
W5.0
C/C++ Compiler and Library Manual

for TigerSHARC® Processors

Revision 4.1, August 2008

Part Number
82-000336-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2008 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, icon bar and logo, the CROSSCORE logo,
VisualDSP++, SHARC, TigerSHARC, and EZ-KIT Lite are registered
trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 5.0 C/C++ Compiler and Library Manual iii
for TigerSHARC Processors

CONTENTS

PREFACE

Purpose of This Manual ... xxxix

Intended Audience ... xxxix

Manual Contents Description ... xl

What’s New in This Manual .. xl

Technical or Customer Support ... xl

Supported Processors .. xli

Product Information .. xli

Analog Devices Web Site .. xli

VisualDSP++ Online Documentation xlii

Technical Library CD ... xliii

Notation Conventions ... xliv

COMPILER

C/C++ Compiler Overview ... 1-3

Compiler Command-Line Interface ... 1-5

Running the Compiler ... 1-6

Compiler Command-Line Switches .. 1-10

CONTENTS

iv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

C/C++ Compiler Switch Summaries 1-10

C/C++ Mode Selection Switch Descriptions 1-22

-c89 ... 1-22

-c++ ... 1-22

C/C++ Compiler Common Switch Descriptions 1-23

sourcefile .. 1-23

-@ filename .. 1-23

-A name [(<tokens>)] .. 1-23

-add-debug-libpaths .. 1-24

-align-branch-lines .. 1-25

-allow-macs-to-extend-saturation 1-25

-alttok .. 1-25

-always-inline ... 1-26

-annotate .. 1-26

-annotate-loop-instr .. 1-27

-auto-attrs .. 1-27

-bss .. 1-27

-build-lib .. 1-27

-C .. 1-27

-c ... 1-28

-char-size-any ... 1-28

-char-size-{8|32} ... 1-28

-const-read-write .. 1-29

-const-strings .. 1-29

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual v
for TigerSHARC Processors

-Dmacro[=definition] .. 1-29

-debug-types ... 1-30

-default-branch-{np|p} ... 1-30

-double-size-any .. 1-30

-double-size-{32 | 64} .. 1-31

-dry .. 1-32

-dryrun ... 1-32

-E ... 1-32

-ED .. 1-32

-EE ... 1-33

-enum-is-int .. 1-33

-extra-keywords ... 1-33

-file-attr name[=value] ... 1-34

-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]] 1-34

-force-circbuf .. 1-34

-fp-associative ... 1-35

-fp-div-lib ... 1-35

-full-version .. 1-35

-g .. 1-35

-glite ... 1-36

-H .. 1-36

-HH ... 1-37

-h[elp] .. 1-37

-I- ... 1-37

CONTENTS

vi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-I directory [{,|;} directory...] ... 1-38

-implicit-pointers .. 1-38

-include filename .. 1-39

-ipa .. 1-39

-L directory [{,|;} directory...] .. 1-39

-l library ... 1-40

-list-workarounds .. 1-40

-M ... 1-41

-MD .. 1-41

-MM .. 1-41

-Mo filename .. 1-41

-Mt name ... 1-41

-map filename .. 1-41

-mem ... 1-42

-multiline ... 1-42

-never-inline ... 1-42

-no-align-branch-lines ... 1-42

-no-alttok ... 1-42

-no-annotate ... 1-43

-no-annotate-loop-instr ... 1-43

-no-auto-attrs ... 1-43

-no-bss ... 1-43

-no-builtin ... 1-44

-no-circbuf ... 1-44

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual vii
for TigerSHARC Processors

-no-const-strings ... 1-44

-no-defs .. 1-44

-no-extra-keywords .. 1-45

-no-fp-associative .. 1-45

-no-fp-minmax ... 1-45

-no-mem ... 1-46

-no-multiline .. 1-46

-no-progress-rep-timeout ... 1-46

-no-saturation ... 1-46

-no-std-ass .. 1-47

-no-std-def .. 1-47

-no-std-inc .. 1-47

-no-std-lib .. 1-47

-no-threads ... 1-47

-no-workaround workaround_id[,workaround_id …] 1-48

-O .. 1-48

-O[0|1] ... 1-48

-Oa ... 1-48

-Og ... 1-49

-Os ... 1-49

-Ov num ... 1-49

-o filename .. 1-51

-overlay ... 1-51

-P ... 1-52

CONTENTS

viii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-PP ... 1-52

-path-{ asm | compiler | lib | link } pathname 1-52

-path-install directory ... 1-52

-path-output directory .. 1-53

-path-temp directory ... 1-53

-pch ... 1-53

-pchdir directory ... 1-53

-pgo-session session-id .. 1-53

-pguide ... 1-54

-pplist filename ... 1-54

-proc processor ... 1-55

-progress-rep-func ... 1-56

-progress-rep-gen-opt .. 1-56

-progress-rep-mc-opt ... 1-56

-progress-rep-timeout .. 1-56

-progress-rep-timeout-secs secs 1-57

-R directory [{:|,}directory …] 1-57

-R- ... 1-57

-S ... 1-57

-s .. 1-58

-save-temps ... 1-58

-section id=section_name[,id=section_name...] 1-58

-show ... 1-59

-si-revision version .. 1-59

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual ix
for TigerSHARC Processors

-signed-bitfield .. 1-60

-signed-char .. 1-60

-structs-do-not-overlap .. 1-60

-syntax-only .. 1-61

-sysdefs ... 1-61

-T filename ... 1-62

-threads .. 1-62

-time .. 1-62

-Umacro ... 1-63

-unsigned-bitfield .. 1-63

-unsigned-char .. 1-64

-v .. 1-64

-verbose .. 1-64

-version ... 1-64

-W {error|remark|suppress|warn} number 1-64

-Werror-limit number ... 1-65

-Werror-warnings .. 1-65

-Wremarks .. 1-65

-Wterse ... 1-65

-w ... 1-66

-warn-protos ... 1-66

-workaround workaround_id[,workaround_id]* 1-66

-write-files .. 1-67

-write-opts .. 1-67

CONTENTS

x VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-xref <filename> .. 1-67

C++ Mode Compiler Switch Descriptions 1-68

-anach .. 1-68

-check-init-order ... 1-69

-eh ... 1-70

-full-dependency-inclusion .. 1-70

-ignore-std .. 1-71

-no-anach ... 1-71

-no-eh .. 1-71

-no-implicit-inclusion ... 1-71

-no-rtti ... 1-72

-no-std-templates .. 1-72

-rtti .. 1-72

-std-templates ... 1-72

Data Types and Data Type Sizes .. 1-73

Integer Data Types ... 1-74

Floating-Point Data Types .. 1-74

Data Type Alignment .. 1-75

Environment Variables Used by the Compiler 1-76

Optimization Control ... 1-77

Optimization Levels ... 1-78

Interprocedural Analysis ... 1-80

Interaction with Libraries .. 1-81

Controlling Silicon Revision and Anomaly Workarounds within the
Compiler ... 1-82

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xi
for TigerSHARC Processors

 Using the -si-revision Switch .. 1-83

Using the -workaround Switch .. 1-84

Using the -no-workaround Switch 1-87

Interactions Between the Silicon Revision and Workaround Switches
1-87

C/C++ Compiler Language Extensions .. 1-89

Byte-Addressing Mode ... 1-93

sizeof() Operator Types and Sizes 1-93

Pointers .. 1-94

Alignment of Objects .. 1-94

Initializations .. 1-95

Pragmas Used in Byte-Addressing Mode 1-95

Performance Issues .. 1-95

Libraries Used in Byte-Addressing Mode 1-96

Include Files ... 1-97

Function Inlining .. 1-97

Inlining and Optimization .. 1-100

Inlining and Out-of-Line Copies 1-100

Inlining and Global asm Statements 1-101

Inlining and Sections .. 1-101

Inline Assembly Language Support Keyword (asm) 1-102

asm() Construct Syntax ... 1-104

asm() Construct Syntax Rules 1-106

asm() Construct Template Example 1-107

Assembly Construct Operand Description 1-108

CONTENTS

xii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Assembly Constructs With Multiple Instructions 1-115

Assembly Construct Reordering and Optimization 1-116

Assembly Constructs With Input and Output Operands .. 1-116

Assembly Constructs and Flow Control 1-117

Guidelines on the Use of asm() Statements 1-118

64-Bit Integer Support (long long) 1-118

Quad-Word Support ... 1-119

Memory Support Keywords (pm dm) 1-119

Memory Keyword Rules .. 1-120

__regclass Construct ... 1-122

Bank Type Qualifiers ... 1-123

Placement Support Keyword (section) 1-124

Placement of Compiler-Generated Code and Data 1-125

Boolean Type Support Keywords ... 1-126

Pointer Class Support Keyword (restrict) 1-126

Variable-Length Array Support .. 1-127

Long Identifiers .. 1-129

Non-Constant Aggregate Initializer Support 1-129

Indexed Initializer Support .. 1-129

Compiler Built-In Functions ... 1-132

Using the builtins.h Header File 1-133

Optimization Guidance Built-in Functions 1-134

16-Bit Data Types .. 1-137

Packed 16-bit Integer Support Using C 1-139

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xiii
for TigerSHARC Processors

Constructors (int2x16 values) 1-139

Extractors and Expanders (int2x16 values) 1-139

Arithmetic Operators (int2x16 values) 1-140

Bitwise Operators (int2x16 values) 1-140

Comparison Operators (int2x16 values) 1-141

Sideways Sum (int2x16 values) 1-142

Constructors (int4x16 values) 1-143

Extractors (2x16 from a 4x16 value) 1-143

Arithmetic Operators (int4x16 values) 1-145

Sideways Sum (int4x16 values) 1-145

32-Bit Data Types ... 1-147

Constructors (int2x32 values) 1-147

Extractors (int2x32 values) .. 1-147

Circular Buffer Built-In Functions 1-148

Circular Buffer Increment of an Index 1-148

Circular Buffer Increment of a Pointer 1-148

Math Intrinsics ... 1-149

RECIPS .. 1-150

RSQRTS .. 1-151

Instructions Generated by Built-in Functions 1-151

Addition and Subtraction .. 1-152

Conversion: .. 1-155

Miscellaneous ALU Instructions 1-156

Shifter Instructions ... 1-158

CONTENTS

xiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Bit Manipulation Instructions 1-159

Multiplier Instructions .. 1-161

Floating-Point Operations ... 1-164

Miscellaneous ... 1-165

Memory Allocation ... 1-165

Composition and Decomposition 1-165

System Register Access .. 1-166

Data Alignment Buffer (DAB) Built-in Functions 1-167

Circular Buffer Data Alignment Buffer (DAB) Built-in Functions
1-169

Communications Logic Unit Operations 1-171

TMAX, TMAX_ADD, TMAX_SUB, MAX_ADD, MAX_SUB
1-171

PERMUTE .. 1-177

ACS ... 1-178

DESPREAD ... 1-182

XCORRS ... 1-184

Pragmas .. 1-187

Data Alignment Pragmas .. 1-188

#pragma align num ... 1-189

#pragma alignment_region (alignopt) 1-191

Interrupt Handler Pragmas ... 1-192

Loop Optimization Pragmas ... 1-195

#pragma all_aligned .. 1-195

#pragma different_banks ... 1-196

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xv
for TigerSHARC Processors

#pragma loop_count(min, max, modulo) 1-196

#pragma loop_unroll N ... 1-196

#pragma no_alias .. 1-198

#pragma no_vectorization ... 1-199

#pragma vector_for ... 1-199

Function Side-Effect Pragmas .. 1-200

#pragma alloc .. 1-200

#pragma const ... 1-201

#pragma noreturn ... 1-201

#pragma pgo_ignore .. 1-202

#pragma pure .. 1-202

#pragma regs_clobbered string 1-203

#pragma regs_clobbered_call string 1-207

#pragma overlay .. 1-210

#pragma result_alignment (n) 1-211

General Optimization Pragmas .. 1-211

Inline Control Pragmas ... 1-212

#pragma always_inline .. 1-212

#pragma never_inline .. 1-213

Linking Control Pragmas .. 1-214

#pragma linkage_name identifier 1-214

 #pragma core ... 1-214

#pragma section/#pragma default_section 1-219

#pragma file_attr (name[=value] [, name[=value] [...]]) 1-222

CONTENTS

xvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

#pragma separate_mem_segments (var1, var2) 1-222

 #pragma weak_entry .. 1-223

Class Conversion Optimization Pragmas 1-223

#pragma param_never_null param_name [...] 1-223

#pragma suppress_null_check 1-225

Template Instantiation Pragmas 1-226

#pragma instantiate instance 1-227

#pragma do_not_instantiate instance 1-227

#pragma can_instantiate instance 1-228

Header File Control Pragmas .. 1-228

#pragma hdrstop .. 1-228

#pragma no_implicit_inclusion 1-229

#pragma no_pch ... 1-230

#pragma once ... 1-230

#pragma system_header .. 1-231

Diagnostic Control Pragmas ... 1-231

Modifying the Severity of Specific Diagnostics 1-231

Modifying the Behavior of an Entire Class of Diagnostics 1-232

Saving or Restoring the Current Behavior of All Diagnostics ..
1-232

Memory Bank Pragmas ... 1-234

#pragma code_bank(bankname) 1-234

#pragma data_bank(bankname) 1-235

#pragma stack_bank(bankname) 1-236

#pragma bank_memory_kind(bankname, kind) 1-237

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xvii
for TigerSHARC Processors

#pragma bank_read_cycles(bankname, cycles) 1-238

#pragma bank_write_cycles(bankname, cycles) 1-238

#pragma bank_optimal_width(bankname, width) 1-239

Increments and Decrements ... 1-240

C++ Style Comments ... 1-240

C++ Fractional Type Support ... 1-241

Format of Fractional Literals ... 1-241

Conversions Involving Fractional Values 1-242

Fractional Arithmetic Operations 1-242

Mixed-Mode Operations ... 1-243

GCC Compatibility Extensions ... 1-244

Statement Expressions ... 1-244

Type Reference Support Keyword (typeof) 1-245

GCC Generalized Lvalues ... 1-246

Conditional Expressions With Missing Operands 1-247

Hexadecimal Floating-Point Numbers 1-247

Zero-Length Arrays ... 1-248

Variable Argument Macros .. 1-248

Line Breaks in String Literals ... 1-249

Arithmetic on Pointers to Void and Pointers to Functions 1-249

Cast to Union ... 1-249

Ranges in Case Labels ... 1-249

Declarations Mixed With Code 1-250

Escape Character Constant .. 1-250

CONTENTS

xviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Alignment Inquiry Keyword (__alignof__) 1-250

(asm) Keyword for Specifying Names in Generated Assembler 1-251

Function, Variable and Type Attribute Keyword (__attribute__)
1-251

Unnamed struct/union fields within struct/unions 1-252

Preprocessor-Generated Warnings .. 1-252

Migrating .ldf Files From Previous VisualDSP++ Installations 1-252

C++ Support Tables (ctor, gdt) .. 1-253

Preprocessor Features .. 1-255

Predefined Preprocessor Macros ... 1-255

Writing Macros ... 1-258

Compound Macros ... 1-258

C/C++ Run-Time Model and Environment 1-261

Stack Frame Overview ... 1-262

Stack Frame Description ... 1-264

General System-Wide Specifications 1-266

At a procedure call, the following must be true: 1-267

Argument Passage ... 1-268

Passing a C++ Class Instance ... 1-269

Return Values ... 1-270

Procedure Call and Return .. 1-271

To Call a Procedure: ... 1-271

On Entry: ... 1-272

To Return from a Procedure: 1-273

Code Sequences .. 1-273

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xix
for TigerSHARC Processors

Constructors and Destructors of Global Class Instances 1-274

Constructors, Destructors and Memory Placement 1-276

Support for argv/argc ... 1-277

Allocation of Memory for Stacks and Heaps in LDFs 1-278

Example of Heap/Stack Memory Allocation 1-278

Using Multiple Heaps .. 1-280

Heap Identifiers .. 1-280

Initializing the Heap ... 1-281

Using Alternate Heaps with the Standard Interface 1-281

Allocating C++ STL Objects to a Non-Default Heap 1-282

Using the Alternate Heap Interface 1-285

C++ Run-Time Support for the Alternate Heap Interface 1-286

Using the Heap_Install Interface 1-287

Miscellaneous Information ... 1-289

Register Classification .. 1-289

Callee Preserved Registers (“Preserved”) 1-289

Dedicated Registers ... 1-290

Caller Save Registers (“Scratch”) 1-290

ADSP-TS101 and ADSP-TS20x Processor Registers 1-290

C/C++ and Assembly Language Interface 1-298

Calling Assembly Subroutines From C/C++ Programs 1-298

Calling C/C++ Functions From Assembly Programs 1-301

Using Mixed C/C++ and Assembly Naming Conventions . 1-302

C++ Programming Examples .. 1-304

CONTENTS

xx VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Using Fract Type Support ... 1-305

Using Complex Number Support 1-306

Compiler C++ Template Support .. 1-308

Template Instantiation .. 1-308

Identifying Un-instantiated Templates 1-310

File Attributes .. 1-312

Automatically-Applied Attributes .. 1-313

Default LDF Placement .. 1-313

Sections versus Attributes .. 1-315

Granularity ... 1-315

“Hard” versus “Soft” ... 1-316

Number of Values ... 1-316

Using Attributes .. 1-317

Example ... 1-317

ACHIEVING OPTIMAL PERFORMANCE FROM C/C++
SOURCE CODE

General Guidelines ... 2-3

How the Compiler Can Help .. 2-4

Using the Compiler Optimizer .. 2-4

Using Compiler Diagnostics ... 2-5

Warnings and Remarks ... 2-5

Source and Assembly Annotations 2-7

 Using the Statistical Profiler ... 2-7

Using Profile-Guided Optimization 2-8

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxi
for TigerSHARC Processors

Using Profile-Guided Optimization With a Simulator 2-9

Using Profile-Guided Optimization With Non-Simulatable
Applications ... 2-10

Profile-Guided Optimization and Multiple Source Uses . 2-11

Profile-Guided Optimization and the -Ov Switch 2-12

When to Use Profile-Guided Optimization 2-12

Using Interprocedural Optimization 2-12

Data Types .. 2-13

Avoiding Emulated Arithmetic .. 2-14

Using Sub-Word Types with Caution 2-16

Getting the Most From IPA ... 2-17

Initialize Constants Statically ... 2-17

Quad-Word-Aligning Your Data .. 2-19

Using __builtin_aligned .. 2-20

Avoiding Aliases .. 2-21

Indexed Arrays Versus Pointers ... 2-23

Trying Pointer and Indexed Styles 2-24

Function Inlining .. 2-24

Using Inline asm Statements .. 2-25

Memory Usage .. 2-26

Putting Arrays into Different Memory Sections 2-26

Using the Bank Qualifier ... 2-29

Improving Conditional Code .. 2-30

Loop Guidelines ... 2-31

Keeping Loops Short ... 2-32

CONTENTS

xxii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Avoiding Unrolling Loops ... 2-32

Avoiding Loop-Carried Dependencies 2-33

Avoiding Loop Rotation by Hand .. 2-34

Avoiding Array Writes in Loops ... 2-35

Inner Loops Versus Outer Loops ... 2-35

Avoiding Conditional Code in Loops 2-36

Avoiding Placing Function Calls in Loops 2-37

 Avoiding Non-Unit Strides ... 2-37

Loop Control .. 2-38

Using the Restrict Qualifier ... 2-39

Avoiding Long Latencies ... 2-40

Using Built-In Functions in Code Optimization 2-41

Using Fractional Data ... 2-41

System Support Built-in Functions .. 2-42

Using Circular Buffers ... 2-43

Smaller Applications: Optimizing for Code Size 2-45

Using Pragmas for Optimization ... 2-47

Function Pragmas ... 2-47

#pragma const .. 2-47

#pragma pure ... 2-48

#pragma regs_clobbered .. 2-48

#pragma optimize_{off|for_speed|for_space} 2-50

Loop Optimization Pragmas .. 2-50

#pragma loop_count ... 2-50

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxiii
for TigerSHARC Processors

#pragma no_vectorization ... 2-51

#pragma vector_for ... 2-51

#pragma all_aligned .. 2-52

#pragma different_banks ... 2-53

#pragma no_alias .. 2-54

Useful Optimization Switches .. 2-55

How Loop Optimization Works .. 2-56

Terminology .. 2-56

Clobbered Register .. 2-56

Live Register ... 2-57

Spill .. 2-57

Scheduling .. 2-57

Loop Kernel .. 2-58

Loop Prolog .. 2-58

Loop Epilog .. 2-58

Loop Invariant .. 2-58

Hoisting ... 2-59

Sinking ... 2-59

Loop Optimization Concepts ... 2-59

Software Pipelining ... 2-60

Loop Rotation .. 2-60

Loop Vectorization .. 2-63

Modulo Scheduling ... 2-65

Initiation Interval (II) and the kernel 2-66

CONTENTS

xxiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Minimum Initiation Interval Due to Resources (Res MII) 2-69

Minimum Initiation Interval Due to Recurrences (Rec MII) 2-70

Stage Count (SC) ... 2-71

Variable Expansion and MVE unroll 2-72

Trip Count ... 2-77

A Worked Example ... 2-78

Assembly Optimizer Annotations .. 2-81

Global Information ... 2-82

Procedure Statistics ... 2-82

Instruction Annotations .. 2-86

Loop Identification ... 2-87

Loop Identification Annotations 2-87

File Position ... 2-91

Vectorization Information ... 2-93

Unroll and Jam ... 2-94

Loop Flattening .. 2-97

Vectorization Annotations ... 2-98

Modulo Scheduling Information ... 2-100

Annotations for Modulo Scheduled Instructions 2-101

Warnings, Failure Messages and Advice 2-107

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Libraries Guide .. 3-3

Calling Library Functions .. 3-4

Using Compiler’s Built-In C Library Functions 3-4

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxv
for TigerSHARC Processors

Linking Library Functions ... 3-5

Working With Library Source Code ... 3-8

Working With Library Header Files ... 3-9

adi_types.h ... 3-11

assert.h ... 3-11

ctype.h ... 3-11

cycle_count.h .. 3-12

cycles.h ... 3-12

device.h .. 3-12

device_int.h .. 3-12

errno.h ... 3-13

float.h ... 3-13

iso646.h ... 3-14

limits.h ... 3-14

locale.h ... 3-14

math.h .. 3-15

setjmp.h .. 3-16

signal.h ... 3-16

stdarg.h .. 3-17

stdbool.h .. 3-17

stddef.h .. 3-17

stdint.h ... 3-17

stdio.h .. 3-20

stdlib.h ... 3-23

CONTENTS

xxvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

string.h .. 3-24

time.h .. 3-24

DSP Header Files .. 3-26

complex.h – Basic Complex Arithmetic Functions 3-26

filter.h – DSP Filters and Transformations 3-27

libsim.h – Simulator Services .. 3-28

matrix.h – Matrix Functions ... 3-29

stats.h – Statistical Functions .. 3-31

vector.h – Vector Functions ... 3-31

window.h – Window Generators 3-32

Calling Library Functions from an ISR 3-33

Using the Libraries in a Multi-Threaded Environment 3-34

Abridged C++ Library Support .. 3-35

Embedded C++ Library Header Files 3-36

complex .. 3-36

exception .. 3-37

fract ... 3-37

fstream ... 3-37

iomanip .. 3-37

ios .. 3-37

iosfwd .. 3-37

iostream ... 3-37

istream ... 3-38

new .. 3-38

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxvii
for TigerSHARC Processors

ostream ... 3-38

sstream ... 3-38

stdexcept ... 3-38

streambuf .. 3-38

string .. 3-38

strstream ... 3-39

C++ Header Files for C Library Facilities 3-39

Embedded Standard Template Library Header Files 3-40

algorithm .. 3-40

deque .. 3-40

functional ... 3-40

hash_map ... 3-40

hash_set .. 3-40

iterator ... 3-41

list .. 3-41

map .. 3-41

memory .. 3-41

numeric .. 3-41

queue .. 3-41

set .. 3-41

stack ... 3-41

utility ... 3-41

vector ... 3-41

fstream.h ... 3-42

CONTENTS

xxviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

iomanip.h ... 3-42

iostream.h .. 3-42

new.h ... 3-42

Using the Thread-Safe C/C++ Run-Time Libraries with VDK 3-42

Measuring Cycle Counts ... 3-42

Basic Cycle Counting Facility .. 3-43

Cycle Counting Facility with Statistics 3-45

Using time.h to Measure Cycle Counts 3-48

Determining the Processor Clock Rate 3-49

Considerations When Measuring Cycle Counts 3-50

File I/O Support ... 3-52

Extending I/O Support To New Devices 3-53

DevEntry Structure ... 3-54

Registering New Devices ... 3-59

Pre-Registering Devices ... 3-59

Default Device ... 3-61

Remove and Rename Functions 3-62

Default Device Driver Interface .. 3-62

Data Packing For Primitive I/O 3-63

Data Structure for Primitive I/O 3-64

Documented Library Functions .. 3-67

Undocumented Library Functions ... 3-71

Run-Time Library Reference ... 3-73

a_compress ... 3-74

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxix
for TigerSHARC Processors

a_expand .. 3-75

abs .. 3-76

acos .. 3-77

addbitrev .. 3-78

alog .. 3-79

alog10 .. 3-80

arg .. 3-81

asctime ... 3-82

asin ... 3-84

atan .. 3-85

atan2 .. 3-86

atof ... 3-87

atoi ... 3-89

atol ... 3-90

atold ... 3-91

atoll .. 3-93

autocoh .. 3-94

autocorr .. 3-95

avg ... 3-96

bsearch ... 3-97

cabs .. 3-99

cadd ... 3-100

cartesian ... 3-101

cdiv .. 3-102

CONTENTS

xxx VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

ceil ... 3-103

cexp ... 3-104

cfft ... 3-105

cfft_mag ... 3-108

cfft2d ... 3-110

cfftf .. 3-112

clearerr ... 3-114

clip .. 3-115

clock .. 3-116

cmatmadd .. 3-117

cmatmmlt .. 3-118

cmatmsub .. 3-119

cmatsadd .. 3-120

cmatsmlt .. 3-121

cmatssub .. 3-122

cmlt ... 3-123

conj .. 3-124

convolve ... 3-125

conv2d ... 3-126

copysign ... 3-127

cos ... 3-128

cosh ... 3-129

cot ... 3-130

count_ones ... 3-131

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxi
for TigerSHARC Processors

crosscoh .. 3-132

crosscorr ... 3-133

csub .. 3-134

ctime .. 3-135

cvecdot ... 3-136

cvecsadd ... 3-137

cvecsmlt .. 3-138

cvecssub .. 3-139

cvecvadd ... 3-140

cvecvmlt ... 3-141

cvecvsub ... 3-142

difftime .. 3-143

div .. 3-144

exp ... 3-145

__emuclk .. 3-146

fabs .. 3-147

favg .. 3-148

fclip .. 3-149

fclose .. 3-150

feof ... 3-151

ferror .. 3-152

fflush .. 3-153

fgetc ... 3-154

fgetpos .. 3-155

CONTENTS

xxxii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

fgets ... 3-157

fir .. 3-158

fir_decima .. 3-160

fir_interp .. 3-162

floor ... 3-167

fmax ... 3-168

fmin ... 3-169

fmod .. 3-170

fopen ... 3-171

fprintf .. 3-173

fputc .. 3-178

fputs .. 3-179

fread .. 3-180

freopen ... 3-182

frexp .. 3-184

fscanf ... 3-185

fseek ... 3-189

fsetpos .. 3-191

ftell .. 3-192

fwrite ... 3-193

gen_bartlett .. 3-195

gen_blackman .. 3-197

gen_gaussian .. 3-198

gen_hamming .. 3-199

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxiii
for TigerSHARC Processors

gen_hanning ... 3-200

gen_harris ... 3-201

gen_kaiser ... 3-202

gen_rectangular .. 3-203

gen_triangle .. 3-204

gen_vonhann .. 3-206

getc .. 3-207

getchar .. 3-208

gets ... 3-209

gmtime ... 3-210

heap_calloc ... 3-211

heap_free .. 3-213

heap_init .. 3-214

heap_install .. 3-215

heap_lookup ... 3-217

heap_malloc ... 3-219

heap_realloc .. 3-221

heap_switch .. 3-223

histogramf .. 3-225

ifft .. 3-227

ifft2d .. 3-229

iir ... 3-231

interrupt, interruptf, interrupts, interruptnr, interruptfnr,
interruptsnr ... 3-235

localtime ... 3-240

CONTENTS

xxxiv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

log ... 3-242

log10 .. 3-243

matinv ... 3-244

matmadd .. 3-245

matmmlt .. 3-246

matmsub .. 3-247

matsadd ... 3-248

matsmlt .. 3-249

matssub .. 3-250

max .. 3-251

mean .. 3-252

min .. 3-253

mktime .. 3-254

modf .. 3-256

mu_compress ... 3-257

mu_expand .. 3-258

norm .. 3-259

perror ... 3-260

polar .. 3-261

pow .. 3-262

printf ... 3-263

putc ... 3-264

putchar .. 3-265

puts .. 3-266

CONTENTS

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxv
for TigerSHARC Processors

qsort ... 3-267

raise .. 3-269

rand .. 3-272

remove .. 3-273

rename ... 3-274

rewind .. 3-275

rfft .. 3-276

rfft_mag ... 3-279

rfft2d .. 3-281

rfftf .. 3-283

rfftf_mag .. 3-285

rms ... 3-287

rsqrt ... 3-288

scanf ... 3-289

setbuf ... 3-291

setvbuf .. 3-292

sign .. 3-294

signal, signalf, signals, signalnr, signalfnr, signalsnr 3-295

sin .. 3-299

sinh .. 3-300

snprintf .. 3-301

sprintf .. 3-303

sqrt ... 3-305

srand .. 3-306

xxxvi VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

sscanf ... 3-307

strftime .. 3-308

strtod ... 3-312

strtof .. 3-314

strtoi .. 3-316

strtol .. 3-317

strtold .. 3-318

strtoll ... 3-320

strtoul .. 3-321

strtoull ... 3-322

tan ... 3-323

tanh ... 3-324

time ... 3-325

transpm .. 3-326

twidfft .. 3-327

twidfftf ... 3-329

ungetc .. 3-331

var ... 3-333

vecdot .. 3-334

vecsadd .. 3-335

vecsmlt ... 3-336

vecssub ... 3-337

vecvadd .. 3-338

vecvmlt .. 3-339

VisualDSP++ 5.0 C/C++ Compiler and Library Manual for TigerSHARC DSPs xxxvii

vecvsub ... 3-340

vfprintf ... 3-341

vprintf .. 3-343

vsnprintf ... 3-345

vsprintf ... 3-347

zero_cross ... 3-349

INDEX

xxxviii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xxxix
for TigerSHARC Processors

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
digital signal processing (DSP) applications.

Purpose of This Manual
The VisualDSP++ 5.0 C/C++ Compiler and Library Manual for
TigerSHARC Processors contains information about the C/C++ compiler
and run-time library for TigerSHARC® (ADSP-TSxxx) processors. It
includes syntax for command lines, switches, and language extensions. It
leads you through the process of using library routines and writing mixed
C/C++/assembly code.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual, but should supplement it with other texts
(such as the appropriate hardware reference and programming reference
manuals) that describe their target architecture.

Manual Contents Description

xl VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Manual Contents Description
This manual contains:

• Chapter 1, “Compiler”
Provides information on compiler options, language extensions and
C/C++/assembly interfacing

• Chapter 2, “Achieving Optimal Performance from C/C++ Source
Code”
Provides information on compiler (and assembly) code optimiza-
tion (techniques and options).

• Chapter 3, “C/C++ Run-Time Library”
Shows how to use library functions and provides a complete C/C++
library function reference (for functions covered in the current
compiler release)

What’s New in This Manual
This edition of the VisualDSP++ 5.0 C/C++Compiler and Library Manual
for TigerSHARC Processors provides changes based on problem reports.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technical_support

• E-mail tools questions to
processor.tools.support@analog.com

http://www.analog.com/processors/technical_support
mailto:processor.tools.support@analog.com

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xli
for TigerSHARC Processors

Preface

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The name “TigerSHARC” refers to a family of Analog Devices, Inc.
floating-point and [8-bit, 16-bit, and 32-bit] fixed-point processors. For a
complete list of processors supported by VisualDSP++ 5.0, refer to Visu-
alDSP++ online Help.

Product Information
Product information can be obtained from the Analog Devices Web site,
VisualDSP++ online Help system, and a technical library CD.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

http://www.analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Product Information

xlii VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site
that allows customization of a Web page to display only the latest infor-
mation about products you are interested in. You can choose to receive
weekly e-mail notifications containing updates to the Web pages that meet
your interests, including documentation errata against all manuals. MyAn-
alog.com provides access to books, application notes, data sheets, code
examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on.
Your user name is your e-mail address.

VisualDSP++ Online Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, Dinkum
Abridged C++ library, and FLEXnet License Tools documentation. You
can search easily across the entire VisualDSP++ documentation set for any
topic of interest.

For easy printing, supplementary Portable Documentation Format (.pdf)
files for all manuals are provided on the VisualDSP++ installation CD.

http://www.analog.com/processors/technical_library/
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions
http://www.analog.com/subscriptions

VisualDSP++ 5.0 C/C++ Compiler and Library Manual xliii
for TigerSHARC Processors

Preface

Each documentation file type is described as follows.

Technical Library CD
The technical library CD contains seminar materials, product highlights,
a selection guide, and documentation files of processor manuals, Visu-
alDSP++ software manuals, and hardware tools manuals for the following
processor families: Blackfin, SHARC, TigerSHARC, ADSP-218x, and
ADSP-219x.

To order the technical library CD, go to http://www.analog.com/proces-
sors/technical_library, navigate to the manuals page for your
processor, click the request CD check mark, and fill out the order form.

Data sheets, which can be downloaded from the Analog Devices Web site,
change rapidly, and therefore are not included on the technical library
CD. Technical manuals change periodically. Check the Web site for the
latest manual revisions and associated documentation errata.

File Description

.chm Help system files and manuals in Microsoft help format

.htm or

.html
Dinkum Abridged C++ library and FLEXnet license tools software
documentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 6.0 (or higher).

.pdf VisualDSP++ and processor manuals in PDF format. Viewing and printing the
.pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

http://www.analog.com/processors/technical_library/
http://www.analog.com/processors/technical_library/

Notation Conventions

xliv VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-1
for TigerSHARC Processors

1 COMPILER

The C/C++ compiler (ccts) is part of Analog Devices development
software for TigerSHARC (ADSP-TSxxx) processors.

The code examples in this manual have been compiled using
VisualDSP++ 5.0. The examples compiled with other versions of
VisualDSP++ may result in build errors or different output
although the highlighted algorithms stand and should continue to
stand in future releases of VisualDSP++.

This chapter contains:

• “C/C++ Compiler Overview” on page 1-3
provides an overview of C/C++ compiler for TigerSHARC
processors.

• “Compiler Command-Line Interface” on page 1-5
describes the operation of the compiler as it processes programs,
including input and output files, and command-line switches.

• “C/C++ Compiler Language Extensions” on page 1-89
describes the ccts compiler’s extensions to the ISO/ANSI standard
for the C and C++ languages.

• “Preprocessor Features” on page 1-255
contains information on the preprocessor and ways to modify
source compilation.

• “C/C++ Run-Time Model and Environment” on page 1-261
contains reference information about implementation of C/C++
programs, data, and function calls in TigerSHARC processors

1-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• “C/C++ and Assembly Language Interface” on page 1-298
describes how to call an assembly language subroutine from C/C++
program, and how to call a C/C++ function from within an assem-
bly language program.

• “Compiler C++ Template Support” on page 1-308
describes how templates are instantiated at compile-time.

• “File Attributes” on page 1-312
describes how file attributes help with the placement of run-time
library functions.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-3
for TigerSHARC Processors

Compiler

C/C++ Compiler Overview
The C/C++ compiler (ccts) is designed to aid your DSP project develop-
ment efforts by:

• Processing C and C++ source files, producing machine-level ver-
sions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized signal pro-
cessing operations without having to understand the underlying processor
architecture.

The C/C++ compiler (ccts) compiles ISO/ANSI standard C and C++
code for the TigerSHARC processors. Additionally, Analog Devices
includes within the compiler a number of C language extensions designed
to assist in project development. The ccts compiler runs from the Visu-
alDSP++ environment or from an operating system command line.

The C/C++ compiler processes your C and C++ language source files and
produces TigerSHARC assembler source files. The assembler source files
are assembled by the TigerSHARC assembler (easmts). The assembler cre-
ates Executable and Linkable Format (ELF) object files that can either be
linked (using the linker) to create a executable file or included in an
archive library (using elfar). The way in which the compiler controls the
assemble, link, and archive phases of the process depends on the source
input files and the compiler options used.

C/C++ Compiler Overview

1-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Source files contain the C/C++ program to be processed by the compiler.
The ccts compiler supports the ANSI/ISO standard definitions of the C
and C++ languages. For information on the C language standard, see any
of the many reference texts on the C language. Analog Devices recom-
mends the Bjarne Stroustrup text “The C++ Programming Language” from
Addison Wesley Longman Publishing Co (ISBN: 0201889544) (1997) as
a reference text for the C++ programming language.

The ccts compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the TigerSHARC processors. For
more information, see “C/C++ Compiler Language Extensions” on
page 1-89.

Compiler options are set in the VisualDSP++ Integrated Development
and Debug Environment (IDDE) from the Compile page of the Project
Options dialog box. The selections control how the compiler processes
your source files, letting you select features that include the language dia-
lect, error reporting, and debugger output, etc.

By default, the ccts compiler operates in the 32-bit word-addressing
mode. The ccts compiler can also be set for the 8-bit byte-addressing
mode. For more information, refer to “-char-size-any” switch
(on page 1-28), “-char-size-{8|32}” switch (on page 1-28), “Data Types
and Data Type Sizes” on page 1-73, and “Byte-Addressing Mode” on
page 1-93.

For more information on the VisualDSP++ environment, see online Help.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-5
for TigerSHARC Processors

Compiler

Compiler Command-Line Interface
This section describes how the ccts compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-6

• “Compiler Command-Line Switches” on page 1-10

• “Data Types and Data Type Sizes” on page 1-73

• “Data Type Alignment” on page 1-75

• “Environment Variables Used by the Compiler” on page 1-76

• “Optimization Control” on page 1-77

• “Controlling Silicon Revision and Anomaly Workarounds within
the Compiler” on page 1-82

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ANSI/ISO
standard C language supplemented with Analog Devices extensions.
Table 1-2 on page 1-8 lists valid extensions of source files the compiler
operates upon. By default, the compiler processes the input file through
the listed stages to produce a .DXE file. (See file names in Table 1-3 on
page 1-9.) Table 1-4 on page 1-11 lists the switches that select the lan-
guage dialect.

Although many switches are generic between C and C++, some of them
are valid in C++ mode only. A summary of the generic C/C++ compiler
switches appears in Table 1-5 on page 1-11. A summary of the C++ spe-
cific compiler switches appears in Table 1-6 on page 1-20. The summaries
are followed by descriptions of each switch.

Compiler Command-Line Interface

1-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When developing a DSP project, sometimes it is useful to modify
the compiler’s default options settings. The way the compiler’s
options are set depends on the environment used to run the DSP
development software.

Running the Compiler
Use the following general syntax for the ccts command line:

ccts [-switch [-switch …]] sourcefile [sourcefile …]

runs the assembler with

A file name can include the drive, directory, file name, and file extension.
The compiler supports both Win32- and POSIX-style paths, using either
forward or back slashes as the directory delimiter. It also supports UNC
path names (starting with two slashes and a network name).

When file names or other switches for the compiler include spaces
or other special characters, you must ensure that these are properly
quoted (usually using double-quote characters), to ensure that they
are not interpreted by the operating system before being passed to
the compiler.

Table 1-1. TigerSHARC Command Line Syntax

Command
Element

Description

ccts Name of the compiler program for TigerSHARC processors.

-switch Switch (or switches) to process.
The compiler has many switches. These switches select the operations and
modes for the compiler and other tools. Command-line switches are case
sensitive. For example, -O is not the same as -o.

sourceFile Name of the file to be preprocessed, compiled, assembled, and/or linked

VisualDSP++ 5.0 C/C++ Compiler Manual 1-7
for TigerSHARC Processors

Compiler

The ccts compiler uses the file extension to determine what the file con-
tains and what operations to perform upon it. Table 1-3 on page 1-9 lists
the allowed extensions.

For example, the following command line

ccts -proc ADSP-TS101 -O -Wremarks -o program.dxe source.c

 runs ccts with

-proc ADSP-TS101 Specifies the processor

-O Specifies optimization for the compiler

-Wremarks Selects extra diagnostic remarks in addition to
warning and error messages

-o program.dxe Selects a name for the compiled, linked output

source.c Specifies the C language source file to be compiled

The following example command line for the C++ mode

ccts -proc ADSP-TS101 -c++ source.cpp

 runs ccts with:

-c++ Specifies that all of the source files to be compiled
in C++

source.cpp Specifies the C++ language source file for your
program

The normal function of ccts is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input filenames, and by various
switches.

In normal operation the compiler uses the following extension files to per-
form a specified action:

Compiler Command-Line Interface

1-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

If multiple files are specified, each is first processed to produce an object
file; then all object files are presented to the linker.

You can stop this sequence at various points by using appropriate com-
piler switches, or by selecting options with the VisualDSP++ environment.
These switches are -E, -P,-M,-H,-S, and -c.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, ccts names the output
for you. Table 1-3 on page 1-9 lists the type of files, names, and exten-
sions ccts appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file, any search
directories that you select, and any path information that you include in
the file name. Table 1-3 indicates the searches that the preprocessor, com-
piler, assembler, and linker support. The compiler supports relative and
absolute directory names to define file search paths. For information on
additional search directories, see the -I directory switch (on page 1-38)
and -L directory switch (on page 1-39).

When providing an input or output file name as an optional parameter,
use the following guidelines:

• Use a file name (include the file extension) with either an unambig-
uous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and file extension.

Table 1-2. File Extensions

Extension Action

.c .cpp .cxx .cc .c++ Source file is compiled, assembled, and linked

.asm, .dsp, or .s Assembly language source file is assembled and linked

.doj Object file (from previous assembly) is linked

VisualDSP++ 5.0 C/C++ Compiler Manual 1-9
for TigerSHARC Processors

Compiler

• Enclose long file names within straight quotes; for example, "long
file name.c". The ccts compiler uses the file extension conven-
tions listed in Table 1-3 to determine the input file type.

• Verify that the compiler is using the correct file. If you do not pro-
vide the complete file path as part of the parameter or add
additional search directories, ccts looks for input in the current
directory.

Using the verbose output switches for the preprocessor, compiler,
assembler, and linker causes each of these tools to display com-
mand-line information as they process each file.

Table 1-3. Input and Output Files

Input File Extension File Extension Description

.c C/C++ source file

.cc .cpp .cxx C++ source file

.h Header file (referenced by a #include statement)

.hpp .hh .hxx .h++ C++ header file (referenced by a #include statement)

.pch C++ pre-compiled header file

.i Preprocessed C/C++ source, created when preprocess only (-E compiler
switch) is specified

.ipa, .opa Interprocedural analysis files—used internally by the compiler when
performing interprocedural analysis

.pgo Execution profile generated by a simulation run. For more information,
see “Using Profile-Guided Optimization” in Chapter 2, Achieving
Optimal Performance from C/C++ Source Code.

.s, .dsp, .asm Assembler source file

.ii Template instantiation files—used internally by the compiler when
instantiating C++ templates

.is Preprocessed assembly source (retained when -save-temps is specified)

.ldf Linker Description File

.doj Object file to be linked

Compiler Command-Line Interface

1-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The compiler refers to a number of environment variables during its oper-
ation, and these environment variables can affect the compiler’s behavior.
Refer to “Environment Variables Used by the Compiler” on page 1-76 for
more information.

Compiler Command-Line Switches
This section describes the command-line switches used when compiling.
It contains a set of tables that provide a brief description of each switch.
These tables are organized by type of a switch. Following these tables are
sections that provide fuller descriptions of each switch.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options), as follows:

• Table 1-4 “C/C++ Mode Selection Switches” on page 1-11

• Table 1-5 “C/C++ Compiler Common Switches” on page 1-11

• Table 1-6 “C++ Mode Compiler Switches” on page 1-20

.dlb Library of object files to be linked as needed

.xml Processor system memory map file output

.sym Processor system symbol map file output

Table 1-3. Input and Output Files (Cont’d)

Input File Extension File Extension Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-11
for TigerSHARC Processors

Compiler

A brief description of each switch follows the tables, beginning
on page 1-22.

Table 1-4. C/C++ Mode Selection Switches

Switch Name Description

-c89
(on page 1-22)

Supports programs that conform to the ISO/IEC
9899:1990 standard

-c++
(on page 1-22)

Supports ANSI/ISO standard C++ with Analog Devices
extensions

Table 1-5. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
(on page 1-23)

Specifies file to be compiled

-@ filename
(on page 1-23)

Reads command-line input from the file

-A name[tokens]
(on page 1-23)

Asserts the specified name as a predicate

-add-debug-libpaths
(on page 1-24)

Link against debug-specific variants of system libraries,
where available.

-align-branch-lines
(on page 1-25)

Quad align predicted branches

-allow-macs-to-extend-saturation
(on page 1-25)

Instructs the compiler to try to generate multiply-accu-
mulate instructions using saturating add and subtract
operations.

-alttok
(on page 1-25)

Allows alternative keywords and sequences in sources

-always-inline
(on page 1-26)

Treats inline keyword as a requirement rather than a
suggestion.

-annotate
(on page 1-26)

Enables assembly annotations

-annotate-loop-instr
(on page 1-27)

Provides additional annotation information for the
prolog, kernel and epilog of a loop

Compiler Command-Line Interface

1-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-auto-attrs
(on page 1-34)

Directs the compiler to emit automatic attributes based
on the files it compiles. Enabled by default.

-bss
(on page 1-27)

Causes the compiler to place global zero-initialized
data into a separate BSS-style section

-build-lib
(on page 1-27)

Directs the librarian to build a library file

-C
(on page 1-27)

Retains preprocessor comments in the output file;
active only with the -E or -P switch)

-c
 (on page 1-28)

Compiles and/or assembles only; does not link

-char-size-any
(on page 1-28

Indicate that the resulting object can link against any
char size object

-char-size-{8|32}
(on page 1-28)

Selects byte (8-bit) or word (32-bit) addressing mode

-const-read-write
(on page 1-29)

Constant pointers may access modifiable memory

-Dmacro[=definition]
(on page 1-29)

Defines a macro

-debug-types
(on page 1-30)

Supports building a *.h file directly and writing a
complete set of debugging information for the header
file

-default-branch-{np|p}
(on page 1-30)

Sets default branches to be predict or non-predict

-double-size-any
(on page 1-30)

Indicate that the resulting object can link against any
double size object

-double-size-{32|64}
(on page 1-31)

Selects 32- or 64-bit IEEE format for double; the
-double-size-32 is the default mode

-dry
(on page 1-32)

Displays, but does not perform, main driver actions
(verbose dry-run)

-dryrun
(on page 1-32)

Displays, but does not perform, top-level driver actions
(terse dry-run)

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-13
for TigerSHARC Processors

Compiler

-E
(on page 1-32)

Preprocesses, but does not compile, the source file

-ED
(on page 1-32)

Preprocesses and sends all output to a file

-EE
(on page 1-33)

Preprocesses and compiles the source file

-enum-is-int
(on page 1-33)

By default enums can have a type larger than int. This
option ensures the enum type is int.

-extra-keywords
(on page 1-33)

Recognizes Analog Devices extensions to ISO/ANSI
standards for C and C++ (default mode)

-file-attr name[=value]
(on page 1-34)

Adds the specified attribute name/value pair to the
file(s) being compiled

-flags-{tools} <arg1>
[,arg2...]
(on page 1-34)

Passes command-line switches through the compiler to
other build tools

-force-circbuf
(on page 1-34)

Treats array references of the form array[i%n] as cir-
cular buffer operations

-fp-associative
(on page 1-35)

Treats floating-point multiply and addition as an asso-
ciative

-fp-div-lib
(on page 1-35)

Uses library code instead of inline code for float-
ing-point divides. Increases accuracy at expense of per-
formance.

-full-version
(on page 1-35)

Displays version information for build tools

-g
(on page 1-35)

Generates DWARF-2 debug information

-glite
(on page 1-36)

Generates lightweightDWARF-2 debug information

-H
(on page 1-36)

Outputs a list of header files, but does not compile the
source file

-HH
(on page 1-37)

Outputs a list of included header files and compiles

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-h[elp]
(on page 1-37)

Outputs a list of command-line switches with brief
syntax descriptions

-I-
(on page 1-37)

Establishes the point in the include directory list at
which the search for header files enclosed in angle
brackets should begin

-I directory
(on page 1-38)

Appends directory to the standard search path.

-implicit-pointers
(on page 1-38)

Demotes incompatible-pointer-type errors into discre-
tionary warnings. Not valid when compiling in C++
mode.

-include filename
(on page 1-39)

Includes named file prior to preprocessing each source
file

-ipa
(on page 1-39)

Enables interprocedural analysis

-L directory
(on page 1-39)

Appends the specified directory to the standard library
search path when linking

-l library
(on page 1-40)

Searches the specified library for functions when link-
ing

-list-workarounds
(on page 1-40)

Lists all compiler-supported errata workarounds

-M
(on page 1-41)

Generates make rules only; does not compile

-MD
(on page 1-41)

Generates make rules, compiles, and prints to a file

-MM
(on page 1-41)

Generates make rules and compiles

-Mo filename
(on page 1-41)

Writes dependency information to filename. This
switch is used in conjunction with the -ED or -MD
options.

-Mt filename
(on page 1-41)

Makes dependencies, where the target is renamed as
filename

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-15
for TigerSHARC Processors

Compiler

-map filename
(on page 1-41)

Directs the linker to generate a memory map of all
symbols

-mem
(on page 1-42)

Enables memory initialization

-multiline
(on page 1-42)

Enables string literals over multiple lines (default)

-never-inline
(on page 1-42)

Ignores inline keyword on function definitions

-no-align-branch-lines
(on page 1-42)

Do not align predicted branches to a quad word
boundary

-no-alttok
(on page 1-42)

Does not allow alternative keywords and sequences in
sources

-no-annotate
(on page 1-43)

Disables the annotation of assembly files

-no-annotate-loop-instr
(on page 1-43)

Disables the production of additional loop annotation
information by the compiler (default mode)

-no-auto-attrs
(on page 1-34)

Directs the compiler not to emit automatic attributes
based on the files it compiles.

-no-bss
(on page 1-43)

Causes the compiler to group global zero-initialized
data into the same section as global data with non-zero
initializers. Set by default.

-no-builtin
(on page 1-44)

For certain language extensions, uses generic imple-
mentations in preference to intrinsic functions. See
“Math Intrinsics” on page 1-149.

-no-circbuf
(on page 1-44)

Disables the automatic generation of circular buffer
code by the compiler

-no-const-strings
(on page 1-44)

Indicates that string literals should not be qualified as
const

-no-defs
(on page 1-44)

Does not define any default preprocessor macros,
include directories, library directories, libraries,
run-time headers, or keyword extensions

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-no-extra-keywords
(on page 1-45)

Does not define language extension keywords that
could be valid C/C++ identifiers

-no-fp-associative
(on page 1-45)

Does not treat floating-point multiply and addition as
an associative

-no-mem
(on page 1-46)

Disables memory initialization

-no-multiline
(on page 1-46)

Disables multiple line string literal support

-no-progress-rep-timeout
(on page 1-46)

Prevents the compiler from issuing a diagnostic during
excessively long compilations.

-no-saturation
(on page 1-46)

Causes the compiler not to introduce saturation
semantics when optimizing expressions

-no-std-ass
(on page 1-47)

Disables any predefined assertions and system-specific
macro definitions

-no-std-def
(on page 1-47)

Disables normal macro definitions; also disables Ana-
log Devices keyword extensions that do not have lead-
ing underscores (__)

-no-std-inc
(on page 1-47)

Searches for preprocessor header files only in the cur-
rent directory and in directories specified with the -I
switch

-no-std-lib
(on page 1-47)

Searches for only those linker libraries specified with
the -l switch when linking

-no-threads
(on page 1-47)

Specifies that compiled code does not need to be
thread-safe

-no-workaround workaround_id
(on page 1-48)

Disables compiler anomaly workdaround

-O
(on page 1-48)

Enables code optimizations

-O [0|1]
(on page 1-48)

Enables/disables code optimizations

-Oa
(on page 1-48)

Enables automatic function inlining

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-17
for TigerSHARC Processors

Compiler

-Og
(on page 1-49)

Enables a compiler mode that performs optimizations
while still preserving the debugging information

-Os
(on page 1-49)

Optimizes for code size

-Ov num
(on page 1-49)

Controls speed vs. size optimizations

-o filename
(on page 1-51)

Specifies the output file name

-overlay
(on page 1-51)

Permits program usage of overlays

-P
(on page 1-52)

Preprocesses, but does not compile, the source file; out-
put does not contain #line directives

-PP
(on page 1-52)

Preprocesses and compiles the source file; output does
not contain #line directives.

-path-{asm|compiler|lib|link}
pathname
(on page 1-52)

Uses the specified directory as the location of the speci-
fied compilation tool (assembler, compiler, librarian, or
linker, respectively)

-path-install directory
(on page 1-52)

Uses the specified directory as the location for all com-
pilation tool

-path-output directory
(on page 1-53)

Specifies the location of non-temporary files

-path-temp directory
(on page 1-53)

Specifies the location of temporary files

-pch
(on page 1-53)

Generates and uses precompiled header files (*.pch)

-pchdir directory
(on page 1-53)

Specifies the location of PCHRepository

-pguide
(on page 1-54)

Adds instrumentation for the gathering of a profile as
the first stage of performing profile-guided optimiza-
tion

-pplist filename
(on page 1-54)

Outputs a raw preprocessed listing to the specified file

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-proc processor
(on page 1-55)

Specifies that the compiler should produce code suit-
able for the specified processor

-progress-rep-func
(on page 1-56)

Issues a diagnostic message each time the compiler
starts compiling a new function. Equivalent to
-Wwarn=cc1472.

-progress-rep-gen-opt
(on page 1-56)

Issues a diagnostic message each time the compiler
starts a new generic optimization pass on the current
function. Equivalent to -Wwarn=cc1473.

-progress-rep-mc-opt
(on page 1-56)

Issues a diagnostic message each time the compiler
starts a new machine-specific optimization pass on the
current function. Equivalent to -Wwarn=cc1474.

-progress-rep-timeout
(on page 1-56)

Issues a diagnostic message if the compiler exceeds a
time limit during compilation.

-progress-rep-timeout-secs secs
(on page 1-57)

Specifies how many seconds must elapse during a com-
pilation before the compiler issues a diagnostic on the
length of compilation.

-R directory
(on page 1-57)

Appends directory to the standard search path for
source files

-R-
(on page 1-57)

Removes all directories from the standard search path
for source files

-S
(on page 1-57)

Stops compilation before running the assembler

-s
(on page 1-58)

Removes debugging information from the output exe-
cutable file when linking

-save-temps
(on page 1-58)

Saves intermediate compiler temporary files

-section id=section_name
(on page 1-58)

Orders the compiler to place data/program of type
“id” into the section “section_name”

-show
(on page 1-59)

Displays the driver command-line information

-si-revision version
(on page 1-59)

Specifies a silicon revision of the specified processor.
The default setting is the latest silicon revision.

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-19
for TigerSHARC Processors

Compiler

-signed-bitfield
(on page 1-60)

Makes the default type for plain int bitfields signed

-signed-char
(on page 1-60)

Makes the default type for char signed

-structs-do-not-overlap
(on page 1-60)

Specifies that struct copies may use “memcpy” seman-
tics, rather than the usual “memmove” behavior

-syntax-only
(on page 1-61)

Checks the source code for compiler syntax errors, but
does not write any output

-sysdefs
(on page 1-61)

Defines the system definition macros

-T filename
(on page 1-62)

Uses the specified the Linker Description File as con-
trol input for linking

-threads
(on page 1-62)

Specifies that the build and link should be thread-safe

-time
(on page 1-62)

Displays the elapsed time as part of the output infor-
mation on each part of the compilation process

-Umacro
(on page 1-63)

Undefines macro(s)

-unsigned-bitfield
(on page 1-63)

Makes the default type for plain int bitfields unsigned

-unsigned-char
(on page 1-64)

Makes the default type for char unsigned

-v
(on page 1-64)

Displays version and command-line information for all
compilation tools

-verbose
(on page 1-64)

Displays command-line information for all compila-
tion tools as they process each file

-version
(on page 1-64)

Displays version information for all compilation tools
as they process each file

-W{error|remark|
suppress|warn} number
(on page 1-64)

Overrides the default severity of the specified diagnos-
ticmessages (errors, remarks, or warnings)

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-Werror-limit number
(on page 1-65)

Stops compiling after reaching the specified number of
errors

-Werror-warnings
(on page 1-65)

Directs the compiler to treat all warnings as errors

-Wremarks
(on page 1-65)

Indicates that the compiler may issue remarks, which
are diagnostic messages even milder than warnings

-Wterse
(on page 1-65)

Issues only the briefest form of compiler warnings,
errors, and remarks

-w
(on page 1-66)

Disables all warnings

-warn-protos
(on page 1-66)

Issues warnings about functions without prototypes

-workaround workaround_id
(on page 1-66)

Enables code generator workaround for specific hard-
ware defects

-write-files
(on page 1-67)

Enables compiler I/O redirection

-write-opts
(on page 1-67)

Passes the user options (but not input filenames) via a
temporary file

-xref filename
(on page 1-67)

Outputs cross-reference information to the specified
file.

Table 1-6. C++ Mode Compiler Switches

Switch Name Description

-anach
(on page 1-68)

Supports some language features (anachronisms) that are
prohibited by the C++ standard but still in common use

-check-init-order
(on page 1-69)

Adds run-time checking to the generated code highlight-
ing potential uninitialized external objects.

-eh
(on page 1-70)

Enables exception handling

-full-dependency-inclusion
(on page 1-70)

Ensures re-inclusion of implictly included files when gen-
erating dependency information

Table 1-5. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-21
for TigerSHARC Processors

Compiler

-ignore-std
(on page 1-71)

Disables namespace std within the C++ Standard header
files.

-no-anach
(on page 1-71)

Disallows the use of anachronisms that are prohibited by
the C++ standard

-no-eh
(on page 1-71)

Disables exception-handling

-no-implicit-inclusion
(on page 1-71)

Prevents implicit inclusion of source files as a method of
finding definitions of template entities to be instantiated

-no-rtti
(on page 1-72)

Disables run-time type information

-no-std-templates
(on page 1-72)

Disables the lookup of names used in templates.

-rtti
(on page 1-72)

Enables run-time type information

-std-templates
(on page 1-72)

Enables the lookup of names used in templates

Table 1-6. C++ Mode Compiler Switches (Cont’d)

Switch Name Description

Compiler Command-Line Interface

1-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-c89

The -c89 switch directs the compiler to support programs that conform to
the ISO/IEC 9899:1990 standard. For greater conformance to the stan-
dard, the following switches should be used: -alttok, -const-read-write,
and -no-extra-keywords (see Table 1-5 on page 1-11).

-c++

The -c++ (C++ mode) switch directs the compiler to compile the source
file(s) written in ANSI/ISO standard C++ with Analog Devices language
extensions. When using this switch, source files with an extension of .c are
compiled and linked in C++ mode.

All the standard features of C++ are accepted in the default mode except
exception handling and run-time type identification because these impose
a run-time overhead that is not desirable for all embedded programs. Sup-
port for these features can be enabled with the -eh and -rtti switches.
(See Table 1-6 on page 1-20.)

Exceptions also require modifications to the Linker Description Files
(LDF); these modifications link against versions of the C++ run-time
library that have been built with exceptions support enabled, and link the
exception-handling library. There are several new data sections that must
be mapped into the .dxe file as well: .frt, .edt, .cht, and .gdt. See the
default .ldf files included with the release for example modifications.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-23
for TigerSHARC Processors

Compiler

C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) switch specifies the name of
the file (or files) to be preprocessed, compiled, assembled, and/or linked.
A file name can include the drive, directory, file name, and file extension.
The ccts compiler uses the file extension to determine the operations to
perform. Table 1-3 on page 1-9 lists the permitted extensions and match-
ing compiler operations.

-@ filename

The -@ filename (command file) switch directs the compiler to read com-
mand-line input from filename. The specified filename must contain
driver options but may also contain source filenames and environment
variables. It can be used to store frequently used options as well as to read
from a file list.

-A name [(<tokens>)]

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined:

Table 1-7. Predefined Assertions

Assertion Value

system embedded

machine adspts

cpu adspts101 for ADSP-TS101 processor
adspts201 for ADSP-TS201 processor
adspts202 for ADSP-TS202 processor
adspts203 for ADSP-TS203 processor

compiler ccts

Compiler Command-Line Interface

1-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The -A name(value) switch is equivalent to including

#assert name(value)

in your source file, and both may be tested in a preprocessor condition in
the following manner:

#if #name(value)
// do something

#else
// do something else

#endif

For example, the default assertions may be tested as:

#if #machine(adspts)
// do something

#endif

The parentheses in the assertion need quotes when using the -A
switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

-add-debug-libpaths

The -add-debug-libpaths switch prepends the Debug subdirectory to the
search paths passed to the linker. The Debug subdirectory, found in each
of the silicon-revision-specific library directories, contains variants of cer-
tain libraries (for example, system services), which provide additional
diagnostic output to assist in debugging problems arising from their use.

Invoke this switch with the Use Debug System Libraries radio but-
ton located in the VisualDSP++ Project Options dialog box, Link
page, Processor category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-25
for TigerSHARC Processors

Compiler

-align-branch-lines

The -align-branch-lines switch instructs the assembler to align all
instruction lines containing a predicted branch to quad-word boundaries.
This is the default.

-allow-macs-to-extend-saturation

By default, the compiler will not try to generate multiply-accumulate
instructions if the add or subtract is saturating. The
-allow-macs-to-extend-saturation switch overrides that behavior. Note
that using this switch may result in different output as the multiply-
accumulate instruction will saturate to 40 bits for intermediate results and
then saturate to 32 bits on extraction from the accumulator.

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
alternative operator keywords and digraph sequences in source files. This
is the default mode. The -no-alttok switch (on page 1-42) can be used to
disallow such support.

The ANSI C trigraphs sequences are always expanded (even with the
-no-alttok option), and only digraph sequences are expanded in C source
files.

The following operator keywords are enabled by default.

Table 1-8. Keyword Equivalents

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

Compiler Command-Line Interface

1-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

To use alternative tokens in C, use #include <iso646.h>.

-always-inline

The -always-inline switch instructs the compiler to always attempt to
inline any call to a function that is defined with the inline qualifier. It is
equivalent to applying #pragma always_inline to all functions in the
module that have the inline qualifier. See also “-never-inline” on
page 1-42.

Invoke this switch with the Always radio button located in the
Inlining area of the VisualDSP++ Project Options dialog box,
Compile page, General category.

-annotate

The -annotate (enable assembly annotations) switch directs the compiler
to annotate assembly files generated by the compiler. The default behavior
is that whenever optimizations are enabled, all assembly files generated by
the compiler are annotated with information on the performance of the
generated assembly. See “Assembly Optimizer Annotations” on page 2-81
for more details on this feature.

Invoke this switch by checking the Generate assembly code anno-
tations check box located in the VisualDSP++ Project Options
dialog box, Compile page, General category.

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

Table 1-8. Keyword Equivalents (Cont’d)

Keyword Equivalent

VisualDSP++ 5.0 C/C++ Compiler Manual 1-27
for TigerSHARC Processors

Compiler

-annotate-loop-instr

The -annotate-loop-instr switch directs the compiler to provide addi-
tional annotation information for the prolog, kernel and epilog of a loop.
See “Assembly Optimizer Annotations” on page 2-81 for more details on
this feature.

-auto-attrs

The -auto-attrs (automatic attributes) switch directs the compiler to
emit automatic attributes based on the files it compiles. Emission of auto-
matic attributes is enabled by default. See “File Attributes” on page 1-312
for more information about attributes, and what automatic attributes the
compiler emits. See also the -no-auto-attrs switch (on page 1-43) and
the -file-attr switch (on page 1-34).

-bss

The -bss switch directs the compiler to place global zero-initialized data
into a BSS-style section (called “bsz”), rather than into normal global data
section. See also -no-bss switch (on page 1-43).

-build-lib

The -build-lib (build library) switch directs the compiler to use elfar
(librarian) to produce a library file (.dlb) as the output instead of using
the linker to produce an executable file (.dxe). The -o option must be
used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active in combination with the
-E or -P switches, directs the C preprocessor to retain comments in its
output file.

Compiler Command-Line Interface

1-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

-char-size-any

The -char-size-any switch indicates that the resulting object file should
be marked in such a way that it can link against objects marked with any
char size (8 bit or 32 bit). When linking a project with modules compiled
with 8-bit and 32-bit compilers, use the -char-size-any switch to avoid
any linking error messages.

When a project is linked with a mixture of modules compiled in
both word and byte-addressed mode, only one version of the librar-
ies (either word or byte-addressed) can be used. A combination of
both is not allowed.

Invoke this switch with the Allow mixing of sizes radio buttons
located in the VisualDSP++ Project Options dialog box, Compile
category, Processor (1) subcategory.

-char-size-{8|32}

The -char-size-{8|32} switch specifies that chars are 8-bit data items
(byte addressing mode) or 32-bit data items (which is the default word
addressing mode). Selecting byte addressing mode also sets the macro
__TS_BYTE_ADDRESS to a value of 1. Use the -char-size-any switch to
avoid any linking error messages if both 8-bit and 32-bit modules are used
in building a project.

Invoke this switch with the Char size radio buttons located in the
VisualDSP++ Project Options dialog box, Compile tab,
Compile category, Processor (1) subcategory.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-29
for TigerSHARC Processors

Compiler

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write data (as in ANSI C). The compiler’s
default behavior assumes that data referenced through const pointers
never changes.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

Invoke this switch with the Pointers to const may point to
non-const data check box located in the Constants area of the
VisualDSP++ Project Options dialog box, Compile page,
Language Settings category.

-const-strings

The -const-strings (const-qualify strings) switch directs the compiler to
mark string literals as const-qualified. This is the default behavior. See
also the -no-const-strings switch (on page 1-44).

Invoke this switch with the Literal strings are const check box
located in the Constants area of the VisualDSP++ Project Options
dialog box, Compile page, Language Settings category.

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. If definition is required to be a character string
constant, it must be surrounded by escaped double quotes. Note that the
compiler processes -D switches on the command line before any -U (unde-
fine macro) switches.

Compiler Command-Line Interface

1-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

This switch can be invoked with the Definitions: dialog field
located in the VisualDSP++ Project Options dialog box, Compile
tab, Preprocessor category.

-debug-types

The -debug-types switch builds a *.h file directly and writes a complete
set of debugging information for the header file. The -g option need not
be specified with the -debug-types switch because it is implied.

For example,

ccts -debug-types anyHeader.h

Until the introduction of -debug-types, the compiler would not accept a
*.h file as a valid input file. The implicit -g option writes debugging
information for only those typedefs that are referenced in the program.

The -debug-types option provides complete debugging information for
all typedefs and structs.

-default-branch-{np|p}

The -default-branch-{np|p} switch instructs the assembler and linker to
set the branch behavior to be predictable or non-predictable. The default
is the predicted condition.

-double-size-any

The -double-size-any switch directs the compiler to mark the resulting
object file in such a way that it can link against objects marked with any
double size (32 bits and 64 bits).

Invoke this switch with the Allow mixing of sizes check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Processor (1) category.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-31
for TigerSHARC Processors

Compiler

-double-size-{32 | 64}

The -double-size-32 (double is 32 bits) and -double-size-64 (double is
64 bits) switches select the storage format that the compiler uses for type
double. The -double-size-32 is the default mode.

The C/C++ type double poses a special problem for the compiler. The C
and C++ languages default to double for floating-point constants and
many floating-point calculations. If double has the customary size of 64
bits, many programs inadvertently use slow-speed 64-bit floating-point
emulated arithmetic, even when variables are declared consistently as
float. To avoid this problem, ccts provides a mode in which double is
the same size as float. This mode is enabled with the -double-size-32
switch and is the default mode.

Representing a double using 32 bits gives good performance and provides
enough precision for most DSP applications. This, however, does not fully
conform to the C and C++ standards. The standards require that double
maintains 10 digits of precision, which requires 64 bits of storage. The
-double-size-64 switch sets the size of double to 64 bits for full standard
conformance.

With -double-size-32, a double is stored in 32-bit IEEE single-precision
format and is operated on using fast hardware floating-point instructions.
Standard math functions, such as sin, also operate on 32-bit values. This
mode is the default and is recommended for most programs. Calculations
that need higher precision can be done with the long double type, which
is always 64 bits.

With -double-size-64, a double is stored in 64-bit IEEE double preci-
sion format and is operated on using slow floating-point emulation
software. Standard math functions, such as sin, also operate on 64-bit val-
ues and are similarly slow. This mode is recommended only for porting
code that requires that double have more than 32 bits of precision.

Compiler Command-Line Interface

1-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The -double-size-32 switch defines the __DOUBLES_ARE_FLOATS__ pre-
processor macro, while the -double-size-64 switch undefines the
__DOUBLES_ARE_FLOATS__ preprocessor macro.

Invoke this switch with the Double size radio buttons located in
the VisualDSP++ Project Options dialog box, Compile tab,
Compile category, Processor (1) subcategory.

-dry

The -dry (verbose dry run) switch directs the compiler to display main
ccts actions, but not to perform them.

-dryrun

The -dryrun (terse dry run) switch directs the compiler to display
top-level ccts actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output (prepro-
cessed source code) prints to the standard output stream (<stdout>) unless
the output file is specified with -o. Note that the -C switch can only be
run in combination with the -E switch.

Invoke it with the Stop after: Preprocessor check box located in
the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-ED

The -ED (run after preprocessing to file) switch directs the compiler to
write the output of the C/C++ preprocessor to a file named
original_filename.i. After preprocessing, compilation proceeds
normally.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-33
for TigerSHARC Processors

Compiler

Invoke this switch with the Generate preprocessed file check box
located in the VisualDSP++ Project Options dialog box, Compile
page, General category.

-EE

The -EE (run after preprocessing) switch is similar to the -E switch, but it
does not halt compilation after preprocessing.

-enum-is-int

The -enum-is-int switch ensures that the type of an enum is int. By
default, the compiler defines enumeration types with integral types larger
than int, if int is insufficient to represent all the values in the enumera-
tion. This switch prevents the compiler from selecting a type wider than
int.

Invoke this switch with the Enumerated types are always int check
box located in the VisualDSP++ Project Options dialog box,
Compile page, Language Settings category.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ISO/ANSI standard C and C++. This recognition includes keywords, such
as pm and dm, without leading underscores which could affect conforming
ISO/ANSI C and C++ programs. This is the default mode.

The -no-extra-keywords switch (on page 1-45) can be used to disallow
support for the additional keywords. Table 1-16 on page 1-91 provides a
list and a brief description of keyword extensions.

Compiler Command-Line Interface

1-34 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-file-attr name[=value]

The -file-attr (file attribute) switch directs the compiler to add the
specified attribute name/value pair to all the files it compiles. To add mul-
tiple attributes, use the switch multiple times. If “=value” is omitted, the
default value of “1” will be used. See “File Attributes” on page 1-312 for
more information about attributes, and what automatic attributes the
compiler emits. See also the -auto-attrs switch (on page 1-27) and the
-no-auto-attrs switch (on page 1-43).

Invoke this switch with the Additional attributes text field located
in the VisualDSP++ Project Options dialog box, Compile page,
General category.

-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools. The tools are listed in
Table 1-9.

-force-circbuf

The -force-circbuf (circular buffer) switch instructs the compiler to
make use of circular buffer facilities, even if the compiler cannot verify
that the circular index or pointer is always within the range of the buffer.
Without this switch, the compiler’s default behavior is conservative, and

Table 1-9. Switches Passed to other Analog Devices’ Tools

Option Tool

-flags-asm Assembler

-flags-compiler Compiler executable

-flags-lib Library Builder (elfar.exe)

-flags-link Linker

-flags-mem Memory Initializer

VisualDSP++ 5.0 C/C++ Compiler Manual 1-35
for TigerSHARC Processors

Compiler

does not use circular buffers unless it can verify that the circular index or
pointer is always within the circular buffer range. See “Circular Buffer
Built-In Functions” on page 1-148.

Invoke this switch with the Even when pointer may be outside
buffer range check box located in the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as an associative. This switch is on by default.

-fp-div-lib

The -fp-div-lib switch instructs the compiler to call a run-time library
support routine for 32-bit floating-point divides rather than inlining the
code. The inline sequence is faster, and is the recommended approach, but
is only accurate to one LSB. Use the -fp-div-lib switch if higher accu-
racy is required

If this switch is specified, a call is planted to a run-time support routine
with an entry point named “__divsf3” for the divide operation. This rou-
tine can be overridden by user-written routines if desired.

Invoke this switch with the Do not inline float/double divisions
check box located in the VisualDSP++ Project Options dialog box,
Compile page, Processor category.

-full-version

The -full-version (display versions) switch directs the compiler to dis-
play version information for build tools used in a compilation.

-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

Compiler Command-Line Interface

1-36 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When the -g switch is used in conjunction with the -O (enable optimiza-
tion) switch, the compiler performs standard optimizations. The compiler
also outputs symbols and other information to provide limited
source-level debugging through VisualDSP++ IDDE. This combination of
options provides line debugging and global variable debugging.

When the -g and -O switches are specified, no debug information is
available for local variables and the standard optimizations can
sometimes rearrange program code in a way that inaccurate line
number information may be produced. For full debugging capabil-
ities, use the -g switch without the -O switch. See also the -Og
switch (on page 1-49).

Invoke this switch by selecting the Generate debug information
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-glite

The -glite (lightweight debugging) switch can be used on its own, or in
conjunction with any of the -g, -Og or -debug-types compiler switches.
When this switch is enabled it instructs the compiler to remove any
unnecessary debug information for the code that is compiled.

When used on its own, the switch also enables the -g option.

This switch can be used to reduce the size of object and executable
files, but will have no effect on the size of the code loaded onto the
target.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-37
for TigerSHARC Processors

Compiler

-HH

The -HH (list headers and compile) switch directs the compiler to output to
the standard out a list of the files included by the preprocessor via the
#include directive. After preprocessing, compilation proceeds normally.

-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I-

The -I- (start include directory list) switch establishes the point in the
include directory list at which the search for header files enclosed in angle
brackets begins. Normally, for header files enclosed in double quotes, the
compiler searches in the directory containing the current input file; then
the compiler reverts back to looking in the directories specified with the
-I switch and then in the standard include directory.

It is possible to replace the initial search (within the directory containing
the current input file) by placing the -I- switch at the point on the com-
mand line where the search for all types of header file begins. All include
directories on the command line specified before the -I- switch are used
only in the search for header files that are enclosed in double quotes.

Note that this switch removes the directory containing the current input
file from the include directory list.

Invoke this switch with the Additional include directories text
field located in the VisualDSP++ Project Options dialog box,
Compile page, Preprocessor category.

Compiler Command-Line Interface

1-38 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-I directory [{,|;} directory...]

The -I (include search directory) switch directs the C/C++ compiler pre-
processor to append the directory (directories) to the search path for
include files. This option can be specified more than once; all specified
directories are added to the search path.

Include files, whose names are not absolute path names and that are
enclosed in “...” when included, are searched for in the following directo-
ries in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VDSP++ install dir>/.../include

If a file is included using the <...> form, this file is only searched
for by using directories defined in items 2 and 3 above.

-implicit-pointers

The -implicit-pointers (implicit pointer conversion) switch allows a
pointer to one type to be converted to a pointer to another without the use
of an explicit cast. The compiler produces a discretionary warning rather
than an error in such circumstances. This option is not valid when com-
piling in C++ mode. For example,

int *foo(int *a) {

return a;
}
int main(void) {

char *p = 0, *r;
r = foo(p); /* Bad: will normally give an error. */
return 0;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-39
for TigerSHARC Processors

Compiler

Both the argument to foo and the assignment to r will be faulted by the
compiler. Using -implicit-pointers converts these errors into warnings.

Invoke this switch with the Allow incompatible pointer types
check box located in the VisualDSP++ Project Options dialog box,
Compile page, Language Settings category.

-include filename

The -include (include file) switch directs the preprocessor to process the
specified file before processing the regular input file. Any -D and -U
options on the command line are always processed before an -include file.
Only one -include may be given.

-ipa

The -ipa (interprocedural analysis) switch directs the compiler to turn on
the interprocedural analysis option. This option enables optimization
across the entire program, including source files that are compiled sepa-
rately. Using -ipa implicitly enables the -O switch. For more information,
see “Interprocedural Analysis” on page 1-80.

Invoke this switch by selecting the Interprocedural Analysis check
box in the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-L directory [{,|;} directory...]

The -L (library search directory) switch directs the compiler to append the
directory to the search path for library files.

Compiler Command-Line Interface

1-40 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-l library

The -l (link library) switch directs the compiler to search the library for
functions when linking. The library name is the portion of the file name
between the lib prefix and .dlb extension. For example, the -lc switch
directs the linker to search in the library named “c” for functions. This
library resides in a file named libc.dlb.

All object files should be listed on the command line before listing librar-
ies using the -l switch. When a reference to a symbol is made, the symbol
definition will be taken from the left-most object or library on the com-
mand line that contains the global definition of that symbol. If two
objects on the command line contain definitions of the symbol x, x will be
taken from the left-most object on the command line that contains a glo-
bal definition of x.

If one of the definitions for x comes from user objects, and the other from
a user library, and the library definition should be overridden by the user
object definition, it is important that the user object comes before the
library on the command line.

Libraries included in the default .ldf file are searched last for symbol
definitions.

-list-workarounds

The -list-workarounds (list supported errata workarounds) switch dis-
plays a list of all errata workarounds which the compiler supports. For
more information on valid revisions and the interactions of the -si-revi-
sion, -workaround and -no-workaround switches, see
“Controlling Silicon Revision and Anomaly Workarounds within the
Compiler” on page 1-82.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-41
for TigerSHARC Processors

Compiler

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file. The format of the
make rule output by the preprocessor is:

object-file: include-file …

-MD

The -MD (generate make rules and compile) switch directs the preprocessor
to print to a file called original_filename.d a rule describing the depen-
dencies of the main program file. After preprocessing, compilation
proceeds normally. See also the –Mo switch.

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to stdout a rule describing the dependencies of the main program
file. After preprocessing, compilation proceeds normally.

-Mo filename

The -Mo filename (preprocessor output file) switch directs the compiler to
use filename for the output of –MD or –ED switches.

-Mt name

The -Mt name (output make rule for the named source) switch modifies
the target of generated dependencies, renaming the target to name. It only
has an effect when used in conjunction with the -M or -MM switch.

-map filename

The -map (generate a memory map) switch directs the compiler to output
a memory map of all symbols. The map file name corresponds to the
filename argument; if the filename argument is test, the map file name
is test.xml. The .xml extension is added where necessary.

Compiler Command-Line Interface

1-42 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-mem

The -mem (enable memory initialization) switch directs the compiler to
invoke the memory initializer after linking the executable file. The MemI-
nit utility can be controlled through the -flags-mem switch
(on page 1-34).

-multiline

The -multiline switch enables a compiler GNU compatibility mode
which allows string literals to span multiple lines without the need for a
“\” at the end of each line. This is the default mode.

Invoke this switch with the Allow multi-line character strings
check box located in the VisualDSP++ Project Options dialog box,
Compile page, Language Settings category.

-never-inline

The -never-inline switch instructs the compiler to ignore the inline
qualifier on function definitions, so that no calls to such functions will be
inlined. See also “-always-inline” on page 1-26.

Invoke this switch with the Never check box located in the Inlining
area of the VisualDSP++ Project Options dialog box, Compile
page, General category.

-no-align-branch-lines

The -no-align-branch-lines (disable alignment of predicted-taken
branch lines) switch directs the compiler not to align all instruction lines
containing a predicted branch to a quad-word boundary.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler to
not accept alternative operator keywords and digraph sequences in the
source files. For more information, see the -alttok switch (on page 1-25).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-43
for TigerSHARC Processors

Compiler

-no-annotate

The -no-annotate (disable assembly annotations) switch directs the com-
piler not to annotate assembly files generated by the compiler. The default
behavior is that whenever optimizations are enabled, all assembly files gen-
erated by the compiler are annotated with information on the
performance of the generated assembly. See “Assembly Optimizer Annota-
tions” on page 2-81 for more details on this feature.

Invoke this switch by clearing the Generate assembly code annota-
tions check box located in the VisualDSP++ Project Options
dialog box, Compile page, General category.

-no-annotate-loop-instr

The -no-annotate-loop-instr switch disables the production of addi-
tional loop annotation information by the compiler. This is the default
mode.

-no-auto-attrs

The -no-auto-attrs (no automatic attributes) switch directs the compiler
not to emit automatic attributes based on the files it compiles. Emission of
automatic attributes is enabled by default. See “File Attributes” on
page 1-312 for more information about attributes, and what automatic
attributes the compiler emits. See also the -auto-attrs switch
(on page 1-27) and the -file-attr switch (on page 1-34).

Invoke this switch by clearing the Auto-generated attributes check
box located in the VisualDSP++ Project Options dialog box,
Compile page, General category.

-no-bss

The -no-bss switch causes the compiler to keep zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section. See also the -bss
switch (on page 1-27).

Compiler Command-Line Interface

1-44 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler not
to generate short names for the built-in functions (for example, abs()),
and to accept only the full name (for example, __builtin_abs()). For a
list of the extensions that use single machine instructions when -no-buil-
tin is not used, see “Math Intrinsics” on page 1-149. This switch also
predefines the __NO_BUILTIN preprocessor macro.

Invoke this switch by selecting the Disable builtin functions check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Language Settings category.

-no-circbuf

The -no-circbuf (no circular buffer) switch disables the automatic gener-
ation of circular buffer code by the compiler. Uses of the circindex() and
circptr() functions (that is, explicit circular buffer operations) are not
affected.

Invoke this switch with the Never check box located in the
Circular Buffer Generation area of the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-no-const-strings

The -no-const-strings switch directs the compiler not to make string lit-
erals const qualified.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, or run-time headers. It also disables the Analog Devices
compiler C/C++ keyword extensions.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-45
for TigerSHARC Processors

Compiler

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ISO/ANSI programs. These extensions
include keywords, such as pm and dm, which may be used as identifiers in
conforming programs. The alternate keywords that are prefixed with two
leading underscores, such as __pm and __dm, continue to work. The
-extra-keyword switch (on page 1-33) can be used to explicitly request
support for the additional keywords.

Invoke this switch with the Disable Analog Devices extension key-
words check box located in the VisualDSP++ Project Options
dialog box, Compile page, Language Settings category.

-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to treat
floating-point multiplication and addition as an associative.

Invoke this switch with the Do not treat floating-point operations
as associative check box located in the VisualDSP++ Project
Options dialog box, Compile page, Language Settings category.

-no-fp-minmax

The -no-fp-minmax (No floating-point MIN or MAX instructions) switch
prevents the compiler from generating floating-point MIN or MAX instruc-
tions, when it inlines a floating-point comparison. The MAX and MIN
instructions on TigerSHARC processors will return 0xFFFFFFFF if either
input value is a NaN. This can result in behavior not anticipated or
intended by the original user code.

Invoke this switch with the Do not generate float/double
MIN/MAX check box located in the VisualDSP++ Project
Options dialog box, Compile page, Processor (1) category.

Compiler Command-Line Interface

1-46 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-no-mem

The -no-mem (disable memory initialization) switch directs the compiler
not to run the MemInit utility. Note that if you use -no-mem, the compiler
does not initialize globals and statics.

-no-multiline

The -no-multiline switch disables a compiler GNU compatibility mode
which allows string literals to span multiple lines without the need for a
“\” at the end of each line.

Invoke this switch by clearing the Allow multi-line character
strings check box located in the VisualDSP++ Project Options dia-
log box, Compile page, Language Settings category.

-no-progress-rep-timeout

The -no-progress-rep-timeout (disable progress message for long compi-
lation) switch disables the diagnostic message issued by the compiler to
indicate that it is still working, when a function’s compilation is taking an
excessively long time. The message is disabled by default. See also the
-progress-rep-timeout switch (on page 1-56) and the
-progress-rep-timeout-secs switch (on page 1-57).

-no-saturation

The -no-saturation switch directs the compiler not to introduce faster
operations in cases where the faster operation would saturate (if the
expression overflowed) when the original operation would have wrapped
the result. The code produced in this may may be less efficient than when
the switch is not used.

Saturation is enabled by default when optimizing, and may be disabled by
this switch. Saturation is disabled when not optimizing (for example, this
switch is the default when not optimizing).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-47
for TigerSHARC Processors

Compiler

-no-std-ass

The -no-std-ass (disable standard assertions) switch prevents the com-
piler from defining the standard assertions. See the -A switch
(on page 1-23) for the list of standard assertions.

-no-std-def

The -no-std-def (disable standard macro definitions) prevents the com-
piler from defining any default preprocessor macro definitions.

This switch also disables the Analog Devices keyword extensions
which have no leading underscores, such as pm and dm.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the C
preprocessor to limit its search for header files to the current directory and
directories specified with -I switch.

Invoke this switch by selecting the Ignore standard include paths
check box in the VisualDSP++ Project Options dialog box,
Compile tab, Preprocessor category.

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the com-
piler to limit its search to those libraries specified with the -l switch.

-no-threads

The -no-threads (disable thread-safe build) switch specifies that all com-
piled code and libraries used in the build need not be thread-safe. This is
the default setting when the -threads (enable thread-safe build) switch is
not used.

Compiler Command-Line Interface

1-48 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-no-workaround workaround_id[,workaround_id …]

The -no-workaround workaround_id (disable avoidance of specific errata)
switch disables compiler code generator workarounds for specific hard-
ware errata. For more information on valid revisions and the interactions
of the -si-revision, -workaround and -no-workaround switches, see
“Controlling Silicon Revision and Anomaly Workarounds within the
Compiler” on page 1-82.

-O

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the ccts compiler.

Invoke this switch by selecting the Enable optimization check box
in the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-O[0|1]

The -O [0|1] (enable/disable optimizations) switch allows the compiler to
select code optimization mode. Optimizations are not enabled by default
for the ccts compiler. (Note that the switch settings are numbers—zeros
or 1s—while the switch itself is the letter “O.”) The switch setting -O or
-O1 turns optimization on, while setting -O0 turns off all optimizations.

Invoke this switch by selecting the Enable optimization check box
in the VisualDSP++ Project Options dialog box, Compile tab,
General category.

-Oa

The -Oa (automatic function inlining) switch enables the inline expansion
of C/C++ functions, which are not necessarily declared inline in the source
code. The amount of auto-inlining the compiler performs is controlled
using the –Ov num (optimize for speed versus size) switch (on page 1-49).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-49
for TigerSHARC Processors

Compiler

The -Ov100 setting attempts to optimize purely for speed (and therefore
inline a greater number of functions) whereas the -Ov0 setting attempts to
optimize purely for space (and therefore inline fewer functions).

Invoke this switch with the Automatic check box located in the
Inlining area of the VisualDSP++ Project Options dialog box,
Compile page, General category.

-Og

The -Og switch enables a compiler mode that attempts to perform optimi-
zations while still preserving the debugging information. It is meant as an
alternative for those who want a debuggable program but who are also
concerned about the performance of their debuggable code.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. The optimizations not performed
include loop unrolling, some delay slot filling, and jump avoidance. The
compiler also uses a function to save and restore preserved registers for a
function instead of generating the more cycle-efficient inline default
versions.

-Ov num

For any given optimization, the compiler modifies the code being gener-
ated. Some optimizations produce code that will execute in fewer cycles,
but which will require more code space. In such cases, there is a trade-off
between speed and space.

The -Ov num (optimize for speed versus size) switch informs the compiler
of the relative importance of speed versus size, when considering whether
such trade-offs are worthwhile. The num variable should be an integer
between 0 (purely size) and 100 (purely speed).

Compiler Command-Line Interface

1-50 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The num variable indicates a sliding scale between 0 and 100 which is the
probability that a linear piece of generated code – a “basic block” – will be
optimized for speed or for space. At -Ov0 all blocks are optimized for space
and at -Ov100 all blocks are optimized for speed. At any point in between,
the decision is based upon num and how many times the block is expected
to be executed – the “execution count” of the block. Figure 1-1 demon-
strates this relationship.

For any given optimization where speed and size conflict, the potential
benefit is dependent on the execution count: an optimization that
increases performance at the expense of code size is considerably more
beneficial if applied to the core loop of a critical algorithm than if applied

Figure 1-1. -Ov Switch Optimization Curve

0

Execution
count

Optimize for speed

-Ovnum
0 100

Infinity

Optimize for space

Limit line

VisualDSP++ 5.0 C/C++ Compiler Manual 1-51
for TigerSHARC Processors

Compiler

to one-time initialization code or to rarely-used error-handling functions.
If code only appears to be executed once, it will be optimized for space. As
its execution count increases, so too does the likelihood that the compiler
will consider the code increase worthwhile for the corresponding benefit
in performance.

As Figure 1-1 shows, the -Ov switch affects the point at which a given exe-
cution count is considered sufficient to switch optimization from “for
space” to “for speed”. Where num is a low value, the compiler is biased
towards space, so a block’s execution count has to be relatively high for the
compiler to apply code-increasing transformations. Where num has a high
value, the compiler is biased towards speed, so the same transformation
will be considered valid for a much lower execution count.

The -Ov switch is most effective when used in conjunction with profile-
guided optimization, where accurate execution counts are available. With-
out profile-guided optimization, the compiler makes estimates of the
relative execution counts using heuristics.

Invoke this switch with the Optimize for code size/speed slider
located in the VisualDSP++ Project Options dialog box, Compile
page, General category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance from C/C++ Source Code.

-o filename

The -o (output file) switch directs the compiler to use filename for the
name of the final output file.

-overlay

The -overlay (program may use overlays) switch will disable the propaga-
tion of register information between functions and force the compiler to
assume that all functions clobber all scratch registers. Note that this switch
will affect all functions in the source file, and may result in a performance

Compiler Command-Line Interface

1-52 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

degradation. For information on disabling the propagation of register
information only for specific functions, see “#pragma overlay” on
page 1-210.

-P

The -P (omit line numbers) switch directs the compiler to stop after the C
preprocessor runs (without compiling) and to omit the #line preprocessor
directives (with line number information) in the output from the prepro-
cessor. The -C switch may be used in combination with the -P switch.

-PP

The -PP (omit line numbers and compile) switch directs the compiler to
omit the #line preprocessor directives with line number information from
the preprocessor output. After preprocessing, compilation proceeds
normally.

-path-{ asm | compiler | lib | link } pathname

The -path-{asm|compiler|lib|link} pathname (tool location) switch
directs the compiler to use the specified component in place of the
default-installed version of the compilation tool. The component com-
prises a relative or absolute path to its location. Respectively, the tools are
the assembler, compiler, librarian, or linker. Use this switch when overrid-
ing the normal version of one or more of the tools. The -path-{...}
switch also overrides the directory specified by the -path-install switch.

-path-install directory

The -path-install (installation location) switch directs the compiler to
use the specified directory as the location for all compilation tools instead
of the default path. This is useful when working with multiple versions of
the tool set.

You can selectively override this switch with the -path-{asm|
compiler|lib|link} switch.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-53
for TigerSHARC Processors

Compiler

-path-output directory

The -path-output (non-temporary files location) switch directs the com-
piler to place final output files in the specified directory.

-path-temp directory

The -path-temp (temporary files location) switch directs the compiler to
place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

Precompiled header files can significantly speed compilation; pre-
compiled headers tend to occupy more disk space.

-pchdir directory

The -pchdir (locate PCHRepository) switch specifies the location of an
alternative PCHRepository for storing and invocation of precompiled
header files. If the directory does not exist, the compiler creates it. Note
that the -o (output) switch does not influence the -pchdir option.

-pgo-session session-id

The -pgo-session session-id (specify PGO session identifier) switch is
used with profile-guided optimization. It has the following effects:

• When used with the -pguide switch (on page 1-54), the compiler
associates all counters for this module with the session identifier
session-id.

• When used with a previously-gathered profile (a .pgo file), the
compiler ignores the profile contents, unless they have the same
session-id identifier.

Compiler Command-Line Interface

1-54 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

This is most useful when the same source file is being built in more than
one way (for example, different macro definitions, or for multiple proces-
sors) in the same application; each variant of the build can have a different
session-id associated with it, which means that the compiler will be able
to identify which parts of the gathered profile should be used when opti-
mizing for the final build.

If each source file is built only in a single manner within the system (the
usual case), then the -pgo-session switch is not needed.

Invoke this switch with the PGO session name text field located in
the VisualDSP++ Project Options dialog box, Compile page, Pro-
file-Guided Optimization category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance from C/C++ Source Code.

-pguide

The -pguide (PGO) switch causes the compiler to add instrumentation
for the gathering of a profile (a .pgo file) as the first stage of performing
profile-guided optimization.

Invoke this switch with the Prepare application to create new pro-
file check box located in the VisualDSP++ Project Options dialog
box, Compile page, Profile-Guided Optimization category.

For more information, see “Using Profile-Guided Optimization” in
Chapter 2, Achieving Optimal Performance from C/C++ Source Code.

-pplist filename

The -pplist (preprocessor listing) switch directs the preprocessor to out-
put a listing to the named file. When more than one source file is
preprocessed, the listing file contains information about the last file pro-
cessed. The generated file contains raw source lines, information on
transitions into and out of include files, and diagnostics generated by the
compiler.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-55
for TigerSHARC Processors

Compiler

Each listing line begins with a key character that identifies its type as:

-proc processor

The -proc processor (target processor) switch specifies that the compiler
produces code suitable for the specified processor. Refer to “Supported
Processors” for the list of supported TigerSHARC processors.

For example,

ccts -proc ADSP-TS201 -o bin\p1.doj p1.asm

If no target is specified with the -proc switch, the system uses the
ADSP-TS101 setting as a default.

When compiling with the -proc switch, the appropriate processor macro
is defined as 1.

See also “-si-revision version” on page 1-59 for more information
on silicon revision of the specified processor.

Table 1-10. Key Characters

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

Compiler Command-Line Interface

1-56 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-progress-rep-func

The -progress-rep-func switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing very large
source files. It issues a “warning” message each time the compiler starts
compiling a new function. The “warning” message is a remark that is dis-
abled by default, and this switch enables the remark as a warning. The
switch is equivalent to -Wwarn=cc1472.

-progress-rep-gen-opt

The -progress-rep-gen-opt switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing a very large,
complex function. It issues a “warning” message each time the compiler
starts a new generic optimization pass on the current function. The
“warning” message is a remark that is disabled by default, and this switch
enables the remark as a warning. The switch is equivalent to
-Wwarn=cc1473.

-progress-rep-mc-opt

The -progress-rep-mc-opt switch provides feedback on the compiler’s
progress that may be useful when compiling and optimizing a very large,
complex function. It issues a “warning” message each time the compiler
starts a new machine-specific optimization pass on the current function.
The “warning” message is a remark that is disabled by default, and this
switch enables the remark as a warning. The switch is equivalent to
-Wwarn=cc1474.

-progress-rep-timeout

The -progress-rep-timeout switch issues a diagnostic message if the
compiler exceeds a time limit during compilation. This indicates the com-
piler is still operating, just taking a long time.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-57
for TigerSHARC Processors

Compiler

-progress-rep-timeout-secs secs

The -progress-rep-timeout-secs switch specifies how many seconds
must elapse during a compilation before the compiler issues a diagnostic
message about the length of time the compilation has used so far.

-R directory [{:|,}directory …]

The -R (add source directory) switch directs the compiler to add the spec-
ified directory to the list of directories searched for source files.

On Windows platforms, multiple source directories are given as a colon,
comma, or semicolon separated list. The compiler searches for the source
files in the order specified on the command line. The compiler searches
the specified directories before reverting to the current project directory.
This option is position-dependent on the command line; that is, it affects
only source files that follow the option.

Source files whose file names begin with /, ./, or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms)
are not affected by this option.

-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

This option is position-dependent on the command line; it only
affects files following it.

-S

The -S (stop after compilation) switch directs the compiler to stop compi-
lation before running the assembler. The compiler outputs an assembler
file with an .s extension.

Compiler Command-Line Interface

1-58 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-s

The -s (strip debugging information) switch directs the compiler to
remove debugging information (symbol table and other items) from the
output executable file during linking.

-save-temps

The -save-temps (save intermediate files) switch directs the compiler not
to discard intermediate files. The compiler places the intermediate output
(*.i, *.is, *.s) files in the current temp directory. See Table 1-3 on
page 1-9 for a list of intermediate files.

The location of the saved file is affected by the -path-output switch, if
provided. That switch sets the path for all “permanent” outputs that do
not otherwise have a path set, the object file included.

Invoke this switch with the Save temporary files check box located
in the VisualDSP++ Project Options dialog box, Compile page,
General category.

-section id=section_name[,id=section_name...]

The -section id switch controls the placement of types of data produced
by the compiler. The data is placed into the section “section_name” as
provided on the command line.

The compiler currently supports the following section identifier:

code Controls placement of machine instructions
Default is program.

data Controls placement of initialized variable data
Default is data1

bsz Controls placement of zero-initialized variable data
Default is bss.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-59
for TigerSHARC Processors

Compiler

Make sure that the section selected via the command line exists within the
.ldf file. (Refer to the Linker chapter in the VisualDSP++ 5.0 Linker and
Utilities Manual.)

For more information, see “Placement of Compiler-Generated Code and
Data” on page 1-125.

-show

The -show (display command line) switch shows the command-line argu-
ments passed to ccts, including expanded option files and environment
variables. This option allows you to ensure that command-line options
have been passed successfully.

-si-revision version

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. For more information on
valid revisions and the interactions of the -si-revision, -workaround and
-no-workaround switches, see “Controlling Silicon Revision and Anomaly
Workarounds within the Compiler” on page 1-82.

sti Controls placement of the static C++ class constructor “start” functions
Default is program. For more information, see “Constructors and Destructors of
Global Class Instances” on page 1-274.

switch Controls placement of jump-tables used to implement C/C++ switch statements.
Default is data1

vtbl Controls placement of the C++ virtual lookup tables
Default is vtbl.

vtable Synonym for vtbl

Compiler Command-Line Interface

1-60 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-signed-bitfield

The -signed-bitfield (make plain bitfields signed) switch directs the
compiler to make bitfields (which have not been declared with an explicit
signed or unsigned keyword) signed. This switch does not effect plain
one-bit bitfields which are always unsigned. This is the default mode. See
also the -unsigned-bitfield switch (on page 1-63).

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ macro. This is the default mode when the
-unsigned-char (make char unsigned) switch is not used.

-structs-do-not-overlap

The -structs-do-not-overlap switch specifies that the source code being
compiled contains no structure copies such that the source and the desti-
nation memory regions overlap each other in a non-trivial way.

For example, in the statement

*p = *q;

where p and q are pointers to some structure type S, the compiler, by
default, always ensures that, after the assignment, the structure pointed to
by “p” contains an image of the structure pointed to by “q” prior to the
assignment. In the case where p and q are not identical (in which case the
assignment is trivial) but the structures pointed to by the two pointers
may overlap each other, doing this means that the compiler must use the
functionality of the C library function “memmove” rather than “memcpy”.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-61
for TigerSHARC Processors

Compiler

It is slower to use “memmove” to copy data than it is to use “memcpy”. There-
fore, if your source code does not contain such overlapping structure
copies, you can obtain higher performance by using the command-line
switch -structs-do-not-overlap.

Invoke this switch from the Structs/classes do not overlap check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Language Settings category.

-syntax-only

The -syntax-only (just check syntax) switch directs the compiler to check
the source code for syntax errors, but not write any output.

-sysdefs

The -sysdefs (system definitions) switch directs the compiler to define
several preprocessor macros describing the current user and user’s system.
The macros are defined as character string constants and are used in func-
tions with null-terminated string arguments.

The following macros are defined if the system returns information for
them:

The __MACHINE__, __GROUPNAME__, and __REALNAME__ macros are
not available on Windows platforms.

Table 1-11. System Macros

Macro Description

__HOSTNAME__ The name of the host machine

__MACHINE__ The type of the host machine

__SYSTEM__ The OS name of the host machine

__USERNAME__ The current user's login name

__GROUPNAME__ The current user's group name

__REALNAME__ The current user's real name

Compiler Command-Line Interface

1-62 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-T filename

The -T (Linker Description File) switch directs the compiler, when
invoked, to use the specified Linker Description File (LDF). If -T is not
specified, a default .ldf file is selected based on the processor variant.

-threads

When used, the -threads switch defines the macro _ADI_THREADS as one
(1) at the compile, assemble and link phases of a build. This specifies that
certain aspects of the build are to be done in a thread-safe way.

When applications are built within VisualDSP++, this switch is added
automatically to projects that have VDK support selected.

The use of thread-safe libraries is necessary in conjunction with the
-threads flag when using the VisualDSP++ Kernel (VDK). The
thread-safe libraries can be used with other RTOSs but this
requires the definition of various VDK interfaces.

The use of the -threads switch does not imply that the compiler
will produce thread-safe code when compiling C/C++ source.
Make sure to use multi-threaded programming practises in your
code (such as semaphores to access shared data).

-time

The -time (time the compiler) switch directs the compiler to display the
elapsed time as part of the output information on each part of the compi-
lation process.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-63
for TigerSHARC Processors

Compiler

-Umacro

The -U (undefine macro) switch directs the compiler to undefine macros.
If you specify a macro name, it is undefined. The compiler processes all -D
(define macro) switches on the command line before any -U (undefine
macro) switches.

Invoke this switch by entering macro names to be undefined, sepa-
rated by commas, in the Undefines field in the VisualDSP++
Project Options dialog box, Compile tab, Preprocessor category.

-unsigned-bitfield

The -unsigned-bitfield (make plain bitfields unsigned) switch directs
the compiler to make bitfields (which have not been declared with an
explicit signed or unsigned keyword) unsigned. This switch does not effect
plain one-bit bitfields which are always unsigned. See also the
-signed-bitfield switch (on page 1-60).

For example, given the declaration

struct {
int a:2;
int b:1;
signed int c:2;
unsigned int d:2;

} x;

the bitfield values are:

Table 1-12. Bitfield Values

Field -unsigned-bitfield -signed-bitfield Why

x.a -2..1 0..3 Plain field

x.b 0..1 0..1 One bit

x.c -2..1 -2..1 Explicit signed

x.d 0..3 0..3 Explicit unsigned

Compiler Command-Line Interface

1-64 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ preprocessor macro.

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.

-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display compiler version) switch directs the compiler to
display its version information.

-W {error|remark|suppress|warn} number

The -W{...} number (override error message) switch directs the compiler
to override the severity of the specified diagnostic messages (errors,
remarks, or warnings). The num argument specifies the message to
override.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-65
for TigerSHARC Processors

Compiler

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) string after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

If the processing of the compiler command line generates a
diagnostic, the position of the -W switch on the command line is
important. If the -W switch changes the severity of the diagnostic,
it must occur before the command-line switch that generates the
diagnostic; otherwise, no change of severity will occur.

-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler.

-Werror-warnings

The -Werror-warnings (treat warnings as errors) switch directs the com-
piler to treat all warnings as errors, with the result that a warning will
cause the compilation to fail.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages that are even milder than
warnings.

Invoke this switch by selecting the Enable remarks check box in
the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

Compiler Command-Line Interface

1-66 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

Invoke this switch by selecting the Disable all warnings and remarks
check box in the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

If the processing of the compiler command line generates a warn-
ing, the position of the -w switch on the command line is
important. If the -w switch is located before the command-line
switch that causes the warning, the warning will be suppressed;
otherwise, it will not be suppressed.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the com-
piler to issue a warning when it calls a function for which an incomplete
function prototype has been supplied. This switch has no effect in C++
mode.

Invoke this switch with the Function declarations without proto-
types check box located in the VisualDSP++ Project Options
dialog box, Compile page, Warning category.

-workaround workaround_id[,workaround_id]*

The -workaround switch enables code generator workaround for specific
hardware defects. For more information on valid revisions and the interac-
tions of the -si-revision, -workaround and -no-workaround switches, see
“Controlling Silicon Revision and Anomaly Workarounds within the
Compiler” on page 1-82.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-67
for TigerSHARC Processors

Compiler

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps with handling long file names,
which can make the compiler driver’s command line too long for some
operating systems.

-write-opts

The -write-opts (user options) switch directs the compiler to pass the
user options (but not the input filenames) to the main driver via a tempo-
rary file which can help if the resulting main driver command line is too
long.

-xref <filename>

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed. For each reference to a symbol in the source pro-
gram, a line of the form

symbol-id name ref-code filename line-number column-number

is written to the named file. symbol-id represents a unique decimal num-
ber for the symbol, and ref-code is one of the following characters (see
Table 1-13).

Table 1-13. Possible ref-code Characters

Character Value

D Definition

d Declaration

M Modification

A Address taken

U Used

Compiler Command-Line Interface

1-68 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Please note that the compiler’s -xref switch differs from the -xref
switch used by the linker. Refer to Chapter 1 of the VisualDSP++
5.0 Linker and Utilities Manual for more information.

C++ Mode Compiler Switch Descriptions

The following switches apply only to C++.

-anach

The -anach (enable C++ anachronisms) directs the compiler to accept
some language features that are prohibited by the C++ standard but still in
common use. This is the default mode. Use the –no-anach switch for
greater standard compliance.

The following anachronisms are accepted in the default C++ mode:

• overload is allowed in function declarations. It is accepted and
ignored.

• Definitions are not required for static data members that can be
initialized using default initialization. The anachronism does not
apply to static data members of template classes; they must always
be defined.

• The number of elements in an array may be specified in an array
delete operation. The value is ignored.

• A single operator++() and operator--() function can be used to
overload both prefix and postfix operations.

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference

Table 1-13. Possible ref-code Characters (Cont’d)

Character Value

VisualDSP++ 5.0 C/C++ Compiler Manual 1-69
for TigerSHARC Processors

Compiler

• The base class name may be omitted in a base class initializer if
there is only one immediate base class.

• Assignment to this in constructors and destructors is allowed.

• A bound function pointer (a pointer to a member function for a
given object) can be cast to a pointer to a function.

• A nested class name may be used as an unnested class name pro-
vided no other class of that name has been declared. The
anachronism is not applied to template classes.

• A reference to a non-const type may be initialized from a value of a
different type. A temporary is created; it is initialized from the
(converted) initial value, and the reference is set to the temporary.

• A reference to a non-const class type may be initialized from an
rvalue of the class type or a derived class thereof. No (additional)
temporary is used.

• A function with old-style parameter declarations is allowed and
may participate in function overloading as though it were proto-
typed. Default argument promotion is not applied to parameter
types of such functions when the check for compatibility is done,
so that the following statements declare the overload of two func-
tions named f.

int f(int);
int f(x) char x; { return x; }

-check-init-order

It is not guaranteed that global objects requiring constructors are initial-
ized before their first use in a program consisting of separately compiled
units. The compiler will output warnings if these objects are external to
the compilation unit and are used in dynamic initialization or in construc-
tors of other objects. These warnings are not dependent on the
-check-init-order switch.

Compiler Command-Line Interface

1-70 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Invoke this switch with the Check initialization order check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

In order to catch uses of these objects and to allow the opportunity for
code to be rewritten, the -check-init-order (check initialization order)
switch adds run-time checking to the code. This will generate output to
stderr that indicates uses of such objects are unsafe.

This switch generates extra code to aid development, and should
not be used when building production systems.

-eh

The -eh (enable exception handling) switch directs the compiler to allow
C++ code that contains catch statements and throw expressions and other
features associated with ANSI/ISO standard C++ exceptions. When this
switch is enabled, the compiler defines the macro __EXCEPTIONS to be 1.

This switch also causes the compiler to define __ADI_LIBEH__ during the
linking stage so that appropriate sections can be activated in the .LDF file,
and the program can be linked with a library built with exceptions
enabled.

Object files created with exceptions enabled may be linked with objects
created without exceptions. However, exceptions can only be thrown from
and caught, and cleanup code executed, in modules compiled with -eh.

Invoke this switch with the C++ exceptions and RTTI check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

-full-dependency-inclusion

The -full-dependency-inclusion switch ensures that when generating
dependency information for implicitly-included .cpp files, the .cpp file
will be re-included. This file is re-included only if the .cpp files are

VisualDSP++ 5.0 C/C++ Compiler Manual 1-71
for TigerSHARC Processors

Compiler

included more than once in the source (via re-inclusion of their corre-
sponding header file). This switch is required only if your C++ sources
files are compiled more than once with different macro guards.

Enabling this switch may increase the time required to generate
dependencies.

-ignore-std

The -ignore-std option is to allow backwards compatibility to earlier ver-
sions of VisualDSP C++, which did not use namespace std to guard and
encode C++ Standard Library names. By default, the header files and
Libraries now use namespace std.

Invoke this switch by clearing the Use std:: namespace check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

-no-anach

The -no-anach (disable C++ anachronisms) switch directs the compiler to
disallow some old C++ language features that are prohibited by the C++
standard. See “-anach” on page 1-68 for a full description of these
features.

-no-eh

The -no-eh (disable exception handling) directs the compiler to disallow
ANSI/ISO C++ exception handling. This is the default mode. See the -eh
switch (on page 1-70) for more information.

-no-implicit-inclusion

The -no-implicit-inclusion switch prevents implicit inclusion of source
files as a method of finding definitions of template entities to be
instantiated.

Compiler Command-Line Interface

1-72 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

-no-rtti

The -no-rtti (disable run-time type identification) switch directs the
compiler to disallow support for dynamic_cast and other features of
ANSI/ISO C++ run-time type identification. This is the default mode.
Use –rtti to enable this feature.

-no-std-templates

The -no-std-templates switch disables dependent name processing, i.e,
the special lookup of names used in templates as required by the C++
standard.

-rtti

The -rtti (enable run-time type identification) switch directs the com-
piler to accept programs containing dynamic_cast expressions and other
features of ANSI/ISO C++ run-time type identification. The switch also
causes the compiler to set the macro __RTTI to 1. See also the –no-rtti
switch.

Invoke this switch with the C++ exceptions and RTTI check box
located in the VisualDSP++ Project Options dialog box, Compile
page, Language Settings category.

-std-templates

The -std-templates switch enables dependent name processing, that is,
the special lookup of names used in templates as required by the C++
standard.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-73
for TigerSHARC Processors

Compiler

Data Types and Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types
and, therefore, at high speed.

Table 1-14 shows the size used for each of the intrinsic C/C++ data types
when in (default) word addressing mode. For details on data type sizes
when using byte addressing mode, see “Byte-Addressing Mode” on
page 1-93. For information about the fract data type, refer to “C++ Frac-
tional Type Support” on page 1-241.

Table 1-14. Default Data Type Sizes for TigerSHARC Processors

Type Word Size (Bits) Result of sizeof operator

char, signed char, unsigned
char

32 1

short, unsigned short 32 1

int, unsigned int 32 1

long, unsigned long 32 1

pointer 32 1

float 32 1

fract 32 (written with “r” suffix)
(C++ mode only)

1

long long int, signed
long long int,
unsigned long long int

64 2

double1

1 The double size is 1 when compiled using the -double-size-32 switch (default), and the
double size is 2 when compiled using the -double-size-64 switch. (See on page 1-31.)

32 or 64, float 1 or 2

long double 64, float 2

Compiler Command-Line Interface

1-74 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When compiling in word addressing mode, the compiler does not support
data sizes smaller than a single word location for a processor. For the
ADSP-TS101 and ADSP-TS201/202/203 processors, this means that
both short and char have the same size as int, unless byte addressing
mode is selected. Although 32-bit chars are unusual, they do conform to
the standard.

Integer Data Types

On any platform, the basic type int is the native word size—on Tiger-
SHARC processors, it is 32 bits. Many library functions are available for
both 32-bit and 64-bit integers. These functions provide support for the
C/C++ data types int (or long int) and long long int. Pointers are the
same size as int data types. The long long int data type provides 64-bit
integer.

Floating-Point Data Types

On TigerSHARC processors, the long data type is 32 bits, the float data
type is 32 bits, and double is option-selectable for 32-bit or 64-bit data.
The C/C++ language tends to default to double for constants and for
many floating-point calculations. In general, double word data types run
more slowly than 32-bit data types because they rely largely on
software-emulated arithmetic.

Type double poses a special problem. Without some special handling,
many programs would inadvertently end up using slow-speed, emulated,
64-bit floating-point arithmetic, even when variables are declared consis-
tently as float. In order to avoid this problem, Analog Devices provides
the -double-size-32|64 switch (on page 1-31) that allows you to set the
size of double to either 32 bits (default) or 64 bits. The 32-bit setting gives
good performance and should be acceptable for most DSP programming.
However, it does not conform fully to the ANSI C standard.

For a larger floating-point type, long double provides 64-bit floating-
point arithmetic.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-75
for TigerSHARC Processors

Compiler

For either size of double, the standard #include files automatically rede-
fine the math library interfaces so that functions, such as sin, can be
directly called with the proper size operands.

Access to 64-bit floating-point arithmetic and libraries is always provided
via long double. Therefore,

float sinf (float); /* 32-bit */
double sin (double); /* 32 or 64-bit */
long double sind (long double); /* 64-bit */

For full descriptions of these functions and their implementation, see
Chapter 3, “C/C++ Run-Time Library”.

Data Type Alignment
The TigerSHARC run-time model imposes some restrictions on data type
alignment that are more stringent than the standard C/C++ alignment
restrictions. Refer to “Data Alignment Pragmas” on page 1-188 for more
information.

By default, non-aggregate data objects are aligned on word boundaries (32
bits) for data types up to and including long int. The long long int and
long double (and double if double-size-64 is specified on the command
line) data types are aligned on double-word boundaries (64 bits). The
extended type __builtin_quad is aligned on a four-word boundary (128
bits).

Aggregate types have special rules:

• Top-level arrays are aligned on 4-word boundaries; these are arrays
that are not part of any other aggregate type. Statics and automatic
arrays are aligned in this way to allow the option of using the
TigerSHARC processor’s quad-access instructions.

Compiler Command-Line Interface

1-76 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• struct/union/class objects are aligned to the maximal alignment
of the members and have padding at the end of the structure to
maintain alignment in arrays.

Environment Variables Used by the Compiler
The compiler refers to a number of environment variables during its oper-
ation, as listed below. The majority of the environment variables identify
path names to directories. You should be aware that placing network paths
into these environment variables may adversely affect the time required to
compile applications.

• PATH
This is your System search path, used to locate Windows applica-
tions when you run them. Windows uses this environment variable
to locate the compiler when you execute it from the command line.

• TMP
This directory is used by the compiler for temporary files, when
building applications. For example, if you compile a C file to an
object file, the compiler first compiles the C file to an assembly file
which can be assembled to create the object file. The compiler usu-
ally creates a temporary directory within the TMP directory into
which to put such files. However, if the -save-temps switch is
specified, the compiler creates temporary files in the current direc-
tory instead. This directory should exist and be writable. If this
directory does not exist, the compiler issues a warning.

• TEMP
This environment variable is also used by the compiler when look-
ing for temporary files, but only if TMP was examined and was not
set or the directory that TMP specified did not exist.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-77
for TigerSHARC Processors

Compiler

• ADI_DSP
The compiler locates other tools in the tool-chain through the
VisualDSP++ installation directory, or through the -path-install
switch. If neither is successful, the compiler looks in ADI_DSP for
other tools.

• CCTS_OPTIONS
If this environment variable is set, and CCTS_IGNORE_ENV is not set,
this environment variable is interpreted as a list of additional
switches to be prepended to the command line. Multiple switches
are separated by spaces or new lines. A vertical-bar (|) character
may be used to indicate that any switches following it will be pro-
cessed after all other command-line switches.

• CCTS_IGNORE_ENV
If this environment variable is set, CCTS_OPTIONS is ignored.

Optimization Control
The general aim of compiler optimizations is to generate correct code that
executes quickly and is small in size. Not all optimizations are suitable for
every application or possible all the time. Therefore, the compiler opti-
mizer has a number of configurations, or optimization levels, which can be
applied when needed. Each of these levels is enabled by one or more com-
piler switches (and VisualDSP++ project options) or pragmas.

Refer to Chapter 2, “Achieving Optimal Performance from C/C++
Source Code” for information on how to obtain maximal code per-
formance from the compiler.

Compiler Command-Line Interface

1-78 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Optimization Levels

The following list identifies several optimization levels. The levels are
notionally ordered with least optimization listed first and most optimiza-
tion listed last. The descriptions for each level outline the optimizations
performed by the compiler and identify any switches or pragmas required
or that have direct influence on the optimization levels performed.

• Debug
The compiler produces debug information to ensure that the object
code matches the appropriate source code line. See “-g” on
page 1-35 and “-Og” on page 1-49 for more information.

• Default
The compiler does not perform any optimization by default when
none of the compiler optimization switches are used (or enabled in
VisualDSP++ project options). Default optimization level can be
enabled using the optimize_off pragma (on page 1-211).

• Procedural Optimizations
The compiler performs advanced, aggressive optimization on each
procedure in the file being compiled. The optimizations can be
directed to favor optimizations for speed (-O1 or O) or space (-Os)
or a factor between speed and space (-Ov). If debugging is also
requested, the optimization is given priority so the debugging func-
tionality may be limited. See “-O[0|1]” on page 1-48, “-Os” on
page 1-49, “-Ov num” on page 1-49 and “-Og” on page 1-49. Pro-
cedural optimizations for speed and space (-O and -Os) can be
enabled in C/C++ source using the pragma
optimize_{for_speed|for_space} (for more information on opti-
mization pragmas, see on page 1-211).

• Profile-Guided Optimizations (PGO)
The compiler performs advanced aggressive optimizations using
profiler statistics (.pgo files) generated from running the applica-
tion using representative training data. PGO can be used in

VisualDSP++ 5.0 C/C++ Compiler Manual 1-79
for TigerSHARC Processors

Compiler

conjunction with IPA and automatic inlining. See “-pguide” on
page 1-54 for more information.
Note that PGO is supported in the simulator only.

The most common scenario in collecting PGO data is to set up one
or more simple File to Device streams where the File is a standard
ASCII stream input file and the Device is any stream device sup-
ported by the simulator target, such as memory and peripherals.
The PGO process can be broken down into the execution of one or
more data sets, where a data set is the association of zero or more
input streams with one and only one .pgo output file. The user can
create, edit and delete the data sets through the IDDE and then
run the data sets with the click of one button to produce an opti-
mized application. The PGO operation is handled via a PGO
submenu added to the top-level Tools menu:
Tools -> PGO -> Manage Data Sets.

For more information, see “Using Profile-Guided Optimization”
in Chapter 2, Achieving Optimal Performance from C/C++ Source
Code.

Note the requirement for allowing command-line arguments in
your project when using PGO. For further details refer to “Support
for argv/argc” on page 1-277.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. It does this when
it has determined that doing so reduces execution time. How
aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch which additionally enables procedural optimizations (-O).
See “-Oa” on page 1-48, “-Ov num” on page 1-49, “-O[0|1]” on
page 1-48 and “Function Inlining” on page 1-97 for more
information.

Compiler Command-Line Interface

1-80 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When remarks are enabled, the compiler produces a remark to
indicate each function that is inlined.

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. The interprocedural analysis (IPA) is enabled
using the -ipa switch which additionally enables procedural opti-
mizations (-O). See “Interprocedural Analysis” on page 1-80, “-ipa”
on page 1-39 and “-O[0|1]” on page 1-48 for more information.

The compiler optimizer attempts to vectorize loops when it is safe to do
so. When IPA is used it can identify additional safe candidates for vector-
ization which might not be classified as safe at a Procedural Optimization
level. Additionally, there may be other loops that are known to be safe
candidates for vectorization which can be identified to the compiler with
use of various pragmas. (See “Loop Optimization Pragmas” on
page 1-195.)

Using the various compiler optimization levels is an excellent way of
improving application performance. However consideration should be
given to how applications are written so that compiler optimizations are
given the best opportunity to be productive. These issues are the topic of
Chapter 2, “Achieving Optimal Performance from C/C++ Source Code”.

Interprocedural Analysis

The ccts compiler has a capability called interprocedural analysis (IPA), a
mechanism that allows the compiler to optimize across translation units
instead of within just one translation unit. This capability effectively
allows the compiler to see all of the source files that are used in a final link
at compilation time and make use of that information when optimizing.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-81
for TigerSHARC Processors

Compiler

Interprocedural analysis is enabled by selecting the Interprocedural Anal-
ysis check box in the VisualDSP++ Project Options dialog box, Compile
tab, General category, or by specifying the -ipa command-line switch
(on page 1-39).

The -ipa switch automatically enables the -O switch to turn on
optimization.

Use of the -ipa switch generates additional files along with the object file
produced by the compiler. These files have .ipa and .opa filename exten-
sions and should not be deleted manually unless the associated object file
is also deleted.

All of the -ipa optimizations are invoked after the initial link, whereupon
a special program called the prelinker reinvokes the compiler to perform
the new optimizations.

Because a file may be recompiled by the prelinker, you cannot use the -S
option to see the final optimized assembler file when -ipa is enabled.
Instead, use the -save-temps switch (on page 1-58), so that the full com-
pile/link cycle can be performed first.

Interaction with Libraries

When IPA is enabled, the compiler examines all of the source files to build
up usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. Although IPA generates usage information for potential addi-
tional optimizations at the final link stage, as normal, neither the usage
information nor the module’s source file are available when the linker
includes a module from a library. Each library module has been compiled
to the normal -O optimization level, but the prelinker cannot access the

Compiler Command-Line Interface

1-82 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

previously-generated additional usage information for an object in a
library. Therefore, IPA cannot exploit the additional information associ-
ated with a library module.

If a library module makes references to a function in a user module in the
program, this will be detected during the initial linking phase, and IPA
will not eliminate the function. IPA will also not make any assumptions
about how the function may be called, so the function may not be opti-
mized as effectively as if all references to it were in source code visible to
IPA.

Controlling Silicon Revision and Anomaly
Workarounds within the Compiler

The compiler provides three switches which specify that code produced by
the compiler will be generated for a specific revision of a specific proces-
sor, and appropriate silicon revision targeted system run time libraries will
be linked against. Targeting a specific processor allows the compiler to
produce code that avoids specific hardware errata reported against that
revision. For the simplest control, use the -si-revision switch which
automatically controls compiler workarounds.

This section describes:

• “Using the -si-revision Switch” on page 1-83

• “Using the -workaround Switch” on page 1-84

• “Using the -no-workaround Switch” on page 1-87

• “Interactions Between the Silicon Revision and Workaround
Switches” on page 1-87

The compiler cannot apply errata workarounds to code inside
asm() constructs.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-83
for TigerSHARC Processors

Compiler

When developing using the VisualDSP++ IDDE, the silicon revision
within a project is set to a default value of Automatic. Using a silicon revi-
sion of Automatic will select a value for the -si-revision switch based on
the hardware connected and the session type that is currently in use. This
will enable all errata workarounds for the determined silicon revision.

 Using the -si-revision Switch

The -si-revision version (silicon revision) switch directs the compiler
to build for a specific hardware revision. Any errata workarounds available
for the targeted silicon revision will be enabled. The parameter version
represents a silicon revision of the processor specified by the -proc switch
(on page 1-55).

For example,

ccts -proc ADSP-201 -si-revision 1.0 prog.c

If silicon version none is used, then no errata workarounds are enabled,
whereas specifying silicon version any will enable all errata workarounds
for the target processor.

If the -si-revision switch is not used, the compiler will build for the lat-
est known silicon revision for the target processor and any errata
workarounds which are appropriate for the latest silicon revision will be
enabled.

Run-time libraries built without any errata workarounds are located in the
platform’s lib sub-directory; for example, ts/lib. Within the lib
sub-directory, there are library directories for each silicon revision; these
libraries have been built with errata workarounds appropriate for the sili-
con revision enabled. Note that an individual set of libraries may cover
more than one specific silicon revision, so if several silicon revisions are
affected by the same errata, then one common set of libraries might be
used.

Compiler Command-Line Interface

1-84 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The __SILICON_REVISION__ macro is set by the compiler to two hexadeci-
mal digits representing the major and minor numbers in the silicon
revision. For example, 1.0 becomes 0x100 and 10.21 becomes 0xa15.

If the silicon revision is set to any, the __SILICON_REVISION__ macro is set
to 0xffff and if the -si-revision switch is set to none the compiler will
not set the __SILICON_REVISION__ macro.

The compiler driver will pass the -si-revision switch, as specified in the
command line, when invoking other tools in the VisualDSP++ toolchain.

Visit http://www.analog.com/processors/technicalSup-
port/ICAnomalies.html to get more information on specific
anomalies (including anomaly IDs).

Using the -workaround Switch

The -workaround workaround_id switch enables code generator
workarounds for specific hardware defects. Table 1-15 lists valid
workarounds.

Table 1-15. Valid Workarounds

Workaround ID Description

all Indicates that the compiler enables all known workarounds.
In addition to the compiler generating errata safe code, this directs the
default .ldf files to link against run-time libraries that are safe for all
workarounds.

anomaly-0216 Instructs the compiler to insert two sequential reads when reading
SQSTAT immediately after it is updated. The compiler also defines the
macro __WORKAROUND_ANOMALY_0216 at the source, assembly and link
build stages when this workaround is enabled.

anomaly-0223 Instructs the compiler to ensure that the registers JB, JL, KB, KL, J31,
K31, SFREG, LC0 and LC1 are not loaded directly from memory. The
compiler also defines the macro __WORKAROUND_ANOMALY_0223 at the
source, assembly and link build stages when this workaround is
enabled.

http://www.analog.com/processors/technicalSupport/ICAnomalies.html

VisualDSP++ 5.0 C/C++ Compiler Manual 1-85
for TigerSHARC Processors

Compiler

anomaly-0231 Instructs the compiler not to issue conditional Trellis loads. The com-
piler also defines the macro __WORKAROUND_ANOMALY_0231 at the
source, assembly and link build stages when this workaround is
enabled.

anomaly-0266 When compiling a re-entrant ISR, compiler will disable interrupts
before storing RETIB, then re-enable afterwards, when this
workaround is enabled. The compiler also defines the macro
__WORKAROUND_ANOMALY_0266 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0285 Instructs the compiler not to generate a CJMP update on the same line
as a branch. The compiler also defines the macro
__WORKAROUND_ANOMALY_0285 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0298 Instructs the compiler not to issue conditional ACS/MAX/TMAX
instructions. The compiler also defines the macro
__WORKAROUND_ANOMALY_0298 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0299 Instructs the compiler to ensure that circular buffer stores are only
made conditional on an IALU or LC condition. The compiler also
defines the macro __WORKAROUND_ANOMALY_0299 at the source,
assembly and link build stages when this workaround is enabled.

anomaly-0306 Instructs the compiler to generate non-predicted RTI instructions in
interrupt handlers. The compiler also defines the macro
__WORKAROUND_ANOMALY_0306 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0316 Instructs the compiler to insert four NOP instructions at the start of an
ISR. The compiler also defines the macro
__WORKAROUND_ANOMALY_0316 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0281 Instructs the compiler not to issue conditional instructions on the same
line as an access of SQCTL or debug registers. The compiler also
defines the macro __WORKAROUND_ANOMALY_0281 at the source,
assembly and link build stages when this workaround is enabled.

Table 1-15. Valid Workarounds (Cont’d)

Workaround ID Description

Compiler Command-Line Interface

1-86 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

anomaly-0220 The compiler will insert two sequential link status reads, if reading
immediately after a link sysreg write. The compiler also defines the
macro __WORKAROUND_ANOMALY_0220 at the source, assembly and link
build stages when this workaround is enabled.

anomaly-0353 Instructs the compiler to avoid generating conditional updates to
EXCAUSE. This workaround is disabled by default due to the large
performance penalty resulting from enabling the compiler also defines
the macro __WORKAROUND_ANOMALY_0353 at the source, assembly and
link build stages when this workaround is enabled.

anomaly-0315 Instructs the compiler to avoid generating conditional memory
accesses. This workaround is disabled by default due to the large per-
formance penalty resulting from enabling it. The compiler also defines
the macro __WORKAROUND_ANOMALY_0315 at the source, assembly and
link build stages when this workaround is enabled.

anomaly-0133 Tells the compiler to ensure that interrupts are disabled two cycles
before generating an idle instruction. The compiler also defines the
macro __WORKAROUND_ANOMALY_0133 at the source, assembly and link
build stages when this workaround is enabled.

anomaly-0136 Instructs the compiler to issue two sequential loads of RETIB. The
compiler also defines the macro __WORKAROUND_ANOMALY_0136 at the
source, assembly and link build stages when this workaround is
enabled.

anomaly-0152 Instructs the compiler to avoid MAC operations for saturating adds or
subtracts. The compiler also defines the macro
__WORKAROUND_ANOMALY_0152 at the source, assembly and link build
stages when this workaround is enabled.

anomaly-0160 Instructs the assembler to ensure that conditional branches are
non-predicted. The compiler also defines the macro
__WORKAROUND_ANOMALY_0160 at the source, assembly and link build
stages when this workaround is enabled.

Table 1-15. Valid Workarounds (Cont’d)

Workaround ID Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-87
for TigerSHARC Processors

Compiler

Using the -no-workaround Switch

The -no-workaround workaround_ID[,workaround_ID ...] switch dis-
ables compiler code generator workarounds for specific hardware errata.
Current valid workarounds are listed in Table 1-15 on page 1-84
(Workarounds may change).

The -no-workaround switch can be used to disable workarounds enabled
via the -si-revision version or -workaround workaround_ID switch.

All workarounds can be disabled by providing -no-workaround with all
valid workarounds for the selected silicon revision or by using the option
-no-workaround all. Disabling all workarounds via the -no-workaround
switch will link against libraries with no silicon revision in cases where the
silicon revision is not none.

Interactions Between the Silicon Revision and Workaround
Switches

The interactions between -si-revision, -workaround and
-no-workaround switches can only be determined once all the command-
line arguments have been parsed.

anomaly-0169 Instructs the compiler to insert three NOPs at the start of an ISR. The
compiler also defines the macro __WORKAROUND_ANOMALY_0169 at the
source, assembly and link build stages when this workaround is
enabled.

anomaly-0340 Instructs the compiler to avoid generating the conditional instructions
that can cause this anomaly. This workaround is disabled by default
due to the large performance penalty resulting from enabling it. The
compiler also defines the macro __WORKAROUND_ANOMALY_0340 at the
source, assembly and link build stages when this workaround is
enabled.

Table 1-15. Valid Workarounds (Cont’d)

Workaround ID Description

Compiler Command-Line Interface

1-88 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

To this effect options will be evaluated as follows:

1. The -si-revision version switch is parsed to determine which
revision of the run-time libraries the application will link against. It
also produces an initial list of all the default compiler errata
workarounds to enable.

2. Any additional workarounds specified with the -workaround switch
will be added to the errata list.

3. Any workarounds specified with -no-workaround will then be
removed from this list.

4. If silicon revision is not none or if any workarounds were declared
via -workaround, the macro __WORKAROUNDS_ENABLED will be
defined at compile and assembly and link stages, even if
-no-workaround disables all workarounds.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-89
for TigerSHARC Processors

Compiler

C/C++ Compiler Language Extensions
The compiler supports a set of extensions to the ANSI standard for the C
and C++ languages. These extensions add support for DSP hardware and
allow some C++ programming features when compiling in C mode. Most
extensions are also available when compiling in C++ mode.

This section contains:

• “Byte-Addressing Mode” on page 1-93

• “Function Inlining” on page 1-97

• “Inline Assembly Language Support Keyword (asm)” on
page 1-102

• “64-Bit Integer Support (long long)” on page 1-118

• “Quad-Word Support” on page 1-119

• “Memory Support Keywords (pm dm)” on page 1-119

• “__regclass Construct” on page 1-122

• “Bank Type Qualifiers” on page 1-123

• “Placement Support Keyword (section)” on page 1-124

• “Placement of Compiler-Generated Code and Data” on
page 1-125

• “Boolean Type Support Keywords” on page 1-126

• “Pointer Class Support Keyword (restrict)” on page 1-126

• “Variable-Length Array Support” on page 1-127

• “Long Identifiers” on page 1-129

• “Non-Constant Aggregate Initializer Support” on page 1-129

• “Indexed Initializer Support” on page 1-129

C/C++ Compiler Language Extensions

1-90 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• “Compiler Built-In Functions” on page 1-132

• “Pragmas” on page 1-187

• “Increments and Decrements” on page 1-240

• “C++ Style Comments” on page 1-240

• “C++ Fractional Type Support” on page 1-241

• “GCC Compatibility Extensions” on page 1-244

• “Preprocessor-Generated Warnings” on page 1-252

• “Migrating .ldf Files From Previous VisualDSP++ Installations” on
page 1-252

The additional keywords that are part of these C/C++ extensions do not
conflict with any ISO/ANSI C/C++ keywords. The formal definitions of
these extension keywords are prefixed with a leading double underscore
(__). Unless the -no-extra-keywords command-line switch is used, the
compiler defines the shorter forms of the keyword extension that omit the
leading underscores. See “-extra-keywords” on page 1-33 for more
information.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can use inline or __inline interchangeably
in your code.

You might need to use the longer forms (such as __inline) exclusively if
porting a program that uses the extra Analog Devices keywords as identifi-
ers. For example, a program might declare local variables, such as pm or dm.
In this case, you should use the -no-extra-keywords switch, and if you
need to declare a function as inline, or allocate variables to memory
spaces, you can use __inline or __pm/__dm, respectively.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-91
for TigerSHARC Processors

Compiler

Table 1-16 provides a list and a brief description of keyword extensions.
Table 1-17 provides a list and a brief description of operational exten-
sions. Both tables direct you to sections of this chapter that document
each extension in more detail.

Table 1-16. Keyword Extensions

Keyword extensions Description

Byte Addressing Use the “-char-size-{8|32}” switch to select the byte addressing
mode. For more information, see “Byte-Addressing Mode” on
page 1-93.

inline Directs the compiler to integrate the function code into the code of
the callers. For more information, see “Function Inlining” on
page 1-97.

asm() Directs the compiler to code TigerSHARC assembly language
instructions within a C/C++ function.
For more information, see “Inline Assembly Language Support
Keyword (asm)” on page 1-102.

long long [int] Provides 64-bit integer support, both signed and unsigned.
For more information, see “64-Bit Integer Support (long long)” on
page 1-118.

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Data Memory.
For more information, see “Memory Support Keywords (pm dm)”
on page 1-119.

pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Program Memory.
For more information, see “Memory Support Keywords (pm dm)”
on page 1-119.

bank("string") Specifies the name of the memory introduced by the user.
For more information, see “Bank Type Qualifiers” in Chapter 1,
Compiler.

section(“string”) Specifies the section in which an object or function is placed.
For more information, see “Placement Support Keyword (section)”
on page 1-124.

C/C++ Compiler Language Extensions

1-92 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

__regclass(unit) Gives the compiler hints about which TigerSHARC unit to use for
a particular calculation.
For more information, see “__regclass Construct” on page 1-122.

bool, true, false A Boolean type. For more information, see “Boolean Type Support
Keywords” on page 1-126.

restrict keyword Specifies restricted pointer features. For more information, see
“Pointer Class Support Keyword (restrict)” on page 1-126.

Table 1-17. Operational Extensions

Operation extensions Description

Variable-length arrays Support for variable length arrays lets you use automatic arrays
whose length is not known until runtime. For more information,
see “Variable-Length Array Support” on page 1-127.

Long identifiers Support for identifiers of up to 1022 characters in length. For
more information, see “Long Identifiers” on page 1-129.

Non-constant initializers Support for non-constant initializers lets you use non-constants as
elements of aggregate initializers for automatic variables.
For more information, see “Non-Constant Aggregate Initializer
Support” on page 1-129.

Indexed initializers Support for indexed initializers lets you specify elements of an
aggregate initializer in arbitrary order. For more information, see
“Indexed Initializer Support” on page 1-129.

Preprocessor-generated
warnings

Support for generating warning messages from the preprocessor.
For more information, see “Preprocessor-Generated Warnings”
on page 1-252.

C++-style comments Support for C++-style comments in C programs.
For more information, see “C++ Style Comments” on
page 1-240.

fract data type
(C++ mode)

Provides support for the fractional data type, fractional and satu-
rated arithmetic.For more information, see “C++ Fractional Type
Support” on page 1-241.

Quad word support Provides support for a quad word (128 bit) data type. For more
information, see “Quad-Word Support” on page 1-119.

Table 1-16. Keyword Extensions (Cont’d)

Keyword extensions Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-93
for TigerSHARC Processors

Compiler

Byte-Addressing Mode
To select the byte-addressing mode of operation for the TigerSHARC
compiler, the compiler flag -char-size-8 (on page 1-28) should be
selected both for compilation and link stages. This also has the effect of
defining the macro __TS_BYTE_ADDRESS with a value of 1, both when com-
piling and when invoking the linker. The default .ldf file, when the
__TS_BYTE_ADDRESS macro is so defined, links against the byte address ver-
sions of the run-time libraries.

When using byte-addressing mode, it is vital that the correct C/C++
header files are included in all source files. (See “Libraries Used in
Byte-Addressing Mode” on page 1-96 for more information.)

sizeof() Operator Types and Sizes

Table 1-18 shows the sizes in bits and the value returned by the sizeof()
operator for the fundamental types that are supported by the compiler in
byte-addressing mode.

Please refer to Table 2-1 on page 2-13 for the sizes in bits supported by
the compiler in word-addressing mode (default). When the compiler is in
the default word-addressing mode, the value returned by the sizeof()
operator is in words.

Table 1-18. Byte-Addressing Types and Bit Lengths

Type Size(Bits) sizeof(T)

char, signed char, unsigned char 8 1

short, unsigned short 16 2

int, unsigned int 32 4

long, signed long, unsigned long 32 4

long long, signed long long, unsigned long long 64 8

float 32 4

C/C++ Compiler Language Extensions

1-94 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Pointers

The pointer representation uses the low-order 30 bits to address the word
and the high-order two bits to address the byte within the word. Due to
the pointer implementation, the address range in byte-addressing mode is
0x00000000 to 0x3FFFFFFF.

The main advantage of using the high-order bits to address the bytes
within the word as opposed to using the low-order bits is that all pointers
that address word boundaries are compatible with existing code. This
choice means there is no performance loss when accessing 32-bit items.

A minor disadvantage with this representation is that address arithmetic is
slower than using low-order bits to address the bytes within a word when
the computation might involve part-word offsets.

Alignment of Objects

Within a structure, members of the fundamental types are aligned on a
multiple of their size. Structures are aligned on the strictest alignment of
any of their members, but are always aligned to at least 32 bits.

As always, the size of a structure is a multiple of its alignment, so this last
restriction leads to subtle differences from C implementations on
Windows and UNIX® platforms.

double 32 4

long double 64 8

__builtin_quad 128 16

pointers 32 4

Table 1-18. Byte-Addressing Types and Bit Lengths (Cont’d)

Type Size(Bits) sizeof(T)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-95
for TigerSHARC Processors

Compiler

For example,

struct A { short a; short b; short c; };
sizeof(struct A) // is 8 not 6 !!!.

Entire variables are aligned to at least 32 bits. They are more strictly
aligned if their type requires it. Entire array variables are aligned to 128
bits.

Initializations

Initializations that require a part-word address to be computed at compile
or link-time are not supported. For example,

short a[20];
short *p = a + 3; /* illegal */

The compiler reports these initializations as errors.

Pragmas Used in Byte-Addressing Mode

Support for the alignment pragma has additional considerations in byte
addressing mode. The following pragma

#pragma align n

is supported, although the alignment argument n is in bytes rather than in
words and is only allowed to specify alignment on a word boundary. For
more information on this pragma, refer to “Data Alignment Pragmas” on
page 1-188.

Performance Issues

It is quite expensive to have unoptimized loads, stores of part-words and
arithmetic involving pointers to part-words. The arithmetic requires rotat-
ing the address, performing the addition or subtraction and then rotating
the result. A load of a part-word must first load the word, test the

C/C++ Compiler Language Extensions

1-96 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

high-order bits of the address, and then extract the correct part-word. A
store must load the entire word, deposit the part-word into it, and then
write back the whole word.

Consequently, both the performance of the generated code and the size of
the generated code depends upon how successful the compiler is at opti-
mizing part-word load and stores and pointer arithmetic.

Wherever possible, use integer types instead of short or char data types
to improve the quality of the generated code.

Libraries Used in Byte-Addressing Mode

The run-time support libraries used in byte-addressing mode are indepen-
dent from those used in word addressing mode. It is always necessary to
include the appropriate system header files when compiling in both
word-addressing and byte-addressing modes. The reason for this is that
some of the underlying entry-point names within the supplied run-time
support libraries can differ depending on the compilation mode selected;
for example, the I/O support differs for the 64-bit and 32-bit doubles. If
the header files containing the prototypes for referenced run-time support
functions are not included, this could result in unresolved symbols at link
time or incorrect run-time behavior. For example, include <stdio.h> to
use printf(), or <stdlib.h> to use malloc(). The -warn-protos switch
(on page 1-66) will allow the detection of missing prototypes.

The memory management routines allocate memory in units of
sizeof(char) although the implementation only allocates and deallocates
complete words. Requests are rounded up to the next word boundary
where appropriate, so that all actual memory claimed and freed are in
multiples of words.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-97
for TigerSHARC Processors

Compiler

The run-time support libraries for byte-addressing mode are not
compatible with the word addressing support libraries. Applica-
tions have to exclusively use either the byte-addressing support
libraries or the word-addressing support libraries and can not use a
combination of both.

Include Files

The header files are modified to represent the correct sizes and bounds for
the data types under the __TS_BYTE_ADDRESS macro which is defined by
the compiler under byte-addressing mode.

Function Inlining
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline function
support and the inline keyword is a standard feature of C++; the com-
piler provides this keyword as a C extension.

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included.

The following example shows a function definition that uses the inline
keyword.

inline int max3 (int a, int b, int c) {
return max (a, max(b, c));

}

The compiler can decide not to inline a particular function declared with
the inline keyword, with a diagnostic remark cc1462 issued if the com-
piler chooses to do this. The diagnostic can be raised to a warning by use
of the -Wwarn switch. For more information, see “-W {error|remark|sup-
press|warn} number” on page 1-64.

C/C++ Compiler Language Extensions

1-98 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Function inlining can also occur by use of the -Oa (automatic function
inlining) switch (For more information, see “-Oa” on page 1-48.), which
enables the inline expansion of C/C++ functions that are not necessarily
declared inline in the source code. The amount of auto-inlining the com-
piler performs is controlled using the –Ov (optimize for speed versus size)
switch.

The compiler follows a specific order of precedence when determining
whether a call can be inlined. The order is:

1. If the definition of the function is not available (for example, a call
to an external function), the compiler cannot inline the call.

2. If the -never-inline switch has been specified (see on page 1-42),
the compiler will not inline the call. If the call is to a function that
has #pragma always_inline specified (“Inline Control Pragmas”
on page 1-212), a warning will also be issued.

3. If the call is to a function that has #pragma never_inline specified,
the call will not be inlined.

4. If the call is via a pointer-to-function, the call will not be inlined
unless the compiler can prove that the pointer will always point to
the same function definition.

5. If the call is to a function that has a variable number of arguments,
the call will not be inlined.

6. If the module contains asm statements at global scope (outside
function definitions), the call may not be inlined because the asm
statement restricts the compiler’s ability to reorder the resulting
assembly output.

7. If the call is to a function that has #pragma always_inline speci-
fied, the call is inlined. If the call exceeds the current speed/space
ratio limits, the compiler will issue a warning, but will still inline
the call.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-99
for TigerSHARC Processors

Compiler

8. If the call is to a function that has the inline qualifier, and the
-always-inline switch has been specified, the compiler will inline
the call. If the call exceeds the current speed/space ratio limits, the
compiler will issue a warning, but will still inline the call.

9. If the call is to a function that has the inline qualifier and optimi-
zation is enabled, the called function will be compared against the
current speed/size ratio limits for code size and stack size. The call-
ing function will also be examined against these limits. Depending
on the limits and the relative sizes of the caller and callee, the inlin-
ing may be rejected.

10.If the call is to a function that does not have the inline qualifier,
and does not have #pragma weak_entry, then if the -Oa switch has
been specified to enable automatic inlining, the called function will
be considered as a possible candidate for inlining, according to the
current speed/size ratio limits, as if the inline qualifier were
present.

The compiler bases its code-related speed/size comparisons on the -Ov
switch. When -Ov is in the range 1...100, the compiler performs a calcula-
tion upon the size of the generated code using the -Ov value, and this will
determine whether the generated code is "too large" for inlining to occur.
When -Ov has the value 1, only very small functions are considered small
enough to inline; when -Ov has the value 100, larger functions are more
likely to be considered suitable as well.

When -Ov has the value 0, the compiler is optimizing for space. The
speed/space calculation will only accept a call for inlining if it appears that
the inlining is likely to result in less code than the call itself would. (This
is an approximation, since the inlining process is a high-level optimization
process, before actual machine instructions have been selected.)

The inlining process also considers the required stack size while inlining.
A function that has a local array of 20 integers needs such an array for each
inlined invocation, and if inlined many times, the cumulative effect on

C/C++ Compiler Language Extensions

1-100 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

overall stack requirements can be significant. Consequently, the compiler
considers both the stack space required by the called function, and the
total stack space required by the caller; either may reach a limit at which
the compiler determines that inlining the call would not be beneficial.
The stack size analysis is not subject to the -Ov switch.

Inlining and Optimization

The inlining process operates regardless of whether optimization has been
selected (although if optimization is not enabled, then inlining will only
happen when forced by #pragma always_inline or the -always-inline
switch). The speed/size calculation still has an effect, although an opti-
mized function is likely to have a different size from a non-optimized one;
which is smaller (and therefore more likely to be inlined) is dependent on
the kind of optimization done.

A non-optimized function has loads and stores to temporary values which
are optimized away in the optimized version, but an optimized function
may have unrolled or vectorized loops with multiple variants, selected at
run-time for the most efficient loop kernel, so an optimized function may
run faster, but not be smaller.

Given that the optimization emphasis may be changed within a module –
or even turned off completely – by the optimization pragmas, it is possible
for either, both, or neither of the caller and callee to be optimized. The
inlining process still operates, and is only affected by this in as far as the
speed/size ratios of the resulting functions are concerned.

Inlining and Out-of-Line Copies

If a function is static (that is, private to the module being compiled) and
all calls to that function are inlined, then there are no calls remaining that
are not inline. Consequently, the compiler does not generate an
out-of-line copy for the function, thus reducing the size of the resulting
application.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-101
for TigerSHARC Processors

Compiler

If the address of the function is taken, it is possible that the function could
be called through that derived pointer, so the compiler cannot guarantee
that all calls have been accounted for. In such cases, an out-of-line copy
will always be generated.

A function declared inline must be defined (its body must be included)
in every file in which the function is used. This is normally done by plac-
ing the inline definition in a header file. Usually it is also declared static.

Inlining and Global asm Statements

Inlining imposes a particular ordering on functions. If functions A and B
are both marked as inline, and each calls the other, only one of the inline
qualifiers can be followed. Depending on which the compiler chooses to
apply, either A will be generated with inline versions of B, or B will be
generated with inline versions of A. Either case may result in no
out-of-line copy of the inlined function being generated. The compiler
reorders the functions within a module to get the best inlining result.
Functionally, the code is the same, but this affects the resulting assembly
file.

When global asm statements are used with the module, between the func-
tion definitions, the compiler cannot do this reordering process, because
the asm statement might be affecting the behavior of the assembly code
that is generated from the following C function definitions. Because of
this, global asm statements can greatly reduce the compiler’s ability to
inline a function call.

Inlining and Sections

When inlining, any section directives or pragmas on the function defini-
tions are ignored. For example,

section("secA") inline int add(int a, int b) { return a + b; }

section("secB") int times_two(int a) { return add(a, a); }

C/C++ Compiler Language Extensions

1-102 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Although add() and times_two() are to be generated into different code
sections, this is ignored during the inlining process, so if the code for
add() is inlined into times_two(), the inlined copy appears in section
“secB” rather than section “secA”. Only when out-of-line copies are gen-
erated (if necessary) does the compiler make use of any section directive or
pragma applied to the out-of-line copy of the inlined function.

Inline Assembly Language Support Keyword (asm)
The compiler asm() construct allows you to code TigerSHARC assembly
language instructions within a C/C++ function. The asm() construct is
useful in expressing assembly language statements that cannot be
expressed easily or efficiently with C/C++ constructs.

Using asm(), you can code complete assembly language instructions and
specify the operands of the instruction using C expressions. When specify-
ing operands with a C/C++ expression, you do not need to know which
registers or memory locations contain C/C++ variables.

The compiler does not analyze code defined with the asm() con-
struct— it passes this code directly to the assembler. The compiler
does perform substitutions for operands of the formats %0
through %9, relative to the most recently-copied “=” or semi-colon
character. However, it passes everything else through to the assem-
bler without reading or analyzing it. This means that the compiler
cannot apply any enabled workarounds for silicon errata that may
be triggered either by the contents of the asm construct, or by the
sequence of instructions formed by the asm() construct and the
surrounding code produced by the compiler.

The asm() constructs are executable statements, and as such, may
not appear before declarations within C/C++ functions.

The asm() constructs may also be used at global scope, outside
function declarations. Such asm() constructs are used to pass decla-

VisualDSP++ 5.0 C/C++ Compiler Manual 1-103
for TigerSHARC Processors

Compiler

rations and directives directly to the assembler. They are not
executable constructs, and may not have any inputs or outputs, or
affect any registers.

When optimizing, the compiler sometimes changes the order in
which generated functions appear in the output assembly file.
However, if global-scope asm constructs are placed between two
function definitions, the compiler ensures that the function order
is retained in the generated assembly file. Consequently, function
inlining may be inhibited.

A simplified asm() construct without operands takes the form of

asm("nop;;");

The complete assembly language instruction, enclosed in quotes, is the
argument to asm().

The compiler generates a label before and after inline assembly
instructions when generating debug code (the -g switch
on page 1-35). These labels are used to generate the debug line
information used by the debugger. If the inline assembler inserts
conditionally assembled code, an undefined symbol error is likely
to occur at link time. For example, the following code could cause
undefined symbols if MACRO is undefined:

asm("#ifdef MACRO");
asm(" // assembly statements");
asm("#endif");

If the inline assembler changes the current section and thereby causes the
compiler labels to be placed in another section, such as a data section
(instead of the default code section), then the debug line information is
incorrect for these lines.

C/C++ Compiler Language Extensions

1-104 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

If the assembly construct contains assembly code that can alter the
values of status registers, these status registers must be included in
the list of clobbered registers. Information on the status registers,
and on code which may affect them, can be found in the relevant
programming reference.

Using asm() constructs with operands requires some additional syntax.
The construct syntax is described in:

• “asm() Construct Syntax”

• “Assembly Construct Operand Description” on page 1-108

• “Assembly Constructs With Multiple Instructions” on page 1-115

• “Assembly Construct Reordering and Optimization” on page 1-116

• “Assembly Constructs With Input and Output Operands” on
page 1-116

• “Assembly Constructs and Flow Control” on page 1-117

• “Guidelines on the Use of asm() Statements” on page 1-118

asm() Construct Syntax

Using asm() constructs, you can specify the operands of the assembly
instruction that employ C expressions. You do not need to know which
registers or memory locations contain C variables.

Use the following general syntax for your asm() constructs.

asm [volatile] (
template
[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]
[:clobber]]]

);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-105
for TigerSHARC Processors

Compiler

The syntax elements are defined as:

• template
The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of appearance from left to
right, starting at 0. Separate multiple instructions with a semico-
lon, and enclose the entire string within double quotes. For more
information on templates containing multiple instructions, see
“Assembly Constructs With Multiple Instructions” on page 1-115.

• constraint

The constraint is a string that directs the compiler to use certain
groups of registers for the input and output operands. Enclose the
constraint string within double quotes. For more information on
operand constraints, see “Assembly Construct Operand Descrip-
tion” on page 1-108.

• output operand

The output operands are the names of a C/C++ variables that
receive output from corresponding operands in the assembly
instructions.

• input operand
The input operand is a C/C++ expression that provides an input to
a corresponding operand in the assembly instruction.

• clobber
The clobber notifies the compiler that a list of registers is overwrit-
ten by the assembly instructions. Use lowercase characters to name
clobbered registers. Enclose each register name within double
quotes, and separate the quoted register names with commas. The
input and output operands are guaranteed not to use any of the
clobbered registers, so you can read and write the clobbered regis-
ters as often as you like.

C/C++ Compiler Language Extensions

1-106 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

It is vital that any register overwritten by an assembly instruction
and not allocated by the constraints is included in the clobber list.
The list must include memory if an assembly instruction writes to
memory.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax:

• The template is the only mandatory argument to the asm() con-
struct. All other arguments are optional.

• An operand constraint string followed by a C expression in paren-
theses describes each operand. For output operands, it must be
possible to assign to the expression—that is, the expression must be
legal on the left side of an assignment statement.

• A colon separates the template from the first output operand, the
last output operand from the first input operand, and the last input
operand from the clobbered registers. If there are no output oper-
ands and there are input operands, there must be two consecutive
colons separating the assembly template from the input operands.
Add a space between adjacent colon field delimiters in order to
avoid a clash with the C++ “::” reserved global resolution operator.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

VisualDSP++ 5.0 C/C++ Compiler Manual 1-107
for TigerSHARC Processors

Compiler

The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The com-
piler does not parse the assembler instruction template, does not
interpret the template, and does not verify whether the template
contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the TigerSHARC assembly language assignment instruction:

{
int result, x;
...
asm (

"%0 = %1;;":
"=k" (result):
"k" (x));

}

In the previous example, note the following points:

• The template is “%0 = %1;;”. The %0 (percent-zero) is replaced
with operand zero (result), the first operand. The %1 (percent-
one) is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter k is
the operand constraint for the variable. This constrains the output
to an IALU K-register. The compiler generates code to copy the out-
put from the IALU register to the variable result, if necessary. The
“=” in =k indicates that the operand is an output.

• The input operand is the C/C++ variable (x). The letter k is the
operand constraint position for this variable constrains x to an
IALU K-register. If x is stored in different kinds of registers or in
memory, the compiler generates code to copy the values into a
K-register before the asm() construct uses them.

C/C++ Compiler Language Extensions

1-108 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. The compiler has to obtain
several pieces of information in order to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
which describes the class of allowable registers.

Table 1-19 on page 1-112 describes the correspondence between con-
straint letters and register classes. Table 1-22 on page 1-113 describes
constraint operators.

The use of any letter not listed in Table 1-19 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.

To assign registers to the operands, the compiler must also be told which
operands in an assembly language instruction are inputs, which are out-
puts, and which outputs may not overlap inputs. The compiler is told this
in three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the out-
put operands.

• The operand constraints describe which registers are modified by
an assembly language instruction. The = in =constraint indicates
that the operand is an output; all output operand constraints must
use “=.” Operands that are input-outputs must use “+”. (See
below.)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-109
for TigerSHARC Processors

Compiler

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the =& constraint modifier. This situation can occur because the
compiler assumes that the inputs are consumed before the outputs
are produced. This assumption may be false if the assembler code
actually consists of more than one instruction. In such a case, use
=& for each output operand that must not overlap an input or sup-
ply an “&” for the input operand.

Operand constraint strings have two forms:

1. “[use]register class[register size][operation length]”

2. “[use]register”

In the first form, a register class is specified, using one of the symbols from
Table 1-19. The compiler allocates an appropriate register from the class.
The register size (from Table 1-21) and operation length (from Table 1-22)
inform the compiler how the register (or registers) must be rendered
within the template string, to achieve the desired operation.

In the second form, a register is specified explicitly, and the compiler is
required to use this specific register (or registers, if a pair or quad is
specified).

In both forms, use options (from Table 1-20) indicate whether the com-
piler must generate code to copy values into the register(s) before the
template is executed, or to copy values out of the register afterwards, and
how these transfers affect allocation of other input and output registers.
The use symbols have the following meanings:

• (no symbol)

The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register is
loaded with the value of the C/C++ expression before the
asm() template is executed. Its C/C++ expression is not

C/C++ Compiler Language Extensions

1-110 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

modified by the asm() construct, and its value may be a
constant or literal.
Example: x

• = symbol

The operand is an output. It must appear as part of the sec-
ond argument to the asm() construct. Once the asm()
template has been executed, the value in the allocated regis-
ter is stored into the location indicated by its C/C++
expression; therefore, the expression must be one that would
be valid as the left-hand side of an assignment.
Example: =x

• + symbol

The operand is both an input and an output. It must appear
as part of the second argument to the asm() construct. The
allocated register is loaded with the C/C++ expression value,
the asm() template is executed, and then the allocated regis-
ter’s new value is stored back into the C/C++ expression.
Therefore, as with pure outputs, the C/C++ expression must
be one that is valid on the left-hand side of an assignment.
Example: +x

• ? symbol

The operand is temporary. It must appear as part of the
third argument to the asm() construct. A register is allo-
cated as working space for the duration of the asm()
template execution. The register’s initial value is undefined,
and the register’s final value is discarded. The corresponding
C/C++ expression is not loaded into the register, but must
be present. This expression is normally specified using a lit-
eral zero.
Example: ?x

VisualDSP++ 5.0 C/C++ Compiler Manual 1-111
for TigerSHARC Processors

Compiler

• & symbol

This operand constraint may be applied to inputs and out-
puts. It indicates that the register allocated to the input (or
output) may not be one of the registers that are allocated to
the outputs (or inputs). This operand constraint is used
when one or more output registers are set while one or more
inputs are yet to be referenced. (This situation sometimes
occurs if the asm() template contains more than one
instruction.)
Example: &x

• # symbol

The operand is an input, but the register’s value is clobbered
by the asm() template execution. The compiler may make
no assumptions about the register’s final value. An input
operand with this constraint will not be allocated the same
register as any other input or output operand of the asm().
The operand must appear as part of the second argument to
the asm() construct.
Example: “#x”

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be.

For example,

asm("%0 += FDEP %1 BY %2;;"
:"+XR0"(sum) /* output */
:"x"(x),"x"(y) /* input */
);

would load sum into XR0, and load x and y into two X registers, execute the
operation, and then store the new value from XR0 back into sum.

C/C++ Compiler Language Extensions

1-112 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Naming the registers in this way allows the asm() construct to
specify several registers that must be related, such as the Base and
Length registers for a circular buffer. This also allows use of resister
not covered by the register classes accepted by the asm() construct.

The clobber string can be any of the registers recognized by the compiler;
for example, “XR10”, “YMR0”, “XTR3”, or “LC0”. The register names are not
case-sensitive.

Table 1-19. Constraint Register Types

Constraint1

1 Names are case-sensitive.

Register Type

x Compute block X register

y Compute block Y register

j JALU register

k KALU register

Table 1-20. Constraint Operators: Use

Constraint Operator Description

(no symbol) Indicates the operand is an input. Operand must be in the inputs list.

= Indicates the operand is an output. Operand must be in the outputs list.

& Indicates the operand is an input operand that may not be overlapped
with an output operand. Operand must be in the inputs list.

=& Indicates the operand is an output operand that may not overlap an
input operand. Operand must be in the outputs list.

? Indicates the operand is temporary. Operand must be in the inputs list.

+ Indicates the operand is both an input and output operand. Operand
must be in the outputs list.

Indicates the operand is an input operand whose value is changed.
Operand must be in the outputs list.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-113
for TigerSHARC Processors

Compiler

For example, the following inline assembler statement,

asm("%0 = LSHIFT %1 BY -1;;" : "=xlL" (output) : "xl" (input));

where input and output are defined as long long types, produces a core
instruction similar to

XLR15:14 = LSHIFT R13:12 BY -1;;

because %0 (output) has:

• = – indicating an output.

• x – indicating a register from the X compute block.
As %0 precedes an assignment character, the compiler emits the
compute block character.

Table 1-21. Constraint Operators: Register Size

Constraint Operator1 Description

(no symbol) Indicates the operand is a single register.

l Indicates the operand is a 64-bit register pair (long).

q Indicates the operand is a 128-bit register quad.

1 Names are case-sensitive.

Table 1-22. Constraint Operators: Operation Length

Constraint Operator1 Description

(no symbol) Indicates the operand is used in a word operation.

b Indicates the operand is used in a byte operation

s Indicates the operand is used in a short operation.

L Indicates the operand is used in a long operation.

f Indicates the operand is used in a float operation.

1 Names are case-sensitive.

C/C++ Compiler Language Extensions

1-114 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• l – indicating a register pair (64-bit value) (XR15 and XR14 were
selected).

• L – indicating a long operation (so the pair is written as
XLR15:14).

and %1 (input) has:

• No use symbol, which indicates an input.

• x – indicating a register from the X compute block. As %1 follows
an assignment character, the compiler omits the compute block
character.

• l – indicating a register pair (64-bit value) (XR13 and XR12 were
selected).

• No operation length symbol, which indicates a word operation.

Because TigerSHARC assembly syntax specifies the instruction
characteristics (such as compute blocks or operation size) via the
result registers’ name, the compiler renders the register names dif-
ferently, according to characters previously emitted within the
template:

1. At the start of the template, before any = character is seen,
registers are rendered with the instruction characteristics
included.

2. Once a = character is emitted, the compiler switches state,
emitting the register names without the instruction charac-
teristics, unless the %n operand is the only non-whitespace
text before the next ;, in which case instruction characteris-
tics are included.

3. If the compiler encounters a ; character, it reverts state back
to emitting register names with instruction characteristics
included.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-115
for TigerSHARC Processors

Compiler

Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. The input
operands are guaranteed not to use any of the clobbered registers, so you
can read and write the clobbered registers as often as you like. In asm()
strings the normal rules for line-breaking apply. In particular, the state-
ment may spread over multiple lines. You are recommended not to split a
string over more than one line, but to use the C language's string concate-
nation feature. If you are placing the inline assembly statement in a
preprocessor macro, read “Compound Macros” on page 1-258.

This is an example of multiple instructions in a template:

/* (pseudo code) k2 = x; k3 = y; result = x + y; */
asm ("k2=%1;;"

"k3=%2;;"
"%0=k2+k3;;"
: "=k" (result) /* output */
: "k" (x), "k" (y) /* input */
: "k2", "k3"); /* clobbers */

Do not attempt to produce multiple-instruction asm constructs via a
sequence of single-instruction asm constructs, as the compiler is not guar-
anteed to maintain the ordering.

For example, the following should be avoided:

/* BAD EXAMPLE: Do not use sequences of single-instruction
** asms. Use a single multiple-instruction asm instead. */

asm("k2=%0;;" : : "k" (x) : "k2");
asm("k3=%0;;" : : "k" (y) : "k3");
asm("%0=k2+k3;;" : "=k" (result));

C/C++ Compiler Language Extensions

1-116 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands. This
assumption does not mean that you cannot use instructions with side
effects, but you must be careful to notify the compiler that you are using
them by using the clobber specifiers.

The compiler may eliminate them if the output operands are not used, or
move them out of loops, or reorder them with respect to other statements,
where there is no visible data dependency. Also, if your instruction does
have a side effect on a variable that otherwise appears not to change, the
old value of the variable may be reused later if it happens to be found in a
register.

Use the keyword volatile to prevent an asm() instruction from being
moved or deleted. For example,

#define GetCycleCount(counter) \

asm volatile ("%0 = CCNT0;;" : "=j"(counter));

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C statement.

Assembly Constructs With Input and Output Operands

When an asm construct has both inputs and outputs, there are two aspects
to consider:

1. Whether a value read from an input variable will be written back
tothe same variable or a different variable, on output.

2. Whether the input and output values will reside in the same regis-
ter or different registers.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-117
for TigerSHARC Processors

Compiler

The most common case is when both input and output variables and
input and output registers are different. In this case, the asm construct
reads from one variable into a register, performs an operation which leaves
the result in a different register, and writes that result from the register
into a different output variable:

asm("%0 = %1;;" : "=j" (newptr) : "j" (oldptr));

When the input and output variables are the same, it is usual that the
input and output registers are also the same. In this case, you use the “+”
constraint:

asm("%0 = %0 + 4;;" : "+j" (sameptr));

When the input and output variables are different, but the input and out-
put registers have to be the same (usually because of requirements of the
assembly instructions), you indicate this to the compiler by using a differ-
ent syntax for the input’s constraint. Instead of specifying the register or
class to be used, you specify the output to which the input must be
matched.

For example,

asm("[%0 += 2] = J4;;"
:"=j" (newptr) // an output, given a jreg,

// stored into newptr.
:"0" (oldptr)); // an input, given same reg as %0,

// initialized from oldptr

This specifies that the input oldptr has 0 (zero) as its constraint string,
which means it must be assigned the same register as %0 (newptr).

Assembly Constructs and Flow Control

Do not place flow control operations within an asm() construct
that “leave” the asm() construct, such as calling a procedure or per-
forming a jump, to another piece of code that is not within the

C/C++ Compiler Language Extensions

1-118 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

asm() construct itself. Such operations are invisible to the com-
piler, may result in multiple-defined symbols, and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

It is also inadvisable to use labels in asm() statements, especially when
function inlining is enabled. If a function containing such asm statements
is inlined more than once in a file, there will be multiple definitions of the
label, resulting in an assembler error. If possible, use PC-relative jumps in
asm statements.

Guidelines on the Use of asm() Statements

There are certain operations that are performed more efficiently using
other compiler features, and result in source code that is clearer and easier
to read.

Accessing System Registers:
System registers are accessed most efficiently using the functions in
sysreg.h instead of using asm() statements (see also “System Register
Access” on page 1-166).

64-Bit Integer Support (long long)
In addition to the basic C/C++ data types, the ccts compiler provides an
additional integral type that consists of 64-bit integers. This type is pro-
vided in both signed and unsigned forms. It is fully supported, including
all arithmetic operations and relevant libraries.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-119
for TigerSHARC Processors

Compiler

Normal library functions (as in <stdlib.h>) taking this type typically have
an “ll” prefix. Formatting support (printf, etc.) is available via the “ll”
modifier, as in “%lld”.

This extension does not introduce additional keywords, so it does
not interfere with porting standard-conforming programs onto
TigerSHARC processors. The extension is always available.

Quad-Word Support
Certain features of TigerSHARC processors make use of 128-bit data
types (a quad word). An extension to the language provides a data type of
this size. Normal C/C++ arithmetic operators are not supported for the
quad word type; therefore, supplied built-in functions must be used to
process variables of this type. The type name is __builtin_quad.

Memory Support Keywords (pm dm)
There are two keywords used to designate memory space: dm and pm. These
keywords can be used to specify the location of a static or global variable
or to qualify a pointer declaration.

These keywords allow you to control placement of data in primary (dm) or
secondary (pm) data memory.

Table 1-23. Long Long Datatype Characteristics

Datatype
Characteristic

Description

Type Name long long [int]
unsigned long long [int]

Representation 64-bit 2’s complement

Range long long int: -2**63 ... (2**63)-1
unsigned long long int: 0 ... (2**64) -1

C/C++ Compiler Language Extensions

1-120 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Memory Keyword Rules

These rules apply to memory support keywords:

• A memory space keyword (dm or pm) refers to the expression to its
right.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses Data Memory (dm) as the default memory space
for all variables. All undeclared spaces for data are Data Memory
spaces.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in Data
Memory.

• Literal character strings always reside in Data Memory.

The following listing shows examples of memory keyword syntax.

int pm abc[100];
/* declares an array abc with 100 elements in pm (secondary

data memory) */
int dm def[100];
/* declares an array def with 100 elements in primary data memory
*/
int ghi[100];
/* declares an array ghi with 100 elements in primary data memory
*/
int pm * pm pp;
/* declares pp to be a pointer which resides in secondary data

memory and points to a pm (econdary data memory) integer */
int dm * dm dd;
/* declares dd to be a pointer which resides in a primary data

memory and points to a primary data memory integer */
int *dd;
/* declares dd to be a pointer which points to a primary data

memory integer */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-121
for TigerSHARC Processors

Compiler

int pm * dm dp;
/* declares dp to be a pointer which resides in a primary data

memory and points to a pm (secondary data memory)
integer */
int pm * dp;
/* declares dp to be a pointer which resides in a primary data

memory and points to a pm (secondary data memory)
integer */
int dm * pm pd;
/* declares pd to be a pointer which resides in pm (secondary

data memory) and points to a primary data memory integer */
int * pm pd;
/* declares pd to be a pointer which resides in pm (secondary

data memory) and points to a primary data memory integer */
float pm * dm * pm fp;
/* the first pm means that *fp is in pm (secondary data memory,

the following dm puts *fp in primary data memory, and fp
itself is in pm (secondary data memory */

Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing listing shows examples of memory space specification keywords in
typedef and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */
typedef float pm * PFLOATP;

/* PFLOATP defines a type which is a pointer to a */
/* float which resides in pm. */

struct s {int x; int y; int z;};
static pm struct s mystruct={10,9,8};

/* Note that the pm specification is not used in */
/* the structure definition. The pm specification */
/* is used when defining the variable mystruct */

C/C++ Compiler Language Extensions

1-122 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

__regclass Construct
The __regclass(unit) construct allows you to give the compiler hints
about which TigerSHARC processor unit to use for a particular computa-
tion. Variables can be annotated with this construct, and the compiler
then tries to perform computations involving those variables in the indi-
cated units. The (unit) argument is a quoted string, naming one of the
four major units: “X”, “Y”, “J”, “K”.

The __regclass construct may be used anywhere that the C register qual-
ifier may be used and is subject to the same restrictions: it cannot have its
address taken. Effective use of this feature requires a good understanding
of the TigerSHARC architecture. Typically, examine the assembly code
produced by the optimizing compiler.

In the absence of specific __regclass hints, the TigerSHARC compiler
uses the following criteria:

• Floating-point calculations are done in compute block X

• General integer calculations are done in compute block Y

• Address calculations, including pointer arithmetic, are done in the
JALU. If a multiplication is needed, it is done in Y

A common way of achieving higher performance, particularly in tight
loops, is to perform a part of the computation in a different unit. If the
sub-computations assigned to different units are independent of each
other, they execute in parallel, resulting in increased throughput.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-123
for TigerSHARC Processors

Compiler

Bank Type Qualifiers
Bank qualifiers can be attached to data declarations to indicate that the
data resides in particular memory banks. For example,

int bank("blue") *ptr1;

int bank("green") *ptr2;

The bank qualifier assists the optimizer because the compiler assumes that
if two data items are in different banks, they can be accessed together
without conflict. The bank name string literals have no significance,
except to differentiate between banks. There is no interpretation of the
names attached to banks, which can be any arbitrary string. There is a cur-
rent implementation limit of ten different banks.

For any given function, three banks are automatically defined. These are:

• The default bank for global data.
The “static” or “extern” data that is not explicitly placed into
another bank is assumed to be within this bank. Normally, this
bank is called “__data“, although a different bank can be selected
with #pragma data_bank(bankname).

• The default bank for local data.
Local variables of “auto” storage class that are not explicitly placed
into another bank are assumed to be within this bank. Normally,
this bank is called “__stack”, although a different bank can be
selected with #pragma stack_bank(bankname).

• The default bank for the function’s instructions.
The function itself is placed into this bank. Normally, it is called
“__code”, although a different bank can be selected with
#pragma code_bank(bankname).

Each memory bank can have different performance characteristics. For
more information on memory bank attributes, see “Memory Bank Prag-
mas” on page 1-234.

C/C++ Compiler Language Extensions

1-124 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Placement Support Keyword (section)
The section() keyword directs the compiler to place an object or func-
tion in an assembly .SECTION directive, in the compiler’s intermediate
assembly output file. Name the assembly .SECTION directive using the
string literal parameter of the section() keyword. If you do not specify a
section() for an object or function declaration, the compiler uses a
default section. The .ldf file supplied to the linker must also be updated
to support the additional named sections.

Applying the section() function is only meaningful when the data item is
something that the compiler can place in the named section.

Apply the section() keyword only to top-level, named objects that have
static duration; for example, they are explicitly static, or are given as
external-object definitions. The example shows the declaration of a static
variable that is placed in the section called bingo.

static section("bingo") int x;

The section() keyword has the limitation that section initialization qual-
ifiers cannot be used within the section name string. The compiler may
generate labels containing this string, which will result in assembly syntax
errors. Additionally, the keyword is not compatible with any pragmas that
precede the object or function. For finer control over section placement
and compatibility with other pragmas, use #pragma section.

Refer to “#pragma section/#pragma default_section” on page 1-219 for
more information.

Note that section has replaced the segment keyword in earlier
releases of the compiler. Although the segment() keyword is sup-
ported by the compiler of the current release, we recommend that
you revise the legacy code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-125
for TigerSHARC Processors

Compiler

Placement of Compiler-Generated Code and
Data

If the section() keyword (see “Placement Support Keyword (section)” on
page 1-124) is not used, the compiler emits code and data into default sec-
tions. The -section switch (on page 1-58) can be used to specify
alternatives for these defaults on the command line, while the
default_section pragma (on page 1-219) can be used to specify alterna-
tives for some of them within the source file.

In addition, when using certain features of C/C++, the compiler may be
required to produce internal data structures. The -section switch and the
default_section pragma allow you to override the default location where
the data would be placed. For example,

ccts -section vtbl=vtbl_data test.cpp -c++

would instruct the compiler to place all the C++ virtual function look-up
tables into the section vtbl_data, rather than the default vtbl section. It
is the user’s responsibility to ensure that appropriately named sections
exist in the .ldf file.

The compiler currently supports the following section identifiers:

code Controls placement of machine instructions
Default is program.

data Controls placement of initialized variable data
Default is data1.

bsz Controls placement of zero-initialized variable data
Default is data1.

sti Controls placement of the static C++ class constructor “start” functions
Default is program. For more information, see “Constructors and Destruc-
tors of Global Class Instances” on page 1-274..

switch Controls placement of jump-tables used to implement C/C++ switch
statements. Default is data1.

C/C++ Compiler Language Extensions

1-126 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When both -section switches and default_section pragmas are used, the
following priority is used:

1. A default_section pragma within the source has the highest
priority.

2. The -section switch has precedence if no default_section
pragma is in force.

Boolean Type Support Keywords
The bool, true, and false keywords are extensions to ANSI C that sup-
port the C++ Boolean type. The bool keyword is a unique signed integral
type. There are two built-in constants of this type: true and false. When
converting a numeric or pointer value to bool, a zero value becomes
false; a nonzero value becomes true. A bool value may be converted to
int by promotion, taking true to one and false to zero. A numeric or
pointer value is automatically converted to bool when needed.

These keywords behave more or less as if the declaration that follows had
appeared at the beginning of the file, except that assigning a nonzero inte-
ger to a bool type always causes it to take on the value true.

typedef enum { false, true } bool;

Pointer Class Support Keyword (restrict)
The restrict keyword is an extension that supports restricted pointer fea-
tures. The use of restrict is limited to the declaration of a pointer. This
keyword specifies that the pointer provides exclusive initial access to the

vtbl Controls placement of the C++ virtual lookup tables
Default is vtbl.

vtable Synonym for vtbl.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-127
for TigerSHARC Processors

Compiler

pointed object. More simply, the restrict keyword is a way to identify
that a pointer does not create an alias. Also, two different restricted point-
ers cannot designate the same object and therefore they are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing in order to better optimize C/C++ code that uses pointers. The
restrict keyword is most useful when applied to function parameters
that the compiler would otherwise have little information about. For
example,

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If you have a program that uses a restricted pointer in a way that it does
not uniquely refer to storage, then the behavior of the program is
undefined.

Variable-Length Array Support
The compiler supports variable-length automatic arrays. Unlike other
automatic arrays, variable-length ones are declared with a non-constant
length. This means that the space is allocated when the array is declared,
and deallocated when the brace-level is exited.

Variable-length arrays are only supported as an extension to C and
not C++.

C/C++ Compiler Language Extensions

1-128 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The compiler does not allow jumping into the brace-level of the array and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.

You can use variable-length arrays as function arguments, such as:

struct entry
var_array (int array_len, char data[array_len][array_len])
{
...
}

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as input matrices. Declaring automatic variable size matrix is
much easier than explicitly allocating it in a heap.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multidimensional arrays, the
boundaries are also saved for address computation. After leaving the block,
all the space allocated for the array and size information is deallocated.

For example, the following program prints 40, not 50:

#include <stdio.h>
void foo(int);

main ()
{

foo(40);
}

void foo (int n)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-129
for TigerSHARC Processors

Compiler

{
char c[n];
n = 50;
printf("%d", sizeof(c));

}

Long Identifiers
The compiler supports identifiers of up to 1022 characters in length, or
1023 including name mangling.

Non-Constant Aggregate Initializer Support
The ccts compiler includes support for the ISO/ANSI standard definition
of C and C++ and also includes extended support for initializers. The
compiler does not require the elements of an aggregate initializer for an
automatic variable to be constant expressions.

The following example shows an initializer with elements that vary at run
time:

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}
void foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
}

Indexed Initializer Support
The ISO/ANSI Standard C and C++ requires the elements of an initializer
to appear in a fixed order, the same as the order of the elements in the
array or structure being initialized. The ccts compiler, by comparison,
supports labeling elements for array initializers. This feature lets you spec-

C/C++ Compiler Language Extensions

1-130 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

ify array or structure elements in any order by specifying the array indices
or structure field names to which they apply. All index values must be
constant expressions, even in automatic arrays.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index to be initialized by that value. Subse-
quent initializer elements are then applied to the sequentially following
elements of the array, unless another use of the [INDEX] syntax appears.
The index values must be constant expressions, even if the array being ini-
tialized is automatic.

The following example shows equivalent array initializers—the first ini-
tializer is in ISO/ANSI standard C/C++; the second initializer uses the
ccts compiler.

The [index] precedes the value being assigned to that element.

/* Example 1 Standard & ccts C/C++ Array Initializer */
/* Standard Array Initializer */

int a[6] = { 0, 0, 115, 0, 29, 0 };

/* equivalent ccts C/C++ array initializer */

int a[6] = { [2] 115, [4] 29 };

You can combine this technique of naming elements with Standard
C/C++ initialization of successive elements. The standard and ccts
instructions below are equivalent. Note that any unlabeled initial value is
assigned to the next consecutive element of the structure or array.

/* Example 2 Standard & ccts C/C++ Array Initializer */
/* Standard Array Initializer */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* equivalent ccts C/C++ array initializer that uses
indexed elements */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-131
for TigerSHARC Processors

Compiler

int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the indices are characters or enum type.

/* Example 3 Array Initializer With enum Type Indices */
/* ccts C/C++ array initializer */

int whitespace[256] =
{

[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1
};

enum { e_ftp = 21, e_telnet = 23, e_smtp = 25, e_http = 80, e_nntp
= 119 };
char *names[] = {

[e_ftp] "ftp",
[e_http] "http",
[e_nntp] "nntp",
[e_smtp] "smtp",
[e_telnet] "telnet"

};

In a structure initializer, specify the name of a field to initialize with
fieldname: before the element value. The standard C/C++ and ccts
C/C++ struct initializers in the example below are equivalent.

/* Example 4 Standard & ccts C/C++ struct Initializer */
/* Standard struct Initializer */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent ccts C/C++ struct Initializer With
Labeled Elements */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

C/C++ Compiler Language Extensions

1-132 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Compiler Built-In Functions
The compiler supports intrinsic (built-in) functions that enable you to
make efficient use of hardware resources. The compiler is aware of the def-
inition of these intrinsic functions without the use of a header file. Your
program uses them via normal function call syntax. The compiler notices
the invocation and generates one or more machine instructions, just as it
does for normal operators, such as ‘+’ or ‘*’.

Built-in functions have names that begin with __builtin.

Identifiers beginning with '__' are reserved by the C standard, so
these names do not conflict with user-defined identifiers.

This section describes:

• “Using the builtins.h Header File” on page 1-133

• “Optimization Guidance Built-in Functions” on page 1-134

• “16-Bit Data Types” on page 1-137

• “32-Bit Data Types” on page 1-147

• “Circular Buffer Built-In Functions” on page 1-148

• “Math Intrinsics” on page 1-149

• “Instructions Generated by Built-in Functions” on page 1-151

• “Data Alignment Buffer (DAB) Built-in Functions” on page 1-167

• “Circular Buffer Data Alignment Buffer (DAB) Built-in Func-
tions” on page 1-169

• “Communications Logic Unit Operations” on page 1-171

VisualDSP++ 5.0 C/C++ Compiler Manual 1-133
for TigerSHARC Processors

Compiler

These functions are specific to individual architectures; the built-in func-
tions supported on TigerSHARC processors are described in subsections
that follow.

Various system header files provide the user with definitions and access to
the intrinsics. This feature may be disabled using the -no-builtin switch.
(See on page 1-44.)

Using the builtins.h Header File

The builtins.h header file provides user-visible prototypes for the
built-in functions, though as noted above, these are not necessary for the
compiler as it already has the information about the built-in prototypes. It
does, however, also provide shorthand forms of some of the more compli-
cated built-in functions (and it is strongly recommended that these are
used over their constituent built-in functions).

The builtins.h header file also provides C reference code for the built-in
functions. The header file can thus be included in compiler for architec-
tures other than the TigerSHARC processors and can enable compilation
and execution of code that makes use of the TigerSHARC built-in func-
tions. Examining the C reference code can provide insight into the
function that a given built-in function performs.

When using a compiler other than the one provided with VisualDSP++
for TigerSHARC processors, please make sure your compiler supports
inline functions as the C reference versions of the built-ins use the inline
keyword. These implementations of the built-in functions also require
support for 64-bit integers.

When using this file on a machine that does not support byte-addressing,
define __NO_BYTE_ADDRESSING__ before including this file. If the machine
has 8-bit char types and 16-bit short types, then do not define this
macro.

C/C++ Compiler Language Extensions

1-134 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

To use the reference implementation of the XCORRS Communication Logic
Unit instruction in projects being built for the ADSP-TS101 processor,
define the macro __USE_RAW_XCORRS__ before including the builtins.h
file.

When using the Microsoft C/C++ compiler, use the /TP command-line
option to select C++ compilation: “inline” is not recognized as a keyword
in C compilation mode.

To allow your compilation to ignore all of the __builtin_sysreg_read
and __builtin_sysreg_write built-in functions, define the
__IGNORE_SYSREG_BUILTINS__ macro before including this file allowing
the code to compile. To allow your compilation to ignore the
__builtin_idle built-in functions, define the __IGNORE_IDLE_BUILTINS__
macro before including this file.

To use the raw versions of the built-in functions even when using the
compiler provided with VisualDSP++ for TigerSHARC processors, define
the __USE_RAW_BUILTINS__ macro before including this file.

Optimization Guidance Built-in Functions

This section describes the optimization guidance built-in functions.

void __builtin_aligned(const void *p, int align);

The __builtin_aligned intrinsic is an assertion that the first parameter
points to an argument that is aligned on a multiple of the second argu-
ment. The second argument is in units of char size, that is 8-bit bytes in
byte-addressing mode and 32-bit words in word-addressing mode. Know-
ing alignment helps the optimizer to combine loads and stores from
successive iterations of a loop. Ideally, all data processed in the first itera-
tion of the loop should be aligned on a 4-word boundary.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-135
for TigerSHARC Processors

Compiler

An example in word-addressing mode where the parameter “a” points to
quad-word aligned data would be as follows:

void fn(int *a) {
__builtin_aligned(a, 4);

....
}

Compiler Performance Built-in Functions: Expected Behavior
The compiler performance built-in functions provide the compiler with
information about the expected behavior of the program. You can use
these built-in functions to tell the compiler which parts of the program are
most likely to be executed; the compiler can then arrange for the most
common cases to be those that execute most efficiently.

#include <builtins.h>
int __builtin_expected_true(int cond);
int __builtin_expected_false(int cond);

For example, consider the code

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (call_the_function)

r = func(value);
return r;

}

If you expect that parameter call_the_function to be true in the majority
of cases, you can write the function in the following manner:

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (__builtin_expected_true(call_the_function))

// indicate most likely true
r = func(value);

C/C++ Compiler Language Extensions

1-136 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

return r;
}

This indicates to the compiler that you expect call_the_function to be
true in most cases, so the compiler arranges for the default case to be to
call function func(). If, on the other hand, you were to write the function
as:

extern int func(int);
int example(int call_the_function, int value)
{

int r = 0;
if (__builtin_expected_false(call_the_function))

// indicate most likely false
r = func(value);

return r;
}

then the compiler arranges for the generated code to default to the oppo-
site case, of not calling function func().

These built-in functions do not change the operation of the generated
code, which will still evaluate the boolean expression as normal. Instead,
they indicate to the compiler which flow of control is most likely, helping
the compiler to ensure that the most commonly-executed path is the one
that uses the most efficient instruction sequence.

The __builtin_expected_true and __builtin_expected_false built-in
functions only take effect when optimization is enabled in the compiler.
They are only supported in conditional expressions.

Compiler Performance Built-in Functions: Known Values
The __builtin_assert() function provides the compiler with informa-
tion about the values of variables which it may not be able to deduce from
the context. For example, consider the code

int example(int value, int loop_count)
{

int r = 0;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-137
for TigerSHARC Processors

Compiler

int i;
for (i = 0; i < loop_count; i++) {

r += value;
}
return r;

}

The compiler has no way of knowing what values may be passed in to the
function. If you know that the loop count will always be greater than four,
you can allow the optimizer to make use of that knowledge using
__builtin_assert().

int example(int value, int loop_count)
{

int r = 0;
int i;
__builtin_assert(loop_count > 4);
for (i = 0; i < loop_count; i++) {

r += value;
}
return r;

}

The optimizer can now omit the jump over the loop body it would other-
wise have to emit to cover loop_count == 0. In more complicated code,
further optimizations may be possible when bounds for variables are
known.

16-Bit Data Types

The functions and operators described in this section perform arithmetic
on the int2x16, and int4x16 data types.

• The int2x16 data type consists of two 16-bit integers packed into a
32-bit structure.

• The int4x16 data type consists of four 16-bit integers packed into a
64-bit item.

C/C++ Compiler Language Extensions

1-138 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

In the following diagram, the notation {A,B} represents an int2x16 con-
taining the two 16-bit values A and B. The TigerSHARC processors have a
little endian architecture, so the first element is stored in the low order
bits. A is considered to be the first element of {A,B}, so that the representa-
tion in a 32-bit register (int2x16 data type) has the following structure.

Similarly, {A,B,C,D} represent an int4x16 containing the 16-bit values A,
B, C, and D, with A in the lowest order bits, B next, followed by C, and D in
the highest order bits. (This means that C and D are stored in a register or
memory location numbered one higher than A and B.)

Most operations on these types are element-wise. For example, the add
operation for int2x16 takes the first 16-bit quantity from each argument
and adds them together to produce the first 16-bit quantity in the result.
Likewise, the second 16-bit elements are added to produce the second ele-
ment of the result. For example, the int2x16 add operation on arguments
{A,B} and {C,D} produces a result {A+C,B+D}.

A few operations which are not element wise are also supported. The side-
ways sum operation adds up all of the 16-bit elements in its single
argument. A variety of packing and unpacking operations for accessing the
individual elements of a packed value are also available.

These operations are very efficient for the ADSP-TSxxx processors because
they are directly supported in hardware. Most are implemented as a single
machine instruction; a few which can take multiple machine instructions
are provided for convenience. Note that some operations are defined in
terms of a 2x32 data type. This type and its operations are described in
“32-Bit Data Types” on page 1-147.

31 16 15 0

Value B Value A

Bit 15 Bit 0 Bit 15Bit 0

Figure 1-2. 16-Bit Data Type

VisualDSP++ 5.0 C/C++ Compiler Manual 1-139
for TigerSHARC Processors

Compiler

Packed 16-bit Integer Support Using C

The VisualDSP++ compiler supports 16-bit packed data. To use the
int2x16 and int4x16 types and operators in your code, add an #include
<i16.h> directive.

Constructors (int2x16 values)

The following functions create int2x16 values.

Synopsis:

int2x16 compact_to_i2x16_from_i32 (int lo, int hi);

Description: Constructs an int2x16 type by compacting two 32-bit inte-
ger values. The high-order 16 bits of each original 32-bit value are lost.

Algorithm:

compact(A_32, B_32) => {A_16,B_16}

Synopsis:

int2x16 compact_to_i2x16 (int2x32 val);

Description: Construct an int2x16 type by compacting the two halves of
a single int2x32. The high-order 16 bits of each of the 32-bit values are
lost.

Algorithm:

compact({A_32,B_32}) => {A_16,B_16}

Extractors and Expanders (int2x16 values)

The following functions extract the latest or most significant 16-bit value
from an int2x16.

Synopsis:

int expand_low_of_i2x16 (int2x16 val);
int expand_high_of_i2x16 (int2x16 val);

C/C++ Compiler Language Extensions

1-140 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Description: The value returned is sign-extended to 32 bits and returned
as an int.

Algorithm:

val = {A_16,B_16}:
expand_low_of_i2x16(val) => A_32
expand_high_of_i2x16(val) => B_32

See Also: expand_i2x16_to_i2x32

Arithmetic Operators (int2x16 values)

The following binary operators are defined on int2x16:

Synopsis:

int2x16 add_i2x16 (int2x16 a, int2x16 b);
int2x16 sub_i2x16 (int2x16 a, int2x16 b);
int2x16 mult_i2x16 (int2x16 a, int2x16 b);

Description: Performs element-wise arithmetic on int2x16 values. The
TigerSHARC processors do not have a 2x16 multiplication instruction;
this multiply operation uses the 4x16 multiply and discards half of the
result. It is still accomplished in one instruction.

Algorithm:

Addition: {A,B} + {X,Y} => {A+X, B+Y}

Subtraction: {A,B} - {X,Y} => {A-X, B-Y}

Multiplication: {A,B} * {X,Y} => {A*X, B*Y}

Unary minus is not yet supported on int2x16.

Bitwise Operators (int2x16 values)

The following bitwise logical operators are defined on int2x16:

VisualDSP++ 5.0 C/C++ Compiler Manual 1-141
for TigerSHARC Processors

Compiler

Synopsis:

int2x16 a, b;
a ^ b
a & b
a | b
a ^= b
a &= b
a |= b
~a

Description: Performs logical operations on int2x16 values. Note that the
traditional infix operators are available here.

Algorithm:

Xor: {A,B} ^ {X,Y} => {A^X,B^Y}
And: {A,B} & {X,Y} => {A&X,B&Y}

Or: {A,B} | {X,Y} => {A|X,B|Y}
Complement: {A,B} => {~A,~B}

Comparison Operators (int2x16 values)

The following operators are used to compare int2x16 values.

Synopsis:

int2x16 a, b;
a == b;
a != b;

Description: The == operator returns true if both elements are equal. The
!= operator returns true unless both values are equal. Other comparison
operators (<, <=, >=, >) are not supported.

Algorithm:

Equal: {A,B} == {C,D} => (A == B && C == D)

Not Equal: {A,B} != {C,D} => (A != B || C != D)

C/C++ Compiler Language Extensions

1-142 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Sideways Sum (int2x16 values)

This function adds together the two values in an int2x16.

Synopsis:

int sum_i2x16 (int2x16);

Description: This operation produces a single 32-bit integer result.

Algorithm:

sum({A,B}) => A+B

Example (int2x16 values)

This example shows some of the int2x16 operations, including conversion
to and from normal ints. Note that it is often helpful in debugging to
print the packed values in hex, rather than decimal, as the two halves can
be seen more easily.

#include <stdio.h> // for printing at end
#include <i16.h>
void i2x16_example() {

int u, v, s;
int

x = 3,
y = 5,
z = 7,
w = 9;

int2x16 aa, bb, cc, dd;
// compact integers into packed 16 bit form

aa = compact_to_i2x16_from_i32(x, y);
// aa = {3, 5} or 0x00050003

bb = compact_to_i2x16_from_i32(z, w);
// bb = {7, 9} or 0x00090007
// construct a packed constant

cc = compact_to_i2x16_from_i32(1, -1);
// cc = {1, -1} or 0xffff0001
// a little arithmetic

dd = mult_i2x16 (add_i2x16 (aa, bb), cc);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-143
for TigerSHARC Processors

Compiler

// dd = (aa + bb) * cc;
// dd = {10, -14} or 0xfff2000a
// sideways sum

s = sum_i2x16(dd); //s = -4 or 0xfffffffc
// extract components

u = expand_low_of_i2x16(dd); // low-order part
v = expand_high_of_i2x16(dd); // high-order part
printf("results: s = %d; dd = %8x, u = %d, v = %d\n", s, dd, u, v);

}

Prints:

results: s = -4; dd = fff2000a, u = 10, v = -14

Constructors (int4x16 values)

The following functions create int4x16 values

Synopsis:

int4x16 compact_to_i4x16_from_i32 (int llo, int lhi,
int hlo, int hhi);

Description: Constructs an int4x16 by compacting four 32-bit integer
values. The high-order 16 bits of each original 32-bit value are lost.

Algorithm:

compact(A_32, B_32, C_32, D_32) => {A_16,B_16,C_16,D_16}

Synopsis:

int4x16 compose_i4x16_from_i2x16(int2x16 low, int2x16 high);

Description: Construct an int4x16 from two int2x16s.

Algorithm:

compose ({A, B}, {C, D}) => {A,B,C,D}

Extractors (2x16 from a 4x16 value)

This function extracts a 2x16 from a 4x16

C/C++ Compiler Language Extensions

1-144 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Synopsis:

int2x16 extract_low_of_i4x16(int4x16 val);
int2x16 extract_high_of_i4x16(int4x16 val);

Description: Extracts a int2x16 from a int4x16. It is often convenient to
use the various expand operators to break the int4x16 apart in steps, hold-
ing onto the intermediate forms, as shown in the following listing.

Given:

 int4x16 val = {A_16,B_16,C_16,D_16}:int2x16 low_part =
 extract_low_of_i4x16(val);
 int2x16 high_part = extract_high_of_i4x16(val);
 int a = expand_low_of_i2x16(low_part);
 int b = expand_high_of_i2x16(low_part);
 int c = expand_low_of_i2x16(high_part);
 int d = expand_high_of_i2x16(high_part);

 - or -

 int4x16 val = {A_16,B_16,C_16,D_16}:
 int2x32 low_part = expand_i2x16(extract_low_of_i4x16(val));
 int2x32 high_part = expand_i2x16(extract_high_of_i4x16(val));
 int a = low_32(low_part);
 int b = high_32(low_part);
 int c = low_32(high_part);
 int d = high_32(high_part);

Split an int4x16 into component integer values

Algorithm:

extract_low ({A_16,B_16,C_16,D_16}) => {A_16,B_16}
extract_high({A_16,B_16,C_16,D_16}) => {C_16,D_16}

Synopsis:

void expand_i4x16_to_i32(int4x16 input,
int *llo, int *lhi, int *hlo, int *hhi);

Description: Using a cascade of expansion and selection, this breaks a
4x16 apart into four separate integers.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-145
for TigerSHARC Processors

Compiler

Algorithm:

val = {A_16,B_16,C_16,D_16}:
int a, b, c, d;
expand_i4x16_to_i32 (val, &a, &b, &c, &d);
a => A_32
b => B_32
c => C_32
d => D_32

Arithmetic Operators (int4x16 values)

The following binary operators are defined on int4x16:

Synopsis:

int4x16 add_i4x16 (int4x16 a, int4x16 b);
int4x16 sub_i4x16 (int4x16 a, int4x16 b);
int4x16 mult_i4x16 (int4x16 a, int4x16 b);

Algorithm:

Addition: {A,B,C,D} + {W,X,Y,Z} => {A+W, B+X, C+Y, D+Z}

Subtraction: {A,B,C,D} – {W,X,Y,Z} => {A–W, B–X, C–Y, D–Z}
Multiplication: {A,B,C,D} * {W,X,Y,Z} => {A*W, B*X, C*Y, D*Z}

Description: Performs element wise arithmetic on int4x16 values. Unary
minus is not yet supported on int4x16.

Sideways Sum (int4x16 values)

This function adds together the four values in an int4x16.

Synopsis:

int sum_i4x16(int4x16);

Description: This operation produces a single 32-bit integer result.

Algorithm:

sum({A,B,C,D}) => A+B+C+D

C/C++ Compiler Language Extensions

1-146 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example (int4x16 values)

The following shows some examples of int4x16 operations, including con-
version to and from normal ints.

#include <stdio.h>
#include <i16.h>
void i4x16_example() {

int w, x, y, z, s;
int
p = 3,

q = 5,
r = 7,
s = 11,
t = 13,
u = 17,
v = 19,
g = 23;

int4x16 aaaa, bbbb, cccc, dddd;
// compact integers into packed 16 bit form
aaaa = compact_to_i4x16_from_i32(p, q, r, s);
bbbb = compact_to_i4x16_from_i32(t, u, v, g);
cccc = compact_to_i4x16_from_i32(1, -1, 3, -3);

// construct a packed constant
// a little arithmetic

dddd = mult_i4x16 (add_i4x16 (aaaa, bbbb), cccc);
// dddd = (aaaa + bbbb) * cccc;

s = sum_i4x16(dddd); // sideways sum
// extract components

w = dddd[0]; // low-order part
x = dddd[1]; // high-order part
y = dddd[2];
z = dddd[3];
printf("results: s = %d; w = %d, x = %d, y = %d, z = %d\n",

w, x, y, z);
}

Prints:

results: sm = -30; w = 16, x = -22, y = 78, z = -102

VisualDSP++ 5.0 C/C++ Compiler Manual 1-147
for TigerSHARC Processors

Compiler

32-Bit Data Types

The int2x32 data type is primarily used internally when converting
between packed and expanded values. It often provides a useful way-sta-
tion, allowing you to capture a partial expansion for later separation into
smaller parts.

Constructors (int2x32 values)

The following functions create int2x32 values.

Synopsis:

int2x32 compose_64 (int lo, int hi);

Algorithm:

compose(A_32, B_32) => {A_32, B_32}

Description: Constructs an int2x32 from two 32-bit integer values. The
values are unchanged.

Synopsis:

int2x32 expand_i2x16 (int2x16 val)

Algorithm:

expand ({A_16,B_16}) => {A_32, B_32}

Description: Expands an int2x16 to an int2x32 sign extending each value
to 32 bits.

Extractors (int2x32 values)

The following functions extract the least or most significant 32-bit value
from an int2x32. The unchanged 32-bit value is returned as an int.

Synopsis:

int low_32 (int2x32 val);
int high_32 (int2x32 val);

C/C++ Compiler Language Extensions

1-148 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm:

low(A_32, B_32) => A_32
high(A_32, B_32) => B_32

Circular Buffer Built-In Functions

The C/C++ compiler provides the following two built-in functions for
using the TigerSHARC circular buffer mechanisms.

If the compiler is being used in byte addressing mode, the circular
buffer support only works for types of size int and greater. With
the current compiler version, use of short, char or void pointers
could result in incorrect run-time behavior.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index.

int __builtin_circindex(int index ,int incr ,int nitems)

The operation is:

index +=incr;
if (index <0) index += nitems;
else if (index >= nitems) index -=nitems;

Circular Buffer Increment of a Pointer

The following operation

void *__builtin_circptr(void *ptr ,size_t incr,
void *base ,size_t buflen)

performs a circular buffer increment of a pointer. Both incr and buflen
are specified in addressable units, since the operation deals in void point-
ers. The operation is:

ptr += incr;
if (ptr <base) ptr += buflen;
else if (ptr >= (base+buflen)) ptr -= buflen;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-149
for TigerSHARC Processors

Compiler

The result of this operation is the updated circular buffer pointer.

The compiler also attempts to generate circular buffer increments for
modulus array references, such as array[index % nitems]. For this to
happen, the compiler must be able to determine that the starting value for
index is within the range 0..(nitems-1).

When the -force-circbuf switch (on page 1-34) is specified, the com-
piler always treats array references of the form "[i%n]" as a circular buffer
operation on the array.

Math Intrinsics

Each of the functions below map directly to a single machine instruction
and are therefore very efficient. When using these functions, the compiler
substitutes machine instructions unless you specify the -no-builtin
switch option (on page 1-44).

 /* Intrinsics defined in <stdlib.h> */
 /* "int" versions */
 int abs (int j); // absolute value
 int avg (int a, int b); // (a+b)/2
 int clip (int a, int b);
 // bound a by b (positive and negative)
 int max (int a, int b); // maximum
 int min (int a, int b); // minimum
 int count_ones (int numb); // number of "1" bits

 /* "long int" versions */
 long labs (long j);
 long lavg (long a, long b);
 long lclip (long a, long b);
 long lmax (long a, long b);
 long lmin (long a, long b);

 int lcount_ones (long numb);

 /* "long long int" versions */
 long long int llabs (long long int j);

C/C++ Compiler Language Extensions

1-150 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

 long long int llavg (long long int a, long long int b);
 long long int llclip (long long int a, long long int b);
 long long int llmax (long long int a, long long int b);
 long long int llmin (long long int a, long long int b);

 int llcount_ones (long long int numb);

 /* bit-reversed addition */
 int addbitrev (int input_address, int number_of_bits);

 /* Math intrinsics from <math.h> */
 float fabsf (float, float);
 float favgf (float a, float b); // (a+b)/2
 float fclipf (float a, float b); // bound a by b (pos & neg)
 float fmaxf (float, float); // float maximum
 float fminf (float, float); // float minimum
 float copysignf (float a, float b); // a with sign(b)
 float signf (float a, float b); // a with sign(b)

 double favgd (double, double);
 double fclipd (double, double);
 double fmaxd (double, double);
 double fmind (double, double);
 double copysignd (double, double);

 long double favgd (long double, long double);
 long double fclipd (long double, long double);
 long double fmaxd (long double, long double);
 long double fmind (long double, long double);
 long double copysignd (long double, long double);

RECIPS

Instruction:

Rs = RECIPS Rm

Builtins:

float __builtin_recip (float);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-151
for TigerSHARC Processors

Compiler

Example:

float r, a;
r = __builtin_recip (a);

Description:

r corresponds to Rs

a corresponds to Rm

RSQRTS

Instruction:

Rs = RSQRTS Rm

Builtins:

float __builtin_rsqrt (float);

Example:

float r, a;
r = __builtin_rsqrt (a);

Description:

r corresponds to Rs

a corresponds to Rm

Instructions Generated by Built-in Functions

The ccts compiler supports access to machine-specific instructions via
built-in functions. These functions are known to the compiler without the
need to declare them (via a header file). However, for convenience, a
header file is included with the other C include functions (builtins.h).
This header file gives prototypes for all the built-in functions. This file is
quite terse, but it does provide the correct call syntax for each function.

C/C++ Compiler Language Extensions

1-152 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Every function name is prefixed with __builtin_ followed by a functional
name, which usually corresponds directly to the machine instruction that
the built-in function generates. Some functions, such as compose or
extract, may not generate code under optimization since the compiler
may be able to arrange register assignments to eliminate the need for these
functions.

The following are listings of the built-in functions currently supported by
the compiler and the instructions that they generate. Note that the listed
instructions are the ones the compiler uses by default. As part of the opti-
mization process, the compiler may replace instruction sequences with
alternate equivalent sequences.

Many of the built-in functions map to a single machine instruction. The
first section of this list comprises these built-in functions. Further down in
the list are instructions which do not correspond directly to a machine
instruction but which can be implemented simply by other means. (For
example, extracting the low half of a 64-bit item can be done by the com-
piler making use of the low half of the item and ignoring the upper half.)
More complex built-in functions are dealt with in separate sections based
on their function.

For details on a specific function, please refer to the instruction set refer-
ence, the programming reference, or the hardware reference for the
appropriate TigerSHARC target processor.

Addition and Subtraction

int __builtin_add_sat(int Rm_1, int Rm_2);
Rs = Rm_1 + Rm_2 (S);;

int __builtin_sub_sat(int Rm_1, int Rm_2);
Rs = Rm_1 - Rm_2 (S);;

unsigned int __builtin_uadd_sat(unsigned int Rm_1, unsigned int Rm_2);
Rs = Rm_1 + Rm_2 (SU);;

unsigned int __builtin_usub_sat(unsigned Rm_1, unsigned int Rm_2);
Rs = Rm_1 - Rm_2 (SU);;

int __builtin_add_4x8(intRm, int Rn);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-153
for TigerSHARC Processors

Compiler

BRs = Rm + Rn;;
int __builtin_add_4x8_sat(intRm, int Rn);

BRs = Rm + Rn (S);;
int __builtin_sub_4x8(intRm, int Rn);

BRs = Rm - Rn;;
int __builtin_sub_4x8_sat(intRm, int Rn);

BRs = Rm - Rn (S);;
int __builtin_add_2x16(intRm, int Rn);

SRs = Rm + Rn;;
int __builtin_add_2x16_sat(intRm, int Rn);

SRs = Rm + Rn (S);;
int __builtin_sub_2x16(intRm, int Rn);

SRs = Rm - Rn;;
int __builtin_sub_2x16_sat(intRm, int Rn);

SRs = Rm - Rn (S);;

unsigned int __builtin_add_u2x16(unsigned int Rm, unsigned int Rn);
SRs = Rm + Rn;;

unsigned int __builtin_add_u2x16_sat(unsigned int Rm, unsigned int Rn);
SRs = Rm + Rn (SU);;

unsigned int __builtin_sub_u2x16(unsigned int Rm, unsigned int Rn);
SRs = Rm - Rn;;

unsigned int __builtin_sub_u2x16_sat(unsigned int Rm, unsigned int Rn);
SRs = Rm - Rn (SU);;

long long int __builtin_add_8x8(long long Rmd, long long int Rnd);
BRsd = Rmd + Rnd;;

long long int __builtin_add_8x8_sat(long long int Rmd,
long long int Rnd);

BRsd = Rmd + Rnd (S);;
long long int __builtin_sub_8x8(long long int Rmd, long long int Rnd);

BRsd = Rmd - Rnd;;
long long int __builtin_sub_8x8_sat(long long int Rmd,

long long int Rnd);
BRsd = Rmd - Rnd (S);;

long long int __builtin_add_4x16(long long int Rmd, long long int Rnd);
SRsd = Rmd + Rnd;;

long long int __builtin_add_4x16_sat(long long int Rmd,
long long int Rnd);

SRsd = Rmd + Rnd (S);;

C/C++ Compiler Language Extensions

1-154 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

long long int __builtin_sub_4x16(long long int Rmd, long long int Rnd);
SRsd = Rmd - Rnd;;

long long int __builtin_sub_4x16_sat(long long int Rmd, long long
int Rnd);

SRsd = Rmd - Rnd (S);;

unsigned long long int __builtin_add_u4x16_sat(
unsigned long long int Rmd,
unsigned long long int Rnd);

SRsd = Rmd + Rnd (SU);;
unsigned long long int __builtin_sub_u4x16_sat(

unsigned long long int Rmd,
unsigned long long int Rnd);

SRsd = Rmd - Rnd (SU);;
long long int __builtin_add_2x32(long long int Rmd, long long int Rnd);

Rsd = Rmd + Rnd;;
long long int __builtin_add_2x32_sat(long long int Rmd,

long long int Rnd);
Rsd = Rmd + Rnd (S);;

long long int __builtin_sub_2x32(long long int Rmd, long long int Rnd);
Rsd = Rmd - Rnd;;

long long int __builtin_sub_2x32_sat(long long int Rmd,
long long int Rnd);

Rsd = Rmd - Rnd (S);;
unsigned long long int __builtin_add_2x32u(

unsigned long long int Rmd,
unsigned long long int Rnd);

Rsd = Rmd + Rnd;;
unsigned long long int __builtin_add_u2x32_sat(

unsigned long long int Rmd,
unsigned long long int Rnd);

Rsd = Rmd + Rnd (SU);;
unsigned long long int __builtin_sub_2x32u(

unsigned long long int Rmd,
unsigned long long int Rnd);

Rsd = Rmd - Rnd;;
unsigned long long int __builtin_sub_u2x32_sat(

unsigned long long int Rmd,
unsigned long long int Rnd);

Rsd = Rmd - Rnd (SU);;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-155
for TigerSHARC Processors

Compiler

__builtin_quad __builtin_add_4x32(__builtin_quad,
__builtin_quad);

two separate Rsd = Rmd + Rnd;;
__builtin_quad __builtin_add_4x32_sat(__builtin_quad,

__builtin_quad);
two separate Rsd = Rmd + Rnd (S);;

__builtin_quad __builtin_add_u4x32_sat(__builtin_quad,
__builtin_quad);

two separate Rsd = Rmd + Rnd (SU);;
__builtin_quad __builtin_sub_4x32(__builtin_quad,

__builtin_quad);
two separate Rsd = Rmd - Rnd;

__builtin_quad __builtin_sub_4x32_sat(__builtin_quad,
__builtin_quad);

two separate Rsd = Rmd - Rnd (S);;
__builtin_quad __builtin_sub_u4x32_sat(__builtin_quad,

__builtin_quad);
two separate Rsd = Rmd - Rnd (SU);;

int __builtin_addbitrev(intJm, int Jn);
Js = Jm + Jn (BR);;

Conversion:

int __builtin_compact_to_fr2x16(long long int Rmd);
SRs = COMPACT Rmd;;

int __builtin_compact_to_fr2x16_trunc(long long int);
SRs = COMPACT Rmd (T);;

int __builtin_compact_to_i2x16_sat(long long int Rmd);
SRs = COMPACT Rmd (IS);;

int __builtin_compact_to_i4x8(long long int SRmd);
BRs = COMPACT SRmd (I);;

int __builtin_compact_to_fr4x8(long long int SRmd);
BRs = COMPACT SRmd;;

int __builtin_compact_to_fr4x8_trunc(long long int SRmd);
BRs = COMPACT SRmd(T);;

int __builtin_compact_to_i4x8_sat(long long int SRmd);
BRs = COMPACT SRmd(IS);

long long int __builtin_expand_fr2x16(int);
Rsd = EXPAND SRm;;

C/C++ Compiler Language Extensions

1-156 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

long long int __builtin_expand_i2x16(int SRmd);
Rsd = EXPAND SRm (I);;

long long int __builtin_expand_i4x8(int SRmd);
SRsd = EXPAND BRm (I);;

Miscellaneous ALU Instructions

long long int __builtin_llabs(long long int Rmd);
LRsd = ABS Rmd;;

long long int __builtin_llavg(long long int Rmd, long long int Rnd);
LRsd = (Rmd + Rnd) / 2;;

int __builtin_sum_2x16(int RM);
Rs = SUM Rm;;

int __builtin_sum_2x32(long long int val);
Rs = Rm + Rn;;
where Rm is the low half of val and Rn is the high half of val

int __builtin_sum_4x16(long long int SRmd);
Rs = SUM SRmd;;

int __builtin_sum_4x8(int BRm);
Rs = SUM BRm;;

int __builtin_sum_8x8(long long int BRmd);
Rs = SUM BRmd;;

long __builtin_lavg(long Rm, long Rn);
Rs = (Rm + Rn) / 2;;

long __builtin_lavgt(long Rm, long Rn);
Rs = (Rm + Rn) / 2 (T);;

long __builtin_lclip(long Rm, long Rn);
Rs = CLIP Rm BY Rn;;

int __builtin_avg(int Rm, int Rn);
Rs = (Rm + Rn) / 2;;

int __builtin_avgt(int Rm, int Rn);
Rs = (Rm + Rn) / 2 (T);;

long long int __builtin_clip_4x16(long long int Rmd, long long
int Rnd);

SRsd = CLIP Rmd by Rnd;;
long long int __builtin_clip_8x8(long long int Rmd, long long int Rnd);

BRsd = CLIP Rmd by Rnd;;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-157
for TigerSHARC Processors

Compiler

long long int __builtin_llclip(long long int Rmd, long long int Rnd);
LRsd = CLIP Rmd by Rnd;;

int __builtin_clip(int Rm, int Rn);
Rs = CLIP Rm by Rn;;

int __builtin_clip_2x16(int Rm, int Rn);
SRs = CLIP Rm by Rn;;

int __builtin_clip_4x8(int Rm, int Rn);
BRs = CLIP Rm by Rn;;

long long int __builtin_abs_4x16(long long int Rmd);
SRsd = ABS Rmd;;

long long int __builtin_abs_8x8(long long int Rmd);
BRsd = ABS Rmd;;

int __builtin_abs(int Rm);
Rs = ABS Rm;;

int __builtin_abs_2x16(int Rm);
SRs = ABS Rm;;

int __builtin_abs_4x8(int Rm);
BRs = ABS Rm;;

int __builtin_neg_2x16_sat(int Rm);
SRs = - Rm;;

int __builtin_neg_sat(int Rm);
Rs = - Rm;;

long long int __builtin_neg_4x16_sat(long long int Rmd);
SRsd = - Rmd;;

int __builtin_max(int Rm, int Rn);
Rs = MAX (Rm, Rn);;

int __builtin_min(int Rm, int Rn);
Rs = MIN (Rm, Rn);;

int __builtin_max_2x16(int Rm, int Rn);
SRs = MAX (Rm, Rn);;

int __builtin_min_2x16(int Rm, int Rn);
SRs = MIN (Rm, Rn;);

int __builtin_max_4x8(int Rm, int Rn);
BRs = MAX (Rm, Rn);;

int __builtin_min_4x8(int Rm, int Rn);
BRs = MIN (Rm, Rn);;

long long int __builtin_max_4x16(long long int Rmd, long long int Rnd);

C/C++ Compiler Language Extensions

1-158 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

SRsd = MAX (Rmd, Rnd);;
long long int __builtin_min_4x16(long long int Rmd, long long int Rnd);

SRsd = MIN (Rmd, Rnd);;
long long int __builtin_min_8x8(long long int Rmd, long long int Rnd);

BRsd = MIN (Rmd, Rnd);;
long long int __builtin_max_8x8(long long int Rmd, long long int Rnd);

BRsd = MAX (Rmd, Rnd);;
long long int __builtin_llmax(long long int Rmd, long long int Rnd);

LRsd = MAX (Rmd, Rnd);;
long long int __builtin_llmin(long long int Rmd, long long int Rnd);

LRsd = MIN (Rmd, Rnd);;

unsigned int __builtin_max_u2x16(unsigned int Rm, unsigned int Rn);
SRs = MAX (Rm, Rn) (U);;

unsigned int __builtin_min_u2x16(unsigned int Rm, unsigned int Rn);
SRs = MIN (Rm, Rn) (U);;

unsigned long long int __builtin_max_u4x16(unsigned long long int Rmd,
unsigned long long int Rnd);

SRsd = MAX (Rmd, Rnd) (U);;
unsigned long long int __builtin_min_u4x16(unsigned long long int Rmd,

unsigned long long int Rnd);
SRsd = MIN (Rmd, Rnd) (U);;

float __builtin_recip (float Rm);;
Rs = RECIPS Rm;;

float __builtin_rsqrt (float Rm);;
Rs = RSQRTS Rm;;

Shifter Instructions

int __builtin_ashift_4x8(int Rm, int Rn);
BRs = ASHIFT Rm BY Rn; or BRs = ASHIFT Rm BY imm4;;

int __builtin_lshift_4x8(int Rm, int Rn);
BRs = LSHIFT Rm BY Rn; or BRs = LSHIFT Rm BY imm4;;

int __builtin_ashift_2x16(int Rm, int Rn);
SRs = ASHIFT Rm BY Rn; or SRs = ASHIFT Rm BY imm5;;

int __builtin_lshift_2x16(int Rm, int Rn);
SRs = LSHIFT Rm BY Rn; or SRs = LSHIFT Rm BY imm5;;

long long int __builtin_ashift_8x8(long long int Rmd, int Rnd);
BRsd = ASHIFT Rmd BY Rnd; or BRs = ASHIFT Rmd BY imm4;;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-159
for TigerSHARC Processors

Compiler

long long int __builtin_lshift_8x8(long long int Rmd, int Rnd);
BRsd = LSHIFT Rmd BY Rnd; or BRs = LSHIFT Rmd BY imm4;;

long long int __builtin_ashift_4x16(long long int Rmd, int Rnd);
SRsd = ASHIFT Rmd BY Rnd; or SRs = ASHIFT Rmd BY imm5;;

long long int __builtin_lshift_4x16(long long int Rmd, int Rnd);
SRsd = LSHIFT Rmd BY Rnd; or SRs = LSHIFT Rmd BY imm5;;

long long int __builtin_ashift_2x32(long long int Rmd, int Rnd);
Rsd = ASHIFT Rmd BY Rnd; or Rs = ASHIFT Rmd BY imm6;;

long long int __builtin_lshift_2x32(long long int Rmd, int Rnd);
Rsd = LSHIFT Rmd BY Rnd; or Rs = LSHIFT Rmd BY imm6;;

int __builtin_rotate_1x32(int Rm, int Rn);
Rs = ROT Rm BY Rn; or Rs = ROT Rm BY imm6;;

long long __builtin_rotate_2x32(long long int Rmd, int Rnd);
Rsd = ROT Rmd BY Rnd; or Rsd = ROT Rmd BY imm6;;

long long __builtin_rotate_1x64(long long int Rmd, int Rnd);
LRsd = ROT Rmd BY Rnd; or LRsd = ROT Rmd BY imm6;;

Bit Manipulation Instructions

int __builtin_count_ones(int Rm);
Rs = ONES Rm;;

int __builtin_lcount_ones(long Rm);
Rs = ONES Rm;;

int __builtin_llcount_ones(long long int Rmd);
Rs = ONES Rmd;;

int __builtin_lead_ones(int Rm);
Rs = LD1 Rm;;

int __builtin_lllead_ones(long long int Rmd);
Rs = LD1 Rm;;

int __builtin_lead_zero(int Rm);
Rs = LD0 Rmd;;

int __builtin_lllead_zero(long long int Rmd);
Rs = LD0 Rmd;;

long long int __builtin_merge_2x16(int Rm, int Rn);
SRsd = MERGE Rm, Rn;;

long long int __builtin_merge_4x8(int Rm, int Rn);
BRsd = MERGE Rm, Rn;;

int __builtin_fdep(int Rs, int Rn, int Rm);
Rs += FDEP Rn BY Rm;;

int __builtin_fdep_se(int Rs, int Rn, int Rm);

C/C++ Compiler Language Extensions

1-160 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Rs += FDEP Rn BY Rm (SE);;
int __builtin_fdep_zf(int Rs, int Rn, int Rm);

Rs += FDEP Rn BY Rm (ZF);;
int __builtin_fdep_long_control(int Rs, int Rn, long long int Rmd);

Rs += FDEP Rn BY Rmd;;
int __builtin_fdep_long_control_se(int Rs, int Rn, long long int Rmd);

Rs += FDEP Rn BY Rmd (SE);;
int __builtin_fdep_long_control_zf(int Rs, int Rn, long long int Rmd);

Rs += FDEP Rn BY Rmd (ZF);;
long long int __builtin_fdep2(long long int Rsd,

long long int Rnd, int Rm);
LRsd += FDEP Rnd BY Rm;;

long long int __builtin_fdep2_se(long long int Rsd,
long long int Rnd, int Rm);

LRsd += FDEP Rnd BY Rm (SE);;
long long int __builtin_fdep2_zf(long long int Rsd,

long long int Rnd, int Rm);
LRsd += FDEP Rnd BY Rm (ZF);;

long long int __builtin_fdep2_long_control(long long int Rsd,
long long int Rnd,
long long int Rmd);

LRsd += FDEP Rnd BY Rmd;;
long long int __builtin_fdep2_long_control_se(long long int Rsd,

long long int Rnd,
long long int Rmd);

Lsd += FDEP Rnd BY Rmd (SE);;
long long int __builtin_fdep2_long_control_zf(long long int Rsd,

long long int Rnd,
long long int Rmd);

LRsd += FDEP Rnd BY Rmd (ZF);;
int __builtin_fext(int Rm, int Rn);

Rs = FEXT Rm by Rn (SE);;
int __builtin_fext_se(int Rm, int Rn);

Rs = FEXT Rm by Rn (SE);;
int __builtin_fext_ze(int Rm, int Rn);

Rs = FEXT Rm by Rn;;
int __builtin_fext_long_control(int Rm, long long int Rnd);

Rs = FEXT Rm by Rnd (SE);;
int __builtin_fext_long_control_se(int Rm, long long int Rnd);

Rs = FEXT Rm by Rnd (SE;;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-161
for TigerSHARC Processors

Compiler

int __builtin_fext_long_control_ze(int Rm, long long int Rnd);
Rs = FEXT Rm by Rnd;;

long long int __builtin_fext2(long long int Rmd, int Rn);
LRsd = FEXT Rmd by Rn (SE);;

long long int __builtin_fext2_se(long long int Rmd, int Rn);
LRsd = FEXT Rmd by Rn (SE);;

long long int __builtin_fext2_ze(long long int Rmd, int Rn);
LRsd = FEXT Rmd by Rn;;

long long int __builtin_fext2_long_control(long long int Rmd,
long long int Rnd);

LRsd = FEXT Rmd by Rnd (SE);;
long long int __builtin_fext2_long_control_se(long long int Rmd,

long long int Rnd);
LRsd = FEXT Rmd by Rnd (SE);;

long long int __builtin_fext2_long_control_ze(long long int Rmd,
long long int Rnd);

LRsd = FEXT Rmd by Rnd;;
int __builtin_exp(int Rn);

Rs = EXP Rn;;
int __builtin_exp2(long long int Rnd);

Rs = EXP Rnd;;

Multiplier Instructions

unsigned int __builtin_mult_u2x16(unsigned int Rmd, unsigned int Rnd);
Rsd = Rmd * Rnd (IU);;

long long int __builtin_mult_i2x16_wide(int Rmd, int Rnd);
Rsq = Rmd * Rnd (I);;

unsigned long long int __builtin_mult_u2x16_wide(
long long int Rmd,
long long int Rnd);

Rsq = Rmd * Rnd (IU);;
long long int __builtin_mult_i4x16(long long int Rmd,

long long int Rnd);
Rsd = Rmd * Rnd (I);;

long long int __builtin_mult_i4x16_sat(long long int Rmd,
long long int Rnd);

Rsd = Rmd * Rnd (IS);;
unsigned long long int __builtin_mult_u4x16(unsigned long long int RMD,

unsigned long long int Rnd);

C/C++ Compiler Language Extensions

1-162 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Rsd = Rmd * Rnd (IU);;
__builtin_quad __builtin_mult_i4x16_wide(long long int Rmd,

long long int Rnd);
Rsq = Rmd * Rnd (I);;

__builtin_quad __builtin_mult_u4x16_wide(unsigned long long int Rmd,
unsigned long long int Rnd);

Rsq = Rmd * Rnd (IU);;
int __builtin_multr_fr1x32(int Rm_1, int Rm_2);

Rs = Rm_1 * Rm_2;;
int __builtin_multr_fr1x32_sat(int Rm_1, int Rm_2);

Rs = Rm_1 * Rm_2 (S);;
int __builtin_mult_fr1x32(int Rm_1, int Rm_2);

Rs = Rm_1 * Rm_2 (T);;
int __builtin_mult_fr1x32_sat(int Rm_1, int Rm_2);

Rs = Rm_1 * Rm_2 (TS);;
long long int __builtin_mult_i1x32_wide(int Rm, int Rn);

Rsd = Rm * Rn (I);
unsigned long long int __builtin_mult_u1x32_wide

(unsigned int Rm, unsigned int Rn);
Rsd = Rm * Rn (UI);;

int __builtin_mult_i2x16(int Rmd, int Rnd);
Rsd = Rmd * Rnd (I);;

int __builtin_mult_i2x16_sat(int Rm,int Rn);
Rsd = Rmd * Rnd (IS);;

int __builtin_mult_sat(int Rm, int Rn);
Rs = Rm * Rn (IS);;

int __builtin_multr_fr2x16(int Rmd, int Rnd);
Rsd = Rmd * Rnd;;

int __builtin_multr_fr2x16_sat(int Rmd, int Rnd);
Rsd = Rmd * Rnd (S);;

int __builtin_mult_fr2x16(int Rmd, int Rnd);
Rsd = Rmd * Rnd (T);;

int __builtin_mult_fr2x16_sat(int Rmd, int Rnd);
Rsd = Rmd * Rnd (TS);;

long long int __builtin_mult_fr4x16(long long int Rmd,
long long int Rnd);

Rsd = Rmd * Rnd (T);;
long long int __builtin_mult_fr4x16_sat(long long int Rmd,

long long int Rnd);
Rsd = Rmd * Rnd (ST);;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-163
for TigerSHARC Processors

Compiler

long long int __builtin_multr_fr4x16(long long int Rmd,
long long int Rnd);

Rsd = Rmd * Rnd;;
long long int __builtin_multr_fr4x16_sat(long long int Rmd,

long long int Rnd);
Rsd = Rmd * Rnd (S);;

int __builtin_cmult_i2x16(int Rm, int Rn);
MRa += Rm ** Rn (CI);;
SRsd = COMPACT MR3:0 (I);;

int __builtin_cmult_i2x16_sat(int Rm, int Rn);
MRa += Rm ** Rn (CI);;
SRsd = COMPACT MR3:0 (IS);;

long long int __builtin_cmult_i2x16_wide(int Rm, int Rn);
MRa += Rm ** Rn (CI);;
Rsd = MRa;;

int __builtin_cmult_conj_i2x16(int Rm, int Rn);
MRa += Rm ** Rn (CIJ);;
SRsd = COMPACT MR3:0 (I);;

int __builtin_cmult_conj_i2x16_sat(int Rm, int Rn);
MRa += Rm ** Rn (CIJ);;
SRsd = COMPACT MR3:0 (IS);;

long long int __builtin_cmult_conj_i2x16_wide(int Rm, int Rn);
MRa += Rm ** Rn (CIJ);;
Rsd = MRa;;

int __builtin_cmult_fr2x16(int Rm, int Rn);
MRa += Rm ** Rn (C);;
SRsd = COMPACT MR3:0;;

int __builtin_cmult_conj_fr2x16(int Rm, int Rn);
MRa += Rm ** Rn (CJ);;
SRsd = COMPACT MR3:0;;

int __builtin_cmult_conj_fr2x16_sat(int Rm, int Rn);
MRa += Rm ** Rn (CJ);;
SRsd = COMPACT MR3:0 (S);;

int __builtin_cmult_fr2x16_sat(int Rm, int Rn);
MRa += Rm ** Rn (C);;
SRsd = COMPACT MR3:0 (S);;

int __builtin_cmultr_fr2x16(int Rm, int Rn);;
MRa += Rm ** Rn (CR);;
SRsd = COMPACT MR3:0;;

int __builtin_cmultr_fr2x16_sat(int Rm, int Rn);;

C/C++ Compiler Language Extensions

1-164 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

MRa += Rm ** Rn (CR);;
SRsd = COMPACT MR3:0 (S);;

int __builtin_cmultr_conj_fr2x16(int Rm, int Rn);;
MRa += Rm ** Rn (CRJ);;
SRsd = COMPACT MR3:0;;

int __builtin_cmultr_conj_fr2x16_sat(int Rm, int Rn);;
MRa += Rm ** Rn (CRJ);;
SRsd = COMPACT MR3:0 (S);;

Floating-Point Operations

int __builtin_conv_fix(float FRm);
Rs = FIX FRm;;

int __builtin_conv_FtoR(float FRm);
Rs = FIX FRm by 31;;

float __builtin_conv_RtoF(int Rm);
FRs = FLOAT Rm by -31;;

float __builtin_copysignf(float Rm, float Rn);
FRs = Rm COPYSIGN Rn;;

float __builtin_fabsf(float Rm);
FRs = ABS Rm;;

float __builtin_favgf(float Rm, float Rn);
FRs = (Rm + Rn) / 2;;

float __builtin_fclipf(float Rm, float Rn);
FRs = CLIP Rm by Rn;;

float __builtin_fmaxf(float Rm, float Rn);
FRs = MAX (Rm, Rn);;

float __builtin_fminf(float Rm, float Rn);
FRs = MIN (Rm, Rn;;

float __builtin_recip (float Rm);
FRs = RECIPS Rm;;

float __builtin_rsqrt (float Rm);
FRs = RSQRTS Rm;;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-165
for TigerSHARC Processors

Compiler

Miscellaneous

void __builtin_idle(void);
IDLE;;

void __builtin_idle_lp(void);
IDLE (LP);;

void __builtin_assert(int); ignored

Memory Allocation

void *__builtin_alloca_aligned(int size, int align);

Allocate “size” words of aligned data on the stack with alignment
“align”.

Composition and Decomposition

The following functions are used to compact or merge values to create
larger or smaller types. In some cases, the optimizer is able remove instruc-
tions that may be generated by these functions.

To combine smaller objects into a single larger object, use

__builtin_quad compose_128(long long ,long long);
Compose a 128-bit datum

long long int __builtin_compose_64(int hi, int lo);
Compose a 64-bit datum

unsigned long long compose_64u(unsigned int ,unsigned int);
Compose an unsigned 64-bit datum

long double f_compose_64(float ,float);
Compose a double precision datum from two single-precision

To create an object of size n by s (n number of parts of size s bits), use

int compact_to_fr2x16(long long);
Create a 2x16 fractional item from a 2x32 fractional item

int compact_to_i4x8(long long);
Create a 4x8 integer item from a 4x16 integer item

C/C++ Compiler Language Extensions

1-166 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

To expand an object of size n by s into the next size up, use

Into two fracts:

long long expand_fr2x16(int);

Into two 2x16s:

long long expand_i4x8(int);

To extract the low/high half-out of various larger objects, use

int __builtin_low_32(long long int);
extract least significant word

unsigned int __builtin_low_32u(unsigned long long int);
extract least significant word

int __builtin_high_32(long long int);
extract most significant word

unsigned int __builtin_high_32u(unsigned long long int);
extract most significant word

long long int __builtin_low_64(__builtin_quad);
extract least significant words

long long int __builtin_high_64(__builtin_quad);
extract most significant words

float __builtin_f_low_32(long double);
extract least significant word from a 64-bit float

float __builtin_f_high_32(long double);
extract most significant word from a 64-bit float

System Register Access

To access to various system registers, use

int __builtin_sysreg_read(int reg);
read word-sized system register

long long int __builtin_sysreg_read2(int reg);
read double-word-sized system register

__builtin_quad __builtin_sysreg_read4(int reg);
read quad-word-sized system register

void __builtin_sysreg_write(int value, unsigned int value);
write to word-sized system register

VisualDSP++ 5.0 C/C++ Compiler Manual 1-167
for TigerSHARC Processors

Compiler

void __builtin_sysreg_write2(int, unsigned long long int value);
write to double-word-sized system register

void __builtin_sysreg_write4(int, __builtin_quad value);
write to quad-word-sized system register

The register names are defined in sysreg.h and must be a literal
used at compile time. The register numbers defined in sysreg.h
are the compiler’s internal register numbers. The effect of using the
incorrect function for the size of the register or using a bad register
number is undefined.

Use of the __XSTAT and __YSTAT registers in the sysreg built-in
functions are deprecated. There is no mechanism by which the
source can associate a read of the STAT registers with a specific oper-
ation that may update the STAT registers. An inline asm can be used
to get access to these registers if needed: the read of a STAT register
can explicitly be placed where it is required.

The __read_ccnt macro reads the value in each of the cycle count registers
and uses them to create a single 64-bit integer value. The macro is defined
in sysreg.h as:

#define __read_ccnt()
(__builtin_compose_64(__builtin_sysreg_read(__UNDER__(CCNT0)),
__builtin_sysreg_read(__UNDER__(CCNT1))))

Data Alignment Buffer (DAB) Built-in Functions

The DAB built-in functions provide access to the Data Alignment Buffer
functionality. Two sets of built-in functions are provided. The first covers
32-bit data items and the built-ins are the same whether byte-addressing
mode is enabled (with the “-char-size-{8|32}” switch) or not. The second
set covers 16-bit data items and the details of the use depend on whether
byte-addressing mode is enabled or not.

C/C++ Compiler Language Extensions

1-168 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The following DAB built-in functions are provided.

long long __builtin_dab_2x32(int **a);
__builtin_quad __builtin_dab_4x32(int **a);

#ifdef __TS_BYTE_ADDRESS
// length given in terms of 16-bit items
int __builtin_dab_2x16(short **a);
long long __builtin_dab_4x16(short **a);
__builtin_quad __builtin_dab_8x16(short **a);

#else

// length given in terms of 16-bit items
int __builtin_dab_2x16(int **a, int offset);
long long __builtin_dab_4x16(int **a, int offset);
__builtin_quad __builtin_dab_8x16(int **a, int offset);

#endif

Every DAB built-in function takes a pointer to a pointer to the data as the
first argument. The data pointer can in this way be automatically
post-incremented by the execution of the built-in function according to
the type and number of data items read. For the 16-bit DAB intrinsics, in
byte-addressing mode the data pointer is a short integer pointer, and can
thus address a given 16-bit quantity. In word-addressing mode, pointers
do not have the resolution to address a part-word entity, so a second argu-
ment needs to be supplied which gives the half-word offset from the
word-aligned address.

Here is an example of the 32-bit DAB built-in functions:

void func1 (__builtin_quad *a, int *b, int n) {
int i;
for (i=0; i<n; i++) {

a[i] = __builtin_dab_4x32 (&b);
}

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-169
for TigerSHARC Processors

Compiler

Here is an example of the 16-bit DAB built-in functions for use in
byte-addressing mode:

void func2 (long long int *a, short int *b, int n) {
int i;
for (i=0; i<n; i++) {

a[i] = __builtin_dab_4x16 (&b);
}

}

Here is an example of the 16-bit DAB built-in functions for use in
word-addressing mode:

void func3 (long long int *a, int *b, int offset, int n) {
int i;
for (i=0; i<n; i++) {

a[i] = __builtin_dab_4x16 (&b, offset);
}

}

Circular Buffer Data Alignment Buffer (DAB) Built-in Functions

The circular buffer DAB intrinsics are similar to the DAB intrinsics
(described in the “Data Alignment Buffer (DAB) Built-in Functions” on
page 1-167), only with extra “base” and “length” parameters. The auto-
matic post-increments now become post-increment with wrap-around
according to the circular buffering.

Therefore,

long long __builtin_dabcb_2x32(int **a, int *base,
int length);

__builtin_quad __builtin_dabcb_4x32(int **a,
int *base, int length);

#ifdef __TS_BYTE_ADDRESS

// length given in terms of 16-bit items
int __builtin_dabcb_2x16(short **a, short *base, int length);
long long __builtin_dabcb_4x16(short **a, short *base,

C/C++ Compiler Language Extensions

1-170 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

int length);
__builtin_quad __builtin_dabcb_8x16(short **a, short *base,

int length);
#else

// length given in terms of 16-bit items
int __builtin_dabcb_2x16(int **a, int offset, int *base,

int length);
long long __builtin_dabcb_4x16(int **a, int offset,

int *base, int length);
__builtin_quad __builtin_dabcb_8x16(int **a, int offset,

int *base, int length);
#endif

where “a” is the address of the pointer to be loaded from.

It should be noted that circular buffer with the DAB or SDAB only works
when

• “base” is a quad-word aligned address, and

• the length is a multiple of quad-words.

The compiler may perform some checks on this where possible but in the
case of non-constants cannot be expected to verify these conditions.

The compiler assumes that the initial value of *a or *a + offset is
between base (inclusive) and base+length (not inclusive). In the case of
the word-addressed compiler, circular buffering ensures that the value of
*a + offset is always in this range (and not necessarily *a itself).

Unoptimized, the generated code performs two DAB accesses (the prime
and the read) as well as initialization and reset of the length and base regis-
ters for each DAB intrinsic. When optimization is turned on, unnecessary
setting of length and base registers and the DAB prime operation is
removed or hoisted out of loops to generate the optimal code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-171
for TigerSHARC Processors

Compiler

Communications Logic Unit Operations

The following is a description of the built-in functions used to generate
instructions to be executed by the Communications Logic Unit (CLU).
They are grouped for clarity into MAX / TMAX, PERMUTE, ACS, DESPREAD,
RECIPS, RSQRTS, and XCORRS.

For instructions that have more than one output, there is a built-in func-
tion for each of these outputs. In such cases, the built-in functions for the
second or third results need to be chained through the result of the first
built-in function. For example, in the case of DESPREAD:

r = __builtin_despread (q, c, d);
th = __builtin_despread_res2 (r);

This is somewhat cumbersome and the compiler is unforgiving if errors
are introduced (such as forgetting the second built-in function), so the
builtins.h file includes macros for each of the instructions that return
multiple results. In the case of the example above, use the following form:

__despread (q, c, d, r, th);

The variables r and th are outputs even though they appear as arguments
to __despread. Looking at the definition of __despread from builtins.h
makes this more obvious:

#define __despread(I1,I2,I3,O1,O2) { \
O1 = __builtin_despread(I1,I2,I3); \
O2 = __builtin_despread_res2(O1); \

}

The following examples for the instructions that have multiple results use
the shorthand form, and the inputs and outputs are described.

TMAX, TMAX_ADD, TMAX_SUB, MAX_ADD, MAX_SUB

This section also covers the (S) variants of these instructions which deal
with 16-bit components.

C/C++ Compiler Language Extensions

1-172 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Instruction:

Rs = TMAX (TRm, TRn)

Builtin:

int __builtin_tmax (int, int);

Example:

int r, a, b;
r = __builtin_tmax (a, b);

Description:

r corresponds to Rs

a corresponds to TRm

b corresponds to TRn

Instruction:

SRs = TMAX (TRm, TRn)

Builtin:

int __builtin_tmax_4s (int, int);

Example:

int r, a, b;
r = __builtin_tmax_4s (a, b);

Description:

r corresponds to Rs

a corresponds to TRm

b corresponds to TRn

Instruction:

TRsd = TMAX (TRmd + Rmq_h, TRnd + Rmq_l)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-173
for TigerSHARC Processors

Compiler

Builtin:

long long int __builtin_tmax_add (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_tmax_add (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

Instruction:

TRsd = TMAX (TRmd - Rmq_h, TRnd - Rmq_l)

Builtin:

long long int __builtin_tmax_sub (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_tmax_sub (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

C/C++ Compiler Language Extensions

1-174 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Instruction:

TRsd = MAX (TRmd + Rmq_h, TRnd + Rmq_l)

Builtin:

long long int __builtin_max_add (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_max_add (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

Instruction:

TRsd = MAX (TRmd - Rmq_h, TRnd - Rmq_l)

Builtin:

long long int __builtin_max_sub (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_max_sub (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

VisualDSP++ 5.0 C/C++ Compiler Manual 1-175
for TigerSHARC Processors

Compiler

b corresponds to TRnd

q corresponds to Rmq

Instruction:

STRsd = TMAX (TRmd + Rmq_h, TRnd + Rmq_l)

Builtin:

long long int __builtin_tmax_add_8s (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_tmax_add_8s (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

Instruction:

STRsd = TMAX (TRmd - Rmq_h, TRnd - Rmq_l)

Builtin:

long long int __builtin_tmax_sub_8s (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_tmax_sub_8s (a, b, q);

C/C++ Compiler Language Extensions

1-176 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

Instruction:

STRsd = MAX (TRmd + Rmq_h, TRnd + Rmq_l)

Builtin:

long long int __builtin_max_add_8s (long long int,
long long int,
__builtin_quad);

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_max_add_8s (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

Instruction:

STRsd = MAX (TRmd - Rmq_h, TRnd - Rmq_l)

Builtin:

long long int __builtin_max_sub_8s (long long int,
long long int,
__builtin_quad);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-177
for TigerSHARC Processors

Compiler

Example:

long long int r, a, b;
__builtin_quad q;
r = __builtin_max_sub_8s (a, b, q);

Description:

r corresponds to TRsd

a corresponds to TRmd

b corresponds to TRnd

q corresponds to Rmq

PERMUTE

Instruction:

Rsd = PERMUTE (Rmd, Rn)

Builtin:

long long int __builtin_permute_8b (long long int, int);

Example:

long long int r, a;
int b;
r = __builtin_permute_8b (a, b);

Description:

r corresponds to Rsd

a corresponds to Rmd

b corresponds to Rnd

Instruction:

Rsq = PERMUTE (Rmd, -Rmd, Rn)

Builtin:

__builtin_quad __builtin_permute_8s (long long int, int);

C/C++ Compiler Language Extensions

1-178 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example:

__builtin_quad r;
long long int a;
int b;
r = __builtin_permute_8s (a, b);

Description:

r corresponds to Rsd

a corresponds to Rmd

b corresponds to Rnd

ACS

Instruction:

TRsq = ACS (TRmd, TRnd, Rm) (TMAX)

Builtins:

__builtin_quad __builtin_acs_tmax (long long int,
long long int,
int,
long long int);

long long int __builtin_acs_res2 (__builtin_quad);

Shorthand:

__acs_tmax (long long int,
long long int,
int,
long long int,
__builtin_quad,
long long int);

Example:

__builtin_quad r;
long long int a, b, thi, tho;
int c;
__acs_tmax (a, b, c, thi, r, tho);

VisualDSP++ 5.0 C/C++ Compiler Manual 1-179
for TigerSHARC Processors

Compiler

Description:

a corresponds to TRmd

b corresponds to TRnd

c corresponds to Rm

thi corresponds to Trellis History Registers before execution (input)

r corresponds to TRsq

tho corresponds to Trellis History Registers after execution (output)

Instruction:

TRsq = ACS (TRmd, TRnd, Rm)

Builtins:

__builtin_quad __builtin_acs_max (long long int,
long long int,
int,
long long int);

long long int __builtin_acs_res2 (__builtin_quad);

Shorthand:

__acs_max (long long int,
long long int,
int,
long long int,
__builtin_quad,
long long int);

Example:

__builtin_quad r;
long long int a, b, thi, tho;
int c;
__acs_max (a, b, c, thi, r, tho);

Description:

a corresponds to TRmd
b corresponds to TRnd

C/C++ Compiler Language Extensions

1-180 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

c corresponds to Rm
thi corresponds to Trellis History Registers before execution (input)
r corresponds to TRsq
tho corresponds to Trellis History Registers after execution (output)

Instruction:

STRsq = ACS (TRmd, TRnd, Rm) (TMAX)

Builtins:

__builtin_quad __builtin_acs_tmax_8s (long long int,
long long int,
int,
long long int);

long long int __builtin_acs_res2 (__builtin_quad);

Shorthand:

__acs_tmax_8s (long long int,
long long int,
int,
long long int,
__builtin_quad,
long long int);

Example:

__builtin_quad r;
long long int a, b, thi, tho;
int c;
__acs_tmax_8s (a, b, c, thi, r, tho);

Description:

a corresponds to TRmd
b corresponds to TRnd
c corresponds to Rm
thi corresponds to Trellis History Registers before execution (input)
r corresponds to TRsq
tho corresponds to Trellis History Registers after execution (output)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-181
for TigerSHARC Processors

Compiler

Instruction:

STRsq = ACS (TRmd, TRnd, Rm)

Builtins:

__builtin_quad __builtin_acs_max_8s (long long int,
long long int,
int,
long long int);

long long int __builtin_acs_res2 (__builtin_quad);

Shorthand:

__acs_max_8s (long long int,
long long int,
int,
long long int,
__builtin_quad,
long long int);

Example:

__builtin_quad r;
long long int a, b, thi, tho;
int c;
__acs_max_8s (a, b, c, thi, r, tho);

Description:

a corresponds to TRmd
b corresponds to TRnd
c corresponds to Rm
thi corresponds to Trellis History Registers before execution (input)
r corresponds to TRsq
tho corresponds to Trellis History Registers after execution (output)

C/C++ Compiler Language Extensions

1-182 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

DESPREAD

Instruction (ADSP-TS101 processor):

TRs = DESPREAD (Rmq, THrd) + TRn

Instruction (ADSP-TS201 processor):

TRs += DESPREAD (Rmq, THrd)

Builtins:

int __builtin_despread (__builtin_quad, long long int, int);
long long int __builtin_despread_res2 (int);

Shorthand:

__despread (__builtin_quad,
long long int,
int,int,
long long int);

Example:

__builtin_quad q;
long long int thi, tho;
int d;
int r;
__despread (q, thi, d, r, tho);

Description:
q corresponds to Rmq

thi corresponds to Trellis History Registers before execution (input)

d corresponds to TRn

r corresponds to TRs
tho corresponds to Trellis History Registers after execution (output)

Instruction (ADSP-TS101 processor):

TRs = DESPREAD (Rmq, THrd) + TRn

VisualDSP++ 5.0 C/C++ Compiler Manual 1-183
for TigerSHARC Processors

Compiler

Instruction (ADSP-TS201 processor):

TRs += DESPREAD (Rmq, THrd)

Builtins:

int __builtin_despread_i (__builtin_quad, long long int, int);
long long int __builtin_despread_res2 (int);

Shorthand:

__despread_i (__builtin_quad,
long long int,
int,int,
long long int);

Example:

__builtin_quad q;
long long int thi, tho;
int d;
int r;
__despread (q, thi, d, r, tho);

Description:

In this version, THrd is loaded using the (i) option to interleave the input
bits. Obviously, when loading the spreading codes interleaved into the
Trellis History registers for the first DESPREAD, the __despread_i built-in
function should be used. When chaining the shifted spreading codes from
the first DESPREAD into a subsequent DESPREAD, use the __despread built-in
function, otherwise the Trellis History registers after the first DESPREAD is
stored and then reloaded (with interleave) again.

q corresponds to Rmq
thi corresponds to Trellis History Registers before execution (input)
d corresponds to TRn
r corresponds to TRs
tho corresponds to Trellis History Registers after execution (output)

C/C++ Compiler Language Extensions

1-184 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

XCORRS

Instruction (ADSP-TS201 processor):

TR15:0/31:16 = XCORRS (Rmq, THRq) (CUT #imm) (CLR) (EXT)

Builtins:

__builtin_quad __builtin_xcorrs (__builtin_quad signal,
long long int codeslo,
long long int codeshi,
int cut,
__builtin_quad accum0,
__builtin_quad accum1,
__builtin_quad accum2,
__builtin_quad accum3);

__builtin_quad __builtin_xcorrs_res2 (__builtin_quad);
__builtin_quad __builtin_xcorrs_res3 (__builtin_quad);
__builtin_quad __builtin_xcorrs_res4 (__builtin_quad);
long long int __builtin_xcorrs_res5 (__builtin_quad);
long long int __builtin_xcorrs_res6 (__builtin_quad);

Shorthand:

void __xcorrs (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

Example:

__builtin_quad signal;
long long int codeslo;
long long int codeshi;
__builtin_quad accums[4];
__xcorrs (signal, &codeslo, &codeshi, /* cut */ 0, &accums);

Description:

signal corresponds to Rmq

codeslo and codeshi correspond to low and high halves of THRq
(input and output)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-185
for TigerSHARC Processors

Compiler

accums corresponds to TR15:0 or TR31:16 depending on which half
of the register file is being used.

The contents of accums are copied into the Trellis registers before the
instruction, and the accumulations copied back into accums after execu-
tion. The compiler optimizes sequences of XCORRS to remove unnecessary
transfers in and out of the Trellis registers, as it does for the other
enhanced communication built-in functions.

The same thing happens for the Trellis History registers, which are loaded
from the two double words pointed to by codeslo and codeshi, and
stored back into these locations after execution.

The accums pointer must be quad aligned, and the codeslo and codeshi
pointers must be double-word aligned. These alignments should be
declared with __builtin_aligned where necessary. If this is not done, the
behavior of the compiler, and the resulting code, is undefined.

The cut argument must be an immediate value.

The following shorthand forms are for variants of the XCORRS instruction
which specify the (EXT) and/or (CLR) options.

void __xcorrs_clr (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

void __xcorrs_ext (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

void __xcorrs_clr_ext (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

C/C++ Compiler Language Extensions

1-186 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

At a low level, these macros make use of alternative built-in functions for
the primary result and the same built-in functions as above for the subse-
quent results.

There are also _i versions of the built-in function:

void __xcorrs_i (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

void __xcorrs_i_clr (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

void __xcorrs_i_ext (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

void __xcorrs_i_clr_ext (__builtin_quad signal,
long long int *codeslo,
long long int *codeshi,
int cut,
int *accum);

For the _i versions, the codeshi value is loaded into the upper Trellis His-
tory registers with the (i) option, to interleave the input bits of the
spreading code.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-187
for TigerSHARC Processors

Compiler

Pragmas
The compiler supports a number of pragmas. Pragmas are implementa-
tion-specific directives that modify the compiler’s behavior. There are two
types of pragma usage: pragma directives and pragma operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.

The C/C++ compiler issues a warning when it encounters an unrecognized
pragma directive or pragma operator. The C/C++ compiler does not
expand any pre-processor macros used within any pragma directive or
pragma operator.

The C compiler supports pragmas for:

• Arranging alignment of data

• Defining functions that can act as interrupt handlers

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

C/C++ Compiler Language Extensions

1-188 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• Header file configurations and properties

• Giving additional information about loop usage to improve
optimizations

The following sections describe the pragmas that support the features
listed above.

• “Data Alignment Pragmas” on page 1-188

• “Interrupt Handler Pragmas” on page 1-192

• “Loop Optimization Pragmas” on page 1-195

• “Function Side-Effect Pragmas” on page 1-200

• “General Optimization Pragmas” on page 1-211

• “Inline Control Pragmas” on page 1-212

• “Linking Control Pragmas” on page 1-214

• “Class Conversion Optimization Pragmas” on page 1-223

• “Template Instantiation Pragmas” on page 1-226

• “Header File Control Pragmas” on page 1-228

• “Diagnostic Control Pragmas” on page 1-231

• “Memory Bank Pragmas” on page 1-234

Refer to Chapter 2, “Achieving Optimal Performance from C/C++ Source
Code”, on how to use pragmas for code optimization.

Data Alignment Pragmas

The data alignment pragma is used to modify how the compiler arranges
data within memory. Since the TigerSHARC processor architecture
requires memory accesses to be naturally aligned, each data item is nor-
mally aligned at least as strongly as itself—double-word items have an
alignment of 2 and quad-word items have and alignment of 4.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-189
for TigerSHARC Processors

Compiler

In byte-addressing mode, the same rule applies—two-byte shorts have an
alignment of 2 (bytes) and four-byte longs have an alignment of 4 (bytes).
When structs are defined, the struct’s overall alignment is the same as the
field which has the largest alignment. The struct’s size may need padding
to ensure all fields are properly aligned, and that the struct's overall size is
a multiple of its alignment.

Sometimes, it is useful to change these alignments, for instance a struct
may have its alignment increased to improve the compiler’s opportunities
in vectorizing access to the data.

Alignments specified for data alignment must be a power of 2.

Note that the minimum alignment allowed for structs in
byte-addressing mode is 4 (32 bits).

#pragma align num

This pragma may be used before variable and field declarations. It applies
to the variable or field declaration that immediately follows the pragma.
The pragma’s effect is that the next variable or field declaration is aligned
on a boundary specified by num.

• If the pragma is being applied to a local variable then, since local
variables are stored on the stack, the alignment of the variable will
only be changed when num is not greater than the stack alignment
(that is, 4 words). If num is greater than the stack alignment, then a
warning is given that the pragma is being ignored.

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, then the variable or field
declaration’s alignment is changed to num.

C/C++ Compiler Language Extensions

1-190 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• If num is less than alignment normally required, then the variable or
field declaration's alignment is changed to num, and a warning is
given that the alignment has been reduced. For example,

typedef struct {
#pragma align 4

int foo;
int bar;

#pragma align 4
int baz;

} aligned_ints;

In this example, any object declared of type aligned_ints has the
foo and baz members aligned on quad-word boundaries. The size
of this structure is eight words with two words unused between bar
and baz, and three words of padding at the end of the structure. In
byte addressing mode, the NUM argument to align would need to be
16 and not 4, as the argument to align is in addressable units.

The pragma also allows the following keywords as allowable alignment
specifications:

_WORD – Specifies a 32-bit alignment

_LONG – Specifies a 64-bit alignment

_QUAD – Specifies a 128-bit alignment

These keywords specify the same alignment irrespective of the
addressing mode specified.

The align pragma only applies to the immediately-following defini-
tion, even if that definition is part of a list. For example,

#pragma align 8
int i1, i2, i3; // pragma only applies to i1

VisualDSP++ 5.0 C/C++ Compiler Manual 1-191
for TigerSHARC Processors

Compiler

#pragma alignment_region (alignopt)

Sometimes it is desirable to specify an alignment for a number of consecu-
tive data items rather than individually. This can be done using the
alignment_region and alignment_region_end pragmas:

• #pragma alignment_region sets the alignment for all following
data symbols up to the corresponding alignment_region_end
pragma

• #pragma alignment_region_end removes the effect of the active
alignment region and restores the default alignment rules for data
symbols.

The rules concerning the argument are the same as for #pragma align.
The compiler faults an invalid alignment (such as an alignment that is not
a power of two). The compiler warns if the alignment of a data symbol
within the control of an alignment_region is reduced below its natural
alignment (as for #pragma align).

Use of the align pragma overrides the region alignment specified by the
currently active alignment_region pragma (if there is one). The currently
active alignment_region does not affect the alignment of fields.

Example:

#pragma align 4

int aa; /* alignment 4 */
int bb; /* alignment 1 */

#pragma alignment_region (2)

int cc; /* alignment 2 */
int dd; /* alignment 2 */
int ee; /* alignment 2 */

#pragma align 4

C/C++ Compiler Language Extensions

1-192 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

int ff; /* alignment 4 */
int gg; /* alignment 2 */
int hh; /* alignment 2 */

#pragma alignment_region_end

int ii; /* alignment 1 */

#pragma alignment_region (1)

long double jj; /* alignment 1, but the compiler warns
about the reduction */

#pragma alignment_region_end

#pragma alignment_region (3)
long double kk; /* the compiler faults this, alignment is not

a power of two */

#pragma alignment_region_end

Interrupt Handler Pragmas

The interrupt pragmas provide a method by which the user can write
interrupt service routines in C and install them directly into the interrupt
vector table, bypassing the dispatcher provided with the C run-time
library.

Marking a routine with an interrupt pragma causes the compiler to save
all necessary state at the beginning of the routine and restore it at the end
of the routine. It also causes the compiler to emit the corresponding code
to return from the service routine correctly.

There are two interrupt pragmas provided by the compiler for the
TigerSHARC processors. The interrupt pragma is used to define a
non-reentrant interrupt handler (one which cannot be interrupted by a

VisualDSP++ 5.0 C/C++ Compiler Manual 1-193
for TigerSHARC Processors

Compiler

subsequent interrupt). The interrupt_reentrant pragma is used to define
a reentrant interrupt handler (one which can be interrupted by higher-pri-
ority interrupts).

To define an interrupt handler in C whose address can be put directly into
the interrupt vector table, put the relevant pragma prior to the function
definition. (See the example in this section.)

It is possible to use the interrupt dispatcher in the default C run-
time library to register an interrupt or an exception handler and in
the same application install a routine marked with the interrupt
pragma into other entries in the vector table.

It is not possible to raise an interrupt defined in this way using the
raise function as this is currently only provided to raise interrupts
registered with the interrupt dispatcher.

Interrupt Pragma Example:
This program is designed to run on an ADSP-TS101 EZ-KIT Lite board.
It flashes the FLAG2 LED (for the given processor on which it is run-
ning). Pressing the IRQ0 button (for the same processor) causes the rate
of flash to change. These two actions are handled by interrupts, the service
routines written in C using the interrupt pragma. While this is happen-
ing, the main loop of the program produces some output.

#include <stdio.h>

#include <builtins.h>
#include <sysreg.h>
#include <defts101.h>

#define SQCTL_TMR0RN MAKE_BITMASK_(SQCTL_TMR0RN_P)

#pragma interrupt
void timer0h_isr (void) {

static int led = 0;
led = !led;
if (led == 1) {

C/C++ Compiler Language Extensions

1-194 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

__builtin_sysreg_write(__SQCTLST, SQCTL_FLAG2_OUT);
} else {

__builtin_sysreg_write(__SQCTLCL, ~SQCTL_FLAG2_OUT);
}

}

#pragma interrupt
void irq0_isr (void) {

static int speed = 0;

speed = !speed;

if (speed == 1) {
__builtin_sysreg_write (__TMRIN0H, 0);
__builtin_sysreg_write (__TMRIN0L, 250000000);

} else {
__builtin_sysreg_write (__TMRIN0H, 0);
__builtin_sysreg_write (__TMRIN0L, 125000000);

}
}

int main (void) {
int r;

/* Enable output on FLAG2 (to allow the LED state to
be set on EZ-KIT hardware */

__builtin_sysreg_write (__SQCTLST, SQCTL_FLAG2_EN);

/* Install the two service routines into the vector table */
__builtin_sysreg_write (__IVTIMER0HP, (int) timer0h_isr);
__builtin_sysreg_write (__IVIRQ0, (int) irq0_isr);

/* Set Timer 0 to count 125 million cycles */
__builtin_sysreg_write (__TMRIN0H, 0);
__builtin_sysreg_write (__TMRIN0L, 125000000);

/* Make the IRQ0 interrupt edge-sensitive */
__builtin_sysreg_write (__SQCTLCL, ~(1<<SQCTL_IRQ0_EDGE_P));

/* Set Timer 0 running */

VisualDSP++ 5.0 C/C++ Compiler Manual 1-195
for TigerSHARC Processors

Compiler

__builtin_sysreg_write (__SQCTLST, (1 << SQCTL_TMR0RN_P));

/* Set the global interrupt enable bit and the IRQ0 and
TIMER0HP bits in the interrupt mask register */

r = __builtin_sysreg_read (__IMASKH);
r |= (1<<INT_GIE_P) | (1<<INT_IRQ0_P) | (1<<INT_TIMER0H_P);
__builtin_sysreg_write (__IMASKH, r);

/* While waiting for interrupts, produce some output */
for (r=0; r<0x7fffffff; r++) {

printf ("Loop %d\n", r);
}

}

Loop Optimization Pragmas

Loop optimization pragmas give the compiler additional information
about usage within a particular loop, which allows the compiler to per-
form more aggressive optimization. The pragmas are placed before the
loop statement, and apply to the statement that immediately follows,
which must be a for, while or do statement to have effect. In general, it is
most effective to apply loop pragmas to inner-most loops, since the com-
piler can achieve the most savings there.

#pragma all_aligned

This pragma tells the compiler that all pointer-induction variables in the
loop are initially aligned to the maximum interesting alignment of the
architecture. For TigerSHARC processors, that is quad-word aligned. The
pragma takes an optional argument (n) which can specify that the pointers
are aligned after n iterations. Therefore, the #pragma all_aligned(1) says
that after one iteration, all the pointer induction variables of the loop are
so aligned. In other words, the default argument is zero.

C/C++ Compiler Language Extensions

1-196 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#pragma different_banks

This pragma allows the compiler to assume that groups of memory
accesses, based on different pointers within a loop, reside in different
memory banks. By scheduling them together, memory access is much
improved.

#pragma loop_count(min, max, modulo)

This pragma appears just before the loop it describes. The pragma asserts
that the loop iterates at least min times, no more than max times, and a
multiple of modulo times. This information enables the optimizer to omit
loop guards and to decide whether the loop is worth completely unrolling
and whether code needs to be generated for odd iterations. Any of the
parameters of the pragma that are unknown may be left blank.

For example,

int i;
#pragma loop_count(24, 48, 8)
for (i=0; i < n; i++)

The #pragma must_iterate(min, max, modulo) is also accepted for com-
patibility with other compilers.

#pragma loop_unroll N

The loop_unroll pragma can be used only before a for, while or do..
while loop. The pragma takes exactly one positive integer argument, N,
and it instructs the compiler to unroll the loop N times prior to further
transforming the code.

In the most general case, the effect of:

#pragma loop_unroll N
for (init statements; condition; increment code) {

loop_body
}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-197
for TigerSHARC Processors

Compiler

is equivalent to transforming the loop to:

for (init statements; condition; increment code) {
loop_body /* copy 1 */
increment_code
if (!condition)

break;

loop_body /* copy 2 */
increment_code
if (!condition)

break;

...

loop_body /* copy N-1 */
increment_code
if (!condition)

break;

loop_body /* copy N */
}

Similarly, the effect of

#pragma loop_unroll N
while (condition) {

loop_body
}

is equivalent to transforming the loop to:

while (condition) {
loop_body /* copy 1 */
if (!condition)

break;

loop_body /* copy 2 */
if (!condition)

break;

C/C++ Compiler Language Extensions

1-198 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

...

loop_body /* copy N-1 */
if (!condition)

break;

loop_body /* copy N */
}

and the effect of:

#pragma loop_unroll N
do {

loop_body
} while (condition)

is equivalent to transforming the loop to:

do {
loop_body /* copy 1 */
if (!condition)

break;

loop_body /* copy 2 */
if (!condition)

break;

...

loop_body /* copy N-1 */
if (!condition)

break;

loop_body /* copy N */
} while (condition)

#pragma no_alias

Use this pragma to tell the compiler that the following loop has no loads
or stores that conflict due to references to the same location through dif-
ferent pointers, known as “aliases”.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-199
for TigerSHARC Processors

Compiler

In the example,

void vadd(int *a, int *b, int *out, int n) {
int i;

#pragma no_alias
for (i=0; i < n; i++)

out[i] = a[i] + b[i];
}

the use of the no_alias pragma just before the loop informs the compiler
that the pointers a, b and out point to different arrays, so no load from b
or a uses the same address as any store to out. Therefore, a[i] or b[i] is
never an alias for out[i].

Using the no_alias pragma can lead to better code because it allows the
loads and stores to be reordered and any number of iterations to be per-
formed concurrently (rather than just two at a time), thus providing better
software pipelining by the optimizer.

#pragma no_vectorization

This pragma is used to turn off all vectorization for the loop on which it is
specified.

#pragma vector_for

This pragma notifies the compiler that it is safe to execute some number
of consecutive iterations of the loop in parallel. Therefore, the form
#pragma vector_for (number) notifies the compiler that a number of con-
secutive iterations maybe executed in parallel. The #pragma vector_for
(without the number) form tells the compiler that any number of consec-
utive iterations may be executed in parallel.

The vector_for pragma does not force the compiler to vectorize the loop;
the optimizer checks various properties of the loop and does not vectorize
it if it believes it is unsafe or if it cannot deduce that the various properties
necessary for the vectorization transformation are valid.

C/C++ Compiler Language Extensions

1-200 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {
int i;
#pragma vector_for

for (i=0; i<100; i++)
a[i] = b[i];

}

In cases where vectorization is impossible (for example, if array a is aligned
on a word boundary but array b is not), the information given in the asser-
tion made by vector_for may still be put to good use in aiding other
optimizations.

Function Side-Effect Pragmas

The function side-effect pragmas (alloc, pure, const, regs_clobbered,
overlay and result_alignment) are used before a function declaration to
give the compiler additional information about the function in order to
enable it to improve the code surrounding the function call. These prag-
mas should be placed before a function declaration and should apply to
that function.

For example,

#pragma pure

long dot(short*, short*, int);

#pragma alloc

This pragma tells the compiler that the function behaves like the library
function “malloc”, returning a pointer to a newly allocated object. An
important property of these functions is that the pointer returned by the
function does not point at any other object in the context of the call.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-201
for TigerSHARC Processors

Compiler

In the example,

#define N 100

#pragma alloc
int *new_buf(void);
int *vmul(int *a, int *b) {

int *out = new_buf();
for (i = 0; i < N; ++i)

out[i] = a[i] * b[i];
return out;

}

the compiler can reorder the iterations of the loop because the #pragma
alloc tells it that a and b cannot overlap out.

The GNU attribute malloc is also supported with the same meaning.

#pragma const

This pragma is a more restrictive form of the pure pragma. It tells the
compiler that the function does not read from global variables as well as
not write to them or read or write volatile variables. The result is therefore
a function of its parameters. If any of the parameters are pointers, the
function may not read the data they point at.

#pragma noreturn

This pragma can be placed before a function prototype or definition. Its
use tells the compiler that the function to which it applies will never
return to its caller. For example, a function such as the standard C func-
tion “exit” never returns.

The use of this pragma allows the compiler to treat all code following a
call to a function declared with the pragma as unreachable and hence
removable.

#pragma noreturn
void func() {

C/C++ Compiler Language Extensions

1-202 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

while(1);
}

main() {
func();
/* any code here will be removed */

}

#pragma pgo_ignore

This pragma tells the compiler that no profile should be generated for this
function, when using Profile-Guided Optimization. This is useful when
the function is concerned with error checking or diagnostics.

extern const short *x, *y;
int dotprod(void) {

int i, sum = 0;
for (i = 0; i < 100; i++)

sum += x[i] * y[i];
return sum;

}

#pragma pgo_ignore
int check_dotprod(void) {

/* The compiler will not profile this comparison */
return dotprod() == 100;

}

#pragma pure

This pragma tells the compiler that the function does not write to any glo-
bal variables, and does not read or write any volatile variables. Its result,
therefore, is a function of its parameters or of global variables. If any of
the parameters are pointers, the function may read the data they point at
but it may not write it.

Since the function call has the same effect every time it is called (between
assignments to global variables), the compiler need not generate the code
for every call. Therefore, in this example,

VisualDSP++ 5.0 C/C++ Compiler Manual 1-203
for TigerSHARC Processors

Compiler

#pragma pure
long sdot(short *, short *, int);

long tendots(short *a, short *b, int n) {
int i;
long s = 0;
for (i = 1; i < 10; ++i)

s += sdot(a, b, n); // call can get hoisted out of loop
return s;}

the compiler can replace the ten calls to sdot with a single call made
before the loop.

#pragma regs_clobbered string

This pragma may be used with a function declaration or definition to
specify which registers are modified (or clobbered) by that function. The
string contains a list of registers and is case-insensitive.

When used with an external function declaration, this pragma acts as an
assertion telling the compiler something it would be unable to discover for
itself. In the example,

#pragma regs_clobbered "xr5 xr8 j6"
void f(void);

the compiler knows that only registers r5, r8 and j6 may be modified by
the call to f, so it may keep local variables in other registers across that
call.

The regs_clobbered pragma may also be used with a function definition,
or a declaration preceding a definition (when it acts as a command to the
compiler to generate register saves, and restores on entry and exit from the
function) to ensure it only modifies the registers in string. For example,

#pragma regs_clobbered "j0 j4"

int g(int a) {
return a+3;

}

C/C++ Compiler Language Extensions

1-204 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and
the regs_clobbered pragma is ignored.

To obtain optimum results with the pragma, it is best to restrict the clob-
bered set to be a subset of the default scratch registers. When considering
when to apply the regs_clobbered pragma, it may be useful to look at the
output of the compiler to see how many scratch registers were used.
Restricting the volatile set to these registers will produce no impact on the
code produced for the function but may free up registers for the caller to
allocate across the call site.

The regs_clobbered pragma cannot be used in any way with
pointers to functions. A function pointer cannot be declared to
have a customized clobber set, and it cannot take the address of a
function which has a customized clobber set. The compiler raises
an error if either of these actions are attempted.

String Syntax
A regs_clobbered string consists of a list of registers, register ranges, or
register sets that are clobbered (Table 1-24). The list is separated by
spaces, commas, or semicolons.

A register is a single register name, which is the same as that which may
be used in an assembly file. Register names (when not used in ranges) may
be pairs, quads or SIMD. Therefore, “r1”, “xyr2”, “yr3:0” and “r3:0” are
acceptable register names specifying register sets “xr1,yr1”, “xr2,yr2”,
“yr0,yr1,yr2,yr3” and “xr0,xr1,xr2,xr3,yr0,yr1,yr2,yr3”,
respectively.

A register range consists of start and end registers which both reside in
the same register class, separated by a hyphen. All registers between the
two (inclusive) are clobbered.

A register set is a name for a specific set of commonly clobbered regis-
ters that is predefined by the compiler. Table 1-24 shows defined
clobbered register sets,

VisualDSP++ 5.0 C/C++ Compiler Manual 1-205
for TigerSHARC Processors

Compiler

The strings are also valid as GNU asm clobbered sets.

When the compiler detects an illegal string, a warning is issued and the
default volatile set as defined in this compiler manual is used instead.

Unclobberable and Must Clobber Registers
There are certain caveats as to what registers may or must be placed in the
clobbered set. On TigerSHARC processors, the registers J26, J27, K26 and
K27 may not be specified in the clobbered set, as the correct operation of
the function call requires their values to be preserved. If the user specifies
them in the clobbered set, a warning is issued and these registers are
removed from the specified clobbered set.

Table 1-24. Clobbered Register Sets

Set Registers

CCset XSTAT, YSTAT, JSTAT, KSTAT

MRset XMR0-XMR4, YMR0-YMR4

PRset XPR0, XPR1, YPR0, YPR1

LCset LC0, LC1

ACCELset XTR0-XTR31, YTR0-YTR31, XTHR0-XTHR3, YTHR0-YTHR3

DABset XDAB0-XDAB3, YDAB0-YDAB3

CBset J0-J3, K0-K3, JL0-JL3, KL0-KL3, JB0-JB3, KB0-KB3

Xscratch Members of X registers that are scratch by default, XSTAT

Yscratch Members of Y registers that are scratch by default, YSTAT

XYscratch Xscratch , Yscratch

Jscratch Members of J registers that are scratch by default, JSTAT

Kscratch Members of K registers that are scratch by default, KSTAT

JKscratch Jscratch, Kscratch

XYJKscratch JKscratch, XYscratch

ALLscratch Entire default volatile set

C/C++ Compiler Language Extensions

1-206 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Registers from these classes,

X, Y, J, K, XT, YT, XTH, YTH, XDAB, YDAB, LC, JB, KB, JL, KL,

XMR, YMR, XP, YP, XSTAT, YSTAT, JSTAT, KSTAT

may be specified in the clobbered set and code is generated to save them as
necessary. All other registers are never preserved whether specified as clob-
bered or not. They are not automatically used by the compiler. It is
assumed that the users, should they change the register, would like this
change to be preserved.

Function Return Registers
Function return registers are visible to the caller. They may or may not
appear in the clobbered set of the callee. (It makes no difference to the
generated code; the return register is never saved and restored.) Only the
return register used by the particular function return type is special.
Return registers used by different return types are treated in the clobbered
list in the conventional way. For example,

int f();
/* returns via J8. XR8 and XR9 may be preserved across call */
long long f();
/* returns via XR9:8. J8 may be preserved across call */
void f();
/* J8, XR8 and XR9 may all be preserved across the call */

Function Parameters
Function calling conventions are visible to the caller and do not affect the
clobbered set that may be used on a function. For example,

#pragma regs_clobbered "" // clobbers nothing
void f(int a, int b);
void g() {

f(2,3);
}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-207
for TigerSHARC Processors

Compiler

The parameters a and b are passed in registers registers J4 and J5 respec-
tively. No matter what happens in function f, the values of J4 and J5 after
the call are still set to 2 and 3, respectively.

Pragma Interrupt Restriction
The regs_clobbered pragma may not be used in conjunction with
#pragma interrupt. If both are specified, a warning is issued and
the regs_clobbered pragma is ignored.

#pragma regs_clobbered_call string

This pragma may be applied to a statement to indicate that the call within
the statement uses a modified volatile register set. The pragma is closely
related to #pragma regs_clobbered, but avoids some of the restrictions
that relate to that pragma.

These restrictions arise because the regs_clobbered pragma applies to a
function’s declaration—when the call is made, the clobber set is retrieved
from the declaration automatically. This is not possible when the declara-
tion is not available, because the function being called is not directly tied
to a declaration of a specific function. This affects:

• pointers to functions

• class methods

• pointers to class methods

• virtual functions

In such cases, the regs_clobbered_call pragma can be used at the call site
to inform the compiler directly of the volatile register set to be used dur-
ing the call.

The pragma’s syntax is as follows:

#pragma regs_clobbered_call clobber_string
statement

C/C++ Compiler Language Extensions

1-208 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

where clobber_string follows the same format as for the regs_clobbered
pragma and statement is the C statement containing the call expression.

There must be only a single call within the statement; otherwise, the state-
ment is ambiguous. For example,

#pragma regs_clobbered "xr0 xr1 xr2"
#int func(int arg) { /* some code */ }

int (*fnptr)(int) = func;

int caller(int value) {
 int r;

#pragma regs_clobbered_call "xr0 xr1 xr2”
 r = (*fnptr)(value);

 return r;
}

When you use the regs_clobbered_call pragma, you must ensure
that the called function does indeed only modify the registers listed
in the clobber set for the call—the compiler does not check this for
you. It is valid for the callee to clobber less than is listed in the
call’s clobber set. It is also valid for the callee to modify registers
outside of the call’s clobber set, as long as the callee saves the values
first and restores them before returning to the caller.

The following examples show this.

Example 1:

#pragma regs_clobbered "xr0 xr1 xr2"
void callee(void) { ... }

#pragma regs_clobbered_call "xr0 xr1 xr2"
callee(); // Okay - clobber sets match

VisualDSP++ 5.0 C/C++ Compiler Manual 1-209
for TigerSHARC Processors

Compiler

Example 2:

#pragma regs_clobbered "xr0 xr1"
void callee(void) { ... }

#pragma regs_clobbered_call "xr0 xr1 xr2"
callee(); // Okay - callee clobber set is a subset

// of call's set

Example 3:

#pragma regs_clobbered "xr0 xr1 xr2"
void callee(void) { ... }

#pragma regs_clobbered_call "xr0 xr1"
callee(); // Error - callee clobbers more than

// indicated by call.

Example 4:

void callee(void) { ... }

#pragma regs_clobbered_call "xr0 xr1 xr2"
callee(); // Error - callee uses default set larger

// than indicated by call.

Limitations
Pragma regs_clobbered_call may not be used on constructors or
destructors of C++ classes.

The pragma only applies to the call in the immediately-following state-
ment. If the immediately-following line contains more than one
statement, the pragma only applies to the first statement on the line:

#pragma regs_clobbered "xr0 xr1 xr2"
x = foo(); y = bar(); // only "x = foo();" is affected by

// the pragma.

C/C++ Compiler Language Extensions

1-210 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Similarly, if the immediately-following line is a sequence of declarations
that use calls to initialize the variables, then only the first declaration is
affected:

#pragma regs_clobbered "xr0 xr1 xr2"
int x = foo(), y = bar(); // only "x = foo()" is affected

// by the pragma.

Moreover, if the declaration with the call-based initializer is not the first
in the declaration list, the pragma will have no effect:

#pragma regs_clobbered "xr0 xr1 xr2"
int w = 4, x = foo(); y = bar(); // pragma has no effect

// on "w = 4".

The pragma has no effect on function calls that get inlined. Once a func-
tion call is inlined, the inlined code obeys the clobber set of the function
into which it has been inlined. It does not continue to obey the clobber set
that will be used if an out-of-line copy is required.

#pragma overlay

When compiling code which involves one function calling another in the
same source file, the compiler optimizer can propagate register informa-
tion between the functions. This means that it can record which scratch
registers are clobbered over the function call. This can cause problems
when compiling overlaid functions, as the compiler may assume that cer-
tain scratch registers are not clobbered over the function call, but they are
clobbered by the overlay manager. #pragma overlay, when placed on the
definition of a function, will disable this propagation of register informa-
tion to the function’s callers. For example,

#pragma overlay
int add(int a, int b)
{

// callers of function add() assume it clobbers
// all scratch registers
return a+b;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-211
for TigerSHARC Processors

Compiler

#pragma result_alignment (n)

This pragma asserts that the pointer or integer returned by the function
has a value that is a multiple of n.

The pragma is often used in conjunction with the #pragma alloc of
custom-allocation functions that return pointers that are more strictly
aligned than could be deduced from their type.

General Optimization Pragmas

The compiler supports several pragmas which can change the optimization
level while a given module is being compiled. These pragmas must be used
globally, immediately prior to a function definition. The pragmas do not
just apply to the immediately following function; they remain in effect
until the end of the compilation, or until superseded by one of the follow-
ing optimize_ pragmas.

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled,
meaning it has the same effect as compiling with no optimi-
zation enabled.

• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled,
or sets the focus to give reduced code size a higher priority
than high performance, where these conflict.

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled,
or sets the focus to give high performance a higher priority
than reduced code size, where these conflict.

C/C++ Compiler Language Extensions

1-212 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• #pragma optimize_as_cmd_line

This pragma resets the optimization settings to be those
specified on the ccts command line when the compiler was
invoked.

These are code examples for the optimize_ pragmas.

#pragma optimize_off
void non_op() { /* non-optimized code */ }

#pragma optimize_for_space
void op_for_si() { /* code optimized for size */ }

#pragma optimize_for_speed
void op_for_sp() { /* code optimized for speed */ }
/* subsequent functions declarations optimized for speed */

Inline Control Pragmas

The compiler supports two pragmas to control the inlining of code. These
pragmas are #pragma always_inline and #pragma never_inline.

#pragma always_inline

This pragma may be applied to a function definition to indicate to the
compiler that the function should always be inlined, and never called “out
of line”. The pragma may only be applied to function definitions with the
inline qualifier, and may not be used on functions with variable-length
argument lists. It is invalid for function definitions that have interrupt-
related pragmas associated with them.

If the function in question has its address taken, the compiler cannot guar-
antee that all calls are inlined, so a warning is issued.

See “Function Inlining” on page 1-97 for details of pragma precedence
during inlining.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-213
for TigerSHARC Processors

Compiler

The following are examples of the always_inline pragma.

int func1(int a) { // only consider inlining
return a + 1; // if -Oa switch is on

}

inline int func2(int b) { // probably inlined, if optimizing
 return b + 2;
}

#pragma always_inline
inline int func3(int c) { // always inline, even unoptimized

return c + 3;
}

#pragma always_inline
int func4(int d) { // error: not an inline function

return d + 4;
}

#pragma never_inline

This pragma may be applied to a function definition to indicate to the
compiler that function should always be called “out of line”, and that the
function’s body should never be inlined.

This pragma may not be used on function definitions that have the inline
qualifier.

See “Function Inlining” on page 1-97 for details of pragma precedence
during inlining.

These are code examples for the never_inline pragma.

#pragma never_inline
int func5(int e) { // never inlined, even with -Oa switch

return e + 5;
}

#pragma never_inline

C/C++ Compiler Language Extensions

1-214 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

inline int func5(int f) { // error: inline function
return f + 6;

}

Linking Control Pragmas

Linking pragmas (linkage_name, core, section, file_attr,
separate_mem_segments and weak_entry) change how a given global func-
tion or variable is viewed during the linking stage.

#pragma linkage_name identifier

This pragma associates the identifier with the next external function
declaration. It ensures that the identifier is used as the external refer-
ence, instead of following the compiler’s usual conventions. If the
identifier is not a valid function name, as could be used in normal func-
tion definitions, the compiler generates an error. See also the asm keyword
(described on page 1-251).

The following example shows how to use this pragma.

#pragma linkage_name realfuncname
void funcname ();
void func() {

funcname(); /* compiler generates a call to realfuncname */
}

 #pragma core

When building a project that targets multiple processors or multiple cores
on a processor, a link stage may produce executables for more than one
core or processor. The interprocedural analysis (IPA) framework requires
that some conventions be adhered to in order to successfully perform its
analyses for such projects.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-215
for TigerSHARC Processors

Compiler

Because the IPA framework collects information about the whole pro-
gram, including information on references which may be to definitions
outside the current translation unit, the IPA framework must be able to
distinguish these definitions and their references without ambiguity.

If any confusion were allowed about which definition a reference refers to,
then the IPA framework could potentially cause bad code to be generated,
or could cause translation units in the project to be continually recom-
piled ad infinitum. It is the global symbols that are really relevant in this
respect. The IPA framework will correctly handle locals and static symbols
because multiple definitions are not possible within the same file, so there
can be no ambiguity.

In order to disambiguate all references and the definitions to which they
refer, it is necessary to have a unique name for each definition within a
given project. It is illegal to define two different functions or variables
with the same name. This is illegal in single-core projects because this
would lead to multiple definitions of a symbol and the link would fail. In
multi-core projects, however, it may be possible to link a project with
multiple definitions because one definition could be linked into each link
project, resulting in a valid link. Without detailed knowledge of what
actions the linker had performed, however, the IPA framework would not
be able to disambiguate such multiple definitions. For this reason, to use
the IPA framework, it is up to you to ensure unique names even in
projects targeting multiple cores or processors.

There are a few cases for which it is not possible to ensure unique names
in multi-core or multi-processor projects. One such case is main. Each pro-
cessor or core will have its own main function, and these need to be
disambiguated for the IPA framework to be able to function correctly.
Another case is where a library (or the C run-time startup) references a
symbol which the user may wish to define differently for each core.

For this reason, VisualDSP++ 5.0 supports the #pragma core(corename).

C/C++ Compiler Language Extensions

1-216 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

This pragma can be provided immediately prior to a definition or a decla-
ration. This pragma allows you to give a unique identifier to each
definition. It also allows you to indicate to which definition each reference
refers. The IPA framework will use this core identifier to distinguish all
instances of symbols with the same name and will therefore be able to
carry out its analyses correctly.

Note that the corename specified should only consist of alphanu-
meric characters. Also note that the corename is case sensitive.

The pragma should be used:

• On every definition (not in a library) for which there needs to be a
distinct definition for each core.

• On every declaration of a symbol (not in a library) for which the
relevant definition includes the use of #pragma core. The core
specified for a declaration must agree with the core specified for the
definition.

It should be noted that the IPA framework will not need to be informed of
any distinction if there are two identical copies of the same function or
data with the same name. Functions or data that come from objects and
that are duplicated in memory local to each core, for example, will not
need to be distinguished. The IPA framework does not need to know
exactly which instance each reference will get linked to because the infor-
mation processed by the framework is identical for each copy. Essentially,
the pragma only needs to be specified on items where there will be differ-
ent functions or data with the same name incorporated into the executable
for each core.

Here is an example of #pragma core usage to distinguish two different
main functions:

/* foo.c */
#pragma core("coreA")
int main(void) {

VisualDSP++ 5.0 C/C++ Compiler Manual 1-217
for TigerSHARC Processors

Compiler

/* Code to be executed by core A */
}
/* bar.c */
#pragma core("coreB")
int main(void) {

/* Code to be executed by core B */
}

Omitting either instance of the pragma will cause the IPA framework to
issue a fatal error indicating that the pragma has been omitted on at least
one definition.

Here is an example that will cause an error to be issued because the name
contains a non-alphanumeric character:

#pragma core("core/A")
int main(void) {

/* Code to executed on core A */
}

Here is an example where the pragma needs to be specified on a declara-
tion as well as the definitions. There is a library which contains a reference
to a symbol which is expected to be defined for each core. Two more mod-
ules define the main functions for the two cores. Two further modules,
each only used by one of the cores, makes a reference to this symbol, and
therefore requires use of the pragma:

/* libc.c */
#include <stdio.h>
extern int core_number;
void print_core_number(void) {

printf("Core %d\n", core_number);
}
/* maina.c */
extern void fooa(void)
#pragma core("coreA")
int core_number = 1;
#pragma core("coreA")
int main(void) {

C/C++ Compiler Language Extensions

1-218 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

/* Code to be executed by core A */
print_core_number();
fooa();

}
/* mainb.c */
extern void foob(void)
#pragma core("coreB")
int core_number = 2;
#pragma core("coreB")
int main(void) {

/* Code to be executed by core B */
print_core_number();
foob();

}
/* fooa.c */
#include <stdio.h>
#pragma core("coreA")
extern int core_number;
void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);
}
/* foob.c */
#include <stdio.h>
#pragma core("coreB")
extern int core_number;
void fooa(void) {

printf("Core: is core%c\n", ‘A’ - 1 + core_number);
}

In general, it will only be necessary to use #pragma core in this manner
when there is a reference from outside the application (in a library, for
example) where there is expected to be a distinct definition provided for
each core, and where there are other modules that also require access to
their respective definition. Notice also that the declaration of core_number
in lib.c does not require use of the pragma because it is part of a transla-
tion unit to be included in a library.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-219
for TigerSHARC Processors

Compiler

A project that includes more than one definition of main will undergo
some extra checking to catch problems that would otherwise occur in the
IPA framework. For any non-template symbol that has more than one def-
inition, the tool chain will fault any definitions that are outside libraries
that do not specify a core name with the pragma. This check does not
affect the normal behavior of the prelinker with respect to templates and
in particular the resolution of multiple template instantiations.

To clarify:
Inside a library, #pragma core is not required on declarations or defini-
tions of symbols that are defined more than once. However, a library can
be responsible for forcing the application to define a symbol more than
once (that is, once for each core). In this case, the definitions and declara-
tions require the pragma to be used outside the library to distinguish the
multiple instances.

It should be noted that the tool chain cannot check that uses of #pragma
core are consistent. If you use the pragma inconsistently or ambiguously,
then the IPA framework may end up causing incorrect code to be gener-
ated or causing continual recompilation of the application’s files.

It is also important to note that the pragma does not change the linkage
name of the symbol it is applied to in any way.

For more information on IPA, see “Interprocedural Analysis” on
page 1-80.

#pragma section/#pragma default_section

The section pragmas provide greater control over the sections in which the
compiler places symbols.

The section(SECTSTRING [, QUALIFIER, ...]) pragma is used to over-
ride the target section for any global or static symbol immediately
following it. The pragma allows greater control over section qualifiers
compared to the section keyword.

C/C++ Compiler Language Extensions

1-220 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The default_section(SECTKIND [, SECTSTRING [, QUALIFIER, ...]])
pragma is used to override the default sections in which the compiler is
placing its symbols. The default sections fall into five different categories
(listed under SECTKIND), and this pragma remains in force for a section
category until its next use with that particular category. The omission of a
section name results in the default section being reset to be the section
that was in use at the start of processing.

SECTKIND can be one of the following keywords:

SECTSTRING is the double-quoted string containing the section name,
exactly as it will appear in the assembler file.

QUALIFIER can be one of the following keywords:

Table 1-25. Keyword Possibilities for SECTKIND

Keyword Description

CODE Section is used to contain procedures and functions

ALLDATA Section is used to contain any data (normal, read-only and uninitialized)

DATA Section is used to contain “normal data”

CONSTDATA Section is used to contain read-only data

BSZ Section is used to contain uninitialized data

SWITCH Section is used to contain jump-tables to implement C/C++ switch statements

VTABLE Section is used to contain C++ virtual-function tables

STI Section is used to contain C++ constructor and destructor “start” functions.
For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-274.

Table 1-26. Keyword Possibilities for QUALIFIER

Keyword Description

PM Section is located in program memory

DM Section is located in data memory

VisualDSP++ 5.0 C/C++ Compiler Manual 1-221
for TigerSHARC Processors

Compiler

There may be any number of comma-separated section qualifiers within
such pragmas, but they must not conflict with one another. Qualifiers
must also be consistent across pragmas for identical section names, and
omission of qualifiers is not allowed even if at least one such qualifier has
appeared in a previous pragma for the same section. If any qualifiers have
not been specified for a particular section by the end of the translation
unit, the compiler uses default qualifiers appropriate for the target proces-
sor. The compiler always tries to honor the section pragma as its highest
priority, and the default_section pragma is always the lowest priority.

For example, the following code results in the function f being placed in
the section foo:

#pragma default_section(CODE, "bar")
#pragma section("foo")
void f() {}

The following code results in x being placed in section zeromem:

#pragma default_section(BSZ, "zeromem")
int x;

ZERO_INIT Section is zero-initialized at program startup

NO_INIT Section is not initialized at program startup

RUNTIME_INIT Section is user-initialized at program startup

DOUBLE32 Section may contain 32-bit but not 64-bit doubles

DOUBLE64 Section may contain 64-bit but not 32-bit doubles

DOUBLEANY Section may contain either 32-bit or 64-bit doubles

CHAR8 Section may contain 8-bit but not 32-bit chars

CHAR32 Section may contain 32-bit but not 8-bit chars .

CHARANY Section may contain either 8-bit or 32-bit chars.

Table 1-26. Keyword Possibilities for QUALIFIER (Cont’d)

Keyword Description

C/C++ Compiler Language Extensions

1-222 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

However, the following example does not result in the variable a being
placed in section onion because it was declared with the __pm qualifier and
therefore is placed in the PM data section:

#pragma default_section(DATA, "onion")
__pm int a = 4;

In cases where a C++ STL object is required to be placed in a
specific memory section, using #pragma section/default_section
does not work. Instead, a non-default heap must be used as
explained in “Allocating C++ STL Objects to a Non-Default
Heap” on page 1-282.

#pragma file_attr (name[=value] [, name[=value] [...]])

This pragma directs the compiler to emit the specified attributes when it
compiles a file containing the pragma. Multiple #pragma file_attr direc-
tives are allowed in one file.

If =value is omitted, the default value of “1” will be used.

The value of an attribute is all the characters after the '=' symbol
and before the closing '”' symbol, including spaces. A warning will
be emitted by the compiler if you have a preceding or trailing space
as an attribute value, as this is likely to be a mistake.

See “File Attributes” on page 1-312 for more information on using
attributes.

#pragma separate_mem_segments (var1, var2)

The separate_mem_segments pragma specifies that the two variables var1
and var2 should be placed into different memory segments. Refer to
Chapter 2 of the VisualDSP++ 5.0 Linker and Utilities Manual for more
information.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-223
for TigerSHARC Processors

Compiler

 #pragma weak_entry

This pragma may be used before a static variable or function declaration
or definition. It applies to the function/variable declaration or definition
that immediately follows the pragma. Use of this pragma causes the com-
piler to generate the function or variable definition with weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry
int w_var = 0;

#pragma weak_entry
void w_func(){}

When a symbol definition is weak, it may be discarded by the
linker in favor of another definition of the same symbol. Therefore,
if any modules in the application make use of the weak_entry
pragma, interprocedural analysis is disabled becauses it would be
unsafe for the compiler to predict which definition will be selected
by the linker. For more information, see “Interprocedural Analysis”
on page 1-80.

Class Conversion Optimization Pragmas

The class conversion optimization pragmas (param_never_null,
suppress_null_check) allow the compiler to generate more efficient code
when converting class pointers from a pointer-to-derived-class to a
pointer-to-base-class, by asserting that the pointer to be converted will
never be a null pointer. This allows the compiler to omit the null check
during conversion.

#pragma param_never_null param_name [...]

This pragma must immediately precede a function definition. It specifies a
name or a list of space-separated names, which must correspond to the
parameter names declared in the function definition. It checks that the

C/C++ Compiler Language Extensions

1-224 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

named parameter is a class pointer type. Using this information it will
generate more efficient code for a conversion from a pointer to a derived
class to a pointer to a base class. It removes the need to check for the null
pointer during the conversion. For example,

#include <iostream>
using namespace std;
class A {

int a;
};
class B {

int b;
};
class C: public A, public B {

int c;
};

C obj;
B *bpart = &obj;
bool fail = false;

#pragma param_never_null pc
void func(C *pc)
{

B *pb;
pb = pc; /* without pragma the code generated has to

check for NULL */
if (pb != bpart)

fail = true;
}

int main(void)
{

func(&obj);
if (fail)

cout << "Test failed" << endl;
else

cout << "Test passed" << endl;
return 0;

}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-225
for TigerSHARC Processors

Compiler

#pragma suppress_null_check

This pragma must immediately precede an assignment of two pointers or a
declaration list.

If the pragma precedes an assignment, it indicates that the second operand
pointer is not null and generates more efficient code for a conversion from
a pointer to a derived class to a pointer to a base class. It removes the need
to check for the NULL pointer before assignment.

On a declaration list the pragma marks all variables as not being the null
pointer. If the declaration contains an initialization expression, that
expression is not checked for null.

For example,

#include <iostream>
using namespace std;
class A {

int a;
};
class B {

int b;
};
class C: public A, public B {

int c;
};

C obj;
B *bpart = &obj;
bool fail = false;

void func(C *pc)
{

B *pb;
#pragma suppress_null_check
pb = pc; /* without pragma the code generated has to

check for NULL */
if (pb != bpart)

fail = true;

C/C++ Compiler Language Extensions

1-226 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

}

void func2(C *pc)
{

#pragma suppress_null_check
B *pb = pc, *pb2 = pc; /* pragma means these initializations

need not check for NULL. It also marks pb and pb2
as never being NULL, so the compiler will not
generate NULL checks in class conversions using
these pointers. */

if (pb != bpart || pb2 != bpart)
fail = true;

}

int main(void)
{

func(&obj);
func2(&obj);
if (fail)

cout << "Test failed" << endl;
else

cout << "Test passed" << endl;
return 0;

}

Template Instantiation Pragmas

The template instantiation pragmas (instantiate, do_not_instantiate
and can_instantiate) give fine-grain control over where (that is, in which
object file) the individual instances of template functions, member func-
tions, and static members of template classes are created. The creation of
these instances from a template is called instantiation. As templates are a
feature of C++, these pragmas are allowed only in the -c++ mode.

Refer to “Compiler C++ Template Support” on page 1-308 for more
information on how the compiler handles templates.

The instantiation pragmas take the name of an instance as a parameter, as
shown in Table 1-27.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-227
for TigerSHARC Processors

Compiler

If the instantiation pragmas are not used, the compiler selects object files
where all required instances automatically instantiate during the pre-link-
ing process.

#pragma instantiate instance

This pragma requests the compiler to instantiate instance in the current
compilation. For example,

#pragma instantiate class Stack<int>

causes all static members and member functions for the int instance of a
template class Stack to be instantiated, whether they are required in this
compilation or not. The example,

#pragma instantiate void Stack<int>::push(int)

causes only the individual member function Stack<int>::push(int) to be
instantiated.

#pragma do_not_instantiate instance

This pragma directs the compiler not to instantiate instance in the cur-
rent compilation. For example,

Table 1-27. Instance Names

Name Parameter

a template class name A<int>

a template class declaration class A<int>

a member function name A<int>::f

a static data member name A<int>::I

a static data declaration int A<int>::I

a member function declaration void A<int>::f(int, char)

a template function declaration char* f(int, float)

C/C++ Compiler Language Extensions

1-228 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#pragma do_not_instantiate int Stack<float>::use_count

prevents the compiler from instantiating the static data member
Stack<float>::use_count in the current compilation.

#pragma can_instantiate instance

This pragma tells the compiler that if instance is required anywhere in the
program, it should be instantiated in this compilation.

Currently, this pragma forces the instantiation even if it is not
required anywhere in the program. Therefore, it has the same effect
as #pragma instantiate.

Header File Control Pragmas

The header file control pragmas (hdrstop, no_implicit_inclusion,
no_pch, once, and system_header) help the compiler to handle header
files.

#pragma hdrstop

This pragma is used with the -pch (precompiled header) switch
(on page 1-53). The switch tells the compiler to look for a precompiled
header (.pch file), and, if it cannot find one, to generate a file for use on a
later compilation. The .pch file contains a snapshot of all the code preced-
ing the header stop point.

By default, the header stop point is the first non-preprocessing token in
the primary source file. The #pragma hdrstop can be used to set the point
earlier in the source file.

In the example,

#include "standard_defs.h"
#include "common_data.h"
#include "frequently_changing_data.h"

int i;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-229
for TigerSHARC Processors

Compiler

the default header stop point is start of the declaration of i. This might
not be a good choice, as in this example, “frequently_changing_data.h”
might change frequently, causing the .pch file to be regenerated often,
and, therefore, losing the benefit of precompiled headers. The hdrstop
pragma can be used to move the header stop to a more appropriate place.

For the following example,

#include "standard_defs.h"
#include "common_data.h"
#pragma hdrstop
#include "frequently_changing_data.h"

int i;

the precompiled header file would not include the contents of
frequently_changing_data.h, as it is included after the hdrstop pragma,
and so the precompiled header file would not need to be regenerated each
time frequently_changing_data.h was modified.

#pragma no_implicit_inclusion

With the -c++ switch (on page 1-22), for each included .h file, the com-
piler attempts to include the corresponding .c or .cpp file. This is called
implicit inclusion.

If #pragma no_implicit_inclusion is placed in a .h file, the compiler
does not implicitly include the corresponding .c or .cpp file with the -c++
switch. This behavior only affects the .h file with #pragma
no_implicit_inclusion within it and the corresponding .c or .cpp files.

For example, if there are the following files,

t.c containing
#include "m.h"

and m.h and m.c are both empty, then

ccts -c++ t.c -M

C/C++ Compiler Language Extensions

1-230 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

shows the following dependencies for t.c:

t.doj: t.c
t.doj: m.h
t.doj: m.C

If the following line is added to m.h,

#pragma no_implicit_inclusion

running the compiler as before would not show m.c in the dependencies
list, such as:

t.doj: t.c
t.doj: m.h

#pragma no_pch

This pragma overrides the -pch switch (on page 1-53) for a particular
source file. It directs the compiler not to look for a .pch file and not to
generate one for the specified source file.

#pragma once

This pragma, which should appear at the beginning of a header file, tells
the compiler that the header is written in such a way that including it sev-
eral times has the same effect as including it once. For example,

#pragma once
#ifndef FILE_H
#define FILE_H
... contents of header file ...
#endif

In this example, the #pragma once is actually optional because the
compiler recognizes the #ifndef/#define/#endif idiom and does
not reopen a header that uses it.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-231
for TigerSHARC Processors

Compiler

#pragma system_header

This pragma identifies an include file as a file supplied with VisualDSP++.
The VisualDSP++ compiler makes use of this information to help opti-
mize uses of the supplied library functions and inline functions that these
files define. The pragma should not be used in user application source.

Diagnostic Control Pragmas

The compiler supports #pragma diag(action: diag [, diag ...])
which allows selective modification of the severity of compiler diagnostic
messages.

The directive has three forms:

• modify the severity of specific diagnostics

• modify the behavior of an entire class of diagnostics

• save or restore the current behavior of all diagnostics

Modifying the Severity of Specific Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION: DIAG [, DIAG ...])

The action: qualifier can be one of the following keywords:

Table 1-28. Keywords for action: Qualifier

Keyword Action

suppress Suppresses all instances of the diagnostic

remark Changes the severity of the diagnostic to a remark.

warning Changes the severity of the diagnostic to a warning.

error Changes the severity of the diagnostic to an error.

restore Restores the severity of the diagnostic to what it was originally at the
start of compilation after all command-line options were processed.

C/C++ Compiler Language Extensions

1-232 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The diag qualifier can be one or more comma-separated compiler diag-
nostic numbers without any preceding “cc” or zeros. The choice of error
numbers is limited to those that may have their severity overridden (such
as those that are displayed with a “{D}” in the error message). In addition,
those diagnostics that are emitted by the compiler backend (for example,
after lexical analysis and parsing) cannot have their severity overridden
either. Any attempt to override diagnostics that may not have their sever-
ity changed is silently ignored.

Modifying the Behavior of an Entire Class of Diagnostics

This form of the directive has the following syntax:

#pragma diag(ACTION)

The effects are as follows:

• #pragma diag(errors)

This pragma can be used to inhibit all subsequent warnings
and remarks (equivalent to the -w switch option).

• #pragma diag(remarks)

This pragma can be used to enable all subsequent remarks
and warnings (equivalent to the -Wremarks switch option)

• #pragma diag(warnings)

This pragma can be used to restore the default behavior
when neither -w or -Wremarks is specified, which is to dis-
play warnings but inhibit remarks.

Saving or Restoring the Current Behavior of All Diagnostics

This form has the following syntax:

#pragma diag(ACTION)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-233
for TigerSHARC Processors

Compiler

The effects are as follows:

• #pragma diag(push)

This pragma may be used to store the current state of the
severity of all diagnostic error messages.

• #pragma diag(pop)

This pragma restores all diagnostic error messages that was
previously saved with the most recent push.

All #pragma diag(push) directives must be matched with the same num-
ber of #pragma diag(pop) directives in the overall translation unit, but
need not be matched within individual source files. Note that the error
threshold (set by the remarks, warnings or errors keywords) is also saved
and restored with these directives.

The duration of such modifications to diagnostic severity are from the
next line following the pragma to either the end of the translation unit,
the next #pragma diag(pop) directive, or the next overriding #pragma
diag() directive with the same error number. These pragmas may be used
anywhere and are not affected by normal scoping rules.

All command-line overrides to diagnostic severity are processed first and
any subsequent #pragma diag() directives will take precedence, with the
restore action changing the severity back to that at the start of compilation
after processing the command-line switch overrides.

Note that the directives to modify specific diagnostics are singular.
(For example, “error”), and the directives to modify classes of
diagnostics are plural ([“errors”].)

C/C++ Compiler Language Extensions

1-234 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Memory Bank Pragmas

The memory bank pragmas provide additional performance characteristics
for the memory areas used to hold code and data for the function.

By default, the compiler assumes that there are no external costs associated
with memory accesses. This strategy allows optimal performance when the
code and data are placed into high-performance internal memory. In cases
where the performance characteristics of memory are known in advance,
the compiler can exploit this knowledge to improve the scheduling of gen-
erated code.

Note that memory banks are different from sections:

• Section is a “hard” placement, using a name that is meaningful to
the linker. If the .ldf file does not map the named section, a linker
error occurs.

• A memory bank is a “soft” placement, using a name that is not vis-
ible to the linker. The compiler uses optimization to take
advantage of the bank’s performance characteristics. However, if
the .ldf file maps the code or data to memory that performs differ-
ently, the application still functions (albeit with a possible
reduction in performance).

#pragma code_bank(bankname)

This pragma informs the compiler that the instructions for the immedi-
ately-following function are placed in a memory bank called bankname.
Without this pragma, the compiler assumes that the instructions are
placed into a bank called “__code”. When optimizing the function, the
compiler takes note of attributes of memory bank bankname, and deter-
mines how long it takes to fetch each instruction from the memory bank.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-235
for TigerSHARC Processors

Compiler

In the example,

#pragma code_bank(slowmem)
int add_slowly(int x, int y) { return x + y; }
int add_quickly(int a, int b) { return a + b; }

the add_slowly() function is placed into the bank “slowmem”, which may
have different performance characteristics from the “__code” bank, into
which add_quickly() is placed.

#pragma data_bank(bankname)

This pragma informs the compiler that the immediately-following func-
tion uses the memory bank bankname as the model for memory accesses for
non-local data that does not otherwise specify a memory bank. Without
this pragma, the compiler assumes that non-local data should use the bank
“__data” for behavioral characteristics.

In the example,

#pragma data_bank(green)
int green_func(void)
{

extern int arr1[32];
extern int bank("blue") i;
i &= 31;
return arr1[i++];

}
int blue_func(void)
{

extern int arr2[32];
extern int bank("blue") i;
i &= 31;

return arr2[i++];
}

In both green_func() and blue_func(), i is associated with the memory
bank “blue”, and the retrieval and update of i are optimized to use the
performance characteristics associated with memory bank “blue”.

C/C++ Compiler Language Extensions

1-236 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The array arr1 does not have an explicit memory bank in its declaration.
Therefore, it is associated with the memory bank “green”, because
green_func() has a specific default data bank. In contrast, arr2 is associ-
ated with the memory bank “__data”, because blue_func() does not have
a #pragma data_bank preceding it.

#pragma stack_bank(bankname)

This pragma informs the compiler that all locals for the immediately-fol-
lowing function are to be associated with memory bank bankname, unless
they explicitly identify a different memory bank. Without this pragma, all
locals are assumed to be associated with the memory bank “__stack”. In
the example,

#pragma stack_bank(mystack)
short dotprod(int n, const short *x, const short *y)
{

int sum = 0;
int i = 0;
for (i = 0; i < n; i++)

sum += *x++ * *y++;
return sum;

}
int fib(int n)
{

int r;
if (n < 2) {

r = 1;
} else {

int a = fib(n-1);
int b = fib(n-2);
r = a + b;

}
return r;

}
#pragma interrupt
#pragma stack_bank(sysstack)
void count_ticks(void)
{

VisualDSP++ 5.0 C/C++ Compiler Manual 1-237
for TigerSHARC Processors

Compiler

extern int ticks;
ticks++;

}

The dotprod() function places the sum and i values into the memory bank
“mystack”, while fib() places r, a and b into the memory bank “__stack”,
because there is no stack_bank pragma. The count_ticks() function does
not declare any local data, but any compiler-generated local storage make
use of the “sysstack” memory bank’s performance characteristics.

#pragma bank_memory_kind(bankname, kind)

This pragma informs the compiler what kind of memory the memory
bank bankname is. The following kinds of memory are allowed by the
compiler:

• internal – the memory bank is high-speed in-core memory

• external – the memory bank is external to the processor

 The pragma must appear at global scope, outside any function defini-
tions, but need not immediately precede a function definition.

In the example,

#pragma bank_memory_kind(blue, internal)
int sum_list(bank("blue") const int *data, int n)
{

int sum = 0;
while (n--)

sum += data[n];
return sum;

}

the compiler knows that all accesses to the data[] array are to the “blue”
memory bank, and hence to internal, in-core memory.

C/C++ Compiler Language Extensions

1-238 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#pragma bank_read_cycles(bankname, cycles)

This pragma tells the compiler that each read operation on the memory
bank bankname requires the cycles cycles before the resulting data is avail-
able. This allows the compiler to schedule sufficient code between the
initiation of the read and the use of its results, to prevent unnecessary
stalls.

In the example,

#pragma bank_read_cycles(slowmem, 20)
int dotprod(int n, const int *x, bank("slowmem") const int *y)
{

int i, sum;
for (i=sum=0; i < n; i++)

sum += *x++ * *y++;
return sum;

}

the compiler assumes that a read from *x takes a single cycle, as this is the
default read time, but that a read from *y takes twenty cycles, because of
the pragma.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition.

#pragma bank_write_cycles(bankname, cycles)

This pragma tells the compiler that each write operation on memory bank
bankname requires the cycles cycles before it completes. This allows the
compiler to schedule sufficient code between the initiation of the write
and a subsequent read or write to the same location, to prevent unneces-
sary stalls.

In the following example,

void write_buf(int n, const char *buf)
{

volatile bank("output") char *ptr = REG_ADDR;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-239
for TigerSHARC Processors

Compiler

while (n--)
*ptr = *buf++;

}
#pragma bank_write_cycles(output, 6)

the compiler knows that each write through ptr to the “output” memory
bank takes six cycles to complete.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

#pragma bank_optimal_width(bankname, width)

This pragma informs the compiler that width is the optimal number of
bits to transfer to/from memory bank bankname in a single cycle. This can
be used to indicate to the compiler that some memories can benefit from
vectorization and similar strategies more than others. The width parameter
must be 8, 16, 24 or 32.

In the example,

void memcpy_simple(char *dst, const char *src, size_t n)
{

while (n--)
*dst++ = *src++;

}
#pragma bank_optimal_width(__code, 16)

the compiler knows that the instructions for the generated function would
be best fetched in multiples of 16 bits, and so can select instructions
accordingly.

The pragma must appear at global scope, outside any function definitions,
but need not immediately precede a function definition. This is shown in
the preceding example.

C/C++ Compiler Language Extensions

1-240 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Increments and Decrements
Care should be taken when using increments or decrements in expres-
sions. The C and C++ standards do not define the order that operations
should take place in every circumstance.

For example, if in the following assignment expression,

a[i] = i++;

the intention might be to put the value of i into array a at index i, then
increment i ready for assignment into the next element of a. However, it
is up to the compiler when to perform the post-increment operation to
make full use of the functionality available on the target machine. In such
cases, the behavior of the code may not be as the user intended.

To be safe, it is recommended that you do not use an increment or decre-
ment operator with a variable that appears more than once in a single
expression. Instead, separate out the increment or decrement and put it in
the desired place.

C++ Style Comments
The compiler accepts C++ style comments, beginning with // and ending
at the end of the line, in C programs. This is essentially compatible with
standard C, except for the following case.

a = b
//* highly unusual */ c
;

which a standard C compiler processes as:

a = b/c;

and a C++ compiler and ccts process as:

a = b;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-241
for TigerSHARC Processors

Compiler

C++ Fractional Type Support
While in C++ mode, the ccts compiler supports fractional (fixed-point)
arithmetic that provides a way of computing with non-integral values
within the confines of the fixed-point representation. Hardware support
for the 32-bit fractional arithmetic is available on the TigerSHARC
processors.

This section describes:

• “Format of Fractional Literals” on page 1-241

• “Conversions Involving Fractional Values” on page 1-242

• “Fractional Arithmetic Operations” on page 1-242

• “Mixed-Mode Operations” on page 1-243

Fractional values are declared with the fract data type. Ensure that your
program includes the <fract> header file. The fract data type is a C++
class that supports a set of standard arithmetic operators used in arith-
metic expressions. Fractional values are represented as signed values in a
range of [-1.0 … +1.0) with a binary point immediately after the sign bit.
Other value ranges are obtained by scaling or shifting. In addition to the
arithmetic, assignment, and shift operations, fract provides several
type-conversion operations.

Note that this implementation does not provide for automatic scal-
ing of fractional values.

Format of Fractional Literals

Fractional literals use the floating-point representation with an “r” suffix
to distinguish them from floating-point literals; for example, 0.5r. The
ccts compiler validates fractional literal values to ensure they reside
within the valid range of values.

C/C++ Compiler Language Extensions

1-242 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Fractional literals are written with the “r” suffix to avoid certain precision
loss. Literals without an “r” are of the type double, and are implicitly con-
verted to fract as needed. After the conversion of a 32-bit double literal
to a fract literal, the value of the latter retains only 24 bits of precision
compared with the full 32 bits for a fractional literal with the “r” suffix.

Conversions Involving Fractional Values

The following notes apply to type-conversion operations:

• Conversion between a fractional value and a floating value is sup-
ported. The conversion to the floating-point type may result in
some precision loss.

• Conversion between a fractional value and an integer value is not
supported. The conversion is not recommended because the only
common values are 0 and –1.

• Conversion between a fractional value and a long double value is
supported via float and may result in some precision loss.

Fractional Arithmetic Operations

The following notes summarize information about fractional arithmetic
operators supported by the compiler:

• Standard arithmetic operations on two fract items include addi-
tion, subtraction, and multiplication.

• Assignment operations include +=, -=, and *=.

• Shift operations include left and right shifts. A left shift is imple-
mented as a logical shift and a right shift is an arithmetic shift.
Shifting left by a negative amount is not recommended.

• Comparison operations are supported between two fract items.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-243
for TigerSHARC Processors

Compiler

• When arithmetic expressions contain a mixture of fract and float
(or double) items, then the float (or double) items are normally
converted to fract representation. For more information, see
“Mixed-Mode Operations” on page 1-243.

• Multiplication of a fractional and an integer produces an integer
result or a fractional result. The program context determines which
type of result is generated following the conversion algorithm of
C++. When the compiler does not have enough context, it gener-
ates an ambiguous operator message.

For example,

error: more than one operator "*" matches

these operands:

...

You must explicitly cast the result of the multiply
operation if the error occurs.

Mixed-Mode Operations

Most operations that are supported for fractional values are supported for
mixed fractional/float or fractional/double arithmetic expressions. At
runtime, a floating-point value is converted to a fractional value, and the
operation is completed using fractional arithmetic.

The assignment operations, such as +=, are the exception to the rule. The
logic of an assignment operation is defined by the type of a variable posi-
tioned on the left side of the expression.

Floating-point operations require an explicit cast of a fractional value to
the desired floating type.

C/C++ Compiler Language Extensions

1-244 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these features are available in
the C99 ANSI Standard. A brief description of the extensions is included
in this section. For more information, refer to the following web address:

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

The GCC compatibility extensions are only available in C dialect
mode. They are not accepted in C++ dialect mode.

Statement Expressions

A statement expression is a compound statement enclosed in parentheses.
A compound statement itself is enclosed in braces { }, so this construct is
enclosed in parentheses-brace pairs ({ }).

The value computed by a statement expression is the value of the last
statement (which should be an expression statement). The statement
expression may be used where expressions of its result type may be used.
But they are not allowed in constant expressions.

Statement expressions are useful in the definition of macros as they allow
the declaration of variables local to the macro. In the following example,

#define min(a,b) ({ \
short __x=(a),__y=(b),__res; \
if (__x > __y) \

__res = __y; \
else \

__res = __x; \
__res; \

})

int use_min() {
return min(foo(), thing()) + 2;

}

http://gcc.gnu.org/onlinedocs/gcc-3.2.1/gcc/C-Extensions.html#C%20Extensions

VisualDSP++ 5.0 C/C++ Compiler Manual 1-245
for TigerSHARC Processors

Compiler

The foo() and thing() statements get called once each because they are
assigned to the variables __x and __y which are local to the statement
expression that min expands to. The min() can be used freely within a
larger expression because it expands to an expression.

Labels local to a statement expression can be declared with the __label__
keyword. For example,

({
__label__ exit;
int i;
for (i=0; p[i]; ++i) {

int d = get(p[i]);
if (!check(d)) goto exit;
process(d);

}
exit:

tot;
})

Statement expressions are not supported in C++ mode.

Statement expressions are an extension to C originally imple-
mented in the GCC compiler. Analog Devices support the
extension primarily to aid porting code written for that compiler.
When writing new code, consider using inline functions, which are
compatible with ANSI/ISO standard C++ and C99, and are as effi-
cient as macros when optimization is enabled.

Type Reference Support Keyword (typeof)

The typeof(expression) construct can be used as a name for the type
of expression without actually knowing what that type is. It is useful for
making source code that is interpreted more than once, such as macros or
include files, more generic.

C/C++ Compiler Language Extensions

1-246 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The typeof keyword may be used wherever a typedef name is permitted
such as in declarations and in casts. For example,

#define abs(a) ({ \
typeof(a) __a = a; \
if (__a < 0) __a = - __a; \
__a; \

})

shows typeof used in conjunction with a statement expression to define a
“generic” macro with a local variable declaration.

The argument to typeof may also be a type name. Because typeof itself is
a type name, it may be used in another typeof(type-name) construct.
This can be used to restructure the C-type declaration syntax.

For example,

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

array (pointer (char), 4) y;

declares y to be an array of four pointers to char.

The typeof keyword is not supported in C++ mode.
The typeof keyword is an extension to C originally implemented
in the GCC compiler. It should be used with caution because it is
not compatible with other dialects of C/C++ and has not been
adopted by the more recent C99 standard.

GCC Generalized Lvalues

A cast is an lvalue (may appear on the left-hand side of an assignment) if
its operand is an lvalue. This is an extension to C, provided for compati-
bility with GCC. It is not allowed in C++ mode.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-247
for TigerSHARC Processors

Compiler

A comma operator is an lvalue if its right operand is an lvalue. This is an
extension to C, provided for compatibility with GCC. It is a standard fea-
ture of C++.

A conditional operator is an lvalue if its last two operands are lvalues of
the same type. This is an extension to C, provided for compatibility with
GCC. It is a standard feature of C++.

Conditional Expressions With Missing Operands

The middle operand of a conditional operator can be left out. If the con-
dition is nonzero (true), then the condition itself is the result of the
expression. This can be used for testing and substituting a different value
when a pointer is NULL. The condition is only evaluated once; therefore,
repeated side effects can be avoided. For example,

printf("name = %s\n", lookup(key)?:"-");

calls lookup() once, and substitutes the string “-” if it returns NULL. This
is an extension to C, provided for compatibility with GCC. It is not
allowed in C++ mode.

Hexadecimal Floating-Point Numbers

C99 style hexadecimal floating-point constants are accepted. They have
the following syntax.

hexadecimal-floating-constant:
{0x|0X} hex-significand binary-exponent-part [floating-suffix]

hex-significand: hex-digits [. [hex-digits]]
binary-exponent-part: {p|P} [+|-] decimal-digits
floating-suffix: { f | l | F | L }

The hex-significand is interpreted as a hexadecimal rational number. The
digit sequence in the exponent part is interpreted as a decimal integer. The
exponent indicates the power of two by which the significand is to be
scaled. The floating suffix has the same meaning that it has for decimal

C/C++ Compiler Language Extensions

1-248 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

floating constants—a constant with no suffix is of type double, a constant
with suffix F is of type float, and a constant with suffix L is of type long
double.

Hexadecimal floating constants enable the programmer to specify the
exact bit pattern required for a floating-point constant.

For example, the declaration

float f = 0x1p-126f;

causes f to be initialized with the value 0x800000.

Zero-Length Arrays

Arrays may be declared with zero length. This is an anachronism sup-
ported to provide compatibility with GCC. Use variable-length array
members instead.

Variable Argument Macros

The final parameter in a macro declaration may be followed by ... to indi-
cate the parameter stands for a variable number of arguments.

For example,

#define trace(msg, args...) fprintf (stderr, msg, ## args);

can be used with differing numbers of arguments,

trace("got here\n");
trace("i = %d\n", i);
trace("x = %f, y = %f\n", x, y);

The ## operator has a special meaning when used in a macro definition
before the parameter that expands the variable number of arguments: if
the parameter expands to nothing, then it removes the preceding comma.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-249
for TigerSHARC Processors

Compiler

The variable argument macro syntax comes from GCC. It is not
compatible with C99 variable argument macros and is not sup-
ported in C++ mode.

Line Breaks in String Literals

String literals may span many lines. The line breaks do not need to be
escaped in any way. They are replaced by the character \n in the generated
string. This extension is not supported in C++ mode. The extension is not
compatible with many dialects of C, including ANSI/ISO C89 and C99.
However, it is useful in asm statements, which are intrinsically
non-portable.

Arithmetic on Pointers to Void and Pointers to Functions

Addition and subtraction is allowed on pointers to void and pointers to
functions. The result is as if the operands had been cast to pointers to
char. The sizeof() operator returns one for void and function types.

Cast to Union

A type cast can be used to create a value of a union type, by casting a value
of one of the union member’s types.

Ranges in Case Labels

A consecutive range of values can be specified in a single case by separating
the first and last values of the range with

For example,

case 200 ... 300:

C/C++ Compiler Language Extensions

1-250 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Declarations Mixed With Code

In C mode, the compiler accepts declarations placed in the middle of
code. This allows the declaration of local variables to be placed at the
point where they are required. Therefore, the declaration can be combined
with initialization of the variable.

For example, in the following function

void func(Key k) {
Node *p = list;
while (p && p->key != k)

p = p->next;
if (!p)

return;
Data *d = p->data;
while (*d)

process(*d++);
}

the declaration of d is delayed until its initial value is available, so that no
variable is uninitialized at any point in the function.

Escape Character Constant

The character escape “\e” may be used in character and string literals and
maps to the ASCII Escape code, 27.

Alignment Inquiry Keyword (__alignof__)

The __alignof__ (type-name) construct evaluates to the alignment
required for an object of a type. The __alignof__ expression construct
can also be used to give the alignment required for an object of the
expression type.

If expression is an lvalue (may appear on the left-hand side of an assign-
ment), the alignment returned takes into account alignment requested by
pragmas and the default variable allocation rules.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-251
for TigerSHARC Processors

Compiler

(asm) Keyword for Specifying Names in Generated Assembler

The asm keyword can be used to direct the compiler to use a different
name for a global variable or function. (See also “#pragma linkage_name
identifier” on page 1-214.)

For example,

int N asm("C11045");

tells the compiler to use the label C11045 in the assembly code it gener-
ates wherever it needs to access the source level variable N. By default, the
compiler would use the label _N.

The asm keyword can also be used in function declarations but not func-
tion definitions. However, a definition preceded by a declaration has the
desired effect. For example,

extern int f(int, int) asm("func");

int f(int a, int b) {
. . .
}

Function, Variable and Type Attribute Keyword (__attribute__)

The __attribute__ keyword can be used to specify attributes of functions,
variables and types, as in these examples:

void func(void) __attribute__ ((section("fred")));
int a __attribute__ ((aligned (8)));
typedef struct {int a[4];} __attribute__((aligned (4))) Q;

The __attribute__ keyword is supported, and therefore code, written for
GCC, can be ported. All attributes accepted by GCC on ix86 are
accepted. The ones that are actually interpreted by the ccts compiler are
described in the sections of this manual describing the corresponding
pragmas. (See “Pragmas” on page 1-187.)

C/C++ Compiler Language Extensions

1-252 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Unnamed struct/union fields within struct/unions

The compiler allows you to define a structure or union that contains, as
fields, structures and unions without names. For example,

struct {
int field1;
union {

int field2;
int field3;

};
int field4;

} myvar;

This allows the user to access the members of the unnamed union as
though they were members of the enclosing struct, for example,
myvar.field2.

Preprocessor-Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text that follows the #warning
directive on the line is used as the warning message.

Migrating .ldf Files From Previous VisualDSP++
Installations

The .ldf files which have been used in VisualDSP++ 4.5 projects require
updating before they can be used in VisualDSP++ 5.0.

The changes are described in “C++ Support Tables (ctor, gdt)”.

Files for versions of VisualDSP++ prior to VisualDSP++ 4.5 will need to
be updated according to the release notes for each intervening release.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-253
for TigerSHARC Processors

Compiler

C++ Support Tables (ctor, gdt)

This change is required.

Linker changes in VisualDSP++ 5.0 make it possible for non-contiguous
placement of highly-aligned data. This means that order of mapping in
output memory sections is not necessarily maintained. This will result in
linker warning li2040 which can be avoided by using the
FORCE_CONTIGUITY directive when contiguous placement is required, and
NO_FORCE_CONTIGUITY otherwise.

The C++ static constructor mechanism (ctor/ctorl) and exceptions han-
dling support (.gdt/.gdtl) use table inputs which are terminated using
the sections ending in “l”. This requires contiguous placement of these
sections, so use of FORCE_CONTIGUITY is recommended.

For example, replace:

ctor {
INPUT_SECTIONS($OBJECTS(ctor0) $LIBRARIES(ctor0))
INPUT_SECTIONS($OBJECTS(ctor1) $LIBRARIES(ctor1))
INPUT_SECTIONS($OBJECTS(ctor2) $LIBRARIES(ctor2))
INPUT_SECTIONS($OBJECTS(ctor3) $LIBRARIES(ctor3))
INPUT_SECTIONS($OBJECTS(ctor4) $LIBRARIES(ctor4))
INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
INPUT_SECTIONS($OBJECTS(ctorl) $LIBRARIES(ctorl))

} >M4DataA
...
.gdt {

INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))
INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

} > M2DataA

with:

ctor {
FORCE_CONTIGUITY
INPUT_SECTIONS($OBJECTS(ctor0) $LIBRARIES(ctor0))

C/C++ Compiler Language Extensions

1-254 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

INPUT_SECTIONS($OBJECTS(ctor1) $LIBRARIES(ctor1))
INPUT_SECTIONS($OBJECTS(ctor2) $LIBRARIES(ctor2))
INPUT_SECTIONS($OBJECTS(ctor3) $LIBRARIES(ctor3))
INPUT_SECTIONS($OBJECTS(ctor4) $LIBRARIES(ctor4))
INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
INPUT_SECTIONS($OBJECTS(ctorl) $LIBRARIES(ctorl))

} >M4DataA
...
.gdt {

FORCE_CONTIGUITY
INPUT_SECTIONS($OBJECTS(.gdt) $LIBRARIES(.gdt))
INPUT_SECTIONS($OBJECTS(.gdtl) $LIBRARIES(.gdtl))

} > M2DataA

For more information, see “Constructors and Destructors of Global Class
Instances” on page 1-274.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-255
for TigerSHARC Processors

Compiler

Preprocessor Features
The ccts compiler provides standard preprocessor functionality, as
described in any C text. The following extensions to standard C are also
supported:

// end of line (C++-style) comments

#warning directive

For more information about these extensions, refer to “Preprocessor-Gen-
erated Warnings” on page 1-252.

This section describes:

• “Predefined Preprocessor Macros”

• “Writing Macros” on page 1-258

Predefined Preprocessor Macros
The ccts compiler defines a number of macros to produce information
about the compiler, source file, and options specified. These macros can
be tested, using the #ifdef and related directives, to support your pro-
gram’s needs. Similar tailoring is done in the system header files.

Macros, such as __DATE__, can be useful to incorporate in text strings. The
“#” operator within a macro body is useful in converting such symbols
into text constructs.

Table 1-29 lists the predefined preprocessor macros.

Preprocessor Features

1-256 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 1-29. Predefined Preprocessor Macros

Preprocessor Macro Description

__ADSPTS__ ccts always defines __ADSPTS__ as 1, indicating that a
TigerSHARC program is being compiled

__ADSPTS101__ ccts defines __ADSPTS101__ as 1 when you compile with the
-proc ADSP-TS101 command-line switch

__ADSPTS201__ ccts defines __ADSPTS201__ as 1 when you compile with the
-proc ADSP-TS201 command-line switch

__ADSPTS202__ ccts defines __ADSPTS202__ as 1 when you compile with the
-proc ADSP-TS202 command-line switch

__ADSPTS203__ ccts defines __ADSPTS203__ as 1 when you compile with the
-proc ADSP-TS203 command-line switch

__ADSPTS20x__ ccts defines __ADSPTS20x__ as 1 when you compile with either
the -proc ADSP-TS201, -proc ADSP-TS202, or -proc
ADSP-TS203 command-line switch

__ANALOG_EXTENSIONS__ ccts defines __ANALOG_EXTENSIONS__ as 1

__cplusplus ccts defines __cplusplus as 199711L when you compile in C++
mode

__DATE__ The preprocessor expands this macro into the current date as a
string constant. The date string constant takes the form
Mmm dd yyyy (ANSI standard).

__DOUBLES_ARE_FLOATS__ The macro __DOUBLES_ARE_FLOATS__ is defined to 1 when the
size of the double type is the same as the single precision float
type. When the compiler switch -double-size-64 is used, the
macro is not defined.

__ECC__ ccts always defines __ECC__ as 1

__EDG__ ccts always defines __EDG__ as 1, which signifies that an Edison
Design Group front end is being used

__EDG_VERSION__ ccts always defines __EDG_VERSION__ as an integral value repre-
senting the version of the compiler’s front end

__EXCEPTIONS ccts defines __EXCEPTIONS as 1 when C++ exception handling is
enabled using the -eh command-line switch (on page 1-70)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-257
for TigerSHARC Processors

Compiler

__FILE__ The preprocessor expands this macro into the current input file
name as a string constant. The string matches the name of the file
specified on the ccts command line or in a preprocessor
#include command (ANSI standard).

_LANGUAGE_C ccts always defines _LANGUAGE_C as 1; present when C compiler
calls use it to specify headers.

__LINE__ The preprocessor expands the __LINE__ macro into the current
input line number as a decimal integer constant (ANSI standard)

__NO_BUILTIN ccts defines __NO_BUILTIN as 1 when you compile with the
-no-builtin command-line switch

__RTTI ccts defines __RTTI as 1 when C++ run-time type information is
enabled using the -rtti command-line switch (on page 1-72)

__SIGNED_CHARS__ ccts defines __SIGNED_CHARS__ as 1 unless you compile with the
-unsigned-char command-line switch

__STDC__ ccts always defines __STDC__ as 1

__STDC_VERSION__ ccts always defines __STDC_VERSION__ as 199409L when com-
piling in C mode

__TIME__ The preprocessor expands this macro into the current time as a
string constant. The time string constant takes the form hh:mm:ss
(ANSI standard).

__TS_BYTE_ADDRESS ccts defines this macro if byte-addressing mode is selected using
the -char-size-8 switch

__SILICON_REVISION__ The __SILICON_REVISION__ macro is defined when the
-si-revision switch is specified with a value other than “none”.
The value it is defined to is the major revision number left-shifted
by 8 logically or’d against the minor revision number.

__VERSION__ The preprocessor expands this macro into a string constant con-
taining the current compiler version

Table 1-29. Predefined Preprocessor Macros (Cont’d)

Preprocessor Macro Description

Preprocessor Features

1-258 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Writing Macros
A macro is a name standing for a block of text that the preprocessor sub-
stitutes for. Use the #define preprocessor command to create a macro
definition. When the macro definition has arguments, the block of text
the preprocessor substitutes can vary with each new set of arguments.

Compound Macros

Whenever possible, use inline functions rather than compound macros. If
compound macros are necessary, define such macros to allow invocation
like function calls. This will make your source code easier to read and
maintain. If you want your macro to extend over more than one line, you
must escape the newlines with backslashes. If your macro contains a string

__VERSIONNUM__ Defines __VERSIONNUM__ as a numeric variant of __VERSION__
constructed from the version number of the compiler. Eight bits
are used for each component in the version number and the most
significant byte of the value represents the most significant version
component. As an example, a compiler with version 7.1.0.0
defines __VERSIONNUM__ as 0x07010000 and 7.1.1.10 would
define __VERSIONNUM__ to be 0x0701010A.

__VISUALDSPVERSION__ The preprocessor defines this macro to be an eight-digit hexadeci-
mal representation of the VisualDSP++ release, in the form
0xMMmmuurr, where:
– MM is the major release number
– mm is the minor release number
– uu is the update number
– rr is “00”, and reserved for future use
For example, VisualDSP++5.0 Update 1 would be 0x05000100.

__WORKAROUNDS_ENABLED Defines this macro to be 1 if any hardware workarounds are
implemented by the compiler. This macro is set if the
-si-revision switch has a value other than “none” or if any spe-
cific workaround is selected by means of the -workaround switch.

Table 1-29. Predefined Preprocessor Macros (Cont’d)

Preprocessor Macro Description

VisualDSP++ 5.0 C/C++ Compiler Manual 1-259
for TigerSHARC Processors

Compiler

literal and you are using the -no-multiline switch (on page 1-46), then
you must escape the newline twice, once for the macro and once for the
string.

The following two code segments define two versions of the macro
SKIP_SPACES:

/* SKIP_SPACES, regular macro */
#define SKIP_SPACES ((p), limit) { \

char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)— —; \
break; \

} \
} \

}

/* SKIP_SPACES, enclosed macro */
#define SKIP_SPACES (p, limit) \

do { \
char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)— —; \
break; \

} \
} \

} while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you would sometimes need to omit the semicolon after the macro call in
order to have a legal program. This leads to a need to remember whether a
function or macro is being invoked for each call and whether the macro
needs a trailing semicolon or not.

Preprocessor Features

1-260 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

With the do {…} while (0) construct, you can pretend that the macro is
a function and always put the semicolon after it. For example,

/* SKIP_SPACES, enclosed macro, ends without ‘;’ */
if (*p != 0)

SKIP_SPACES (p, lim);
else...

This expands to:

if (*p != 0)
do {

...
} while (0); /* semicolon from SKIP_SPACES (...); */

else...

Without the do {...} while (0) construct, the expansion would be:

if (*p != 0)
{

...
}

; /* semicolon from SKIP_SPACES (...); */
else...

The above code is not legal C/C++ syntax.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-261
for TigerSHARC Processors

Compiler

C/C++ Run-Time Model and
Environment

This section provides a full description of the TigerSHARC run-time
model and run-time environment. The run-time model, which applies to
compiler-generated code, includes descriptions of the layout of the stack,
data access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
TigerSHARC processors. Assembly routines linked to C/C++ routines
must follow these conventions.

ADI recommends that assembly programmers maintain stack
conventions.

This section provides:

• “Stack Frame Overview” on page 1-262

• “Stack Frame Description” on page 1-264

• “Constructors and Destructors of Global Class Instances” on
page 1-274

• “Support for argv/argc” on page 1-277

• “Allocation of Memory for Stacks and Heaps in LDFs” on
page 1-278

• “Using Multiple Heaps” on page 1-280

• “Miscellaneous Information” on page 1-289

• “Register Classification” on page 1-289

C/C++ Run-Time Model and Environment

1-262 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Stack Frame Overview
The stack frame (or activation record) provides for the following activities:

• Space for local variables for the current procedure. For the com-
piler, this includes temporary storage as well as that required for
explicitly declared user automatic variables.

• Place to save linkage information, such as return addresses, location
information for the previous caller’s stack frame, and to allow this
procedure to return to its caller.

• Space to save information that must be preserved and restored.

• Arguments passed to the current procedure.

In addition, if this is not a leaf procedure (if it is going to call other proce-
dures), its stack frame also contains outgoing linkage and parameter space:

• Space for the arguments to the called procedure.

• Space for the callee to save basic linkage information.

Figure 1-3 provides a general overview of the stack. Note that the stack
grows downward on the page. Because the stacks grow towards smaller
addresses, higher addresses are found in the upwards direction. Each row
is a quad word group; the higher addresses are on the left since this is a lit-
tle-endian machine.

There are two stacks and thus two current stack frames at any point on the
TigerSHARC processors. One stack resides in each of the data memory
banks. One stack is addressed from the j iALU registers, the other stack is
addressed from the k register. For more information, refer to “Stack Frame
Description” on page 1-264.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-263
for TigerSHARC Processors

Compiler

Each stack is controlled by a pair of pointers—a Stack Pointer (SP), which
identifies the boundary of the in-use portion of the stack space, and a
Frame Pointer (FP), which provides stable addressing to the current
frame.

The second stack is not yet used for local variables.

The following design attributes have been included in the TigerSHARC
processor’s run-time model for additional efficiency:

• The frame pointers are offset by -0x40 from the actual base of the
frame. This provides greater addressing range for larger negative
offsets (for local variables) than positive ones (for arguments).
Since all FP-based references are relative. (For example, with an
offset), there is no run-time cost and little extra complexity. This

Figure 1-3. ADSP-TS101 Processor Stack

Incoming
Arguments

Linkage
Information

Linkage
Information

and Temporaries

Save Area
(for caller info

Outgoing Arguments

Free Space

FP

SP

C/C++ Run-Time Model and Environment

1-264 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

offset is constant throughout the system; it does not change for
particular routines. However, this may cause the Frame Pointer
address to actually be off the end of the stack.

• Optionally, a copy of the j frame pointer may be kept in register
k24. This increases performance by allowing simple jFP-relative
memory references to occur in the same instruction line as other
[address] calculations in the jALU. This copy is made at the discre-
tion of the particular procedure. A similar copy of kSP into j is also
possible.

• A routine that does not wish to use the k stack need not do so. If it
does not use the k stack, it can dispense with all operations, includ-
ing linkage related to the k stack and k stack pointers.

At present, a k frame must always be allocated in order for the
debugger to be able to walk back up the stack. At some future
point, it is expected that the debug information will be enriched to
include information on whether or not a k frame is present.

• Space is allocated in the caller’s frame for at least four “argument
words”. (See in “Stack Frame Description”.) For routines with few
arguments, this space is available for use as temporary storage. That
may be of use for small, leaf routines, which may be able to avoid
having to create a stack frame.

Stack Frame Description
This section describes the stack as shown in Figure 1-3 on page 1-263.

Incoming Arguments

The memory area for incoming arguments begins at the effective
jSP value + 0x8 and after the frame pointer has been modified the
arguments can be accessed from j26 + 0x48. Argument words are

VisualDSP++ 5.0 C/C++ Compiler Manual 1-265
for TigerSHARC Processors

Compiler

mapped by ascending addresses, so the second argument word is
mapped at j26+0x49. Note that the first four words arrive in regis-
ters, although space is allocated in memory as well.

Linkage Information

The return address is saved in the CJMP register by the CALL
instruction. This is saved at jSP+0 (j27+0) on entry. It is retrieved
from effective jFP + 0 (j26+64) at exit.

Local Variables and Temporaries

Space for a register save area and local variables/temporaries is allo-
cated on both stacks by the procedure prologue. The save area
begins after the outgoing argument space, typically at jSP+12 and
kSP+8. This can also be addressed from jFP and kFP. Local vari-
able/temp storage begins after the save area. It is addressed at
effective jFP-offset or effective kSP-offset. Since the actual FP regis-
ters are offset by a constant 0x40, the actual offsets might be
positive for some cases. This should cause no problems.

Outgoing Arguments

Space for outgoing arguments is allocated on the stack at jSP+8
(j27+8). Four words are always available as part of the basic stack
frame. If more are needed, they can either be allocated as part of
the prologue or by local extension of the stack frame for the pur-
pose of a particular call.

Outgoing Linkage

Four words, at jSP+4 (j27+4) and kSP+4 (k27+4), are available
immediately to the callee for saving linkage information. These
words are designated for holding the quad registers containing the
j and k stack pointer registers.

C/C++ Run-Time Model and Environment

1-266 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Free Space

Space below jSP and kSP is considered free and unprotected. It is
available for use (in growing the stack) at any time, synchronously
or asynchronously (the latter for interrupt handling). This space
should never be used.

General System-Wide Specifications

The C/C++ run-time model assumes that the stack is placed in
internal memory. As described in “Stack Frame Overview” on
page 1-262, there are many instances in compiler-generated code
and in the run-time libraries where the stack is accessed and there
would be a significant performance overhead if the stack were to be
located in external memory. As the stack is assumed to be located
in internal memory, the compiler and run-time libraries make use
of loads directly into sequencer registers which would be illegal
were the stack to be placed in external memory. When assembling
code generated by the compiler, the driver suppresses diagnostic
reports from the assembler regarding loads into sequencer registers.

Some general specifications that apply to the stacks are:

• The stacks grow down in memory from higher to lower addresses.

• The current frames’ “base” is addressed by the FP register (the value
in FP plus 0x40).

• The first free quad-word in each stack is addressed by the SP regis-
ter. Locations at that point and beyond are vulnerable and must
not be used. These locations may be clobbered by asynchronous
activities, such as interrupt service routines. Alternatively, locations
at SP and beyond are always available if additional space is needed,
but SP must be moved to guard the space. Therefore, the first
“used” (protected) word is at SP+4.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-267
for TigerSHARC Processors

Compiler

Data can be pushed onto the stack by executing an instruction like
[jSP += -4] = reg; for either j or k.

• The address of each FP must always be four-word aligned; that is,
the low-order two address bits are always zero.

• Likewise, the SP registers should also be kept four-word aligned at
all times. This allows interrupt routines to save registers without
having to first verify stack alignment.

• The return address of the caller is stored at offset zero from the
address carried by the current effective jFP.

• The linkage back to the previous stack frame is stored at offset +6
and +7 from each current effective FP.

At a procedure call, the following must be true:

• Each SP must be four-word aligned (as it forms the basis for the
new frame’s FP).

• There must be eight words available starting at jSP+4 and four
words available starting at kSP+4. The first four words on each
stack are used for storing linkage information, and the remaining
four (and perhaps others) on the j stack hold arguments. There is
always space allocated for at least four arguments, even if the cur-
rent procedure does not have that many. That way, the callee can
always store the argument registers. Small routines are free to use
unneeded argument slots for local storage.

• The standard calling convention further specifies that the previous
frame’s linkage information is already stored in the standard slots
by the time control reaches the new procedure. However, the callee
is responsible for restoring this information prior to exit.

C/C++ Run-Time Model and Environment

1-268 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The saving of the frame linkage can be performed as part of the
instruction line containing the procedure call. In some instances,
this information remains constant for several outgoing calls, in
which case it need not be repeatedly stored.

Argument Passage

A contiguous block of memory, near the end of the current frame, is pro-
vided to hold all arguments. Argument handling begins by conceptually
“mapping” all the arguments into this area. The arguments are laid out
into ascending addresses. They must obey alignment constraints based on
their size. An argument might occupy more than one word; there might
also be a vacant word, or “hole”, in the argument area to maintain align-
ment. This is the definition of “argument words”.

Data corresponding to the first four words of the argument area are nor-
mally passed in registers, rather than on the stack, which increases
efficiency. For a common situation where each argument occupies a single
word, the first four arguments can be passed in registers. There is also
space allocated on the stack so that these register values can be stored back
in the prologue in their canonical places.

The choice of register file used for argument passage is based on the argu-
ment’s declared type. Although two register files are available, only four
argument words are passed. The corresponding word in the other register
file is unused. (See Table 1-30 on page 1-269.)

Rules governing argument words are:

• Pointers and integral types of one word are passed in the j registers.

• Floating types, integral types of more than one word, and structure
(or unions) that fit, are passed in the x registers. This use of regis-
ters to pass structures or unions operates independently of the type

VisualDSP++ 5.0 C/C++ Compiler Manual 1-269
for TigerSHARC Processors

Compiler

of the structure or union fields. (A structure composed entirely of
pointers is still passed in x.) The alignment constraints are still
observed.

• If an argument requires sufficient space that causes it to span over
the end of the register argument area (typically, if it requires more
than two words), it and all succeeding arguments are passed in
memory in the usual place rather than in the registers.

• If the prototype specifies varargs (“…”), then the argument
immediately preceding the ellipsis and all succeeding arguments are
passed in memory. Note that varargs routines must have proto-
types in order to function correctly.

• If there is no prototype, the actual types of the arguments are used
to determine how they are passed.

• Large structures may be passed by value. The structures are copied
into the argument area, just as with other arguments.

Passing a C++ Class Instance

A C++ class instance function parameter is always passed by reference
when a copy constructor has been defined for the C++ class. If a copy
constructor has not been defined for the C++ class, then the function
parameter is passed by value.

Table 1-30. Register–Argument Word Correspondence

Argument Word
Register Used

if pointer or int if float or double word

Arg word 1 j4 xR4

Arg word 2 j5 xR5

Arg word 3 j6 xR6

Arg word 4 j7 xR7

C/C++ Run-Time Model and Environment

1-270 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Consider the following example:

class fr
{

public:
int v;

public:
fr () {}
fr (const fr& rc1) : v(rc1.v) {}

};

extern int fn(fr x);

fr Y;

int main()
{

return fn (Y);
}

The function call fn (Y) in main will pass the C++ class instance Y by ref-
erence because a copy constructor for that class has been defined by fr
(const fr& rc1) : v(rc1.v) {}. If this copy constructor were removed,
then Y would be passed by value.

Return Values

Return values always use registers. The type of the value determines, as
with arguments, whether to use the j or x register file (j8, or xR8 and xR9).

Two x return registers are identified to accommodate double-word
result values.

If the return value is larger than two words, then the caller must allocate
space and pass the address in as a “hidden argument”. The j return regis-
ter, j8, is used for this purpose. The procedure must also return the [same]
pointer value in that register on return. This is an optimization to allow
more efficient referencing of the returned value.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-271
for TigerSHARC Processors

Compiler

Procedure Call and Return

The following steps describe how to manage procedure calls and returns.

To Call a Procedure:

1. Expand the current stack frame, if necessary, to provide space for the
outgoing arguments and linkage information.

The number of arguments must be rounded up to a multi-
ple of four in order to maintain proper alignment.

It is recommended that you establish and retain a basic call
area during prologue. This saves you from creating and
removing the area at each procedure call. However, if the
number of arguments is large or a nested call occurs, you
must do a full expand-remove cycle.

2. Evaluate the arguments and set them up in the argument area
and/or registers.

If another function must be called as part of computing an
argument, then the stack can be extended (temporarily) a
second time. If you extend the stack a second time, it’s
probably best to store even the register arguments of the
outer procedure into the stack (for safekeeping), then load
them just prior to the actual call.

3. Call the procedure, saving the current Frame Pointers in the
appointed slots.

4. Remove the frame expansion on return, if desired.

C/C++ Run-Time Model and Environment

1-272 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

On Entry:

1. Set the new Frame Pointers (in both iALUs) to the value of the cur-
rent stack pointer, less the 0x40 offset. This can be done
simultaneously in both iALUs.

2. Set up a new frame and continue saving context: store the cjmp
(return) register on the j stack at offset +0 from the current (old)
stack pointer. By using post-modify addressing on the store
instruction, the stack pointer may simultaneously be moved down
to create a new frame.

Registers are saved on the k stack as needed while the frame is
created.

3. If debug is specified (the -g switch), arguments arriving in registers
should be stored back into memory so the debugger can find them.

This restriction may be lifted in future releases when the debug
tables are more expressive.

4. If desired, transfer a copy of the new jFP register to k.

5. Continue saving registers and then executing the procedure.

A leaf procedure that does not require much stack space might choose to
omit steps (1) and (2), operating without its own stack frame. A small
amount of local storage is available in any unused argument slots since
there are always at least four slots as well as the two quad words reserved
for saving linkage information.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-273
for TigerSHARC Processors

Compiler

To Return from a Procedure:

1. If a call was made to another procedure, then CJMP must be
restored.

For best performance, restore CJMP as soon as possible after
the last procedure call or computed jump, (such as a
switch). If the return jump is predicted, stalls can be
avoided provided that CJMP is reloaded four cycles plus
twelve (12) words prior to the return.

2. Place the return value in the correct register (if not there already).

3. Restore miscellaneous saved registers.

4. Restore the Stack Pointers for the previous frame. This can be
accomplished, for each stack, with a single quad load.

5. Return to the caller.

Code Sequences

The following example shows the normal code sequences used for the var-
ious actions involved in calling a procedure and returning from a
procedure.

// Extend stack frame if necessary (more than 4 arguments)
jsp = jsp - nn; ksp = ksp - mm;; // must be multiple of 4
// Evaluate arguments. Store into memory, or into arg

registers.
...
// Now do the call.
call subr; q[jSP+4]=j27:24; q[kSP+4]=k27:24;;

The fourth slot might be available for some computation or it may be used
by the IMEX forming the full address for the call.

// if the stack was extended, cut it back.
jSP = jSP + nn; kSP = kSP + mm;; // must be multiple of 4

C/C++ Run-Time Model and Environment

1-274 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Prologue:

jFP = jSP -0x40; kFP = kSP -0x40;;
[jSP += -nnj]=CJMP; q[kSP += -nnk]=<some regs>;;

// At this point, the new frame is intact.
q[jSP+n] = <some quad>; kjFPcopy = jFP;

Epilogue:

// Restore CJMP after last outgoing call
CJMP = [jFP+0x40];

More code:

// Nearing end, restore other saved registers.
...
// Exit: Restore stack linkage and return.
jump CJMP; j27:24 = q[jFP+0x44]; k27:24=q[kFP+0x44];;

There is a four-cycle wait before either frame pointer can be used
again. If the return jump is not predicted correctly, the four-cycle
wait covers the delay. Otherwise, callers might want to refrain from
immediately accessing the frame pointers on return.

You should not reset the stack pointers prior to return. That would
create a time window in which the stack has been reset to a frame
not corresponding to the current procedure.

Constructors and Destructors of Global Class
Instances

Constructors for global class instances are invoked by the C run-time
header during start-up. There are several components that allow this to
happen:

1. The associated data space for the instance.

2. The associated constructor (and destructor, if one exists) for the
class.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-275
for TigerSHARC Processors

Compiler

3. A compiler-generated “start” routine.

4. A compiler-generated table of such “start” routines.

5. A compiler-constructed linked-list of destructor routines.

6. The run-time header itself.

The interaction of these components is as follows.

The compiler generates a “start” routine for each module that contains
globally-scoped class instances that need constructing or destructing.
There is at most one “start” routine per module; it handles all the globally-
scoped class instances in the modules:

• For each such instance, it invokes the instance’s constructor. This
may be a direct call, or it may be inlined by the compiler optimizer.

• If the instance requires destruction, the “start” routine registers this
fact for later, by including pointers to the instance and its destruc-
tor into a linked list.

The start routine is named after the first such instance encountered,
though the classes are not guaranteed to be constructed or destructed in
any particular order (with the exception that destructors are called in the
reverse order of the constructors). Such instances should not have any
dependency on construction order; the -check-init-order switch
(on page 1-69) is useful for verifying this during system development, as it
plants additional code to ensure objects are not constructed out of order.

A pointer to the “start” routine is placed into the ctor section of the gen-
erated object file. When the application is linked, all ctor sections are
mapped into the same ctor output section, forming a table of pointers to
the “start” routines. An additional ctorl object is appended to the end of
the table; this contains a terminating NULL pointer.

C/C++ Run-Time Model and Environment

1-276 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When the run-time header is invoked, it calls _ctor_loop(), which walks
the table of ctor sections, calling each pointed-to “start” function until it
reaches the NULL pointer from ctorl. In this manner, the run-time
header calls each global class instance’s constructor, indirectly through the
pointers to “start” functions.

When the program reaches exit(), either by calling it directly or by
returning from main(), the exit() routine follows the normal process of
invoking the list of functions registered through the atexit() interface.
One of these is a function that walks the list of destructors, invoking each
in turn (in reverse order from the constructors).

The destructor loop function is actually called directly from _exit(),
rather than being registered with atexit().

Functions registered with atexit() may not make reference to glo-
bal class instances, as the destructor for the instance may be
invoked before the reference is used.

Constructors, Destructors and Memory Placement

By default, the compiler places the code for constructors and destructors
into the same section as any other function’s code. This can be changed
either by specifying the section specifically for the constructor or destruc-
tor (See “#pragma section/#pragma default_section” on page 1-219 and
“Placement Support Keyword (section)” on page 1-124), or by altering
the default destination section for generated code (See “#pragma sec-
tion/#pragma default_section” on page 1-219 and “-section
id=section_name[,id=section_name...]” on page 1-58). Note that if a con-
structor is inlined into the “start” routine by the optimizer, such
placement will have no effect. For more information, see “Inlining and
Sections” on page 1-101.

While normal compiler-generated code is placed into the CODE area, the
“start” routine is placed into the STI area. Both CODE and STI default to
the same section, but may be changed separately using #pragma

VisualDSP++ 5.0 C/C++ Compiler Manual 1-277
for TigerSHARC Processors

Compiler

default_section or the -section switch (as the “start” function is an
internal function generated by the compiler, its placement cannot be
affected by #pragma section).

The pointer to the “start” routine is placed into the ctor section. This is
not configurable, as the invocation process relies on all of the “start” rou-
tine pointers being in the same section during linking, so that they form a
table. It is essential that all relevant ctor sections are mapped during link-
ing; if a ctor section is omitted, the associated constructor will not be
invoked during start-up, and run-time behavior will be incorrect.

The .ldf files also map a number of additional sections, ctor0 - ctor4;
the run-time library contains a number of initialization routines that have
an ordering dependence, and so their “start” routine pointers are explicitly
mapped into these additional ctor sections. Their initialization routines
are called in a specific order. The compiler pointers are all mapped to
ctor, however.

If destructors are required, the compiler generates data structures pointing
to the class instance and destructor. These structures are placed into the
default variable-data section (the DATA area).

Support for argv/argc
By default, the facility to specify arguments that get passed to your main()
(argv/argc) at run-time is enabled. However, to correctly set up argc and
argv requires additional configuration by the user.

Modify your application in the following ways:

1. Define your command-line arguments in C by defining a variable
called “__argv_string”. When linked, your new definition over-
rides the default zero definition otherwise found in the C run-time
library. For example,

const char __argv_string[] = "-in x.gif -out y.jpeg";

C/C++ Run-Time Model and Environment

1-278 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

2. To use command-line arguments as part of Profile-Guided Opti-
mizations (PGO), it is necessary to define __argv_string within a
memory section called SEG_ARGV. Therefore, define a memory sec-
tion called seg_argv in your .ldf file and include the definition of
___argv_string in it if using PGO. The default .LDF files do this
for you if the macro IDDE_ARGS is defined at link time.

Allocation of Memory for Stacks and Heaps in LDFs
In previous releases of VisualDSP++, the default stacks and heaps were
allocated separate memory sections in the .ldf files. In VisualDSP++ 5.0,
the allocation of memory for stacks and heaps is performed by the linker
at link-time, resulting in more efficient memory use. The memory alloca-
tion method is as follows:

• An area of memory in one of the default memory areas (for exam-
ple, M1Data) is reserved for stacks and heaps, using the RESERVE()
command.

• Memory is allocated to data that must be placed in this section (for
example, global variables and static variables).

• The RESERVE_EXPAND() command is use to claim any unused space
in the default memory area and allocate it to the stack and heap.
The ratio of memory allocated to the stack and heap can be
adjusted, if necessary.

Example of Heap/Stack Memory Allocation

Listing 1-1 on page 1-279 shows how the RESERVE_EXPAND() command
can be used to allocate memory for a heap and a stack in the .ldf file. The
default .ldf files also allocate a second heap (altheap) and stack (kstack),
in memory area M2Data, using the same method.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-279
for TigerSHARC Processors

Compiler

Listing 1-1. Heap/Stack Memory Allocation in LDFs

data1_cont
{
 INPUT_SECTIONS($OBJECTS(MEM_ARGV) $LIBRARIES(MEM_ARGV))
 // Allocate stacks for the application. Note that stacks
 // grow downward, and must be quad-word aligned. This
 // means that the location just after the highest word of
 // the stack is quad-word aligned (evenly divisible by
 // 4). There are two labels for each stack: "*_base" is
 // the location just ABOVE the top of the stack, and
 // "*_limit" is the lowest word that is part of the
 // stack. Each stack occupies all of its own

 RESERVE_EXPAND(heaps_and_stack, heaps_and_stack_length)
 ldf_jstack_end = heaps_and_stack;
 ldf_jstack_base = (ldf_jstack_end +
 (((heaps_and_stack_length * 14K) / 16K) - 4))
 & 0xfffffffc;
 ldf_jstack_limit = ldf_jstack_base - ldf_jstack_end;
 ldf_defheap_base = ldf_jstack_base + 4;
 ldf_defheap_end = (ldf_defheap_base +
 (((heaps_and_stack_length * 2K) / 16K) - 4))
 & 0xfffffffc;
 ldf_defheap_size = ldf_defheap_end - ldf_defheap_base;
} >M1Data

The following list provides required symbols used by the run-time librar-
ies to create and manage the stack and heap. These symbols must be
defined in the .ldf file:

ldf_jstack_base ldf_kstack_base ldf_defheap_bas

ldf_altheap_size ldf_defheap_size ldf_altheap_base

C/C++ Run-Time Model and Environment

1-280 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Using Multiple Heaps
The TigerSHARC C/C++ run-time library supports the standard heap
management functions calloc, free, malloc, and realloc. By default,
these functions access the default heap, which is defined in the standard
Linker Description File and the run-time header.

User-written code can define any number of additional heaps. These addi-
tional heaps can be accessed either by the standard calloc, free, malloc
and realloc functions, or via the extension routines heap_calloc,
heap_free, heap_malloc and heap_realloc.

Each heap must be declared in the heap table in the .ldf file and the
TS\lib\src\crt_src\ts_hdr.asm file must declare memory and section
placement for the heaps. Refer to the example below on how to modify the
header object and .ldf file. The default ts_hdr.asm file declares two
default heaps. To use a custom ts_hdr.asm, assemble and use it to replace
the default ts_hdr_TS101.doj that is specified in your copy of the .LDF
file. The calculation for a heap’s size and length occur in the project’s
linker description file. When linking, the linker handles substitution of
values to resolve the heap’s definition (the .VAR directive in the ts_hdr.asm
file).

Heap Identifiers

The primary heap ID is the index of the descriptor for that heap in
ts_hdr.asm. The default heap, seg_heap, is always 0 and the primary heap
IDs of user-defined heaps are 1 with any additional user-defined heaps
being 2, 3, and so on, with each heap index being an increment of one
from the previous heap index.

The following ts_hdr.asm is an extract which contains the default heap
entry and one additional alternate heap. The base and size attributes for
each heap must be specified by symbols defined in the .ldf file. In this
case, ldf_defheap_base and ldf_defheap_size are defined by the default

VisualDSP++ 5.0 C/C++ Compiler Manual 1-281
for TigerSHARC Processors

Compiler

.ldf file for the default heap, as shown in Listing 1-1, and
ldf_altheap_base and ldf_altheap_size are defined by the default .ldf
file for an additional heap, by the same method.

// Create the heap descriptor table and describe the default
// heap, which is the first entry in the heap descriptor
// table. The ts_exit.asm file declares a label for the end of
// this table.

.SECTION heaptab;

.GLOBAL ___heaptab_start;
___heaptab_start:
.VAR = ldf_defheap_base; // Start of default heap
.VAR = ldf_defheap_size; // Size of default heap

// unit==sizeof(char)
.VAR = 0; // ID of default heap - must be 0
.VAR = ldf_altheap_base; // Start of alt heap.
 VAR = ldf_altheap_size; // Size of alt heap

// unit==sizeof(char)
.VAR = 1; // ID of alt heap must be 1

Initializing the Heap

The default heap is initialized by the run-time library. Additional heaps
can be initialized by a call to heap_init (on page 3-214) which takes the
heap ID as its parameter which would normally be done at the beginning
of main.

Using Alternate Heaps with the Standard Interface

Alternate heaps can be accessed by the standard functions calloc, free,
malloc and realloc. The run-time library keeps track of the current heap,
which initially is the default heap. The current heap can be changed any
number of times at run time by calling heap_switch with the heap ID as a
parameter. (For more information, see “heap_switch” on page 3-223.)

C/C++ Run-Time Model and Environment

1-282 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The standard functions calloc and malloc always allocate a new object
from the current heap. If realloc is called with a null pointer, it also allo-
cates a new object from the current heap.

Previously allocated objects can be deallocated with free or realloc, or
resized with realloc, even if the current heap is now different from when
the object was originally allocated. When a previously allocated object is
resized with realloc, the returned object is always located in the same
heap as the original object.

Allocating C++ STL Objects to a Non-Default Heap

C++ STL objects can be placed in a non-default heap through use of a
custom allocator. To do this, you must first create your custom allocator.
Below is an example custom allocator that you can use as a basis for your
own. The most important part of customalloc.h in most cases is the
allocate function, where memory is allocated to the STL object. Cur-
rently, the pertinent line of code assigns to the default heap (0):

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

Simply by changing the first parameter of heap_malloc(), you can allocate
to a different heap:

• 0 is the default heap

• 1 is the first user heap

• 2 is the second user heap

• And so on

Once you have created your custom allocator, you must inform your STL
object to use it. Note that the standard definition for “list”:

list<int> a;

is the same as writing:

VisualDSP++ 5.0 C/C++ Compiler Manual 1-283
for TigerSHARC Processors

Compiler

list<int, allocator<int> > a;

where “allocator” is the default allocator. Therefore, we can tell list “a” to
use our custom allocator as follows:

list<int, customallocator<int> > a;

Once created, the list “a” can be used as normal. Also, example.cpp
(below) is a simple example that shows the custom allocator being used.

customalloc.h

template <class Ty>

class customallocator {

public:

typedef Ty value_type;

typedef Ty* pointer;

typedef Ty& reference;

typedef const Ty* const_pointer;

typedef const Ty& const_reference;

typedef size_t size_type;

typedef ptrdiff_t difference_type;

template <class Other>

struct rebind { typedef customallocator<Other> other; };

pointer address(reference val) const { return &val; }

const_pointer address(const_reference val)

const { return &val; }

customallocator(){}

customallocator(const customallocator<Ty>&){}

template <class Other>

customallocator(const customallocator<Other>&) {}

template <class Other>

customallocator<Ty>& operator=(const customallocator&)

{ return (*this); }

C/C++ Run-Time Model and Environment

1-284 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

pointer allocate(size_type n, const void * = 0) {

Ty* ty = (Ty*) heap_malloc(0, n * sizeof(Ty));

cout << "Allocating 0x" << ty << endl;

return ty;

}

void deallocate(void* p, size_type) {

cout << "Deallocating 0x" << p << endl;

if (p) free(p);

}

void construct(pointer p, const Ty& val)

{ new((void*)p)Ty(val); }

void destroy(pointer p) { p->~Ty(); }

size_type max_size() const { return size_t(-1); } };

example.cpp

#include <iostream>

#include <list>

#include <customalloc.h> // include your custom allocator

using namespace std;

main(){

cout << "creating list" << endl;

list <int, customallocator<int> > a;

 // create list with custom allocator

cout.setf(ios_base::hex,ios_base::basefield);

cout << "pushing some items on the back" << endl;

a.push_back(0xaaaaaaaa); // push items as usual

a.push_back(0xbbbbbbbb);

while(!a.empty()){

cout << "popping:0x" << a.front() << endl;

//read item as usual

a.pop_front(); //pop items as usual

VisualDSP++ 5.0 C/C++ Compiler Manual 1-285
for TigerSHARC Processors

Compiler

}

cout << "finished." << endl;

}

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_free (on page 3-213), heap_calloc (on page 3-211), heap_malloc
(on page 3-219), and heap_realloc (on page 3-221). These routines work
exactly the same as the corresponding standard functions without the
“heap_” prefix, except that they take an additional argument that specifies
the heap ID. These functions are completely independent of the current
heap setting.

Objects allocated with the alternate heap interface functions can be freed
with either the free or heap_free (or realloc or heap_realloc) func-
tions. The heap_free function is a little faster than free since it does not
have to search for the proper heap. However, it is essential that the
heap_free or heap_realloc functions be called with the same heap ID
that was used to allocate the object being freed. If it is called with the
wrong heap ID, the object would not be freed or reallocated.

The heap_switch() interface is not available when using the
multi-threaded run-time support. However, all of the other alter-
nate heap interface functions are available.

The actual entry point names for the alternate heap interface routines have
an initial underscore, that is, they are _heap_switch, _heap_calloc,
_heap_free, _heap_malloc, and _heap_realloc. The stdlib.h standard
header file defines macro equivalents without the leading underscores.

Example C Program

// Example program using the standard heap interface along
// with an additional heap as specified in the previous example

#include <stdlib.h>

C/C++ Run-Time Model and Environment

1-286 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#include <stdio.h>

main()
{

int *w, * x, *y, *z;
heap_init(1); // Initailiase the alternate heap
w = malloc(1000); // Get 1K words of default heap space
heap_switch(1); // Set the current heap to the

alternate heap
heap x = malloc(1000); // Get 1K words of alternate heap space

// in case it is referred to elsewhere
y = heap_malloc(1, 1000); // By specifying the alternate heap

// allocate 1K words on the alternate heap
z = malloc(1000); // Allocate 1K words on the current

// (default) heap
}

C++ Run-Time Support for the Alternate Heap Interface

The C++ run-time library provides support for allocation and release of
memory from an alternative heap via the new and delete operators.

Heaps should be initialized with the C run-time functions as described.
These heaps can then be used via the new and delete mechanism by simply
passing the heap ID to the new operator. There is no need to pass the heap
ID to the delete operator as the information is not required when the
memory is released.

The routines are used as in the example below.

#include <heapnew>

char *alloc_string(int size, int heapID)
{

char *retVal = new(heapID) char[size];
return retVal;

}

void free_string(char *aString)
{

VisualDSP++ 5.0 C/C++ Compiler Manual 1-287
for TigerSHARC Processors

Compiler

delete aString;
}

Using the Heap_Install Interface

The heap_install function sets up a memory heap (base) with a size spec-
ified by length at runtime. The dynamic heap is identified by the userid
identifier. The function prototype is as follows.

#include <stdlib.h>
int heap_install(void *base, size_t length, int userid);

On successful initialization, heap_install returns the heap index allo-
cated for the newly installed heap. For more information, see
“heap_install” in Chapter 3, C/C++ Run-Time Library.

Once the dynamic heap is initialized, heap space can be claimed using the
heap_malloc run-time library routine and associated heap management
run-time library routines. An example of how this function may be used
follows.

<< Linker Description File >>

MEMORY
{

..
HOST { TYPE(RAM) START(0x80000000) END(0x8FFFFFFF) WIDTH(32) }}
..

}

PROCESSOR p0
{

..

SECTIONS
{

..

my_own_heapseg

C/C++ Run-Time Model and Environment

1-288 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

{
_ldf_my_own_heap_base = .;
_ldf_my_own_heap_size = MEMORY_SIZEOF(HOST);
}>HOST
..

}
}

<< C Source File >>

#include <stdlib.h>
#include <stdio.h>

extern int ldf_my_own_heap_base;

#define ADDR &ldf_my_own_heap_base

int main()
{

int i;
int id;
int *x;

id /* 6 */ = heap_install((void *)ADDR, 1000, 6);

x = heap_malloc(6, 90);

if (x) {
for (i = 0; i < 90; i++)

x[i] = i;
heap_free(6, x);

}

return 0;
}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-289
for TigerSHARC Processors

Compiler

Miscellaneous Information
This section contains a number of miscellaneous aspects of the design that
may be helpful in understanding stack functionality.

• Procedures without prototypes can be called successfully, provided
the argument types correspond properly. Since pointers and itns
are handled in the same way, some common interface errors are tol-
erated. Mixing up float and integer arguments generally results
in incorrect behavior.

• There is no special interface for calling system library functions.
They use the standard calling convention.

• Procedures that use the stdargs (varargs) mechanism need to
have prototypes.

• The k stack has a slightly irregular existence at present. There must
always be a frame, but it cannot be used for local variables. These
restrictions are both based on limitations in the debug information.

Register Classification
This section describes all of the TigerSHARC processor registers. Registers
are listed in order of preferred allocation by the compiler. Any registers
not mentioned are not preserved and should be considered “scratch.”

Callee Preserved Registers (“Preserved”)

Registers j16 through j25, k16 through k25, x24 through x31, y24 through
y31 are “preserved” (or dedicated). A subroutine that uses any of these reg-
isters must save (preserve) it and restore it.

C/C++ Run-Time Model and Environment

1-290 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Dedicated Registers

Dedicated registers are required by the compiler and run-time libraries to
maintain a valid stack frame. They should not be used for any other
purposes.

Caller Save Registers (“Scratch”)

All registers not preserved or dedicated are scratch. A subroutine may use a
scratch register without having to save it. Any registers not mentioned are
not preserved and should be considered scratch.

ADSP-TS101 and ADSP-TS20x Processor Registers

The following is a list of registers for the ADSP-TS101 processors and
ADSP-TS20x processors. The registers are listed in order of preferred allo-
cation by the compiler.

• Table 1-31 on page 1-292 — IALU (j & k) General Registers

• Table 1-32 on page 1-293 — Compute Block General Registers

• Table 1-33 on page 1-294 — IALU (j & k) Special Registers

• Table 1-34 on page 1-294 — Compute Block X MAC Registers

• Table 1-35 on page 1-295 — Compute Block Y MAC Registers

• Table 1-36 on page 1-295 — Compute Block ALU Summation
Registers

• Table 1-37 on page 1-295 — Loop Counters

• Table 1-38 on page 1-295 — Data Alignment Registers

• Table 1-39 on page 1-295 — Compute Block Status Registers

• Table 1-40 on page 1-295 — Return Address Registers

VisualDSP++ 5.0 C/C++ Compiler Manual 1-291
for TigerSHARC Processors

Compiler

• Table 1-41 on page 1-296 — Enhanced Communications Regis-
ters (ADSP-TS101 processors only)

• Table 1-42 on page 1-296 — Enhanced Communications Regis-
ters (ADSP-TS201 processors only)

C/C++ Run-Time Model and Environment

1-292 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 1-31. iALU (j and k) General Registers

j31: j30: j29: j28: k31: k30: k29: k28:

zero1 scratch scratch scratch zero1 scratch scratch scratch

j27: j26: j25: j24: k27: k26: k2: k2:

Dedicated
jSP

Dedicated
jFP

RES
(or GOT)

RES Dedicated
kSP

Dedi-
cated kFP

RES
(or GOT)

RES
kjFP
Copy

j23: j22: j21: j20: k23: k22: k21: k20:

RES RES RES RES RES RES RES RES

j19: j18: j17: j16: k19: k18: k17: k16:

RES RES RES RES RES RES RES RES

j15: j14: j13: j12: k15: k14: k13: k12:

scratch scratch scratch scratch scratch scratch scratch scratch

VisualDSP++ 5.0 C/C++ Compiler Manual 1-293
for TigerSHARC Processors

Compiler

j11: j10: j9: j8: k11: k10: k9: k8:

scratch scratch scratch scratch
RTN02

scratch scratch scratch scratch

j7: j6: j5: j4: k7: k6: k5: k4:

scratch
ARG4

scratch
ARG3

scratch
ARG2

scratch
ARG1

scratch scratch scratch scratch

j3: j2: j1: j0: k3: k2: k1: k0:

scratch
(circ)

scratch
(circ)

scratch
(circ)

scratch
(circ)

scratch
(circ)

scratch
(circ)

scratch
(circ)

scratch
(circ)

1 j/k 31 are zero registers when used for addressing, or as operands to iALU operations; but when
used in a store or load (or ureg transfer), they become the j/k status register.

2 j8 is also used for passing the address of a hidden argument.

Table 1-32. Compute Block (x & y) General Registers

x31: x30: x29: x28: y31: y30: y29: y28:

RES RES RES RES RES RES RES RES

x27: x26: x25: x24: y27: y26: y25: y24:

RES RES RES RES RES RES RES RES

x23: x22: x21: x20: y23: y22: y21: y20:

scratch scratch scratch scratch scratch scratch scratch scratch

x19: x18: x17: x16: y19: y18: y17: y16:

scratch scratch scratch scratch scratch scratch scratch scratch

Table 1-31. iALU (j and k) General Registers (Cont’d)

C/C++ Run-Time Model and Environment

1-294 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

x15: x14: x13: x12: y15: y14: y13: y12:

scratch scratch scratch scratch scratch scratch scratch scratch

x11: x10: x9: x8: y11: y10: y9: y8:

scratch scratch scratch
RTN 1

scratch
RTN 0

scratch scratch scratch scratch

x7: x6: x5: x4: y7: y6: y5: y4:

scratch
ARG4

scratch
ARG3

scratch
ARG2

scratch
ARG1

scratch
ARGn

scratch
ARGn

scratch
ARGn

scratch
ARGn

x3: x2: x1: x0: y3: y2: y1: y0:

scratch scratch scratch scratch scratch scratch scratch scratch

Table 1-33. iALU (j & k) Special Registers: Circular Buffering – B (base)
and L (length)

jB3: jB2: jB1: jB0: kB3: kB2: kB1: kB0:

scratch scratch scratch scratch scratch scratch scratch scratch

jL3: jL2: jL1: jL0: kL3: kL2: kL1: kL0:

scratch scratch scratch scratch scratch scratch scratch scratch

Table 1-34. Compute Block X MAC Registers

xMR4: xMR3: xMR2: xMR1: xMR0:

scratch scratch scratch scratch scratch

Table 1-32. Compute Block (x & y) General Registers (Cont’d)

VisualDSP++ 5.0 C/C++ Compiler Manual 1-295
for TigerSHARC Processors

Compiler

Table 1-35. Compute Block Y MAC Registers

yMR4: yMR3: yMR2: yMR1: yMR0:

scratch scratch scratch scratch scratch

Table 1-36. Compute Block ALU Summation Registers

xPR1: xPR0: yPR1: yPR0:

scratch scratch scratch scratch

Table 1-37. Loop Counters

LC1: LC0:

scratch scratch

Table 1-38. Data Alignment Registers

xDAB: yDAB:

scratch scratch

Table 1-39. Compute Block Status Registers

xSTAT: ySTAT:

scratch scratch

Table 1-40. Return Address Registers

CJMP: RETI: RETIB: RETS:

scratch – for caller
reserved – by callee

Not Available Not Available Not Available

C/C++ Run-Time Model and Environment

1-296 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 1-41. Enhanced Communications Registers (ADSP-TS101

Processors only)1

xtr15: xtr14: xtr13: xtr12: ytr15: ytr14: ytr13: ytr12:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr11: xtr10: xtr9: xtr8: ytr11: ytr10: ytr9: ytr8:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr7: xtr6: xtr5: xtr4: ytr7: ytr6: ytr5: ytr4:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr3: xtr2: xtr1: xtr0: ytr3: ytr2: ytr1: ytr0:

scratch scratch scratch scratch scratch scratch scratch scratch

xthr1: xthr0: ythr1: ythr0:

scratch scratch scratch scratch

1 The registers are listed in order of preferred allocation by the compiler.

Table 1-42. Enhanced Communications Registers (ADSP-TS201

Processors only)1

xtr31: xtr30: xtr29: xtr28: ytr31: ytr30: ytr29: ytr28:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr27: xtr26: xtr25: xtr24: ytr27: ytr26: ytr25: ytr24:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr23: xtr22: xtr21: xtr20: ytr23: ytr22: ytr21: ytr20:

VisualDSP++ 5.0 C/C++ Compiler Manual 1-297
for TigerSHARC Processors

Compiler

scratch scratch scratch scratch scratch scratch scratch scratch

xtr19: xtr18: xtr17: xtr16: ytr19: ytr18: ytr17: ytr16:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr15: xtr14: xtr13: xtr12: ytr15: ytr14: ytr13: ytr12:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr11: xtr10: xtr9: xtr8: ytr11: ytr10: ytr9: ytr8:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr7: xtr6: xtr5: xtr4: ytr7: ytr6: ytr5: ytr4:

scratch scratch scratch scratch scratch scratch scratch scratch

xtr3: xtr2: xtr1: xtr0: ytr3: ytr2: ytr1: ytr0:

scratch scratch scratch scratch scratch scratch scratch scratch

xthr3: xthr2: xthr1: xthr0: ythr3: ythr2: ythr1: ythr0:

scratch scratch scratch scratch scratch scratch scratch scratch

xCMCTL: yCMCTL:

scratch scratch

1 The registers are listed in order of preferred allocation by the compiler.

Table 1-42. Enhanced Communications Registers (ADSP-TS201

Processors only)1 (Cont’d)

C/C++ and Assembly Language Interface

1-298 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

C/C++ and Assembly Language
Interface

This section describes how to call assembly language subroutines from
within C/C++ programs and C/C++ functions from within assembly lan-
guage programs.

Before attempting to perform either of these calls, be sure to famil-
iarize yourself with the information about the C/C++ run-time
model (including details about the stack, data types, and how argu-
ments are handled) contained in “C/C++ Run-Time Model and
Environment” on page 1-261.

This section describes:

• “Calling Assembly Subroutines From C/C++ Programs”

• “Calling C/C++ Functions From Assembly Programs” on
page 1-301

• “Using Mixed C/C++ and Assembly Naming Conventions” on
page 1-302

• “C++ Programming Examples” on page 1-304

Calling Assembly Subroutines From C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly-recommended practice for
good software engineering. When the prototype is omitted, the compiler

VisualDSP++ 5.0 C/C++ Compiler Manual 1-299
for TigerSHARC Processors

Compiler

cannot perform argument-type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more registers are needed (or you work with existing code and
wish to use the preserved registers), you must save their contents and then
restore those contents before returning.

Do not use the dedicated or stack registers for other than their intended
purpose; the compiler, libraries, debugger, and interrupt routines depend
on having a stack available as defined by those registers.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine.

The compiler prefaces the name of any external entry point with an
underscore. Therefore, declare your assembly language subroutine’s name
with a leading underscore. If you intend to using the function from assem-
bly programs as well, you might want your function's name to be just as
you write it. Then you also need to tell the C/C++ compiler that it is an
asm function, by placing 'extern "asm" {}' around the prototype.

The C/C++ runtime determines that all function parameters are passed on
the stack. A good way to observe and understand how arguments are
passed is to write a dummy function in C/C++ and compile it using the
-save-temps command-line switch (see on page 1-58). The resulting com-
piler generated assembly file (.s) can then be viewed.

The following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface...
// global variables ... assign arguments there just so
// we can track which registers were used

C/C++ and Assembly Language Interface

1-300 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

// (type of each variable corresponds to one of arguments)

int global_a;
float global_b;
int * global_p;

// the function itself

int asmfunc(int a, float b, int * p, int d, int e) {
// do some assignments so .s file shows where args are

global_a = a;
global_b = b;
global_p = p;

//value gets loaded into the return register
return 12345;

 }

When compiled with the compiler switches -S and -O, the following code
is produced.

A TigerSHARC processor passes up to four arguments in registers.
(Note that in this example the optimizer has gratuitously reversed
the order of the register assignments.)

 // PROCEDURE: _asmfunc
 .global _asmfunc;
 _asmfunc:
 J8 = j31 + 12345;;
 [j31 + _global_p] = J6;;
 [j31 + _global_b] = XR5;;
 cjmp (NP) (ABS); [j31 + _global_a] = J4;;

If the arguments are on the stack, they are addressed by an offset from the
stack pointer or frame pointer. For a simple function, this may be all the
information you need. Do the computation, set up a return value, and
return to the caller.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-301
for TigerSHARC Processors

Compiler

For a more complicated function, you might find it useful to fol-
low the general run-time model, and use the run-time stack for
local storage, and so on. A simple C program, passed through the
compiler, provides a good template to build on.

Calling C/C++ Functions From Assembly Programs
You may want to call C/C++ callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines From C/C++ Programs” on page 1-298, you may want to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function. If the assembly
language program needs the contents of any of those registers, you must
save their contents before the call to the C/C++ function and then restore
those contents after returning from the call.

Use the dedicated registers for their intended purpose only; the
compiler, libraries, debugger, and interrupt routines all depend on
having a stack available as defined by those registers.

Preserved registers can be used; their contents are not changed by calling a
C/C++ function. The function always saves and restores the contents of
preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C/C++ and compiling it with the save temporary files option
(see the -save-temps command-line switch on page 1-58). By examining

C/C++ and Assembly Language Interface

1-302 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

the contents of volatile global variables in a *.s file, you can determine
how the C/C++ function passes arguments, and then duplicate that argu-
ment setup process in the assembly language program.

The stack must be set up correctly before calling a C/C++ callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger.

The easiest way to do this is to define a C/C++ main program to initialize
the run-time system; maintain the stack until it is needed by the C/C++
function being called from the assembly language program; and then con-
tinue to maintain that stack until it is needed to call back into C/C++.
However, make sure the dedicated registers are correct. You do not need
to set the FP prior to the call; the caller’s FP is never used by the recipient.

Using Mixed C/C++ and Assembly Naming Conventions

A user should be able to use C/C++ symbols (function names or variable
names) in assembly routines and use assembly symbols in C routines. This
section describes how to name C/C++ and assembly symbols and shows
how to use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C/C++ symbol, add an
underscore prefix to the C/C++ symbol name when declaring the symbol
in assembly. For example, the C/C++ symbol main becomes the assembly
symbol _main.

To use a C/C++ function or variable in your assembly routine, declare it as
global in the C/C++ program and import the symbol into the assembly
routine by declaring the symbol with the .EXTERN assembler directive.

The C++ language performs name mangling on function names it defines
according to the output and input parameter types of the function. If call-
ing into a C++ defined function from assembly code, the .EXTERN symbol

VisualDSP++ 5.0 C/C++ Compiler Manual 1-303
for TigerSHARC Processors

Compiler

needs to be the mangled C++ output name. This is best retrieved by look-
ing at the compiler’s assembly output for the C++ source that defines the
required function.

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C/C++
program.

Alternatively, the ccts compiler provides an “asm” linkage specifier (used
similarly to the “C” linkage specifier of C++), which when used, removes
the need to add an underscore prefix to the symbol that is defined in
assembly.

Table 1-43 shows several examples of the C/C++ and assembly interface
naming conventions.

Table 1-43. C/C++ Naming Conventions for Symbols

In C/C++ Program In Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;

void c_func(); /* in C code */ .extern _c_func;

void cpp_func(void); /* in C++ source */ .extern _cpp_func__Fv;

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;
_asm_func:

extern "asm" void asm_func(); .global asm_func;
asm_func:

C/C++ and Assembly Language Interface

1-304 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

C++ Programming Examples
This section shows examples of the features specific to C++. These exam-
ples are:

• “Using Fract Type Support” on page 1-305

• “Using Complex Number Support” on page 1-306

By default, the ccts compiler runs in C mode. To run the compiler in
C++ mode, use the appropriate option on the command line, or select the
corresponding option in the Project Options dialog box in the Visu-
alDSP++ environment.

For example, the following command line

ccts -c++ source.cpp -proc ADSP-TS101

runs ccts with:

-c++
Specifies that the following source file is written in ANSI/ISO
standard C++ extended with the Analog Devices keywords.

source.cpp
Specifies the source file for your program.

-proc ADSP-TS101

Specifies that the compiler should produce code suitable for the
ADSP-TS101 processor.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-305
for TigerSHARC Processors

Compiler

Using Fract Type Support

Listing 1-2 on page 1-305 demonstrates the compiler support for the
fract type and associated arithmetic operators, such as + and *. The dot
product algorithm is expressed using the standard arithmetic operators.
The code demonstrates how two variable-length arrays are initialized with
fractional literals.

For more information abut the fractional data type and arithmetic, see
“C++ Fractional Type Support” on page 1-241.

Listing 1-2. Example Code: Using Fract Data Type — C++ Code

#include <fract>
#define N 20
fract x[N] = {.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r,.5r};
fract y[N] = {0,.1r,.2r,.3r,.4r,.5r,.6r,.7r,.8r,.9r,.10r,.1r,

.2r,.3r,.4r,.5r,.6r,.7r,.8r,.9r};
fract fdot(int n, fract *x, fract *y)
{

int j;
fract s;
s = 0;
for (j=0; j<n; j++)
{

s += x[j] * y[j];
}
return s;

}
int main(void)
{

fdot(N,x,y);
}

C/C++ and Assembly Language Interface

1-306 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Using Complex Number Support

The Mandelbrot fractal set is defined by the following iteration on com-
plex numbers:

z := z * z + c

The c values belong to the set for which the above iteration does not
diverge to infinity. The canonical set is defined when z starts from zero.

Listing 1-3 demonstrates the Mandelbrot generator expressed in a simple
algorithm using the C++ library complex class:

Listing 1-3. Mandelbrot Generator Example — C++ code

#include <complex>
#include <stdlib.h>

int iterate (double c, double z, int max)
{

int n;
for (n = 0; n<max && abs(z)<2.0; n++)
{
z = z * z + c;
}
return (n == max ? 0 : n);

}

Listing 1-4 shows a C version of the inner computational function of the
Mandelbrot generator extracts performance and programming penalties
(compared with the C++ version).

Listing 1-4. Mandelbrot Generator Example — C Code

int iterate (double creal, double cimag,
double zreal, double zimag, int max)
{

double real, imag;

VisualDSP++ 5.0 C/C++ Compiler Manual 1-307
for TigerSHARC Processors

Compiler

int n;
real = zreal * zreal;
imag = zimag * zimag;
for (n = 0; n<max && (real+imag)<5.0; n++)
{
zimag = 2.0 * zreal * zimag + cimag;
zreal = real - imag + creal;
real = zreal * zreal;
imag = zimag * zimag;
}
return (n == max ? 0 : n);

}

Compiler C++ Template Support

1-308 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Compiler C++ Template Support
The compiler provides template support for C++ templates as defined in
the ISO/IEC 14882:1998 C++ standard, with the exception that the
export keyword is not supported.

Template Instantiation
Templates are instantiated automatically during compilation using a
linker feedback mechanism. This involves compiling files, determining
any required template instantiations, and then recompiling those files
making the appropriate instantiations. The process repeats until all
required instantiations have been made. Multiple recompilations may be
required in the case when a template instantiation is made that requires
another template instantiation to be made.

By default, the compiler uses a method called implicit instantiation, which
is common practice, and results in having both the specification and defi-
nition available at point of instantiation. This involves placing template
specifications in a header (“.h”) file and the definitions in a source (like
“.cpp”) file. Any file being compiled that includes a header file containing
template specifications will instruct the compiler to implicitly include the
corresponding “.cpp” file containing the definitions of the compiler.

For example, you may have the header file “tp.h”

template <typename A> void func(A var)

and source file “tp.cpp”

template <typename A> void func(A var)
{
...code...
}

VisualDSP++ 5.0 C/C++ Compiler Manual 1-309
for TigerSHARC Processors

Compiler

Two files “file1.cpp” and “file2.cpp” that include “tp.h” will have file
“tp.cpp” included implicitly to make the template definitions available to
the compilation.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This parsing avoids excessive compilation
times in situations where a header file that implicitly includes a source file
is included several times. If the .cpp file should be included implicitly
more than once , the -full-dependency-inclusion switch (on page 1-70)
can be used. (For example, the file may contain macro guarded sections of
code.) This may result in more time required to generate dependencies.

When generating dependencies, the compiler will only parse each implic-
itly included .cpp file once. This is to avoid excessive compilation times in
situations where a header file that implicitly includes a source file is
included several times. If the .cpp file should be included implicitly more
than once (for example, if the file contains macro guarded sections of
code) the -full-dependency-inclusion switch (on page 1-70) can be
used. This may result in an increase in time to generate dependencies.

If there is a desire not to use the implicit inclusion method then the switch
-no-implicit-inclusion should be passed to the compiler. In the example,
we have been discussing, “tp.cpp” will then be treated as a normal source
file and should be explicitly linked into the final product.

Regardless of whether implicit instantiation is used or not, the compila-
tion process involves compiling one or more source files and generating a
“.ti” file corresponding to the source files being compiled. These “.ti”
files are then used by the prelinker to determine the templates to be
instantiated. The prelinker creates a “.ii” file and recompiles one or more
of the files instantiating the required templates.

Compiler C++ Template Support

1-310 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The prelinker ensures that only one instantiation of a particular template
is generated across all objects. For example, the prelinker ensures that if
both “file1.cpp” and “file2.cpp” invoked the template function with an
int, that the resulting instantiation would be generated in just one of the
objects.

Identifying Un-instantiated Templates
If for some reason the prelinker is unable to instantiate all the templates
that are required for a particular link then a link error will occur. For
example,

[Error li1021] The following symbols referenced in processor 'P0'
could not be resolved:

'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]
[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]' refer-
enced from '.\Debug\main.doj'

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]
[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'
referenced from '.\Debug\main.doj'

'T1 Complex<T1>::_getReal() const [with T1=short]
[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from
'.\Debug\main.doj'

Linker finished with 1 error

Careful examination of the linker errors reveals which instantiations have
not been made. Below are some examples.

Missing instantiation:
Complex<short> Complex<short>::conjugate()

Linker Text:
'Complex<T1> Complex<T1>::_conjugate() const [with T1=short]

[_conjugate__16Complex__tm__2_sCFv_18Complex__tm__4_Z1Z]'
referenced from '.\Debug\main.doj'

Missing instantiation:

VisualDSP++ 5.0 C/C++ Compiler Manual 1-311
for TigerSHARC Processors

Compiler

Complex<short> *Buffer<Complex<short>>::getAddress()
Linker Text:

'T1 *Buffer<T1>::_getAddress() const [with T1=Complex<short>]
[_getAddress__33Buffer__tm__19_16Complex__tm__2_sCFv_PZ1Z]'
referenced from '.\Debug\main.doj'

Missing instantiation:
Short Complex<short>::getReal()

Linker Text:
'T1 Complex<T1>::_getReal() const [with T1=short]
[_getReal__16Complex__tm__2_sCFv_Z1Z]' referenced from
'.\Debug\main.doj'

There could be many reasons for the prelinker being unable to instantiate
these templates, but the most common is that the .ti and .ii files associ-
ated with an object file have been removed. Only source files that can
contain instantiated templates will have associated .ti and .ii files, and
without this information, the prelinker may not be able to complete its
task. Removing the object file and recompiling will normally fix this
problem.

Another possible reason for uninstantiated templates at link time is when
implicit inclusion (described above) is disabled but the source code has
been written to require it. Explicitly compiling the .cpp files that would
normally have been implicitly included and adding them to the final link
is normally all that is needed to fix this.

Another likely reason for seeing the linker errors above is invoking the
linker directly. It is the compiler’s responsibility to instantiate C++ tem-
plates, and this is done automatically if the final link is performed via the
compiler driver. The linker itself contains no support for instantiating
templates.

File Attributes

1-312 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

File Attributes
A file attribute is a name-value pair that is associated with a binary object,
whether in an object file (.doj) or in a library file (.dlb). One attribute
name can have multiple values associated with it. Attribute names and val-
ues are strings. A valid attribute name consists of one or more characters
matching the following pattern:

[a-zA-Z_][a-zA-Z_0-9]*

An attribute value is a non-empty character sequence containing any char-
acters apart from NUL.

Attributes help with the placement of code and data. All compiled objects
can contain attributes which allow you to place time-critical objects into
internal (fast) memory. Using attribute filters in the LDF, you can place
objects into internal or external (slow) memory, either individually or in
groups.

This section describes:

• “Automatically-Applied Attributes”

• “Default LDF Placement” on page 1-313

• “Sections versus Attributes” on page 1-315

• “Using Attributes” on page 1-317

VisualDSP++ 5.0 C/C++ Compiler Manual 1-313
for TigerSHARC Processors

Compiler

Automatically-Applied Attributes
By default, the compiler automatically applies a number of attributes
when compiling a C/C++ file. Figure 1-4 shows a content attribute tree.

For example, it applies the Content and FuncName attributes. These auto-
matically-applied attributes can be disabled using the -no-auto-attrs
switch (on page 1-43). The Content attributes can be used to map binary
objects according to their kind of content, as show by Table 1-44.

Default LDF Placement
The default .ldf file is written in such manner that the order of prefer-
ence for putting an object in section data or program depends on the value
of the prefersMem attribute. Precedence is given in the following order:

Figure 1-4. Content Attributes

Code

ConstData

InitData

CodeData

Data

ZeroData

Empty

VarData

File Attributes

1-314 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

1. Highest priority is given to binary objects that have a prefersMem
attribute with a value of internal.

2. Next priority is given to binary objects that have no prefersMem
attribute, or a prefersMem attribute with a value that is neither
internal nor external.

3. Lowest priority is given to binary objects with a prefersMem
attribute with the value external.

Table 1-44. Values of the Content Attribute

Value Description

CodeData This is the most general value, indicating that the binary object contains a mix of
content types.

Code The binary object does not contain any global data, only executable code. This
can be used to map binary objects into program memory, or into read-only mem-
ory.

Data The binary object does not contain any executable code. The binary object may
not be mapped into dedicated program memory. The kinds of data used in the
binary object vary.

ZeroData The binary object contains only zero-initialized data. Its contents must be
mapped into a memory section with the ZERO_INIT qualifier, to ensure correct
initialization.

InitData The binary object contains only initialized global data. The contents may not be
mapped into a memory section that has the ZERO_INIT qualifier.

VarData The binary object contains initialized variable data. It must be mapped into
read-write memory, and may not be mapped into a memory section with the
ZERO_INIT qualifier.

ConstData The binary object contains only constant data (data declared with the C const
qualifier). The data may be mapped into read-only memory (but see also the
-const-read-write switch (on page 1-29) and its effects).

Empty The binary object contains neither functions nor global data.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-315
for TigerSHARC Processors

Compiler

Although the default .ldf files only reference the values internal and
external, prefersMem may have other values. For example, an object using
a value such as L2 will be given second priority, as the value is neither
internal nor external. You may modify your .ldf file to assign appro-
priate priority to any value you choose, by mapping objects with
higher-priority before objects with lower-priority values.

The prefersMemNum attribute is similar to the prefersMem attribute, but is
given numerical values instead of textual values. This makes it easier to
assign priority when there are many different levels, because you can use
relational comparisons in the .ldf file instead of just equalities and ine-
qualities. Table 1-45 shows the numerical values used by the run-time
library for each corresponding prefersMem attribute value.

Sections versus Attributes
File attributes and section qualifiers (on page 1-124) can be thought of as
being somewhat similar, since they can both affect how the application is
linked. There are important differences, however. These differences will
affect whether you choose to use sections or file attributes to control the
placement of code and data.

Granularity

Individual components – global variables and functions – in a binary
object can be assigned different sections, then those section assignments
can be used to map each component of the binary object differently. In

Table 1-45. Values for prefersMemNum attribute

prefersMem attribute value prefersMemNum attribute value

internal 30

any 50

external 70

File Attributes

1-316 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

contrast, an attribute applies to the whole binary object. This means you
do not have as fine control over individual components using attributes as
when using sections.

“Hard” versus “Soft”

A section qualifier is a hard constraint: when the linker maps the object
file into memory, it must obey all the section qualifiers in the object file,
according to instructions in the LDF. If this cannot be done, or if the
LDF does not give sufficient information to map a section from the object
file, the linker will report an error.

With attributes, the mapping is soft: the default LDFs use the prefersMem
attribute as a guide to give a better mapping in memory, but if this cannot
be done, the linker will not report an error. For example, if there are more
objects with prefersMem=internal than will fit into internal memory, the
remaining objects will spill over into external memory. Likewise, if there
are less objects with the attribute prefersMem!=external than are needed
to fill internal memory, some objects with the attribute prefers-
Mem=external may get mapped to internal memory.

Section qualifiers are rules that must be obeyed, while attributes are guide-
lines, defined by convention, that can be used if convenient and ignored if
inconvenient. The Content attribute is an example: you can use the Con-
tent attribute to map Code and ConstData binary objects into read-only
memory, if this is a convenient partitioning of your application. However,
you need not do so if you choose to map your application differently.

Number of Values

Any given element of an object file is assigned exactly one section quali-
fier, to determine into which section it should be mapped. In contrast, an
object file may have many attributes (or even none), and each attribute
may have many different values. Since attributes are optional, and act as
guidelines, you need only pay attention to the attributes that are relevant
to your application.

VisualDSP++ 5.0 C/C++ Compiler Manual 1-317
for TigerSHARC Processors

Compiler

Using Attributes
You can add attributes to a file in two ways:

• Use #pragma file_attr (on page 1-222).

• Use the -file-attr name switch (on page 1-34).

Example

Suppose you want the contents of test.c to get mapped to external mem-
ory by preference. You can do this by adding the following pragma to the
top of test.c:

#pragma file_attr("prefersMem=external")

or use the -file-attr switch:

ccts -file-attr prefersMem=external switches test.c

Both of these methods mean that the resulting object file will have the
attribute prefersMem=external. The .ldf files give objects with this
attribute the lowest priority when mapping objects into internal memory.
As a result, the object is less likely to consume valuable internal memory
space, which could be more usefully allocated to another function.

File attributes are used as guidelines rather than rules. If space is
available in internal memory after higher-priority objects have been
mapped, it is permissible for objects with prefersMem=external to
be mapped into internal memory.

File Attributes

1-318 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

VisualDSP++ 5.0 C/C++ Compiler Manual 2-1
for TigerSHARC Processors

2 ACHIEVING OPTIMAL
PERFORMANCE FROM
C/C++ SOURCE CODE

This chapter provides guidance in helping you to tune your application to
achieve the best possible code from the compiler. Some implementation
choices are available when coding an algorithm, and understanding their
impact is crucial to attaining optimal performance.

This chapter contains:

• “General Guidelines” on page 2-3
provides a four-step basic strategy for designing applications. Also
describes topics such as data types, memory usage, and indexed
arrays versus pointers

• “Improving Conditional Code” on page 2-30
provides information about the expected_true and
expected_false built-in functions, which can control the com-
piler’s behavior for specific cases.

• “Loop Guidelines” on page 2-31
describes in detail how to help the compiler produce the most effi-
cient loop code, including keeping loops short, and avoiding
unrolling loops and loop-carried dependencies.

• “Using Built-In Functions in Code Optimization” on page 2-41
provides information about how to use built-in functions to effi-
ciently use low-level features of the processor hardware while
programming in C.

2-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• “Smaller Applications: Optimizing for Code Size” on page 2-45
provides tips and techniques about optimizing the application for
full performance and for space.

• “Using Pragmas for Optimization” on page 2-47
describes how to use pragmas to finely tune source code.

• “Useful Optimization Switches” on page 2-55
provides a table listing the compiler switches useful during the
optimization process.

• “How Loop Optimization Works” on page 2-56
provides an introduction to some of the concepts used in loop
optimization.

• “Assembly Optimizer Annotations” on page 2-81
gives the programmer an understanding of how close to optimal a
program is and what more can be done to improve the generated
code.

The focus of this chapter is on how to obtain maximal code performance
from the compiler. Most of these guidelines also apply when optimizing
for minimum code size, although some techniques specific to that goal are
also discussed.

The first section looks at some general principles, and how the compiler
can lend the most help to your optimization effort. Optimal coding styles
are then considered in detail. Special features such as compiler switches,
built-in functions, and pragmas are also discussed. The chapter ends with
a short example to demonstrate how the optimizer works.

Small examples are included throughout this chapter to demonstrate
points being made. Some show recommended coding styles, while others
identify styles to be avoided or code that may be possible to improve.
These are commented in the code as “GOOD” and “BAD” respectively.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-3
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

General Guidelines
Remember the following strategy when writing an application:

1. Choose an algorithm suited to the architecture being targeted. For
example, the target architecture will influence any trade-off
between memory usage and algorithm complexity.

2. Code the algorithm in a simple, high-level generic form. Keep the
target in mind, especially when choosing data types.

3. Tune critical code sections. After your application is complete,
identify the most critical sections. Carefully consider the strengths
of the target processor and make non-portable changes where nec-
essary to improve performance.

Choose the language as appropriate.

Your first decision is whether to implement your application in C/C++.
Performance considerations may influence this decision. C++ code using
only C features has very similar performance to pure C code. Many higher
level C++ features (for example, those resolved at compilation, such as
namespaces, overloaded functions and also inheritance) have no perfor-
mance cost. However, use of some other features may degrade
performance. Carefully weigh performance loss against the richness of
expression available in C++ (such as virtual functions or classes used to
implement basic data types).

This section contains:

• “How the Compiler Can Help” on page 2-4

• “Data Types” on page 2-13

• “Getting the Most From IPA” on page 2-17

• “Indexed Arrays Versus Pointers” on page 2-23

• “Function Inlining” on page 2-24

General Guidelines

2-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• “Using Inline asm Statements” on page 2-25

• “Memory Usage” on page 2-26

How the Compiler Can Help
The compiler provides many facilities to help the programmer to achieve
optimal performance, including the compiler optimizer, statistical pro-
filer, Profile-Guided Optimizer (PGO), and interprocedural optimizers.

This section contains:

• “Using the Compiler Optimizer” on page 2-4

• “Using Compiler Diagnostics” on page 2-5

• “Using the Statistical Profiler” on page 2-7

• “Using Profile-Guided Optimization” on page 2-8

• “Using Interprocedural Optimization” on page 2-12

Using the Compiler Optimizer

There is a vast difference in performance between code compiled opti-
mized and code compiled non-optimized. In some cases, optimized code
can run ten or twenty times faster. Always use optimization when measur-
ing performance or shipping code as product.

The optimizer in the C/C++ compiler is designed to generate efficient
code from source that has been written in a straightforward manner. The
basic strategy for tuning a program is to present the algorithm in a way
that gives the optimizer the best possible visibility of the operations and
data, and hence the greatest freedom to safely manipulate the code. Future
releases of the compiler will continue to enhance the optimizer. Express-
ing algorithms simply will provide the best chance of benefiting from such
enhancements.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-5
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Note that the default setting (or “debug” mode within the VisualDSP++
IDDE) is for non-optimized compilation in order to assist programmers
in diagnosing problems with their initial coding. The optimizer is enabled
in VisualDSP++ by checking the Enable optimization checkbox under the
Project Options ->Compile tab or by using the -O switch (on page 1-48).
A “release” build from within VisualDSP++ automatically enables
optimization.

Using Compiler Diagnostics

There are many features of the C and C++ languages that, while legal,
often indicate programming errors. There are also aspects that are valid
but may be relatively expensive for an embedded environment. The com-
piler can provide the following diagnostics, which may save time and
effort in characterizing source-related problems:

• Warnings and remarks

• Source and assembly annotations

These diagnostics are particularly important for obtaining high-perfor-
mance code, since the optimizer aggressively transforms the application to
get the best performance, discarding unused or redundant code. If this
code is redundant because of a programming error (such as omitting an
essential volatile qualifier from a declaration), then the code will behave
differently from a non-optimized version. Using the compiler’s diagnostics
may help you identify such situations before they become problems.

Warnings and Remarks

By default, the compiler emits warnings to the standard error stream at
compile-time when it detects a problem with the source code. Warnings
can be disabled individually, with the -Wsuppress switch (on page 1-64)
or as a class, with the -w switch (on page 1-66), disabling all warnings and
remarks. However, disabling warnings is inadvisable until each instance
has been investigated for problems.

General Guidelines

2-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

A typical warning involves a variable being used before its value has been
set.

Remarks are diagnostics that are less severe than warnings. Like warnings,
they are produced at compile-time to the standard error stream, but unlike
warnings, remarks are suppressed by default. Remarks are typically for sit-
uations that are probably correct, but not ideal. Remarks may be enabled
as a class with the -Wremarks switch (on page 1-64) or the Enable remarks
option.

A typical remark involves a variable being declared, but never used.

Remarks may be promoted to warnings through the -Wwarn switch
(on page 1-64). Remarks and warnings may be promoted to an error
through the -Werror switch (on page 1-65). Here is a procedure for
improving overall code quality:

1. Enable remarks and build the application. Gather all warnings and
remarks generated.

2. Examine the generated diagnostics and choose those message types
that you consider most important. For example, you might select
just cc0223, a remark that identifies implicitly-declared functions.

3. Promote those remarks and warnings to errors, using the -Werror
switch (for example, “-Werror 0223”), and rebuild the application.
The compiler will now fault such cases as errors, so you will have to
fix the source to address the issues before your application will
build.

4. Once your application rebuilds, repeat the process for the next
most important diagnostics.

Diagnostics you might typically consider first include:

• cc0223: function declared implicitly

• cc0549: variable used before its value is set

VisualDSP++ 5.0 C/C++ Compiler Manual 2-7
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

• cc1665: variable is possibly used before its value is set, in a loop

• cc0187: use of “=” where “==” may have been intended

• cc1045: missing return statement at the end of non-void function

• cc0111: statement is unreachable

If you have particular cases that are correct for your application, do not let
them prevent your application from building because you have raised the
diagnostic to an error. For such cases, temporarily lower the severity again
within the source file in question by using #pragma diag (on page 1-231).

Source and Assembly Annotations

By default, the compiler emits annotations that are embedded in the gen-
erated code—either in the object file or in the assembly source, depending
on the output form you select. The source-related annotations can be
viewed within the VisualDSP++ IDDE, while the assembly-related anno-
tations give considerably more information about the intricacies of the
generated code. Annotations can be used to find out why the compiler has
generated code in a particular manner.

For more information, see “Assembly Optimizer Annotations” on
page 2-81.

 Using the Statistical Profiler

Tuning an application begins with identifying the areas of the application
are most frequently executed and therefore where improvements would
provide the largest gains. The VisualDSP++ statistical profiler provides an
easy way to find these areas. VisualDSP++ 5.0 User’s Guide explains how
to use the profiler in detail.

The advantage of statistical profiling is that it is completely unobtrusive.
Other forms of profiling insert instrumentation into the code, disturbing
the original optimization, code size and register allocation to some degree.

General Guidelines

2-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The best methodology is usually to compile with both optimization and
debug information generation enabled. You can then obtain a profile of
the optimized code while retaining function names and line number infor-
mation. This gives you accurate results that correspond directly to the
C/C++ source. Note that the compiler optimizer may have moved code
between lines.

If you build your application optimized but without debug information
generation, the profile will obtain statistics that relate directly to the
assembly code. This kind of profile provides the most precise view of your
application but not usually the easiest to use because you must relate
assembly lines to the original source. Do not strip out function names
when linking, since keeping function names means you can scroll through
the assembly window to instructions of interest.

In complex code, you can locate the exact source lines by counting the
loops, unless they are unrolled. Looking at the line numbers in the assem-
bly file may also help. (Use the -save-temps switch to retain compiler
generated assembly files, which have the .s filename extension.) The com-
piler optimizer may have moved code around, so that it does not appear in
the same order as in your original source.

Using Profile-Guided Optimization

Profile-guided optimization (PGO) is an excellent way to tune the com-
piler’s optimization strategy for the typical run-time behavior of a
program. There are many program characteristics that cannot be known
statically at compile-time but can be provided through PGO. The com-
piler can use this knowledge to improve its code generation. The benefits
include more accurate branch prediction, improved loop transformations,
and reduced code size. The technique is most relevant where the behavior
of the application over different data sets is expected to be very similar.

Note that PGO is supported in the simulator only

VisualDSP++ 5.0 C/C++ Compiler Manual 2-9
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Using Profile-Guided Optimization With a Simulator

The process of using PGO is illustrated in Figure 2-1 on page 2-9.

1. Compile the application with the -pguide switch (on page 1-54)
or Prepare application to create new profile option. This creates
an executable file containing the necessary instrumentation for
gathering profile data. For best results, use the Enable optimiza-
tion option/-O switch (on page 1-48) or Interprocedural analysis
option/-ipa (on page 1-39) switch.

2. Gather the profile. Currently, this can only be done using a simula-
tor. Run the executable with one or more training data sets. These
training data sets should be representative of the data that you
expect the application to process in the field. Note that unrepresen-
tative training data sets can cause performance degradations when
the application is used on real data. The profile is stored in a file
with the extension .pgo.

Figure 2-1. PGO Process

.dxe .pgo .dxe

Source files

Data

Compile with
-O -pguide

Compile with
-Ov num

Profile with
simulator

General Guidelines

2-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

3. Recompile the application using this gathered profile data. Place
the .pgo file on the command line. Optimization should also be
enabled at this stage.

When C/C++ source files are specified in a compiler command
line, any .pgo files also specified will be used to guide their compi-
lation. However, any recompilation due to .doj files provided on
the command line will reread the same .pgo file as when the source
was previously compiled. For example, prof2.pgo is ignored in the
following commands:

ccts -O f2,c -o f2.doj prof1.pgo

ccts -o prog.dxe f1.asm f2.doj prof.pgo

Using Profile-Guided Optimization With Non-Simulatable Applications

It may not be possible to run a complex application in its entirety in a
simulation session (for example, if peripherals not modeled by the simula-
tor are used). It may, however, still be possible to use PGO as follows.

1. If the application is structured in a modular fashion, it will be pos-
sible to extract the core performance-critical algorithm from the
application.

2. Create a “wrapper” project, which can be run under simulation
that drives input values into the core algorithm, replacing the por-
tions of the application that can not be run under simulation. This
project can be used to generate PGO information, which can sub-
sequently be used to optimize the full application. As described
earlier, it is essential that the input values are representative of real
data to achieve best performance.

3. Leave as much of the core algorithm unmodified as possible, keep-
ing file and function names the same. The .pgo files generated
from execution of the wrapper project can then be used to optimize
the same functions in the full application by including the .pgo
files in the full application build.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-11
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

When compiling with a .pgo file, the compiler emits a warning and
ignores the data for a function if it detects the function has
changed from when the PGO data was generated. Therefore, any
functions that you do modify to get the algorithm to work properly
outside the application will not benefit from the profile
information.

Profile-Guided Optimization and Multiple Source Uses

In some applications, it is convenient to build the same source file in more
than one way within the same application. For example, a source file
might be conditionally compiled with different macro settings. Alterna-
tively, the same file might be compiled once, but linked more than once
into the same application, in a multi-core or multi-processor environ-
ment. In such circumstances, the typical behaviors of each instance in the
application might differ. You should identify the separate instances so that
they can be profiled separately and optimized accordingly.

The -pgo-session switch (on page 1-53) (or PGO session name option)
is used to separate profiles in such cases. It is used during both stage 1,
where the compiler instruments the generated code for profiling, and dur-
ing stage 3, where the compiler makes use of gathered profiles to guide the
optimization.

During stage 1, when the compiler instruments the generated code, if the
-pgo-session switch is used, then the compiler marks the instrumentation
as belonging to the session’s session-id.

During stage 3, when the compiler reads gathered profiles, if the
-pgo-session switch is used, then the compiler ignores all profile data not
generated from code that was marked with the same session-id.

Therefore, the compiler can optimize each variant of the source’s build
according to how the variant is used, rather than according to an average
of all uses.

General Guidelines

2-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Profile-Guided Optimization and the -Ov Switch

Note that when a .pgo file is placed on the command line, the -O optimi-
zation switch by default tries to balance between code performance and
code-size considerations. It is equivalent to using the -Ov 50 switch. To
optimize solely for performance while using PGO, the switch -Ov 100
should be used. The -Ov num switch (on page 1-49) is discussed further
along with optimization for space in “Smaller Applications: Optimizing
for Code Size” on page 2-45.

When to Use Profile-Guided Optimization

PGO should always be performed as the last optimization step. If the
application source code is changed after gathering profile data, this profile
data becomes invalid. The compiler does not use profile data when it can
detect that it is inaccurate. However, it is possible to change source code
in a way that is not detectable to the compiler (for example, by changing
constants). The programmer should ensure that the profile data used for
optimization remains accurate.

For more details on PGO, refer to “Optimization Control” on page 1-77.

Using Interprocedural Optimization

To obtain the best performance, the optimizer often requires information
that can only be determined by looking outside the function that it is
optimizing. For example, it helps to know what data can be referenced by
pointer parameters or if a variable actually has a constant value. The -ipa
compiler switch (on page 1-39) enables interprocedural analysis (IPA),
which can make this information available. When this switch is used, the
compiler is called again from the link phase to recompile the program
using additional information obtained during previous compilations.

This gathered information is stored within the object file generated during
initial compilation. IPA retrieves the gathered information from the object
file during linking, and uses it to recompile available source files where

VisualDSP++ 5.0 C/C++ Compiler Manual 2-13
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

beneficial. Because recompilation is necessary, IPA-built modules in
libraries can contribute to the optimization of application sources, but do
not themselves benefit from IPA, as their source is not available for
recompilation.

Because it only operates at link time, the effects of IPA are not seen if you
compile with the -S switch (on page 1-57). To see the assembly file when
IPA is enabled, use the -save-temps switch (on page 1-58), and look at
the .s file produced after your program has been built.

As an alternative to IPA, you can achieve many of the same benefits by
adding pragma directives and other declarations such as
__builtin_aligned to provide information to the compiler about how
each function interacts with the rest of the program.

These directives are further described “Using __builtin_aligned” on
page 2-20 and “Using Pragmas for Optimization” on page 2-47.

Data Types
Table 2-1 shows the following scalar data types that the compiler
supports.

Table 2-1. Scalar Data Types

Single-Word Fixed-Point Data Types: Native Arithmetic

char 32-bit signed integer (default)
8-bit signed integer (when char size set to 8 bits with the
-char-size-8 switch)

unsigned char 32-bit unsigned integer (default)
8-bit unsigned integer (when char size set to 8 bits with the
-char-size-8 switch)

short 32-bit signed integer (default)
16-bit signed integer (whenchar size set to 8 bits with the
-char-size-8 switch)

General Guidelines

2-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Fractional data types are represented using the integer types. Manipula-
tion of these is best done using built-in functions, described in “System
Support Built-in Functions” on page 2-42.

Avoiding Emulated Arithmetic

Arithmetic operations for some data types are implemented by library
functions because the processor hardware does not directly support these
types. Consequently, operations for these types are far slower than native

unsigned short 32-bit unsigned integer (default)
16-bit unsigned integer (when char size set to 8 bits with the
-char-size-8 switch)

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 32-bit signed integer

unsigned long 32-bit unsigned integer

long long 64-bit signed integer

unsigned long long 64-bit unsigned integer

Floating-Point Data Types: Native Arithmetic

float 32-bit floating point
Note: Default when the Double size option is set to 32 bits, or the
-double-size-32 switch is used.

double 32-bit floating point

Floating-Point Data Types: Emulated Arithmetic

double 64-bit floating-point
Note: Default when the Double size option is set to 64 bits, or the
-double-size-64 switch is used.

long double 64-bit floating-point

Table 2-1. Scalar Data Types

VisualDSP++ 5.0 C/C++ Compiler Manual 2-15
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

operations—sometimes by a factor of a hundred—and also produce larger
code. These types are marked as “Emulated Arithmetic” in “Data Types”
on page 2-13.

The hardware does not provide direct support for division, so division and
modulus operations are almost always multi-cycle operations, even on
integral type inputs. If the compiler has to issue a full-division operation,
it usually needs to call a library function. One instance in which a library
call is avoided is for integer division when the divisor is a compile-time
constant and is a power of two. In that case, the compiler generates a shift
instruction. Even then, a few fix-up instructions are needed after the shift
if the types are signed. If you have a signed division by a power of two,
consider whether you can change it to unsigned in order to obtain a sin-
gle-instruction operation.

In addition, although most arithmetic operations on long long integers
are supported by the hardware, multiplication is not. However, the long
long type is often useful for bit manipulation algorithms because of the
number of bits that can be processed in each operation.

When the compiler has to generate a call to a library function for one of
the arithmetic operators that are not supported by the hardware, perfor-
mance suffers not only because the operation takes multiple cycles, but
also because the effectiveness of the compiler optimizer is reduced.

For example, such operations in a loop can prevent the compiler from
using efficient zero-overhead hardware loop instructions. Also, calling the
library to perform the required operation can change values held in scratch
registers before the call, so the compiler has to generate more stores and
loads from the data stack to keep values required after the call returns.
Emulated arithmetic operators should therefore be avoided where possi-
ble, especially in loops.

General Guidelines

2-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Using Sub-Word Types with Caution

The size of char and short integer types may be changed through the
-char-size-8 switch (on page 1-28) or Char size option. Although the
TigerSHARC hardware does not support 8- or 16-bit loads and stores
from memory, they can be simulated in code. However, it is important to
remember that they are considerably less efficient than full-word memory
accesses.

Sub-word-sized data may permit greater throughput on highly “paralelliz-
able” inner loops, but sub-word-sized scalars or use in “non-paralellizable”
loops, degrade the performance. Therefore, use sub-word-sized integers
with caution, or where compatibility with true byte-addressable architec-
tures is required.

The TigerSHARC architecture does provide hardware support for data
types such as short vectors of 16-bit and 8-bit ints and 16-bit fixed-point
complex. The compiler supports operation on these data types through
built-in functions.

Note that these 16-bit operations are often more efficient than 32-bit
ones. However, the compiler does not generate a 16-bit operation where
you wrote a 32-bit operation even if it is obvious that the 16-bit operation
would generate the same result. Apart from the -char-size-8 switch, the
only way to get 16-bit operations is to use a built-in function. For more
information on supported built-in functions, refer to “Compiler Built-In
Functions” on page 1-132. Even if you use the 8-bit char size setting,
built-in functions can be a more reliable way to ensure maximum
throughput in critical loops.

The following code example shows scalar product written with 4x16 short
vector intrinsics. It illustrates the recommended style for code written
with intrinsic functions.

// GOOD: uses 4x16 short vector intrinsics
typedef long long int4x16;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-17
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

#define add(x,y) __builtin_add_4x16(x,y)
#define mult(x,y) __builtin_mult_i4x16(x,y)
#define sum(x) __builtin_sum_4x16(x)
int sp4x16(int4x16 a[], int4x16 b[], int n)
{

int i;
int4x16 sum4 = 0;
for (i = 0; i < n/4; ++i)

sum4 = add(sum4, mult(a[i], b[i]));
return sum(sum4);

}

Getting the Most From IPA
Interprocedural analysis (IPA) is designed to try to propagate information
about the program to parts of the optimizer that can use it. This section
looks at what information is useful, and how to structure your code to
make this information easily accessible for analysis.

The performance features are:

• “Initialize Constants Statically”

• “Quad-Word-Aligning Your Data” on page 2-19

• “Using __builtin_aligned” on page 2-20

• “Avoiding Aliases” on page 2-21

Initialize Constants Statically

IPA identifies variables that have only one value and replaces them with
constants, resulting in a host of benefits for the optimizer’s analysis. For
this to happen, a variable must have a single value throughout the pro-
gram. If the variable is statically initialized to zero, as all global variables

General Guidelines

2-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

are by default, and is subsequently assigned some other value at another
point in the program, then the analysis sees two values and does not con-
sider this variable to have a constant value.

For example,

// BAD: IPA cannot see that val is a constant
#include <stdio.h>
int val; // initialized to zero

void init() {
val = 3; // re-assigned

}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

The code is better written as

// GOOD: IPA knows val is 3
#include <stdio.h>
const int val = 3; // initialized once

void init() {
}

void func() {
printf("val %d",val);

}

int main() {
init();
func();

}

VisualDSP++ 5.0 C/C++ Compiler Manual 2-19
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Quad-Word-Aligning Your Data

To make most efficient use of the hardware, it must be kept fed with data.
In many algorithms, the balance of data accesses to computations is such
that, to keep the hardware fully utilized, data must be fetched with loads
wider than 32 bits.

The hardware requires that references to memory be naturally aligned.
Therefore, 64-bit references must be at even address locations, and
128-bit references at quad-word-aligned addresses. For the most efficient
code to be generated, ensure that data buffers are quad-word-aligned.

The compiler helps to establish the alignment of array data. The stack
frames are kept quad-word-aligned. Top-level arrays are allocated at
quad-word-aligned addresses, regardless of their data types. However,
arrays within structures are not aligned beyond the required alignment for
their type. It may be worth using the #pragma align 4 directive to force
the alignment of arrays in this case.

If you write programs that pass only the address of the first element of an
array as a parameter, and loops that process these input arrays an element
at a time, starting at element zero, then IPA should be able to establish
that the alignment is suitable for full-width accesses.

Where an inner loop processes a single row of a multi-dimensional array,
try to ensure that each row begins on a quad-word boundary. In particu-
lar, two-dimensional arrays should be defined in a single block of memory
rather than as an array of pointers to rows all separately allocated with
malloc. It is difficult for the compiler to keep track of the alignment of the
pointers in the latter case. It may also be necessary to insert dummy data
at the end of each row to make the row length a multiple of four words.

General Guidelines

2-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Using __builtin_aligned

To avoid the need to use IPA to propagate alignment, and for situations
when IPA cannot guarantee the alignment (but you can), use the
__builtin_aligned function to assert the alignment of important point-
ers, meaning that the pointer points to data that is aligned. Remember
when adding this declaration that you are responsible for making sure it is
valid, and that if the assertion is not true, the code produced by the com-
piler is likely to malfunction.

The assertion is particularly useful for function parameters, although you
may assert that any pointer is aligned. For example, when compiling the
function:

// BAD: without IPA, compiler does not know the alignment of a and b
void copy(char *a, char *b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

the compiler does not know the alignment of pointers a and b if IPA is not
being used. However, by modifying the function to the following:

// GOOD: Both pointer parameters are known to be aligned
void copy(char *a, char *b) {

int i;
__builtin_aligned(a, 4);
__builtin_aligned(b, 4);
for (i=0; i<100; i++)

a[i] = b[i];
}

the compiler is told that the pointers are aligned on quad-word bound-
aries. To assert instead that both pointers are always aligned one char
before a quad-word boundary, use:

// GOOD: Both pointer parameters are known to be misaligned
void copy(char *a, char *b) {

VisualDSP++ 5.0 C/C++ Compiler Manual 2-21
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

int i;
__builtin_aligned(a+1, 4);
__builtin_aligned(b+1, 4);
for (i=0; i<100; i++)

a[i] = b[i];
}

The expression used as the first parameter to the built-in function obeys
the usual C rules for pointer arithmetic. However, the second parameter
to the built-in function should give the alignment in words. The excep-
tion is that when using the -char-size-8 option, the alignment should
instead be given in bytes. In that case, to specify that a pointer a is
quad-word aligned, use __builtin_aligned(a, 16).

When a loop has up to two non-aligned pointers, the compiler can make
use of the hardware data alignment buffers to access 128-bits of data from
those pointers. Stores to memory via misaligned pointers are more diffi-
cult, so it is more important to store to an aligned buffer than to load from
one.

Avoiding Aliases

It may seem that the iterations may be performed in any order in the fol-
lowing loop:

// BAD: a and b may alias each other
void fn(char a[], char b[], int n) {

for (i = 0; i < n; ++i)
a[i] = b[i];

}

but a and b are both parameters, and, although they are declared with [],
they are in fact pointers, which may point to the same array. When the
same data may be reachable through two pointers, they are said to alias
each other.

If IPA is enabled, the compiler looks at the call sites of fn and tries to
determine whether a and b can ever point to the same array.

General Guidelines

2-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Even with IPA, it is easy to create what appears to the compiler as an alias.
The analysis works by associating pointers with sets of variables that they
may refer to some point in the program. If the sets for two pointers inter-
sect, then both pointers are assumed to point to the union of the two sets.

If fn above were called only in two places, with global arrays as arguments,
then IPA would have the results shown below:

// GOOD: sets for a and b do not intersect: a and b are not aliases
fn(glob1, glob2, N);
fn(glob1, glob2, N);

// GOOD: sets for a and b do not intersect: a and b are not aliases
fn(glob1, glob2, N);
fn(glob3, glob4, N);

// BAD: sets intersect - both a and b may access glob1;
// a and b may be aliases.

fn(glob1, glob2, N);

fn(glob3, glob1, N);

The third case arises because IPA considers the union of all calls at once,
rather than considering each call individually, when determining whether
there is a risk of aliasing. If each call were considered individually, IPA
would have to take flow control into account and the number of permuta-
tions would make compilation time impracticably long.

The lack of control flow analysis can also create problems when a single
pointer is used in multiple contexts. For example, it is better to write

// GOOD: p and q do not alias
int *p = a;
int *q = b;

// some use of p
// some use of q

than

VisualDSP++ 5.0 C/C++ Compiler Manual 2-23
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

// BAD: uses of p in different contexts may alias
int *p = a;

// some use of p
p = b;

// some use of p

because the latter may cause extra apparent aliases between the two uses.

Indexed Arrays Versus Pointers
The C language allows a program to access data from an array in two ways:
either by indexing from an invariant base pointer, or by incrementing a
pointer. The following two versions of vector addition illustrate the two
styles.

Style 1: using indexed arrays (indexing from a base pointer)

void va_ind(const short a[], const short b[], short out[], int n) {
int i;
for (i = 0; i < n; ++i)

out[i] = a[i] + b[i];
}

Style 2: incrementing a pointers

void va_ptr(const short a[], const short b[], short out[], int n) {
int i;
short *pout = out;
const short *pa = a, *pb = b;
for (i = 0; i < n; ++i)

*pout++ = *pa++ + *pb++;
}

General Guidelines

2-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Trying Pointer and Indexed Styles

One might hope that the chosen style would not make any difference to
the generated code, but this is not always the case. Sometimes, one version
of an algorithm generates better optimized code than the other, but it is
not always the same style that is better.

Try both pointer and index styles.

The pointer style introduces additional variables that compete with the
surrounding code for resources during the compiler optimizer’s analysis.
Array accesses, on the other hand, must be transformed to pointers by the
compiler, and sometimes this is accomplished better by hand.

The best strategy is to start with array notation. If the generated code
looks unsatisfactory, try using pointers. Outside the critical loops, use the
indexed style, since it is easier to understand.

Function Inlining
Function inlining may be used in two ways:

• By annotating functions in the source code with the inline key-
word. In this case, function inlining is performed only when
optimization is enabled.

• By turning on automatic inlining with the -Oa switch
(on page 1-48) or the Inlining -> Automatic option, automatically
enabling optimization.

Inline small, frequently executed functions.

You can use the compiler’s inline keyword to indicate that functions
should have code generated inline at the point of call. Doing this avoids
various costs such as program flow latencies, function entry and exit
instructions and parameter passing overheads.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-25
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Using an inline function also has the advantage that the compiler can
optimize through the inline code and does not have to assume that scratch
registers and condition states are modified by the call. Prime candidates
for inlining are small, frequently-used functions because they cause the
least code-size increase while giving most performance benefit.

As an example of the usage of the inline keyword, the function below
sums two input parameters and returns the result.

// GOOD: use of the inline keyword
inline int add(int a, int b) {

return (a+b);
}

Inlining has a code size-to-performance trade-off that should be consid-
ered. With -Oa, the compiler automatically inlines small functions where
possible. If the application has a tight upper code-size limit, the resulting
code-size expansion may be too great. Considering using automatic inlin-
ing in conjunction with the -Ov num switch (on page 1-49) (or the
Optimize for code speed/size slider) to restrict inlining (and other opti-
mizations with a code-size cost) to parts of the application that are
performance-critical. This is considered in more detail later in this
chapter.

Using Inline asm Statements
The compiler allows use of inline asm statements to insert small sections of
assembly code into C code.

Avoid use of inline asm statements where built-in functions may be
used instead.

The compiler does not intensively optimize code that contains inline asm
statements because it has little understanding about what the code in the
statement does. In particular, use of an asm statement in a loop may
inhibit useful transformations.

General Guidelines

2-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The compiler has a large number of built-in functions that generate spe-
cific hardware instructions. These are designed to allow the programmer
to more finely tune the code produced by the compiler, or to allow access
to system support functions. A complete list of compiler’s built-in func-
tions is given in “Compiler Built-In Functions” on page 1-132.

Use of these built-in functions is much preferred to using inline asm state-
ments. Since the compiler knows what each built-in function does, it can
easily optimize around them. Conversely, since the compiler does not
parse asm statements, it does not know what they do, and so is hindered in
optimizing code that uses them. Note also that errors in the text string of
an asm statement are caught by the assembler and not by the compiler.

Memory Usage
The compiler, in conjunction with the use of the linker description file
(.ldf), allows the programmer control over where data is placed in mem-
ory. This section describes how to best lay out data for maximum
performance.

Putting Arrays into Different Memory Sections

The DSP hardware can support two memory operations on a single
instruction line, combined with a compute instruction. However, two
memory operations complete in one cycle only if the two addresses are sit-
uated in different memory blocks. If both access the same block, the
processor stalls.

Try to put arrays into different memory sections.

Consider the dot product loop below. Because data is loaded from both
array a and array b in every iteration of the loop, it may be useful to ensure
that these arrays are located in different blocks.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-27
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

// BAD: compiler assumes that two memory accesses together may
// give a stall

for (i=0; i<100; i++)
sum += a[i] * b[i];

The “Dual Memory Support Language Keywords” compiler extension (see
“Memory Support Keywords (pm dm)” on page 1-119) can improve the
compiler’s use of the memory system. Placing a pm qualifier before the type
definition tells the compiler that the array is located in what is notionally
called “Program Memory” (pm).

The memory of a TigerSHARC processor is one unified address space and
there is no restriction on where in memory program code or data can be
placed. However, the default .ldf files ensure that pm-qualified data is
placed in a different memory block than non-qualified (or dm-qualified)
data, thus allowing two accesses to occur simultaneously without incur-
ring a stall.

To allow simultaneous accesses to the two buffers, modify the array decla-
ration of either a or b program by adding the pm qualifier. Also add the pm
qualifier to the declarations of any pointers that point to the pm buffer.

For example,

pm int a[100];

and any pointers to the buffer a become, for example,

pm int *p = a;

It is also possible to use the .ldf file to place data in different user-defined
memory sections. This has the advantage that it is possible to define more
than two sections which do not conflict with each other. Consider again
the example above.

First, let’s define two memory banks in the MEMORY portion of the .ldf file.

General Guidelines

2-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example: MEMORY portion of the .ldf file modified to define memory
banks.

MEMORY {
BANK_A1 {

TYPE(RAM) WIDTH(32)
START(start_address_1) END(end_address_1)

}
BANK_A2 {

TYPE(RAM) WIDTH(32)
START(start_address_2) END(end_address_2)

}
}

Then, configure the SECTIONS portion to instruct the linker to place data
sections in specific memory banks.

Example: SECTIONS portion of the .ldf file modified to define memory
banks.

SECTIONS {
bank_a1 {

INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($OBJECTS(bank_a1))

} >BANK_A1
bank_a2 {

INPUT_SECTION_ALIGN(4)
INPUT_SECTIONS($OBJECTS(bank_a2)) } >BANK_A2

}

In the C source code, declare arrays with the section("section_name")
construct preceding a buffer declaration; in this case,

section("bank_a1") short a[100];
section("bank_a2") short b[100];

This ensures that the two array accesses in the dot product loop may occur
simultaneously without incurring a stall.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-29
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Any pointers to the buffers a and b should likewise be modified:

section("bank_a1") short *p = a;

Note that only global or static data can be explicitly placed data in Pro-
gram Memory.

Using the Bank Qualifier

The bank qualifier can also be useful to write functions which make use of
the fact that buffers are placed in separate memory blocks. For example, it
might be useful to create a function:

// GOOD: uses bank qualifier to allow simultaneous access to p and q
void func(int bank("red") *p, int bank("blue") *q) {

// some code
}

if you would like to call func in different places, but always with pointers
to buffers in different sections of memory.

The bank qualifier tells the compiler that the buffers are in different sec-
tions without requiring that the sections themselves be specified.

Therefore, func may be called with the first parameter pointing to mem-
ory in section("bank_a1") and the second pointing to data in
section("bank_a2") or vice versa. You must still explicitly place the data
buffers in the memory sections. The bank qualifier merely informs the
compiler that it may assume this has been done to generate more efficient
code. Refer to “Bank Type Qualifiers” on page 1-123 for more
information.

Improving Conditional Code

2-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Improving Conditional Code
When compiling conditional statements, the compiler attempts to predict
whether the condition will usually evaluate to true or to false, and will
arrange for the most efficient path of execution to be that which is
expected to be most commonly executed.

You can use the expected_true and expected_false built-in functions to
control the compiler’s behavior for specific cases. By using these functions,
you can tell the compiler which way a condition is most likely to evaluate,
and so influence the default flow of execution. For example,

if (buffer_valid(data_buffer))

if (send_msg(data_buffer))

system_failure();

shows two nested conditional statements. If it was known that, for this
example, buffer_valid() would usually return true, but that send_msg()
would rarely do so, the code could be written as

if (expected_true(buffer_valid(data_buffer)))
if (expected_false(send_msg(data_buffer)))

system_failure();

See “Optimization Guidance Built-in Functions” on page 1-134 (on
expected_true and expected_false functions) for more information.

The compiler can also determine the most commonly-executed branches
automatically, using Profile-Guided Optimization. See “Optimization
Control” on page 1-77 for more details.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-31
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Loop Guidelines
Loops are where an application ordinarily spends the majority of its time.
It is therefore useful to look in detail at how to help the compiler to pro-
duce the most efficient code possible for them.

This section describes:

• “Keeping Loops Short” on page 2-32

• “Avoiding Unrolling Loops” on page 2-32

• “Avoiding Loop-Carried Dependencies” on page 2-33

• “Avoiding Loop Rotation by Hand” on page 2-34

• “Avoiding Array Writes in Loops” on page 2-35

• “Inner Loops Versus Outer Loops” on page 2-35

• “Avoiding Conditional Code in Loops” on page 2-36

• “Avoiding Placing Function Calls in Loops” on page 2-37

• “Loop Control” on page 2-38

• “Using the Restrict Qualifier” on page 2-39

• “Avoiding Long Latencies” on page 2-40

Loop Guidelines

2-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Keeping Loops Short
For best code efficiency, loops should be short. Large loop bodies are usu-
ally more complex and difficult to optimize. Large loops may also require
register data to be stored in memory, which decreases code density and
execution performance.

Avoiding Unrolling Loops
Do not unroll loops yourself.

Not only does loop unrolling make the program harder to read but it also
prevents optimization by complicating the code for the compiler.

// GOOD: the compiler unrolls if it helps
void va1(const short a[], const short b[], short c[], int n) {

int i;

for (i = 0; i < n; ++i) {

c[i] = b[i] + a[i];

}

}

// BAD: harder for the compiler to optimize
void va2(const short a[], const short b[], short c[], int n) {

short xa, xb, xc, ya, yb, yc;
int i;
for (i = 0; i < n; i+=2) {

xb = b[i]; yb = b[i+1];
xa = a[i]; ya = a[i+1];
xc = xa + xb; yc = ya + yb;
c[i] = xc; c[i+1] = yc;

}
}

VisualDSP++ 5.0 C/C++ Compiler Manual 2-33
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Avoiding Loop-Carried Dependencies
A loop-carried dependency exists when a computation in a given iteration
of a loop cannot be completed without knowledge of values calculated in
earlier iterations. When a loop has such dependencies, the compiler can-
not overlap loop iterations. Some dependencies are caused by scalar
variables that are used before they are defined in a single iteration.

However, if the loop-carried dependency is part of a reduction computa-
tion, the optimizer can reorder iterations. Reductions are loop
computations that reduce a vector of values to a scalar value using an asso-
ciative and commutative operator. A multiply and accumulate in a loop is
a common example of a reduction.

// BAD: loop-carried dependence in variable x

for (i = 0; i < n; ++i)
x = a[i] - x;

// GOOD: loop-carried dependence is a reduction
for (i = 0; i < n; ++i)

x += a[i] * b[i];

In the first case, the scalar dependency is the subtraction operation. The
variable x is modified in a manner that would give different results if the
iterations were performed out of order. In contrast, in the second case,
because the addition operator is associative and commutative, the com-
piler can perform the iterations in any order and still get the same result.
Other examples of reductions are bitwise and/or and min/max operators.
The existence of loop-carried dependencies that are not reductions pre-
vents the compiler from vectorizing a loop—that is, executing more than
one iteration concurrently.

Floating-point addition is by default treated as associative and as a reduc-
tion operator. However, strictly speaking, rounding effects can change the
result when the order of summation is varied. Use the -no-fp-associative
compiler switch (on page 1-45) to ensure floating-point operations are
executed in the same order as in the source code.

Loop Guidelines

2-34 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Avoiding Loop Rotation by Hand
Do not rotate loops by hand.

Programmers are often tempted to “rotate” loops in processor code by
“hand” attempting to execute loads and stores from earlier or future itera-
tions at the same time as computation from the current iteration. This
technique introduces loop-carried dependencies that prevent the compiler
from rearranging the code effectively. However, it is better to give the
compiler a “normalized” version, and leave the rotation to the compiler.

For example,

// GOOD: is rotated by the compiler
int ss(short *a, short *b, int n) {

int sum = 0;
int i;
for (i = 0; i < n; i++) {

sum += a[i] + b[i];
}
return sum;

}

// BAD: rotated by hand—hard for the compiler to optimize
int ss(short *a, short *b, int n) {

short ta, tb;
int sum = 0;
int i = 0;
ta = a[i]; tb = b[i];
for (i = 1; i < n; i++) {

sum += ta + tb;
ta = a[i]; tb = b[i];

}
sum += ta + tb;
return sum;

}

Rotating the loop required adding the scalar variables ta and tb and intro-
ducing loop-carried dependencies.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-35
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Avoiding Array Writes in Loops
Other dependencies can be caused by writes to array elements. In the fol-
lowing loop, the optimizer cannot determine whether the load from a
reads a value defined on a previous iteration or one that is overwritten in a
subsequent iteration.

// BAD: has array dependency
for (i = 0; i < n; ++i)

a[i] = b[i] * a[c[i]];

The optimizer can resolve access patterns where the addresses are expres-
sions that vary by a fixed amount on each iteration. These are known as
“induction variables”.

// GOOD: uses induction variables
for (i = 0; i < n; ++i)

a[i+4] = b[i] * a[i];

Inner Loops Versus Outer Loops
Inner loops should iterate more than outer loops.

The optimizer focuses on improving the performance of inner loops
because this is where most programs spend the majority of their time. It is
considered a good trade-off for an optimization to slow down the code
before and after a loop to make the loop body run faster. Therefore, try to
make sure that your algorithm also spends most of its time in the inner
loop; otherwise it may actually run slower after optimization. If you have
nested loops where the outer loop runs many times and the inner loop
runs a small number of times, try to rewrite the loops so that the outer
loop has fewer iterations.

Loop Guidelines

2-36 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Avoiding Conditional Code in Loops
If a loop contains conditional code, control-flow latencies may incur large
penalties if the compiler has to generate conditional jumps within the
loop. In some cases, the compiler is able to convert if-then-else and ?:
constructs into conditional instructions. In other cases, it can evaluate the
expression entirely outside of the loop. However, for important loops, lin-
ear code should be written where possible.

There are several techniques for removing conditional code. For example,
there is hardware support for min and max. The compiler usually succeeds
in transforming conditional code equivalent to min or max into the single
instruction. With particularly convoluted code the transformation may be
missed, in which case it is better to use min or max in the source code.

The compiler does not perform the loop transformation that interchanges
conditional code and loop structures. Instead of writing

// BAD: loop contains conditional code
for (i=0; i<100; i++) {

if (mult_by_b)
sum1 += a[i] * b[i];

else
sum1 += a[i] * c[i];

}

it is better to write

// GOOD: two simple loops can be optimized well
if (mult_by_b) {

for (i=0; i<100; i++)
sum1 += a[i] * b[i];

} else {
for (i=0; i<100; i++)

sum1 += a[i] * c[i];
}

if this is an important loop.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-37
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Avoiding Placing Function Calls in Loops
The compiler usually is unable to generate a hardware loop if the loop
contains a function call due to the expense of saving and restoring the con-
text of a hardware loop. In addition to obvious function calls, such as
printf(), can also prevent hardware loop generation operations, such as
division, modulus, and some type coercions, that may implicitly call
library functions. For more details, see “Data Types” on page 2-13.

 Avoiding Non-Unit Strides
If you write a loop, such as

// BAD: non-unit stride means division may be required
for (i=0; i<n; i+=3) {

// some code
}

then for the compiler to turn this into a hardware loop, it needs to work
out the loop trip count. To do so, it must divide n by 3. The compiler may
decide that this is worthwhile as it speeds up the loop, but division is an
expensive operation. Try to avoid creating loop control variables with
strides other than 1 or -1.

In addition, try to keep memory accesses in consecutive iterations of an
inner loop contiguous. This is particularly applicable to multi-dimen-
sional arrays. Therefore,

// GOOD: memory accesses contiguous in inner loop
for (i=0; i<100; i++)

for (j=0; j<100; j++)
sum += a[i][j];

is likely to be better than

// BAD: loop cannot be unrolled to use wide loads
for (i=0; i<100; i++)

Loop Guidelines

2-38 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

for (j=0; j<100; j++)
sum += a[j][i];

as the former is more amenable to vectorization.

Similarly, two-dimensional arrays should be defined in a single block of
memory rather than as an array of pointers to rows, all separately allocated
with malloc. It is difficult for the compiler to keep track of the alignment
of the pointers of the latter.

Loop Control
Use int types for loop control variables and array indices. Use
automatic variables for loop control and loop exit test.

For loop control variables and array indices, it is always better to use
signed ints rather than any other integral type. For other integral types,
the C standard requires various type promotions and standard conversions
that complicate the code for the compiler optimizer. Frequently, the com-
piler is still able to deal with such code and create hardware loops and
pointer induction variables. However, it does make it more difficult for
the compiler to optimize and may occasionally result in under-optimized
code.

The same advice goes for using automatic (local) variables for loop con-
trol. It is easy for a compiler to see that an automatic scalar whose address
is not taken may be held in a register during a loop. But it is not as easy
when the variable is a global or a function static.

Therefore, code such as

// BAD: may need to reload globvar on every iteration
for (i=0; i<globvar; i++)

a[i] = a[i] + 1;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-39
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

may not create a hardware loop if the compiler cannot be sure that the
write into the array a does not change the value of the global variable. The
globvar variable must be re-loaded each time around the loop before per-
forming the exit test.

In this circumstance, the programmer can make the compiler's job easier
by writing:

// GOOD: easily becomes hardware loop
int upper_bound = globvar;
for (i=0; i<upper_bound; i++)

a[i] = a[i] + 1;

Using the Restrict Qualifier
The restrict qualifier provides one way to help the compiler resolve
pointer aliasing ambiguities. Accesses from distinct restricted pointers do
not interfere with each other. The loads and stores in the following loop

// BAD: possible alias of arrays a and b
void copy(short *a, short *b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

 may be disambiguated by writing

// GOOD: restrict qualifier tells compiler that memory
// accesses do not alias
void copy(short *a, const short *b) {

int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

Loop Guidelines

2-40 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The restrict keyword is particularly useful on function parameters. but
it can be used on any variable declaration. For example, the copy function
may also be written as:

void copy(short *a, short *b) {

int * restrict p = a;

for (i=0; i<100; i++)
a[i] = b[i];

}

Avoiding Long Latencies
All pipelined machines introduce stall cycles when you cannot execute the
current instruction until a prior instruction has exited the pipeline. For
example, the TigerSHARC processor stalls for four cycles on a table
lookup. a[b[i]] takes four cycles more than expected.

If a stall is seen empirically, but it is not obvious to you exactly why it is
occurring, a good way to learn about the cause is the Pipeline Viewer.
This can be accessed through Debug Windows -> Pipeline Viewer in the
VisualDSP++ IDDE. By single-stepping through the program, you may
see where the stall occurs. Note that the Pipeline Viewer is only available
within a simulator session.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-41
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Using Built-In Functions in Code
Optimization

Built-in functions provide a method for the programmer to efficiently use
low-level features of the DSP hardware while programming in C.
Although this section does not cover all the built-in functions available
(for more information, refer to “Compiler Built-In Functions” on
page 1-132), it presents some code examples where implementation
choices are available to the programmer.

Using Fractional Data
Fractional data, represented as an integral type, can be manipulated in two
ways: the first way involves the use of long promoted shifts and multiply
constructs. The second way involves the use of compiler built-in func-
tions. The built-in functions are recommended, as they give you the most
control over your data. Consider the fractional dot product algorithm.
This may be written as:

// BAD: uses shifts to implement fraction multiplication
short dot_product (short *a, short *b) {

int i;
short sum=0;
for (i=0; i<100; i++) {

/* this line is performance critical */
sum += ((a[i]*b[i]) >> 15);

}
return sum;

}

This presents some problems to the optimizer. Normally, the code gener-
ated here would be a multiply, followed by a shift, then an accumulation.
However, the processor hardware has a fractional multiply/accumulate
instruction that performs all these tasks in one cycle.

Using Built-In Functions in Code Optimization

2-42 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The recommended coding style is to use compiler intrinsics (built-in func-
tions). In the following example, an intrinsic is used to multiply fractional
16-bit data. Note that it is also assumed that it has been possible to rear-
range the 16-bit fractional data to be packed two items per word.

// GOOD: uses intrinsics to implement fractional multiplication
#include <math.h>
short dot_product(int4x16 *a, int4x16 *b) {

int i;
int4x16 sum=0;
for (i=0; i<100; i++) {

/* this line is performance critical */
sum = __builtin_add_4x16(

sum, __builtin_mult_fr4x16(a[i],b[i]));
}
return __builtin_sum_4x16(sum);

}

Note that the int4x16 type, along with other related ones, are merely
typedefs to C integer types used by convention in standard include files.
The compiler does not have any in-built knowledge of these types and
treats them exactly as the integer types that they are typedefed to.

System Support Built-in Functions
Built-in functions are also provided to perform low-level system manage-
ment, in particular for the manipulation of system registers (defined in
sysreg.h). It is usually better to use these built-in functions rather than
inline asm statements.

The built-in functions cause the compiler to generate efficient inline
instructions and their use often results in better optimization of the sur-
rounding code at the point where they are used. Using built-in functions
also usually results in improved code readability. For more information on
supported built-in functions, refer to “Compiler Built-In Functions” on
page 1-132.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-43
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Using Circular Buffers
Circular buffers are often extremely useful in DSP-style code. They can be
used in several ways. Consider the C code:

// GOOD: the compiler knows that b is accessed as a circular buffer
for (i=0; i<1000; i++) {

sum += a[i] * b[i%20];
}

Clearly the access to array b is a circular buffer. When optimization is
enabled, the compiler produces a hardware circular buffer instruction for
this access.

However, consider the slightly more complicated example:

// BAD: may not be able to use circular buffer to access b
for (i=0; i<1000; i+=n) {

sum += a[i] * b[i%20];
}

In this case, the compiler does not know if n is positive and less than 20. If
it is, then the access may be correctly implemented as a hardware circular
buffer. On the other hand, if it is greater than 20, a circular buffer incre-
ment may not yield the same results as the C code.

The programmer has two options here.

The first option is to compile with the -force-circbuf switch
(on page 1-34). This tells the compiler that any access of the form a[i%n]
should be considered as a circular buffer. Before using this switch, check
that this assumption is valid for your application.

1. The value of i must be positive.

2. The value of n must be constant across the loop, and greater than
zero (as the length of the buffer).

3. The value of a must be a constant across the loop (as the base
address of the circular buffer).

Using Built-In Functions in Code Optimization

2-44 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

4. The initial value of i must be such that a[i] refers a valid position
within the circular buffer. This is because the circular buffer opera-
tions will take effect when advancing from position a[i] to either
a[i+m] or a[i-m], by addition or subtraction, respectively. If a[i]
is not initially valid, then any access before the first advancement
will not access the buffer, and a[i+m] and a[i-m] will not be guar-
anteed to reference the buffer after advancement.

Circular buffer operations (which add or subtract the buffer length
to a pointer) are semantically different from a[i%n] (which per-
forms a modulo operation on an index, and then adds the result to
a base pointer). If you use the -force-circbuf switch when the
above conditions are not true, the compiler generates code that will
not have the intended effect.

The second, and preferred, option, is to use built-in functions to perform
the circular buffering. Two functions (__builtin_circindex and
__builtin_circptr) are provided for this purpose.

To make it clear to the compiler that a circular buffer should be used, you
may write either:

// GOOD: explicit use of circular buffer via __builtin_circindex
for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * b[j];
j = __builtin_circindex(j, n, 20);

}

or

// GOOD: explicit use of circular buffer via __builtin_circptr
int *p = b;
for (i=0, j=0; i<1000; i+=n) {

sum += a[i] * (*p);
p = __builtin_circptr(p, n, b, 80);

}

For more information, refer to “Compiler Built-In Functions” on
page 1-132).

VisualDSP++ 5.0 C/C++ Compiler Manual 2-45
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Smaller Applications: Optimizing for
Code Size

The same philosophy for producing fast code also applies to producing
small code. You should present the algorithm in a way that gives the opti-
mizer clear visibility of the operations and data, and hence the greatest
freedom to safely manipulate the code to produce small applications.

Once the program is presented in this way, the optimization strategy
depends on the code-size constraint that the program must obey. The first
step should be to optimize the application for full performance, using -O
or -ipa switches. If this obeys the code-size constraints, then no more
need be done.

The “optimize for space” switch -Os (on page 1-49). which may be used in
conjunction with IPA, performs every performance-enhancing transfor-
mation except those that increase code size. In addition, the -e linker
switch (-flags-link -e if used from the compiler command line) may be
helpful (on page 1-34). This operation performs section elimination in the
linker to remove unneeded data and code. If the code produced with the
-Os and -flags-link -e switches does not meet the code-size constraint,
some analysis of the source code is required to try to reduce the code size
further.

Note that loop transformations such as unrolling and software pipelining
increase code size. But these loop transformations also give the greatest
performance benefit. Therefore, in many cases compiling for minimum
code size produces significantly slower code than optimizing for speed.

The compiler provides a way to balance between the two extremes of -O
and -Os. This is the sliding-scale -Ov num switch (adjustable using the
optimization slider bar under Project Options in the VisualDSP++
IDDE), described on page 1-49. The num parameter is a value between 0
and 100, where the lower value corresponds to minimum code size and
the upper to maximum performance. A value in-between is used to opti-

Smaller Applications: Optimizing for Code Size

2-46 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

mize the frequently-executed regions of code for maximum performance,
while keeping the infrequently-executed parts as small as possible. The
switch is most reliable when using profile-guided optimization (see “Opti-
mization Control” on page 1-77) since the execution counts of the various
code regions have been measured experimentally. Without PGO, the exe-
cution counts are estimated, based on the depth of loop nesting.

Avoid the use of inline code.

Avoid using the inline keyword to inline code for functions that are used
a number of times, especially if they not very small. The -Os switch does
not have any effect on the use of the inline keyword. It does, however,
prevent automatic inlining (using the -Oa switch) from increasing the code
size. Macro functions can also cause code expansion and should be used
with care.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-47
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Using Pragmas for Optimization
Pragmas can assist optimization by allowing the programmer to make
assertions or suggestions to the compiler. This section looks at how they
can be used to finely tune source code. Refer to “Pragmas” on page 1-187
for full details of how each pragma works. The emphasis of this section is
to consider under what circumstances they are useful during the optimiza-
tion process.

In most cases, the pragmas serve to give the compiler information that it is
unable to deduce for itself. The programmer is responsible for making
sure that the information given by the pragma is valid in the context in
which it is used. Use of a pragma to assert that a function or loop has a
quality that it does not in fact have is likely to result in incorrect code and
hence a malfunctioning application.

Pragmas are advantageous because they allow code to remain portable,
since they are normally ignored by a compiler that does not recognize
them.

Function Pragmas
Function pragmas include #pragma const, #pragma pure, #pragma
regs_clobbered, and #pragma optimize_{off|for_speed|for_space|
as_cmd_line}.

#pragma const

This pragma asserts to the compiler that a function does not have any side
effects (such as modifying global variables or data buffers), and the result
returned is only a function of the parameter values. The pragma may be
applied to a function prototype or definition. It helps the compiler since
two calls to the function with identical parameters always yield the same
result. In this way calls to #pragma const functions may be hoisted out of
loops if their parameters are loop independent.

Using Pragmas for Optimization

2-48 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#pragma pure

Like #pragma const, this pragma asserts to the compiler that a function
does not have any side effects (such as modifying global variables or data
buffers). However, the result returned may be a function of both the
parameter values and any global variables. The pragma may be applied to a
function prototype or definition. Two calls to the function with identical
parameters always yield the same result, provided that no global variables
have been modified between the calls. Hence, calls to #pragma pure func-
tions may be hoisted out of loops if their parameters are loop independent
and no global variables are modified in the loop.

#pragma regs_clobbered

This pragma is a useful way to improve the performance of code that
makes function calls. The best use of the pragma is to increase the number
of call-preserved registers available across a function call. There are two
complementary ways in which this may be done.

First, suppose that you have a function written in assembly that you wish
to call from C source code. The regs_clobbered pragma may be applied
to the function prototype to specify which registers are “clobbered” by the
assembly function, that is, which registers may have different values before
and after the function call. Consider a simple assembly function that adds
two integers, then masks the result to fit into 8 bits:

_add_mask:
J8 = J4 + J5;;
J0 = 255;;
J8 = J8 AND J0;;
cjmp (ABS);;

._add_mask.end:

VisualDSP++ 5.0 C/C++ Compiler Manual 2-49
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

The function does not modify the majority of the scratch registers avail-
able and thus these could instead be used as call-preserved registers. In this
way, fewer spills to the stack would be needed in the caller function. Using
the following prototype,

// GOOD: uses regs_clobbered to increase call-preserved register set
#pragma regs_clobbered "J0, J8, jICC"
int add_mask(int, int);

the compiler is told which registers are modified by a call to the add_mask
function. The registers not specified by the pragma are assumed to pre-
serve their values across such a call and the compiler may use these spare
registers to its advantage when optimizing the call sites.

The pragma is also powerful when all of the source code is written in C. In
the above example, a C implementation might be:

// BAD: function thought to clobber entire volatile register set
int add_mask(int a, int b) {

return ((a+b)&255);
}

Since this function does not need many registers when compiled, it can be
defined using

// GOOD: function compiled to preserve most registers
#pragma regs_clobbered "J0, J8, CCset"
int add_mask(int a, int b) {

return ((a+b)&255);
}

to ensure that any other registers aside from J0, J8 and the condition
codes are not modified by the function. If any other registers are used in
the compilation of the function, they are saved and restored during the
function prologue and epilogue.

In general, it is not very helpful to specify any of the condition codes as
call-preserved as they are difficult to save and restore and are usually clob-
bered by any function. Moreover, it is usually of limited benefit to be able

Using Pragmas for Optimization

2-50 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

to keep them live across a function call. Therefore, it is better to use CCset
(all condition codes) rather than jICC in the clobbered set above. For more
information, refer to “#pragma regs_clobbered string” on page 1-203.

#pragma optimize_{off|for_speed|for_space}

This pragma may be used to change the optimization setting on a func-
tion-by-function basis. In particular, it may be useful to optimize
functions that are rarely called (for example, error handling code) for
space (#pragma optimize_for_space), whereas functions critical to perfor-
mance should be compiled for maximum speed (using #pragma
optimize_for_speed). The #pragma optimize_off is useful for debugging
specific functions without increasing the size or decreasing the perfor-
mance of the overall application unnecessarily.

The #pragma optimize_as_cmd_line resets the optimization settings to
those specified on the ccts command line when the compiler is invoked.
Refer to “General Optimization Pragmas” on page 1-211 for more
information.

Loop Optimization Pragmas
Many pragmas are targeted towards helping to produce optimal code for
inner loops. These are the loop_count, no_vectorization, vector_for,
all_aligned, different_banks, and no_alias pragmas.

#pragma loop_count

This pragma enables the programmer to inform the compiler about a
loop’s iteration count. The compiler is able to make more reliable deci-
sions about the optimization strategy for a loop if it knows the iteration
count range. If you know that the loop count is always a multiple of some
constant, this can also be useful as it allows a loop to be partially unrolled
or vectorized without the need for conditionally-executed iterations.
Knowledge of the minimum trip count may allow the compiler to omit

VisualDSP++ 5.0 C/C++ Compiler Manual 2-51
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

the guards that are usually required after software pipelining. (A “guard” is
code generated by the compiler to test a condition at runtime rather than
at compile-time.) Any of the parameters of the pragma that are unknown
may be left blank.

The following is an example of the loop_count pragma:

// GOOD: the loop_count pragma gives compiler helpful information
// to assist optimization

#pragma loop_count(/*minimum*/ 40, /*maximum*/ 100, /*modulo*/ 4)
for (i=0; i<n; i++)

a[i] = b[i];

For more information, refer to “#pragma loop_count(min, max, modulo)”
on page 1-196.

#pragma no_vectorization

Vectorization (executing more than one iteration of a loop in parallel) can
slow down loops with very small iteration counts, since a loop prologue
and epilogue are required. The no_vectorization pragma can be used
directly above a for or do loop to tell the compiler not to vectorize the
loop.

#pragma vector_for

This pragma is used to help the compiler to resolve dependencies that
would normally prevent it from vectorizing a loop. It tells the compiler
that all iterations of the loop may be run in parallel with each other, sub-
ject to rearrangement of reduction expressions in the loop. In other words,
there are no loop-carried dependencies except reductions. An optional
parameter, n, may be given in parentheses to say that only n iterations of
the loop may be run in parallel. The parameter must be a literal value.

Using Pragmas for Optimization

2-52 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

For example,

// BAD: cannot be vectorized due to possible alias between a and b
for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

cannot be vectorized if the compiler cannot tell that the array b does not
alias array a. But the pragma may be added to instruct the compiler that in
this case four iterations may be executed concurrently.

// GOOD: pragma vector_for disambiguates alias
#pragma vector_for (4)
for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

Note that this pragma does not force the compiler to vectorize the loop.
The optimizer checks various properties of the loop and does not vectorize
it if it believes that it is unsafe or cannot deduce information necessary to
carry out the vectorization transformation. The pragma assures the com-
piler that there are no loop-carried dependencies, but there may be other
properties of the loop that prevent vectorization.

In cases where vectorization is impossible, the information given in the
assertion made by vector_for may still be put to good use in aiding other
optimizations.

For more information, refer to “#pragma vector_for” on page 1-199.

#pragma all_aligned

This pragma is used as shorthand for multiple __builtin_aligned asser-
tions. By prefixing a for loop with the pragma, it is asserted that every
pointer variable in the loop is aligned on a quad-word boundary at the
beginning of the first iteration.

Therefore, adding the pragma to the following loop

// GOOD: uses all_aligned to inform compiler of alignment of a and b
#pragma all_aligned

VisualDSP++ 5.0 C/C++ Compiler Manual 2-53
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

for (i=0; i<100; i++)
a[i] = b[i];

is equivalent to writing

// GOOD: uses __builtin_aligned to give alignment of a and b
__builtin_aligned(a, 4);
__builtin_aligned(b, 4);
for (i=0; i<100; i++)

a[i] = b[i];

In addition, the all_aligned pragma may take an optional literal integer
argument n in parentheses. This tells the compiler that all pointer vari-
ables are aligned on a quad-word boundary at the beginning of the nth
iteration. Note that the iteration count begins at zero.

Therefore,

// GOOD: uses all_aligned to inform compiler of alignment of a and b
#pragma all_aligned (3)
for (i=99; i>=0; i--)

a[i] = b[i];

is equivalent to

// GOOD: uses __builtin_aligned to give alignment of a and b
__builtin_aligned(b+96, 4);
__builtin_aligned(a+96, 4);
__builtin_aligned(b+96, 4);
for (i=99; i>=0; i--)

a[i] = b[i];

For more information, refer to “#pragma all_aligned” on page 1-195 and
“Using __builtin_aligned” on page 2-20.

#pragma different_banks

This pragma is used as shorthand for declaring multiple pointer types with
different bank qualifiers. It asserts that any two independent memory
accesses in the loop may be issued together without incurring a stall.

Using Pragmas for Optimization

2-54 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

For example,

// GOOD: uses different banks to allow simultaneous accesses to a and b
#pragma different_banks
for (i=0; i<100; i++)

a[i] = b[i] + a[i-4];

allows a single instruction loop to be created. Note that the use of the
different_banks pragma implies that the memory accesses do not alias
each other. If they did, it would not be permitted to issue them simulta-
neously. See “#pragma different_banks” on page 1-196 for more
information.

#pragma no_alias

When immediately preceding a loop, the no_alias pragma asserts that no
load or store in the loop accesses the same memory. This helps to produce
shorter loop kernels because it permits instructions in the loop to be rear-
ranged more freely. See “#pragma no_alias” on page 1-198 for more
information.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-55
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Useful Optimization Switches
Table 2-2 lists the compiler switches useful during the optimization
process.

Table 2-2. C/C++ Compiler Optimization Switches

Switch Name Description

-const-red-write
on page 1-29

Specifies that data accessed via a pointer to const data may be modi-
fied elsewhere

-flags-link -e
on page 1-34

Specifies linker section elimination

-force-circbuf
on page 1-34

Treats array references of the form array[i%n] as circular buffer
operations

-ipa
on page 1-39

Turns on inter-procedural optimization. Implies use of -O.
May be used in conjunction with -Os or -Ov.

-no-fp-associative
on page 1-45

Does not treat floating-point multiply and addition as an associative

-no-saturation
on page 1-46

Does not turn non-saturating operations into saturating ones

-O
on page 1-48

Enables code optimizations and optimizes the file for speed

-Os
on page 1-49

Optimizes the file for size

-Ov num
on page 1-49

Controls speed vs. size optimizations (sliding scale)

-pguide
on page 1-54

Adds instrumentation for the gathering of a profile as the first stage of
performing profile-guided optimization

-save-temps
on page 1-58

Saves intermediate files (for example, .s)

How Loop Optimization Works

2-56 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

How Loop Optimization Works
Loop optimization is important to overall application performance,
because any performance gain achieved within the body of a loop reaps a
benefit for every iteration of that loop. This section provides an introduc-
tion to some of the concepts used in loop optimization, helping you to use
the compiler features in this chapter.

The assembly code generated by the compiler optimizer is annotated with
the following information:

• “Terminology”

• “Loop Optimization Concepts” on page 2-59

• “A Worked Example” on page 2-78

Terminology
This section describes terms that have particular meanings for compiler
behavior.

Clobbered Register

A register is “clobbered” if its value is changed so that the compiler cannot
usefully make assumptions about its new contents.

For example, when the compiler generates a call to an external function,
the compiler considers all caller-preserved registers to be clobbered by the
called function. Once the called function returns, the compiler cannot
make any assumptions about the values of those registers. This is why they
are called “caller-preserved.” If the caller needs the values in those regis-
ters, the caller must preserve them itself.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-57
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

The set of registers clobbered by a function can be changed using #pragma
regs_clobbered, and the set of registers changed by a gnu asm statement is
determined by the clobber part of the asm statement.

Live Register

A register is “live” if it contains a value needed by the compiler, and thus
cannot be overwritten by a new assignment to that register. For example,
to do "A = B + C", the compiler might produce:

reg1 = load B // reg1 becomes live
reg2 = load C // reg2 becomes live
reg1 = reg1 + reg2 // reg2 ceases to be live;

// reg1 still live, but with a different
// value

store reg1 to A // reg1 ceases to be live

Liveness determines which registers the compiler may use. In this exam-
ple, since reg1 is used to load B, and that register must maintain its value
until the addition, reg1 cannot also be used to load the value of C, unless
the value in reg1 is first stored elsewhere.

Spill

When a compiler needs to store a value in a register, and all usable regis-
ters are already live, the compiler must store the value of one of the
registers to temporary storage (the stack). This “spilling” process prevents
the loss of a necessary value.

Scheduling

“Scheduling” is the process of re-ordering the program instructions to
increase the efficiency of the generated code but without changing the
program’s behavior. The compiler attempts to produce the most efficient
schedule.

How Loop Optimization Works

2-58 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Loop Kernel

The “loop kernel” is the body of code that is executed once per iteration of
the loop. It excludes any code required to set up the loop or to finalize it
after completion.

Loop Prolog

A “loop prolog” is a sequence of code required to set the machine into a
state whereby the loop kernel can execute. For example, the prolog may
pre-load some values into registers ready for use in the loop kernel. Not all
loops need a prolog.

Loop Epilog

A “loop epilog” is a sequence of code responsible for finalizing the execu-
tion of a loop. After each iteration of the loop kernel, the machine will be
in a state where the next iteration can begin efficiently. The epilog moves
values from the final iteration to where they need to be for the rest of the
function to execute. For example, the epilog might save values to memory.
Not all loops need an epilog.

Loop Invariant

A “loop invariant” is an expression that has the same value for all itera-
tions of a loop. For example,

int i, n = 10;
for (i = 0; i < n; i++) {

val += i;
}

The variable n is a loop invariant, as its value is not changed during the
body of the loop, so n will have the value 10 for every iteration of the loop.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-59
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Hoisting

When the optimizer determines that some part of a loop is computing a
value that is actually a loop invariant, it may move that computation to
before the loop. This “hoisting” prevents the same value from being
re-computed for every iteration.

Sinking

When the optimizer determines that some part of a loop is computing a
value that is not used until the loop terminates, the compiler may move
that computation to after the loop. This “sinking” process ensures the
value is only computed using the values from the final iteration.

Loop Optimization Concepts
The compiler optimizer focuses considerable attention on program loops,
as any gain in the loop’s performance reaps the benefits on every iteration
of the loop. The applied transformations can produce code that appears to
be substantially different from the structure of the original source code.
This section provides a simple introduction to the compiler’s loop optimi-
zation, to help you understand why the code might be different.

The following examples are presented in terms of a hypothetical machine.
This machine is capable of issuing up to two instructions in parallel, pro-
vided one instruction is an arithmetic instruction, and the other is a load
or a store. Two arithmetic instructions may not be issued at once, nor may
two memory accesses.

t0 = t0 + t1; // valid: single arithmetic
t2 = [p0]; // valid: single memory access
[p1] = t2; // valid: single memory access
t2 = t1 + 4, t1 = [p0]; // valid: arithmetic and memory
t5 += 1, t6 -= 1; // invalid: two arithmetic
[p3] = t2, t4 = [p5]; // invalid: two memory

How Loop Optimization Works

2-60 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The machine can use the old value of a register and assign a new value to it
in the same cycle. For example,

t2 = t3 + 4, t2 = [p2]; // valid: arithmetic and memory

The value of t1 on entry to the instruction is the value used in the addi-
tion. On completion of the instruction, t1 contains the value loaded via
the p0 register.

The examples will show “START LOOP N” and “END LOOP”, to indicate the
boundaries of a loop that iterates N times. (The mechanisms of the loop
entry and exit are not relevant).

Software Pipelining

“Software pipelining” is analogous to hardware pipelining used in some
processors. Whereas hardware pipelining allows a processor to start pro-
cessing one instruction before the preceding instruction has completed,
software pipelining allows the generated code to begin processing the next
iteration of the original source-code loop before the preceding iteration is
complete.

Software pipelining makes use of a processor's ability to multi-issue
instructions. Regarding known delays between instructions, it also sched-
ules instructions from later iterations where there is spare capacity.

Loop Rotation

“Loop rotation” is a common technique of achieving software pipelining.
It changes the logical start and end positions of the loop within the overall
instruction sequence, to allow a better schedule within the loop itself. For
example, this loop:

START LOOP N

A

B

C

VisualDSP++ 5.0 C/C++ Compiler Manual 2-61
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

D

E

END LOOP

could be rotated to produce the following loop:

A

B

C

START LOOP N-1
D

E

A

B

C

END LOOP

D

E

The order of instructions in the loop kernel is now different. It still circles
from instruction E back to instruction A, but now it starts at D, rather than
A. The loop also has a prolog and epilog added, to preserve the intended
order of instructions. Since the combined prolog and epilog make up a
complete iteration of the loop, the kernel is now executing N-1 iterations,
instead of N.

In this example, consider the following loop:

START LOOP N
t0 += 1
[p0++] = t0
END LOOP

How Loop Optimization Works

2-62 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

This loop has a two-cycle kernel. While the machine could execute the
two instructions in a single cycle – an arithmetic instruction and a mem-
ory access instruction – to do so would be invalid, because the second
instruction depends upon the value computed in the first instruction.
However, if the loop is rotated, we get:

t0 += 1
START LOOP N-1
[p0++] = t0
t0 += 1
END LOOP
[p0++] = t0

The value being stored is computed in the previous iteration (or before the
loop starts, in the prolog). This allows the two instructions to be executed
in a single cycle:

t0 += 1
START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP
[p0++] = t0

Rotating the loop has presented an opportunity by which the kth iteration
of the original loop is starting (t0 += 1) while the (k-1)th iteration is
completing ([p0++] = t0). As a result, rotation has achieved software
pipelining, and the performance of the loop is doubled.

Notice that this process has changed the structure of the program slightly.
Suppose that the loop construct always executes the loop at least once;
that is, it is a 1..N count. Then if N==1, changing the loop to be N-1 would
be problematic. In this example, the compiler inserts a guard: a condi-
tional jump around the loop construct for the circumstances where the
compiler cannot guarantee that N > 1:

t0 += 1
IF N == 1 JUMP L1;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-63
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

START LOOP N-1
[p0++] = t0, t0 += 1
END LOOP
L1:
[p0++] = t0

Loop Vectorization

“Loop vectorization” is another transformation that allows the generated
code to execute more than one iteration in parallel. However, vectoriza-
tion is different from software pipelining. Where software pipelining uses
a different ordering of instructions to get better performance, vectoriza-
tion uses a different set of instructions. These vector instructions act on
multiple data elements concurrently to replace multiple executions of each
original instruction.

For example, consider this dot-product loop:

int i, sum = 0;
for (i = 0; i < n; i++) {

sum += x[i] * y[i];
}

This loop walks two arrays, reading consecutive values from each, multi-
plying them and adding the result to the on-going sum. This loop has
these important characteristics:

• Successive iterations of the loop read from adjacent locations in the
arrays.

• The dependency between successive iterations is the summation, a
commutative operation.

• Operations such as load, multiply and add are often available in
parallel versions on embedded processors.

How Loop Optimization Works

2-64 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

These characteristics allow the optimizer to vectorize the loop so that two
elements are read from each array per load, two multiplies are done, and
two totals maintained. The vectorized loop would be:

t0 = t1 = 0
START LOOP N/2
t2 = [p0++] (Wide) // load x[i] and x[i+1]
t3 = [p1++] (Wide) // load y[i] and y[i+1]
t0 += t2 * t3 (Low), t1 += t2 * t3 (High) // vector mulacc
END LOOP
t0 = t0 + t1 // combine totals for low and high

Vectorization is most efficient when all the operations in the loop can be
expressed in terms of parallel operations. Loops with conditional con-
structs in them are rarely vectorizable, because the compiler cannot
guarantee that the condition will evaluate in the same way for all the itera-
tions being executed in parallel.

Vectorization is also affected by data alignment constraints and data access
patterns. Data alignment affects vectorization because processors often
constrain loads and stores to be aligned on certain boundaries. While the
unvectorized version will guarantee this, the vectorized version imposes a
greater constraint that may not be guaranteed. Data access patterns affect
vectorization because memory accesses must be contiguous. If a loop
accessed every tenth element, for example, then the compiler would not be
able to combine the two loads for successive iterations into a single access.

Vectorization divides the generated iteration count by the number of iter-
ations being processed in parallel. If the trip count of the original loop is
unknown, the compiler will have to conditionally execute some iterations
of the loop.

Vectorization and software pipelining are not mutually exclusive:
the compiler may vectorize a loop and then use software pipeling to
obtain better performance.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-65
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Modulo Scheduling

Loop rotation, as described earlier, is a simple software-pipelining method
that can often improve loop performance, but more complex examples
require a more advanced approach. The compiler uses a popular technique
known as “Modulo Scheduling” which can produce more efficient sched-
ules for loops than simple loop rotation.

Modulo scheduling is used to schedule innermost loops without control
flow. A modulo-scheduled loop is described using the following
parameters:

• Initiation interval (II): the number of cycles between initiating two
successive iterations of the original loop.

• Minimum initiation interval due to resources (res MII): a lower
limit for the initiation interval (II); an II lower than this would
mean at least one of the resources being used at greater capacity
than the machine allows.

• Minimum initiation interval due to recurrences (rec MII): an
instruction cannot be executed until earlier instruction on which it
depends have also been executed. These earlier instructions may
belong to a previous loop iteration. A cycle of such dependencies (a
recurrence) imposes a minimum number of cycles for the loop.

• Stage count (SC): the number of initiation intervals until the first
iteration of the loop has completed. This is also the number of iter-
ations in progress at any time within the kernel.

• Modulo variable expansion unroll factor (MVE unroll): the number
of times the loop has to be unrolled to generate the schedule with-
out overlapping register lifetimes.

• Trip count: the number of times the loop kernel iterates.

• Trip modulo: a number that is known to divide the trip count.

How Loop Optimization Works

2-66 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• Trip maximum: an upper limit for the trip count.

• Trip minimum: a lower limit for the trip count.

Understanding these parameters will allow you to interpret the generated
code more easily. The compiler's assembly annotations use these terms, so
you can examine the source code and the generated instructions, to see
how the scheduling relates to the original source. See “Assembly Opti-
mizer Annotations” on page 2-81 for more information.

Modulo scheduling performs software pipelining by:

• ordering the original instructions in a sequence (for simplicity
referred to as the “base schedule”) that can be repeated after an
interval known as the “initiation interval” (“II”);

• issuing parts of the base schedule belonging to successive iterations
of the original loop, in parallel.

For the purposes of this discussion, all instructions will be assumed to
require only a single cycle to execute; on a real processor, stalls affect the
initiation interval, so a loop that executes in II cycles may have fewer than
II instructions.

Initiation Interval (II) and the kernel

Consider the loop

START LOOP N

A

B

C

D

E

F

VisualDSP++ 5.0 C/C++ Compiler Manual 2-67
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

G

H

END LOOP

Now consider that the compiler finds a new order for A,B,C,D,E,F,G,H
grouping; some of them on the same cycle so that a new instance of the
sequence can be started every two cycles. Say this base schedule is given in
Table 2-3 where I1,I2,...,I8 are A,B,...,H reordered. Albeit a valid sched-
ule for the original loop, the base schedule is not the final modulo
schedule; it may not even the shortest schedule of the original loop. How-
ever the base schedule is used to obtain the modulo schedule, by being
able to initiate it every II=2 cycles, as seen in Table 2-4.

Table 2-3. Base Schedule

Cycle Instructions

1 I1

2 I2, I3

3 I4, I5

4 I6

5 I7

6 I8

Table 2-4. Obtaining the Modulo Schedule by Repeating the Base
Schedule every II=2 Cycles

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

1 I1

2 I2, I3

3 I4, I5 I1

4 I6 I2, I3

5 I7 I4, I5 I1

How Loop Optimization Works

2-68 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Starting at cycle 5, the pattern in Table 2-5 keeps repeating every 2 cycles.
This repeating pattern is the kernel, and it represents the modulo sched-
uled loop.

The initiation interval has the value II=2, because iteration i+1 can start
two cycles after the cycle on which iteration i starts. This way, one itera-
tion of the original loop is initiated every II cycles, running in parallel
with previous, unfinished iterations.

6 I8 I6 I2, I3

7 I7 I4, I5 I1

8 I8 I6 I2, I3

9 I7 I4, I5

10 I8 I6

Table 2-5. Loop Kernel, N>=3

Cycle Iteration N-2
(last stage)

Iteration N-1
(2nd stage)

Iteration N
(1st stage)

II*N-1 I7 I4, I5 I1

II*N I8 I6 I2, I3

Table 2-4. Obtaining the Modulo Schedule by Repeating the Base
Schedule every II=2 Cycles (Cont’d)

Cycle Iteration 1 Iteration 2 Iteration 3 Iteration 4

VisualDSP++ 5.0 C/C++ Compiler Manual 2-69
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

The initiation interval of the loop indicates several important characteris-
tics of the schedule for the loop:

• The loop kernel will be II cycles in length.

• A new iteration of the original loop will start every II cycles.
An iteration of the original loop will end every II cycles.

• The same instruction will execute on cycle c and on cycle c+II
(hence the name modulo schedule).

Finding a modulo schedule implies finding a base schedule and an II such
that the base schedule can be initiated every II cycles.

If the compiler can reduce the value for II, it can start the next iteration
sooner, and thus increase the performance of the loop: The lower the II,
the more efficient the schedule. However the II is limited by a number of
factors, including:

• The machine resources required by the instructions in the loop.

• The data dependencies and stalls between instructions.

We’ll examine each of these limiting factors.

Minimum Initiation Interval Due to Resources (Res MII)

The first factor that limits II is machine resource usage. Let’s start with the
simple observation that the kernel of a modulo scheduled loop contains
the same set of instructions as the original loop.

Assume a machine that can execute up to four instructions in parallel. If
the loop has 8 instructions, then it requires a minimum of 2 lines in the
kernel, since there can be at most 4 instructions on a line. This implies II
has to be at least 2, and we can tell this without having found a base
schedule for the loop, or even knowing what the specific instructions are.

How Loop Optimization Works

2-70 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Consider another example where the original loop contains 3 memory
accesses to be scheduled on a machine that supports at most 2 memory
accesses per cycle. This implies at least 2 cycles in the kernel, regardless of
the rest of the instructions.

Given a set of instructions in a loop, we can determine a lower bound for
the II of any modulo schedule for that loop based on resources required.
This lower bound is called the “Resource based Minimum Initiation Inter-
val” (Res MII)

Minimum Initiation Interval Due to Recurrences (Rec MII)

A less obvious limitation for finding a low II are cycles in the data depen-
dencies between instructions.

Assume that the loop to be scheduled contains (among others) the
instructions:

i3: t3=t1+t5; // t5 carried from the previous iteration

i5: t5=t1+t3;

Assume each line of instructions takes 1 cycle. If i3 is executed at cycle c
then t3 is available at cycle c+1 and t5 cannot be computed earlier than
c+1 (because it depends on t3), and similarly the next time we compute t3
cannot be earlier than c+2. Thus if we execute i3 at cycle c, the next time
we can execute i3 again cannot be earlier than c+2. But for any modulo
schedule, if an instruction is executed at cycle c, the next iteration will
execute the same instruction at cycle c+II. Therefore, II has to be at least
2 due to the circular data dependency path t3->t5->t3.

This lower bound for II, given by circular data dependencies (recurrences)
is called the “Minimum Initiation Interval Due to Recurrences” (Rec MII),
and the data dependency path is called “loop carry path”. There can be any
number of loop carry paths in a loop, including none, and they are not
necessarily disjoint.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-71
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Stage Count (SC)

The kernel in Table 2-5 is formed of instructions which belong to 3 dis-
tinct iterations of the original loop: {I7,I8} end the “oldest” iteration —
in other words they belong to the iteration started the longest time before
the current cycle; {I4,I5,I6} belong to the next oldest initiated iteration,
and so on. {I1,I2,I3} are the beginning of the youngest iteration.

The number of iterations of the original loop in progress at any time
within the kernel is called the "Stage Count" (SC). This is also the number
of initiation intervals until the first iteration of the loop completes. In our
example SC=3.

The final schedule requires peeling a few instructions (the prolog) from
the beginning of the first iteration and a few instructions (the epilog) from
the end of the last iteration in order to preserve the structure of the kernel.
This reduces the trip count from N to N-(SC-1):

I1; // prolog

I2,I3; // prolog

I4,I5, I1; // prolog

I6, I2,I3; // prolog

LOOP N-2 // i.e. N-(SC-1), where SC=3

I7, I4,I5, I1; // kernel

I8, I6, I2,I3; // kernel

END LOOP

I7, I4, I5; // epilog

I8, I6; // epilog

I7; // epilog

I8; // epilog

Another way of viewing the modulo schedule is to group instructions into
stages as in Figure 2-2, where each stage is viewed as a vector of height
II=2 of instruction lists (that represent parts of instruction lines).

How Loop Optimization Works

2-72 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Now the schedule can be viewed as:

SC0 // prolog

SC1 SC0 // prolog

LOOP (N-2) // That is N-(SC-1), where SC=3

SC2 SC1 SC0 // kernel

SC2 SC1 SC0 // kernel

END LOOP

SC2 SC1 // epilog

SC2 // epilog

where, for example, SC2 SC1 is the 2 line vector obtained from concate-
nating the lists in SC2 and SC1.

Variable Expansion and MVE unroll

There is one more issue to address for modulo schedule correctness.

Figure 2-2. Instructions Grouped into Stages

StageCount Instructions

SC0 I1,
I2, I3

SC1 I4, I5,
I6

SC2 I7,
I8

Table 2-6. Problematic Instance

Generic
instruction

Specific instance

I1 t1=[p1++]

I2 t2=[p2++]

I3 t3=t1+t5

VisualDSP++ 5.0 C/C++ Compiler Manual 2-73
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Consider the sequence of instructions in Table 2-6. Table 2-7 shows the
base schedule that is an instance of the one in Table 2-3, and Table 2-8
shows the corresponding modulo schedule with II=2.

However, there is a problem with the schedule in Table 2-8: t3 defined in
the fourth cycle (second column in the table) is used on the fifth cycle
(first column); however, the intended use was of the value defined on the
second cycle (first column). In general, the value of t3 used by t7=t6*t3 in
the kernel will be the one defined in the previous cycle, instead of the one
defined 3 cycles earlier, as intended. Thus, if the compiler were to use this

I4 t4=t2+1

I5 t5=t1+t3

I6 t6=t4*t5

I7 t7=t6*t3

I8 [p8++]=t7

Table 2-7. Base Schedule from Table 2-3 applied to the Instances in
Table 2-6

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3

4 t6=t4*t5

5 t7=t6*t3

6 [p8++]=t7

Table 2-6. Problematic Instance (Cont’d)

Generic
instruction

Specific instance

How Loop Optimization Works

2-74 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

schedule as-is, it would be clobbering the live value in t3. The lifetime of
each value loaded into t3 is 3 cycles, but the loop's initiation interval is
only 2, so the lifetimes of t3 from different iterations overlap.

The compiler fixes this by duplicating the kernel as many times as needed
to exceed the longest lifetime in the base schedule, then renaming the vari-
ables that clash – in this case, just t3. In Table 2-9 we see that the length
of the new loop body is 4, greater than the lifetimes of the values in the
loop.

So the loop becomes:

t1=[p1++];
t2=[p2++],t3=t1+t5;
t4=t2+1,t5=t1+t3, t1=[p1++];
t6=t4*t5, t2=[p2++],t3_2=t1+t5;
LOOP (N-2)/2
t7=t6*t3, t4=t2+1,t5=t1+t3_2, t1=[p1++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3=t1+t5;

Table 2-8. Modulo Schedule Broken by Overlapping Lifetimes of t3

Iteration 1 Iteration 2 Iteration 3 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3=t1+t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3 t4=t2+1,t5=t1+t3

8 [p8++]=t7 t6=t4*t5

9 t7=t6*t3

10 [p8++]=t7

VisualDSP++ 5.0 C/C++ Compiler Manual 2-75
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

t7=t6*t3_2, t4=t2+1,t5=t1+t3, t1=[p1++];
[p8++]=t7, t6=t4*t5, t2=[p2++],t3_2=t1+t5;

END LOOP
t7=t6*t3, t4=t2+1,t5=t1+t3_2;

[p8++]=t7, t6=t4*t5;
t7=t6*t3_2;
[p8++]=t7;

This process of duplicating the kernel and renaming colliding variables is
called variable expansion, and the number of times the compiler dupli-
cates the kernel is referred to as the modulo variable expansion factor
(MVE). Conceptually we use different set of names, “register sets”, for
successive iterations of the original loop in progress in the unrolled kernel
(in practice we rename just the conflicting variables, see Table 2-10). In

Table 2-9. Modulo schedule Corrected by Variable Expansion: t3 and t3_2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 ...

1 t1=[p1++]

2 t2=[p2++],t3=t1+t5

3 t4=t2+1,t5=t1+t3 t1=[p1++]

4 t6=t4*t5 t2=[p2++],t3_2=t1+
t5

5 t7=t6*t3 t4=t2+1,t5=t1+t3_2 t1=[p1++]

6 [p8++]=t7 t6=t4*t5 t2=[p2++],t3=t1+t5

7 t7=t6*t3_2 t4=t2+1,t5=t1+t3 t1=[p1++]

8 [p8++]=t7 t6=t4*t5 t2=[p2++],t3_2=t1+
t5

9 t7=t6*t3 t4=t2+1,t5=t1+t3_2

10 [p8++]=t7 t6=t4*t5

11 t7=t6*t3_2

12 [p8++]=t7

How Loop Optimization Works

2-76 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

terms of reading the code, this means that a single iteration of the loop
generated by the compiler will be processing more than one iteration of
the original loop. Also, the compiler will be using more registers to allow
the iterations of the original loop to overlap without clobbering the live
values.

In terms of stages:

SC0 // prolog
SC1 SC0_2 // prolog
LOOP (N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2
SC2 SC1_2 SC0 // kernel

SC2_2 SC1 SC0_2 // kernel
END LOOP

SC2 SC1_2 // epilog
SC2_2 // epilog

where SCN_2 is SCN subject to renaming; in our case only occurrences of
t3 are renamed as t3_2 in SCN_2.

In terms of instructions:

I1; // prolog
I2,I3; // prolog
I4,I5, I1_2; // prolog
I6, I2_2,I3_2; // prolog
LOOP(N-2)/2 // That is N-(SC-1)/MVE, where SC=3, MVE=2
I7, I4_2,I5_2, I1; // kernel
I8, I6_2, I2,I3; // kernel

I7_2, I4,I5, I1_2; // kernel
I8_2, I6, I2_2,I3_2; // kernel

END LOOP
I7, I4_2,I5_2; // epilog
I8, I6_2; // epilog

I7_2; // epilog
I8_2; // epilog

where IN_2 is IN subject to renaming, in our case only occurrences of t3
are renamed as t3_2 in all IN_2, as seen in Table 2-10.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-77
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Trip Count

Notice that as the modulo scheduler expands the loop kernel to add in the
extra variable sets, the iteration count of the generated loop changes from
(N-SC) to (N-SC)/MVE. This is because each iteration of the generated loop
is now doing more than one iteration of the original loop, so fewer gener-
ated iterations are required.

However, this also relies on the compiler knowing that it can divide the
loop count in this manner. For example, if the compiler produces a loop
with MVE=2 so that the count should be (N-SC)/2, an odd value of
(N-SC) causes problems. In these cases, the compiler generates additional
“peeled” iterations of the original loop to handle the remaining iteration.
As with rotation, if the compiler cannot determine the value of N, it will
make parts of the loop–the kernel or peeled iterations–conditional so that
they are executed only for the appropriate values of N.

Table 2-10. Instructions after Modulo Variable Expansion

Generic
instruction

Specific instance

I1 and I1_2 t1=[p1++]

I2 and I2_2 t2=[p2++]

I3 t3=t1+t5

I3_2 t3_2=t1+t5

I4 and I4_2 t4=t2+1

I5 t5=t1+t3

I5_2 t5=t1+t3_2

I6 and I6_2 t6=t4*t5

I7 and I7_2 t7=t6*t3

I8 and I8_2 [p8++]=t7

How Loop Optimization Works

2-78 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The number of times the generated loop iterates is called the “trip count”.
As explained above, sometimes knowing the trip count is important for
efficient scheduling. However, the trip count is not always available. Lack-
ing it, additional information may be inferred, or passed to the compiler
through the loop_count pragma, specifying the

• “Trip modulo”: a number known to divide the trip count.

• “Trip minimum”: a lower bound for the trip count.

• “Trip maximum”: an upper bound for the trip count.

A Worked Example
The following floating-point scalar product loop is used to show how the
optimizer works.

Example: C source code for floating-point scalar product.

float sp(float *a, float *b, int n) {
int i;
float sum=0;
for (i=0; i<n; i++) {

sum+=a[i]*b[i];
}
return sum;

}

After code generation and conventional scalar optimizations, the compiler
generates a loop that resembles the following example.

Example: Initial code generated for floating-point scalar product

.P1L3:
xR0 = [J0 += 1];;
xR2 = [J1 += 1];;
xfR4 = R0 * R2;;
xfR5 = R5 + R4;;
if nlce0, jump

.P1L3;;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-79
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

The loop exit test has been moved to the bottom and the loop counter
rewritten to count down to zero. This enables the generation of a hard-
ware loop. (LC0 is initialized with the loop count.) The sum is being
accumulated in xR5. J0 and J1 hold pointers that are initialized with the
parameters a and b and are incremented on each iteration.

To use both compute blocks, the optimizer unrolls the loop to run two
iterations in parallel. sum is now being accumulated in xR5 and yR5, both
of which must be added together after the loop to produce the final result.
To use the long-word loads needed for the loop to be efficient, the com-
piler has to know that J0 and J1 have initial values that are even. Note also
that unless the compiler knows that the original loop was executed an even
number of times, a conditionally-executed odd iteration must be inserted
outside the loop. The initial value of LC0 has been halved.

Example: Code generated for floating-point scalar product after vectoriza-
tion transformation

.P1L3:
yxR0 = l[J0 += 2];;
yxR2 = l[J1 += 2];;
xyfR4 = R0 * R2;;
xyfR5 = R5 + R4;;
if nlce0, jump .P1L3;;

If the optimizer can verify that J0 and J1 are initially quad-word-aligned,
it unrolls the loop to make even better use of the TigerSHARC processor
memory bandwidth.

In the next step the sum is being calculated in xR5, yR5, xR7 and yR7. LC0
has been halved again.

Example: Code generated for floating-point scalar product after a second
vectorization transformation

.P1L3:
yxR1:0 = q[J0 += 4];;
yxR3:2 = q[J1 += 4];;

How Loop Optimization Works

2-80 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

xyfR4 = R0 * R2;;
xyfR5 = R5 + R4;;
xyfR6 = R1 * R3;;
xyfR7 = R7 + R6;;
if nlce0, jump .P1L3;;

Finally, the optimizer software-pipelines the loop, unrolling and overlap-
ping iterations to obtain highest use of functional units. The following
code would be generated if it were known that the loop executed at least
twenty times and that the loop count was a multiple of eight.

Example: Code generated for floating-point scalar product after software
pipelining

.P1L3:
yxR1:0 = q[J0+=4];;
yxR3:2 = q[J1+=4];;
yxR9:8 = q[J0+=4];;
xyfR4 = R0 * R2; yxR11:10 = q[J1+=4];;
xyfR6 = R1 * R3; yxR1:0 = q[J0+=4];;
xyfR5 = R5 + R4; xyfR12 = R8 * R10; yxR3:2 = q[J1+=4];;

.P1L28:
xyfR7 = R7 + R6; xyfR14 = R9 * R11; yxR9:8 = q[J0+=4];;
xyfR5 = R5 + R12; xyfR4 = R0 * R2; yxR11:10 = q[J1+=4];;
xyfR7 = R7 + R14; xyfR6 = R1 * R3; yxR1:0 = q[J0+=4];;

if nlce0, jump .P1L28;
xyfR5 = R5 + R4; xyfR12 = R8 * R10;yxR3:2 = q[J1+=4];;

xyfR7 = R7 + R6; xyfR14 = R9 * R11;;
xyfR5 = R5 + R12; xyfR4 = R0 * R2;;
xyfR7 = R7 + R14; xyfR6 = R1 * R3;;
xyfR5 = R5 + R4;;
xyfR7 = R7 + R6;;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-81
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Assembly Optimizer Annotations
When the compiler optimizations are enabled, the compiler can perform a
large number of optimizations to generate the resultant assembly code.
The decisions taken by the compiler as to whether certain optimizations
are safe or worthwhile are generally invisible to a programmer. However,
it could be beneficial to get feedback from the compiler regarding the
decisions made during optimization. The intention of the information
provided is to give a programmer an understanding of how close to opti-
mal a program is and what more could possibly be done to improve the
generated code.

The feedback from the compiler optimizer is provided by means of anno-
tations made to the assembly file generated by the compiler. The assembly
file generated by the compiler can be kept by specifying the -S switch
(on page 1-57), the -save-temps switch (on page 1-58) or by checking the
Project Options->Compile->General->Save temporary files option in
VisualDSP++ IDDE.

The assembly code generated by the compiler optimizer is annotated with
the following information:

• “Global Information” on page 2-82

• “Procedure Statistics” on page 2-82

• “Instruction Annotations” on page 2-86

• “Loop Identification” on page 2-87

• “Vectorization Information” on page 2-93

• “Modulo Scheduling Information” on page 2-100

• “Warnings, Failure Messages and Advice” on page 2-107

The assembly annotations provide information in several areas that you
can use to assist the compiler’s evaluation of your source code. In turn,
this improves the generated code. For example, annotations could provide

Assembly Optimizer Annotations

2-82 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

indications of resource usage or the absence of a particular optimization
from the resultant code. Annotations which note the absence of optimiza-
tion can often be more important than those noting its presence. Assembly
code annotations give the programmer insight into why the compiler
enables and disables certain optimizations for a specific code sequence.

The assembly output for the examples in this chapter may differ based on
optimization flags and the version of the compiler. As a result, you may
not be able to reproduce these results exactly.

Global Information
For each compilation unit, the assembly output is annotated with the time
of the compilation and the options used during that compilation.

For instance, if a file hello.c is compiled at 1pm, on December 7 using
the command line:

ccts -O -S hello.c

then the hello.s file will show:

.file "hello.s"

// compilation time: Wed Dec 07, 13:00:00 2005

// compilation options: -O -S

Procedure Statistics
For each function, the following is reported:

• Frame size – The size of stack frame. In TigerSHARC processors,
there are two stacks: J stack and K stack. Both are reported.

• Registers used – Since function calls tend to implicitly clobber reg-
isters, there are several sets:

VisualDSP++ 5.0 C/C++ Compiler Manual 2-83
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

1. The first set is composed of the scratch registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

2. The second set are the call-preserved registers changed by
the current function. This does not count the registers that
are implicitly clobbered by the functions called from the
current function.

3. The third set are the registers clobbered by the inner func-
tion calls.

• Inlined Functions – If inlining happens, then the header of the
caller function reports which functions were inlined inside it and
where. Each inlined function is reported using the position of the
inlined call. All the functions inlined inside the inlined function
are reported as well, generating in fact a tree of inlined calls.

Each node, except the root, has the form:

file_name:line:column'function_name

where:

• function_name is the name of the function inlined.

• line is the line number of the call to function_name, in the
source file.

• column is the column number of the call to function_name,
in the source file.

• file_name is the name of the source file calling
function_name.

Assembly Optimizer Annotations

2-84 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example A (Procedure Statistics, for ADSP-TS101 Processors)

Consider the following program:

struct str {
int x1, x2;

};

int func1(struct str*, int *);
int func2(struct str s);
int foo(int in)
{

int sum = 0;
int local;
struct str l_str;
sum += func1(&l_str, &local);
sum += func2(l_str);
return sum;

}

The procedure statistics for foo are:

_foo:
//---
// Procedure statistics:
//
// J Frame size = 16 words
// K Frame size = 8 words
//
// Scratch registers modified:{XR4-XR5,J4-J6,J8,CJMP,jICC,kICC}
//
// Call preserved registers used:{J16-J19}
//
// Registers clobbered by function calls:
// {XR0-XR23,YR0-YR23,J0-J15,J26-J30,JB0-JB3,JL0-JL3,K0-K15,
// K26-K30,KB0-KB3,KL0-KL3,CJMP,LC0-LC1,XMR0-XMR3,YMR0-YMR3,
// XPR0-XPR1,YPR0-YPR1,XTR0-XTR15,YTR0-YTR15,XTHR0-XTHR1,
// YTHR0-YTHR1,jICC,kICC,XSTAT,YSTAT,XDAB0-XDAB3,YDAB0-YDAB3}
//---
// "ExampleA.c" line 6 col 5

J26 = J27 - 64;K26 = K27 - 64;;

VisualDSP++ 5.0 C/C++ Compiler Manual 2-85
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

[J27 += -16] = CJMP;q[K27 += -8] = J19:16;;
// "ExampleA.c" line 11 col 5
J5 = J26 + 63;;
J4 = J26 + 61;;
call _func1; q[J27+4]=J27:24; q[K27+4]=K27:24;;

// "ExampleA.c" line 12 col 5
J6 = j31 + 1;;
XR5 = [J26 + 62];;
XR4 = [J26 + 61];;
J16 = J8 + 0;;
call _func2; q[J27+4]=J27:24; q[K27+4]=K27:24;;
J8 = J8 + J16;;
CJMP = [J26 + 64];J19:16 = q[K27 + 8];;

// -- 11 stalls --
cjmp (ABS); J27:24=q[J26+68]; K27:24=q[K26+68];;

_foo.end:
.global _foo;
.type _foo,STT_FUNC;

Notes:

• The J Frame size is 16 words, and the K Frame size is 8 words,
because this is the amount of stack space allocated by the function.

• The set of Scratch registers modified is {XR4-XR5,J4-J6,J8,CJMP,
jICC,kICC} because except for the func1 and func2 function calls,
these are the only scratch registers changed by foo.

• The set of Call preserved registers used is {J16-J19} because these
are the only call preserved registers used by foo.

• The set of registers clobbered by function calls contains the set of
registers potentially changed by the calls to func1 and func2.

Example B (Inlining Summary)

This is an example of inlined function reporting.

 1 void f4(int n);
 2 __inline void f3(int n)

Assembly Optimizer Annotations

2-86 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

 3 {
 4 f4(n);
 5 }
 6
 7 __inline void f2(int n)
 8 {
 9 while (n--) {
10 f3(n);
11 f3(2*n);
12 }
13 }
14 void f1(volatile unsigned int i)
15 (
16 f2(30);
17 }

f1 inlines the call of f2, which inlines the call of f3 in two places. The
procedure statistics for f1 reports these inlined calls:

_f1:
//---
// Procedure statistics
.
//Inlined in _f1:
// ExampleB.c:16:7’_f2
// ExampleB.c:11:11’_f3
// ExampleB.c:10:11’_f3
//---
.

f1 reports that f2 was inlined at line 16 (column 7) and, implicitly, f1 also
inlined the two calls of f3 inside f2.

Instruction Annotations
Sometimes the compiler annotates certain assembly instructions. It does
so in order to point to possible inefficiencies in the original source code,
or when the compiler’s -annotate-loop-instr switch (on page 1-27) is
used to annotate the instructions related to modulo scheduled loops.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-87
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

The format of an assembly line containing several instructions is changed.
Instructions issued in parallel are no longer shown all on the same assem-
bly line; each is shown on a separate assembly line, so that the instruction
annotations can be placed after the corresponding instructions. Thus,

instruction_1; instruction_2; instruction_3;;

is displayed as:

/**/ instruction_1; // {annotations for instruction_1}

instruction_2; // {annotations for instruction_2}

instruction_3;; // {annotations for instruction_3}

The /**/ marks the beginning of an instruction line.

Loop Identification
One useful annotation is loop identification—that is, showing the rela-
tionship between the source program loops and the generated assembly
code. This is not easy due to the various loop optimizations. Some of the
original loops may not be present, because they are unrolled. Other loops
get merged, making it difficult to describe what has happened to them.

Finally, the assembly code may contain compiler-generated loops that do
not correspond to any loop in the user program, but rather represent con-
structs such as structure assignment or calls to memcpy.

Loop Identification Annotations

Loop identification annotation rules are:

• Annotate only the loops that originate from the C looping con-
structs do, while, and for. Therefore, any goto defined loop is not
accounted for.

• A loop is identified by the position of the corresponding keyword
(do, while, for) in the source file.

Assembly Optimizer Annotations

2-88 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• Account for all such loops in the original user program.

• Generally, loop bodies are delimited between the Lx: Loop at <file
position> and End Loop Lx assembly annotation. The former
annotation follows the label of the first block in the loop. The later
annotation follows the first jump back to the beginning of the
loop. However, there are cases in which the code corresponding to
a user loop cannot be entirely represented between two markers. In
such cases the assembly code contains blocks that belong to a loop,
but are not contained between that loop’s end markers. Such
blocks are annotated with a comment identifying the innermost
loop they belong to, Part of Loop Lx.

• Sometimes a loop in the original program does not show up in the
assembly file because it was either transformed or deleted. In either
case, a short description of what happened to the loop is given at
the beginning of the function.

• A program’s innermost loops are those loops that do not contain
other loops. In addition to regular loop information, the innermost
loops with no control flow and no function calls are annotated with
additional information such as:

• Cycle count. The number of cycles needed to execute one
iteration of the loop, including the stalls.

• Resource usage. The resources used during one iteration of
the loop. For each resource we show how many of that
resource are used, how many are available and the percent-
age of utilization during the entire loop. Resources are
shown in decreasing order of utilization. Note that 100%
utilization means that the corresponding resource is used at
its full capacity and represents a bottleneck for the loop.

• Register usage. If the compilation flag -anno-
tate-loop-instr is used then the register usage table is
shown. This table has one column for every register that is

VisualDSP++ 5.0 C/C++ Compiler Manual 2-89
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

defined or used inside the loop. The header of the table
shows the names of the registers, written on the vertical, top
down. The registers that are not accessed do not show up.
The columns are grouped on data registers, pointer registers
and all other registers. For every cycle in a loop (including
stalls) there is a row in the array. The entry for a register has
a '*' on that row if the register is either live or being defined
at that cycle.

• Optimizations. Some loops are subject to optimizations
such as vectorization. These loops receive additional annota-
tions as described in the vectorization section.

Example C (Loop Identification, for ADSP-TS101 Processors)

Consider the following example:

1 int bar(int a[10000])
2 {
3 int i, sum = 0;
4 for (i = 0; i < 9999; ++i)
5 sum += (sum + 1);
6 while (i-- < 9999) /* this loop doesn't get executed */
7 a[i] = 2*i;
8 return sum;
9 }

The two loops are accounted for as follows:

_bar:
//---
.................. procedure statistics
//---
// Original Loop at "ExampleC.c" line 6 col 5 -- loop structure

removed due to constant propagation.
//---
//"ExampleC.c" line 1 col 5

YR0 = 0;;
//"ExampleC.c" line 4 col 5

Assembly Optimizer Annotations

2-90 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

LC0 = 9999;;
.P1L1:
//---
// Loop at "ExampleC.c" line 4 col 5
//---
// This loop executes 1 iteration of the original loop in 4
cycles.
// (cycle count 4 includes 2 stalls)
//---
// This loop's resource usage is:
// Y Compute Block ALU used 2 out of 4 (50.0%)
// Y Compute Block used 2 out of 8 (25.0%)
//---
//"ExampleC.c" line 5 col 2
// -- stall --

YR1 = INC R0;;
// -- stall --

if nlc0e, jump .P1L1 ;YR0 = R0 + R1;;
//---
// End Loop L1
//---
//---
// Part of top level (no loop)
//---
//"ExampleC.c" line 8 col 5

J8 = YR0;;
cjmp (ABS);;

_bar.end:

Notes:

• The keywords identifying the two loops are:

1. for – Its position is in the file ExampleC.c, line 4, column 5.

2. while – Its position is in the file ExampleC.c, line 6, column
5.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-91
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

• Immediately after the procedure statistics, there is a message stating
that the loop at line 6 in the user program was removed. The rea-
son was constant propagation, which in this case realizes that the
value of I after the first loop is 9999 and the second loop does not
get executed.

• The start of the loop at line 4 is marked in the assembly by the
‘Loop at ExampleC.c, line 4, column 5’ annotation. This anno-
tation follows the loop label .P1L1. The loop label “End Loop L1” is
used to identify the end of the loop.

• The loop resource information accounts for all instructions and
stalls inside the loop. In our case, the loop body is executed in four
cycles (2 stalls and 2 instruction lines). During these four cycles the
Y ALU resource could have been used 4 times, but it is only used 2
times, yielding a 50% utilization. Note that the first stall is caused
by the dependence between the write to YR0 in the last line and the
use of YR0 in the next iteration of the loop.

File Position

As seen in Example C, a file position is given using the file name, line
number and the column number in that file: "ExampleC.c" line 4 col 5.

This scheme uniquely identifies a source code position, unless inlining is
involved. In presence of inlining, a piece of code from a certain file posi-
tion can be inlined at several places, which in turn can be inlined at other
places. Since inlining can happen an unspecified number of times, a recur-
sive scheme is used to describe a general file position.

Therefore, a <general file position> is <file position> inlined from
<general file position>.

Assembly Optimizer Annotations

2-92 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example D (Inlining Locations)

Consider the following source code:

5 void f2(int n);
6 inline void f3(int n)
7 {
8 while(n--)
9 f4();
10 if (n == 7)
11 f2(3*n);
12 }
13
14 inline void f2(int n)
15 {
16 while(n--) {
17 f3(n);
18 f3(2*n);
19 }
20 }
21 void f1(volatile unsigned int i)
22 {
23 f2(30);
24 }

Here is some of the code generated for function f1:

_f1:
.P2L1:
//---
// Loop at "ExampleD.c" line 16 col 5 inlined from
// "ExampleD.c" line 23 col 7
//---
// "ExampleD.c" line 8 col 5

YR0 = PASS R24; YR29 = YR27;;
if yaeq, jump .P2L2 (NP); else, YR30 = YR27;
else, YR31 = LSHIFT R28 BY 0;;

.P2L4:
//--

VisualDSP++ 5.0 C/C++ Compiler Manual 2-93
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

// Loop at "ExampleD.c" line 8 col 5 inlined from
// "ExampleD.c" line 17 col 4 inlined from "ExampleD.c"
// line 23 col 7
//---
//---
// End Loop L4
//---

...

.P2L9:
//---
// Loop at "ExampleD.c" line 8 col 5 inlined from "ExampleD.c"
// line 18 col 4 inlined from "ExampleD.c" line 23 col 7
//---

//------------------------------------- ---------------------
// End Loop L9
//---
// End Loop L1

Vectorization Information
The trip count of a loop is the number of times the loop body gets
executed.

Under certain conditions, the compiler can take two operations from con-
secutive iterations of a loop and to execute them in a single, more
powerful instruction. This gives a loop a smaller trip count. The transfor-
mation in which operations from two subsequent iterations are executed
in one more powerful single operation is called “vectorization.”

For instance, the original loop may start with a trip count of 1000.

for(i=0; i< 1000; ++i)

a[i] = b[i] + c[i];

Assembly Optimizer Annotations

2-94 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

and, after the optimization, end up with the vectorized loop with a final
trip count of 500. The vectorization factor is the number of operations in
the original loop that are executed at once in the transformed loop. It is
illustrated using some pseudo code below.

for(i=0; i< 500; i+=2)

(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

In the above example, the vectorization factor is 2. A loop may be vector-
ized more than once.

If the trip count is not a multiple of the vectorization factor, some itera-
tions need to be peeled off and executed unvectorized. If in the previous
example, the trip count of the original loop was 1001, then the vectorized
code would be:

for(i=0; i< 500; i+=2)
(a[i], a[i+1]) = (b[i],b[i+1]) .plus2. (c[i], c[i+1]);

a[1000] = b[1000] + c[1000];
// This is one iteration peeled from
// the back of the loop.

In the above examples, the trip count is known and the amount of peeling
is also known. If the trip count (a variable) is not known, the number of
peeled iterations depends on the trip count. In such cases, the optimized
code contains peeled iterations that are executed conditionally.

Unroll and Jam

Another vectorization related transformation is unroll and jam. Let’s con-
sider the following function:

/* unroll and jam example */
void f_unroll_and_jam(int a[][40], int *restrict c) {

int i, j;
for (i=0; i<60; i++) {

int sum=0;
for (j=0; j<40; j++) {

VisualDSP++ 5.0 C/C++ Compiler Manual 2-95
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

sum += a[j][i];
}
c[i] = sum; }

}

The outer loop can be unrolled twice and the result is:

void f_unroll_and_jam(int a[][40], int *restrict c) {
int i, j;
for (i=0; i<30; i+=2) {

{
int sum=0;
for (j=0; j<40; j++) {

sum += a[j][i];
}

c[i] = sum;
}
{

int sum=0;
for (j=0; j<40; j++) {

sum += a[j][i+1];
}
c[i+1] = sum;

}
}

}

The two inner loops can be jammed together. We shall assume that we
have a plus_eq2 operation which is a more powerful version of += that can
handle two integers at a time. The result is:

void f_unroll_and_jam(int a[][40], int *restrict c) {
int i, j;
for (i=0; i<30; i+=2) {

int sum0=0;
int sum1=0;
for (j=0; j<40; j++) {

(sum0, sum1) .plus_eq2. (a[j][i], a[j][i+1]);
}
(c[i], c[i+1]) = (sum0, sum1);

Assembly Optimizer Annotations

2-96 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

}
}

The above sequence of transformation, where an outer loop is unrolled
and the copies corresponding to the inner loops are jammed together is
called unroll and jam.

Example E (Unroll and Jam):

The assembly-annotated code for the above f_unroll_and_jam example is:

.P1L1:
//---
// Loop at "ExampleE.c" line 3 col 3
//---
// Loop was unrolled for unroll and jam 2 times
//---
.................. some outer loop code
.P1L10:
//---
// Loop at "ExampleE.c" line 5 col 5
.................. other loop annotations
//---
// Loop was jammed by unroll and jam 2 times
//---
.................. jammed loop code
//---
// End Kernel for Loop L10
//---

.P1L11:

.................. more outer loop code
if nlc0e, jump .P1L1 ; [J5 + -1] = YR0;;

//---
// End Loop L1
//---

VisualDSP++ 5.0 C/C++ Compiler Manual 2-97
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Loop Flattening

Another transformation, related to vectorization, is “loop flattening.”
Loop flattening takes two nested loops that run N1 and N2 times respec-
tively, and transforms them into a single loop that runs N1*N2 times.

Example F (Loop Flattening):

For instance, the following function

void copy_v(int a[][100], int b[][100]) {
int i,j;
for (i=0; i< 30; ++i)

for (j=0; j < 100; ++j)
a[i][j] = b[i][j];

}

is transformed into

void copy_v(int a[][100], int b[][100]) {
int i,j;
int *p_a = &a[0][0];
int *p_b = &b[0][0];
for (i=0; i< 3000; ++i)

p_a[i] = p_b[i];
}

This may further facilitate the vectorization process:

void copy_v(int a[][100], int b[][100]) {
int i,j;
int *p_a = &a[0][0];
int *p_b = &b[0][0];
for (i=0; i< 3000; i+=2)

(p_a[i], p_a[i+1]) = (p_b[i], p_b[i+1]);
}

Assembly Optimizer Annotations

2-98 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The assembly output for the loop flattening example is:

_copy_v:
//---
.................. procedure statistics
//-- --
// Original Loop at "test_flatten_loop_dim.c" line 3 col 5 --
// loop flattened into Loop at "test_flatten_loop_dim.c" line 4 col 2
//---
.................. procedure code
.P1L1:
//---
// Loop at "test_flatten_loop_dim.c" line 4 col 2
//---
.................. loop annotations
.................. loop body

if nlc0e, jump .P1L1 ; [J4 + -1] = XR3;;
//---
// End Loop L1
//---

Vectorization Annotations

For every loop that is vectorized, the following information is provided:

• The vectorization factor

• The number of peeled iterations

• The position of the peeled iterations (front or back of the loop)

• Information about whether peeled iterations are conditionally or
unconditionally executed

VisualDSP++ 5.0 C/C++ Compiler Manual 2-99
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

For every loop pair that is subject to unroll and jam, it is necessary to:

• Annotate the unrolled outer loop with the number of times it was
unrolled

• Annotate the inner loop with the number of times the loop was
jammed

For every loop pair that is subject to loop flattening, it is necessary to
account for the loop that is lost and show the remaining loop that it was
merged with.

Example G (Vectorization, for ADSP-TS101 Processors):

Consider the test program:

void add(int *a, int *restrict b, int *restrict c, int dim) {
int i;
for (i = 0 ; i < dim; ++i)

a[i] = b[i] + c[i];
}

for which the vectorization information is:

.P1L24:
//---
// Loop at "ExampleG.c" line 3 col 5
.................. other loop annotations
//---
// Loop was vectorized by a factor of 4.
//---
// Vectorization peeled 3 conditional iterations from the back
// of the loop because of an unknown trip count, possible
// not a multiple of 4.
//---
.................. loop body

if nlc0e, jump .P1L24 ; [J4 + -1] = YR9 ; YR1:0 = XR3:2;;
//---
// End Kernel for Loop L24
//---

Assembly Optimizer Annotations

2-100 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

In this example, the vectorization factor is 4. Since the trip count dim is
unknown, three conditional iterations are peeled from the back of the
loop, corresponding to the three cases when dim is 4k+1, 4k+2 or 4k+3. The
loop end is marked with End Kernel, because in this case the loop was
modulo scheduled (see “Modulo Scheduling Information”).

Modulo Scheduling Information
For every modulo scheduled loop (see also “Modulo Scheduling” on
page 2-65.), in addition to regular loop annotations, the following infor-
mation is provided: “

• The initiation interval (II)

• The final trip count if it is known: the trip count of the loop as it
ends up in the assembly code

• A cycle count representing the time to run one iteration of the
pipelined loop

• The minimum trip count, if it is known and the trip count is
unknown

• The maximum trip count, if it is known and the trip count is
unknown

• The trip modulo, if it is known and the trip count is unknown

• The stage count (iterations in parallel)

• The MVE unroll factor

• The resource usage

• The minimum initiation interval due to resources (res MII)

• The minimum initiation interval due to dependency cycles (rec
MII)

VisualDSP++ 5.0 C/C++ Compiler Manual 2-101
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Annotations for Modulo Scheduled Instructions

The compiler’s -annotate-loop-instr switch (on page 1-27) can be used
to produce additional annotation information for the instructions that
belong to the prolog, kernel or epilog of the modulo scheduled loop.

Consider the example whose schedule is in Table 2-9. Remember that this
does not use a real DSP architecture, but rather a theoretical one able to
schedule four instructions on a line, and each line takes one cycle to exe-
cute. We can view the instructions involved in modulo scheduling as in
Table 2-11.

Table 2-11. Modulo Scheduled Instructions

Part Iteration 0 Iteration 1 Iteration 2 Iteration 3 ...

Register Set 0 Register Set 1 Register Set 0 Register Set 1

1 prolog I1

2 prolog I2, I3

3 prolog I4, I5 I1_2

4 prolog I6 I2_2, I3_2

5 L: Loop ...

6 kernel I7 I4_2, I5_2 I1

7 kernel I8 I6_2 I2, I3

8 kernel I7_2 I4, I5 I1_2

9 kernel I8_2 I6 I2_2, I3_2

10 END Loop

11 epilog I7 I4, I5

12 epilog I8 I6

13 epilog I7

14 epilog I8

Assembly Optimizer Annotations

2-102 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Due to variable expansion, the body of the modulo scheduled loop con-
tains MVE=2 unrolled instances of the kernel, and the loop body contains
instructions from 4 iterations of the original loop. The iterations in
progress in the kernel are shown in the table heading, starting with Itera-
tion 0 which is the oldest iteration in progress (in its final stage). This
example uses two register sets, shown in the table heading.

The instruction annotations contain the following information:

• The part of the modulo scheduled loop (prolog, kernel or epilog)

• The loop label. This is required since prolog and epilog instruc-
tions appear outside of the loop body and are subject to being
scheduled with other instructions.

• ID: a unique number associated with the original instruction in the
unscheduled loop that generates the current instruction. It is useful
because a single instruction in the original loop can expand into
multiple instructions in a modulo scheduled loop. In our example
the annotations for all instances of I1 and I1_2 have the same id,
meaning they all originate from the same instruction (I1) in the
unscheduled loop.

The IDs are assigned in the order the instructions appear in the
kernel and they might repeat for MVE unroll > 1.

• Loop-carry path, if any. If an instruction belongs to the loop-carry
path, its annotation will contain a ‘*’. If several such paths exist,
‘*2’ is used for the second one, ‘*3’ for the third one, etc.

• sn: the stage count the instruction belongs to.

• rs: the register set used for the current instruction (useful when
MVE unroll > 1, in which case rs can be 0,1,...mve-1). If the
loop has an MVE of 1, the instruction's rs is not shown.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-103
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

• In addition to the above, the instructions in the kernel are anno-
tated with:

• Iter: specifies what iteration of the original loop an instruc-
tion is on in the schedule.

• In a modulo scheduled kernel, there are instructions from
(SC+MVE-1) iterations of the original loop. Iter=0 denotes
instructions from the earliest iteration of the original loop,
with higher numbers denoting later iterations.

Thus, the instructions corresponding to the schedule in Table 2-11 for a
hypothetical machine are annotated as follows:

1 : I1; // {L10 prolog:id=1,sn=0,rs=0}

2 : I2, // {L10 prolog:id=2,sn=0,rs=0}

3 : I3; // {L10 prolog:id=3,sn=0,rs=0}

4 : I4, // {L10 prolog:id=4,sn=1,rs=0}

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}

6 : I1_2; // {L10 prolog:id=1,sn=0,rs=1}

7 : I6, // {L10 prolog:id=6,sn=1,rs=0}

8 : I2_2, // {L10 prolog:id=2,sn=0,rs=1}

9 : I3_2; // {L10 prolog:id=3,sn=0,rs=1}

10 ://--

11:// Loop at ...

12://--

13:// This loop executes 2 iterations of the original loop in

estimated 4 cycles.

14://--

15:// Unknown Trip Count

16:// Successfully found modulo schedule with:

17:// Initiation Interval (II) = 2

18:// Stage Count (SC) = 3

19:// MVE Unroll Factor = 2

20:// Minimum initiation interval due to recurrences

(rec MII) = 2

Assembly Optimizer Annotations

2-104 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

21:// Minimum initiation interval due to resources

(res MII) = 2.00

22://--

23:L10:

23:LOOP (N-2)/2;

25: I7, // {kernel:id=7,sn=2,rs=0,iter=0}

26: I4_2, // {kernel:id=4,sn=1,rs=1,iter=1}

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

28: I1; // {kernel:id=1,sn=0,rs=0,iter=2}

29: I8, // {kernel:id=8,sn=2,rs=0,iter=0}

30: I6_2, // {kernel:id=6,sn=1,rs=1,iter=1}

31: I2, // {kernel:id=2,sn=0,rs=0,iter=2}

32: I3; // {kernel:id=3,sn=0,rs=0,iter=2,*}

33: I7_2, // {kernel:id=7,sn=2,rs=1,iter=1}

34: I4, // {kernel:id=4,sn=1,rs=0,iter=2}

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}

36: I1_2; // {kernel:id=1,sn=0,rs=1,iter=3}

37: I8_2, // {kernel:id=8,sn=2,rs=1,iter=1}

38: I6, // {kernel:id=6,sn=1,rs=0,iter=2}

39: I2_2, // {kernel:id=2,sn=0,rs=1,iter=3}

40: I3_2; // {kernel:id=3,sn=0,rs=1,iter=3,*}

41:END LOOP

42:

43: I7, // {L10 epilog:id=7,sn=2,rs=0}

44: I4_2, // {L10 epilog:id=4,sn=1,rs=1}

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

46: I8, // {L10 epilog:id=8,sn=2,rs=0}

47: I6_2; // {L10 epilog:id=6,sn=1,rs=1}

48: I7_2; // {L10 epilog:id=7,sn=2,rs=1}

49: I8_2; // {L10 epilog:id=8,sn=2,rs=1}

Lines 10-22 define the kernel information: loop name and modulo sched-
ule parameters: II, stage count, etc.

Lines 25-40 show the kernel.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-105
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Each instruction in the kernel has an annotation between {}, inside a com-
ment following the instruction. If several instructions are executed in
parallel, each gets its own annotation.

For instance, line 64 looks like:

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}

This annotation indicates:

• That this instruction belongs to the kernel of the loop starting at
L10.

• That this and the other three instructions that have ID=5 originate
from the same original instruction in the unscheduled loop:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}
...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}
...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

• sn=1 shows that this instruction belongs to stage count 1.

• rs=1 shows that this instruction uses register set 1.

• Iter=1 specifies that this instruction belongs to the second itera-
tion of the original loop (Iter numbers are zero-based).

• The ‘*’ indicates that this is part of a loop carry path for the loop.
In the original, unscheduled loop, that path is I5 -> I3 -> I5. Due
to unrolling, in the scheduled loop the “unrolled” path is I5_2 ->
I3->I5->I3_2->I5_2.

Assembly Optimizer Annotations

2-106 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The prolog and epilog are not clearly delimited in blocks by themselves,
but their corresponding instructions are annotated like the ones in the
kernel except that they do not have an Iter field and that they are pre-
ceded by a tag specifying to which loop prolog or epilog they belong:

5 : I5, // {L10 prolog:id=5,sn=1,rs=0}
...

27: I5_2, // {kernel:id=5,sn=1,rs=1,iter=1,*}
...

35: I5, // {kernel:id=5,sn=1,rs=0,iter=2,*}
...

45: I5_2; // {L10 epilog:id=5,sn=1,rs=1}

Note that the prolog/epilog instructions may mix with other instructions
on the same line.

This situation does not occur in this example; however, in a different
example it might have:

I5_2, // {L10 epilog:id=5,sn=1,rs=1}

I20;

This shows a line with two instructions. The second instruction I20 is
unrelated to modulo scheduling, and therefore it has no annotation.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-107
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

Warnings, Failure Messages and Advice
There are apparently innocuous programming constructs that have a nega-
tive effect on performance. Since you may not be aware of the hidden
problems, the compiler annotations try to give warnings when such situa-
tions occur. Also, if a program construct keeps the compiler from
performing a certain optimization, the compiler gives the reason why that
optimization was precluded.

In some cases, the compiler thinks it could do a better job if you changed
your code in certain ways. In these cases, the compiler offers advice on the
potentially beneficial code changes. However, you should be wary of such
advice since, while the suggested change might improve the performance,
there is no guarantee that it will do so.

Some of the messages are:

• This loop was not modulo scheduled because it was optimized for
space.

When a loop is modulo scheduled, it often produces code that has
to precede the scheduled loop (the prolog) and code that has to fol-
low the scheduled loop (the epilog). This almost always increases
the size of the code. That is why, if you specify an optimization
that minimizes the space requirements, the compiler does not
attempt modulo scheduling of a loop.

• This loop was not modulo scheduled because it contains calls or
volatile operations

Due to the restrictions imposed by calls and volatile memory
accesses, the compiler doesn't try to modulo schedule loops con-
taining such instructions.

Assembly Optimizer Annotations

2-108 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• This loop was not modulo scheduled because it contains too
many instructions

The compiler doesn't try to modulo schedule loops that contain
many instructions because the potential for gain is not worth the
increased compilation time.

• This loop was not modulo scheduled because it contains jump
instructions

Only single block loops are modulo scheduled. You can attempt to
restructure your code and use single block loops.

• Consider using pragma loop_count to specify the trip count or
trip modulo

This information may help vectorization.

• Consider using pragma loop_count to specify the trip count or
trip modulo, in order to prevent peeling

When a loop is vectorized, but the trip count is not known, some
iterations are peeled from the loop and executed conditionally
(based on the run time value of the trip count). This can be
avoided if the trip count is known to be divisible by the number of
iterations executed in parallel as a result of vectorization.

• operation of this size is implemented as a library call

This message is issued when a source code operation results in a
library call, due to lack of hardware support for performing that
operation on operands of that size.

• operation is implemented as a library call

This message is issued when a source code operation results in a
library call, due to lack of direct hardware support. For instance, an
integer division results in a library call.

VisualDSP++ 5.0 C/C++ Compiler Manual 2-109
for TigerSHARC Processors

Achieving Optimal Performance from C/C++ Source Code

• Use of volatile in loops precludes optimizations

In general, volatile variables hinder optimizations. They cannot be
promoted to registers, because each access to a volatile variable
requires accessing the corresponding memory location. The nega-
tive effect on performance is amplified if volatile variables are used
inside loops. However, there are legitimate cases when you have to
use a volatile variable exactly because of this special treatment by
the optimizer, for instance when a loop polls if a certain asynchro-
nous condition occurred. This message does not discourage the use
of volatile, it just stresses the implications of such a decision.

• Jumps out of this loop prevent efficient hardware loop generation

Due to the presence of jumps out of a loop, the compiler either
cannot generate a hardware loop, or was forced to generate one that
has a conditional exit.

• Consider using a 4-byte integral type for the variable name, for
more efficient hardware loop generation

Using short-typed variables as loop control variables limits optimi-
zation because the short variables may wrap. For instance, in:

unsigned short i;

for (i = 0; i < c; i++)

if c > 65536, then the loop will run forever because i wraps from
65535 back to 0. In this case, the compiler must add a wrapper.
The compiler recommends using an int variable instead (int or
unsigned int) unless the smaller size is critical to your program's
behavior.

Assembly Optimizer Annotations

2-110 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

VisualDSP++ 5.0 C/C++ Compiler Manual 3-1
for TigerSHARC Processors

3 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,
and class templates that you can call from your source programs. The
libraries provide a broad range of services, including those that are basic to
the languages, such as memory allocation, character and string conver-
sions, and math calculations. Using the library simplifies your software
development by providing code for a variety of common needs.

This chapter contains

• “C and C++ Run-Time Libraries Guide” on page 3-3
It provides introductory information about the ANSI/ISO stan-
dard C and C++ libraries. It also provides information about the
ANSI standard header files and built-in functions that are included
with this release of the ccts compiler.

• “Documented Library Functions” on page 3-67
It lists the functions (defined by the C standard header files) that
are described in “Run-Time Library Reference” on page 3-73.

• “Run-Time Library Reference” on page 3-73
It provides reference information about the C run-time library
functions included with this release of the ccts compiler.

The ccts compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices, Inc. that are of value in signal processing. In
addition to the standard C library, this release of the compiler software

3-2 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

includes the Abridged C++ library, a conforming subset of the standard
C++ library. The Abridged C++ library includes the embedded C++ and
embedded standard template libraries.

This chapter describes the standard C/C++ library functions that are sup-
ported in the current release of the run-time library as well as a number of
signal processing, matrix, and statistical functions that assist project code
development.

For more information on the algorithms on which many of the C
library’s math functions are based, see W. J. Cody and W. Waite,
Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey, Prentice Hall, 1980 (ASIN: 0138220646). For more
information on the C++ library portion of the ANSI/ISO Standard
for C++, see Plauger, P. J. (Preface), The Draft Standard C++
Library, Englewood Cliffs, New Jersey: Prentice Hall, 1994 (ISBN:
0131170031).

The Abridged C++ library software documentation is located on the Visu-
alDSP++ installation CD in the Docs/Reference folder. Viewing or
printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another
disk.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-3
for TigerSHARC Processors

C/C++ Run-Time Library

C and C++ Run-Time Libraries Guide
The C and C++ run-time libraries contain routines that you can call from
your source program. This section describes how to use the libraries and
provides information on the following topics:

• “Calling Library Functions” on page 3-4

• “Using Compiler’s Built-In C Library Functions” on page 3-4

• “Linking Library Functions” on page 3-5

• “Working With Library Source Code” on page 3-8

• “Working With Library Header Files” on page 3-9

• “DSP Header Files” on page 3-26

• “Calling Library Functions from an ISR” on page 3-33

• “Using the Libraries in a Multi-Threaded Environment” on
page 3-34

• “Abridged C++ Library Support” on page 3-35

• “Measuring Cycle Counts” on page 3-42

• “File I/O Support” on page 3-52

The C run-time libraries’ functions, available in this ccts compiler release
are listed in “Documented Library Functions” on page 3-67 and “Undoc-
umented Library Functions” on page 3-71. For information on the
Abridged C++ library’s contents, see “Abridged C++ Library Support” on
page 3-35 and on-line Help.

C and C++ Run-Time Libraries Guide

3-4 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Calling Library Functions
To use a C/C++ library function, call the function by name and give the
appropriate arguments. The name and arguments for each function appear
on the function’s reference page. The reference pages appear in the
“Run-Time Library Reference” on page 3-73 and in the C++ Run-Time
Library topic of the on-line Help.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files. For more information about the
header files, see “Working With Library Header Files” on page 3-9.

Function names are C/C++ function names. If you call a C/C++ run-time
library function from an assembly program, you must use the assembly
version of the function name (prefix an underscore on the name).

For more information on the naming conventions, see “C/C++ and
Assembly Language Interface” on page 1-298.

You can use the archiver, elfar, described in the VisualDSP++ 5.0
Linker and Utilities Manual, to build library archive files of your
own functions.

Using Compiler’s Built-In C Library Functions
The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, inline assembly code is faster than an
library routine, and it does not incur the calling overhead.

To use built-in functions, your source must include the required standard
include file. For the abs functions, this would require stdlib.h to be
included. Built-in functions are defined for some ANSI C math.h,
string.h, and stdlib.h functions. There are also built-in functions to
support various Analog Devices extensions to the ANSI standard defined

VisualDSP++ 5.0 C/C++ Compiler Manual 3-5
for TigerSHARC Processors

C/C++ Run-Time Library

in the include file builtins.h. Not all built-in functions have a library
alternate definition. Therefore, the failure to include the required header
files may result in your program build failing to link.

If you want to use the C run-time library functions of the same name,
compile with the -no-builtin compiler switch (see on page 1-44).

Linking Library Functions
The C/C++ run-time library is organized as several libraries which are cat-
alogued in Table 3-1. The libraries and startup files are installed within
the subdirectory ...\TS\lib of your VisualDSP++ installation.

Table 3-1. C and C++ Library Files

TS\lib Directory Description

libc_TS101.dlb
libc_TS201.dlb

C run-time library

libcpp_TS101.dlb
libcpp_TS201.dlb

C++ run-time library

libcpp_TS101_x.dlb
libcpp_TS201_x.dlb

C++ run-time library with exception handling

libcpprt_TS101.dlb
libcpprt_TS201.dlb

C++ run-time support library

libcpprt_TS101_x.dlb
libcpprt_TS201_x.dlb

C++ run-time support library with exception handling

libdsp_TS101.dlb
libdsp_TS201.dlb

DSP run-time library

libio_TS101.dlb
libio_TS201.dlb

I/O run-time library

libsim.dlb
libsim_TS201.dlb

Simulator library support

libx_TS101.dlb
libx_TS201.dlb

C++ exception handling support library

C and C++ Run-Time Libraries Guide

3-6 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

In general, several versions of the libraries and startup files are supplied in
binary form. For instance, the DSP run-time library is built twice; once
for the ADSP-TS101 processor and once for the ADSP-TS20x processors.

Binary files that are built for the ADSP-TS101 processor have a _TS101
suffix and binary files built for the ADSP-TS20x processors have a _TS201
suffix.

Other variants of the library and startup files are supplied that are compat-
ible with applications that have been compiled with the -char-size-8
compiler switch (on page 1-28); these binary files have a _ba suffix. File
names that do not have a _ba suffix have been built for applications that
use the conventional word-addressing mode.

Binary files that have a _mt suffix have been built for multi-threaded envi-
ronments; file names that do not have a _mt suffix have been built for a
single-threaded environment.

The libraries located in ...\TS\lib are built without any workarounds
enabled. There are subdirectories within the ...\TS\lib directory named
<target>_rev_<revision> that contain libraries built for <target>

ts_hdr_TS101.doj
ts_hdr_TS201.doj

C startup file – calls setup routine and main()

ts_hdr_cpp_TS101.doj
ts_hdr_cpp_TS201.doj

C++ startup file -- calls setup routine and main()

ts_exit_TS101.doj
ts_exit_TS201.doj

C exit routine

ts_exit_cpp_TS101.doj
ts_exit_cpp_TS201.doj

C++ exit routine

meminit_TS101.doj
meminit_TS201.doj

Memory initialization support

Table 3-1. C and C++ Library Files (Cont’d)

TS\lib Directory Description

VisualDSP++ 5.0 C/C++ Compiler Manual 3-7
for TigerSHARC Processors

C/C++ Run-Time Library

(ts101, ts20x) and for the specific revision, with the appropriate
workarounds for the specific silicon revision. An example would be the
directory “ts101_rev_0.0”.

One single library directory may support more than one specific silicon
revision, for example the “ts101_rev_0.0” libraries are valid for revisions
0.0 and 0.1 of the ADSP-TS101 processor. A set of libraries is included
that supports all suitable workarounds valid for any of the revisions of a
particular target.

By default, the libraries built with workarounds enabled for the most
recently-supported version of the processor are used. There is no special
suffix for the libraries built with workarounds enabled.

The -si-revision switch (on page 1-59) can be used to specify a silicon
revision—VisualDSP++ will use the appropriately-built library when link-
ing the application.

When you call a run-time library function, the call creates a reference that
the linker resolves. One way to direct the linker to the library’s location is
to use the default Linker Description File (ADSP-TS<your_target>.ldf).

If you are not using the default .LDF file, then either add the appro-
priate library/libraries to the .LDF file used for your project or use
the compiler’s -l switch to specify the library to be added to the
link line. For example, the switches -lc_TS201 -ldsp_TS201 add
the libraries libc_TS201.dlb and libdsp_TS201.dlb to the list of
libraries to be searched by the linker. For more information on the
.ldf file, see the VisualDSP++ 5.0 Linker and Utilities Manual.

If all the objects supplied to the driver have been built as C, but are
referencing a C++ object which is in a library, the standard C++
libraries are not searched and the linker may issue an error concern-
ing unresolved symbol(s). This can be avoided by using the

C and C++ Run-Time Libraries Guide

3-8 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

compiler flags-link switch (see on page 1-34), which ensures that
the C++ libraries are linked from the default .ldf files. For exam-
ple, -flags-link -MD__cplusplus=1.

Note that this problem only occurs if the C++ object is in a library.
If it is in an object file, the compiler recognizes it as a C++ object
and links with the C++ libraries.

Working With Library Source Code
The source code for the functions in the C and DSP run-time libraries is
provided with your VisualDSP++ software. By default, the installation
program copies the source code to a subdirectory of the directory where
the run-time libraries are kept, named ...\TS\lib\src. The directory
contains the source for the C run-time library, for the DSP run-time
library, and for the I/O run-time library, as well as the source for the main
program start-up functions. If you do not intend to modify any of the
run-time library functions and are not interested in using the source code
as a reference, you can delete this directory and its contents to conserve
disk space.

The source code is provided so you can customize any particular function
for your own needs. To modify these files, you need proficiency in the
TigerSHARC assembly language and an understanding of the run-time
environment, as explained in “C/C++ Run-Time Model and Environ-
ment” on page 1-261. Before you make any modifications to the source
code, copy the source code to a file with a different filename and rename
the function itself. Test the function before you use it in your system to
verify that it is functionally correct.

Analog Devices supports the run-time library functions only as
provided.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-9
for TigerSHARC Processors

C/C++ Run-Time Library

Working With Library Header Files
When you use a library function in your program, you should also include
the function’s header file with the #include preprocessor command. The
header file for each function is identified in the Synopsis section of the
function’s reference page. Header files contain function prototypes. The
compiler uses these prototypes to check that each function is called with
the correct arguments.

The header files define the non-suffixed names (for example, sin) as the
32-bit versions (for example, sinf) if the compiler is treating doubles as
32 bits or as the 64-bit version (for example, sind). This lets you use the
non-suffixed names with arguments of type double, regardless of whether
doubles are 32 or 64 bits.

The routines suffixed with f always require 32-bit arguments, and the rou-
tines suffixed with d always require 64-bit arguments, regardless of
whether the double type is 32 or 64 bits.

Some of these routines set the errno global variable, as required by the C
standard. To use errno, you must include the header file errno.h.

By default, the ccts compiler makes the double type 32 bits long, for high
performance. You can select a compiler option to make the double type 64
bits long for conformance with the C standard, but this makes computa-
tions with double values slower. In either case, the float type is 32 bits,
and the long double type is 64 bits.

A list of the header files that are supplied with this release of the ccts
compiler appears in Table 3-2. You should use a C standard text to aug-
ment the information supplied in this chapter.

The following are the descriptions of the header files contained in the C
library. The header files are listed in alphabetical order.

C and C++ Run-Time Libraries Guide

3-10 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 3-2. Standard C Run-Time Library Header Files

Header Purpose Standard

adi_types.h Type definitions Analog extension

assert.h Diagnostics ANSI

ctype.h Character Handling ANSI

cycle_count.h Basic Cycle Counting Analog extension

cycles.h Cycle Counting with Statistics Analog extension

device.h Macros and data structures for alternative device drivers Analog extension

device_int.h Enumerations and prototypes for alternative device drivers Analog extension

errno.h Error Handling ANSI

float.h Floating Point ANSI

iso646.h Boolean Operators ANSI

limits.h Limits ANSI

locale.h Localization ANSI

math.h Mathematics ANSI

setjmp.h Non-Local Jumps ANSI

signal.h Signal Handling ANSI

stdarg.h Variable Arguments ANSI

stdbool.h Boolean macros ANSI

stddef.h Standard Definitions ANSI

stdint.h Exact width integer types ANSI

stdio.h Input/Output ANSI

stdlib.h Standard Library ANSI

string.h String Handling ANSI

time.h Date and Time ANSI

VisualDSP++ 5.0 C/C++ Compiler Manual 3-11
for TigerSHARC Processors

C/C++ Run-Time Library

adi_types.h

The adi_types.h header file contains the type definitions for char_t,
float32_t, and float64_t. The adi_types.h header file also includes
stdint.h (on page 3-17) and stdbool.h (on page 3-17).

assert.h

The assert.h header file defines the assert macro, which can be used to
insert run-time diagnostics into a source file. The macro normally tests
(asserts) that an expression is true. If the expression is false, then the
macro will first print an error message, and will then call the abort func-
tion to terminate the application. The message displayed by the assert
macro will be of the form:

filename : linenumber assertion failed: “expression“

Note that the message includes the following information:

• filename – the name of the source file

• linenumber – the current line number in the source file

• expression – the expression tested

However if the macro NDEBUG is defined at the point at which the assert.h
header file is included in the source file, then the assert macro will be
defined as a null macro and no run-time diagnostics will be generated.

ctype.h

The ctype.h header file contains functions for character handling, such as
isalpha, tolower, etc.

C and C++ Run-Time Libraries Guide

3-12 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cycle_count.h

The cycle_count.h header file provides an inexpensive method for bench-
marking C-written source by defining basic facilities for measuring cycle
counts. The facilities provided are based upon two macros, and a data type
which are described in more detail in the section “Measuring Cycle
Counts” on page 3-42.

cycles.h

The cycles.h header file defines a set of five macros and an associated
data type that may be used to measure the cycle counts used by a section
of C-written source. The macros can record how many times a particular
piece of code has been executed and also the minimum, average, and max-
imum number of cycles used. The facilities that are available via this
header file are described in the section “Measuring Cycle Counts” on
page 3-42.

device.h

The device.h header file provides macros and defines data structures that
an alternative device driver would require to provide file input and output
services for stdio library functions. Normally, the stdio functions use a
default driver to access an underlying device, but alternative device drivers
may be registered that may then be used transparently by these functions.
This mechanism is described in “Extending I/O Support To New
Devices” on page 3-53.

device_int.h

The device_int.h header file contains function prototypes and provides
enumerations for alterative device drivers. An alternative device driver is
normally provided by an application and may be used by the stdio library
functions to access an underlying device; an alternative device driver may
coexist with, or may replace, the default driver that is supported by the

VisualDSP++ 5.0 C/C++ Compiler Manual 3-13
for TigerSHARC Processors

C/C++ Run-Time Library

VisualDSP++ simulator and EZ-KIT Lite evaluation systems. Refer to
“Extending I/O Support To New Devices” on page 3-53 for more
information.

errno.h

The errno.h header file provides access to errno and also defines macros
for associated error codes. This facility is not, in general, supported by the
rest of the library.

float.h

The float.h header file defines the properties of the floating-point data
types that are implemented by the compiler—that is, float, double, and
long double. These properties are defined as macros and include the fol-
lowing for each supported data type:

• the maximum and minimum value (for example, FLT_MAX and
FLT_MIN)

• the maximum and minimum power of ten (for example,
FLT_MAX_10_EXP and FLT_MIN_10_EXP)

• the precision available expressed in terms of decimal digits (for
example, FLT_DIG)

• a constant that represents the smallest value that may added to 1.0
and still result in a change of value (for example, FLT_EPSILON)

Note that the set of macros that define the properties of the double data
type will have the same values as the corresponding set of macros for the
float type when doubles are defined to be 32 bits wide, and they will
have the same value as the macros for the long double data type when
doubles are defined to be 64 bits wide (see “-double-size-{32 | 64}” on
page 1-31).

C and C++ Run-Time Libraries Guide

3-14 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

iso646.h

The iso646.h header file defines symbolic names for certain C operators;
the symbolic names and their associated value are shown in Table 3-3.

The symbolic names have the same name as the C++ keywords that
are accepted by the compiler when the -alttok switch (see
on page 1-25) is specified.

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than floating-point.

locale.h

The locale.h header file contains definitions for expressing numeric,
monetary, time, and other data.

Table 3-3. Symbolic Names Defined in iso646.h

Symbolic Name Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

VisualDSP++ 5.0 C/C++ Compiler Manual 3-15
for TigerSHARC Processors

C/C++ Run-Time Library

math.h

The math.h header file includes trigonometric, power, logarithmic, expo-
nential, and other miscellaneous functions. The library contains the
functions specified by the C standard along with implementations for the
data types float and long double.

For every function that is defined to return a double, the math.h header
file also defines corresponding functions that return a float and a long
double. The names of the float functions are the same as the equivalent
double function with f appended to its name. Similarly, the names of the
long double functions are the same as the double function with d
appended to its name. For example, the header file contains the following
prototypes for the sine function:

float sinf (float x);
double sin (double x);
long double sind (long double x);

When the compiler is treating double as 32 bits, the header file arranges
that all references to the double functions are directed to the equivalent
float function (with the suffix f). This allows the un-suffixed function
names to be used with arguments of type double, regardless of whether
doubles are 32 or 64 bits long.

This header file also provides prototypes for a number of additional math
functions provided by Analog Devices, such as favg, fmax, fclip, and
copysign.

Some of the functions in this header file exist as both integer and floating
point. The floating-point functions typically have an f prefix. Make sure
you are using the correct one. The C language provides for implicit type
conversion, so the following sequence produces surprising results with no
warnings:

float x,y;

y = abs(x);

C and C++ Run-Time Libraries Guide

3-16 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The value in x is truncated to an integer prior to calculating the absolute
value, then reconverted to floating point for the assignment to y.

A number of functions (including fabs, favg, fmax, fmin, fclip, and
copysign) are implemented via intrinsics (provided the header file has
been #include ‘d) that map to a single machine instruction.

If the header is not included, the library implementation is used
instead, at a considerable loss in efficiency.

Individual function descriptions focus on the 32-bit float version. When
the full range is given for Domain, the 64-bit float interfaces are not lim-
ited to 3.4 x 1038.

setjmp.h

The setjmp.h header file contains setjmp and longjmp for non-local
jumps. Note that jmp_buf typedef, as used by the longjmp and setjmp
functions, needs to be quad-word aligned. Otherwise, miss-aligned excep-
tions will occur

The use of setjmp and longjmp (or similar functions which do not
follow conventional C/C++ flow control) may produce unexpected
results when the application is compiled with optimizations
enabled. It is recommended that you do not use setjmp or longjmp
with optimizations enabled.

signal.h

The signal.h header file provides function prototypes for the standard
ANSI signal.h routines and also for several extensions, such as
interrupt().

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way that your C
program responds to these signals. The functions are designed to process
such signals as external interrupts and timer interrupts.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-17
for TigerSHARC Processors

C/C++ Run-Time Library

stdarg.h

The stdarg.h header file contains definitions needed for functions that
accept a variable number of arguments. Programs that call such functions
must include a prototype for the functions referenced.

stdbool.h

The stdbool.h header file contains three Boolean-related macros (true,
false, and __bool_true_false_are_defined) and an associated data type
(bool). The stdbool.h header file was introduced in the C99 standard
library.

stddef.h

The stddef.h header file contains a few common definitions useful for
portable programs, such as size_t.

stdint.h

The stdint.h header file contains various exact-width integer types along
with associated minimum and maximum values. The stdint.h header file
was introduced in the C99 standard library.

Table 3-4 describes each type (defined in byte-addressing mode) with
regard to MIN and MAX macros. Table 3-5 describes each type (defined
in word-addressing mode) with regard to MIN and MAX macros.

Table 3-4. Types Defined in Byte-Addressing Mode

Type Common Equivalent MIN MAX

int8_t signed char INT8_MIN INT8_MAX

int16_t short INT16_MIN INT16_MAX

int32_t int INT32_MIN INT32_MAX

int64_t long long INT64_MIN INT64_MAX

C and C++ Run-Time Libraries Guide

3-18 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

uint8_t unsigned char 0 UINT8_MAX

uint16_t unsigned short 0 UINT16_MAX

uint32_t unsigned int 0 UINT32_MAX

uint64_t unsigned long long 0 UINT64_MAX

int_least8_t signed char INT_LEAST8_MIN INT_LEAST8_MAX

int_least16_t short INT_LEAST16_MIN INT_LEAST16_MAX

int_least32_t int INT_LEAST32_MIN INT_LEAST32_MAX

int_least64_t long long INT_LEAST64_MIN INT_LEAST64_MAX

uint_least8_t unsigned char 0 UINT_LEAST8_MAX

uint_least16_t unsigned short 0 UNT_LEAST16_MAX

uint_least32_t unsigned int 0 UNT_LEAST32_MAX

uint_least64_t unsigned long long 0 UNT_LEAST64_MAX

int_fast8_t signed char INT_FAST8_MIN INT_FAST8_MAX

int_fast16_t short INT_FAST16_MIN INT_FAST16_MAX

int_fast32_t int INT_FAST32_MIN INT_FAST32_MAX

int_fast64_t long long INT_FAST64_MIN INT_FAST64_MAX

uint_fast8_t unsigned char 0 UINT_FAST8_MAX

uint_fast16_t unsigned short 0 UINT_FAST16_MAX

uint_fast32_t unsigned int 0 UINT_FAST32_MAX

uint_fast64_t unsigned long long 0 UINT_FAST64_MAX

intmax_t long long INTMAX_MIN INTMAX_MAX

intptr_t int INTPTR_MIN INTPTR_MAX

uintmax_t unsigned long long 0 UINTMAX_MAX

uinptr_t unsigned int 0 UINTPTR_MAX

Table 3-4. Types Defined in Byte-Addressing Mode (Cont’d)

Type Common Equivalent MIN MAX

VisualDSP++ 5.0 C/C++ Compiler Manual 3-19
for TigerSHARC Processors

C/C++ Run-Time Library

Table 3-5. Types Defined in Word-Addressing Mode

Type Common Equivalent MIN MAX

int32_t int INT32_MIN INT32_MAX

int64_t long long INT64_MIN INT64_MAX

uint32_t unsigned int 0 UINT32_MAX

uint64_t unsigned long long 0 UINT64_MAX

int_least8_t int INT_LEAST8_MIN INT_LEAST8_MAX

int_least16_t int INT_LEAST16_MIN INT_LEAST16_MAX

int_least32_t int INT_LEAST32_MIN INT_LEAST32_MAX

int_least64_t long long INT_LEAST64_MIN INT_LEAST64_MAX

uint_least8_t unsigned int 0 UINT_LEAST8_MAX

uint_least16_t unsigned int 0 UNT_LEAST16_MAX

uint_least32_t unsigned int 0 UNT_LEAST32_MAX

uint_least64_t unsigned long long 0 UNT_LEAST64_MAX

int_fast8_t int INT_FAST8_MIN INT_FAST8_MAX

int_fast16_t int INT_FAST16_MIN INT_FAST16_MAX

int_fast32_t int INT_FAST32_MIN INT_FAST32_MAX

int_fast64_t long long INT_FAST64_MIN INT_FAST64_MAX

uint_fast8_t unsigned int 0 UINT_FAST8_MAX

uint_fast16_t unsigned int 0 UINT_FAST16_MAX

uint_fast32_t unsigned int 0 UINT_FAST32_MAX

uint_fast64_t unsigned long long 0 UINT_FAST64_MAX

intmax_t long long INTMAX_MIN INTMAX_MAX

intptr_t int INTPTR_MIN INTPTR_MAX

uintmax_t unsigned long long 0 UINTMAX_MAX

uinptr_t unsigned int 0 UINTPTR_MAX

C and C++ Run-Time Libraries Guide

3-20 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 3-6 describes MIN and MAX macros defined for typedefs in other
headings.

Macros for minimum-width integer constants include: INT8_C(),
INT16_C(), INT32_C(), UINT8_C(), UINT16_C(), UINT32_C(), INT64_C(),
and UINT64_C().

Macros for greatest-width integer constants include INTMAX_C() and
UINTMAX_C().

stdio.h

The stdio.h header file defines a set of functions, macros, and data types
for performing input and output. Applications that use the facilities of
this header file should link with the I/O library in the same way as linking
with the C run-time library (see “Linking Library Functions” on
page 3-5). The library is thread-safe but it is not interrupt-safe and should
not therefore be called either directly or indirectly from an interrupt ser-
vice routine (ISR).

The compiler uses definitions within the header file to select an appropri-
ate set of functions that correspond to the currently selected addressing
mode (either word-addressing or byte-addressing) and size of type double
(either 32 bits or 64 bits). Any source file that uses the facilities of stdio.h

Table 3-6. MIN and MAX Macros for typedefs in Other Headings

Type MIN MAX

ptrdiff_t PTRDIFF_MIN PTRDIFF_MAX

sig_atomic_t SIG_ATOMIC_MIN SIG_ATOMIC_MAX

size_t 0 SIZE_MAX

wchar_t WCHAR_MIN WCHAR_MAX

wint_t WINT_MIN WINT_MAX

VisualDSP++ 5.0 C/C++ Compiler Manual 3-21
for TigerSHARC Processors

C/C++ Run-Time Library

must therefore include the header file. Failure to include the header file
results in a linker failure as the compiler must see a correct function proto-
type in order to generate the correct calling sequence.

The implementation of the stdio.h routines is based on a simple interface
with a device driver that provides a set of low-level primitives for open,
close, read, write, and seek operations. By default, these operations are
provided by the VisualDSP++ simulator and EZ-KIT Lite systems and this
mechanism is outlined in “Default Device Driver Interface” on page 3-62.

Alternative device drivers may be registered that can then be used trans-
parently through the stdio.h functions. See “Extending I/O Support To
New Devices” on page 3-53 for a description of the feature.

The following restrictions apply to this software release:

• the functions tmpfile and tmpnam are not available

• the functions rename and remove are supported only under the
default device driver supplied by the VisualDSP++ simulator and
EZ-KIT Lite systems, and they only operate on the host file system

• positioning within a file that has been opened as a text stream is
supported only if the lines within the file are terminated by the
character sequence \r\n

• Support for formatted reading and writing of data of type
long double is supported only if an application is built with the
-double-size-64 switch

At program termination, the host environment closes down any physical
connection between the application and an opened file. However, the I/O
library does not implicitly close any opened streams to avoid unnecessary
overheads (particularly with respect to memory occupancy). Thus, unless
explicit action is taken by an application, any unflushed output may be
lost. Any output generated by printf is always flushed. However, output
generated by other library functions, such as putchar, fwrite, fprintf, is

C and C++ Run-Time Libraries Guide

3-22 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

not automatically flushed. Applications should therefore arrange to close
down any streams that they open. Note that the function reference
fflush(NULL); flushes the buffers of all opened streams.

Each opened stream is allocated a buffer which either contains data
from an input file or output from a program. For text streams, this
data is held in the form of 8-bit characters that are packed into
32-bit memory locations. Due to internal mechanisms used to
unpack and pack this data, the buffer must not reside at a memory
location that is greater than the address 0x3fffffff. Since the
stdio library allocates buffers from the heap, this restriction
implies that the heap should not be placed at address 0x40000000
or above.

The restriction may be avoided by using the setvbuf function to
allocate the buffer from alternative memory, as in the following
example (that assumes that the buffer resides at a memory location
that is less than 0x40000000).

#include <stdio.h>

char buffer[BUFSIZ];
setvbuf(stdout,buffer,_IOLBF,BUFSIZ);
printf("Hello World\n");

A faster set of functions is available for applications that print only to
standard output. These functions are linked into an application if you
compile with the switch -flags-link -MD__USING_LIBSIM=1. This switch
forces the linker to link against the library libsim.dlb. This library con-
tains a limited set of stdio.h facilities that are executed on the host of the
VisualDSP++ debugger rather than inside the debugger’s target. This type
of execution leads to smaller applications and faster output.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-23
for TigerSHARC Processors

C/C++ Run-Time Library

The following functions are supported by the libsim.dlb library for this
compiler release only:

printf sprintf fprintf

All three of these functions from libsim.dlb use the L modifier, as in %LF,
to specify a conversion for a long double (64-bit floating-point) argu-
ment. They also use the “ll” modifier, as in %lld, to specify a conversion
for a long long (64-bit integer) argument. The fprintf function in this
library currently ignores its FILE* stream argument and always prints to
standard output.

The libsim.dlb library is not available in byte-addressing mode.

stdlib.h

The stdlib.h header file contains general utilities specified by the C stan-
dard. These include some integer math functions, such as abs, div, and
rand; general string-to-numeric conversions; memory allocation functions,
such as malloc and free; and termination functions, such as exit. This
header file also contains prototypes for miscellaneous functions, such as
bsearch and qsort.

The header file also defines the memory allocation functions malloc,
calloc, and realloc; for run-time performance reasons, these functions
will allocate memory that is aligned on a quad-word (128-bit) address
boundary. The free function, which deallocates memory is also defined in
this header file. All of these functions operate on the default heap. See
“Using Multiple Heaps” on page 1-280 for information about alternative
heaps and an alternative set of heap management routines.

C and C++ Run-Time Libraries Guide

3-24 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

This header also provides prototypes for a number of additional integer
math functions provided by Analog Devices, including avg, max and clip.
The ptototypes for count_ones and addbitrev are also included in the
header file.

Some of the functions included in this file exist as both integer and
floating point. The floating-point functions typically have an f pre-
fix. Make sure you are using the correct type.

A number of functions (including abs, avg, max, min, clip, count_ones,
and addbitrev) are implemented via intrinsics (provided the header file
has been #include’d) which map to single machine instructions.

If the header is not included, the library implementation is used
instead, at a considerable loss in efficiency.

This header also provides prototypes for functions that can be used to
manage alternate heaps, for example heap_malloc and heap_install.

string.h

The string.h header file contains string handling functions, including
strcpy and memcpy.

time.h

The time.h header file provides functions, data types, and a macro for
expressing and manipulating date and time information. The header file
defines two fundamental data types, one of which is clock_t and is associ-
ated with the number of implementation-dependent processor “ticks”
used since an arbitrary starting point; and the other which is time_t.

The time_t data type is used for values that represent the number of sec-
onds that have elapsed since a known epoch; values of this form are known
as a calendar time. In this implementation, the epoch starts on 1st January,
1970, and calendar times before this date are represented as negative
values.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-25
for TigerSHARC Processors

C/C++ Run-Time Library

A calendar time may also be represented in a more versatile way as a bro-
ken-down time. A broken-down time is a structured variable of the
following form:

struct tm { int tm_sec; /* seconds after the minute [0,61] */
int tm_min; /* minutes after the hour [0,59] */
int tm_hour; /* hours after midnight [0,23] */
int tm_mday; /* day of the month [1,31] */
int tm_mon; /* months since January [0,11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday [0, 6] */
int tm_yday; /* days since January 1st [0,365] */
int tm_isdst; /* Daylight Saving flag */

};

This implementation does not support either the Daylight Saving
flag in the structure struct tm; nor does it support the concept of
time zones. All calendar times are therefore assumed to relate to
Greenwich Mean Time (Coordinated Universal Time or UTC).

The header file sets the CLOCKS_PER_SEC macro to the number of processor
cycles per second and this macro can therefore be used to convert data of
type clock_t into seconds, normally by using floating-point arithmetic to
divide it into the result returned by the clock function.

In general, the processor speed is a property of a particular chip and
it is therefore recommended that the value to which this macro is
set is verified independently before it is used by an application.

In this version of the C/C++ compiler, the CLOCKS_PER_SEC macro is set by
one of the following (in descending order of precedence):

• Via the -DCLOCKS_PER_SEC=<definition> compile-time switch

• Via the Processor speed box in the VisualDSP++ Project Options
dialog box, Compile tab, Processor category

• From the header file cycles.h

C and C++ Run-Time Libraries Guide

3-26 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

DSP Header Files
The DSP header files contains prototypes for all the DSP library func-
tions. When the appropriate #include preprocessor command is included
in your source, the compiler uses the prototypes to check that each func-
tion is called with the correct arguments.

The DSP header files included in this release of the ccts compiler are:

• “complex.h – Basic Complex Arithmetic Functions” on page 3-26

• “filter.h – DSP Filters and Transformations” on page 3-27

• “libsim.h – Simulator Services” on page 3-28

• “matrix.h – Matrix Functions” on page 3-29

• “stats.h – Statistical Functions” on page 3-31

• “vector.h – Vector Functions” on page 3-31

• “window.h – Window Generators” on page 3-32

complex.h – Basic Complex Arithmetic Functions

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double, and
complex_long_double. The complex functions are listed with their 32
bits float interface (for example, float in C) only. The old style K&R
form of representing the parameters is used in this section, for conve-
nience purposes only.

Refer to Table 3-10 for a list of complex functions which are
described in detail in “Run-Time Library Reference” on page 3-73.

The following structures are used to represent complex numbers in rectan-
gular coordinates:

typedef struct
{

VisualDSP++ 5.0 C/C++ Compiler Manual 3-27
for TigerSHARC Processors

C/C++ Run-Time Library

float re;
float im;

} complex_float;

typedef struct
{

double re;
double im;

} complex_double;

typedef struct
{

long double re;
long double im;

} complex_long_double;

filter.h – DSP Filters and Transformations

The filter.h header file contains filters used in signal processing. It also
includes the A-law and µ-law companders that are used by voice-band
compression and expansion applications. This header file also contains
functions that perform key signal processing transformations, including
Fast Fourier Transforms (FFT) and convolution.

Various forms of the FFT function are provided by the library correspond-
ing to radix-2, radix-4, and two-dimensional FFTs. The number of points
is provided as an argument, and the library uses radix-2 or radix-4 imple-
mentations as appropriate.

The library also provides two optimized complex and real FFT functions
that have been implemented using a fast radix-2 algorithm; however these
functions, cfftf and rfftf, have certain requirements that may not be
appropriate for some applications.

The functions defined in the filter.h header file are listed in
Table 3-11 and are described in detail in “Run-Time Library Ref-
erence” on page 3-73.

C and C++ Run-Time Libraries Guide

3-28 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Library functions are provided to initialize a twiddle table for an FFT
function. A twiddle table is normally calculated once during program ini-
tialization and can be used to accommodate several FFTs of different sizes
by allocating the table at maximum size, and then using the stride argu-
ment of the FFT function to specify the step size through the table. If the
stride argument is set to 1, the FFT function uses all the table; if the FFT
uses only half the number of points of the largest, the stride should be 2.

The functions described by this header make certain assumptions about
their arguments, in order to achieve high efficiency:

• The FFT routines require that the input, output, and temporary
arrays be quad-word aligned, and the twiddle table be long-word
aligned.

• The filter routines require that the input array (and coefficients)
for finite impulse response filter (FIR) be quad-word aligned.

• The A-law and µ-law companders require that the input and out-
put arrays be quad-word aligned.

Failure to observe these constraints results in incorrect operation.

libsim.h – Simulator Services

The libsim.h header file defines services that are provided by the
VisualDSP++ debugging environment. The header file contains the func-
tion __emuclk, which returns the current simulator cycle count. The
header file also contains several utility print routines that may be useful
for assembly language development since they are much easier to call than
printf. Table 3-7 lists the utility print routines and provides a brief
description of each.

The list of routines contains names suitable for calling from a C
program. If you call them from an assembly program, add an addi-
tional leading underscore to the name.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-29
for TigerSHARC Processors

C/C++ Run-Time Library

In addition, these functions conform to the C calling conventions,
as described in “C/C++ Run-Time Model and Environment” on
page 1-261.

The libsim.h functionality is not available in byte-addressing
mode.

matrix.h – Matrix Functions

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See “complex.h – Basic Complex Arithmetic Functions” on page 3-26 for
definitions of the complex types.

Refer to Table 3-13 for a list of matrix functions which are
described in detail in “Run-Time Library Reference” on page 3-73.

The matrix functions are listed with their 32-bit float interface (for exam-
ple, float in C) only. The old style K&R form of representing the
parameters is used in this section for convenience purposes only. The
matrix functions are each provided in three forms—for the three
floating-point types. For brevity, only the float form is listed in the
detailed descriptions.

Table 3-7. libsim Print Routines

Function Description

__print_int prints 32-bit int

__print_uint prints unsigned 32-bit int

__print_float prints 32-bit float

__print_double prints 64-bit long double float

__print_longlong prints 64-bit signed int

__print_ulonglong prints 64-bit unsigned int

C and C++ Run-Time Libraries Guide

3-30 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

For example, under the cvecsadd function, the following list is provided
in the Synopsis:

cvecsaddf(float a[], float b, float c[], int n)

But, the library also provides:

cvecsadd(double a[], double b, double c[], int n)

cvecsaddd(long double a[], long double b, long double c[], int n)

The functions described by this header make certain assumptions about
their arguments, in order to achieve high efficiency:

• Input array arguments are constant; for example, their contents do
not change during the course of the routine. In particular, this
means the input arguments do not overlap with any output
argument.

• Input array arguments are quad-word aligned, and output array
arguments are at least double-word aligned. The compiler provides
this alignment for all top-level arrays; you must not pass an argu-
ment which points at an arbitrary, non-aligned location in an
array.

Failure to observe these constraints results in incorrect operation.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-31
for TigerSHARC Processors

C/C++ Run-Time Library

stats.h – Statistical Functions

The stats.h header file contains statistical functions, such as autocoh and
crosscoh. The statistics routines make the following assumptions about
their arguments:

• Input array arguments are constant; for example, their contents do
not change during the course of the routine. In particular, this
means the input arguments do not overlap with any output
arguments.

• Input array arguments are quad-word aligned, and output array
arguments are at least double-word aligned. The compiler provides
this alignment for all top-level arrays; you must not pass an argu-
ment that points at an arbitrary, non-aligned location in an array.

Failure to observe these constraints results in incorrect operation.

Refer to Table 3-15 for a list of statistical functions that are described in
detail in “Run-Time Library Reference” on page 3-73.

vector.h – Vector Functions

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations. See
“complex.h – Basic Complex Arithmetic Functions” on page 3-26 for the
definitions of the complex types.

Refer to Table 3-19 for a list of vector functions which are described in
detail in “Run-Time Library Reference” on page 3-73.

The vector functions are listed with their 32-bit float interface (for exam-
ple, float in C) only. The old style K&R form of representing the
parameters is used in this section for convenience purposes only.

C and C++ Run-Time Libraries Guide

3-32 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The vector functions are each provided in three forms—for the three
floating-point types. For brevity, only the float form is listed in the
detailed descriptions. For example, under the cvecsadd function, the fol-
lowing list is provided in the Synopsis.

cvecsaddf(float a[], float b, float c[], int n)

 but the library also provides

cvecsadd(double a[], double b, double c[], int n)

cvecsaddd(long double a[], long double b, long double c[], int n)

The functions described by this header make certain assumptions about
their arguments, in order to achieve high efficiency:

• Input array arguments are constant; that is, their contents do not
change during the course of the routine. In particular, this means
the input arguments do not overlap with any output argument.

• Input array arguments are quad-word aligned, and output array
arguments are at least double-word aligned. The compiler provides
this alignment for all top-level arrays; do not pass an argument
which points at an arbitrary, non-aligned location in an array.

Failure to observe these constraints results in incorrect operation.

window.h – Window Generators

The window.h header file contains various functions to generate windows
based on various methodologies. The functions, defined in the window.h
header file, are listed in Table 3-8.

For all window functions, a stride parameter a can be used to space the
window values. The window length parameter n equates to the number of
elements in the window. Therefore, for a stride a of 2 and a length n of 10,
an array of length 20 is required, where every second entry is untouched.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-33
for TigerSHARC Processors

C/C++ Run-Time Library

Calling Library Functions from an ISR
Not all C run-time library functions are interrupt-safe (and can therefore
be called from an Interrupt Service Routine). For a run-time function to
be classified as interrupt-safe, it must:

• not update any global data, such as errno, and

• not write to (or maintain) any private static data

Table 3-8. Window Generator Functions

Description Prototype

generate bartlett window void gen_bartlett
 (float w[], int a, int N)

generate blackman window void gen_blackman
 (float w[], int a, int N)

generate gaussian window void gen_gaussian
 (float w[], float alpha, int a, int N)

generate hamming window void gen_hamming
 (float w[], int a, int N)

generate hanning window void gen_hanning
 (float w[], int a, int N)

generate harris window void gen_harris
 (float w[], int a, int N)

generate kaiser window void gen_kaiser
 (float w[], float beta, int a, int N)

generate rectangular window void gen_rectangular
 (float w[], int a, int N)

generate triangle window void gen_triangle
 (float w[], int a, int N)

generate von hann window void gen_vonhann
 (float w[], int a, int N)

C and C++ Run-Time Libraries Guide

3-34 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

It is recommended therefore that none of the functions defined in the
header file math.h, nor the string conversion functions defined in
stdlib.h, be called from an ISR as these functions are commonly defined
to update the global variable errno. Similarly, the functions defined in the
stdio.h header file maintain static tables for currently opened streams and
should not be called from an ISR. Additionally, the memory allocation
routines malloc, calloc, realloc, free, and the C++ operators new and
delete read and update global tables and are not interrupt-safe.

Several other library functions are not interrupt-safe because they make
use of private static data. These functions are:

asctime gmtime localtime

rand srand strtok

While not all C run-time library functions are interrupt-safe, versions of
the functions are available that are thread-safe and may be used in a
multi-threaded environment. These library functions can be found in the
run-time libraries that have the suffix _mt in their filename.

Using the Libraries in a Multi-Threaded
Environment

It is sometimes desirable for there to be several instances of a given library
function to be active at any one time. Two examples of such a requirement
are:

• an interrupt or other external event invokes a function, while the
application is also executing that function,

• an application that runs in a multi-threaded environment, such as
VDK, and more than one thread executes the function
concurrently.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-35
for TigerSHARC Processors

C/C++ Run-Time Library

The majority of the functions in the C and C++ run-time libraries are safe
in this regard and may be called in either of the above schemes; this is
because the functions operate on parameters passed in by the caller and
they do not maintain private static storage, and they do not access
non-constant global data.

A subset of the library functions however either make use of private stor-
age or they operate on shared resources (such as FILE pointers). This can
lead to undefined behavior if two instances of a function simultaneously
access the same data. The issues associated with calling such library func-
tions via an interrupt or other external event is discussed in the section
“Calling Library Functions from an ISR” on page 3-33.

A VisualDSP++ installation contains versions of the C and C++ libraries
that may be used in a multi-threaded environment. These libraries have
recursive locking mechanisms so that shared resources, such as stdio FILE
tables and buffers, are only updated by a single function instance at any
given time. The libraries also make use of local-storage routines for
thread-local private copies of data, and for the variable errno (each thread
therefore has its own copy of errno).

The multi-threaded libraries have “mt” in their filename and will be used
automatically by the default VDK .ldf file to build a multi-threaded
application.

Note that the DSP run-time library is thread-safe and may be used in any
multi-threaded environment.

Abridged C++ Library Support
When in C++ mode, the ccts compiler can call a large number of func-
tions from the Abridged Library, a conforming subset of the C++ library.

The Abridged C++ library has two major components: embedded C++
library (EC++) and embedded standard template library (ESTL). The
embedded C++ library is a conforming implementation of the embedded

C and C++ Run-Time Libraries Guide

3-36 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

C++ library as specified by the Embedded C++ Technical Committee. You
can view the Abridged Library Reference by locating the file
docs/cpl_lib/index.html underneath your VisualDSP++ installation and
opening it in a web browser.

This section lists and briefly describes the following components of the
Abridged C++ library:

• “Embedded C++ Library Header Files” on page 3-36

• “C++ Header Files for C Library Facilities” on page 3-39

• “Embedded Standard Template Library Header Files” on
page 3-40

• “Using the Thread-Safe C/C++ Run-Time Libraries with VDK” on
page 3-42

For more information on the Abridged Library, see online Help.

Embedded C++ Library Header Files

The following sections provide a brief description of the header files in the
embedded C++ library.

complex

The complex header defines the template class complex and a set of associ-
ated arithmetic operators. Predefined types include complex_float and
complex_long_double.

This implementation does not support the full set of complex operations
as specified by the C++ standard. In particular, it does not support either
the transcendental functions or the I/O operators << and >>.

The complex header and the C library header file complex.h refer
to two different and incompatible implementations of the complex
data type.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-37
for TigerSHARC Processors

C/C++ Run-Time Library

exception

The exception header defines the exception and bad_exception classes
and several functions for exception handling.

fract

The fract header defines the fract data type, which supports fractional
arithmetic, assignment, and type-conversion operations. The header file is
fully described under “C++ Fractional Type Support” on page 1-241. An
example that demonstrates its use appears in “C++ Programming Exam-
ples” on page 1-304.

fstream

The fstream header defines the filebuf, ifstream, and ofstream classes
for external file manipulations.

iomanip

The iomanip header declares several iostream manipulators. Each manip-
ulator accepts a single argument.

ios

The ios header defines several classes and functions for basic iostream
manipulations.

Most of the iostream header files include ios.

iosfwd

The iosfwd header declares forward references to various iostream tem-
plate classes defined in other standard headers.

iostream

The iostream header declares most of the iostream objects used for the
standard stream manipulations.

C and C++ Run-Time Libraries Guide

3-38 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

istream

The istream header defines the istream class for iostream extractions.

Most of the iostream header files include istream.

new

The new header declares several classes and functions for memory alloca-
tions and deallocations.

ostream

The ostream header defines the ostream class for iostream insertions.

sstream

The sstream header defines the stringbuf, istringstream, and
ostringstream classes for various string object manipulations.

stdexcept

The stdexcept header defines a variety of classes for exception reporting.

streambuf

The streambuf header defines the streambuf classes for basic operations of
the iostream classes.

Most of the iostream header files include streambuf.

string

The string header defines the string template and various supporting
classes and functions for string manipulations.

Objects of the string type should not be confused with the
null-terminated C strings.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-39
for TigerSHARC Processors

C/C++ Run-Time Library

strstream

The strstream header defines the strstreambuf, istrstream, and
ostream classes for iostream manipulations on allocated, extended, and
freed character sequences.

C++ Header Files for C Library Facilities

For each C standard library header file there is a corresponding standard
C++ header. If the name of a C standard library header file is foo.h, then
the name of the equivalent C++ header file is cfoo. For example, the C++
header file cstdio provides the same facilities as the C header file stdio.h.

Table 3-9 lists the C++ header files that provide access to the C library
facilities.

The C standard header files may be used to define names in the C++ glo-
bal namespace, while the equivalent C++ header files define names in the
standard namespace.

Table 3-9. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions

cctype Classifies characters

cerrno Error codes reported by library functions

cfloat Floating-point type properties

climits Integer type properties

clocale Adapts to different cultural conventions

cmath Provides common mathematical operations

csetjmp Executes non-local goto statements

csignal Controls various exceptional conditions

cstdarg Accesses a variable number of arguments

cstddef Defines several useful data types and macros

C and C++ Run-Time Libraries Guide

3-40 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Embedded Standard Template Library Header Files

Templates and the associated header files are not part of the embedded
C++ standard, but they are supported by the ccts compiler in C++ mode.

The embedded standard template library headers are listed below.

algorithm

The algorithm header defines numerous common operations on
sequences.

deque

The deque header defines a deque template container.

functional

The functional header defines numerous function objects.

hash_map

The hash_map header defines two hashed map template containers.

hash_set

The hash_set header defines two hashed set template containers.

cstdio Performs input and output

cstdlib Performs a variety of operations

cstring Manipulates several kinds of strings

Table 3-9. C++ Header Files for C Library Facilities (Cont’d)

Header Description

VisualDSP++ 5.0 C/C++ Compiler Manual 3-41
for TigerSHARC Processors

C/C++ Run-Time Library

iterator

The iterator header defines common iterators and operations on
iterators.

list

The list header defines a list template container.

map

The map header defines two map template containers.

memory

The memory header defines facilities for managing memory.

numeric

The numeric header defines several numeric operations on sequences.

queue

The queue header defines two queue template container adapters.

set

The set header defines two set template containers.

stack

The stack header defines a stack template container adapter.

utility

The utility header defines an assortment of utility templates.

vector

The vector header defines a vector template container.

C and C++ Run-Time Libraries Guide

3-42 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The embedded C++ library also includes several header files for compati-
bility with traditional C++ libraries, such as:

fstream.h

The fstream.h header file defines several iostreams template classes that
manipulate external files.

iomanip.h

The iomanip.h header file declares several iostreams manipulators that
take a single argument.

iostream.h

The iostream.h header file declares the iostreams objects that manipulate
the standard streams.

new.h

The new.h header file declares several functions that allocate and free
storage.

Using the Thread-Safe C/C++ Run-Time Libraries with VDK

When developing for VDK, the thread-safe variants of the run-time librar-
ies are linked with user applications. These libraries may add an overhead
to the VDK resources required by some applications.

The run-time libraries make use of VDK synchronicity functions to
ensure thread safety.

Measuring Cycle Counts
The common basis for benchmarking some arbitrary C-written source is
to measure the number of processor cycles that the code uses. Once this
figure is known, it can be used to calculate the actual time taken by multi-

VisualDSP++ 5.0 C/C++ Compiler Manual 3-43
for TigerSHARC Processors

C/C++ Run-Time Library

plying the number of processor cycles by the clock rate of the processor.
The run-time library provides three alternative methods for measuring
processor counts. Each of these methods is described in:

• “Basic Cycle Counting Facility” on page 3-43

• “Cycle Counting Facility with Statistics” on page 3-45

• “Using time.h to Measure Cycle Counts” on page 3-48

• “Determining the Processor Clock Rate” on page 3-49

• “Considerations When Measuring Cycle Counts” on page 3-50

Basic Cycle Counting Facility

The fundamental approach to measuring the performance of a section of
code is to record the current value of the cycle count register before exe-
cuting the section of code, and then reading the register again after the
code has been executed. This process is represented by two macros that are
defined in the cycle_count.h header file; the macros are:

START_CYCLE_COUNT(S)

STOP_CYCLE_COUNT(T,S)

The parameter S is set by the macro START_CYCLE_COUNT to the current
value of the cycle count register; this value should then be passed to the
macro STOP_CYCLE_COUNT, which will calculate the difference between the
parameter and current value of the cycle count register. Reading the cycle
count register incurs an overhead of a small number of cycles and the
macro ensures that the difference returned (in the parameter T) will be
adjusted to allow for this additional cost. The parameters S and T may be
separate variables but more efficient code will be used if they represent the
same variable; they should be declared as a cycle_t data type which the
cycle_count.h header file defines as:

typedef volatile unsigned long long cycle_t;

C and C++ Run-Time Libraries Guide

3-44 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The header file also defines the macro PRINT_CYCLES(STRING,T) which is
provided mainly as an example of how to print a value of type cycle_t;
the macro outputs the text STRING on stdout followed by the number of
cycles T.

The instrumentation represented by the macros defined in this section is
only activated if the program is compiled with the DO_CYCLE_COUNTS
macro defined. If this macro is not specified, then the macros are replaced
by empty statements and have no effect on the program.

The following example demonstrates how the basic cycle counting facility
may be used to monitor the performance of a section of code:

#include <cycle_count.h>
#include <stdio.h>

extern int
main(void)
{

cycle_t cycle_count;

START_CYCLE_COUNT(cycle_count);
Some_Function_Or_Code_To_Measure();
STOP_CYCLE_COUNT(cycle_count,cycle_count);

PRINT_CYCLES("Number of cycles: ",cycle_count);
}

The run-time libraries provide alternative facilities for measuring the per-
formance of C source (see “Cycle Counting Facility with Statistics” on
page 3-45 and “Using time.h to Measure Cycle Counts” on page 3-48);
the relative benefits of this facility are outlined in “Considerations When
Measuring Cycle Counts” on page 3-50.

The basic cycle counting facility is based upon macros; it may therefore be
customized for a particular application if required, without the need for
rebuilding the run-time libraries.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-45
for TigerSHARC Processors

C/C++ Run-Time Library

Cycle Counting Facility with Statistics

The cycles.h header file defines a set of macros for measuring the perfor-
mance of compiled C source. As well as providing the basic facility for
reading the cycle count registers of the TigerSHARC architecture, the
macros also have the capability of accumulating statistics that are suited to
recording the performance of a section of code that is executed repeatedly.

If the macro DO_CYCLE_COUNTS is specified at compile-time, then the
cycles.h header file defines the following macros:

• CYCLES_INIT(S)
a macro that initializes the system timing mechanism and clears the
parameter S; an application must contain one reference to this
macro.

• CYCLES_START(S)
a macro that extracts the current value of the cycle count register
and saves it in the parameter S.

• CYCLES_STOP(S)
a macro that extracts the current value of the cycle count register
and accumulates statistics in the parameter S, based on the previous
reference to the CYCLES_START macro.

• CYCLES_PRINT(S)

a macro which prints a summary of the accumulated statistics
recorded in the parameter S.

• CYCLES_RESET(S)

a macro which re-zeros the accumulated statistics that are recorded
in the parameter S.

The parameter S that is passed to the macros must be declared to be of the
type cycle_stats_t; this is a structured data type that is defined in the
cycles.h header file. The data type has the capability of recording the
number of times that an instrumented part of the source has been exe-
cuted, as well as the minimum, maximum, and average number of cycles

C and C++ Run-Time Libraries Guide

3-46 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

that have been used. If an instrumented piece of code has been executed
for example, 4 times, the CYCLES_PRINT macro would generate output on
the standard stream stdout in the form:

AVG : 95
MIN : 92
MAX : 100
CALLS : 4

If an instrumented piece of code had only been executed once, then the
CYCLES_PRINT macro would print a message of the form:

CYCLES : 95

If the switch -DDO_CYCLE_COUNTS is not specified, then the macros
described above are defined as null macros and no cycle count information
is gathered. To switch between development and release mode therefore
only requires a re-compilation and will not require any changes to the
source of an application.

The macros defined in the cycles.h header file may be customized for a
particular application without the requirement for rebuilding the run-time
libraries.

An example that demonstrates how this facility may be used is:

#include <cycles.h>
#include <stdio.h>

#define LIMIT 20
extern void foo(void);
extern void bar(void);

extern int
main(void)
{

cycle_stats_t stats;
int i;

VisualDSP++ 5.0 C/C++ Compiler Manual 3-47
for TigerSHARC Processors

C/C++ Run-Time Library

CYCLES_INIT(stats);

for (i = 0; i < LIMIT; i++) {
CYCLES_START(stats);
foo();
CYCLES_STOP(stats);

}
printf("Cycles used by foo\n");
CYCLES_PRINT(stats);
CYCLES_RESET(stats);

for (i = 0; i < LIMIT; i++) {
CYCLES_START(stats);
bar();
CYCLES_STOP(stats);

}
printf("Cycles used by bar\n");
CYCLES_PRINT(stats);

}

This example might output:

Cycles used by foo

AVG : 25454
MIN : 23003
MAX : 26295

CALLS : 16

Cycles used by bar

AVG : 8727

MIN : 7653

MAX : 8912

CALLS : 16

C and C++ Run-Time Libraries Guide

3-48 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Alterative methods of measuring the performance of compiled C source
are described in the sections “Basic Cycle Counting Facility” on page 3-43
and “Using time.h to Measure Cycle Counts” on page 3-48. Also refer to
“Considerations When Measuring Cycle Counts” on page 3-50 which
provides some useful tips with regards to performance measurements.

Using time.h to Measure Cycle Counts

The time.h header file defines the data type clock_t, the clock function,
and the macro CLOCKS_PER_SEC, which together may be used to calculate
the number of seconds spent in a program.

In the ANSI C standard, the clock function is defined to return the num-
ber of implementation dependent clock “ticks” that have elapsed since the
program began, and in this version of the C/C++ compiler the function
returns the number of processor cycles that an application has used.

The conventional way of using the facilities of the time.h header file to
measure the time spent in a program is to call the clock function at the
start of a program, and then subtract this value from the value returned by
a subsequent call to the function. This difference is usually cast to a float-
ing-point type, and is then divided by the macro CLOCKS_PER_SEC to
determine the time in seconds that has occurred between the two calls.

If this method of timing is used by an application then it is important to
note that:

• the value assigned to the macro CLOCKS_PER_SEC should be inde-
pendently verified to ensure that it is correct for the particular
processor being used (see “Determining the Processor Clock Rate”
on page 3-49),

• the result returned by the clock function does not include the
overhead of calling the library function.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-49
for TigerSHARC Processors

C/C++ Run-Time Library

A typical example that demonstrates the use of the time.h header file to
measure the amount of time that an application takes is shown below.

#include <time.h>
#include <stdio.h>

extern int
main(void)
{

volatile clock_t clock_start;
volatile clock_t clock_stop;

double secs;

clock_start = clock();
Some_Function_Or_Code_To_Measure();
clock_stop = clock();

secs = ((double) (clock_stop - clock_start))

/ CLOCKS_PER_SEC;
printf("Time taken is %e seconds\n",secs);

}

The header files cycles.h and cycle_count.h define other methods for
benchmarking an application—these header files are described in the sec-
tions “Basic Cycle Counting Facility” on page 3-43 and “Cycle Counting
Facility with Statistics” on page 3-45, respectively. Also refer to “Consid-
erations When Measuring Cycle Counts” on page 3-50 which provides
some guidelines that may be useful.

Determining the Processor Clock Rate

Applications may be benchmarked with respect to how many processor
cycles that they use. However, more typically applications are bench-
marked with respect to how much time (for example, in seconds) that they
take.

C and C++ Run-Time Libraries Guide

3-50 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

To measure the amount of time that an application takes to run on a
TigerSHARC processor usually involves first determining the number of
cycles that the processor takes, and then dividing this value by the proces-
sor’s clock rate. The time.h header file defines the macro CLOCKS_PER_SEC
as the number of processor “ticks” per second.

On TigerSHARC architecture, it is set by the run-time library to one of
the following values in descending order of precedence:

• via the compile-time switch -DCLOCKS_PER_SEC=<definition>.

• via the Processor speed box in the VisualDSP++ Project Options
dialog box, Compile tab, Processor category

• from the cycles.h header file

If the value of the macro CLOCKS_PER_SEC is taken from the cycles.h
header file, then be aware that the clock rate of the processor will usually
be taken to be the maximum speed of the processor, which is not necessar-
ily the speed of the processor at RESET.

Considerations When Measuring Cycle Counts

This section summarizes cycle-counting techniques for benchmarking
C-compiled code. Each of these alternatives are described below.

• “Basic Cycle Counting Facility” on page 3-43
The basic cycle counting facility represents an inexpensive and rela-
tively unobtrusive method for benchmarking C-written source
using cycle counts. The facility is based on macros that factor-in
the overhead incurred by the instrumentation. The macros may be
customized and they can be switched either or off, and so no source

VisualDSP++ 5.0 C/C++ Compiler Manual 3-51
for TigerSHARC Processors

C/C++ Run-Time Library

changes are required when moving between development and
release mode. The same set of macros is available on other plat-
forms provided by Analog Devices.

• “Cycle Counting Facility with Statistics” on page 3-45
This is a cycle-counting facility that has more features than the
basic cycle counting facility described above. It is therefore more
expensive in terms of program memory, data memory, and cycles
consumed. However, it does have the ability to record the number
of times that the instrumented code has been executed and to cal-
culate the maximum, minimum, and average cost of each iteration.
The macros provided take into account the overhead involved in
reading the cycle count register. By default, the macros are
switched off, but they are switched on by specifying the
-DDO_CYCLE_COUNTS compile-time switch. The macros may also be
customized for a specific application. This cycle counting facility is
also available on other Analog Devices architectures.

• “Using time.h to Measure Cycle Counts” on page 3-48
The facilities of the time.h header file represent a simple method
for measuring the performance of an application that is portable
across a large number of different architectures and systems. These
facilities are based around the clock function.

The clock function however does not take into account the cost
involved in invoking the function. In addition, references to the
function may affect the code that the optimizer generates in the
vicinity of the function call. This method of benchmarking may
not accurately reflect the true cost of the code being measured.
This method is more suited to benchmarking applications rather
than smaller sections of code that run for a much shorter time
span.

C and C++ Run-Time Libraries Guide

3-52 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

When benchmarking code, some thought is required when adding instru-
mentation to C source that will be optimized. If the sequence of
statements to be measured is not selected carefully, the optimizer may
move instructions into (and out of) the code region and/or it may re-site
the instrumentation itself, thus leading to distorted measurements. It is
therefore generally considered more reliable to measure the cycle count of
calling (and returning from) a function rather than a sequence of state-
ments within a function.

It is recommended that variables that are used directly in benchmarking
are simple scalars that are allocated in internal memory (be they assigned
the result of a reference to the clock function, or be they used as argu-
ments to the cycle counting macros). In the case of variables that are
assigned the result of the clock function, it is also recommended that they
be defined with the volatile keyword.

The cycle count registers of the TigerSHARC architecture are called the
CCNT0 and CCNT1 registers. These registers are 32-bit registers. The CCNT0
register is incremented at every processor cycle; when it wraps back to zero
the CCNT1 register is incremented. Together these registers represent a
64-bit counter that is unlikely to wrap around to zero during the timing of
an application.

When running on an ADSP-TS101 architecture, it is possible that
the values read from the CCNT0 and CCNT1 registers may be affected
by bus arbitration issues such as a simultaneous DMA transaction,
or by the device being accessed by an external cluster bus master.

File I/O Support
The VisualDSP++ environment provides access to files on a host system
by using stdio functions. File I/O support is provided through a set of
low-level primitives that implement the open, close, read, write, and seek
operations. The functions defined in the stdio.h header file make use of
these primitives to provide conventional C input and output facilities.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-53
for TigerSHARC Processors

C/C++ Run-Time Library

The source files for the I/O primitives are available under the Tiger-
SHARC installation of VisualDSP++ in the subdirectory
...\TS\lib\src\libio_src.

This section describes:

• “Extending I/O Support To New Devices” on page 3-53

• “Default Device Driver Interface” on page 3-62

Refer to “stdio.h” on page 3-20 for information about the conventional C
input and output facilities that are provided by the compiler.

Extending I/O Support To New Devices

The I/O primitives are implemented using an extensible device driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-KIT Lite evalu-
ation systems. Other device drivers may be registered and then used
through the normal stdio functions.

This section describes:

• “DevEntry Structure”

• “Registering New Devices” on page 3-59

• “Pre-Registering Devices” on page 3-59

• “Default Device” on page 3-61

• “Remove and Rename Functions” on page 3-62

C and C++ Run-Time Libraries Guide

3-54 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

DevEntry Structure

A device driver is a set of primitive functions grouped together into a
DevEntry structure. This structure is defined in device.h.

struct DevEntry {
int DeviceID;
void *data;

int (*init)(struct DevEntry *entry);
int (*open)(const char *name, int mode);
int (*close)(int fd);
int (*write)(int fd, unsigned char *buf, int size);
int (*read)(int fd, unsigned char *buf, int size);
long (*seek)(int fd, long offset, int whence);
int stdinfd;
int stdoutfd;
int stderrfd;

}

typedef struct DevEntry DevEntry;
typedef struct DevEntry *DevEntry_t;

The fields within the DevEntry structure have the following meanings.

DeviceID:
The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application.

data:
The data field is a pointer for any private data the device may need; it is
not used by the run-time libraries.

init:
The init field is a pointer to an initialization function. The run-time
library calls this function when the device is first registered, passing in the
address of this structure (and thus giving the init function access to

VisualDSP++ 5.0 C/C++ Compiler Manual 3-55
for TigerSHARC Processors

C/C++ Run-Time Library

DeviceID and the field data). If the init function encounters an error, it
must return -1. Otherwise, it must return a positive value to indicate
success.

open:
The open field is a pointer to a function performs the “open file” opera-
tion upon the device; the run-time library will call this function in
response to requests such as fopen(), when the device is the cur-
rently-selected default device. The name parameter is the path name to the
file to be opened, and the mode parameter is a bitmask that indicates how
the file is to be opened.

0x0001 Open file for reading

0x0002 Open file for writing

0x0004 Open file for appending

0x0008 Truncate the file to zero length, if it already exists

0x0010 Create the file, if it does not already exist

By default, files are opened as text streams (in which the character
sequence \r\n is converted to \n when reading, and the character \n is
written to the file as \r\n). A file is opened as a binary stream if the fol-
lowing bit value is set in the mode parameter:

0x0020 Open the file as a binary stream (in raw mode)

The open function must return a positive “file descriptor” if it succeeds
in opening the file; this file descriptor is used to identify the file to the
device in subsequent operations. The file descriptor must be unique for all
files currently open for the device, but need not be distinct from file
descriptors returned by other devices—the run-time library identifies the
file by the combination of device and file descriptor.

If the open function fails, it must return -1 to indicate failure.

close:
The close field is a pointer to a function that performs the “close file”
operation on the device. The run-time library calls the close function in

C and C++ Run-Time Libraries Guide

3-56 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

response to requests such as fclose() on a stream that was opened on the
device. The fd parameter is a file descriptor previously returned by a call
to the open function. The close function must return a zero value for suc-
cess, and a non-zero value for failure.

write:
The write field is a pointer to a function that performs the “write to
file” operation on the device. The run-time library calls the write func-
tion in response to requests, such as fwrite(), fprintf() and so on, that
act on streams that were opened on the device. The write function takes
three parameters:

• fd – this is a file descriptor that identifies the file to be written to;
it will be a value that was returned from a previous call to the open
function.

• buf – a pointer to the data to be written to the file

• size – the number of (8-bit) bytes to be written to the file

The write function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes from buf were successfully written to the file

• Zero, indicating that the file has been closed, for some reason (for
example, network connection dropped)

• A negative value, indicating an error

read:
The read field is a pointer to a function that performs the “read from
file” operation on the device. The run-time library calls the read func-

VisualDSP++ 5.0 C/C++ Compiler Manual 3-57
for TigerSHARC Processors

C/C++ Run-Time Library

tion in response to requests, such as fread(), fscanf() and so on, that act
on streams that were opened on the device. The read function’s parame-
ters are:

• fd – this is the file descriptor for the file to be read

• buf – this is a pointer to the buffer where the retrieved data must
be stored

• size – this is the number of (8-bit) bytes to read from the file. This
must not exceed the space available in the buffer pointed to by buf.

The read function must return one of the following values:

• A positive value from 1 to size inclusive, indicating how many
bytes were read from the file into buf

• Zero, indicating end-of-file

• A negative value, indicating an error

The run-time library expects the read function to return 0xa (10)
as the newline character.

seek:
The seek field is a pointer to a function that performs dynamic access on
the file. The run-time library calls the seek function in response to
requests such as rewind(), fseek(), and so on, that act on streams that
were opened on the device.

The seek function takes the following parameters:

• fd – this is the file descriptor for the file which will have its
read/write position altered

• offset – this is a value that is used to determine the new read/write
pointer position within the file; it is in (8-bit) bytes

C and C++ Run-Time Libraries Guide

3-58 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

• whence – this is a value that indicates how the offset parameter is
interpreted:

• 0: offset is an absolute value, giving the new read/write
position in the file

• 1: offset is a value relative to the current position within
the file

• 2: offset is a value relative to the end of the file

The seek function returns a positive value that is the new (absolute) posi-
tion of the read/write pointer within the file, unless an error is
encountered, in which case the seek function must return a negative
value.

If a device does not support the functionality required by one of these
functions (such as read-only devices, or stream devices that do not support
seeking), the DevEntry structure must still have a pointer to a valid func-
tion; the function must arrange to return an error for attempted
operations.

stdinfd:
The stdinfd field is set to the device file descriptor for stdin if the device
is expecting to claim the stdin stream, or to the enumeration value
dev_not_claimed otherwise.

stdoutfd:
The stdoutfd field is set to the device file descriptor for stdout if the
device is expecting to claim the stdout stream, or to the enumeration
value dev_not_claimed otherwise.

stderrfd:
The stderrfd field is set to the device file descriptor for stderr if the
device is expecting to claim the stderr stream, or to the enumeration
value dev_not_claimed otherwise.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-59
for TigerSHARC Processors

C/C++ Run-Time Library

Registering New Devices

A new device can be registered with the following function:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called, with entry as its parameter. The add_devtab_entry() function
returns the DeviceID of the device registered.

If the device is not successfully registered, a negative value is returned.
Reasons for failure include (but are not limited to):

• The DeviceID is the same as another device, already registered

• There are no more slots left in the device registry table

• The DeviceID is less than zero

• Some of the function pointers are NULL

• The device’s init() routine returned a failure result

• The device has attempted to claim a standard stream that is already
claimed by another device

Pre-Registering Devices

The library source file devtab.c (which can be found under a Visu-
alDSP++ installation in the subdirectory ...\TS\lib\src\libio_src)
declares the following array:

DevEntry_t DevDrvTable[];

This array contains pointers to DevEntry structures for each device that is
pre-registered, that is, devices that are available as soon as main() is
entered, and that do not need to be registered at run-time by calling
add_devtab_entry(). By default, the “PrimIO” device is registered. The
PrimIO device provides support for target/host communication when

C and C++ Run-Time Libraries Guide

3-60 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

using the simulators and the Analog Devices emulators and debug agents.
This device is pre-registered, so that printf() and similar functions oper-
ate as expected without additional setup.

Additional devices can be pre-registered by the following process:

1. Take a copy of the devtab.c source file and add it to your project.

2. Declare your new device’s DevEntry structure within the devtab.c
file, for example,

extern DevEntry myDevice;

3. Include the address of the DevEntry structure within the
DevDrvTable[] array. Ensure that the table is null-terminated. For
example,

DevEntry_t DevDrvTable[MAXDEV] = {
#ifdef PRIMIO

&primio_deventry,
#endif

&myDevice, /* new pre-registered device */
0,

};

All pre-registered devices are initialized by the run-time library when it
calls the init() function of each of the pre-registered devices in turn.

The normal behavior of the PrimIO device when it is registered is to claim
the first three files as stdin, stdout and stderr. These standard streams
may be re-opened on other devices at run-time by using freopen() to
close the PrimIO-based streams and reopen the streams on the current
default device.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-61
for TigerSHARC Processors

C/C++ Run-Time Library

To allow an alternative device (either pre-registered or registered by
add_devtab_entry()) to claim one or all of the standard streams:

1. Take a copy of the primiolib.c source file, and add it to your
project.

2. Edit the appropriate stdinfd, stdoutfd, and stderrfd file descrip-
tors in the primio_deventry structure to have the value
dev_not_claimed.

3. Ensure the alternative device’s DevEntry structure has set the stan-
dard stream file descriptors appropriately.

Both the device initialization routines, called from the startup code and
add_devtab_entry(), return with an error if a device attempts to claim a
standard stream that is already claimed.

Default Device

Once a device is registered, it can be made the default device using the fol-
lowing function:

void set_default_io_device(int);

The function should be passed the DeviceID of the device. There is a cor-
responding function for retrieving the current default device:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device’s file identifier
(fd) returned by the open() function is private to the device; other devices
may simultaneously have other open files that use the same identifier. An
open file is uniquely identified by the combination of DeviceID and fd.

C and C++ Run-Time Libraries Guide

3-62 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The fopen() function records the DeviceID and fd in the global open file
table, and allocates its own internal fid to this combination. All future
operations on the file use this fid to retrieve the DeviceID and thus direct
the request to the appropriate device’s primitive functions, passing the fd
along with other parameters. Once a file has been opened by fopen(), the
current value of get_default_io_device() is irrelevant to that file.

Remove and Rename Functions

The PrimIO device provides support for the remove() and rename() func-
tions. These functions are not currently part of the extensible File I/O
interface, since they deal purely with path names, and not with file
descriptors. All calls to remove() and rename() in the run-time library are
passed directly to the PrimIO device.

Default Device Driver Interface

The stdio functions provide access to the files on a host system through a
device driver that supports a set of low-level I/O primitives. These
low-level primitives are described under“Extending I/O Support To New
Devices” on page 3-53. The default device driver implements these primi-
tives based on a simple interface provided by the VisualDSP++ simulator
and EZ-KIT Lite systems.

All the I/O requests submitted through the default device driver are chan-
neled through the C function _primIO. The assembly label has two
underscores, __primIO . The source for this function, and all the other
library routines, can be found under the base installation for VisualDSP++
in the subdirectory TS\lib\src\libio_src.

The __primIO function accepts no arguments. Instead, it examines the I/O
control block at the label _PrimIOCB. Without external intervention by a
host environment, the __primIO routine simply returns, which indicates
failure of the request. Two schemes for host interception of I/O requests
are provided.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-63
for TigerSHARC Processors

C/C++ Run-Time Library

The first scheme is to modify control flow into and out of the __primIO
routine. Typically, this would be achieved by a break point mechanism
available to a debugger/simulator. Upon entry to __primIO, the data for
the request resides in a control block at the label _PrimIOCB. If this scheme
is used, the host should arrange to intercept control when it enters the
__primIO routine, and, after servicing the request, return control to the
calling routine.

The second scheme involves communicating with the DSP processor
through a pair of simple semaphores. This scheme is most suitable for an
externally-hosted development board. Under this scheme, the host system
should clear the data word whose label is __lone_SHARC; this causes
__primIO to assume that a host environment is present and able to com-
municate with the process.

If __primIO sees that __lone_SHARC is cleared, then upon entry (for exam-
ple, when an I/O request is made) it sets a non-zero value into the word
labeled __Godot. The __primIO routine then busy-waits until this word is
reset to zero by the host. The non-zero value of __Godot raised by
__primIO is the address of the I/O control block.

Data Packing For Primitive I/O

The implementation of the __primIO interface is based on a word-address-
able machine, with each word comprising a fixed number of 8-bit bytes.
All READ and WRITE requests specify a move of some number of 8-bit bytes,
that is, the relevant fields count 8-bit bytes, not words. Packing is always
little endian, the first byte of a file read or written is the low-order byte of
the first word transferred.

Data packing is set to four bytes per word for the TigerSHARC architec-
ture. Data packing can be changed to accommodate other DSP
architectures by modifying the constant BITS_PER_WORD, defined in
_wordsize.h. (For example, a processor with 16-bit addressable words
would change this value to 16).

C and C++ Run-Time Libraries Guide

3-64 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Note that the file name provided in an OPEN request uses the processor’s
“native” string format, normally one byte per word. Data packing applies
only to READ and WRITE requests.

Data Structure for Primitive I/O

The I/O control block is declared in _primio.h, as follows.

typedef struct
{

enum
{

PRIM_OPEN = 100,
PRIM_READ,
PRIM_WRITE,
PRIM_CLOSE,
PRIM_SEEK,
PRIM_REMOVE,
PRIM_RENAME

} op;
int fileID;
int flags;
unsigned char *buf; /* data buffer, or file name */
int nDesired; /* number of characters to read */

/* or write */
int nCompleted; /* number of characters actually */

/* read or written */
void *more; /* for future use */

}
PrimIOCB_T;

The first field, op, identifies which of the seven currently-supported oper-
ations is being requested.

The file ID for an open file is a non-negative integer assigned by the
debugger or other “host” mechanism. The fileID values 0, 1, and 2 are
pre-assigned to stdin, stdout, and stderr, respectively. No open request
is required for these file IDs.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-65
for TigerSHARC Processors

C/C++ Run-Time Library

Before “activating” the debugger or other host environment, an OPEN or
REMOVE request may set the fileID field to the length of the filename
to open or delete; a RENAME request may also set the field to the length
of the old filename. If the fileID field does contain a string length, then
this will be indicated in the flags field (see below), and the debugger or
other host environment will be able to use the information to perform a
batch memory read to extract the filename. If the information is not pro-
vided, then the file name has to be extracted one character at a time.

The flags field is a bit field containing other information for special
requests. Meaningful bit values for an OPEN operation are:

M_OPENR = 0x0001 /* open for reading */
M_OPENW = 0x0002 /* open for writing */
M_OPENA = 0x0004 /* open for append */
M_TRUNCATE = 0x0008 /* truncate to zero length if file exists */
M_CREATE = 0x0010 /* create the file if necessary */
M_BINARY = 0x0020 /* binary file (vs. text file) */
M_STRLEN_PROVIDED = 0x8000 /* length of file name(s) available */

For a READ operation, the low-order four bits of the flag value contain the
number of bytes packed into each word of the read buffer, and the rest of
the value is reserved for future use.

For a WRITE operation, the low-order four bits of the flag value contain
the number of bytes packed into each word of the write buffer, and the
rest of the value form a bit field, for which only the following bit is cur-
rently defined:

M_ALIGN_BUFFER = 0x10

If this bit is set for a WRITE request, the WRITE operation is expected to be
aligned on a processor word boundary by writing padding NULs to the
file before the buffer contents are transferred.

For an OPEN, REMOVE, and RENAME operation, the debugger (or other host
mechanism) has to extract the filename(s) one character at a time from the
memory of the target. However, if the bit corresponding to the value

C and C++ Run-Time Libraries Guide

3-66 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

M_STRLEN_PROVIDED is set, then the I/O control block contains the length
of the filename(s) and the debugger is able to use this information to per-
form a batch read of the target memory (see the description of the fields
fileID and nCompleted).

For a SEEK request, the flags field indicates the seek mode (whence) as:

enum
{

M_SEEK_SET = 0x0001, /* seek origin is the start of
the file */

M_SEEK_CUR = 0x0002, /* seek origin is the current
position within the file */

M_SEEK_END = 0x0004, /* seek origin is the end of
the file */

};

The flags field is unused for a CLOSE request.

The buf field contains a pointer to the file name for an OPEN or
REMOVE request, or a pointer to the data buffer for a READ or WRITE
request. For a RENAME operation, this field contains a pointer to the old file
name.

The nDesired field is set to the number of bytes that should be transferred
for a READ or WRITE request. This field is also used by a RENAME
request, and is set to a pointer to the new file name.

For a SEEK request, the nDesired field contains the offset at which the file
should be positioned, relative to the origin specified by the flags field.
(On architectures that only support 16-bit ints, the 32-bit offset at which
the file should be positioned is stored in the combined fields [buf,
nDesired]).

VisualDSP++ 5.0 C/C++ Compiler Manual 3-67
for TigerSHARC Processors

C/C++ Run-Time Library

The nCompleted field is set by __primIO to the number of bytes actually
transferred by a READ or WRITE operation. For a SEEK operation, __primIO
sets this field to the new value of the file pointer. (On architectures that
only support 16-bit ints, __primIO sets the new value of the file pointer in
the combined fields [nCompleted, more]).

The RENAME operation may also make use of the nCompleted field. If the
operation can determine the lengths of the old and new filenames, then it
should store these sizes in the fields fileID and nCompleted, respectively,
and also set the bit field flags to M_STRLEN_PROVIDED. The debugger (or
other host mechanism) can then use this information to perform a batch
read of the target memory to extract the filenames. If this information is
not provided, then each character of the file names will have to be read
individually.

The more field is reserved for future use and currently is always set to NULL
before calling _primIO.

Documented Library Functions
The following tables list the documented library functions by the
header file in which they are located, whereas “Run-Time Library
Reference” on page 3-73 presets the functions in alphabetic order.

Table 3-10. Library Functions in the complex.h Header File

arg cabs cadd

cartesian cdiv cexp

cmlt conj csub

norm polar

Documented Library Functions

3-68 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 3-11. Library Functions in the filter.h Header File

a_compress a_expand cfft

cfft2d cfftf cfft_mag

convolve conv2d fir

fir_decima fir_interp ifft

ifft2d iir mu_compress

mu_expand rfft rfft_mag

rfft2d rfftf rfftf_mag

twidfft twidfftf

Table 3-12. Library Functions in the math.h Header File

acos alog alog10

asin atan atan2

ceil cos cosh

cot exp fabs

favg fclip floor

fmax fmin fmod

frexp log log10

modf pow rsqrt

sign sin sinh

sqrt tan tanh

Table 3-13. Library Functions in the matrix.h Header File

cmatmadd cmatmmlt cmatmsub

cmatsadd cmatsmlt cmatssub

matinv matmadd matmmlt

VisualDSP++ 5.0 C/C++ Compiler Manual 3-69
for TigerSHARC Processors

C/C++ Run-Time Library

matmsub matsadd matsmlt

matssub transpm

Table 3-14. Library Functions in the signal.h Header File

interrupt, interruptf, inter-
rupts, interruptnr, inter-
ruptfnr, interruptsnr

raise signal, signalf, signals, sig-
nalnr, signalfnr, signalsnr

Table 3-15. Library Functions in the stats.h Header File

autocoh autocorr crosscoh

crosscorr histogramf mean

rms var zero_cross

Table 3-16. Supported Library Functions in stdio.h Header File

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror printf

putc putchar puts

remove rename rewind

scanf setbuf setvbuf

snprintf sprintf sscanf

Table 3-13. Library Functions in the matrix.h Header File (Cont’d)

Documented Library Functions

3-70 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

ungetc vfprintf vprintf

vsnprintf vsnprintf

Table 3-17. Library Functions in stdlib.h Header File

abs addbitrev atof

atoi atol atold

atoll avg bsearch

clip count_ones div

heap_calloc heap_free heap_init

heap_install heap_lookup heap_malloc

heap_realloc heap_switch max

min qsort rand

srand strtod strtof

strtoi strtol strtold

strtoll strtoul strtoull

Table 3-18. Library Functions in time.h Header File

asctime clock ctime

difftime gmtime localtime

mktime strftime time

Table 3-19. Library Functions in vector.h Header File

cvecdot cvecsadd cvecsmlt

cvecssub cvecvadd cvecvsub

cvecvmlt vecdot vecsadd

Table 3-16. Supported Library Functions in stdio.h Header File (Cont’d)

VisualDSP++ 5.0 C/C++ Compiler Manual 3-71
for TigerSHARC Processors

C/C++ Run-Time Library

Undocumented Library Functions
The following tables list the undocumented ANSI library functions by the
header file in which they are located. Any C standard text can be used to
provide detailed information on the functions specified in this section.

vecsmlt vecssub vecvadd

vecvmlt vecvsub

Table 3-20. Library Functions in window.h Header File

gen_bartlett gen_blackman gen_gaussian

gen_hamming gen_hanning gen_harris

gen_kaiser gen_rectangular gen_triangle

gen_vonhann

Table 3-21. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 3-22. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 3-19. Library Functions in vector.h Header File (Cont’d)

Undocumented Library Functions

3-72 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Table 3-23. Library Functions in the stdlib.h Header File

abort atexit calloc

div exit free

labs malloc realloc

Table 3-24. Library Functions in the string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror

strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

VisualDSP++ 5.0 C/C++ Compiler Manual 3-73
for TigerSHARC Processors

C/C++ Run-Time Library

Run-Time Library Reference
The C run-time library is a collection of functions that you can call from
your C/C++ programs. This section lists the functions in alphabetical
order.

The information that follows applies to all of the functions in the
library that are described in this reference.

Notation Conventions

An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

Reference Format

Each function in the library has a reference page. These pages have the fol-
lowing format:

Name and Purpose of the function

Synopsis – Required header file and functional prototype

Description – Function specification

Algorithm – High-level mathematical representation of the
function

Domain – Range of values supported by the function

Notes – Miscellaneous information

Run-Time Library Reference

3-74 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

a_compress

A-law compression

Synopsis

#include <filter.h>

void a_compress (in, out, n)

const in[]; /* Input array */

int out[]; /* Output array */

int n; /* Number of elements to be compressed */

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out. The function has been optimized and requires
that both the input and output vectors are quad-word aligned.

Algorithm

C(k)=a-law compression of A(k)

for k=0 to n-1

Domain

content of input array: –4096 to 4095

VisualDSP++ 5.0 C/C++ Compiler Manual 3-75
for TigerSHARC Processors

C/C++ Run-Time Library

a_expand

A-law expansion

Synopsis

#include <filter.h>

void a_expand (in, out, n)

const int in[]; /* Input array */

int out[]; /* Output array */

int n; /* Number of elements to be expanded */

Description

The a_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 13-bit signed sample in accordance
with the A-law definition and is returned in the vector pointed to by out.
The function has been optimized and requires that both the input and
output vectors are quad-word aligned.

Algorithm

C(k)=a-law expansion of A(k)

for k=0 to n-1

Domain

Content of input array: 0 to 255

Run-Time Library Reference

3-76 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

abs

absolute value

Synopsis

#include <stdlib.h>

int abs (int x);

long int labs (long int x);

long long int llabs (long long int x);

Description

The abs functions return the absolute value of their argument. These
functions are built-in functions that cause the compiler to emit an inline
instruction to perform the required operation at the point the function is
called.

Use “fabs” on page 3-147 to calculate the absolute value of a
floating-point number.

Algorithm

Return |x|

Domain

Full range for given type.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-77
for TigerSHARC Processors

C/C++ Run-Time Library

acos

arc cosine

Synopsis

#include <math.h>

double acos (double x);

float acosf (float x);

long double acosd (long double x);

Description

The acos function returns the arc cosine of the argument. The input must
be in the range [–1, 1]. The output, in radians, is in the range [0, π].

Algorithm

return = cos -1 (x)

Domain

x = [–1.0 ... 1.0]

Run-Time Library Reference

3-78 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

addbitrev

bit-reversed adder

Synopsis

#include <stdlib.h>

int addbitrev (int a,int b);

Description

The addbitrev function adds the two arguments using the bit-reversed
adder. This is binary addition in which the carries are propagated to the
right, rather than to the left. Therefore,

addbitrev(0x50,0x40) yields 0x30

This is useful in algorithms, such as the FFT and interleaver.

The function is a built-in function that causes the compiler to emit an
inline instruction to perform the required operation at the point that the
function is called.

Algorithm

See “Description”.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-79
for TigerSHARC Processors

C/C++ Run-Time Library

alog

anti-log

Synopsis

#include <math.h>

float alogf (float x);
double alog (double x);
long double alogd (long double x);

Description

The alog functions calculate the natural (base e) anti-log of their argu-
ment. An anti-log function performs the reverse of a log function and is
therefore equivalent to exponentiation.

The value HUGE_VAL is returned if the argument x is greater than the func-
tion’s domain. For input values less than the domain, the functions return
0.0.

Algorithm

c = ex

Domain

x = [–87.33 , 88.72] for alogf()

x = [–708.39 , 709.78] for alogd()

Example

#include <math.h>

double y;
y = alog(1.0); /* y = 2.71828... */

See Also

alog10, exp, log, pow

Run-Time Library Reference

3-80 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

alog10

base 10 anti-log

Synopsis

#include <math.h>

float alog10f (float x);
double alog10 (double x);
long double alog10d (long double x);

Description

The alog10 functions calculate the base 10 anti-log of their argument. An
anti-log function performs the reverse of a log function and is therefore
equivalent to exponentiation. Therefore, alog10(x) is equivalent to
exp(x * log(10.0)).

The value HUGE_VAL is returned if the argument x is greater than the func-
tion’s domain. For input values less than the domain, the functions return
0.0.

Algorithm

c = e(x * log(10.0))

Domain

x = [–37.92 , 38.53] for alog10f()

x = [–307.65 , 308.25] for alog10d()

Example

#include <math.h>

double y;
y = alog10(1.0); /* y = 10.0 */

See Also
alog, exp, log10, pow

VisualDSP++ 5.0 C/C++ Compiler Manual 3-81
for TigerSHARC Processors

C/C++ Run-Time Library

arg

get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

long double argd (complex_long_double a);

Description

These functions compute the phase associated with a Cartesian number
represented by the complex argument a, and return the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for argf()

–1.7 x 10308 to +1.7 x 10308 for argd()

c atan a
a

=
⎛
⎝
⎜

⎞
⎠
⎟

Im()
Re()

Run-Time Library Reference

3-82 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

asctime

convert broken-down time into a string

Synopsis

#include <time.h>

char *asctime (const struct tm *t);

Description

The asctime function converts a broken-down time, as generated by the
functions gmtime and localtime, into an ASCII string that will contain
the date and time in the form

DDD MMM dd hh:mm:ss YYYY\n

where

• DDD represents the day of the week (that is. Mon, Tue, Wed, etc.)

• MMM is the month and will be of the form Jan, Feb, Mar, etc

• dd is the day of the month, from 1 to 31

• hh is the number of hours after midnight, from 0 to 23

• mm is the minute of the day, from 0 to 59

• ss is the second of the day, from 0 to 61 (to allow for leap seconds)

• YYYY represents the year

The function returns a pointer to the ASCII string, which may be over-
written by a subsequent call to this function. Also note that the function
ctime returns a string that is identical to

asctime(localtime(&t))

VisualDSP++ 5.0 C/C++ Compiler Manual 3-83
for TigerSHARC Processors

C/C++ Run-Time Library

Error Conditions

The asctime function does not return an error condition.

Example

#include <time.h>
#include <stdio.h>

struct tm tm_date;

printf("The date is %s",asctime(&tm_date));

See Also

ctime, gmtime, localtime

Run-Time Library Reference

3-84 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

asin

arc sine

Synopsis

#include <math.h>

double asin (double x);

float asinf (float x);

long double asind (long double x);

Description

The asin function returns the arc sine of the argument x. The input must
be in the range [–1, 1]. The output, in radians, is in the range -π/2 to π/2.

Algorithm

return = sin -1 (x)

Domain

x = [–1.0 ... 1.0]

VisualDSP++ 5.0 C/C++ Compiler Manual 3-85
for TigerSHARC Processors

C/C++ Run-Time Library

atan

arc tangent

Synopsis

#include <math.h>

double atan (double x);

float atanf (float x);

long double atand (long double x);

Description

The atan function returns the arc tangent of the argument. The output, in
radians, is in the range -π/2 to π/2.

Algorithm

return = tan–1(x)

Domain

x = [–3.4 x 1038 to +3.4 x 1038] for atanf()

x = [–1.7 x 10308 to 1.7 x 10308] for atand()

Run-Time Library Reference

3-86 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

atan2

arc tangent of quotient

Synopsis

#include <math.h>

double atan2 (double y, double x);

float atan2f (float y, float x);

long double atan2d (long double y,long double x);

Description

The atan2 function computes the arc tangent of the input value y divided
by input value x. The output, in radians, is in the range [-π, π].

The function uses the signs of its arguments to compute the quadrant of
the return value. Also if x = 0 and y > 0, it returns π/2; and if x = 0 and
y < 0 , it returns -π/2.

Algorithm

Domain

x,y = [–3.4 x 1038 to +3.4 x 1038] for atan2f()

x,y = [–1.7 x 10308 to 1.7 x 10308] for atan2d()

Error Conditions

The atan2 function returns a zero if y = 0 and x = 0.

return y
x

= ⎛
⎝⎜

⎞
⎠⎟

−tan 1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-87
for TigerSHARC Processors

C/C++ Run-Time Library

atof

convert string to a double

Synopsis

#include <stdlib.h>

double atof (const char *nptr);

Description

The atof function converts a character string to a double value where the
input string is a sequence of characters that can be interpreted as a numer-
ical value of the specified type.

Algorithm

The nptr argument may represent either a decimal floating-point number
or a hexadecimal floating-point number. Either form of number may be
preceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

Run-Time Library Reference

3-88 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X . This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Domain

The number should fit within the dynamic range of a double. The func-
tion returns a zero if no conversion could be made. If the correct value
results in an overflow, a positive or negative (as appropriate) HUGE_VAL is
returned. If the correct value results in an underflow, 0.0 is returned. The
ERANGE value is stored in errno in the case of either an overflow or
underflow.

Notes

The function reference atof (pdata) is functionally equivalent to:

strtod (pdata, (char *) NULL);

and therefore, if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-89
for TigerSHARC Processors

C/C++ Run-Time Library

atoi

convert string to integer

Synopsis

#include <stdlib.h>

int atoi (const char *string);

Description

The atoi function converts a character string to an integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers).

The function stops reading the input string at the first character that it
cannot recognize as part of a valid argument defined above.

Domain

–2,147,483,648 to 2,147,483,647

Run-Time Library Reference

3-90 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

atol

convert string to long integer

Synopsis

#include <stdlib.h>

long atol (const char *string);

Description

The atol function converts a character string to a long integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace][sign][base]digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers).

The function stops reading the input string at the first character that it
cannot recognize as part of a valid argument defined above.

Domain

–2,147,483,648 to 2,147,483,647

VisualDSP++ 5.0 C/C++ Compiler Manual 3-91
for TigerSHARC Processors

C/C++ Run-Time Library

atold

convert string to long double

Synopsis

#include <stdlib.h>

long double atold (const char *nptr);

Description

The atold function converts a character string to a double-precision
floating-point value where the input string is a sequence of characters that
can be interpreted as a numerical value of the specified type.

Algorithm

The nptr argument may represent either a decimal floating-point number
or a hexadecimal floating-point number. Either form of number may be
preceded by a sequence of whitespace characters (as determined by the
isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

Run-Time Library Reference

3-92 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The form of a hexadecimal floating-point number is:

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X . This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.

Domain

The number should fit within the dynamic range of a long double. The
function returns a zero if no conversion could be made. If the correct
value results in an overflow, a positive or negative (as appropriate)
LDBL_MAX is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Notes

The function reference atold (pdata) is functionally equivalent to:

strtold (pdata, (char *) NULL);

and therefore if the function returns zero, it is not possible to determine
whether the character string contained a (valid) representation of 0.0 or
some invalid numerical string.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-93
for TigerSHARC Processors

C/C++ Run-Time Library

atoll

convert string to long long integer

Synopsis

#include <stdlib.h>

long long atoll (const char *string);

Description

The atoll function converts a character string to a long long integer
fixed-point value where the input string is a sequence of characters that
can be interpreted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers).

The function stops reading the input string at the first character that it
cannot recognize as part of a valid argument defined above.

Domain

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

Run-Time Library Reference

3-94 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

autocoh

autocoherence

Synopsis

#include <stats.h>

void autocohf (a,n,m,c)

const float a[]; /* Input vector a */

int n; /* Input samples */

int m; /* Lag count */

float c[]; /* Output vector c */

Description

The autocoh function computes the autocoherence of the input elements
contained within input vector a, and stores the result to output vector c.

There are constraints in the use of this function.For more informa-
tion, see “stats.h – Statistical Functions” on page 3-31.

Algorithm

where k={0,1,...,m-1} and a is the mean value of input vector a.

Domain

–3.4 x 1038 to +3.4 x 1038

∑
−−

=
+ −∗=

1

0

2)()(*1 kn

j
kjjk aaa

n
c

VisualDSP++ 5.0 C/C++ Compiler Manual 3-95
for TigerSHARC Processors

C/C++ Run-Time Library

autocorr

autocorrelation

Synopsis

#include <stats.h>

void autocorrf (a,n,m,c)

const float a[]; /* Input vector a */

int n; /* Number of input samples */

int m; /* Lag count */

float c[]; /* Output vector c */

Description

The autocorr function computes the autocorrelation of the input ele-
ments contained within input vector a, and stores the result to output
vector c. The autocorr function is used in digital signal processing appli-
cations, such as speech analysis.

There are constraints in the use of this function.For more informa-
tion, see “stats.h – Statistical Functions” on page 3-31.

Algorithm

where k={0,1,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c
n

a ak j j k
j

n k

= +
=

− −

∑1
0

1

* (*)

Run-Time Library Reference

3-96 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

avg

mean of two values

Synopsis

#include <stdlib.h>

int avg (int a, int b);

long int lavg (long int a, long int b);

long long int llavg (long long int a, long long int b);

Description

The avg functions add the two arguments and divide the result by two.
These functions are built-in functions that cause the compiler to emit an
inline instruction to perform the required operation at the point the func-
tion is called.

Algorithm

(a + b)/2

Domain

Full range.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-97
for TigerSHARC Processors

C/C++ Run-Time Library

bsearch

perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch (const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function executes a binary search operation on a pre-sorted
array, where

• key is a pointer to the element to search for

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• *compare points to the function used to compare two elements. It
takes as parameters a pointer to the key and a pointer to an array
element and should return a value less than, equal to, or greater
than zero, according to whether the first parameter is less than,
equal to, or greater than the second.

The bsearch function returns a pointer to the first occurrence of key in
the array.

Algorithm

Call the compare function with the key and the current node (initially the
one in the middle of the array). If the compare returns 0, then return the
current node; if the compare returns -1, apply the search recursively on

Run-Time Library Reference

3-98 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

the portion of the array to the left of the current position; if the compare
returns 1, apply the search recursively on the portion of the array to the
right of the current location.

Domain

N/A

VisualDSP++ 5.0 C/C++ Compiler Manual 3-99
for TigerSHARC Processors

C/C++ Run-Time Library

cabs

complex absolute value

Synopsis

#include <complex.h>

float cabsf (a)

complex_float a; /* Complex input */

Description

The cabs function computes the complex absolute value of a complex
input and returns the result.

Algorithm

Domain

Re2 (a) + Im2 (a) <= 3.4 x 1038 for cabsf(), cabs()

 c a a= +Re () Im ()2 2

Run-Time Library Reference

3-100 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cadd

complex addition

Synopsis

#include <complex.h>

complex_float caddf (a,b)

complex_float a; /* Complex input a */

complex_float b; /* Complex input b */

Description

The cadd function adds two complex values a and b, and returns the
result.

Algorithm

Re(c) = Re(a) + Re(b)
Im(c) = Im(a) + Im(b)

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-101
for TigerSHARC Processors

C/C++ Run-Time Library

cartesian

convert Cartesian to polar notation

Synopsis

#include <complex.h>

float cartesianf (complex_float a, float *phase);
double cartesian (complex_double a, double *phase);
long double cartesiand (complex_long_double a,

long double *phase);

Description

These functions transform a complex number from Cartesian notation to
polar notation. The Cartesian number is represented by the argument a
that the function converts into a corresponding magnitude, which is
returns as the function’s result, and a phase that is returned via the second
argument phase. Refer to “polar” on page 3-261 for more information.

Algorithm

magnitude = cabs(a)

phase = arg(a)

Domain

[–3.4 x 1038 to +3.4 x 1038] for cartesianf()
[–1.7 x 10308 to 1.7 x 10308] for cartesiand()

Example

#include <complex.h>

complex_float point = {-2.0 , 0.0};
float phase;
float mag;
mag = cartesianf (point,&phase); /* mag = 2.0, phase = π */

Run-Time Library Reference

3-102 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cdiv

complex division

Synopsis

#include <complex.h>

complex_float cdivf (a,b)

complex_float a; /* Complex input a */

complex_float b; /* Complex input b */

Description

The cdiv function computes the quotient of the division of two complex
values and returns the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

)(Im)(Re
)Re(*)Im()Im(*)Re()Im(

)(Im)(Re
)Im(*)Im()Re(*)Re()Re(

22

22

bb
ababc

bb
babac

+
−=

+
+=

VisualDSP++ 5.0 C/C++ Compiler Manual 3-103
for TigerSHARC Processors

C/C++ Run-Time Library

ceil

ceiling

Synopsis

#include <math.h>

float ceilf (float x);

double ceil (double x);

long double ceild (long double x);

Description

The ceil functions calculate the next highest whole number that is greater
than or equal to the floating-point number x. They return the smallest
integral value that is not less than its input.

Algorithm

return = smallest int > x

Domain

x = [–3.4 x 1038 to +3.4 x 1038] for ceilf()

x = [–1.7 x 10308 to 1.7 x 10308] for ceild()

Run-Time Library Reference

3-104 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cexp

complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (a)

float a; /* Value of input */

Description

The cexp function computes the exponential value e to the power of the
real argument a in the complex domain.

Algorithm

Re(c) = cos(a)

Im(c) = sin(a)

Domain

a = [–1,647,095 ... 1,647,095] for cexpf()

a = [–843,314,850 ... 843,314,850] for cexpd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-105
for TigerSHARC Processors

C/C++ Run-Time Library

cfft

N point complex input FFT

Synopsis

#include <filter.h>

void cfft (in[], t[], out[], w[], wst, n)
const complex_float in[]; /* Input sequence */
complex_float t[]; /* Temporary working buffer */
complex_float out[]; /* Output sequence */
const complex_float w[]; /* Twiddle sequence */
int wst; /* Twiddle factor stride */
int n; /* Number of FFT points */

Description

The cfft function transforms the time domain complex input signal
sequence to the frequency domain by using the accelerated version of the
‘Discrete Fourier Transformation’ known as a ‘Fast Fourier Transform’ or
FFT. The cfft function “decimates in frequency” by the best choice FFT
algorithm, radix-4 or mixed radix, depending on the input sequence
length.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the
FFT. If the input data can be overwritten, then the memory requirements
may be reduced by specifying the input array as the output array.
Run-time performance of the function is improved if the input and out-
put arrays are allocated in a different memory block than the twiddle
table, w.

The twiddle table is passed in the argument w, which must contain at least
¾n complex twiddle factors. The function twidfft may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a

Run-Time Library Reference

3-106 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

particular call on cfft, then the stride factor has to be set appropriately;
otherwise it should be 1. Refer to “twidfft” on page 3-327 for more
information.

The library also contains the cfftf function (see on page 3-112),
which is an optimized implementation of a complex FFT using a
fast radix-2 algorithm. The cfftf function however imposes cer-
tain memory alignment requirements that may not be appropriate
for some applications.

Algorithm

When the sequence length, n, is a power of four, the radix-4 method is
used. When the sequence length is a power of two (see “Domain”), the
mixed radix method is used. At the first stage of the decimation in fre-
quency, the cfft function uses the radix-2 method to generate two
sequences with n/2 points each. The n/2 is now a power of four which cre-
ates the condition to employ the faster radix-4 method over these two
sequences.

Domain

Input sequence length n must be equal to either a power of two, or a
power of four, and at least 16.

Example

/* Example to demonstrate how to generate two complex FFTs using
a single twiddle table */

#include <filter.h>

#define NDATA1 256

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-107
for TigerSHARC Processors

C/C++ Run-Time Library

#define NDATA2 32

complex_float data1[NDATA1]; /* data for a 256-point FFT */
complex_float data2[NDATA2]; /* data for a 32-point FFT */

complex_float output1[NDATA1];
complex_float output2[NDATA2];

static complex_float twidtab[(3*NDATA1)/4];
complex_float temp[NDATA1];

/* note that the temporary buffer should be as large as
the largest FFT generated */

/* Generate a twiddle table for a 256-point FFT */

twidfft (twidtab,NDATA1);
/* note that a twiddle table is constant for a given number

of FFT points */

/* Generate a 256-point complex FFT */

cfft (data1, temp, output1, twidtab, 1, NDATA1);
/* note that the twiddle table stride factor is 1 */

/* Generate a 32-point complex FFT */

cfft (data2, temp, output2, twidtab, (NDATA1/NDATA2), NDATA2);
/* note that the twiddle table stride factor is 8 */

Run-Time Library Reference

3-108 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cfft_mag

cfft magnitude

Synopsis

#include <filter.h>

void cfft_mag (const complex_float input[],

float output[],

int fftsize);

Description

The cfft_mag function computes a normalized power spectrum from the
output signal generated by a cfft or cfftf function. The size of the signal
and the size of the power spectrum is fftsize.

The Nyquist frequency is located at (fftsize/2) + 1.

Algorithm

Example

#include <filter.h>

#define N 64

complex_float fft_input[N];

complex_float fft_output[N];

complex_float temp[N];

complex_float twid[(3*N)/4];

float spectrum[N];

magnitude z() Re z()2 Im z()2+
fftsize

-------------------------------=

VisualDSP++ 5.0 C/C++ Compiler Manual 3-109
for TigerSHARC Processors

C/C++ Run-Time Library

/* Generate a twiddle table for the FFT */

twidfft (twid,N);

/* Note that a twiddle table is constant for a given number

of FFT points */

/* Generate a complex FFT using cfft */

cfft (fft_input, temp, fft_output, twid, 1, N);

/* Generate the power spectrum */

cfft_mag (fft_output, spectrum, N);

Run-Time Library Reference

3-110 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cfft2d

NxN point 2-D complex input FFT

Synopsis

#include <filter.h>

void cfft2d (*in, *t, *out, w[], wst, n)

const complex_float *in; /* Pointer to input matrix a[n][n] */

complex_float *t; /* Pointer to working buffer t[n][n] */

complex_float *out; /* Pointer to matrix c[n][n] */

const complex_float w[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

The cfft2d function computes the two-dimensional Fast Fourier Trans-
form of the complex input matrix a[n][n], and stores the result to the
complex matrix c[n][n].

If the input data can be overwritten, optimum memory usage is achieved
by setting the output pointer to the input array.

For efficiency, the “twiddle table” is calculated once, during initialization,
and then provided to the FFT routine as a separate parameter. You must
declare the variable and initialize it prior to calling an FFT function. An
initialization function, twidfft, is provided.

If the twiddle table has been allocated at a larger size than needed for a
particular call of cfft2d, then the stride parameter needs to be set appro-
priately; otherwise, it should be one. For more information, see “twidfft”
on page 3-327.

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-111
for TigerSHARC Processors

C/C++ Run-Time Library

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be equal to either a power of two, or a
power of four, and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,) * (* *)/= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

Run-Time Library Reference

3-112 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cfftf

fast N point complex input FFT

Synopsis

#include <filter.h>
void cfftf (in[], out[], twid[], wst, n)
const complex_float in[]; /* Input sequence */
complex_float out[]; /* Output sequence */
const complex_float twid[]; /* Twiddle sequence */
int wst; /* Twiddle factor stride */
int n; /* Number of FFT points */

Description

The cfftf function transforms the time domain complex input signal
sequence to the frequency domain by using the accelerated version of the
‘Discrete Fourier Transform’ known as a ‘Fast Fourier Transform’ or FFT.
It “decimates in frequency” using an optimized radix-2 algorithm.

The size of the input array in and the output array out is n, where n repre-
sents the number of points in the FFT. The cfftf function has been
designed for optimum performance and requires that the input array in be
aligned on an address boundary that is a multiple of twice the FFT size.
For certain applications, this alignment constraint may not be appropri-
ate; in such cases, the application should call the cfft function instead
with no loss of facility (apart from performance).

The twiddle table is passed in the argument twid, which must contain at
least n/2 complex twiddle factors. The function twidfftf may be used to
initialize the array. If the twiddle table contains more factors than required
for a particular FFT size, then the stride factor wst has to be set appropri-
ately; otherwise, it should be set to 1. For more information, see “twidfftf”
on page 3-329.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-113
for TigerSHARC Processors

C/C++ Run-Time Library

The twiddle tables used by the functions cfft and cfftf are not
compatible. The cfft function (see on page 3-105) uses a twiddle
table that contains ¾n factors in which the imaginary coefficients
are positive sine values, while the cfftf function uses a twiddle
table with ½n factors in which the imaginary coefficients are nega-
tive sine values.

It is recommended that the twiddle table and the output array are allo-
cated in separate memory blocks; otherwise, the performance of the
function degrades.

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

Algorithm

Domain

The number of points in the FFT must be a power of 2 and must be at
least 32.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

Run-Time Library Reference

3-114 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

clearerr

clear file or stream error indicator

Synopsis

#include <stdio.h>

void clearerr(FILE *stream);

Description

The clearerr function clears the error and end-of-file (EOF) indicators for
the particular stream pointed to by stream.

The stream error indicators record whether any read or write errors have
occurred on the associated stream. The EOF indicator records when there is
no more data in the file.

Error Conditions

The clearerr function does not return an error condition.

Example

#include <stdio.h>

FILE *routine(char *filename)

{

FILE *fp;

fp = fopen(filename, "r");

/* Some operations using the file */

/* now clear the error indicators for the stream */

clearerr(fp);

return fp;

}

See Also

feof, ferror

VisualDSP++ 5.0 C/C++ Compiler Manual 3-115
for TigerSHARC Processors

C/C++ Run-Time Library

clip

clip

Synopsis

#include <stdlib.h>

int clip (int parm1, int parm2);

long int lclip (long int parm1, long int parm2);

long long int llclip (long long int parm1, long long int parm2);

Description

The clip functions return their first argument if its absolute value is less
than the absolute value of the second argument; otherwise they return the
absolute value of the second argument if the first is positive, or minus the
absolute value if the first argument is negative.

Algorithm

if (|parm1| < |parm2|)

return(parm1)

else

return(|parm2| * signof(parm1))

Domain

Full range.

Run-Time Library Reference

3-116 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

clock

processor time

Synopsis

#include <time.h>
clock_t clock (void);

Description

The clock function returns the number of processor cycles that have
elapsed since an arbitrary starting point. The function returns the value
(clock_t) -1, if the processor time is not available or if it cannot be rep-
resented. The result returned by the function may be used to calculate the
processor time in seconds by dividing it by the macro CLOCKS_PER_SEC.
For more information, see “time.h” on page 3-24. An alternative method
of measuring the performance of an application is described in “Measur-
ing Cycle Counts” on page 3-42.

Error Conditions

The clock function does not return an error condition.

Example

#include <time.h>

time_t start_time,stop_time;
double time_used;

start_time = clock();
compute();
stop_time = clock();

time_used = ((double) (stop_time - start_time)) / CLOCKS_PER_SEC;

See Also

No references to this function.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-117
for TigerSHARC Processors

C/C++ Run-Time Library

cmatmadd

complex matrix + matrix addition

Synopsis

#include <matrix.h>

void cmatmaddf (a,b,n,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

const complex_float *b; /* Pointer to input matrix b[][] */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function computes the addition of input complex matrix a[][] with
input complex matrix b[][], and stores the result to output complex
matrix c[][]. The dimensions of complex matrix a[][] are n and m and
the dimensions of complex matrix b are n and m. The resulting output
complex matrix c[][] is of dimensions n and m.

The input matrices a[][] and b[][] must be aligned on quad-word
boundaries, with the output matrix c[][] being aligned on a dual-word
boundary.

Algorithm

 where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

-3.4 x 1038 to +3.4 x 1038

Re() Re() Re()
Im() Im() Im()

, , ,

, , ,

c a b
c a b

i j i j i j

i j i j i j

= +
= +

Run-Time Library Reference

3-118 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cmatmmlt

complex matrix * matrix multiplication

Synopsis

#include <matrix.h>

void cmatmmltf (a,n,k,b,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

int n; /* Number of rows in matrix a[][] */

int k; /* Number of columns in matrix a[][] */

const complex_float *b; /* Pointer to input matrix b[][] */

int m; /* Number of columns in matrix b[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function computes the multiplication of input complex matrix a[][]
with input complex matrix b[][], and stores the result to output complex
matrix c[][]. The dimensions of complex matrix a[][] are n and k and
the dimensions of complex matrix b are k and m. The resulting output
complex matrix c[][] is of dimensions n and m.

The input matrix a[][] must be aligned on a quad-word boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

-3.4 x 1038 to +3.4 x 1038

Re() (Re()*Re() Im()*Im())

Im() (Re()*Im() Im()*Re())

, , , , ,

, , , , ,

c a b a b

c a b a b

i j i l l j i l l j
l

k

i j i l l j i l l j
l

k

= −

= +

=

−

=

−

∑

∑
0

1

0

1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-119
for TigerSHARC Processors

C/C++ Run-Time Library

cmatmsub

complex matrix - matrix subtraction

Synopsis

#include <matrix.h>

void cmatmsubf (a,b,n,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

const complex_float *b; /* Pointer to input matrix b[][] */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function computes the subtraction of input complex matrix a[][]
with input complex matrix b[][], and stores the result to output complex
matrix c[][]. The dimensions of complex matrix a[][] are n and m and
the dimensions of complex matrix b are n and m. The resulting output
complex matrix c[][] is of dimensions n and m.

The input matrices a[][] and b[][] must be aligned on quad-word
boundaries, with the output matrix c[][] being aligned on a dual-word
boundary.

Algorithm

 where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Re() Re() Re()
Im() Im() Im()

, , ,

, , ,

c a b
c a b

i j i j i j

i j i j i j

= −
= −

Run-Time Library Reference

3-120 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cmatsadd

complex matrix + scalar addition

Synopsis

#include <matrix.h>

void cmatsaddf (a,b,n,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

const complex_float b; /* Input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function adds the complex scalar value b to each element of complex
matrix a[][], placing the result in complex matrix c[][]. The dimensions
of complex matrix a[][] are n and m. The resulting output complex matrix
c[][] is of dimensions n and m.

The input matrix a[][] must be aligned on a quad-word boundary, with
the output matrix c[][] being aligned on a dual-word boundary.

Algorithm

 where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Re() Re() Re()
Im() Im() Im()

, ,

, ,

c a b
c a b

i j i j

i j i j

= +
= +

VisualDSP++ 5.0 C/C++ Compiler Manual 3-121
for TigerSHARC Processors

C/C++ Run-Time Library

cmatsmlt

complex matrix * scalar multiplication

Synopsis

#include <matrix.h>

void cmatsmltf (a,b,n,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

const complex_float b; /* Input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function computes the multiplication of input complex matrix a[][]
with input complex scalar b, and stores the result to output complex
matrix c[][]. The dimensions of complex matrix a[][] are n and m. The
resulting output complex matrix c[][] is of dimensions n and m.

The input matrix a[][] and output matrix c[][] must be aligned on a
dual-word boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Re() Re() *Re() Im() *Im()
Im() Re() *Im() Im() *Re()

, , ,

, , ,

c a b a b
c a b a b

i j i j i j

i j i j i j

= −

= +

Run-Time Library Reference

3-122 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cmatssub

complex matrix - scalar subtraction

Synopsis

#include <matrix.h>

void cmatssubf (a,b,n,m,c)

const complex_float *a; /* Pointer to input matrix a[][] */

const complex_float b; /* Input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

complex_float *c; /* Pointer to matrix c[][] */

Description

This function computes the subtraction of input complex matrix a[][]
with input complex scalar b, and stores the result to output complex
matrix c[][]. The dimensions of complex matrix a[][] are n and m. The
resulting output complex matrix c[][] is of dimensions n and m.

The input matrix a[][] must be aligned on quad-word bounday, with the
output matrix c[][] being aligned on a dual-word boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Re() Re() Re()
Im() Im() Im()

, ,

, ,

c a b
c a b

i j i j

i j i j

= −
= −

VisualDSP++ 5.0 C/C++ Compiler Manual 3-123
for TigerSHARC Processors

C/C++ Run-Time Library

cmlt

complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (a,b)

complex_float a; /* Complex input a */

complex_float b; /* Complex input b */

Description

This function multiplies two complex values a and b, and returns the
result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

)Re(*)Im()Im(*)Re()Im(
)Im(*)Im()Re(*)Re()Re(

babac
babac

+=
−=

Run-Time Library Reference

3-124 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

conj

complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (a)

complex_float a; /* Complex input a */

Description

This function conjugates the complex input a, and returns the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-125
for TigerSHARC Processors

C/C++ Run-Time Library

convolve

convolution

Synopsis

#include <filter.h>

void convolve (vin1, vlen1, vin2, vlen2, vout)

const float vin1[]; /* Pointer to input sequence 1 */

int vlen1; /* Length of the input sequence 1 */

const float vin2[]; /* Pointer to input sequence 2 */

int vlen2; /* Length of the input sequence 2 */

float vout[]; /* Pointer to output sequence */

Description

This function convolves two sequences pointed to by vin1 and vin2. If
vin1 points to the sequence whose length is vlen1 and vin2 points to the
sequence whose length is vlen2, the resulting sequence pointed to by vout
has the length vlen1 + vlen2 - 1.

The sequence pointed to by vin1 must be aligned on a quad-word
boundary.

Algorithm

Convolution between two sequences cin1 and cin2 is described as:

 for n = {0,1,2,...,vlen-1)

Domain

–3.4 x 1038 to +3.4 x 1038

cout n cin n k cin vlen k
k

k vlen

() () ()= + • − −
=

= −

∑ 1 2 2 1
0

2 1

Run-Time Library Reference

3-126 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

conv2d

2-D convolution

Synopsis

#include <filter.h>

void conv2d (min1, mrow1, mcol1, min2, mrow2, mcol2, mout)

const float *min1; /* Pointer to input matrix 1 */

int mrow1; /* Number of rows in matrix 1 */

int mcol1; /* Number of columns in matrix 1 */

const float *min2; /* Pointer to input matrix 2 */

int mrow2; /* Number of rows in matrix 1 */

int mcol2; /* Number of columns in matrix 2 */

int *mout; /* Pointer to matrix */

Description

This function computes the two-dimensional convolution of input matrix
min1 of size mrow1 x mcol1 and min2 of size mrow2 x mcol2 and stores the
result in matrix mout of dimension (mrow1 +mrow2-1) x (mcol1 + mcol2-1).

Algorithm

Two-dimensional input matrix min1 is convolved with input matrix min2,
placing the result in a matrix pointed to by mout.

for r=0 to nr-k+1 and for c=0 to nc-k+1

Domain

–3.4 x 1038 to +3.4 x 1038

mout r c k i k j r i c j
j

k

i

k

(,) min [][] min [][]= − − − − • + +
=

−

=

−

∑∑ 2 1 1 1
0

1

0

1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-127
for TigerSHARC Processors

C/C++ Run-Time Library

copysign

copy the sign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2);

double copysign (double parm1, double parm2);

long double copysignd (long double parm1, long double parm2);

Description

These functions copy the sign of the second argument to the first
argument.

Algorithm

return (|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used

Run-Time Library Reference

3-128 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cos

cosine

Synopsis

#include <math.h>

float cosf (float x);

double cos (double x);

long double cosd (long double x);

Description

These functions calculate the cosine of number x where x is measured in
radians. The output is in the range [-1 to 1]. If x is outside of the domain,
the functions return 0.0.

Algorithm

return = cos(x)

Domain

x = [–1,647,095 ... 1,647,095] for cosf()

x = [–843,314,850 ... 843,314,850] for cosd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-129
for TigerSHARC Processors

C/C++ Run-Time Library

cosh

hyperbolic cosine

Synopsis

#include <math.h>

float coshf (float x);

double cosh (double x);

long double coshd (long double x);

Description

These functions calculate the hyperbolic cosine of a number x where x is
measured in radians. If x is outside the domain, the functions return
3.4 x 1038 for a float-type return value and 1.7 x 10308 for a double-type
return value.

Algorithm

return = cosh(x)

Domain

x = [–(ln(3.4 x 1038 - ln(2)) ... (ln(3.4 x 1038) - ln(2))] for coshf()

x = [–(ln(1.7 x 10308) - ln(2)) ... (ln(1.7 x 10308) - ln(2))] for coshd()

Run-Time Library Reference

3-130 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cot

cotangent

Synopsis

#include <math.h>

float cotf (float x);

double cot (double x);

long double cotd (long double x);

Description

These functions calculate the cotangent of number x where x is measured
in radians. If x is outside of the domain, the functions return 0.0.

Algorithm

return = cot(x)

Domain

x = [–6,588,397 ... 6,588,397] for cotf()

x = [–421,657,424 ... 421,657,424] for cotd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-131
for TigerSHARC Processors

C/C++ Run-Time Library

count_ones

count one bits in word

Synopsis

#include <stdlib.h>

int count_ones (int parm);

int lcount_ones (long parm);

int llcount_ones (long long parm);

Description

These functions count the number of one bits in the argument parm.

Algorithm

where N is the number of bits in parm.

of parm∑
−=

=

=
1

0
][

Nj

j
jbitreturn

Run-Time Library Reference

3-132 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

crosscoh

cross-coherence

Synopsis

#include <stats.h>

void crosscohf (a,b,n,m,c)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

int n; /* Number of input samples */

int m; /* Lag count */

float c[]; /* Output vector c */

Description

This function computes the cross-coherence of the input elements con-
tained within input vector a and input vector b and stores the result in the
output vector c.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

where k={0,1,...,m-1}, a is the mean value of input vector a and is b the
mean value of input vector b.

Domain

–3.4 x 1038 to +3.4 x 1038

))(*)((*1 1

0
∑

−−

=
+ −−=

kn

j
kjjk abaa

n
c

VisualDSP++ 5.0 C/C++ Compiler Manual 3-133
for TigerSHARC Processors

C/C++ Run-Time Library

crosscorr

cross-correlation

Synopsis

#include <stats.h>

void crosscorrf (a,b,n,m,c)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

int n; /* Number of input samples */

int m; /* Lag count */

float c[]; /* Pointer to output vector c */

Description

This function computes the cross-correlation of the input elements con-
tained within input vector a and input vector b and places the result in the
output vector c.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

where k={0,1,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c
n

a bk j j k
j

n k

= +
=

− −

∑1
0

1

* (*)

Run-Time Library Reference

3-134 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

csub

complex subtraction

Synopsis

#include <complex.h>

complex_float csubf (a,b)

complex_float a; /* Complex input a */

complex_float b; /* Complex input b */

Description

This function computes the complex subtraction of two complex inputs a
and b and returns the result.

Algorithm

Re(c) = Re(a) - Re(b)

Im(c) = Im(a) - Im(b)

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-135
for TigerSHARC Processors

C/C++ Run-Time Library

ctime

convert calendar time into a string

Synopsis

#include <time.h>

char *ctime (const time_t *t);

Description

The ctime function converts a calendar time, pointed to by the argument
t into a string that represents the local date and time. The form of the
string is the same as that generated by asctime, and so a call to ctime is
equivalent to

asctime(localtime(&t))

A pointer to the string is returned by ctime, and it may be overwritten by
a subsequent call to the function.

Error Conditions

The ctime function does not return an error condition.

Example

#include <time.h>

#include <stdio.h>

time_t cal_time;

if (cal_time != (time_t)-1)

printf("Date and Time is %s",ctime(&cal_time));

See Also

asctime, gmtime, localtime, time

Run-Time Library Reference

3-136 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cvecdot

complex vector dot product

Synopsis

#include <vector.h>

complex_float cvecdotf (a,b,n)

const complex_float a[]; /* Input vector a */

const complex_float b[]; /* Input vector b */

int n; /* Element count */

Description

This function computes the complex dot product of two complex input
vectors a and b and returns the complex result.

The input vectors a and b must be aligned on quad-word boundaries.

Algorithm

The algorithm for a complex dot product is given by:

Domain

–3.4 x 1038 to +3.4 x 1038

∑

∑
−

=

−

=

+=

−=

1

0

1

0

)Re(*)Im()Im(*)Re()Im(

)Im(*)Im()Re(*)Re()Re(

n

l
iiiii

n

l
iiiii

babac

babac

VisualDSP++ 5.0 C/C++ Compiler Manual 3-137
for TigerSHARC Processors

C/C++ Run-Time Library

cvecsadd

complex vector + scalar addition

Synopsis

#include <vector.h>

void cvecsaddf (a,b,c,n)

const complex_float a[]; /* Input vector a */

complex_float b; /* Input scalar b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function adds input complex scalar b to each element of input com-
plex vector a and stores the results in the output complex vector c.

The input vector a and output vector c must be aligned on quad-word
boundaries.

Algorithm

Re(ci) = Re(ai) + Re(b)

Im(ci) = Im(ai) + Im(b)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-138 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cvecsmlt

complex vector * scalar multiplication

Synopsis

#include <vector.h>

void cvecsmltf (a,b,c,n)

const complex_float a[]; /* Input vector a */

complex_float b; /* Input scalar b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function multiplies each element of input complex vector a by input
complex scalar b and stores the results in the output complex vector c.

The input vector a and output vector c must be aligned on a dual-word
boundaries.

Algorithm

Re(ci) = Re(ai)*Re(b) – Im(ai)*Im(b)

Im(ci) = Re(ai)*Im(b) + Im(ai)*Re(b)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-139
for TigerSHARC Processors

C/C++ Run-Time Library

cvecssub

complex vector - scalar subtraction

Synopsis

#include <vector.h>

void cvecssubf (a,b,c,n)

const complex_float a[]; /* Input vector a */

complex_float b; /* Input scalar b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function subtracts input complex scalar b from each element of input
complex vector a and stores the results in the output complex vector c.

The input vector a must reside on a quad-word boundary while the output
vector c must be aligned on dual-word boundary.

Algorithm

Re(ci) = Re(ai) – Re(b)

Im(ci) = Im(ai) – Im(b)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-140 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cvecvadd

complex vector + vector addition

Synopsis

#include <vector.h>

void cvecvaddf (a,b,c,n)

const complex_float a[]; /* Input vector a */

const complex_float b[]; /* Input vector b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function adds two input vectors and stores the results in the output
vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

Re(ci) = Re(ai) + Re(bi)

Im(ci) = Im(ai) + Im(bi)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-141
for TigerSHARC Processors

C/C++ Run-Time Library

cvecvmlt

complex vector * vector multiplication

Synopsis

#include <vector.h>

void cvecvmltf (a,b,c,n)

const complex_float a[]; /* Input vector a */

const complex_float b[]; /* Input vector b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function multiplies two input vectors a and b and stores the results in
the output vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

Re(ci) = Re(ai)*Re(bi) – Im(ai)*Im(bi)

Im(ci) = Re(ai)*Im(bi) + Im(ai)*Re(bi)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-142 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

cvecvsub

complex vector-to-vector subtraction

Synopsis

#include <vector.h>

void cvecvsubf (a,b,c,n)

const complex_float a[]; /* Input vector a */

const complex_float b[]; /* Input vector b */

complex_float c[]; /* Output vector */

int n; /* Element count */

Description

This function subtracts input vector b from input vector a and stores the
results in the output vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

Re(ci) = Re(ai) – Re(bi)

Im(ci) = Im(ai) – Im(bi)

where i={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-143
for TigerSHARC Processors

C/C++ Run-Time Library

difftime

difference between two calendar times

Synopsis

#include <time.h>
double difftime (time_t t1, time_t t0);

Description

The difftime function returns the difference in seconds between two cal-
endar times, expressed as a double. By default, the double data type
represents a 32-bit, single precision, floating-point, value. This form is
normally insufficient to preserve all of the bits associated with the differ-
ence between two calendar times, particularly if the difference represents
more than 97 days. It is recommended therefore that any function that
calls difftime is compiled with the -double-size-64 switch.

Error Conditions

The difftime function does not return an error condition.

Example

#include <time.h>
#include <stdio.h>
#define NA ((time_t)(-1))

time_t cal_time1;
time_t cal_time2;
double time_diff;

if ((cal_time1 == NA) || (cal_time2 == NA))
printf("calendar time difference is not available\n");

else
time_diff = difftime(cal_time2,cal_time1);

See Also

time

Run-Time Library Reference

3-144 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

div

division

Synopsis

#include <stdlib.h>

div_t div (int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as

typedef struct {

int quot;

int rem;

} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t,

result.quot * denom + result.rem == numer

Algorithm

Remainder = numer - (Quotient x denom)

Domain

numerator: –2,147,483,648 to 2,147,483,647
denominator: –2,147,483,648 to –1 and 1 to 2,147,483,647

Quotient numer()
denom

------------------------ xsignof numer()
denom

---------------------⎝ ⎠
⎛ ⎞=

VisualDSP++ 5.0 C/C++ Compiler Manual 3-145
for TigerSHARC Processors

C/C++ Run-Time Library

exp

exponential

Synopsis

#include <math.h>

float expf (float x);

double exp (double x);

long double expd (long double x);

Description

The exp functions compute the exponential value e to the power of its
argument.

The value HUGE_VAL is returned if the argument x is greater than the func-
tion’s domain. For input values less than the domain, the functions return
0.0.

Algorithm

return = e(x)

Domain

x = [–87.33 , 88.72] for expf()

x = [–708.39 , 709.78] for expd()

Run-Time Library Reference

3-146 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

__emuclk

Get simulator cycle count

Synopsis

#include <libsim.h>

int __emuclk (void);

Description

This function returns the current value of the simulator cycle count. Note
that the function name has two leading underscores.

The facilities defined in the libsim.h header file are included in
the libsim.dlb run-time library, which is supported only under
the Analog Devices simulator. The default .ldf file will add the
library to the list of libraries to be searched by the linker but only if
the -flags-link –MD__USING_LIBSIM=1 linker command-line
switch is specified when building an application.

The libsim.h functionality is not available in byte-addressing
mode.

Algorithm

See “Description”.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-147
for TigerSHARC Processors

C/C++ Run-Time Library

fabs

float absolute value

Synopsis

#include <math.h>

double fabs (double f);

float fabsf (float f);

long double fabsd (long double f);

Description

The fabs functions return the absolute value of their argument.

The fabsf function is a built-in function which is implemented with a ABS
instruction; the fabs function is compiled as a built-in function if double
is the same size as float.

Algorithm

return |x|

Example

#include <math.h>

double y;

y = fabs(-2.3); /* y = 2.3 */

y = fabs(2.3); /* y = 2.3 */

See Also

abs

Run-Time Library Reference

3-148 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

favg

mean of two values

Synopsis

#include <math.h>

float favgf (float a, float b);

double favg (double a, double b);

long double favgd (long double a, long double b);

Description

The favg functions add the two arguments and divide the result by two.

The favgf function is a built-in function that causes the compiler to emit
an inline instruction to perform the required operation at the point the
function is called; the favg function is compiled as a built-in function if
double is the same size as float.

Algorithm

(a + b) / 2

Domain

Full range.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-149
for TigerSHARC Processors

C/C++ Run-Time Library

fclip

clip x by y

Synopsis

#include <math.h>

float fclipf (float parm1, float parm2);

double fclip (double parm1, double parm2);

long double fclipd (long double parm1, long double parm2);

Description

The fclip functions return their first argument if it is less than the absolute
value of the second argument; otherwise, they return the absolute value of
the second argument if the first is positive, or minus the absolute value if
the first argument is negative.

The fclipf function is a built-in function which is implemented with a
CLIP instruction; the fclip function is compiled as a built-in function if
double is the same size as float.

Algorithm

if (|parm1| < |parm2|)

return (parm1)

else

return (|parm2| * signof(parm1))

Domain

Full range.

Run-Time Library Reference

3-150 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fclose

close a stream

Synopsis

#include <stdio.h>

int fclose(FILE *stream);

Description

The fclose function flushes stream and closes the associated file. The
flush will result in any unwritten buffered data for the stream to be writ-
ten to the file, with any unread buffered data being discarded.

If the buffer associated with stream was allocated automatically, it will be
deallocated.

The fclose function will return zero on successful completion.

Error Conditions

If the fclose function is unsuccessful, it returns EOF.

Example

#include <stdio.h>

void example(char* fname)

{

FILE *fp;

fp = fopen(fname, "w+");

/* Do some operations on the file */

fclose(fp);

}

See Also

fopen

VisualDSP++ 5.0 C/C++ Compiler Manual 3-151
for TigerSHARC Processors

C/C++ Run-Time Library

feof

test for end of file

Synopsis

#include <stdio.h>

int feof(FILE *stream);

Description

The feof function tests whether or not the file identified by stream has
reached the end of the file. The routine returns 0 if the end of the file has
not been reached and a non-zero result of the end of file has been reached.

Error Conditions

The feof function does not return any error condition.

Example

#include <stdio.h>

void print_char_from_file(FILE *fp)

{

/* printf out each character from a file until EOF */

while (!feof(fp))

printf("%c", fgetc(fp));

printf("\n");

}

See Also

clearerr

Run-Time Library Reference

3-152 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

ferror

test for read or write errors

Synopsis

#include <stdio.h>

int ferror(FILE *stream);

Description

The ferror function tests whether an uncleared error has occurred while
accessing stream. If there are no errors, then the function will return zero,
otherwise it will return a non-zero value.

The ferror function does not examine whether the file identified
by stream has reached the end of the file.

Error Conditions

The ferror function does not return any error condition.

Example

#include <stdio.h>

void test_for_error(FILE *fp)

{

if (ferror(fp))

printf("Error with read/write to stream\n");

else

printf("read/write to stream OKAY\n");

}

See Also

clearerr, feof

VisualDSP++ 5.0 C/C++ Compiler Manual 3-153
for TigerSHARC Processors

C/C++ Run-Time Library

fflush

flush a stream

Synopsis

#include <stdio.h>

int fflush(FILE *stream);

Description

The fflush function causes any unwritten data for stream to be written to
the file. If stream is a NULL pointer, fflush performs this flushing action
on all streams.

Upon successful completion, the fflush function returns zero.

Error Conditions

If fflush is unsuccessful, the EOF value is returned.

Example

#include <stdio.h>

void flush_all_streams(void)

{

fflush(NULL);

}

See Also

fclose

Run-Time Library Reference

3-154 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fgetc

 get a character from a stream

Synopsis

#include <stdio.h>

int fgetc(FILE *stream);

Description

The fgetc function obtains the next character from the input stream
pointed to by stream, converts it from an unsigned char to an int, and
advances the file position indicator for the stream.

Upon successful completion the fgetc function will return the next byte
from the input stream pointed to by stream.

Error Conditions

If the fgetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>
char use_fgetc(FILE *fp)
{

char ch;
if ((ch = fgetc(fp)) == EOF) {

printf("Read End-of-file\n")
return 0;

} else {
return ch;

}
}

See Also

getc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-155
for TigerSHARC Processors

C/C++ Run-Time Library

fgetpos

 record current position in a stream

Synopsis

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description

The fgetpos function stores the current value of the file position indicator
for the stream pointed to by stream in the file position type object pointed
to by pos. The information generated by fgetpos in pos can be used with
the fsetpos function to return the file to this position.

Upon successful completion, the fgetpos function will return a value of
zero.

Error Conditions

If fgetpos is unsuccessful, the function will return a non-zero value.

Example

#include <stdio.h>
void aroutine(FILE *fp, char *buffer)
{

fpos_t pos;
/* get the current file position */
if (fgetpos(fp, &pos)!= 0) {

printf("fgetpos failed\n");
return;

}
/* write the buffer to the file */
(void) fprintf(fp, "%s\n", buffer);
/* reset the file position to the value before the write */
if (fsetpos(fp, &pos) != 0) {

Run-Time Library Reference

3-156 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

printf("fsetpos failed\n");
}

}

See Also

fsetpos, ftell, fseek, rewind

VisualDSP++ 5.0 C/C++ Compiler Manual 3-157
for TigerSHARC Processors

C/C++ Run-Time Library

fgets

 get a string from a stream

Synopsis

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description

The fgets function reads characters from stream into the array pointed to
by s. The function will read a maximum of one less character than the
value specified by n, although the get will also end if either a NEWLINE char-
acter or the end-of-file marker are read. The array s will have a NUL
character written at the end of the string that has been read.

Upon successful completion, the fgets function will return s.

Error Conditions

If fgets is unsuccessful, the function will return a NULL pointer.

Example

#include <stdio.h>
char buffer[20];
void read_into_buffer(FILE *fp)
{

char *str;

str = fgets(buffer, sizeof(buffer), fp);
if (str == NULL) {

printf("Either read failed or EOF encountered\n");
} else {

printf("filled buffer with %s\n", str);
}

}

See Also
fgetc, getc, gets

Run-Time Library Reference

3-158 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fir

finite impulse response filter

Synopsis

#include <filter.h>
void fir (x,y,n,s)
const float x[]; /* Input sample vector x */
float y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state *s; /* Pointer to filter state structure */

The FIR filter function uses the following structure to maintain the state
of the filter:

typedef struct
{

float *h; /* Filter coefficients */
float *d; /* Start of delay line */
float *p; /* Read/Write pointer */
int k; /* Number of coefficients */
int l; /* Interpolation/decimation index */

} fir_state;

Description

The fir function implements a finite impulse response (FIR) filter. The
function generates the filtered response of the input data x and stores the
result in the output vector y. The number of input samples and the length
of the output vector is specified by the argument n.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:

#define fir_init(state, coeffs, delay, ncoeffs. index) \

(state).h = (coeffs); \

VisualDSP++ 5.0 C/C++ Compiler Manual 3-159
for TigerSHARC Processors

C/C++ Run-Time Library

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients.

Each filter should have its own delay line which is a vector of type float
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

The structure member s->l is not used by fir. This field is normally set
to an interpolation/decimation index before calling either the fir_interp
or fir_decima functions.

The fir function assumes that the input data and the vector containing
the filter coefficients are aligned on a quad-word boundary, and that the
coefficients are stored in reverse order, thus s->h[0] contains the last coef-
ficient. For optimal performance, the delay line and the output buffer
should not be in the same memory block as the filter coefficients.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

1,...1,0for)(*)()(
1

0
−=−= ∑

−

=

nkikxihky
p

i

Run-Time Library Reference

3-160 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fir_decima

FIR decimation filter

Synopsis

#include <filter.h>
void fir_decima (x,y,ng,s)
const float x[]; /* Input sample vector x */
float y[]; /* Output sample vector y */
int ng; /* Number of samples to generate */
fir_state *s; /* Pointer to filter state structure */

The FIR filter function uses the following structure to maintain the state
of the filter:

typedef struct
{

float *h; /* Filter coefficients */
float *d; /* Start of delay line */
float *p; /* Read/Write pointer */
int k; /* Number of coefficients */
int l; /* Interpolation/decimation index */

} fir_state;

Description

The fir_decima function performs an FIR-based decimation filter. It gen-
erates the filtered decimated response of the input data x and stores the
result in the output vector y. The size of the output vector is specified by
the argument ng, and the number of input samples should be ng*l, where
l is the decimation index.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
FIR_INIT, in the filter.h header file, is available to initialize the structure
and is defined as:

VisualDSP++ 5.0 C/C++ Compiler Manual 3-161
for TigerSHARC Processors

C/C++ Run-Time Library

#define fir_init(state, coeffs, delay, ncoeffs, index) \
(state).h = (coeffs); \
(state).d = (delay); \
(state).p = (delay); \
(state).k = (ncoeffs); \
(state).l = (index)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in s->h,
and s->k should be set to the number of coefficients. The function
assumes that the coefficients are stored in the normal order, thus
filter_state->h[0] contains the first filter coefficient and
filter_state->h[k-1] contains the last coefficient.The decimation index
is supplied to the function in s->l.

Each filter should have its own delay line which is a vector of type float
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

The fir_decima function requires that the filter coefficients are aligned on
a quad-word boundary, and that the coefficients are stored in reverse
order, thus s->h[0] contains the last coefficient.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

y k x k l i h i
i

p

() (*) * ()= −
=

−

∑
0

1

Run-Time Library Reference

3-162 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>

void fir_interp (x,y,n,s)

const float x[]; /* Input sample vector x */

float y[]; /* Output sample vector y */

int n; /* Number of input samples */

fir_state *s; /* Pointer to filter state structure */

The FIR filter function uses the following structure to maintain the state
of the filter:

typedef struct

{

float *h; /* Filter coefficients */

float *d; /* Start of delay line */

float *p; /* Read/Write pointer */

int k; /* Coefficients per polyphase */

int l; /* Interpolation factor */

} fir_state;

Description

The fir_interp function performs a polyphase interpolation filter. It gen-
erates the interpolated filtered response of the input data x and stores the
result in the output vector y. The number of input samples is specified by
the argument n, and the size of the output vector should be n*l, where l is
the interpolation index.

The filter characteristics are dependent upon the number of filter coeffi-
cients and their values, and on the interpolation factor supplied by the
calling program. Each set of polyphase filter coefficients should be stored
continually in reverse order. Therefore, if the filter coefficients have been

VisualDSP++ 5.0 C/C++ Compiler Manual 3-163
for TigerSHARC Processors

C/C++ Run-Time Library

generated in normal order by a filter design tool, they have to be
re-ordered before they are passed to the filter, as illustrated by the follow-
ing formula:

filter_coeffs [(nc * nphases) - np]

where:

nc = {1, 2, ..., ncoeffs}

np = {1, 2, ..., nphases}

ncoeffs represents the number of coefficients per polyphase filter

nphases represents the number of polyphase filters and is set to the
interpolation factor

For example, if the number of polyphase filters is 4 and the total number
of coefficients is 12, then the coefficients should be ordered as shown
below:

filter_coeffs[nphases-1],

filter_coeffs[(2*nphases)-1],

filter_coeffs[(3*nphases)-1],

...

filter_coeffs[nphases-4],

filter_coeffs[(2*nphases)-4],

filter_coeffs[(3*nphases)-4].

The fir_interp function assumes that the filter coefficients are aligned on
a quad-word boundary.

A pointer to the coefficients is passed into the fir_interp function via the
argument s, which is a structured variable that represents the filter state.
This structured variable must be declared and initialized before calling the
function. The filter.h header file contains the macro fir_init that can
be used to initialize the variable and is defined as:

Run-Time Library Reference

3-164 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs); \

(state).l = (index)

The interpolation factor is supplied to the function in s->l. A pointer to
the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients per polyphase filter.

Each filter should have its own delay line which is a vector of type float
and whose length is equal to the number of coefficients. The vector should
be cleared to zero before calling the function for the first time and should
not otherwise be modified by the user program. The structure member
s->d should be set to the start of the delay line, and the function uses
s->p, the read/write pointer, to keep track of its current position within
the vector.

The output returned by the function is multiplied by the number of
polyphase filters. Therefore, each element of the output vector has to be
scaled accordingly. This is demonstrated in the Example below.

Algorithm

 where m={0,1,2,...,l}

Domain

–3.4 x 1038 to +3.4 x 1038

y k x k i h i l mm
i

p l

() () * (*)
/

= − +
=

−

∑
0

1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-165
for TigerSHARC Processors

C/C++ Run-Time Library

Example

#include <filter.h>

#define INTERP_FACTOR 2
#define NCOEFFS 24
#define NSAMPLES 128
#define NPOLY INTERP_FACTOR

/* Coefficients in normal order */

float filter_coeffs[NCOEFFS];

/* Coefficients in implementation order */

#pragma align 4
float coeffs[NCOEFFS];

/* Input, Output, Delay Line, and Filter State */

float input[NSAMPLES], output[INTERP_FACTOR*NSAMPLES];
float delay[NCOEFFS];

fir_state state;

/* Utility Variables */

int scale;
int i,nc,np;

/* Transform the normal order coefficients from a filter design
tool into coefficients for the fir_interp function */

for (np = 1, i = 0; np <= NPOLY; np++)
for (nc = 1; nc <= (NCOEFFS/NPOLY); nc++)

coeffs[i++] = filter_coeffs[(nc * NPOLY) – np];

/* Initialize the delay line */

for (i = 0; i < NCOEFFS; i++)

Run-Time Library Reference

3-166 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

delay[i] = 0;

/* Initialize the filter state */

fir_init (state, coeffs, delay, (NCOEFFS/NPOLY), INTERP_FACTOR);

/* Call the fir_interp function */

fir_interp (input, output, NSAMPLES, &state);

/* Adjust output */

scale = NPOLY;
for (i = 0; i < (INTERP_FACTOR*NSAMPLES); i++)

output[i] = output[i] / scale;

VisualDSP++ 5.0 C/C++ Compiler Manual 3-167
for TigerSHARC Processors

C/C++ Run-Time Library

floor

floor

Synopsis

#include <math.h>

float floorf (float x)

double floor (double x)

long double floord (long double x)

Description

The floor functions return the largest integral value that is not greater
than their argument.

Algorithm

return = largest int < x

Domain

x = [–3.4 x 1038 ... 3.4 x 1038] for floorf()

x = [–1.7 x 10308 ... 1.7 x 10308] for floord()

Run-Time Library Reference

3-168 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fmax

maximum

Synopsis

#include <math.h>

float fmaxf (float parm1, float parm2);

double fmax (double parm1, double parm2);

long double fmaxd (long double parm1, long double parm2);

Description

The fmax functions return the larger of their two arguments.

The fmaxf function is a built-in function which is implemented with a MAX
instruction. The fmax function is compiled as a built-in function if double
is the same size as float.

Algorithm

if (parm1 > parm2)

return (parm1)

else

return (parm2)

Domain

Full range.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-169
for TigerSHARC Processors

C/C++ Run-Time Library

fmin

minimum

Synopsis

#include <math.h>

float fminf (float parm1, float parm2);

double fmin (double parm1, double parm2);

long double fmind (long double parm1, long double parm2);

Description

The fmin functions return the smaller of their two arguments.

The fminf function is a built-in function which is implemented with a MIN
instruction. The fmin function is compiled as a built-in function if double
is the same size as float.

Algorithm

if (parm1 < parm2)

return (parm1)

else

return (parm2)

Domain

Full range.

Run-Time Library Reference

3-170 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fmod

floating-point modulus

Synopsis

#include <math.h>

float fmodf (float x, float y)

double fmod (double x, double y)

long double fmodd (long double x, long double y)

Description

The fmod function computes the floating-point remainder that results
from dividing the first argument into the second argument. This value is
less than the second argument and has the same sign as the first argument.
If the second argument is equal to zero, fmod returns a zero.

Algorithm

Domain

x = [–3.4 x 1038 ... 3.4 x 1038] for fmodf()

x = [–1.7 x 10308 ... 1.7 x 10308] for fmodd()

NOT y = 0

return x
y

floor x
y

sign x= −
⎛

⎝
⎜

⎞

⎠
⎟ ⋅ ()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-171
for TigerSHARC Processors

C/C++ Run-Time Library

fopen

 open a file

Synopsis

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Description

The fopen function initializes the data structures that are required for
reading or writing to a file. The file’s name is identified by filename, with
the access type required specified by the string mode.

Valid selections for mode are specified below. If any other mode specifica-
tion is selected then the behavior is undefined.

Table 3-25. Valid Selections for Mode

mode Selection

r Opens text file for reading. This operation fails if the file has not previ-
ously been created.

w Opens text file for writing. If the filename already exists, it will be trun-
cated to zero length with the write starting at the beginning of the file.
If the file does not already exist, it is created.

a Opens a text file for appending data. All data is written to the end of
the specified file.

r+ Same as r, except file can also be written to.

w+ Same as w, except the file can also be read from.

a+ Same as a, except file can also be read from any position within the file.
Data is only written to the end of the file.

rb Same as r, except file is opened in binary mode.

wb Same as w, except file is opened in binary mode.

ab Same as a, except file is opened in binary mode.

Run-Time Library Reference

3-172 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

If the call to the fopen function is successful, a pointer to the object con-
trolling the stream is returned.

Error Conditions

If the fopen function is unsuccessful, a NULL pointer is returned.

Example

#include <stdio.h>

FILE *open_output_file(void)

{

/* Open file for writing as binary */

FILE *handle = fopen("output.dat", "wb");

return handle;

}

See Also

fclose, fflush, freopen

r+b/rb+ Opens file in binary mode for both reading and writing.

w+b/wb+ Creates or truncates to zero length a file for both reading and writing.

a+b/ab+ Same as a+, except file is opened in binary mode.

Table 3-25. Valid Selections for Mode (Cont’d)

mode Selection

VisualDSP++ 5.0 C/C++ Compiler Manual 3-173
for TigerSHARC Processors

C/C++ Run-Time Library

fprintf

print formatted output

Synopsis

#include <stdio.h>

int fprintf(FILE *stream, const char *format, /*args*/ ...);

Description

The fprintf function places output on the named output stream. The
string pointed to by format specifies how the arguments are converted for
output.

The format string can contain zero or more conversion specifications, each
beginning with the % character. The conversion specification itself follows
the % character and consists of one or more of the following sequences:

• Flag – optional characters that modifies the meaning of the
conversion.

• Width – optional numeric value (or *) that specifies the minimum
field width.

• Precision – optional numeric value that gives the minimum num-
ber of digits to appear.

• Length – optional modifier that specifies the size of the argument.

• Type – character that specifies the type of conversion to be applied.

The flag characters can be in any order and are optional. The valid flags
are described in Table 3-26.

Run-Time Library Reference

3-174 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The minimum field width is an optional value, specified as a decimal
number. If a field width is specified then the converted value is padded
with spaces to the specified width if the result contains fewer characters
than width. If the width field value begins with 0 then zeros are used to
pad the field rather than spaces. A * in the width indicates that the width
is specified by an integer value preceding the argument that has to be
formatted.

The optional precision value always begins with a period (.) and is fol-
lowed either by an asterisk (*) or by a decimal integer. An asterisk (*)
indicates that the precision is specified by an integer argument preceding
the argument to be formatted. If only a period is specified, a precision of
zero will be assumed. The precision value has differing effects depending
on the conversion specifier being used:

• For A, a specifies the number of digits after the decimal point. If
the precision is zero and the # flag is not specified no decimal point
will be generated.

Table 3-26. Valid Flags for fprintf

Flag Field

- Left justify the result within the field. The result is right-justified by
default.

+ Always begin a signed conversion with a plus or minus sign. By default
only negative values will start with a sign.

space Prefix a space to the result if the first character is not a sign and the +
flag has not also been specified.

The result is converted to an alternative form depending on the type of
conversion:

 o : If the value is not zero it is preceded with 0.
 x : If the value is not zero it is preceded with 0x.
 X : If the value is not zero it is preceded with 0X.
 a A e E f F: Always generate a decimal point.
 g G : as E except trailing zeros are not removed.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-175
for TigerSHARC Processors

C/C++ Run-Time Library

• For d,i,o,u,x,X specifies the minimum number of digits to
appear, defaulting to 1. No characters will be generated when the
value to be output and also the precision is zero.

• For f,F,E,e specifies the number of digits after the decimal point
character, the default being 6. If the # specifier is present with a
zero precision then no decimal point will be generated.

• For g, G specifies the maximum number of significant digits.

• For s specifies the maximum number of characters to be written.

The length modifier can optionally be used to specify the size of the argu-
ment. The length modifiers should only precede one of the d, i, o, u,
x, X or n conversion specifiers unless other conversion specifiers are
detailed (see Table 3-27).

A definition of the valid conversion specifiers that define the type of con-
version to be applied can be found in Table 3-28.

Table 3-27. Length Modifier Actions for fprintf

Length Action

h The argument should be interpreted as a short int.

l The argument should be interpreted as a long int.

ll The argument should be interpreted as a long long int.

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or
G conversion specifiers. Note that this length modifier is only valid if
-double-size-64 is selected. If -double-size-32 is selected no con-
version will occur, with the corresponding argument being consumed.

Run-Time Library Reference

3-176 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The a|A conversion specifier converts to a floating-point number with the
notational style [-]0xh.hhhh±d where there is one hexadecimal digit
before the period. The a|A conversion specifiers always contain a mini-
mum of one digit for the exponent.

The e|E conversion specifier converts to a floating-point number nota-
tional style [-]d.ddde±dd. The exponent always contains at least two
digits. The case of the e preceding the exponent will match that of the
conversion specifier.

The f|F conversion specifier converts to decimal notation [-]d.ddd±ddd.

The g|G conversion specifier converts as e|E or f|F specifiers depending on
the value being converted. If the value being converted is less than -4 or
greater than or equal to the precision then e|E conversions will be used,
otherwise f|F conversions will be used.

Table 3-28. Conversion Specifiers Characters for fprintf

Specifier Conversion

a, A floating-point number

c character

d, i signed decimal integer

e, E scientific notation (mantissa/exponent)

f, F decimal floating-point

g, G convert as e, E or f, F

n pointer to signed integer to which the number of characters written so
far will be stored with no other output

o unsigned octal

p pointer to void

s string of characters

u unsigned integer

x, X unsigned hexadecimal notation

% print a % character with no argument conversion

VisualDSP++ 5.0 C/C++ Compiler Manual 3-177
for TigerSHARC Processors

C/C++ Run-Time Library

For all of the a, A, e, E, f, F, g and G specifiers, an argument that represents
infinity is displayed as Inf. For all of the a, A, e, E, f, F, g and G specifiers,
an argument that represents a NaN result is displayed as NaN.

The fprintf function returns the number of characters printed.

Error Conditions

If the fprintf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void fprintf_example(void)
{

char *str = "hello world";
/* Output to stdout is " +1 +1." */
fprintf(stdout, "%+5.0f%+#5.0f\n", 1.234, 1.234);

/* Output to stdout is "1.234 1.234000 1.23400000" */
fprintf(stdout, "%.3f %f %.8f\n", 1.234, 1.234, 1.234);

/* Output to stdout is "justified:
left:5 right: 5" */

fprintf(stdout, "justified:\nleft:%-5dright:%5i\n", 5, 5);

/* Output to stdout is
"90% of test programs print hello world" */

fprintf(stdout, "90%% of test programs print %s\n", str);

/* Output to stdout is "0.0001 1e-05 100000 1E+06" */
fprintf(stdout, "%g %g %G %G\n", 0.0001, 0.00001, 1e5, 1e6);

}

See Also

printf, snprintf, vfprintf, vprintf, vsnprintf, vsprintf

Run-Time Library Reference

3-178 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fputc

put a character on a stream

Synopsis

#include <stdio.h>

int fputc(int ch, FILE *stream);

Description

The fputc function writes the argument ch to the output stream pointed
to by stream and advances the file position indicator. The argument ch is
converted to an unsigned char before it is written.

If the fputc function is successful, it will return the value that was written
to the stream.

Error Conditions

 If the fputc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void fputc_example(FILE* fp)

{

/* put the character 'i' to the stream pointed to by fp */

int res = fputc('i', fp);

if (res != 'i')

printf("fputc failed\n");

}

See Also

putc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-179
for TigerSHARC Processors

C/C++ Run-Time Library

fputs

put a string on a stream

Synopsis

#include <stdio.h>

int fputs(const char *string, FILE *stream);

Description

The fputs function writes the string pointed to by string to the output
stream pointed to by stream. The NULL terminating character of the string
will not be written to stream.

If the call to fputs is successful, the function will return a non-negative
value.

Error Conditions

The fputs function will return EOF if a write error occurred.

Example

#include <stdio.h>

void fputs_example(FILE* fp)

{

/* put the string "example" to the stream pointed to by fp */

char *example = "example";

int res = fputs(example, fp);

if (res == EOF)

printf("fputs failed\n");

}

See Also

puts

Run-Time Library Reference

3-180 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

fread

buffered input

Synopsis

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

Description

The fread function reads into an array pointed to by ptr up to a maxi-
mum of n items of data from stream, where an item of data is a sequence
of bytes of length size. It stops reading bytes if an EOF or error condition
is encountered while reading from stream, or if n items have been read. It
advances the data pointer in stream by the number of bytes read. It does
not change the contents of stream.

The fread function returns the number of items read. This may be less
than n if there is insufficient data on the external device to satisfy the read
request. If size or n is zero, then fread will return zero and does not affect
the state of stream.

When the stream has been opened as a binary stream, the Analog Devices
I/O library may choose to bypass the I/O buffer and transmit data from an
external device directly into the program, particularly when the buffer size
(as defined by the macro BUFSIZ in the stdio.h header file, or controlled
by the function setvbuf) is smaller than the number of characters to be
transferred.

Normally, binary streams are a bit-exact mirror image of the processor’s
memory such that data that is written out to a binary stream can be later
read back unmodified. The size of a binary file on TigerSHARC architec-
ture is therefore normally a multiple of 32-bit words when
word-addressing mode is enabled. When word addressing mode is enabled

VisualDSP++ 5.0 C/C++ Compiler Manual 3-181
for TigerSHARC Processors

C/C++ Run-Time Library

and the size of a file is not a multiple of four, fread will behave as if the
file was padded out by a sufficient number of trailing null characters to
bring the size of the file up to the next multiple of 32-bit words.

Error Conditions

 If an error occurs, fread will return zero and set the error indicator for
stream.

Example

#include <stdio.h>

int buffer[100];

int fill_buffer(FILE *fp)

{

int read_items;

/* Read from file pointer fp into array buffer */

read_items = fread(&buffer, sizeof(int), 100, fp);

if (read_items < 100) {

if (ferror(fp))

printf("fill_buffer failed with an I/O error\n");

else if (feof(fp))

printf("fill_buffer failed with EOF\n");

else

printf("fill_buffer only read %d items\n",read_items);

}

return read_items;

}

See Also

ferror, fgetc, fgets, fscanf

Run-Time Library Reference

3-182 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

freopen

open a file using an existing file descriptor

Synopsis

#include <stdio.h>

FILE *freopen(const char *fname, const char *mode, FILE *stream);

Description

The freopen function opens the file specified by fname and associates it
with the stream pointed to by stream. The mode argument has the same
effect as described in fopen (See “fopen” on page 3-171 for more informa-
tion on the mode argument).

Before opening the new file, the freopen function will first attempt to
flush the stream and close any file descriptor associated with stream. Fail-
ure to flush or close the file successfully is ignored. Both the error and EOF
indicators for stream are cleared.

The original stream will always be closed regardless of whether the open-
ing of the new file is successful or not.

Upon successful completion, the freopen function returns the value of
stream.

Error Conditions

If freopen is unsuccessful, a NULL pointer is returned.

Example

#include <stdio.h>

void freopen_example(FILE* fp)

{

FILE *result;

VisualDSP++ 5.0 C/C++ Compiler Manual 3-183
for TigerSHARC Processors

C/C++ Run-Time Library

char *newname = "newname";

/* reopen existing file pointer for reading file "newname" */

result = freopen(newname, "r", fp);

if (result == fp)

printf("%s reopened for reading\n", newname);

else

printf("freopen not successful\n");

}

See Also

fclose, fopen

Run-Time Library Reference

3-184 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

frexp

separate fraction and exponent

Synopsis

#include <math.h>

float frexpf (float x, int *n)

double frexp (double x, int *n)

long double frexpd (long double x, int *n)

Description

The frexp function separates a floating-point input into a normalized
fraction and a (base 2) exponent. The function returns the first argument
as a fraction in the interval [½, 1), and stores a power of 2 in the integer
pointed to by the second argument. If the input is zero, then the fraction
and exponent are both set to zero.

Algorithm

return = f; n passed through 2nd parameter pointer. x = f *2n

Domain

x = [–3.4 x 1038 ... 3.4 x 1038] for frexpf()

x = [–1.7 x 10308 ... 1.7 x 10308] for frexpd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-185
for TigerSHARC Processors

C/C++ Run-Time Library

fscanf

read formatted input

Synopsis

#include <stdio.h>

int fscanf(FILE *stream, const char *format, /* args */...);

Description

The fscanf function reads from the input file stream, interprets the
inputs according to format and stores the results of the conversions in its
arguments. The format is a string containing the control format for the
input with the following arguments being pointers to the locations where
the converted results are to be written to.

The string pointed to by format specifies how the input is to be parsed
and, possibly, converted. It may consist of whitespace characters, ordinary
characters (apart from the % character), and conversion specifications. A
sequence of whitespace characters causes fscanf to continue to parse the
input until either there is no more input or until it find a non-whitespace
character. If the format specification contains a sequence of ordinary char-
acters, fscanf will continue to read the next characters in the input stream
until the input data does not match the sequence of characters in the for-
mat. At this point fscanf will fail, and the differing and subsequent
characters in the input stream will not be read.

The % character in the format string introduces a conversion specification.
A conversion specification has the following form: % [*] [width]

[length] type

A conversion specification always starts with the % character. It may
optionally be followed by an asterisk (*) character which indicates that the
result of the conversion is not to be saved. In this context the asterisk char-
acter is known as the assignment-suppressing character. The optional
token width represents a non-zero decimal number and specifies the maxi-

Run-Time Library Reference

3-186 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

mum field width. fscanf will not read any more than width characters
while performing the conversion specified by type. The length token can
be used to define a length modifier.

The length modifier can be used to specify the size of the argument. The
length modifiers should only precede one of the d, e, f, g, i, o, u, x or n
conversion specifiers unless other conversion specifiers are detailed.

A definition of the valid conversion specifier characters that specify the
type of conversion to be applied can be found in the following table:

Table 3-29. Length Modifier for fscanf

Length Action

h The argument should be interpreted as a short int.

l The argument should be interpreted as a long int.

ll The argument should be interpreted as a long long int.

L The argument should be interpreted as a long double argument. This
length modifier should precede one of the a, A, e, E, f, F, g, or
G conversion specifiers.

Table 3-30. Conversion Specifier Characters for fscanf

Specifier Conversion

a A e E f F g G floating point, optionally preceded by a sign and optionally followed by
an e or E character

c single character, including whitespace

d signed decimal integer with optional sign

i signed integer with optional sign

n no input is consumed. The number of characters read so far will be
written to the corresponding argument. This specifier does not affect
the function result returned by fscanf

o unsigned octal

p pointer to void

VisualDSP++ 5.0 C/C++ Compiler Manual 3-187
for TigerSHARC Processors

C/C++ Run-Time Library

The [conversion specifier should be followed by a sequence of characters,
referred to as the scanset, with a terminating] character. It will take the
form [scanset]. The conversion specifier copies into an array that is the
corresponding argument until a character that does not match any of the
scanset is read. If the scanset begins with a ^ character, the scanning will
match against characters not defined in the scanset. If the scanset is to
include the] character, this character must immediately follow the [char-
acter or the ^ character (if specified).

Each input item is converted to a type appropriate to the conversion char-
acter, as specified in the table above. The result of the conversion is placed
into the object pointed to by the next argument that has not already been
the recipient of a conversion. If the suppression character has been speci-
fied, no data shall be placed into the object with the next conversion,
using the object to store its result.

The fscanf function returns the number of items successfully read.

Error Conditions

If the fscanf function is unsuccessful, before any conversion then EOF is
returned.

s string of characters up to a whitespace character

u unsigned decimal integer

x X hexadecimal integer with optional sign

[a non-empty sequence of characters referred to as the scanset

% a single % character with no conversion or assignment

Table 3-30. Conversion Specifier Characters for fscanf

Specifier Conversion

Run-Time Library Reference

3-188 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example

#include <stdio.h>

void fscanf_example(FILE *fp)
{

short int day, month, year;
float f1, f2, f3;
char string[20];

/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */
fscanf (fp, "%hd%*c%hd%*c%hd", &day, &month, &year);

/* Scan float values separated by "abc", for example
1.234e+6abc1.234abc235.06abc */

fscanf (fp, "%fabc%gabc%eabc", &f1, &f2, &f3);

/* For input "alphabet", string will contain "a" */
fscanf (fp, "%[aeiou]", string);

/* For input "drying", string will contain "dry" */
fscanf (fp, "%[^aeiou]", string);

}

See Also

scanf, sscanf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-189
for TigerSHARC Processors

C/C++ Run-Time Library

fseek

 reposition a file position indicator in a stream

Synopsis

#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);

Description

The fseek function sets the file position indicator for the stream pointed
to by stream. The position within the file is calculated by adding the off-
set to a position dependent on the value of whence. The valid values and
effects for whence are as follows:

Using fseek to position a text stream is valid only if either offset is zero,
or if whence is SEEK_SET and offset is a value that was previously returned
by ftell.

Positioning within a file that has been opened as a text stream is
supported only by the libraries that Analog Devices, Inc. supply if
the lines within the file are terminated by the character sequence
\r\n.

Table 3-31. Valid Values and Effects for whence Parameter

whence Effect

SEEK_SET Set the position indicator to be equal to offset bytes from the begin-
ning of stream.

SEEK_CUR Set the new position indicator to current position indicator for stream
plus offset.

SEEK_END Set the position indicator to EOF plus offset.

Run-Time Library Reference

3-190 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

A successful call to fseek will clear the EOF indicator for stream and
undoes any effects of ungetc on stream. If the stream has been opened as a
update stream, then the next I/O operation may be either a read request or
a write request.

Error Conditions

If the fseek function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

long fseek_and_ftell(FILE *fp)
{

long offset;
/* seek to 20 bytes offset from given file pointer */
if (fseek(fp, 20, SEEK_SET) != 0) {

printf("fseek failed\n");
return -1;

}
/* Now use ftell to get the offset value back */
offset = ftell(fp);
if (offset == -1)

printf("ftell failed\n");
if (offset == 20)

printf("ftell and fseek work\n");
return offset;

}

See Also

fflush, ftell, ungetc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-191
for TigerSHARC Processors

C/C++ Run-Time Library

fsetpos

 reposition a file pointer in a stream

Synopsis

#include <stdio.h>

int fsetpos(FILE *stream, const fpos_t *pos);

Description

The fsetpos function sets the file position indicator for stream, using the
value of the object pointed to by pos. The value pointed to by pos must be
a value obtained from an earlier call to fgetpos on the same stream.

Positioning within a file that has been opened as a text stream is
supported only by the libraries that Analog Devices supply if the
lines within the file are terminated by the character sequence \r\n.

A successful call to fsetpos function clears the EOF indicator for stream
and undoes any effects of ungetc on the same stream.

The fsetpos function returns zero if it is successful.

Error Conditions

If the fsetpos function is unsuccessful, the function returns a non-zero
value.

Example

Refer to “fgetpos” on page 3-155.

See Also

fgetpos, fseek, ftell, rewind, ungetc

Run-Time Library Reference

3-192 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

ftell

 obtain current file position

Synopsis

#include <stdio.h>

long int ftell(FILE *stream);

Description

The ftell function obtains the current position for a file identified by
stream.

If stream is a binary stream, the value is the number of characters from the
beginning of the file. If stream is a text stream, the information in the
position indicator is unspecified information that is usable by fseek for
determining the file position indicator at the time of the ftell call.

Positioning within a file that has been opened as a text stream is
supported only by the libraries that Analog Devices supply if the
lines within the file are terminated by the character sequence \r\n.

If successful, the ftell function returns the current value of the file posi-
tion indicator on the stream.

Error Conditions

If the ftell function is unsuccessful, a value of -1 is returned.

Example

See fseek on page 3-189 for an example.

See Also

fgetpos, fseek

VisualDSP++ 5.0 C/C++ Compiler Manual 3-193
for TigerSHARC Processors

C/C++ Run-Time Library

fwrite

buffered binary output

Synopsis

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t n,

FILE *stream);

Description

The fwrite function writes to the output stream up to n items of data
from the array pointed by ptr. An item of data is defined as a sequence of
characters of size size. The write will complete once n items of data have
been written to the stream. The file position indicator for stream is
advanced by the number of characters successfully written.

When the stream has been opened as a binary stream, the Analog Devices’
I/O library may choose to bypass the I/O buffer and transmit data from
the program directly to the external device, particularly when the buffer
size (as defined by the macro BUFSIZ in the stdio.h header file, or con-
trolled by the function setvbuf) is smaller than the number of characters
to be transferred.

If successful then the fwrite function will return the number of items
written.

Error Conditions

If the fwrite function is unsuccessful, it will return the number of ele-
ments successfully written which will be less than n.

Example

#include <stdio.h>
#include <stdlib.h>

Run-Time Library Reference

3-194 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

char* message="some text";

void write_text_to_file(void)
{

/* Open "file.txt" for writing */
FILE* fp = fopen("file.txt", "w");
int res, message_len = strlen(message);
if (!fp) {

printf("fopen was not successful\n");
return;

}
res = fwrite(message, sizeof(char), message_len, fp);
if (res != message_len)

printf("fwrite was not successful\n");
}

See Also

fread

VisualDSP++ 5.0 C/C++ Compiler Manual 3-195
for TigerSHARC Processors

C/C++ Run-Time Library

gen_bartlett

generate Bartlett window

Synopsis

#include <window.h>

void gen_bartlett (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Bartlett window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

The Bartlett window is similar to the Triangle window (described
on page 3-204) but has the following different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of
an N+2 Bartlett window equals an N Triangle window.

• For even n, the Bartlett window is the convolution of two rectangu-
lar sequences. There is no standard definition for the Triangle
window for even n; the slopes of the Triangle window are slightly
steeper than those of the Bartlett window.

Run-Time Library Reference

3-196 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

 where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n
n N

N[] = −
− −

−1

1
2
1

2

VisualDSP++ 5.0 C/C++ Compiler Manual 3-197
for TigerSHARC Processors

C/C++ Run-Time Library

gen_blackman

generate Blackman window

Synopsis

#include <window.h>

void gen_blackman (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Blackman window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

n
N

[] . . cos . cos= −
−

⎛
⎝⎜

⎞
⎠⎟

+
−

⎛
⎝⎜

⎞
⎠⎟

0 42 05 2
1

0 08 4
1

π π

Run-Time Library Reference

3-198 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gen_gaussian

generate Gaussian window

Synopsis

#include <window.h>

void gen_gaussian (w,alpha,a,N)

float w[]; /* Window vector */

float alpha; /* Gaussian alpha parameter */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Gaussian window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1} and α is an input parameter

Domain

a > 0; N > 0; α > 0.0

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−−=

2

2/
2/12/

2
1exp)(

N
Nnnw α

VisualDSP++ 5.0 C/C++ Compiler Manual 3-199
for TigerSHARC Processors

C/C++ Run-Time Library

gen_hamming

generate Hamming window

Synopsis

#include <window.h>

void gen_hamming (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Hamming window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

[] . . cos= −
−

⎛
⎝⎜

⎞
⎠⎟

054 0 46 2
1

π

Run-Time Library Reference

3-200 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gen_hanning

generate Hanning window

Synopsis

#include <window.h>

void gen_hanning (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Hanning window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. This
window is also known as the Cosine window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

⎟
⎠
⎞

⎜
⎝
⎛

−
−=

1
2cos5.05.0][
N

nnw π

VisualDSP++ 5.0 C/C++ Compiler Manual 3-201
for TigerSHARC Processors

C/C++ Run-Time Library

gen_harris

generate Harris window

Synopsis

#include <window.h>

void gen_harris (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Harris window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. This
window is also known as the Blackman-Harris window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟
⎠
⎞

⎜
⎝
⎛

−
−=

1
6cos*01168.0

1
4cos*14128.0

1
2cos*48829.035875.0][

N
n

N
n

N
nnw πππ

Run-Time Library Reference

3-202 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gen_kaiser

generate Kaiser window

Synopsis

#include <window.h>

void gen_kaiser (w,beta,a,N)

float w[]; /* Window vector */

float beta; /* Kaiser beta parameter */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Kaiser window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a. The β
value is specified by parameter beta.

Algorithm

where n = {0, 1, 2, ..., N-1}, α= (N - 1) /2, and I0(β) represents the
zeroth-order modified Bessel function of the first kind.

Domain

α > 0; N > 0; β > 0.0

()w n

I n

I
[]

/

=

− −⎡
⎣⎢

⎤
⎦⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥0

2 1 2

0

1β α
α

β

VisualDSP++ 5.0 C/C++ Compiler Manual 3-203
for TigerSHARC Processors

C/C++ Run-Time Library

gen_rectangular

generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the rectangular window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Algorithm

w[n] = 1

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

Run-Time Library Reference

3-204 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gen_triangle

generate triangle window

Synopsis

#include <window.h>

void gen_triangle (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function generates a vector containing the Triangle window. The
length of the window required is specified by the parameter N, and the
stride parameter a is used to space the window values within the output
vector w. The length of the output vector should therefore be N*a.

Refer to the Bartlett window (described on page 3-195) regarding the rela-
tionship between it and the Triangle window.

Algorithm

For even n, the following equation applies:

 where n = {0, 1, 2, ..., N-1}

w n

n
N

n N

N n
N

n N
[] =

+ <

− − >

⎧

⎨
⎪

⎩
⎪

2 1 2

2 2 1 2

VisualDSP++ 5.0 C/C++ Compiler Manual 3-205
for TigerSHARC Processors

C/C++ Run-Time Library

 For odd n, the following equation applies:

 where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n

n
N

n N

N n
N

n N
[] =

+
+

<

−
+

>

⎧

⎨
⎪

⎩
⎪

2 2
1

2

2 2
1

2

Run-Time Library Reference

3-206 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gen_vonhann

generate von Hann window

Synopsis

#include <window.h>

void gen_vonhann (w,a,N)

float w[]; /* Window vector */

int a; /* Address stride in samples for window vector */

int N; /* Length of window vector */

Description

This function is identical to the gen_hanning window (described
on page 3-200).

Domain

a > 0; N > 0

VisualDSP++ 5.0 C/C++ Compiler Manual 3-207
for TigerSHARC Processors

C/C++ Run-Time Library

getc

get a character from a stream

Synopsis

#include <stdio.h>
int getc(FILE *stream);

Description

The getc function is equivalent to fgetc. The getc function obtains the
next character from the input stream pointed to by stream, converts it
from an unsigned char to an int, and advances the file position indicator
for the stream.

Upon successful completion, the getc function will return the next char-
acter from the input stream pointed to by stream.

Error Conditions

If the getc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getc(FILE *fp)
{

char ch;
if ((ch = getc(fp)) == EOF) {

printf("Read End-of-file\n");
return (char)-1;

} else {
return ch;

}
}

See Also

fgetc

Run-Time Library Reference

3-208 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

getchar

get a character from stdin

Synopsis

#include <stdio.h>

int getchar(void);

Description

The getchar function is functionally the same as calling the getc function
with stdin as its argument. A call to getchar will return the next single
character from the standard input stream. The getchar function also
advances the standard input's current position indicator.

Error Conditions

If the getchar function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

char use_getchar(void)
{

char ch;
if ((ch = getchar()) == EOF) {

printf("getchar() failed\n");
return (char)-1;

} else {
return ch;

}
}

See Also

getc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-209
for TigerSHARC Processors

C/C++ Run-Time Library

gets

get a string from a stream

Synopsis

#include <stdio.h>
char *gets(char *s);

Description

The gets function reads characters from the standard input stream into
the array pointed to by s. The read will terminate when a NEWLINE charac-
ter is read, with the NEWLINE character being replaced by a null character in
the array pointed to by s. The read will also halt if EOF is encountered.

The array pointed to by s must be of equal or greater length of the input
line being read. If this is not the case, the behavior is undefined. If EOF is
encountered without any characters being read, a NULL pointer is returned.

Error Conditions

If the gets function is unsuccessful and a read error occurs, a NULL pointer
is returned.

Example

#include <stdio.h>

void fill_buffer(char *buffer)
{

if (gets(buffer) == NULL)
printf("gets failed\n")

else
printf("gets read %s\n", buffer);

}
}

See Also

fgetc, fgets, fread, fscanf

Run-Time Library Reference

3-210 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

gmtime

convert calendar time into broken-down time as UTC

Synopsis

#include <time.h>
struct tm *gmtime (const time_t *t);

Description

The gmtime function converts a pointer to a calendar time into a broken-
down time in terms of Coordinated Universal Time (UTC). A broken-
down time is a structured variable, which is described in “time.h” on
page 3-24.

The broken-down time is returned by gmtime as a pointer to static mem-
ory, which may be overwritten by a subsequent call to either gmtime, or to
localtime.

Error Conditions

The gmtime function does not return an error condition.

Example

#include <time.h>
#include <stdio.h>

time_t cal_time;
struct tm *tm_ptr;

cal_time = time(NULL);
if (cal_time != (time_t) -1) {

tm_ptr = gmtime(&cal_time);
printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

See Also

localtime, mktime,time

VisualDSP++ 5.0 C/C++ Compiler Manual 3-211
for TigerSHARC Processors

C/C++ Run-Time Library

heap_calloc

allocate and initialize memory from a heap

Synopsis

#include <stdlib.h>

void *heap_calloc(int heap_index, size_t nelem, size_t size);

Description

The heap_calloc function allocates an array from the heap identified by
heap_index. The array will contain nelem elements, each of size address-
able units; the whole array will be initialized to zero.

The function returns a pointer to the array. The return value can be safely
converted to an object of any type whose size is not greater than
size*nelem bytes. The memory allocated by calloc may be deallocated by
either the free or heap_free functions.

 Note that the userid of a heap should be the same as the heap’s index; the
index of a heap is returned by the function heap_install or heap_lookup.
Refer to “Using Multiple Heaps” on page 1-280 for more information on
multiple run-time heaps.

Error Conditions

The heap_calloc function returns a null pointer if the requested memory
could not be allocated.

Example

#include <stdlib.h>

#include <stdio.h>

int heapid = HEAP1_USERID;

int heapindex = -1;

Run-Time Library Reference

3-212 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

long *alloc_array(int nels)

{

if (heapindex < 0) {

heapindex = heap_lookup(heapid);

if (heapindex == -1) {

printf("Heap %d is not defined\n",heapid);

exit(EXIT_FAILURE);

}

}

return heap_calloc(heapindex,nels,sizeof(long));

}

See Also

heap_free, heap_init, heap_install, heap_lookup, heap_malloc,
heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-213
for TigerSHARC Processors

C/C++ Run-Time Library

heap_free

return memory to a heap

Synopsis

#include <stdlib.h>

void heap_free(int heap_index, void *ptr);

Description

The heap_free function deallocates the object whose address is ptr, pro-
vided that ptr is not a null pointer. If the object was not allocated by one
of heap allocation routines, or if the object has been previously freed, then
the behavior of the function is undefined. If ptr is a null pointer, then the
heap_free function will just return.

For more information on creating multiple run-time heaps, refer to
“Using Multiple Heaps” on page 1-280.

Error Conditions

The heap_free function does not return an error condition.

Example

#include <stdlib.h>

extern int userid;

int heapindex = heap_lookup(userid);
char *ptr = heap_malloc(heapindex,32 * sizeof(char));

...
heap_free(heapindex,ptr);

See Also

heap_calloc, heap_init, heap_install, heap_lookup, heap_malloc,
heap_realloc

Run-Time Library Reference

3-214 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

heap_init

re-initialize a heap

Synopsis

#include <stdlib.h>

int heap_init(int index);

Description

The heap_init function re-initializes a heap, emptying the free list, and
discarding all records within the heap. Because the function discards any
records within the heap, it must not be used if there are any allocations on
the heap that are still active and may be used in the future.

The function returns a zero if it succeeds in re-initializing the heap
specified.

Error Conditions

The heap_init function returns a non-zero result if it failed to re-initialize
the heap.

Example

#include <stdlib.h>

#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);

if (heap_init(heap_index)!=0) {

printf("Heap re-initialization failed\n");

}

See Also

heap_calloc, heap_free, heap_install, heap_lookup, heap_malloc,
heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-215
for TigerSHARC Processors

C/C++ Run-Time Library

heap_install

set up a heap at run-time

Synopsis

#include <stdlib.h>

int heap_install(void *base, size_t length, int userid);

Description

The heap_install function initializes the heap identified by the parame-
ter userid. The heap will be set up at the address specified by base and
with a size in addressable units specified by length. The function will
return the heap index for the heap once it has been successfully initialized.

The function heap_malloc and the associated functions, such as
heap_calloc and heap_realloc, may be used to allocate memory from the
heap once the heap has been initialized. Refer to “Using Multiple Heaps”
on page 1-280 for more information.

Error Conditions

The heap_install function returns -1 if the heap was not initialized suc-
cessfully. This may occur, for example, if there is not enough space
available in the __heaps table, if a heap with the specified userid already
exists, or if the new heap is too small.

Example

#include <stdlib.h>
#include <stdio.h>

static int heapid = 3;

int setup_heap(void *at, size_t size)
{

int index;

Run-Time Library Reference

3-216 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

if ((index = heap_install(at,size,++heapid)) == -1) {
printf("Failed to initialize heap with userid

%d\n",heapid);
exit(EXIT_FAILURE);

}
return index;

}

See Also

heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-217
for TigerSHARC Processors

C/C++ Run-Time Library

heap_lookup

convert a userid to a heap index

Synopsis

#include <stdlib.h>

int heap_lookup(int userid);

Description

The heap_lookup function converts a userid to a heap index. All heaps
have a userid and a heap index associated with them. Both the userid and
the heap index are set on heap creation. The default heap has userid 0
and heap index 0. The heap index and the userid should always be the
same value, so a valid return from this function indicates that the heap
currently exists for the given userid.

The heap index is required for the functions heap_calloc, heap_malloc,
heap_realloc, heap_init, and heap_space_unused. For more information
on creating multiple run-time heaps, refer to “Using Multiple Heaps” on
page 1-280.

Error Conditions

The heap_lookup function returns -1 if there is no heap with the specified
userid.

Example

#include <stdlib.h>
#include <stdio.h>

int heap_userid = 1;
int heap_id;

if ((heap_id = heap_lookup(heap_userid)) == -1) {

Run-Time Library Reference

3-218 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

printf("Heap %d not setup
- will use the default heap\n",heap_userid);

heap_id = 0;
}
char *ptr = heap_malloc(heap_id,1024);
if (ptr == NULL) {

printf("heap_malloc failed to allocate memory\n");
}

See Also

heap_calloc, heap_free, heap_init, heap_install, heap_malloc,
heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-219
for TigerSHARC Processors

C/C++ Run-Time Library

heap_malloc

allocate memory from a heap

Synopsis

#include <stdlib.h>

void *heap_malloc(int heap_index, size_t size);

Description

The heap_malloc function allocates an object of size addressable units,
from the heap with index heap_index. It returns the address of the object
if successful. The return value may be used as a pointer to an object of any
type whose size in addressable units is not greater than size.

The block of memory returned is uninitialized. The memory may be deal-
located with either the free or heap_free function. For more information
on creating multiple run-time heaps, refer to “Using Multiple Heaps” on
page 1-280.

Error Conditions

The heap_malloc function returns a null pointer if it was unable to allo-
cate the requested memory.

Example

#include <stdlib.h>
#include <stdio.h>

int heap_index = heap_lookup(USERID_HEAP);
long *buffer;

if (heap_index < 0) {
printf("Heap %d is not setup\n",USERID_HEAP);
exit(EXIT_FAILURE);

}

Run-Time Library Reference

3-220 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

buffer = heap_malloc(heap_index,16 * sizeof(long));
if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");
}

See Also

heap_calloc, heap_free, heap_init, heap_install, heap_lookup,
heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-221
for TigerSHARC Processors

C/C++ Run-Time Library

heap_realloc

change memory allocation from a heap

Synopsis

#include <stdlib.h>

void *heap_realloc(int heap_index, void *ptr, size_t size);

Description

The heap_realloc function changes the size of a previously allocated
block of memory. The new size of the object in addressable units is speci-
fied by the argument size; the new object retains the values of the old
object up to its original size, but any data beyond the original size will be
indeterminate. The address of the object is given by the argument ptr.
The behavior of the function is not defined if either the object has not
been allocated from a heap, or if it has already been freed.

If ptr is a null pointer, then heap_realloc behaves the same as
heap_malloc. If ptr is not a null pointer, and if size is zero, then
heap_realloc behaves the same as heap_free.

The argument heap_index is only used if ptr is a null pointer.

If the function successfully re-allocates the object, then it will return a
pointer to the new object.

Error Conditions

If heap_realloc cannot reallocate the memory, it returns a null pointer
and the original memory associated with ptr will be unchanged and will
still be available.

Example

#include <stdlib.h>

#include <stdio.h>

Run-Time Library Reference

3-222 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

int heap_index = heap_lookup(USERID_HEAP);

int *buffer;

int *temp_buffer;

if (heap_index < 0) {

printf("Heap %d is not setup\n",USERID_HEAP);

exit(EXIT_FAILURE);

}

buffer = heap_malloc(heap_index,32*sizeof(int));

if (buffer == NULL) {

printf("heap_malloc failed to allocate memory\n");

}

...

temp_buffer = heap_realloc(0,buffer,64*sizeof(int));

if (temp_buffer == NULL) {

printf(("heap_realloc failed to allocate memory\n");

} else {

buffer = temp_buffer;

}

See Also

heap_calloc, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-223
for TigerSHARC Processors

C/C++ Run-Time Library

heap_switch

change memory allocation from a heap

Synopsis

#include <stdlib.h>
int heap_switch(int heap_index);

Description

The heap_switch function switches the current heap to be the heap desig-
nated by heap_index. If the heap_index is the current heap then
heap_index is returned, otherwise a value of -1 is returned.

The heap_switch function is not available when using
multi-threaded support.

Error Conditions

If the heap_switch function does not find an installed heap for the given
heap_index then it returns -3. If the heap specified by heap_index is too
small to be used then the function returns -2.

Example

#include <stdlib.h>
#include <stdio.h>

int heap1[256]; /* memory for heap 1*/

int main()

{
char *buf;

heap_install(heap1, sizeof(heap1), 1);

heap_switch(1); /* make heap 1 the default heap */

buf = (char*)malloc(32); /* allocate memory from heap 1 */

Run-Time Library Reference

3-224 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

if(buf != 0) {

printf("Allocated space from %p\n", buf);

free(buf);

} else {

printf("unable to allocate space\n");

}

return 0;

}

See Also

heap_calloc, heap_free, heap_init, heap_install, heap_lookup,
heap_malloc, heap_realloc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-225
for TigerSHARC Processors

C/C++ Run-Time Library

histogramf

histogramf

Synopsis

#include <stats.h>

void histogramf (a,n,max,min,c,m)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

float max; /* Maximum value of the bin */

float min; /* Minimum value of the bin */

int c[]; /* Pointer to output vector c */

int m; /* Number of bins */

Description

The histogramf function computes a histogram of the input vector a that
contains n samples, and stores the result in the output vector c.

The minimum and maximum value of any input sample is specified by
min and max, respectively; these values are used by the function to calculate
the size of each bin as (max – min) / m where m is the size of the output
vector c.

Any input value that is outside the range [min , max) exceeds the
boundaries of the output vector and is discarded.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Run-Time Library Reference

3-226 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

The output vector is first zeroed by the function. Each input value is then
adjusted by min, multiplied by 1/binsize, and rounded to select the
appropriate bin to increment.

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-227
for TigerSHARC Processors

C/C++ Run-Time Library

ifft

N point inverse FFT

Synopsis

#include <filter.h>

void ifft (in[], t[], out[], w[], wst, n)

const complex_float in[]; /* Input sequence */

complex_float t[]; /* Temporary working buffer */

complex_float out[]; /* Output sequence */

const complex_float w[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the accelerated version of the ‘Dis-
crete Fourier Transformation’ known as an ‘Inverse Fast Fourier
Transform’ or IFFT. It “decimates in frequency” by the best choice FFT
algorithm, radix-4 or mixed-radix, depending on the input sequence
length.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the
FFT. If the input data can be overwritten, then the memory requirements
may be reduced by specifying the input array as the output array.
Run-time performance of the function is improved if the input and out-
put arrays are allocated in a different memory block than the twiddle
table, w.

The twiddle table is passed in the argument w, which must contain at least
¾n complex twiddle factors. The function twidfft may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a

Run-Time Library Reference

3-228 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

particular call on ifft, then the stride factor has to be set appropriately;
otherwise it should be 1. Refer to “twidfft” on page 3-327 for more
information.

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

Algorithm

The implementation uses core FFT functions implemented as direct
radix4, or direct mixed radix algorithm. To get the inverse effect, it first
swaps the real and imaginary parts of the input, performs the direct radix4
or mixed radix transformation and finally swaps the real and imaginary
parts of the output.

Domain

Input sequence length n must equal to either a power of two, or a power of
four, and at least 16.

nk
N

N

k
WkX

N
nx −

−

=
∑=

1

0
)(1)(

VisualDSP++ 5.0 C/C++ Compiler Manual 3-229
for TigerSHARC Processors

C/C++ Run-Time Library

ifft2d

NxN point 2-D inverse input FFT

Synopsis

#include <filter.h>

void ifft2d (*in, *t, *out, w[], wst, n)

const complex_float *in; /* Pointer to input matrix a[n][n] */

complex_float *t; /* Pointer to working buffer t[n][n] */

complex_float *out; /* Pointer to matrix c[n][n] */

const complex_float w[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

This function computes a two-dimensional inverse Fast Fourier Trans-
form of the complex input matrix a[n][n] and stores the result in the
complex matrix c[n][n].

If input data can be overwritten, the optimum memory usage is achieved
by setting the output pointer to the input array.

For efficiency, the “twiddle table” is calculated once, during initialization,
and then provided to the FFT routine as a separate parameter. You must
declare the variable and initialize it prior to calling an FFT function. An
initialization function, twidfft, is provided.

If the twiddle table has been allocated at a larger size than needed for a
particular call of ifft2d, then the stride parameter needs to be set appro-
priately; otherwise, it should be one. For more information, see “twidfft”
on page 3-327.

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

Run-Time Library Reference

3-230 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must equal to either a power of two, or a power of
four, and at least 16.

c i j
n

a k l e j i k j l n

l

n

k

n

(,) (,) * (* *)/= +

=

−

=

−

∑∑1
2

2

0

1

0

1
π

VisualDSP++ 5.0 C/C++ Compiler Manual 3-231
for TigerSHARC Processors

C/C++ Run-Time Library

iir

infinite impulse response filter

Synopsis

#include <filter.h>
void iir (x,y,n,s)
const float x[]; /* Input sample vector x */
float y[]; /* Output sample vector y */
int n; /* Number of input samples */
iir_state *s; /* Pointer to filter state structure */

The IIR filter function uses the following structure to maintain the state
of the filter:

typedef struct
{

float *c; /* Coefficients */
float *d; /* Start of delay line */
int k; /* Number of biquad stages */

} iir_state;

Description

The iir function implements a biquad, canonical form, infinite impulse
response (IIR) filter. It generates the filtered response of the input data x
and stores the result in the output vector y. The number of input samples
and the length of the output vector is specified by the argument n.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
iir_init, in the filter.h header file, is available to initialize the structure
and is defined as:

#define iir_init(state, coeffs, delay, stages) \
(state).c = (coeffs); \
(state).d = (delay); \
(state).k = (stages)

Run-Time Library Reference

3-232 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The characteristics of the filter are dependent upon the filter coefficients
and the number of stages. Each stage has five coefficients which must be
stored in the order B2, B1, B0, A2, A1. The value of A0 is implied to be 1.0
and A1 and A2 should be scaled accordingly. A pointer to the coefficients
should be stored in s->c, and s->k should be set to the number of stages.

Each filter should have its own delay line which is a vector of type float
and whose length is equal to twice the number of stages. The vector
should be initially cleared to zero and should not otherwise be modified by
the user program. The structure member s->d should be set to the start of
the delay line.

The iir function assumes that the delay line is quad-word aligned. There
is no performance penalty if the input data, output vector, and filter state
are allocated in the same memory block.

Algorithm

 where

 where m={0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Example

#include

#define SAMPLES 100

#define STAGES 2

H z
B B z B z

A z A z
() =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21

D A D A D x
Y B D B D B D

m m m m

m m m m

= + +
= + +

− −

− −

2 2 1 1

2 2 1 1 0

* *
* * *

VisualDSP++ 5.0 C/C++ Compiler Manual 3-233
for TigerSHARC Processors

C/C++ Run-Time Library

/* Coefficients generated by a filter design tool */

const struct {

float a0;

float a1;

float a2;

} A_coeffs[STAGES];

const struct {

float b0;

float b1;

float b2;

} B_coeffs[STAGES];

/* Coefficients for the iir function */

float coeffs[5*STAGES];

/* Input, Output arrays, and delay line */

float input[SAMPLES], output[SAMPLES];

float delay[2*STAGES];

iir_state state;

/* Utility variables */

float a0,a1,a2;

float b0,b1,b2;

int i;

/* Transform the A-coefficients and B-coefficients from a */

/* filter design tool into coefficients for the iir function */

/* (for each stage, the iir function assumes that A0 is 1.0 */

/* and that the remaining coefficients are stored in the */

/* order B2, B1, B0, A2, A1) */

Run-Time Library Reference

3-234 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

for (i = 0; i < STAGES; i++) {

a0 = A_coeffs[i].a0;

a1 = A_coeffs[i].a1;

a2 = A_coeffs[i].a2;

coeffs[(i*5) + 4] = (a1/a0);

coeffs[(i*5) + 3] = (a2/a0);

b0 = B_coeffs[i].b0;

b1 = B_coeffs[i].b1;

b2 = B_coeffs[i].b2;

coeffs[(i*5) + 2] = b0;

coeffs[(i*5) + 1] = b1;

coeffs[(i*5) + 0] = b2;

}

/* Initialize the filter description */

iir_init (state,coeffs,delay,STAGES);

/* Initialize the delay line */

for (i = 0; i <= (2*STAGES); i++) {

delay[i] = 0;

}

/* Call the iir function */

iir (input,output,SAMPLES,&state);

VisualDSP++ 5.0 C/C++ Compiler Manual 3-235
for TigerSHARC Processors

C/C++ Run-Time Library

interrupt, interruptf, interrupts, interruptnr, interruptfnr,
interruptsnr

define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int))) (int);

void (*interruptf (int sig, void(*func)(int))) (int);

void (*interrupts (int sig, void(*func)(int))) (int);

void (*interruptnr (int sig, void(*func)(int))) (int);

void (*interruptfnr (int sig, void(*func)(int))) (int);

void (*interruptsnr (int sig, void(*func)(int))) (int);

Description

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every interrupt sig, whereas the signal function
executes the function only once.

The sig argument must be one of the values that are listed in Table 3-33
on page 3-269 and the func argument must be one of the values that are
listed in Table 3-32. The interrupt function causes the receipt of the sig-
nal number sig to be handled in one of the following ways:

Table 3-32. Interrupt Handling

Func Value Action

SIG_DFL The default action is taken.

SIG_IGN The signal is ignored.

Function address The function pointed to by func is executed.

Run-Time Library Reference

3-236 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The function pointed to by func is executed each time the interrupt is
received for handlers installed with interrupt (or on the first received sig-
nal in the case of handlers installed with signal). The interrupt function
must be called with the func argument set to SIG_IGN to disable interrupt
handling.

The interrupt, interruptf, and interrupts functions perform similar
services and always enable nested interrupts, but they differ in the manner
in which they dispatch an interrupt. The interrupt function is appropri-
ate for interrupt service routines that are written in C/C++. This function
uses the normal interrupt dispatcher, which provides the following
services:

• Preserves all registers

• Resets the circular buffer base and length registers for linear access

• Preserves static condition flags

• Preserves the data alignment buffers

• Calls the handler function

• Restores state ready for return to the interrupted routine

When using the interrupt function on ADSP-TS101 processors, it takes
approximately 78 cycles from the start of the interrupt dispatcher to the
first instruction of the interrupt service routine (ISR) and approximately
55 cycles to return from the ISR to the interrupted code. On
ADSP-TS20x processors, it takes approximately 98 cycles from the start of
the interrupt dispatcher to the first instruction of the ISR and approxi-
mately 81 cycles to return from the ISR to the interrupted code.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-237
for TigerSHARC Processors

C/C++ Run-Time Library

The interruptf function uses a fast interrupt dispatcher that is only suit-
able for interrupt service routines that have been implemented in
assembler. The fast interrupt dispatcher provides the same services as the
normal interrupt dispatcher except that it does not preserve or restore any
of the following registers:

• The circular buffer base and length registers

• The static condition flags

• The summation registers PR 1:0

• The data alignment buffers

• The Enhanced Communication Instruction registers

When using the interruptf function on ADSP-TS101 processors, it takes
approximately 54 cycles from the start of the interrupt dispatcher to the
first instruction of the interrupt service routine (ISR) and approximately
25 cycles to return from the ISR to the interrupted code. On
ADSP-TS20x processors, it takes approximately 64 cycles from the start of
the interrupt dispatcher to the first instruction of the ISR and approxi-
mately 35 cycles to return from the ISR to the interrupted code.

The interrupts function uses a super interrupt dispatcher that preserves
and restores only the resources used in order to perform the dispatch. For
this reason, it should only be used with interrupt service routines that have
been written in assembler. The interrupt service routine must preserve all
the registers that it uses.

When using the interrupts function on ADSP-TS101 processors, it takes
approximately 34 cycles from the start of the interrupt dispatcher to the
first instruction of the interrupt service routine (ISR) and approximately
11 cycles to return from the ISR to the interrupted code. On
ADSP-TS20x processors, it takes approximately 34 cycles from the start of
the interrupt dispatcher to the first instruction of the ISR and approxi-
mately 16 cycles to return from the ISR to the interrupted code.

Run-Time Library Reference

3-238 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

 When installing a handler for an exception condition note that the dis-
patcher for software exceptions performs some identification of the cause
of the exception, and allows the user to install separate handlers for vari-
ous classes of exception. If an illegal instruction line caused the exception,
then the dispatcher will invoke the handler for the SIGILL signal. For a
misaligned access or an access to a protected register, the handler for
SIGSEGV is invoked. For a floating-point exception, the handler for the
SIGFPE signal is invoked. If the exception came from another source then
the handler for SIGSW is invoked. For each of these cases, if a handler has
not been registered for the corresponding signal then no handler is
invoked and the exception is lost.

The interrupt function returns the value of the previously installed
interrupt or signal handler action.

The interrupt, interruptf, and interrupts functions install interrupt
handlers that can be nested. This means that when an interrupt is being
serviced by a routine installed by one of these functions, a higher priority
interrupt or signal may be serviced before the routine has finished dealing
with the initial interrupt.

The interruptnr, interruptfnr, and interruptsnr functions install
non-reentrant interrupt handlers, meaning that on servicing an interrupt,
interrupts and signals are disabled until the execution of the service rou-
tine has completely finished.

The software exception handler is a special case in the run-time library dis-
patchers. The ‘nr’ versions of interrupt are used primarily for installing
hardware interrupt handlers. The software exception dispatcher does not
disable hardware interrupts, even if installed by an ‘nr’ routine. It is neces-
sary, therefore, to manually disable hardware interrupts around any
portion of the software exception handler that must not be interrupted.

It is possible to mix both reentrant and non-reentrant interrupt and signal
handlers in the same project at the expense of the additional code space
used by the different dispatchers.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-239
for TigerSHARC Processors

C/C++ Run-Time Library

Error Conditions

The interrupt function returns SIG_ERR and sets errno to a positive
non-zero value if it does not recognize the requested signal.

Example

#include <signal.h>

interrupt (SIGIRQ2, irq2_handler);

/* enable hardware interrupt pin 2 handler */

interrupt (SIGIRQ2, SIG_IGN);

/* disable hardware interrupt pin 2 handler */

See Also

raise, signal, signalf, signals, signalnr, signalfnr, signalsnr

Run-Time Library Reference

3-240 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

localtime

convert calendar time into broken-down time

Synopsis

#include <time.h>

struct tm *localtime (const time_t *t);

Description

The localtime function converts a pointer to a calendar time into a
broken-down time that corresponds to current time zone. A broken-down
time is a structured variable, which is described in “time.h” on page 3-24.
This implementation of the header file does not support the Daylight Sav-
ing flag nor does it support time zones and, thus, localtime is equivalent
to the gmtime function.

The broken-down time is returned by localtime as a pointer to static
memory, which may be overwritten by a subsequent call to either
localtime, or to gmtime.

Error Conditions

The localtime function does not return an error condition.

Example

#include <time.h>
#include <stdio.h>

time_t cal_time;
struct tm *tm_ptr;

cal_time = time(NULL);
if (cal_time != (time_t) -1) {

tm_ptr = localtime(&cal_time);
printf("The year is %4d\n",1900 + (tm_ptr->tm_year));

}

VisualDSP++ 5.0 C/C++ Compiler Manual 3-241
for TigerSHARC Processors

C/C++ Run-Time Library

See Also

asctime, gmtime, mktime, time

Run-Time Library Reference

3-242 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

log

natural logarithm

Synopsis

#include <math.h>

float logf (float x)

double log (double x)

long double logd (long double x)

Description

This function calculates the natural (base e) logarithm of number x.

If x equals 0, this function returns –3.4 x 1038 for a float return value
and –1.7 x 10308 for a long double return value.

Algorithm

return = ln(x)

Domain

x = [0.0 ... 3.4 x 1038] for logf()

x = [0.0 ... 1.7 x 10308] for logd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-243
for TigerSHARC Processors

C/C++ Run-Time Library

log10

base 10 logarithm

Synopsis

#include <math.h>

float log10f (float x)

double log10 (double x)

long double log10d (long double x)

Description

This function calculates the base 10 logarithm of number x.

If x equals 0, this function returns –3.4 x 1038 for a float return value
and –1.7 x 10308 for a long double return value.

Algorithm

return = log(x)

Domain

x = [0.0 ... 3.4 x 1038] for log10f()

x = [0.0 ... 1.7 x 10308] for log10d()

Run-Time Library Reference

3-244 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

matinv

matrix inversion

Synopsis

#include <matrix.h>

float *matinvf (a,n,c)

const float *a; /* Pointer to input matrix a[][] */

int n; /* Number of rows in matrix a[][] */

float *c; /* Pointer to output matrix c[][] */

Description

This function computes the inverse of input matrix a[][] and stores the
result in the output matrix c[][]. The dimensions of matrix a and matrix
c are n by n. If an inverse of the input matrix exists, a pointer to the output
matrix is returned; if no inverse exists, the function returns a null pointer.

Algorithm

The function employs Gauss-Jordan elimination with full pivoting.

Domain

 –3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-245
for TigerSHARC Processors

C/C++ Run-Time Library

matmadd

matrix + matrix addition

Synopsis

#include <matrix.h>

void matmaddf (a,b,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

const float *b; /* Pointer to input matrix b[][] */

int n; /* Number of rows in matrix a[][] and b[][] */

int m; /* Number of columns in matrix a[][] and b[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function adds the input matrix a[][] to the input matrix b[][] plac-
ing the result into the output matrix c[][]. The dimensions of matrix
a[][] are n and m and the dimensions of matrix b are n and m. The result-
ing matrix c[][] is of dimensions n and m.

The input matrices a[][] and b[][] must be aligned on quad-word
boundaries, with the output matrix c[][] being aligned on a dual-word
boundary.

Algorithm

 where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i j i j, , ,= +

Run-Time Library Reference

3-246 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

matmmlt

matrix * matrix multiplication

Synopsis

#include <matrix.h>

void matmmltf (a,n,k,b,m,c)

const float *a; /* Pointer to input matrix a[][] */

int n; /* Number of rows in matrix a[][] */

int k; /* Number of columns in matrix a[][] */

const float *b; /* Pointer to input matrix b[][] */

int m; /* Number of columns in matrix b[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function computes the multiplication of input matrix a[][] with
input matrix b[][], and stores the result to matrix c[][]. The dimensions
of matrix a[][] are n and k and the dimensions of matrix b are k and m.
The resulting matrix c[][] is of dimensions n and m.

The input matrix a[][] must be aligned on a quad-word boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i l l j
l

k

, , ,*=
=

−

∑
0

1

VisualDSP++ 5.0 C/C++ Compiler Manual 3-247
for TigerSHARC Processors

C/C++ Run-Time Library

matmsub

matrix - matrix subtraction

Synopsis

#include <matrix.h>

void matmsubf (a,b,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

const float *b; /* Pointer to input matrix b[][] */

int n; /* Number of rows in matrix a[][] and b[][] */

int m; /* Number of columns in matrix a[][] and b[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function computes the subtraction of input matrix a[][] with input
matrix b[][], and stores the result to matrix c[][].The dimensions of
matrix a[][] are n and m and the dimensions of matrix b are n and m. The
resulting matrix c[][] is of dimensions n and m.

The input matrices a[][] and b[][] must be aligned on quad-word
boundaries, with the output matrix c[][] being aligned on a dual-word
boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i j i j, , ,= −

Run-Time Library Reference

3-248 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

matsadd

matrix + scalar addition

Synopsis

#include <matrix.h>

void matsaddf (a,b,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

float b; /* Value of input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function computes the addition of input matrix a[][] with input
scalar b, and stores the result to matrix c[][]. The dimensions of matrix
a[][] are n and m. The resulting matrix c[][] is of dimensions n and m.

The input matrix a[][] and output matrix c[][] must be aligned on
quad-word boundaries.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i j, ,= +

VisualDSP++ 5.0 C/C++ Compiler Manual 3-249
for TigerSHARC Processors

C/C++ Run-Time Library

matsmlt

matrix * scalar multiplication

Synopsis

#include <matrix.h>

void matsmltf (a,b,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

float b; /* Value of input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function computes the multiplication of input matrix a[][] with
input scalar b, and stores the result to matrix c[][]. The dimensions of
matrix a[][] are n and m. The resulting matrix c[][] is of dimensions n
and m.

The input matrix a[][] output matrix c[][] must be aligned on a
quad-word boundary.

Algorithm

 where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i j, , *=

Run-Time Library Reference

3-250 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

matssub

matrix - scalar subtraction

Synopsis

#include <matrix.h>

void matssubf (a,b,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

float b; /* Value of input scalar b */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

float *c; /* Pointer to matrix c[][] */

Description

This function computes the subtraction of input matrix a[][] with input
scalar b, and stores the result to matrix c[][]. The dimensions of matrix
a[][] are n and m. The resulting matrix c[][] is of dimensions n and m.

The input matrix a[][] and output matrix c[][] must be aligned on a
quad-word boundary.

Algorithm

where i={0,1,2,...,n-1}, j={0,1,2,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038

c a bi j i j, ,= −

VisualDSP++ 5.0 C/C++ Compiler Manual 3-251
for TigerSHARC Processors

C/C++ Run-Time Library

max

maximum

Synopsis

#include <stdlib.h>

int max (int parm1, int parm2)

long int lmax (long int parm1, long int parm2);

long long int llmax (long long int parm1, long long int parm2);

Description

The max functions return the larger of their two arguments. The functions
are built-in functions that are implemented with a MAX instruction.

Algorithm

if (parm1 > parm2)

return(parm1)

else

return(parm2)

Domain

Full range for type of parameters used.

Run-Time Library Reference

3-252 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

mean

mean

Synopsis

#include <stats.h>

float meanf (a,n)

const float a[]; /* Input vector a */

int n; /* Number of input samples */

Description

This function computes the mean of the n elements contained within
input vector a and returns the result.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

c
n

ai
i

n

=
=

−

∑1
0

1

* ()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-253
for TigerSHARC Processors

C/C++ Run-Time Library

min

minimum

Synopsis

#include <stdlib.h>

int min (int parm1, int parm2)

long int lmin (long int parm1, long int parm2);

long long int llmin (long long int parm1, long long int parm2);

Description

The min functions return the smaller of their two arguments. The func-
tions are built-in functions that are implemented with a MIN instruction.

Algorithm

if (parm1 < parm2)

return(parm1)

else

return(parm2)

Domain

Full range for type of parameters used.

Run-Time Library Reference

3-254 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

mktime

convert broken-down time into a calendar time

Synopsis

#include <time.h>

time_t mktime (struct tm *tm_ptr);

Description

The mktime function converts a pointer to a broken-down time, which
represents a local date and time, into a calendar time. However, this
implementation of time.h does not support either daylight saving or time
zones and hence this function will interpret the argument as Greenwich
Mean Time (UTC).

A broken-down time is a structured variable which is defined in the
time.h header file as:

struct tm { int tm_sec; /* seconds after the minute [0,61] */

int tm_min; /* minutes after the hour [0,59] */

int tm_hour; /* hours after midnight [0,23] */

int tm_mday; /* day of the month [1,31] */

int tm_mon; /* months since January [0,11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday [0, 6] */

int tm_yday; /* days since January 1st [0,365] */

int tm_isdst; /* Daylight Saving flag */

};

The various components of the broken-down time are not restricted to the
ranges indicated above. The mktime function calculates the calendar time
from the specified values of the components (ignoring the initial values of
tm_wday and tm_yday), and then”'normalizes” the broken-down time forc-
ing each component into its defined range.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-255
for TigerSHARC Processors

C/C++ Run-Time Library

If the component tm_isdst is zero, then the mktime function assumes that
daylight saving is not in effect for the specified time. If the component is
set to a positive value, then the function assumes that daylight saving is in
effect for the specified time and will make the appropriate adjustment to
the broken-down time. If the component is negative, the mktime function
should attempt to determine whether daylight saving is in effect for the
specified time but because neither time zones nor daylight saving are sup-
ported, the effect will be as if tm_isdst were set to zero.

Error Conditions

The mktime function returns the value (time_t) -1 if the calendar time
cannot be represented.

Example

#include <time.h>
#include <stdio.h>

static const char *wday[] = {"Sun","Mon","Tue","Wed",
 "Thu","Fri","Sat","???"};

struct tm tm_time = {0,0,0,0,0,0,0,0,0};

tm_time.tm_year = 2000 - 1900;
tm_time.tm_mday = 1;

if (mktime(&tm_time) == -1)
tm_time.tm_wday = 7;

printf("%4d started on a %s\n",
1900 + tm_time.tm_year,
wday[tm_time.tm_wday]);

See Also

gmtime, localtime, time

Run-Time Library Reference

3-256 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

modf

separate integral and fractional parts

Synopsis

#include <math.h>

double modf (double f, double *fraction);

float modff (float f, float *fraction);

long double modfd (long double f, long double *fraction);

Description

The modf function separates the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by the second argument. The integral and
fractional portions have the same sign as the input.

Algorithm

return = (|f| – floor|f|) . sign(f)

fraction = (floor|f| . sign(f))

Domain

f = [–3.4 x 1038 ... 3.4 x 1038] for modff()

f = [–1.7 x 10308 ... 1.7 x 10308] for modfd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-257
for TigerSHARC Processors

C/C++ Run-Time Library

mu_compress

µ-law compression

Synopsis

#include <filter.h>

void mu_compress (in, out, n)

const int in[]; /* Input array */

int out[]; /* Output array */

int n; /* Number of elements to be compressed */

Description

The mu_compress function takes a vector of linear 14-bit signed speech
samples and performs µ-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out. The function has been optimized and requires
that both the input and output vectors are quad-word aligned.

Algorithm

C(k) = μ_law compression of A(k) for k=0 to n-1.

Domain

Content of input array: –8192 to 8191

Run-Time Library Reference

3-258 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

mu_expand

µ-law expansion

Synopsis

#include <filter.h>

void mu_expand (in, out, n)

const int in[]; /* Input array */

int out[]; /* Output array */

int n; /* Number of elements to be expanded */

Description

The mu_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 14-bit signed sample in accordance
with the µ-law definition and is returned in the vector pointed to by out.
The function has been optimized and requires that both the input and
output vectors are quad-word aligned.

Algorithm

C(k)= μ_law expansion of A(k) for k=0 to n-1

Domain

Content of input array: 0 to 255

VisualDSP++ 5.0 C/C++ Compiler Manual 3-259
for TigerSHARC Processors

C/C++ Run-Time Library

norm

normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a);

complex_double norm (complex_double a);

complex_long_double normd (complex_long_double a);

Description

These functions normalize the complex input a and return the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for normf()

–1.7 x 10308 to 1.7 x 10308 for normd()

Re()
Re()

Re () Im ()

Im()
Im()

Re () Im ()

c
a

a a

c
a

a a

=
+

=
+

2 2

2 2

Run-Time Library Reference

3-260 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

perror

print an error message on standard error

Synopsis

#include <stdio.h>

int perror(const char *s);

Description

The perror function maps the value of the integer expression errno to an
error message. It writes a sequence of characters to the standard error
stream.

Error Conditions

The perror function does not return any error conditions.

Example

#include <stdio.h>

void test_perror(void)

{

FILE *fp;

fp = fopen("filedoesnotexist.txt","r");

if (fp == NULL)

perror("The file filedoesnotexist.txt does not exist!");

}

See Also

fopen

VisualDSP++ 5.0 C/C++ Compiler Manual 3-261
for TigerSHARC Processors

C/C++ Run-Time Library

polar

convert polar to Cartesian notation

Synopsis

#include <complex.h>

complex_float polarf (float mag, float phase);

complex_double polar (double mag, double phase);

complex_long_double polard (long double mag, long double phase);

Description

These functions transform the polar coordinate, specified by the argu-
ments mag and phase, into a Cartesian coordinate and return the result as a
complex number in which the x-axis is represented by the real part, and
the y-axis by the imaginary part. The phase argument is interpreted as
radians. Refer to “cartesian” on page 3-101 for more information.

Algorithm

Re(c) = r*cos(θ)
Im(c) = r*sin(θ)

where θ is the phase, and r is the magnitude

Domain

phase = [–1,647,095 ... 1,647,095] for polarf()

mag = –3.4 x 1038 to +3.4 x 1038

phase = [–843,314,850 ... 843,314,850] for polard()

mag = –1.7 x 10308 to +1.7 x 10308

Run-Time Library Reference

3-262 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

pow

raise to a power

Synopsis

#include <math.h>

float powf (float x, float y)

double pow (double x, double y)

long double powd (long double x, long double y)

Description

This function calculates x to the power y. If x < 0 and y is not an integral
value, this function returns 0. If x = 0 and y = 0, this function returns 0.
If overflow occurs, this function returns 3.4 x 1038 for a float-type return
value and 1.7 x 10308 for a double-type return value; if underflow occurs,
this function returns -3.4 x 1038 for a float return value and -1.7 x 10308
for a long double return value.

Algorithm

return = xy

Domain

x, y = [–3.4 x 1038 ... 3.4 x 1038]
except x<0, y ¼i, where i is an integer for powf()

x, y = [–1.7 x 10308 ... 1.7 x 10308]
except x<0, y ¼i, where i is an integer for powd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-263
for TigerSHARC Processors

C/C++ Run-Time Library

printf

print formatted output

Synopsis

#include <stdio.h>

int printf(const char *format, /* args*/ ...);

Description

The printf function places output on the standard output stream stdout
in a form specified by format. The printf function is equivalent to
fprintf with the stdout passed as the first argument. The argument
format contains a set of conversion specifiers, directives, and ordinary
characters that are used to control how the data is formatted. Refer to
fprintf (on page 3-173) for a description of the valid format specifiers.

The printf function returns the number of characters transmitted.

Error Conditions

If the printf function is unsuccessful, a negative value is returned.

Example

#include <stdio.h>

void printf_example(void)

{

int arg = 255;

/* Output will be "hex:ff, octal:377, integer:255" */

printf("hex:%x, octal:%o, integer:%d\n", arg, arg, arg);

}

See Also

fprintf

Run-Time Library Reference

3-264 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

putc

put a character on a stream

Synopsis

#include <stdio.h>

int putc(int ch, char *stream);

Description

The putc function writes its argument to the output stream pointed to by
stream, after converting ch from an int to an unsigned char.

If the putc function call is successful, putc returns its argument ch.

Error Conditions

If the call is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void putc_example(void)

{

/* put the character 'a' to stdout */

if (putc('a', stdout) == EOF)

printf("putc failed\n");

}

See Also

fputc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-265
for TigerSHARC Processors

C/C++ Run-Time Library

putchar

write a character to stdout

Synopsis

#include <stdio.h>

int putchar(int ch);

Description

The putchar function writes its argument to the standard output stream,
after converting ch from an int to an unsigned char. A call to putchar is
equivalent to calling putc(ch, stdout).

If the putchar function call is successful, putchar returns its argument ch.

Error Conditions

If the putchar function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void putchar_example(void)

{

/* put the character 'a' to stdout */

if (putchar('a') == EOF)

printf("putchar failed\n");

}

See Also

putc

Run-Time Library Reference

3-266 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

puts

put a string to stdout

Synopsis

#include <stdio.h>

int puts(const char *s);

Description

The puts function writes the string pointed to by s, followed by a NEWLINE
character, to the standard output stream stdout. The terminating null
character of the string is not written to the stream.

If the function call is successful, the return value is zero or greater.

Error Conditions

The macro EOF is returned if puts was unsuccessful.

Example

#include <stdio.h>

void puts_example(void)

{

/* put the string "example" to stdout */

if (puts("example") < 0)

printf("puts failed\n");

}

See Also

fputs

VisualDSP++ 5.0 C/C++ Compiler Manual 3-267
for TigerSHARC Processors

C/C++ Run-Time Library

qsort

quick sort

Synopsis

#include <stdlib.h>

void qsort (void base, size_t nelem, size_t size,

int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function shall
return an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than
the second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary search operation on a
pre-sorted array. Note that:

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• compare points to the function used to compare two elements. It is
passed two arguments that point to the array elements being com-
pared. The function should return a value less than, equal to, or
greater than zero, according to whether the first parameter is less
than, equal to, or greater than the second.

Run-Time Library Reference

3-268 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

See “Description”.

Domain

N/A

VisualDSP++ 5.0 C/C++ Compiler Manual 3-269
for TigerSHARC Processors

C/C++ Run-Time Library

raise

force a signal

Synopsis

#include <signal.h>

int raise (int sig);

Description

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
priority order in Table 3-33. See the hardware reference manual for the
target TigerSHARC processor for further details on the hardware
interrupts.

Table 3-33. Raise Function Signals–Values and Meanings

Sig Value Definition

SIGTIMER0LP Timer 0 low priority interrupt

SIGTIMER1LP Timer 1 low priority interrupt

SIGLINK0 Link port 0 interrupt

SIGLINK1 Link port 1 interrupt

SIGLINK2 Link port 2 interrupt

SIGLINK3 Link port 3 interrupt

SIGDMA0 DMA channel 0 interrupt

SIGDMA1 DMA channel 1 interrupt

SIGDMA2 DMA channel 2 interrupt

SIGDMA3 DMA channel 3 interrupt

SIGDMA4 DMA channel 4 interrupt

SIGDMA5 DMA channel 5 interrupt

Run-Time Library Reference

3-270 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

SIGDMA6 DMA channel 6 interrupt

SIGDMA7 DMA channel 7 interrupt

SIGDMA8 DMA channel 8 interrupt

SIGDMA9 DMA channel 9 interrupt

SIGDMA10 DMA channel 10 interrupt

SIGDMA11 DMA channel 11 interrupt

SIGDMA12 DMA channel 12 interrupt

SIGDMA13 DMA channel 13 interrupt

SIGIRQ0 Hardware interrupt pin 0 interrupt

SIGIRQ1 Hardware interrupt pin 1 interrupt

SIGIRQ2 Hardware interrupt pin 2 interrupt

SIGIRQ3 Hardware interrupt pin 3 interrupt

SIGBUSLK Bus lock interrupt

SIGTIMER0HP Timer 0 high priority interrupt

SIGTIMER1HP Timer 1 high priority interrupt

SIGHW Hardware error interrupt

SIGSW Software exception

SIGDBG Emulation debug interrupt

SIGABRT Standard abort signal

SIGILL Standard illegal function signal

SIGINT Standard interactive attention signal

SIGSEGV Standard illegal storage access signal

SIGTERM Standard termination request signal

SIGFPE Standard arithmetic error signal

Table 3-33. Raise Function Signals–Values and Meanings (Cont’d)

Sig Value Definition

VisualDSP++ 5.0 C/C++ Compiler Manual 3-271
for TigerSHARC Processors

C/C++ Run-Time Library

Error Conditions

The raise function returns a zero if successful, a non-zero value if it fails.

Example

#include <signal.h>

raise (SIGIRQ2);

/* invoke the hardware interrupt pin 2 handler */

See Also

interrupt, interruptf, interrupts, interruptnr, interruptfnr, interruptsnr,
signal, signalf, signals, signalnr, signalfnr, signalsnr

Run-Time Library Reference

3-272 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

rand

random number generator

Synopsis

#include <stdlib.h>

int rand (void)

Description

This function returns a pseudo-random integer value in the range
[0, 231 – 1].

For this function, the measure of randomness is its periodicity, the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period in the order of
231 – 1.

Algorithm

The algorithm is based on a linear congruential generator.

Domain

N/A

VisualDSP++ 5.0 C/C++ Compiler Manual 3-273
for TigerSHARC Processors

C/C++ Run-Time Library

remove

remove file

Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

The remove function removes the file whose name is filename. After the
function call, filename will no longer be accessible.

The remove function is supported only under the default device driver
supplied by the VisualDSP++ simulator and EZ-Kit Lite system. It only
operates on the host file system.

The remove function returns zero on successful completion.

Error Conditions

If the remove function is unsuccessful, a non-zero value is returned.

Example

#include <stdio.h>

void remove_example(char *filename)
{

if (remove(filename))
printf("Remove of %s failed\n", filename);

else
printf("File %s removed\n", filename);

}

See Also

rename

Run-Time Library Reference

3-274 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

rename

rename a file

Synopsis

#include <stdio.h>
int rename(const char *oldname, const char *newname);

Description

The rename function will establish a new name, using the string newname,
for a file currently known by the string oldname. After a successful rename,
the file will no longer be accessible by oldname.

The rename function is supported only under the default device driver
supplied by the VisualDSP++ simulator and EZ-Kit Lite system and it
only operates on the host file system.

If rename is successful, a value of zero is returned.

Error Conditions

If rename fails, the file named oldname is unaffected and a non-zero value
is returned.

Example

#include <stdio.h>

void rename_file(char *new, char *old)
{

if (rename(old, new))
printf("rename failed for %s\n", old);

else
printf("%s now named %s\n", old, new);

}

See Also

remove

VisualDSP++ 5.0 C/C++ Compiler Manual 3-275
for TigerSHARC Processors

C/C++ Run-Time Library

rewind

reset file position indicator in a stream

Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for stream to the
beginning of the file. This is equivalent to using the fseek routine in the
following manner:

fseek(stream, 0, SEEK_SET);

The exception is that rewind will also clear the error indicator.

Error Conditions

The rewind function does not return an error condition.

Example

#include <stdio.h>
char buffer[20];
void rewind_example(FILE *fp)
{

/* write "a string" to a file */
fputs("a string", fp);
/* rewind the file to the beginning */
rewind(fp);
/* read back from the file - buffer will be "a string" */
fgets(buffer, sizeof(buffer), fp);

}

See Also

fseek

Run-Time Library Reference

3-276 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

rfft

N point real input FFT

Synopsis

#include <filter.h>

void rfft (in[], t[], out[], w[], wst, n)

const float in[]; /* Input sequence */

complex_float t[]; /* Temporary working buffer */

complex_float out[]; /* Output sequence */

const complex_float w[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the accelerated version of the ‘Discrete
Fourier Transformation’ known as a ‘Fast Fourier Transform’ or FFT. It
“decimates in frequency” by the best choice FFT algorithm, radix-4 or
mixed-radix, depending on the input sequence length. At the initial stage
of the transformation, the rfft function takes advantage of the fact that
the imaginary part of the input equals zero, which in turn eliminates half
of the multiplications in the butterfly.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
If the input data can be overwritten, then the memory requirements may
be reduced by specifying the input array as the output array provided that
the size of the input array is at least 2*n. Run-time performance of the
function is improved if the input and output arrays are allocated in a dif-
ferent memory block than the twiddle table, w.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-277
for TigerSHARC Processors

C/C++ Run-Time Library

The twiddle table is passed in the argument w, which must contain at least
¾n complex twiddle factors. The function twidfft may be used to initial-
ize the array. If the twiddle table contains more factors than needed for a
particular call on rfft, then the stride factor has to be set appropriately;
otherwise it should be 1. For more information, see “twidfft” on
page 3-327.

The library also contains the rfftf function (on page 3-283),
which is an optimized implementation of a fast radix-2 algorithm.
The characteristics of the FFT generated by the function differ to
some extent from that generated by the rfft function. Also, for
optimal performance, the rfftf function makes certain assump-
tions concerning the alignment of the input, output, and twiddle
arrays.

Algorithm

See “cfft” on page 3-105.

Domain

Input sequence length n must equal to either a power of two, or a power of
four, and at least 16.

Example

/* Example to demonstrate how to generate two real FFTs using

a single twiddle table */

#include <filter.h>

#define NDATA1 256

#define NDATA2 32

float data1[NDATA1]; /* data for a 256-point FFT */

float data2[NDATA2]; /* data for a 32-point FFT */

Run-Time Library Reference

3-278 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

complex_float output1[NDATA1];

complex_float output2[NDATA2];

static complex_float twidtab[(3*NDATA1)/4];

complex_float temp[NDATA1];

/* note that the temporary buffer should be as large as the

largest FFT generated */

/* Generate a twiddle table for a 256-point FFT */

twidfft (twidtab,NDATA1);

/* note that a twiddle table is constant for a given

number of FFT points */

/* Generate a 256-point real FFT */

rfft (data1, temp, output1, twidtab, 1, NDATA1);

/* note that the twiddle table stride factor is 1 */

/* Generate a 32-point real FFT */

rfft (data2, temp, output2, twidtab, (NDATA1/NDATA2), NDATA2);

/* note that the twiddle table stride factor is 8 */

VisualDSP++ 5.0 C/C++ Compiler Manual 3-279
for TigerSHARC Processors

C/C++ Run-Time Library

rfft_mag

rfft magnitude

Synopsis

#include <filter.h>

float rfft_mag (const complex_float dm input[],

float dm output[],

int fftsize);

Description

The rfft_mag function computes a normalized power spectrum from the
output signal generated by a rfft function. Due to the symmetry of a real
FFT about the midpoint, this function generates the power spectrum
using only the first fftsize/2 values in the signal. The size of the signal
and the size of the power spectrum is fftsize/2.

The Nyquist frequency is located at fftsize/2.

Algorithm

Example

#include <filter.h>

#define N 64

float fft_input[N];

complex_float fft_output[N];

complex_float temp[N];

complex_float twid[(3*N)/4];

magnitude z() 2 Re z()2 Im z()2+
fftsize

---------------------------------=

Run-Time Library Reference

3-280 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

float spectrum[N/2];

/* Generate a twiddle table for the FFT */

twidfft (twid, N);

/* Note that a twiddle table is constant for a given number

of FFT points */

/* Generate a real FFT using rfft */

rfft (fft_input, temp, fft_output, twid, 1, N);

/* Generate a power spectrum */

rfft_mag (fft_output, spectrum, N);

VisualDSP++ 5.0 C/C++ Compiler Manual 3-281
for TigerSHARC Processors

C/C++ Run-Time Library

rfft2d

NxN point 2-D real input FFT

Synopsis

#include <filter.h>

void rfft2d (*in, *t, *out, w[], wst, n)

const float *in; /* Pointer to input matrix a[n][n] */

complex_float *t; /* Pointer to working buffer t[n][n] */

complex_float *out; /* Pointer to matrix c[n][n] */

const complex_float w[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

This function computes a two-dimensional Fast Fourier Transform of the
real input matrix a[n][n], and stores the result in the complex matrix
c[n][n].

If input data can be overwritten, the optimum memory usage is achieved
by setting the output pointer to the input array provided that the memory
size of the input array is at least twice n*n.

For efficiency, the “twiddle table” is calculated once, during initialization,
and then provided to the FFT routine as a separate parameter. You must
declare the variable and initialize it prior to calling an FFT function. An
initialization function, twidfft, is provided.

If the twiddle table has been allocated at a larger size than needed for a
particular call of rfft2d, then the stride parameter needs to be set appro-
priately; otherwise, it should be one. For more information, see “twidfft”
on page 3-327.

Run-Time Library Reference

3-282 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

Algorithm

where i={0,1,...,n -1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must equal to either a power of two, or a power of
four, and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,)* (* *)/= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 5.0 C/C++ Compiler Manual 3-283
for TigerSHARC Processors

C/C++ Run-Time Library

rfftf

fast N point real input FFT

Synopsis

#include <filter.h>

void rfftf (in[], out[], twid[], wst, n)

const float in[]; /* Input sequence */

complex_float out[]; /* Output sequence */

const complex_float twid[]; /* Twiddle sequence */

int wst; /* Twiddle factor stride */

int n; /* Number of FFT points */

Description

The rfftf function transforms the time domain real input signal sequence
to the frequency domain by using the accelerated version of the “Discrete
Fourier Transform” known as a ‘Fast Fourier Transform’ or FFT. It “dec-
imates in frequency” using an optimized radix-2 algorithm.

The size of the input array in is n, where n represents the number of points
in the FFT. The rfftf function has been designed for optimum perfor-
mance and requires that the input array in be aligned on an address
boundary that is a multiple of the FFT size. For certain applications, this
alignment constraint may not be appropriate and, in such cases, the appli-
cation should call the rfft function (see on page 3-276) instead (with a
consequent loss of some performance).

Due to the symmetry of a real FFT, only n/2 points of the output are
computed by the function and they are stored in the output array out.
Also, each value of the output is double the actual FFT value. This behav-
ior is in contrast to that of the rfft function, which generates all n points
of the FFT and does not double the magnitude of the FFT output.

Run-Time Library Reference

3-284 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The twiddle table is passed in the argument twid, which must contain at
least n/2 complex twiddle factors. The function twidfftf may be used to
initialize the array. If the twiddle table contains more factors than required
for a particular FFT size, then the stride factor wst has to be set appropri-
ately; otherwise, it should be set to 1. For more information, see “twidfftf”
on page 3-329.

The twiddle tables used by the functions rfft and rfftf are not
compatible. The rfft function uses a twiddle table that contains
¾n factors in which the imaginary coefficients are positive sine val-
ues, while the rfftf function uses a twiddle table with ½n factors
in which the imaginary coefficients are negative sine values.

It is recommended that the twiddle table and the output array are allo-
cated in separate memory blocks—otherwise, the performance of the
function degrades.

There are constraints in the use of this function.
For more information, see “filter.h – DSP Filters and Transforma-
tions” on page 3-27.

Algorithm

See “cfftf” on page 3-112.

Domain

The number of points in the FFT must be a power of 2 and must be at
least 64.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-285
for TigerSHARC Processors

C/C++ Run-Time Library

rfftf_mag

rfftf magnitude

Synopsis

#include <filter.h>

float rfftf_mag (const complex_float dm input[],

float dm output[],

int fftsize);

Description

The rfftf_mag function computes a normalized power spectrum from the
output signal generated by a rfftf function. The size of the signal and the
size of the power spectrum is fftsize/2.

The Nyquist frequency is located at fftsize/2.

Algorithm

Example

#include <filter.h>

#define N 64

#pragma align 64

section ("data2") float fft_input[N];

section ("data1") complex_float fft_output[N/2];

section ("data1") complex_float twid_table[N/2];

float spectrum[N/2];

magnitude z() Re z()2 Im z()2+
fftsize

-------------------------------=

Run-Time Library Reference

3-286 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

/* Generate a twiddle table for the FFT */

twidfftf (twid_table, N);

/* Note that a twiddle table is constant for a given number

of FFT points */

/* Generate a real FFT using rfftf */

rfftf (fft_input, fft_output, twid_table, 1, N);

/* Generate a power spectrum */

rfftf_mag (fft_output, spectrum, N);

VisualDSP++ 5.0 C/C++ Compiler Manual 3-287
for TigerSHARC Processors

C/C++ Run-Time Library

rms

root mean square

Synopsis

#include <stats.h>

float rmsf (a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the root mean square of the input elements con-
tained within input vector a and returns the result.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

c
a

n

i
i

n

= =

−

∑ 2

0

1

Run-Time Library Reference

3-288 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

rsqrt

reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float x)

double rsqrt (double x)

long double rsqrtd (long double x)

Description

This function calculates the reciprocal of the square root of the number x.
If x is negative, the function returns 0.

Algorithm

Domain

x = [0.0 to +3.4 x 1038] for rsqrtf()

x = [0.0 ... 1.7 x 10308] for rsqrtd()

return 1 x()⁄=

VisualDSP++ 5.0 C/C++ Compiler Manual 3-289
for TigerSHARC Processors

C/C++ Run-Time Library

scanf

convert formatted input from stdin

Synopsis

#include <stdio.h>

int scanf(const char *format, /* args */...);

Description

The scanf function reads from the standard input stream stdin, interprets
the inputs according to format, and stores the results of the conversions in
its arguments. The string pointed to by format contains the control for-
mat for the input with the arguments that follow being pointers to the
locations where the converted results are to be written to.

The scanf function is equivalent to calling fscanf with stdin as its first
argument. For details on the control format string, refer to “fscanf” on
page 3-185.

The scanf function returns number of successful conversions performed.

Error Conditions

The scanf function returns EOF if it encounters an error before any con-
versions were performed.

Example

#include <stdio.h>

void scanf_example(void)
{

short int day, month, year;
char string[20];

/* Scan a string from standard input */

Run-Time Library Reference

3-290 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

scanf ("%s", string);
/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */
scanf ("%hd%*c%hd%*c%hd", &day, &month, &year);

}

See Also

fscanf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-291
for TigerSHARC Processors

C/C++ Run-Time Library

setbuf

specify full buffering for a file or stream

Synopsis

#include <stdio.h>
void setbuf(FILE *stream, char* buf);

Description

The setbuf function results in the array pointed to by buf to be used to
buffer the stream pointed to by stream, instead of an automatically allo-
cated buffer. The setbuf function may be used only after the stream
pointed to by stream is opened, but before it is read or written to. Note
that the buffer provided must be of size BUFSIZ as defined in the stdio.h
header.

If buf is the NULL pointer, the input/output will be completely unbuffered.

Error Conditions

The setbuf function does not return an error condition.

Example

#include <stdio.h>
#include <stdlib.h>
void* allocate_buffer_from_heap(FILE* fp)
{

/* Allocate a buffer from the heap for the file pointer */
void* buf = malloc(BUFSIZ);
if (buf != NULL)

setbuf(fp, buf);
return buf;

}

See Also

setvbuf

Run-Time Library Reference

3-292 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

setvbuf

specify buffering for a file or stream

Synopsis

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int type, size_t size);

Description

The setvbuf function may be used after a stream has been opened, but
before it is read or written to. The type argument specifies the kind of
buffering that is to be used.

The valid values for type are detailed in the following table.

If buf is not the NULL pointer, the array it points to will be used for buffer-
ing, instead of an automatically allocated buffer. Note that if buf is
non-NULL, you must ensure that the associated storage continues to be
available until you close the stream identified by stream. The size argu-
ment specifies the size of the buffer required. If input/output is
unbuffered, the buf and size arguments are ignored.

When the buffer contains data for a text stream (either input data
or output data), the information is held in the form of 8-bit charac-
ters that are packed into 32-bit memory locations. Due to internal

Type Effect

_IOFBF Use full buffering for output. Only output to the host system when
the buffer is full, or when the stream is flushed or closed, or when a
file positioning operation intervenes.

_IOLBF Use line buffering. The buffer will be flushed whenever a NEWLINE
is written, as well as when the buffer is full, or when input is
requested.

_IONBF Do not use any buffering at all.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-293
for TigerSHARC Processors

C/C++ Run-Time Library

mechanisms used to unpack and pack this data, the I/O buffer
must not reside at a memory location that is greater than the
address 0x3fffffff.

If buf is the NULL pointer, buffering is enabled and a buffer of size size
will be automatically generated.

The setvbuf function returns zero when successful.

Error Conditions

The setvbuf function will return a non-zero value if an invalid value is
given for type, the stream has already been used to read or write data, or
an I/O buffer could not be allocated.

Example

#include <stdio.h>

void line_buffer_stderr(void)

{

/* stderr is not buffered - set to use line buffering */

setvbuf (stderr,NULL,_IOLBF,BUFSIZ);

}

See Also

setvbuf

Run-Time Library Reference

3-294 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

sign

sign

Synopsis

#include <math.h>

float signf (float parm1, float parm2);

double sign (double parm1, double parm2);

long double signd (long double parm1, long double parm2);

Description

These functions copy the sign of the second argument to the first
argument.

Algorithm

return(|parm1| * signof(parm2))

Domain

Full range

VisualDSP++ 5.0 C/C++ Compiler Manual 3-295
for TigerSHARC Processors

C/C++ Run-Time Library

signal, signalf, signals, signalnr, signalfnr, signalsnr

define signal handling

Synopsis

#include <signal.h>

void (*signal (int sig, void(*func)(int))) (int);

void (*signalf (int sig, void(*func)(int))) (int);

void (*signals (int sig, void(*func)(int))) (int);

void (*signalnr (int sig, void(*func)(int))) (int);

void (*signalfnr (int sig, void(*func)(int))) (int);

void (*signalsnr (int sig, void(*func)(int))) (int);

Description

The signal function determines how a signal received during program
execution is handled. The function sets up a handler that can respond to a
single occurrence of an interrupt. It returns the value of the previously
installed interrupt or signal handler action.

The sig argument must be one of the values that are listed in Table 3-33
on page 3-269 and the func argument must be one of the values that are
listed in Table 3-34. The signal function causes the receipt of the signal
number sig to be handled in one of the following ways:

The function pointed to by func is executed once when the interrupt is
received. Handling of the interrupt is then returned to the default state.

Table 3-34. Interrupt Handling

Func Value Action

SIG_DFL The default action is taken.

SIG_IGN The signal is ignored.

Function address The function pointed to by func is executed.

Run-Time Library Reference

3-296 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The signal, signalf, and signals functions perform similar services and
always enable nested interrupts, but they differ in the manner in which
they dispatch an interrupt. The signal function is appropriate for inter-
rupt service routines that are written in C/C++. This function uses the
normal interrupt dispatcher, which provides the following services:

• Preserves all registers

• Resets the circular buffer base and length registers for linear access

• Preserves static condition flags

• Preserves the data alignment buffers

• Calls the handler function

• Restores state ready for return to the interrupted routine

The signalf function uses a fast interrupt dispatcher that is only suitable
for interrupt service routines that have been implemented in assembler.
The fast interrupt dispatcher provides the same services as the normal
interrupt dispatcher except that it does not preserve or restore any of the
following registers:

• The circular buffer base and length registers

• The static condition flags

• The summation registers PR1:0

• The data alignment buffers

• The Enhanced Communication Instruction registers

The signals function uses a super interrupt dispatcher that preserves and
restores only the resources used in order to perform the dispatch. For this
reason, it should only be used with interrupt service routines that have
been written in assembler. The interrupt service routine must preserve all
the registers that it uses.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-297
for TigerSHARC Processors

C/C++ Run-Time Library

When installing a handler for an exception condition note that the dis-
patcher for software exceptions performs some identification of the cause
of the exception, and allows the user to install separate handlers for vari-
ous classes of exception. If an illegal instruction line caused the exception,
then the dispatcher will invoke the handler for the SIGILL signal. For a
misaligned access or an access to a protected register, the handler for
SIGSEGV is invoked. For a floating-point exception, the handler for the
SIGFPE signal is invoked. If the exception came from another source then
the handler for SIGSW is invoked. For each of these cases, if a handler has
not been registered for the corresponding signal then no handler is
invoked and the exception is lost.

The signal, signalf, and signals functions install signal handlers that
can be nested. This means that when a signal is being serviced by a routine
installed by one of these functions, a higher priority signal or interrupt
may be serviced before the routine has finished dealing with the initial
signal.

The signalnr, signalfnr, and signalnr functions install non-reentrant
signal handlers, meaning that on servicing a signal, signals and interrupts
are disabled until the execution of the service routine has completely
finished.

The software exception handler is a special case in the run-time library dis-
patchers. The “nr” versions of signal are primarily for installing hardware
interrupt handlers. The software exception dispatcher does not disable
hardware interrupts, even if installed by a “nr” routine. It is necessary,
therefore, to manually disable hardware interrupts around any portion of
the software exception handler that must not be interrupted.

Error Conditions

The signal function returns SIG_ERR and sets errno to a positive non-zero
value if it does not recognize the requested signal.

Run-Time Library Reference

3-298 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example

#include <signal.h>

signal (SIGIRQ2, irq2_handler);

/* enable hardware interrupt pin 2 handler */

signal (SIGIRQ2, SIG_IGN);

/* disable hardware interrupt pin 2 handler */

See Also

interrupt, interruptf, interrupts, interruptnr, interruptfnr, interruptsnr,
raise

VisualDSP++ 5.0 C/C++ Compiler Manual 3-299
for TigerSHARC Processors

C/C++ Run-Time Library

sin

sine

Synopsis

#include <math.h>

float sinf (float x);

double sin (double x);

long double sind (long double x);

Description

The sin functions return the sine of the argument. The input is inter-
preted as a radian; the output is in the range [-1, 1]. If x is outside of the
domain, the functions return 0.0.

Algorithm

return = sin(x)

Domain

x = [–1,647,095 ... 1,647,095] for sinf()

x = [–843,314,850 ... 843,314,850] for sind()

Run-Time Library Reference

3-300 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

sinh

hyperbolic sine

Synopsis

#include <math.h>

float sinhf (float x);

double sinh (double x);

long double sinhd (long double x);

Description

The sinh functions return the hyperbolic sine of the argument x, where x
is measured in radians. If x is outside the domain, the functions return
3.4 x 1038 for a float-type return value and 1.7 x 10308 for a double-type
return value.

Algorithm

return = sinh(x)

Domain

x = [–(ln(3.4 x 1038) – ln(2)) ... (ln(3.4 x 1038) – ln(2))] for sinhf()

x = [–(ln(1.7 x 10308) – ln(2)) ... (ln(1.7 x 10308) – ln(2))] for sinhd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-301
for TigerSHARC Processors

C/C++ Run-Time Library

snprintf

format data into an n-character array

Synopsis

#include <stdio.h>

int snprintf (char *str, size_t n, const char *format, ...);

Description

The snprintf function is defined in the C99 Standard (ISO/IEC 9899).

It is similar to the sprintf function in that snprintf formats data accord-
ing to the argument format, and then writes the output to the array str.
The argument format contains a set of conversion specifiers, directives,
and ordinary characters that are used to control how the data is formatted.
Refer to fprintf (on page 3-173) for a description of the valid format
specifiers.

The function differs from sprintf in that no more than n-1 characters are
written to the output array. Any data written beyond the n-1th character
is discarded. A terminating NUL character is written after the end of the last
character written to the output array, unless n is set to zero. In that case
nothing will be written to the output array and the output array may be
represented by the NULL pointer.

The snprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating null character written to the array.

The output array will contain all of the formatted text, if the return value
is not negative and is also less than n.

Error Conditions

The snprintf function returns a negative value if a formatting error
occurred.

Run-Time Library Reference

3-302 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example

#include <stdio.h>
#include <stdlib.h>
extern char *make_filename(char *name, int id)
{

char *filename_template = "%s%d.dat";
char *filename = NULL;

int len = 0;
int r; /* return value from snprintf */

do {
r = snprintf(filename,len,filename_template,name,id);
if (r < 0) /* formatting error? */

abort();
if (r < len) /* was complete string written? */

return filename; /* return with success */
filename = realloc(filename,(len=r+1));

} while (filename != NULL);
abort();

}

See Also

fprintf, sprintf, vsnprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-303
for TigerSHARC Processors

C/C++ Run-Time Library

sprintf

format data into a character array

Synopsis

#include <stdio.h>

int sprintf (char *str, const char *format, /* args */...);

Description

The sprintf function formats data according to the argument format,
and writes the output to the array str. The argument format contains a
set of conversion specifiers, directives, and ordinary characters that are
used to control how the data is formatted. Refer to fprintf
(on page 3-173) for a description of the valid format specifiers.

In all respects (other than writing to an array rather than a stream), the
behavior of sprintf is similar to that of fprintf.

If the sprintf function is successful, it will return the number of charac-
ters written in the array, not counting the terminating NUL character.

Error Conditions

The sprintf function returns a negative value if a formatting error
occurred.

Example

#include <stdio.h>

#include <stdlib.h>

char filename[128];

extern char *assign_filename(char *name)

{

char *filename_template = "%s.dat";

Run-Time Library Reference

3-304 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

int r; /* return value from sprintf */

if ((strlen(name)+5) > sizeof(filename))

abort();

r = sprintf(filename, filename_template, name);

if (r < 0) /* sprintf failed */

abort();

return filename; /* return with success */

}

See Also

fprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-305
for TigerSHARC Processors

C/C++ Run-Time Library

sqrt

square root

Synopsis

#include <math.h>

float sqrtf (float x);

double sqrt (double x);

long double sqrtd (long double x);

Description

The sqrt functions return the positive square root of the argument x.
If x is negative, the functions return 0.

Algorithm

Domain

x = [0.0 ... 3.4 x 1038] for sqrtf()

x = [0.0 ... 1.7 x 10308] for sqrtd()

return x=

Run-Time Library Reference

3-306 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

srand

random number seed

Synopsis

#include <stdlib.h>

void srand (unsigned int newseed);

Description

The srand function is used to set the seed value for the rand function.
A particular seed value always produces the same sequence of pseudo-
random numbers.

Algorithm

generator_seed = newseed

Domain

0 to RAND_MAX

VisualDSP++ 5.0 C/C++ Compiler Manual 3-307
for TigerSHARC Processors

C/C++ Run-Time Library

sscanf

convert formatted input in a string

Synopsis

#include <stdio.h>
int sscanf(const char *s, const char *format, /* args */...);

Description

The sscanf function reads from the string s. The function is equivalent to
fscanf, with the exception of the string being read from a string rather
than a stream. The behavior of sscanf when reaching the end of the string
equates to fscanf reaching the EOF in a stream. For details on the control
format string, refer to “fscanf” on page 3-185.

The sscanf function returns the number of items successfully read.

Error Conditions

If the sscanf function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void sscanf_example(const char *input)
{

short int day, month, year;
char string[20];

/* Scan for a string from "input" */
sscanf (input, "%s", string);
/* Scan a date with any separator, eg, 1-1-2006 or 1/1/2006 */
sscanf (input, "%hd%*c%hd%*c%hd", &day, &month, &year);

}

See Also

fscanf

Run-Time Library Reference

3-308 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strftime

format a broken-down time

Synopsis

#include <time.h>

size_t strftime (char *buf,

size_t buf_size,

const char *format,

const struct tm *tm_ptr);

Description

The strftime function formats the broken-down time tm_ptr into the
char array pointed to by buf, under the control of the format string for-
mat. buf_size characters (including the null terminating character) are
written to buf.

Similar to printf, the strftime format string consists of ordinary charac-
ters, which are copied unchanged to the char array buf, and zero or more
conversion specifiers. A conversion specifier starts with the character % and
is followed by a character that indicates the form of transformation
required – the supported transformations are given below in Table 3-35.
The strftime function only supports the “C” locale, and this is reflected
in the table.

Table 3-35. Conversion Specifiers Supported by strftime

Conversion Specifier Transformation ISO/IEC 9899

%a abbreviated weekday name yes

%A full weekday name yes

%b abbreviated month name yes

%B full month name yes

VisualDSP++ 5.0 C/C++ Compiler Manual 3-309
for TigerSHARC Processors

C/C++ Run-Time Library

%c date and time presentation in the form
of DDD MMM dd hh:mm:ss yyyy

yes

%C century of the year POSIX.2-1992 + ISO C99

%d day of the month (01 - 31) yes

%D date represented as mm/dd/yy POSIX.2-1992 + ISO C99

%e day of the month, padded with a space
character (cf %d)

POSIX.2-1992 + ISO C99

%F date represented as yyyy-mm-dd POSIX.2-1992 + ISO C99

%h abbreviated name of the month (same as
%b)

POSIX.2-1992 + ISO C99

%H hour of the day as a 24-hour clock
(00-23)

yes

%I hour of the day as a 12-hour clock
(00-12)

yes

%j day of the year (001-366) yes

%k hour of the day as a 24-hour clock pad-
ded with a space (0-23)

no

%l hour of the day as a 12-hour clock pad-
ded with a space (0-12)

no

%m month of the year (01-12) yes

%m month of the year (01-12) yes

%M minute of the hour (00-59) yes

%n newline character POSIX.2-1992 + ISO C99

%p AM or PM yes

%P am or pm no

%r time presented as either hh:mm:ss AM
or as hh:mm:ss PM

POSIX.2-1992 + ISO C99

%R time presented as hh:mm POSIX.2-1992 + ISO C99

Table 3-35. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

Run-Time Library Reference

3-310 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

The current implementation of time.h does not support time zones
and, therefore, the %Z specifier does not generate any characters.

The strftime function returns the number of characters (not including
the terminating null character) that have been written to buf.

Error Conditions

The strftime function returns zero if more than buf_size characters are
required to process the format string. In this case, the contents of the array
buf will be indeterminate.

%S second of the minute (00-61) yes

%t tab character POSIX.2-1992 + ISO C99

%T time formatted as %H:%M:%S POSIX.2-1992 + ISO C99

%U week number of the year (week starts on
Sunday) (00-53)

yes

%w weekday as a decimal (0-6) (0 if Sun-
day)

yes

%W week number of the year (week starts on
Sunday) (00-53)

yes

%x date represented as mm/dd/yy (same as
%D)

yes

%X time represented as hh:mm:ss yes

%y year without the century (00-99) yes

%Y year with the century (nnnn) yes

%Z the time zone name, or nothing if the
name cannot be determined

yes

%% % character yes

Table 3-35. Conversion Specifiers Supported by strftime (Cont’d)

Conversion Specifier Transformation ISO/IEC 9899

VisualDSP++ 5.0 C/C++ Compiler Manual 3-311
for TigerSHARC Processors

C/C++ Run-Time Library

Example

#include <time.h>

#include <stdio.h>

extern void

print_time(time_t tod)

{

char tod_string[100];

strftime(tod_string,

100,

"It is %M min and %S secs after %l o'clock (%p)",

gmtime(&tod));

puts(tod_string);

}

See Also

ctime, gmtime, localtime, mktime

Run-Time Library Reference

3-312 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtod

convert string to double

Synopsis

#include <stdlib.h>

double strtod (const char *nptr, char **endptr);

Description

The strtod function converts a character string to a double value where
the input string is a sequence of characters that can be interpreted as a
numerical value of the specified type.

Algorithm

The nptr argument is a pointer to a string that represents either a decimal
floating-point number or a hexadecimal floating-point number. Either
form of number may be preceded by a sequence of whitespace characters
(as determined by the isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-313
for TigerSHARC Processors

C/C++ Run-Time Library

The form of a hexadecimal floating-point number is:.

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Domain

The number should fit within the dynamic range of a double. The func-
tion returns a zero if no conversion could be made. If the correct value
results in an overflow, a positive or negative (as appropriate) HUGE_VAL is
returned. If the correct value results in an underflow, 0.0 is returned. The
ERANGE value is stored in errno in the case of either an overflow or
underflow.

Run-Time Library Reference

3-314 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtof

convert string to float

Synopsis

#include <stdlib.h>

float strtof (const char *nptr, char **endptr);

Description

The strtof function converts a character string to a single-precision
floating-point value where the input string is a sequence of characters that
can be interpreted as a numerical value of the specified type.

Algorithm

The nptr argument is a pointer to a string that represents either a decimal
floating-point number or a hexadecimal floating-point number. Either
form of number may be preceded by a sequence of whitespace characters
(as determined by the isspace function) that the function ignores.

A decimal floating-point number has the form:

[sign] [digits] [.digits] [{e|E} [sign] [digits]]

The sign token is optional and is either plus (+) or minus (–); and
digits are one or more decimal digits. The sequence of digits may contain
a decimal point (.).

The decimal digits can be followed by an exponent, which consists of an
introductory letter (e or E) and an optionally signed integer. If neither an
exponent part nor a decimal point appears, a decimal point is assumed to
follow the last digit in the string.

VisualDSP++ 5.0 C/C++ Compiler Manual 3-315
for TigerSHARC Processors

C/C++ Run-Time Library

The form of a hexadecimal floating-point number is:.

[sign] [{0x}|{0X}] [hexdigs] [.hexdigs] [{p|P} [sign] [digits]]

A hexadecimal floating-point number may start with an optional plus (+)
or minus (-) followed by the hexadecimal prefix 0x or 0X. This character
sequence must be followed by one or more hexadecimal characters that
optionally contain a decimal point (.).

The hexadecimal digits are followed by a binary exponent that consists of
the letter p or P, an optional sign, and a non-empty sequence of decimal
digits. The exponent is interpreted as a power of two that is used to scale
the fraction represented by the tokens [hexdigs] [.hexdigs].

The first character that does not fit either form of number stops the scan.
If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Domain

The number should fit within the dynamic range of a float. The function
returns a zero if no conversion could be made. If the correct value results
in an overflow, a positive or negative (as appropriate) FLT_MAX is returned.
If the correct value results in an underflow, 0.0 is returned. The ERANGE
value is stored in errno in the case of either an overflow or underflow.

Run-Time Library Reference

3-316 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtoi

convert string to integer

Synopsis

#include <stdlib.h>
int strtoi (const char *string, char **end, int base);

Description

The strtoi function converts a character string to a integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers). The function stops reading the input string at the first
character that it cannot recognize as part of a valid argument defined
above. It sets *end to that location, provided that end is not a null pointer.

If the third argument base is zero, then the function tries to determine the
base from the information it finds inside the string (see format description
above). If the third argument base is non-zero, then it has to be between 2
and 36, inclusively. If the third argument base does not correspond to any
of the above values, it is set to 10. If the third argument base is between
11 and 36 (inclusively) the letters of the alphabet from a to z are used as
needed to represent the extra digits in the corresponding base.

Domain

-2,147,483,648 to 2,147,483,647

VisualDSP++ 5.0 C/C++ Compiler Manual 3-317
for TigerSHARC Processors

C/C++ Run-Time Library

strtol

convert string to long integer

Synopsis

#include <stdlib.h>
long strtol (const char *string, char **end, int base);

Description

The strtol function converts a character string to a integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers). The function stops reading the input string at the first
character that it cannot recognize as part of a valid argument defined
above. It sets *end to that location, provided that end is not a null pointer.

If the third argument base is zero, then the function tries to determine the
base from the information it finds inside the string (see format description
above). If the third argument base is non-zero, then it has to be between 2
and 36, inclusively. If the third argument base does not correspond to any
of the above values, it is set to 10. If the third argument base is between
11 and 36 (inclusively), the letters of the alphabet from a to z are used as
needed to represent the extra digits in the corresponding base.

Domain

-2,147,483,648 to 2,147,483,647

Run-Time Library Reference

3-318 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtold

convert string to long double

Synopsis

#include <stdlib.h>
long double strtold (const char *string, char **end);

Description

The strtold function converts a character string to a double-precision
floating-point value where the input string is a sequence of characters that
can be interpreted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [digits] [.digits] [{e|E} [sign] digits]

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), and digits are one or more decimal digits. If
no digits appear before the decimal point then at least one must appear
after the decimal point. The decimal digits may be followed by an expo-
nent denoted by one of the following characters: e or E, followed by a
decimal integer which may be signed.

The function stops reading the input string at the first character that it
cannot recognize as part of a valid argument defined above. It sets *end to
that location, provided that end is not a null pointer.

Domain

The number should fit within the dynamic range of a long double. The
function returns a zero if no conversion could be made. If the correct
value results in an overflow, a positive or negative (as appropriate)

VisualDSP++ 5.0 C/C++ Compiler Manual 3-319
for TigerSHARC Processors

C/C++ Run-Time Library

LDBL_MAX is returned. If the correct value results in an underflow, 0.0 is
returned. The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Run-Time Library Reference

3-320 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtoll

 convert string to long long integer

Synopsis

#include <stdlib.h>
long long strtoll (const char *string, char **end, int base);

Description

The strtoll function converts a character string to a integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to f for hexadeci-
mal numbers). The function stops reading the input string at the first
character that it cannot recognize as part of a valid argument defined
above. It sets *end to that location, provided that end is not a null pointer.

If the third argument base is zero, then the function tries to determine the
base from the information it finds inside the string (see format description
above). If the third argument base is non-zero, then it has to be between 2
and 36, inclusively. If the third argument base does not correspond to any
of the above values, it is set to 10. If the third argument base is between
11 and 36 (inclusively), the letters of the alphabet from a to z are used as
needed to represent the extra digits in the corresponding base.

Domain

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

VisualDSP++ 5.0 C/C++ Compiler Manual 3-321
for TigerSHARC Processors

C/C++ Run-Time Library

strtoul

convert string to unsigned long integer

Synopsis

#include <stdlib.h>
unsigned long strtoul (const char *string, char **end, int base);

Description

The strtoul function converts a character string to a integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to z for hexadeci-
mal numbers). The function stops reading the input string at the first
character that it cannot recognize as part of a valid argument defined
above. It sets *end to that location, provided that end is not a null pointer.

If the third argument base is zero, then the function tries to determine the
base from the information it finds inside the string (see format description
above). If the third argument base is non-zero, then it has to be between 2
and 36, inclusively. If the third argument base does not correspond to any
of the above values, it is set to 10. If the third argument base is between
11 and 36 (inclusively), the letters of the alphabet from a to z are used as
needed to represent the extra digits in the corresponding base.

Domain

0 to 4,294,967,295

Run-Time Library Reference

3-322 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

strtoull

convert string to unsigned long long integer

Synopsis

#include <stdlib.h>
unsigned long long strtoull (const char *string, char **end,

int base);

Description

The strtoull function converts a character string to a integer fixed-point
value where the input string is a sequence of characters that can be inter-
preted as a numerical value of the specified type.

Algorithm

The string argument is as follows:

[whitespace] [sign] [base] digits

where whitespace can consist of spaces and/or tab characters, sign is
either plus (+) or minus (-), base is 0 for octal and 0x for hexadecimal, and
digits are one or more decimal digits (or letters from a to z for hexadeci-
mal numbers). The function stops reading the input string at the first
character that it cannot recognize as part of a valid argument defined
above. It sets *end to that location, provided that end is not a null pointer.

If the third argument base is zero, then the function tries to determine the
base from the information it finds inside the string (see format description
above). If the third argument base is non-zero, then it has to be between 2
and 36, inclusively. If the third argument base does not correspond to any
of the above values, it is set to 10. If the third argument base is between
11 and 36 (inclusively), the letters of the alphabet from a to z are used as
needed to represent the extra digits in the corresponding base.

Domain

0 to 18,446,744,073,709,551,615

VisualDSP++ 5.0 C/C++ Compiler Manual 3-323
for TigerSHARC Processors

C/C++ Run-Time Library

tan

tangent

Synopsis

#include <math.h>

float tanf (float x);

double tan (double x);

long double tand (long double x);

Description

The tan functions return the tangent of the argument x, where x is mea-
sured in radians. The library functions return 0 for any input argument
that is outside the defined domain.

Algorithm

return = tan(x)

Domain

x = [–6,588,397 ... 6,588,397] for tanf()

x = [–421,657,424 ... 421,657,424] for tand()

Run-Time Library Reference

3-324 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

tanh

hyperbolic tangent

Synopsis

#include <math.h>

float tanhf (float x);

double tanh (double x);

long double tanhd (long double x);

Description

These functions calculate the hyperbolic tangent of number x, where x is
measured in radians. If x is outside the domain, these functions return
3.4 x 1038 for a float-type return value and 1.7 x 10308 for a double-type
return value.

Algorithm

return = tanh(x)

Domain

x = [–(ln(3.4 x 1038) – ln(2)) ... (ln(3.4 x 1038) – ln(2))] for tanhf()

x = [–(ln(1.7 x 10308) – ln(2)) ... (ln(1.7 x 10308) – ln(2))] for tanhd()

VisualDSP++ 5.0 C/C++ Compiler Manual 3-325
for TigerSHARC Processors

C/C++ Run-Time Library

time

calendar time

Synopsis

#include <time.h>

time_t time (time_t *t);

Description

The time function returns the current calendar time which measures the
number of seconds that have elapsed since the start of a known epoch. As
the calendar time cannot be determined in this implementation of time.h,
a result of (time_t) -1 is returned. The function’s result is also assigned
to its argument, if the pointer to t is not a null pointer.

Error Conditions

The time function will return the value (time_t) -1 if the calendar time is
not available.

Example

#include <time.h>

#include <stdio.h>

if (time(NULL) == (time_t) -1)

printf("Calendar time is not available\n");

See Also

ctime, gmtime, localtime

Run-Time Library Reference

3-326 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

transpm

matrix transpose

Synopsis

#include <matrix.h>

void transpmf (a,n,m,c)

const float *a; /* Pointer to input matrix a[][] */

int n; /* Number of rows in matrix a[][] */

int m; /* Number of columns in matrix a[][] */

float *c; /* Pointer to output matrix c[][] */

Description

This function computes the linear algebraic transpose of input matrix
a[][] and stores the result in c[][]. The dimensions of matrix a are n and
m. The resulting matrix c[][] is of dimensions m and n.

The input matrix a must be aligned on a quad-word boundary.

Algorithm

cji = aij

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-327
for TigerSHARC Processors

C/C++ Run-Time Library

twidfft

generate FFT twiddle factors

Synopsis

#include <filter.h>

void twidfft (w[], n)

complex_float w[]; /* Twiddle sequence */

int n; /* Number of FFT points */

Description

Various different versions of the FFT are provided, including cfft, rfft,
ifft, cfft2d, rfft2d, ifft2d. The number of points is provided as an
argument; when appropriate, the library uses radix-2 or radix-4
implementations.

For efficiency, the twiddle table is calculated once, during initialization,
and then provided to the FFT routine as a separate parameter. You must
declare the variable and initialize it prior to calling an FFT function. The
function twidfft is the initialization function.

Several FFTs of different sizes can all be accommodated with the same
twiddle factor table. Simply allocate the table at the maximum size. Each
FFT has an additional parameter, the “stride” of the twiddle table. To use
the whole table, specify a stride of 1. If your FFT uses only half the points
of the largest, the stride should be 2 (this takes only every other element).

The twiddle table generated by the twidfft function is not com-
patible with the twiddle table generated by the function twidfftf,
and must not be used in conjunction with the fast FFT functions
cfftf and rfftf.

Run-Time Library Reference

3-328 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients. 3/4 of one period of
sine/cosine is described by 3/4 n complex samples in the lookup table.

The samples are generated as follows:

where k = {0,1,2,..., ¾n – 1}

Domain

The n parameter must be either a power of two, or a power of four, and at
least 16.

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

twid im k
n

k_ () sin= ⎛
⎝⎜

⎞
⎠⎟

2π

VisualDSP++ 5.0 C/C++ Compiler Manual 3-329
for TigerSHARC Processors

C/C++ Run-Time Library

twidfftf

generate FFT twiddle factors for a fast FFT

Synopsis

#include <filter.h>

void twidfftf (w[], n)

complex_float w[]; /* Twiddle sequence */

int n; /* Number of FFT points */

Description

The twidfftf function generates complex twiddle factors for the fast FFT
functions cfftf and rfftf, and stores the coefficients in the vector w. The
vector w, known as the twiddle table, is normally calculated once and is
then passed to a fast FFT as a separate argument. The size of the table
must be ½ of n, the number of points in the FFT.

The same twiddle table may be used to calculate FFTs of different sizes
provided that the table was generated for the largest FFT. Each FFT func-
tion has a stride parameter that the function uses to stride through the
twiddle table. Normally, this stride parameter is set to 1, but to generate a
smaller FFT, the argument should be scaled appropriately. For example, if
a twiddle table was generated for an FFT with N points, then the same
twiddle table may be used to generate a N/2-point FFT provided that the
stride parameter is set to 2, or a N/4-point FFT if the parameter is set to 4.

The twiddle table generated by the twidfftf function is not com-
patible with the twiddle table generated by the twidfft function.

Run-Time Library Reference

3-330 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Algorithm

The function calculates a lookup table of complex twiddle factors. The
coefficients generated are:

where k = {0, 1, 2, …, n /2 – 1}

Domain

The number of points in the FFT must be a power of 2 and must be at
least 32.

twid re k
n

k_ () cos= ⎛
⎝⎜

⎞
⎠⎟

2π

⎟
⎠
⎞

⎜
⎝
⎛−= k

n
kimtwid π2

sin)(_

VisualDSP++ 5.0 C/C++ Compiler Manual 3-331
for TigerSHARC Processors

C/C++ Run-Time Library

ungetc

push character back into input stream

Synopsis

#include <stdio.h>

int ungetc(int uc, FILE *stream);

Description

The ungetc function pushes the character specified by uc back onto
stream. The unsigned chars that have been pushed back onto stream will
be returned by any subsequent read of stream in the reverse order of their
pushing.

A successful call to the ungetc function will clear the EOF indicator for
stream. The file position indicator for stream is decremented for every
successful call to ungetc.

Upon successful completion, ungetc returns the character pushed back
after conversion.

Error Conditions

If the ungetc function is unsuccessful, EOF is returned.

Example

#include <stdio.h>

void ungetc_example(FILE *fp)

{

int ch, ret_ch;

/* get char from file pointer */

ch = fgetc(fp);

/* unget the char, return value should be char */

if ((ret_ch = ungetc(ch, fp)) != ch)

Run-Time Library Reference

3-332 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

printf("ungetc failed\n");

/* make sure that the char had been placed in the file */

if ((ret_ch = fgetc(fp)) != ch)

printf("ungetc failed to put back the char\n");

}

See Also

fseek, fsetpos, getc

VisualDSP++ 5.0 C/C++ Compiler Manual 3-333
for TigerSHARC Processors

C/C++ Run-Time Library

var

variance

Synopsis

#include <stats.h>

float varf (a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the variance of the input elements contained
within input vector a and returns the result.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038

)1(

)(* 2
1

0

1

0

2

−

−
=

∑∑
−

=

−

=

nn

aan
c

n

i
i

n

i
i

Run-Time Library Reference

3-334 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

vecdot

real vector dot product

Synopsis

#include <vector.h>

float vecdotf (a,b,n)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

int n; /* Element count */

Description

This function computes the dot product of the two input vectors a and b,
and returns the scalar result.

Algorithm

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

∑
−

=

1

0

*
n

i
ii bareturn =

VisualDSP++ 5.0 C/C++ Compiler Manual 3-335
for TigerSHARC Processors

C/C++ Run-Time Library

vecsadd

real vector + scalar addition

Synopsis

#include <vector.h>

void vecsaddf (a,b,c,n)

const float a[]; /* Input vector a */

float b; /* Input scalar */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function adds input scalar b to each element of input vector a. The
results are stored in the output vector c.

The input vector a and output vector c must be aligned on a quad-word
boundary.

Algorithm

ci= ai + b

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-336 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

vecsmlt

real vector * scalar multiplication

Synopsis

#include <vector.h>

void vecsmltf (a,b,c,n)

const float a[]; /* Input vector a */

float b; /* Input scalar */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function multiplies each element of input vector a by input scalar b.
The results are stored in the output vector c.

The input vector a and output vector c must be aligned on a quad-word
boundary.

Algorithm

ci = ai * b

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-337
for TigerSHARC Processors

C/C++ Run-Time Library

vecssub

real vector - scalar subtraction

Synopsis

#include <vector.h>

void vecssubf (a,b,c,n)

const float a[]; /* Input vector a */

float b; /* Input scalar */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function subtracts input scalar b from each element of input vector a.
The results are stored in the output vector c.

The input vector a and output vector c must be aligned on a quad-word
boundary.

Algorithm

ci = ai-b

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-338 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

vecvadd

real vector + vector addition

Synopsis

#include <vector.h>

void vecvaddf (a,b,c,n)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function adds two input vectors. The results are stored in the output
vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

ci = ai + bi

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-339
for TigerSHARC Processors

C/C++ Run-Time Library

vecvmlt

real vector * vector multiplication

Synopsis

#include <vector.h>

void vecvmltf (a,b,c,n)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function multiplies two input vectors a and b. The results are stored
in the output vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

ci = ai * bi

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-340 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

vecvsub

real vector - vector subtraction

Synopsis

#include <vector.h>

void vecvsubf (a,b,c,n)

const float a[]; /* Input vector a */

const float b[]; /* Input vector b */

float c[]; /* Output vector */

int n; /* Element count */

Description

This function subtracts input vector b from input vector a. The results are
stored in the output vector c.

The input vectors a and b must be aligned on quad-word boundaries, with
the output vector c being aligned on a dual-word boundary.

Algorithm

ci = ai - bi

where i = {0,1,2,...,n-1}

Domain

–3.4 x 1038 to +3.4 x 1038

VisualDSP++ 5.0 C/C++ Compiler Manual 3-341
for TigerSHARC Processors

C/C++ Run-Time Library

vfprintf

print formatted output of a variable argument list

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list ap);

Description

The vfprintf function formats data according to the argument format,
and then writes the output to the stream stream. The argument format
contains a set of conversion specifiers, directives, and ordinary characters
that are used to control how the data is formatted. Refer to fprintf
(on page 3-173) for a description of the valid format specifiers.

The vfprintf function behaves in the same manner as fprintf, except
that instead of being a function taking a variable number or arguments, it
is called with an argument list ap of type va_list (as defined in stdarg.h).

If the vfprintf function is successful, it will return the number of charac-
ters output.

Error Conditions

The vfprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdarg.h>

void write_name_to_file(FILE *fp, char *name_template, ...)

{

va_list p_vargs;

int ret; /* return value from vfprintf */

Run-Time Library Reference

3-342 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

va_start (p_vargs,name_template);

ret = vfprintf(fp, name_template, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vfprintf failed\n");

}

See Also

fprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-343
for TigerSHARC Processors

C/C++ Run-Time Library

vprintf

print formatted output of a variable argument list to stdout

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vprintf(const char *format, va_list ap);

Description

The vprintf function formats data according to the argument format,
and then writes the output to the standard output stream stdout. The
argument format contains a set of conversion specifiers, directives, and
ordinary characters used to control how the data is formatted. Refer to
fprintf (on page 3-173) for a description of the valid format specifiers.

The vprintf function behaves in the same manner as vfprintf, with std-
out provided as the pointer to the stream.

If the vprintf function is successful, it will return the number of charac-
ters output.

Error Conditions

The vprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

void print_message(int error, char *format, ...)

{

/* This function is called with the same arguments as for */

/* printf but if the argument error is not zero, then the */

Run-Time Library Reference

3-344 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

/* output will be preceded by the text "ERROR:” */

va_list p_vargs;

int ret; /* return value from vprintf */

va_start (p_vargs, format);

if (!error)

printf("ERROR: ");

ret = vprintf(format, p_vargs);

va_end (p_vargs);

if (ret < 0)

printf("vprintf failed\n");

}

See Also

fprintf, vprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-345
for TigerSHARC Processors

C/C++ Run-Time Library

vsnprintf

format argument list into an n-character array

Synopsis

#include <stdio.h>

#include <stdarg.h>
int vsnprintf (char *str, size_t n, const char *format,

va_list args);

Description

The vsnprintf function is similar to the vsprintf function in that it for-
mats the variable argument list args according to the argument format,
and writes the output to the array str. The argument format contains a
set of conversion specifiers, directives, and ordinary characters used to
control how the data is formatted. Refer to fprintf (on page 3-173) for a
description of the valid format specifiers.

The function differs from vsprintf in that no more than n-1 characters
are written to the output array. Any data written beyond the n-1th charac-
ter is discarded. A terminating NUL character is written after the end of the
last character written to the output array, unless n is set to zero. In that
case nothing will be written to the output array and the output array may
be represented by the NULL pointer.

The vsnprintf function returns the number of characters that would have
been written to the output array str if n was sufficiently large. The return
value does not include the terminating NUL character written to the array.

Error Conditions

The vsnprintf function returns a negative value if unsuccessful.

Run-Time Library Reference

3-346 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char *message(char *format, ...)

{

char *message = NULL;

int len = 0;

int r;

va_list p_vargs; /* return value from vsnprintf */

do {

va_start (p_vargs,format);

r = vsnprintf (message,len,format,p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

if (r < len) /* was complete string written? */

return message; /* return with success */

message = realloc (message,(len=r+1));

} while (message != NULL);

abort();

}

See Also

fprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-347
for TigerSHARC Processors

C/C++ Run-Time Library

vsprintf

format argument list into a character array

Synopsis

#include <stdio.h>

#include <stdarg.h>

int vsprintf (char *str, const char *format, va_list args);

Description

The vsprintf function formats the variable argument list args according
to the argument format, and writes the output to the array str. The argu-
ment format contains a set of conversion specifiers, directives, and
ordinary characters used to control how the data is formatted. Refer to
fprintf (on page 3-173) for a description of the valid format specifiers.

The vsprintf function behaves in the same manner as sprintf. The
exception is that instead of taking a variable number or arguments func-
tion, it is called with an argument list args of type va_list (as defined in
stdarg.h).

The vsprintf function returns the number of characters that have been
written to the output array str. The return value does not include the ter-
minating NUL character written to the array.

Error Conditions

The vsprintf function returns a negative value if unsuccessful.

Example

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char filename[128];

Run-Time Library Reference

3-348 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

char *assign_filename(char *filename_template, ...)

{

char *message = NULL;

int r;

va_list p_vargs; /* return value from vsprintf */

va_start (p_vargs,filename_template);

r = vsprintf(&filename[0], filename_template, p_vargs);

va_end (p_vargs);

if (r < 0) /* formatting error? */

abort();

return &filename[0]; /* return with success */

}

See Also

fprintf, sprintf, snprintf

VisualDSP++ 5.0 C/C++ Compiler Manual 3-349
for TigerSHARC Processors

C/C++ Run-Time Library

zero_cross

count zero crossings

Synopsis

#include <stats.h>

int zero_crossf (a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the number of times that a signal crosses over the
zero line and returns the result. If all the input values are either positive or
zero, or they are all either negative or zero, then the function returns a
zero.

There are constraints in the use of this function.
For more information, see “stats.h – Statistical Functions” on
page 3-31.

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, this example should give you an understanding of the
algorithm.

if (a(i) > 0 && a(i+1) < 0) || (a(i) < 0 && a(i+1) > 0)

Number of zeros is increased by one.

Domain

–3.4 x 1038 to +3.4 x 1038

Run-Time Library Reference

3-350 VisualDSP++ 5.0 C/C++ Compiler Manual
for TigerSHARC Processors

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-1
for TigerSHARC Processors

I INDEX

Symbols
µ-law companders, 3-27
µ-Law compression, 3-257
µ-Law expansion, 3-258

Numerics
128-bit data alignment, 1-190
128-bit data types, 1-119
16-bit data types, 1-137
16-bit packed data., 1-139
2-D convolution, 3-126
32-bit, data types, 1-73
32-bit data alignment, 1-190
32-bit data types, 1-147
32-bit floating-point divides, 1-35
32-bit IEEE single-precision format, 1-31
64-bit

data types, 1-73
floating-point arithmetic, 1-75
integer support, 1-118

64-bit data alignment, 1-190
64-bit IEEE double precision format, 1-31

A
-A (assert) compiler switch, 1-23
Abridged C++ Library

overview, 3-2
support, 3-35

abs (absolute value) function, 3-76
accums pointer, 1-185

a_compress (A-law compression) function,
3-74

acos (arc cosine) function, 3-77
addbitrev (bit-reversed adder) function,

3-78
-add-debug-libpaths compiler switch, 1-24
add_devtab_entry function, 3-59
add_devtab_entry() routine, 3-59
additional loop annotation information

disabling, 1-43
enabling, 1-27

__ADI_LIBEH__ macro, 1-70
_ADI_THREADS macro, 1-62
adi_types.h header file, 3-11
__ADSPTS101__ preprocessor macro,

1-256
ADSP-TS101 processor, projects being

built for, 1-134
__ADSPTS201__ preprocessor macro,

1-256
__ADSPTS202__ preprocessor macro,

1-256
__ADSPTS203__ preprocessor macro,

1-256
__ADSPTS20x__ preprocessor macro,

1-256
__ADSPTS__ preprocessor macro, 1-256
a_expand (A-law expansion) function, 3-75
A-law companders, 3-27
algorithm header file, 3-40
alias, avoiding, 2-21
-align-branch-lines compiler switch, 1-25

INDEX

I-2 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

alignment inquiry keyword, 1-250
align num pragma, 1-189
__alignof__ keyword, 1-250
-allow-macs-to-extend-saturation compiler

switch, 1-25
all workaround, 1-84
alog10 functions, 3-80
alternate heap interface functions, 1-285
alternate keywords, 1-45
alternative operator keywords, in source

files, 1-25
alternative tokens

disabling, 1-42
enabling, 1-25

-alttok (alternative tokens) C++ compiler
switch, 1-25

-always-inline compiler switch, 1-26, 1-99
-anach (enable C++ anachronisms)

compiler switch, 1-68
anachronisms

default C++ mode, 1-68
disabling in C++ mode, 1-71

__ANALOG_EXTENSIONS__
preprocessor macro, 1-256

-annotate (enable assembly annotations)
compiler switch, 1-26

-annotate-loop-instr compiler switch, 1-27
annotation information, instrumental,

1-27

annotations
assembly code, 2-81
assembly source code position, 2-91
disabling, 1-43
embedded, 2-7
enabling, 1-26, 1-58
failure messages, 2-107
loop identification, 2-87
modulo scheduling, 2-65, 2-100
source and assembly, 2-7
vectorization, 2-98
warnings, 2-107

anomaly workaround management, 1-82
ANSI standard

ccts compiler, 3-1
recognizing with the -extra-keywords

switch, 1-33
anti-log, functions, 3-79
argc support, 1-277
arg (get phase of complex number)

functions, 3-81
arguments

handling, 1-268
number, 1-271
outgoing, 1-265
passing, 1-268
words, 1-268

argv/argc arguments, 1-277
__argv_string variable, 1-277
argv support, 1-277
arithmetic

mixed mode operations, 1-243
operators, fractional, 1-241
operators, int2x16, 1-140
operators, int4x16, 1-145
operators, int4x16 values, 1-145

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-3
for TigerSHARC Processors

INDEX

array
initializer, 1-130
length, 1-128
placing in memory, 2-26
sorting, 3-267
zero length, 1-248

ASCII string, see atof, atoi, atol functions
asctime (convert broken-down time into a

string) function, 3-82
asctime function, 3-34, 3-135
asin (arc sine) function, 3-84
asm

compiler keyword, 1-91, 1-102
keyword used for specifying names,

1-251
operand constraints, 1-108, 1-112
statement, 1-249, 2-25
workarounds not applied, 1-82, 1-102

asm compiler keyword, see also inline
assembly language support keyword
(asm)

asm() construct
described, 1-102
flow control, 1-118
operand, 1-108
syntax, 1-104
syntax rules, 1-106

assembly
annotations, 2-7, 2-81
subroutines, 1-298

assembly construct, 1-102
operand, 1-108
reordering and optimization, 1-116
with input and output operands, 1-116
with multiple instructions, 1-115

assembly language instructions, 1-102
assembly language subroutine, calling from

C/C++ program, 1-299

assembly optimizer
modulo scheduling, 2-65

assembly output annotations
code position, 2-91
disabling, 1-43
enabling, 1-26
global information, 2-82
loop flattening, 2-97
loop ID, 2-87
modulo scheduling, 2-65
of generated source code, 2-7
procedure statistics, 2-82
unroll and jam, 2-94
vectorization, 2-93

assert.h header file, 3-11
assertions, predefined, 1-23
assert macro, 3-11
#assert preprocessor directive, 1-23
assignment operations, 1-242
atan2 (arc tangent of quotient) function,

3-86
atan (arc tangent) function, 3-85
atexit() library function, 1-276
atof (convert string to double) function,

3-87
atoi (convert string to integer) function,

3-89
atol (convert string to long integer)

function, 3-90
atold (convert string to long double)

function, 3-91
atoll (convert string to long long integer)

function, 3-93
attribute

filters in LDF, 1-312
names, 1-312
value, 1-312

__attribute__ keyword, 1-251

INDEX

I-4 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

attributes
automatically-applied, 1-313
file, 1-27, 1-34, 1-43, 1-312
function, 1-251
type, 1-251
usage examples, 1-317
variable, 1-251

-auto-attrs compiler switch, 1-27
autocoh (autocoherence) function, 3-94
autocorr (autocorrelation) function, 3-95
automatic

function inlining, 1-48
inlining, 1-79, 1-98, 2-24
inlining, controlled with the- Ov switch,

1-51
loop control variables, 2-38
variables, 1-120

automatically-applied attributes, 1-313
automatic attributes

disabling, 1-43
enabling, 1-27

avg (mean of two values) functions, 3-96

B
bank qualifier, 1-123, 2-29, 2-53
base 10, anti-log functions, 3-80
basic arithmetic functions, 3-26
basic cycle counting, 3-43
benchmarking C-compiled code, 3-50
binary array search, see bsearch function
binary files, 3-6
binary object granularity, 1-315
binary stream, 3-180

bitfields
signed, 1-60
unsigned, 1-63

Bit FIFO temporaries register, 1-295
BITS_PER_WORD constant, 3-63
bitwise logical operators, int2x16 values,

1-140
bool, see Boolean type support keywords

(bool, true, false)
Boolean type keywords (bool, true, false),

1-91, 1-126
broken-down time, 3-24, 3-25, 3-210,

3-240, 3-308
bsearch (binary search in sorted array)

function, 3-97
-bss (placing data in bsz) compiler switch,

1-27
BSS-style section

disabling placing global zero-initialized
data, 1-43

using for zero-initialized data, 1-27
bsz section identifier, 1-58, 1-125
buffered input, 3-180
buf field, 3-66
-build-lib (build library) compiler switch,

1-27
build tools, 1-34
__builtin_aligned function, 1-134, 2-13,

2-20, 2-52
__builtin_assert() function, 1-136
__builtin_circindex function, 2-44
__builtin_circptr function, 2-44
built-in C library functions, 3-4

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-5
for TigerSHARC Processors

INDEX

built-in functions
builtins.h, 1-133
circular buffer, 1-148
circular buffer data alignment buffer

(DAB), 1-169
communications logic unit operation,

1-171
data alignment buffer (DAB), 1-167
defined, 1-132
ignoring, 1-44
instructions generated by, 1-151
mapping to machine instructions, 1-152
math, 1-149
optimization guidance, 1-134
system support, 2-42

__builtin_ prefix, 1-152
__builtin_quad extended type, 1-75, 1-119
builtins.h header file, 1-133, 1-134, 1-151
__builtin_sysreg_read built-in function,

1-134
__builtin_sysreg_write built-in function,

1-134
byte-addressing mode

byte sizes, 1-93
-char-size-8 compiler flag for, 1-93
data pointer, 1-168
header files, 1-97
initializations, 1-95
object alignment, 1-94
part-words, 1-95
pointers, 1-94
pragma used in, 1-95, 1-189
selecting, 1-4, 1-28
sizeof operator, 1-93
supporting libraries, 1-96
__TS_BYTE_ADDRESS preprocessor

macro, 1-93

C
C

built-in library functions, 3-4
exit routine, 3-6
run-time header

invoking constructors, 1-274
run-time library files, 3-5
run-time library source, 3-8
standard header files, 3-39
standard text, 3-9
startup files, ts_hdr_.doj, 3-6

C++
Abridged Library, 3-35
class constructor functions, 1-59, 1-125
class instance function parameter,

passing, 1-269
constructors, 1-274
constructor start-up routine, 1-274
embedded library, 3-42
exception handling, 1-22
exception handling support library, 3-5
exit routine, 3-6
fractional type support, 1-241
gcc compatibility features not supported,

1-244
header files, for C library facilities, 3-39
startup files, ts_hdr_cpp_.doj, 3-6
support tables (ctor, gdt), 1-253
template inclusion control pragma,

1-229
template support, 1-308
virtual lookup tables, 1-58, 1-59, 1-125,

1-126
-c89 (ISO/IEC 9899 1990 standard)

compiler switch, 1-22
cabs (complex absolute value) function,

3-99
cadd (complex addition) function, 3-100
calendar time, 3-24, 3-25, 3-325
callee preserved registers, 1-289

INDEX

I-6 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

caller save registers, 1-290
calloc function, 1-281
C++ anachronisms

disabling, 1-71
enabling, 1-68

cartesian (Cartesian to polar) functions,
3-101

Cartesian coordinates, 3-101
cassert header, 3-39
C/C++

calling library functions, 3-4
code optimization, 2-2
data types, 1-73
functions, calling from assembly

program, 1-301
run-time environment, 1-261
run-time library files, 3-5
run-time model, 1-261
switch statements, 1-59, 1-125

C/C++ language extensions
array initializers, 1-129
asm keyword, 1-102
bank qualifier, 1-123
boolean type keywords, 1-126
compound statements, 1-128
dm/pm keywords, 1-119
inline keyword, 1-97
list of, 1-91
long long, 1-118
non-constant initializers, 1-129
quad word, 1-119
__regclass(unit) construct, 1-122
restrict keyword, 1-126
section() keyword, 1-124

C++ classes
constructors and destructors, 1-274

-c++ (C++ mode) compiler switch, 1-22

C/C++ mode selection switches
-c89, 1-22
-c++ (C++ mode), 1-22

CCNT0 register, 3-52
CCNT1 register, 3-52
-C (comments) compiler switch, 1-27
C-compiled code, benchmarking, 3-50
-c (compile only) compiler switch, 1-28
ccts compiler

command line, 1-6
overview, 1-3
running from command line, 1-6

cctype header, 3-39
cdiv (complex division) function, 3-102
ceil (ceiling) function, 3-103
cerrno header, 3-39
cexp (complex exponential) function,

3-104
cfft2d (NxN point 2-d complex input FFT)

function, 3-110
cfftf (fast N point complex input FFT)

function, 3-112
cfft_mag function, 3-108
cfft magnitude, 3-108
cfftN (N-point complex input fast Fourier

transform) functions, 3-279, 3-285
cfft (N point complex input FFT) function,

3-105
cfloat header, 3-39
CHAR32 qualifier, 1-220
CHAR8 qualifier, 1-220
CHARANY qualifier, 1-220
-char-size-8|32 compiler switch, 1-28
-char-size-8 compiler flag, 1-93
-char-size-any compiler switch, 1-28
-check-init-order compiler switch, 1-69,

1-275

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-7
for TigerSHARC Processors

INDEX

circular buffer
built-in functions, 1-148
DAB intrinsics, 1-169
electing, 1-34
increment of index, 1-148
increment of pointer, 1-148
operation on array, 1-149
used in DSP-style code, 2-43

circular buffer code, disabling automatic
generation of, 1-44

C language extensions
C++ style comments, 1-92
variable-length automatic arrays, 1-127

class conversion optimization pragmas,
1-223

class pointers, converting, 1-223
clearerr function, 3-114
climits header, 3-39
clip (clip) functions, 3-115
CLIP instruction, 3-149
clobber, of asm() construct, 1-105
clobbered registers, 1-203, 1-204

defined, 2-56
restricting, 1-204

clobber string
rules for, 1-112
specifiers, 1-112

clocale header, 3-39
clock (processor time) function, 3-25, 3-48,

3-51, 3-116
CLOCKS_PER_SEC macro, 3-24, 3-25,

3-48, 3-50
clock_t data type, 3-24, 3-48, 3-116
close function, 3-56
cmath header, 3-39
cmatmadd (complex matrix + matrix

addition) function, 3-117

cmatmmlt (complex matrix * matrix
multiplication) function, 3-118,
3-123

cmatmsub (complex matrix - matrix
subtraction) function, 3-119

cmatsadd (complex matrix + scalar
addition) function, 3-120

cmatsmlt (complex matrix * scalar
multiplication) function, 3-121

cmatssub (complex matrix - scalar
subtraction) function, 3-122

cmlt (complex multiply) function, 3-123
C++ mode compiler switches

-anach (enable C++ anachronisms), 1-68
-check-init-order, 1-69, 1-275
-eh (enable exception handling), 1-70
-full-dependency-inclusion, 1-70
-ignore-std, 1-71
-no-anach (disable C++ anachronisms),

1-71
-no-eh (disable exception handling),

1-71
-no-implicit-inclusion, 1-71
-no-rtti (disable run-time type

identification), 1-72
-no-std-templates, 1-72
-rtti (enable run-time type

identification), 1-72
-std-templates, 1-72

cmultr__conj_fr2x16 built-in function,
1-164

cmultr__conj_fr2x16_sat built-in
function, 1-164

cmultr_fr2x16 built-in function, 1-164
cmultr_fr2x16_sat built-in function, 1-164
code inlining, controlling, 1-212
CODE memory area, 1-276

INDEX

I-8 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

code optimization, 1-77
controlling, 2-4
disabling, 1-48
enabling, 1-48
for maximum performance, 2-45
for size, 1-49, 2-45
for speed, 1-49
using function pragmas, 2-47
using loop optimization pragmas, 2-50
using pragmas in, 2-47
with PGO, 2-8

code section identifier, 1-58, 1-125
code sequences, 1-273
command-line interface, 1-5 to 1-72
communications logic unit (CLU),

generating instructions, 1-171
comparison operations, 1-242
comparison operators, int2x16 values,

1-141
compilation time

progress diagnostic (time-out), 1-56
progress diagnostic (time-out in

seconds), 1-57
compilation time, progress diagnostic,

1-46, 1-56

compiler
building for a specific hardware revision,

1-83
built-in functions, 1-132
C/C++ extensions, 1-91
code generator workarounds, 1-84
code optimization, 2-2
diagnostic messages, 1-231
diagnostics, 2-5
disabling hardware anomaly

workarounds, 1-48
enabling hardware anonmaly

workarounds, 1-84
errors, maximum, 1-65
optimizer, 2-4
prelinker, 1-81
producing processor-specified code, 1-55
runnibg, 1-6
selecting specified compilation tool, 1-52
stopping after compilation, 1-57
version information, 1-64
writing cross-reference listing

information, 1-67
compiler asm construct

construct template, 1-104
operand, 1-108
optimization, 1-116
syntax, 1-104
template, 1-104
template operands, 1-108
with multiple instructions, 1-115

compiler driver, 1-84

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-9
for TigerSHARC Processors

INDEX

complex
absolute value function, 3-99
addition function, 3-100
conjugate function, 3-124
division function, 3-102
exponential function, 3-104
header file, 3-36
matrix + matrix addition function, 3-117
matrix * matrix multiplication function,

3-118
matrix - matrix subtraction function,

3-119
matrix + scalar addition function, 3-120
matrix - scalar subtraction function,

3-122
multiply function, 3-123
number support, 1-306
subtraction function, 3-134
vector dot product function, 3-136
vector + scalar addition function, 3-137
vector * scalar multiplication function,

3-138
vector - scalar subtraction function,

3-139
vector + vector addition function, 3-140
vector * vector multiplication function,

3-141
vector - vector subtraction function,

3-142
complex.h header file, 3-26
complex matrix * scalar multiplication

function, 3-121
compound macros, 1-258
compound statements

within expressions, 1-128
compute block registers

ALU summation, 1-295
X MAC, 1-294
(x & y) general, 1-293
Y MAC, 1-295

conditional code
avoiding in loops, 2-36

conditional expressions, with missing
operands, 1-247

conj (complex conjugate) function, 3-124
const

pointers, 1-29
constants, accessed as read-write data, 1-29
constraint

alignment, 1-268
asm() construct, 1-105
modifier, 1-109
operators, 1-112, 1-113
register types, 1-112

-const-read-write compiler switch, 1-29
constructors

for global class instances, 1-274
int2x16 values, 1-139
int2x32 values, 1-147
int4x16 values, 1-143

constructors, start-up routine, 1-274
constructors and destructors

and memory placement, 1-276
constructs

flow control, 1-117
operands, assembly, 1-108
reordering and optimization, 1-116
with input and output operands, 1-116
with multiple instructions, 1-115

-const-string compiler switch, 1-29
continuation characters, 1-42, 1-46
conv2d (2-d convolution) function, 3-126
convolution transformations, 3-27
convolve (convolution) function, 3-125
copysign (copysign) function, 3-127
core algorithm, unmodified, 2-10
cos (cosine) function, 3-128
cosh (hyperbolic cosine) function, 3-129
cot (cotangent) function, 3-130

INDEX

I-10 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

count_ones (count one bits in word)
function, 3-131

count_ticks() function, 1-237
count zero crossings function, 3-349
__cplusplus preprocessor macro, 1-256
C++ programming examples

complex support, 1-306
fract support, 1-305

crosscoh (cross-coherence) function, 3-132
crosscorr (cross-correlation) function,

3-133
cross-reference listing information, 1-67
C run-time

library files, 3-5
library functions called from ISR, 3-33
library header files, 3-9

C++ run-time
library, using linker with, 3-7
library files, 3-5
library with exception handling, 3-5
support for alternate heap interface,

1-286
support library, 3-5
support library with exception handling,

3-5
csetjmp header, 3-39
csignal header, 3-39
cstdarg header, 3-39
cstddef header, 3-39
cstdio header, 3-40
C++ STL objects, 1-282
cstring header, 3-40
csub (complex subtraction) function, 3-134
ctime (convert calendar time into a string)

function, 3-82, 3-135
__ctor_loop() library function, 1-276
ctor memory section, 1-275
ctype.h header file, 3-11
custom allocator, 1-282
customer support, -xl

cvecdot (complex vector dot product)
function, 3-136

cvecsadd (complex vector + scalar addition)
function, 3-137

cvecsmlt (complex vector * scalar
multiplication) function, 3-138

cvecssub (complex vector - scalar
subtraction) function, 3-139

cvecvadd (complex vector + vector
addition) function, 3-140

cvecvmlt (complex vector * vector
multiplication) function, 3-141

cvecvsub (complex vector - vector
subtraction) function, 3-142

C-written source, 3-12
cycle count

cycle_count.h header file, 3-12
interrupt dispatcher, 3-236
register, 3-43, 3-45, 3-51

cycle_count.h header file, 3-12, 3-43
cycle count registers, 3-52
cycle counts, measuring, 3-50
cycles.h header file, 3-12, 3-25, 3-45
CYCLES_INIT(S) macro, 3-45
CYCLES_PRINT(S) macro, 3-45
CYCLES_RESET(S) macro, 3-45
CYCLES_START(S) macro, 3-45
CYCLES_STOP(S) macro, 3-45
cycle_t type, 3-43

D
DAB built-in functions

16-bit, 1-168
16-bit (byte-addressing mode), 1-169
16-bit (word-addressing mode), 1-169
32-bit, 1-168
circular buffer, 1-169
described, 1-167

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-11
for TigerSHARC Processors

INDEX

data
alignment pragmas, 1-188
alignment registers, 1-295
buffers, quad-word-aligned, 2-19
fetching with loads wider than 32 bits,

2-19
field, 3-54
packing, 3-63
word alignment, 2-19

data alignment, arranging data within
memory, 1-188

DATA memory area, 1-277
data placement

compiler-controlled, 1-58
controlled by the -section id compiler

switch, 1-58, 1-277
controlling in primary (dm) or secondary

(pm) data memory, 1-119
data section identifier, 1-58, 1-125
data types

128-bit quad-word, 1-119
16-bit, 1-137
32-bit, 1-73, 1-147
64-bit, 1-73
64-bit integer, 1-74, 1-118
aggregate, 1-75
alignment, 1-75
default bit sizes, 1-73
floating-point, 1-74
fract, 1-241
integer, 1-74
non-aggregate, 1-75
scalar, 2-13
sizes, 1-73

__DATE__ preprocessor macro, 1-256
daylight saving flag, 3-24
-DCLOCKS_PER_SEC= compile-time

switch, 3-50
-D (define macro) compiler switch, 1-29,

1-63

-DDO_CYCLE_COUNTS compile-time
switch, 3-45, 3-51

-DDO_CYCLE_COUNTS switch, 3-44
debugging

source-level, 1-36
with reducing size of information, 1-36

debugging information, 1-78
for header file, 1-30
generating, 1-35
lightweight, 1-36
preserving, 1-49
removing, 1-58

Debug subdirectory, prepending, 1-24
-debug-types compiler switch, 1-30
declarations, mixed with code, 1-250
decrements in expressions, 1-240
dedicated registers, 1-289, 1-290, 1-299
default

device, 3-61
LDF file, 1-62
LDF placement, 1-313
scratch registers, 1-204
sections, 1-220
target processor, 1-55

-default-branch-(np|p) compiler switch,
1-30

default names, controlling, 1-125
default preprocessor macros, disabling,

1-44
defaults, disabling, 1-44
default_section pragma, 1-125
definition, unique identifier to, 1-216
delete operator, with multiple heaps, 1-286
dependent name processing, disabling,

1-72
dependent name processing, enabling, 1-72
deque header file, 3-40
__despread built-in function, 1-183
__despread_i built-in function, 1-183
destructor loop function, 1-276

INDEX

I-12 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

destructors
for global class instances, 1-274

DevEntry structure, 3-54
device

default, 3-61
driver, described, 3-54
drivers, 3-53
identifiers, 3-54
pre-registering, 3-60

device.h header file, 3-12, 3-54
DeviceID field, 3-54
device_int.h header file, 3-12
devtab.c library source file, 3-59
diagnostic

action qualifiers, 1-231
control pragmas, 1-231
severity, 1-233
warnings, enabling, 1-65

diagnostic messages
modifying behavior, 1-232
restoring behavior, 1-232
saving behavior, 1-232
severity of, 1-231

diagnostics
annotations, 2-7
described, 2-5

difftime (difference between two calendar
times) function, 3-143

digraph sequences, in source files, 1-25
div (division) function, 3-144
divide operation, 1-35
division, see div, ldiv functions
__divsf3 entry point, 1-35
dm memory keyword, 1-91, 1-119
dm memory support keyword, 1-119
DM qualifier, 1-220
DOUBLE32 qualifier, 1-220
DOUBLE64 qualifier, 1-220
DOUBLEANY qualifier, 1-220

__DOUBLES_ARE_FLOATS__ macro,
1-32

__DOUBLES_ARE_FLOATS__
preprocessor macro, 1-256

-double-size-32|64 switch, 1-31
-double-size-any switch, 1-30
double type formats, 1-31
driver I/O pipe, enabling, 1-67
-dryrun compiler switch, 1-32
-dry (verbose dry-run) compiler switch,

1-32
DSP header files

complex.h, 3-26
defined, 3-26
filter.h header file, 3-27
libsim.h, 3-28
listed, 3-26
matrix.h, 3-29
stats.h, 3-31
vector.h, 3-31
window.h, 3-32

DSP run-time library, 3-5
dual memory support keywords (pm dm),

1-91
dynamic heap, 1-287

E
__ECC__ preprocessor macro, 1-256
__EDG__ preprocessor macro, 1-256
__EDG_VERSION__ preprocessor

macro, 1-256
-ED (run after preprocessing to file)

compiler switch, 1-32
-EE (run after preprocessing) compiler

switch, 1-33
-eh (enable exception handling) compiler

switch, 1-70
elfar (archive library) utility, 1-3, 1-27
embedded C++ library, header files, 3-36

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-13
for TigerSHARC Processors

INDEX

embedded standard template library, 3-2
header files, 3-40

__emuclk function, 3-28, 3-146
emuclk (get simulator cycle count)

function, 3-146
emulated arithmetic, avoiding, 2-14
enumeration types, 1-33
-enum-is-int compiler switch, 1-33
environment variables

ADI_DSP, 1-77
CCTS_IGNORE_ENV, 1-77
CCTS_OPTIONS, 1-77
PATH, 1-76
TEMP, 1-76
TMP, 1-76

errata workarounds, 1-59, 1-83
errno global variable, 3-9, 3-33, 3-35
errno.h header file, 3-13
error message, overriding, 1-64
error messages, with control pragma, 1-231
escape character, 1-250
-E (stop after preprocessing) compiler

switch, 1-32
exception

handler, disabling, 1-71
handler, enabling, 1-70
handling, 1-22
header file, 3-37

exception handler
disabling, 1-71

__EXCEPTIONS macro, 1-70
__EXCEPTIONS preprocessor macro,

1-256
exit() library function, 1-276
expected_false built-in function, 1-135,

2-30
expected_true built-in function, 1-135,

2-30
exp (exponential) function, 3-145
exponentiation, 3-79, 3-80

extensions, using compiler language, 1-4
external function declaration, 1-214
external interrupts, 3-16
extractors

2x16 from a 4x16 value, 1-143
and expanders, int2x16 values, 1-139
int2x32 values, 1-147

-extra-keywords (enable short-form
keywords) compiler switch, 1-33

EZ-KIT Lite system, 3-13, 3-53, 3-62

F
fabs (float absolute value) functions, 3-147
false, see Boolean type support keywords

(bool, true, false)
faster operations, disabling, 1-46
Fast Fourier Transforms (FFT), 3-27
fast interrupt

dispatcher, 3-237
fast interrupt dispatcher, 3-296
fast N point complex input FFT (cfftf)

function, 3-112
fast N point real input FFT(rfftf) function,

3-283
fast radix-2 algorithm, 3-27, 3-277
favg (mean of two values) functions, 3-148
fclip functions, 3-149
fclose function, 3-150
feof function, 3-151
ferror function, 3-152
fflush function, 3-153
FFT

see also Fast Fourier Transforms (FFT)
function versions, 3-27
twiddle factors, 3-327
twiddle factors for a fast FFT, 3-329

fgetc function, 3-154
fgetpos function, 3-155
fgets function, 3-157

INDEX

I-14 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

file
access modes, 3-171
annotation position, 2-91
attributes, 1-312
attributes, adding, 1-34
attributes, automatically-applied, 1-313
automatic attributes, 1-27
buffering, 3-292
extension, 1-6, 1-8, 1-9
filename selection, 1-23
full buffering, 3-291
multiple attributes, 1-34
searches, 1-8

-file-attr compiler switch, 1-34
fileID field, 3-67
file I/O

extending to new devices, 3-53
support, 3-52

-@ filename (command file) compiler
switch, 1-23

__FILE__ preprocessor macro, 1-257
file to device streams, 1-79
filter.h, 3-27
filters, signal processing, 3-27
finite impulse response filter (FIR), 3-28,

3-158
fir_decima (FIR decimation filter)

function, 3-160
fir (FIR filter) function, 3-158
FIR_INIT macro, 3-160
fir_init macro, 3-163
fir_interp (FIR interpolation filter)

function, 3-162
-flags- (command line input) compiler

switch, 1-34
flags field, 3-65
float.h header file, 3-13

floating-point
64-bit arithmetics, 1-74
divides, 1-35
hexadecimal constants, 1-247
operations, 1-164

floating-point operations
associative, 1-35
not associative, 1-45

floor (floor) function, 3-167
flow control operations, 1-117
FLT_MAX macro, 3-13
FLT_MIN macro, 3-13
fmax functions, 3-168
fmin functions, 3-169
fmod (floating-point modulus) function,

3-170
fopen function, 3-61, 3-171
-force-circbuf (circular buffer) compiler

switch, 1-34
-force-circbuf switch, 2-43
FORCE_CONTIGUITY linker directive,

1-253
format string, 3-173
formatted input, reading, 3-185
formatted output

printing, 3-173
printing variable argument list, 3-341
printing variable argument list to stdout,

3-343
four-word boundary, 1-75, 1-134
-fp-associative (floating-point associative

operation) compiler switch, 1-35
-fp-div-lib compiler switch, 1-35
fprintf function, 3-23, 3-173

conversion specifiers, 3-175
field width, 3-174
length modifier, 3-175
precision value, 3-174
valid flags for, 3-173

fputc function, 3-178

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-15
for TigerSHARC Processors

INDEX

fputs function, 3-179
fract

data type (C++ mode), 1-241
header file, 3-37
support, 1-305

fractional
arithmetic operators, 1-242
data, 2-41
(fixed-point) arithmetic, 1-241
mixed-mode operations, 1-243
values, 1-241

frame pointer, 1-263
fread function, 3-180
free function, 1-281
freopen function, 3-182
frexp (separate fraction and exponent)

function, 3-184
fscanf function, 3-185

conversion specifier characters, 3-186
length modifier, 3-186

fseek function, 3-189
fsetpos function, 3-191
fstream header file, 3-37
fstream.h header file, 3-42
ftell function, 3-192
-full-dependency-inclusion compiler

switch, 1-70
-full-version (display versions) compiler

switch, 1-35
full-word memory access, 2-16
function

calling conventions, 1-206
inlining, 1-97
inlining a call to, 1-26
return registers, 1-206

functional header file, 3-40
function call, 2-37
function inlining

how to use, 2-24

functions
calling in loop, 2-37
undocumented, 3-71

functions, primitive I/O, 3-20
function side-effect pragmas, 1-200

for code optimization, 2-47
fwrite function, 3-193

G
GCC compatibility extensions, 1-244
GCC compatibility mode, 1-244
gen_bartlett (generate bartlett window)

function, 3-195
gen_blackman (generate blackman

window) function, 3-197
general optimization pragmas, 1-211
gen_gaussian (generate gaussian window)

function, 3-198
gen_hamming (generate hamming

window) function, 3-199
gen_hanning (generate hanning window)

function, 3-200
gen_harris (gen_harris window) function,

3-201
gen_kaiser (generate kaiser window)

function, 3-202
gen_rectangular (generate rectangular

window) function, 3-203
gen_triangle (generate triangle window)

function, 3-204
gen_vohann (generate von hann window)

function, 3-206
getc function, 3-207
getchar function, 3-208
get_default_io_device, 3-61
get phase of a complex number (arg

function), 3-81
gets function, 3-209
-g (generate debug information) compiler

switch, 1-35

INDEX

I-16 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-glite (lightweight debugging) compiler
switch, 1-36

global asm statements, 1-101
global variable or function, with different

name, 1-251
globvar global variable, 2-39
gmtime (convert calendar time into

broken-down time as UTC) function,
3-210

gmtime function, 3-34, 3-82, 3-240
GNU C compiler, 1-244
granularity, 1-315
__GROUPNAME__ macro, 1-61
guard, 2-51

H
hardware

defect workarounds, 1-66, 1-84
revision, 1-59
workaround macro, 1-258

hardware revision, building project for,
1-83

hash_map header file, 3-40
hash_set header file, 3-40
header, stop point, 1-228
header file control pragmas, 1-228
header files

controlling, 1-228
C run-time library, 3-9
embedded standard template library,

3-40
library, 3-9

header files (C++ access to C facilities)
(C++ access to C facilities)

cassert, 3-39
cctype, 3-39
cerrno, 3-39
cfloat, 3-39
climits, 3-39
clocale, 3-39
cmath, 3-39
csetjmp, 3-39
csignal, 3-39
cstdarg, 3-39
cstddef, 3-39
cstdio, 3-40
cstdlib, 3-40
cstring, 3-40

header files (C run-time library)
assert.h, 3-11
ctype.h, 3-11
errno.h, 3-13
float.h, 3-13
iso646.h, 3-14
limits.h, 3-14
locale.h, 3-14
math.h, 3-15
setjmp.h, 3-16
signal.h, 3-16
stdarg.h, 3-17
stddef.h, 3-17
stdio.h, 3-20
stdlib.h, 3-23
string.h, 3-24

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-17
for TigerSHARC Processors

INDEX

header files (embedded C++ library)
complex, 3-36
exception, 3-37
fract, 3-37
fstream, 3-37
iomanip, 3-37
ios, 3-37
iosfwd, 3-37
iostream, 3-37
new, 3-38
ostream, 3-38
sstream, 3-38
stdexcept, 3-38
stream, 3-38
streambuf, 3-38
string, 3-38
strstream, 3-39

header files (embedded standard template
library)

algorithm, 3-40
deque, 3-40
fstreams.h, 3-42
functional, 3-40
hash_map, 3-40
hash_set, 3-40
iomanip.h, 3-42
iterator, 3-41
list, 3-41
map, 3-41
memory, 3-41
new.h, 3-42
numeric, 3-41
ostream.h, 3-42
queue, 3-41
set, 3-41
stack, 3-41
utility, 3-41
vector, 3-41

header files (standard)
adi_types.h, 3-11
device.h, 3-12
device_int.h, 3-12
stdbool.h, 3-17
stdint.h, 3-17

heap
alternate, 1-281
alternative interface, 1-285
declaring, 1-280
dynamic, 1-287
identifier, 1-280
index, 3-217
initialization, 1-281, 1-287
re-initializing, 3-214
setting up at run-time, 3-215

heap_calloc function, 1-285, 3-211
heap extension routines

heap_calloc, 1-280
heap_free, 1-280
heap_malloc, 1-280
heap_realloc, 1-280
listed, 1-280

heap_free function, 1-285, 3-213
heap functions

calloc, 1-280
free, 1-280
malloc, 1-280
realloc, 1-280
standard, 1-280
standard interface, 1-282
using multiple, 1-280

heap index, 3-217
heap_init function, 1-281, 3-214
heap_install function, 1-287, 3-215
heap interface, with multiple heaps, 1-286
heap_lookup function, 3-217
heap_malloc function, 1-285, 3-219
heap_realloc function, 1-285, 3-221

INDEX

I-18 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

heaps
non-default, 1-282

heap_switch function, 1-281, 3-223
heap table, in the .LDF file, 1-280
-help (command line help) compiler

switch, 1-37
hexadecimal floating-point constants,

1-247
-HH (list headers and compile) compiler

switch, 1-37
histogram function, 3-225
-H (list headers) compiler switch, 1-36
hoisting, 2-59
__HOSTNAME__ macro, 1-61

I
iALU (j and k) general registers, 1-292
iALU (j & k) special registers:circular

buffering –B (base) & L (length),
1-294

IDDE_ARGS macro, 1-278
identifier, long, 1-129
ifft2d (NxN point 2-d inverse input FFT)

function, 3-229
ifft (N point inverse FFT) function, 3-227
__IGNORE_IDLE_BUILTINS__ macro,

1-134
-ignore-std compiler switch, 1-71
__IGNORE_SYSREG_BUILTINS__

macro, 1-134
-I (include search directory) compiler

switch, 1-38, 1-47
iir (infinite impulse response filter)

function, 3-231
iir_init macro, 3-231
implicit

inclusion of .cpp files, 1-70
instantiation, 1-308
pointer conversion, 1-38

implicit inclusion, 1-229
disabling, 1-71
enabling, 1-70

-implicit-pointers compiler switch, 1-38
#include directive, 1-139
include directory list, 1-37
-include (include file) compiler switch,

1-39
#include iso646.h command, 1-26
incomplete function prototype, 1-66
increments in expressions, 1-240
indexed

array, 2-23
initializer support, 1-129

induction variables, 2-35
init function, 3-55
initialization

and reset of length and base registers,
1-170

disabling memory, 1-46
enabling memory, 1-42
memory support files for, 3-6
of successive elements, 1-130
order, 1-69
order, checking, 1-70
program, 3-28
twidfft function, 3-327
variable, 1-250
with part-word address, 1-95

initiation interval, 2-65
inline

asm statements, 2-25
automatic, 2-24
code, avoiding, 2-46
function, 2-24
keyword, 1-97, 2-24
keyword, avoiding use of, 2-46

inline assembly language support keyword,
see compiler asm construct

inline control pragmas, 1-212

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-19
for TigerSHARC Processors

INDEX

inline qualifier, 1-26, 1-99, 1-212
ignoring, 1-42

inlining
and global asm statements, 1-101
and optimization, 1-100
and out-of-line copy, 1-100
code, 1-212
file position, 2-91
ignoring section directives, 1-101

inner loops, 2-35
producing optimal code for, 2-50

input operand, of asm() construct, 1-105
installation location, 1-52
instantiation, of template functions, 1-226
instruction annotations, 2-86
instruction lines

aligning branch to quad-word
boundaries, 1-25

disabling branch alignment to
quad-word boundaries, 1-42

instructions
ACS, 1-178
addition, 1-152
ALU miscellaneous, 1-156
bit manipulation, 1-159
composition, 1-165
conversion, 1-155
decomposition, 1-165
DESPREAD, 1-182
executed by communications logic unit

(CLU), 1-171
floating-point, 1-164
generated by built-in functions, 1-151
MAX_ADD, 1-171
MAX_SUB, 1-171
memory allocation, 1-165
miscellaneous, 1-165
multiplier, 1-161
PERMUTE, 1-177
RECIPS, 1-150
RSQRTS, 1-151
shifter, 1-158
subtraction, 1-152
system register access, 1-166
TMAX, 1-171
TMAX_ADD, 1-171
TMAX_SUB, 1-171
XCORRS, 1-184

int2x16 data type, 1-137
int2x32 data type, 1-147
int4x16 data type, 1-137
integer data types, 1-74
interfacing C/C++ and assembly, see mixed

C/C++ assembly programming
intermediate files, saving, 1-58
interpolation factor, 3-162

INDEX

I-20 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

interprocedural analysis (IPA)
described, 1-80
enabling, 1-39, 1-80, 2-12
framework, 1-214
-ipa compiler switch for, 2-12
#pragma core used with, 1-214
the -ipa compiler switch, 1-39

interprocedural optimizations, 1-80
when to use, 2-12

interrupt
dispatcher, 1-193, 3-237, 3-296
dispatcher, cycle count, 3-236
function, 3-235
handler, 1-193, 3-237, 3-238, 3-295
handler pragmas, 1-192
handling functions, 3-235
non-reentrant handler, 3-238
pragma, 1-192

interruptf function, 3-235, 3-237
interruptfnr function, 3-235, 3-238
interruptnr function, 3-235, 3-238
interrupt_reentrant pragma, 1-193
interrupt-safe functions, 3-33
interrupt service routine (ISR)

and interrupt dispatchers, 3-236, 3-237
calling C run-time library, 3-33
locations may be clobbered by, 1-266
preserving registers in use, 3-296
restricted to call C run-time library, 3-20
writing in C, 1-192

interrupts function, 3-235, 3-237
interruptsnr function, 3-235, 3-238
intrinsics, see built-in functions, 1-132
inverse Fast Fourier Transform (IFFT),

3-227

I/O
extending to new devices, 3-53
functions, defining, 3-20
primitives, 3-53, 3-62
primitives, data packing, 3-63
primitives, data structure, 3-64
run-time library, 3-5
support for new devices, 3-53

iomanip.h header file, 3-37, 3-42
iosfwd header, 3-37
ios header file, 3-37
iostream.h header file, 3-37, 3-42
IPA, see interprocedural analysis (IPA)
-ipa (interprocedural analysis) compiler

switch, 1-39, 2-12
iso646.h (Boolean operator) header file,

3-14
-I- (start include directory list) compiler

switch, 1-37
istream.h header file, 3-38
iteration interval, 2-66
iterator.h header file, 3-41

J
jmp_buf type definition, quad-word

aligned., 3-16

K
keyword extensions

asm(), 1-102
bool, 1-126
false, 1-126
inline, 1-97
list of, 1-91
restrict, 1-126
true, 1-126

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-21
for TigerSHARC Processors

INDEX

keywords
alternate, 1-45
compiler, 1-90
extensions, 1-91
extensions, disabling, 1-45
extensions, enabling, 1-33

keywords, short-form, 1-33
keywords (compiler), 1-45
keywords (compiler), see VisualDSP++

compiler C/C++ language extensions
k stack, 1-289

L
_LANGUAGE_C preprocessor macro,

1-257
language extensions (compiler), see

VisualDSP++ compiler C/C++
language extensions

LDBL_MAX value, 3-92
ldf_altheap_base symbol, 1-279
ldf_altheap_size symbol, 1-279
ldf_defheap_base symbol, 1-279
ldf_defheap_size symbol, 1-279
ldf_jstack_base symbol, 1-279
ldf_kstack_base symbol, 1-279
LDF (linker description file)

migrating from previous VisualDSP++
versions, 1-252

leaf procedure, 1-272
legacy code, 1-124
libc_.dlb library files, 3-5
libcpp_.dlb library files, 3-5
libcpprt_.dlb library files, 3-5
libdsp_.dlb library files, 3-5
libio_.dlb library files, 3-5
libraries, in multi-threaded environment,

3-34

library
building with elfar, 1-27
byte-addressing mode, 1-96
C run-time, 3-5
functions, listed, 3-67
header files, working with, 3-9
source code, working with, 3-8
source file, devtab.c, 3-59

library file, producing with elfar, 1-27
library functions

undocumented, 3-71
library functions, calling, 3-4
libsim.dlb library, 3-5, 3-23, 3-146

providing faster output, 3-22
unavailable in byte-addressing mode,

3-23
libsim.h header file, 3-28, 3-146
libsim.h library, unavailable in

byte-addressing mode, 3-29
libsim print routines, 3-28
libx_.dlb library files, 3-5
lightweight debugging information, 1-36
limits.h header file, 3-14
line breaks, in string literals, 1-249
__LINE__ macro, 1-257
line numbers, omitting, 1-52
#line preprocessor directive, 1-52
linker, allocating memory for stacks and

heaps, 1-278
Linker Description File (.LDF)

selecting, 1-62
linking

control pragmas, 1-214
link library, 1-40
list header file, 3-41
-list-workarounds (supported errata

workarounds) compiler switch, 1-40
live register, defined, 2-57
-L (library search directory) compiler

switch, 1-39

INDEX

I-22 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-l (link library) compiler switch, 1-40, 1-47
local, variables and temporaries, 1-265
locale.h header file, 3-14
localtime (convert calendar time into

broken-down time) function, 3-240
localtime function, 3-34, 3-82, 3-210
local variables/temporaries, 1-265
log10 (base 10 logarithm) function, 3-243
logical operators, bitwise, 1-140
log (natural logarithm) function, 3-242
long, latencies, 2-40
long compilations

disabling progress message for, 1-46
long identifier, 1-129
_LONG keyword, 1-190
long long datatypes, 1-118

loop
annotations, 2-100
avoiding conditional code in, 2-36
avoiding function calls in, 2-37
control variables, 2-38
counters, 1-295
cycle count, 2-88
epilog, 2-58
exit test, 2-38
flattening, 2-97
identification annotation, 2-87
inner vs. outer, 2-35
invariant, 2-58
iteration count, 2-50
kernel, 2-58
optimization, 1-195, 2-50
optimization concepts, 2-59
parallel processing, 1-199
prolog, 2-58
resource usage, 2-88
rotation, 2-60
rotation by hand., 2-34
short, 2-32
sinking, 2-59
trip count, 2-37, 2-93
unrolling, 2-32
vectorization, 2-51, 2-63

loop annotations
disabling, 1-43
enabling, 1-27

loop-carried dependency, 2-33, 2-34
avoiding, 2-33

loop optimization pragmas, 1-195
producing optimal code, 2-50

low-level primitives, 3-21
lvalue

GCC generalized, 1-246
generalized, 1-246

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-23
for TigerSHARC Processors

INDEX

M
__MACHINE__ macro, 1-61
macros

CLOCKS_PER_SEC, 3-48
defining, 1-29
FIR_INIT, 3-160
__GROUPNAME__, 1-61
__HOSTNAME__, 1-61
IDDE_ARGS, 1-278
__MACHINE__, 1-61
preprocessor, 1-255
__read_ccnt, 1-167
__REALNAME__, 1-61
__RTTI, 1-72
__SIGNED_CHARS__, 1-64
__SYSTEM__, 1-61
__TS_BYTE_ADDRESS, 1-28, 1-93
undefining, 1-63
__USERNAME__, 1-61
variable argument, 1-248
writing preprocessor, 1-258

main function, 1-215
main() function, 1-276
make rules only, 1-41
malloc function, 1-281
-map (generate a memory map) compiler

switch, 1-41
map header file, 3-41
math functions

ceil, 3-114
with floating-point type, 3-15
with long double type, 3-15

math.h header file, 3-15, 3-34
math intrinsics, 1-149
matinv (matrix inversion) function, 3-244
matmadd (real matrix matrix addition)

function, 3-245
matmmlt (real matrix matrix

multiplication) function, 3-246
matmsub (real matrix matrix subtraction)

function, 3-247
matrix functions, 3-29
matrix.h header file, 3-29
matrix inversion, 3-244
matrix transpose, 3-326
matsadd (real matrix scalar addition)

function, 3-248
matsmlt (real matrix scalar multiplication)

function, 3-249
matssub (real matrix scalar subtraction)

function, 3-250
maximum performance, 2-45
MAX instruction, 3-251

disabled, 1-45
max (maximum) functions, 3-251
-MD (make rules and compile) compiler

switch, 1-41
mean (mean) function, 3-252
-mem (enable memory initialization)

compiler switch, 1-42
meminit_.doj files, 3-6
meminit_ files, 3-6
MemInit utility (memory initializer), 1-42
memmove function, 1-61

INDEX

I-24 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

memory
allocating and initializing from heap,

3-211
allocating from heap, 3-219
allocation for stacks and heaps in LDF,

1-278
bank pragmas, 1-234
banks, 1-234
data placement in, 2-26
header file, 3-41
initialization support files, 3-6
initializer, 1-42
initializing from heap, 3-211
map, generating, 1-41
meminit_ files, 3-6
reserved for stacks and heaps, 1-278
returning to heap, 3-213
support keywords (pm dm), 1-119

memorychanging allocation from heap,
3-223

memory initialization
disabling, 1-46
enabling, 1-42

Microsoft C/C++ compiler, 1-134
minimum code size, 2-45
MIN instruction, 3-253

disabled, 1-45
min (minimum) functions, 3-253
missing operands, in conditional

expressions, 1-247
mixed C/C++ assembly

programming, 1-261
reference, 1-301

mixed C/C++ assembly naming
conventions, 1-302

mixed C/C++ assembly programming
asm() constructs, 1-102, 1-104, 1-108,

1-115, 1-116
mixed-mode operations, fractional, 1-243

mktime (convert broken-down time into a
calendar) function, 3-254

-M (make rules only) compiler switch, 1-41
-MM (generate make rules and compile)

compiler switch, 1-41
modf (separate integral and fractional parts)

function, 3-256
modulo

variable expansion unroll factor, 2-65
modulo scheduling, 2-66

defined, 2-100
producing scheduled loops with, 2-65

modulo variable expansion factor, 2-75
-Mo (processor output file) compiler

switch, 1-41
M_STRLEN_PROVIDED bit, 3-66
-Mt filename (output make rule) compiler

switch, 1-41
mu_compress (µ-law compression)

function, 3-257
mu_expand (µ-law expansion) function,

3-258
mult_fr1x32 functions, 1-162
mult_i1x32 functions, 1-162
mult_i2x16 functions, 1-162
mult_i4x16 functions, 1-161
multicore support, 1-214
multidimensional arrays, 1-128
multiline asm() C program constructs,

1-115
-multiline compiler switch, 1-42
multiple

attributes, 1-34
heap support, 1-286
instructions, constructs with, 1-115
pointer types, declaring, 2-53

multiply-accumulate instruction, 1-25
multi-threaded

environment, 3-34

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-25
for TigerSHARC Processors

INDEX

multi-threaded environment
using libraries in, 3-35

multi-threaded libraries, 3-35
multr_fr1x32 functions, 1-162
mult_u2x16 functions, 1-161
must-clobbered registers, 1-205, 1-206

N
namespace std, 1-71
nCompleted field, 3-67
NDEBUG macro, 3-11
nDesired field, 3-66
nested interrupts, 3-296
-never-inline compiler switch, 1-42
new devices

I/O support, 3-53
registering, 3-59

new header file, 3-38
new.h header file, 3-42
newline, in string literals, 1-42, 1-46
new operator, with multiple heaps, 1-286
-no-align-branch-lines compiler switch,

1-42
-no-alttok (disable alternative tokens)

compiler switch, 1-42
-no-anach (disable C++ anachronisms)

compiler switch, 1-71
-no-annotate (disable assembly

annotations) compiler common
switch, 1-43

-no-annotate-loop-instr compiler common
switch, 1-43

-no-auto-attrs compiler switch, 1-43
-no-bss compiler switch, 1-43
-no-builtin (no built-in functions) compiler

switch, 1-44
__NO_BUILTIN preprocessor macro,

1-44, 1-257
__NO_BYTE_ADDRESSING__ macro,

1-133

-no-circbuf (no circular buffer) compiler
switch, 1-44

-no-const-strings compiler switch, 1-44
-no-def (disable definitions) compiler

switch, 1-44
-no-eh (disable exception handling)

compiler switch, 1-71
-no-extra-keywords (disable short-form

keywords) compiler switch, 1-45
-no-fp-associative compiler switch, 1-45
-no-fp-minmax compiler switch, 1-45
no implicit inclusion, 1-229
-no-implicit-inclusion compiler switch,

1-71
NO_INIT qualifier, 1-220
-no-mem (disable memory initialization)

compiler switch, 1-46
-no-multiline compiler switch, 1-46
non-constant initializer support (compiler),

1-129
non-default heap, 1-282
non-local jumps, 3-16
non-unit stride, avoiding, 2-37
-no-progress-rep-timeout compiler switch,

1-46
norm (normalization) functions, 3-259
-no-rtti (disable run-time type

identification) compiler switch, 1-72
-no-saturation (no faster operations)

compiler switch, 1-46
-no-std-ass (disable standard assertions)

compiler switch, 1-47
-no-std-def (disable macro standard

definitions) compiler switch, 1-47
-no-std-inc (disable standard include

search) compiler switch, 1-47
-no-std-lib (disable standard library search)

compiler switch, 1-47
-no-std-templates C++ mode compiler

switch, 1-72

INDEX

I-26 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-nothreads (disable thread-safe build)
compiler switch, 1-47

not interrupt-safe functions, 3-34
-no-workaround (workaround id) compiler

switch, 1-48
N point complex input FFT (cfft) function,

3-105
N point inverse FFT (ifft) function, 3-227
N point real input FFT (rfft) function,

3-276
NULL pointer, 1-225, 3-301
numeric header file, 3-41
num variable, indicating sliding scale, 1-50
NxN point 2-D complex input FFT

(cfft2d) function, 3-110
NxN point 2-d inverse input FFT (ifft2d)

function, 3-229
NxN point 2-D real input FFT (rfft2d)

function, 3-281

O
-O 0|1 (enable optimization) compiler

switch, 1-48
-Oa (automatic function inlining) compiler

switch, 1-48
-O (enable optimization) compiler switch,

1-48
-Og (optimize while preserving debugging

information) compiler switch, 1-49
-o (output) compiler switch, 1-51
open function, 3-55, 3-61
operand constraint, 1-106, 1-108
operational extensions, list of, 1-92
operator, 1-248
operators, comparison, (int2x16 values,

1-141

optimization
and inlining, 1-100
asm() C program constructs and, 1-116
compiler, 2-4
default, 1-78
described, 1-77
disabling, 1-48
enabling, 1-36, 1-48, 1-81
for code size, 1-49, 2-45
for maximum performance, 2-45
for speed, 2-45
for speed versus size, 1-49
inner loop, 2-35
loop, 2-59
per-file, 1-80
pragmas, 1-211
pragmas used in, 2-47
preserving debugging information, 1-49
procedural, 1-78
reporting progress, 1-56
switches, 1-49, 2-2, 2-55
using sliding scale for, 1-50

optimization and debugging, enabling,
1-49

optimization levels
automatic inlining, 1-79
debug, 1-78
default, 1-78
described, 1-78
interprocedural optimizations, 1-80
PGO, 1-78
procedural optimizations, 1-78

-Os (optimize for size) compiler switch,
1-49

ostream header file, 3-38
outer loops, 2-35
outgoing linkage, 1-265
out-of-line copy, 1-100, 1-101
output operand, of asm() construct, 1-105
output operands, 1-116

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-27
for TigerSHARC Processors

INDEX

overlay manager, 1-210
-overlay (program may use overlays)

compiler switch, 1-51
overlays, 1-51
-Ov num (optimize for speed versus size)

compiler switch, 1-49

P
packed 16-bit integer support with C,

1-139
part-word, 1-95, 1-168
passing

arguments to driver, 1-59
-path-install (installation location)

compiler switch, 1-52
-path-output (non-temporary files

location) compiler switch, 1-53
-path-temp (temporary files location)

compiler switch, 1-53
-path-tool (tool location) compiler switch,

1-52
-pchdir (locate PCHRepository) compiler

switch, 1-53
.pch files, 1-228
-pch (precompiled header) compiler switch,

1-53
PCHRepository directory, 1-53
peeled iterations, 2-94
peeling amount, 2-94
per-file optimizations, 1-80
performance optimization, 1-49
perror function, 3-260
PGO

see profile-guided optimization (PGO)
session identifier, 1-53
supported in the simulator only, 1-79,

2-8

.pgo files
collecting PGO data, 1-79
from wrapper project, 2-10
gathering data with the -pguide switch,

1-54
-session-id identifier, 1-53
used in PGO process, 1-53, 2-9

-pgo-session id compiler switch, 1-53
-pguide (profile-guided optimization)

compiler switch, 1-54
pipeline viewer, 2-40
placement

C++ virtual lookup table, 1-59, 1-126
data, 1-58, 1-277
initialized variable data, 1-58, 1-125
jump-tables used to implement C/C++

switch, 1-59, 1-125
machine instructions, 1-58, 1-125
static C++ class constructor functions,

1-59, 1-125
zero-initialized variable data, 1-58, 1-125

placement support keyword (segment),
1-91, 1-124

pm memory keyword, 1-91, 1-119
pm memory support keyword, 1-119
PM qualifier, 1-220
pointer

arithmetic action on, 1-249
byte-addressing mode, 1-94
incrementing, 2-23
resolving aliasing, 2-39

pointer class support keyword (restrict),
1-91, 1-126

pointer-induction variables, 1-195
polar (construct from polar coordinates)

functions, 3-261
polar coordinates, 3-261
polyphase interpolation filter, 3-162
-P (omit line numbers) compiler switch,

1-52

INDEX

I-28 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

pow (raise to a power) function, 3-262
-pplist (preprocessor listing) compiler

switch, 1-54
-PP (omit line numbers and compile)

compiler switch, 1-52
#pragma alignment_region, 1-191
#pragma alignment_region_end, 1-191
#pragma align num, 1-189, 2-19
#pragma all_aligned, 1-195, 2-52
#pragma alloc, 1-200
#pragma always_inline, 1-26, 1-98, 1-212
#pragma bank_memory_kind, 1-237
#pragma bank_optimal_width, 1-239
#pragma bank_read_cycles, 1-238
#pragma bank_write_cycles, 1-238
#pragma can_instantiate instance, 1-228
#pragma code_bank, 1-234
#pragma const, 1-201, 2-47
#pragma core, 1-214
#pragma data_bank, 1-235
#pragma default_section, 1-219, 1-277
#pragma diag, 1-231, 2-7
#pragma diag(errors), 1-232
#pragma diag(pop), 1-233
#pragma diag(push), 1-233
#pragma diag(remarks), 1-232
#pragma diag(warnings), 1-232
#pragma different_banks, 1-196, 2-53
#pragma do_not_instantiate instance,

1-227
#pragma file_attr, 1-222
#pragma hdrstop, 1-228
#pragma instantiate, 1-308

#pragma instantiate instance, 1-227
#pragma interrupt, 1-192
#pragma interrupt_reentrant, 1-193
#pragma linkage_name, 1-214
#pragma linkage_name identifier, 1-214
#pragma loop_count(min, max, modulo),

1-196, 2-50
#pragma loop_unroll N, 1-196
#pragma must_iterate(min, max, modulo),

1-196
#pragma never_inline, 1-213
#pragma no_alias, 1-198, 2-54
#pragma no_implicit_inclusion, 1-229
#pragma no_pch, 1-230
#pragma noreturn, 1-201
#pragma no_vectorization, 1-199, 2-51
#pragma once, 1-230
#pragma optimize_as_cmd_line, 1-212
#pragma optimize_for_space, 1-211
#pragma optimize_for_speed, 1-211
#pragma optimize_off, 1-211
#pragma

optimize_{off|for_speed|for_space},
2-50

#pragma overlay, 1-210
#pragma param_never_null, 1-223
#pragma pgo_ignore, 1-202
#pragma pure, 1-202, 2-48
#pragma regs_clobbered, 1-203, 2-48
#pragma regs_clobbered_call, 1-207

usage limitations, 1-209
#pragma result_alignment, 1-211

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-29
for TigerSHARC Processors

INDEX

pragmas
alignment_region, 1-191
alignment_region_end, 1-191
align num, 1-189, 1-195
alloc, 1-200
always_inline, 1-212
bank_memory_kind, 1-237
bank_optimal_width, 1-239
bank_read_cycles, 1-238
bank_write_cycles, 1-238
can_instantiate instance, 1-228
code_bank, 1-234
const, 1-201
core, 1-214
data alignment, 1-188
data_bank, 1-235
default_section, 1-219, 1-277
defined, 1-187
diag, 1-231
diag(errors), 1-232
diag(pop), 1-233
diag(push), 1-233
diag(remarks), 1-232
diag(warnings), 1-232
different_banks, 1-196
do_not_instantiate instance, 1-227
file_attr, 1-222
function side-effect, 1-200
hdrstop, 1-228
header file control, 1-228
instantiate instance, 1-227
interrupt, 1-192
linkage_name, 1-214
linking, 1-214
linking control, 1-214
loop_count(min, max, modulo), 1-196
loop optimization, 1-195, 2-50
loop_unroll N, 1-196
memory bank, 1-234
never_inline, 1-213

no_alias, 1-198
no_implicit_inclusion, 1-229
no_pch, 1-230
noreturn, 1-201
no_vectorization, 1-199
once, 1-230
optimize_as_cmd_line, 1-233
optimize_for_space, 1-211
optimize_for_speed, 1-211
optimize_off, 1-211
overlay, 1-210
param_never_null, 1-223
pgo_ignore, 1-202
pure, 1-202
regs_clobbered_call, 1-207
regs_clobbered string, 1-203
result_alignment, 1-211
section, 1-219, 1-277
separate_mem_segments, 1-222
stack_bank, 1-236
suppress_null_check, 1-225
system_header, 1-231
template instantiation, 1-226
vector_for, 1-199
weak_entry, 1-223

#pragma section, 1-124, 1-219, 1-277
#pragma separate_mem_segments (var1,

var2), 1-222
#pragma stack_bank, 1-236
#pragma suppress_null_check, 1-225
#pragma system_header, 1-231
#pragma vector_for, 1-199, 2-51
#pragma weak_entry, 1-223
precompiled header, 1-53, 1-228
precompiled header repository, locating,

1-53
predefined assertions, 1-23

INDEX

I-30 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

predefined macros
__ADSPTS__, 1-256
__ADSPTS101__, 1-256
__ADSPTS201__, 1-256
__ADSPTS202__, 1-256
__ADSPTS203__, 1-256
__ADSPTS20x__, 1-256
__ANALOG_EXTENSIONS__, 1-256
__cplusplus, 1-256
__DATE__, 1-256
described, 1-255
__DOUBLES_ARE_FLOATS__,

1-256
__ECC__, 1-256
__EDG__, 1-256
__EDG_VERSION__, 1-256
__EXCEPTIONS, 1-256
__FILE__, 1-257
_LANGUAGE_C, 1-257
__LINE__, 1-257
__NO_BUILTIN, 1-257
__RTTI, 1-257
__SIGNED_CHARS__, 1-257
__SILICON_REVISION__, 1-257
__STDC__, 1-257
__STDC_VERSION__, 1-257
__TIME__, 1-257
__TS_BYTE_ADDRESS, 1-257
__VERSION__, 1-257
__VERSIONNUM__, 1-258
__WORKAROUNDS_ENABLED,

1-258
prefersMem attribute, 1-313

prefersMemNum attribute, 1-313
prelinker, 1-81, 1-310
preprocessor

listing file, 1-54
macros, 1-255

PrimIO device, 3-59
_primio.h header file, 3-64
__primIO label, 3-62
primiolib.c source file, 3-61
primitive I/O functions, 3-20, 3-64
PRINT_CYCLES(STRING,T) macro,

3-44
printf

extending to new devices, 3-53, 3-60
function, 3-21, 3-23, 3-28, 3-60, 3-263

printing
formatted output, 3-173
to standard output only, 3-22

print routines, 3-28
procedural optimizations, 1-78
procedure

calls, 1-267, 1-271
returns, 1-273
statistics, 2-82

processor
benchmarking cycle counts, 3-50
clock rate, 3-49
counts, measuring, 3-43
target, 1-55
time, 3-116

-proc (target processor) compiler switch,
1-55

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-31
for TigerSHARC Processors

INDEX

profile-guided optimization (PGO)
and multiple source uses, 2-11
collecting data, 1-78
command-line arguments, 1-278
common scenario, 1-79
described briefly, 1-78
enabling, 1-54
operation, 1-79
run-time behavior, 2-8
submenu, 1-79
used with a simulator, 2-9
using the -Ov num switch with, 1-50,

2-12, 2-45
using with non-simulatable applications,

2-10
when not used, 1-51
when to use, 2-8, 2-12
with the -pgo-session id switch, 1-53

profiler statistics, 1-78
program termination, 3-21
-progress-rep-func compiler switch, 1-56
-progress-rep-gen-opt compiler switch,

1-56
-progress-rep-mc-opt compiler switch, 1-56
progress reporting, 1-56
-progress-rep-timeout compiler switch,

1-56
-progress-rep-timeout-secs compiler switch,

1-57
-progress-rep-timeout-secs compiler switch,

1-57
prototype, incomplete, 1-66
prototypes, calling, 1-289
putc function, 3-264
putchar function, 3-265
puts function, 3-266

Q
qsort (quicksort) function, 3-267
quad-access instructions, 1-75

_QUAD keyword, 1-190
quad-word

boundary, 1-25, 1-42, 2-19, 2-20
data type, 1-119

quad-word-aligned address, 2-19
QUALIFIER keywords, 1-220
queue header file, 3-41

R
raise (raise a signal) function, 3-269
raise to a power function, 3-262
rand function, 3-34
rand (random number generator) function,

3-272
-R directory (add source directory)

compiler switch, 1-57
-R- (disable source path) compiler switch,

1-57
__read_ccnt macro, 1-167
read function, 3-57
realloc function, 1-281
__REALNAME__ macro, 1-61
real vector dot product function, 3-334
real vector + scalar addition function, 3-335
real vector * scalar multiplication function,

3-336
real vector - scalar subtraction function,

3-337
real vector + vector addition function,

3-338
real vector * vector multiplication function,

3-339
real vector - vector subtraction function,

3-340
reciprocal square root (rsqrt) function,

3-288
reductions, 2-33
ref-code characters, 1-67
__regclass() construct, 1-122
__regclass(unit) keyword extension, 1-92

INDEX

I-32 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

register information
disabling, 1-51
propagating, 1-210

register names, defined in sysreg.h, 1-167
registers

ADSP-TS101, 1-290
ADSP-TS201, 1-290
bit FIFO temporaries, 1-295
callee preserved, 1-289
circular buffering –B (base) & L (length),

1-294
classification, 1-289
clobbered, 1-203, 1-204
compute block ALU summation, 1-295
compute block X MAC, 1-294
compute block (X & Y) general, 1-293
compute block Y MAC, 1-295
data alignment, 1-295
dedicated, 1-289, 1-290
enhanced communications, 1-296
enhanced communications

(ADSP-TS201), 1-296
for asm() constructs, 1-108
function return, 1-206
iALU (j and k) general, 1-292
iALU (j & k) special registers, 1-294
loop counter, 1-295
__regclass qualifier, 1-122
return address, 1-295
scratch, 1-289, 1-290
Trellis, 1-185
Trellis History, 1-179, 1-180, 1-181,

1-182, 1-183, 1-185
unclobbered, 1-205
volatile, 1-207

regs_clobbered pragma, 1-203
regs_clobbered string, 1-204

remarks
defined, 2-6
enabling, 2-6
with control pragma, 1-231

remove function, 3-62, 3-273
rename function, 3-62, 3-274
reordering asm() C program constructs,

1-116
RESERVE_EXPAND() LDF command,

1-278
RESERVE() LDF command, 1-278
restrict

keyword, 1-126, 2-40
qualifier, 2-39

restricted pointer, 2-39
return address register, 1-295
return value, 1-270
rewind function, 3-275
rfft2d (NxN point 2-D real input FFT)

function, 3-281
rfftf (fast N point real input FFT) function,

3-283
rfftf_mag function, 3-285
rfftf magnitude, 3-285
rfft_mag function, 3-279
rfft magnitude, 3-279
rfft (N point real input FFT) function,

3-276
rms (root mean square) function, 3-287
-rtti (enable run-time type identification)

compiler switch, 1-72
__RTTI macro, 1-72
__RTTI preprocessor macro, 1-257
run-time

C/C++ library, 3-5
C library files, 3-5
disabling type identification, 1-72
enabling type identification, 1-72

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-33
for TigerSHARC Processors

INDEX

run-time header
calling global class instance constructors,

1-276
RUNTIME_INIT qualifier, 1-220
run-time libraries, symbols used to manage

stack and heap, 1-279
run-time library dispatchers, 3-297
run-time type identification

disabling, 1-72
enabling, 1-72

S
-save-temps (save intermediate files)

compiler switch, 1-58
scalar variables, 2-33
scanf function, 3-289
scheduling, 2-57
scratch registers, 1-290, 1-299
search path

for include files, 1-38
for library files, 1-39

section
elimination, 2-45
qualifiers, 1-219

.SECTION assembly directive, 1-124
-section id (data placement) compiler

switch, 1-58, 1-125
section identifiers, compiler-controlled,

1-58
section() keyword, 1-91, 1-124
sections, placing symbols in, 1-219, 1-276
SECTKIND keywords, 1-220
SECTSTRING string, 1-220
seek function, 3-57, 3-58
SEG_ARGV memory section, 1-278
seg_heap default heap, 1-280
segment, see placement support keyword

(section)
segment legacy keyword, 1-124

separate fraction and exponent function,
3-184

separate_mem_segments pragma, 1-222
setbuf function, 3-291
set_default_io_device, 3-61
set header file, 3-41
setjmp.h header file, 3-16
setvbuf function, 3-22, 3-292
shift operations, 1-242
short-form keywords, 1-33

disabling, 1-45
-show (display command line) compiler

switch, 1-59
sideways sum functions

int2x16 values, 1-142
int4x16 values, 1-145

sig argument, 3-235
sig argument, of processor signals, 3-295
SIGFPE signal, 3-238, 3-297
SIGILL signal, 3-238, 3-297
signal (define signal handling) function,

3-295
signalf function, 3-295, 3-296
signalfnr function, 3-295, 3-297
signal handler, 3-295
signal handling

defined, 3-295
external interrupts, 3-16
non-reentrant, 3-297
signal.h header file, 3-16
timer interrupts, 3-16

signal.h header file, 3-16
signalnr function, 3-295, 3-297
signals function, 3-295, 3-296
signalsnr function, 3-295
-signed-bitfield (make plain bitfields

signed) compiler switch, 1-60
-signed-char (make char signed) compiler

switch, 1-60

INDEX

I-34 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

__SIGNED_CHARS__ preprocessor
macro, 1-60, 1-64, 1-257

sign (sign) function, 3-294
SIGSEGV signal, 3-238, 3-297
SIGSW signal, 3-238, 3-297
silicon revision

managing with compiler, 1-82
specifying, 1-59, 1-83
version setting, 1-83

__SILICON_REVISION__ macro, 1-84
__SILICON_REVISION__ preprocessor

macro, 1-257
simulator

library support, 3-5
services, 3-28
used with PGO, 1-79, 2-8

single case range, 1-249
sinh (hyperbolic sine) function, 3-300
sinking, 2-59
sin (sine) function, 3-299
-si-revision (silicon revision) compiler

switch, 1-59, 1-83
sizeof operator, 1-73, 1-93, 1-249
size_t portable program, 3-17
sliding scale, between 0 and 100, 1-50
small applications, 2-45
snprintf function, 3-301
software exception handler, 3-297
software pipelining, 2-60, 2-63
source annotations, 2-7
source code, library, 3-8
source directory, adding, 1-57
source path, disabling, 1-57
spill function, 2-57
sprintf function, 3-23, 3-303
sqrt (square root) function, 3-305
srand function, 3-34
srand (random number seed) function,

3-306
sscanf function, 3-307

-S (stop after compilation) compiler switch,
1-57

sstream header file, 3-38
-s (strip debugging information) compiler

switch, 1-58
stack

general overview of, 1-262
general specifications, 1-266
header file, 3-41
in internal memory, 1-266
pointer, 1-263

stack frame
free space, 1-266
incoming arguments, 1-264
linkage information, 1-265
local variables/temporaries, 1-265
outgoing arguments, 1-265
outgoing linkage, 1-265
overview, 1-262

stage count, 2-65
stage count (SC), 2-71
stalls, preventing, 1-238
standard assertions, disabling, 1-47
standard include search, disabling, 1-47
standard library functions

heap_calloc, 3-211
heap_free, 3-213
heap_init, 3-214
heap_install, 3-215
heap_lookup, 3-217
heap_malloc, 3-219
heap_realloc, 3-221
heap_switch, 3-223

standard library search, disabling, 1-47
standard macro definitions, disabling, 1-47
START_CYCLE_COUNT macro, 3-43
startup files, 3-6
start-up routine, 1-274
statement expression, 1-244

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-35
for TigerSHARC Processors

statistical
functions, 3-31
profiling, 2-7

STAT registers, 1-167
stats.h header file, 3-31
stdarg.h header file, 3-17
stdargs (varargs) mechanism, 1-289
stdbool.h header file, 3-17
__STDC__ preprocessor macro, 1-257
__STDC_VERSION__ preprocessor

macro, 1-257
stddef.h header file, 3-17
stderrfd function, 3-58
stdexcept header file, 3-38
stdinfd function, 3-58
stdin (standard input) stream, 3-289
stdint.h header file, 3-17
stdio.h header file, 1-96, 3-20, 3-34, 3-52
stdlib.h header file, 1-96, 1-285, 3-23
stdlib.h header files, 3-34
std namespace, 1-71
stdoutfd function, 3-58
stdout output stream, 1-32
-std-templates C++ mode compiler switch,

1-72
STI memory area, 1-276
sti section identifier, 1-59, 1-125
STOP_CYCLE_COUNT macro, 3-43
stream

buffering, 3-292
full buffering, 3-291

streambuf header file, 3-38
strftime function, 3-308

conversion specifiers, 3-308
stride argument, FFT function, 3-28
string

handling functions, 3-24
header file, 3-38
literals with line breaks, 1-249

string.h header file, 3-24

string literals
marking as const-qualified, 1-29
multiline, 1-42, 1-46
not making const-qualified, 1-44

string-to-double conversion, 3-312
string-to-float conversion, 3-314
string-to-integer conversion, 3-316
string-to-long double conversion, 3-318
string-to-long integer conversion, 3-317
string-to-long long integer conversion,

3-320
string-to-unsigned long integer conversion,

3-321
string-to-unsigned long long integer

conversion, 3-322
strstream header file, 3-39
strtod (convert string to double) function,

3-312
strtof (string to float) function, 3-314
strtoi (string to integer conversion)

function, 3-316
strtok function, 3-34
strtold function, 3-318
strtold (string to long double conversion)

function, 3-318
strtoll (string to long long integer) function,

3-320
strtol (string to long integer) function,

3-317
strtoull (string to unsigned long long

integer) function, 3-322
strtoul (string to unsigned long integer

conversion) function, 3-321
struct

assignment, 1-60
copying, 1-60

-structs-do-not-overlap compiler switch,
1-60

struct tm, 3-24
struct/union fields, unnamed, 1-252

I-36 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

sub-word data types, 2-16 super interrupt dispatcher, 3-237, 3-296

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-37
for TigerSHARC Processors

switches
-A (assert) compiler switch, 1-23
-add-debug-libpaths, 1-24
-align-branch-lines, 1-25
-allow-macs-to-extend-saturation, 1-25
-alttok (alternative tokens), 1-25
-annotate (enable assembly annotations),

1-26
-annotate-loop-instr, 1-27
-auto-attrs, 1-27
-bss (placing data in bsz), 1-27
-build-lib (build library), 1-27
C/C++ mode selection, 1-22
-C (comments), 1-27
-c (compile only), 1-28
-char-size-8|32, 1-28
-char-size-any, 1-28
compiler common, 1-23 to 1-68
-const-read-write, 1-29
-debug-types, 1-30
-default-branch-(np|p), 1-30
-Dmacro (define macro), 1-29
-double-size-32|64, 1-31
-double-size-any, 1-30
-dryrun (terse dry-run), 1-32
-dry (verbose dry-run), 1-32
-ED (run after preprocessing to file),

1-32
-EE (run after preprocessing), 1-33
-enum-is-int, 1-33
-E (stop after preprocessing), 1-32
-extra-keywords (enable short-form

keywords), 1-33
-file-attr, 1-34
-@ filename (command file), 1-23
-flags- (command-line input), 1-34
-force-circbuf, 1-34
-fp-associative (floating-point associative

operation), 1-35
-fp-div-lib, 1-35

-full-version (display versions), 1-35
-g (generate debug information), 1-35
-glite (lightweight debugging), 1-36
-h[elp] (command-line help), 1-37
-HH (list headers and compile), 1-37
-H (list headers), 1-36
-I directory (include search directory),

1-38
-implicit-pointers, 1-38
-include (include file), 1-39
-ipa (interprocedural analysis), 1-39
-I- (start include directory list), 1-37
-L directory (library search directory),

1-39
-list-workarounds (supported errata

workarounds), 1-40
-l (link library), 1-40
-map filename (generate a memory map),

1-41
-MD (make rules and compile), 1-41
-mem (enable memory initialization),

1-42
-M (make rules only), 1-41
-MM (generate make rules and compile),

1-41
-Mo (processor output file), 1-41
-Mt name (output make rule for the

named source), 1-41
-Mt (output make rules), 1-41
-multiline, 1-42
-never-inline, 1-42
-no-align-branch-lines, 1-42
-no-alttok (disable alternative tokens),

1-42
-no-annotate (disable alternative tokens),

1-43
-no-annotate-loop-instr, 1-43
-no-auto-attrs, 1-43
--no-bss, 1-43
-no-builtin (no built-in functions), 1-44

I-38 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

-no-circbuf (no circular buffer), 1-44
-no-const-strings, 1-44
-no-defs (disable defaults), 1-44
-no-extra-keywords (disable short-form

keywords), 1-45
-no-fp-associative, 1-45
-no-mem (disable memory

initialization), 1-46
-no-multiline, 1-46
-no-progress-rep-timeout, 1-46
-no-saturation (no faster operations),

1-46
-no-std-ass (disable standard assertions),

1-47
-no-std-def (disable standard macro

definitions), 1-47
-no-std-inc (disable standard include

search), 1-47
-no-std-lib (disable standard library

search), 1-47
-nothreads (disable thread-safe build),

1-47
-no-workaround (workaround id), 1-48
-O 0|1 (enable optimizations), 1-48
-Oa (automatic function inlining), 1-48
-O (enable optimizations), 1-48
-o filename (output file), 1-51
-Og (optimize while preserving

debugging information), 1-49
-Os (optimize for size), 1-49
-overlay, 1-51
-Ov (optimize for speed vs. size), 1-51
-path-install directory (installation

location), 1-52
-path-output directory (non-temporary

files location), 1-53
-path-temp directory (temporary files

location), 1-53
-path- (tool location), 1-52
-pchdir (locate PCHRepository), 1-53

-pch (precompiled header), 1-53
-pgo-session session-id, 1-53
-pguide (profile-guided optimization),

1-54
-P (omit line numbers), 1-52
-pplist file (preprocessor listing), 1-54
-PP (omit line numbers and compile),

1-52
-proc identifier (processor), 1-55
-progress-rep-func, 1-56
-progress-rep-gen-opt, 1-56
-progress-rep-mc-opt, 1-56
-progress-rep-timeout, 1-56
-progress-rep-timeout-secs, 1-57
-R directory (add source directory), 1-57
-R- (disable source path), 1-57
-save-temps (save intermediate files),

1-58
-section id (data placement), 1-58, 1-277
-show (display command line), 1-59
-signed-bitfield (make plain bitfields

signed), 1-60
-signed-char (make char signed), 1-60
-si-revision version (silicon revision),

1-59, 1-83
sourcefile (sourcefile parameter), 1-23
-S (stop after compilation), 1-57
-s (strip debugging information), 1-58
-structs-do-not-overlap, 1-60
-syntax-only (just check syntax), 1-61
-sysdef (system definitions), 1-61
-threads (enable thread-safe build), 1-62
-time (time the compiler), 1-62
-T (linker description file), 1-62
-Umacro (undefine macro), 1-63
-unsigned-bitfield, 1-63
-unsigned-char (make char unsigned),

1-64
-verbose (display command line), 1-64
-version (display version), 1-64

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-39
for TigerSHARC Processors

-v (version and verbose), 1-64
-warn-protos (warn if incomplete

prototype), 1-66
-w (disable all warnings), 1-66
-Werror-limit (maximum switches), 1-65
-Werror-warnings, 1-65
-W{...} number (override error message),

1-64
-workaround (workaround generator),

1-66
-workaround workaround_id, 1-84
-Wremarks (enable diagnostic warnings),

1-65
-write-files (enable file redirection), 1-67
-write-opts (user options), 1-67
-Wterse (enable terse warnings), 1-65
-xref file (cross-reference list), 1-67

switches, -always-inline, 1-26
switch section identifier, 1-59, 1-125
symbols

placing in sections, 1-219, 1-276
to manage stack and heap, 1-279

-syntax-only (just check syntax) compiler
switch, 1-61

-sysdef (system definitions) compiler
switch, 1-61

sysreg.h header file, 1-118, 1-167, 2-42
__SYSTEM__ macro, 1-61
system macros, defined, 1-61
system registers, accessing, 1-118, 1-166

T
tanh (hyperbolic tangent) function, 3-324
tan (tangent) function, 3-323

template
asm() in C programs, 1-104
assembly construct, 1-104
class, 1-308
inclusion, control pragma, 1-229
instantiation pragmas, 1-226
instantiations, 1-308
support in C++, 1-308
un-instantiated, 1-310

template, of asm() construct, 1-105
temporary files location, 1-53
thread-safe

code, 1-62
functions, 3-34
libraries, using with VDK, 1-62
run-time libraries, used with VDK, 3-42

thread-safe build
disabling, 1-47
enabling, 1-62

-threads (enable thread-safe build) compiler
switch, 1-62

TigerSHARC processor registers,
classfication of, 1-289

time (calendar time) function, 3-325
time.h header file, 3-24, 3-48, 3-50, 3-51,

3-310
__TIME__ preprocessor macro, 1-257
timer interrupts, 3-16
time_t data type, 3-24
-time (time the compiler) switch, 1-62
time_t type, 3-24, 3-325
time zones, 3-24
-T (linker description file) compiler switch,

1-62
transpm (real matrix transpose) function,

3-326
Trellis History registers, 1-179, 1-180,

1-181, 1-182, 1-183, 1-185
Trellis registers, 1-185

I-40 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

trip
count, 2-65
maximum, 2-66
minimum, 2-66
modulo, 2-65

trip count, 2-77
loop, 2-93
minimum, 2-50

true, see Boolean type support keywords
(bool, true, false)

__TS_BYTE_ADDRESS preprocessor
macro, 1-28, 1-93, 1-97, 1-257

ts_exit_cpp_.doj C++ exit routine files, 3-6
ts_exit_.doj C exit routine files, 3-6
ts_hdr_cpp_.doj C++ startup files, 3-6
ts_hdr_.doj C start-up file, 3-6
twiddle table, 3-28
twidfftf function, 3-329
twidfft (initialization) function, 3-327
two-dimensional FFT, 3-110, 3-281
type, cast, 1-249
typeof keyword, 1-245

U
unclobbered registers, 1-205
ungetc, 3-331
un-instantiated templates, 1-310
unnamed struct/union fields, 1-252
unroll and jam, 2-94
-unsigned-bitfield (make plain bitfields

unsigned) compiler switch, 1-63
-unsigned-char (make char unsigned)

compiler switch, 1-64
unused space, 1-278
__USE_RAW_BUILTINS__ macro,

1-134
__USE_RAW_XCORRS__ macro, 1-134
__USERNAME__ macro, 1-61
user options, passing to main driver, 1-67
utility header file, 3-41

-U (undefine macro) compiler switch, 1-29,
1-63

V
varargs routines, 1-269
variable

argument macros, 1-248
length array, 1-248

variable argument list, 3-341
to stdout, 3-343

variable-length arrays, 1-127
variable name length, 1-129
var (variance) function, 3-333
VDK

project support selected, 1-62
synchronicity functions, 3-42
used with thread-safe run-time libraries,

3-42
using thread-safe C/C++ run-time

libraries with, 1-62
vecdot (real vector dot product) function,

3-334
vecsadd (real vector + scalar addition)

function, 3-335
vecsmlt (real vector * scalar multiplication)

function, 3-336
vecssub (real vector - scalar subtraction)

function, 3-337
vector functions, 3-31
vector header file, 3-41
vector.h header file, 3-31
vectorization, 2-63

annotations, 2-98
avoiding, 2-51
defined, 2-63
factor, 2-94
loop, 2-51
loop flattening, 2-97
unroll and jam, 2-94

vectorization information, 2-93

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-41
for TigerSHARC Processors

vecvadd (real vector + vector addition)
function, 3-338

vecvmlt (real vector * vector multiplication)
function, 3-339

vecvsub (real vector - vector subtraction)
function, 3-340

-verbose (display command line) compiler
switch, 1-64

-version (display version) switch, 1-64
version information, 1-35
__VERSIONNUM__ preprocessor macro,

1-258
__VERSION__ preprocessor macro,

1-257
vfprintf function, 3-341
virtual function lookup tables, 1-58, 1-125
VisualDSP++

C/C++ language extensions, 1-89
IDDE, 1-4
running compiler, 1-3
simulator, 3-13, 3-21, 3-53, 3-62

__VISUALDSPVERSION__ macro,
1-258

volatile
declarations, 2-5
keyword, 3-52
qualifier, omitting from declaration, 2-5
registers, 1-207

volatile and asm() C program constructs,
1-116

vprintf function, 3-343
vsnprintf function, 3-345
vsprintf function, 3-347
vtable section identifier, 1-59, 1-126
vtbl section identifier, 1-59, 1-125, 1-126
-v (version and verbose) compiler switch,

1-64

W
warning messages

disabling, 2-5
#warning directive, 1-252
with control pragma, 1-231

warnings
as errors, 1-65
disabling all, 1-66
terse, 1-65

-warn-protos (warn if incomplete
prototype) compiler switch, 1-66

-w (disable all warnings) compiler switch,
1-66, 2-5

weak linkage, function or variable
definition, 1-223

-Werror-limit (maximum compiler errors)
compiler switch, 1-65

-Werror-warnings compiler switch, 1-65,
2-6

whence parameter values, 3-189
width parameter, 1-239
window generator functions, 3-32
window.h header file, 3-32
-W{...} number (override error message)

compiler switch, 1-64, 2-5
word-addressing mode

enabled, 3-180
pointers, 1-168
selecting, 1-4, 1-28

_WORD keyword, 1-190
_wordsize.h header file, 3-63
__WORKAROUND_ANOMALY_0133

macro, 1-86
__WORKAROUND_ANOMALY_0136

macro, 1-86
__WORKAROUND_ANOMALY_0152

macro, 1-86
__WORKAROUND_ANOMALY_0160

macro, 1-86

I-42 VisualDSP++ 5.0 C/C++ Compiler and Library Manual
for TigerSHARC Processors

__WORKAROUND_ANOMALY_0169
macro, 1-87

__WORKAROUND_ANOMALY_0216
macro, 1-84

__WORKAROUND_ANOMALY_0220
macro, 1-86

__WORKAROUND_ANOMALY_0223
macro, 1-84

__WORKAROUND_ANOMALY_0231
macro, 1-85

__WORKAROUND_ANOMALY_0266
macro, 1-85

__WORKAROUND_ANOMALY_0281
macro, 1-85

__WORKAROUND_ANOMALY_0285
macro, 1-85

__WORKAROUND_ANOMALY_0298
macro, 1-85

__WORKAROUND_ANOMALY_0299
macro, 1-85

__WORKAROUND_ANOMALY_0306
macro, 1-85

__WORKAROUND_ANOMALY_0315
macro, 1-86

__WORKAROUND_ANOMALY_0316
macro, 1-85

__WORKAROUND_ANOMALY_0340
macro, 1-87

__WORKAROUND_ANOMALY_0353
macro, 1-86

-workaround compiler switch, 1-66

workarounds
all, 1-84
anomaly-0133, 1-86
anomaly-0136, 1-86
anomaly-0152, 1-86
anomaly-0160, 1-86
anomaly-0169, 1-87
anomaly-0216, 1-84
anomaly-0220, 1-86
anomaly-0223, 1-84
anomaly-0231, 1-85
anomaly-0266, 1-85
anomaly-0281, 1-85
anomaly-0285, 1-85
anomaly-0298, 1-85
anomaly-0299, 1-85
anomaly-0306, 1-85
anomaly-0315, 1-86
anomaly-0316, 1-85
anomaly-0340, 1-87
anomaly-0353, 1-86
anomaly management, 1-82
enabling, 1-66
errata, 1-59, 1-83
for anomalies, 1-84
interaction between -si-revision,

-workaround and -no-workaround,
1-87

list of valid workarounds, 1-84
using the -no-workaround switch with,

1-87
using the -workaround switch with, 1-84

workarounds, not applied in asm(), 1-82,
1-102

__WORKAROUNDS_ENABLED
macro, 1-88

__WORKAROUNDS_ENABLED
preprocessor macro, 1-258

VisualDSP++ 5.0 C/C++ Compiler and Library Manual I-43
for TigerSHARC Processors

-workaround workaround_id compiler
switch, 1-84

all option, 1-84
wrapper project, 2-10
-Wremarks (enable diagnostic warnings)

compiler switch, 1-65, 2-6
-write-files (enable driver I/O redirection)

compiler switch, 1-67
write function, 3-56
-write-opts (user options) compiler switch,

1-67
writes, array element, 2-35
writing preprocessor macros, 1-258
-Wterse (enable terse warnings) compiler

switch, 1-65

X
XCORRS Communication Logic Unit

instruction, 1-134
-xref (cross-reference list) compiler switch,

1-67
__XSTAT registers, 1-167

Y
__YSTAT registers, 1-167

Z
zero_cross (count zero crossings) function,

3-349
ZERO_INIT qualifier, 1-220, 1-314
zero length arrays, 1-248

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents Description
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	VisualDSP++ Online Documentation
	Technical Library CD

	Notation Conventions

	1 Compiler
	C/C++ Compiler Overview
	Compiler Command-Line Interface
	Running the Compiler
	Table 1-1. TigerSHARC Command Line Syntax
	Table 1-2. File Extensions
	Table 1-3. Input and Output Files

	Compiler Command-Line Switches
	C/C++ Compiler Switch Summaries
	Table 1-4. C/C++ Mode Selection Switches
	Table 1-5. C/C++ Compiler Common Switches
	Table 1-6. C++ Mode Compiler Switches

	C/C++ Mode Selection Switch Descriptions
	-c89
	-c++

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@ filename
	-A name [(<tokens>)]
	Table 1-7. Predefined Assertions

	-add-debug-libpaths
	-align-branch-lines
	-allow-macs-to-extend-saturation
	-alttok
	Table 1-8. Keyword Equivalents

	-always-inline
	-annotate
	-annotate-loop-instr
	-auto-attrs
	-bss
	-build-lib
	-C
	-c
	-char-size-any
	-char-size-{8|32}
	-const-read-write
	-const-strings
	-Dmacro[=definition]
	-debug-types
	-default-branch-{np|p}
	-double-size-any
	-double-size-{32 | 64}
	-dry
	-dryrun
	-E
	-ED
	-EE
	-enum-is-int
	-extra-keywords
	-file-attr name[=value]
	-flags-{asm|compiler|lib|link|mem} switch [,switch2 [,...]]
	Table 1-9. Switches Passed to other Analog Devices’ Tools

	-force-circbuf
	-fp-associative
	-fp-div-lib
	-full-version
	-g
	-glite
	-H
	-HH
	-h[elp]
	-I-
	-I directory [{,|;} directory...]
	-implicit-pointers
	-include filename
	-ipa
	-L directory [{,|;} directory...]
	-l library
	-list-workarounds
	-M
	-MD
	-MM
	-Mo filename
	-Mt name
	-map filename
	-mem
	-multiline
	-never-inline
	-no-align-branch-lines
	-no-alttok
	-no-annotate
	-no-annotate-loop-instr
	-no-auto-attrs
	-no-bss
	-no-builtin
	-no-circbuf
	-no-const-strings
	-no-defs
	-no-extra-keywords
	-no-fp-associative
	-no-fp-minmax
	-no-mem
	-no-multiline
	-no-progress-rep-timeout
	-no-saturation
	-no-std-ass
	-no-std-def
	-no-std-inc
	-no-std-lib
	-no-threads
	-no-workaround workaround_id[,workaround_id …]
	-O
	-O[0|1]
	-Oa
	-Og
	-Os
	-Ov num
	Figure 1-1. -Ov Switch Optimization Curve

	-o filename
	-overlay
	-P
	-PP
	-path-{ asm | compiler | lib | link } pathname
	-path-install directory
	-path-output directory
	-path-temp directory
	-pch
	-pchdir directory
	-pgo-session session-id
	-pguide
	-pplist filename
	Table 1-10. Key Characters

	-proc processor
	-progress-rep-func
	-progress-rep-gen-opt
	-progress-rep-mc-opt
	-progress-rep-timeout
	-progress-rep-timeout-secs secs
	-R directory [{:|,}directory …]
	-R-
	-S
	-s
	-save-temps
	-section id=section_name[,id=section_name...]
	-show
	-si-revision version
	-signed-bitfield
	-signed-char
	-structs-do-not-overlap
	-syntax-only
	-sysdefs
	Table 1-11. System Macros

	-T filename
	-threads
	-time
	-Umacro
	-unsigned-bitfield
	Table 1-12. Bitfield Values

	-unsigned-char
	-v
	-verbose
	-version
	-W {error|remark|suppress|warn} number
	-Werror-limit number
	-Werror-warnings
	-Wremarks
	-Wterse
	-w
	-warn-protos
	-workaround workaround_id[,workaround_id]*
	-write-files
	-write-opts
	-xref <filename>
	Table 1-13. Possible ref-code Characters

	C++ Mode Compiler Switch Descriptions
	-anach
	-check-init-order
	-eh
	-full-dependency-inclusion
	-ignore-std
	-no-anach
	-no-eh
	-no-implicit-inclusion
	-no-rtti
	-no-std-templates
	-rtti
	-std-templates

	Data Types and Data Type Sizes
	Table 1-14. Default Data Type Sizes for TigerSHARC Processors
	Integer Data Types
	Floating-Point Data Types

	Data Type Alignment
	Environment Variables Used by the Compiler
	Optimization Control
	Optimization Levels
	Interprocedural Analysis
	Interaction with Libraries

	Controlling Silicon Revision and Anomaly Workarounds within the Compiler
	Using the -si-revision Switch
	Using the -workaround Switch
	Table 1-15. Valid Workarounds

	Using the -no-workaround Switch
	Interactions Between the Silicon Revision and Workaround Switches

	C/C++ Compiler Language Extensions
	Table 1-16. Keyword Extensions
	Table 1-17. Operational Extensions
	Byte-Addressing Mode
	sizeof() Operator Types and Sizes
	Table 1-18. Byte-Addressing Types and Bit Lengths

	Pointers
	Alignment of Objects
	Initializations
	Pragmas Used in Byte-Addressing Mode
	Performance Issues
	Libraries Used in Byte-Addressing Mode
	Include Files

	Function Inlining
	Inlining and Optimization
	Inlining and Out-of-Line Copies
	Inlining and Global asm Statements
	Inlining and Sections

	Inline Assembly Language Support Keyword (asm)
	asm() Construct Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Table 1-19. Constraint Register Types
	Table 1-20. Constraint Operators: Use
	Table 1-21. Constraint Operators: Register Size
	Table 1-22. Constraint Operators: Operation Length

	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs With Input and Output Operands
	Assembly Constructs and Flow Control
	Guidelines on the Use of asm() Statements

	64-Bit Integer Support (long long)
	Table 1-23. Long Long Datatype Characteristics

	Quad-Word Support
	Memory Support Keywords (pm dm)
	Memory Keyword Rules

	__regclass Construct
	Bank Type Qualifiers
	Placement Support Keyword (section)
	Placement of Compiler-Generated Code and Data
	Boolean Type Support Keywords
	Pointer Class Support Keyword (restrict)
	Variable-Length Array Support
	Long Identifiers
	Non-Constant Aggregate Initializer Support
	Indexed Initializer Support
	Compiler Built-In Functions
	Using the builtins.h Header File
	Optimization Guidance Built-in Functions
	16-Bit Data Types
	Figure 1-2. 16-Bit Data Type
	Packed 16-bit Integer Support Using C
	Constructors (int2x16 values)
	Extractors and Expanders (int2x16 values)
	Arithmetic Operators (int2x16 values)
	Bitwise Operators (int2x16 values)
	Comparison Operators (int2x16 values)
	Sideways Sum (int2x16 values)
	Constructors (int4x16 values)
	Extractors (2x16 from a 4x16 value)
	Arithmetic Operators (int4x16 values)
	Sideways Sum (int4x16 values)

	32-Bit Data Types
	Constructors (int2x32 values)
	Extractors (int2x32 values)

	Circular Buffer Built-In Functions
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	Math Intrinsics
	RECIPS
	RSQRTS

	Instructions Generated by Built-in Functions
	Addition and Subtraction
	Conversion:
	Miscellaneous ALU Instructions
	Shifter Instructions
	Bit Manipulation Instructions
	Multiplier Instructions
	Floating-Point Operations
	Miscellaneous
	Memory Allocation
	Composition and Decomposition
	System Register Access

	Data Alignment Buffer (DAB) Built-in Functions
	Circular Buffer Data Alignment Buffer (DAB) Built-in Functions
	Communications Logic Unit Operations
	TMAX, TMAX_ADD, TMAX_SUB, MAX_ADD, MAX_SUB
	PERMUTE
	ACS
	DESPREAD
	XCORRS

	Pragmas
	Data Alignment Pragmas
	#pragma align num
	#pragma alignment_region (alignopt)

	Interrupt Handler Pragmas
	Loop Optimization Pragmas
	#pragma all_aligned
	#pragma different_banks
	#pragma loop_count(min, max, modulo)
	#pragma loop_unroll N
	#pragma no_alias
	#pragma no_vectorization
	#pragma vector_for

	Function Side-Effect Pragmas
	#pragma alloc
	#pragma const
	#pragma noreturn
	#pragma pgo_ignore
	#pragma pure
	#pragma regs_clobbered string
	Table 1-24. Clobbered Register Sets

	#pragma regs_clobbered_call string
	#pragma overlay
	#pragma result_alignment (n)

	General Optimization Pragmas
	Inline Control Pragmas
	#pragma always_inline
	#pragma never_inline

	Linking Control Pragmas
	#pragma linkage_name identifier
	#pragma core
	#pragma section/#pragma default_section
	Table 1-25. Keyword Possibilities for SECTKIND
	Table 1-26. Keyword Possibilities for QUALIFIER

	#pragma file_attr (name[=value] [, name[=value] [...]])
	#pragma separate_mem_segments (var1, var2)
	#pragma weak_entry

	Class Conversion Optimization Pragmas
	#pragma param_never_null param_name [...]
	#pragma suppress_null_check

	Template Instantiation Pragmas
	Table 1-27. Instance Names
	#pragma instantiate instance
	#pragma do_not_instantiate instance
	#pragma can_instantiate instance

	Header File Control Pragmas
	#pragma hdrstop
	#pragma no_implicit_inclusion
	#pragma no_pch
	#pragma once
	#pragma system_header

	Diagnostic Control Pragmas
	Modifying the Severity of Specific Diagnostics
	Table 1-28. Keywords for action: Qualifier

	Modifying the Behavior of an Entire Class of Diagnostics
	Saving or Restoring the Current Behavior of All Diagnostics

	Memory Bank Pragmas
	#pragma code_bank(bankname)
	#pragma data_bank(bankname)
	#pragma stack_bank(bankname)
	#pragma bank_memory_kind(bankname, kind)
	#pragma bank_read_cycles(bankname, cycles)
	#pragma bank_write_cycles(bankname, cycles)
	#pragma bank_optimal_width(bankname, width)

	Increments and Decrements
	C++ Style Comments
	C++ Fractional Type Support
	Format of Fractional Literals
	Conversions Involving Fractional Values
	Fractional Arithmetic Operations
	Mixed-Mode Operations

	GCC Compatibility Extensions
	Statement Expressions
	Type Reference Support Keyword (typeof)
	GCC Generalized Lvalues
	Conditional Expressions With Missing Operands
	Hexadecimal Floating-Point Numbers
	Zero-Length Arrays
	Variable Argument Macros
	Line Breaks in String Literals
	Arithmetic on Pointers to Void and Pointers to Functions
	Cast to Union
	Ranges in Case Labels
	Declarations Mixed With Code
	Escape Character Constant
	Alignment Inquiry Keyword (__alignof__)
	(asm) Keyword for Specifying Names in Generated Assembler
	Function, Variable and Type Attribute Keyword (__attribute__)
	Unnamed struct/union fields within struct/unions

	Preprocessor-Generated Warnings
	Migrating .ldf Files From Previous VisualDSP++ Installations
	C++ Support Tables (ctor, gdt)

	Preprocessor Features
	Predefined Preprocessor Macros
	Table 1-29. Predefined Preprocessor Macros

	Writing Macros
	Compound Macros

	C/C++ Run-Time Model and Environment
	Stack Frame Overview
	Figure 1-3. ADSP-TS101 Processor Stack

	Stack Frame Description
	General System-Wide Specifications
	At a procedure call, the following must be true:

	Argument Passage
	Table 1-30. Register-Argument Word Correspondence

	Passing a C++ Class Instance
	Return Values
	Procedure Call and Return
	To Call a Procedure:
	On Entry:
	To Return from a Procedure:

	Code Sequences

	Constructors and Destructors of Global Class Instances
	Constructors, Destructors and Memory Placement

	Support for argv/argc
	Allocation of Memory for Stacks and Heaps in LDFs
	Example of Heap/Stack Memory Allocation

	Using Multiple Heaps
	Heap Identifiers
	Initializing the Heap
	Using Alternate Heaps with the Standard Interface
	Allocating C++ STL Objects to a Non-Default Heap
	Using the Alternate Heap Interface
	C++ Run-Time Support for the Alternate Heap Interface

	Using the Heap_Install Interface

	Miscellaneous Information
	Register Classification
	Callee Preserved Registers (“Preserved”)
	Dedicated Registers
	Caller Save Registers (“Scratch”)
	ADSP-TS101 and ADSP-TS20x Processor Registers
	Table 1-31. iALU (j and k) General Registers
	Table 1-32. Compute Block (x & y) General Registers
	Table 1-33. iALU (j & k) Special Registers: Circular Buffering - B (base) and L (length)
	Table 1-34. Compute Block X MAC Registers
	Table 1-35. Compute Block Y MAC Registers
	Table 1-36. Compute Block ALU Summation Registers
	Table 1-37. Loop Counters
	Table 1-38. Data Alignment Registers
	Table 1-39. Compute Block Status Registers
	Table 1-40. Return Address Registers
	Table 1-41. Enhanced Communications Registers (ADSP-TS101 Processors only)
	Table 1-42. Enhanced Communications Registers (ADSP-TS201 Processors only)

	C/C++ and Assembly Language Interface
	Calling Assembly Subroutines From C/C++ Programs
	Calling C/C++ Functions From Assembly Programs
	Using Mixed C/C++ and Assembly Naming Conventions
	Table 1-43. C/C++ Naming Conventions for Symbols

	C++ Programming Examples
	Using Fract Type Support
	Using Complex Number Support

	Compiler C++ Template Support
	Template Instantiation
	Identifying Un-instantiated Templates

	File Attributes
	Automatically-Applied Attributes
	Figure 1-4. Content Attributes
	Table 1-44. Values of the Content Attribute

	Default LDF Placement
	Table 1-45. Values for prefersMemNum attribute

	Sections versus Attributes
	Granularity
	“Hard” versus “Soft”
	Number of Values

	Using Attributes
	Example

	2 Achieving Optimal Performance from C/C++ Source Code
	General Guidelines
	How the Compiler Can Help
	Using the Compiler Optimizer
	Using Compiler Diagnostics
	Warnings and Remarks
	Source and Assembly Annotations

	Using the Statistical Profiler
	Using Profile-Guided Optimization
	Using Profile-Guided Optimization With a Simulator
	Figure 2-1. PGO Process

	Using Profile-Guided Optimization With Non-Simulatable Applications
	Profile-Guided Optimization and Multiple Source Uses
	Profile-Guided Optimization and the -Ov Switch
	When to Use Profile-Guided Optimization

	Using Interprocedural Optimization

	Data Types
	Table 2-1. Scalar Data Types
	Avoiding Emulated Arithmetic
	Using Sub-Word Types with Caution

	Getting the Most From IPA
	Initialize Constants Statically
	Quad-Word-Aligning Your Data
	Using __builtin_aligned
	Avoiding Aliases

	Indexed Arrays Versus Pointers
	Trying Pointer and Indexed Styles

	Function Inlining
	Using Inline asm Statements
	Memory Usage
	Putting Arrays into Different Memory Sections
	Using the Bank Qualifier

	Improving Conditional Code
	Loop Guidelines
	Keeping Loops Short
	Avoiding Unrolling Loops
	Avoiding Loop-Carried Dependencies
	Avoiding Loop Rotation by Hand
	Avoiding Array Writes in Loops
	Inner Loops Versus Outer Loops
	Avoiding Conditional Code in Loops
	Avoiding Placing Function Calls in Loops
	Avoiding Non-Unit Strides
	Loop Control
	Using the Restrict Qualifier
	Avoiding Long Latencies

	Using Built-In Functions in Code Optimization
	Using Fractional Data
	System Support Built-in Functions
	Using Circular Buffers

	Smaller Applications: Optimizing for Code Size
	Using Pragmas for Optimization
	Function Pragmas
	#pragma const
	#pragma pure
	#pragma regs_clobbered
	#pragma optimize_{off|for_speed|for_space}

	Loop Optimization Pragmas
	#pragma loop_count
	#pragma no_vectorization
	#pragma vector_for
	#pragma all_aligned
	#pragma different_banks
	#pragma no_alias

	Useful Optimization Switches
	Table 2-2. C/C++ Compiler Optimization Switches

	How Loop Optimization Works
	Terminology
	Clobbered Register
	Live Register
	Spill
	Scheduling
	Loop Kernel
	Loop Prolog
	Loop Epilog
	Loop Invariant
	Hoisting
	Sinking

	Loop Optimization Concepts
	Software Pipelining
	Loop Rotation
	Loop Vectorization
	Modulo Scheduling
	Initiation Interval (II) and the kernel
	Table 2-3. Base Schedule
	Table 2-4. Obtaining the Modulo Schedule by Repeating the Base Schedule every II=2 Cycles
	Table 2-5. Loop Kernel, N>=3

	Minimum Initiation Interval Due to Resources (Res MII)
	Minimum Initiation Interval Due to Recurrences (Rec MII)
	Stage Count (SC)
	Figure 2-2. Instructions Grouped into Stages

	Variable Expansion and MVE unroll
	Table 2-6. Problematic Instance
	Table 2-7. Base Schedule from Table 2-3 applied to the Instances in Table 2-6
	Table 2-8. Modulo Schedule Broken by Overlapping Lifetimes of t3
	Table 2-9. Modulo schedule Corrected by Variable Expansion: t3 and t3_2
	Table 2-10. Instructions after Modulo Variable Expansion

	Trip Count

	A Worked Example

	Assembly Optimizer Annotations
	Global Information
	Procedure Statistics
	Instruction Annotations
	Loop Identification
	Loop Identification Annotations
	File Position

	Vectorization Information
	Unroll and Jam
	Loop Flattening
	Vectorization Annotations

	Modulo Scheduling Information
	Annotations for Modulo Scheduled Instructions
	Table 2-11. Modulo Scheduled Instructions

	Warnings, Failure Messages and Advice

	3 C/C++ Run-Time Library
	C and C++ Run-Time Libraries Guide
	Calling Library Functions
	Using Compiler’s Built-In C Library Functions
	Linking Library Functions
	Table 3-1. C and C++ Library Files

	Working With Library Source Code
	Working With Library Header Files
	Table 3-2. Standard C Run-Time Library Header Files
	adi_types.h
	assert.h
	ctype.h
	cycle_count.h
	cycles.h
	device.h
	device_int.h
	errno.h
	float.h
	iso646.h
	Table 3-3. Symbolic Names Defined in iso646.h

	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdarg.h
	stdbool.h
	stddef.h
	stdint.h
	Table 3-4. Types Defined in Byte-Addressing Mode
	Table 3-5. Types Defined in Word-Addressing Mode
	Table 3-6. MIN and MAX Macros for typedefs in Other Headings

	stdio.h
	stdlib.h
	string.h
	time.h

	DSP Header Files
	complex.h - Basic Complex Arithmetic Functions
	filter.h - DSP Filters and Transformations
	libsim.h - Simulator Services
	Table 3-7. libsim Print Routines

	matrix.h - Matrix Functions
	stats.h - Statistical Functions
	vector.h - Vector Functions
	window.h - Window Generators
	Table 3-8. Window Generator Functions

	Calling Library Functions from an ISR
	Using the Libraries in a Multi-Threaded Environment
	Abridged C++ Library Support
	Embedded C++ Library Header Files
	complex
	exception
	fract
	fstream
	iomanip
	ios
	iosfwd
	iostream
	istream
	new
	ostream
	sstream
	stdexcept
	streambuf
	string
	strstream

	C++ Header Files for C Library Facilities
	Table 3-9. C++ Header Files for C Library Facilities

	Embedded Standard Template Library Header Files
	algorithm
	deque
	functional
	hash_map
	hash_set
	iterator
	list
	map
	memory
	numeric
	queue
	set
	stack
	utility
	vector
	fstream.h
	iomanip.h
	iostream.h
	new.h

	Using the Thread-Safe C/C++ Run-Time Libraries with VDK

	Measuring Cycle Counts
	Basic Cycle Counting Facility
	Cycle Counting Facility with Statistics
	Using time.h to Measure Cycle Counts
	Determining the Processor Clock Rate
	Considerations When Measuring Cycle Counts

	File I/O Support
	Extending I/O Support To New Devices
	DevEntry Structure
	Registering New Devices
	Pre-Registering Devices
	Default Device
	Remove and Rename Functions

	Default Device Driver Interface
	Data Packing For Primitive I/O
	Data Structure for Primitive I/O

	Documented Library Functions
	Table 3-10. Library Functions in the complex.h Header File
	Table 3-11. Library Functions in the filter.h Header File
	Table 3-12. Library Functions in the math.h Header File
	Table 3-13. Library Functions in the matrix.h Header File
	Table 3-14. Library Functions in the signal.h Header File
	Table 3-15. Library Functions in the stats.h Header File
	Table 3-16. Supported Library Functions in stdio.h Header File
	Table 3-17. Library Functions in stdlib.h Header File
	Table 3-18. Library Functions in time.h Header File
	Table 3-19. Library Functions in vector.h Header File
	Table 3-20. Library Functions in window.h Header File

	Undocumented Library Functions
	Table 3-21. Library Functions in the ctype.h Header File
	Table 3-22. Library Functions in the stdarg.h Header File
	Table 3-23. Library Functions in the stdlib.h Header File
	Table 3-24. Library Functions in the string.h Header File
	a_compress
	a_expand
	abs
	acos
	addbitrev
	alog
	alog10
	arg
	asctime
	asin
	atan
	atan2
	atof
	atoi
	atol
	atold
	atoll
	autocoh
	autocorr
	avg
	bsearch
	cabs
	cadd
	cartesian
	cdiv
	ceil
	cexp
	cfft
	cfft_mag
	cfft2d
	cfftf
	clearerr
	clip
	clock
	cmatmadd
	cmatmmlt
	cmatmsub
	cmatsadd
	cmatsmlt
	cmatssub
	cmlt
	conj
	convolve
	conv2d
	copysign
	cos
	cosh
	cot
	count_ones
	crosscoh
	crosscorr
	csub
	ctime
	cvecdot
	cvecsadd
	cvecsmlt
	cvecssub
	cvecvadd
	cvecvmlt
	cvecvsub
	difftime
	div
	exp
	__emuclk
	fabs
	favg
	fclip
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	fir
	fir_decima
	fir_interp
	floor
	fmax
	fmin
	fmod
	fopen
	Table 3-25. Valid Selections for Mode

	fprintf
	Table 3-26. Valid Flags for fprintf
	Table 3-27. Length Modifier Actions for fprintf
	Table 3-28. Conversion Specifiers Characters for fprintf

	fputc
	fputs
	fread
	freopen
	frexp
	fscanf
	Table 3-29. Length Modifier for fscanf
	Table 3-30. Conversion Specifier Characters for fscanf

	fseek
	Table 3-31. Valid Values and Effects for whence Parameter

	fsetpos
	ftell
	fwrite
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	getc
	getchar
	gets
	gmtime
	heap_calloc
	heap_free
	heap_init
	heap_install
	heap_lookup
	heap_malloc
	heap_realloc
	heap_switch
	histogramf
	ifft
	ifft2d
	iir
	interrupt, interruptf, interrupts, interruptnr, interruptfnr, interruptsnr
	Table 3-32. Interrupt Handling

	localtime
	log
	log10
	matinv
	matmadd
	matmmlt
	matmsub
	matsadd
	matsmlt
	matssub
	max
	mean
	min
	mktime
	modf
	mu_compress
	mu_expand
	norm
	perror
	polar
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	Table 3-33. Raise Function Signals-Values and Meanings

	rand
	remove
	rename
	rewind
	rfft
	rfft_mag
	rfft2d
	rfftf
	rfftf_mag
	rms
	rsqrt
	scanf
	setbuf
	setvbuf
	sign
	signal, signalf, signals, signalnr, signalfnr, signalsnr
	Table 3-34. Interrupt Handling

	sin
	sinh
	snprintf
	sprintf
	sqrt
	srand
	sscanf
	strftime
	Table 3-35. Conversion Specifiers Supported by strftime

	strtod
	strtof
	strtoi
	strtol
	strtold
	strtoll
	strtoul
	strtoull
	tan
	tanh
	time
	transpm
	twidfft
	twidfftf
	ungetc
	var
	vecdot
	vecsadd
	vecsmlt
	vecssub
	vecvadd
	vecvmlt
	vecvsub
	vfprintf
	vprintf
	vsnprintf
	vsprintf
	zero_cross

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

