘ADI_A2B_Software-RelX.Y.Z\Target\examples\demo’ does not
come with the mailbox communication channel module integrated. To use the module for inter-
processor communication the following pre-requisites shall be met.

4.5.1 Pre-Requisites for Inter-Processor Communication

1. The mailbox registers in the slave node needs to be configured appropriately during
discovery. This is controlled by the bus configuration file (adi_a2b_busconfig.c) exported from
Sigma Studio schematic. While designing the A2B schematic in Sigma Studio the mailbox
registers MBOX0_CTL and MBOX1_CTL should be set to the values 0x3D and 0x3F from
the register tab view for the slave node to which communication channel messages via
mailbox is to be exchanged. The above register settings ensure the following configurations
of mailbox:

o Mailbox data length should be 4 bytes
o Mailbox full and empty interrupts should be enabled
o Mailbox 0 should be configured as receive mailbox (where master transmits to slave)

and mailbox 1 should be configured as transmit (where slave transmits to master).

2. The communication channel feature must be enabled in the Target project by defining the
macro A2B_FEATURE_COMM_CH in the stack configuration file features.h.

3. The following header files need to be included in the Target project. The header files are
available in the folder ‘ADI_A2B_Software-RelX.Y.Z/Target/a2bcommchannel/inc/ ’ in the
release package.

• adi_a2b_commch_interface.h - Contains the message identifiers that are reserved to
be exchanged by A2B master plugin of A2B stack on the master node with
communication channel on slave nodes. User should not modify these macros

• adi_a2b_commch_mstr.h - Contains the structures, data types and function
declarations for master communication channel. User configurable macros are also
present in this file.

• adi_a2b_commch_engine.h - Contains the structures, data types and function
declarations of the communication channel engine. The communication engine runs
the framing/de-framing protocol.

The directory structure of the Target example project with the above include files
are shown in Figure 11.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 41 of 56

Figure 11: A2B Target project directory structure with communication channel includes

4. The following source files need to be included in the application. The source files are
available in the folder ‘ADI_A2B_Software-RelX.Y.Z/Target/a2bcommchannel/src/’ in the
release package

• adi_a2b_commch_mstr.c - Contains the function definitions for master
communication channel which are used by the Master Plugin to create and use the
communication channel for transmitting & receiving messages.

• adi_a2b_commch_engine.c - Contains the function definitions of the communication
channel engine. The communication engine runs the framing/de-framing protocol.

The directory structure of the Target example project with the above source files included
as a part of the virtual folder ‘a2bcommchnl’ are shown in Figure 12.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 42 of 56

 Figure 12: A2B Target project directory structure with communication channel sources

For details on integration of A2B mailbox into application, please refer [4].

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 43 of 56

4.6 Post discovery APIs

A2B network’s biggest advantage is “setup once and forget”. After network discovery and setup of
all the nodes, minimal host intervention is required. Audio streams get transmitted across nodes
seamlessly. So host intervention is only limited to fault monitoring. Host action is required only
when bus faults are detected.

To ease applications in performing some basic post discovery operations, the following APIs are
provided to the application. Post discovery APIs are provided in .\Target\examples\demo\app-
plugin\src\a2bapp.c.

Table 6: Supported post discovery APIs

API name Use

a2b_reset() This function does A2B network soft reset.

a2b_AppWriteReg() This function writes a register value to a particular A2B node.

a2b_AppReadReg() This function reads a register value from a particular A2B node.

a2b_app_handle_becovf()
This routine periodically resets BECNT and BECOVF registers and checks for bus
drop.

a2b_AppDetectBusDrop()
This function reads the Vendor Id register of all A2B nodes discovered and
declares a bus drop at a particular node where the read value is not the
expected.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 44 of 56

5 Appendix A: Diagnostics and Debugging

Diagnostic and debugging is one of the most powerful aspects of the Stack. Every logged event is
timestamped and presented to the PAL for storage or reporting. Internally logged items include:

• All I2C transactions

• All messages

• All timer events

• All application interactions

• Discovery details

• Power fault details

The Stack included two discrete classes of logging. The first class of logs are used to build structured
sequence diagrams. The second class are unstructured trace messages. While both types utilize
the pal_logXXX() functions, separate handles allow the PAL layer to distinguish between the two

logging classes.

Sequence diagrams provide unparalleled transparency into the complex interactions between the
master and slaves throughout the entire lifecycle of an A2B network. This includes all aspects of
discovery and steady-state operation after discovery.

Once the deployment of an A2B network reaches a certain state of stability, trace messages can be
utilized to log Stack operations in a less detailed manner than the Sequence diagrams. Trace
messages are routinely integrated into larger system level logging frameworks where message types
and severity can be monitored and filtered.

Additionally, the Stack automatically performs power and line fault diagnostics whenever a network
discovery fails. The diagnostics are reported back to the application through the diagnostic event
handler registered with the Stack.

5.1 Generating Sequence Diagrams

The sequence diagrams created by the Stack are compatible with an open source tool called
PlantUML (http://plantuml.com/). The raw syntax for PlantUML is human readable and friendly for
processing with diff tools or checking into document repositories. When post-processed by the
PlantUML tool, extremely rich graphical sequence diagrams, can be created.

The script to post process the sequence diagrams to a more readable format is given in ‘Target/tools’.
Note: Python must be installed on the developer’s system for the post processing script to function.

5.1.1 Sequence diagram support in the Stack

• Sequence diagram support is an optional Stack feature and must be enabled by defining
A2B_FEATURE_SEQ_CHART in ‘features.h’ prior to compiling the Stack.

• Once sequence diagram support is included in the Stack, sequence diagrams must be
enabled as part of the Stack start-up as explained in 4.1.3 .

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 45 of 56

• All logging, including sequence diagrams and tracing, go through the pal_logXXX() set of

functions in the PAL. The table below illustrates the primary functions:

Table 7: PAL Logging Functions – Info

PAL Function Notes
a2b_LogOpenFunc The second argument passed to a2b_seqChartStart() is passed back into this

function.
This argument is a URI that the PAL code should recognize and open. A handle
must be returned back to the Stack from this function. The handle will be
passed along to the a2b_LogCloseFunc and a2b_LogWriteFunc functions.

NOTE: The URI passed into a2b_seqChartStart() can be a pointer to any object,
not just a constant string. For systems without an underlying filesystem, a
common trick is to pass a pointer to a “logging” structure that contains an
application level log buffer. This pointer should then be returned to the Stack
by this function as the handle. The Stack will then forward the pointer to the
logging structure to the a2b_LogWriteFunc and a2b_LogCloseFunc functions
whenever any sequence chart data needs to be written.

a2b_LogCloseFunc Closes the device handle returned by a2b_LogOpenFunc

a2b_LogWriteFunc Writes a line of sequence chart data to the device handle returned
by a2b_LogOpenFunc

5.1.2 Enabling Sequence Chart in Sample Demo Applications

• Pre-Requisites

• Set the PATH environment variable for running ‘java.exe’

➢ C:\Program Files (x86)\Java\jre<<xx>>\bin

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 46 of 56

Figure 13: Setting Path in Environment Variables

• Enable ’A2B_FEATURE_SEQ_CHART’ macro in ‘Target\examples\demo\<a2b-xx>\
a2bstack-pal\platform\a2b\features.h’

• Build, load and execute the a2bstack application on to the Target in Emulator mode using
JTAG (ICE1000/ICE2000).

➢ Refer [1] for more details on running sample demo.

• Run the ‘Target\tools\SeqChartProcess_<platform>.bat’ once discovery is done and
nodes are configured.

• ‘SequenceFile.detailed.png’ is created in ‘Target/examples/demo/<a2b-xx>>’ folder

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 47 of 56

Figure 14: Sample Sequence Chart

5.2 Capturing Trace Messages

In addition to sequence charts, the Stack also provides mechanisms to emit trace messages. Like
sequence charts, trace messages are also sent through the logging subsystem of the PAL. It is
important that a unique URI be used for trace messages, so the PAL can distinguish between trace
messages and sequence charts. Similarly, if one is running two stack contexts concurrently, insure
that each context has a unique URI to keep the trace outputs from mixing together.

5.2.1 Trace support in the Stack

• Trace support is an optional Stack feature. Support for tracing must be enabled by defining
A2B_FEATURE_TRACE in ‘features.h’ prior to compiling the Stack.

• Both the tracing URI as well as the default trace level mask are configured within the
Environment Control Block (ECB).

• For tracing, both traceUrl and traceLvl should be initialized along with the PAL.

• Trace levels can be changed by the application at any time.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 48 of 56

5.2.2 Enabling Trace in Sample Demo Applications

▪ Enable A2B_FEATURE_TRACE macro in ‘Target\examples\demo\<a2b-xx>\ a2bstack-
pal\platform\a2b\features.h’

▪ Optionally, modify the Trace Level in the Application header file

➢ Target\examples\demo\<a2b-xx>\app\a2bapp_defs.h

▪ Build, load and execute the a2bstack application on Target in Emulator mode using JTAG
(ICE1000/ICE2000).

➢ Refer [1] for more details on running sample demo.

▪ Halt the target in CCES after discovery and nodes are configured (after audio is configured)

▪ By default, trace messages will be stored in ‘Target/a2bstack/demo/<a2b-xx>/a2b_trace.txt’

Table 8: Trace Levels Description

TRACE LEVELS (Macros) Description

A2B_TRC_LVL_DEFAULT Log fatal errors and warnings. This is a combination of
A2B_TRC_LVL_WARN, A2B_TRC_LVL_ERROR, A2B_TRC_LVL_FATAL

A2B_TRC_LVL_INFO Log information wrt A2B node properties, slave plugin processing

A2B_TRC_LVL_DEBUG Log discovery related messages and interrupts

A2B_TRC_LVL_TRACE1 Log typical function In/Out messages

A2B_TRC_LVL_TRACE2 Log verbose messages

A2B_TRC_LVL_TRACE3 Log Interrupt Mask for Master Plugin

A2B_TRC_LVL_ALL Log all messages

 Table 9: Trace Domains Description

TRACE Domains
(Macros)

Description

A2B_TRC_DOM_STACK Log messages or events from Stack alone. The messages logged will be
for a failure case. Hence A2B_TRC_LVL_DEFAULT should be enabled
to log these messages.

A2B_TRC_DOM_TICK Log information with respect to Stack Tick. Enable
A2B_TRC_LVL_TRACE2 to log these messages.

A2B_TRC_DOM_TIMERS Log timer related messages. Enable A2B_TRC_LVL_TRACE1 to log the
timer functions.

A2B_TRC_DOM_MSGRTR Log information with respect to message Request and Notifications.
Enable A2B_TRC_LVL_TRACE1 to log the events with respect to
message transactions.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 49 of 56

A2B_TRC_DOM_PLUGIN Log messages or events from all Plugins

A2B_TRC_DOM_I2C Log I2C transactions only. Enable A2B_TRC_LVL_TRACE2 to log the
I2C transactions.

A2B_TRC_DOM_ALL Log messages from all domains

5.3 Stack scalability and optimization options

A2B stack is scalable for small micro-controllers to large SoC running complex OS. In this section,
we provide options to optimize memory based on few configurations.

1. In ‘Target\examples\demo\<a2b-xx>\ a2bstack-pal\platform\a2b\features.h’, undefine
the following macro(s) :

▪ A2B_FEATURE_COMM_CH,

▪ ENABLE_PERI_CONFIG_BCF,

▪ A2B_FEATURE_TRACE,

▪ A2B_FEATURE_SEQ_CHART

2. In ‘Target/examples/demo/<a2b-xx>>/a2bstack-pal/platform/a2b/conf.h’,

▪ Set A2B_CONF_MAX_NUM_MASTER_NODES to 1

▪ Set A2B_CONF_MAX_NUM_SLAVE_NODES to 2

3. Remove Slave plugin usage in a2bapp.c if no slave peripheral configuration is required.

▪ In function a2bapp_pluginsLoad, remove
A2B_SLAVE_PLUGIN_INIT(&appPlugins[i]) and set *numPlugins = 1;

4. Use compressed BCF export. Refer Section 4.1.1 of A2B SigmaStudio User guide

▪ Ensure ADI_A2B_BCF_COMPRESSED is defined in a2bapp_defs.h

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 50 of 56

6 Appendix B: Messages

Messages are shared between the Stack, Plugins and the Application to request or notify specific
events.

6.1 Request Message

Figure 15: Request Message Example

The list of Request message commands is listed below.

Table 10: Request Message Commands

Commands Description Payload Type

A2B_MSGREQ_UNKNOWN
Unknown message request
command, typically to indicate error.

-

A2B_MSGREQ_NET_RESET Reset the A2B network. -

A2B_MSGREQ_NET_DISCOVERY Start A2B network discovery. a2b_NetDiscovery

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 51 of 56

A2B_MSGREQ_NET_DISCOVERY_DIAGMODE
Start A2B network discovery in diag
mode.

Not supported

A2B_MSGREQ_PLUGIN_PERIPH_INIT

Request directed to a slave plugin to
complete any necessary initialization
of peripherals attached to the slave
node.

a2b_PluginInit

A2B_MSGREQ_PLUGIN_PERIPH_DEINIT

Request directed to a slave plugin to
de-initialize any peripherals attached
to the slave node.

a2b_PluginDeinit

A2B_MSGREQ_PLUGIN_VERSION

Request directed to a master or slave
plugin for version and build
information about the plugin itself.

a2b_PluginVerInfo

A2B_MSGREQ_CUSTOM Arbitrary custom command. -

6.2 Notify Message

Figure 16: Notify Message Example

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 52 of 56

The list of Notify Message Commands is listed in Table 11.

Table 11: Notify Message Commands

Notify Message Commands Description Payload Type

A2B_MSGNOTIFY_GPIO_INTERRUPT

Notify type used when a plugin triggers a
GPIO interrupt.

Causes an interrupt notification to be
emitted.

a2b_Interrupt

A2B_MSGNOTIFY_POWER_FAULT

Notify type used when a plugin sends a
power fault notification.

a2b_PowerFault

A2B_MSGNOTIFY_INTERRUPT

Notify type used when the stack detects any
interrupt and emits a notification.

This also includes any GPIO related
interrupts.

a2b_Interrupt

A2B_MSGNOTIFY_DISCOVERY_DONE

Notification that is emitted at the end of
discovery whether it resulted in success or
failure.

a2b_DiscoveryStat
us

A2B_MSGNOTIFY_CUSTOM

Arbitrary custom command.

Anything at or beyond this value is
considered a custom command.

-

A2B_MSGNOTIFY_NODE_DISCOVERY

Notify type used when the stack discovers a
node OR custom node authentication fails for
a particular node.

a2b_Nodedscvry

6.3 Sending custom messages and notifications

To send a custom message, one must allocate the message, find the payload area, deposit the
message contents, send the message, and optionally release the reference to the message.
Sending a typical message looks like this:

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 53 of 56

Code Snippet 8: Sending Custom Message Example

As illustrated in the example code above, the caller unreferences the message following the call to
a2b_msgRtrSendRequest(). This is because the Stack adds its own reference to the message
following the send request. In the event that caller requires that the message live longer, i.e. because
it is carrying pointers to data, then one should register a complete callback with the
a2b_msgRtrSendRequest() and unreference the message there.
The callee of the message is free to modify the contents of the message within the callee’s message
handler. A callback optionally registered by the caller can be called when the callee completes
processing of the message. This callback can be used by the caller to process return values from
the callee.

6.4 Receiving custom messages and notifications

Messages are handled exclusively through the Execute method of a plugin. A plugin simply has to
have defined entries for custom message within the switch/case statement. The message payload
can be extracted from the message using ‘a2b_msgGetPayload()’.

Code Snippet 9: Receiving Custom Message Example

#define A2B_MSG_MY_MESSAGE (A2B_MSGREQ_CUSTOM + 1)

struct a2b_Msg *msg;

a2b_HResult result;

a2b_UInt32 *data;

a2b_UInt16 slaveNode = 1;

msg = a2b_msgAlloc(a2b>ctx, A2B_MSG_REQUEST, A2B_MSG_MY_MESSAGE);

if (msg != A2B_NULL)

{

 data = (a2b_UInt32 *)a2b_msgGetPayload(msg);

 *data = 0xABCDABCD;

 result = a2b_msgRtrSendRequest(msg, slaveNode, NULL);

 a2b_msgUnref(msg);

}

#define A2B_MSGNOTIFY_DATA (A2B_MSGREQ_CUSTOM + 1)

struct a2b_MsgNotifier *notifierHandle;

/* Register for notifications from the Remote plugin */

notifierHandle = a2b_msgRtrRegisterNotify(a2b>ctx, A2B_MSGNOTIFY_DATA,

 myCallback,

 myUserData,

 myDestroyFunction);

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 54 of 56

7 Appendix C: Target Debug Features

7.1 Bit Error Rate Test (BERT)

An example application for running BERT after discovery is provided in ‘ADI_A2B_Software-
RelX.Y.Z\Target\examples\advancedapp\bert’ of the A2B Software package. The macro
‘A2B_RUN_BIT_ERROR_TEST’ is enabled in ‘a2bstack-pal\platform\a2b\features.h’ to start the
BERT test after discovery for a period defined by A2B_BERT_CALC_PERIOD and constantly updated
after a time period mentioned in A2B_BERT_UPDATE_PERIOD. The BERT handler structure must be
defined in the Application structure. ADI_A2B_BERT_HANDLER oBertHandler.

typedef struct
{
 /*! BERT window in micro-seconds */
 a2b_UInt32 nReadTime;

 /*! Test Mode */
 a2b_UInt32 nBERTMode;

 /*! PRBS error counter */
 a2b_UInt32 nPRBSCount[A2B_CONF_MAX_NUM_SLAVE_NODES + 1];

 /*! Counter for various errors */
 a2b_UInt32 nErrorCount[A2B_CONF_MAX_NUM_SLAVE_NODES + 1];

 /*! Auto reset flag */
 a2b_UInt8 bResetFlag;

 /*! Auto reset window in Microseconds */
 a2b_UInt32 nAutoResetWindowTime;

 /*! Read interval counter */
 a2b_UInt32 nCount;

 /*! Overflow flag */
 a2b_UInt32 bOverFlowCount[A2B_CONF_MAX_NUM_SLAVE_NODES + 1];

}ADI_A2B_BERT_HANDLER;

ADI_A2B_BERT_HANDLER oBertHandler;

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 55 of 56

8 Appendix D: Auto Configuration from EEPROM

Auto configuration of slave nodes allows the register and peripheral configuration of a slave node to
be programmed from an EEPROM attached to the node during discovery by the Stack. To enable
auto configuration feature in the Stack, define the macro A2B_FEATURE_EEPROM_PROCESSING
in ‘Target\examples\demo\<a2b-xx>\a2bstack-pal\platform\a2b\features.h’.

The pre-requisite for this feature is that the configuration needs to be programmed in the EEPROM
attached to the slave node and the exported bus configuration file from Sigma Studio should have
the auto configuration enabled for the node. Refer [2] to configure the same in Sigma Studio.

Analog Devices, Inc.

A2B STACK USER GUIDE, Revision 8.0

AE-TE-REL-ITG-V1.1 Page: 56 of 56

Terminology

Table 1213: Terminology

Term Description

A2B Automotive Audio Bus

A2B node Refers to AD241x/AD242x.

BCF Bus Configuration File exported from SigmaStudio.

BDD
Bus Description Data exported from Mentor A2B Analyzer
application.

Master Node
A2B transceiver that is connected to the host processor is
considered as the master A2B node.

Slave Node
A2B Slave Transceiver with local peripherals such as
speakers and microphones.

I2C

Is a multi-master single-ended serial bus used for attaching
low-speed peripherals to a processor. In TWI / I2C protocol
the serial data transmission is done in asynchronous mode.
This protocol uses only two wires named SDA (serial data)
and SCL (serial clock) for communicating between two or
more ICs.

PAL
Platform Abstraction Layer. The code below this layer is
platform specific.

References

Table 14315: References

Reference No. Description

[1] AE_09_A2B_QuickStartGuide.pdf

[2] AE_09_A2B_SigmaStudio_UserGuide.pdf

[3] AE_09_A2B_Stack_API_Reference.chm

[4] AE_09_A2B_CommChannel_IntegrationGuide.pdf

http://en.wikipedia.org/wiki/Multimaster_bus
http://en.wikipedia.org/wiki/Single-ended_signaling
http://en.wikipedia.org/wiki/Serial_communications
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Motherboard

	Revision List
	Copyright, Disclaimer Statements
	Table of Contents
	List of Figures
	List of Tables
	List of Code Snippets
	1 Introduction
	1.1 Scope
	1.2 Organization of the Guide

	2 A2B Software Stack
	2.1 Host-Target Software Workflow

	3 Building an A2B Application on a custom platform
	3.1 Designing A2B schematic on SigmaStudio
	3.2 Building Target software for a custom platform
	3.2.1 Porting A2B Software Stack to a custom platform
	3.2.2 Apply A2B Network configuration
	3.2.3 Modify Application call back functions
	3.2.3.1 Discovery completion Callback function
	3.2.3.2 Power/Line Fault Callback function
	3.2.3.3 Interrupt Callback function
	3.2.3.4 Node Discovery Callback function

	3.3 Summary of Building A2B Application on custom platform

	4 Application Integration
	4.1 Stack States
	4.1.1 Initialize/Allocate
	4.1.2 Load
	4.1.3 Start
	4.1.4 Discover
	4.1.5 Interrupt Poll
	4.1.6 Stop
	4.1.7 Free

	4.2 Application Extensions to Environment control block
	4.3 Plugin Architecture
	4.3.1 Plugin Examples
	4.3.1.1 Master Plugin
	4.3.1.2 Generic Slave Plugin

	4.3.2 Handling Interrupts in a Plugin
	4.3.3 Writing a Custom Plugin
	4.3.4 Loading Plugins into the Stack

	4.4 Using A2B Stack for Multi-Master Network
	4.5 Inter-Processor Communication over A2B Mailbox
	4.5.1 Pre-Requisites for Inter-Processor Communication

	4.6 Post discovery APIs

	5 Appendix A: Diagnostics and Debugging
	5.1 Generating Sequence Diagrams
	5.1.1 Sequence diagram support in the Stack
	5.1.2 Enabling Sequence Chart in Sample Demo Applications

	5.2 Capturing Trace Messages
	5.2.1 Trace support in the Stack
	5.2.2 Enabling Trace in Sample Demo Applications

	5.3 Stack scalability and optimization options

	6 Appendix B: Messages
	6.1 Request Message
	6.2 Notify Message
	6.3 Sending custom messages and notifications
	6.4 Receiving custom messages and notifications

	7 Appendix C: Target Debug Features
	7.1 Bit Error Rate Test (BERT)

	8 Appendix D: Auto Configuration from EEPROM
	Terminology
	References

