
ADSP-CM41x Mixed-Signal Control Processor

with ARM Cortex-M4/ARM Cortex-M0 and 16-Bit ADCs Hard-
ware Reference

Revision 1.0, December 2018

Part Number
82-100127-01

Analog Devices, Inc.
One Technology Way
Norwood, MA 02062-9106

Notices

Copyright Information

© 2018 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form
without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana-
log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its
use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, Blackfin+, CrossCore, EngineerZone, EZ-Board, EZ-KIT Lite, EZ-KIT Mini,

EZ-Extender, SHARC, SHARC+, A2B, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

SigmaStudio is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

ADSP-CM41x Mixed-Signal Control Processor ii

Contents

Introduction

Power and Clock Management .. 1–2

System Interrupts and Triggers (SEC/TRU/TTU/CPTMR/GP Timer) .. 1–4

System Memory (SMC/SMPU/FLC)... 1–6

Direct Memory Access (DMA/MDMA/CRC) ... 1–7

Peripherals ... 1–8

General-Purpose I/O (GPIO) Peripherals... 1–9

Dedicated Pin Peripherals... 1–13

System Accelerators (FFTB/HAE/SINC/MATH).. 1–13

Security and Protection (SPU/MBOX) .. 1–15

Safety (WDOG/VMU) .. 1–16

JTAG Debug and Serial Wire Debug Port ... 1–16

ADCC and DACC... 1–17

System Block (SYSBLK) and Pads ... 1–18

ARM Cortex-M0 Core 1 Memory Sub-System

Peripherals and Infrastructure in M0 Subsystem Domain.. 2–1

Cortex-M0 Memory Features... 2–2

Cortex-M0 Memory Functional Description ... 2–3

CM41X_M0 M0P Interrupt List .. 2–3

CM41X_M0 M0P Trigger List... 2–3

ARM Cortex-M0 Bus Interconnect .. 2–3

Cortex-M0 Code and Data SRAM... 2–6

SRAM Features... 2–7

SRAM Bank Organization on the ARM Cortex-M0 Subsystem ... 2–7

ECC Error Handling .. 2–7

Memory and MMR Access Latencies ... 2–8

ADSP-CM41x Mixed-Signal Control Processor iii

Boot Sequence ... 2–9

Cortex-M0 Registers.. 2–10

ARM Cortex-M4 Core 0 Memory Sub-System

Peripherals and Infrastructure on the ARM Cortex-M4 Sub-system Domain .. 3–1

Cortex-M4 Memory Features... 3–3

Cortex-M4 Memory Functional Description ... 3–3

CM41X_M4 M4P Interrupt List .. 3–3

CM41X_M4 M4P Register List ... 3–3

Cortex-M4 Code and Data SRAM... 3–4

SRAM Features... 3–4

SRAM Bank Organization.. 3–5

SRAM Partitioning Using Config Banks .. 3–6

SRAM Posted System Writes (NormSysWrite versus PostSysWrite).. 3–7

Memory Initialization... 3–8

Refresh Function, Background Memory Scrubber .. 3–9

ECC Error Signaling... 3–9

ECC Error Interrupt Handlers ... 3–10

Memory Built-In Self Test (MEMST) .. 3–11

Memory and MMR Access Latencies ... 3–12

CM41X_M4 M4P Register Descriptions .. 3–17

Boot ROM Error Register ... 3–18

Bus Fault Error Information Register .. 3–19

SRAM Configuration Register ... 3–20

SRAM ECC Error Address (Core) Register .. 3–23

SRAM ECC Error Address (DMA) Register .. 3–24

SRAM Initialization Done Status Register ... 3–25

SRAM Refresh Address .. 3–26

SRAM Refresh Period Register .. 3–27

SysTick Calibration Register .. 3–28

iv ADSP-CM41x Mixed-Signal Control Processor

Security

Security Features .. 4–1

Security Functional Description... 4–1

Security States .. 4–1

Architectural Concepts ... 4–5

System Crossbars (SCB)

SCB Features ... 5–1

SCB Functional Description .. 5–1

CM41X_M4 SCB Register List .. 5–2

SCB Architectural Concepts ... 5–3

SCB Block Diagram .. 5–3

ADSP-CM41x Block Diagram... 5–4

SCB Bus Master IDs .. 5–6

System Crossbars .. 5–8

ADSP-CM41x SCB Arbitration ... 5–9

Clock Domain Synchronization.. 5–10

ADSP-CM41x SCB Programming Model ... 5–10

CM41X_M4 SCB Register Descriptions .. 5–11

AFE0 Read Quality of Service Register .. 5–13

AFE0 Write Quality of Service Register ... 5–14

M4 Core Read Quality of Service Register ... 5–15

M4 Core Write Quality of Service Register .. 5–16

DMA0 Read Quality of Service Register .. 5–17

DMA0 Write Quality of Service Register ... 5–18

DMA1 Read Quality of Service Register .. 5–19

DMA1 Write Quality of Service Register ... 5–20

DMA2 Read Quality of Service Register .. 5–21

DMA2 Write Quality of Service Register ... 5–22

DMA3 Read Quality of Service Register .. 5–23

ADSP-CM41x Mixed-Signal Control Processor v

DMA3 Write Quality of Service Register ... 5–24

DMA4 Read Quality of Service Register .. 5–25

DMA4 Write Quality of Service Register ... 5–26

DMA5 Read Quality of Service Register .. 5–27

DMA5 Write Quality of Service Register ... 5–28

DMA6 Read Quality of Service Register .. 5–29

DMA6 Write Quality of Service Register ... 5–30

DMA7 Read Quality of Service Register .. 5–31

DMA7 Write Quality of Service Register ... 5–32

DMA8 Read Quality of Service Register .. 5–33

DMA8 Write Quality of Service Register ... 5–34

DMA9 Read Quality of Service Register .. 5–35

DMA9 Write Quality of Service Register ... 5–36

FFT0 Read Quality of Service Register .. 5–37

FFT0 Write Quality of Service Register ... 5–38

SINC0 Read Quality of Service Register .. 5–39

SINC0 Write Quality of Service Register ... 5–40

M0 Core Read Quality of Service Register ... 5–41

M0 Core Write Quality of Service Register .. 5–42

Clock Generation Unit (CGU)

CGU Features .. 6–1

CGU Functional Description... 6–1

CM41X_M4 CGU Register List... 6–2

CM41X_M0 CGU Interrupt List .. 6–2

CM41X_M4 CGU Interrupt List .. 6–3

CM41X_M0 CGU Trigger List .. 6–3

CM41X_M4 CGU Trigger List .. 6–3

CGU Definitions.. 6–4

CGU PLL Block Diagram .. 6–4

vi ADSP-CM41x Mixed-Signal Control Processor

CGU Operating Modes ... 6–6

CGU Power-up Sequence .. 6–6

CGU Event Control .. 6–6

Oscillator Watchdog .. 6–8

GPIO Pin Safe State ... 6–9

CGU Programming Model .. 6–10

Configuring CGU Modes ... 6–10

Changing Clock Frequencies ... 6–10

Changing the PLL Clock Frequency.. 6–10

Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency 6–11

Changing the OCLK Frequency .. 6–12

Aligning All Clocks ... 6–12

Valid Clock Multiplier Settings .. 6–13

CM41X_M4 CGU Register Descriptions ... 6–13

Core Clock Buffer Disable Register ... 6–14

Core Clock Buffer Status Register .. 6–15

CLKOUT Select Register .. 6–16

Control Register .. 6–18

Clocks Divisor Register ... 6–20

Oscillator Watchdog Register .. 6–23

PLL Control Register .. 6–25

Revision ID Register .. 6–27

System Clock Buffer Disable Register .. 6–28

System Clock Buffer Status Register .. 6–30

Status Register ... 6–31

Time Stamp Counter 32 LSB Register ... 6–34

Time Stamp Counter 32 MSB Register ... 6–35

Time Stamp Control Register .. 6–36

Time Stamp Counter Initial 32 LSB Value Register ... 6–37

Time Stamp Counter Initial MSB Value Register .. 6–38

ADSP-CM41x Mixed-Signal Control Processor vii

Oscillator Comparator Unit (OCU)

OCU Features.. 7–1

OCU Functional Description .. 7–2

CM41X_M4 OCU Register List .. 7–2

Additional OCU Registers.. 7–2

CM41X_M4 OCU Interrupt List .. 7–2

OCU Block Diagram.. 7–2

Input Clock Frequency Measurement ... 7–3

Performing a Frequency Measurement.. 7–3

Comparing Measured Frequency Against Limits... 7–4

Automatic Frequency Monitoring... 7–4

Dead Clock Monitoring ... 7–4

Control and Status.. 7–4

Reset Behavior .. 7–5

MMR Interface... 7–5

Outputs .. 7–5

Clock Domains and Synchronization.. 7–5

Critical Startup and Shutdown ... 7–6

OCU Architectural Concepts.. 7–6

Clock Frequency Measurement.. 7–6

Clock Frequency Measurement Example ... 7–7

Dead Clock Detection... 7–8

Calibration .. 7–8

Clock Jitter.. 7–9

OCU Operating Modes ... 7–9

OCU Event Control .. 7–9

OCU Interrupt Signals ... 7–10

OCU Programming Model .. 7–10

CM41X_M4 OCU Register Descriptions ... 7–11

Frequency Measured Count Register ... 7–12

viii ADSP-CM41x Mixed-Signal Control Processor

CLKIN Monitor Reference Count Register ... 7–13

Control Register .. 7–14

LFO Monitor Reference Count Register .. 7–16

Maximum Count Register ... 7–17

Minimum Limit Register ... 7–18

Reference Count Register .. 7–19

Status Register ... 7–20

System Protection Unit (SPU)

SPU Features ... 8–1

SPU Functional Description .. 8–1

CM41X_M4 SPU Register List .. 8–1

CM41X_M0 SPU Interrupt List ... 8–2

CM41X_M4 SPU Interrupt List ... 8–2

Peripheral Register Write Protection... 8–2

Peripheral Register Access Protection.. 8–5

SPU Block Diagram... 8–5

SPU Architectural Concepts .. 8–5

SPU Event Control .. 8–5

SPU Programming Model ... 8–6

SPU Mode Configuration.. 8–6

Locking Write-Protect Registers ... 8–7

Protecting a Peripheral ... 8–7

Access Protecting a Peripheral... 8–7

CM41X_M4 SPU Register Descriptions .. 8–7

Access Protect Register n ... 8–9

Control Register .. 8–10

Device Configuration Register ... 8–12

Interrupt Address Register ... 8–13

Interrupt Details Register .. 8–14

ADSP-CM41x Mixed-Signal Control Processor ix

Status Register ... 8–15

Timeout Register ... 8–17

Write Protect Register n ... 8–18

ADSP-CM41x Write-Protect and Secure Peripheral Registers.. 8–18

Dynamic Power Management (DPM)

DPM Features.. 9–1

DPM Functional Description .. 9–1

CM41X_M4 DPM Register List .. 9–1

DPM Definitions ... 9–1

DPM Operating Modes ... 9–2

Reset State .. 9–2

Full-on Mode.. 9–2

Deep Sleep Mode.. 9–3

DPM Event Control .. 9–3

DPM Programming Model.. 9–4

Configuring Deep Sleep Mode ... 9–4

CM41X_M4 DPM Register Descriptions ... 9–4

Control Register .. 9–5

Peripherals Disable Register 0 .. 9–6

Revision ID ... 9–7

Status Register ... 9–8

Wakeup Enable Register .. 9–10

Wakeup Polarity Register ... 9–11

Wakeup Status Register ... 9–12

System Event Controller (SEC)

SEC Features.. 10–1

SEC Functional Description .. 10–2

CM41X_M4 SEC Register List .. 10–2

CM41X_M4 SEC Interrupt List ... 10–3

x ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 Interrupt List ... 10–3

CM41X_M0 Interrupt List ... 10–9

CM41X_M4 SEC Trigger List.. 10–12

SEC Definitions ... 10–12

SEC Block Diagram.. 10–13

SEC Fault Interface (SFI) .. 10–14

SEC Architectural Concepts ... 10–15

System Interrupt Acknowledge.. 10–16

Nested Vectored Interrupt Controller (NVIC)... 10–16

Interrupt Request Processing Using the SEC and NVIC ... 10–17

System Fault Interface (SFI) and the NVIC... 10–18

Fault Input Options ... 10–18

Faults from System Interrupt Sources .. 10–19

Managing Faults... 10–19

SEC Error.. 10–19

NVIC .. 10–20

Programming Concepts .. 10–20

Programming Examples.. 10–20

Configuring the WDOG Expiry Event to Issue a System Reset ... 10–20

Configuring a System Interrupt with NVIC.. 10–21

Configuring FMU as Fault Pin.. 10–21

Managing Faults Inside a Triggered ISR .. 10–21

Configuring and Managing Faults (that are also interrupts) ... 10–22

SEC Programming Restrictions .. 10–22

CM41X_M4 SEC Register Descriptions ... 10–23

Fault COP Period Register .. 10–24

Fault COP Period Current Register ... 10–25

Fault Control Register ... 10–26

Fault Delay Register .. 10–29

Fault Delay Current Register ... 10–30

Fault End Register ... 10–31

ADSP-CM41x Mixed-Signal Control Processor xi

Fault Source ID Register .. 10–32

Fault System Reset Delay Register ... 10–33

Fault System Reset Delay Current Register .. 10–34

Fault Status Register .. 10–35

Global Control Register ... 10–37

Global Status Register ... 10–38

Global Raise Register ... 10–40

Source Control Register n .. 10–41

Source Status Register n ... 10–43

Trigger Routing Unit (TRU)

TRU Features .. 11–1

TRU Functional Description ... 11–1

CM41X_M4 TRU Register List ... 11–2

CM41X_M0 TRU Interrupt List .. 11–2

CM41X_M4 TRU Interrupt List .. 11–2

CM41X_M0 TRU Trigger List .. 11–3

CM41X_M0 Trigger List.. 11–4

CM41X_M4 TRU Trigger List .. 11–6

TRU Definitions .. 11–7

TRU Block Diagram .. 11–8

Inter Core Trigger Communication .. 11–8

TRU Architectural Concepts ... 11–9

TRU Programming Model... 11–9

Programming Concepts .. 11–10

Programming Examples.. 11–10

Configuring a Simple Trigger Sequence... 11–10

Toggle a GPIO on Timer Expiry Event ... 11–10

TRU Event Control ... 11–11

TRU Status and Error Signals... 11–11

xii ADSP-CM41x Mixed-Signal Control Processor

Trigger Latencies.. 11–11

CM41X_M4 TRU Register Descriptions ... 11–13

Error Address Register ... 11–14

Global Control Register ... 11–15

Master Trigger Register ... 11–17

Slave Select Register ... 11–18

Status Information Register ... 11–19

Trigger Timing Unit (TTU)

TTU Features .. 12–1

TTU Functional Description... 12–1

CM41X_M4 TTU Register List... 12–2

CM41X_M4 TTU Trigger List .. 12–2

TTU Definitions .. 12–3

TTU Block Diagram .. 12–4

TTU Architectural Concepts .. 12–5

TTU Operating Modes.. 12–5

Single-Shot Mode ... 12–6

Periodic Mode .. 12–7

TTU Programming Model .. 12–11

Programming Concepts .. 12–11

TTU Programming Examples.. 12–11

Enabling a Trigger Delay Group ... 12–11

Gracefully Stopping a Periodic Trigger Delay Group .. 12–12

Abruptly Disabling a Trigger Delay Group ... 12–13

Additional Programming Examples .. 12–13

CM41X_M4 TTU Register Descriptions ... 12–14

Counter Current Value .. 12–15

TTU Control Register ... 12–16

Trigger Output Counter Assignment ... 12–17

ADSP-CM41x Mixed-Signal Control Processor xiii

Trigger Output Delay Register .. 12–18

Counter Period Register .. 12–19

Revision ID Register .. 12–20

Counter Status Register ... 12–21

Counter Stop Request Register .. 12–22

Counter Check Register ... 12–23

Static Memory Controller (SMC)

SMC Features .. 13–1

SMC Definitions ... 13–1

SMC Functional Description... 13–3

CM41X_M4 SMC Register List... 13–3

SMC Architectural Concepts .. 13–4

Avoiding Bus Contention .. 13–5

ARDY Input Control .. 13–6

SMC Operating Modes.. 13–6

Asynchronous Flash Mode.. 13–6

Asynchronous Page Mode... 13–6

SMC Event Control ... 13–7

SMC Programmable Timing Characteristics.. 13–7

Asynchronous SRAM Reads and Writes.. 13–7

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted.. 13–8

High-Speed Asynchronous SRAM Read Burst.. 13–9

High-Speed Asynchronous SRAM Writes ... 13–10

Asynchronous SRAM Reads with ARDY.. 13–11

Asynchronous Flash Reads.. 13–12

Asynchronous Flash Writes ... 13–14

Asynchronous Flash Page Mode Reads.. 13–15

Asynchronous FIFO Reads and Writes .. 13–15

SMC Programming Model .. 13–17

xiv ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 SMC Register Descriptions ... 13–17

Bank 0 Control Register .. 13–19

Bank 0 Extended Timing Register ... 13–22

Bank 0 Timing Register ... 13–24

Bank 1 Control Register .. 13–26

Bank 1 Extended Timing Register ... 13–29

Bank 1 Timing Register ... 13–31

Bank 2 Control Register .. 13–33

Bank 2 Extended Timing Register ... 13–36

Bank 2 Timing Register ... 13–38

Bank 3 Control Register .. 13–40

Bank 3 Extended Timing Register ... 13–43

Bank 3 Timing Register ... 13–45

Flash Controller (FLC)

FLC Features.. 14–1

FLC Functional Description .. 14–1

CM41X_M4 FLC Register List .. 14–1

FLC Block Diagram.. 14–2

FLC Architectural Concepts ... 14–3

Flash Memory Organization.. 14–3

Flash Prefetcher ... 14–4

Information Memory .. 14–4

ECC Protection... 14–6

Non-Volatile Write Control ... 14–6

Flash Performance Modes.. 14–6

Flash Operations.. 14–7

Page Erase (PER) .. 14–7

Mass Erase (MER).. 14–8

Flash Program .. 14–8

Flash Read .. 14–9

ADSP-CM41x Mixed-Signal Control Processor xv

Flash Sleep Mode and Wake from Sleep (SLPC and WKSL)... 14–10

Abort Operation (ABORT) .. 14–10

FLC Operating Requirements.. 14–10

FLC Event Control .. 14–11

Interrupts ... 14–11

CM41X_M4 FLC Register Descriptions ... 14–12

Command Address Register ... 14–14

Command Register .. 14–15

Command Key Register ... 14–18

Control Register .. 14–19

Command Data Register 0 .. 14–21

Command Data Register 1 .. 14–22

Command ECC Register ... 14–23

Pre-fetcher Fill Count Register .. 14–24

Interrupt Enable Register .. 14–25

Pre-fetcher Miss Count Register .. 14–27

Prefetch Control Register .. 14–28

Pre-fetcher Reference Count Register .. 14–29

Revision ID Register .. 14–30

ECC Single Bit Error Threshold Register .. 14–31

Status Register ... 14–32

Power Timing Register .. 14–37

System Memory Protection Unit (SMPU)

SMPU Features.. 15–1

SMPU Functional Description .. 15–1

CM41X_M4 SMPU Register List .. 15–2

CM41X_M0 SMPU Interrupt List .. 15–3

Memory Writes... 15–3

Memory Reads ... 15–3

xvi ADSP-CM41x Mixed-Signal Control Processor

ID Comparison .. 15–3

Memory Region.. 15–6

SMPU Definitions ... 15–7

SMPU Block Diagram.. 15–8

SMPU Architectural Concepts ... 15–8

SMPU Operating Modes ... 15–9

SMPU Interrupt Signals .. 15–9

SMPU Status and Error Signals ... 15–10

SMPU Programming Example... 15–10

CM41X_M4 SMPU Register Descriptions ... 15–11

Bus Error Address Register .. 15–12

Bus Error Details Register ... 15–13

SMPU Control Register .. 15–14

Interrupt Address Register ... 15–16

Interrupt Details Register .. 15–17

Region n Address Register ... 15–18

Region n Control Register ... 15–19

SMPU Revision ID Register .. 15–22

Region n ID A Register ... 15–23

Region n ID B Register ... 15–24

Region n ID Mask A Register .. 15–25

Region n ID Mask B Register .. 15–26

SMPU Status Register ... 15–27

Cyclic Redundancy Check (CRC)

CRC Features... 16–1

CRC Functional Description ... 16–2

CM41X_M4 CRC Register List ... 16–2

CM41X_M4 CRC Interrupt List .. 16–3

CRC Definitions .. 16–3

ADSP-CM41x Mixed-Signal Control Processor xvii

CRC Block Diagram.. 16–4

Peripheral DMA Bus .. 16–5

MMR Access Bus.. 16–5

Mirror Block... 16–5

Data FIFO.. 16–5

DMA Request Generator.. 16–5

CRC Engine ... 16–5

Compare Logic ... 16–6

CRC Architectural Concepts.. 16–6

Look-up Table .. 16–6

Data Mirroring... 16–7

FIFO Status and Data Requests.. 16–7

CRC Operating Modes .. 16–8

Data Transfer Modes .. 16–8

Memory Scan Compute-and-Compare Mode.. 16–9

Memory Scan Data Verify ... 16–10

Memory Transfer Compute-and-Compare Mode .. 16–10

Memory Transfer Data Fill Mode.. 16–10

CRC Event Control ... 16–11

Interrupt Signals... 16–11

CRC Programming Model... 16–11

CRC Mode Configuration.. 16–12

Look-up Table Generation .. 16–12

Core Driven Memory Scan Compute-and-Compare Mode ... 16–12

DMA Driven Memory Scan Compute-and-Compare Mode.. 16–14

Core Driven Memory Scan Data Verify Mode ... 16–15

DMA Driven Memory Scan Data Verify Mode ... 16–17

Core Driven Memory Transfer Compute-and-Compare Mode.. 16–18

DMA Driven Memory Transfer Compute-and-Compare Mode .. 16–20

DMA Driven Memory Transfer Data Fill Mode .. 16–21

CM41X_M4 CRC Register Descriptions .. 16–23

xviii ADSP-CM41x Mixed-Signal Control Processor

Data Compare Register ... 16–24

Control Register .. 16–25

Data Word Count Register .. 16–28

Data Count Capture Register .. 16–29

Data Word Count Reload Register .. 16–30

Data FIFO Register ... 16–31

Fill Value Register .. 16–32

Interrupt Enable Register .. 16–33

Interrupt Enable Clear Register ... 16–34

Interrupt Enable Set Register ... 16–35

Polynomial Register ... 16–36

CRC Current Result Register .. 16–37

CRC Final Result Register ... 16–38

Status Register ... 16–39

Direct Memory Access (DMA)

DMA Channel Features ... 17–1

DMA Channel Functional Description.. 17–3

CM41X_M4 DMA Register List .. 17–3

CM41X_M4 DMA Channel List ... 17–3

DMA Definitions ... 17–4

Block Diagram.. 17–6

Architectural Concepts ... 17–7

DMA Controller Multiplexing .. 17–8

DMA Channel SCB Interface.. 17–8

SCB Interface Signals .. 17–8

Data Address Alignment .. 17–9

Descriptor Set Address Alignment ... 17–9

DMA Channel Peripheral DMA Bus... 17–9

Peripheral Control Commands .. 17–10

Peripheral-Control Command Restrictions .. 17–12

ADSP-CM41x Mixed-Signal Control Processor xix

Memory DMA and Triggering .. 17–13

DMA Channel MMR Access Bus .. 17–15

DMA Channel Operation Flow... 17–15

Startup Flow .. 17–15

Refresh Flow .. 17–17

Work Unit Transition Flow .. 17–18

Transfer Termination and Shutdown Flow ... 17–20

DMA Channel Errors.. 17–22

Status and Debug Errors .. 17–22

DMA Configuration Register Errors .. 17–22

Illegal Register Write During Run.. 17–23

Address Alignment Error.. 17–23

Memory Access Error ... 17–23

Trigger Overrun Error ... 17–24

Bandwidth-Monitor Error.. 17–24

Control Interface Error .. 17–24

DMA Operating Modes... 17–24

Register-Based Flow Modes ... 17–24

Stop Mode... 17–25

Autobuffer Mode... 17–25

Descriptor-Based Flow Modes ... 17–25

Descriptor-Array Mode ... 17–26

Descriptor-List Mode .. 17–26

Descriptor-On-Demand Modes... 17–27

Data Transfer Modes .. 17–28

Two-Dimensional DMA.. 17–28

DMA Channel Event Control.. 17–29

Event Signals .. 17–30

Work Unit State Events ... 17–30

Peripheral Interrupt Request Events .. 17–31

Peripheral Data Request Events .. 17–31

xx ADSP-CM41x Mixed-Signal Control Processor

DMA Channel Triggers ... 17–32

Issuing Triggers ... 17–32

Waiting For Triggers .. 17–32

DMA Channel Programming Model ... 17–33

Mode Configuration... 17–34

Register-Based Linear-Buffer Stop Flow Mode ... 17–34

Register-Based Autobuffer Flow Mode ... 17–35

Descriptor-Array Flow Mode... 17–36

Descriptor-List Flow Mode ... 17–36

Register-Based Memory-to-Memory Transfer in Stop Flow Mode... 17–37

Programming Concepts .. 17–39

Synchronization of Software and DMA... 17–39

Interrupt and Trigger Event-Based Synchronization... 17–39

Register Polling Based Synchronization.. 17–40

Descriptor Queues .. 17–40

Queues Using Event Generation for Every Descriptor Set .. 17–41

Queues Using Minimal Events ... 17–42

CM41X_M4 DMA Register Descriptions .. 17–43

Start Address of Current Buffer Register .. 17–44

Current Address Register ... 17–45

Bandwidth Limit Count Register .. 17–46

Bandwidth Limit Count Current Register ... 17–47

Bandwidth Monitor Count Register .. 17–48

Bandwidth Monitor Count Current Register ... 17–49

Configuration Register .. 17–50

Current Descriptor Pointer Register .. 17–58

Pointer to Next Initial Descriptor Register .. 17–59

Previous Initial Descriptor Pointer Register ... 17–60

Status Register ... 17–61

Inner Loop Count Start Value Register .. 17–64

Current Count (1D) or Intra-row XCNT (2D) Register .. 17–65

ADSP-CM41x Mixed-Signal Control Processor xxi

Inner Loop Address Increment Register ... 17–66

Outer Loop Count Start Value (2D only) Register ... 17–67

Current Row Count (2D only) Register ... 17–68

Outer Loop Address Increment (2D only) Register .. 17–69

General-Purpose Ports (PORT)

PORT Features .. 18–2

PORT Functional Description... 18–2

CM41X_M4 PORT Register List... 18–3

CM41X_M4 PORT Trigger List .. 18–3

CM41X_M4 PINT Register List.. 18–4

CM41X_M4 PINT Interrupt List ... 18–4

CM41X_M0 PINT Interrupt List ... 18–5

CM41X_M4 PINT Trigger List ... 18–5

CM41X_M0 PINT Trigger List ... 18–6

PORT Architectural Concepts.. 18–6

Internal Interfaces .. 18–6

External Interfaces... 18–6

GPIO Pin Function... 18–6

Input Mode.. 18–6

Output Mode .. 18–7

Trigger Toggle Mode.. 18–7

Open-Drain Mode .. 18–7

Port Multiplexing Control... 18–7

PORT Event Control... 18–8

PORT Interrupt Signals ... 18–8

GPIO Pin Safe State ... 18–10

PORT Programming Model .. 18–10

CM41X_M4 PORT Register Descriptions ... 18–13

Port x GPIO Data Register .. 18–15

Port x GPIO Data Clear Register .. 18–19

xxii ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Data Set Register .. 18–23

Port x GPIO Output Toggle Register .. 18–26

Port x GPIO Direction Register .. 18–29

Port x GPIO Direction Clear Register ... 18–33

Port x GPIO Direction Set Register ... 18–37

Port x Function Enable Register .. 18–40

Port x Function Enable Clear Register ... 18–43

Port x Function Enable Set Register ... 18–46

Port x GPIO Input Enable Register ... 18–49

Port x GPIO Input Enable Clear Register .. 18–52

Port x GPIO Input Enable Set Register ... 18–55

Port x GPIO Lock Register .. 18–58

Port x Multiplexer Control Register ... 18–60

Port x GPIO Polarity Invert Register ... 18–62

Port x GPIO Polarity Invert Clear Register .. 18–66

Port x GPIO Polarity Invert Set Register ... 18–69

Port x GPIO Trigger Toggle Register ... 18–72

CM41X_M4 PINT Register Descriptions .. 18–73

PINT Assign Register .. 18–75

PINT Edge Clear Register ... 18–76

PINT Edge Set Register ... 18–79

PINT Invert Clear Register ... 18–82

PINT Invert Set Register ... 18–85

PINT Latch Register ... 18–88

PINT Mask Clear Register .. 18–92

PINT Mask Set Register .. 18–95

PINT Pin State Register .. 18–98

PINT Request Register .. 18–102

General-Purpose Timer (TIMER)

ADSP-CM41x Mixed-Signal Control Processor xxiii

GP Timer Features... 19–1

CM41X_M4 TIMER Register List... 19–2

CM41X_M0 TIMER Interrupt List .. 19–2

CM41X_M4 TIMER Interrupt List .. 19–3

CM41X_M0 TIMER Trigger List .. 19–4

CM41X_M4 TIMER Trigger List .. 19–5

Internal Interface .. 19–6

External Interface ... 19–6

GP Timer Operating Modes .. 19–7

General Operation.. 19–7

Period, Width and Delay Register Interaction ... 19–8

Single-Pulse PWMOUT Mode .. 19–9

Continuous PWMOUT Mode ... 19–10

Width Capture (WIDCAP) Mode .. 19–11

Width Capture Mode Overflow... 19–14

Windowed Watchdog (WATCHDOG) Modes .. 19–16

Windowed Watchdog Width Mode .. 19–16

Windowed Watchdog Period Mode... 19–18

Pin Interrupt (PININT) Mode... 19–20

External Clock (EXTCLK) Mode .. 19–20

GP Timer Programming Concepts .. 19–21

Setting Up Constantly Changing Timer Conditions .. 19–21

Configuring, Enabling, and Disabling One or More Timers... 19–22

Configuring Timer Data and Status Interrupts .. 19–22

Configuring the Timer as a Trigger Slave.. 19–22

Using the Timer Broadcast Feature... 19–23

Timer Illegal States ... 19–23

Continuous PWMOUT Mode ... 19–24

Single Pulse PWMOUT Mode... 19–25

WIDCAP Mode ... 19–26

xxiv ADSP-CM41x Mixed-Signal Control Processor

EXTCLK Mode .. 19–26

WATCHDOG Events... 19–27

CM41X_M4 TIMER Register Descriptions ... 19–27

Broadcast Delay Register ... 19–29

Broadcast Period Register .. 19–30

Broadcast Width Register .. 19–31

Data Interrupt Latch Register .. 19–32

Data Interrupt Mask Register .. 19–33

Error Type Status Register ... 19–34

Run Register .. 19–36

Run Clear Register .. 19–37

Run Set Register .. 19–38

Status Interrupt Latch Register .. 19–39

Status Interrupt Mask Register .. 19–40

Stop Configuration Register .. 19–41

Stop Configuration Clear Register ... 19–42

Stop Configuration Set Register .. 19–43

Timer n Configuration Register .. 19–44

Timer n Counter Register .. 19–49

Timer n Delay Register .. 19–50

Timer n Period Register ... 19–51

Timer n Width Register ... 19–52

Trigger Slave Enable Register ... 19–53

Trigger Master Mask Register .. 19–54

Capture Timer (CPTMR)

CPTMR Functional Description .. 20–1

CPTMR Block Diagram... 20–1

CM41X_M4 CPTMR Register List ... 20–2

CM41X_M4 CPTMR Trigger List... 20–3

ADSP-CM41x Mixed-Signal Control Processor xxv

CM41X_M0 CPTMR Interrupt List .. 20–3

CM41X_M4 CPTMR Interrupt List .. 20–3

CPTMR Operation ... 20–4

CPTMR Interrupt Signals ... 20–5

CM41X_M4 CPTMR Register Descriptions .. 20–5

Configuration Register .. 20–7

Counter Register ... 20–8

Data Interrupt Latch Status Register ... 20–9

Data Interrupt Mask Register .. 20–10

Data Interrupt Mask Clear Register ... 20–11

Data Interrupt Mask Set Register .. 20–12

Run Register .. 20–13

Run Clear Register .. 20–14

Run Set Register .. 20–15

Interrupt Latch Status Register .. 20–16

Status Interrupt Mask Register .. 20–17

Status Interrupt Mask Clear Register ... 20–18

Status Interrupt Mask Set Register .. 20–19

On-time Capture Register ... 20–20

Watchdog Timer (WDOG)

WDOG Features.. 21–1

WDOG Functional Description .. 21–2

CM41X_M4 WDOG Register List .. 21–3

CM41X_M4 WDOG Interrupt List ... 21–3

CM41X_M0 WDOG Interrupt List ... 21–3

WDOG Block Diagram.. 21–3

Internal Interface ... 21–4

External Interface .. 21–4

CM41X_M4 WDOG Register Descriptions ... 21–4

xxvi ADSP-CM41x Mixed-Signal Control Processor

Count Register .. 21–5

Control Register .. 21–6

Watchdog Timer Status Register .. 21–7

General-Purpose Counter (CNT)

GP Counter Features ... 22–1

GP Counter Functional Description .. 22–2

CM41X_M4 CNT Register List... 22–2

CM41X_M4 CNT Interrupt List .. 22–3

CM41X_M4 CNT Trigger List .. 22–3

GP Counter Operating Modes... 22–4

Quadrature Encoder Mode ... 22–4

Binary Encoder Mode... 22–5

Up/Down Counter Mode ... 22–5

Direction Counter Mode .. 22–5

Timed Direction Mode... 22–5

M/N Scaling... 22–6

M/N Stop Detection ... 22–8

M/N Error Condition ... 22–9

M/N Restrictions .. 22–9

GP Counter Programming Model ... 22–9

GP Counter General Programming Flow ... 22–9

M/N Scaling Programming Guidelines... 22–10

GP Counter Mode Configuration... 22–10

Configuring GP Counter Push-Button Operation .. 22–10

Configuring Zero-Marker-Zeros-Counter Mode ... 22–10

Configuring Zero-Marker-Error Mode .. 22–11

Configuring Zero-Once Mode... 22–11

Configuring Boundary Auto-Extend Mode ... 22–11

Configuring Boundary Capture Mode... 22–12

Configuring Boundary Compare and Boundary Zero Modes .. 22–12

ADSP-CM41x Mixed-Signal Control Processor xxvii

Configuring GP Counter Push-Button Operation .. 22–13

GP Counter Programming Concepts.. 22–13

CNT Input Noise Filtering .. 22–13

Capturing Counter Interval and CNT_CNTR Read Timing .. 22–13

Capturing Time Interval Between Successive Counter Events ... 22–15

GP Counter Event Control .. 22–16

Illegal Gray and Binary Code Events .. 22–16

Up/Down Count Events ... 22–16

Zero-Count Events ... 22–16

Overflow Events .. 22–17

Boundary Match Events ... 22–17

Zero Marker Events .. 22–17

CM41X_M4 CNT Register Descriptions ... 22–17

Configuration Register .. 22–18

Command Register .. 22–21

Counter Register ... 22–24

Debounce Register ... 22–25

Interrupt Mask Register ... 22–27

Maximum Count Register ... 22–30

M Value for Divider ... 22–31

Minimum Count Register ... 22–32

N Value for Divider ... 22–33

Status Register ... 22–34

Debounce Filter (DBC)

DBC Features .. 23–1

DBC Functional Description ... 23–1

Block Diagram.. 23–2

DBC Architectural Concepts .. 23–3

DBC Operating Modes.. 23–4

Bypass Mode (Disabled) ... 23–4

xxviii ADSP-CM41x Mixed-Signal Control Processor

Counter Filter Mode... 23–5

Accumulator Filter Mode.. 23–6

Input Prescaling Modes .. 23–6

Programming Model.. 23–8

Register Descriptions ... 23–9

Pulse-Width Modulator (PWM)

PWM Features .. 24–1

Functional Description ... 24–1

CM41X_M4 PWM Register List ... 24–2

Additional PWM Registers ... 24–4

CM41X_M4 PWM Interrupt List ... 24–4

CM41X_M4 PWM Trigger List... 24–5

PWM Definitions... 24–5

Architectural Concepts .. 24–6

Block Diagram ... 24–6

Timer Units... 24–7

PWM Timer Period (PWM_TM) Registers... 24–7

Timer Unit Operation.. 24–8

Phase Offset Control.. 24–10

Channel Timing Control Unit .. 24–13

Channel Control .. 24–13

Pulse Positioning and Duty Cycle Registers ... 24–13

Duty Cycle and Pulse Positioning Control ... 24–14

Channel Low Side Output Dependent Operation Mode and Dead Time .. 24–15

Channel High Side and Low Side Outputs, Independent Operation Mode...................................... 24–17

Switched Reluctance Motors Application .. 24–19

Switching Dead Time (PWM_DT) Register .. 24–20

Duty Cycle with Dead Time Control: Calculations for PULSEMODE 00 24–20

Special Consideration for PWM Operation in Over-Modulation... 24–22

Gate Drive Unit ... 24–24

ADSP-CM41x Mixed-Signal Control Processor xxix

Output Control Feature Precedence.. 24–25

Operating Modes ... 24–25

Sync Operation Modes ... 24–25

Synchronizing Other Devices .. 24–25

Internal PWM Sync Generation... 24–26

External (Triggered) PWM Sync Generation .. 24–26

Output Disable and Cross-Over Modes.. 24–27

Brushless DC Motor (Electronically Commutated Motor) Control... 24–28

Heightened-Precision Edge Placement ... 24–29

Sample Waveforms for High- and Low-Side with Precision Placement.. 24–30

Emulation Mode... 24–32

Event Control ... 24–33

Trip Control Unit .. 24–34

Trip Mechanisms .. 24–38

Output Pin Safe State ... 24–39

Programming Model ... 24–40

Programming Model for Three-Phase AC Motor Control .. 24–40

PWM Initialization for Motor Control ... 24–41

PWM Enable for Motor Control... 24–43

PWM Response to Sync Interrupt for Motor Control ... 24–44

PWM Disable (and Stop the Motor) for Motor Control ... 24–44

CM41X_M4 PWM Register Descriptions .. 24–45

Channel A Control Register .. 24–48

Channel A-High Duty-0 Register .. 24–50

Channel A-High Heightened-Precision Duty-0 Register ... 24–51

Channel A-High Duty-1 Register .. 24–52

Channel A-High Heightened-Precision Duty-1 Register ... 24–53

Channel A-High Full Duty0 Register .. 24–54

Channel A-High Full Duty1 Register .. 24–55

Channel A-Low Duty-0 Register ... 24–56

xxx ADSP-CM41x Mixed-Signal Control Processor

Channel A-Low Heightened-Precision Duty-0 Register ... 24–57

Channel A-Low Duty-1 Register ... 24–58

Channel A-Low Heightened-Precision Duty-1 Register ... 24–59

Channel A-Low Full Duty0 Register .. 24–60

Channel A-Low Full Duty1 Register .. 24–61

Channel B Control Register .. 24–62

Channel B-High Duty-0 Register .. 24–64

Channel B-High Heightened-Precision Duty-0 Register ... 24–65

Channel B-High Duty-1 Register .. 24–66

Channel B-High Heightened-Precision Duty-1 Register ... 24–67

Channel B-High Full Duty0 Register .. 24–68

Channel B-High Full Duty1 Register .. 24–69

Channel B-Low Duty-0 Register ... 24–70

Channel B-Low Heightened-Precision Duty-0 Register ... 24–71

Channel B-Low Duty-1 Register ... 24–72

Channel B-Low Heightened-Precision Duty-1 Register ... 24–73

Channel B-Low Full Duty0 Register .. 24–74

Channel B-Low Full Duty1 Register .. 24–75

Channel C Control Register .. 24–76

Channel C-High Pulse Duty Register 0 ... 24–78

Channel C-High Pulse Heightened-Precision Duty Register 0 .. 24–79

Channel C-High Pulse Duty Register 1 ... 24–80

Channel C-High Pulse Heightened-Precision Duty Register 1 .. 24–81

Channel Configuration Register .. 24–82

Channel A Dead-time Register .. 24–89

Channel B Dead-time Register .. 24–90

Channel C Dead-time Register .. 24–91

Channel D Dead-time Register .. 24–92

Chop Configuration Register ... 24–93

Channel C-High Full Duty0 Register .. 24–94

ADSP-CM41x Mixed-Signal Control Processor xxxi

Channel C-High Full Duty1 Register .. 24–95

Channel C-Low Pulse Duty Register 0 .. 24–96

Channel C-Low Pulse Duty Register 1 .. 24–97

Channel C-Low Duty-1 Register ... 24–98

Channel C-Low Heightened-Precision Duty-1 Register ... 24–99

Channel C-Low Full Duty0 Register ... 24–100

Channel C-Low Full Duty1 Register ... 24–101

Control Register .. 24–102

Channel D Control Register .. 24–106

Channel D-High Duty-0 Register ... 24–108

Channel D-High Pulse Heightened-Precision Duty Register 0 .. 24–109

Channel D-High Pulse Duty Register 1 ... 24–110

Channel D High Pulse Heightened-Precision Duty Register 1 .. 24–111

Channel D-High Full Duty0 Register .. 24–112

Channel D-High Full Duty1 Register .. 24–113

Channel D-Low Pulse Duty Register 0 .. 24–114

Channel D-Low Heightened-Precision Duty-0 Register .. 24–115

Channel D-Low Pulse Duty Register 1 .. 24–116

Channel D-Low Heightened-Precision Duty-1 Register .. 24–117

Channel A Delay Register .. 24–118

Channel B Delay Register .. 24–119

Channel C Delay Register ... 24–120

Channel D Delay Register ... 24–121

Channel D-Low Full Duty0 Register ... 24–122

Channel D-Low Full Duty1 Register ... 24–123

Interrupt Latch Register .. 24–124

Interrupt Mask Register ... 24–126

Status Register ... 24–128

Software Trip Register ... 24–133

Sync Pulse Width Register ... 24–135

xxxii ADSP-CM41x Mixed-Signal Control Processor

Timer 0 Period Register ... 24–136

Timer 1 Period Register ... 24–137

Timer 2 Period Register ... 24–138

Timer 3 Period Register ... 24–139

Timer 4 Period Register ... 24–140

Trip Configuration Register ... 24–141

Trip Polarity Register ... 24–149

Universal Asynchronous Receiver/Transmitter (UART)

UART Features .. 25–1

UART Functional Description ... 25–2

CM41X_M4 UART Register List... 25–2

CM41X_M4 UART Interrupt List .. 25–3

CM41X_M0 UART Interrupt List .. 25–3

Trigger List ... 25–4

CM41X_M4 UART DMA Channel List .. 25–4

UART Block Diagram .. 25–4

UART Architectural Concepts .. 25–5

Internal Interface... 25–5

External Interface .. 25–5

Hardware Flow Control... 25–6

Bit Rate Generation .. 25–6

Autobaud Detection .. 25–7

UART Debug Features .. 25–9

UART Operating Modes.. 25–9

UART Mode... 25–10

IrDA SIR Mode.. 25–10

Multi-Drop Bus Mode.. 25–10

UART Data Transfer Modes ... 25–12

UART Mode Transmit Operation (Core) .. 25–12

UART Mode LIN Break Command .. 25–12

ADSP-CM41x Mixed-Signal Control Processor xxxiii

UART Mode Receive Operation (Core)... 25–13

IrDA Transmit Operation ... 25–14

IrDA Receive Operation.. 25–14

MDB Transmit Operation... 25–15

MDB Receive Operation ... 25–16

DMA Mode... 25–16

Mixing DMA and Core Modes.. 25–17

Setting Up Hardware Flow Control... 25–17

UART Event Control ... 25–18

Interrupt Masks.. 25–18

Interrupt Servicing ... 25–18

Transmit Interrupts .. 25–19

Receive Interrupts... 25–20

Status Interrupts... 25–21

Multi-Drop Bus Events... 25–22

UART Programming Model .. 25–22

Detecting Autobaud ... 25–22

Using Common Initialization Steps.. 25–23

Using Core Transfers .. 25–23

Using DMA Transfers... 25–23

Using Interrupts ... 25–23

Setting Up Hardware Flow Control .. 25–23

CM41X_M4 UART Register Descriptions ... 25–24

Clock Rate Register ... 25–25

Control Register .. 25–26

Interrupt Mask Register ... 25–32

Interrupt Mask Clear Register ... 25–36

Interrupt Mask Set Register ... 25–38

Receive Buffer Register .. 25–40

Receive Shift Register .. 25–41

xxxiv ADSP-CM41x Mixed-Signal Control Processor

Receive Counter Register ... 25–42

Scratch Register ... 25–43

Status Register ... 25–44

Transmit Address/Insert Pulse Register .. 25–49

Transmit Hold Register ... 25–50

Transmit Shift Register .. 25–51

Transmit Counter Register .. 25–52

Two-Wire Interface (TWI)

TWI Features... 26–1

TWI Functional Description ... 26–2

CM41X_M4 TWI Register List ... 26–2

CM41X_M4 TWI Interrupt List .. 26–2

CM41X_M0 TWI Interrupt List .. 26–3

TWI Block Diagram... 26–3

External Interface .. 26–3

Serial Clock Signal (SCL)... 26–4

Serial Data Signal (SDA).. 26–4

Internal Interface... 26–5

TWI Architectural Concepts .. 26–5

TWI Protocol.. 26–5

Clock Generation and Synchronization ... 26–6

Bus Arbitration ... 26–6

Start and Stop Conditions ... 26–7

General Call Support... 26–7

Fast Mode ... 26–8

TWI Operating Modes .. 26–8

Repeated Start .. 26–8

Transmit Receive Repeated Start... 26–8

Receive Transmit Repeated Start... 26–9

Clock Stretching ... 26–10

ADSP-CM41x Mixed-Signal Control Processor xxxv

Clock Stretching During FIFO Underflow .. 26–10

Clock Stretching During FIFO Overflow .. 26–11

Clock Stretching During Repeated Start.. 26–11

TWI Programming Model... 26–12

General Setup ... 26–12

Slave Mode ... 26–13

Master Mode Program Flow ... 26–14

Master Mode Clock Setup .. 26–15

Master Mode Transmit ... 26–15

Master Mode Receive.. 26–16

CM41X_M4 TWI Register Descriptions .. 26–17

SCL Clock Divider Register ... 26–18

Control Register .. 26–19

FIFO Control Register .. 26–21

FIFO Status Register ... 26–23

Interrupt Mask Register ... 26–24

Interrupt Status Register .. 26–26

Master Mode Address Register ... 26–29

Master Mode Control Registers ... 26–30

Master Mode Status Register ... 26–33

Rx Data Double-Byte Register ... 26–36

Rx Data Single-Byte Register ... 26–37

Slave Mode Address Register ... 26–38

Slave Mode Control Register ... 26–39

Slave Mode Status Register .. 26–41

Tx Data Double-Byte Register ... 26–42

Tx Data Single-Byte Register ... 26–43

Controller Area Network (CAN)

CAN Features .. 27–1

xxxvi ADSP-CM41x Mixed-Signal Control Processor

CAN Functional Description ... 27–2

CM41X_M4 CAN Register List ... 27–2

CM41X_M4 CAN Interrupt List .. 27–3

CM41X_M0 CAN Interrupt List .. 27–4

CM41X_M0 CAN Trigger List .. 27–4

CM41X_M4 CAN Trigger List .. 27–4

External Interface ... 27–5

Architectural Concepts ... 27–5

Block Diagram .. 27–6

Mailbox Control.. 27–7

Protocol Fundamentals.. 27–8

CAN Operating Modes.. 27–9

Data Transfer Modes .. 27–9

Transmit Operations ... 27–9

Retransmission... 27–10

Single-Shot Transmission ... 27–11

Auto-Transmission ... 27–11

Receive Operation .. 27–11

Data Acceptance Filtering .. 27–13

Watchdog Mode .. 27–13

Time Stamps ... 27–14

Remote Frame Handling .. 27–14

Temporarily Disabling CAN Mailbox ... 27–15

Bit Timing.. 27–16

CAN Low Power Features .. 27–17

Built-In Suspend Mode .. 27–17

Built-In Sleep Mode ... 27–18

Soft Reset ... 27–18

CAN Event Control ... 27–18

CAN Interrupt Signals ... 27–18

Mailbox Interrupts .. 27–18

ADSP-CM41x Mixed-Signal Control Processor xxxvii

Global Interrupt .. 27–19

Event Counter .. 27–21

CAN Warnings and Errors.. 27–21

Programmable Warning Limits ... 27–21

Error Handling.. 27–21

Error Frames ... 27–22

Error Levels ... 27–23

CAN Debug and Test Modes.. 27–24

CM41X_M4 CAN Register Descriptions ... 27–26

Abort Acknowledge 1 Register ... 27–29

Abort Acknowledge 2 Register ... 27–30

Acceptance Mask (H) Register ... 27–31

Acceptance Mask (L) Register .. 27–32

Error Counter Register .. 27–33

Clock Register ... 27–34

CAN Master Control Register ... 27–35

Debug Register .. 27–37

Error Status Register .. 27–39

Error Counter Warning Level Register ... 27–41

Global CAN Interrupt Flag Register .. 27–42

Global CAN Interrupt Mask Register .. 27–45

Global CAN Interrupt Status Register ... 27–48

Interrupt Pending Register .. 27–51

Mailbox Interrupt Mask 1 Register .. 27–53

Mailbox Interrupt Mask 2 Register .. 27–54

Mailbox Receive Interrupt Flag 1 Register ... 27–55

Mailbox Receive Interrupt Flag 2 Register ... 27–56

Temporary Mailbox Disable Register ... 27–57

Mailbox Transmit Interrupt Flag 1 Register ... 27–58

Mailbox Transmit Interrupt Flag 2 Register ... 27–59

xxxviii ADSP-CM41x Mixed-Signal Control Processor

Mailbox Word 0 Register ... 27–60

Mailbox Word 1 Register ... 27–61

Mailbox Word 2 Register ... 27–62

Mailbox Word 3 Register ... 27–63

Mailbox ID 0 Register ... 27–64

Mailbox ID 1 Register ... 27–65

Mailbox Length Register .. 27–67

Mailbox Time Stamp Register ... 27–68

Mailbox Configuration 1 Register ... 27–69

Mailbox Configuration 2 Register ... 27–70

Mailbox Direction 1 Register ... 27–71

Mailbox Direction 2 Register ... 27–72

Overwrite Protection/Single Shot Transmission 1 Register .. 27–73

Overwrite Protection/Single Shot Transmission 2 Register .. 27–74

Remote Frame Handling 1 Register ... 27–75

Remote Frame Handling 2 Register ... 27–76

Receive Message Lost 1 Register .. 27–77

Receive Message Lost 2 Register .. 27–78

Receive Message Pending 1 Register .. 27–79

Receive Message Pending 2 Register .. 27–80

Status Register ... 27–81

Transmission Acknowledge 1 Register ... 27–83

Transmission Acknowledge 2 Register ... 27–84

Timing Register ... 27–85

Transmission Request Reset 1 Register .. 27–87

Transmission Request Reset 2 Register .. 27–88

Transmission Request Set 1 Register .. 27–89

Transmission Request Set 2 Register .. 27–90

Universal Counter Configuration Mode Register ... 27–91

Universal Counter Register .. 27–93

ADSP-CM41x Mixed-Signal Control Processor xxxix

Universal Counter Reload/Capture Register .. 27–94

Serial Peripheral Interface (SPI)

SPI Features ... 28–1

SPI Functional Description.. 28–2

CM41X_M4 SPI Register List ... 28–2

CM41X_M0 SPI Interrupt List ... 28–3

CM41X_M4 SPI Interrupt List ... 28–3

SPI ITrigger List ... 28–4

CM41X_M4 SPI DMA Channel List... 28–4

SPI Block Diagram... 28–4

Transfer Protocol .. 28–4

Clock Considerations .. 28–6

Controlling Delay Between Frames .. 28–6

Flow Control ... 28–8

Slave Select Operation ... 28–9

Beginning and Ending a Non-DMA SPI Transfer ... 28–10

Transmit Operation in Non-DMA Mode .. 28–11

Receive Operation in Non-DMA Mode ... 28–11

DMA and Interrupt Multiplexing... 28–11

Dual I/O Mode .. 28–11

Quad I/O Mode (SPI2 only) ... 28–12

Fast Mode .. 28–13

SPI Interrupt Signals ... 28–14

Data Interrupts... 28–14

Status Interrupts... 28–14

Error Conditions .. 28–15

SPI Programming Concepts... 28–16

Master Operation in Non-DMA Modes ... 28–16

Slave Operation in Non-DMA Modes .. 28–17

xl ADSP-CM41x Mixed-Signal Control Processor

Configuring DMA Master Mode.. 28–17

Configuring DMA Slave Mode Operation.. 28–19

CM41X_M4 SPI Register Descriptions .. 28–20

Clock Rate Register ... 28–22

Control Register .. 28–23

Delay Register ... 28–29

Masked Interrupt Condition Register .. 28–30

Masked Interrupt Clear Register .. 28–32

Interrupt Mask Register ... 28–35

Interrupt Mask Clear Register ... 28–37

Interrupt Mask Set Register ... 28–40

Receive FIFO Data Register ... 28–43

Received Word Count Register .. 28–44

Received Word Count Reload Register .. 28–45

Receive Control Register .. 28–46

Slave Select Register ... 28–49

Status Register ... 28–52

Transmit FIFO Data Register .. 28–56

Transmitted Word Count Register ... 28–57

Transmitted Word Count Reload Register ... 28–58

Transmit Control Register ... 28–59

Serial Port (SPORT)

Features.. 29–1

Signal Descriptions .. 29–2

Functional Description .. 29–6

CM41X_M4 SPORT Register List... 29–6

CM41X_M4 SPORT Interrupt List .. 29–7

SPORT Trigger List.. 29–7

CM41X_M4 SPORT DMA Channel List .. 29–7

ADSP-CM41x Mixed-Signal Control Processor xli

Block Diagram.. 29–8

Architectural Concepts ... 29–8

Multiplexer Logic .. 29–9

Data Types and Companding ... 29–12

Companding as a Function.. 29–13

Transmit Path... 29–13

Receive Path ... 29–15

Operating Modes and Options .. 29–15

Serial Word Length... 29–17

Clock Sample and Drive Edges ... 29–17

Frame Sync Options ... 29–19

Data-Dependent versus Data-Independent Frame Syncs ... 29–19

Support for Edge-Detected and Level-Sensitive Frame Syncs... 29–19

Early versus Late Frame Syncs ... 29–20

Framed versus Unframed Frame Syncs .. 29–21

Frame Sync Polarity... 29–22

Premature Frame Sync Error Detection ... 29–22

Mode Selection... 29–23

Standard DSP Serial Mode .. 29–23

Stereo Modes... 29–24

I2S Mode.. 29–25

Left-Justified Mode .. 29–26

Right-Justified Mode.. 29–27

Multichannel (TDM) Mode .. 29–29

Packed I2S Mode... 29–32

Gated Clock Mode .. 29–33

Data Transfers and Interrupts .. 29–34

Data Buffers ... 29–34

Data Buffer Status ... 29–36

Single-Word (Core) Transfers ... 29–36

DMA Transfers... 29–37

xlii ADSP-CM41x Mixed-Signal Control Processor

Data Transfer Interrupt .. 29–38

Error Detection (Status) Interrupt .. 29–39

SPORT Programming Model .. 29–40

Initializing Core-Driven (Non-MCM) Transfers... 29–41

Initializing Multichannel Transfers ... 29–42

Using DMA for SPORT Transfers.. 29–43

Using Companding as a Function... 29–43

CM41X_M4 SPORT Register Descriptions ... 29–44

Half SPORT 'A' Multichannel 0-31 Select Register .. 29–46

Half SPORT 'B' Multichannel 0-31 Select Register .. 29–47

Half SPORT 'A' Multichannel 32-63 Select Register .. 29–48

Half SPORT 'B' Multichannel 32-63 Select Register .. 29–49

Half SPORT 'A' Multichannel 64-95 Select Register .. 29–50

Half SPORT 'B' Multichannel 64-95 Select Register .. 29–51

Half SPORT 'A' Multichannel 96-127 Select Register .. 29–52

Half SPORT 'B' Multichannel 96-127 Select Register .. 29–53

Half SPORT 'A' Control 2 Register .. 29–54

Half SPORT 'B' Control 2 Register .. 29–55

Half SPORT 'A' Control Register ... 29–56

Half SPORT 'B' Control Register ... 29–64

Half SPORT 'A' Divisor Register .. 29–73

Half SPORT 'B' Divisor Register .. 29–74

Half SPORT 'A' Error Register ... 29–75

Half SPORT 'B' Error Register ... 29–77

Half SPORT 'A' Multichannel Control Register ... 29–79

Half SPORT 'B' Multichannel Control Register ... 29–81

Half SPORT 'A' Multichannel Status Register .. 29–83

Half SPORT 'B' Multichannel Status Register .. 29–84

Half SPORT 'A' Rx Buffer (Primary) Register .. 29–85

Half SPORT 'B' Rx Buffer (Primary) Register .. 29–86

ADSP-CM41x Mixed-Signal Control Processor xliii

Half SPORT 'A' Rx Buffer (Secondary) Register ... 29–87

Half SPORT 'B' Rx Buffer (Secondary) Register ... 29–88

Half SPORT 'A' Tx Buffer (Primary) Register .. 29–89

Half SPORT 'B' Tx Buffer (Primary) Register .. 29–90

Half SPORT 'A' Tx Buffer (Secondary) Register ... 29–91

Half SPORT 'B' Tx Buffer (Secondary) Register ... 29–92

Analog-to-Digital Converter Controller (ADCC)

ADCC Features.. 30–1

ADCC Functional Description .. 30–3

CM41X_M4 ADCC Register List .. 30–3

CM41X_M0 ADCC Interrupt List ... 30–5

CM41X_M4 ADCC Interrupt List ... 30–5

CM41X_M0 ADCC Trigger List.. 30–5

CM41X_M4 ADCC Trigger List.. 30–6

ADC to ADCC Interface .. 30–6

ADC Multiplexed Input Scheme .. 30–7

ADCC Block Diagram.. 30–8

ADCC Signal Descriptions... 30–11

ADC1 and ADC2 Timing Calculation ... 30–14

ADC0 Timing Calculation ... 30–14

Timing and Control Unit ... 30–14

General Operation.. 30–15

Introduction to Events ... 30–16

Event Examples ... 30–17

ADCC Operation Example - Event Overlapped ... 30–20

ADCC Operation Example - Event Tightly Pipelined ... 30–20

ADCC Architectural Concepts ... 30–21

Core and DMA Interfaces ... 30–22

Trigger Inputs ... 30–22

Timers... 30–22

xliv ADSP-CM41x Mixed-Signal Control Processor

Event Register Banks .. 30–23

Event Comparators.. 30–24

Pending Event FIFO.. 30–24

ADCC Operating Modes ... 30–24

Data Transfer Modes .. 30–24

Core-Driven Data Read Mode... 30–25

DMA-Driven Data Read Mode ... 30–25

DMA Bandwidth Monitoring ... 30–27

Simultaneous Sampling Mode .. 30–27

Diagnostic Mode .. 30–30

ADCC Event Control (SEC and TRU Related) .. 30–31

Interrupt Status .. 30–32

Error Status .. 30–33

Pending, Frame, and Delay Status .. 30–37

Event Handling Latency ... 30–38

ADCC Programming Concepts ... 30–39

ADCC Control and Timing Registers .. 30–40

Control Word Format... 30–41

ADCC Continuous Sampling Sequence ... 30–42

Initializing the AFE .. 30–43

AFEOK Signal.. 30–44

6x Sampling.. 30–44

Precise Event Timing.. 30–44

General Programming Guidelines... 30–46

Event and Sample Timing Relationships... 30–47

Programming Model.. 30–50

AFE Register Access Programming Model .. 30–50

Control Word for Register Access ... 30–50

AFE Registers (AFE_Regs.h)... 30–51

Programming Sequence .. 30–52

ADSP-CM41x Mixed-Signal Control Processor xlv

AFE Initialization ... 30–52

Verifying AFE_OK Signal... 30–54

Initializing ADC Timing and Configuration .. 30–54

Frame Setup 1x Sampling ... 30–56

Frame Capture.. 30–57

CM41X_M4 ADCC Register Descriptions ... 30–58

ADC2 Interface RW Access Register .. 30–60

ADC2 Interface RW Access Register .. 30–61

Base Pointer 0 Register .. 30–62

DMA Base Pointer 1 Register .. 30–63

Bandwidth Monitor 0 Register .. 30–64

Bandwidth Monitor 1 Register .. 30–65

Timer0 Circular Buffer DMA Wrap Number Register ... 30–66

Timer1 Circular Buffer DMA Wrap Number Register ... 30–67

Circular Buffer Size 0 Register ... 30–68

Circular Buffer Size 1 Register ... 30–69

Control Register .. 30–70

Data Overflow Indication Register .. 30–75

Event Collision Status Register .. 30–76

Event Interrupt Mask Register ... 30–77

Event Interrupt Mask Clear Register ... 30–78

Event Interrupt Mask Set Register ... 30–79

Event Interrupt Status Register .. 30–80

Event Miss Status Register ... 30–81

Pending Events Status Register .. 30–82

Error Mask Register ... 30–83

Error Mask Clear Register ... 30–85

Error Mask Set Register ... 30–87

Error Status Register .. 30–89

Event n Control Register ... 30–92

xlvi ADSP-CM41x Mixed-Signal Control Processor

Event n Data Register .. 30–94

Event n Status Register .. 30–95

Event Enable Register .. 30–96

Event Enable Clear Register ... 30–97

Event Enable Set Register .. 30–98

Event n Time Register ... 30–99

Frame Interrupt Mask Register .. 30–100

Frame Interrupt Mask Clear Register ... 30–101

Frame Interrupt Mask Set Register .. 30–102

Frame Interrupt Status Register ... 30–103

Frame Increment 0 Register ... 30–105

Frame Increment 1 Register ... 30–106

Timer0 Frame Limit Count Register ... 30–107

Timer1 Frame Limit Count Register ... 30–108

Timer 0 Status Register ... 30–109

Timer 1 Status Register ... 30–110

Timing Control A (ADC0) Register .. 30–111

Timing Control A (ADC1) Register .. 30–113

Timing Control B (ADC0) Register .. 30–115

Timing Control B (ADC1) Register .. 30–116

Timer 0 Current Count Register ... 30–117

Timer 1 Current Count Register ... 30–118

Trigger Count TIMER0 Register ... 30–119

Trigger Count TIMER1 Register ... 30–120

Digital-to-Analog Converter Controller (DACC)

DACC Features.. 31–1

DACC Functional Description .. 31–2

CM41X_M4 DACC Register List .. 31–3

DACC Signal Descriptions... 31–3

ADSP-CM41x Mixed-Signal Control Processor xlvii

DACC Architectural Concepts ... 31–5

DACC Block Diagram .. 31–6

Core and DMA Interfaces ... 31–6

Pending Data FIFO... 31–7

DACC Operating Modes ... 31–7

Data Transfer Modes .. 31–7

Core-Driven Data Write Mode.. 31–8

DMA-Driven Data Write Mode .. 31–8

Data Length and Update Options... 31–9

Clock Modes .. 31–10

Frame Sync Modes.. 31–11

Broadcast Control Option .. 31–11

DACC Event Control .. 31–11

Interrupt Status .. 31–12

Error Status .. 31–12

Pending Status.. 31–13

DACC Programming Concepts ... 31–13

DACC Programming Model.. 31–14

Core Mode Operation Flow.. 31–14

DMA Mode Operation Flow .. 31–14

DAC Selection.. 31–15

CM41X_M4 DACC Register Descriptions ... 31–15

Broadcast (Write) Control Register .. 31–17

Base Pointer 0 Register .. 31–19

Count 0 Register ... 31–20

Current Count 0 Register .. 31–21

Control 0 Register ... 31–22

Data FIFO 0 Register .. 31–25

Error Mask Register ... 31–26

Error Mask Clear Register ... 31–27

xlviii ADSP-CM41x Mixed-Signal Control Processor

Error Mask Set Register ... 31–28

Error Status Register .. 31–29

Interrupt Mask Register ... 31–30

Interrupt Mask Clear Register ... 31–31

Interrupt Mask Set Register ... 31–32

Interrupt Status Register .. 31–33

Modify 0 Register .. 31–34

Status Register ... 31–35

Timing Control 0 Register .. 31–36

Fast Over Current Protection (FOCP)

FOCP Features .. 32–1

FOCP Functional Description ... 32–1

Architectural Concepts ... 32–1

FOCP Block Diagram ... 32–3

FOCP Programming Concepts .. 32–5

Programming Examples.. 32–5

Programming FOCP Comparators to Detect Over Current .. 32–5

Re-initializing FOCP Comparators .. 32–6

Verifying Comparator Limit .. 32–6

Enabling FOCP Fault Clock Detection ... 32–7

FOCP Register Descriptions.. 32–8

Harmonic Analysis Engine (HAE)

HAE Features... 33–1

HAE Functional Description ... 33–2

CM41X_M4 HAE Register List ... 33–2

CM41X_M0 HAE Interrupt List .. 33–3

CM41X_M4 HAE Interrupt List .. 33–3

SPORT Trigger List.. 33–3

CM41X_M4 HAE DMA Channel List .. 33–3

ADSP-CM41x Mixed-Signal Control Processor xlix

HAE Block Diagram... 33–4

HAE Architectural Concepts .. 33–4

Harmonic Engine .. 33–4

Harmonic Analyzer ... 33–5

Data Transfer Module ... 33–7

Results Memory .. 33–9

HAE Results Upper Byte ID .. 33–9

HAE Result Ranges and Formats ... 33–10

HAE Operating Modes .. 33–11

HAE Data Transfer Modes ... 33–11

HAE Event Control ... 33–11

HAE Interrupt Signals.. 33–11

HAE Status and Error Signals... 33–11

HAE Programming Model... 33–12

HAE Programming Concepts ... 33–13

Theory of Operation ... 33–13

Initialization.. 33–15

Harmonic Calculations.. 33–15

Configuring Harmonic Calculations Update Rate ... 33–16

CM41X_M4 HAE Register Descriptions .. 33–17

Configuration 0 Register ... 33–18

Configuration 1 Register ... 33–19

Configuration 2 Register ... 33–20

Configuration 3 Register ... 33–22

Configuration 4 Register ... 33–23

DIDT Coefficient Register .. 33–24

DIDT Gain Register .. 33–25

Harmonic n Index Register .. 33–26

I (Current) Sample Register ... 33–27

I (Current) Waveform Register .. 33–28

l ADSP-CM41x Mixed-Signal Control Processor

Run Register .. 33–29

Status Register ... 33–30

Voltage Level Register .. 33–31

V (Voltage) Sample Register ... 33–32

V (Voltage) Waveform Register .. 33–33

Sinus Cardinalis (SINC) Filter

SINC Filter Features .. 34–1

SINC Functional Description .. 34–2

CM41X_M4 SINC Register List .. 34–2

CM41X_M4 SINC Interrupt List ... 34–3

CM41X_M4 SINC Trigger List ... 34–3

SINC Definitions ... 34–4

SINC Block Diagram ... 34–4

SINC Architectural Concepts ... 34–6

Digital Filter.. 34–6

DC Gain and Data Resolution .. 34–7

Frequency Response .. 34–7

Output Scaling.. 34–8

SINC Operating Modes... 34–9

SINC Data Transfer Modes .. 34–10

SINC Signal Modes .. 34–10

SINC Event Control .. 34–11

SINC Interrupt Signals... 34–11

SINC Status and Error Signals.. 34–12

SINC Programming Model.. 34–12

SINC Programming Concepts.. 34–13

Channel Configuration ... 34–13

Trigger Masking .. 34–14

Interrupt Masking ... 34–14

Modulator Clock ... 34–14

ADSP-CM41x Mixed-Signal Control Processor li

Filter Configuration .. 34–15

Primary Filter Parameters.. 34–15

Primary DMA Configuration and Data Interrupts.. 34–15

Secondary Filter Parameters .. 34–16

Overload Detection ... 34–16

CM41X_M4 SINC Register Descriptions .. 34–17

Bias for Group 0 Register .. 34–18

Bias for Group 1 Register .. 34–19

Clock Control Register .. 34–20

Control Register .. 34–22

History Status Register .. 34–26

Level Control for Group 0 Register ... 34–28

Level Control for Group 1 Register ... 34–31

(Amplitude) Limits for Secondary Filter 0 Register .. 34–34

(Amplitude) Limits for Secondary Filter 1 Register .. 34–35

(Amplitude) Limits for Secondary Filter 2 Register .. 34–36

(Amplitude) Limits for Secondary Filter 3 Register .. 34–37

Pair 0 Secondary (Filter) History n Register .. 34–38

Pair 1 Secondary (Filter) History n Register .. 34–39

Pair 2 Secondary (Filter) History n Register .. 34–40

Pair 3 Secondary (Filter) History n Register .. 34–41

Primary (Filters) Head for Group 0 Register .. 34–42

Primary (Filters) Head for Group 1 Register .. 34–43

Primary (Filters) Pointer for Group 0 Register ... 34–44

Primary (Filters) Pointer for Group 1 Register ... 34–45

Primary (Filters) Tail for Group 0 Register .. 34–46

Primary (Filters) Tail for Group 1 Register .. 34–47

Rate Control for Group 0 Register .. 34–48

Rate Control for Group 1 Register .. 34–50

Status Register ... 34–52

lii ADSP-CM41x Mixed-Signal Control Processor

MATH Accelerator Unit

MATH Features ... 35–2

MATH Functional Description.. 35–3

CM41X_M4 MATH Interrupt List ... 35–3

CM41X_M4 MATH Register List.. 35–3

MATH Block Diagram... 35–4

MATH Definitions... 35–5

MATH Architectural Concepts... 35–6

Supported Operand Functions .. 35–7

Argument Normal and Full Domains .. 35–9

Numerical Error .. 35–10

MATH Programming Model ... 35–12

MATH Programming Concepts ... 35–12

MATH Assembler Programming Model ... 35–14

MATH Operation Flow ... 35–16

Initiation of MATH Unit Operations ... 35–16

MATH Unit Results, Status, and Stalls... 35–16

MATH Unit States and Sequence Error.. 35–17

IDLE State .. 35–17

YPARTIAL State .. 35–18

BUSY State ... 35–18

Unknown State.. 35–19

MATH Unit Context ... 35–19

Components of the MATH Unit Context .. 35–19

Reading Operand Register Context .. 35–20

Interrupts in MATH Unit Operations .. 35–20

CM41X_M4 MATH Register Descriptions .. 35–22

arccos(x) Function Register .. 35–23

arcsin(x) Function Register .. 35–24

arctan(y/x) Function x Operand Register ... 35–25

ADSP-CM41x Mixed-Signal Control Processor liii

arctan(y/x) Function y Operand Register ... 35–26

arctan(x) Function Register .. 35–27

cos(x) Function Register .. 35–28

Math Unit Interrupt Enable Control ... 35–29

exp2(x) Function Register .. 35–30

exp(x) Function Register .. 35–31

Math Unit Function Status Register .. 35–32

Generic X Function Register (GX) ... 35–34

Generic Y Function Register (GY) ... 35–35

hypot(x,y) Function x Operand Register .. 35–36

hypot(x,y) Function y Operand Register .. 35–37

Math Unit Interrupt Register .. 35–38

ln(x) Function Register .. 35–39

log2(x) Function Register .. 35–40

Polar to Rectangular Function a Operand Register .. 35–41

Polar to Rectangular Function r Operand Register .. 35–42

Reciprocal(x) or 1/x Function Register .. 35–43

Math Unit Function Result 1 .. 35–44

Math Unit Function Result 2 .. 35–45

Rectangular to Polar Function x Operand Register .. 35–46

Rectangular to Polar Function y Operand Register .. 35–47

sin(x) Function Register ... 35–48

Square Root or sqrt(x) Function .. 35–49

Math Unit Function State Status Register .. 35–50

tan(x) Function Register .. 35–51

Floating-Point Saturation Unit (FSAT)

Functional Description .. 36–1

Supported ARM Cortex-M4P Configuration .. 36–2

Programming Model, Enable FSAT ... 36–3

liv ADSP-CM41x Mixed-Signal Control Processor

Event Control .. 36–3

Register Descriptions ... 36–3

Logic Block Array (LBA)

LBA Features ... 37–1

LBA Functional Description .. 37–1

CM41X_M4 LBA Trigger List ... 37–3

CM41X_M4 LBA Interrupt List ... 37–3

CM41X_M4 LBA0 Register List .. 37–3

LBA Block Diagram ... 37–4

LBA Architectural Concepts ... 37–7

Registered Output ... 37–8

LBA Operating Modes... 37–8

Product Term Array Mode.. 37–8

Look-up Table Mode ... 37–9

Registered Output Mode .. 37–9

Combinatorial Mode .. 37–9

LBA Event Control .. 37–9

LBA Programming Concepts ... 37–10

LBA Programming Examples.. 37–11

Look-up Table Mode Example... 37–11

Product Term Array Mode Examples... 37–12

CM41X_M4 LBA0 Register Descriptions .. 37–13

Logic Block Control Register ... 37–15

Logic Block Function 0 Register .. 37–16

Logic Block Function 1 Register .. 37–17

Logic Block Function 2 Register .. 37–18

Logic Block Function 3 Register .. 37–19

Logic Block Function 4 Register .. 37–20

Logic Block Function 5 Register .. 37–21

Logic Block Function 6 Register .. 37–22

ADSP-CM41x Mixed-Signal Control Processor lv

Logic Block Function 7 Register .. 37–23

Logic Block Array Configuration Register ... 37–24

Logic Block Array Clock Divisor Register .. 37–27

Logic Block Array Data Input Register .. 37–28

Logic Block Array Pin Direction Register .. 37–29

Logic Block Array Data Output Register ... 37–31

Logic Block Array GPIO Input Synchronization Control Register .. 37–32

Mailbox (MBOX)

MBOX Features ... 38–1

MBOX Functional Description.. 38–2

CM41X_M0 MBOX_PORT0 Register List ... 38–2

CM41X_M4 MBOX_PORT1 Register List ... 38–2

CM41X_M0 MBOX Interrupt List ... 38–3

CM41X_M4 MBOX Interrupt List ... 38–3

CM41X_M4 MBOX Trigger List ... 38–3

MBOX Block Diagram... 38–4

MBOX Architectural Concepts... 38–4

Memory Initialization ... 38–5

Memory Refresh.. 38–5

Memory Access.. 38–6

Exclusive Memory Access .. 38–6

Exclusive Access from the ARM Cortex-M4 .. 38–7

Exclusive Access from the ARM Cortex-M0 .. 38–7

Error Correction Code (ECC) ... 38–7

MBOX Event Control and Interrupts .. 38–8

CM41X_M0 MBOX_PORT0 Register Descriptions .. 38–9

Port 0 Control Register ... 38–10

Port 0 ECC Status Register .. 38–11

Port 0 Force IRQ Register ... 38–12

Port 0 Status Register .. 38–13

lvi ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 MBOX_PORT1 Register Descriptions .. 38–13

Port 1 Control Register ... 38–14

Port 1 ECC Status Register .. 38–16

Port 1 Force IRQ Register ... 38–18

Auto-refresh Address Register .. 38–19

Auto-refresh Counter Register ... 38–20

Auto-refresh Period Register .. 38–21

Port 1 Status Register .. 38–22

Voltage Monitoring Unit (VMU)

VMU Features ... 39–1

VMU Functional Description .. 39–1

CM41X_M4 PADS Register List.. 39–2

CM41X_M0 VMU Interrupt List ... 39–3

CM41X_M4 VMU Interrupt List ... 39–3

Input Supply Ramp Rate and Bypassing Requirements .. 39–3

Programmable Fault Delay ... 39–3

Fault Conditioning ... 39–4

GPIO Safe Pin States.. 39–5

Configuring the VMU ... 39–6

Register Descriptions ... 39–6

FFT Accelerator Block (FFTB)

FFTB Features ... 40–1

FFTB Functional Description.. 40–2

CM41X_M4 FFTB Register List.. 40–2

CM41X_M0 FFTB Interrupt List ... 40–3

CM41X_M4 FFTB Interrupt List ... 40–3

CM41X_M4 FFTB Trigger List ... 40–4

FFTB Definitions ... 40–4

FFTB Block Diagram ... 40–5

ADSP-CM41x Mixed-Signal Control Processor lvii

FFTB Architectural Concepts ... 40–5

Input Format Converter .. 40–6

IBUFF_WO Input Buffer Write .. 40–7

IBUFF_RW Input Buffer Read.. 40–8

Comb Filter... 40–8

Input Data Windowing ... 40–9

Transform Accelerator ... 40–10

Magnitude Computation Unit .. 40–10

FFT Performance Calculation ... 40–10

Spectrum Averaging .. 40–11

Spectrum Comparator... 40–11

Buffer Memory Maps .. 40–11

FFTB Spectrum Monitor Triggering Modes.. 40–12

Multichannel Operation... 40–13

Launching and Stopping FFT Monitor .. 40–13

Parity Protection .. 40–14

FFTB Event Control .. 40–15

FFTB Status and Error Signals ... 40–15

CM41X_M4 FFTB Register Descriptions .. 40–15

FFTB Input Comb Filter Control Register .. 40–17

FFTB Control Register .. 40–18

DMA Output Base Address Register .. 40–23

DMA Output Write Address Register .. 40–24

Format Converter Control Register ... 40–25

Input Offset Register ... 40–27

Limit Status Registers .. 40–28

Magnitude Pin Select Registers .. 40–29

Maximum Magnitude Register .. 40–30

Minimum Magnitude Register .. 40–31

FFTB Status Register ... 40–32

lviii ADSP-CM41x Mixed-Signal Control Processor

Reset Control Unit (RCU)

RCU Features .. 41–1

RCU Functional Description ... 41–2

CM41X_M4 RCU Register List ... 41–2

CM41X_M4 RCU Trigger List .. 41–2

RCU Definitions .. 41–3

RCU Architectural Concepts .. 41–3

Reset Sources... 41–3

RCU Status and Error Signals.. 41–6

Resetting a Core Through a System Master ... 41–6

CM41X_M4 RCU Register Descriptions ... 41–6

Boot Code Register .. 41–8

Core Reset Outputs Control Register .. 41–9

Core Reset Outputs Status Register ... 41–10

Control Register .. 41–11

Message Register .. 41–13

Message Clear Bits Register ... 41–14

Message Set Bits Register ... 41–15

System Reset Request Status Register .. 41–16

Status Register ... 41–17

System Design and Safety

Built-In Modules for Functional Safety.. 42–2

System Block (SYSBLK) and PADS

CM41X_M4 SYSBLK Register List... 43–1

CM41X_M0 SYSBLK Register List... 43–2

CM41X_M4 PADS Register List... 43–3

CM41X_M0 PADS Register List... 43–4

CM41X_M4 TESYS Interrupt List .. 43–4

CM41X_M0 TESYS Interrupt List .. 43–5

ADSP-CM41x Mixed-Signal Control Processor lix

CM41X_M4 SYSBLK Register Descriptions .. 43–5

SCB Response Configuration Register ... 43–7

SCB Timeout Value Register ... 43–9

Clock Not Good Trip Register ... 43–10

Peripheral DMA Multiplexer Control .. 43–11

Engineering Mode Configuration Register 0 ... 43–13

Fault Trip Register ... 43–14

M0 IRQ Latency Register .. 43–15

Logic ROM Status Register ... 43–16

Vector Table Base Offset Register .. 43–19

Memory Self-Test Control Register ... 43–20

PWM System Configuration Register .. 43–21

Rotary Counter Up/Down Configuration Register .. 43–24

SINC Test Register .. 43–25

Shared Interrupt 0 Status Register ... 43–26

Shared Interrupt 10 Status Register ... 43–27

Shared Interrupt 11 Status Register ... 43–28

Shared Interrupt 12 Status Register ... 43–29

Shared Interrupt 15 Status Register ... 43–30

Shared Interrupt 16 Status Register ... 43–32

Shared Interrupt 17 Status Register ... 43–33

Shared Interrupt 18 Status Register ... 43–34

Shared Interrupt 19 Status Register ... 43–35

Shared Interrupt 22 Status Register ... 43–36

Shared Interrupt 25 Status Register ... 43–37

Shared Interrupt 28 Status Register ... 43–38

Shared Interrupt 3 Status Register ... 43–39

Shared Interrupt 5 Status Register ... 43–40

Shared Interrupt 6 Status Register ... 43–41

Shared Interrupt 7 Status Register ... 43–42

lx ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 8 Status Register ... 43–43

M0 SRAM ECC Register .. 43–44

System Status Register ... 43–45

System Register ... 43–46

CM41X_M4 PADS Register Descriptions .. 43–46

Debounce Control Register(s) ... 43–48

Debounce Prescale Register ... 43–50

Fast Over Current Protection Clock Divisor Register .. 43–51

Monitor Oscillator Control Register .. 43–52

Non-Volatile Write Reset Control Register .. 43–53

Peripheral Configuration0 Register ... 43–54

Multi Port Drive Strength Control Register ... 43–56

Multi Port Pull-up/Pull-down Resistor Control Register ... 43–57

Multi Port Trip Select Register .. 43–58

Multi Port Trip State Register .. 43–59

Voltage Monitor Unit Control Register ... 43–61

Voltage Monitor Unit Trim Register .. 43–62

Voltage Monitor Unit Trip Enable Register ... 43–63

CM41X_M0 SYSBLK Register Descriptions .. 43–63

SCB Response Configuration Register ... 43–65

SCB Timeout Value Register ... 43–67

Clock Not Good Trip Register ... 43–68

Peripheral DMA Multiplexer Control .. 43–69

Engineering Mode Configuration Register 0 ... 43–71

Fault Trip Register ... 43–72

M0 IRQ Latency Register .. 43–73

Logic ROM Status Register ... 43–74

Vector Table Base Offset Register .. 43–77

Memory Self-Test Control Register ... 43–78

PWM System Configuration Register .. 43–79

ADSP-CM41x Mixed-Signal Control Processor lxi

Rotary Counter Up/Down Configuration Register .. 43–82

SINC Test Register .. 43–83

Shared Interrupt 0 Status Register ... 43–84

Shared Interrupt 10 Status Register ... 43–85

Shared Interrupt 11 Status Register ... 43–86

Shared Interrupt 12 Status Register ... 43–87

Shared Interrupt 15 Status Register ... 43–88

Shared Interrupt 16 Status Register ... 43–90

Shared Interrupt 17 Status Register ... 43–91

Shared Interrupt 18 Status Register ... 43–92

Shared Interrupt 19 Status Register ... 43–93

Shared Interrupt 22 Status Register ... 43–94

Shared Interrupt 25 Status Register ... 43–95

Shared Interrupt 28 Status Register ... 43–96

Shared Interrupt 3 Status Register ... 43–97

Shared Interrupt 5 Status Register ... 43–98

Shared Interrupt 6 Status Register ... 43–99

Shared Interrupt 7 Status Register ... 43–100

Shared Interrupt 8 Status Register ... 43–101

M0 SRAM ECC Register .. 43–102

System Status Register ... 43–103

System Register ... 43–104

CM41X_M0 PADS Register Descriptions .. 43–104

Debounce Control Register(s) ... 43–106

Debounce Prescale Register ... 43–108

Fast Over Current Protection Clock Divisor Register .. 43–109

Monitor Oscillator Control Register .. 43–110

Non-Volatile Write Reset Control Register .. 43–111

Peripheral Configuration0 Register ... 43–112

Multi Port Drive Strength Control Register ... 43–114

lxii ADSP-CM41x Mixed-Signal Control Processor

Multi Port Pull-up/Pull-down Resistor Control Register ... 43–115

Multi Port Trip Select Register .. 43–116

Multi Port Trip State Register .. 43–117

Voltage Monitor Unit Control Register ... 43–119

Voltage Monitor Unit Trim Register .. 43–120

Voltage Monitor Unit Trip Enable Register ... 43–121

Boot ROM and Booting the Processor

Boot Features ... 44–2

Boot Process Overview .. 44–2

Logic ROM.. 44–3

Boot Modes .. 44–4

Boot ROM Pre-boot Routine for Device Initialization... 44–4

Pre-initialization with Logic ROM .. 44–5

Flash Execution Mode.. 44–8

UART Recovery Mode... 44–9

Hardware Configuration... 44–10

Autobaud Detection ... 44–10

ID Packet ... 44–10

Data Transport Packet Format.. 44–11

UART Response Types ... 44–12

Commands ... 44–13

Command Set ... 44–13

Erase All .. 44–13

Erase User Area ... 44–13

Erase Block.. 44–14

Erase Info Block .. 44–14

Debug Key .. 44–14

Write ... 44–14

Write Info.. 44–14

Remote Run .. 44–15

ADSP-CM41x Mixed-Signal Control Processor lxiii

System Reset ... 44–15

Security ... 44–15

Error Codes .. 44–16

Callable Kernel API ... 44–17

adi_rom_getID() .. 44–17

adi_rom_Crc32Poly() ... 44–18

adi_rom_MemCompare() ... 44–18

adi_rom_MemCopy()... 44–19

adi_rom_MemCrc().. 44–19

adi_rom_MemFill() .. 44–20

adi_rom_memoryDma()... 44–21

Data Structures .. 44–21

Control Flags for Booting .. 44–23

System Watchpoint Unit (SWU)

SWU Features.. 45–1

SWU Functional Description... 45–1

CM41X_M4 SWU Register List .. 45–2

CM41X_M0 SWU Interrupt List .. 45–2

CM41X_M4 SWU Interrupt List .. 45–3

CM41X_M0 SWU Trigger List.. 45–3

CM41X_M4 SWU Trigger List.. 45–3

SWU Definitions.. 45–4

SWU Architectural Concepts.. 45–4

SWU-to-SCB Interface.. 45–4

SWU Block Diagram... 45–4

SCB Interface Block .. 45–5

MMR Interface Block ... 45–5

SWU Operating Modes ... 45–5

Bandwidth Mode.. 45–5

Watchpoint Mode... 45–5

lxiv ADSP-CM41x Mixed-Signal Control Processor

Match Block .. 45–5

SWU Event Control .. 45–6

SWU Interrupts.. 45–6

SWU Status and Errors... 45–6

Triggers .. 45–6

SWU Programming Model .. 45–6

SWU Mode Configuration ... 45–7

Configuring the SWU for Bandwidth Mode ... 45–7

Configuring the SWU for Watchpoint Mode ... 45–8

CM41X_M4 SWU Register Descriptions ... 45–9

Count Register n ... 45–10

Control Register n ... 45–11

Current Register n ... 45–15

Global Control Register ... 45–16

Global Status Register ... 45–17

Bandwidth History Register n ... 45–21

ID Register n ... 45–22

Lower Address Register n ... 45–23

Target Register n ... 45–24

Upper Address Register n .. 45–25

JTAG debug and Serial Wire Debug Port (SWJ-DP)

Debug Access ... 46–1

Core Debug ... 46–1

Trace .. 46–2

Coresight Cross Triggering .. 46–2

Synchronous HALT ... 46–4

TAPC Controller ... 46–4

CM41X_M4 TAPC Register Descriptions .. 46–4

Debug Control Register ... 46–6

ADSP-CM41x Mixed-Signal Control Processor lxv

Debug Status Register ... 46–8

IDCODE Register ... 46–10

Run Control Message Register ... 46–11

Run Control Message Clear Register ... 46–13

Run Control Message Set Register ... 46–14

Run Control Message Toggle Register ... 46–15

System Run Control Message Register ... 46–16

System Run Control Message Clear Register ... 46–17

System Run Control Message Set Register ... 46–18

System Run Control Message Toggle Register ... 46–19

Secure Debug Key 0 Register ... 46–20

Secure Debug Key 1 Register ... 46–21

Secure Debug Key 2 Register ... 46–22

Secure Debug Key 3 Register ... 46–23

Secure Debug Key 0 Compare Register .. 46–24

Secure Debug Key 1 Compare Register .. 46–25

Secure Debug Key 2 Compare Register .. 46–26

Secure Debug Key 3 Compare Register .. 46–27

Secure Debug Key 0 Identification Register ... 46–28

Secure Debug Key 1 Key Identification Register .. 46–29

Secure Debug Key 2 Key Identification Register .. 46–30

Secure Debug Key 3 Key Identification Register .. 46–31

Secure Debug Key Control Register ... 46–32

Secure Debug Key Status Register ... 46–33

USERCODE Register .. 46–34

CM41X_M4 CTI Register Descriptions ... 46–34

External Multiplexor Control Register ... 46–37

Authentication Status .. 46–38

Claim Tag Clear Register ... 46–39

Claim Tag Set Register .. 46–40

lxvi ADSP-CM41x Mixed-Signal Control Processor

Component ID0 .. 46–41

Component ID1 .. 46–42

Component ID2 .. 46–43

Component ID3 .. 46–44

CTI Application Trigger Clear Register ... 46–45

CTI Application Pulse Register ... 46–46

CTI Application Trigger Set Register ... 46–47

CTI Channel In Status Register ... 46–48

CTI Channel Out Status Register .. 46–49

CTI Control Register .. 46–50

Enable CTI Channel Gate Register ... 46–51

CTI Trigger 0 to Channel Enable Register .. 46–52

CTI Trigger 1 to Channel Enable Register .. 46–53

CTI Trigger 2 to Channel Enable Register .. 46–54

CTI Trigger 3 to Channel Enable Register .. 46–55

CTI Trigger 4 to Channel Enable Register .. 46–56

CTI Trigger 5 to Channel Enable Register .. 46–57

CTI Trigger 6 to Channel Enable Register .. 46–58

CTI Trigger 7 to Channel Enable Register .. 46–59

CTI Interrupt Acknowledge Register ... 46–60

CTI Channel to Trigger 0 Enable Register .. 46–61

CTI Channel to Trigger 1 Enable Register .. 46–62

CTI Channel to Trigger 2 Enable Register .. 46–63

CTI Channel to Trigger 3 Enable Register .. 46–64

CTI Channel to Trigger 4 Enable Register .. 46–65

CTI Channel to Trigger 5 Enable Register .. 46–66

CTI Channel to Trigger 6 Enable Register .. 46–67

CTI Channel to Trigger 7 Enable Register .. 46–68

CTI Trigger In Status Register ... 46–69

CTI Trigger Out Status Register .. 46–70

ADSP-CM41x Mixed-Signal Control Processor lxvii

Device ID .. 46–71

Device Type ... 46–72

ITCHIN .. 46–73

ITCHINACK .. 46–74

ITCHOUT ... 46–75

ITCHOUTACK .. 46–76

Integration Mode Control Register .. 46–77

ITTRIGIN .. 46–78

ITTRIGINACK .. 46–79

ITTRIGOUT .. 46–80

ITTRIGOUTACK .. 46–81

Lock Access Register .. 46–82

Lock Status Register .. 46–83

Peripheral ID0 ... 46–84

Peripheral ID1 ... 46–85

Peripheral ID2 ... 46–86

Peripheral ID3 ... 46–87

Peripheral ID4 ... 46–88

Peripheral ID5 ... 46–89

Peripheral ID6 ... 46–90

Peripheral ID7 ... 46–91

CM41X_M0 Register List

CM41X_M4 Register List

lxviii ADSP-CM41x Mixed-Signal Control Processor

Preface

Thank you for purchasing and developing systems using an ADSP-CM41x processor from Analog Devices, Inc.

Purpose of This Manual
The ADSP-CM41x Mixed-Signal Control Processor with ARM® Cortex®-M4/M0 and 16-Bit ADCs Hardware
Reference provides architectural information about the ADSP-CM41x processors. This hardware reference provides
the main architectural information about these processors. The architectural descriptions cover functional blocks,
buses, and ports, including all features and processes that they support. For information about programming the
ARM core in the ADSP-CM41x processor, visit the ARM Information Center at:

http://infocenter.arm.com/help/

For timing, electrical, and package specifications, see the ADSP-CM41x Processor Data Sheet.

Intended Audience
The ADSP-CM41x processor uses the ARM Cortex-M4/M0 processors. The manual assumes the audience has a
working knowledge of the ARM processor architecture and instruction set.

What's New in This Manual
This is the first revision (1.0) of the ADSP-CM41x Mixed Signal Control Processor with ARM Cortex-M4/M0 and 16-
Bit ADCs Hardware Reference.

Technical or Customer Support
You can reach customer and technical support for processors from Analog Devices in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone®:

http://ez.analog.com/community/dsp

• Submit your questions to technical support at Connect with ADI Specialists:

http://www.analog.com/support

• E-mail your questions about software/hardware development tools to:

processor.tools.support@analog.com

• E-mail your questions about processors and DSPs to:

ADSP-CM41x Mixed-Signal Control Processor lxix

http://infocenter.arm.com/help/
http://ez.analog.com/community/dsp
http://www.analog.com/support
http://mailto:processor.tools.support@analog.com

processor.support@analog.com (world wide support)

processor.china@analog.com (China support)

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

• Send questions by mail to:

Analog Devices, Inc.

Three Technology Way

P.O. Box 9106

Norwood, MA 02062-9106 USA

Product Information
Product information can be obtained from the Analog Devices Web site.

Analog Devices Web Site
The Analog Devices Web site, http://www.analog.com, provides information about a broad range of products—ana-
log integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to: http://www.analog.com/processors/techni-
cal_library The manuals selection opens a list of current manuals related to the product as well as a link to the previ-
ous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the title
that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page
to display only the latest information about products you are interested in. You can choose to receive weekly e-mail
notifications containing updates to the Web pages that meet your interests, including documentation errata against
all manuals. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical sup-
port engineers. You can search FAQs and technical information to get quick answers to your embedded processing
and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this
open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://
ez.analog.com to sign up.

ADSP-CM41x Mixed-Signal Control Processor lxx

http://mailto:processor.support@analog.com
http://mailto:processor.china@analog.com
http://www.analog.com/adi-sales
http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com/welcome
http://ez.analog.com
http://ez.analog.com

Supported Processors
The following is the list of Analog Devices, Inc. processors.

Blackfin+® (ADSP-BF7xx) Processors

The name Blackfin+ refers to the enhanced fixed-point Blackfin core architecture featured by the ADSP-
BF70x processor product line, which is a family of 16-bit embedded processors.

Blackfin® (ADSP-BF6xx/BF5xx) Processors

The name Blackfin refers to the fixed-point core architecture featured on the following processors: ADSP-
BF5xx and ADSP-BF6xx.

SHARC® (ADSP-21xxx) Processors

The name SHARC refers to the high-performance, 32-bit, floating-point core architecture featured on the fol-
lowing processors: ADSP-2116x, ADSP-2126x, ADSP-213xx, and ADSP-214xx. These processors can be
used in speech, sound, graphics, and imaging applications.

SHARC+® (ADSP-SC5xx, ADSP-215xx) Processors

The name SHARC+ refers to the enhanced high-performance, 32-bit, floating-point core architecture featured
on the following processors: ADSP-215xx/ADSP-SC5xx. The connected SHARC+ ADSP-SC5xx processors

also contain an ARM® Cortex®-A5 core. These products can be used in speech, sound, graphics, and imaging
applications.

The following is the list of Analog Devices, Inc. processors supported by the IAR Embedded WorkBench® develop-
ment tools. For information about the IAR Embedded WorkBench product and software download, go to http://
www.iar.com/en/Products/IAR-Embedded-Workbench .

Mixed-Signal Control Processors

The ADSP-CM40x processors are based on the ARM Cortex-M4 core and are designed for motor control and
industrial applications.

The ADSP-CM41x processors are based on the ARM Cortex-M4 and ARM Cortex-M0 cores and are de-
signed for motor control and industrial applications.

Notation Conventions
Text conventions used in this manual are identified and described as follows. Additional conventions, which apply
only to specific chapters, may appear throughout this document.

ADSP-CM41x Mixed-Signal Control Processor lxxi

http://www.iar.com/en/Products/IAR-Embedded-Workbench
http://www.iar.com/en/Products/IAR-Embedded-Workbench

Example Description

File > Close Titles in reference sections indicate the location of an item within the CrossCore
Embedded Studio IDE's menu system (for example, the Close command appears
on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly brackets and
separated by vertical bars; read the example as this or that. One or the other
is required.

[this | that] Optional items in syntax descriptions appear within brackets and separated by
vertical bars; read the example as an optional this or that.

[this, …] Optional item lists in syntax descriptions appear within brackets delimited by
commas and terminated with an ellipse; read the example as an optional comma-
separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with Letter
Gothic font.

filename Non-keyword placeholders appear in text with italic style format.

NOTE: NOTE: For correct operation, ...

A note provides supplementary information on a related topic. In the online ver-
sion of this book, the word NOTE: appears instead of this symbol.

CAUTION: CAUTION: Incorrect device operation may result if ...

CAUTION: Device damage may result if ...

A caution identifies conditions or inappropriate usage of the product that could
lead to undesirable results or product damage. In the online version of this book,
the word CAUTION: appears instead of this symbol.

ATTENTION: ATTENTION: Injury to device users may result if ...

A warning identifies conditions or inappropriate usage of the product that could
lead to conditions that are potentially hazardous for devices users. In the online
version of this book, the word ATTENTION: appears instead of this symbol.

Registers/Bits All registers and bits in this manual are linked (clickable) to their respective de-
scriptions in the "Register Descriptions" of each chapter.

Miscellaneous Conventions Interrupt and internal signals are shown in all caps with no other formatting. For
example the SPDIFn_RX or SCLK signal or the PKTE0_IRQ interrupt.

An overbar denotes an active-low signal as in SYS_FAULT.

Register Documentation Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top with the short form of the name.

• If a bit has a short name, the short name appears first in the bit description, followed by the long name.

• The reset value appears in binary in the individual bits and in hexadecimal to the left of the register.

ADSP-CM41x Mixed-Signal Control Processor lxxii

• Bits marked X have an unknown reset value. Consequently, the reset value of registers that contain such bits is
undefined or dependent on pin values at reset.

• Shaded bits are reserved

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for reserved
bits in a register, unless otherwise specified.

Register description tables use the following conventions:

• Each bit's or bit field's access type appears beneath the bit number in the table in the form (read-access/write-
access). The access types include:

• R = read, RC = read clear, RS = read set, R0 = read zero, R1 = read one, Rx = read undefined

• W = write, NW = no write, W1C = write one to clear, W1S = write one to set, W0C = write zero to clear,
W0S = write zero to set, WS = write to set, WC = write to clear, W1A = write one action

• Many bit and bit field descriptions include enumerations, identifying bit values and related functionality. Un-
less otherwise indicated (with a prefix), these enumerations are decimal values.

ADSP-CM41x Mixed-Signal Control Processor lxxiii

1 Introduction

The ADSP-CM41xF family of mixed-signal control processors is based on the ARM Cortex-M4 processor core with
floating-point unit operating at frequencies up to 240 MHz, and the ARM Cortex-M0 processor core operating at
frequencies up to 100 MHz. The processors integrate up to 160 KB of SRAM memory with ECC, up to 1 MB of
flash memory with ECC, accelerators and peripherals optimized for motor control and photo-voltaic (PV) inverter
control, and an analog module consisting of up to two 16-bit SAR-type ADCs, one 14-bit on M0 ADC and one 12-
bit DAC. The ADSP-CM41xF family operates from a single voltage supply, generating its own internal voltage sup-
plies using internal voltage regulators and an external pass transistor.

By integrating a rich set of industry-leading system peripherals and memory, the ADSP-CM41xF mixed-signal con-
trol processors are the platform of choice for next-generation applications that require RISC programmability and
leading-edge signal processing in one integrated package. These applications span a wide array of markets in power
conversion and include Solar PV inverters, motor/power control, and battery charging/control.

SYSTEM
CONTROL
BLOCKS

EVENT
CONTROL

SYSTEM
WATCHDOGS

JTAG, SWD,
CoreSight™ TRACE

PLL & POWER
MANAGEMENT

FAULT
MANAGEMENT SECURITY

Cortex-M0

PERIPHERALS

G
PI

O
 (5

9)

1× CAN

STATIC
MEMORY

CONTROLLER
(ASYNC I/F)

8× TIMER

24× PWM

1× TWI / I2C

4× UART

CRC

OCU

1x SPORT

1× SPI

UP TO
1M BYTE
FLASH

FLASH

32K BYTE
SRAM

SRAM

M
A

IL
B

O
X

SYSTEM
CONTROL
BLOCKS

EVENT
CONTROL

SYSTEM
WATCHDOGS

FAULT
MANAGEMENT SECURITY

SRAM

UP TO
160K BYTE

SRAM

Cortex-M4 MATH
CORDIC

PERIPHERALS

1× CAN

8× TIMER

1× UART

1× SPI

G
PI

O
 (1

4)

ADCC0

ADC0

AFE H/W ENHANCEAFE

HAEDACC0

DAC

ADCC1

ADC1/2

FFT

FOCP
LBA SINC

FILTERS

SYSTEM FABRICSYSTEM FABRIC

LOCAL FABRIC
LOCAL FABRIC

Figure 1-1: ADSP-CM41x Functional Block Diagram

Introduction

ADSP-CM41x Mixed-Signal Control Processor 1–1

ARM Cortex-M4 and ARM Cortex-M0 Processor Cores

The ARM Cortex-M4, core is a 32-bit reduced instruction set computer (RISC). It uses 32-bit buses for instruction
and data. The length of the data can be 8/16/32 bits. Most of the registers only have 32-bit access. The length of the
instruction word is 16 or 32 bits. The M4F core-memory subsystem consists of the ARM Cortex-M4 core, the main
memory group, the MATH/CORDIC coprocessor, and the ARM Cortex-M4P subsystem control/ status registers.
The ARM Cortex-M4F subsystem operates in its own CCLK0 clock domain at speeds up to 240 MHz.

The ARM Cortex-M0 is a 32-bit ultra low gate count RISC. It uses 32-bit buses for instruction and data. The
length of the data can be 8/16/32 bits. Most of the registers only have 32-bit access. The length of the instruction
word is 16 or 32 bits. The M0 subsystem consists of the ARM Cortex-M0 core, its local ARM Cortex-M0P plat-
form SRAM, and its own communications peripherals (SPI, UART, and CAN), instrumentation (ADCC), and in-
frastructure (SEC, TRU, WDT). The ARM Cortex-M0 subsystem operates in its own SCLK0 clock domain at
speeds up to 100 MHz.

The ADSP-CM41xF family consistes of several product variants that may contain one or both ARM cores (see the
product data sheet). To discover which cores the processor contains, use the EMUID_CHIPID register as follows.

• The processor has the ARM Cortex-M4 and ARM Cortex-M0 dual core, the EMUID_CHIPID register reads
0x00000402.

• The processor has the ARM Cortex-M4 single core, the EMUID_CHIPID register reads 0x00000412.

Power and Clock Management
The processor contains the following modules that control power and clocking.

Dynamic Power Management (DPM)

The Dynamic Power Management (DPM) unit of the processor controls transitions between different power saving
modes.

Reset Control Unit (RCU)

The Reset Control Unit (RCU) supports separate reset control for various chip sub-systems. For deterministic opera-
tion programmers should ensure there is no activity between separate chip sub-systems during reset activity. Several
global reset options are also supported.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Power and Clock Management

1–2 ADSP-CM41x Mixed-Signal Control Processor

Set RCU_STAT_SWRST = 1

Set RCU_CRCTL_CR[n] = 1

Fault Reset from NVIC (Set RCU_CTL.SRSTREQEN)

Hardware Reset from SYS_HWRST Pin

System Reset Trigger (RCU0_SYSRST0) from TRU

System Reset from NVIC

Oscillator Watchdog Fault from CGU

Clocked by SYSCLK from CGU

System MMR Write-Protection from SPU

Software System Reset

Software Core Reset

Watchdog System Reset

External Hardware Reset

Programmable Triggered Hardware Reset

Programmable Triggered Hardware Reset

Clock Not Good Fault Hardware Reset

RCU

Figure 1-2: RCU System Diagram

Clock Generation Unit (CGU)

The Clock Generation Unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU). The
PLL generates a single high-speed clock running at a programmable multiple of the SYS_CLKIN0 input clock fre-
quency. Clocks for chip sub-systems are individually divided down to user program requirements. The PCU allows
the application software to control the PLL module operation. (see Figure 6-2 ADSP-CM41x Clock Domains (De-
tail)).

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Program CGU_CLKOUTSEL.CLKOUTSEL

SYS_CLKINx Input Pin

System MMR Write-Protection from SPU

Program CGU_OSCWDCTL Register

Programmable SYS_CLKOUT Output Pin

Oscillator Watchdog Fault H/W Reset to RCU

CGU Error/Event (CGU_EVT) to SFI

CGU Trigger (CGU_EVT) to TRU

Oscillator Watchdog Fault Drives SYS_FAULT Pin

CGU

Figure 1-3: CGU System Diagram

Oscillator Comparator Unit (OCU)

The OCU monitors the frequency of an input clock using an additional low-frequency oscillator input. If the fre-
quency drift of the input clock exceeds the specification, a fault is issued. The OCU can also detect gross frequency
errors on either clock.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Internal SYSCLK

System MMR Write-Protection from SPU

Clocked by SYSCLK

OCU

Fault Pin Assertion

Clock Not Good

Interrupt Assertion

VMU Pin Safe

Figure 1-4: OCU System Diagram

Power and Clock Management

ADSP-CM41x Mixed-Signal Control Processor 1–3

System Interrupts and Triggers (SEC/TRU/TTU/CPTMR/GP Timer)
The following modules provide interrupt and trigger management functions for the processor.

System Event Controller (SEC)

The ARM Cortex-M4 and Cortex-M0 cores have intrisic handling of interrupt events. The two SEC units manage
the interface between ISR events and system fault creation for the ARM Cortex-M4 and Cortex-M0 systems, respec-
tively.

SEC is basically an encapsulation of the ARM NVIC module and System Fault Interface (SFI).

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

SYSTEM INTERRUPTS

. . .

SSI SFI

CORTEX-M4/M0
CORE

SYSTEM RESET

FAULT OUTPUT
(FAULT IO PIN)

TRIGGER

FAULT INPUT
(FAULT I/O PIN)

OSC
MONITOR

NVIC

CORE
EXCEPTIONS

SEC

OCU
MONITOR

Figure 1-5: SEC Block Diagram

Set SEC_FCTL.TOEN = 1

Set SEC_FCTL.SREN = 1

Set SEC_FCTL.FOEN = 1

Peripheral Interrupt Requests

Clocked by SYSCLK from CGU

System MMR Write-Protection from SPU

Fault Trigger Output (SEC0_FAULT) to TRU

Fault System Reset to RCU

Fault Ceases COP Output on
SYS_FAULT Pins (SEC_FCTL.CMS = 1)

Fault Asserts SYS_FAULT Output Pin
(SEC_FCTL.CMS = 0)

Hardware Interrupt Assertion

SFI

Figure 1-6: SFI Block Diagram

Trigger Routing Unit (TRU)

The Trigger Routing Unit (TRU) provides system-level sequence control without core intervention. The TRU maps
trigger masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to
respond to triggers in various ways. Multiple TRUs may be provided in a multiprocessor system to create a trigger
network.

Common applications enabled by the TRU include the following:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes

• Software triggering

System Interrupts and Triggers (SEC/TRU/TTU/CPTMR/GP Timer)

1–4 ADSP-CM41x Mixed-Signal Control Processor

• Synchronization of concurrent activities

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System MMR Write-Protection from SPU

H/W Trigger Inputs from Various Masters
∙ Program TRU_SSR[n] Registers

S/W Trigger Input (Write to TRU_MTR Register)

Clocked by SYSCLK/SCLK0 from CGU

Event Output (TRU0_SLVx) to NVIC

H/W Trigger Outputs to Various Slaves

TRU

Figure 1-7: TRU System Diagram

Trigger Timing Unit (TTU)

The Trigger Timing Unit (TTU) provides a simple way to generate event trigger signals with precise timing relation-
ships. Triggers can then be routed to or from the TTU using the Trigger Routing Unit (TRU). The TTU is de-
signed in a scalable, modular fashion. The available output trigger generators can be organized into independent
trigger delay groups, each sensitive to its own input trigger.

TRU TTUTrigger Master
Trigger Slave
(Deferred trigger / Periodic trigger)

Trigger Slave

Figure 1-8: TTU Block Diagram

Capture Timer (CPTMR)

The Capture Timer (CPTMR) module measures the total on-time of the input signal between two triggers. The
module performs this measurement by counting clock pulses during the on-time of the input signal. The total on-
time is captured when the stop trigger is received.

GP Timer

The ADSP-CM41xF processors provide two sets of eight general- purpose (GP) timers, one set primarily associated
with each processor core. Each timer has an external pin that can be configured either as a PWM or timer output, as
an input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These
timers can be synchronized to an external clock input on the TM0_ACLKx pins, an external TM0_CLK input pin,
or to the internal SCLK0.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System Interrupts and Triggers (SEC/TRU/TTU/CPTMR/GP Timer)

ADSP-CM41x Mixed-Signal Control Processor 1–5

PA_00:13 Pins

Clocked by SYSCLK/SCLK0

TIMER

Status Interrupt

TIMERx_TMRy Interrupt

PC_06 Pin

PB_13:15 Pins

PO
R

T
A

/B
/C

/E
/F

System MMR Write-Protection from SPU

TIMERx_TMRy_MST Master Trigger

PE_08:09 Pins

PF_05:06 Pins

PC_00 Pin

PC_08:10 Pins
PC_12 Pin

PC_15 Pin
PE_02 Pin

TIMERx_TMRy_SLV2 Slave Trigger

Alternate Input

Alternate Clock

PE_04 Pin

PE_12 Pin

PE_14:15 Pins

Figure 1-9: Timer Block Diagram

System Memory (SMC/SMPU/FLC)
The following section describes the memory architecture of the processor.

Static Memory Controller (SMC)

The Static Memory Controller (SMC) is a protocol converter and data transfer interface between the internal pro-
cessor bus and the external L3 memory. It provides a glueless interface to various external memories and peripheral
devices, including SRAM, ROM, EPROM, NOR flash memory, and FPGA/ASIC devices.

The SMC acts as an SCB slave. The processor SCB interconnect fabric arbitrates accesses to the SMC. The SMC
connects to signal pins for memory control (such as read, write, output enable, and memory select lines).

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System Memory Protection from SMPU0

System MMR Write-Protection from SPU

Clocked by SYSCLK form CGU

SMC Address Pins (SMC0_A25:01, on PORT Pins)

SMC Data Pins (SMCx_D15:00, on PORT Pins)
 ∙ Core/Cache Access Arbitration in SCB0 Only
 ∙ DMA Access Arbitration Among Numerous SCBs

SMC

SMC Control/Reference Pins
 ∙ All SMCx_ Signals Not Detailed Above (on PORT Pins)

Figure 1-10: SMC System Diagram

System Memory Protection Unit (SMPU)

The System Memory Protection Unit (SMPU) provides a flexible way of protecting memory regions against read or
write access from any or all masters in the system. In addition, it can guard against memory access depending on
security privileges of the system master.

On the ADSP-CM41x, an SPMU is provided for each ARM Cortex core’s main memory and for external memory.

System Memory (SMC/SMPU/FLC)

1–6 ADSP-CM41x Mixed-Signal Control Processor

Flash Controller (FLC)

The processor features ECC-protected embedded parallel flash memory. It consists of up to 1024 KB of main mem-
ory and up to 8 KB of information memory.

Direct Memory Access (DMA/MDMA/CRC)
DMA Controller (DMA)

The processors use Direct Memory Access (DMA) to transfer data within memory spaces or between a memory
space and a peripheral. The processors can specify data transfer operations and return to normal processing while the
fully integrated DMA controller carries out the data transfers independent of processor activity.

DMA transfers can occur between memory and a peripheral or between one memory and another memory. Each
Memory-to-memory DMA stream uses two channels, where one channel is the source channel, and the second is
the destination channel. Most peripherals have at least one dedicated DMA channel associated with them.

All DMAs can transport data to and from all on-chip and off-chip memories. Programs can use two types of DMA
transfers, descriptor-based or register-based. Register-based DMA allows the processors to directly program DMA
control registers to initiate a DMA transfer. On completion, the control registers may be automatically updated with
their original setup values for continuous transfer. Descriptor-based DMA transfers require a set of parameters stored
within memory to initiate a DMA sequence. Descriptor-based DMA transfers allow multiple DMA sequences to be
chained together and a DMA channel can be programmed to automatically set up and start another DMA transfer
after the current sequence completes.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Automated Descriptor Fetches from Memory
or

Manual Core Writes to SMMRs

System MMR Write-Protection from SPU

Automated Buffer Reads via SCBs from Memory

Clocked by SYSCLK/SCLK0 from CGU

Automated FIFO Reads from Peripherals

Triggers to/from TRU Slaves/Masters

Automated Buffer Writes via SCBs to Memory

DMA/MDMA

DMA Data Complete Interrupts to NVIC

DMA Channel Errors to NVIC

MDMA CRC

Automated FIFO Writes to Peripherals

Figure 1-11: DMA System Diagram

Memory DMA Controllers (MDMA)

The processor supports memory-to-memory DMA operations which include two standard memory DMA channels
with CRC protection (32-bit bus width, run on SCLK0).

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Direct Memory Access (DMA/MDMA/CRC)

ADSP-CM41x Mixed-Signal Control Processor 1–7

Automated Descriptor Fetches from Memory
or

Manual Core Writes to SMMRs

System MMR Write-Protection from SPU

Automated Buffer Reads via SCBs from Memory

Clocked by SYSCLK/SCLK0 from CGU

Automated FIFO Reads from Peripherals

Triggers to/from TRU Slaves/Masters

Automated Buffer Writes via SCBs to Memory

DMA/MDMA

DMA Data Complete Interrupts to NVIC

DMA Channel Errors to NVIC

MDMA CRC

Automated FIFO Writes to Peripherals

Figure 1-12: MDMA System Diagram

Cyclic Redundancy Check (CRC)

The Cyclic Redundancy Check (CRC) peripheral performs the cyclic redundancy check (CRC) of the block of data
that is presented to the peripheral. The peripheral provides a means to verify periodically the integrity of the system
memory, the contents of memory-mapped registers (MMRs), or communication message objects. It is based on a
CRC32 engine that computes the signature of 32-bit data presented to the peripheral.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected signature. If the
two signatures fail to match, the peripheral generates an error. The source channel of the memory-to-memory DMA
channels can provide data. The CRC optionally forwards data to memory through the destination DMA channel.
Alternatively, the peripheral supports data presented by core write transactions.

The CRC peripheral implements a reduced table-look-up algorithm to compute the signature of the data. The CRC
uses a programmable 32-bit CRC polynomial to generate the lookup table (LUT) contents automatically.

More CRC peripheral modes allow for initializing large memory sections with a constant value, or for verifying that
sections of memory are equal to a constant value.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

CRC Polynomial (CRC_POLY)

Clocked by SCLK0

Automated Reads from Memory Automated Writes to Memory

CRC

CRC Datacount Expiration Interrupts to NVIC

CRC Error Interrupts to NVIC

System MMR Write-Protection from SPU

Expected Checksum (CRC_COMP)

Figure 1-13: CRC System Diagram

Peripherals
By integrating a rich set of industry-leading system peripherals and memory, the ADSP-CM41x mixed-signal con-
trol processors are the platform of choice for next-generation applications that require RISC programmability and
leading-edge signal processing in one integrated package. These applications span a wide array of markets in power
conversion and include Solar PV inverters, motor/power control, and battery charging/control.

Peripherals

1–8 ADSP-CM41x Mixed-Signal Control Processor

• General-Purpose I/O (GPIO) peripherals

• Dedicated pin peripherals

General-Purpose I/O (GPIO) Peripherals

The processor has up to 102 general-purpose I/O pins mapped across up to seven ports (PORT A through PORT
G). Each pin can be configured individually to serve as a GPIO pin or as a peripheral-specific pin.

GPIO Ports (PORT)

When configured in the default GPIO mode, the PORT pins allow for the processor to interface to system compo-
nents to provide handshaking functionality as either inputs or outputs. When in output mode, open-drain output is
supported. A single MMR access can be used to sense or set individual pins or a complete port of 16 pins.

Additionally, each GPIO pin can optionally be configured to raise a system interrupt on the processor via a dedicat-
ed pin interrupt (PINT) block, and all peripheral functions are controlled via a set of port multiplexing registers,
with specific settings defined in the data sheet.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Clocked by SCLK0 from CGU

System MMR Write-Protection from SPU

PINTx_BLOCK Triggers to TRU

PORTx

PX_YY Pins (X = A-G, YY = 00-15)

System MMR Write-Protection from SPU
PINT

PX_YY Pins (X = A-G, YY = 00-15)

PINTx_BLOCK Interrupts to NVIC

Figure 1-14: PORT System Diagram

Serial Peripheral Interface Ports (SPI)

The Serial Peripheral Interface (SPI) is an industry-standard synchronous serial link that supports communication
with multiple SPI-compatible devices. The baseline SPI peripheral is a synchronous, four-wire interface consisting of
two data pins, one device select pin, and a gated clock pin. The two data pins allow full-duplex operation to other
SPI-compatible devices. Two extra (optional) data pins are provided on specific SPIs to support quad SPI operation.
Enhanced modes of operation such as flow control, fast mode, and dual-I/O mode (DIOM) are also supported. In
addition, a direct memory access (DMA) mode allows for transferring several words with minimal CPU interaction.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Peripherals

ADSP-CM41x Mixed-Signal Control Processor 1–9

PA_00:03 Pins

PC_09:14 Pins

SPIx_TX/RXDMA Triggers to/from TRU Slaves/Masters

SPI

SPI TX/RX DMA Data Interrupts to NVIC

SPI TX/RX DMA Error Interrupts to NVIC

PF_05:08 Pins

PF_02:03 Pins

PA_06:11 Pins

PO
R

T
A

/C
/F

System MMR Write-Protection from SPU

SPI Status Interrupts to NVIC

SPI Error Interrupts to NVIC

SPIx_SELy

SPIx_SS

SPIx_CLK

SPIx_MOSI

SPIx_MISO

SPIx_Dy

SPIx_RDY

Clocked by SCLK0/SYSCLK

Figure 1-15: SPI System Diagram

Serial Port (SPORT)

The programmable serial ports (SPORTs) support various protocols for serial data communication and provide a
glueless hardware interface to many industry-standard data converters and codecs. They have high data rates and
dual half-duplex datapaths and are ideal for establishing a direct serial connection among two or more processors in
a multiprocessor system, as many processors provide compatible serial interfaces.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

PC_05:06 Pins

Clocked by SYSCLK

SPORT DMA Channel A/B Data Interrupts to NVIC

SPORT

System MMR Write-Protection (WP81:66, 30:15) from SPU

PO
R

T
B

/C

PC_09:15 Pins

SPORT Channel A/B Status Interrupts to NVIC

SPORT DMA Channel A/B Error Interrupts to NVIC

SPORT DMA Channel A/B Triggers
to/from TRU Slaves/Masters

SPT_ACLK

SPT_ADx

SPT_AFS

SPT_BCLK

SPT_BDx

SPT_BFS

SPT_BTDV

SPT_ATDV
PB_09 Pin

Figure 1-16: SPORT System Diagram

Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous Receiver/Transmitter (UART) module is a full-duplex peripheral compatible with PC-
style industry-standard UARTs. The UART converts data between serial and parallel formats. The serial communi-
cation follows an asynchronous protocol that supports various word lengths, stop bits, bit rates, and parity-genera-
tion options. The UART includes interrupt-handling hardware. Multiple events can generate interrupts.

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually requires external
transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode, the UART meets the
half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the UART meets the full-duplex
MDB/ICP v2.0 protocol.

UART3 is used for booting and flash firmware upgrade.

Peripherals

1–10 ADSP-CM41x Mixed-Signal Control Processor

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

PA_02:05 Pins

Clocked by SYSCLK/SCLK0

UART_TX/RXDMA Triggers to/from TRU Slaves/Masters

UART

UART TX/RX DMA Data Interrupts to NVIC

UART TX/RX DMA Error Interrupts to NVIC

PC_05:09 Pins

PB_07 Pin

PO
R

T
A

/B
/C

/E
/F

System MMR Write-Protection from SPU

UART Status Interrupts to NVIC

UARTx_TX

UARTx_RX

UARTx_RTS

UARTx_CTS

PE_08:10 Pins

PF_04:05 Pins

PB_09 Pin

PC_11 Pin
PC_15 Pin

PE_01 Pin
PE_03 Pin

Figure 1-17: UART System Diagram

Pulse-Width Modulator (PWM)

The Pulse-Width Modulator (PWM) module is a flexible and programmable waveform generator. It supports full
HPPWM. It has three HPPWM units.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

PB_00:15 Pins

Clocked by SYSCLK

EPPIx_CHy_DMA Triggers to/from TRU Slaves/Masters

PWM

EPPI DMA Data Interrupts to NVIC

EPPI DMA Error Interrupts to NVIC

PD_00:01 Pins

PO
R

T
B

/D
/E

System MMR Write-Protection from SPU

EPPI Status Interrupts to NVIC

PWMx_AH

PWMx_AL

PWMx_BH

PWMx_BL

PWMx_CH

PWMx_CL

PWMx_DH

PWMx_DL

PWMx_TRIP0

PWMx_SYNC

PE_00:11 Pins

PWMx_TRIP_SLVy

AFE_FOCP Trip

Figure 1-18: PWM System Diagram

General-Purpose Counter (CNT)

The General-Purpose Counter (CNT) converts pulses from incremental position encoders into data that is represen-
tative of the actual position of the pulse. This conversion is done by integrating (counting) pulses on one or two
inputs. Since integration provides relative position, some devices also feature a zero-position input (zero marker).
The GP counter can use the zero position input feature to establish a reference point for verifying that the acquired
position does not drift over time. In addition, the GP counter can use the incremental position information to de-
termine speed, if the time intervals are measured.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Peripherals

ADSP-CM41x Mixed-Signal Control Processor 1–11

 Clocked by SYSCLK

CNT

CNT0_STAT Status Interrupt to NVIC

CNT0_STAT Trigger to TRU Slaves

System MMR Write-Protection from SPU

CNT0_ZM

CNT0_UD

CNT0_DG

PC_14 Pin PO
R

T
 B

/CPB_08 Pin

PB_10 Pin

PC_13 Pin

Figure 1-19: CNT System Diagram

Controller Area Network (CAN)

The processor contains two Controller Area Network (CAN) module based on the CAN 2.0B (active) protocol.
This protocol is an asynchronous communications protocol used in both industrial and automotive control systems.
The CAN protocol is compatible with the control applications. It can communicate reliably over a network and
incorporates CRC checking, message error tracking, and fault node confinement.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Clocked by SYCCLK/SCLK0

PA_07 Pin
CANx Status Interrupts to NVIC

CAN

CANx Receive Interrupts to NVIC

CANx Transmit Interrupts to NVIC

PO
R

T
A

/E CAN1_TX

CAN1_RX

CAN0_TX

CAN0_RX

PE_12 Pin

PE_13 Pin

PA_06 Pin

System MMR Write-Protection from SPU

Figure 1-20: CAN System Diagram

ADC Controller (ADCC)

The processor includes an ADC Controller (ADCC) module that provides an interface that synchronizes the con-
trols between the processor and an analog-to-digital converter (ADC). The processor initiates analog-to-digital con-
versions, based on either external or internal events

Sinus Cardinalis (SINC) Filter

The sinus cardinalis (SINC) filter module processes four independent sigma-delta bit streams by applying a pair of
SINC filters to each stream. See System Accelerators (FFTB/HAE/SINC/MATH).

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Peripherals

1–12 ADSP-CM41x Mixed-Signal Control Processor

Clocked by SYSCLK

PC_15 Pin SINC Data Move Triggers (SINC0_DATAx) to TRU Slaves

SINC

SINC Status Interrupt (SINC0_STAT) to NVIC

SINC Pair Overload Triggers (SINC0_Px_OVLD) to TRU Slaves

PF_00:01 Pins

PC_05:06 Pins

PO
R

T
C

/F

System MMR Write-Protection from SPU

SINC0_CLK0

SINC0_D0

SINC0_D1

SINC0_D2

SINC0_D3

Figure 1-21: SINC System Diagram

Dedicated Pin Peripherals

The following peripherals have dedicated pins on the processor.

Two-Wire Interface (TWI)

The processor has a Two-Wire Interface (TWI), that provides a simple exchange method of control data between

multiple devices. The TWI module is compatible with the widely used I2C bus standard. Additionally, the TWI
module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS
camera sensor devices.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

TWI Clock Pin (TWIx_SCL)

Clocked by SYSCLK

TWI Data Pin (TWIx_SDA)

TWI Data Interrupts to NVIC

TWI

System MMR Write-Protection from SPU

Figure 1-22: TWI System Diagram

Boot Mode Pin

SYS_BMODE0 is used for selecting the boot mode of processor.

System Accelerators (FFTB/HAE/SINC/MATH)
The following sections provide information about the high-performance acceleration engines on the processor.

FFT Accelerator Block (FFTB)

The FFT Accelerator Block (FFTB) provides input signal spectrum analysis. The input can be provided by the core
or the FFTB can perform memory to memory FFT/IFFT operations (up to 512 points) without core software inter-
vention. Additionally, the FFTB architecture allows in-built data conversion for various sensor input formats, win-
dowing, and comb filtering the input signal before FFT. The FFTB performs operations on complex FFT output
spectrum such as spectrum averaging, square magnitude computation, and band power limit detection.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

Peripherals

ADSP-CM41x Mixed-Signal Control Processor 1–13

System MMR Read/Write

Clocked by SYSCLK from CGU

 FFTB Error Interrupts to NVIC

FFTB

Trigger to/from TRU Slaves/Masters

System MMR Write-Protection from SPU

 FFTB Status Interrupts to NVIC

 FFTB DMA Out to SCB

 FFTB Buffer Read/Write from/to DMA

 FFTB Buffer Read/Write from/to SCB

Figure 1-23: FFTB System Diagram

Harmonic Analysis Engine (HAE)

The Harmonic Analysis Engine (HAE) analyzes harmonic frequencies present on the voltage and current input sam-
ples. The HAE receives input samples from two source channels whose frequencies are 45–65 Hz. The HAE then
processes the input samples and produces output results. The output results consist of power quality measurements
of the fundamental and up to 12 more harmonics.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System MMR Write-Protection from SPU

Clocked by SYSCLK

HAE TX/RX DMA Interrupts to NVIC

HAE TX/RX DMA Error Interrupts to NVIC

HAE

HAE Status Interrupt to NVIC

HAE TX/RX DMA Triggers to TRU Slaves

HAE TX/RX DMA Triggers from TRU Masters

Figure 1-24: HAE System Diagram

Sinus Cardinalis (SINC) Filter

The Sinus Cardinalis (SINC) Filter module processes four independent sigma-delta bit streams by applying a pair of
SINC filters to each stream. A SINC filter converts the bit stream from a sigma-delta front-end modulator into a
digital word representing the signal level presented to the modulator.

The filter consists of a set of integration and decimation stages implemented directly in logic for efficient execution.
The SINC filter supports capture of current or voltage feedback signals from an isolating analog-to-digital converter
(ADC). Each modulator bit stream connects to two SINC filters: a primary filter for controlling feedback; a secon-
dary filter for overcurrent detection. The SINC module includes four filter channels and two modulator clock gen-
erators.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System Accelerators (FFTB/HAE/SINC/MATH)

1–14 ADSP-CM41x Mixed-Signal Control Processor

PC_15 Pin SINC Data Move Triggers (SINC0_DATAx) to TRU Slaves

SINC

SINC Status Interrupt (SINC0_STAT) to NVIC

SINC Pair Overload Triggers (SINC0_Px_OVLD) to TRU Slaves

PF_00:01 Pins

PC_05:06 Pins

PO
R

T
C

/F

System MMR Write-Protection from SPU

SINC0_CLK0

SINC0_D0

SINC0_D1

SINC0_D2

SINC0_D3

Clocked by SYSCLK

Figure 1-25: Sinus Cardinalis (SINC) Filter

MATH Accelerator Unit

The MATH Accelerator Unit accelerates highly accurate single-precision floating-point computations of common
transcendentals such as trigonometric and exponential functions and their inverses. It provides faster reciprocals and
square roots than provided by the Cortex-M4. It also provides accelerated functions to convert between rectangular
and polar coordinates. Most operations by this tightly-coupled accelerator complete in a deterministic number of
core clock cycles.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

System MMR Read/Write

Clocked by CCLK from CGU0

 MATH Error Interrupts to NVIC

MATH Accelerator Unit

 MATH Status Interrupts to NVIC

 MATH Result Ready/Stall to SCB

Figure 1-26: MATH Accelerator Unit

Security and Protection (SPU/MBOX)

The following modules provide system safety and security.

System Protection Unit (SPU)

In a system with multiple system MMR masters, configurations of peripherals can be changed unintentionally lead-
ing to bad data or even system malfunctions. The peripherals are shared resources in the system. The System Protec-
tion Unit (SPU) restricts access to certain MMRs, similar to the functionality of a semaphore.

The SPU also protects peripherals based on security settings. It is part of the overall security infrastructure of the
processor.

MailBox (MBOX)

Communication between the cores is provided by a 4 KB MBOX (mailbox) organized as 1024 32-bit words. The
MBOX is a simulated dual port RAM. The MBOX is located in the ARM Cortex-M0 clock domain. The SRAM is

Security and Protection (SPU/MBOX)

ADSP-CM41x Mixed-Signal Control Processor 1–15

protected from soft and hard errors using ECC with minimum 1-bit correction and 2-bit detection. The MBOX
may be used as a sole communication device between cores, or as a communication device for synchronizing data
transfers and protection between the die.

Safety (WDOG/VMU)
Signal Watchdog

The eight general-purpose Watchdog Timer (WDOG) timers feature modes to monitor off-chip signals. The
Watchdog Period mode monitors whether external signals toggle with a period within an expected range. The
Watchdog Width mode monitors whether the pulse widths of external signals are within an expected range. Both
modes help to detect undesired toggling (or lack thereof) of system-level signals.

Voltage Monitor Unit (VMU)

The Voltage Monitoring Unit (VMU) provides over-voltage and under-voltage detection by monitoring the internal
and external power pins and generates asynchronous signals if the voltages exceed or drop below the programmable
limits. The VMU also generates a control signal for the power sequencing requirements of the embedded FLASH,
even if the VMU is disabled.

For more information about System MMR Write-Protection from SPU, refer to the ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

VDDINT Supply

System MMR Write-Protection from SPU

Clocked by SYSCLK

VMU

Fault Pin Assertion

Flash Protection

Interrupt Assertion

Pin Safe State

VDDEXT Supply

Figure 1-27: VMU System Diagram

JTAG Debug and Serial Wire Debug Port
The ADSP-CM41x processor support standard debugging options, JTAG and SWD for the ARM Cortex cores.
The processor supports both Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM).

Additional debug resources are provided by the following modules.

• The System Crossbars (SCB) are the fundamental building blocks of a switch-fabric style for (on-chip) system
bus interconnection. The SCBs connect system bus masters to system bus slaves, providing concurrent data
transfer between multiple bus masters and multiple bus slaves. The SCB provides sustainable throughput for
simultaneous transactions in the system with configurable Quality of Service for each type of transaction (traf-
fic) as required. A hierarchical model, built from multiple SCBs, provides a power and area efficient system
interconnect, which satisfies the performance and flexibility requirements of a specific system.

• The System Watchpoint Unit (SWU) is a single module used for transaction monitoring. The SWU is attached
to each system slave through the system crossbar interface and provides ports for all address channel signals for

Safety (WDOG/VMU)

1–16 ADSP-CM41x Mixed-Signal Control Processor

the system crossbar. The SWU does not have ports for the read/write data channel signals or the low-power
interface signals.

ADCC and DACC
The processor contains an Analog-to-Digital Converter Controller (ADCC) and a Digital-to-Analog Converter
Controller (DACC).

Analog Front End (AFE)

The processors contain one ADC attached to the ARM Cortex-M0 core and two ADCs plus one DAC attached to
the ARM Cortex-M4 core. Control of these data converters is simplified by two powerful on-chip Analog-to-Digital
Converter Controller (ADCC) and a Digital-to-Analog Converter Controller (DACC). The ADCC and DACC are
integrated seamlessly into the software programming model, and they efficiently manage the configuration and real-
time operation of the ADCs and DACs.

ADC1
16-BIT

3
WAY12 CHANNELS

ADC2
16-BIT

3
WAY12 CHANNELS

ADC
CONTROLLER

(ADCC1)

ADC0
14-BIT

DAC0
12-BIT

ADC
CONTROLLER

(ADCC0)

DAC
CONTROLLER

(DACC)

FOCP
COMPARATORS

7 CHANNELS

1 CHANNEL

3 CHANNELS
FROM

ADC1/2

DMA
TO

MEMORY

DMA
TO

MEMORY

DMA
FROM

MEMORY

DAC1/2
8-BIT FOCP Control Limits

Under / Over

INTERRUPT

Figure 1-28: AFE Diagram

For AFE related pins and interconnections, refer to the product datasheet.

Fast Over Current Protection (FOCP)

The processor supports protection from over-current on its analog channels, via dedicated comparators in the analog
front end subsystem (AFE).

ADCC and DACC

ADSP-CM41x Mixed-Signal Control Processor 1–17

System Block (SYSBLK) and Pads
System Block (SYSBLK) and PADS are collection of additional registers that are part of several peripherals and core
systems. For example, SYSBLK covers few registers for SCB/DMA_MUX/LROM_STAT and PADS covers few
registers for Debounce/FOCP/PORTS/VMU.

System Block (SYSBLK) and Pads

1–18 ADSP-CM41x Mixed-Signal Control Processor

2 ARM Cortex-M0 Core 1 Memory Sub-Sys-
tem

The ADSP-CM41x family of processors that have an optional ARM Cortex-M0 processor core with integrated

SRAM memory and peripherals.

The ARM Cortex-M0 Subsystem is a self-contained processor subsystem provided for safety supervisory purposes. It
has tightly coupled 32 KB SRAM, peripherals, and GPIOs, and on the ADSP-CM41x, is configured to control its
own 7-input auxiliary ADC core on the processor die. The interfaces and buses in the system are arranged so that
the application can control the degree of interaction and observation that the ARM Cortex-M4 and ARM Cortex-
M0 processors have with each other, from total access to almost complete independence.

The following terms that are used in this chapter:

• Cortex core refers to the ARM Cortex-M0 core and core peripherals.

• Cortex memory refers to the portions of the Cortex memory map that are part of the memory model for the
Cortex core (for example, SRAM), but are not part of the system memory (memory-mapped registers) or exter-
nal memory.

• ADSP-CM41x processor or processor refers to the combination of the Cortex core, Cortex memory, system pe-
ripherals (for example, UART, SPI, and SPORT), and system memories.

This document describes the ARM Cortex-M0 core and memory architecture used on the ADSP-CM41x processor,
but does not provide detailed programming information for the ARM processor. For more information about pro-
gramming the ARM processor, visit the ARM Information Center:

• http://infocenter.arm.com/help/

The applicable documentation for programming the ARM Cortex-M0 processor include:

• ARM Cortex-M0 Devices Generic User Guide

• ARM Cortex-M0 Technical Reference Manual

Peripherals and Infrastructure in M0 Subsystem Domain
The following tables identify the peripherals and infrastructure in the ARM Cortex-M0 Subsystem domain.

ARM Cortex-M0 Core 1 Memory Sub-System

ADSP-CM41x Mixed-Signal Control Processor 2–1

http://infocenter.arm.com/help/

Table 2-1: Peripheral Block

Peripheral block Description

SPI0 Serial Peripheral Interface

UART0 Universal Asynchronous Receiver Transmitter

ADCC0 Analog to Digital Converter Controller

CAN0 Controller Area Network

TIMER0 x 8 General Purpose Timer

Table 2-2: Infrastructure Block

Infrastructure block Description

DDE0–3 DMA Engine

TRU0 Trigger Routing Unit

SEC0 System Event Controller

WDT0 Watchdog Timer

PORTA General Purpose Port

PINT0 Peripheral Interrupt Module

PADS0 Pads Interface

SYSBLK0 System Block Interface

SPU0 System Protection Unit

SMPU0 System Memory Protection Unit

SWU0–1 System Watch-point Unit

Cortex-M0 Memory Features
The ARM Cortex-M0 core memory architecture includes the following features:

• An local tightly coupled memory sub-system that supports 32 KB of ECC-protected, zero wait state main
SRAM memory for data and code storage.

• ARM Cortex-M0 bus architecture with a single AHB interface that provides simple integration to all system
peripherals and memory.

• External memory interface that contains up to 4 banks, each bank with 128 KB of space.

Common System Memories:

• 1024 KB of ECC-protected flash memory (512 KB x 2 banks) common for both the ARM Cortex-M4P and
the ARM Cortex-M0S. Flash access is via the Cortex-M4P domain and clock, and accessing flash from the
ARM Cortex-M0S is slower.

Cortex-M0 Memory Features

2–2 ADSP-CM41x Mixed-Signal Control Processor

• 4 KB MBOX mailbox memory (with ECC) for inter-processor communication.

• MBOX supports exclusive reads and writes from either core, to implement process synchronization sema-
phores.

• Shared with the ARM Cortex-M0S

Cortex-M0 Memory Functional Description
The following sections provide the functional description for the Cortex-M0 core memory sub-system.

CM41X_M0 M0P Interrupt List

Table 2-3: CM41X_M0 M0P Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

2 M0P_SRAM_EERR M0P supervisor sram ecc error Level

CM41X_M0 M0P Trigger List

Table 2-4: CM41X_M0 M0P Trigger List Masters

Trigger ID Name Description Sensitivity

None

Table 2-5: CM41X_M0 M0P Trigger List Slaves

Trigger ID Name Description Sensitivity

18 M0P_NMI_SLV0 M0P NMI Trigger Slave 0 Pulse

ARM Cortex-M0 Bus Interconnect

The following sections breifly describe the Cortex-M0 bus blocks.

ARM Cortex-M0 Supervisor System Peripherals

These are connected to a bus which is mastered by the SPU0 unit. This bus is clocked at the ARM Cortex-M0 clock
rate by SCLK0 and is reset by SYSRST. The SPU0 unit accepts qualified transaction requests from three sources:

• The ARM Cortex-M4 controller,

• The ARM Cortex-M0 supervisor, and

• Certain DMA-capable system peripherals via the main system fabric.

Cortex-M0 Memory Functional Description

ADSP-CM41x Mixed-Signal Control Processor 2–3

Supervisor (ARM Cortex-M0) Tightly-Coupled Memory

The 32 KB is connected to the ARM Cortex-M0 Supervisor bus through a zero-latency matrix. Access by other
masters outside the M0 Platform is facilitated by the Supervisor Peripheral Fabric, implemented in the bus protocol.
This memory and interconnect are within the SCLK0 clock domain and are reset by SYSRST.

• Access by DMA to this memory is controlled by the System Memory Protection Unit SMPU0, which can be
programmed to grant or deny write or all access by any memory master in the ADSP-CM41x system outside
the ARM Cortex-M0P to up to 4 regions within the ARM Cortex-M0 Tightly-Coupled Memory address
space.

• DMA access to these memories is monitored by the System Watchpoint Unit SWU1, which can be program-
med to watch for accesses to selected addresses and to signal interrupts or trigger events.

System Memories

These are slave memory spaces which are connected to the Main System SCB Fabric. This is a high-concurrency,
high-throughput fabric, residing within the SYSCLK domain and reset by SYSRST. Concurrent access is possible by
different masters to any of the six slave memory spaces at the same time.

• The devices which can act as masters on the Main System bus fabric include

• The ARM Cortex-M4P Controller

• The ARM Cortex-M0 Supervisor and its DMA-capable peripherals

• DMA-capable system peripherals, in three groups called System Crossbars (SCBs).

• The slave memory spaces in the System Memory Fabric include

• The SMC System Memory Controller, which supports connection to off-chip memory through the paral-
lel memory port

• The FFTB's embedded memory

• Additional slaves include bus bridges to the following:

• The ARM Cortex-M4 DMA Port to the ARM Cortex-M4 Tightly-Coupled Memories

• The ARM Cortex-M0 DMA Port to the ARM Cortex-M4 Tightly-Coupled Memories

• The Controller System Peripherals

• The Supervisor System Peripherals

Posted System Writes (NormSys Write versus PostSys Write)

The ARM Cortex-M0 supports only PostSysWrite mode. Non-exclusive ARM Cortex- M0 core writes to system
space are posted, meaning that the Cortex memory interface accepts the MMR write transaction from the Cortex
core and immediately returns an OKAY response. The Cortex core proceeds with subsequent instructions, while in-
dependently, the Cortex memory interface forwards the posted write to the system fabric (bus interconnect). Only

Cortex-M0 Memory Functional Description

2–4 ADSP-CM41x Mixed-Signal Control Processor

one write may be posted at any time, so if a subsequent write arrives while the first is pending, the Cortex core is
stalled until the Cortex memory interface can accept the new transaction.

If a system fabric (bus interconnect) ERROR response is returned from a posted write, the Cortex core cannot signal
an exact HardFault exception because it has already gone on to execute further instructions. In this case, the Cortex
memory captures the address of the erroneous transaction in the field.

An erroneous transaction can be configured to generate an interrupt service request to both cores. Set the
SYSBLK_SCB_RESP_CFG.PWENA bit to enable the interrupt. The SYSBLK_SCB_RESP_CFG.PWERR bit
holds a sticky indication of erroneaous error irregardless of interrupt enable. The
SYSBLK_SCB_RESP_CFG.PWERR status bit is write-1-clear.

Bus Timeout

The ADSP-CM41x bus interconnect fabric provides a Fault-tolerant Access Timeout protection, provided by SPUs
or TESYS Timeout units. Accesses can be programmed to Timeout in SYSCLK units.

Programming the Timeout includes:

• Programming the Timeout Value in SYSCLKs

• Enabling the Timeout to the Interrupt

Table 2-6: Bus Timeout

To (Slave) From M4 From M0 From MDMA From M4 Pe-
ripheral DMAs

From M0 Pe-
ripheral DMAs

M4 ROMs none n/a n/a n/a n/a

M4 SRAM none SYSBLK0 none none none

M4 Flash none SYSBLK0 none none none

M4 local peripherals (MATH,
Flash Controller, M4P)

none n/a n/a n/a n/a

SPU1 controls SPU1 SYSBLK0 &
SPU1

SPU1 n/a n/a

M4 Peripheral / System MMRs SPU1 SPU1 SPU1 n/a n/a

FFTB memory SYSBLK1 SYSBLK0 none none none

SMC external memory SYSBLK1 SYSBLK0 none none none

MBOX Port1 and MMRs SPU1 SYSBLK0 SPU1 n/a n/a

M0 SRAM SYSBLK1 none none none none

SPU0 controls SPU0 SPU0 SPU0 n/a n/a

M4 Peripheral and System MMRs SYSBLK1 SYSBLK0 &
SPU0

SPU0 n/a n/a

MBOX Port 0 and MMRs n/a SYSBLK0 n/a n/a n/a

Cortex-M0 Memory Functional Description

ADSP-CM41x Mixed-Signal Control Processor 2–5

As shown in the table, the time-out feature is implemented via three blocks: SYSBLK1, SPU0 and SPU1. The pro-
gramming structure of the SYSBLK1 and SPU0/SPU1 for timeout is similar, but uses different sets of registers. The
following is a code example for SYSBLK timeout programming.

1. Program the timeout value using the SYSBLK_SCB_TIMEOUT_VALUE register. Set the
SYSBLK_SCB_RESP_CFG.TOENA bit (=1).

2. Wait for the timeout interrupt and once the interrupt is asserted and the program is in the handler the follow-
ing code can be executed.

void C1_BUS_TIMEOUT_Handler()
 {
 unsigned int stat = *pREG_SYSBLK0_SCB_RESP_CFG;
 if(stat & BITM_SYSBLK_SCB_RESP_CFG_TOERR)
 {
 *pREG_C1_AHB_RESP_CFG |= BITM_SYSBLK_SCB_RESP_CFG_TOERR;
 __SEV(); __ISB();
 }
/*process interrupt*/
 }

The following programming example is used to configure and service the SPU timeout event. The example can also
be used for SPU1 if the corresponding SPU1 registers are used in place of the indicated SPU0 registers.

1. Install the following handler code for the SPU0 Timeout event:

void SPU0_TIMEOUT_Handler ()
{
unsigned int stat = *pREG_SPU0_STAT;
if(stat & BITM_SPU_STAT_TIRQ)
{
time_outerr++;
*pREG_SPU0_STAT |= BITM_SPU_STAT_TIRQ;
__SEV(); __ISB();
}
/*process interrupt*/
}

2. Program the timeout value in the SPU_TIMEOUT register.

3. Set the SPU_CTL.TOMON bit (=1) to enable the monitor.

To detect a pending timeout transaction the program should check the SPU_STAT.TOERR bit. This bit is set once
the timeout condition is hit, whether or not the interrupt request is enabled.

Cortex-M0 Code and Data SRAM
The unified internal SRAM space provides both code and data memory for the ARM Cortex-M0 processor core,
allowing a configurable partition between code and data space. In addition, the SRAM features a DMA access port

Cortex-M0 Code and Data SRAM

2–6 ADSP-CM41x Mixed-Signal Control Processor

for read/write access by other master devices on the system fabric. The SRAM and all its interfaces operate in the
ARM Cortex-M0 core clock domain (SCLK0). The SRAM supports exclusive accesses. The SRAM can be accessed
at the maximum SCLK0 speed in zero-wait-state. For access timing information, see the product data sheet.

SRAM Features

The SRAM has the following features:

• Up to 32 KB SRAM capacity

• Zero wait-state performance

• ECC protection (SECDED)

SRAM Bank Organization on the ARM Cortex-M0 Subsystem

The ARM Cortex-M0S platform has a contiguous 32K Bytes SRAM created from four 8K Bytes single-ported
SRAM macros, where both code as well as data can reside.

ECC Error Handling

The following sections provide information on the Error Correcting Code (ECC) feature of the M0 core.

ECC Error Signaling

The SYSBLK_SRAM0_ECC.FADDR M0’s bus interface register is associated with reporting errors on the various
SRAM read ports.

ECC Error Interrupt Handlers

The M0 SRAM array is ECC protected against single bit failures and will detect multi-bit failures. Multi-bit failures
signal a BUSERR to the requesting port (Core SCB or DMA). In addition, regardless of port, the Fault Status bit
(SYSBLK_SRAM0_ECC.FLTST) is set and the array address of the first failure is captured in the ECC Fault Ad-
dress bits (SYSBLK_SRAM0_ECC.FADDR). The SYSBLK_SRAM0_ECC.FADDR bit does not change after
SYSBLK_SRAM0_ECC.FLTST is asserted, even if there are new ECC errors. Writing a one to the
SYSBLK_SRAM0_ECC.FLTST bit clears it and allows a new ECC error address to be captured in the
SYSBLK_SRAM0_ECC.FADDR bit.

Setting the SYSBLK_SRAM0_ECC.IEN bit, asserts the M0_SRAM_ECC_IRQ interrupt when the
SYSBLK_SRAM0_ECC.FLTST bit is set. This interrupt is routed internally to the M0P ARM CORTEX-M0
processor and externally to the ARM Cortex-M4 processor. Clearing the SYSBLK_SRAM0_ECC.FLTST bit or
disabling the SYSBLK_SRAM0_ECC.IEN bit disables this interrupt.

The ARM Cortex-M0S SRAM does not accept new transactions from either port for two cycles after an ECC error
is detected.

Cortex-M0 Code and Data SRAM

ADSP-CM41x Mixed-Signal Control Processor 2–7

Memory and MMR Access Latencies
This section provides information on the ARM Cortex-M0 core read and write memory-mapped register access la-
tencies.

The number of M0 core clock wait states incurred for reads and writes to various system address ranges is specified
by the M0 Wait States By Target Address Space table. Note that the baseline time in the ARM Cortex-M0 architec-
ture for a load-store instruction to zero-wait-state memory is two core clock cycles. In the following examples the
results of division are rounded up to the next higher integer.

Ratio_CS = (CCLK0 frequency ÷ SYSCLK frequency)

Ratio_M0 = (CCLK0 frequency ÷ SCLK frequency)

ARM Cortex-M0 Read from UART1 in M0 space (RWS = 0), at any Ratio_M0: Read wait states = 1 + RWS = 1

ARM Cortex-M0 Read from UART1 in M4 space (RWS = 0), at Ratio_M0 = 2:1: Read wait states = 2 + (5 + RWS)
÷ Ratio_M0 = 2 + (5 + 0) ÷ 2 = 2 + 3 = 5.

Table 2-7: ARM Cortex-M0 Wait States By Target Address Space

Target Space Read Wait States Write Wait States

ARM Cortex-M4 Boot ROM + Logic ROM n/a (not accessible) n/a

ARM Cortex-M4 Main SRAM 0 + (14 ÷ Ratio_M0) 1

ARM Cortex-M4 Core peripherals (MATH,
Cortex PPB)

n/a n/a

Flash Memory (min) 0 + (6 + (8 ÷ RatioCS)) ÷ Ratio_M0 n/a (Read only)

Flash Memory (max) 0 + (6 + (11 ÷ RatioCS)) ÷ Ratio_M0 n/a

M0 Core peripherals (PPB) 0 0

Mailbox memory ports 2 + (5 + RWS) ÷ Ratio_M0 2 + (5 + WWS) ÷ Ratio_M0

ARM Cortex-M4 System Peripheral MMRs 2 + (5 + RWS) ÷ Ratio_M0 2 + (5 + WWS) ÷ Ratio_M0

ARM Cortex-M0 System Peripheral MMRs 1 + RWS 1 + WWS

ARM Cortex-M0 SRAM 0 0

FFT memories 0 + 6 ÷ Ratio_M0 1

HAE memories 2 + 8 ÷ Ratio_M0 2 + 14 ÷ Ratio_M0

SMC TBD TBD

Information about the wait states in individual peripherals can be found in the Table 3-10 MMR Wait States by
Peripheral table.

Memory and MMR Access Latencies

2–8 ADSP-CM41x Mixed-Signal Control Processor

Boot Sequence
The ARM Cortex-M0 supervisor is booted entirely under control of the ARM Cortex-M4 main controller, in the
following sequence:

• At system reset, both the ARM Cortex-M4 and ARM Cortex-M0 and the enclosing systems are reset.

• On deassertion of system reset, the ARM Cortex-M4 boots while the ARM Cortex-M0 core is retained in reset.
The ARM Cortex-M4 Boot ROM takes no action regarding the ARM Cortex-M0. At this time all system re-
sources on the ARM Cortex-M4 side and the ARM Cortex-M0 side are accessible to the ARM Cortex-M4,
while the ARM Cortex-M0 core alone is held in reset.

After deassertion of the system reset, the user program performs the following tasks.

• Starts on the ARM Cortex-M4 and initializes itself. The ROM code does various self check operations and
asserts the system fault pin if unable to complete the initialization procedure. On proper init completion, con-
trol is passed to user.

• Initializes and configures the system as desired (clocking, memory initialization, system protection modes, in-
terrupt handlers and so on).

• Copies the ARM Cortex-M0 supervisor executable to the ARM Cortex-M0 SRAM from Flash, either by DMA
or by direct processor memory operations, and validates the copy (for example using MDMA plus CRC or
direct comparison with flash).

• Optionally may initialize the rest of the ARM Cortex-M0 SRAM (to init ECC states).

• Configures the system as desired to enable or restrict access to the ARM Cortex-M0 subsystem by the ARM
Cortex-M4 system and vice versa, using address-range-based protection (SPU, SPMU) and register-granularity
protection (LOCK, SPU) as appropriate.

• Initializes the ARM Cortex-M0’s vector table relocation register (SYSBLK_M0_VTOR) in the C0 unit to
point to the initial stack pointer and vector table in the downloaded ARM Cortex-M0 executable.

The ARM Cortex-M0 is then allowed to come out of reset when the ARM Cortex-M4 application writes the
RCU_CRCTL registers in the RCU (See the Reset Control Unit (RCU) chapter). When this occurs the ARM Cor-
tex-M0 performs the following tasks.

• The ARM Cortex-M0 fetches its initial stack pointer and reset vector address from the location pointed to by
SYSBLK_M0_VTOR.

• Begins executing code at the reset vector address, usually within the ARM Cortex-M0’s SRAM.

• Initializes itself, and optionally initializes the rest of its ARM Cortex-M0 SRAM (ECC states).

• Configures the ARM Cortex-M0 subsystem as desired to enable or restrict access by the surrounding system
(ARM Cortex-M4 core or DMA peripherals).

• Configures the ARM Cortex-M0S subsystem monitor units (SPU, SMPU, SWU, timeout) to monitor M0 op-
erations.

Boot Sequence

ADSP-CM41x Mixed-Signal Control Processor 2–9

• Begins its supervisory tasks.

Cortex-M0 Registers
The Cortex-M0 core related registers are part of the SYSBLK unit. See System Block (SYSBLK) and PADS.

The following are the set of registers that are specific to the core:

• SYSBLK_IRQ_LATENCY: Register to program the M0 IRQ latency.

• SYSBLK_M0_VTOR: Register to program Vector Table Offset Register.

• SYSBLK_SYS_STCALIB: Register to program the Systick Calibration.

• SYSBLK_SISTAT0 to SYSBLK_SISTAT28: Registers to read the status of which interrupt is asserted.

The Cortex-M0 specific registers are titled SCS1_ prefix. For example, the ACTLR register is mentioned as
SCS1_ACTLR.

Refer to the CM41X_M0 SCS1 MMR Register Addresses table.

Cortex-M0 Registers

2–10 ADSP-CM41x Mixed-Signal Control Processor

3 ARM Cortex-M4 Core 0 Memory Sub-Sys-
tem

The ADSP-CM41x family of processors are based on the ARM Cortex-M4 processor core with floating-point unit

and integrated SRAM memory, flash memory, accelerators, and peripherals.

The processor provides sufficient memory to support micro-controller based applications. This memory includes
160K bytes of internal tightly coupled SRAM that can be partitioned into any one of six choices for code/data
memory partitioned into 32K byte blocks and 1M byte of tightly coupled flash memory with ECC. The processor
also includes a static memory controller for interface to external devices or memories.

Note the following terms, which are used in this chapter:

• Cortex core refers to the ARM Cortex-M4 core with floating-point support and core peripherals.

• Cortex memory refers to the portions of the Cortex memory map that are part of the memory model for the
Cortex core (for example, SRAM Flash and boot ROM), but are not part of the system memory (memory
mapped registers) or external memory.

• ADSP-CM41x processor or processor refers to the combination of the Cortex core, Cortex memory, system pe-
ripherals (for example, UART, SPI, and SPORT), and system memories.

This document describes the ARM Cortex-M4 core and memory architecture used on the ADSP-CM41x processor,
but does not provide detailed programming information for the ARM processor. For more information about pro-
gramming the ARM processor, visit the ARM Information Center:

• http://infocenter.arm.com/help/

The applicable documentation for programming the ARM Cortex-M4 processor include:

• ARM Cortex-M4 Devices Generic User Guide

• Cortex -M4 Technical Reference Manual

Peripherals and Infrastructure on the ARM Cortex-M4 Sub-sys-
tem Domain
The following tables identify the peripherals and infrastructure on the ARM Cortex-M4 Sub-system domain.

ARM Cortex-M4 Core 0 Memory Sub-System

ADSP-CM41x Mixed-Signal Control Processor 3–1

http://infocenter.arm.com/help/

Table 3-1: Peripheral Blocks

Peripheral block Description

SPI1 Serial Peripheral Interface

UART1–4 Universal Asynchronous Receiver Transmitter

ADCC1 Analog to Digital Converter Controller

CAN1 Controller Area Network

TIMER1 x 8 General Purpose Timer

SPORT0 Serial Port

TWI0 Twin Wire Interface

DACC0 Digital to Analog Converter Controller

HPPWM0–2 High-performance Pulse Width Module

HAE0 Harmonic Analysis Engine

SINC0 Sinus Cardinals Filter

CRC0 Cyclic Redundancy Check Unit

FFT0 Fast Fourier Transform Unit

ROT0 Rotary Counter

CPT0 Capture Timer

LBA0 Logic Block Array

Table 3-2: Infrastructure Blocks

Infrastructure block Description

DDE4–13 DMA Engine

TRU1 Trigger Routing Unit

SEC1 System Event Controller

WDT1 Watchdog Timer

PORTB–F General Purpose Port

PINT1–5 Peripheral Interrupt Module

PADS1 Pads Interface

SYSBLK1 System Block Interface

SPU1 System Protection Unit

SMPU1–2 System Memory Protection Unit

SWU2–6 System Watch-point Unit

TTU0 Trigger Trimming Unit

Peripherals and Infrastructure on the ARM Cortex-M4 Sub-system Domain

3–2 ADSP-CM41x Mixed-Signal Control Processor

Table 3-3: ARM Cortex-M4 Tightly Coupled Unit

M4 Tightly coupled unit Description

MATH0 Math Accelerator Unit

Cortex-M4 Memory Features
The ARM Cortex-M4 core memory architecture includes the following features:

• An internal memory sub-system supporting:

• Up to 160K bytes of zero waitstate and configurable SRAM

• Up to 1M of internal embedded, low-latency, parallel flash memory

Cortex-M4 Memory Functional Description
The following sections provide the functional description for the Cortex-M4 core memory sub-system.

CM41X_M4 M4P Interrupt List

Table 3-4: CM41X_M4 M4P Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

5 M4P_BCODE_ERR M4P Boot Code CRC Error Level

9 M4P_LOCKUP M4P Lockup Error (Fault only; not an in-
terrupt)

Level

10 M4P_BUS_FAULT M4P Bus Fault Edge

14 M4P_CORE_SRAM_EERR M4P SRAM Core ECC Error Level

15 M4P_DMA_SRAM_EERR M4P SRAM DMA ECC Error Level

158 M4P_SOFT_INT0 M4P Software Interrupt 0 Edge

159 M4P_SOFT_INT1 M4P Software Interrupt 1 Edge

160 M4P_SOFT_INT2 M4P Software Interrupt 2 Edge

161 M4P_SOFT_INT3 M4P Software Interrupt 3 Edge

162 M4P_SOFT_INT4 M4P Software Interrupt 4 Edge

163 M4P_SOFT_INT5 M4P Software Interrupt 5 Edge

CM41X_M4 M4P Register List

The ARM Cortex-M4 platform module (M4P) provides the interface to the L1 SRAM. A set of registers governs
M4P operations. For more information on M4P functionality, see the M4P register descriptions.

Cortex-M4 Memory Features

ADSP-CM41x Mixed-Signal Control Processor 3–3

Table 3-5: CM41X_M4 M4P Register List

Name Description

M4P_BROMERR Boot ROM Error Register

M4P_BUSFLT Bus Fault Error Information Register

M4P_SRAM_CFG SRAM Configuration Register

M4P_SRAM_EEADDR_CORE SRAM ECC Error Address (Core) Register

M4P_SRAM_EEADDR_DMA SRAM ECC Error Address (DMA) Register

M4P_SRAM_INITDONE SRAM Initialization Done Status Register

M4P_SRAM_RFRADDR SRAM Refresh Address

M4P_SRAM_RFRPER SRAM Refresh Period Register

M4P_STCALIB SysTick Calibration Register

Cortex-M4 Code and Data SRAM
The unified internal SRAM space provides both code and data memory for the ARM Cortex-M4 processor core,
allowing a configurable partition between code and data space. In addition, the SRAM features a DMA access port
for read/write access by other master devices on the system fabric. The SRAM and all its interfaces operate in the
ARM Cortex-M4 core clock domain (CCLK). The SRAM supports exclusive accesses. The SRAM can be accessed
at the maximum CCLK speed in zero wait states. For access timing information, see the product data sheet.

SRAM Features

The SRAM has the following features:

• Up to 160K byte SRAM Capacity

• Zero wait-state performance at maximum CCLK speed

• Dynamically configurable between code space and data SRAM space partitions

• ECC protection (SEC-DED)

• Exclusive access support

• Two 32-bit buses for ARM Cortex-M4 core access to code space (MEM_ICODE, MEM_DCODE)

• One 32-bit bus for ARM Cortex-M4 core access to SRAM space (MEM_SYS)

• One 32-bit bus for system DMA access to code and SRAM spaces (SRAM_DMA)

• Defined maximum DMA response latency due to collisions with core activity. Programmable up to 16 cycles
(default =8 cycles)

Cortex-M4 Code and Data SRAM

3–4 ADSP-CM41x Mixed-Signal Control Processor

SRAM Bank Organization

The SRAM resources are divided into banks for efficiency (as shown in the SRAM Address Fields And Mapping
figure), reducing the conflicts between accesses from various sources. These sources include: core fetch versus core
load/store versus DMA. Usually, programs do not need to worry about the internal SRAM organization, other than
conflict management.

• MSB Striping (banking) divides memory by 32K byte regions into separate ConfigBanks. Accesses to different
ConfigBanks never cause conflict.

• LSB striping divides memory into four 32-bit lanes, so that accesses in different lanes do not conflict.

LSB striping efficiently spaces out consecutive address reads/writes across multiple banks. This reduces overall
stalls and reduces ECC penalty for byte/word write accesses.

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

CONFIG_BANK (2K x 128 BIT = 32K BYTES)

32 BITS 32 BITS 32 BITS 32 BITS

BANK 0

BANK 1

BANK 2

BANK 3

BANK 4

MAIN_SRAM

128 BITS (16 BYTES)

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

CONFIG_BANK (2K x 128 BIT = 32K BYTES)

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

CONFIG_BANK (2K x 128 BIT = 32K BYTES)

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

CONFIG_BANK (2K x 128 BIT = 32K BYTES)

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

ARRAY
2K WORD,
8K BYTE

CONFIG_BANK (2K x 128 BIT = 32K BYTES)

Figure 3-1: SRAM Address Fields And Mapping

Table 3-6: SRAM Address Fields And Mapping

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 MSB Array Address (11 bits, 2K) LSB (Array-
Bank)

Byte

0 0 (CFG Banks)

Cortex-M4 Code and Data SRAM

ADSP-CM41x Mixed-Signal Control Processor 3–5

SRAM Partitioning Using Config Banks

The address range of main SRAM depends on the configuration settings in the M4P_SRAM_CFG.CDBANKS regis-
ter field, as shown in the see Memory Map Configuration, Code and SRAM Regions figure. It shows an implementa-
tion using five config banks. Memory available is denoted by the shaded regions. It is an example of active blocks as
per the SRAM_CODE configuration.

Table 3-7: SRAM Bank Configuration Base Addresses

Config 31 30 29 28 27 26 25 24 23 22 21 20 Description

CODE 0 0 0 1 0 0 0 0 0 0 0 0 CODE at 0x1000_0000

DATA 0 0 1 0 0 0 0 0 0 0 0 0 DATA at 0x2000_0000

The memory resources in the ARM Cortex-M4 memory main SRAM are divided into two or more ConfigBanks.
Each ConfigBank may appear in either the code or the SRAM region, but may not appear in both. The settings in
the supervisor-only M4P_SRAM_CFG.CDBANKS register field specify how many contiguous ConfigBanks appear
in the CODE segment, starting at the lowest address (0x1000_0000) The remaining ConfigBanks appear in a con-
tinuous address range in the DATA segment, ending at the highest populated address (0x2000_0000 +
SRAM_SIZE 1 ((0x2000_0000 + SRAM_SIZE 1), or 0x2002_FFFF)).

When the value of the M4P_SRAM_CFG.CDBANKS register is changed, resulting in changes to the populated re-
gions in the memory map, the contents of newly-accessible memory ranges are UNSPECIFIED. The user should
not assume that the contents of any specific memory range are transferable between the CODE region to the SRAM
region when the M4P_SRAM_CFG.CDBANKS register is changed.

It is important to manage the M4P_SRAM_CFG.CDBANKS register when booting or initializing an application, so
that the intended memory map is configured before the application is copied from the boot source into the active
locations in the CODE or SRAM regions. For example, the program may choose a linker control file which specifies
96 KB of CODE (0x1000_0000 to 0x1001_7FFF) and 64 KB of DATA SRAM (0x2001_8000 to 0x2002_7FFF).
The linker may automatically support copying read-only sections of the application from nonvolatile (Flash) memo-
ry regions to the SRAM regions at start-up time in an init function. It is important that the
M4P_SRAM_CFG.CDBANKS register is initialized to the intended value (here, 3) before init is called. This task can
be performed in the reset handler.

Programs should not attempt an active access to a memory bank when changing the configuration for that bank,
including instruction fetches. A program that changes the M4P_SRAM_CFG.CDBANKS register must reside either
outside SRAM (for example, in Flash), or in an SRAM bank that is unaffected by that change. Programs should
implement the following items. The code that is used can vary depending on the assembler.

• Disable interrupts

• DMA inactive and the Cortex-M0 core avoiding the Cortex-M4 memory space

• Instruction-Sync-Boundary (ISB)

• cdbank change memory write

Cortex-M4 Code and Data SRAM

3–6 ADSP-CM41x Mixed-Signal Control Processor

• Enable interrupts

NOTE: The initial SP (Stack Pointer) recorded in the vector table should be set to point to the top of populated
data SRAM. This address is always populated as long as there is at least one ConfigBank allocated to DA-
TA. If an application allocates all confgBanks to CODE, then the initial SP must be set to point into
CODE space instead of DATA space.

CODE REGION

32 KB

32 KB

32 KB

32 KB

32 KB

0x1002_8000

DATA REGION

32 KB

32 KB

32 KB

32 KB

32 KB

0x2002_8000

Partition Configuration: SRAM_CODE=1

CODE REGION

32 KB

32 KB

32 KB

32 KB

32 KB

0x1002_8000

DATA REGION

32 KB

32 KB

32 KB

32 KB

32 KB

0x2002_8000

Partition Configuration: SRAM_CODE=3

0x1000_0000 0x2000_0000

0x1000_0000 0x2000_0000

Figure 3-2: Memory Map Configuration, Code and SRAM Regions

SRAM Posted System Writes (NormSysWrite versus PostSysWrite)

The M4P_SRAM_CFG.POSTWR bit controls the behavior of nonexclusive writes by the ARM Cortex-M4 core to
system space (outside the ARM Cortex-M4 memory). This allows control of the trade off between performance and
precise error detection.

In NORMSYSWRITE mode (M4P_SRAM_CFG.POSTWR =0), non-exclusive ARM Cortex-M4 core writes to sys-
tem space are performed with normal system fabric (bus interconnect) write transactions. The Cortex core must wait
several core clock cycles for the target peripheral or device to return a bus response (OKAY or ERROR) before pro-
ceeding with further instructions. If an ERROR response is returned, the Cortex core generates a precise HardFault
exception at the instruction that caused the error. Typically, an ERROR response results from an invalid address, an
invalid data size, or a protection violation such as writing to a read-only location or accessing a privileged resource in
non-privileged mode.

In POSTSYSWRITE mode (M4P_SRAM_CFG.POSTWR =1), non-exclusive ARM Cortex-M4 core writes to sys-
tem MMR space are posted, meaning that the Cortex memory interface accepts the write transaction from the Cor-
tex core and immediately returns an OKAY response. The Cortex core proceeds with subsequent instructions, while
independently, the Cortex memory interface forwards the posted write to the system fabric (bus interconnect).

Cortex-M4 Code and Data SRAM

ADSP-CM41x Mixed-Signal Control Processor 3–7

Several System MMR writes in a burst may be posted without stall up to the depth of an internal FIFO (4 deep). If
further accesses are posted faster than the system FIFO can complete the transactions, the core stalls.

If a system fabric (bus interconnect) ERROR response is returned from a posted write, the Cortex core cannot signal
an exact HardFault exception because it has already gone on to execute further instructions. In this case, the Cortex
memory captures the address of the erroneous transaction in the M4P_BUSFLT.ADDR field, sets the
M4P_BUSFLT.STAT bit to 1, and asserts the interrupt. The handler for this interrupt can determine the offend-
ing address using the M4P_BUSFLT register and take appropriate action. The interrupt is cleared by writing a 1 to
the M4P_BUSFLT.STAT bit.

In the ADSP-CM41x, only writes by the M4 core to system MMRs may be posted. Writes by the M4 Core to sys-
tem memories (for example, the M0 SRAM or the FFT buffers) do not post. While individual reads or writes are
sometimes useful, the most performance-efficient way to manage the bulk contents of these memories is by using
MDMA.

Memory Initialization

The main SRAM memory can be initialized in hardware. This is initiated by writing the M4P_SRAM_CFG.INIT
control bit to a 1. The progress of the initialization can be monitored using the M4P_SRAM_CFG.INITDONE
status bit. While initialization is in progress, all access attempts to the SRAM on the core or DMA buses are stalled
until initialization completes. After initialization, all memory locations contain zeroed data, without ECC error.

Memory initialization happens to all main banks in parallel. Memory initialization on the ADSP-CM41x takes ap-
proximately 33k core clock cycles. Memory initialization is typically performed automatically by the CM41x Boot
ROM program after each system reset, before the user's application is executed.

By default, the boot performs a memory initialization. If user memory initialization has to be performed, the pro-
gram must execute from flash as all SRAM memory locations do not contain any data.

1. All DMA operations to the M4P Main SRAM must be stopped, including both DMA controller streams and
any DMA-capable peripherals, accelerators, or other processors which may write to the M4P Main SRAM via
its DMA port.

2. Execute a memory barrier instruction (_DSB or ISB) between the final write to memory and the write to the
M4P_SRAM_CFG.INIT MMR bit.

It is permissible to synchronize the software to the end of the init operation by simply reading any memory location
in the array, as follows:

1. Write the M4P_SRAM_CFG.INIT MMR bit to 1.

2. Execute a system memory barrier instruction (_DSB or _ISB).

3. Read a memory location in the main M4P SRAM.

NOTE: Memory initialization is required before first accessing the memory after power-on, as uninitialized memo-
ry contains uninitialized ECC states and any read or partial-word write accesses to uninitialized memory
may cause ECC error detections. The boot code initializes the full Cortex-M4 SRAM region by default.

Cortex-M4 Code and Data SRAM

3–8 ADSP-CM41x Mixed-Signal Control Processor

NOTE: Memory initialization must not be executed from a routine inside SRAM, nor using a stack pointer inside
SRAM. It is recommended that memory initialization either take place from ROM (in the ADSP-CM41x
processor BOOT ROM performs the initialization) or Flash memory, followed immediately by a re-initial-
ization of the stack pointer. Alternatively, memory initialization may be performed from code and stack
resident in off-chip L3 space.

register uint32_t *cfgp = &(pADI_M4P->SRAM_CFG);
register int *memp = (any address in M4P SRAM);
register uint32_t cfgd, memd;
// set up to write MMR to cause memory init
cfgd = *cfgp | BITM_M4P_SRAM_CFG_INIT;
__dsb(); // barrier instruction
*cfgp = cfgd; // start memory init
__dsb(); // barrier instruction;
memd = *memp; // sync to end of memory init

Refresh Function, Background Memory Scrubber

Refresh is a background operation that performs an atomic read/write of memory locations to allow periodic ECC
correction to the physical memory arrays.

A basic refresh cycle requires three cycles of access to a memory sub-bank without any intervening processor or
DMA activity. In these cycles the following operations occur.

The refresh operation works in the background, waiting for a refresh opportunity of three consecutive foreground
idle cycles. If the refresh 3-cycle sequence is pre-empted by foreground activity, the sequence is retried the next time
that idle cycles present a refresh opportunity. (This ensures the refresh activity never corrupts or un-does a fore-
ground write.)

When a successful refresh operation completes, the refresh address increments and the refresh attempts to access the
next spot in the physical array.

The refresh operates on the physical array, it does not care about the bank data/instruction programming.

If an ECC error is encountered during the refresh sequence it is reported and the error is captured in the SRAM
Refresh Address register (M4P_SRAM_RFRADDR).

Because performing a refresh operation consumes power and the expected error rate of these SRAM is small, a
SRAM refresh period register is provided (M4P_SRAM_RFRPER). This register holds the number of cycles to wait
between a successful refresh operation and a refresh attempt to the next address. Due to the background operation of
refresh the exact time between two successful refresh operations is variable. The default refresh period is the mini-
mum.

ECC Error Signaling

The Cortx M4P provides error signaling to report uncorrectable ECC errors of two or more bits within an aligned
32-bit ECC unit. When the main SRAM detects an uncorrectable ECC error in an access on any interface, the de-
tails of the erroneous access are captured in one of the reporting registers (described below) as appropriate, and an
interrupt (if enabled) is signaled on the corresponding interrupt port.

Cortex-M4 Code and Data SRAM

ADSP-CM41x Mixed-Signal Control Processor 3–9

• The M4P_SRAM_EEADDR_CORE register reports on the M4’s ICODE, DCODE, SYS read ports, and the
Refresh port, in that priority order. This register reports individual errors using its
M4P_SRAM_EEADDR_CORE.EERR bit and multiple errors using its
M4P_SRAM_EEADDR_CORE.MEERR bit field.

• The M4P_SRAM_EEADDR_DMA register reports errors on the DMA read port. This register reports individu-
al errors using its M4P_SRAM_EEADDR_DMA.EERR bit and multiple errors using its
M4P_SRAM_EEADDR_DMA.MEERR bit field.

When an error is detected in the core, the register’s M4P_SRAM_EEADDR_CORE.EERR bit is set. The details are
captured in the read-only M4P_SRAM_EEADDR_CORE.ADDR and M4P_SRAM_EEADDR_CORE.BUS bit
fields.

When an error is detected in the DMA, the M4P_SRAM_EEADDR_DMA.EERR bit is set.

If multiple simultaneous ECC errors are detected on more than one of the interfaces, the
M4P_SRAM_EEADDR_CORE.MEERR (core), and M4P_SRAM_EEADDR_DMA.MEERR (DMA) bits are set. One
of the failing accesses is selected according to the above priority scheme. Only the details of the selected access are
captured in the register. In this instance, the multiple error bit behaves as a read-only attribute and is not cleared by
W1C.

Sequential MERRs (Overrun): If a reporting register’s M4P_SRAM_EEADDR_CORE.EERR bit is already set from
a previous event when a new ECC error is detected, then the registers’ M4P_SRAM_EEADDR_CORE.MEERR
(core), and M4P_SRAM_EEADDR_DMA.MEERR bit is asserted, and the details of the previous event (offset ad-
dress, bus interface ID) are overwritten. In this instance, the multiple error bit can and should be cleared by a W1C
in the handler.

The M4P_SRAM_EEADDR_CORE.EERR or M4P_SRAM_EEADDR_DMA.EERR bits have W1C semantics and
are cleared by the associated interrupt handler. It is recommended that the M4P_SRAM_EEADDR_DMA.MEERR
bit field also be cleared by W1C in the handler.

ECC Error Interrupt Handlers

The purpose of the ECC error interrupts (for CORE and DMA) is to notify the application that information in the
main SRAM has been lost, while presenting the full details of the loss, and to allow the application a means to pre-
vent further actions which might otherwise be corrupted by the memory error. Such actions might include shutting
down active processes, communicating details of the error to off-chip recipients, and/or logging the error details in
on-chip storage.

Note that the interrupts are not the same as exact exceptions: they occur a few cycles after the error detection, so the
handler does not return to the instruction which caused the error. The error handler cannot be used to attempt to
replace the erroneous data from some other source and to replay the failing instruction.

The M4P_SRAM_EEADDR_CORE.MEERR (core), and M4P_SRAM_EEADDR_DMA.MEERR (DMA) bits indi-
cate to the handler that information in the reporting registers is incomplete and that at least one other access has
caused an error which could not be represented in the reporting registers. This may be relevant to statistical or log-
ging purposes.

Cortex-M4 Code and Data SRAM

3–10 ADSP-CM41x Mixed-Signal Control Processor

Memory Built-In Self Test (MEMST)

The ADSP-CM41x provides a Memory Built-In Self Test (MEMST) engine, that validates the functionality of every
embedded SRAM array and provides a definite pass/fail indication to the application. MEMST is not a background
task, it is a process which requires exclusive access to all SRAM resources in the processor system (see Restrictions
below). The MEMST module is invoked from user application code and is not controlled or supported by the boot
ROM.

Features

The MEMST module has the following features:

• MEMST provides a fully automated SRAM test.

• All SRAMs are tested. The BOOT ROM and Logic ROM are NOT tested. Internal flash is not tested.

• The SYSBLK_MEMST_CTL register in the C1 block is used to control MEMST.

• The SYSBLK_MEMST_CTL.EN control bit enables User mode. It must be cleared between test runs to
reset the test logic.

• The SYSBLK_MEMST_CTL.RUN control bit starts the MEMST test sequence.

• The SYSBLK_MEMST_CTL.BUSY status bit indicates when the test sequence has finished.

• The SYSBLK_MEMST_CTL.FAIL status bit indicates the success of the test. It is not valid until
SYSBLK_MEMST_CTL.BUSY is LOW.

MEMST Handler Operation

An MEMST handler operates generally as follows.

• The MEMST handler must follow the restrictions noted above: it must be located in Flash memory, and once
MEMST starts, it must avoid using any SRAM resources, and must use ARM core registers only.

• Stop all DMA operation of peripherals in both the ARM Cortex-M4 and ARM Cortex-M0 subsystems: SPIs,
SPORTs, UARTs, SINC, ADCCs, DACCs, and MDMA.

• Stop the FFTB and HAE accelerators.

• Disable all interrupts. Take care to ensure ARM exceptions do not occur.

• Other system configuration which does not employ SRAM or interrupts may remain operational. These in-
clude:

• GPIO states and the Logic Block Array (LBA),

• Timers

• TRU triggers

Cortex-M4 Code and Data SRAM

ADSP-CM41x Mixed-Signal Control Processor 3–11

• peripherals which do not use or are not configured to use DMA or SRAM, for example the UART, SPI,
SPORT, and/or CAN (if programmed entirely using ARM Cortex processor registers and peripheral
MMRs)

• watchdog monitors such as SEC, WDT, VMU, OCU and OSCWDOG (using hardware signaling only
via TRU and/or PinSafeState)

• Emulator/debug access (provided access to SRAMs is avoided, for example through memory display win-
dows in the debugger GUI).

• Handlers must obey the restriction to not employ any SRAM or stack. Options include

• asserting the SYS_FAULT pin using the SEC

• communicating with an external device using peripherals such as UART, CAN or SPI in MMR-based
modes

• If the MEMST operation was successful (SYSBLK_MEMST_CTL.FAIL =0), the stack and C runtime envi-
ronment must be reinitialized; a system reset is recommended but not required.

MEMST Programming Model

The following restrictions and recommendations should be followed to ensure proper operation of the MEMST
module.

• Before running MEMST, all DMA operation by peripherals must be stopped.

• The MEMST monitor code must be run from Flash, as SRAM contents are destroyed during test.

• Code must run without stack (using core registers only) as SRAM is unavailable during test.

• Embedded memories within peripherals must not be used during test, including the MBOX memory, the ETF
Debug/Trace memory, and the FFTB and HAE accelerators.

• All interrupts must be disabled, and care must be taken not to incur any ARM processor exceptions, as the
interrupt/exception entry sequence attempts to push processor state to the stack in SRAM, which is not al-
lowed during MEMST.

• It is recommended to run MEMST from the ARM Cortex-M4. In this case, the ARM Cortex-M0 should be
stopped (or reset) to prevent it accessing its SRAM during MEMST.

• If MEMST is run from the ARM Cortex-M0, the ARM Cortex-M4 must first be placed in a state (or routine)
in which it no longer accesses SRAM until after the test is complete.

Memory and MMR Access Latencies
This section provides information on the ARM Cortex-M4 core read and write memory-mapped register access la-
tencies.

Memory and MMR Access Latencies

3–12 ADSP-CM41x Mixed-Signal Control Processor

The time required to perform a read or write access by the ARM Cortex-M4 Core is specified in this section. This is
the time required for the processor load or store instruction to execute, described in units of the local core clock
(CCLK0 for the ARM Cortex-M4), as measured by the cores SysTick unit.

The time required to perform the load/store, in local core clocks, is:

TLDST = 1 + coreWaitStates + (Ratio_CtoS × sysWaitStates)

where:

coreWaitStates = CoreWS from the ARM Cortex-M4 Wait State Formulas by Target Space table, for a given master
(ARM Cortex-M4) and target space.

syseWaitStates = SysWS from the ARM Cortex-M4 Wait State Formulas by Target Space table, for a given master
(ARM Cortex-M4) and target space.

Ratio_CtoS = (CCLK0 frequency ÷ SYSCLK frequency).

In the ARM Cortex-M4 Wait State Formulas by Target Space table:

• POSTWR. Wait States for Writes may depend on the Posted Write mode set by the
M4P_SRAM_CFG.POSTWR bit. Use the appropriate column in the ARM Cortex-M4 Wait State Formulas by
Target Space tavle for the posted write mode. If M4P_SRAM_CFG.POSTWR =0, all system writes are direct
(non-posted). If M4P_SRAM_CFG.POSTWR =1, all system writes are posted, up to the depth of the ABB-to-
APB FIFO.

• ASYNC A. The variable A is either 0 or 1, and denotes the ARM Cortex-M4 System Bus Synchronization
mode set by the M4P_SRAM_CFG.SYNCCLK bit, as given by the ARM Cortex-M4-System Bus Synchroniza-
tion Mode table.

• PHASE Φ. Some accesses may cross the core to system clock boundary, and if so, a clock phase alignment delay
Φ is added. This delay is from 0 to (Ratio_CtoS − 1) core clocks, and is dependent on the instantaneous align-
ment of the two clocks at the time of the access.

Table 3-8: ARM Cortex-M4 Wait State Formulas by Target Space

Target Space Read Write (Non-Posted) Write (Posted)

CoreWS SysWS CoreWS SysWS CoreWS SysWS

M4 Boot ROM + Logic ROM 1 0 N/A N/A N/A N/A

ARM Cortex-M4 Main SRAM 0 0 0 0 0 0

ARM Cortex-M4P Core periph-
erals (MATH, Flash, Cortex Pri-
vate Peripheral Bus (PPB))

0 0 WWS 0 same same

Mailbox Port P0

Mailbox Port P1 1 + 2A + φ 3+A 0 + 2A + φ 1 + A 0 0

Memory and MMR Access Latencies

ADSP-CM41x Mixed-Signal Control Processor 3–13

Table 3-8: ARM Cortex-M4 Wait State Formulas by Target Space (Continued)

Target Space Read Write (Non-Posted) Write (Posted)

CoreWS SysWS CoreWS SysWS CoreWS SysWS

ARM Cortex-M4 System Periph-
eral MMRs

1 + 2A + φ 2+A+RWS 0 + 2A + φ 2 + A + WWS 0 0

ARM Cortex-M0 System Periph-
eral MMRs

1 + 2A + φ 8 + A + RWS 0 + 2A + φ 8 + A + WWS 0 0

ARM Cortex-M0 SRAM 3 +A + φ 10 + A 0 + A + φ 4 + A same*1 same*1

FFT 3+A+ φ 6+A 0+A+ φ 4+A same*1 same*1

HAE

SMC

*1 Posted Write mode only affects accesses to peripheral MMRs. It does not affect accesses to system memory spaces such as the SMC,
M0 SRAM, or the FFT or HAE accelerator memory buffers

Table 3-9: ARM Cortex-M4-System Bus Synchronization Mode

SRAM_CFG.SYNCCLK Mode Async delay factor A Notes

0 = Asynchronous Mode A=1 Bus Synchronizers Active

1 = Synchronous Mode A=0 Bus Synchronizers Bypassed

NOTE: If the clock ratio Ratio_CtoS is not an integer (for example 240:96 MHz where MHz operation is a 5:2
ratio), then the bus synchronization mode must be Asynchronous. The expressions in the M4 Wait State
Formulas by Target Space table describe the additional delays (A, 2A, etcetera) required for the system-to-
core bus synchronizers.

If the clock ratio Ratio_CtoS is an integer (for example 240:80 MHz, where MHz operation is a 3:1 ra-
tio), then the bus synchronization mode may be either synchronous or asynchronous. If the mode is syn-
chronous, then no additional synchronizer delay is imposed.

Posted ARM Cortex-M4 Writes FIFO Delay

In PostWR mode, any single write or burst of writes by the ARM Cortex-M4 up to the depth of the AHB-APB
FIFO is executed with no wait states. This FIFO has a depth of four. Additional writes after the FIFO fills may
incur a wait state delay up to the delay of a non-posted write. The FIFO drains at a rate related to the number of
system wait states for the given peripheral, as specified in the MMR Wait States by Peripheral table.

TWDRAIN = ((WWS + 1) × Ratio_CS) × Nwrites

Once the FIFO has drained to the extent that it is no longer full, additional posted writes execute with no wait
states.

Memory and MMR Access Latencies

3–14 ADSP-CM41x Mixed-Signal Control Processor

Table 3-10: MMR Wait States by Peripheral

Peripheral Space Wait States Units

Read (RWS) Write (WWS)

ADCC0 Cortex-M0 1 0 SYSCLK

CAN0 1, 2 Cortex-M0 1 0 SYSCLK

DMA0−3 Cortex-M0 0 0 SYSCLK

PINT0 Cortex-M0 0 0 SYSCLK

PORTA Cortex-M0 0 0 SYSCLK

SEC0 Cortex-M0 2 1 SYSCLK

SMPU0 Cortex-M0 1 1 SYSCLK

SPI0 Cortex-M0 1 0 SYSCLK

SPU0 Cortex-M0 2 1 SYSCLK

SWU0−1 Cortex-M0 1 1 SYSCLK

TEPADS0 Cortex-M0 2 2 SYSCLK

TESYS0 Cortex-M0 0 0 SYSCLK

TIMER0 Cortex-M0 1 0 SYSCLK

TRU0 Cortex-M0 2 1 SYSCLK

UART0 Cortex-M0 0 0 SYSCLK

WDOG0 Cortex-M0 0 0 SYSCLK

ADCC1 Cortex-M4 1 0 SYSCLK

CAN1 1, 2 Cortex-M4 1 0 SYSCLK

CGU0 Cortex-M4 1 1 SYSCLK

CNT0 Cortex-M4 0 0 SYSCLK

CPTMR0 Cortex-M4 1 0 SYSCLK

CRC0 Cortex-M4 1 0 SYSCLK

DACC0 Cortex-M4 1 0 SYSCLK

DMA4−13 Cortex-M4 0 0 SYSCLK

EFS0 Cortex-M4 1 1 SYSCLK

FFTB0 Cortex-M4 1 0 SYSCLK

HAE0 Cortex-M4 0 0 SYSCLK

HPPWMBST Cortex-M4 0 0 SYSCLK

LBA Cortex-M4 0 0 SYSCLK

MBOX0 Cortex-M4 1 0 SYSCLK

Memory and MMR Access Latencies

ADSP-CM41x Mixed-Signal Control Processor 3–15

Table 3-10: MMR Wait States by Peripheral (Continued)

Peripheral Space Wait States Units

Read (RWS) Write (WWS)

OCU0 Cortex-M4 0 0 SYSCLK

PINT1−5 Cortex-M4 0 0 SYSCLK

PORTB−F Cortex-M4 0 0 SYSCLK

PWM0−2 Cortex-M4 0 0 SYSCLK

RCU0 Cortex-M4 1 1 SYSCLK

SEC1 Cortex-M4 2 1 SYSCLK

SINC0 Cortex-M4 0 0 SYSCLK

SMC0 Cortex-M4 0 0 SYSCLK

SMPU1−2 Cortex-M4 1 1 SYSCLK

SPI1 Cortex-M4 1 0 SYSCLK

SPORT0 Cortex-M4 1 0 SYSCLK

SPU1 Cortex-M4 2 1 SYSCLK

SWU2−6 Cortex-M4 1 1 SYSCLK

TAPC Cortex-M4 1 1 SYSCLK

TEPADS1 Cortex-M4 2 2 SYSCLK

TESYS1 Cortex-M4 1 1 SYSCLK

TIMER1 Cortex-M4 1 0 SYSCLK

TRU1 Cortex-M4 2 1 SYSCLK

TTU0 Cortex-M4 0 0 SYSCLK

TWI0 Cortex-M4 1 0 SYSCLK

UART1 Cortex-M4 0 0 SYSCLK

WDOG1 Cortex-M4 0 0 SYSCLK

CSTF0 Private Peripheral Bus 2 2 CCLK

CTI03 Private Peripheral Bus 4 4 CCLK

CXTMC0 Private Peripheral Bus 2 1 CCLK

DWT0 Private Peripheral Bus 0 0 CCLK

ETM0 Private Peripheral Bus 1 1 CCLK

FPB0 Private Peripheral Bus 0 0 CCLK

ITM0 Private Peripheral Bus 0 0 CCLK

M4P Private Peripheral Bus 0 0 CCLK

Memory and MMR Access Latencies

3–16 ADSP-CM41x Mixed-Signal Control Processor

Table 3-10: MMR Wait States by Peripheral (Continued)

Peripheral Space Wait States Units

Read (RWS) Write (WWS)

M4PFLASH0 Private Peripheral Bus 0 0 CCLK

MATH0 Private Peripheral Bus 0 0 CCLK

SCS0_DFR0 Private Peripheral Bus 0 0 CCLK

SCS0_NVIC Private Peripheral Bus 0 0 CCLK

TRACE0 Private Peripheral Bus 1 1 CCLK

CM41X_M4 M4P Register Descriptions
ARM Cortex-M4 Platform (M4P) contains the following registers.

Table 3-11: CM41X_M4 M4P Register List

Name Description

M4P_BROMERR Boot ROM Error Register

M4P_BUSFLT Bus Fault Error Information Register

M4P_SRAM_CFG SRAM Configuration Register

M4P_SRAM_EEADDR_CORE SRAM ECC Error Address (Core) Register

M4P_SRAM_EEADDR_DMA SRAM ECC Error Address (DMA) Register

M4P_SRAM_INITDONE SRAM Initialization Done Status Register

M4P_SRAM_RFRADDR SRAM Refresh Address

M4P_SRAM_RFRPER SRAM Refresh Period Register

M4P_STCALIB SysTick Calibration Register

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–17

Boot ROM Error Register

The M4P_BROMERR register is not typically used for user applications. It sets or clears the BCODE_ERR interrupt
source and may raise the corresponding fault in SEC1. This fault (and its associated interrupt number) are reserved
for the use of the boot ROM.

BROM CRC Error
CRCERR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-3: M4P_BROMERR Register Diagram

Table 3-12: M4P_BROMERR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

CRCERR BROM CRC Error.

The M4P_BROMERR.CRCERR bit sets or clears the BCODE_ERR interrupt. The
SEC fault which corresponds to this interrupt code should be used only by the logic
boot ROM program. This fault indicates the program has detected a CRC error with
the Boot ROM array, or other fault in the initial boot process.

The logic Boot ROM asserts one or more diagnostic codes for the fault reason(s) in the
SYSBLK_LROM_STAT register.

Note that because SRAM and the processor stack are not initialized at the time these
faults are detected, interrupts are not safe to assert. Accordingly, the logic boot ROM
does not assert the BCODE_ERR interrupt line; instead it asserts the corresponding
fault in the SEC1 unit directly using SEC1 registers.

CM41X_M4 M4P Register Descriptions

3–18 ADSP-CM41x Mixed-Signal Control Processor

Bus Fault Error Information Register

The M4P_BUSFLT register captures the status and address of bus fault errors resulting from inexact posted writes
by the Cortex to system space. Posted writes are enabled by the M4P_SRAM_CFG.POSTWR bit. The
M4P_BUSFLT.STAT bit drives the M4P_BUS_FAULT interrupt, and is set on the detection of a posted write bus
fault, and is cleared if written with a 1.

Bus Fault StatusBus Fault Address

Bus Fault Address

STAT (R/W1C)ADDR[13:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[29:14] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-4: M4P_BUSFLT Register Diagram

Table 3-13: M4P_BUSFLT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:2

(R/NW)

ADDR Bus Fault Address.

The M4P_BUSFLT.ADDR bit field provides the address of bus fault errors resulting
from inexact posted writes by the Cortex to system space.

0

(R/W1C)

STAT Bus Fault Status.

The M4P_BUSFLT.STAT bit provides the status of bus fault errors resulting from
inexact posted writes by the Cortex to system space.

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–19

SRAM Configuration Register

The M4P_SRAM_CFG register selects the SRAM configuration.

Enable Posted System Writes

Enable Sync BypassEnable ECC interrupt, Core

Code/Data Banks PartitionEnable ECC interrupt, DMA

Enable SRAM Initialization
Enable initialization Done Interrupt

Enable SRAM Auto-refresh ECC State
DMA Maximum Latency

ECC Bit in Memory
Enable Accessing the Raw data andEnable Saturation Co-processor

POSTWR (R/W)

SYNCCLK (R/W)EERRCORE (R/W)

CDBANKS (R/W)EERRDMA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

0
0

INIT (R/W)
INITDONE (R/W)

RFR (R/W)
DMAMAXLAT (R/W)

MAP (R/W)SAT_COPROC (R/W)

0
31

0
30

0
29

0
28

1
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-5: M4P_SRAM_CFG Register Diagram

Table 3-14: M4P_SRAM_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

28

(R/W)

SAT_COPROC Enable Saturation Co-processor.

The M4P_SRAM_CFG.SAT_COPROC bit enables saturation as described in the
Floating-Point Saturation Unit (FSAT) chapter.

27:24

(R/W)

DMAMAXLAT DMA Maximum Latency.

The M4P_SRAM_CFG.DMAMAXLAT field controls the DMA maximum latency.
When the DMA stalls for this number of cycles, the DMA access is moved to the high-
est priority.

If DMA access is performed on mem blocks actively used for code/data, this guaran-
tees the DMA is not locked-out of the memory block.

20

(R/W)

INITDONE Enable initialization Done Interrupt.

The M4P_SRAM_CFG.INITDONE bit enables an interrupt on an initialization-com-
plete event.

CM41X_M4 M4P Register Descriptions

3–20 ADSP-CM41x Mixed-Signal Control Processor

Table 3-14: M4P_SRAM_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R/W)

INIT Enable SRAM Initialization.

When the M4P_SRAM_CFG.INIT bit is set to 0x1 the SRAM memory initialization
to all zeros data will start; initializes ECC states. Reads 1 while initialization is pend-
ing. Accesses occur at highest priority, blocking any core or DMA accesses (causing ac-
cess stalls).

18

(R/W)

RFR Enable SRAM Auto-refresh ECC State.

The M4P_SRAM_CFG.RFR bit enables the M4 SRAM background ECC scrubber.

17:16

(R/W)

MAP Enable Accessing the Raw data and ECC Bit in Memory.

The M4P_SRAM_CFG.MAP bit field exercises the SRAM's ECC error detection
mechanisms. Note that when MAP is activated, all SRAM accesses (including instruc-
tion fetches and stack operations) are affected, so it is advised to operate this feature
from code resident outside SRAM, for example in Flash.

0 Normal Operation ECC parity generated on writes and
deposited in array with data; corrected data returned on
reads.

2 Map Data ECC generation is bypassed; writes are stored
to the 32-bit data only, prior stored ECC is not updat-
ed. Can be used to deposit data indicating single- or
multiple-bit errors. On reads, ECC checking is disabled,
and the raw 32-bit array data is returned without correc-
tion; no errors or warnings are generated. (Note: access
sizes 8, 16, and 32 bits are supported.)

3 Map ECC ECC generation is bypassed; bits [6:0] of
writes are stored to the ECC array; data array is not up-
dated. Can be used to deposit ECC states indicating sin-
gle- or multiple-bit errors. On reads, the ECC bits are
returned on data bits [6:0] of the read data value. (Note:
access sizes 8, 16, 32 are supported.)

14

(R/W)

EERRDMA Enable ECC interrupt, DMA.

The M4P_SRAM_CFG.EERRDMA bit enables the DMA ECC interrupt when set to
1.

13

(R/W)

EERRCORE Enable ECC interrupt, Core.

The M4P_SRAM_CFG.EERRCORE bit enables the Core ECC interrupt when set to
1.

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–21

Table 3-14: M4P_SRAM_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

POSTWR Enable Posted System Writes.

The M4P_SRAM_CFG.POSTWR bit controls the behavior of non-exclusive writes by
the Cortex to system space (outside the M4P platform). This allows control of the
trade-off between performance and precise error detection. For more information, see
the "SRAM Posted System Writes (NormSysWrite versus PostSysWrite)" section.

0 Normal System Writes Non-exclusive Cortex writes to
system space are performed with normal system fabric
(bus interconnect) write transactions.

1 Posted System Writes Non-exclusive Cortex writes to
system space are posted.

11

(R/W)

SYNCCLK Enable Sync Bypass.

The M4P_SRAM_CFG.SYNCCLK bit configures the M4P block to treat the core
clock and system clock as a synchronous clock, and bypass the clock synchronization,
decreasing MMR access latency.

3:0

(R/W)

CDBANKS Code/Data Banks Partition.

The M4P_SRAM_CFG.CDBANKS field controls the partitioning of the main SRAM
resources between the CODE address range and the SRAM (DATA) address range.
The M4P_SRAM_CFG.CDBANKS field indicates how many of the 32KByte Config
Banks of SRAM are allocated to the CODE region; the remaining available banks are
allocated to the SRAM (DATA) region.

When the M4P_SRAM_CFG.CDBANKS field is changed, the contents of any banks
which are deducted from a given region are lost. The contents of any banks which are
added to a given region are undefined, but should be zeroed immediately for security
purposes.

0 No CODE Config Banks: all assigned to Data

1 1 CODE config Bank, 4 DATA config banks

2 2 CODE Config Banks, 3 DATA config banks

3 3 CODE config Banks, 2 DATA config banks

4 4 CODE Config Banks, 1 DATA config bank

5 5 CODE Config Banks, 0 DATA config banks

CM41X_M4 M4P Register Descriptions

3–22 ADSP-CM41x Mixed-Signal Control Processor

SRAM ECC Error Address (Core) Register

The M4P_SRAM_EEADDR_CORE register displays the status of ECC errors detected in the main SRAM resulting
from transactions initiated by the Cortex M4 Core or auto-refresh logic. The register captures the address of the first
ECC error(s) detected in any aligned 32-bit word since the last time the corresponding ECC error status was cleared
(by writing a 1 to M4P_SRAM_EEADDR_CORE.EERR). If the core ECC error interrupts are enabled by
M4P_SRAM_CFG.EERRCORE, and an ECC error is detected on a core interface or refresh access, then an
SRAM_EEIRQ_CODE interrupt will be asserted.

ECC Error Address

ECC Bus InterfaceMultiple ECC Error Detected

ECC Error AddressECC Error Detected

ADDR[13:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BUS (R)MEERR (R/W1C)

ADDR[17:14] (R)EERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-6: M4P_SRAM_EEADDR_CORE Register Diagram

Table 3-15: M4P_SRAM_EEADDR_CORE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

EERR ECC Error Detected.

The M4P_SRAM_EEADDR_CORE.EERR bit indicates one or more uncorrectable
ECC errors has been detected.

30

(R/W1C)

MEERR Multiple ECC Error Detected.

The M4P_SRAM_EEADDR_CORE.MEERR bit indicates more than one uncorrecta-
ble ECC error has been detected.

21:20

(R/NW)

BUS ECC Bus Interface.

The M4P_SRAM_EEADDR_CORE.BUS bits indicate which Cortex bus initiated the
access which caused detection of an ECC error.

0 ECC Error from I-CODE Interface

1 ECC Error from D-Code Interface

2 ECC Error from SYS Interface

19:2

(R/NW)

ADDR ECC Error Address.

The ADDR bit field holds the address offset of the most recently detected ECC error,
relative to the base of the associated address space (CODE or DATA).

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–23

SRAM ECC Error Address (DMA) Register

The M4P_SRAM_EEADDR_DMA register displays the status of EEC errors detected in the main SRAM resulting
from transactions initiated by the DMA. The register captures the address of the first ECC error(s) detected in any
aligned 32-bit word since the last time the corresponding ECC error status was cleared (by writing a 1 to
M4P_SRAM_EEADDR_DMA.EERR). If DMA ECC error interrupts are enabled by
M4P_SRAM_CFG.EERRDMA, and an ECC error is detected on the DMA interface, then an
SRAM_EEIRQ_DMA interrupt will be asserted.

ECC Error Address

Multiple ECC Errors Detected

ECC Error AddressECC Error Detected

ADDR[13:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MEERR (R/W1C)

ADDR[17:14] (R)EERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-7: M4P_SRAM_EEADDR_DMA Register Diagram

Table 3-16: M4P_SRAM_EEADDR_DMA Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

EERR ECC Error Detected.

The M4P_SRAM_EEADDR_DMA.EERR bit indicates that one or more uncorrectable
ECC errors has been detected on accesses initiated by DMA.

30

(R/W1C)

MEERR Multiple ECC Errors Detected.

The M4P_SRAM_EEADDR_DMA.MEERR bit indicates that more than one uncor-
rectable ECC error has been detected on accesses initiated by DMA.

19:2

(R/NW)

ADDR ECC Error Address.

The ADDR bit field holds the address offset of the most recently detected ECC error,
relative to the base of the associated address space (CODE or DATA).

CM41X_M4 M4P Register Descriptions

3–24 ADSP-CM41x Mixed-Signal Control Processor

SRAM Initialization Done Status Register

The M4P_SRAM_INITDONE register indicates the status of pending SRAM initialization.

SRAM Initialization Done Status
STAT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-8: M4P_SRAM_INITDONE Register Diagram

Table 3-17: M4P_SRAM_INITDONE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

STAT SRAM Initialization Done Status.

The M4P_SRAM_INITDONE.STAT bit indicates that the SRAM initialization is
complete. Writing 0x1 to this register bit clears the status field to 0x0.

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–25

SRAM Refresh Address

The M4P_SRAM_RFRADDR register indicates the offset of the next memory address which will be accessed by the
background memory refresh hardware. This is an offset relative to the base of Main SRAM's address space, without
regard to the CODE/DATA partition.

Do not assign the refresh address outside the range of populated memory.

SRAM Auto-refresh Address

SRAM Auto-refresh Address

VALUE[13:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[17:14] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-9: M4P_SRAM_RFRADDR Register Diagram

Table 3-18: M4P_SRAM_RFRADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:2

(R/NW)

VALUE SRAM Auto-refresh Address.

The M4P_SRAM_RFRADDR.VALUE bits indicate the next address in main SRAM to
be refreshed.

CM41X_M4 M4P Register Descriptions

3–26 ADSP-CM41x Mixed-Signal Control Processor

SRAM Refresh Period Register

The M4P_SRAM_RFRPER register controls the time period between ECC refresh access attempts.

ECC Memory Auto-refresh Period

ECC Memory Auto-refresh Period

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 3-10: M4P_SRAM_RFRPER Register Diagram

Table 3-19: M4P_SRAM_RFRPER Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE ECC Memory Auto-refresh Period.

The M4P_SRAM_RFRPER.VALUE bits hold the 32-bit ECC refresh counter period.
This is the number of SYSCLKs between successive requests for refresh, when refresh
enable M4P_SRAM_CFG.RFR is set to 1. Minimum value is 64 (0x40); values less
than 0x40 will be treated as 0x40. Maximum value is 0xFFFF_FFFF.

CM41X_M4 M4P Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 3–27

SysTick Calibration Register

The M4P_STCALIB register allows the programmer to define the calibration value for the ARM Cortex-M4 pro-
cessor's SysTick timer, according to the frequency of the installed crystal and the divisor settings of the CGU and
PLL. This allows the M4 to derive "real-time" from the system oscillator and pll values.

The value programmed into this register appears in the ARM SYST_CALIB read-only register. See the ARM Cor-
tex-M4 manual for more information.

SysTick 10ms Calibration

SysTick Inexact

SysTick 10ms CalibrationSysTick Ref Clock Implementation

TENMS[15:0] (R/W)

1
15

0
14

0
13

0
12

0
11

1
10

0
9

0
8

1
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SKEW (R/W)

TENMS[23:16] (R/W)NOREF (R)

1
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

1
20

1
19

1
18

1
17

0
16

Figure 3-11: M4P_STCALIB Register Diagram

Table 3-20: M4P_STCALIB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/NW)

NOREF SysTick Ref Clock Implementation.

The M4P_STCALIB.NOREF indicates whether an external SysTick reference clock is
implemented. In the ADI M4 Platform, no SysTick external reference clock is imple-
mented. The processor internal reference clock is used for SYSTICK.

0 SYSTICK External Reference Clock is Implemented

1 SYSTICK External Reference Clock is Not Implement-
ed

30

(R/W)

SKEW SysTick Inexact.

The M4P_STCALIB.SKEW bit is set to 1 if the calibration value specified by
M4P_STCALIB.TENMS does not provide an exact multiple of 10ms. Otherwise, set
this bit to 0. For example, the frequency of a 166.66 (6 repeating) MHz core clock
corresponds to a TENMS value of 1,666,666.66, which is not an exact integer. So, in
that case, the M4P_STCALIB.SKEW bit would be set to 1.

23:0

(R/W)

TENMS SysTick 10ms Calibration.

The M4P_STCALIB.TENMS bit is set to an integer 24-bit value usable to compute a
10ms delay from the user-programmed frequency of the M4P core clock. For example,
for a 200MHz core clock, set this value to (200MHz * 10ms) = 24'd2_000_000 =
24'h1e_8480.

CM41X_M4 M4P Register Descriptions

3–28 ADSP-CM41x Mixed-Signal Control Processor

4 Security

The ADSP-CM41x implements various user-controlled security features to protect the contents of the chip memory
from unauthorized access.

Security Features
The security infrastructure provides the following features.

• Built-in support to protect processor memory content via Flash based passwords (Key).

• Protection from Flash reads and writes.

• The password (Key) can be updated via UART BOOT mode without using the debugger. This allows field
upgrades of the Key as well as the application.

• The flash allows for physical separation of the user code area and the security areas of the flash memories.

• Programmable 128-bit bit lock on backdoor debug access.

Security Functional Description
The following sections provide information on the elements required to provide a secure operating environment.

Security States

The security states of the ADSP-CM41x are explained in this section. Below are the truth tables for access protec-
tion via a debugger and the UART. Before using the security features these states must be understood.

The features allow protection the part from un-authorized accesses from the debugger and UART boot connectivity
paths. This is achieved via a 128-bit Secret User Key that is programmed in the Flash Info Blocks. The program
needs to provide the correct/known key in order to access the chip memory via the debugger OR via UART boot. A
Contrast Key of exact value (refer to Information Memory) must be in place to Lock the part correctly, along with
the User Key.

NOTE: Refer to the Boot Chapter for information on how use the UART boot.

Security

ADSP-CM41x Mixed-Signal Control Processor 4–1

There are ID fields required for debuggers to identify the part and the debugger needs to be able to clear the flash.
The following registers available to the debugger even when security is locked down are described in Debugger
Access to a Locked Part.

Table 4-1: Truth Table for Security State for Access via Debugger

Security State Flash Password (User Key) User Key match
via JTAG and
SW Debug

Access via DEBUGGER

Unlocked_UNINIT_KEY Uninitialized Key

(Contrast is not programmed).

Default State from factory

X Yes

• Debugger Connects

• Debugger can access entire
memory, with restrictions on
Flash.

• Flash firewalled: Only Contrast
Key can be programmed

Unlocked_

BLANK_KEY

Blank Key

(Contrast Key is programmed)

X Yes

• Debugger can access entire
memory

• No restrictions on Flash.

Unlocked_

ECC_FAIL_KEY

Invalid Key

(ECC fail on User / Contrast)

X Yes

• Debugger Connects

• Debugger can access entire
memory, restrictions on Flash.

• Flash firewalled.

• Mass Erase

Locked Programmed Key 1 Yes

• Debugger can access entire
memory

• No restrictions on Flash.

Locked Programmed Key 0 No

• Debugger completely restric-
ted.

Table 4-2: Truth table for Security State for access via UART BOOT

Security State Flash Password (User Key) User Key match
via UART

Commands via UART

Unlocked_UNINIT_KEY Uninitialized Key

(Contrast is not programmed).

Default State from factory

X • Mass Erase

• Reset

• Write Contrast Key

Security Functional Description

4–2 ADSP-CM41x Mixed-Signal Control Processor

Table 4-2: Truth table for Security State for access via UART BOOT (Continued)

Security State Flash Password (User Key) User Key match
via UART

Commands via UART

Unlocked_

BLANK_KEY

Blank Key

(Contrast Key is programmed)

X • All Commands

Unlocked_

ECC_FAIL_KEY

Invalid Key

(ECC fail)

X • Mass Erase

• Reset

Locked Programmed Key 1 • All Commands

Locked Programmed Key 0 • Mass Erase

• Reset

Unlocked_UNINIT_KEY

This is default status of the processor where the Flash memory is in an all erased state which includes the User code
locations and the Info Blocks. In this state, both the Contrast Key and the User Key are not programmed.

The programmer needs to program the Contrast Key in this state so that the User Key can be programmed next.
Flash is said to be in a state of Fire-wall and only the Contrast Key can be programmed.

Unlocked_BLANK_KEY

In this state, program the User Key so that the part can be locked. If the system requires full access via a debugger as
well as the UART boot, this key should not be programmed and the state should be left open.

Unlocked_ECC_FAIL_KEY

In this state, an ECC error is detected and the program needs to Mass Erase the Flash including its Info Blocks
locations. Once they are erased, the state reverts back to the Unlocked_UNINIT_KEY state.

Locked

In this state, the processor security state is said to be Locked, and neither a debugger nor a UART boot can access
the chip memory without knowing the correct User key. For the processor to be in the Lock state, the program must
perform a Reset operation (a System reset or a Hard reset) after programming the keys.

Security Functional Description

ADSP-CM41x Mixed-Signal Control Processor 4–3

FLASH STATE: UNLOCKED_UNINIT_KEY
FLASH IS MASS ERASED

NO CONTRAST KEY OR USER KEY

PROGRAM CONTRAST KEY

RESET THE PROCESSOR (SYSTEM/HARD RESET)

FLASH STATE: UNLOCKED_BLANK_KEY
CONTRAST KEY IN PLACE

USER KEY IS BLANK

PROGRAM USER KEY

RESET THE PROCESSOR (SYSTEM/HARD RESET)

FLASH STATE: LOCKED
VALID KEY IN PLACE

VALID CONTRAST KEY IN PLACE

Figure 4-1: Security Enable Steps

FLASH STATE: UNLOCKED_UNINIT_KEY
FLASH IS MASS ERASED

NO CONTRAST KEY OR USER KEY

DEBUGGER ACCESS
NOT ALLOWED

CORRECT USER
KEY PROVIDED

THROUGH JTAG?

CORRECT USER
KEY PROVIDED
THROUGH UART

(BMODE=1)

ONLY MASS ERASE AND
RESET COMMAND ALLOWED

ALL COMMANDS SUPPORTED
FIRMWARE UPGRADE ALLOWED

NO

DEBUGGER ACCESS
ALLOWED

YES

NO

YES

Figure 4-2: Security State Machine for Security Check

Security Functional Description

4–4 ADSP-CM41x Mixed-Signal Control Processor

Architectural Concepts

Flash Info Block Structure

The following locations in the Flash Info Block store information required for security.

Table 4-3: Flash Info Block 0 Security Fields

Flash Block 0 Address Offset

Address Base 0xC 0x8 0x4 0x0

0x1180_0FF0 SDBGKEY3 SDBGKEY2 SDBGKEY_CON_3 SDBGKEY_CON_2

0x1180_0FE0 SDBGKEY1 SDBGKEY0 SDBGKEY_CON_1 SDBGKEY_CON_0

0x1180_0FA0 SDBGKEYID3 SDBGKEYID2 SDBGKEYID1 SDBGKEYID0

Table 4-4: Flash Info Block 1 Security Fields

Flash Block 1 Address Offset

Address Base 0xC 0x8 0x4 0x0

0x1188_0FF0 SDBGKEY3 SDBGKEY2 SDBGKEY_CON_3 SDBGKEY_CON_2

0x1188_0FE0 SDBGKEY1 SDBGKEY0 SDBGKEY_CON_1 SDBGKEY_CON_0

The SDBGKEY_CON0-3 fields in the Info Blocks contain the 128-bit Contrast Key. Note that both Flash Info
Blocks 0 and 1 must have identical values programmed in their SDBGKEY_CON_n fields, there must be no differ-
ence between the values programmed in one Info Block and the other.

Table 4-5: Security Contrast Keys

Contrast Key Field Value

SDBGKEY_CON0 0xAF57D151

SDBGKEY_CON1 0xE1F65DBA

SDBGKEY_CON2 0xD4CE466C

SDBGKEY_CON3 0xB0E87CD6

NOTE: The Contrast Key values should be exactly the same as above for the part to be in a proper secure state.

The SDBGKEY_CON0 through SDBGKEY_CON3 registers contain the 128-bit secure debug key. If this is not
programmed (1s), the processor is unsecured (debug is unrestricted). If this key is programmed (not all 1s), the pro-
cessor is secure and cannot be debugged without a matching key.

Note that both Flash Info Blocks 0 and 1 must have identical values programmed in their SDBGKEYn fields, there
must be no difference between the values programmed in one Info Block and the other.

An SDBGKEY value of all 0’s could indicate a low-voltage attack or device failure. All 0's is treated by the hardware
as an invalid key. It is recommended users have a significant number of 0’s and 1’s in a pseudo-random pattern
throughout the 128 bit code for maximum protection.

Security Functional Description

ADSP-CM41x Mixed-Signal Control Processor 4–5

The SDBGKEYID_CON0 through SDBGKEYID_CON3 registers contain the externally-visible 128-bit KEY ID.
This contents of this field is user-defined and allows the user to identify or serialize an individual part, e.g. for asso-
ciation with a specific SDBGKEY.

The Logic ROM code that runs initially on a power-on reset, is tasked with copying the SDBGKEYn values from
the flash info block to the TAPC_SDBGKEY0 through TAPC_SDBGKEY3 registers. To unlock debug access to the
system, the correct SDBGKEYCMPn key of 128 bits needs to be written into the TAPC_SDBGKEYCMP0 through
TAPC_SDBGKEYCMP3 registers. The TAPC_SDBGKEYCMPn register access can be performed through the JTAG
scan and is usually accomplished when connecting a debugger to the part. The TAPC_SDBGKEY0 through
TAPC_SDBGKEY3 and TAPC_SDBGKEYCMP0 through TAPC_SDBGKEYCMP3 registers are compared in the
Logic ROM and access is given to debugger only if they match. The TAPC_SDBGKEY0 through
TAPC_SDBGKEY3 registers are not readable by the debugger unless the keys are matched.

Flash Firewalled State

This attribute defines access control to the contents of the flash. The firewall does not prevent the flash from being
mass-erased.

When firewalled, it is not possible to perform the following.

• Read the flash either by load-memory instructions or by MMR commands

• Fetch code (execute) from the flash (generates a Controlled Bus Fault Exception)

• Erase individual pages within the flash

• Write any locations within the flash, except the flash key contrast locations in the info blocks

• An Erase Reference Cell operation

When firewalled, it is possible to perform the following.

• A Mass Erase (with or without info block).

• A blind read of the entire flash memory space (no data returned) and detect any ECC errors within the flash
arrays.

Debugger Access to a Locked Part

User debug security features either allow or restrict debug access. Debug security is independent of the flash firewall.
Debug security mainly limits the debug access to MMR and memory space. It may also restrict other debug inter-
face features (like JTAG pin boundary scan) that have system ramifications and are only intended for secure users.
See the JTAG/SWD chapters for details.

Full debug access for unlocked part. Access is granted to the entire part outside the flash. The ability to access the
flash is determined by the flash firewall state.

Security Functional Description

4–6 ADSP-CM41x Mixed-Signal Control Processor

Restricted debug access for a locked part. Debug access to the portions of the chip outside of the flash is restricted to
a short set of registers below. The ability to access the flash is determined by the flash firewall state. The registers
consists of:

• The TAPC_SDBGKEYCMP0 through TAPC_SDBGKEYCMP3 input registers in the JTAG TAPC

• All JTAG Instruction and data registers

• The Flash controller registers required to perform a Mass Erase (all other functions which may be present in
those registers are disabled except when full debug access is granted).

Debugger may NEVER access the internal debug key registers (JTAG) SDBGKEY(3-0)

Debugger may WRITE the following registers while "unsecure"

Module Registers

JTAG DBGKEY(3-0)

JTAG RCMSG

M4-SYS NVWR CTL

M4-LOCAL FLASH(1-0) CTL

M4-LOCAL FLASH(1-0) ADDR

M4-LOCAL FLASH(1-0) STAT

M4-LOCAL FLASH(1-0) CMDKEY

M4-LOCAL FLASH(1-0) CMD (only flash command allowed is ERASE)

M4-LOCAL FLASH0TIMPGM

M4-LOCAL FLASH0TIMERASE

M4-LOCAL FLASH0TIMNVSTR

Debugger may READ the following registers while "unsecure"

Module Registers

JTAG SDBGKEY_STAT

JTAG SDBGKEY(3-0)

JTAG IDCODE

JTAG USERCODE

JTAG RCMSG

M4-SYS NVWR CTL

M4-SYS CHIPID

M4-SYS ADIID

M4-SYS LROM_STAT

Security Functional Description

ADSP-CM41x Mixed-Signal Control Processor 4–7

Module Registers

M4-LOCAL FLASH(1-0) CTL

M4-LOCAL FLASH(1-0) ADDR

M4-LOCAL FLASH(1-0) STAT

M4-LOCAL FLASH(1-0) CMDKEY

M4-LOCAL FLASH(1-0) CMD (only flash command allowed is ERASE)

M4-LOCAL FLASH0TIMPGM

M4-LOCAL FLASH0TIMERASE

M4-LOCAL FLASH0TIMNVSTR

M4-PPB Entire DBGROM, with all debug ID information

NOTE: If the debug attachment is through the ARM Cortex-M0 instead of the ARM Cortex-M4, the flash con-
trol registers may not be accessed.

The ARM Cortex-M0 cannot physically access the ARM Cortex-M4 system MMR space where the flash
control registers reside.

Security Functional Description

4–8 ADSP-CM41x Mixed-Signal Control Processor

5 System Crossbars (SCB)

A modern system on a chip (SoCs) contains multi-cores, memory controllers, security blocks, and other high speed
peripherals. As system integration increases, SoCs need to provide bus connectivity that allows better throughput to
reduce performance bottlenecks. While traditional point-to-point connection buses have performed well in smaller
systems, there is a need to use advanced switching based bus architectures for efficient handling of data transfer be-
tween multiplicity of data sources and sinks in the system. Additionally, mixing various traffic types in the same SoC
(for example control, communication over peripherals and computing) while sharing the same bus resources, create
different requirements from the Quality of Service (QoS) perspective.

The system crossbars (SCB) are the fundamental building blocks of a switch-fabric style for (on-chip) system bus
interconnection. The SCBs connect system bus masters to system bus slaves, providing concurrent data transfer be-
tween multiple bus masters and multiple bus slaves. The SCB architecture addresses the challenges described above.
The SCB provides sustainable throughput for simultaneous transactions in the system with configurable quality of
service for each type of transaction (traffic) as required. A hierarchical model, built from multiple SCBs, provides a
power and area efficient system interconnect, which satisfies the performance and flexibility requirements of a specif-
ic system.

SCB Features
The SCBs provide the following features:

• Efficient, pipelined bus transfer protocol for sustained throughput

• Full-duplex bus operation for flexibility and reduced latency

• Concurrent bus transfer support to allow multiple bus masters to access bus slaves simultaneously

• Simple priority-based QoS based arbitration model

SCB Functional Description
The following sections provide a functional description of the SCB.

• SCB Architectural Concepts

System Crossbars (SCB)

ADSP-CM41x Mixed-Signal Control Processor 5–1

CM41X_M4 SCB Register List

The system cross bar (SCB), which is often referred to as the system interconnect fabric, is a collection of intercon-
nection units connecting system masters to slave memory spaces. A set of registers govern SCB operations. For more
information on SCB functionality, see the SCB register descriptions.

Table 5-1: CM41X_M4 SCB Register List

Name Description

SCB_AFE0_RQOS AFE0 Read Quality of Service Register

SCB_AFE0_WQOS AFE0 Write Quality of Service Register

SCB_M4_RQOS M4 Core Read Quality of Service Register

SCB_M4_WQOS M4 Core Write Quality of Service Register

SCB_DMA0_RQOS DMA0 Read Quality of Service Register

SCB_DMA0_WQOS DMA0 Write Quality of Service Register

SCB_DMA1_RQOS DMA1 Read Quality of Service Register

SCB_DMA1_WQOS DMA1 Write Quality of Service Register

SCB_DMA2_RQOS DMA2 Read Quality of Service Register

SCB_DMA2_WQOS DMA2 Write Quality of Service Register

SCB_DMA3_RQOS DMA3 Read Quality of Service Register

SCB_DMA3_WQOS DMA3 Write Quality of Service Register

SCB_DMA4_RQOS DMA4 Read Quality of Service Register

SCB_DMA4_WQOS DMA4 Write Quality of Service Register

SCB_DMA5_RQOS DMA5 Read Quality of Service Register

SCB_DMA5_WQOS DMA5 Write Quality of Service Register

SCB_DMA6_RQOS DMA6 Read Quality of Service Register

SCB_DMA6_WQOS DMA6 Write Quality of Service Register

SCB_DMA7_RQOS DMA7 Read Quality of Service Register

SCB_DMA7_WQOS DMA7 Write Quality of Service Register

SCB_DMA8_RQOS DMA8 Read Quality of Service Register

SCB_DMA8_WQOS DMA8 Write Quality of Service Register

SCB_DMA9_RQOS DMA9 Read Quality of Service Register

SCB_DMA9_WQOS DMA9 Write Quality of Service Register

SCB_FFT0_RQOS FFT0 Read Quality of Service Register

SCB_FFT0_WQOS FFT0 Write Quality of Service Register

SCB_SINC0_RQOS SINC0 Read Quality of Service Register

SCB Functional Description

5–2 ADSP-CM41x Mixed-Signal Control Processor

Table 5-1: CM41X_M4 SCB Register List (Continued)

Name Description

SCB_SINC0_WQOS SINC0 Write Quality of Service Register

SCB_M0_RQOS M0 Core Read Quality of Service Register

SCB_M0_WQOS M0 Core Write Quality of Service Register

SCB Architectural Concepts

This section describes the components of the SCB and the modules connected to it. The basic elements in the SCB
are SCB masters, slaves master interfaces, and slave interfaces.

Masters

The controllers in the system that raise the data request in the form of a read/write transaction on the SCB are called
masters. The system bus masters include peripheral Direct Memory Access (DMA) channels. These include the Seri-
al Port (SPORT) DMA, and SPI DMAs, among others. Also included are the Memory-to-Memory DMA channels
(MDMA), and the processor cores.

Slaves

Slaves are SCB connections that are responding to transfer requests. Slaves include MMR registers, memory units,
and various peripherals depending upon individual configurations. Each system slave has its own latencies and re-
sponse times.

MDMA Pairs

DMA 14 and 13 may operate in a paired master/slave configuration to efficiently transfer data between 2 memory
regions, with optional CRC computation.

SCB Block Diagram

The SCB architectural model is shown in the SCB Overview figure. This figure shows a high level representation of
a basic SCB connecting n Slaves to x Masters. A variable number of masters connect to a variable number of slaves
in each SCB. In this example, all SIs connect to all MIs as indicated by the lines connecting them.

SLAVE 0 SLAVE n

MI

SI

MI

SISCBm

MASTER xMASTER 0

Figure 5-1: SCB Overview

SCB Functional Description

ADSP-CM41x Mixed-Signal Control Processor 5–3

Hierarchy Block Diagram

A system interconnect built from multiple SCBs in a hierarchical model is illustrated in the SCB Hierarchy Over-
view figure. The system master node level SCBs master connects multiple SIs to a single MI, which in turn connects
to an SI of the system slave level node SCB.

As discussed above, all the masters in the system are distributed across different SCBs. A given SCB at system master
node level connects directly to the system masters. These SCBs connect to SCB0 through its SIs forming a hierar-
chal structure. While a master has to access any slave, its first access goes through the SCB it is connected to, and
then through SCB0, to reach its intended slave. This simplifies the connecting hardware in the basic SCB block by
limiting the masters. Care must be taken when sharing masters to allow adequate throughput for their individual
data transfer requirements.

In this example, all SIs are connected to all MIs.

SLAVE 0 SLAVE n

MASTER z

MI

SI

MI

MI

SI

SI SI

SCB0

SCB1

MI

SI SISCBm

MASTER yMASTER xMASTER 0

Figure 5-2: SCB Hierarchy Overview

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-CM41x Block Diagram.

ADSP-CM41x Block Diagram

The ADSP-CM41x SCB Block Diagram figure shows the SCB block diagram for the ADSP-CM41x processors.
The line colors are provided to better indentify block connections.

SCB Block Diagram

5–4 ADSP-CM41x Mixed-Signal Control Processor

SMC

FFT SLAVE

MMR

SCB0

DMA4 (UART1, TX)

DMA5 (UART1, RX)

DMA6 (UART2, TX/SPI0, TX)

DMA7 (UART2, RX/SPI0, RX)

DMA8 (UART3, TX/HAE IN0)

DMA9 (UART3, RX/HAE OUT)

DMA10 (UART4, TX/HAE IN1/SPORT0A)

DMA11 (UART4, RX/SPORT0B)

DMA12 (MDMA RD)

DMA13 (MDMA WR)

ADCC1/DACC0

FFT MASTER

SINC

M4 CONTROLLER

DMA0 (SPI0, TX)

DMA1 (SPI0, RX)

ADCC0

DMA2 (UART0, TX)

DMA3 (UART0, RX)

CORTEX-M0 SYSTEM SUPERVISOR

SCB1

SCB2

M0 FLASH

M0 SRAM

M4 SCB

FFT SLAVE

SMC

MMR

M4 SCB

M0 SCB
M0
SCB

M0 SCB

M0
SRAM

M0
SCB

M4
SCB

M0
SCB

M0
SCB

M4
SCB

M0
FLASH

M0 SRAMM0
SRAM

Figure 5-3: ADSP-CM41x SCB Block Diagram

While this figure is useful just for the overview it provides, it is also useful to observe the following relationships that
are highlighted.

• The hierarchy of SCBs manages system bus interconnections, multiplexing, and arbitration among the cores
and peripherals on the processor.

• The SCBs connections support DMA channels for some peripherals and support dedicated connections for
others. The ADCC, SINC, DACC and FFT have their own DMA engines.

• The peripherals (and their SCBs) are in the SCLK clock domain. SCB0 is in the SYSCLK domain. The pro-
cessor core is the CCLK clock domain. Synchronizations across clock domains affect SCB performance.

• Each peripheral has a latency for access across the SCB. The latency varies with the nature of the peripheral.
Also, the number of active peripherals (especially for cases where multiple peripherals are active on a shared
SCB) affects SCB performance.

The following are definitions of some of the acronyms that appear in the figure:

DMA0-DMA13

Indicate DMA channels for peripherals supporting DMA transfers.

SCB1 – SCB3, M0SCB, M4SCB

Indicate SCB interfaces, connecting the system bus masters and slaves.

SCB Block Diagram

ADSP-CM41x Mixed-Signal Control Processor 5–5

SCLK0, SYSCLK, CCLK

Indicate clock domains in which the specific SCBs operate. For more information on clock domains, see the
Clock Generation Unit (CGU) chapter and the product data sheet.

L1

Indicates the on-core (L1) internal memory.

SMC

Indicates the static memory controller (SMC) interface.

MMR

Indicates the system memory-mapped register interface.

SCB Bus Master IDs

The SCB bus master ID tables indicate which masters are connected to each of the slave ports of the SCBs. The
following tables indicate the precise value of the ID as seen by the slave. These values are useful for SWU program-
ming. The masters listed in the tables correspond to the QoS registers mentioned in the ADSP-CM41x SCB Regis-
ter List table in their correct order.

• MASTER: CONT_MST is the ARM Cortex-M4 controller as memory access master and controls load/stores
by the ARM Cortex-M4 core.

• MASTER: SUPER_MST is the ARM Cortex-M0 supervisor subsystem. This acts as the memory access master
into the main system fabric and includes accesses by the ARM Cortex-M0 core as well as by DMA channels
DMA0 through DMA3. The bits ‘BBBB’ indicate the master ID within the ARM Cortex-M0 subsystem, from
the System Master IDs for SMPU0 table.

• MASTER: SUPER_SLV is the ARM Cortex-M0 supervisor subsystem’s slave port from the ARM Cortex-M4
controller subsystem fabric. The bits ‘CCCCCCCCC’ indicate the master ID within the ARM Cortex-M4
subsystem, from the System Master IDs for SMPU2 and SMPU1 table.

• SLAVE: CONT_SLV is the ARM Cortex-M4 controller slave memory spaces which are ARM Cortex-M4
SRAM and flash.

• SLAVE: SUPER_SRAM is the ARM Cortex-M0 supervisor slave memory space. The ARM Cortex-M0 SRAM
is the only such space.

The characters A, B, C and D are used in the following tables and have the following meanings.

• A – From DMA engine

• B – 4 bottom bits of 12-bit CONT_MST field

• C – All 9 bits of SUPER_SLV field

SCB Functional Description

5–6 ADSP-CM41x Mixed-Signal Control Processor

• D – All 9 bits of CONT_SLV field

Table 5-2: ADSP-CM41x SCB0, SCB1, SCB2 Bus Master IDs

MASTERS

SLAVES

SMC FFT MMR CONT_SLV SUPER_SLV

DMA4: UART1_TX 9b00000A000 9b00000A000 N/A 9b00000A000 9b00000A000

DMA5: UART1_RX 9b00000A001 9b00000A001 N/A 9b00000A001 9b00000A001

DMA6: SPI1_TX/UART2_TX 9b00000A010 9b00000A010 9b00000A010 9b00000A010 9b00000A010

DMA7: SPI1_RX/UART2_RX 9b00000A011 9b00000A011 9b00000A011 9b00000A011 9b00000A011

DMA8: HAE_IN0/UART3_TX 9b00000A100 9b00000A100 9b00000A100 9b00000A100 9b00000A100

DMA9: HAE_OUT/
UART3_RX

9b00000A101 9b00000A101 9b00000A101 9b00000A101 9b00000A101

DMA10: HAE_IN1/SPORT0A/
UART4_TX

9b00000A110 9b00000A110 9b00000A110 9b00000A110 9b00000A110

DMA11: SPORT0B/
UART4_RX

9b00000A111 9b00000A111 9b00000A111 9b00000A111 9b00000A111

DMA12: MDMA0_RD 9b01000A000 9b01000A000 9b01000A000 9b01000A000 9b01000A000

DMA13: MDMA0_WR 9b01000A001 9b01000A001 YES 9b01000A001 9b01000A001

SINC 9b10000A000 9b10000A000 N/A 9b10000A000 9b10000A000

AFE1: ADCC1 + DACC0 9b10000A001 9b10000A001 N/A 9b10000A001 9b10000A001

FFTB 9b10000A010 9b10000A010 N/A 9b10000A010 9b10000A010

CONT_MST 9b110000011 9b110000011 N/A N/A 9b110000011

SUPER_MST 9b11BBBB100 9b11BBBB100 N/A 9b11BBBB100 N/A

Table 5-3: ADSP-CM41x M0 SCB Bus Master IDs

Master CONT_MST SUPER_SRAM

DMA0: SPI0_TX 12b00000000A000 12b00000000A000

DMA1: SPI0_RX 12b00000000A001 12b00000000A001

DMA2: UART0_TX 12b00000000A010 12b00000000A010

DMA3: UART0_RX 12b00000000A011 12b00000000A011

AFE0: ADCC0 12b00000000A100 12b00000000A100

SUPER_SLV 12bCCCCCCCCC101 12bCCCCCCCCC101

M0_CORE 12b000000000110 N/A

SCB Functional Description

ADSP-CM41x Mixed-Signal Control Processor 5–7

Table 5-4: ADSP-CM41x M4 SCB Bus Master IDs

Master CONT_SRAM CONT_FLASH

CONT_SLV 9bDDDDDDDDD NA-AHB

System Crossbars

The System Crossbars (SCB) are the fundamental building blocks of the system bus interconnect. The SCB (often
referred to as the system interconnect fabric), is a collection of inter-connection units connecting system masters to
slave memory spaces. The SCB connects one or more master devices to one or more memory-mapped slave devices.
Each connected master can be a core that originates an SCB transaction, or a master interface of an upstream SCB
cascaded interconnect. Each connected slave can be the final target of an SCB transaction or a slave interface of a
downstream cascaded SCB interconnect (forming a hierarchy of SCBs).

Each SCB that has multiple masters and slaves share the total bandwidth of the SCB. (In a M:N configuration
where M masters are connected to N slaves through the SCBx.)

The SCB provides separate channels for reads and writes. Read and write accesses through a given SCB do not share
bandwidth. All the SCBs are 32 bits wide and run at SCLK speed, and can provide a bandwidth of up to 400
Mbytes per second for reads and writes separately (when SCLK = 100 MHz). Only SCB0, which is the major SCB
in the SCB hierarchy, has the multiple paths between multiple master and slave interfaces.

The processor does not contain any high transfer rate external peripherals. There should be adequate bandwith for
all peripherals. Programs should use care with MDMA priority settings; the wrong settings can use significant SCB
resources during internal memory transfers. L1 memories are 32-bit ECC protected and all major busses are 32 bits
wide. 32-bit transfers are the most efficient for use in the product. 16-bit and 8-bit transfers are fully supported, just
use bandwidth less efficiently.

Since the SCBs support burst transfers, it is important to configure the requesting master appropriately to make best
use of available SCB bandwidth. For a DMA master, choosing the appropriate DMA_CFG.MSIZE value, is impor-
tant from both a functional and a performance perspective. The value in the DMA_CFG.PSIZE bit field deter-
mines the width of the peripheral bus in use. It can be configured to 1-byte, 2-bytes, or 4-bytes. The
DMA_CFG.MSIZE value determines the actual size of the SCB bus in use. It also determines the minimum number
of bytes which are transferred from or to memory corresponding to a single DMA request or grant. The transfer can
be 1-, 2-, 4-, 8-, 16-, or 32-bytes. If the DMA_CFG.MSIZE value is greater than the SCB bus width, the SCB
performs burst transfers according to the width defined in DMA_CFG.MSIZE. When DMA_CFG.MSIZE is less
than the SCB bus width, bursting is not supported and partial bus use results.

Each of the SCB unit in the fabric consists of N Slave interfaces (MSTn). Each of these interfaces has controls for
read quality of service, write quality of service, and functional mode. A subset of these matrices includes controls for
IB (Interface Block) sync mode, and bus functional mode. For more details on IB, see the clock domain synchroni-
zation section.

SCB Functional Description

5–8 ADSP-CM41x Mixed-Signal Control Processor

ADSP-CM41x SCB Arbitration

The SCB uses QoS based arbitration to prioritize each slave-to-master interface (master interface) and each master-
to-slave interface (slave interface). Each slave has a quality of service (QoS) programmable feature that affects arbi-
tration. This allows to increase the priority of a specific master and allow the chances of it getting higher priority
when multiple masters are requesting over same SCB.

The slave interface of the crossbar (where the masters such as DMA connect to) performs few functions and arbitra-
tion is one of them. There are programmable register to decide the QoS for each master. The programmable QoS
registers can be viewed as being associated with SCBx. There is separate Quality of service control for read (RQoS)
and write (WQoS). For example, the QoS registers for DMA0-5, SINC can be viewed as residing in SCB4. When-
ever a transaction is received at DMA0, the programmed QoS value is associated with that transaction and is arbitra-
ted with the rest of the masters at SCB4. Consider the following situation.

• At SCB1, masters (1, 2, and 3) have RQOS values of (6, 4, and 2, respectively).

• At SCB2, masters (4, 5, and 6) have RQOS values of (12, 13, and 1, respectively).

• Master 1 wins at SCB1, and master 5 wins at SCB2, as defined by each having the largest RQOS value for its
respective group.

• In a perfect competition at SCB0 masters 4 and 5 had the highest overall RQOS values, and they compete for
arbitration directly at SCB0. Because of the mini-SCBs, master 1 which has a much lower RQOS value, is able
to win against master 4 and make it all the way to SCB0.

SCB0

SCB1 SCB2

M1 M2 M3 M4 M5 M6

M5M1

M5

Figure 5-4: SCB Arbitration

NOTE: In most cases, the default RQOS/WQOS register values should be sufficient to achieve optimum through-
put. For more information, see ADSP-CM41x SCB Programming Model.

Table 5-5: ADSP-CM41x Bus Master Reset QoS Values

MasterID Master Read_qos_reset_value Write_qos_reset_value

0 DMA4: UART1_TX 1 1

1 DMA5: UART1_RX 1 1

2 DMA6: SPI1_TX/UART2_TX 1 1

3 DMA7: SPI1_RX/UART2_RX 1 1

4 DMA8: HAE_IN0/UART3_TX 1 1

SCB Functional Description

ADSP-CM41x Mixed-Signal Control Processor 5–9

Table 5-5: ADSP-CM41x Bus Master Reset QoS Values (Continued)

MasterID Master Read_qos_reset_value Write_qos_reset_value

5 DMA9: HAE_OUT/UART3_RX 1 1

6 DMA10: HAE_IN1/SPORT0A/
UART4_TX

1 1

7 DMA11: SPORT0B/UART4_RX 1 1

8 DMA12: MDMA0_RD 0 0

9 DMA13: MDMA0_WR 0 0

10 ADCC1 + DACC0 1 1

11 FFTB 1 1

12 Controller MST 2 2

13 Supervisor MST 3 3

14 SINC 1 1

Clock Domain Synchronization

These registers perform clock domain crossing synchronization from CCLK to SCLK. The configuration of these
registers depends on the CCLK and SCLK configuration.

ADSP-CM41x SCB Programming Model
As previously noted, the SCB arbitration model for the master and slave SCBs is QoS based. Each slave interface has
a QoS value (or priority) associated with its read and write channels. These QoS selections are 4-bit values, which
are present in the read QoS register and write QoS register register of each SCB master.

At the entry point to the infrastructure, all transactions are allocated a programmable, local QoS value. The arbitra-
tion of the transaction throughout the infrastructure uses this QoS. At any arbitration node, a fixed priority exists
for transactions with a different QoS. The highest value has the highest priority. If there are coincident transactions
at an arbitration node with the same QoS value that require arbitration, then the network uses a least recently used
(LRU) algorithm. At each switch, the master with the highest QoS gains access, and that switch output takes the
QoS value of the winner for that transaction. At the next switch slave interface, that master uses the QoS value of
the winner.

SCB fabric registers occupy 1M byte of address space. The QoS registers in this space have values from 0 (lowest
priority) to 15 (highest priority).

NOTE: Because the SCB arbitration of the processor is fixed (not programmable), these SCBs do not have slot
numbers for modifying read/write arbitration settings.

NOTE: The MDMA is set to a default lower priority due to its potential for short term high demand. The process-
or SCB should have adequate bandwidth for configured system peripherals.

SCB Functional Description

5–10 ADSP-CM41x Mixed-Signal Control Processor

FIFO Synchronization

The FIFO associated with every channel is implemented to support clock domain crossing functionality.

The synchronization scheme used in the FIFO can be changed in the FIFO Sync_mode register. By default, FIFO is
a pure asynchronous FIFO. Programming can reduce register access latency while CCLK:SYSCLK frequency ratio is
n:1(n integer) or 1:1. Program the FIFO mode register to the respective values in the sync mode bits of the FIFO
Sync mode register as follows:

• 0 = Sync 1:1

• 1 = Sync n:1

• 4 = async

Table 5-6: FIFO Sync Modes and Actions

Original Mode Required Mode Action

ASYNC Sync 1:1 or n:1 Change the clocks, then change the register

Sync 1:1 or n:1 ASYNC Change the register, then change the clocks

NOTE: This synchronization feature is applicable only for CCLK:SYSCLK ratios of 1:1 and n:1, but the feature is
not applicable for ratios of m:n. For example, the synchronization feature is applicable for a
CCLK:SYSCLK ratio of 200 MHz:100 MHz. This feature is not applicable for a ratio of 250 MHz:100
MHz.

CM41X_M4 SCB Register Descriptions
System Crossbar (SCB) contains the following registers.

Table 5-7: CM41X_M4 SCB Register List

Name Description

SCB_AFE0_RQOS AFE0 Read Quality of Service Register

SCB_AFE0_WQOS AFE0 Write Quality of Service Register

SCB_M4_RQOS M4 Core Read Quality of Service Register

SCB_M4_WQOS M4 Core Write Quality of Service Register

SCB_DMA0_RQOS DMA0 Read Quality of Service Register

SCB_DMA0_WQOS DMA0 Write Quality of Service Register

SCB_DMA1_RQOS DMA1 Read Quality of Service Register

SCB_DMA1_WQOS DMA1 Write Quality of Service Register

SCB_DMA2_RQOS DMA2 Read Quality of Service Register

SCB_DMA2_WQOS DMA2 Write Quality of Service Register

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–11

Table 5-7: CM41X_M4 SCB Register List (Continued)

Name Description

SCB_DMA3_RQOS DMA3 Read Quality of Service Register

SCB_DMA3_WQOS DMA3 Write Quality of Service Register

SCB_DMA4_RQOS DMA4 Read Quality of Service Register

SCB_DMA4_WQOS DMA4 Write Quality of Service Register

SCB_DMA5_RQOS DMA5 Read Quality of Service Register

SCB_DMA5_WQOS DMA5 Write Quality of Service Register

SCB_DMA6_RQOS DMA6 Read Quality of Service Register

SCB_DMA6_WQOS DMA6 Write Quality of Service Register

SCB_DMA7_RQOS DMA7 Read Quality of Service Register

SCB_DMA7_WQOS DMA7 Write Quality of Service Register

SCB_DMA8_RQOS DMA8 Read Quality of Service Register

SCB_DMA8_WQOS DMA8 Write Quality of Service Register

SCB_DMA9_RQOS DMA9 Read Quality of Service Register

SCB_DMA9_WQOS DMA9 Write Quality of Service Register

SCB_FFT0_RQOS FFT0 Read Quality of Service Register

SCB_FFT0_WQOS FFT0 Write Quality of Service Register

SCB_SINC0_RQOS SINC0 Read Quality of Service Register

SCB_SINC0_WQOS SINC0 Write Quality of Service Register

SCB_M0_RQOS M0 Core Read Quality of Service Register

SCB_M0_WQOS M0 Core Write Quality of Service Register

CM41X_M4 SCB Register Descriptions

5–12 ADSP-CM41x Mixed-Signal Control Processor

AFE0 Read Quality of Service Register

The SCB_AFE0_RQOS register selects the QoS value for AFE0 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-5: SCB_AFE0_RQOS Register Diagram

Table 5-8: SCB_AFE0_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_AFE0_RQOS.VALUE bit field holds the programmable QoS value for the
AFE0 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–13

AFE0 Write Quality of Service Register

The SCB_AFE0_WQOS register selects the QoS value for AFE0 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-6: SCB_AFE0_WQOS Register Diagram

Table 5-9: SCB_AFE0_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_AFE0_WQOS.VALUE bit field holds the programmable QoS value for the
AFE0 write channel.

CM41X_M4 SCB Register Descriptions

5–14 ADSP-CM41x Mixed-Signal Control Processor

M4 Core Read Quality of Service Register

The SCB_M4_RQOS register selects the QoS value for the Cortex-M4 core read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS
value gains access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-7: SCB_M4_RQOS Register Diagram

Table 5-10: SCB_M4_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–15

M4 Core Write Quality of Service Register

The SCB_M4_WQOS register selects the QoS value for the Cortex-M4 core write channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS
value gains access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-8: SCB_M4_WQOS Register Diagram

Table 5-11: SCB_M4_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

CM41X_M4 SCB Register Descriptions

5–16 ADSP-CM41x Mixed-Signal Control Processor

DMA0 Read Quality of Service Register

The SCB_DMA0_RQOS register selects the QoS value for the DMA2 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-9: SCB_DMA0_RQOS Register Diagram

Table 5-12: SCB_DMA0_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA0_RQOS.VALUE bit field holds the programmable QoS value for the
DMA0 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–17

DMA0 Write Quality of Service Register

The SCB_DMA0_WQOS register selects the QoS value for the DMA0 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-10: SCB_DMA0_WQOS Register Diagram

Table 5-13: SCB_DMA0_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA0_WQOS.VALUE bit field holds the programmable QoS value for the
DMA0 write channel.

CM41X_M4 SCB Register Descriptions

5–18 ADSP-CM41x Mixed-Signal Control Processor

DMA1 Read Quality of Service Register

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-11: SCB_DMA1_RQOS Register Diagram

Table 5-14: SCB_DMA1_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA1_RQOS.VALUE bit field holds the programmable QoS value for the
DMA1 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–19

DMA1 Write Quality of Service Register

The SCB_DMA1_WQOS register selects the QoS value for the DMA1 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-12: SCB_DMA1_WQOS Register Diagram

Table 5-15: SCB_DMA1_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA1_WQOS.VALUE bit field holds the programmable QoS value for the
DMA1 write channel.

CM41X_M4 SCB Register Descriptions

5–20 ADSP-CM41x Mixed-Signal Control Processor

DMA2 Read Quality of Service Register

The SCB_DMA2_RQOS register selects the QoS value for the DMA2 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-13: SCB_DMA2_RQOS Register Diagram

Table 5-16: SCB_DMA2_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA2_RQOS.VALUE bit field holds the programmable QoS value for the
DMA2 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–21

DMA2 Write Quality of Service Register

The SCB_DMA2_WQOS register selects the QoS value for the DMA2 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-14: SCB_DMA2_WQOS Register Diagram

Table 5-17: SCB_DMA2_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA2_WQOS.VALUE bit field holds the programmable QoS value for the
DMA2 write channel.

CM41X_M4 SCB Register Descriptions

5–22 ADSP-CM41x Mixed-Signal Control Processor

DMA3 Read Quality of Service Register

The SCB_DMA3_RQOS register selects the QoS value for the DMA3 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-15: SCB_DMA3_RQOS Register Diagram

Table 5-18: SCB_DMA3_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA3_RQOS.VALUE bit field holds the programmable QoS value for the
DMA3 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–23

DMA3 Write Quality of Service Register

The SCB_DMA3_WQOS register selects the QoS value for the DMA3 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-16: SCB_DMA3_WQOS Register Diagram

Table 5-19: SCB_DMA3_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA3_WQOS.VALUE bit field holds the programmable QoS value for the
DMA3 write channel.

CM41X_M4 SCB Register Descriptions

5–24 ADSP-CM41x Mixed-Signal Control Processor

DMA4 Read Quality of Service Register

The SCB_DMA4_RQOS register selects the QoS value for the DMA4 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-17: SCB_DMA4_RQOS Register Diagram

Table 5-20: SCB_DMA4_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA4_RQOS.VALUE bit field holds the programmable QoS value for the
DMA4 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–25

DMA4 Write Quality of Service Register

The SCB_DMA4_WQOS register selects the QoS value for the DMA4 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-18: SCB_DMA4_WQOS Register Diagram

Table 5-21: SCB_DMA4_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA4_WQOS.VALUE bit field holds the programmable QoS value for the
DMA4 write channel.

CM41X_M4 SCB Register Descriptions

5–26 ADSP-CM41x Mixed-Signal Control Processor

DMA5 Read Quality of Service Register

The SCB_DMA5_RQOS register selects the QoS value for the DMA5 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-19: SCB_DMA5_RQOS Register Diagram

Table 5-22: SCB_DMA5_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA5_RQOS.VALUE bit field holds the programmable QoS value for the
DMA5 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–27

DMA5 Write Quality of Service Register

The SCB_DMA5_WQOS register selects the QoS value for the DMA5 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-20: SCB_DMA5_WQOS Register Diagram

Table 5-23: SCB_DMA5_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA5_WQOS.VALUE bit field holds the programmable QoS value for the
DMA5 write channel.

CM41X_M4 SCB Register Descriptions

5–28 ADSP-CM41x Mixed-Signal Control Processor

DMA6 Read Quality of Service Register

The SCB_DMA6_RQOS register selects the QoS value for the DMA6 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-21: SCB_DMA6_RQOS Register Diagram

Table 5-24: SCB_DMA6_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA6_RQOS.VALUE bit field holds the programmable QoS value for the
DMA6 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–29

DMA6 Write Quality of Service Register

The SCB_DMA6_WQOS register selects the QoS value for the DMA6 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-22: SCB_DMA6_WQOS Register Diagram

Table 5-25: SCB_DMA6_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA6_WQOS.VALUE bit field holds the programmable QoS value for the
DMA6 write channel.

CM41X_M4 SCB Register Descriptions

5–30 ADSP-CM41x Mixed-Signal Control Processor

DMA7 Read Quality of Service Register

The SCB_DMA7_RQOS register selects the QoS value for the DMA7 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-23: SCB_DMA7_RQOS Register Diagram

Table 5-26: SCB_DMA7_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA7_RQOS.VALUE bit field holds the programmable QoS value for the
DMA7 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–31

DMA7 Write Quality of Service Register

The SCB_DMA7_WQOS register selects the QoS value for the DMA7 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-24: SCB_DMA7_WQOS Register Diagram

Table 5-27: SCB_DMA7_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA7_WQOS.VALUE bit field holds the programmable QoS value for the
DMA7 write channel.

CM41X_M4 SCB Register Descriptions

5–32 ADSP-CM41x Mixed-Signal Control Processor

DMA8 Read Quality of Service Register

The SCB_DMA8_RQOS register selects the QoS value for the DMA8 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-25: SCB_DMA8_RQOS Register Diagram

Table 5-28: SCB_DMA8_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA8_RQOS.VALUE bit field holds the programmable QoS value for the
DMA8 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–33

DMA8 Write Quality of Service Register

The SCB_DMA8_WQOS register selects the QoS value for the DMA8 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-26: SCB_DMA8_WQOS Register Diagram

Table 5-29: SCB_DMA8_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA8_WQOS.VALUE bit field holds the programmable QoS value for the
DMA8 write channel.

CM41X_M4 SCB Register Descriptions

5–34 ADSP-CM41x Mixed-Signal Control Processor

DMA9 Read Quality of Service Register

The SCB_DMA9_RQOS register selects the QoS value for the DMA9 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-27: SCB_DMA9_RQOS Register Diagram

Table 5-30: SCB_DMA9_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_DMA9_RQOS.VALUE bit field holds the programmable QoS value for the
DMA9 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–35

DMA9 Write Quality of Service Register

The SCB_DMA9_WQOS register selects the QoS value for the DMA9 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-28: SCB_DMA9_WQOS Register Diagram

Table 5-31: SCB_DMA9_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_DMA9_WQOS.VALUE bit field holds the programmable QoS value for the
DMA9 write channel.

CM41X_M4 SCB Register Descriptions

5–36 ADSP-CM41x Mixed-Signal Control Processor

FFT0 Read Quality of Service Register

The SCB_FFT0_RQOS register selects the QoS value for the FFTB0 read channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-29: SCB_FFT0_RQOS Register Diagram

Table 5-32: SCB_FFT0_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_FFT0_RQOS.VALUE bit field holds the programmable QoS value for the
FFT0 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–37

FFT0 Write Quality of Service Register

The SCB_FFT0_WQOS register selects the QoS value for the FFTB0 write channel. The arbitration of transactions
throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value gains
access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-30: SCB_FFT0_WQOS Register Diagram

Table 5-33: SCB_FFT0_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_FFT0_WQOS.VALUE bit field holds the programmable QoS value for the
FFT0 write channel.

CM41X_M4 SCB Register Descriptions

5–38 ADSP-CM41x Mixed-Signal Control Processor

SINC0 Read Quality of Service Register

The SCB_SINC0_RQOS register selects the QoS value for the SINC0 write channel. The arbitration of transac-
tions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value
gains access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-31: SCB_SINC0_RQOS Register Diagram

Table 5-34: SCB_SINC0_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

The SCB_SINC0_RQOS.VALUE bit field holds the programmable QoS value for
the SINC0 read channel.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–39

SINC0 Write Quality of Service Register

The SCB_SINC0_WQOS register selects the QoS value for the SINC0 write channel. The arbitration of transac-
tions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS value
gains access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-32: SCB_SINC0_WQOS Register Diagram

Table 5-35: SCB_SINC0_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

The SCB_SINC0_WQOS.VALUE bit field holds the programmable QoS value for
the SINC0 write channel.

CM41X_M4 SCB Register Descriptions

5–40 ADSP-CM41x Mixed-Signal Control Processor

M0 Core Read Quality of Service Register

The SCB_M0_RQOS register selects the QoS value for the Cortex-M0 core read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS
value gains access.

Read Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-33: SCB_M0_RQOS Register Diagram

Table 5-36: SCB_M0_RQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Read Quality of Service.

CM41X_M4 SCB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 5–41

M0 Core Write Quality of Service Register

The SCB_M0_WQOS register selects the QoS value for the Cortex-M0 core write channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest QoS
value gains access.

Write Quality of Service
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 5-34: SCB_M0_WQOS Register Diagram

Table 5-37: SCB_M0_WQOS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

VALUE Write Quality of Service.

CM41X_M4 SCB Register Descriptions

5–42 ADSP-CM41x Mixed-Signal Control Processor

6 Clock Generation Unit (CGU)

The Clock Generation Unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU). The
PLL generates a master clock that runs at a frequency that is a multiple of the CLKIN input clock frequency. The
PCU divides down the master clock to generate various system clocks and synchronization signals.

NOTE: Unless otherwise noted, all references to CLKIN or SYS_CLKIN in this chapter correspond to the
SYS_CLKIN0 pin on the processor.

CGU Features
The CGU module supports the following features:

• Provides smooth transitions from the current clock condition to a new condition with PLL logic and executes
the changes to clocks due to register programming

• Provides PLL and clock domain status reporting for event management

• Supports the capability to bypass the PLL for power savings

• Manages power dynamically through software, allowing the dynamic control of the core clock frequency
(fCCLK) of the processor

• Controls clock gating of core and system clocks

NOTE: For more information about processor-specific CGU features, see the processor data sheet.

CGU Functional Description
The CGU generates all on-chip clocks and synchronization signals based on the programmed PLL multiplication
factor and dividers. The CGU provides the following functionality.

Change the PLL Clock Frequency

The CGU allows programs to change the PLL clock frequency by writing new values to bits in the control
register. Any time the PLL relocks, the CGU aligns all core and system clocks.

Clock Generation Unit (CGU)

ADSP-CM41x Mixed-Signal Control Processor 6–1

Change Other Clock Frequencies

The CGU allows programs to change the CCLKn, SYSCLK, SCLKn, DCLK, and OCLK frequencies by writ-
ing values to the CGU_DIV register. Any time the clock frequency is changed, the OCLK, CCLKn, SYSCLK,
DCLK, and SCLKn clocks exit the frequency change sequence aligned.

Perform Clock Alignment

The CGU can align all clocks by writing to the CGU_DIV register. This function aligns all PLL-based clocks.

For more information on these functions, see the CGU Programming Model section.

CM41X_M4 CGU Register List

The clock generation unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU). The PLL
generates a clock, running at a frequency that is a multiple of the CLKIN input clock's frequency. The CGU also
generates all on-chip clocks and synchronization signals. The PCU permits application software control of the PLL's
operation. A set of registers govern CGU operations. For more information on CGU functionality, see the CGU
register descriptions.

Table 6-1: CM41X_M4 CGU Register List

Name Description

CGU_CCBF_DIS Core Clock Buffer Disable Register

CGU_CCBF_STAT Core Clock Buffer Status Register

CGU_CLKOUTSEL CLKOUT Select Register

CGU_CTL Control Register

CGU_DIV Clocks Divisor Register

CGU_OSCWDCTL Oscillator Watchdog Register

CGU_PLLCTL PLL Control Register

CGU_REVID Revision ID Register

CGU_SCBF_DIS System Clock Buffer Disable Register

CGU_SCBF_STAT System Clock Buffer Status Register

CGU_STAT Status Register

CGU_TSCOUNT0 Time Stamp Counter 32 LSB Register

CGU_TSCOUNT1 Time Stamp Counter 32 MSB Register

CGU_TSCTL Time Stamp Control Register

CGU_TSVALUE0 Time Stamp Counter Initial 32 LSB Value Register

CGU_TSVALUE1 Time Stamp Counter Initial MSB Value Register

CM41X_M0 CGU Interrupt List

CGU Functional Description

6–2 ADSP-CM41x Mixed-Signal Control Processor

Table 6-2: CM41X_M0 CGU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

0 Reserved Reserved Reserved Reserved

0 CGU0_OSCW_INT CGU0 Oscillator Watchdog Interrupt Level

7 CGU0_EVT CGU0 Event Edge

CM41X_M4 CGU Interrupt List

Table 6-3: CM41X_M4 CGU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

2 Reserved Reserved Reserved Reserved

3 CGU0_OSCW_INT CGU0 Oscillator Watchdog Interrupt Level

30 CGU0_EVT CGU0 Event Edge

CM41X_M0 CGU Trigger List

Table 6-4: CM41X_M0 CGU Trigger List Masters

Trigger ID Name Description Sensitivity

3 CGU0_EVT CGU0 Event Edge

Table 6-5: CM41X_M0 CGU Trigger List Slaves

Trigger ID Name Description Sensitivity

None

CM41X_M4 CGU Trigger List

Table 6-6: CM41X_M4 CGU Trigger List Masters

Trigger ID Name Description Sensitivity

3 CGU0_EVT CGU0 Event Edge

Table 6-7: CM41X_M4 CGU Trigger List Slaves

Trigger ID Name Description Sensitivity

None

CGU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 6–3

CGU Definitions

DPM

The dynamic power management (DPM) works with the CGU to provide flexible power dissipation modes for the
processor.

PCU

The PLL control unit (PCU) in the CGU controls PLL operations. All the MMR registers of the CGU are imple-
mented in this unit.

PLL

The phase-locked loop (PLL) operates within the CGU.

RCU

The reset control unit (RCU) provides input to the CGU to manage clocks during processor reset.

CGU

The clock generation unit (CGU) is comprised of the PLL and PCU.

CGU PLL Block Diagram

The CGU PLL Block Diagram provides a top-level block diagram of the phase locked loop (PLL). The main blocks
of the PLL are the phase/frequency detector (PFD), the charge pump, the loop filter, and the voltage controlled
oscillator (VCO). The VCO multiplies the SYS_CLKIN0 input to a higher frequency.

PLL
CLKPD LF VCO

x CGU_CTL.MSEL

÷2 1

0

CGU_CTL.DF

GCU_PLLCTL.PLLBPST

GCU_PLLCTL.PLLBPCL

÷ CGU_DIV.DSEL

÷ CGU_DIV.CSEL

 ÷ CGU_DIV.S0SEL

÷ CGU_DIV.
SYSSEL

S

R
Q

CCLK0 (M4 Core)

SCLK0 (M0 Core
and Peripherals)

SYSCLK (M4 System
and Peripherals)

0

1

Crystal Oscillator

CGU_STAT.PLLBP

CGU_STAT.PLOCK
÷ PADS_FOCP_DIV.DAT FOCP CLOCK

0

0

0

1

1

1

CGU_STAT.PLLBP

CGU_STAT.PLLBP

CGU_STAT.PLLBP

DCLK

Crystal Oscillator

SYS_CLKIN1

SYS_XTAL1

MON
OSC

CLKIN1 ÷16

OCU

OSC
WDOG

SYS_CLKIN0

SYS_XTAL0

SYS
OSC0

CLKIN0

Figure 6-1: CGU PLL Block Diagram

CGU Functional Description

6–4 ADSP-CM41x Mixed-Signal Control Processor

CORTEX M0 SUB-SYSTEM

SCLK0 CLOCK DOMAIN

M0 PERIPHERAL
BLOCK

M0 INFRASTRUCTURE
BLOCK

M0 CORE

DDE0-3
TRU0
SEC0
WDT0

PORTA
PINT0
PADS0

SYSBLK0
SPU0

SMPU0
SWU0-1

SPI0
UART0
ADCC0
CAN0

TIMER0 X 8

CORTEX M0 CORE
CORTEX M0 NVIC

32 KB SRAM

CORTEX M4 SUB-SYSTEM

SYSCLK0 CLOCK DOMAIN

M4 PERIPHERAL
BLOCK

M4 INFRASTRUCTURE
BLOCK

DDE4-13
TRU1
SEC1
WDT1

PORTB-F
PINT1-5
PADS1

SYSBLK1
SPU1

SMPU1-2

SPI1
UART1-4
ADCC1
CAN1

TIMER1 X 8
SPORT0

TWI0
DACC0

HPPWM0-2
HAE0
SINC0
CRC0
FFT0
ROT0
CPT0
LBA0

SWU2-6
TTU0

COMMON INFRASTRUCTURE
BLOCKS

RCU
DPM

OSC WDOG
OCU
VMU
SEC

CORTEX M4 TIGHTLY
COUPLED UNITS

CORTEX M4 CORE
CORTEX M4 NVIC

1 MB FLASH
160 KB SRAM

BOOT ROM
MATH UNIT

CCLK0 CLOCK DOMAIN

4 K SHARED MEMORY MBOX

Figure 6-2: ADSP-CM41x Clock Domains (Detail)

The output of these blocks is called PLLCLK. The PLLCLK is divided to form CCLK, SYSCLK, FOCP_CLK and
DCLK.

NOTE: On ADSP-CM41x processors, the SYSCLK signal is equivalent to the SCLKx signals mentioned through-
out this book. The CCLKn signal is equivalent to the CCLK0 signal mentioned throughout this manual.

The SYS_CLKOUT Generation figure is a conceptual representation of the CLKOUT module. As shown in the
CGU PLL Block Diagram, many clocks that originate from the CGU block are available on the SYS_CLKOUT
output pin. The CGU_CLKOUTSEL.CLKOUTSEL bit controls the clock outputs selection on the SYS_CLKOUT
pin.

CGU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 6–5

OFF

DCLK

FOCP_CLK

OUTCLK

M0RST

CLKOUTSEL[3:0]

SYS_CLKOUT

CLKBUF0

CCLK
÷4

CLKBUF1

SCLK ÷2

SYSCLK ÷2

SYSRST

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1001

NOTE: All other CLKOUTSEL
values are reserved

Figure 6-3: SYS_CLKOUT Generation

CGU Operating Modes
The CGU does not have configurable operating modes, but CGU operations affect the operating modes of other
modules. Some CGU operation issues that affect operation of other modules include the following:

• The PLL of the CGU operates in either normal mode (CGU clock divisors applied) or bypass mode (CGU
PLL is bypassed and clock divisors ignored).

• The SCB uses the CGU for clock synchronization across clock domains. For more information, see System
Crossbars (SCB).

• The DPM uses the CGU for clock management as power state transitions occur. For more information, see the
Dynamic Power Management (DPM) chapter.

• The CGU uses clock gating control to obtain flexible low-power modes.

CGU Power-up Sequence
See the product data sheet for exact power-up requirements. The processor is configured to come up in clock bypass
mode. The programs is required to configure full speed clocks and safety monitors. CLKIN0 and all supplies should
be stable before the SYS_HWRST signal is deasserted. CLKIN1 should be stable before operation of OCU safety
unit.

CGU Event Control
The CGU generates an event or error for several different reasons.

CGU Operating Modes

6–6 ADSP-CM41x Mixed-Signal Control Processor

CGU Events

After a frequency change, a CGU event indicates that the PLL has locked and clocks are synchronized. If a core was
idled while changing frequencies, the CGU can use an event interrupt to break the core idle. While in active mode,
a CGU event indicates that the PLL has locked.

CGU Errors

A CGU error occurs under following conditions:

• A write access to the CGU_DIV register triggers an alignment sequence while the PLL is locked and is still
aligning the clocks.

The CGU_STAT.WDIVERR bit state indicates this error. If this error occurs, clear the
CGU_STAT.WDIVERR bit and rewrite the desired values to the CGU_DIV register.

• A change to the CGU_DIV register occurs while the PLL is locked and is still aligning the clocks

The CGU_STAT.WDIVERR bit state indicates this error. If this error occurs, clear the
CGU_STAT.WDIVERR bit and rewrite the desired values to the CGU_DIV register.

• A write access to the CGU_CTL.DF bit field occurs or a write access to the CGU_CTL.MSEL bit field occurs
while the PLL is locking.

The CGU_STAT.WDFMSERR bit state indicates this error. If this error occurs, wait until the PLL has finished
locking, clear the error, and rewrite the desired value change.

• A clock divisor value error occurs when the CCLK divisor is greater than the SYSCLK divisor. For example, the
CGU_DIV.CSEL is greater than CGU_DIV.SYSSEL.

The CGU_STAT.WDIVERR bit state indicates this error. If this error occurs, clear it. The CGU writes new
values to the CGU_DIV.CSEL bit field, so the field is less than or equal to the CGU_DIV.SYSSEL bit field
value.

The CGU monitors changes to the following fields:

• CCLK Divisor - CGU_DIV.CSEL
• SYSCLK Divisor - CGU_DIV.SYSSEL

CGU Generated Bus Errors

The CGU generates a bus error when a read or write transaction is attempted to an unused address within the CGU
address range. It also generates a bus error when a misaligned access is made to a CGU register. In addition to the
bus error, the CGU_STAT.ADDRERR bit is set. If a write to a write-protected CGU register is attempted, the CGU
generates a bus error. In addition, the CGU_STAT.LWERR bit is set.

CGU Event Control

ADSP-CM41x Mixed-Signal Control Processor 6–7

Oscillator Watchdog

The oscillator watchdog detects the absence of input clock transitions and provides a fault warning through the
SYS_FAULT pin. To detect harmonic or subharmonic crystal oscillator behavior, the watchdog (under programma-
ble control) also detects and reports input oscillator frequencies above and below the specified limits. Use an internal
asynchronous, local 1 MHz oscillator combined with a series of programmable counters for this detection. Set the
CGU_OSCWDCTL.MONDIS bit and clear the CGU_OSCWDCTL.FAULTEN bit to optionally disable all the input
clock monitor and fault detection functions.

Set the CGU_OSCWDCTL.HODEN bit to enable harmonic oscillation detection. The CGU uses the
CGU_OSCWDCTL.HODF bit field to indicate the desired lower fail limit (in MHz) for the harmonic oscillation
detection. The upper limit is always twice the lower limit.

The HODF Settings for Different Input Clock Frequencies table shows an example of the CGU_OSCWDCTL.HODF
bit settings for different input clock frequencies.

Table 6-8: HODF Settings for Different Input Clock Frequencies

CGU_OSCWDCTL.
HODF[5:0]

Subharmonic Fre-
quency (MHz)

Nom. Lower Fail
Limit (MHz)

Input Clock Fre-
quency (MHz)

Nom. Upper Fail
Limit (MHz)

Second Harmonic
Frequency (MHz)

14 10 14 20 28 40

21 15 21 30 42 60

The CGU uses the CGU_OSCWDCTL.BOUF (Bad Oscillator Upper Frequency limit) asynchronous control bit
field to indicate the desired upper fail limit for the bad oscillation detection. Set the CGU_OSCWDCTL.BOUEN bit
to enable upper-limit bad oscillation detection. A bad oscillation detection condition signals a fault before any pro-
cessor operations occur. This detection occurs (even in bypass mode) whenever a clock frequency exceeds the specifi-
cations.

The CGU_OSCWDCTL.BOUF =0 operation starts with a target of 32 MHz and each additional LSB increases the
frequency test limit by 2 MHz. For example:

Target Upper Frequency Limit = CGU_OSCWDCTL.BOUF × 2 MHz + 32 MHz

The CGU_STAT.OSCWDSTATFC status bits indicate the nature of the fault.

The Fault Map table shows the fault values.

Table 6-9: Fault Map

CGU_STAT.OSCWDSTATFC Bitfield Values Fault Type

0 No Fault

1 No Input Clock

2 Subharmonic CLKIN

3 Harmonic CLKIN

4 No AUX_CLK

CGU Event Control

6–8 ADSP-CM41x Mixed-Signal Control Processor

Table 6-9: Fault Map (Continued)

CGU_STAT.OSCWDSTATFC Bitfield Values Fault Type

5 CLKIN > Upper Freq Limit (BOUF)

6 Reserved

7 Multiple Limit Faults

There is a priority to the faults given in the case of multiple fault errors. The highest priority is given to No Input
clock followed by No AUX_CLK. The other three fault cases share the lowest priority. Multiple limit faults are as-
serted if more than one type of subharmonic CLKIN, harmonic CLKIN, or BOUF faults are observed.

NOTE: All the CGU_STAT.OSCWDSTATFC faults other than the absence of AUX_CLK (for example,
CGU_STAT.OSCWDSTATFC =4) are not reliable and used for debug only.

Program and enable the OSCWDOG to match the actual crystal, before bringing the PLL out of bypass.

Clock Not Good Reset

The CGU uses the CGU_OSCWDCTL.CNGEN bit to enable the detection of the clock fault. A
CLK_NOT_GOOD internal signal is generated on a faulty clock condition detected by the Oscillator Watchdog.
The CLK_NOT_GOOD signal can also be generated by the Oscillator Comparator Unit as well as through the
Triggers TRGS_SYS_FRC_1MS_RESET_n trigger slave inputs. The CGU_OSCWDCTL.CNGEN bit has to be ena-
bled in both of these cases.

The CLK_NOT_GOOD output signal is intended to be used as a backup safety mechanism for when a clock fault
is detected and no system response to the fault occurs within approximately 1ms. The CLK_NOT_GOOD output
flag is sticky. If the CLOCK_NOT_GOOD signal is generated (and resets the part) it remains in this state until a
hardware pin reset occurs. While CLK_NOT_GOOD is in this sticky asserted state, then the Fault output also re-
mains sticky, even if the fault condition somehow corrects itself as part of the system reset action caused by the
CLK_NOT_GOOD signal going active.

It is assumed that the SOC using the oscillator function has two external pins to indicate a fault state
(SYS_FAULT) and a reset state (SYS_RESOUT) of the SOC to the external world. If any CLKIN fault type oc-
curs, then a SYS_HWRST SYS_HW_FAULT activates. If no action is taken externally in ~1ms, and the
CGU_OSCWDCTL.CNGEN bit remains high, then the CLOCK_NOT_GOOD signal activates and resets the part.
The SYS_RESOUT pin and that SYS_FAULT pin remain active until a hardware reset is applied to clear them and
potentially attempt a reboot (assuming the fault condition has been corrected).

GPIO Pin Safe State

The Voltage Monitoring Unit (VMU) can be configured to assert the Pin Safe State on a clock fault detected by the
OSCWDOG. The PADS_VMU_TRIPEN.OSC0FAULT and PADS_VMU_TRIPEN.OSC0CLK bits are used to
enable the pin safe state trips for the OSCWDOG faults.

CGU Event Control

ADSP-CM41x Mixed-Signal Control Processor 6–9

CGU Programming Model
The programming model for the CGU involves the various mode configuration techniques.

Configuring CGU Modes

Use the following procedures to configure the clocks and PLL.

NOTE: The program needs to clear the CGU_STAT.CLKSALGN bit before changing clocks. The following se-
quence is executed once, inside the application, after coming out of reset.

*pREG_CGU0_PLLCTL |= BITM_CGU_PLLCTL_PLLBPCL; // come out of bypass and enter
Full ON
while((pADI_CGU0 ->STAT & 0xF) != 0x5) { } // poll
// now clocks are running with hardware default divisors.
// now program can change frequencies If desired the program can put the PLL
again into bypass.

Changing Clock Frequencies

Applications change clock frequencies in two ways. The first way is modifying the PLL multiplication value by writ-
ing to the CGU_CTL register and the second is modifying the clock dividers by writing to the CGU_DIV register.
Both actions have different implications even if the frequencies of the final clock are the same. Write accesses to
change the CGU_CTL.DF or CGU_CTL.MSEL bit fields while the PLL is locking set the
CGU_STAT.WDFMSERR error bit. The CGU_STAT.WDIVERR error bit is set when one of following accesses is
attempted while the PLL is locked, but still aligning the clocks:

• A write access to the CGU_DIV to trigger an alignment sequence.

• A write access to the CGU_DIV to change the CGU_DIV.CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL,
CGU_DIV.S1SEL, or CGU_DIV.DSEL bits.

Read-after-write accesses to these registers return the new value, even if the frequency of the clock change is still in-
progress.

Modifying the PLL multiplier requires the PLL to relock. Once the PLL locks, the CGU synchronizes the clocks.
Changes to the CGU_CTL.DF or CGU_CTL.MSEL bit field result in bypassing the PLL. By setting the
CGU_CTL.WFI bit, programs force the PLL to wait for all the cores to return to their idle or reset states before the
frequency changes . If necessary, clear the CGU_DIV.UPDT bit to avoid multiple clock alignment sequences. If the
CGU_DIV register is not updated, the CGU uses the current values to determine the frequencies of the clock. It is
the programs responsibility to guarantee that the new CGU_CTL.DF or CGU_CTL.MSEL and CGU_DIV combi-
nations are legal.

Changing the PLL Clock Frequency

To change the phase-locked loop clock (PLLCLK) frequency, write new values to the CGU_CTL.MSEL field or
CGU_CTL.DF field. Any time the PLL relocks, all core and system clocks are aligned.

CGU Programming Model

6–10 ADSP-CM41x Mixed-Signal Control Processor

1. Read CGU_STAT register and verify that:

a. The CGU_STAT.PLLEN bit =1 (PLL enabled)

b. The CGU_STAT.PLOCK bit =1 (PLL is not locking)

c. The CGU_STAT.CLKSALGN bit =0 (clocks aligned)

2. Write the desired values to the clock divisor select fields of the CGU_DIV register with the CGU_DIV.UPDT
bit =0.

3. Write the desired values to the CGU_CTL.DF and CGU_CTL.MSEL fields.

a. To change the PLL frequency while the cores are idle, write to the CGU_CTL register with the
CGU_CTL.WFI bit =1.

b. To change the PLL frequency while the cores are active, write to the CGU_CTL register with the
CGU_CTL.WFI bit =0.

This sequence performs these actions:

1. Updates the corresponding CGU registers.

2. Bypasses the PLL.

3. Makes the PLL lock to the new values in the CGU_CTL.MSEL or CGU_CTL.DF fields.

4. Changes the clock frequencies.

5. Exits the PLL bypass with all clocks aligned.

When exiting the PLL bypass state, a CGU event occurs.

The CGU_STAT register exits this sequence with the CGU_STAT.PLLEN bit =1, the CGU_STAT.PLOCK bit =1,
the CGU_STAT.PLLBP bit =0, and the CGU_STAT.CLKSALGN bit =0. Poll the CGU_STAT.PLOCK bit,
CGU_STAT.PLLBP bit, and CGU_STAT.CLKSALGN bit to discover when the PLL is locked and the clocks are
aligned.

Changing the frequency of the PLL is allowed while the PLL is bypassed. In this case the new PLLCLK frequency is
not used until the PLL is no longer bypassed.

Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency

To change the clock frequencies, write new values to CGU_DIV.CSEL or CGU_DIV.SYSSEL bits. The frequen-
cy change occurs only when the PLL is not bypassed. Any time the CCLKn or SYSCLK clock frequencies are
changed, they exit the frequency change sequence aligned.

1. Read the CGU_STAT register to verify that the CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write the desired CGU_DIV.CSEL, CGU_DIV.SYSSEL, and CGU_DIV.OSEL bit field values with the
CGU_DIV.UPDT bit = 1.

Configuring CGU Modes

ADSP-CM41x Mixed-Signal Control Processor 6–11

ADDITIONAL INFORMATION: This write updates the CGU_DIV register, changes the SCLKn and SYSCLK
frequencies, and aligns the clocks. When the clocks are aligned, a CGU event occurs.

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. Poll the
CGU_STAT.CLKSALGN bit to discover when the clocks are aligned. Any write attempt to change the
CGU_DIV.S0SEL or CGU_DIV.S1SEL bit fields while CGU_STAT.CLKSALGN bit =1 (clocks alignment in
progress) triggers an MMR access bus error and the CGU_DIV register is not modified.

Programming the SYSCLK frequency to a higher value than CCLKn also triggers an MMR access bus error and the
CGU_DIV register is not modified.

Changing the OCLK Frequency

To change the OCLK clock frequency, write a new CGU_DIV.OSEL bit value. Any time the OCLK clock frequen-
cy is changed, the OCLK, CCLKn, SYSCLK, and SCLKn clocks exit the frequency change sequence aligned.

1. Read the CGU_STAT register to verify that the CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write the desired CGU_DIV.OSEL value with the CGU_DIV.UPDT bit =1. This write updates the
CGU_DIV register, changes the OCLK frequency, and aligns all clocks except OCLK.

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. Poll the
CGU_STAT.CLKSALGN bit to discover when the clocks are aligned. Any write attempt to change the
CGU_DIV.DSEL field while the CGU_STAT.CLKSALGN bit =1 (clock alignment in progress) triggers an MMR
access bus error and the CGU_DIV is not modified. When the clocks are aligned, a CGU event occurs.

Writing to the CGU_DIV.OSEL bit field is allowed while the processor is in active (PLL bypassed) mode. In this
case the effect of the write is visible only after the transition to full-on (PLL not bypassed) mode.

Aligning All Clocks

To align the clocks, write 1 to the CGU_DIV.ALGN bit. The frequency can also be changed, if necessary. The
clocks aligned include:

• CCLKn

• SYSCLK

• SCLKn

• DCLK

• OCLK

1. Read the CGU_STAT register to verify that CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write 1 to the CGU_DIV.ALGN bit. All other fields can change.

Configuring CGU Modes

6–12 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: This write does not alter the CGU_DIV register unless one of the clock-se-
lect fields is modified. When the clocks are aligned, a CGU event occurs.

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. Poll the
CGU_STAT.CLKSALGN bit to discover when the clocks are aligned. Any write to the CGU_DIV register intended
to align clocks or to change a clock select field while the CGU_STAT.CLKSALGN bit =1 (clocks alignment in pro-
gress) triggers an MMR access bus error. In this case, the CGU_DIV register is not modified.

Writing 1 to the CGU_DIV.ALGN bit has no effect while the processor is in active (PLL bypassed) mode.

Valid Clock Multiplier Settings

Processor operations depend on valid settings in the CGU_CTL and CGU_DIV registers. These registers control the
clock multiplier and divisor values. Set these registers such that the minimum and maximum clocks specified in the
data sheet are not violated. All other clock specifications in the data sheet must also be adhered to for correct opera-
tion of the processor.

CM41X_M4 CGU Register Descriptions
Clock Generation Unit (CGU) contains the following registers.

Table 6-10: CM41X_M4 CGU Register List

Name Description

CGU_CCBF_DIS Core Clock Buffer Disable Register

CGU_CCBF_STAT Core Clock Buffer Status Register

CGU_CLKOUTSEL CLKOUT Select Register

CGU_CTL Control Register

CGU_DIV Clocks Divisor Register

CGU_OSCWDCTL Oscillator Watchdog Register

CGU_PLLCTL PLL Control Register

CGU_REVID Revision ID Register

CGU_SCBF_DIS System Clock Buffer Disable Register

CGU_SCBF_STAT System Clock Buffer Status Register

CGU_STAT Status Register

CGU_TSCOUNT0 Time Stamp Counter 32 LSB Register

CGU_TSCOUNT1 Time Stamp Counter 32 MSB Register

CGU_TSCTL Time Stamp Control Register

CGU_TSVALUE0 Time Stamp Counter Initial 32 LSB Value Register

CGU_TSVALUE1 Time Stamp Counter Initial MSB Value Register

Configuring CGU Modes

ADSP-CM41x Mixed-Signal Control Processor 6–13

Core Clock Buffer Disable Register

The CGU_CCBF_DIS register controls each core's clock buffer to determine if the CCLK is enabled.

Core Clock Buffer 0

Lock

CCBF0 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-4: CGU_CCBF_DIS Register Diagram

Table 6-11: CGU_CCBF_DIS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If set (=1) the CGU_CCBF_DIS.LOCK bit locks the CGU_CCBF_DIS register.

0 Unlock register

1 Lock register

0

(R/W)

CCBF0 Core Clock Buffer 0.

The CGU_CCBF_DIS.CCBF0 bit enables (=0) or disables (=1) CCLK0s buffer.

0 Enable buffer

1 Disable buffer

CM41X_M4 CGU Register Descriptions

6–14 ADSP-CM41x Mixed-Signal Control Processor

Core Clock Buffer Status Register

The CGU_CCBF_STAT register shows which core clock buffer(s) are disabled. For example clearing the
CGU_CCBF_DIS.CCBF0 bit clears the CGU_CCBF_STAT.CCBF0 bit after a number of cycles. To guarantee
that the correct value is read, this register should be read twice and the second result used.

Core Clock Buffer 0
CCBF0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-5: CGU_CCBF_STAT Register Diagram

Table 6-12: CGU_CCBF_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/NW)

CCBF0 Core Clock Buffer 0.

The CGU_CCBF_STAT.CCBF0 bit reports the status of the
CGU_CCBF_DIS.CCBF0 bit where 0 = enabled and 1 = disabled.

0 Enabled

1 Disabled

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–15

CLKOUT Select Register

The CGU_CLKOUTSEL selects the signal that the CGU drives through the CLKOUT multiplexer.

CLKOUT Select

Lock

CLKOUTSEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-6: CGU_CLKOUTSEL Register Diagram

Table 6-13: CGU_CLKOUTSEL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the
CGU_CLKOUTSEL.LOCK bit is set, the CGU_CLKOUTSEL register is read only
(locked).

0 Unlock

1 Lock

4:0

(R/W)

CLKOUTSEL CLKOUT Select.

The CGU_CLKOUTSEL.CLKOUTSEL selects the signal that the CGU drives
through the CLKOUT pin multiplexer. CGU_CLKOUTSEL.CLKOUTSEL values
0x0A to 0x1F are reserved.

0 GND

1 CLKBUF0 - CLKIN from System Oscillator 0

2 CLKBUF1 - CLKIN from System Oscillator 1

3 CCLK - CCLK0 from CGU (divided by 4)

4 SCLK - SCLK0 from CGU (divided by 2)

5 SYSCLK - SYSCLK from CGU (divided by 2)

6 DCLK from CGU. Used to generate FOCP_CLK

7 AFE FOCP comparator clock

8 OUTCLK/PLLCLK - OCLK from CGU

9 M0RSTB - RCU_CRES[0] from RCU

CM41X_M4 CGU Register Descriptions

6–16 ADSP-CM41x Mixed-Signal Control Processor

Table 6-13: CGU_CLKOUTSEL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10 Reserved

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–17

Control Register

The CGU_CTL controls the clock generation divisors for SYS_CLKIN and the PLL. Read after write accesses to the
CGU_CTL register returns the new value even if the clock's frequency change is still in progress.

Divide FrequencyMultiplier Select

Wait For IdleLock

DF (R/W)MSEL (R/W)

0
15

0
14

0
13

1
12

0
11

0
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

WFI (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-7: CGU_CTL Register Diagram

Table 6-14: CGU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the CGU_CTL.LOCK bit is
set, the CGU_CTL register is read only (locked).

0 Unlock

1 Lock

30

(R/W)

WFI Wait For Idle.

Modifying the PLL multiplier requires the PLL to re-lock and once the PLL locks,
clocks have to be synchronized. Changes to the CGU_CTL.MSEL and the
CGU_CTL.DF bit values results in bypassing the PLL.

The CGU_CTL.WFI bit forces the PLL to wait for all processor cores to be in an idle
or reset state before changing frequencies as a result of changes to the
CGU_CTL.MSEL or CGU_CTL.DF bits. Write accesses to the CGU_CTL to change
the CGU_CTL.DF or CGU_CTL.MSEL bit values while the PLL is locking sets the
CGU_STAT.WDFMSERR bit.

0 Update Immediately

1 Wait for Idle

CM41X_M4 CGU Register Descriptions

6–18 ADSP-CM41x Mixed-Signal Control Processor

Table 6-14: CGU_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14:8

(R/W)

MSEL Multiplier Select.

The CGU_CTL.MSEL bit field selects the multiplier in the PLLCLK equation:

PLLCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL

Where the value of MSEL is between 1 and 127.

0 MSEL = 128

1-127 MSEL = 1 to 127

0

(R/W)

DF Divide Frequency.

The CGU_CTL.DF bit selects whether or not the CLKIN input is divided by two be-
fore being passed to the PLL.

0 Pass OSC_CLKIN to PLL

1 Pass OSC_CLKIN/2 to PLL

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–19

Clocks Divisor Register

The CGU_DIV register controls clock divisors for core clocks, system clocks, external (off core) memory clocks, and
output clock. Read after write accesses to the CGU_DIV register returns the new value even if the clock's frequency
change is still in progress.

SCLK 0 DivisorSYSCLK Divisor

CCLK DivisorShort Clocks Alignment Time

Align

OCLK DivisorUpdate Clock Divisors

DCLK DivisorLock

S0SEL (R/W)SYSSEL (R/W)

CSEL (R/W)S1SEL (R/W)

0
15

0
14

1
13

0
12

1
11

0
10

0
9

1
8

0
7

0
6

1
5

0
4

0
3

1
2

1
1

0
0

ALGN (R0/W)

OSEL (R/W)UPDT (R/W)

DSEL (R/W)LOCK (R/W)

0
31

0
30

0
29

1
28

0
27

1
26

1
25

0
24

1
23

0
22

0
21

0
20

1
19

1
18

1
17

1
16

Figure 6-8: CGU_DIV Register Diagram

Table 6-15: CGU_DIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the CGU_DIV.LOCK bit is
set, the CGU_DIV register is read only (locked).

0 Unlock

1 Lock

30

(R/W)

UPDT Update Clock Divisors.

The CGU_DIV.UPDT controls whether the CGU drives new CGU_DIV.CSEL,
CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, CGU_DIV.DSEL,
and CGU_DIV.OSEL values to PLL after CGU_DIV register update.

0 No PLL Update

1 Drive Updated SEL Values to PLL

CM41X_M4 CGU Register Descriptions

6–20 ADSP-CM41x Mixed-Signal Control Processor

Table 6-15: CGU_DIV Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29

(R0/W)

ALGN Align.

The CGU_DIV.ALGN directs the CGU to align the PLL-based clocks. The divisor se-
lections (CGU_DIV.CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL,
CGU_DIV.S1SEL, CGU_DIV.DSEL, and/or CGU_DIV.OSEL) do not have to
change.

0 No Action

1 Align PLL Clocks

28:22

(R/W)

OSEL OCLK Divisor.

The CGU_DIV.OSEL selects the divisor in the OCLK equation:

OCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_DIV.OSEL
Where the value of CGU_DIV.OSEL is between 1 and 127.

0 OSEL = 128

1-127 OSEL = 1 to 127

20:16

(R/W)

DSEL DCLK Divisor.

The CGU_DIV.DSEL selects the divisor in the DCLK equation:

DCLK frequency = (SYS_CLKIN frequency/(DF+1)) MSEL/CGU_DIV.DSEL
Where the value of CGU_DIV.DSEL is between 1 and 31.

0 DSEL = 32

1-31 DSEL = 1 to 31

15:13

(R/W)

S1SEL Short Clocks Alignment Time.

The CGU_DIV.S1SEL Determines if the time it takes clocks to align is short or
long.

0 Long Clocks Alignment Time

1 Short Clocks Alignment Time

2-7 Reserved

12:8

(R/W)

SYSSEL SYSCLK Divisor.

The CGU_DIV.SYSSEL selects the divisor in the SYSCLK equation:

SYSCLK frequency = (SYS_CLKIN frequency/(DF+1)) MSEL/CGU_DIV.SYSSEL
Where the value of CGU_DIV.SYSSEL is between 1 and 31.

0 SYSSEL = 32

1-31 SYSSEL = 1 to 31

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–21

Table 6-15: CGU_DIV Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7:5

(R/W)

S0SEL SCLK 0 Divisor.

The CGU_DIV.S0SEL selects the divisor in the SCLK0 equation:

SCLK0 frequency = (SYSCLK frequency) / CGU_DIV.S0SEL
Where the value of CGU_DIV.S0SEL is between 1 and 7.

0 S0SEL = 8

1-7 S0SEL = 1 to 7

4:0

(R/W)

CSEL CCLK Divisor.

The CGU_DIV.CSEL selects the divisor in the CCLK equation:

CCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_DIV.CSEL
Where the value of CGU_DIV.CSEL is between 1 and 31.

0 CSEL = 32

1-31 CSEL= 1 to 31

CM41X_M4 CGU Register Descriptions

6–22 ADSP-CM41x Mixed-Signal Control Processor

Oscillator Watchdog Register

The CGU_OSCWDCTL register configures the CGU to allow the detection of the absence of input clock transitions
and provides a fault warning via the SYS_FAULT pin. The CGU_OSCWDCTL register also detects and reports input
oscillator frequencies above and below specified limits, in order to specifically detect harmonic or sub-harmonic
crystal oscillator behavior. This detection is achieved by using an internal asynchronous, local 1 MHz oscillator com-
bined with a series of programmable counters.

Bad Oscillator Upper Frequency limit

Clock not Good enabled

detection enabled
Bad Oscillator Upper Frequency limit

Harmonic Oscillation Detection enabled
Fault enabled

Watchdog lower frequency limit
disabled
Oscillator Watchdog Monitor functions

Fault Pin disabledLock

BOUF (R/W)

CNGEN (R/W)
BOUEN (R/W)

HODEN (R/W)
FAULTEN (R/W)

HODF (R/W)MONDIS (R/W)

0
15

1
14

1
13

1
12

0
11

1
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FAULTPINDIS (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-9: CGU_OSCWDCTL Register Diagram

Table 6-16: CGU_OSCWDCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set and theCGU_OSCWDCTL.LOCK bit is set, the
CGU_OSCWDCTL register is read only (locked).

23

(R/W)

FAULTPINDIS Fault Pin disabled.

The CGU_OSCWDCTL.FAULTPINDIS bit disables pin fault detection.

15

(R/W)

MONDIS Oscillator Watchdog Monitor functions disabled.

The CGU_OSCWDCTL.MONDIS bit disables all the input clock monitor and fault de-
tection functions.

14

(R/W)

FAULTEN Fault enabled.

The CGU_OSCWDCTL.FAULTEN bit enables fault detection.

13

(R/W)

BOUEN Bad Oscillator Upper Frequency limit detection enabled.

The CGU_OSCWDCTL.BOUEN bit enables upper limit bad oscillation detection.

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–23

Table 6-16: CGU_OSCWDCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12:8

(R/W)

BOUF Bad Oscillator Upper Frequency limit.

The CGU_OSCWDCTL.BOUF bits indicate the desired upper fail limit for the bad os-
cillation detection.

7

(R/W)

CNGEN Clock not Good enabled.

The CGU_OSCWDCTL.CNGEN bit enables the detection of an oscillator watchdog
clock fault.

6

(R/W)

HODEN Harmonic Oscillation Detection enabled.

The CGU_OSCWDCTL.HODEN bit enables harmonic oscillation detection.

5:0

(R/W)

HODF Watchdog lower frequency limit.

The CGU_OSCWDCTL.HODF bit field is used to indicate the desired lower fail limit
for the harmonic oscillation detection in MHz.

CM41X_M4 CGU Register Descriptions

6–24 ADSP-CM41x Mixed-Signal Control Processor

PLL Control Register

The CGU_PLLCTL register contains bits that enable and disable the PLL as well as control its function.

PLL Bypass ClearPLL Disable

PLL Bypass SetPLL Enable

Lock

PLLBPCL (R/W)PLLDIS (R/W)

PLLBPST (R/W)PLLEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-10: CGU_PLLCTL Register Diagram

Table 6-17: CGU_PLLCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

Setting (=1) the CGU_PLLCTL.LOCK bit locks access to the CGU_PLLCTL register.

0 Unlock register

1 Lock register

3

(R/W)

PLLEN PLL Enable.

Setting (=1) the CGU_PLLCTL.PLLEN bit enables the PLL.

0 No action

1 Enable PLL

2

(R/W)

PLLDIS PLL Disable.

Setting (=1) the CGU_PLLCTL.PLLDIS bit disables the PLL.

0 No action

1 Disable PLL

1

(R/W)

PLLBPCL PLL Bypass Clear.

Setting (=1) the CGU_PLLCTL.PLLBPCL bit takes the PLL out of bypass mode.

0 No action

1 Exit bypass mode

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–25

Table 6-17: CGU_PLLCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

PLLBPST PLL Bypass Set.

Setting (=1) the CGU_PLLCTL.PLLBPST bit bypasses the PLL and all the clocks
run on CLKIN.

0 Use PLL

1 Bypass PLL

CM41X_M4 CGU Register Descriptions

6–26 ADSP-CM41x Mixed-Signal Control Processor

Revision ID Register

The CGU_REVID register reports the version of the CGU.

Incremental Version IDMajor Version
REV (R)MAJOR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-11: CGU_REVID Register Diagram

Table 6-18: CGU_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/NW)

MAJOR Major Version.

3:0

(R/NW)

REV Incremental Version ID.

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–27

System Clock Buffer Disable Register

The CGU_SCBF_DIS register controls each system's clock buffer to determine if the SCLKn buffer is enabled.

DCLK Buffer

SCLK0 BufferOCLK Buffer

Lock

DCLKBF (R/W)

SCLK0BF (R/W)OUTCLKBF (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-12: CGU_SCBF_DIS Register Diagram

Table 6-19: CGU_SCBF_DIS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

The CGU_SCBF_DIS.LOCK bit allows writes to the CGU_SCBF_DIS register
when cleared (=0) or blocks writes if set (=1) and the SPU_CTL.GLCK bit is set.

0 Unlock register

1 Lock register

3

(R/W)

OUTCLKBF OCLK Buffer.

The CGU_SCBF_DIS.OUTCLKBF bit enables (=0, default) or disables (=1) OCLKs
buffer.

0 Enable buffer

1 Disable buffer

2

(R/W)

DCLKBF DCLK Buffer.

The CGU_SCBF_DIS.DCLKBF bit enables (=0, default) or disables (=1) DCLKs
buffer.

0 Enable buffer

1 Disable buffer

CM41X_M4 CGU Register Descriptions

6–28 ADSP-CM41x Mixed-Signal Control Processor

Table 6-19: CGU_SCBF_DIS Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

SCLK0BF SCLK0 Buffer.

The CGU_SCBF_DIS.SCLK0BF bit enables (=0, default) or disables (=1) SCLK0s
buffer.

0 Enable buffer

1 Disable buffer

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–29

System Clock Buffer Status Register

The CGU_SCBF_STAT register shows which system clock buffer(s) are disabled. For example clearing the
CGU_CCBF_DIS.CCBF0 bit clears the CGU_SCBF_STAT.SCLK0BF bit after a number of cycles. To guaran-
tee that the correct value is read, this register should be read twice and the second result used.

DCLK1 Buffer

SCLK0 BufferOCLK Buffer

DCLKBF (R)

SCLK0BF (R)OCLKBF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-13: CGU_SCBF_STAT Register Diagram

Table 6-20: CGU_SCBF_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

OCLKBF OCLK Buffer.

The CGU_SCBF_STAT.OCLKBF bit reports the status of the
CGU_SCBF_DIS.OUTCLKBF bit where 0 = enabled and 1 = disabled.

0 Enabled

1 Disabled

2

(R/NW)

DCLKBF DCLK1 Buffer.

The CGU_SCBF_STAT.DCLKBF bit reports the status of the
CGU_SCBF_DIS.DCLKBF bit where 0 = enabled and 1 = disabled.

0 Enabled

1 Disabled

0

(R/NW)

SCLK0BF SCLK0 Buffer.

The CGU_SCBF_STAT.SCLK0BF bit reports the status of the
CGU_SCBF_DIS.SCLK0BF bit where 0 = enabled and 1 = disabled.

0 Enabled

1 Disabled

CM41X_M4 CGU Register Descriptions

6–30 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The CGU_STAT register reflects the PLL status and errors detected during the PLL configuration. This register may
be cleared asynchronously by a reset signal from the RCU module. All bits---except those defined as W1C (write-1-
to-clear)---are read only.

PLL LockClock Alignment

PLL BypassOscillator Watchdog Status Fault Code

PLL EnableOscillator Watchdog Status Fault

Write to DF or MSEL Error

Lock Write ErrorWrite to DIV Error

Address ErrorPLL Configuration Error

PLOCK (R)CLKSALGN (R)

PLLBP (R)OSCWDSTATFC (R)

PLLEN (R)OSCWDSTATF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

WDFMSERR (R/W1C)

LWERR (R/W1C)WDIVERR (R/W1C)

ADDRERR (R/W1C)PCFGERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-14: CGU_STAT Register Diagram

Table 6-21: CGU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W1C)

PCFGERR PLL Configuration Error.

If the CGU_PLLCTL.PLLBPST and the CGU_PLLCTL.PLLBPCL bits are set (=1)
simultaneously or the CGU_PLLCTL.PLLDIS bit was set (=1) in full-on mode or
while trying to enter full-on mode (CGU_PLLCTL.PLLBPCL =1), the
CGU_STAT.PCFGERR bit triggers the bus error.

0 No Error

1 Configuration Error

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–31

Table 6-21: CGU_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W1C)

WDIVERR Write to DIV Error.

The CGU_STAT.WDIVERR bit indicates a write access to the CGU_DIV register (to
trigger an alignment sequence or to change the CGU_DIV.CSEL,
CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, or
CGU_DIV.DSEL bit values) while the PLL is locked, but still aligning the clocks.
Read after write accesses to the CGU_STAT and CGU_DIV registers return the new
value even if the clock frequency change is still in progress.

0 No Error

1 Write DIV Error

19

(R/W1C)

WDFMSERR Write to DF or MSEL Error.

The CGU_STAT.WDFMSERR bit indicates a write access to the CGU_CTL register to
change the CGU_CTL.DF or CGU_CTL.MSEL bit values while the PLL is locking.

0 No Error

1 Write DF/MSEL Error

17

(R/W1C)

LWERR Lock Write Error.

The CGU_STAT.LWERR bit indicates an attempt to write to write-protected (locked)
CGU registers. The CGU issues a bus error for this condition.

0 No Error

1 Lock Write Error

16

(R/W1C)

ADDRERR Address Error.

The CGU_STAT.ADDRERR bit indicates an attempt to make a read or write access to
unimplemented addresses or accesses are non-aligned. The CGU issues a bus error for
this condition.

0 No Error

1 Address Error

15

(R/NW)

OSCWDSTATF Oscillator Watchdog Status Fault.

The CGU_STAT.OSCWDSTATF bit indicates a fault in the oscillator watchdog
(CGU's OSC_WDSTAT[1:0]) input pins.

0 No Fault

1 Fault

14:12

(R/NW)

OSCWDSTATFC Oscillator Watchdog Status Fault Code.

The CGU_STAT.OSCWDSTATFC bit field indicates the nature of the fault in the os-
cillator watchdog (CGU's OSC_WDSTAT[1:0]) input pins.

0 No Fault

1 No Input Clock

CM41X_M4 CGU Register Descriptions

6–32 ADSP-CM41x Mixed-Signal Control Processor

Table 6-21: CGU_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2 Subharmonic CLKIN

3 Harmonic CLKIN

4 No AUX_CLK

5 CLKIN > Upper Frequency Limit (BOUF)

6 Reserved

7 Multiple Limit Faults

3

(R/NW)

CLKSALGN Clock Alignment.

The CGU_STAT.CLKSALGN bit indicates whether a clock alignment sequence is in
progress. This bit is set when clocks alignment is required by changes to
CGU_DIV.CSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, CGU_DIV.DSEL, or
CGU_DIV.OSEL. The CGU_STAT.CLKSALGN bit is cleared when clocks are
aligned.

Note that (after a PLL frequency change in active state) the CGU_STAT.CLKSALGN
bit may indicate that clocks are not aligned even though the clocks are aligned (all
clocks are aligned and running at CLKIN frequency).

0 Clocks are Aligned

1 Clocks not Aligned (alignment in progress)

2

(R/NW)

PLOCK PLL Lock.

The CGU_STAT.PLOCK bit indicates whether the PLL is locked. This bit is set when
the PLL locks (PLL lock counter end-of-count). The CGU_STAT.PLOCK bit is
cleared when requested PLL frequency change (for PLL reset, PLL disable-to-enable
transition, or a change to the CGU_CTL.MSEL or CGU_CTL.DF values) is in prog-
ress.

0 PLL not Locked (PLL frequency change in progress)

1 PLL Locked

1

(R/NW)

PLLBP PLL Bypass.

The CGU_STAT.PLLBP bit indicates whether the PLL is bypassed. The default val-
ue for the CGU_STAT.PLLBP bit is determined by the bypass strap pin.

0 PLL not Bypassed

1 PLL Bypassed

0

(R/NW)

PLLEN PLL Enable.

The CGU_STAT.PLLEN bit indicates whether the PLL is enabled.

0 Disabled

1 Enabled

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–33

Time Stamp Counter 32 LSB Register

The CGU_TSCOUNT0 register address is used to read the CoreSight time stamp counter LSB 32-bit (bits [31:0])
value.

TSCOUNT0 Value

TSCOUNT0 Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-15: CGU_TSCOUNT0 Register Diagram

Table 6-22: CGU_TSCOUNT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE TSCOUNT0 Value.

The CGU_TSCOUNT0.VALUE bit field holds the time stamp counter 32 LSBs.

CM41X_M4 CGU Register Descriptions

6–34 ADSP-CM41x Mixed-Signal Control Processor

Time Stamp Counter 32 MSB Register

The CGU_TSCOUNT1 register address is used to read the CoreSight time stamp counter MSB 32-bit (bits [63:32])
value.

Timestamp Counter 32 MSB

Timestamp Counter 32 MSB

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-16: CGU_TSCOUNT1 Register Diagram

Table 6-23: CGU_TSCOUNT1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Timestamp Counter 32 MSB.

The CGU_TSCOUNT1.VALUE bit field holds the time stamp counter 32 MSBs.

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–35

Time Stamp Control Register

The CGU_TSCTL register controls the operation of the CoreSight time stamp counter.

Load Counter

Counter EnableCounter's Clock Divider

Lock

LOAD (R/W)

EN (R/W)TSDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-17: CGU_TSCTL Register Diagram

Table 6-24: CGU_TSCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

Setting the CGU_TSCTL.LOCK bit locks this register.

0 Unlock

1 Lock

7:4

(R/W)

TSDIV Counter's Clock Divider.

The CGU_TSCTL.TSDIV bit field divides SYSCLK by 2TSDIV.

0-15 Divides SYSCLK by 2TSDIV

1

(R/W)

LOAD Load Counter.

Writing one to the CGU_TSCTL.LOAD bit causes CoreSight time stamp counter to
be loaded from the CGU_TSVALUE0 and CGU_TSVALUE1 registers.

0 Always read as "0"

0

(R/W)

EN Counter Enable.

The CGU_TSCTL.EN bit enables or disables the CoreSight time stamp counter.

0 Counter Disabled

1 Counter Enabled

CM41X_M4 CGU Register Descriptions

6–36 ADSP-CM41x Mixed-Signal Control Processor

Time Stamp Counter Initial 32 LSB Value Register

The CGU_TSVALUE0 register holds the least significant bits (bits [31:0]) value that is initially loaded to the Core-
Sight time stamp counter.

Counter's 32 LSB Initial Value

Counter's 32 LSB Initial Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-18: CGU_TSVALUE0 Register Diagram

Table 6-25: CGU_TSVALUE0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Counter's 32 LSB Initial Value.

The CGU_TSVALUE0.VALUE bit field holds the LSBs value that is initially loaded
to the CoreSight time stamp counter.

CM41X_M4 CGU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 6–37

Time Stamp Counter Initial MSB Value Register

The CGU_TSVALUE1 register holds the most significant bits (bits [63:32]) value that is initially loaded to the
CoreSight time stamp counter.

Counter's Initial 32 MSB Value

Counter's Initial 32 MSB Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 6-19: CGU_TSVALUE1 Register Diagram

Table 6-26: CGU_TSVALUE1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Counter's Initial 32 MSB Value.

The CGU_TSVALUE1.VALUE bit field holds the MSBs value that is initially loaded
to the CoreSight time stamp counter.

CM41X_M4 CGU Register Descriptions

6–38 ADSP-CM41x Mixed-Signal Control Processor

7 Oscillator Comparator Unit (OCU)

The OCU monitors the frequency of the main derived system clock. The OCU uses an additional oscillator input
(see the data sheet for specifications) to monitor the internal derived system clocks for excessive drift or out-of-
bounds operation. It also provides for additional dead-clock monitoring beyond the basic OSCMON. The OS-
CMON is used for GROSS errors, this block is used to measure smaller errors.

The OCU functions are controlled through control and status registers accessible through the peripheral bus inter-
face.

NOTE: Clock errors detected by the OCU may indicate the processor is operating out-of-range or has no clocking.
A processor response to interrupt assertions may not occur. The system allows this fault output to assert
the chip fault output pin and request external assistance.

OCU Features
The OCU is controlled through the memory-mapped registers which are accessed by the peripheral bus slave port.
The OCU System Clock Monitor has the following features

• A system clock frequency monitor that is implemented using a counter and separate low-frequency oscillator
(LFO)

• A wide counter and programmable measurement period that supports high-frequency resolution.

• Continuous measurement mode that automatically compares the measured frequency against stored limits and
signals a fault when the limits are exceeded

• Manual measurement mode under software control

• Dead clock monitoring. Both input and LFO clocks are monitored for gross frequency error. The frequency
limits that are used to define dead clocks are user-programmable.

• A fault interrupt pin that connects to the system event controller. Fault status and control bits control fault
reporting.

• An asynchronous fault output pin that is to report a catastrophic clock failure

Oscillator Comparator Unit (OCU)

ADSP-CM41x Mixed-Signal Control Processor 7–1

OCU Functional Description
The OCU monitors the frequency of the input clock using an additional low-frequency oscillator input. If the com-
bined frequency drift of the two clocks exceeds the specification, a fault is issued.

CM41X_M4 OCU Register List

Table 7-1: CM41X_M4 OCU Register List

Name Description

OCU_CLKCNT Frequency Measured Count Register

OCU_CMONCNT CLKIN Monitor Reference Count Register

OCU_CTL Control Register

OCU_LMONCNT LFO Monitor Reference Count Register

OCU_MAXCNT Maximum Count Register

OCU_MINCNT Minimum Limit Register

OCU_REFCNT Reference Count Register

OCU_STAT Status Register

Additional OCU Registers

The OCU module contains an additional register (PADS_MONOSC_CFG) that provides configuration status.

CM41X_M4 OCU Interrupt List

Table 7-2: CM41X_M4 OCU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

4 OCU0_ERR OCU0 Freq. out-of-range, or dead clock,
or counter overflow detected

Level

OCU Block Diagram

The Timer Block Diagram shows the functional blocks within the OCU.

OCU Functional Description

7–2 ADSP-CM41x Mixed-Signal Control Processor

LFO CLOCK

EXTERNAL
TRIGGER

LFO COUNTER

START, STOP

ERROR FAULT

CONTROL

MEASURE

LFO CLOCK DOMAIN

SYSCLK COUNTER

SYSCLK MAX/MIN
COUNT COMPARATORS

SYSCLK

Figure 7-1: Timer Block Diagram

The measurement counter is located in the SYSCLK domain. It measures the time interval in SYSCLK cycles be-
tween start and stop events. These events originate in the LFO clock domain. The events indicate when the low-
frequency oscillator (LFO) time-base counter begins and ends a count of COUNT_TIME cycles of the reference
clock (either the LFO clock or the external calibration trigger input.) The resulting count of SYSCLK cycles can be
read in the OCU_CLKCNT register.

Input Clock Frequency Measurement

The OCU measures the input clock frequency by counting input clocks for a predetermined period. The final coun-
ter result is automatically loaded into the OCU_CLKCNT register. A programmable number of cycles of a separate
low-frequency oscillator (LFO) determines the counting period. The number of LFO cycles used for an input clock
frequency measurement is located in the OCU_REFCNT register. Measurement cycles can be run continuously. They
can also be run manually. Bits in the OCU_CTL register control this behavior.

Performing a Frequency Measurement

A frequency measurement is started by setting the OCU_CTL.MEASURE bit. The measurement does not start if the
OCU_CTL.MEASURE bit is already set (=1) or the OCU_STAT.BUSY bit =1. Starting a measurement cycle causes
the input clock counter and the OCU_CLKCNT register to be cleared. The LFO reference counter is loaded from the
OCU_REFCNT register. The OCU_STAT.BUSY status bit is set. The fault status bits are unaffected.

While the LFO reference counter counts down, the input clock counter counts up. The counter run signal is
synchronized from the slower LFO clock domain to the faster input clock domain. This synchronization minimizes
the delay and the counter error due to synchronization.

When the reference count reaches zero, it stops counting. The input clock counter stops counting after a slow-to-fast
synchronization delay. Because the start and stop signals are synchronized in the same direction, the input counter
error due to synchronization is ±1.

When counting completes, the OCU_CLKCNT register is updated with the final input clock count. Then, the
OCU_STAT.BUSY bit is cleared.

OCU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 7–3

Comparing Measured Frequency Against Limits

The OCU_MINCNT and OCU_MAXCNT are user-programmable limit registers which are used to set bounds on the
acceptable frequency error. At the end of a measurement cycle, the input clock counter is compared to each limit. If
the measured frequency is outside the specified range, the OCU_STAT.FREQ_FAULT status bit is set.

NOTE: Changing the contents of the limit registers during a measurement cycle can have unpredictable effects on
the fault detection.

Automatic Frequency Monitoring

Setting the OCU_CTL.AUTO_EN control bit enables continuous automatic frequency fault detection. A new meas-
urement cycle is started a few LFO clocks after the current cycle completes. All other functions are identical between
the manual and automatic modes.

Dead Clock Monitoring

The input clock and the LFO clock are monitored for gross frequency errors. This monitoring is accomplished by
synchronizing the status handshake signals across the clock domains. The reference clock domain sends a request
which is synchronized to the target clock domain, which in turn sends an acknowledge signal back to the reference
clock domain. If the handshake is not completed by a user-specified number of clock cycles, a dead clock error signal
is asserted.

The LFO clock monitors the input clock. The handshake timeout value is contained in the OCU_CMONCNT regis-
ter, which specifies a number of LFO clock cycles. A dead input clock error sets the OCU_STAT.CMON_FAULT
sticky status bit.

The input clock monitors the LFO clock. The handshake timeout value is contained in the OCU_LMONCNT regis-
ter, which specifies a number of input clock cycles. A dead LFO clock error sets the OCU_STAT.LMON_FAULT
sticky status bit.

The dead clock monitoring operations are only run when the OCU_CTL.AUTO_EN control bit is set.

Control and Status

All the control bits are contained in the OCU_CTL register. All the status bits are contained in the OCU_STAT
register.

The OCU_CTL.MEASURE bit starts a frequency measurement cycle when it transitions from 0 to1. If this bit is set
during a running measurement cycle, the measurement cycle is not interrupted and no new measurement cycle starts
after the current one completes. Wait until the OCU_STAT.BUSY bit is clear (=0) before starting a new measure-
ment cycle.

The OCU_CTL.AUTO_EN bit enables continuous automatic measurement cycles. This bit can be modified at any
time. Clearing it does not abort a measurement cycle. When OCU_CTL.AUTO_EN is high, the
OCU_CTL.MEASURE bit has no effect.

OCU Functional Description

7–4 ADSP-CM41x Mixed-Signal Control Processor

The OCU_CTL.FREQ_FAULT_EN bit allows the OCU_STAT.FREQ_FAULT bit to be OR'ed into the
OCU_FAULT output. The OCU_CTL.CMON_FAULT_EN and OCU_CTL.LMON_FAULT_EN bits provide the
same behavior for the OCU_STAT.CMON_FAULT and OCU_STAT.LMON_FAULT bits, respectively. The
OCU_CTL.DEAD_CLOCK_EN bit gates the OCU_DEAD_CLOCK output.

The OCU_STAT.FREQ_FAULT bit is set when a measurement cycle completes and the clock counter is outside
the limits set by the OCU_MINCNT and OCU_MAXCNT registers. This is sticky write-one-to-clear bit. It is also
cleared when the OCU_rstb signal is asserted.

Faults in the respective dead clock monitors set the OCU_STAT.CMON_FAULT and OCU_STAT.LMON_FAULT
bits. They are cleared in the same way as the OCU_STAT.FREQ_FAULT bit.

The OCU_STAT.OVERFLOW sticky status bit is set when the input clock counter overflows during a frequency
measurement. It is cleared in the same way as the OCU_STAT.FREQ_FAULT bit. The OCU_STAT.OVERFLOW
bit can also be OR'ed into the ocu_fault output. It is masked by the OCU_CTL.FREQ_FAULT_EN bit.

Reset Behavior

All OCU registers are reset to default states on the assertion of the SYS_HWRST signal. The measurement state
machine is reset to the idle state. The asynchronous fault output is deasserted. The peripheral bus interface state is
reset by the peripheral-specific reset.

MMR Interface

The OCU memory mapped registers are accessed through the SCB slave interface. The OCU occupies a 4 KB
memory space. All system crossbar accesses to the OCU are interpreted as 32-bit aligned reads (the processor and
OCU only support 32-bit accesses). The two address LSBs are ignored. For writes, byte resolution is supported
through the SCB write strobes. Reads and writes to reserved addresses return a slave error. The assertion of the SCB
reset asynchronously resets the bus interface state. The SCB reset does not affect any OCU register state, unless a
write was in-progress at the time. In that case, the state of the addressed register is unspecified.

Outputs

The OCU produces two control outputs. The OCU_ERR signal goes active high to indicate a fault in the frequency
measurement, or one of the dead clock monitor operations. The propagation of the fault status to this output is
controlled by several enables.

The OCU_DEAD_CLOCK signal goes active LOW when a dead clock fault is detected on the input clock. It is
deasserted HIGH when the OCU block is reset.

Clock Domains and Synchronization

The clock counter is clocked in the input clock domain. The time base counter is clocked in the LFO clock domain.
In either case, the respective count enable operations are synchronized to the clock domain of each counter. There is
a ±1 uncertainty due to the synchronization.

OCU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 7–5

The measurement state machine is run in the LFO clock domain. This allows the input clock measurement to run
for an exact number of LFO (slow) clocks. The synchronization error of the clock counter is small due to the higher
frequency of the input clock. To ensure correct operation of the frequency measurement system, the input clock
must be at least twice the frequency of the LFO clock. This frequency ratio allows correct functioning in the pres-
ence of a frequency drift that is well above the expected fault limits.

There are no clock ratio requirements for the dead clock monitoring operations because they use a full handshake
across the clock boundary.

Critical Startup and Shutdown

While an OCU fault can signal a critical system error that requires shutdown, the OCU needs no critical handling.
To avoid spurious errors, ensure that the clocks used by the OCU are stable before enabling continuous monitoring.

OCU Architectural Concepts

The following sections describe the OCU architectural concepts including frequency measurement, dead clock de-
tection, calibration, clock gating and jitter.

Clock Frequency Measurement

The frequency accuracy of the input clock must be ensured within a certain tolerance. This is accomplished by
counting the number of input clocks within a predefined period of time. This clock count is then compared to max-
imum and minimum count values which are based on the acceptable frequency error. The amount of measurement
time must be large enough to provide the necessary frequency resolution, but small enough that the system can issue
a fault quickly enough to take appropriate action.

The time base is used establish the measurement time is provided by an additional low frequency oscillator (LFO)
input. Since this oscillator is not a perfect time base, the measured input clock frequency error is actually the sum of
the frequency errors of the input clock and the LFO. If the drift of each oscillator is in the direction opposite to the
other, the input clock error appears larger than it is. If the drift is in the same direction, the error appears smaller.
Thus, the LFO error can mask the input clock error. There is no solution to resolve this potential problem. It is
possible that the system designer can choose crystals which are known to drift in opposite directions.

The frequency offset from nominal can be measured and compensated for in the factory using calibration. The re-
maining frequency error is due to temperature and aging effects. These errors cannot be removed, and set a bound
on the accuracy of the frequency measurement.

The inherent measurement tolerance of the OCU is ±2 input clocks in any complete measurement sequence. The
Inherent Measurement Tolerance figure illustrates the tolerance (input clock is called SYSCLK).

OCU Functional Description

7–6 ADSP-CM41x Mixed-Signal Control Processor

N 1 0

COUNT

MEASURE

LFO CLOCK

SYSCLK

UNCERTAINTY

START/STOP

SYSCLK COUNT

Figure 7-2: Inherent Measurement Tolerance

Clock Frequency Measurement Example

A frequency measurement depends on the following quantities:

• fSYS - SYSCLK frequency; for example, 100 MHz

• fLFO - LFO reference frequency; for example, 32.768 KHz

• ftolSYS - expected frequency tolerance of fSYS

• ftolLFO - expected frequency tolerance of fLFO

• COUNT_TIME - number of LFO cycles in the counting interval; for example, 32768 cycles = 1 second

The absolute time that elapses during COUNT_TIME LFO cycles is:

T = (COUNT_TIME / fLFO) × (1 ± ftolLFO) seconds
The SYSCLK count that is captured during a complete measurement, given the inherent ±2 SYSCLK cycle measure-
ment uncertainty, is:

COUNT = int(T × fSYS) × (1 ± ftolSYS) ± 2 counts
= int((COUNT_TIME × (fSYS / fLFO) × (1 ± ftolLFO) × (1 ± ftolSYS)) ± 2
For the frequencies and counting interval in the above example, the expected range of COUNT in the measurement
is:

COUNT = int(32768 × (108 / 32768) × (1 ± ftolLFO) × (1 ± ftolSYS)) ± 2

= int(108 × (1 ± ftolLFO) × (1 ± ftolSYS)) ± 200

If, for example, the frequency tolerances of the LFO and SYSCLK time bases were 100 ppm = 10-4 and 200 ppm =

2 × 10-4 respectively, then the expected range of COUNT is:

COUNTmax = int(108 × (1 + ftolLFO) × (1 + ftolSYS)) + 2

= int(108 × (1 + 10-4) × (1 + 2×10-4)) + 2
= int(100,000,000 × 1.0001 × 1.0002) +2

OCU Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 7–7

= 100,030,002 + 2 = 100,030,004
COUNTmin = int(108 × (1 - ftolLFO) × (1 - ftolSYS)) - 2
= int(100,000,000 × 0.9999 × 0.9998) -2
= 99,970,002 -2 = 99,970,000
As can be seen from this example, the measurement tolerance of the OCU (±2 SYSCLKs) can be made negligible if
sufficient time is allowed for the measurement interval. This measurement tolerance can be expressed as:

tolOCU = 2 × (fLFO / fSYS)/ COUNT_TIME
~= 2 / (T × fSYS)
For T=1 second and fSYS = 100 MHz, this is 0.02 ppm.
For T=10 milliseconds and fSYS = 100 MHz, this is 2 ppm.

Dead Clock Detection

The OCU can detect dead or malfunctioning clocks on both the input clock and the LFO clock. A dead clock is a
clock that is not switching, or is switching at a rate that is far outside the expected nominal frequency.

To detect a dead clock, a status request or acknowledge handshake is used. The request is synchronized from the
reference clock domain to the target clock domain, and the acknowledge is synchronized back in the other direction.
When the status request is issued, a timer begins counting down. If the synchronized acknowledge is not received
before the timer reaches zero, a fault is asserted. The timer period is specified in a user-programmable register.

The input clock and the LFO clock monitor each other. The LFO serves as the reference for the input clock moni-
tor. The input clock serves as the reference for the LFO clock monitor. This scheme is not robust for faults that
affect both clocks.

Dead clock errors are captured in sticky status bits, one per monitored clock. They can be signaled to the system
event controller. Dead input clock faults are also optionally signaled through a separate asynchronous output port
which is not synchronized to either the input or system clocks. This asynchronous output handles the case in which
the input clock is the system clock. In this case, the system event controller cannot be assumed to be functional.

The reference clock period determines the timeout delay of the dead clock monitor operations. This delay deter-
mines the frequency resolution of the monitor operations.

Calibration

For a given clock measurement time, there is an ideal clock count. This count assumes that a perfectly accurate clock
exists. In reality, the two clock sources, a system clock and an LFO, have frequency errors from the nominal specifi-
cations. The combined frequency error can be measured by running a manual measurement cycle under controlled
temperature and voltage conditions. For correct fault detection, the deviation from the ideal count must be included
in the stored count limits. A manual measurement cycle is started by setting the MANUAL control bit (=1). Extra
manual measurement cycles are disabled until that bit is brought low again.

The OCU_STAT.BUSY bit indicates that the measurement cycle is in-progress.

OCU Architectural Concepts

7–8 ADSP-CM41x Mixed-Signal Control Processor

This method measures the combined frequency error. If the system clock frequency error can be measured in anoth-
er way, then the LFO frequency error can be derived from OCU calibration data.

Clock Jitter

Jitter on both the input clock and the reference clock creates a frequency measurement error. The magnitude of the
error depends on the magnitude and frequency of the clock jitter, as well as the length of the measurement period.
High frequency jitter is averaged out over the measurement interval. Lower frequency clock drift is more likely to
introduce frequency error, particularly when the measurement interval is short. In general, maximize the measure-
ment interval to minimize the measurement error due to clock jitter. Jitter does not affect dead clock monitoring,
assuming there is a reasonable reference counter interval.

OCU Operating Modes
By default, the OCU is in manual measurement mode. A continuous measurement mode can be enabled through
the control register.

Manual Mode

In this mode, a clock measurement cycle is started when the OCU_CTL.MEASURE bit changes state from 0 to 1.
Only one measurement cycle is run. The OCU_CTL.MEASURE bit must be cleared before another measurement
cycle can be started. The LFO clock monitor cycle does not run while in this mode. Faults and errors are captured in
sticky status bits in the OCU_CTL register.

Automatic Mode

In automatic mode, measurement cycles (including the LFO monitor cycle) are run continuously. Faults and errors
are captured in the sticky status bits, as in manual mode.

OCU Event Control
The OCU generates an event output. This output is synchronous to the system clock. It is intended to be routed to
the system event handler. Two asynchronous outputs exist to indicate clock faults in the absence of a functional sys-
tem clock.

FAULT Synchronous Error

The error output signal OCU_ERR is an active HIGH level sensitive output. The fault event is triggered by one of
the following:

• a frequency measurement out-of-range detection

• a dead clock detection on either dead clock monitor

• a frequency counter overflow

FAULT = ((FREQ_FAULT || OVERFLOW) && FREQ_FAULT_EN) || (CMON_FAULT &&
CMON_FAULT_EN) || (LMON_FAULT && LMON_FAULT_EN)

OCU Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 7–9

The event handler must clear the fault output by clearing the fault status bits.

Asynchronous Event Outputs

Two asynchronous outputs exist to communicate OCU events in the case where the system is unresponsive to syn-
chronous events. The ocu_dead_clock signal indicates a dead clock condition on OCU_clkin. The
OCU_CTL.DEAD_CLOCK_EN control bit gates this output. The ocu_async_fault output is the logic OR of the
ocu_dead_clock output and the synchronous ocu_fault event output. Both these outputs are active LOW.

Unclocked Fault Response in System

The main purpose of the OCU is to measure the main internal system clock to a high-degree of accuracy. An error
could indicate the system processors may be unable to properly respond to system clock problems. The system may
be configured for the following responses in the absence of a reliable internal system clock.

Asserting the Fault pin. It is also possible to assert the Fault pin up on an OCU Fault due to asynchronous fault or a
dead clock event, by programming the SYSBLK_FAULT_TRIPEN register.

GPIO Pin Safe state. The VMU can be configured to assert the Pin Safe State on a clock fault detected by the
OCU, for both asynchronous faults and the dead clock state. The PADS_VMU_TRIPEN.OCU0FAULT and
PADS_VMU_TRIPEN.OCU0CLK bits are used to enable the pin safe state trips for the OCU faults.

NOTE: The Fault pin is also asserted on a pin safe state generated from the OCU.

Clock Not Good reset. The SYSBLK_CLKNG_TRIPEN register can be used to program whether the CLKNG must
be enabled for an Asynchronous Fault Trip or a Dead Clock. Once enabled and asserted, the chip would be put
under reset and can only be recovered from its 'Safe State' by a hard reset or power cycle. Note that the
CGU_OSCWDCTL.CNGEN must also be enabled in order for the safe reset condition to be forwarded from the
OCU.

OCU Interrupt Signals

The OCU contains a level-sensitive active high interrupt called ocu_fault. This signal is intended to be connected to
the system event controller or fault management unit.

Another output called ocu_dead_clock is an active low signal which is asynchronous to the input and APB clock
domains. This signal can be used to indicate dead clock faults on the input clock in situations where the larger sys-
tem is incapacitated due to a clock fault.

Both these outputs can be masked by bits in the OCU_CTL register. Refer to the functional description for more
information.

OCU Programming Model
This section describes OCU interactions with other system functions. Software action is required to ensure that
these interactions are safe.

OCU Event Control

7–10 ADSP-CM41x Mixed-Signal Control Processor

Startup

Software must ensure that both the input clock and the LFO reference clock are running with a stable frequency
before the OCU is enabled.

Interaction with CGU

The OCU expects to see continuously running clocks of a specific frequency. Clock generator (CGU) programming
changes which alter the frequency of monitored clocks, or gate said clocks, can cause the OCU to generate spurious
faults. Software must disable the OCU before modifying the CGU programming. Software must also ensure that the
clocks are stable before enabling the OCU.

To disable the OCU prior to CGU programming changes:

1. Clear the OCU_CTL.AUTO_EN control bit to turn off continuous monitoring.

2. Poll the OCU_STAT.BUSY status bit until it is cleared.

3. Program the CGU.

CM41X_M4 OCU Register Descriptions
Oscillator Comparator Unit (OCU) contains the following registers.

Table 7-3: CM41X_M4 OCU Register List

Name Description

OCU_CLKCNT Frequency Measured Count Register

OCU_CMONCNT CLKIN Monitor Reference Count Register

OCU_CTL Control Register

OCU_LMONCNT LFO Monitor Reference Count Register

OCU_MAXCNT Maximum Count Register

OCU_MINCNT Minimum Limit Register

OCU_REFCNT Reference Count Register

OCU_STAT Status Register

CM41X_M4 OCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 7–11

Frequency Measured Count Register

The OCU_CLKCNT register contains the final clock count after the count sequence has completed. The input clock
counter is an up counter which starts at zero.

Input Clock Counter Value

Input Clock Counter Value

CLK_COUNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CLK_COUNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-3: OCU_CLKCNT Register Diagram

Table 7-4: OCU_CLKCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

CLK_COUNT Input Clock Counter Value.

The OCU_CLKCNT.CLK_COUNT bit field contains the clock counter value after a
measurement.

CM41X_M4 OCU Register Descriptions

7–12 ADSP-CM41x Mixed-Signal Control Processor

CLKIN Monitor Reference Count Register

The OCU_CMONCNT register specifies the number of LFO periods in the OCU SYSCLK monitor cycle.

CLKIN Monitor Count

CLKIN Monitor Count

CMON_COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CMON_COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-4: OCU_CMONCNT Register Diagram

Table 7-5: OCU_CMONCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CMON_COUNT CLKIN Monitor Count.

The OCU_CMONCNT.CMON_COUNT bit field specifies the number of LFO clocks in
the input clock monitor cycle.

CM41X_M4 OCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 7–13

Control Register

The OCU_CTL register configures several interrupts as well as test and lock functions.

Common Fault Enable

Frequency Fault EnableLFO Monitor Fault Enable

Automatic Monitor EnableAsynchronous Fault Output Enable

Measurement CycleExternal LFO Oscillator Disable

Test Mode EnableEnable LOCK

CMON_FAULT_EN (R/W)

FREQ_FAULT_EN (R/W)LMON_FAULT_EN (R/W)

AUTO_EN (R/W)DEAD_CLOCK_EN (R/W)

MEASURE (R/W)LFO_OSC_DIS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TEST (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-5: OCU_CTL Register Diagram

Table 7-6: OCU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Enable LOCK.

When asserted the OCU_CTL.LOCK bit enables the register locking function.

30

(R/W)

TEST Test Mode Enable.

The OCU_CTL.TEST bit moves the counter overflow bit position from bit 31 to bit
8.

6

(R/W)

LFO_OSC_DIS External LFO Oscillator Disable.

The OCU_CTL.LFO_OSC_DIS bit drives ocu_osc_disable output signal. This bit
has no other internal functionality.

5

(R/W)

DEAD_CLOCK_EN Asynchronous Fault Output Enable.

The OCU_CTL.DEAD_CLOCK_EN bit enables the ASYNC_FAULT output. This
gates the ocu_async_fault output port.

4

(R/W)

LMON_FAULT_EN LFO Monitor Fault Enable.

The OCU_CTL.LMON_FAULT_EN bit enables the OCU_STAT.LMON_FAULT sta-
tus onto interrupt output port.

3

(R/W)

CMON_FAULT_EN Common Fault Enable.

The OCU_CTL.CMON_FAULT_EN bit enables the OCU_STAT.CMON_FAULT sta-
tus onto interrupt output port.

CM41X_M4 OCU Register Descriptions

7–14 ADSP-CM41x Mixed-Signal Control Processor

Table 7-6: OCU_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

FREQ_FAULT_EN Frequency Fault Enable.

The OCU_CTL.FREQ_FAULT_EN bit enables the OCU_STAT.FREQ_FAULT sta-
tus onto the interrupt output port.

1

(R/W)

AUTO_EN Automatic Monitor Enable.

The OCU_CTL.AUTO_EN bit enables automatic monitor mode. All monitors run
continuously.

0

(R/W)

MEASURE Measurement Cycle.

The OCU_CTL.MEASURE bit controls whether to begin a manual measurement cycle
on the low to high transition of this bit. This bit is ignored while in automatic mode.

CM41X_M4 OCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 7–15

LFO Monitor Reference Count Register

The OCU_LMONCNT register specifies the number of system clock periods in the OCU LFO monitor cycle.

LFO Monitor Count

LFO Monitor Count

LMON_COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LMON_COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-6: OCU_LMONCNT Register Diagram

Table 7-7: OCU_LMONCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

LMON_COUNT LFO Monitor Count.

The OCU_LMONCNT.LMON_COUNT bit field specifies the number of input clocks in
the LFO monitor cycle.

CM41X_M4 OCU Register Descriptions

7–16 ADSP-CM41x Mixed-Signal Control Processor

Maximum Count Register

The OCU_MAXCNT register contains a software supplied upper count limit. If, on measurement, the
OCU_CLKCNT register is more than this value, an out of bounds signal is generated.

Maximum Count

Maximum Count

MAX_COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MAX_COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-7: OCU_MAXCNT Register Diagram

Table 7-8: OCU_MAXCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

MAX_COUNT Maximum Count.

The OCU_MAXCNT.MAX_COUNT bit field contains the counter upper compare lim-
it.

CM41X_M4 OCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 7–17

Minimum Limit Register

The OCU_MINCNT register contains a software supplied lower count limit. If, on measurement, the OCU_CLKCNT
register is less than this value, an out of bounds signal is generated.

Minimum Count

Minimum Count

MIN_COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MIN_COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-8: OCU_MINCNT Register Diagram

Table 7-9: OCU_MINCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

MIN_COUNT Minimum Count.

The OCU_MINCNT.MIN_COUNT bit field contains the counter lower compare limit.

CM41X_M4 OCU Register Descriptions

7–18 ADSP-CM41x Mixed-Signal Control Processor

Reference Count Register

The OCU_REFCNT register specifies the number of LFO clock periods in a input clock measurement cycle

Reference Count

Reference Count

REF_COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

REF_COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-9: OCU_REFCNT Register Diagram

Table 7-10: OCU_REFCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

REF_COUNT Reference Count.

The OCU_REFCNT.REF_COUNT bit field specifies number of LFO clock periods in
the input clock measure cycle.

CM41X_M4 OCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 7–19

Status Register

OCU status register

Clkin monitor fault status

LFO monitor fault statusFreq. measurement overflow status

Freq. fault statusFreq. measurement in progress

CMON_FAULT (R/W1C)

LMON_FAULT (R/W1C)OVERFLOW (R/W1C)

FREQ_FAULT (R/W1C)BUSY (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 7-10: OCU_STAT Register Diagram

Table 7-11: OCU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/NW)

BUSY Freq. measurement in progress.

Input clock measurement cycle is in progress.

3

(R/W1C)

OVERFLOW Freq. measurement overflow status.

Sticky status bit set when the input clock counter overflows.

2

(R/W1C)

CMON_FAULT Clkin monitor fault status.

Sticky status bit set when a dead clock fault is detected on the input clock.

1

(R/W1C)

LMON_FAULT LFO monitor fault status.

Sticky status bit set when a dead clock fault is detected on LFO clock.

0

(R/W1C)

FREQ_FAULT Freq. fault status.

Sticky status bit set when a frequency fault is detected on input clock.

CM41X_M4 OCU Register Descriptions

7–20 ADSP-CM41x Mixed-Signal Control Processor

8 System Protection Unit (SPU)

The system protection unit (SPU) provides features for protecting system resources from errant reads and writes. A
number of protection categories are available. Each category contains a set of registers for protection.

In a system with multiple system MMR masters, configurations of peripherals can be changed unintentionally lead-
ing to bad data or even system malfunctions. The peripherals are shared resources in the system. The SPU restricts
access to certain MMRs, similar to the functionality of a semaphore.

SPU Features
The SPU has the following features:

• Write-protect and access protect system MMR from certain system masters and core masters.

• Simultaneously lock multiple peripheral configuration registers through a global lock mechanism.

• Write-protect and access protect and block access to its own write-protection registers from other system mas-
ters.

In the ADSP-CM41x, two instances of the SPU are provided.

• SPU1 controls the main peripheral bus in the SYSCLK domain.

• SPU0 controls the M0 Subsystem peripheral bus fabric in the SCLK0 domain.

There are three potential masters for both peripheral buses. The Cortex-M4 core, the Cortex-M0 core and the main
system fabric.

SPU Functional Description
The following sections provide information on the function of the SPU.

CM41X_M4 SPU Register List

The System Protection Unit (SPU) provides a set of registers that can protect system resources from errant writes.
The protection categories are global lock (protects configuration registers) and write protect register lock (protects
the write protect register). For more information on SPU functionality, see the SPU register descriptions.

System Protection Unit (SPU)

ADSP-CM41x Mixed-Signal Control Processor 8–1

Table 8-1: CM41X_M4 SPU Register List

Name Description

SPU_AP[n] Access Protect Register n

SPU_CTL Control Register

SPU_DEVID Device Configuration Register

SPU_IADDR Interrupt Address Register

SPU_IDTLS Interrupt Details Register

SPU_STAT Status Register

SPU_TIMEOUT Timeout Register

SPU_WP[n] Write Protect Register n

CM41X_M0 SPU Interrupt List

Table 8-2: CM41X_M0 SPU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

3 SPU0_TIMEOUT SPU0 Timeout Interrupt Level

5 SPU1_TIMEOUT SPU1 Timeout Interrupt Level

8 SPU0_INT SPU0 Interrupt Level

CM41X_M4 SPU Interrupt List

Table 8-3: CM41X_M4 SPU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

12 SPU1_TIMEOUT SPU1 Timeout Interrupt Level

27 SPU0_TIMEOUT SPU0 Timeout Interrupt Level

45 SPU1_INT SPU1 Interrupt Level

46 SPU0_INT SPU0 Interrupt Level

Peripheral Register Write Protection

The SPU has a write-protection register (SPU_WP[n]) associated with each peripheral. Each of these write-protec-
tion registers has the exact same bits that correspond to a particular SMMR master (for example, Core 0, Core 1,
MDMA). When the bits are set, the SPU locks the corresponding SMMR masters from accessing the register ad-
dress space of the associated peripheral. The bits in the register can be cleared to allow access to the registers of the
peripheral again. When the SPU intiates the write-protection register, any writes that are in-progress complete be-
fore the SPU blocks subsequent writes.

SPU Functional Description

8–2 ADSP-CM41x Mixed-Signal Control Processor

In the SPU Write Protect Registers figure, each write-protect register in the SPU is associated with a particular pe-
ripheral.

System Protection Unit (SPU)

Write Protect Register 0

Peripheral 0

Figure: SPU Write-protect registers
Each write-protect register in the SPU is associated with a particular peripheral.

Write Protect Register 1
Write Protect Register 2

Write Protect Register N

Peripheral 0 MMR 0
Peripheral 0 MMR 1
Peripheral 0 MMR 2

Peripheral N

Peripheral 0 MMR 0

Peripheral 1
Peripheral 1 MMR 0
Peripheral 1 MMR 1
Peripheral 1 MMR 2

Peripheral 1 MMR 0

Peripheral 2

Peripheral 2 MMR 0
Peripheral 2 MMR 1
Peripheral 2 MMR 2

Peripheral 2 MMR n

Peripheral N MMR 0
Peripheral N MMR 1
Peripheral N MMR 2

Peripheral N MMR n

Figure 8-1: SPU Write Protect Registers

In the figure, a write-protect register in the SPU module blocks write-attempts to the MMR space of the associated
peripheral. The bits in the write-protect register specify from which masters to block write-access.

NOTE: A SPU write protection register (SPU_WP[n]) exists for the SPU alone. If all defined bits are set in this
register for the SPU, any configurations in the SPU are locked and cannot be changed. Only a system reset
can restore access to the SPU.

SPU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 8–3

System Master 1

0 1 1 0

SPU Write Protection Register N

Peripheral N

 System Master 1 Write
Attempt to Peripheral N

Figure: SPU Write-Protect Register Blocking Access from System Master 0 and Core Master 1
A write-protect register in the SPU blocks write-attempts to the associated peripheral’s MMR space. The bits in the write -
protect register specify which masters to block write-access from.

System Master 0 Core Master 1 Core Master 0

Peripheral N MMR 0

Peripheral N MMR 2
Peripheral N MMR 1

Peripheral N MMR n

ACCESS
BLOCKED

Figure 8-2: SPU Write-Protect Register Blocking Access from System Master 0 and Core Master 1

Global Locking

The SPU also has global locking capability. When enabled by setting SPU_CTL.GLCK bit field to a value other
than 0xAD, a system-wide global lock signal is active. Some peripherals have a lock enable bit in their control regis-
ter. When this bit is set, the peripheral recognizes the global lock signal and blocks further write-accesses to its own
control register. Access to the configuration register of the peripheral is enabled when the global lock is turned off in
the SPU.

The Global Locking figure is a conceptual diagram. The diagram shows how the SPU module (or any peripheral)
blocks any write attempts to its control register when:

• The global lock signal from the SPU is active, and

• The global lock enable bit is set in the control register of the peripheral

Peripheral Control MMR

SPU
Global Lock

Signal

Figure: Conceptual Figure of Global Locking
Peripheral blocks write attempts to Control MMR if the
Global Lock bit is set in the peripheral’s Control MMR
and the Global Lock Signal is active from the SPU

 Global Lock
Enable Bit

Write Attempt to Control MMR
(this signal is active high)

Figure 8-3: Global Locking

The SPU can write-protect its own registers. When the SPU_CTL.WPLCK bit is set and global locking is enabled,
the SPU blocks accesses to the SPU write-protection registers. To enable write access to the write-protection registers
in the SPU, disable the global locking.

SPU Functional Description

8–4 ADSP-CM41x Mixed-Signal Control Processor

Peripheral Register Access Protection

In the system, each access protect register (SPU_AP[n]) is assigned to a specific MMR address range associated
with a specific peripheral. When the appropriate bits are set, reads and writes to the peripheral from a specific master
are blocked and an error is returned to the master. For specific register assignments, see ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

SPU Block Diagram
The SPU System-Level Block Diagram shows a system-level block diagram of where the SPU is located in the sys-
tem. It resides between the SMMR interface and the system crossbar. Depending on the configuration of the SPU
write-protect registers, it can block access to some peripherals from certain SMMR masters.

System Crossbar (SCB)

SPU

SMMR
INTERFACE

PERIPHERALS

Figure 8-4: SPU System-Level Block Diagram

SPU Architectural Concepts
As shown in the block diagram, the SPU sits between the system crossbar (SCB) and the SMMR interface to the
peripherals. The SPU gates any MMR access to any peripheral from any master that comes through the SCB. De-
pending on the configuration of the write-protection registers in the SPU, the SPU does or does not allow the
MMR write to go through.

SPU Event Control
The system protection unit provides write-protection against MMRs peripherals and its own write-protect registers.
If a write attempt is made to any locked MMR peripheral the SPU has write-protected, it blocks the write. The SPU
generates a bus error to the master that attempted the write. That master does or does not generate an event, based
on the returned error.

SPU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 8–5

SPU Programming Model
The system protection unit (SPU) consists of write-protect and access-protect registers. Each one corresponds to a
different peripheral instance. Bits in the write-protect registers correspond to system masters that can modify the
MMR contents of the peripherals. By writing to these write-protect registers, the corresponding memory-mapped
registers of the peripheral are write-protected against masters whose bits in the write-protect register are set.

The SPU globally locks the control register of the peripheral. Peripherals that support this feature have a lock enable
bit in their control register. The peripheral blocks any additional write attempts to its control register from any mas-
ter when:

• The global lock signal is active from the SPU, and

• The lock enable bit of the peripheral is set

If the lock enable bit of a peripheral is not set and the global lock signal is active, access to that control register of the
peripheral is still allowed. To grant access again, disable the global lock signal from the SPU by writing the value
0xAD into the SPU_CTL.GLCK bit field.

Another protection mechanism that the SPU offers is write-protection against the write-protection registers. If the
write protect register lock bit (SPU_CTL.WPLCK) is set and the global lock signal is active, writes to the write-
protect registers of the SPU are blocked. To reenable access to the write-protect registers in the SPU, deactivate the
global lock signal by writing 0xAD into the SPU_CTL.GLCK bit field.

Enabling and Disabling the SPU

The SPU is always operating. There are no bits to enable or disable the SPU. The SPU configuration can be upda-
ted at any time. Any ongoing transactions finish before a new configuration is in effect. By default, the SPU does
not write-protect any of the MMRs.

Write-Protecting the SPU

The SPU is treated like any other peripheral in the system. As such, the SPU also has an associated write-protection
register. If this write-protection register is configured to block all writes from all masters, any SPU configuration
remains the same until the next system reset.

SPU Mode Configuration
The SPU can provide address range-wide protection by write-protecting the peripherals MMR address range from
system MMR masters. It can also provide register wide protection using global locking. Peripherals that support this
feature can enable it in their respective configuration register. When the SPU enables the global lock signal, all sub-
sequent writes to the configuration register of the peripheral are blocked until the global lock signal is deasserted.
Similarly, the write-protection registers of the SPU can be write-protected using the global lock signal as well. The
SPU uses all these modes of operation together.

SPU Programming Model

8–6 ADSP-CM41x Mixed-Signal Control Processor

Locking Write-Protect Registers

Use the following steps to lock (write-protect) a register.

1. Set the SPU_CTL.WPLCK bit and configure the SPU_CTL.GLCK field to something other than 0xAD.

The SPU write-protect registers are blocked from further write accesses.

Protecting a Peripheral

Use the following procedure to protect a peripheral.

1. Determine which peripheral needs protection and locate the corresponding write-protect register
(SPU_WP[n]) in the SPU. See the "Write-Protect and Secure Peripheral Registers" section.

2. Determine the SMMR masters from which the peripheral needs protection. Then, set the corresponding bit or
bits in the write-protect register (SPU_WP[n]) for the peripheral. See the "Write-Protect and Secure Peripher-
al Registers" section.

After setting the write-protect register for the particular peripheral, the identified SMMR masters are blocked from
writing to any MMR in the address space of the peripheral. This block remains in place until the bits in the write-
protect register are cleared.

Access Protecting a Peripheral

Use the following procedure to access protect a peripheral. For more information, see ADSP-CM41x Write-Protect
and Secure Peripheral Registers.

1. Determine which peripheral needs protection and locate the corresponding access-protect register
(SPU_AP[n]) in the SPU.

2. Determine the SMMR masters from which the peripheral needs protection. Then, set the corresponding bit or
bits in the write-protect register (SPU_AP[n]) for the peripheral. After setting the write-protect register for
the particular peripheral, the identified SMMR masters are blocked from reading/writing to any MMR in the
address space of the peripheral. This block remains in place until the bits in the access-protect register are
cleared.

CM41X_M4 SPU Register Descriptions
System Protection Unit (SPU) contains the following registers.

Table 8-4: CM41X_M4 SPU Register List

Name Description

SPU_AP[n] Access Protect Register n

SPU_CTL Control Register

SPU Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 8–7

Table 8-4: CM41X_M4 SPU Register List (Continued)

Name Description

SPU_DEVID Device Configuration Register

SPU_IADDR Interrupt Address Register

SPU_IDTLS Interrupt Details Register

SPU_STAT Status Register

SPU_TIMEOUT Timeout Register

SPU_WP[n] Write Protect Register n

CM41X_M4 SPU Register Descriptions

8–8 ADSP-CM41x Mixed-Signal Control Processor

Access Protect Register n

In the system, each SPU_AP[n] register is assigned to a specific MMR address range associated with one peripher-
al. When the appropriate bits are set, read and writes access to the peripheral from a specific master are blocked and
an error is returned to the master. For more information, see the processor specific additional information for the
SPU_AP[n] register.

Core Master x Access Protect Enable

System Master x Access Protect Enable

CMA[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SMA[n] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-5: SPU_AP[n] Register Diagram

Table 8-5: SPU_AP[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

SMA[n] System Master x Access Protect Enable.

The bits in the SPU_AP[n].SMA[n] field correspond to different system masters
in the system. When a particular bit is set in this field, the corresponding system mas-
ter cannot read or write to the corresponding peripheral's MMR address space.

1:0

(R/W)

CMA[n] Core Master x Access Protect Enable.

The SPU_AP[n].CMA[n] bit field corresponds to different cores in the system.
When a particular bit is set in this field, the corresponding core is not able to read or
write to the corresponding peripheral's MMR address space.

Core ID 0 = M0 Supervisor and Core ID 1 = M4 Controller.

CM41X_M4 SPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 8–9

Control Register

The SPU control register (SPU_CTL) provides a global lock for configuration registers as well as control for locking
the write protect (SPU_WP[n]) registers. It also controls the generation of an interrupt to report blocked accesses.

Global LockProtection Violation Interrupt Enable

Access Protect Register Lock

Write Protect Register LockTimeout Monitor

GLCK (R/W)PINTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

1
5

0
4

1
3

1
2

0
1

1
0

APLCK (R/W)

WPLCK (R/W)TOMON (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-6: SPU_CTL Register Diagram

Table 8-6: SPU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W)

TOMON Timeout Monitor.

The SPU_CTL.TOMON bit enables the timeout counter to monitor outstanding
transaction timeout.

0 Disable

1 Enable

18

(R/W)

APLCK Access Protect Register Lock.

When the SPU_CTL.APLCK bit is set in combination with the SPU_CTL.GLCK
bit, writes to the access protect registers are blocked and return an error.

0 Disable

1 Enable

16

(R/W)

WPLCK Write Protect Register Lock.

When the SPU_CTL.WPLCK bit is set in combination with the SPU_CTL.GLCK
bit, writes to the SPU's write protect registers are blocked and return an error.

0 Disable

1 Enable

CM41X_M4 SPU Register Descriptions

8–10 ADSP-CM41x Mixed-Signal Control Processor

Table 8-6: SPU_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

PINTEN Protection Violation Interrupt Enable.

When the SPU_CTL.PINTEN bit is set (=1), a block of any transaction according to
the configured settings produces an interrupt.

0 Disable

1 Enable

7:0

(R/W)

GLCK Global Lock.

The SPU_CTL.GLCK controls the global lock signal. The global lock signal provides
register-based write protection. Writing 0xAD to this field disables the lock, and writ-
ing any other value enables the lock.

CM41X_M4 SPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 8–11

Device Configuration Register

The SPU_DEVID register reports the hardware features that are supported on this device.

No SecurityCore Master Count

Interface TypeSystem Master Count

End Point Count

NS (R)CMCNT (R)

ITYPE (R)SMCNT (R)

0
15

0
14

0
13

0
12

1
11

0
10

0
9

0
8

1
7

0
6

0
5

1
4

0
3

0
2

0
1

1
0

ENDPTCNT (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

1
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 8-7: SPU_DEVID Register Diagram

Table 8-7: SPU_DEVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

24:16

(R/NW)

ENDPTCNT End Point Count.

The SPU_DEVID.ENDPTCNT bit field indicates the number of end points connect-
ed.

15:11

(R/NW)

SMCNT System Master Count.

The SPU_DEVID.SMCNT bit field indicates the number of system masters connect-
ed.

10:6

(R/NW)

CMCNT Core Master Count.

The SPU_DEVID.CMCNT bit field indicates the number of core masters connected.

4

(R/NW)

NS No Security.

The SPU_DEVID.NS bit indicates the absence of security features. Registers related
to security control (SPU_SECURE) and the message register are not available when
security feature is absent.

0 Security

1 No Security

2:0

(R/NW)

ITYPE Interface Type.

The SPU_DEVID.ITYPE bit indicates the interface type of the existing hardware
implementation.

0 System Bus

1 Peripheral Bus

CM41X_M4 SPU Register Descriptions

8–12 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Address Register

The SPU violation address register (SPU_IADDR) reports the address of the first master that caused a security or
protection violation. The value is set and remains sticky upon each assertion of VIRQ.

Violation Address

Violation Address

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-8: SPU_IADDR Register Diagram

Table 8-8: SPU_IADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Violation Address.

The SPU_IADDR.VALUE reports the address of the first master that caused a securi-
ty or protection violation. The value is set and remains sticky upon each assertion of
VIRQ. Write any value to this field to clear.

CM41X_M4 SPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 8–13

Interrupt Details Register

The SPU interrupt details register (SPU_IDTLS) reports the details of the master that caused a security or protec-
tion violation. The value is set and remains sticky upon each assertion of VIRQ. If a second memory access violation
occurs while the SPU_STAT.VIRQ bit is set, the SPU_IADDR and the SPU_IDTLS registers are not updated
until the SPU_STAT.VIRQ bit is cleared.

Read/Write Status

Secure StatusID of Transaction

ID of Transaction

RNW (R)

SECURE (R)ID[7:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ID[15:8] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-9: SPU_IDTLS Register Diagram

Table 8-9: SPU_IDTLS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:8

(R/NW)

ID ID of Transaction.

The SPU_IDTLS.ID reports the ID of the master that cause a security or protection
violations.

1

(R/NW)

RNW Read/Write Status.

The SPU_IDTLS.RNW reports the transaction type of the last signaled interrupt

0 Write

1 Read

0

(R/NW)

SECURE Secure Status.

The SPU_IDTLS.SECURE reports the security status of the last interrupt

0 Non Secure

1 Secure

CM41X_M4 SPU Register Descriptions

8–14 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The SPU_STAT register indicates if there have been any errors, active interrupts and global lock status.

Violation Interrupt Request

Global Lock StatusTimeout Interrupt

Address Error

Timeout ErrorLock Write Error

VIRQ (R/W1C)

GLCK (R)TIRQ (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDRERR (R/W1C)

TOERR (R)LWERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-10: SPU_STAT Register Diagram

Table 8-10: SPU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

LWERR Lock Write Error.

The SPU_STAT.LWERR indicates whether there has been an attempted write to a
register in the SPU with its lock bit (SPU_CTL.WPLCK or SCRLCK) set while
SPU_CTL.GLCK was asserted. This bit is W1C.

0 Inactive

1 Active

30

(R/W1C)

ADDRERR Address Error.

The SPU_STAT.ADDRERR indicates whether there has been an attempted write to a
read-only register or an access an invalid address in the SPU MMR address range. This
bit is W1C.

0 Inactive

1 Active

CM41X_M4 SPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 8–15

Table 8-10: SPU_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29

(R/NW)

TOERR Timeout Error.

The SPU_STAT.TOERR bit indicates a timeout transaction is pending. This bit is set
by a timeout error. The SPU_STAT.TOERR bit should be cleared when the pending
access is acknowledged by the target slave. Else, it is cleared when a subsequent access
does not time out.

In certain cases, when timeout is due to chip malfunctioning, subsequent access are
not allowed to get through the SPU. Therefore, they cannot clear the bit. If the fault
causes an infinite stall, the next access does not happen. The bit requires a full system
reset to be cleared. If the fault causes a long, but finite stall, the next access happens
and clears the bit.

13

(R/W1C)

TIRQ Timeout Interrupt.

The SPU_STAT.TIRQ bit indicates a timeout transaction is pending. This bit is set
by a timeout error. The SPU_STAT.TIRQ bit should be cleared when the pending
access is acknowledged by the target slave.

0 Inactive

1 Active

12

(R/W1C)

VIRQ Violation Interrupt Request.

The SPU_STAT.VIRQ bit indicates that a security and/or protection violation has
been detected and interrupt asserted. This is a W1C bit.

0 Inactive

1 Active

0

(R/NW)

GLCK Global Lock Status.

The SPU_STAT.GLCK indicates whether the global lock is enabled or disabled.

0 Disabled (global_lock=0)

1 Enabled (global_lock=1)

CM41X_M4 SPU Register Descriptions

8–16 ADSP-CM41x Mixed-Signal Control Processor

Timeout Register

The SPU_TIMEOUT register contains the timeout counter value. Program the SPU_CTL.TOMON to enable trans-
action timeout monitoring. The TIRQ interrupt is triggered when the timeout period expires.

Timeout Counter Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-11: SPU_TIMEOUT Register Diagram

Table 8-11: SPU_TIMEOUT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timeout Counter Value.

The SPU_TIMEOUT.VALUE bit field contains the timeout counter value. A read re-
turns the programmed value only (not the current count).

CM41X_M4 SPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 8–17

Write Protect Register n

In the system, each SPU_WP[n] register is assigned to a specific MMR address range associated with one peripher-
al. When the appropriate bits are set, writes to the peripheral from a specific master are blocked and an error is
returned to the master. For more information, see the processor specific additional information for the
SPU_WP[n] register.

Core Master x Write Protect Enable

System Master x Write Protect Enable

CM[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SM[n] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 8-12: SPU_WP[n] Register Diagram

Table 8-12: SPU_WP[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

SM[n] System Master x Write Protect Enable.

The SPU_WP[n].SM[n] bits correspond to different system masters in the system.
When a particular bit is set in this field, the corresponding system master cannot write
to the corresponding peripheral's MMR address space. The write attempt is blocked by
the SPU.

1:0

(R/W)

CM[n] Core Master x Write Protect Enable.

The SPU_WP[n].CM[n] bits correspond to different cores in the system. When a
particular bit is set in this field, the corresponding core cannot write to the correspond-
ing peripheral's MMR address space. The write attempt is blocked by the SPU.

Core ID 0 = M0 Supervisor and Core ID 1 = M4 Controller.

ADSP-CM41x Write-Protect and Secure Peripheral Registers
The SPU consists of a collection of write-protect registers, each of which are associated with a specific peripheral or
slave. The SPU also has a collection of secure peripheral registers which are also associated with specific peripherals.
The SPU for the ADSP-CM41x is configured with 83 peripheral registers. The SPU_WPn Registers and SPU_SE-
CUREPn and Related Peripherals table provides the write-protect register and secure peripheral number for each
peripheral. The number for the peripheral correlates to both the write-protect register and the secure peripheral reg-
ister.

CM41X_M4 SPU Register Descriptions

8–18 ADSP-CM41x Mixed-Signal Control Processor

Table 8-13: SPU0 Protection Registers Peripheral Assignment

Write Protection Register Access Protection Regis-
ter

Peripheral Peripheral Description

REG_SPU0_WP2 REG_SPU0_AP2 PINT0 Pin Interrupt

REG_SPU0_WP3 REG_SPU0_AP3 PORTA General Purpose Input/Output

REG_SPU0_WP4 REG_SPU0_AP4 SEC0 System Event Controller

REG_SPU0_WP5 REG_SPU0_AP5 WDOG0 Watch Dog Timer Unit

REG_SPU0_WP6 REG_SPU0_AP6 TRU0 Trigger Routing Unit

REG_SPU0_WP7 REG_SPU0_AP7 TIMER0 General-Purpose Timer Block

REG_SPU0_WP8 REG_SPU0_AP8 CAN0 Controller Area Network

REG_SPU0_WP9 REG_SPU0_AP9 SPI0 Serial Peripheral Interface

REG_SPU0_WP10 REG_SPU0_AP10 UART0 UART

REG_SPU0_WP11 REG_SPU0_AP11 ADCC0 ADC Controller

REG_SPU0_WP12 REG_SPU0_AP12 DMA0 DMA Channel

REG_SPU0_WP13 REG_SPU0_AP13 DMA1 DMA Channel

REG_SPU0_WP14 REG_SPU0_AP14 DMA2 DMA Channel

REG_SPU0_WP15 REG_SPU0_AP15 DMA3 DMA Channel

REG_SPU0_WP16 REG_SPU0_AP16 SMPU0 System Memo ry Protection Unit

REG_SPU0_WP17 REG_SPU0_AP17 SWU0 System Watchpoint Unit

REG_SPU0_WP18 REG_SPU0_AP18 SWU1 System Watchpoint Unit

REG_SPU0_WP19 REG_SPU0_AP19 SPU0 System Protection Unit

Table 8-14: SPU1 Protection Registers Peripheral Assignment

Write Protection Register Access Protection Regis-
ter

Peripheral Peripheral Description

REG_SPU1_WP2 REG_SPU1_AP2 EMUID0 CHIP ID For ARM Emulators

REG_SPU1_WP3 REG_SPU1_AP3 PINT1 Pin Interrupt

REG_SPU1_WP4 REG_SPU1_AP4 PINT2 Pin Interrupt

REG_SPU1_WP5 REG_SPU1_AP5 PINT3 Pin Interrupt

REG_SPU1_WP6 REG_SPU1_AP6 PINT4 Pin Interrupt

REG_SPU1_WP7 REG_SPU1_AP7 PINT5 Pin Interrupt

REG_SPU1_WP8 REG_SPU1_AP8 PORTB General Purpose Input/Output

REG_SPU1_WP9 REG_SPU1_AP9 PORTC General Purpose Input/Output

REG_SPU1_WP10 REG_SPU1_AP10 PORTD General Purpose Input/Output

ADSP-CM41x Write-Protect and Secure Peripheral Registers

ADSP-CM41x Mixed-Signal Control Processor 8–19

Table 8-14: SPU1 Protection Registers Peripheral Assignment (Continued)

Write Protection Register Access Protection Regis-
ter

Peripheral Peripheral Description

REG_SPU1_WP11 REG_SPU1_AP11 PORTE General Purpose Input/Output

REG_SPU1_WP12 REG_SPU1_AP12 PORTF General Purpose Input/Output

REG_SPU1_WP13 REG_SPU1_AP13 LBA Logic Block Array

REG_SPU1_WP14 REG_SPU1_AP14 SEC1 System Event Control

REG_SPU1_WP15 REG_SPU1_AP15 WDOG1 Watchdog Timer

REG_SPU1_WP16 REG_SPU1_AP16 RCU0 Reset Control Unit

REG_SPU1_WP17 REG_SPU1_AP17 DPM0 Dynamic Power Management

REG_SPU1_WP18 REG_SPU1_AP18 CGU0 Clock Generation Unit

REG_SPU1_WP19 REG_SPU1_AP19 OCU0 Oscillator Control Unit

REG_SPU1_WP21 REG_SPU1_AP21 TAPC

REG_SPU1_WP22 REG_SPU1_AP22 TRU1 Trigger Routing Unit

REG_SPU1_WP23 REG_SPU1_AP23 TIMER1 General-Purpose Timer

REG_SPU1_WP24 REG_SPU1_AP24 CNT General-Purpose Counter

REG_SPU1_WP25 REG_SPU1_AP25 TWI0 Two-Wire Interface

REG_SPU1_WP26 REG_SPU1_AP26 CAN1 Controller Area Network

REG_SPU1_WP27 REG_SPU1_AP27 CPTMR0 Capture Timer

REG_SPU1_WP28 REG_SPU1_AP28 PWM0 Pulse-Width Modulator

REG_SPU1_WP29 REG_SPU1_AP29 PWM1 Pulse-Width Modulator

REG_SPU1_WP30 REG_SPU1_AP30 PWM2 Pulse-Width Modulator

REG_SPU1_WP32 REG_SPU1_AP32 TTU0 Trigger Timing Unit

REG_SPU1_WP33 REG_SPU1_AP33 SMCO Static Memory Controller

REG_SPU1_WP34 REG_SPU1_AP34 SPI1 Serial Peripheral Interface

REG_SPU1_WP35 REG_SPU1_AP35 SPORT0 Serial Port

REG_SPU1_WP36 REG_SPU1_AP36 UART1 UART

REG_SPU1_WP37 REG_SPU1_AP37 UART2 UART

REG_SPU1_WP38 REG_SPU1_AP38 UART3 UART

REG_SPU1_WP39 REG_SPU1_AP39 UART4 UART

REG_SPU1_WP40 REG_SPU1_AP40 FFTB0 Fast Fourier Transform

REG_SPU1_WP41 REG_SPU1_AP41 SINC0 Sinus Cardinalis Filter

REG_SPU1_WP42 REG_SPU1_AP42 ADCC1 Analog-to-Digital Converter Controller

REG_SPU1_WP43 REG_SPU1_AP43 DACC0 Digital-to-Analog Converter Controller

ADSP-CM41x Write-Protect and Secure Peripheral Registers

8–20 ADSP-CM41x Mixed-Signal Control Processor

Table 8-14: SPU1 Protection Registers Peripheral Assignment (Continued)

Write Protection Register Access Protection Regis-
ter

Peripheral Peripheral Description

REG_SPU1_WP44 REG_SPU1_AP44 CRC0 Cyclic Redundancy Check

REG_SPU1_WP45 REG_SPU1_AP45 HAE0 Harmonic Analysis Engine

REG_SPU1_WP46 REG_SPU1_AP46 DMA4 DMA Channel

REG_SPU1_WP47 REG_SPU1_AP47 DMA5 DMA Channel

REG_SPU1_WP48 REG_SPU1_AP48 DMA6 DMA Channel

REG_SPU1_WP49 REG_SPU1_AP49 DMA7 DMA Channel

REG_SPU1_WP50 REG_SPU1_AP50 DMA8 DMA Channel

REG_SPU1_WP51 REG_SPU1_AP51 DMA9 DMA Channel

REG_SPU1_WP52 REG_SPU1_AP52 DMA10 DMA Channel

REG_SPU1_WP53 REG_SPU1_AP53 DMA11 DMA Channel

REG_SPU1_WP54 REG_SPU1_AP54 DMA12 DMA Channel

REG_SPU1_WP55 REG_SPU1_AP55 DMA13 DMA Channel

REG_SPU1_WP56 REG_SPU1_AP56 MBOX0_PORT0 MBOX Port 1 register map

REG_SPU1_WP57 REG_SPU1_AP57 MBOX0_PORT1 MBOX Port 0 register map

REG_SPU1_WP58 REG_SPU1_AP58 SMPU1 System Memory Protection Unit

REG_SPU1_WP59 REG_SPU1_AP59 SMPU2 System Memory Protection Unit

REG_SPU1_WP60 REG_SPU1_AP60 SWU2 System Watchpoint Unit

REG_SPU1_WP61 REG_SPU1_AP61 SWU3 System Watchpoint Unit

REG_SPU1_WP62 REG_SPU1_AP62 SWU4 System Watchpoint Unit

REG_SPU1_WP63 REG_SPU1_AP62 SWU5 System Watchpoint Unit

REG_SPU1_WP64 REG_SPU1_AP62 SWU6 System Watchpoint Unit

REG_SPU1_WP65 REG_SPU1_AP62 SPU1 System Protection Unit

ADSP-CM41x Write-Protect and Secure Peripheral Registers

ADSP-CM41x Mixed-Signal Control Processor 8–21

9 Dynamic Power Management (DPM)

The dynamic power management (DPM) unit of the processor controls transitions between different power-saving
modes.

DPM Features
The DPM allows programs to control the power mode of the processor as follows.

• Permits operation of multiple, external wake-up sources

DPM Functional Description
The DPM can be programmed to transition between power modes.

CM41X_M4 DPM Register List

A set of registers govern DPM operations. For more information on DPM functionality, see the DPM register de-
scriptions.

Table 9-1: CM41X_M4 DPM Register List

Name Description

DPM_CTL Control Register

DPM_PER_DIS0 Peripherals Disable Register 0

DPM_REVID Revision ID

DPM_STAT Status Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

DPM Definitions

To make the best use of the DPM, it is useful to understand the following terms.

Dynamic Power Management (DPM)

ADSP-CM41x Mixed-Signal Control Processor 9–1

CGU

Acronym for the clock generation unit (CGU), which is comprised of the PLL and PCU

DPM

Acronym for the dynamic power management (DPM) controller.

Full-on mode

The normal operating mode in which all clock domains are derived from the PLL.

PCU

Acronym for the PLL control unit (PCU).

PLL

Acronym for the phase-locked loop (PLL).

RCU

Acronym for the reset control unit (RCU).

DPM Operating Modes
The DPM includes several operating modes. The modes are:

• Reset

• Full-on

Reset State

Reset is the initial state of the processor and is the result of a hardware or software triggered event. The DPM itself
does not trigger entering reset. The external SYS_HWRST pin or the RCU triggers entering reset. The DPM re-
sponds to reset by transitioning to its default state.

From Reset, the DPM always transitions to PLL Bypassed state.

Full-on Mode

In full-on mode, the processor can reach its maximum clock rate and power dissipation can be at its highest.

DPM Operating Modes

9–2 ADSP-CM41x Mixed-Signal Control Processor

Deep Sleep Mode

To enter deep sleep mode, the processor sets the DPM_CTL.DEEPSLEEP bit. All processor cores are in idle state.
The program software must guarantee that system transfers, including DMA, are stopped before each processor core
goes into idle state and the processor enters deep sleep mode. In this state, power dissipation on the VDD_INT0
power domain is reduced by gating all the core and system clocks and disabling the PLL.

The enabled hardware wake-up signals or a hardware reset signal make the processor exit deep sleep mode. The
DPM_WAKE_EN.WS[n] bits and DPM_WAKE_POL.WS[n] bits work together to determine which hardware
wake-up signals are enabled and the polarity of the signals. Wake-up signal assertion is latched only when the signal
is enabled. The enabled wake-up signal assertion occurring first is recorded in the DPM_WAKE_STAT register.

When a wake-up occurs, the DPM does the following:

• Signals a DPM event interrupt to the ARM Cortex-M4 processor.

• Transitions to Full-on mode

• Enables all clock domains that are not disabled in the CGU_SCBF_DIS register

The DPM event interrupt stays active until the program clears any bits that are set in the DPM_WAKE_STAT regis-
ter. The DPM event interrupt is the first indication that the processor has exited Deep Sleep.

One option for waking up the core is to enable the CGU event interrupt, which asserts after the PLL locks.

Another option is to use the DPM event interrupt to make a core exit idle and to enable the corresponding core
clock buffer.

DPM Event Control
The DPM event is triggered when an enabled wake-up is asserted. The DPM generates bus errors when a misaligned
access to a register occurs. It also generates errors when an attempt is made to access unused DPM address space or a
write-protected register.

DPM Events

The DPM event interrupt is triggered when any bit in the DPM_STAT register is set, indicating that an enabled
wake-up was asserted. The DPM event interrupt stays active until the user clears any bits that are set in the
DPM_STAT register.

DPM Errors

The DPM generates a bus error when a read or write transaction is attempted to an unused address within the DPM
address range. It also generates a bus error when a misaligned access is made to a DPM register. In addition to the
bus error, the DPM sets the DPM_STAT.ADDRERR bit.

If a write to a write-protected DPM register is attempted, the DPM generates a bus error. In addition, the DPM sets
the DPM_STAT.LWERR bit.

DPM Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 9–3

DPM Programming Model

Configuring Deep Sleep Mode

The mode for deep sleep gates all core and system clocks to save power.

The processor enters deep sleep mode from any state in which software can run. Reading the
DPM_STAT.CURMODE field reveals the current power mode. Clocks do not stop immediately after entry to deep
sleep mode is requested, but no further action is required to guarantee that the mode transition occurs.

The processor cores must be idle before the clocks are shut down.

1. Enable the DPM event interrupt to wake up the desired core, directing exit from idle after exit from deep sleep
mode.

2. Set the polarity of wake-up sources as needed with the DPM_WAKE_POL.WS[n] bits.

3. Enable the wake-up sources as needed with the DPM_WAKE_EN.WS[n] bits.

4. Set the DPM_CTL.DEEPSLEEP bit.

5. Clear all pending core transactions, DMA transactions, and interrupts. If applicable, use a system synchroniza-
tion instruction.

6. Place all processor cores in idle state.

The processor is now in deep sleep mode. To wake the processor, assert any of the enabled wake-up sources.

CM41X_M4 DPM Register Descriptions
Dynamic Power Management (DPM) contains the following registers.

Table 9-2: CM41X_M4 DPM Register List

Name Description

DPM_CTL Control Register

DPM_PER_DIS0 Peripherals Disable Register 0

DPM_REVID Revision ID

DPM_STAT Status Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

DPM Programming Model

9–4 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The DPM_CTL register controls sleep modes selections and PLL operations of the DPM. A write protect feature
permits locking out changes to this register.

Deep Sleep

Lock

DEEPSLEEP (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-1: DPM_CTL Register Diagram

Table 9-3: DPM_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the DPM_CTL.LOCK bit is
set, the DPM_CTL register is read only (locked).

0 Unlock

1 Lock

3

(R0/W)

DEEPSLEEP Deep Sleep.

The DPM_CTL.DEEPSLEEP bit puts the processor into deep sleep mode. The pro-
cessor stays in this mode until a wakeup event occurs. For more information about
DPM modes, see the functional description.

0 No Action

1 Deep Sleep

CM41X_M4 DPM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 9–5

Peripherals Disable Register 0

Peripheral Disable

Lock Bit

VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-2: DPM_PER_DIS0 Register Diagram

Table 9-4: DPM_PER_DIS0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock Bit.

0

(R/W)

VALUE Peripheral Disable.

CM41X_M4 DPM Register Descriptions

9–6 ADSP-CM41x Mixed-Signal Control Processor

Revision ID

The DPM_REVID register provides the revision of the DPM module.

Incremental Version IDMajor Version ID
REV (R)MAJOR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-3: DPM_REVID Register Diagram

Table 9-5: DPM_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/NW)

MAJOR Major Version ID.

3:0

(R/NW)

REV Incremental Version ID.

CM41X_M4 DPM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 9–7

Status Register

Previous Mode

Current ModeHV Busy

Lock Write Error

Address ErrorHV Busy Error

PRVMODE (R)

CURMODE (R)HVBSY (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

LWERR (R/W1C)

ADDRERR (R/W1C)HVBSYERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-4: DPM_STAT Register Diagram

Table 9-6: DPM_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W1C)

HVBSYERR HV Busy Error.

Reading registers during restore of DPM-LV from DPM-HV.

0 Inactive

1 Active

17

(R/W1C)

LWERR Lock Write Error.

0 Inactive

1 Active

16

(R/W1C)

ADDRERR Address Error.

0 Inactive

1 Active

9

(R/NW)

HVBSY HV Busy.

0 Not Busy (ready)

1 Busy

7:4

(R/NW)

PRVMODE Previous Mode.

0 Reset

1 Full-On

2 Reserved

CM41X_M4 DPM Register Descriptions

9–8 ADSP-CM41x Mixed-Signal Control Processor

Table 9-6: DPM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3 Reserved

4 Deep Sleep

5-15 Reserved

3:0

(R/NW)

CURMODE Current Mode.

0 Reserved

1 Full-On

2 Reserved

3 Reserved

4-15 Reserved

CM41X_M4 DPM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 9–9

Wakeup Enable Register

The DPM_WAKE_EN register enables the wakeup event sources for exiting deep sleep mode. The number of wakeup
sources varies with the processor design, with bit 0 corresponding to wakeup source 0, bit 1 corresponding to wake-
up source 1, and so on. This register includes a write protection lock. For information about wakeup source assign-
ments, see the DPM Wakeup Sources topic.

Wakeup Source n Enable

Lock

WS[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-5: DPM_WAKE_EN Register Diagram

Table 9-7: DPM_WAKE_EN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the
DPM_WAKE_EN.LOCK bit is set, the DPM_WAKE_EN register is read only (locked).

0 Unlock

1 Lock

4:0

(R/W)

WS[n] Wakeup Source n Enable.

The DPM_WAKE_EN.WS[n] bits enable wakeup sources for exiting deep sleep
mode, with bit 0 corresponding to wakeup source 0, bit 1 corresponding to wakeup
source 1, and so on. For information about wakeup source assignments, see the DPM
Wakeup Sources topic.

CM41X_M4 DPM Register Descriptions

9–10 ADSP-CM41x Mixed-Signal Control Processor

Wakeup Polarity Register

The DPM_WAKE_POL register select polarity (active high or low) of the wakeup event sources for exiting deep sleep
mode. The number of wakeup sources varies with the processor design, with bit 0 corresponding to wakeup source
0, bit 1 corresponding to wakeup source 1, and so on. This register includes a write protection lock. For information
about wakeup source assignments, see the DPM Wakeup Sources topic.

Wakeup Source n Polarity

Lock

WS[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-6: DPM_WAKE_POL Register Diagram

Table 9-8: DPM_WAKE_POL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the
DPM_WAKE_POL.LOCK bit is set, the DPM_WAKE_POL register is read only
(locked).

0 Unlock

1 Lock

4:0

(R/W)

WS[n] Wakeup Source n Polarity.

The DPM_WAKE_POL.WS[n] bits select polarity (active high or low) of wakeup
sources for exiting deep sleep mode, with bit 0 corresponding to wakeup source 0, bit
1 corresponding to wakeup source 1, and so on. For information about wakeup source
assignments, see the DPM Wakeup Sources topic.

0 Low Active Wakeup

31 High Active Wakeup

CM41X_M4 DPM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 9–11

Wakeup Status Register

The DPM_WAKE_STAT register indicates the enabled and active status of the wakeup event sources for exiting deep
sleep mode. The number of wakeup sources varies with the processor design, with bit 0 corresponding to wakeup
source 0, bit 1 corresponding to wakeup source 1, and so on. For information about wakeup source assignments, see
the DPM Wakeup Sources topic.

Wakeup Source n Status
WS[n] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 9-7: DPM_WAKE_STAT Register Diagram

Table 9-9: DPM_WAKE_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4:0

(R/W1C)

WS[n] Wakeup Source n Status.

The DPM_WAKE_STAT.WS[n] bits indicate the enabled and active status of wake-
up sources for exiting deep sleep mode, with bit 0 corresponding to wakeup source 0,
bit 1 corresponding to wakeup source 1, and so on. For information about wakeup
source assignments, see the DPM Wakeup Sources topic.

0 No Status

31 Enabled and Active

CM41X_M4 DPM Register Descriptions

9–12 ADSP-CM41x Mixed-Signal Control Processor

10 System Event Controller (SEC)

System event management is the responsibility of the system event controller (SEC). Both M4P and M0P support a
tightly integrated controller called the Nested Vectored Interrupt Controller (NVIC). SECs also feature a System
Fault Interface (SFI) to perform efficient fault management.

All of the peripheral interrupts are routed using a single SEC interrupt to the desired core. The SEC allows pro-
grammability of the peripheral interrupt’s priority, supporting up to 256 priority levels that are arbitrated within the
SEC itself. The SEC also allows these interrupts to be grouped and masked by priority level and provides the flexi-
bility to choose which core(s) the interrupt is routed to.

The SEC also supports self-nesting of interrupts, which is required when sharing a single interrupt request to an
individual core, as this allows for a higher-priority peripheral interrupt to be passed to the core while it is currently
servicing a lower-priority peripheral interrupt. For more information, refer to “Self-Nesting Mode for System Event
Controller Interrupt (SECI)” in the SHARC+ Core Programming Reference.

For more information about the ARM NVIC, visit the ARM Information Center.

SEC Features
The following list describes the system event controller features.

Cortex M4 NVIC

The Cortex M4 NVIC supports:

• A total of 164 interrupts.

• A programmable priority level, with 4 bits of implementation in Interrupt Priority Registers.

• Level and pulse detection of interrupt signals.

• Dynamic re prioritizing of interrupts.

• Grouping of priority values into group priority and sub priority fields.

• Interrupt tail-chaining

• An external Non maskable Interrupt (NMI).

System Event Controller (SEC)

ADSP-CM41x Mixed-Signal Control Processor 10–1

• Fault action configuration, timeout, external indication, and system reset

• Fault from an external event through the GPIO

Cortex M0 NVIC

The Cortex M0 NVIC supports:

• A total of 32 user interrupts.

• A programmable priority level, with 2 bits of implementation in Interrupt Priority Registers.

• Level and pulse detection of interrupt signals.

• Interrupt tail-chaining.

• An external NMI.

SEC Functional Description
The following sections provide a functional description of the SEC.

CM41X_M4 SEC Register List

The System Event Controller (SEC) manages the system fault sources, including control features such as enable/
disable, priority, and active/pending source status. For more information on SEC functionality, see the SEC register
descriptions.

Table 10-1: CM41X_M4 SEC Register List

Name Description

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_FCTL Fault Control Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FEND Fault End Register

SEC_FSID Fault Source ID Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SEC_FSTAT Fault Status Register

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC Functional Description

10–2 ADSP-CM41x Mixed-Signal Control Processor

Table 10-1: CM41X_M4 SEC Register List (Continued)

Name Description

SEC_SCTL[n] Source Control Register n

SEC_SSTAT[n] Source Status Register n

CM41X_M4 SEC Interrupt List

Table 10-2: CM41X_M4 SEC Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

32 SEC1_ERR SEC1 Error Level

33 SEC0_ERR SEC0 Error Level

CM41X_M4 Interrupt List

Table 10-3: CM41X_M4 Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

-15 RESET SCS0 RESET

-14 NonMaskableInt SCS0 NonMaskable Interrupt

-13 HardFault SCS0 Hard Fault

-12 MemoryManagement SCS0 Memory Management

-11 BusFault SCS0 Bus Fault Edge

-10 UsageFault SCS0 Usage Fault

-5 SVCall SCS0 Service Call

-4 DebugMonitor SCS0 Debug Monitor

-2 PendSV SCS0 Pending Service

-1 SysTick SCS0 System Time Tick

0 VMU0_VDDINT_EVT VMU0 Internal voltage management fault Level

1 VMU0_VDDEXT_EVT VMU0 External voltage management
fault

Level

2 Reserved Reserved Reserved Reserved

3 CGU0_OSCW_INT CGU0 Oscillator Watchdog Interrupt Level

4 OCU0_ERR OCU0 Freq. out-of-range, or dead clock,
or counter overflow detected

Level

5 M4P_BCODE_ERR M4P Boot Code CRC Error Level

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–3

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

6 CTI0_EVT0 CTI0 Cross Trigger Interface Event 0 Level

7 CTI0_EVT1 CTI0 Cross Trigger Interface Event 1 Level

8 CTI0_EVT2 CTI0 Cross Trigger Interface Event 2 Level

9 M4P_LOCKUP M4P Lockup Error (Fault only; not an in-
terrupt)

Level

10 M4P_BUS_FAULT M4P Bus Fault Edge

11 M0P_LOCKUP M0P m0 supervisor lockup error Level

12 SPU1_TIMEOUT SPU1 Timeout Interrupt Level

13 C1_BUS_TIMEOUT SYSBLK1 Bus Timeout Level

14 M4P_CORE_SRAM_EERR M4P SRAM Core ECC Error Level

15 M4P_DMA_SRAM_EERR M4P SRAM DMA ECC Error Level

16 FLC0_CORE_FLASH_EERR FLC0 Flash Core ECC Error Level

17 FLC0_DMA_FLASH_EERR FLC0 Flash DMA ECC Error Level

18 FLC0_FLASH_EVT FLC0 Flash Event Level

19 M0P_SRAM_EERR M0P supervisor sram ecc error Level

20 MBOX0_PORT1_EERR MBOX0 Port 1 ECC error Level

21 MBOX0_PORT0_EERR MBOX0 Port 0 ECC error Level

22 FFTB0_SPERR FFTB0 Parity error in the limit buffer
(LBUFF), or the window buffer
(WNDBUFF). If this interrupt request is
asserted, ignore the result of this spectrum
capture sequence and rewrite both LBUFF
and WNDBUFF.

Level

23 FFTB0_DPERR FFTB0 Data parity error Level

24 HAE0_PERR HAE0 Parity Error Level

25 CSTF0_PERR CSTF0 Parity Error Detected Level

26 Reserved Reserved Reserved Reserved

27 SPU0_TIMEOUT SPU0 Timeout Interrupt Level

28 C0_BUS_TIMEOUT SYSBLK0 Bus Timeout Level

29 SYSBLK0_POSTWR_ERR SYSBLK0 Posted Write Error Level

30 CGU0_EVT CGU0 Event Edge

31 DPM0_EVT DPM0 Event Level

32 SEC1_ERR SEC1 Error Level

SEC Functional Description

10–4 ADSP-CM41x Mixed-Signal Control Processor

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

33 SEC0_ERR SEC0 Error Level

34 WDOG1_EXP WDOG1 Expiration Level

35 WDOG0_EXP WDOG0 Expiration Level

36 TAPC_KEYFAIL TAPC User Key Fail Interrupt Edge

37 AFE_NOTOK AFE is functioning normally Edge

38 AFE_LIMIT AFE FOCP Limit Detection Level

39 PWM0_TRIP PWM0 Trip Level

40 PWM1_TRIP PWM1 Trip Level

41 PWM2_TRIP PWM2 Trip Level

42 SMPU1_ERR SMPU1 Error Interrupt Level

43 SMPU2_ERR SMPU2 Error Interrupt Level

44 SMPU0_ERR SMPU0 Error Interrupt Level

45 SPU1_INT SPU1 Interrupt Level

46 SPU0_INT SPU0 Interrupt Level

47 SWU2_EVT SWU2 Event None

48 SWU3_EVT SWU3 Event None

49 SWU4_EVT SWU4 Event None

50 SWU5_EVT SWU5 Event None

51 SWU6_EVT SWU6 Event None

52 SWU0_EVT SWU0 Event None

53 SWU1_EVT SWU1 Event None

54 CPTMR0_CPT0_ERR CPTMR0 CPT 0 Error Interrupt Level

55 CPTMR0_CPT1_ERR CPTMR0 CPT 1 Error Interrupt Level

56 CPTMR0_CPT2_ERR CPTMR0 CPT 2 Error Interrupt Level

57 CRC0_ERR CRC0 Error Level

58 SPI1_ERR SPI1 Error Level

59 SPI0_ERR SPI0 Error Level

60 FFTB0_LIMERR FFTB0 One or more points in the power
spectrum output exceeded the predefined
limit in the limit buffer.

Level

61 MATH0_MSTAT MATH0 MATH unit Accumulate Inter-
rupt Status

Level

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–5

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

62 ADCC1_ERR ADCC1 ADC Error Level

63 DACC0_ERR DACC0 DAC Error Level

64 ADCC0_ERR ADCC0 ADC Error Level

65 DMA4_ERR DMA4 Error interrupt Level

66 DMA5_ERR DMA5 Error interrupt Level

67 DMA6_ERR DMA6 Error interrupt Level

68 DMA7_ERR DMA7 Error interrupt Level

69 DMA8_ERR DMA8 Error interrupt Level

70 DMA9_ERR DMA9 Error interrupt Level

71 DMA10_ERR DMA10 Error interrupt Level

72 DMA11_ERR DMA11 Error interrupt Level

73 DMA12_ERR DMA12 Error interrupt Level

74 DMA13_ERR DMA13 Error interrupt Level

75 DMA0_ERR DMA0 Error interrupt Level

76 DMA1_ERR DMA1 Error interrupt Level

77 DMA2_ERR DMA2 Error interrupt Level

78 DMA3_ERR DMA3 Error interrupt Level

79 PWM0_SYNC PWM0 PWMTMR Grouped Edge

80 PWM1_SYNC PWM1 PWMTMR Grouped Edge

81 PWM2_SYNC PWM2 PWMTMR Grouped Edge

82 PINT1_BLOCK PINT1 Pin Interrupt Block Level

83 PINT2_BLOCK PINT2 Pin Interrupt Block Level

84 PINT3_BLOCK PINT3 Pin Interrupt Block Level

85 PINT4_BLOCK PINT4 Pin Interrupt Block Level

86 PINT5_BLOCK PINT5 Pin Interrupt Block Level

87 PINT0_BLOCK PINT0 Pin Interrupt Block Level

88 TIMER1_TMR0 TIMER1 Timer 0 Level

89 TIMER1_TMR1 TIMER1 Timer 1 Level

90 TIMER1_TMR2 TIMER1 Timer 2 Level

91 TIMER1_TMR3 TIMER1 Timer 3 Level

92 TIMER1_TMR4 TIMER1 Timer 4 Level

SEC Functional Description

10–6 ADSP-CM41x Mixed-Signal Control Processor

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

93 TIMER1_TMR5 TIMER1 Timer 5 Level

94 TIMER1_TMR6 TIMER1 Timer 6 Level

95 TIMER1_TMR7 TIMER1 Timer 7 Level

96 TIMER0_TMR0 TIMER0 Timer 0 Level

97 TIMER0_TMR1 TIMER0 Timer 1 Level

98 TIMER0_TMR2 TIMER0 Timer 2 Level

99 TIMER0_TMR3 TIMER0 Timer 3 Level

100 TIMER0_TMR4 TIMER0 Timer 4 Level

101 TIMER0_TMR5 TIMER0 Timer 5 Level

102 TIMER0_TMR6 TIMER0 Timer 6 Level

103 TIMER0_TMR7 TIMER0 Timer 7 Level

104 TIMER1_STAT TIMER1 Status Level

105 TIMER0_STAT TIMER0 Status Level

106 CPTMR0_CPT0_MEAS CPTMR0 CPT 0 Measure Interrupt Level

107 CPTMR0_CPT1_MEAS CPTMR0 CPT 1 Measure Interrupt Level

108 CPTMR0_CPT2_MEAS CPTMR0 CPT 2 Measure Interrupt Level

109 DMA4_INT DMA4 Done interrupt Level 4

110 DMA5_INT DMA5 Done interrupt Level 5

111 DMA6_INT DMA6 Done interrupt Level 6

112 DMA7_INT DMA7 Done interrupt Level 7

113 DMA8_INT DMA8 Done interrupt Level 8

114 DMA9_INT DMA9 Done interrupt Level 9

115 DMA10_INT DMA10 Done interrupt Level 10

116 DMA11_INT DMA11 Done interrupt Level 11

117 DMA12_INT DMA12 Done interrupt Level 12

118 DMA13_INT DMA13 Done interrupt Level 13

119 DMA0_INT DMA0 Done interrupt Level 0

120 DMA1_INT DMA1 Done interrupt Level 1

121 DMA2_INT DMA2 Done interrupt Level 2

122 DMA3_INT DMA3 Done interrupt Level 3

123 TRU1_INT0 TRU1 Interrupt request 0 Edge

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–7

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

124 TRU1_INT1 TRU1 Interrupt request 1 Edge

125 TRU1_INT2 TRU1 Interrupt request 2 Edge

126 TRU1_INT3 TRU1 Interrupt request 3 Edge

127 TRU0_INT0 TRU0 Interrupt request 0 Edge

128 FFTB0_DONE FFTB0 Non-continuous FFT averaging
has completed. In addition, the interrupt
request is asserted after a channel frame is
processed (FFT, PSD, Averaging, PSD
comparison) in multichannel mode.

Level

129 ADCC1_TMR0_EVT ADCC1 Timer 0 Event Complete Level

130 ADCC1_TMR1_EVT ADCC1 Timer 1 Event Complete Level

131 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

132 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

133 DACC0_DAC0 DACC0 DAC Interrupt 0 Level

134 DACC0_DAC1 DACC0 DAC Interrupt 1 Level

135 SPI1_STAT SPI1 Status Level

136 SPI0_STAT SPI0 Status Level

137 SPORT0_A_STAT SPORT0 Channel A Status Level

138 SPORT0_B_STAT SPORT0 Channel B Status Level

139 UART1_STAT UART1 Status Level

140 UART2_STAT UART2 Status Level

141 UART3_STAT UART3 Status Level

142 UART4_STAT UART4 Status Level

143 UART0_STAT UART0 Status Level

144 HAE0_STAT HAE0 Status Level

145 CRC0_DCNTEXP CRC0 Data count expiration Level

146 CAN1_TX CAN1 Transmit Level

147 CAN1_RX CAN1 Receive Level

148 CAN1_STAT CAN1 Status Level

149 CAN0_TX CAN0 Transmit Level

150 CAN0_RX CAN0 Receive Level

151 CAN0_STAT CAN0 Status Level

SEC Functional Description

10–8 ADSP-CM41x Mixed-Signal Control Processor

Table 10-3: CM41X_M4 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

152 CNT0_STAT CNT0 Status Level

153 SINC0_STAT SINC0 Status Level

154 TWI0_DATA TWI0 Data Interrupt Level

155 MBOX0_PORT1_MSG MBOX0 Port 1 software interrupt Level

156 MBOX0_PORT0_MSG MBOX0 Port 0 software interrupt Level

157 LBA0_SYS_OUT0 LBA0 Registered LBA outputs available to
system

Edge

158 M4P_SOFT_INT0 M4P Software Interrupt 0 Edge

159 M4P_SOFT_INT1 M4P Software Interrupt 1 Edge

160 M4P_SOFT_INT2 M4P Software Interrupt 2 Edge

161 M4P_SOFT_INT3 M4P Software Interrupt 3 Edge

162 M4P_SOFT_INT4 M4P Software Interrupt 4 Edge

163 M4P_SOFT_INT5 M4P Software Interrupt 5 Edge

CM41X_M0 Interrupt List

Table 10-4: CM41X_M0 Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

-15 RESET SCS1 RESET

-14 NonMaskableInt SCS1 Non Maskable Interrupt

-13 HardFault SCS1 Hard Fault

-5 SVCall SCS1 Service Call

-2 PendSV SCS1 Pending Service

-1 SysTick SCS1 System Time Tick

0 CGU0_OSCW_INT CGU0 Oscillator Watchdog Interrupt Level

0 OCU0_ERR OCU0 Freq. out-of-range, or dead clock,
or counter overflow detected

Level

0 VMU0_VDDEXT_EVT VMU0 External voltage management
fault

Level

0 VMU0_VDDINT_EVT VMU0 Internal voltage management fault Level

2 M0P_SRAM_EERR M0P supervisor sram ecc error Level

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–9

Table 10-4: CM41X_M0 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

3 SPU0_TIMEOUT SPU0 Timeout Interrupt Level

3 C0_BUS_TIMEOUT SYSBLK0 Bus Timeout Level

3 SYSBLK0_POSTWR_ERR SYSBLK0 Posted Write Error Level

4 MBOX0_PORT0_EERR MBOX0 Port 0 ECC error Level

5 M4P_BUS_FAULT Bus Fault

5 M4P_CORE_SRAM_EERR SRAM Core ECC Error

5 M4P_LOCKUP Lockup Error (Fault only; not an inter-
rupt)

5 FLC0_CORE_FLASH_EERR Flash Core ECC Error

5 MBOX0_PORT1_EERR MBOX0 Port 1 ECC error Level

5 SPU1_TIMEOUT SPU1 Timeout Interrupt Level

5 C1_BUS_TIMEOUT SYSBLK1 Bus Timeout Level

6 FFTB0_DPERR FFTB0 Data parity error Level

6 FFTB0_SPERR FFTB0 Parity error in the limit buffer
(LBUFF), or the window buffer
(WNDBUFF). If this interrupt request is
asserted, ignore the result of this spectrum
capture sequence and rewrite both LBUFF
and WNDBUFF.

Level

6 HAE0_PERR HAE0 Parity Error Level

7 CGU0_EVT CGU0 Event Edge

7 DPM0_EVT DPM0 Event Level

8 SEC0_ERR SEC0 Error Level

8 SMPU0_ERR SMPU0 Error Interrupt Level

8 SPU0_INT SPU0 Interrupt Level

9 WDOG0_EXP WDOG0 Expiration Level

10 AFE_LIMIT AFE FOCP Limit Detection Level

10 AFE_NOTOK AFE is functioning normally Edge

11 SWU0_EVT SWU0 Event None

11 SWU1_EVT SWU1 Event None

12 DMA0_ERR DMA0 Error interrupt Level

12 DMA1_ERR DMA1 Error interrupt Level

12 DMA2_ERR DMA2 Error interrupt Level

SEC Functional Description

10–10 ADSP-CM41x Mixed-Signal Control Processor

Table 10-4: CM41X_M0 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

12 DMA3_ERR DMA3 Error interrupt Level

12 DMA8_ERR DMA8 Error interrupt Level

12 DMA9_ERR DMA9 Error interrupt Level

12 DMA10_ERR DMA10 Error interrupt Level

13 ADCC0_ERR ADCC0 ADC Error Level

14 PINT0_BLOCK PINT0 Pin Interrupt Block Level

15 TIMER0_STAT TIMER0 Status Level

15 TIMER0_TMR0 TIMER0 Timer 0 Level

15 TIMER0_TMR1 TIMER0 Timer 1 Level

15 TIMER0_TMR2 TIMER0 Timer 2 Level

15 TIMER0_TMR3 TIMER0 Timer 3 Level

15 TIMER0_TMR4 TIMER0 Timer 4 Level

15 TIMER0_TMR5 TIMER0 Timer 5 Level

15 TIMER0_TMR6 TIMER0 Timer 6 Level

15 TIMER0_TMR7 TIMER0 Timer 7 Level

16 CPTMR0_CPT0_MEAS CPTMR0 CPT 0 Measure Interrupt Level

16 CPTMR0_CPT1_MEAS CPTMR0 CPT 1 Measure Interrupt Level

16 CPTMR0_CPT2_MEAS CPTMR0 CPT 2 Measure Interrupt Level

17 DMA0_INT DMA0 Done interrupt Level 0

17 DMA2_INT DMA2 Done interrupt Level 2

18 DMA1_INT DMA1 Done interrupt Level 1

18 DMA3_INT DMA3 Done interrupt Level 3

19 DMA8_INT DMA8 Done interrupt Level 8

19 DMA9_INT DMA9 Done interrupt Level 9

19 DMA10_INT DMA10 Done interrupt Level 10

20 TRU0_INT1 TRU0 Interrupt request 1 Edge

21 TRU1_INT4 TRU1 Interrupt request 4 Edge

22 FFTB0_DONE FFTB0 Non-continuous FFT averaging
has completed. In addition, the interrupt
request is asserted after a channel frame is
processed (FFT, PSD, Averaging, PSD
comparison) in multichannel mode.

Level

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–11

Table 10-4: CM41X_M0 Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

22 FFTB0_LIMERR FFTB0 One or more points in the power
spectrum output exceeded the predefined
limit in the limit buffer.

Level

23 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

24 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

25 SPI0_ERR SPI0 Error Level

25 SPI0_STAT SPI0 Status Level

26 UART0_STAT UART0 Status Level

27 HAE0_STAT HAE0 Status Level

28 CAN0_RX CAN0 Receive Level

28 CAN0_STAT CAN0 Status Level

28 CAN0_TX CAN0 Transmit Level

29 TWI0_DATA TWI0 Data Interrupt Level

30 MBOX0_PORT0_MSG MBOX0 Port 0 software interrupt Level

CM41X_M4 SEC Trigger List

Table 10-5: CM41X_M4 SEC Trigger List Masters

Trigger ID Name Description Sensitivity

1 SEC0_FAULT SEC0 Fault Edge

2 SEC1_FAULT SEC1 Fault Edge

Table 10-6: CM41X_M4 SEC Trigger List Slaves

Trigger ID Name Description Sensitivity

None

SEC Definitions

The event controller uses the following definitions.

System Events

System source indications including interrupts and faults.

SEC Functional Description

10–12 ADSP-CM41x Mixed-Signal Control Processor

System Source

Point of origin of system event.

SID (Identification, unique)

Source numeric identifier for each system source connected to the SEC.

SSI

SEC source interface, system event source control, and status subblock of the SEC.

SFI

SEC Fault Interface, fault management subblock of the SEC.

NVIC

Nested Vectored Interrupt Controller

SEC Block Diagram

The SEC Block Diagram shows the event management architecture.

As shown in the figure, the SEC has two blocks for event management. NVIC deals with the interrupts from various
system sources while the SFI monitors and manages any fault event triggered from various fault input sources. Sys-
tem interrupt sources are routed to the SFI through SEC source interface (SSI).

SYSTEM INTERRUPTS

. . .

SSI SFI

CORTEX-M4/M0
CORE

SYSTEM RESET

FAULT OUTPUT
(FAULT IO PIN)

TRIGGER

FAULT INPUT
(FAULT I/O PIN)

OSC
MONITOR

NVIC

CORE
EXCEPTIONS

SEC

OCU
MONITOR

Figure 10-1: SEC Block Diagram

NOTE: The NVIC is an independent unit inside the SEC and is closely tied to the ARM Cortex core. Therefore,
its programming is the same as described in the ARM Cortex standard documentation. In contrast, the
SFI is mostly integrated to the SEC such that it uses all SEC-specific registers, typically for fault manage-
ment. For dealing with system interrupts, there is virtually no need for accessing any of the SEC registers.

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–13

SYSTEM INTERRUPTS

. . .

ENABLE
BITS PRIORITY

CORTEX
M4/M0
CPUs

NVIC STATE
MACHINE

PEND

ACTIVE

INACTIVE

ISR

Figure 10-2: NVIC Block Diagram

NOTE: The Cortex-M4 and Cortex-M0 have separate NVIC Controllers which are not connected to each other.
The sub systems include the following SEC blocks: Cortex-M4 sub-system = SEC1, Cortex-M0 sub-sys-
tem = SEC0

A total of 32 interrupts are supported by the NVIC in the ARM Cortex-M0 core. Since more peripherals require
interrupt support, a shared mechanism is used for most of the peripheral interrupts. For example, the SWU0_EVT
and SWU0_EVT interrupts are both mapped to interrupt ID 11. When the NVIC registers an interrupt, the pro-
gram has to verify the actual source (between the shared interrupts) by reading the SYSBLK_SISTAT0 register
(Shared Interrupt Status register).

SEC Fault Interface (SFI)

The SFI manages fault events and associated actions. The fault management support provided in the SEC helps
satisfy the safety requirements of various applications. The SSI provides the highest priority pending source that is
enabled as a fault. The SFI captures this value and enables a countdown, and once the countdown expires, takes the
prescribed action.

Fault actions which can be configured, as shown in SFI Block Diagram, include

• Trigger Output

• System Reset

• Fault Output

• Computer Operating Properly (COP) mode

• Fault Mode

SEC Block Diagram

10–14 ADSP-CM41x Mixed-Signal Control Processor

SEC Fault Interface (SFI)

FSID

FDELAYFDELAYCUREvent Actions

FSTAT

TO (Trigger Out)

SR (System Reset)

(Fault / COP)

FCTL

SSI

Voltage
Monitoring

Unit

Oscillator
Comparator

Unit

Oscillator
Watchdog

Figure 10-3: SFI Block Diagram

Fault Management

System sources can be enabled as fault sources in the SEC_SCTL[n] register. When a source enabled as a fault
moves to pending, it is forwarded to the SFI as a fault indication. The pending bit (SEC_FSTAT.PND) indicates a
source has signaled a fault assertion but it has not yet triggered the event actions (if delay is enabled). The SEC fault
interface sets the SEC_FSTAT.PND bit when the fault source ID register (SEC_FSID) is updated on assertion of
a fault source input. The system source pending triggers a fault pending and after a programmable delay the fault
moves to active. Event actions then execute if appropriate action is not taken by the core. The SEC_FSTAT.ACT
bit indicates that the SEC has received a fault source input, the delay has expired, and the fault actions are enabled.

The SEC_FSTAT.NPND bit indicates if one or more sources have signaled a fault assertion, but the input has not
yet triggered the fault pending detection in the SEC fault interface. The SEC sets the SEC_FSTAT.NPND bit
when the fault interface detects assertion of any enabled fault source input, while either the SEC_FSTAT.PND or
SEC_FSTAT.ACT bits are set. The SEC clears the SEC_FSTAT.NPND bit when there are no fault sources wait-
ing.

A fault indication from an external device can also be detected on sampling the fault signals. When a fault is detec-
ted the SEC_FSTAT.ACT and SEC_FSID.FEXT bits are set. The assertion of either signal results in a fault in-
put detection.

The SEC_FEND register receives a fault end indication from the core. The core writes the SID of the fault to the
SEC_FEND register. If the SID matches the value in the SEC_FSID register, the SEC_FSTAT.PND and
SEC_FSTAT.ACT bits are cleared.

SEC Architectural Concepts

The following sections describe SEC architectural features.

SEC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 10–15

System Interrupt Acknowledge

A system interrupt acknowledge occurs when the core provides an indication that it has acquired the SID of the
interrupt last issued by the SEC.

The SEC core interface option allows generation by asserting the input acknowledge signal (the connected core gen-
erates the signal).

Nested Vectored Interrupt Controller (NVIC)

The ARM Cortex-M4 processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC).
The NVIC includes a non-maskable interrupt (NMI) that can provide up to 16 interrupt pre-emptive priority lev-
els. The tight integration of the processor core and NVIC provides fast execution of interrupt service routines
(ISRs), dramatically reducing the interrupt latency. This performance is achieved through stacking hardware regis-
ters and suspending load-multiple and store-multiple operations. Additionally, tail-chain optimization significantly
reduces the overhead when switching from one ISR to another. The following are descriptions of the interrupt types
used in the system.

Cortex system exceptions

The exceptions triggered from within the ARM Cortex-M4 processor core have negative interrupt IDs and are iden-
tified in the interrupt list with an M4_SCS0_ prefix. The Reset, Hard Fault, and NMI exceptions have fixed nega-
tive priority values, and these have higher priority than any other exception.

External interrupts

There are a total of 164 external interrupts in the processor. Almost all of these interrupts are triggered from several
peripheral interrupt sources. A maximum of 16 levels of pre-emptive priority are possible. Interrupts can be enabled
or disabled individually through the interrupt set or clear register and the priority level (priority + subpriority) can
be defined by programming the interrupt priority registers.

Reset interrupt

When reset signal is de-asserted, execution restarts from the address provided by the reset entry in the vector table.
Execution restarts as privileged execution in thread mode. Refer to the Reset Control Unit chapter for more details
on reset implementation and usage in the processor. Refer to the Boot ROM chapter for information about how the
ROM handles the reset event, before jumping to application.

Non-Maskable Interrupt (NMI)

NMI can be asserted with the following sources:

• Through the non-maskable interrupt pin, SYS_NMI.

• Through trigger outputs from TRU unit.

Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors,
for all exception handlers. On system reset, the vector table is fixed at address 0x00000000, which is inside the Boot
ROM, for the processor. The address offset is aligned to the vector table size, extended to the next larger power of 2.

SEC Architectural Concepts

10–16 ADSP-CM41x Mixed-Signal Control Processor

Priority Grouping

The NVIC is configured with 4 bits of priority. The lower bits of the register are always 0; PRI_N[7:4] sets the
priority, and PRI_N[3:0] is 4'b0000.

Table 10-7: PRIGROUP Implementation

PRIGROUP Binary Point Group Priority Subpriority

Bits Levels Bits Levels

011 4.0 4 16 0 0

100 3.1 3 8 1 2

101 2.2 2 4 2 4

110 1.3 1 2 3 8

111 0.4 0 0 4 16

Interrupt Request Processing Using the SEC and NVIC

Most peripherals on the ADSP-CM41x can issue interrupt requests. This system has a great deal of flexibility in how
to deal with these events to allow for user safety requirements. This section provides basic guidelines on the ability of
the system to respond to interrupt requests. Different applications may use interrupt processing in different ways.

The main system contains SEC blocks that receive interrupt requests. This block is configurable and may issue a
system fault or one of a small number of triggers for a particular interrupt request. The system also has an ARM
Cortex-M4 and an ARM Cortex-M0 processor core. These cores also receive interrupt requests and process them
with a NVIC. The programming model expects the processors to respond and handle standard interrupt requests
from various peripherals that are performing system data processing. How a given system handles various system
errors is a programming or system design decision. Some errors (like FFT parity) may simply require dropping a
frame of data and continue processing. Other errors (like bus-timeout) may indicate a system with a significant un-
expected failure and might warrant a full processor reset or a safety trip operation.

NOTE: Some major system faults indicate the system clocking or supplies are faulty. These faults have side mecha-
nisms to allow them to issue a system fault without any flop-based logic.

A subset of all peripheral interrupt requests are inputs to the ARM Cortex-M0 NVIC unit and the ARM Cortex-
M0 SEC0 subsystem block. In most cases the higher priority requests are given lower numbers. The NVIC unit has
control registers that allow for enabling/disabling individual interrupts. The ARM Cortex-M0 NVIC has 2 bits of
configurable priority. The ARM Cortex-M0 has 32 user interrupts. An additional 16 interrupts at the lower priority
are reserved for the ARM Cortex-M0 core. These default IRQ entries are usually numbered from -15 to -1. There
are more than 32 peripheral interrupt requests for the 32 allocated user interrupts. Some interrupts have been shared
at the same priority levels (register details below), for a shared interrupt level the appropriate SYSBLK_SISTAT0
register has the source(s) of an interrupt request to the ARM Cortex-M0. Due to the ability for the
SYSBLK_SISTAT0 register to change while in a vector routine, sources should be processed and cleared one at a
time in each level until empty. One “software” interrupt is allocated for the ARM Cortex-M0 core. The SEC0 block

SEC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 10–17

has logic for each individual interrupt request that allow the request to trigger the SEC0 block output system fault
or one of its trigger outputs. No sharing is required.

System Fault Interface (SFI) and the NVIC

The system fault interface (SFI) operates independently from the NVIC. All system sources that can generate inter-
rupts can also be routed to generate faults through the SEC source control registers. A fault can also be generated
from the SYS_FAULT pin or from the oscillator watchdog. For more information on a fault generated from the
oscillator watchdog, see the clock generation unit (CGU) chapter.

Fault Input Options

A number of sources can generate a fault:

• Through the SYS_FAULT pin (external source)

• The oscillator watchdog

• System interrupt sources

• The Voltage Monitoring Unit and the Oscillator Comparator Unit

Externally Generated through the SYS_FAULT Pin

When the SFI detects a falling edge at the SYS_FAULT pin, the SFI can sense this condition as an external fault
and take necessary action. The SFI must be configured with the SEC_FCTL.FIEN bit to sample the pin for a
fault. One usage case of this feature is to control the processor from another system or to permit another processor
to communicate a fault occurrence.

NOTE: The ADSP-CM41x has a single SYS_FAULT pin that can be managed from either SEC modules (for M4
and M0). The SEC units should both be operated in FAULT mode to assert SYS_FAULT low when a
fault is detected.

From the Oscillator Watchdog

Either the Oscillator Watchdog or the OCU may indicate a bad clock. If there is an oscillator watchdog fault input,
the SEC could not be functional, because the SEC needs a clock for its operation. The direct path to the
SYS_FAULT pin is provided in that case. The oscillator watchdog and its fault generation are explained in the
Oscillator Watchdog section of the CGU chapter.

Faults from Voltage the Monitoring Unit

The VMU can assert the SYS_FAULT pin on faulty voltage conditions on internal and external power supplies.
Please consult the VMU chapter for more details.

Faults from the Oscillator Comparator Unit

The OCU can assert the SYS_FAULT pin on faulty system clock conditions. Please consult the Oscillator Compa-
rator Unit (OCU) chapter for more details.

SEC Architectural Concepts

10–18 ADSP-CM41x Mixed-Signal Control Processor

Faults from System Interrupt Sources

System interrupt requests from various peripherals and other sources can be routed to the SFI through the SSI. This
routing is enabled by setting the source signal enable (SEC_SCTL[n].SEN) and fault enable
(SEC_SCTL[n].FEN) bits. When the SSI detects the interrupt assertion and if the fault is enabled for that inter-
rupt, the fault is passed to the SFI for further fault management actions.

Because the NVIC is an independent block outside of the SSI and SFI, the NVIC does not know how the SFI man-
ages the fault. Managing interrupts is dedicated to NVIC and managing faults is dedicated to SFI. So, configure the
NVIC appropriately to service the interrupt using an interrupt service routine (ISR).

After the interrupt request is asserted, the signal is sent to both the NVIC and the SFI. Because the source for inter-
rupt and fault generation is the same, a program can manage the fault inside the NVIC handler. Fault events are
triggered when the delay registers count down to zero. In some cases, a program can perform a disable and reenable
of the SEC_SCTL[n].FEN bit inside the handler to halt any fault event that is not desired when interrupt is run-
ning. For more information, see the examples in Programming Examples.

Managing Faults

A fault can be monitored and managed using the following methods.

Trigger Output

The fault interface does not have an interrupt line registered for dedicated management of fault actions. A program
must assign a TRU slave (for example, NMI) to the SEC fault TRU master in order to manage the fault. This ap-
proach is not typically required when:

• a system interrupt is routed to the SFI through the SSI, and

• the NVIC interrupt service routine of that particular interrupt manages the fault event.

System Reset

It is possible to issue a system reset optionally. It is also possible to delay the assertion, such that the application can
perform some critical housekeeping operations before the reset is generated.

Indication on the SYS_FAULT Pin

SFI can drive the SYS_FAULT pin to indicate fault to the external world. In a development system, this signal can
be connected to an LED. In COP toggle mode, the SFI continuously sends out a series of pulses, and it stops when
a fault is asserted.

SEC Error

The processor includes an SEC error (SEC_GSTAT.ERR) as a source input to the SEC to allow for handling the
error as an interrupt or fault.

System Fault Interface (SFI) and the NVIC

ADSP-CM41x Mixed-Signal Control Processor 10–19

NVIC
Implementing a system interrupt service model using the NVIC requires, at a minimum:

• Proper configuration of a system interrupt source (for example, a peripheral or DMA)

• A core interrupt, fault or event service model

• Proper configuration of the NVIC

Programming Concepts

The following list provides the basic programming concepts necessary for configuring the NVIC and SEC.

• Configuring a System Interrupt with NVIC

• Configuring FMU as Fault Pin

• Managing Faults Inside a Triggered ISR

• Configuring and Managing Faults (that are also interrupts)

Programming Examples

This section provides example programming tasks that are typical for SEC usage.

Configuring the WDOG Expiry Event to Issue a System Reset

Use the following procedure to configure the WDOG timer to issue a system reset.

1. Configure the SEC_GCTL register to enable the SEC.

ADDITIONAL INFORMATION:
*pREG_SEC0_GCTL = BITM_SEC_GCTL_EN;

2. Configure the SEC_FCTL register to choose the Fault response mode. In the following code example, the sys-
tem reset is issued.

ADDITIONAL INFORMATION:
*pREG_RCU0_CTL |= BITM_RCU_CTL_SRSTREQEN;
*pREG_SEC0_FCTL |= BITM_SEC_FCTL_SREN;

3. Configure the SEC_SCTL[n].SEN and SEC_SCTL[n].FEN bits in the Source Control 34 and 35 (n=34
and 35) registers to determine how the fault source is handled. To configure the WDOG as the fault source,
program the register. The program can configure any interrupt as the fault source by programming the corre-
sponding register.

ADDITIONAL INFORMATION:
*pREG_SEC0_SCTL34 = BITM_SEC_SCTL_FEN|BITM_SEC_SCTL_SEN;
*pREG_SEC0_SCTL35 = BITM_SEC_SCTL_FEN|BITM_SEC_SCTL_SEN;

NVIC

10–20 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: The SEC ID corresponding to WDOG0 is 3, as indicated in .

4. Write to the enable bit.

ADDITIONAL INFORMATION:
*pREG_SEC0_FCTL |= BITM_SEC_FCTL_EN;

Configuring a System Interrupt with NVIC

The NVIC supports configuring system interrupts.

1. Set the NVIC priority and subpriority levels for the interrupt.

2. Enable the system interrupt at peripheral source.

3. Enable the interrupt with the NVIC.

4. Inside the interrupt service routine (ISR), the NVIC pushes and pops the C program ABI registers.

5. The program must clear the source for the interrupt inside the ISR.

Configuring FMU as Fault Pin

The NVIC supports configuring the FMU as a fault pin.

1. Enable the SEC_GCTL.RESET bit.

2. Enable the SEC_GCTL.EN bit.

3. Program the SEC_FCTL.FIEN bit.

4. Program the SEC_FCTL register with the SEC_FDLY delay time from the fault pending to the fault active.

5. Program the SEC_FCTL register with SEC_FCTL.SREN or SEC_FCTL.TOEN, depending on the require-
ments. If using the trigger mode, route the fault trigger to an interrupt handler such as an NMI interrupt serv-
ice routine (ISR).

6. Enable the fault unit by setting the SEC_FCTL.EN bit.

7. If using the trigger mode, the fault is handled inside the interrupt handler of the ISR to which the fault was
routed.

Managing Faults Inside a Triggered ISR

The SEC supports fault management within an interrupt service routine (ISR).

1. Check whether the SEC_FSTAT.ACT bit is set.

2. Check whether the SEC_FSID.FEXT bit is set.

a. If set, clear the external fault pin source by writing the SEC_FEND.FEXT bit.

Programming Examples

ADSP-CM41x Mixed-Signal Control Processor 10–21

b. If not set, clear the system interrupt source by writing the SEC_FSID.SID bit.

Configuring and Managing Faults (that are also interrupts)

The SEC permits simultaneously registering an interrupt with NVIC and configuring the interrupt as fault (config-
uring and managing a fault that is also an interrupt).

1. Enable the SEC_GCTL.RESET bit.

2. Enable the SEC_GCTL.EN bit.

3. Program the SEC_SCTL[n].SEN and SEC_SCTL[n].FEN bits for the SSI.

4. Program the SEC_FCTL register with options: fault delay, COP toggle mode, system reset, and others.

5. Enable the fault unit by setting the SEC_FCTL.EN bit.

ADDITIONAL INFORMATION: The NVIC handles interrupts. Inside the interrupt service routine (ISR),
the software must first clear the system interrupt source. If the software does not handle the fault soon enough,
the fault events are generated. So, prioritize interrupt handling first (finish it first).

6. To halt a fault event, perform the following:

a. Clear the SEC_SCTL[n].FEN and SEC_SCTL[n].SEN bits.

b. Write the SEC_SSTAT[n].PND bits.

c. Handle the fault as described in triggered ISR case.

d. Reenable the SEC_SCTL[n].FEN and SEC_SCTL[n].SEN bits.

e. Return from the ISR.

SEC Programming Restrictions

Setting the SEC_FCTL.EN bit while the SEC_FSTAT.ACT bit is high can result in unpredictable behavior. To
avoid this issue, set the SEC_FCTL.EN bit while the SEC_FSTAT.ACT bit is low. The SEC_FSTAT.ACT bit is
only set when the SEC_FCTL.EN bit is high. Therefore, the problem can only occur if the SEC_FCTL.EN bit
transitions from 1 to 0 and then to 1 again.

Writing to SEC_FEND to end a fault with both the SEC_FCTL.FOEN bit and the SEC_FCTL.FIEN bit set can
result in erroneous external fault detection. If this operation (ending a fault) and configuration (fault input and fault
output enabled) are required by the application, clear the SEC_FCTL.FOEN bit prior to writing to SEC_FEND.
The recommended sequence for ending a fault with the SEC_FCTL.FIEN or SEC_FCTL.FOEN==1 is as fol-
lows:

1. Clear the SEC_FCTL.FOEN bit.

2. Write to the SEC_FEND register.

3. Set the SEC_FCTL.FOEN bit.

Programming Examples

10–22 ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 SEC Register Descriptions
System Event Controller (SEC) contains the following registers.

Table 10-8: CM41X_M4 SEC Register List

Name Description

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_FCTL Fault Control Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FEND Fault End Register

SEC_FSID Fault Source ID Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SEC_FSTAT Fault Status Register

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC_SCTL[n] Source Control Register n

SEC_SSTAT[n] Source Status Register n

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–23

Fault COP Period Register

The SEC fault COP period register (SEC_FCOPP) contains the width value (count in (SEC) clock cycles) for the
high and low phase of the computer operating properly (COP) toggled output on the COP pin. Note that the actual
high/low phase value is the SEC_FCOPP.COUNT programmed value plus 1.

Fault COP Period

Fault COP Period

COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-4: SEC_FCOPP Register Diagram

Table 10-9: SEC_FCOPP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

COUNT Fault COP Period.

The SEC_FCOPP.COUNT bit field is the width value for the high and low phase of
the computer operating properly (COP) toggled output on the COP pin.

CM41X_M4 SEC Register Descriptions

10–24 ADSP-CM41x Mixed-Signal Control Processor

Fault COP Period Current Register

The SEC fault COP period current register (SEC_FCOPP_CUR) contains the active count (in (SEC) clock periods)
for the current phase (high or low) of the computer operating properly (COP) toggled output on the COP pin. The
SEC loads the SEC_FCOPP_CUR register from the SEC_FCOPP register when the SEC_FCOPP_CUR.COUNT
field is cleared and the SEC is in COP mode (SEC_FCTL.CMS bit =1). The SEC decrements the
SEC_FCOPP_CUR count each (SEC) clock cycle while SEC_FCTL.CMS is set and the SEC_FSTAT.ACT bit is
not set.

Fault COP Period

Fault COP Period

COUNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-5: SEC_FCOPP_CUR Register Diagram

Table 10-10: SEC_FCOPP_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

COUNT Fault COP Period.

The SEC_FCOPP_CUR.COUNT bit field is the active count for the current phase
(high or low) of the computer operating properly (COP) toggled output on the COP
pin.

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–25

Fault Control Register

The SEC fault control register (SEC_FCTL) contains fault control bits for all SEC channels. This register controls
the operation of the System Fault Management Interface (SFI).

Trigger Output EnableSystem Reset Enable

Fault Output EnableFault Input Enable

ResetCOP Mode Select

EnableTrigger Event Select

Lock

TOEN (R/W)SREN (R/W)

FOEN (R/W)FIEN (R/W)

RESET (R0/W)CMS (R/W)

EN (R/W)TES (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-6: SEC_FCTL Register Diagram

Table 10-11: SEC_FCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the SEC_FCTL.LOCK
bit is enabled, the SEC_FCTL register is read only.

0 UnLock

1 Lock

13

(R/W)

TES Trigger Event Select.

The SEC_FCTL.TES bit selects the event that directs the SEC to assert trigger out-
put. In fault pending mode, the SEC asserts trigger output when a fault is pending. In
fault active mode, the SEC asserts trigger output when a fault is active.

0 Fault Active Mode

1 Fault Pending Mode

CM41X_M4 SEC Register Descriptions

10–26 ADSP-CM41x Mixed-Signal Control Processor

Table 10-11: SEC_FCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

CMS COP Mode Select.

The SEC_FCTL.CMS selects the SEC mode for handling fault input. In COP mode,
the SEC toggles the COP pin to indicate that no fault is active and ceases toggling the
pin to indicate that a fault is active. In fault mode, the SEC deasserts the fault pin (=0)
and fault_b pin (=1) when no fault is active and asserts the fault pin (=1) and fault_b
pin (=0) when a fault is active. Not all processors feature both the fault and fault_b
pins. Refer to the product data sheet for details.

0 Fault Mode

1 COP Mode

7

(R/W)

FIEN Fault Input Enable.

The SEC_FCTL.FIEN bit enables the SEC to sample fault input. If
SEC_FCTL.FIEN is set (=1), a fault indication from an external device sets the
SEC_FSTAT.ACT bit and SEC_FSID.FEXT bit.

0 Disable

1 Enable

6

(R/W)

SREN System Reset Enable.

The SEC_FCTL.SREN bit enables the SEC to issue a system reset request when a
fault becomes active.

0 Disable

1 Enable

5

(R/W)

TOEN Trigger Output Enable.

The SEC_FCTL.TOEN bit enables the SEC to produce trigger output when a fault
becomes active.

0 Disable

1 Enable

4

(R/W)

FOEN Fault Output Enable.

The SEC_FCTL.FOEN bit enables the SEC to indicate fault status, according to the
SEC_FCTL.CMS bit configuration.

0 Disable

1 Enable

1

(R0/W)

RESET Reset.

Setting the SEC_FCTL.RESET bit resets ALL SEC registers to their default values.

0 No Action

1 Reset

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–27

Table 10-11: SEC_FCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable.

The SEC_FCTL.EN bit controls the operational state of the SEC. Clearing the
SEC_FCTL.EN bit halts the execution of the SEC without resetting status registers.
Setting the SEC_FCTL.EN bit enables the SEC to begin or resume operation with
the current configuration and status.

0 Disable

1 Enable

CM41X_M4 SEC Register Descriptions

10–28 ADSP-CM41x Mixed-Signal Control Processor

Fault Delay Register

The SEC fault delay register (SEC_FDLY) contains the number (SEC_FDLY.COUNT field) of (SEC) clock peri-
ods to delay from fault pending to fault active, when actions are enabled.

Fault Delay

Fault Delay

COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-7: SEC_FDLY Register Diagram

Table 10-12: SEC_FDLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

COUNT Fault Delay.

The SEC_FDLY.COUNT bit field is the number of (SEC) clock periods to delay from
fault pending to fault active, when actions are enabled.

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–29

Fault Delay Current Register

The SEC fault delay current register (SEC_FDLY_CUR) contains the active count (SEC_FDLY_CUR.COUNT
field) in (SEC) clock periods for the delay from fault pending to fault active, when actions are enabled. The count is
loaded from the SEC_FDLY register when a fault becomes pending (SEC_FSTAT.PND bit is set). The SEC decre-
ments the value in SEC_FDLY_CUR each (SEC) clock cycle while the SEC_FSTAT.PND bit is set.

Fault Delay

Fault Delay

COUNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-8: SEC_FDLY_CUR Register Diagram

Table 10-13: SEC_FDLY_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

COUNT Fault Delay.

The SEC_FDLY_CUR.COUNT bit field is the active count in (SEC) clock periods for
the delay from fault pending to fault active, when actions are enabled.

CM41X_M4 SEC Register Descriptions

10–30 ADSP-CM41x Mixed-Signal Control Processor

Fault End Register

The SEC fault end register (SEC_FEND) contains fault source ID and internal/external fields. This register receives
fault end indication from a core.

Source ID

Fault External

SID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FEXT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-9: SEC_FEND Register Diagram

Table 10-14: SEC_FEND Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

FEXT Fault External.

Setting the SEC_FEND.FEXT bit, when the SEC_FEND.SID field is cleared, clears
an active fault from an external source.

0 Fault Internal

1 Fault External

7:0

(R/W)

SID Source ID.

The SEC_FEND.SID identifies a fault to be ended as indicated to the SEC by the
core. The core loads the SEC_FEND.SID field value. If the SEC_FEND.SID value
matches the SEC_FSID.SID value, the SEC_FSTAT.PND bit and
SEC_FSTAT.ACT bit are cleared.

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–31

Fault Source ID Register

The SEC fault source ID register (SEC_FSID) contains a fault source ID and internal/external fields.

NOTE:These bits are not reset by system reset so that a fault that automatically triggers a system reset to avoid a
fault may be analyzed after the reset occurs.

Source ID

Fault External

SID (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

FEXT (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

X
16

Figure 10-10: SEC_FSID Register Diagram

Table 10-15: SEC_FSID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

FEXT Fault External.

The SEC_FSID.FEXT bit indicates that the last active fault was asserted by an exter-
nal device. The SEC sets the SEC_FSID.FEXT bit when the SEC_FSTAT.ACT bit
is set by the fault input pins. The SEC_FSID.FEXT bit is cleared when the
SEC_FSTAT.ACT bit is set by an internal fault or when the external fault is ended.
When the SEC_FSID.FEXT bit is set, the SEC_FSID.SID is cleared.

0 Fault Internal

1 Fault External

7:0

(R/NW)

SID Source ID.

The SEC_FSID.SID identifies the fault assertion detected by the SEC fault inter-
face. The SEC loads the SEC_FSID.SID field value when a system fault indication
is asserted. The SEC fault interface does not change the SEC_FSID.SID value until
the fault is no longer pending or active, as indicated by the SEC_FSTAT.PND bit
and SEC_FSTAT.ACT bit being cleared in the SEC_FSTAT register.

CM41X_M4 SEC Register Descriptions

10–32 ADSP-CM41x Mixed-Signal Control Processor

Fault System Reset Delay Register

The SEC fault system reset delay register (SEC_FSRDLY) contains the number (SEC_FSRDLY.COUNT field) of
(SEC) clock periods for the delay from a fault becoming active to system reset request assertion, if enabled.

Fault System Reset Delay

Fault System Reset Delay

COUNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-11: SEC_FSRDLY Register Diagram

Table 10-16: SEC_FSRDLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

COUNT Fault System Reset Delay.

The SEC_FSRDLY.COUNT bit field is the number of (SEC) clock periods for the
delay from a fault becoming active to system reset request assertion.

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–33

Fault System Reset Delay Current Register

The SEC fault system reset delay current register (SEC_FSRDLY_CUR) contains the active count
(SEC_FSRDLY_CUR.COUNT field) in (SEC) clock periods for the delay from fault active to system reset assertion,
if enabled. The count is loaded from the SEC_FSRDLY register when a fault becomes active (SEC_FSTAT.ACT
bit is set). The SEC decrements the value in SEC_FSRDLY_CUR each (SEC) clock cycle while the
SEC_FSTAT.ACT bit is set.

Fault System Reset Delay

Fault System Reset Delay

COUNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

COUNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-12: SEC_FSRDLY_CUR Register Diagram

Table 10-17: SEC_FSRDLY_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

COUNT Fault System Reset Delay.

The SEC_FSRDLY_CUR.COUNT bit field is the active count in (SEC) clock periods
for the delay from fault active to system reset assertion.

CM41X_M4 SEC Register Descriptions

10–34 ADSP-CM41x Mixed-Signal Control Processor

Fault Status Register

The SEC fault status register (SEC_FSTAT) indicates the operational status of the SFI.

Pending Fault

Error CauseFault Active

ErrorNext Pending Fault

PND (R)

ERRC (R)ACT (R)

ERR (R/W1C)NPND (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-13: SEC_FSTAT Register Diagram

Table 10-18: SEC_FSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/NW)

NPND Next Pending Fault.

The SEC_FSTAT.NPND bit indicates that one or more sources have signaled fault
assertion, but the input has not yet triggered the fault pending detection in the SEC
fault interface. The SEC sets the SEC_FSTAT.NPND bit when the fault interface de-
tects assertion of any enabled fault source input, while either the SEC_FSTAT.PND
or SEC_FSTAT.ACT bits are set. The SEC clears the SEC_FSTAT.NPND bit when
there are no fault sources waiting.

0 Not Pending

1 Pending

9

(R/NW)

ACT Fault Active.

The SEC_FSTAT.ACT bit indicates that the SEC has received a fault source input,
the current fault delay count (in the SEC_FDLY_CUR register) has expired, and the
fault actions are enabled. The SEC also sets the SEC_FSTAT.ACT bit on fault input
detection if the SEC_FCTL.FIEN bit is set. The SEC_FSTAT.ACT bit is cleared
by writing the ID value of the asserted fault from SEC_FSID register to the
SEC_FEND register.

0 No Fault

1 Active Fault

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–35

Table 10-18: SEC_FSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/NW)

PND Pending Fault.

The SEC_FSTAT.PND bit indicates a fault source has signaled a fault assertion to the
SEC, but the SEC has not yet triggered the event actions due to the delay selected with
the SEC_FDLY register. The SEC fault interface sets the SEC_FSTAT.PND bit
when the SEC_FSID is updated on assertion of a fault source input. The
SEC_FSTAT.PND bit is only set when the SEC_FSTAT.ACT bit is cleared. The
SEC updates the SEC_FSID register with the SID value when the
SEC_FSTAT.PND bit is set. The SEC_FSTAT.PND bit is cleared either by the SEC
fault interface when the current delay count in the SEC_FDLY_CUR register expires
or by writing the SEC_FSID.SID field value (which indicates the ID of the asserted
fault) to the SEC_FEND register.

0 Not Pending

1 Pending

5:4

(R/NW)

ERRC Error Cause.

When the SEC_FSTAT.ERR bit is asserted, the SEC updates SEC_FSTAT.ERRC
field to convey the interrupt source error type. When the error type is source overflow,
the status indicates that a source signal assertion occurred or an SEC raise operation
was attempted while pending was already set. The source overflow is detected when
the source is set for edge only.

0 Source Overflow Error

1 Reserved

2 End Error

3 Reserved

1

(R/W1C)

ERR Error.

The SEC_FSTAT.ERR bit indicates an SEC fault interface error. When
SEC_FSTAT.ERR is set, the SEC updates the SEC_FSTAT.ERRC field to indicate
the corresponding error cause. When multiple errors occur, the SEC_FSTAT register
captures the status for the first error and does not capture subsequent errors until the
status is cleared.

0 No Error

1 Error Occurred

CM41X_M4 SEC Register Descriptions

10–36 ADSP-CM41x Mixed-Signal Control Processor

Global Control Register

The SEC global control register (SEC_GCTL) provides register locking, reset, and enable for the SEC module.

EnableReset

Lock

EN (R/W)RESET (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-14: SEC_GCTL Register Diagram

Table 10-19: SEC_GCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the SEC_GCTL.LOCK
bit is enabled, the SEC_GCTL register is read only.

0 Unlock

1 Lock

1

(R0/W)

RESET Reset.

The SEC_GCTL.RESET bit is write-1-action and triggers a soft reset to all SEC reg-
isters.

0 No Action

1 Reset

0

(R/W)

EN Enable.

The SEC_GCTL.EN bit is read/write and must be set for the SEC to begin/resume
SEC operation with the current configuration and status. Clearing the
SEC_GCTL.EN bit halts the execution of the SFI. All SSIs remain active, along with
all error detection, without resetting status registers.

0 Disable

1 Enable

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–37

Global Status Register

The SEC global status register (SEC_GSTAT) contains global status bits for the SEC.

ErrorError Cause

Address ErrorLock Write Error

ERR (R/W1C)ERRC (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADRERR (R/W1C)LWERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-15: SEC_GSTAT Register Diagram

Table 10-20: SEC_GSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

LWERR Lock Write Error.

The SEC_GSTAT.LWERR bit indicates (when set) there was an attempted write to
an SEC register while the SEC_GCTL.LOCK bit was set and while the global lock bit
was enabled (SPU_CTL.GLCK bit =1). This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

30

(R/W1C)

ADRERR Address Error.

The SEC_GSTAT.ADRERR bit indicates that the SEC generated and address error.
This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

5:4

(R/NW)

ERRC Error Cause.

When the SEC updates the SEC_GSTAT.ERR bit, the SEC updates the
SEC_GSTAT.ERRC bits to indicate the error type.

Note that for SSI errors, the error status indicates an error is active for any SSI input.
This error is an OR of all the interrupt source errors.

0 SFI Error

1 Reserved

2 SSI Error

3 Reserved

CM41X_M4 SEC Register Descriptions

10–38 ADSP-CM41x Mixed-Signal Control Processor

Table 10-20: SEC_GSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

ERR Error.

The SEC_GSTAT.ERR bit indicates an error has occurred in the SEC. When the
SEC asserts this bit (=1), the SEC updates the SEC_GSTAT.ERRC field to indicate
the corresponding error cause. Even if multiple errors occur, only the first error is cap-
tured on assertion of this bit. This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–39

Global Raise Register

The SEC global raise register (SEC_RAISE) contains a source ID event set-to-pending field (SEC_RAISE.SID).
When a source ID value is written to this field, the SEC raises the source's event status to pending.

Source ID
SID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-16: SEC_RAISE Register Diagram

Table 10-21: SEC_RAISE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

SID Source ID.

The SEC_RAISE.SID bit field is the source ID of event that is set to pending status.

CM41X_M4 SEC Register Descriptions

10–40 ADSP-CM41x Mixed-Signal Control Processor

Source Control Register n

The SEC source control register (SEC_SCTL[n]) contains control bits to configure the SEC event sources. This
register controls the configuration of the corresponding SEC event source.

Source (signal) EnableEdge Select

Fault EnableError Enable

Lock

SEN (R/W)ES (R/W)

FEN (R/W)ERREN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-17: SEC_SCTL[n] Register Diagram

Table 10-22: SEC_SCTL[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the
SEC_SCTL[n].LOCK bit is enabled, the SEC_SCTL[n] register is read only.

0 Unlock

1 Lock

4

(R/W)

ERREN Error Enable.

The SEC_SCTL[n].ERREN bit permits the SEC_SSTAT[n].ERR status bit to
be set on error detection. If SEC_SCTL[n].ERREN is cleared, no errors are detect-
ed.

0 Disable

1 Enable

3

(R/W)

ES Edge Select.

The SEC_SCTL[n].ES bit selects the operational and sensitivity mode of the SEC
source interface input.

0 Level Sensitive

1 Edge Sensitive

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–41

Table 10-22: SEC_SCTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

SEN Source (signal) Enable.

The SEC_SCTL[n].SEN bit controls whether the system event source input signal
may affect the pending status of the source. Clearing the SEC_SCTL[n].SEN bit
disables the source input signal from affecting the pending status. Setting
SEC_SCTL[n].SEN enables the source input signal to affect the pending status.

0 Disable

1 Enable

1

(R/W)

FEN Fault Enable.

The SEC_SCTL[n].FEN bit controls whether the SEC may forward an interrupt
request to the SEC fault interface as a fault source. This bit does not affect the ability
of an interrupt source to set an interrupt as pending. The SEC_SCTL[n].FEN bit
only affects whether the pending request may be forwarded to the SEC fault interface.

0 Disable

1 Enable

CM41X_M4 SEC Register Descriptions

10–42 ADSP-CM41x Mixed-Signal Control Processor

Source Status Register n

The SEC event source status register (SEC_SSTAT[n]) contains bits indicating the status of the corresponding
event source n. An event source may be: pending, active, active and pending, or neither pending nor active.

Error Cause

ErrorPending Source

ERRC (R)

ERR (R/W1C)PND (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 10-18: SEC_SSTAT[n] Register Diagram

Table 10-23: SEC_SSTAT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

PND Pending Source.

The SEC_SSTAT[n].PND bit indicates the source has signaled an event request,
but the event request has not been (or is not currently being) serviced. A
SEC_SSTAT[n].PND bit is set by the SEC on detection of an assertion of the corre-
sponding system source input. A SEC_SSTAT[n].PND bit is cleared by a W1C op-
eration.

0 Not Pending

1 Pending

5:4

(R/NW)

ERRC Error Cause.

When the SEC_SSTAT[n].ERR bit is asserted, the SEC updates
SEC_SSTAT[n].ERRC field to convey the interrupt source error type. When the
error type is source overflow, the status indicates that a source signal assertion occurred
or an SEC raise operation was attempted while pending was already set. The source
overflow is detected when the source is set for edge only. .

0 Source Overflow Error

1 Reserved

2 End Error

3 Reserved

CM41X_M4 SEC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 10–43

Table 10-23: SEC_SSTAT[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

ERR Error.

The SEC_SSTAT[n].ERR bit indicates an error for a specific system interrupt
source. When the SEC_SSTAT[n].ERR bit is set, the SEC updates the
SEC_SSTAT[n].ERRC field to the value of the corresponding error cause. Even if
multiple errors occur, only the first error is captured on assertion of the
SEC_SSTAT[n].ERR bit.

0 No Error

1 Error Occurred

CM41X_M4 SEC Register Descriptions

10–44 ADSP-CM41x Mixed-Signal Control Processor

11 Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger masters (genera-
tors of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to respond to triggers in
various ways. Multiple TRUs may be provided in a multiprocessor system to create a trigger network. Common ap-
plications enabled by the TRU include:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes

• Software triggering

• Synchronization of concurrent activities

TRU Features
The TRU supports the following features:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes.
Once a DMA channel completes data transfer, it can act as a Trigger Master and signal an internal trigger pulse
to the programmed Trigger Slave which can also be another DMA channel. The Slave Trigger connected to the
DMA channel kicks off the DMA transfer automatically. None of this requires core intervention once the initi-
alization is done.

• Software triggers. The best use of triggers is to minimize core intervention. It is also possible to initiate a trigger
pulse to a Trigger Slave, in the software.

• Synchronization of concurrent activities. A single Trigger Master can initiate a trigger pulse to multiple Trigger
Slaves so that several system level activities can be synchronized on an internally or externally generated event.

• Configuration protection through register-level lock bits and global lock indication

TRU Functional Description
The following sections provide a description of the TRU.

Trigger Routing Unit (TRU)

ADSP-CM41x Mixed-Signal Control Processor 11–1

CM41X_M4 TRU Register List

The Trigger Routing Unit (TRU) provides simple sequence control of distributed modules without the penalties
associated with core intervention (for example, interrupt overhead). The TRU receives trigger inputs from all master
trigger inputs (MTI) and the TRU master trigger register (TRU_MTR). Based on these inputs, the TRU logic gener-
ates trigger outputs that initiate slave operations in the processor core and peripherals. A set of registers governs
TRU operations. For more information on TRU functionality, see the TRU register descriptions.

Table 11-1: CM41X_M4 TRU Register List

Name Description

TRU_ERRADDR Error Address Register

TRU_GCTL Global Control Register

TRU_MTR Master Trigger Register

TRU_SSR[n] Slave Select Register

TRU_STAT Status Information Register

CM41X_M0 TRU Interrupt List

Table 11-2: CM41X_M0 TRU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

20 TRU0_INT1 TRU0 Interrupt request 1 Edge

21 TRU1_INT4 TRU1 Interrupt request 4 Edge

CM41X_M4 TRU Interrupt List

Table 11-3: CM41X_M4 TRU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

123 TRU1_INT0 TRU1 Interrupt request 0 Edge

124 TRU1_INT1 TRU1 Interrupt request 1 Edge

125 TRU1_INT2 TRU1 Interrupt request 2 Edge

126 TRU1_INT3 TRU1 Interrupt request 3 Edge

127 TRU0_INT0 TRU0 Interrupt request 0 Edge

TRU Functional Description

11–2 ADSP-CM41x Mixed-Signal Control Processor

CM41X_M0 TRU Trigger List

Table 11-4: CM41X_M0 TRU Trigger List Masters

Trigger ID Name Description Sensitivity

27 TRU1_GTP0 TRU1 Generic Trigger Outputs 0 Edge

28 TRU1_GTP1 TRU1 Generic Trigger Outputs 1 Edge

29 TRU1_GTP2 TRU1 Generic Trigger Outputs 2 Edge

30 TRU1_GTP3 TRU1 Generic Trigger Outputs 3 Edge

31 TRU1_GTP4 TRU1 Generic Trigger Outputs 4 Edge

32 TRU1_GTP5 TRU1 Generic Trigger Outputs 5 Edge

33 TRU1_GTP6 TRU1 Generic Trigger Outputs 6 Edge

34 TRU1_GTP7 TRU1 Generic Trigger Outputs 7 Edge

35 TRU1_GTP8 TRU1 Generic Trigger Outputs 8 Edge

36 TRU1_GTP9 TRU1 Generic Trigger Outputs 9 Edge

37 TRU1_GTP10 TRU1 Generic Trigger Outputs 10 Edge

38 TRU1_GTP11 TRU1 Generic Trigger Outputs 11 Edge

39 TRU1_GTP12 TRU1 Generic Trigger Outputs 12 Edge

40 TRU1_GTP13 TRU1 Generic Trigger Outputs 13 Edge

41 TRU1_GTP14 TRU1 Generic Trigger Outputs 14 Edge

42 TRU1_GTP15 TRU1 Generic Trigger Outputs 15 Edge

43 TRU1_GTP16 TRU1 Generic Trigger Outputs 16 Edge

44 TRU1_GTP17 TRU1 Generic Trigger Outputs 17 Edge

45 TRU1_GTP18 TRU1 Generic Trigger Outputs 18 Edge

46 TRU1_GTP19 TRU1 Generic Trigger Outputs 19 Edge

47 TRU1_GTP20 TRU1 Generic Trigger Outputs 20 Edge

48 TRU1_GTP21 TRU1 Generic Trigger Outputs 21 Edge

49 TRU1_GTP22 TRU1 Generic Trigger Outputs 22 Edge

50 TRU1_GTP23 TRU1 Generic Trigger Outputs 23 Edge

51 TRU1_GTP24 TRU1 Generic Trigger Outputs 24 Edge

52 TRU1_GTP25 TRU1 Generic Trigger Outputs 25 Edge

53 TRU1_GTP26 TRU1 Generic Trigger Outputs 26 Edge

54 TRU1_GTP27 TRU1 Generic Trigger Outputs 27 Edge

55 TRU1_GTP28 TRU1 Generic Trigger Outputs 28 Edge

56 TRU1_GTP29 TRU1 Generic Trigger Outputs 29 Edge

TRU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 11–3

Table 11-4: CM41X_M0 TRU Trigger List Masters (Continued)

Trigger ID Name Description Sensitivity

57 TRU1_GTP30 TRU1 Generic Trigger Outputs 30 Edge

58 TRU1_GTP31 TRU1 Generic Trigger Outputs 31 Edge

Table 11-5: CM41X_M0 TRU Trigger List Slaves

Trigger ID Name Description Sensitivity

41 TRU0_INT0 TRU0 Interrupt request 0 Pulse

42 TRU0_INT1 TRU0 Interrupt request 1 Pulse

43 TRU0_GTP0 TRU0 Generic Trigger Ports 0 Pulse

44 TRU0_GTP1 TRU0 Generic Trigger Ports 1 Pulse

45 TRU0_GTP2 TRU0 Generic Trigger Ports 2 Pulse

46 TRU0_GTP3 TRU0 Generic Trigger Ports 3 Pulse

CM41X_M0 Trigger List

Table 11-6: CM41X_M0 Trigger List Masters

Trigger ID Name Description Sensitivity

1 SEC0_FAULT SEC0 Fault Edge

2 SEC1_FAULT SEC1 Fault Edge

3 CGU0_EVT CGU0 Event Edge

4 TIMER0_TMR0_MST TIMER0 TMR 0 Trigger Master Edge

5 TIMER0_TMR1_MST TIMER0 TMR 1 Trigger Master Edge

6 TIMER0_TMR2_MST TIMER0 TMR 2 Trigger Master Edge

7 TIMER0_TMR3_MST TIMER0 TMR 3 Trigger Master Edge

8 TIMER0_TMR4_MST TIMER0 TMR 4 Trigger Master Edge

9 TIMER0_TMR5_MST TIMER0 TMR 5 Trigger Master Edge

10 TIMER0_TMR6_MST TIMER0 TMR 6 Trigger Master Edge

11 TIMER0_TMR7_MST TIMER0 TMR 7 Trigger Master Edge

12 PINT0_BLOCK PINT0 Pin Interrupt Block Level

13 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

14 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

15 DMA0_MST DMA0 Trigger Master Edge

16 DMA1_MST DMA1 Trigger Master Edge

TRU Functional Description

11–4 ADSP-CM41x Mixed-Signal Control Processor

Table 11-6: CM41X_M0 Trigger List Masters (Continued)

Trigger ID Name Description Sensitivity

17 DMA2_MST DMA2 Trigger Master Edge

18 DMA3_MST DMA3 Trigger Master Edge

19 CAN0_STAT CAN0 Status Level

23 SWU0_EVT SWU0 Event None

24 SWU1_EVT SWU1 Event None

59 AFE_LIMIT AFE FOCP Limit Detection Level

60 AFE_NOTOK AFE is functioning normally Edge

Table 11-7: CM41X_M0 Trigger List Slaves

Trigger ID Name Description Sensitivity

0 RCU0_SYSRST0 RCU0 System Reset 0 Pulse

1 TIMER0_TMR0_SLV0 TIMER0 TMR 0 Trigger Slave 0 Pulse

2 TIMER0_TMR0_SLV1 TIMER0 TMR 0 Trigger Slave 1 Pulse

3 TIMER0_TMR1_SLV0 TIMER0 TMR 1 Trigger Slave 0 Pulse

4 TIMER0_TMR1_SLV1 TIMER0 TMR 1 Trigger Slave 1 Pulse

5 TIMER0_TMR2_SLV0 TIMER0 TMR 2 Trigger Slave 0 Pulse

6 TIMER0_TMR2_SLV1 TIMER0 TMR 2 Trigger Slave 1 Pulse

7 TIMER0_TMR3_SLV0 TIMER0 TMR 3 Trigger Slave 0 Pulse

8 TIMER0_TMR3_SLV1 TIMER0 TMR 3 Trigger Slave 1 Pulse

9 TIMER0_TMR4_SLV0 TIMER0 TMR 4 Trigger Slave 0 Pulse

10 TIMER0_TMR4_SLV1 TIMER0 TMR 4 Trigger Slave 1 Pulse

11 TIMER0_TMR5_SLV0 TIMER0 TMR 5 Trigger Slave 0 Pulse

12 TIMER0_TMR5_SLV1 TIMER0 TMR 5 Trigger Slave 1 Pulse

13 TIMER0_TMR6_SLV0 TIMER0 TMR 6 Trigger Slave 0 Pulse

14 TIMER0_TMR6_SLV1 TIMER0 TMR 6 Trigger Slave 1 Pulse

15 TIMER0_TMR7_SLV0 TIMER0 TMR 7 Trigger Slave 0 Pulse

16 TIMER0_TMR7_SLV1 TIMER0 TMR 7 Trigger Slave 1 Pulse

17 PORTA_TOGGLE PORTA Port Toggle Trigger Pulse

18 M0P_NMI_SLV0 M0P NMI Trigger Slave 0 Pulse

20 ADCC0_SLV0 ADCC0 Trigger Slave 0 Pulse

21 ADCC0_SLV1 ADCC0 Trigger Slave 1 Pulse

TRU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 11–5

Table 11-7: CM41X_M0 Trigger List Slaves (Continued)

Trigger ID Name Description Sensitivity

22 ADCC0_SLV2 ADCC0 Trigger Slave 2 Pulse

23 ADCC0_SLV3 ADCC0 Trigger Slave 3 Pulse

24 ADCC0_SLV4 ADCC0 Trigger Slave 4 Pulse

25 ADCC0_SLV5 ADCC0 Trigger Slave 5 Pulse

26 DMA0_SLV0 DMA0 Trigger Slave 0 Pulse

27 DMA1_SLV0 DMA1 Trigger Slave 0 Pulse

28 DMA2_SLV0 DMA2 Trigger Slave 0 Pulse

29 DMA3_SLV0 DMA3 Trigger Slave 0 Pulse

30 SWU0_EN SWU0 Enable Pulse

31 SWU1_EN SWU1 Enable Pulse

CM41X_M4 TRU Trigger List

Table 11-8: CM41X_M4 TRU Trigger List Masters

Trigger ID Name Description Sensitivity

74 TRU0_GTP0 TRU0 Generic Trigger Ports Edge

75 TRU0_GTP1 TRU0 Generic Trigger Ports Edge

76 TRU0_GTP2 TRU0 Generic Trigger Ports Edge

77 TRU0_GTP3 TRU0 Generic Trigger Ports Edge

Table 11-9: CM41X_M4 TRU Trigger List Slaves

Trigger ID Name Description Sensitivity

98 TRU1_INT0 TRU1 Interrupt request 0 Pulse

99 TRU1_INT1 TRU1 Interrupt request 1 Pulse

100 TRU1_INT2 TRU1 Interrupt request 2 Pulse

101 TRU1_INT3 TRU1 Interrupt request 3 Pulse

102 TRU1_INT4 TRU1 Interrupt request 4 Pulse

103 TRU1_GTP0 TRU1 Generic Trigger Outputs 0 Pulse

104 TRU1_GTP1 TRU1 Generic Trigger Outputs 1 Pulse

105 TRU1_GTP2 TRU1 Generic Trigger Outputs 2 Pulse

106 TRU1_GTP3 TRU1 Generic Trigger Outputs 3 Pulse

107 TRU1_GTP4 TRU1 Generic Trigger Outputs 4 Pulse

TRU Functional Description

11–6 ADSP-CM41x Mixed-Signal Control Processor

Table 11-9: CM41X_M4 TRU Trigger List Slaves (Continued)

Trigger ID Name Description Sensitivity

108 TRU1_GTP5 TRU1 Generic Trigger Outputs 5 Pulse

109 TRU1_GTP6 TRU1 Generic Trigger Outputs 6 Pulse

110 TRU1_GTP7 TRU1 Generic Trigger Outputs 7 Pulse

111 TRU1_GTP8 TRU1 Generic Trigger Outputs 8 Pulse

112 TRU1_GTP9 TRU1 Generic Trigger Outputs 9 Pulse

113 TRU1_GTP10 TRU1 Generic Trigger Outputs 10 Pulse

114 TRU1_GTP11 TRU1 Generic Trigger Outputs 11 Pulse

115 TRU1_GTP12 TRU1 Generic Trigger Outputs 12 Pulse

116 TRU1_GTP13 TRU1 Generic Trigger Outputs 13 Pulse

117 TRU1_GTP14 TRU1 Generic Trigger Outputs 14 Pulse

118 TRU1_GTP15 TRU1 Generic Trigger Outputs 15 Pulse

119 TRU1_GTP16 TRU1 Generic Trigger Outputs 16 Pulse

120 TRU1_GTP17 TRU1 Generic Trigger Outputs 17 Pulse

121 TRU1_GTP18 TRU1 Generic Trigger Outputs 18 Pulse

122 TRU1_GTP19 TRU1 Generic Trigger Outputs 19 Pulse

123 TRU1_GTP20 TRU1 Generic Trigger Outputs 20 Pulse

124 TRU1_GTP21 TRU1 Generic Trigger Outputs 21 Pulse

125 TRU1_GTP22 TRU1 Generic Trigger Outputs 22 Pulse

126 TRU1_GTP23 TRU1 Generic Trigger Outputs 23 Pulse

127 TRU1_GTP24 TRU1 Generic Trigger Outputs 24 Pulse

128 TRU1_GTP25 TRU1 Generic Trigger Outputs 25 Pulse

129 TRU1_GTP26 TRU1 Generic Trigger Outputs 26 Pulse

130 TRU1_GTP27 TRU1 Generic Trigger Outputs 27 Pulse

131 TRU1_GTP28 TRU1 Generic Trigger Outputs 28 Pulse

132 TRU1_GTP29 TRU1 Generic Trigger Outputs 29 Pulse

133 TRU1_GTP30 TRU1 Generic Trigger Outputs 30 Pulse

134 TRU1_GTP31 TRU1 Generic Trigger Outputs 31 Pulse

TRU Definitions

The following definitions are helpful when using the TRU module.

TRU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 11–7

Trigger Master

A trigger master is any system module that provides trigger event indication to the TRU. Trigger master modules
define trigger events and conditions for assertion.

Trigger Master ID

Trigger masters are assigned a unique numeric ID according to their physical connection to the TRU. Trigger master
ID 0 is reserved and defined as null.

Trigger Slave

A trigger slave is any system module that receives a trigger event indication from the TRU. Trigger slave modules
define a trigger event response.

TRU Block Diagram

Trigger masters and the Master Trigger Register (MTR) generate trigger assertions. Each trigger slave has a dedicated
Slave Select Register (SSR) that specifies the unique trigger master from which it receives the trigger indication.

TRU

SSR0

 TRIGGER
MASTER 1

 MTR
DECODER

SSRn

1

X

MTR

 TRIGGER
SLAVE 0

 TRIGGER

 SLAVE n

 TRIGGER
MASTER X

Figure 11-1: TRU Block Diagram

Inter Core Trigger Communication

In the ADSP-CM41xF, there is a mechanism to communicate between the TRUs of each of core. The TRU0 is
assigned for trigger masters and trigger slaves associated with the Cortex-M0 platform and TRU1 is assigned for
trigger masters and trigger slaves associated with the Cortex-M4 platform. The Generic Trigger Outputs (GTP) are
used to generate internal triggers between TRU0 and TRU1. The TRU1 in the Cortex-M4 has 32 GTP trigger
slaves, and four GTP trigger masters. The TRU0 in the Cortex-M0 has four GTP trigger slaves, and 32 GTP trigger
slaves.

If a trigger is received at a GTP slave trigger input TRUn, it is automatically forwarded to the corresponding GTP
master trigger at the other TRUn which can then generate a trigger to any slave. The Trigger Communication figure
shows how the connections are accomplished.

TRU Functional Description

11–8 ADSP-CM41x Mixed-Signal Control Processor

trigger communication from TRU0 to TRU1

ANY TRIGGER TRU0

GPT0 TRIGGER
SLAVE GPT0 TRIGGER

GPT3 TRIGGER
MASTER

TRU1

ANY TRIGGER
SLAVE

GPT3 TRIGGER
SLAVE

ANY TRIGGER TRU1

GPT0 TRIGGER
SLAVE GPT0 TRIGGER

GPT31 TRIGGER

TRU0

ANY TRIGGER
SLAVE

GPT31 TRIGGER

trigger communication from TRU1 to TRU0

Figure 11-2: Trigger Communication

TRU Architectural Concepts
The TRU supports a simple trigger-in/trigger-out model for modules that comply with the triggering functional
model. The TRU is the controller of the trigger system. Trigger outputs from trigger masters are mapped to trigger
inputs of trigger slaves through a set of programmable registers (TRU_SSR[n]).

System modules are trigger master only, trigger slave only, or trigger master and trigger slave.

All of the trigger input and output signals are connected to a trigger routing unit (TRU) which manages the connec-
tions of triggers between modules.

In multi-processor systems, multiple TRU units are provided. These TRUs are networked together. Generic Trigger
Ports (GTPs) are provided to forward trigger events from one TRU unit to another, forming a pathway from trigger
masters to trigger slaves wherever they might lie in the system.

TRU Programming Model
Implementing sequence control using the TRU requires, at a minimum, proper configuration of a trigger slave, a
trigger master, and the TRU module itself. The only requirement for the configuration procedure is that the trigger
master is configured and enabled as the last step.

Complete the following other steps:

• Configure the trigger slave for response to triggers.

• Configure the TRU to map the trigger master to the trigger slave through the TRU_SSR[n] registers.

• Configure the trigger master to generate trigger assertions.

• Alternatively, use software triggering for trigger assertion. Writing the trigger master ID to the MTR register
generates software triggers.

TRU Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 11–9

Programming Concepts

The following concepts aid in programming the TRU.

• Trigger Sequence Configuration. A simple sequence consists of one trigger master and one trigger slave. More
complex trigger sequences consist of several trigger slaves functioning as trigger slave and trigger master. Addi-
tionally, trigger sequences can loopback to the original master forming a perpetual sequence.

• Software Triggering. Writing a trigger master ID to the MTR generates a trigger within the TRU from the
trigger master ID specified.

• Synchronization. The TRU can be used to coarsely synchronize events by mapping multiple trigger slaves to
the same trigger master or by generating multiple trigger master assertions simultaneously through the MTR.

• Configuration Protection. The TRU_SSR[n].LOCK bit and the TRU_GCTL.LOCK bit enable register level
write-protection when the global lock is asserted in the SPU.

Programming Examples

The following examples shows the steps to create a single trigger and a Timer period expiry event automatically tog-
gling a GPIO.

Configuring a Simple Trigger Sequence

The following example shows the steps to create a simple trigger.

1. Write to the TRU_GCTL register to enable the TRU.

2. Write to the TRU_SSR[n] register of a specific trigger slave to assign it to a specific trigger master.

3. Enable the trigger slave to wait for and accept a trigger.

4. Enable the trigger master to generate a trigger.

Toggle a GPIO on Timer Expiry Event

This example shows a case where a Timer period expiry event automatically toggles a GPIO. This is achieved by
programming the Slave trigger register for GPIO with the Timer as Master.

1. Enable a specific pin in the PORT F to toggle up on trigger (PORT_TRIG_TGL)

2. Enable timer to generate trigger up (TIMER_TRG_MSK register)

3. Program the Slave trigger 23 (TRU_SSR[n] register) (this toggles the PORTs) with the Timer as the Master.

4. Enable the TRU (TRU_GCTL.EN bit).

*pREG_PORTF_TRIG_TGL = 0x00000010;
*pREG_TIMER1_TRG_MSK &= ~BITM_TIMER_TRG_MSK_TMR03;
*pREG_TRU1_SSR23 = TRGM_TIMER1_TMR3_MST;
*pREG_TRU1_GCTL = 0x1;

TRU Programming Model

11–10 ADSP-CM41x Mixed-Signal Control Processor

TRU Event Control
The TRU is a major part of event control solutions. It is the center of the trigger functional model and can extend
to support the interrupt and fault management models as well.

TRU Status and Error Signals

The TRU does not have dedicated status and error output signals other than the MMR interface. Slave errors are
reported to the master over the standard peripheral bus protocol.

Trigger Latencies

The ADSP-CM41x Trigger Latencies table

Table 11-10: ADSP-CM41x Trigger Latencies

Block Parameter /
Macro

From (Event source
or block-level TRU
Slave input port)

To (Event Result or
block-level TRU
Master output port)

Formula Unit (clock
cycles)

Comments

TRU0 ADI_TD_TRU any TRU0 input
(TRU master), for
example
TRGM_xxxx

any TRU0 output
(TRU slave), for ex-
ample TRGS_xxxx

4 SCLK0 Intrinsic TRU latency,
M0-side TRU

TRU1 ADI_TD_TRU any TRU1 input
(TRU master), for
example
TRGM_xxxx

any TRU1 output
(TRU slave), for ex-
ample TRGS_xxxx

4 SYSCLK Intrinsic TRU latency,
M4-side TRU

TTU0 ADI_TD_TTU TTU0 input (TRU
slave):
TTU_TRIG_IN[n
]TRGS_TTU0_TRI
G_INn

TTU0 output (TRU
master):
TTU_TRIG_OUT[
m]TRGM_TTU0_T
RIG_OUTn

2 SYSCLK Intrinsic TTU delay

ADCC0 ADI_TD_ADC
C_SYNC
(ACLK)

ADCC0 sync trigger
in:
ADCC_SLV0TRGS
_ADCC1_SLV0

ADCC0 AFE event
start (first AFE_CSb)

3 + 2 ×
(ACLK)

SCLK0 ADCC0 latency, from
trigger in to start of AFE
event at EVTM=0, given
AFE clkock divisor
(TCAy.CKDIV) = aclk

ADCC1 ADI_TD_ADC
C_SYNC
(ACLK)

ADCC0 sync trigger
in:
TRGS_ADCC1_SL
V1

ADCC1 AFE event
start (first AFE_CSb)

3 + 2 ×
(ACLK)

SYSCLK ADCC1 latency, from
trigger in to start of AFE
event at EVTM=0, given
AFE clkock divisor
(TCAy.CKDIV) = aclk

PWMn ADI_TD_PW
M_SYNC_IN

PWMn sync trigger
in:

PWMn SYNC pin
output pulse

3 SYSCLK PWMn start latency from
trigger to start of PWM
waveforms, referenced to

TRU Event Control

ADSP-CM41x Mixed-Signal Control Processor 11–11

Table 11-10: ADSP-CM41x Trigger Latencies (Continued)

Block Parameter /
Macro

From (Event source
or block-level TRU
Slave input port)

To (Event Result or
block-level TRU
Master output port)

Formula Unit (clock
cycles)

Comments

TRGS_PWMn_SYN
C

PWM_SYNC leading
edge

PWMn ADI_TD_PW
M_SYNC_OU
T

PWMn SYNC pin
output pulse

PWMn SYNC trig-
ger out:
TRGM_SYS_PWM
n_SYNC_IN

0 SYSCLK PWM internal SYNC
generator latency

PWMn ADI_TD_PW
M_TRIP

PWMn trip trigger
in:
TRGS_SYS_PWMn
_TRIP_SLVx

PWMn outputs in
tripped state

0 SYSCLK PWMn trip latency to
PWM waveforms in safe
(tripped) states (asynchro-
nous after TRU)

TMR0 ADI_TD_TMR
_IN

Timer-in waveform TMR0 trigger out:
TRGM_TIM-
ER0_TMRx_MST

TBD SCLK0 Timer0 input latency, M0
side

TMR1 ADI_TD_TMR
_IN

Timer-in waveform TMR1 trigger out:
TRGM_TIM-
ER1_TMRx_MST

TBD SYSCLK Timer1 input latency, M4
side

TMR0 ADI_TD_TMR
_OUT

TMR0 trigger in:
TRGS_TIM-
ER0_TMRx_SLVy

Timer-out waveform TBD SCLK0 Timer0 output latency,
M0 side

TMR1 ADI_TD_TMR
_OUT

TMR1 trigger in:
TRGS_TIM-
ER1_TMRx_SLVy

Timer-out waveform TBD SYSCLK Timer1 output latency,
M4 side

PORTA ADI_TD_POR
T_TOGGLE

GPIO toggle trigger
in: TRGS_POR-
TA_TOGGLE

GPIO PORTA pin
toggle

1 SCLK0 GPIO Toggle latency, M0
side

PORTB-F ADI_TD_POR
T_TOGGLE

GPIO toggle trigger
in:
TRGS_PORTx_TO
GGLE

GPIO PORTB-F pin
toggle

1 SYSCLK GPIO Toggle latency, M4
side

PORTA-F ADI_TD_POR
T_FRC_SAFE

Functional safety
trigger in:
TRGS_SYS_FRC_PI
N_SAFE_SLV0

GPIO PORTA-F pin
in safe state

0 SYSCLK GPIO Pin Safe State la-
tency (asynchronous after
TRU)

SINC0 ADI_TD_SINC SINC0 sync trigger
in:
TRGS_SINC0_SYN
C0

SINC0 MCLK lead-
ing edge

TBD SYSCLK SINC unit trigger-to-
MCLK latency

Trigger Latencies

11–12 ADSP-CM41x Mixed-Signal Control Processor

Table 11-10: ADSP-CM41x Trigger Latencies (Continued)

Block Parameter /
Macro

From (Event source
or block-level TRU
Slave input port)

To (Event Result or
block-level TRU
Master output port)

Formula Unit (clock
cycles)

Comments

CPTMR ADI_TD_CPT
MR

Capture Timer trig-
ger in:
TRGS_CPTMR0_C
PTx_SLVy

(Capture timer event
-what event?)

TBD SYSCLK Capture Timer latency

DDE0-3 ADI_TD_DDE DMA Engine trigger
in:
TRGS_DMA{0-3}_S
LV0

(DMA transaction
start?)

TBD SCLK0 DDE latency, M0 side

DDE4-13 ADI_TD_DDE DMA Engine trigger
in:
TRGS_DMA{4-13}_
SLV0

(DMA transaction
start?)

TBD SYSCLK DDE latency, M4 side

CM41X_M4 TRU Register Descriptions
Trigger Routing Unit (TRU) contains the following registers.

Table 11-11: CM41X_M4 TRU Register List

Name Description

TRU_ERRADDR Error Address Register

TRU_GCTL Global Control Register

TRU_MTR Master Trigger Register

TRU_SSR[n] Slave Select Register

TRU_STAT Status Information Register

CM41X_M4 TRU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 11–13

Error Address Register

The TRU error address register (TRU_ERRADDR) holds the address from the memory-mapped register access gen-
erating an access error of TRU registers.

Error Address
ADDR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 11-3: TRU_ERRADDR Register Diagram

Table 11-12: TRU_ERRADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:0

(R/W)

ADDR Error Address.

The TRU_ERRADDR.ADDR holds the address from the memory-mapped register ac-
cess generating an access error of TRU registers. These errors occur on access to the
TRU_SSR[n] or TRU_MTR registers when these registers are locked or on access to
an invalid address. See the TRU_SSR[n] and TRU_MTR register descriptions for
more information about locking.

The TRU_ERRADDR register holds the address of the first error to occur. In the event
of multiple errors occurring, the TRU_ERRADDR register contains the address of the
first error. To re-enable the TRU_ERRADDR register for update, both status bits
(TRU_STAT.LWERR and TRU_STAT.ADDRERR) in the TRU_STAT register must
be cleared.

CM41X_M4 TRU Register Descriptions

11–14 ADSP-CM41x Mixed-Signal Control Processor

Global Control Register

The TRU global control register (TRU_GCTL) provides register locking, TRU reset, and TRU enable.

Soft Reset

Non-MMR EnableMTR Lock Bit

GCTL Lock Bit

RESET (R/W)

EN (R/W)MTRL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 11-4: TRU_GCTL Register Diagram

Table 11-13: TRU_GCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK GCTL Lock Bit.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the TRU_GCTL.LOCK
bit is enabled, the TRU_GCTL register is read only.

0 Read write

1 Read only

2

(R/W)

MTRL MTR Lock Bit.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the TRU_GCTL.MTRL
bit is enabled, the TRU_MTR register is read only.

0 Read write

1 Read only

1

(R/W)

RESET Soft Reset.

The TRU_GCTL.RESET bit is write-1-action and triggers a soft reset to all TRU reg-
isters.

0 No action

1 Soft reset

CM41X_M4 TRU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 11–15

Table 11-13: TRU_GCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Non-MMR Enable.

The TRU_GCTL.EN bit is read/write and must be set for the TRU to propagate trig-
ger events. All TRU register read/write operations continue to operate independent of
the TRU_GCTL.EN bit.

0 No trigger events

1 Propagate trigger events

CM41X_M4 TRU Register Descriptions

11–16 ADSP-CM41x Mixed-Signal Control Processor

Master Trigger Register

The TRU master trigger register (TRU_MTR) permits trigger generation through software by writing a trigger mas-
ter ID value to one of the four fields in the TRU_MTR register. If the global lock is enabled (SPU_CTL.GLCK bit
=1) and the TRU_GCTL.LOCK bit is set, the TRU_MTR register is read only. Note this register is primarily used for
debug to trigger a TRU output

Master Trigger Register 0Master Trigger Register 1

Master Trigger Register 2Master Trigger Register 3

MTR0 (R/W)MTR1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MTR2 (R/W)MTR3 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 11-5: TRU_MTR Register Diagram

Table 11-14: TRU_MTR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30:24

(R/W)

MTR3 Master Trigger Register 3.

The TRU_MTR.MTR3 bit field is the trigger master ID value for master 3.

0 No master specified

1-97 Range of valid masters

22:16

(R/W)

MTR2 Master Trigger Register 2.

The TRU_MTR.MTR2 bit field is the trigger master ID value for master 2.

0 No master specified

1-97 Range of valid masters

14:8

(R/W)

MTR1 Master Trigger Register 1.

The TRU_MTR.MTR1 bit field is the trigger master ID value for master 1.

0 No master specified

1-97 Range of valid masters

6:0

(R/W)

MTR0 Master Trigger Register 0.

The TRU_MTR.MTR0 bit field is the trigger master ID value for master 0.

0 No master specified

1-97 Range of valid masters

CM41X_M4 TRU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 11–17

Slave Select Register

The TRU slave select registers (TRU_SSR[n]) each provide slave selection and register locking.

SSRn Slave Select

SSRn Lock

SSR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 11-6: TRU_SSR[n] Register Diagram

Table 11-15: TRU_SSR[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK SSRn Lock.

If the global lock is enabled (SPU_CTL.GLCK bit =1) and the
TRU_SSR[n].LOCK bit is enabled, the TRU_SSR[n] register is read only.

0 Unlock register

1 Lock register

6:0

(R/W)

SSR SSRn Slave Select.

The TRU_SSR[n] register selects the trigger master ID to which the trigger slave re-
sponds. For example, when a TRU_SSR[n] register is set to respond to trigger master
ID n, a trigger that is generated by trigger master ID n results in a trigger out to the
slave.

0 No master specified

1-97 Range of valid masters

CM41X_M4 TRU Register Descriptions

11–18 ADSP-CM41x Mixed-Signal Control Processor

Status Information Register

The TRU status register (TRU_STAT) contains the status of TRU_MTR and TRU_SSR[n] register writes and sta-
tus of bus read/write errors.

Lock Write Error StatusAddress Error Status
LWERR (R/W1C)ADDRERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 11-7: TRU_STAT Register Diagram

Table 11-16: TRU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

ADDRERR Address Error Status.

The TRU_STAT.ADDRERR bit is set when an invalid address is provided for an
MMR access while the TRU is selected. Writing a one to this bit clears the error indi-
cation. The TRU_ERRADDR register also is updated when an address error occurs dur-
ing an MMR access while the TRU is selected.

0 No error

1 Error occurred

0

(R/W1C)

LWERR Lock Write Error Status.

If TRU_STAT.LWERR is set, a lock write error has occurred. Writing a one to this bit
clears the error indication.

0 No error

1 Error occurred

CM41X_M4 TRU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 11–19

12 Trigger Timing Unit (TTU)

The Trigger Timing Unit (TTU) provides a simple way to generate event trigger signals with precise timing relation-
ships. Triggers can then be routed to or from the TTU using the Trigger Routing Unit (TRU). The TTU is de-
signed in a scalable, modular fashion. The available output trigger generators can be organized into independent
trigger delay groups, each sensitive to its own input trigger.

Trigger delay groups in the TTU work in one of two functional modes. In single-shot mode, the TTU group can
delay each input trigger pulse to make a constellation of one or more precisely-delayed output trigger pulses. In peri-
odic mode, the TTU group generates a sequence of output triggers with precise timing relative to one another, using
an internal periodic counter. An input trigger pulse starts the counter.

TTU Features
The TTU has the following features.

• Up to 16 trigger master outputs with independent time offsets (delays).

• Up to 8 timing counters with 24-bit SYSCLK resolution, initiated by independent trigger slave inputs.

• Counters can operate in single-shot or periodic mode.

• Output triggers are freely assignable to any timing counter source.

• In periodic mode, output triggers support both positive (lagging) and negative (leading) delay settings relative
to the timing counter’s zero time.

• Operates entirely in the SYSCLK clock domain.

TTU Functional Description
The TTU is used to connect system devices in precisely timed relationships, whether single-shot mode (one shot per
trigger in) or periodic mode (repeating after started by trigger in). The trigger routing unit fabric routes trigger pul-
ses from trigger masters (M1, M2, and so on.) to trigger slaves (S1, S2, and so on).

Trigger Timing Unit (TTU)

ADSP-CM41x Mixed-Signal Control Processor 12–1

CM41X_M4 TTU Register List

A set of registers governs TTU operations. For more information on TTU functionality, see the TTU register de-
scriptions.

Table 12-1: CM41X_M4 TTU Register List

Name Description

TTU_CNT[n] Counter Current Value

TTU_CTL TTU Control Register

TTU_DGRP[m] Trigger Output Counter Assignment

TTU_DLY[m] Trigger Output Delay Register

TTU_PER[n] Counter Period Register

TTU_REVID Revision ID Register

TTU_STAT Counter Status Register

TTU_STOP Counter Stop Request Register

TTU_CHK Counter Check Register

CM41X_M4 TTU Trigger List

Table 12-2: CM41X_M4 TTU Trigger List Masters

Trigger ID Name Description Sensitivity

88 TTU0_TRIG_OUT0 TTU0 Trigger output for trigger delay 0 Edge

89 TTU0_TRIG_OUT1 TTU0 Trigger output for trigger delay 1 Edge

90 TTU0_TRIG_OUT2 TTU0 Trigger output for trigger delay 2 Edge

91 TTU0_TRIG_OUT3 TTU0 Trigger output for trigger delay 3 Edge

92 TTU0_TRIG_OUT4 TTU0 Trigger output for trigger delay 4 Edge

93 TTU0_TRIG_OUT5 TTU0 Trigger output for trigger delay 5 Edge

94 TTU0_TRIG_OUT6 TTU0 Trigger output for trigger delay 6 Edge

95 TTU0_TRIG_OUT7 TTU0 Trigger output for trigger delay 7 Edge

Table 12-3: CM41X_M4 TTU Trigger List Slaves

Trigger ID Name Description Sensitivity

92 TTU0_TRIG_IN0 TTU0 Trigger input to delay counter 0 Pulse

93 TTU0_TRIG_IN1 TTU0 Trigger input to delay counter 1 Pulse

94 TTU0_TRIG_IN2 TTU0 Trigger input to delay counter 2 Pulse

95 TTU0_TRIG_IN3 TTU0 Trigger input to delay counter 3 Pulse

TTU Functional Description

12–2 ADSP-CM41x Mixed-Signal Control Processor

TTU Definitions

To make the best use of the TTU, it is useful to understand the following terms.

Counter

A TRU trigger slave input starts the counter. Once started, it runs either periodically or until all associated trigger
delay outputs are finished. The period of a TTU counter n is programmed with the corresponding TTU_PER[n]
register, and its current count value is available in the TTU_CNT[n] register.

Delay Unit

A comparator that is associated with one of the TTU counters. It generates a delayed TRU trigger slave output when
the count value of the counter matches the programmed delay of the unit. The delay of a TTU delay unit m is
programmed with the corresponding TTU_DLY[m] register.

Delay Group

Consists of one TTU counter and the set of all TTU delay units associated with it. The assignment of delay units to
counters is made by programming the TTU_DGRP[m] registers.

Trigger Routing Unit

A system infrastructure fabric which routes event pulses (triggers) from masters to slaves according to programmable
routing settings.

Trigger Pulse

An assertion of a trigger signal. Trigger pulse signals are synchronous to the system clock domain (SYSCLK) and are
active high. The first SYSCLK cycle in which the trigger signal is asserted indicates the occurrence of the trigger
event. The width of the trigger pulse is not significant. The response of the TRU is the same in the two cases: when
the signal is asserted (high) for multiple successive cycles and when the signal is asserted for a single cycle.

The trigger pulses generated by the TTU trigger master outputs TTU_TRIG_OUT[m] are normally one clock cycle
in length. A TTU_TRIG_OUT[m] pulse can be extended if the DEBUG_HALT signal is asserted (for example, an
emulation breakpoint pauses the SOC) to pause the associated counter TTU_CNT[n] in the count value that
matches the delay of the output channel.

Trigger Master

The source of a trigger pulse routed by the TRU fabric. This source can be a hardware event such as a timer output,
the completion of a DMA transfer, or a software event initiated by writing an MMR register in the TRU.

TTU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 12–3

Trigger Slave

The destination of a trigger pulse routed by the TRU fabric. This destination is a system peripheral or other resource
that takes a specific action when the trigger pulse is received. This action can be a hardware event, such as toggling a
GPIO, starting a PWM or timer, or initiating an ADC sampling event, or it can be a software event (an interrupt).

TTU Block Diagram

The TTU Block Diagram shows an example of the trigger unit. Trigger source M1 (for example, a GPIO input) is
routed through the TRU fabric to TRU slave S1, which connects to TTU counter 0. This counter controls a group
of TTU delays which drive trigger masters M10 and M11, each with a different delay. These triggers are routed
through the TRU to slaves S10, S11, and S12, which connect to the ADC Controller (ADCC) and to two PWM
units, 0 and 1.

Similarly, the second TTU group, delay group 1, routes a trigger from trigger source M2 to trigger slaves S13, S14
and S15. But, in this case, the TTU counter is programmed for periodic operation. This configuration shows that
once started by trigger master M2 (which could be a software MMR write), the same pattern of output triggers is
precisely generated at the selected periodic rate.

TRIGGER
SOURCE

TRIGGER
SOURCE

ADCC TIMER 0

PWM UNIT 0

PWM UNIT 1

GPIO TOGGLE

ADCC TIMER 1

PWM UNIT 2

TTU DELAY
GROUP 0

TTU DELAY
GROUP 1

M12

M13

M14

M10

M11

S10

S11

S12

S13

S14

S15

S1

S2M2

M1

TRIGGER ROUTING UNIT (TRU) FABRIC

Figure 12-1: TTU Trigger System Diagram

Module Level Block Diagram

The Module Level Block Diagram shows the relationship of the TTU counters, COUNTERn, assigned to the trig-
ger delay units, TRIGm_DELAY. The global TTU_CTL register is used to enable any or all of the TTU counters.
The TTU_DGRP[m] registers are used to assign TRIGm_DELAY units to specific TTU counters (where every
TRIGm_DELAY is associated with only one COUNTERn).

TTU Functional Description

12–4 ADSP-CM41x Mixed-Signal Control Processor

COUNTERn

TRIGm_DELAY =
TRIGm_OUT

...

TRIGm_OUT

TRIGn_IN

CTL (enables)

COUNTERn

TRIGm_DELAY =
TRIGm_OUT
TRIGm_OUT

TRIGn_IN

DGRP (assigns)

Figure 12-2: Module Level Block Diagram

TTU Architectural Concepts

The following section provides information about the debug interface.

Debug Interface

The TTU receives signaling from the debug system of the SoC. This interface consists of the DEBUG_HALT sig-
nal, which indicates to the TTU that the SoC debug system has entered a halt state (for example, a breakpoint).

Using the TTU_CTL.EMURUN[n] bits, programs can individually control the function of each counter during the
debug halt state. If the TTU_CTL.EMURUN[n] bit =1, then counter n runs during debug halt. If the
TTU_CTL.EMURUN[n] bit =0, then counter n pauses and does not increment during debug halt.

TTU Operating Modes
The TTU counters can operate in single-shot mode or in periodic mode.

In the following sections, the TTU is configured such that:

• Input trigger slaves n are connected to trigger counters n

• Output trigger masters m are connected to trigger delay units m

• Using the assignment registers TTU_DGRP[m], the program partitions the available trigger delay units into
trigger delay groups, each controlled by one of the counters.

Trigger inputs are effectively edge-sensitive: the trigger event is defined on the first PCLK cycle in which a
TTU_TRIG_IN[n] signal is asserted high. Any subsequent asserted cycles have no effect. A TTU_TRIG_IN[n]
signal must return to a deasserted (low) state for at least one cycle before another input event is recognized, as shown
below.

TTU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 12–5

TRIG_OUT [m1]

0 1 2 3 4 5 1 2 3 4 5 00 0

5
2

5
2

Delays DLY[m1] = 2, DLY[m2] = 5. Period PER[n] = 0

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n]

Figure 12-3: TRIG_IN Signal Timing

Single-Shot Mode

Single-shot mode is selected for a counter group (configured using the TTU_CNT[n] registers), by setting the
TTU_PER[n] register to zero. In this mode, every pulse on the input trigger, TTU_TRIG_IN[n], causes the
TTU_CNT[n] register to begin counting when the counter is enabled by setting the TTU_CTL.EMURUN[n] bit
=1. The counter takes the value 1 in the next cycle after the arriving trigger.

Each trigger delay unit in the delay group then observes this counter. During the cycle where the TTU_CNT[n]
register value equals the selected delay in the TTU_DLY[m] register, the specific unit asserts its trigger output pulse,
TTU_TRIG_OUT[m], for one system clock cycle.

The counter then observes each of the delay units assigned to the delay group. The counter continues to count until
each of the delay units has successfully generated a trigger (for example, when TTU_DLY[m] = TTU_CNT[n] has
occurred for all delay units m in the counter group n). On the next cycle after the last output trigger is generated,
the counter resets to zero and stops.

The active state of the counter group is available in the TTU_STAT.RUN[n] bit. The group becomes active upon
receiving a TTU_TRIG_IN[n] pulse, and becomes inactive after the last TTU_TRIG_OUT[m] pulse has been
generated.

The timing for single shot-mode is shown in the Single-Shot Mode Timing figure.

TRIG_OUT [m1]

0 1 2 3 4 5 0

5
2

Delays DLY[m1] = 2, DLY[m2] = 5. Period PER[n] = 0

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n]

Figure 12-4: Single-Shot Mode Timing

TTU Operating Modes

12–6 ADSP-CM41x Mixed-Signal Control Processor

Re triggering in Single-Shot Mode

If a trigger arrives while the counter is counting, the counter restarts and begins counting again at 1 on the next
cycle. Any pending output triggers from the previous input trigger event are aborted (although an output trigger
scheduled in the same cycle as the arrival of the new input trigger is generated on-time). Starting with the next
PCLK cycle after the new trigger arrives, the delay group generates a complete sequence of delayed output triggers as
programmed.

In the following timing diagram, two trigger-in pulses produce a first and second group of trigger-out pulses. The
first group is truncated by a new trigger that arrives before the trigger out sequence is completed. The second group
completes all of its sequence of programmed trigger-out pulses.

TRIG_OUT [m1]

0 1 2 3 0

5
2

Delays DLY[m1] = 2, DLY[m2] = 5. Period PER[n] = 0

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n] 1 2 3 4 5

2

1st 2nd

Figure 12-5: Re triggering in Single Shot Mode Timing

Restrictions on DLY in Single-Shot mode

In single-shot mode, the trigger delay values must be positive (TTU_DLY[m] ≥ 1). The TTU does not support a
delay of zero from trigger-in to trigger-out. (If this function is desired, program the TRU to route the source of the
input trigger directly to the destination of the output trigger without going through the TTU.)

The TTU_DLY[m] registers are double-buffered. If a new value is written to the TTU_DLY[m] register while the
trigger group is operating, that new value is applied after the arrival of the next TTU_TRIG_IN[n] pulse.

Periodic Mode

Periodic mode is selected for a counter group, TTU_CNT[n], by setting the TTU_PER[n] register to any nonzero
value. (Period values are always zero or positive, but never negative.)

In periodic mode, once the counter is enabled by setting the TTU_CTL.CNTREN[n] bit to 1, the counter group
waits for a trigger. When the trigger arrives, the counter becomes active, and begins counting up from 1 (on the next
cycle after the trigger). The counter increments until the value in the TTU_PER[n] register =1, and then wraps
back to zero. This process continues in a periodic way until the counter is stopped or disabled.

The minimum value for the period register TTU_PER[n] is 2. The maximum value is 224 1.

TTU Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 12–7

Each trigger delay unit in the delay group then observes this counter. During the cycle where the counter register
value (TTU_CNT[n]) equals the selected delay in the TTU_DLY[m] register, the unit asserts its trigger output
pulse TTU_TRIG_OUT[m] for one system clock.

In periodic mode, delay values can take on any value, including zero and negative values. Positive bit values (con-
tained in the TTU_DLY[m].VALUE register) generate a lagging or delayed trigger pulse, which occur the specified
number of cycles after the zero cycle of the counter for the delay group. Negative TTU_DLY[m].VALUE bit values
generate a leading or advanced trigger pulse, which occur the specified number of cycles before the zero cycle. Zero
values of TTU_DLY[m].VALUE result in a trigger pulse coincident with the zero cycle.

These relationships hold even if the period register TTU_PER[n] of the delay group is changed while active. The
timing for this mode is shown in the figure below.

TRIG_OUT [m1]

0

5
2

Delays DLY[m1] = 2, DLY[m2] = 5, DLY[m3 = -2. Period PER[n] = 8

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n] 1 2 3 4 5 6 7

8

1 2 3 4 5 6 7 1 2 3 4 5 6 70 0 0

2
5

2

2
5

2

2

8 8

TRIG_OUT [m3]

Figure 12-6: Periodic Mode Timing

Changing Period Dynamically

In the following timing diagram example, the period register, TTU_PER[n], is changed while the delay group is
operating. Note how the leading (negative) delay on TTU_TRIG_OUT3 signal automatically responds to the
change of period, arriving 2 PCLKs before the end of the period in both cases.

TTU Operating Modes

12–8 ADSP-CM41x Mixed-Signal Control Processor

TRIG_OUT [m1]

0 1 2 3

5

2

Delays DLY[m1] = 2, DLY[m2] = 5 DLY[m3] = -2.
Period PER[n] = 8 changes from 8 to 10.

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n] 4 5 6 7 0

2

8 10

1 2 3 04 5 6 7 8 9

8 10

5

2

2

TRIG_OUT [m3]

Figure 12-7: Changing Period Dynamically Timing

Re triggering

If a trigger arrives while the counter is counting, the counter restarts and begins counting again at 1 on the next
cycle. Any output triggers that are still pending in the current counter period are aborted (although an output trig-
ger scheduled in the same cycle as the arrival of the new input trigger is generated on-time). Starting with the next
PCLK cycle after the new trigger arrives, the delay group generates a complete sequence of delayed output triggers,
as programmed.

The TTU cannot predict leading (zero or negative) delays for new TTU_TRIG_IN[n] pulses which arrive while
the counter is active and which change the phase of the counter. (A TTU_TRIG_IN[n] pulse which arrives in the
same PCLK cycle as the zero cycle of the counter has no effect.)

TRIG_OUT [m1]

0 1 2 3

5

2

Delays DLY[m1] = 2, DLY[m2] = 5 DLY[m3] = -2. Period PER[n] = 8.
The second period is truncated by a new TRIG_IN pulse.

TRIG_OUT [m2]

PCLK

TRIG_IN[n]

CNTR[n] 4 5 6 7 0

2

8 SHORT

1 2 3 4

5

2 2
TRIG_OUT [m3]

1 2 3 4 5 6 70 0

8

2

Figure 12-8: Re triggering in Periodic Mode Timing

If re triggering functionality is necessary to maintain phase synchronization between a periodic trigger delay group
and some external system, observe the following guidelines:

TTU Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 12–9

• Determine the constraints on the system so that the maximum phase error on any new TTU_TRIG_IN[n]
pulse can be known: PEmin≤ phase error ≤ PEmax. (Phase error is defined as the difference in time of the arrival
of a trigger and the expected time of the group’s zero cycle. In the example, the second trigger arrived four
cycles early.)

• If the trigger can arrive early, for example, PEmin≤ 0, then ensure that:

• All leading (negative) delays are less than or equal to PEmin, and

• All lagging (positive) delays are less than or equal to (PEmin + TTU_PER[n]), so that they are generated
before an early trigger can preempt them

• If the trigger can arrive late, for example, PEmax ≥ 0, then ensure that:

• All lagging (positive) delays are greater than PEmax, so that they are not generated twice, and

• All leading (negative) delays are greater than (PEmax TTU_PER[n]), for the same reason

Stopping Periodic Trigger Delay Groups

A trigger delay group that is operating in periodic mode can be stopped gracefully or abruptly. To stop a periodic
delay group gracefully, write the TTU_STOP.STOPREQ[n] bit to 1 for that delay group counter. This operation
requests that the counter completes the current counter period, then stops. All the remaining trigger outputs for the
current cycle are generated on-time. Reading the TTU_STOP.STOPREQ[n] bit provides the status of this opera-
tion. The bit reads 1 until the stop request has been satisfied and the counter has become inactive. In this state,
when the counter is inactive but still enabled, another TTU_TRIG_IN[n] pulse can restart it. If this state is not
desired, the trigger source or TRU routing must be disabled before issuing the TTU_STOP.STOPREQ[n].

The TTU_STOP.STOPREQ[n] feature only works for groups configured for periodic operation. (Groups config-
ured for single-shot operation stop gracefully on their own at the end of each trigger sequence.)

To stop a delay group abruptly, write its TTU_CTL.CNTREN[n] bit =0. The counter stops immediately and no
further trigger outputs are generated.

The active state of the counter group is available in the TTU_STAT.RUN[n] bit. The group becomes active when
it receives a TTU_TRIG_IN[n] pulse. The group becomes inactive after it is stopped (at the same time as
TTU_STOP.STOPREQ[n] clears to 0) or when it is disabled (by writing TTU_CTL.CNTREN[n] =0).

Restrictions on DLY in Periodic Mode

The TTU_DLY[m] delay register can be set to any value between −(TTU_PER[n] 1) and +(TTU_PER[n]). The
trigger delay unit does not generate any trigger pulses when the TTU_DLY[m] register is set to a value outside this
range.

TTU_DLY[m].VALUE ≤ 0 cannot be used to generate an output pulse coincident with or before the initial trigger
TTU_TRIG_IN[n] that starts the counter operation, or a re trigger that changes the phase of the delay counter.
(A trigger which arrives while the group is operating.)

TTU Operating Modes

12–10 ADSP-CM41x Mixed-Signal Control Processor

TTU Programming Model
The basic programming model for the TTU involves enabling and stopping a trigger delay group. In some cases, a
trigger delay group must be disabled abruptly. The following sections describe all of these cases.

Programming Concepts

When programming the TTU module, adhere to the following basic concepts.

Changing a Trigger Delay Group Period or Delay During Operation

While a trigger delay group is operating, the period of the counter and the delays of the individual generated triggers
can be changed by writing new values to the registers. The TTU_PER[n] and TTU_DLY[m] registers are double-
buffered, so the new values take effect on the next trigger-in, or (in periodic mode) on the next cycle where the
counter TTU_CNT[n] =0.

Illegal Changes of Trigger Delay Group Mode

The TTU does not support changing timer groups between periodic and single-shot modes while the group is run-
ning. In other words, do not change the TTU_PER[n] register from a non-zero value to a zero value (or converse-
ly) while the timer is enabled. Disable the timer first (by writing TTU_CTL.CNTREN[n] to 0) before changing
the timer mode.

Illegal Changes to Group Assignments

After a trigger delay group is enabled, do not change the DGRP assignments for the group. Do not disable or reas-
sign trigger delay units assigned to the group. Do not add new trigger delay units to the group. Instead, disable the
group before changing the delay unit assignment registers.

TTU Programming Examples
The following sections provide the steps and code for the Programming Concepts described above.

Enabling a Trigger Delay Group

Use the following steps to enable a trigger delay group.

1. Set the period register (TTU_PER[n]) of the group counter. Non-zero values select a periodic operation. A
zero value selects a single-shot operation.

2. Assign one or more trigger delay units to the group by writing TTU_DGRP[m].VALUE bit field =n for each
delay unit m. Also, set the trigger delay unit enable bit TTU_DGRP[m].TRIGEN =1.

3. For each delay unit, assign the delay value in the TTU_DLY[m].VALUE bit field.

4. Configure the TRU to route the desired trigger source to the TTU input slave TTU_TRIG_IN[n], and to
route all the generated trigger output masters TTU_TRIG_OUT[m] to the desired trigger destinations.

TTU Programming Model

ADSP-CM41x Mixed-Signal Control Processor 12–11

5. Enable the delay group by setting TTU_CTL.CNTREN[n] bit field =1.

The delay group now responds to input triggers.

After the group is enabled, the TTU_DGRP[m] assignments for this group must not be changed. Trigger delay
units assigned to the group must not be disabled or reassigned, and new trigger delay units must not be added
to the group.

ADI_TTU_Typedef *pttu = pADI_TTU0;
// set up pointer to TTU

// Set up Trigger Delay Group 1 in periodic mode
pttu->PER[1] = 100;
// set TTU Counter 1 period to 100 sysclks

// Assign delay units 2 and 3 to the group, and enable them
pttu->DGRP[2] = ((1 << BITP_TTU_DGRP_VALUE)
//assign to group 1
| BITM_TTU_DGRP_TRIGEN);
pttu->DGRP[3] = ((1 << BITP_TTU_DGRP_VALUE)
//assign to group 1
| BITM_TTU_DGRP_TRIGEN);

// Assign the output trigger delays
pttu->DLY[2] = 15;
// output at t0 +15 sysclks
pttu->DLY[3] = 27;
// output at t0 +27 sysclks

// ... configure the TRU ...
ADI_TRU_CFG0_TypeDef *ptru1 = pADI_TRU1;
ptru1->GCTL = (BITM_TRU_GCTL_EN);
// enable trigger propagation
// route some trigger to TTU Trigger group 1;
ptru1->SSR[TRGS_TTU0_TRIG_IN1] = TRGM_<someSource>;
// route the TTU trigger outputs 2 and 3 to some destinations
ptru1->SSR[TRGS_<someDest1>] = TRGS_TTU_TRIG_OUT2;
ptru1->SSR[TRGS_<someDest2>] = TRGS_TTU_TRIG_OUT3;

// Enable the TTU trigger delay group 1
pttu->CTL |= (1<< BITP_TTU_CTL_CNTREN1);

Gracefully Stopping a Periodic Trigger Delay Group

The following steps gracefully stop a trigger delay group configured for periodic operation.

TTU Programming Examples

12–12 ADSP-CM41x Mixed-Signal Control Processor

1. Optionally, disable the source of the TTU_TRIG_IN[n] signal to the trigger delay group counter, to prevent
accidentally restarting the counter after it is stopped. For example, this operation can be done by disabling the
TRU routing to this trigger slave.

2. Request a stop to the delay group by setting the TTU_STOP.STOPREQ[n] bit =1.

The delay group continues the until the current counter period completes, generating all scheduled output trig-
gers (both leading and lagging), and then it stops.

3. If desired, poll for the completion of the stop request by testing the TTU_STOP.STOPREQ[n] bit. When
this bit =0, the trigger group has stopped.

// Disable the TRU trigger source or routing to group 1.
ptru1->SSR[TRGS_TTU0_TRIG_IN1] = 0;
// Request to stop TTU trigger delay group 1
pttu->STOP = (1 << BITP_TTU_STOP_STOPREQ1);
// poll for delay group becoming inactive, if desired
while(pttu->STOP & BITM_TTU_STOP_STOPREQ1) { }

Abruptly Disabling a Trigger Delay Group

Use the following step to abruptly disable a trigger delay group.

1. Disable the delay group by setting TTU_CTL.CNTREN[n] =0.

The delay group immediately stops processing input and output triggers.

// Disable the TTU trigger delay group 1
pttu->CTL &= ~(1 << BITP_TTU_CTL_CNTREN1);
// or simply
pttu->CTL = 0;

Additional Programming Examples

The following examples...

● Changing a Trigger Delay Group Period or Delay While Operating

// enable group 1
pttu->CTL |= (1<< BITP_TTU_CTL_CNTREN1);
// ...
// Change delay parameters
pttu->DLY[2] = 20;
pttu->PER[1] = 110;

● Illegal Changes to Group Assignments

//assign delay 3 to group 1
pttu->DGRP[3] = ((1 << BITP_TTU_DGRP_VALUE)

TTU Programming Examples

ADSP-CM41x Mixed-Signal Control Processor 12–13

| BITM_TTU_DGRP_TRIGEN);
// enable group 1
pttu->CTL |= (1<< BITP_TTU_CTL_CNTREN1);
// ERROR: do not change delay 3’s assignment while its group is on
pttu->DGRP[3] = ((2 << BITP_TTU_DGRP_VALUE)
//assign to group 2?
| BITM_TTU_DGRP_TRIGEN);
// -- ERROR!
// ERROR: do not assign new delay 4 to a group that is already on
pttu->DGRP[4] = ((1 << BITP_TTU_DGRP_VALUE)
//assign to group 1? | BITM_TTU_DGRP_TRIGEN);
// -- ERROR!

CM41X_M4 TTU Register Descriptions
Trigger Timing Unit (TTU) contains the following registers.

Table 12-4: CM41X_M4 TTU Register List

Name Description

TTU_CNT[n] Counter Current Value

TTU_CTL TTU Control Register

TTU_DGRP[m] Trigger Output Counter Assignment

TTU_DLY[m] Trigger Output Delay Register

TTU_PER[n] Counter Period Register

TTU_REVID Revision ID Register

TTU_STAT Counter Status Register

TTU_STOP Counter Stop Request Register

TTU_CHK Counter Check Register

CM41X_M4 TTU Register Descriptions

12–14 ADSP-CM41x Mixed-Signal Control Processor

Counter Current Value

The TTU_CNT[n] register displays the current counter value.

Trigger Counter Value

Trigger Counter Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-9: TTU_CNT[n] Register Diagram

Table 12-5: TTU_CNT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/NW)

VALUE Trigger Counter Value.

The TTU_CNT[n].VALUE bit field displays the current value of the TTU counter
n.

CM41X_M4 TTU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 12–15

TTU Control Register

The TTU_CTL register contains global control bits for enabling the TTU features. This register contains individual
enable and mode bits for each TTU counter.

Enable Counter n

Debug Emulation Run ModeConfiguration Lock Bit

CNTREN[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EMURUN[n] (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-10: TTU_CTL Register Diagram

Table 12-6: TTU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Configuration Lock Bit.

If the global lock (SPU_CTL.GLCK bit=1) is set, and the TTU_CTL.LOCK bit is set,
the TTU registers are write-protected, except for the LOCK bit itself.

0 Unlock register

1 Lock Register

19:16

(R/W)

EMURUN[n] Debug Emulation Run Mode.

The TTU_CTL.EMURUN[n] bit controls whether each counter runs during the de-
bug emulation halt.

0 Stop counter during emulation

1 Run counter during emulation

3:0

(R/W)

CNTREN[n] Enable Counter n.

Each read or write TTU_CTL.CNTREN[n] bit enables the one of the TTU counters.
A write of 1 enables the group, a write of 0 disables the group.

0 Disable

1 Enable

CM41X_M4 TTU Register Descriptions

12–16 ADSP-CM41x Mixed-Signal Control Processor

Trigger Output Counter Assignment

The TTU_DGRP[m] register contains bits that associate the trigger output with the counter n and enable trigger
generation.

Trigger Output Counter AssignmentEnable Trigger Output
VALUE (R/W)TRIGEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-11: TTU_DGRP[m] Register Diagram

Table 12-7: TTU_DGRP[m] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

TRIGEN Enable Trigger Output.

The TTU_DGRP[m].TRIGEN bit, when set (=1), enables the generation of trigger
m at the delay match. When the TTU_DGRP[m].TRIGEN bit =0, the output trigger
m is deasserted.

1:0

(R/W)

VALUE Trigger Output Counter Assignment.

When TTU_DGRP[m] = TTU_DGRP[m].VALUE n, the TTU associates the trigger
output m with the counter n (and its trigger input n).

CM41X_M4 TTU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 12–17

Trigger Output Delay Register

The TTU_DLY[m] register specifies the output delay of output trigger m relative to the input trigger of the coun-
ter.

Trigger Output Delay

Trigger Output Sign Extension

Trigger Output DelayTrigger Output Delay Sign

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DSEXT (R)

VALUE[23:16] (R/W)DSIGN (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-12: TTU_DLY[m] Register Diagram

Table 12-8: TTU_DLY[m] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

DSIGN Trigger Output Delay Sign.

The TTU_DLY[m].DSIGN bit indicates the sign of the trigger output delay m rela-
tive to the counter start point.

If the counter n associated with trigger output m (by TTU_DGRP[m]) is configured
for a single-shot operation (TTU_PER[n].VALUEn==0), then negative
TTU_DLY[m] values are not allowed, and TTU_DLY[m].DSIGNm must be 0. (If
TTU_DLY[m].DSIGNm=1, then the trigger output m does not produce trigger out-
put pulses)

If the counter n is periodic (TTU_PER[n].VALUEn !=0), then both positive and
negative trigger delays (TTU_DLY[m].DSIGNm, DELAYm) are supported, and can
take on any value in the range -(TTU_PER[n]-1) ... 0 ... +(TTU_PER[n]-1) inclu-
sive. Negative trigger delays (-D) cause an output pulse to be generated when the value
of the counter is (TTU_PER[n]-D); positive delays (+D) cause pulses to be generated
when the value of the counter is +D.

30:24

(R/NW)

DSEXT Trigger Output Sign Extension.

The TTU_DLY[m].DSEXT bit field contains the read-only sign extension of the
TTU_DLY[m].DSIGNm field. It extends to 32-bit width for convenient reading as a
32-bit signed integer. The bits in this field each are equal to
TTU_DLY[m].DSIGNm.

23:0

(R/W)

VALUE Trigger Output Delay.

The TTU_DLY[m].VALUE bit specifies the trigger output delay for output trigger m
relative to the start event of the corresponding counter.

CM41X_M4 TTU Register Descriptions

12–18 ADSP-CM41x Mixed-Signal Control Processor

Counter Period Register

The TTU_PER[n] register displays the counter period.

Counter Period

Counter Period

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-13: TTU_PER[n] Register Diagram

Table 12-9: TTU_PER[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

VALUE Counter Period.

The TTU_PER[n].VALUE bit indicates the period of the TTU counter n. If
COUNT=0, then the counter functions as single-shot delay (the default). If
COUNT !=0, then the counter operates in a periodic repeating sequence with the
specified period in SYSCLKs.

CM41X_M4 TTU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 12–19

Revision ID Register

The TTU_REVID register provides the TTU revision ID.

Minor Revision LevelMajor Revision Level
REV (R)MAJOR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-14: TTU_REVID Register Diagram

Table 12-10: TTU_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/NW)

MAJOR Major Revision Level.

The TTU_REVID.MAJOR bit indicates the TTU major ID.

3:0

(R/NW)

REV Minor Revision Level.

The TTU_REVID.REV bit indicates the TTU revision ID.

CM41X_M4 TTU Register Descriptions

12–20 ADSP-CM41x Mixed-Signal Control Processor

Counter Status Register

The TTU_STAT register indicates the status of the counter.

Counter Running Status
RUN[n] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-15: TTU_STAT Register Diagram

Table 12-11: TTU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/NW)

RUN[n] Counter Running Status.

Bit RUN[n] reads as 1 if the counter[n] is active.

CM41X_M4 TTU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 12–21

Counter Stop Request Register

The TTU_STOP register indicates a pending stop request.

Stop Counter Request
STOPREQ[n] (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-16: TTU_STOP Register Diagram

Table 12-12: TTU_STOP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W1S)

STOPREQ[n] Stop Counter Request.

For all TTU_STOP.STOPREQ[n] bits, write 1 to request the stopping of the peri-
odic counter[n] after the completion of the current period. The register reads as 1 if a
stop request is pending. Otherwise, the register reads as 0.

CM41X_M4 TTU Register Descriptions

12–22 ADSP-CM41x Mixed-Signal Control Processor

Counter Check Register

The TTU_CHK register contains a value used to speed up checking of long counts.

Counter Check

Counter Check

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 12-17: TTU_CHK Register Diagram

Table 12-13: TTU_CHK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

VALUE Counter Check.

In counter check mode, TTU_CHK.VALUE is used to speed up checking of long
counts. On the cycle after this is written, the TTU_CHK.VALUE is substituted for the
current count value of every active counter. However, if a trigger_in arrives, the trigger
has priority.

CM41X_M4 TTU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 12–23

13 Static Memory Controller (SMC)

The static memory controller is a protocol converter and data transfer interface between the internal processor bus
and the external L3 memory. It provides a glueless interface to various external memories and peripheral devices,
including:

• SRAM

• ROM

• EPROM

• FPGA/ASIC devices

The SMC acts as an SCB slave. The processor SCB interconnect fabric arbitrates accesses to the SMC. On the chip
boundary, the SMC connects to an address bus, a data bus, and signal pins for memory control (such as read, write,
output enable, and memory select lines).

SMC Features
SMC features include:

• 16-bit I/O width

• Provides flexible timing control through extended timing parameters

SMC Definitions
The timing registers contain bits to program the setup time, hold time, and access time for read and write access to
each bank separately. The SMC allows for different setup, hold, or access times for reads and writes. The
SMC_B0TIM – SMC_B3TIM registers control the timing characteristics of the asynchronous memory interface us-
ing the following parameter definitions. Each of these parameters can be programmed in terms of SCLK clock cy-
cles.

Read setup time

The time between the beginning of a memory cycle (SMC_AMS0 signal low) and the read-enable assertion
(SMC_ARE signal low).

Static Memory Controller (SMC)

ADSP-CM41x Mixed-Signal Control Processor 13–1

Read hold time

The time between read-enable deassertion (SMC_ARE signal high) and the end of the memory cycle (SMC_AMS0
signal high).

Read access

The time between read-enable assertion (SMC_ARE signal low) and deassertion (SMC_ARE signal high).

Write setup time

The time between the beginning of a memory cycle (SMC_AMS0 signal low) and the write-enable assertion
(SMC_AWE signal low).

Write hold time

The time between write-enable deassertion (SMC_AWE signal high) and the end of the memory cycle (SMC_AMS0
signal high).

Write access

The time between write-enable assertion (SMC_AWE signal low) and deassertion (SMC_AWE signal high).

The SMC provides another register for defining more timing characteristics of control signals by programming the
extended SMC_B0TIM – SMC_B3TIM timing registers. These registers contain bits to program following timing
characteristics.

Pre-setup time

The number of cycles the SMC_AMS0 signal is asserted before the SMC_AOE signal is asserted.

Pre-access time

The number of cycles inserted after the SMC_AOE signal is deasserted and before the SMC_ARE signal is asserted
for the next access.

Memory idle time

The number of bus idle cycles between the SMC_AMS0 deasserting edge and next asserting edge.

Memory transition time

The number of bus idle cycles extending the idle time cycles. These idle cycles occur in the case where a subsequent
access has a different data direction or the access is to a different bank.

SMC Definitions

13–2 ADSP-CM41x Mixed-Signal Control Processor

Bus contention

State of the bus in which more than one device on the bus attempts to place values on the bus at the same time. For
more information, see Avoiding Bus Contention.

ARDY signal

The SMC uses the SMC_ARDY signal to insert wait states for slower asynchronous memories. There is no upper
limit to how many wait states the SMC_ARDY signal can enter. As long as it is held, the processor waits for the
access to the asynchronous memory. Once asserted, the processor accesses the memory according to the timing dia-
grams. For more information, see ARDY Input Control.

SMC Functional Description
The SMC contains memory-mapped registers that control the access characteristics for each asynchronous memory
bank. Different banks can be programmed in various modes and independently-controlled using the functional and
cycle time bit settings for each bank.

Independent bank control

The SMC provides separate sets of registers, SMC_B0CTL through SMC_B3CTL (control), SMC_B0TIM
through SMC_B3TIM (timing) and SMC_B0ETIM through SMC_B3ETIM (extended timing) to control the
mode and timing characteristic of each bank independently. The control registers contain bits for enabling the
bank and bits for selecting mode of operation.

Bank select control signal control

The control registers also contain bits to control the type of bank select control signal. External FIFO devices
often do not have a separate chip select pin. As a result, for a read, the FIFOs output enable (SMC_AOE) pin
must be connected to the OR of the SMC_AMS0 and the SMC_ARE. Similarly, the write case requires an OR
between SMC_AMS0 and SMC_AWE. The SMC provides this function so that an external OR gate is not re-
quired. The appropriate AMS function can be selected for each memory bank region using the
SMC_B0CTL.SELCTRL bits.

CM41X_M4 SMC Register List

The Static Memory Controller SMC is a protocol converter and data transfer interface between the internal process-
or bus and the external L3 memory. The SMC acts as a bus slave, and accesses to SMC are arbitrated by the mod-
ule's system crossbar. On the chip boundary, the SMC is connected to an external memory address bus, a 16‐bit
data bus and memory control signal pins (read, write, select). This memory interface can support a sizable external
memory connected to one or more banks, each bank being controlled by a chip select signal. A set of registers gov-
erns SMC operations. For more information on SMC functionality, see the SMC register descriptions. For the
memory map, see the product data sheet.

SMC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 13–3

Table 13-1: CM41X_M4 SMC Register List

Name Description

SMC_B0CTL Bank 0 Control Register

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B0TIM Bank 0 Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B1TIM Bank 1 Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B2TIM Bank 2 Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3ETIM Bank 3 Extended Timing Register

SMC_B3TIM Bank 3 Timing Register

SMC Architectural Concepts

The SMC can support connection to multiple different external banks, with each bank controlled by the
SMC_AMS[n] chip select signal. Check the processor data sheet for details on the bank address ranges and configu-
rations.

NOTE: The processor data sheet shows the address range allocated to each bank. It is not necessary to populate all
of an enabled memory bank.

The processor does not directly support 8-bit accesses to the external memories. So, the SMC address lines start
from SMC_A01; there is no SMC_A0 pin.

The SMC does indirectly support 8-bit accesses through the additional byte enable signals SMC_ABE0 and
SMC_ABE1. Some 16-bit memory systems allow the processor to perform 8-bit reads and writes, which are selected
through the SMC_ABE0 and SMC_ABE1 signals.

The byte enable pins are both three-stated during all asynchronous reads and are driven low during 16-bit asynchro-
nous writes. When an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1 =0 and
SMC_ABE0 =1. When an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1 =1 and
SMC_ABE0 =0.

NOTE: Some SRAM devices expect byte-enable signals to be driven low during read accesses rather than being
three-stated, which can be achieved using external pull-down resistors. For applications requiring alternate
functions on the byte-enable pins during run time where pull-down resistors are not an option, the same
functionality can be achieved using the external logic shown as follows:

SMC Functional Description

13–4 ADSP-CM41x Mixed-Signal Control Processor

SMC0_ABE0

SMC0_AOE

SRAM_BLE
SMC0_ABE1

SMC0_AOE

SRAM_BHE

Figure 13-1: External Logic

Avoiding Bus Contention

Bus contention occurs when one device is getting off the bus and another is getting on. If the first device is slow to
three-state and the second device is quick to drive, the devices contend. Bus contention causes excessive power dissi-
pation and can lead to device failure.

There are two cases where contention can occur.

• When a read followed by a write to the same memory space occurs, there is a potential for bus contention. The
data bus drivers used for the write can potentially contend with the drivers used by the memory device being
read.

• When there are back-to-back reads from two different memory spaces, the two memory devices addressed by
the two reads can contend at the transition between the two read operations.

To avoid contention, program the turnaround time appropriately in the extended time registers (SMC_B0ETIM –
SMC_B3ETIM). The programming is done by setting the number of clock cycles between these types of accesses on
a bank-by-bank basis.

The idle time bit (SMC_B0ETIM.IT) applies to similar back-to-back access types on the same bank. The transi-
tion time bit (SMC_B0ETIM.TT) applies to the SMC_B0ETIM.IT bit. For actual turnaround situations, idle
time and transition time function in an accumulated fashion. The sequence of access types and times are:

• A write followed by write to same bank – SMC_B0ETIM.IT
• A read followed by read to same bank – SMC_B0ETIM.IT
• A write followed by read to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT
• A read followed by write to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT
• Any access to a given bank followed by any access to a different bank – SMC_B0ETIM.IT +

SMC_B0ETIM.TT
The reset value of turnaround transition time is two cycles. Program the SMC_B0ETIM.TT bit to a value either
greater than or equal to two cycles, depending on memory AC-timing specifications. It is important to be aware that
the SMC_B0ETIM.TT bit is programmed to 0 only when:

• There are either only read accesses or only write accesses possible to external memory devices for the current
device configuration or processor operation situation.

SMC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 13–5

ARDY Input Control

Each bank can be programmed to sample the SMC_ARDY input after the read or write access timer has counted
down. It can also be programmed to ignore this input signal. If enabled and disabled at the sample window, the
SMC module uses SMC_ARDY to extend the access time, as required.

The processor treats SMC_ARDY as an asynchronous input. The input must reach the desired value (either asserted
or deasserted) more than two SCLK cycles before the completion of access time (scheduled rising edge of SMC_AWE
or SMC_ARE). This timing determines whether the SMC extends the access with the assertion of SMC_ARDY. Af-
ter the processor samples SMC_ARDY high, the total delay between SMC_ARDY going high at the pads and
SMC_ARE being deasserted at the pads is a maximum of five SCLK cycles. (The memory device asserts
SMC_ARDY.)

Asynchronous SRAM writes are also possible with the SMC_ARDY signal enabled. In asynchronous SRAM writes,
the write access is extended beyond the programmed write access cycles depending on the SMC_ARDY signal state.
Once SMC_ARDY is sampled asserted, the SMC_AWE signal is deasserted after two CLKOUT cycles and the write
access ends.

The polarity of SMC_ARDY is programmable on a per-bank basis. Since SMC_ARDY is not sampled until an access
is in-progress to a bank in which the SMC_ARDY enable is asserted, it is not driven by default. When using flash
memory, connect the WAIT input to SMC_ARDY.

To avoid stalls in the case of erroneous SMC_ARDY behavior, set the SMC_B0CTL.RDYABTEN bit to enable the
SMC_ARDY abort counter. When the abort counter is enabled, it starts counting down as soon as the programmed
read/write access cycles expire. If the SMC interface does not sample the SMC_ARDY signal as asserted within 64
cycles, a counter-timeout occurs. This timeout ensures that the processor does not hang if SMC_ARDY is not sam-
pled correctly.

SMC Operating Modes
The SMC supports the following operating modes:

• Asynchronous Flash Mode

• Asynchronous Page Mode

Asynchronous Flash Mode

When the access selected mode is asynchronous flash (SMC_B0CTL.MODE =01), external bank accesses operate the
same as in standard asynchronous mode, except for the pin configuration. Use this mode when accessing burst devi-
ces in non-read array modes.

Asynchronous Page Mode

When asynchronous page mode access is selected (SMC_B0CTL.MODE =10), asynchronous page reads are enabled.
The SMC module supports page sizes of 4, 8 and 16 words. When performing a page mode read, the first access in
the page proceeds according to the read access time configured in SMC_B0TIM register. This access opens the page

SMC Architectural Concepts

13–6 ADSP-CM41x Mixed-Signal Control Processor

and the subsequent reads in that page have a period equal to the page wait states programmed in the SMC_B0ETIM
register. Besides the start of the setup phase, the read address is incremented at the start of every page cycle.

The SMC module supports page mode access only for back-to-back access DMA reads. It treats write accesses in
asynchronous page mode as simple asynchronous flash write accesses.

SMC Event Control
SMC event control consists of recording the status of SMC errors. Accesses to reserved locations and writes to read-
only registers result in bus errors. The SMC translates bus errors into internal SCB crossbar errors which get transla-
ted into interrupts. To report errors occurring in the slave memory devices (for both this memory interface and the
MMR interface), the core combines the SCB crossbar response signals. This combination generates a combined er-
ror signal indication which is routed to the fault management unit.

SMC Programmable Timing Characteristics
This section describes the programmable timing characteristics for the SMC. Timing relationships depend on the
programming of the SMC bank registers, whether initiation is from the core or from DMA. The relationships also
depend on the sequence of transactions (read followed by read, read followed by write, and others).

NOTE: All memory control, address, and data signals are driven out of the chip based on the falling edge of the
CLKOUT signal. The CLKOUT signal is SCLK on the chip pins (pad delayed).

Asynchronous SRAM Reads and Writes

The Basic Asynchronous SRAM Write Followed by Read figure shows a basic single write and read operation to an
external device with the SMC programmed in asynchronous SRAM mode.

CLKOUT

Write
Setup

2 Cycles
Write

Access
4 Cycles

Write
Hold

2 Cycles
Trams
TURN

2 Cycles
Read
Setup

3 Cycles
Read

Access
5 Cycles

Read
Hold

1 Cycle

SMC_An

SMC_AMSn

SMC_AOE

SMC_AWE

SMC_ARE

BE1-0

SMC_D15-0

AW0 AR0

WD0 RD0

00

Figure 13-2: Basic Asynchronous SRAM Write Followed by Read

For the current bank, the programmed time cycles are:

SMC Event Control

ADSP-CM41x Mixed-Signal Control Processor 13–7

• Write setup time = 2 cycles

• Write access time = 4 cycles

• Write hold time is = 2 cycles

• Read setup time = 3 cycles

• Read access time = 5 cycles

• Read hold time = 1 cycle

• Turnaround transition time = 2 cycles

• Idle transition time = 0 cycles

The asynchronous SRAM bus cycles proceed as follows.

1. At the start of the write setup period, the chip select signal (SMC_AMS[n]) for the target bank is asserted. The
write data (WD0), address (AW0), and byte enables become valid.

2. At the end of the setup phase and at the start of the write access period, the write enable (SMC_AWE) is asser-
ted.

3. At the end of the programmed write access, the SMC_AWE signal is deasserted. The target device is assumed to
have captured the write data before SMC_AWE is deasserted.

4. At the end of the write hold period, the SMC_AWE signal is deasserted because the pending access is a read
access, and the turnaround transition time cycles start. The write data and byte enables become invalid within
1 cycle of the SMC_AMS0 signal deasserting.

5. At the end of turnaround transition time, the read setup period starts with the assertion of the SMC_AMS0 and
SMC_AOE signals and a new read address (AR0) is presented on the address bus.

6. At the start of the read access period, the read enable signal, SMC_ARE is asserted.

7. At the end of the read access period, the SMC_ARE signal is deasserted and the read hold period starts. Read
data is latched along with SMC_ARE deasserting.

8. At the end of the read hold period, the SMC pulls the SMC_AMS[n] signal high and appends turnaround
transition cycles unless there is a pending read request to the same bank.

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted

The Asynchronous SRAM Read with IDLE Transition figure shows two consecutive asynchronous SRAM modes
reads to the same bank separated by programmed IDLE transition time cycles.

SMC Programmable Timing Characteristics

13–8 ADSP-CM41x Mixed-Signal Control Processor

CLKOUT

SMC_An

SMC_D15-0

SMC_AMSn

SMC_AOE

SMC_ARE

A0 A0 + 1

D0 D1

 Hold
1 Cycle Hold

1 Cycle
 Setup

2 Cycles
 Read Access

4 Cycles
 Trams
IDLE

2 Cycles Setup
2 Cycles Read Access

4 Cycles
 Trams
IDLE

2 Cycles

 Read Data
Latched

Here
 Read Data
Latched

Here

Figure 13-3: Asynchronous SRAM Read with IDLE Transition

Programmed cycle times are:

• SMC_B0TIM.RST = 2 cycles

• SMC_B0TIM.RAT = 4 cycles

• SMC_B0TIM.RHT = 1 cycle

• IDLE transition time = 2 cycles

At the start of the IDLE transition cycle, the SMC deasserts the SMC_AMS[n] and SMC_AOE signals. The setup
period of the second read starts at the end of the IDLE transition cycle with the assertion of the SMC_AMS[n] and
SMC_AOE signals and a new address on the address bus.

High-Speed Asynchronous SRAM Read Burst

The Fast Asynchronous SRAM Reads, Burst of Four Word figure shows a high-speed asynchronous SRAM read bus
cycle. This read bus cycle is typical for SRAM devices with small access times connecting through SCB read bursts,
especially for boot purposes.

SMC Programmable Timing Characteristics

ADSP-CM41x Mixed-Signal Control Processor 13–9

CLKOUT

ADDRn

AMSn

AOE

DATA15-0

ARE

Setup
1 Cycle

Read Access
2 Cycles Trans. TURN

2 Cycles

A0 A0 + 1 A0 + 2 A0 + 3

D0 D1 D2 D3

Read Data Latching Edges

Figure 13-4: Fast Asynchronous SRAM Reads, Burst of Four Word

In this case, the target SMC bank has been programmed with:

• read setup time = 1 cycle

• read access time = 2 cycles

• read hold time = 0

• SMC_B0ETIM.PREAT = 0

• SMC_B0ETIM.PREST = 0

• IDLE transition time = 0

The SMC_AMS[n] signal is asserted at the start of the setup cycle of the first read out of the burst. Since the hold
time and the idle transition time have been programmed to 0, the SMC_AMS[n] signal does not deassert until the
entire set of reads concludes. Only the SMC_ARE signal deasserts periodically for 1 cycle for the setup period. The
read address changes to the next address at the start of each individual setup cycle. Read data words are latched at the
end of each individual read access period.

High-Speed Asynchronous SRAM Writes

High-speed asynchronous SRAM writes are similar to the high-speed read accesses. The Fast Asynchronous SRAM
Writes figure shows the bus protocol for a write burst of 4 words. Here, the write setup time is 1 cycle and the write
access time has been programmed to 2 cycles. Write hold time, pre-access time, pre-setup time, and idle transition
time are programmed to 0.

The chip select signal SMC_AMS[n] asserts at the start of the entire write burst and deasserts only at the end of the
last individual write access period. Write address, byte enables and write data for each individual write access are
presented onto the bus at the start of each individual write setup cycle. The SMC_AWE signal asserts for the write
access period and deasserts during the setup period for each individual data write.

SMC Programmable Timing Characteristics

13–10 ADSP-CM41x Mixed-Signal Control Processor

CLKOUT

SMC_An

SMC_AMSn

SMC_AOE

SMC_D15-0

SMC_ABE1-0

SMC_AWE

Setup
1 Cycle

Write Access
2 Cycles Trans. TURN

2 Cycles

A0 A0 + 1 A0 + 2 A0 + 3

01 00 00 10

WD0 WD1 WD2 WD3

Figure 13-5: Fast Asynchronous SRAM Writes

Asynchronous SRAM Reads with ARDY

The Asynchronous SRAM Read with ARDY figure shows an extended asynchronous SRAM read bus cycle with
SMC_ARDY enabled.

CLKOUT

Pre
Setup

1 Cycle

Setup
3 Cycles

Ready
Sampled

Read
Access
6 Cycles

Hold
2 Cycles

SMC_ARE

SMC_ARDY

A0

D0

SCLK

Access Extended
5 Cycles

ARDY
Latched in

SCLK
Data

Latched

SCLK to CLKOUT
reference edge

delay

SMC_An

SMC_AMSn

SMC_AOE

SMC_D15

Figure 13-6: Asynchronous SRAM Read with ARDY

NOTE: SCLK in the Asynchronous SRAM Read with ARDY figure is SCLK.

The programmed SMC bank control parameters are:

SMC Programmable Timing Characteristics

ADSP-CM41x Mixed-Signal Control Processor 13–11

• Pre-setup time = 1 cycle

• Read setup time = 3 cycles

• Read access time = 6 cycles

• Read hold time = 2 cycles

• SMC_B0CTL.RDYPOL =1 (memory is ready when SMC_ARDY =1)

The bus cycles proceed as follows:

• At the start of the pre-setup phase, SMC_AMS[n] asserts, and read address SMC_A01 is presented on the ad-
dress bus.

• At the start of the setup period, SMC_AOE is asserted.

• At the start of the read access, SMC_ARE is asserted.

• The CLKOUT signal is SCLK which is driven out of the pads. The CLKOUT signal falling edge can be de-
layed from the internal SCLK falling edge. See the data sheet for the specification related to this delay. All out-
put signals out of the pads, for example SMC_ARE and SMC_AOE, are driven with regard to the falling edge of
CLKOUT.

• The SMC starts sampling the SMC_ARDY signal on every rising edge of internal SCLK two cycles before the
programmed number of read access cycles expires. The read access is extended (SMC_ARE is kept asserted) un-
til the SMC samples SMC_ARDY high.

• Once the SMC samples the SMC_ARDY signal (asserted by memory device) high in SCLK, the read signal is
pulled off internally in the SCLK domain. The total delay between the SMC_ARDY signal going high at the
pads and the deassertion of the SMC_ARE signal at the pads can be a maximum of five SCLK cycles.

• Read data is latched at the falling edge of CLKOUT on the same edge where the SMC deasserts SMC_ARE.

• Hold bus cycles start after the SMC deasserts the SMC_ARE signal.

• At the end of the hold period, the SMC_AMS[n] and SMC_AOE signals deassert and the SMC goes into the
transition state.

Asynchronous Flash Reads

The Asynchronous Flash Read with Pre-Setup and Pre-Access Cycles figure illustrates a single asynchronous flash
mode read bus cycle.

SMC Programmable Timing Characteristics

13–12 ADSP-CM41x Mixed-Signal Control Processor

CLKOUT

NOR_An

NOR_CE

NOR_ADV

NOR_OE

NOR_DQ15-0

A0

D

Pre-Access
1 Cycle Pre-Setup

1 Cycle
Setup

2 Cycles Read Access
5 Cycles

Read Data
Latched Here

Hold
2 Cycles

Figure 13-7: Asynchronous Flash Read with Pre-Setup and Pre-Access Cycles

In this case, the target SMC bank has been programmed with:

• Pre-setup time = 1 cycle

• Read setup time = 2 cycles

• Pre-access time = 1 cycle

• Read access time = 5 cycles

• Read hold time = 2 cycles

The read bus cycle is almost identical to the asynchronous SRAM read bus cycle. The only difference is the behavior
of the SMC_AOE signal which the SMC uses as the flash address valid SMC_NORDV signal. The flash address valid
SMC_NORDV signal asserts at the start of the setup cycle and deasserts at the end of the setup cycle.

The pre-access cycle inserts a one-cycle gap between the deassertion of the flash address valid SMC_NORDV signal
and the assertion of the flash read strobe NOR_OE at the start of read access. The SMC also uses asynchronous flash
reads with SMC_ARDY enabled for flash devices which use SMC_NORWT in asynchronous mode. In this case, the
read bus cycle operation is identical to the asynchronous SRAM with SMC_ARDY enabled except for the
SMC_AOE/SMC_NORDV signal behavior.

The 32-bit Asynchronous Flash Read figure shows a 32-bit read access to a flash device in asynchronous mode which
is split into two 16-bit external memory accesses. For this bank, read setup and read hold are programmed as two
cycles whereas the read access time is five cycles. The flash device chip select signal (NOR_CE) remains asserted for
the entire duration of both read accesses. NOR_CE is deasserted at the end of the hold period of the second read
access. The SMC asserts the SMC_NORDV signal during the setup phase of both read accesses. Read data is latched
at the end of the read access period.

SMC Programmable Timing Characteristics

ADSP-CM41x Mixed-Signal Control Processor 13–13

CLKOUT

NOR_An

NOR_CE

NOR_OE

NOR_ADV

Setup
2 Cycles

A0 A0 + 1

Read Data
Latched Here

D0NOR_DQ15-0

Read Access
5 Cycles

Hold
2 Cycles

Read Data
Latched Here

D1

Figure 13-8: 32-bit Asynchronous Flash Read

Asynchronous Flash Writes

The Asynchronous Flash Write Operation figure shows a single asynchronous flash write bus cycle.

CLKOUT

NOR_An

NOR_CE

NOR_WE

NOR_ADV

Write
Setup

2 Cycles

A0

NOR_DQ15-0

Write Access
6 Cycles

Write
Hold

2 Cycles

SMC_ABE1-0

Pre
Setup

1 Cycle

00

WD0

Figure 13-9: Asynchronous Flash Write Operation

For this example, the SMC has been programmed with:

• Pre-setup time = 1 cycle

• Write setup time = 2 cycles

• Write access time = 6 cycles

• Write hold time = 2 cycles

• Pre-access time = 0

The asynchronous flash write bus cycle is again almost identical to the asynchronous SRAM write. The SMC_AWE
pin is connected to flash write enable signal (NOR_WE). However, in asynchronous flash writes the SMC uses the

SMC Programmable Timing Characteristics

13–14 ADSP-CM41x Mixed-Signal Control Processor

SMC_AOE signal as the address valid signal (SMC_NORDV). The SMC_AOE signal asserts during the setup period,
unlike in asynchronous SRAM writes where the SMC_AOE signal never asserts.

Asynchronous Flash Page Mode Reads

The Asynchronous Page Mode Read Bus Cycle figure shows an asynchronous page mode bus read cycle for a burst of
five reads. The reads are split into four reads followed by a single read.

CLKOUT

NOR_An

NOR_CE

NOR_ADV

NOR_OE

Read
Setup

2 Cycles

A0 A0+1 A0+2 A0 + 3

D2

Read
Data

Latched

A0 + 4

D4NOR_DQ15-0

Page
Access
2 Cycles

Page
Access
2 Cycles

Page
Access
2 Cycles

Read
Hold

2 Cycles

Read
Setup

2 Cycles

Read
Hold

2 Cycles

Read
Access
6 Cycles

Read
Access
6 Cycles

Read
Data

Latched

Read
Data

Latched

Read
Data

Latched

Read
Data

Latched

D0 D3D1

Figure 13-10: Asynchronous Page Mode Read Bus Cycle

The programmed bank parameters are:

• Read setup time = 2 cycles

• Read access time = 6 cycles

• Page wait = 2 cycles

• Hold time =2 cycles

The maximum number of read bursts in a total page access depends on the bank SMC_B0CTL.PGSZ bits (00 =4
words, 01 =8 words, 1x =16 words). The first read access is extended for three more page-read cycles whose period is
equal to the page wait states. Besides the start of the setup phase, the read address is incremented at the start of every
page cycle. Read data is latched with the falling edge of CLKOUT the end of the read access period, and also at the
end of the page cycles.

Asynchronous FIFO Reads and Writes

The Asynchronous FIFO Read Bus Cycles figure shows the read bus cycles for an asynchronous FIFO device. The
SMC bank is programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL =01 (SMC_AMS[n] is
OR'ed with SMC_ARE).

SMC Programmable Timing Characteristics

ADSP-CM41x Mixed-Signal Control Processor 13–15

CLKOUT

AMS(n)/RE

Read
Data Latched

DATA/DQ15

Read
Data Latched

Read
Setup

1 Cycle

Read
Access

3 Cycles

Read
Hold

1 Cycle

Trans.
TURN

2 Cycles

D0 D1

Figure 13-11: Asynchronous FIFO Read Bus Cycles

Other settings are:

• Read setup time = 1 cycle

• Read access time = 3 cycles

• Read hold time = 1 cycle

• Idle transition time = 0 cycles

• Turnaround transition time = 2 cycles

The SMC_AMS[n] signal connects to the read enable (RE) of the FIFO device, and the data bus connects to the
output data bus (DQ) of the FIFO. The SMC_AMS[n] signal or the FIFO read strobe assert only during the read
access. Read data is latched at the falling edge of CLKOUT at the end of the read access, when the SMC deasserts
SMC_AMS[n].

The Asynchronous FIFO Write Bus Cycles figure illustrates the write bus cycles for an asynchronous FIFO device.
The SMC bank is programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL =10
(SMC_AMS[n] is OR'ed with SMC_AWE). Other settings are:

• Write setup time = 1 cycle

• Write access time = 3 cycles

• Write hold time = 1 cycle

• Idle transition time = 0

• Turnaround transition time = 2 cycles

The SMC_AMS[n] signal connects to the write enable (WE) of the FIFO device. The data bus connects to the
input data bus (DIN) of the FIFO. The SMC_AMS[n] signal or the FIFO write strobe asserts only during the write
access. However, the SMC asserts write data at the start of the setup cycle and removes it at the end of the hold
period for each individual write access.

SMC Programmable Timing Characteristics

13–16 ADSP-CM41x Mixed-Signal Control Processor

CLKOUT

AMS(n)/WE

DATA/DIN

Write
Setup

1 Cycle

Write
Access

3 Cycles

Write
Hold

1 Cycle

Trans.
TURN

2 Cycles

WD0 WD1

Figure 13-12: Asynchronous FIFO Write Bus Cycles

SMC Programming Model
The following general guidelines are used for configuring and enabling the SMC interface. Failure to follow these
guidelines can lead to erroneous behavior.

• In asynchronous page mode, always program SMC_B0CTL.RDYEN to 0.

• Enable the ARDY abort counter (the SMC_B0CTL.RDYABTEN bit =1) whenever the SMC_ARDY signal is
enabled (the SMC_B0CTL.RDYEN is set to 1). This step ensures that the interface does not hang due to erro-
neous SMC_ARDY signal behavior or erroneous sampling of the SMC_ARDY signal.

• Do not program read access time (SMC_B0TIM.RAT), write access time (SMC_B0TIM.WAT), read setup
time (SMC_B0TIM.RST), and write setup time (SMC_B0TIM.WST) to 0.

• Never program page mode wait-states (SMC_B0ETIM.PGWS) to 0 or 1.

• Program the page size bits (SMC_B0CTL.PGSZ) to match the configurations of the flash device connected to
the SMC interface.

• Select the SMC_B0CTL.RDYPOL bit to be the complement of the WAIT polarity that is configured in the
flash device.

• In asynchronous SRAM and asynchronous flash modes with SMC_ARDY enabled, and where
SMC_B0TIM.RHT, SMC_B0TIM.WHT, SMC_B0TIM.RAT, and SMC_B0TIM.WAT are the read and write
hold and access times and SMC_B0ETIM.IT and SMC_B0ETIM.TT are the idle and transition times, en-
sure that the following conditions are true:

• SMC_B0TIM.RHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT≥ 2

• SMC_B0TIM.WHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT≥ 2

• SMC_B0TIM.RAT≥ 5

• SMC_B0TIM.WAT≥ 5

CM41X_M4 SMC Register Descriptions
Static Memory Controller (SMC) contains the following registers.

SMC Programming Model

ADSP-CM41x Mixed-Signal Control Processor 13–17

Table 13-2: CM41X_M4 SMC Register List

Name Description

SMC_B0CTL Bank 0 Control Register

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B0TIM Bank 0 Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B1TIM Bank 1 Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B2TIM Bank 2 Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3ETIM Bank 3 Extended Timing Register

SMC_B3TIM Bank 3 Timing Register

CM41X_M4 SMC Register Descriptions

13–18 ADSP-CM41x Mixed-Signal Control Processor

Bank 0 Control Register

The SMC_B0CTL register enables bank 0 accesses and configures the memory access features for this bank.

Select ControlARDY Enable

Memory Access ModeARDY Polarity

Bank 0 EnableARDY Abort Enable

Flash Page Size

SELCTRL (R/W)RDYEN (R/W)

MODE (R/W)RDYPOL (R/W)

EN (R/W)RDYABTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGSZ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 13-13: SMC_B0CTL Register Diagram

Table 13-3: SMC_B0CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/W)

PGSZ Flash Page Size.

The SMC_B0CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B0CTL.MODE > 1). Note that the
SMC_B0CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B0CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The typi-
cal SMC_B0CTL.PGSZ selection for external devices supporting sync burst flash pro-
tocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–19

Table 13-3: SMC_B0CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

RDYABTEN ARDY Abort Enable.

The SMC_B0CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY
pin, if enabled (SMC_B0CTL.RDYEN =1). After SMC_B0TIM.RAT or
SMC_B0TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts
the abort down counter (if enabled). The abort count is 64 cycles of SCLK. If the
SMC detects that SMC_ARDY remains de-asserted when the counter expires, the SMC
aborts the access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13

(R/W)

RDYPOL ARDY Polarity.

The SMC_B0CTL.RDYPOL bit selects the polarity (active high or low) for the
SMC_ARDY pin, if enabled (SMC_B0CTL.RDYEN =1). When the SMC samples the
SMC_ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12

(R/W)

RDYEN ARDY Enable.

The SMC_B0CTL.RDYEN bit enables SMC_ARDY pin operation for bank 0 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to deter-
mine completion of access to this memory bank. When disabled, the SMC ignores
SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

9:8

(R/W)

SELCTRL Select Control.

The SMC_B0CTL.SELCTRL bits select the handling of the SMC_AMS[n],
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS0 only

1 AMS0 ORed with ARE

2 AMS0 ORed with AOE

3 AMS0 ORed with AWE

CM41X_M4 SMC Register Descriptions

13–20 ADSP-CM41x Mixed-Signal Control Processor

Table 13-3: SMC_B0CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

MODE Memory Access Mode.

The SMC_B0CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0

(R/W)

EN Bank 0 Enable.

The SMC_B0CTL.EN bit enables accesses to the memory in bank 0. When this bit is
disabled, accesses to bank 0 return an error response.

0 Disable access

1 Enable access

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–21

Bank 0 Extended Timing Register

The SMC_B0ETIM register configures extensions to access times and idle times, augmenting the setup, hold, and
access times configured with the SMC_B0TIM register.

Pre Access TimeTransition Time

Pre Setup TimeIdle Time

Page Wait States

PREAT (R/W)TT (R/W)

PREST (R/W)IT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGWS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 13-14: SMC_B0ETIM Register Diagram

Table 13-4: SMC_B0ETIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PGWS Page Wait States.

The SMC_B0ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B0CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

2-15 2-15 SCLK clock cycles

14:12

(R/W)

IT Idle Time.

The SMC_B0ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMS[n] pin and asserting the SMC_AMS[n]
pin for the next access. Note that the SMC_B0ETIM.IT period may be extended us-
ing the SMC_B0ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–22 ADSP-CM41x Mixed-Signal Control Processor

Table 13-4: SMC_B0ETIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10:8

(R/W)

TT Transition Time.

The SMC_B0ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B0ETIM.IT to allow for the subsequent access either using a dif-
ferent transfer direction or accessing a different bank. The transition time is from 1 to
7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

5:4

(R/W)

PREAT Pre Access Time.

The SMC_B0ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0

(R/W)

PREST Pre Setup Time.

The SMC_B0ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMS[n] pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–23

Bank 0 Timing Register

The SMC_B0TIM register configures bank 0 read and write access, setup, and hold timing for this bank. Note that
read and write timing configurations are independent and may differ.

Write Hold Time

Write Setup TimeWrite Access Time

Read Hold Time

Read Setup TimeRead Access Time

WHT (R/W)

WST (R/W)WAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

RHT (R/W)

RST (R/W)RAT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

1
16

Figure 13-15: SMC_B0TIM Register Diagram

Table 13-5: SMC_B0TIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

RAT Read Access Time.

The SMC_B0TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK cy-
cles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20

(R/W)

RHT Read Hold Time.

The SMC_B0TIM.RHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the
next access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–24 ADSP-CM41x Mixed-Signal Control Processor

Table 13-5: SMC_B0TIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

RST Read Setup Time.

The SMC_B0TIM.RST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

13:8

(R/W)

WAT Write Access Time.

The SMC_B0TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4

(R/W)

WHT Write Hold Time.

The SMC_B0TIM.WHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for
the current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0

(R/W)

WST Write Setup Time.

The SMC_B0TIM.WST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The set-
up time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–25

Bank 1 Control Register

The SMC_B1CTL register enables bank 1 accesses and configures the memory access features for this bank.

Select ControlARDY Enable

Memory Access ModeARDY Polarity

Bank 1 EnableARDY Abort Enable

Flash Page Size

SELCTRL (R/W)RDYEN (R/W)

MODE (R/W)RDYPOL (R/W)

EN (R/W)RDYABTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGSZ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 13-16: SMC_B1CTL Register Diagram

Table 13-6: SMC_B1CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/W)

PGSZ Flash Page Size.

The SMC_B1CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B1CTL.MODE > 1). Note that the
SMC_B1CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B1CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The typi-
cal SMC_B1CTL.PGSZ selection for external devices supporting sync burst flash pro-
tocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

CM41X_M4 SMC Register Descriptions

13–26 ADSP-CM41x Mixed-Signal Control Processor

Table 13-6: SMC_B1CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

RDYABTEN ARDY Abort Enable.

The SMC_B1CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY
pin, if enabled (SMC_B1CTL.RDYEN =1). After SMC_B1TIM.RAT or
SMC_B1TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts
the abort down counter (if enabled). The abort count is 64 cycles of SCLK. If the
SMC detects that SMC_ARDY remains de-asserted when the counter expires, the SMC
aborts the access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13

(R/W)

RDYPOL ARDY Polarity.

The SMC_B1CTL.RDYPOL bit selects the polarity (active high or low) for the
SMC_ARDY pin, if enabled (SMC_B1CTL.RDYEN =1). When the SMC samples the
SMC_ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12

(R/W)

RDYEN ARDY Enable.

The SMC_B1CTL.RDYEN bit enables SMC_ARDY pin operation for bank 1 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to deter-
mine completion of access to this memory bank. When disabled, the SMC ignores
SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

9:8

(R/W)

SELCTRL Select Control.

The SMC_B1CTL.SELCTRL bits select the handling of the SMC_AMS[n],
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS1 only

1 AMS1 ORed with ARE

2 AMS1 ORed with AOE

3 AMS1 ORed with AWE

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–27

Table 13-6: SMC_B1CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

MODE Memory Access Mode.

The SMC_B1CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0

(R/W)

EN Bank 1 Enable.

The SMC_B1CTL.EN bit enables accesses to the memory in bank 1. When this bit is
disabled, accesses to bank 1 return an error response.

0 Disable access

1 Enable access

CM41X_M4 SMC Register Descriptions

13–28 ADSP-CM41x Mixed-Signal Control Processor

Bank 1 Extended Timing Register

The SMC_B1ETIM register configures extensions to access times and idle times, augmenting the setup, hold, and
access times configured with the SMC_B1TIM register.

Pre Access TimeTransition Time

Pre Setup TimeIdle Time

Page Wait States

PREAT (R/W)TT (R/W)

PREST (R/W)IT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGWS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 13-17: SMC_B1ETIM Register Diagram

Table 13-7: SMC_B1ETIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PGWS Page Wait States.

The SMC_B1ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B1CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

2-15 2-15 SCLK clock cycles

14:12

(R/W)

IT Idle Time.

The SMC_B1ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMS[n] pin and asserting the SMC_AMS[n]
pin for the next access. Note that the SMC_B1ETIM.IT period may be extended us-
ing the SMC_B1ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–29

Table 13-7: SMC_B1ETIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10:8

(R/W)

TT Transition Time.

The SMC_B1ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B1ETIM.IT to allow for the subsequent access either using a dif-
ferent transfer direction or accessing a different bank. The transition time is from 1 to
7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

5:4

(R/W)

PREAT Pre Access Time.

The SMC_B1ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0

(R/W)

PREST Pre Setup Time.

The SMC_B1ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMS[n] pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–30 ADSP-CM41x Mixed-Signal Control Processor

Bank 1 Timing Register

The SMC_B1TIM register configures bank 1 read and write access, setup, and hold timing for this bank. Note that
read and write timing configurations are independent and may differ.

Write Hold Time

Write Setup TimeWrite Access Time

Read Hold Time

Read Setup TimeRead Access Time

WHT (R/W)

WST (R/W)WAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

RHT (R/W)

RST (R/W)RAT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

1
16

Figure 13-18: SMC_B1TIM Register Diagram

Table 13-8: SMC_B1TIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

RAT Read Access Time.

The SMC_B1TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK cy-
cles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20

(R/W)

RHT Read Hold Time.

The SMC_B1TIM.RHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the
next access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–31

Table 13-8: SMC_B1TIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

RST Read Setup Time.

The SMC_B1TIM.RST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

13:8

(R/W)

WAT Write Access Time.

The SMC_B1TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4

(R/W)

WHT Write Hold Time.

The SMC_B1TIM.WHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for
the current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0

(R/W)

WST Write Setup Time.

The SMC_B1TIM.WST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The set-
up time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–32 ADSP-CM41x Mixed-Signal Control Processor

Bank 2 Control Register

The SMC_B2CTL register enables bank 2 accesses and configures the memory access features for this bank.

Select ControlARDY Enable

Memory Access ModeARDY Polarity

Bank 2 EnableARDY Abort Enable

Flash Page Size

SELCTRL (R/W)RDYEN (R/W)

MODE (R/W)RDYPOL (R/W)

EN (R/W)RDYABTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGSZ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 13-19: SMC_B2CTL Register Diagram

Table 13-9: SMC_B2CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/W)

PGSZ Flash Page Size.

The SMC_B2CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B2CTL.MODE > 1). Note that the
SMC_B2CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B2CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The typi-
cal SMC_B2CTL.PGSZ selection for external devices supporting sync burst flash pro-
tocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–33

Table 13-9: SMC_B2CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

RDYABTEN ARDY Abort Enable.

The SMC_B2CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY
pin, if enabled (SMC_B2CTL.RDYEN =1). After SMC_B2TIM.RAT or
SMC_B2TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts
the abort down counter (if enabled). The abort count is 64 cycles of SCLK. If the
SMC detects that SMC_ARDY remains de-asserted when the counter expires, the SMC
aborts the access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13

(R/W)

RDYPOL ARDY Polarity.

The SMC_B2CTL.RDYPOL bit selects the polarity (active high or low) for the
SMC_ARDY pin, if enabled (SMC_B2CTL.RDYEN =1). When the SMC samples the
SMC_ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12

(R/W)

RDYEN ARDY Enable.

The SMC_B2CTL.RDYEN bit enables SMC_ARDY pin operation for bank 2 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to deter-
mine completion of access to this memory bank. When disabled, the SMC ignores
SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

9:8

(R/W)

SELCTRL Select Control.

The SMC_B2CTL.SELCTRL bits select the handling of the SMC_AMS[n],
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS2 only

1 AMS2 ORed with ARE

2 AMS2 ORed with AOE

3 AMS2 ORed with AWE

CM41X_M4 SMC Register Descriptions

13–34 ADSP-CM41x Mixed-Signal Control Processor

Table 13-9: SMC_B2CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

MODE Memory Access Mode.

The SMC_B2CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0

(R/W)

EN Bank 2 Enable.

The SMC_B2CTL.EN bit enables accesses to the memory in bank 2. When this bit is
disabled, accesses to bank 2 return an error response.

0 Disable access

1 Enable access

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–35

Bank 2 Extended Timing Register

The SMC_B2ETIM register configures extensions to access times and idle times, augmenting the setup, hold, and
access times configured with the SMC_B2TIM register.

Pre Access TimeTransition Time

Pre Setup TimeIdle Time

Page Wait States

PREAT (R/W)TT (R/W)

PREST (R/W)IT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGWS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 13-20: SMC_B2ETIM Register Diagram

Table 13-10: SMC_B2ETIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PGWS Page Wait States.

The SMC_B2ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B2CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

2-15 2-15 SCLK clock cycles

14:12

(R/W)

IT Idle Time.

The SMC_B2ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMS[n] pin and asserting the SMC_AMS[n]
pin for the next access. Note that the SMC_B2ETIM.IT period may be extended us-
ing the SMC_B2ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–36 ADSP-CM41x Mixed-Signal Control Processor

Table 13-10: SMC_B2ETIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10:8

(R/W)

TT Transition Time.

The SMC_B2ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B2ETIM.IT to allow for the subsequent access either using a dif-
ferent transfer direction or accessing a different bank. The transition time is from 1 to
7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

5:4

(R/W)

PREAT Pre Access Time.

The SMC_B2ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0

(R/W)

PREST Pre Setup Time.

The SMC_B2ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMS[n] pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–37

Bank 2 Timing Register

The SMC_B2TIM register configures bank 2 read and write access, setup, and hold timing for this bank. Note that
read and write timing configurations are independent and may differ.

Write Hold Time

Write Setup TimeWrite Access Time

Read Hold Time

Read Setup TimeRead Access Time

WHT (R/W)

WST (R/W)WAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

RHT (R/W)

RST (R/W)RAT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

1
16

Figure 13-21: SMC_B2TIM Register Diagram

Table 13-11: SMC_B2TIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

RAT Read Access Time.

The SMC_B2TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK cy-
cles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20

(R/W)

RHT Read Hold Time.

The SMC_B2TIM.RHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the
next access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–38 ADSP-CM41x Mixed-Signal Control Processor

Table 13-11: SMC_B2TIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

RST Read Setup Time.

The SMC_B2TIM.RST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

13:8

(R/W)

WAT Write Access Time.

The SMC_B2TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4

(R/W)

WHT Write Hold Time.

The SMC_B2TIM.WHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for
the current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0

(R/W)

WST Write Setup Time.

The SMC_B2TIM.WST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The set-
up time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–39

Bank 3 Control Register

The SMC_B3CTL register enables bank 3 accesses and configures the memory access features for this bank.

Select ControlARDY Enable

Memory Access ModeARDY Polarity

Bank 3 EnableARDY Abort Enable

Flash Page Size

SELCTRL (R/W)RDYEN (R/W)

MODE (R/W)RDYPOL (R/W)

EN (R/W)RDYABTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGSZ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 13-22: SMC_B3CTL Register Diagram

Table 13-12: SMC_B3CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/W)

PGSZ Flash Page Size.

The SMC_B3CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B3CTL.MODE > 1). Note that the
SMC_B3CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B3CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The typi-
cal SMC_B3CTL.PGSZ selection for external devices supporting sync burst flash pro-
tocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

CM41X_M4 SMC Register Descriptions

13–40 ADSP-CM41x Mixed-Signal Control Processor

Table 13-12: SMC_B3CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

RDYABTEN ARDY Abort Enable.

The SMC_B3CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY
pin, if enabled (SMC_B3CTL.RDYEN =1). After SMC_B3TIM.RAT or
SMC_B3TIM.WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts
the abort down counter (if enabled). The abort count is 64 cycles of SCLK. If the
SMC detects that SMC_ARDY remains de-asserted when the counter expires, the SMC
aborts the access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13

(R/W)

RDYPOL ARDY Polarity.

The SMC_B3CTL.RDYPOL bit selects the polarity (active high or low) for the
SMC_ARDY pin, if enabled (SMC_B3CTL.RDYEN =1). When the SMC samples the
SMC_ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12

(R/W)

RDYEN ARDY Enable.

The SMC_B3CTL.RDYEN bit enables SMC_ARDY pin operation for bank 3 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to deter-
mine completion of access to this memory bank. When disabled, the SMC ignores
SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

9:8

(R/W)

SELCTRL Select Control.

The SMC_B3CTL.SELCTRL bits select the handling of the SMC_AMS[n],
SMC_ARE, SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS3 only

1 AMS3 ORed with ARE

2 AMS3 ORed with AOE

3 AMS3 ORed with AWE

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–41

Table 13-12: SMC_B3CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

MODE Memory Access Mode.

The SMC_B3CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0

(R/W)

EN Bank 3 Enable.

The SMC_B3CTL.EN bit enables accesses to the memory in bank 3. When this bit is
disabled, accesses to bank 3 return an error response.

0 Disable access

1 Enable access

CM41X_M4 SMC Register Descriptions

13–42 ADSP-CM41x Mixed-Signal Control Processor

Bank 3 Extended Timing Register

The SMC_B3ETIM register configures extensions to access times and idle times, augmenting the setup, hold, and
access times configured with the SMC_B3TIM register.

Pre Access TimeTransition Time

Pre Setup TimeIdle Time

Page Wait States

PREAT (R/W)TT (R/W)

PREST (R/W)IT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PGWS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 13-23: SMC_B3ETIM Register Diagram

Table 13-13: SMC_B3ETIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:16

(R/W)

PGWS Page Wait States.

The SMC_B3ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B3CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

2-15 2-15 SCLK clock cycles

14:12

(R/W)

IT Idle Time.

The SMC_B3ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMS[n] pin and asserting the SMC_AMS[n]
pin for the next access. Note that the SMC_B3ETIM.IT period may be extended us-
ing the SMC_B3ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–43

Table 13-13: SMC_B3ETIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10:8

(R/W)

TT Transition Time.

The SMC_B3ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B3ETIM.IT to allow for the subsequent access either using a dif-
ferent transfer direction or accessing a different bank. The transition time is from 1 to
7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

5:4

(R/W)

PREAT Pre Access Time.

The SMC_B3ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0

(R/W)

PREST Pre Setup Time.

The SMC_B3ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMS[n] pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–44 ADSP-CM41x Mixed-Signal Control Processor

Bank 3 Timing Register

The SMC_B3TIM register configures bank 3 read and write access, setup, and hold timing for this bank. Note that
read and write timing configurations are independent and may differ.

Write Hold Time

Write Setup TimeWrite Access Time

Read Hold Time

Read Setup TimeRead Access Time

WHT (R/W)

WST (R/W)WAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

RHT (R/W)

RST (R/W)RAT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

1
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

1
16

Figure 13-24: SMC_B3TIM Register Diagram

Table 13-14: SMC_B3TIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

RAT Read Access Time.

The SMC_B3TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK cy-
cles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20

(R/W)

RHT Read Hold Time.

The SMC_B3TIM.RHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the
next access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 13–45

Table 13-14: SMC_B3TIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

RST Read Setup Time.

The SMC_B3TIM.RST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

13:8

(R/W)

WAT Write Access Time.

The SMC_B3TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4

(R/W)

WHT Write Hold Time.

The SMC_B3TIM.WHT bits select the hold time (in SCLK cycles) that the SMC
waits after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for
the current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0

(R/W)

WST Write Setup Time.

The SMC_B3TIM.WST bits select the setup time (in SCLK cycles) that the SMC as-
serts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The set-
up time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

CM41X_M4 SMC Register Descriptions

13–46 ADSP-CM41x Mixed-Signal Control Processor

14 Flash Controller (FLC)

The processor features ECC-protected embedded parallel flash memory. It consists of up to 1024 KB of main mem-
ory and up to 8 KB of information memory. The main memory is used to store program code and data, while the
information block can be used to store specialized information, such as security keys.

FLC Features
The FLC module has the following features.

• 128-bit wide flash

• SEC-DED type ECC protection

• Read/write protected Information block

• Pre-fetcher, branch detector and small cache

• Flash event interrupts and triggers

• Sleep mode

FLC Functional Description
The following sections provide information on the function of the FLC.

CM41X_M4 FLC Register List

The FLC module control the flash memory. This memory space includes up to 1M byte of flash memory which
holds the user program and constant data. The initial vector table and reset boot vector are located at the base of
flash memory.

Table 14-1: CM41X_M4 FLC Register List

Name Description

FLC_ADDR Command Address Register

FLC_CMD Command Register

Flash Controller (FLC)

ADSP-CM41x Mixed-Signal Control Processor 14–1

Table 14-1: CM41X_M4 FLC Register List (Continued)

Name Description

FLC_CMD_KEY Command Key Register

FLC_CTL Control Register

FLC_DATA0 Command Data Register 0

FLC_DATA1 Command Data Register 1

FLC_ECC Command ECC Register

FLC_FILL_CNT Pre-fetcher Fill Count Register

FLC_IMSK Interrupt Enable Register

FLC_MISS_CNT Pre-fetcher Miss Count Register

FLC_PRFCTL Prefetch Control Register

FLC_REF_CNT Pre-fetcher Reference Count Register

FLC_REVID Revision ID Register

FLC_SBERR_THR ECC Single Bit Error Threshold Register

FLC_STAT Status Register

FLC_TIM_PWR Power Timing Register

FLC Block Diagram

The dedicated Flash controller connected to each flash block controls the read, write, erase and power management
operation of flash. The ARM M4 processor issues the commands by writing to the memory-mapped registers of the
flash controller. Executing these commands results in performing flash operations such as page erase, mass erase, 64-
bit write (or program), sleep, powerdown and wakeup.

The flash controller allows the processor core to directly execute the code from flash with performance optimized by
a flash prefetcher. As shown in the Flash Controller Block Diagram, the ARM M4 processor can access the embed-
ded flash memory through its ICODE and DCODE interfaces, which are tightly coupled to the flash controller’s
core ports. Flash memory can be read by other system modules using the flash controller’s DMA interface.

FLC Functional Description

14–2 ADSP-CM41x Mixed-Signal Control Processor

512 KB FLASH

MAIN MEMORY

4 KB
INFO BLOCK

FLASH
CONTROLLER 0

ARM M4

PRE-FETCHER

512 KB FLASH

MAIN MEMORY

4 KB
INFO BLOCKDMA INTERFACE

ICODE BUS

DCODE BUS

SYSTEM BUS

SYSTEM BUS

FLASH INTERFACE

FLASH
CONTROLLER 0

Figure 14-1: Flash Controller Block Diagram

FLC Architectural Concepts

The following sections provide information on the architecture of the Flash controller module.

Flash Memory Organization

Flash memory is partitioned into two equal blocks (shown in the Flash Memory Organization figure), each contain-
ing 512 KB of main memory and 4 KB of information memory. Each flash block is independently controlled by a
dedicated flash controller, which supports reading the flash contents, erasure and programming, power management
functions, and management of ECC error protection.

FLASH BLOCK 0 FLASH BLOCK 1

0x1100 0000
PAGE 0

PAGE 1

PAGE 2

PAGE 3

PAGE 126

PAGE 127

INFORMATION
BLOCK

0x1107 FFFF

0x1180 0000

0x1100 0FFF

.

.

.

.

0x1108 0000
PAGE 0

PAGE 1

PAGE 2

PAGE 3

PAGE 126

PAGE 127

INFORMATION
BLOCK

0x110F FFFF

0x1188 0000

0x1188 0FFF

.

.

.

.

Figure 14-2: Flash Memory Organization

The Flash Page Architecture figure shows the details of flash organization. The main memory of each flash block is
organized into 128 programmable pages of 4K-bytes each. A 4K byte page in the memory occupies 8 rows of 32

FLC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 14–3

columns, where each column is of 128-bits. Each column is divided into two 64-bit data long words, each with an
associated 8-bit Error Correcting Code (ECC) capable of SEC-DED (single-bit error correction, Dual-bit error de-
tection).

The smallest independently programmable unit of flash memory is an aligned 64-bit long word. The state of un-
programmed (blank) flash memory is all 1s including the ECC bits, which is defined as a legal ECC state (not an
ECC error.) Flash memory bits can be programmed from 1 to 0, but require an Erase or Mass Erase operation to
return from 0 to 1. Flash memory may be erased in one of three ways: in aligned 4K-byte Pages, in a Mass Erase of
an entire 512KB main memory without the Information memory, or in a Mass Erase which includes the Informa-
tion memory. If either information memory block is erased, a reformatting operation is required before the next chip
reset (see Information Memory below.)

0 3128 29 301 2 3 4 5 6 7 8

BYTES

00

1

2

3

4

5

6

7

0

0

0

0

0

0

0 1 2 3 4 5 6 7 8 28 29 30 31

31

31

31

31

31

31

3128 29 301 2 3 4 5 6 7 8

ROWS

COLUMNS

12-15

8-11

4-7

0-3

ECC

Figure 14-3: Flash Page Architecture

Flash Prefetcher

At the extremely high core clock rates supported by the flash memory subsystem, the core and DMA may operate at
a speed far in excess of the underlying physical flash memory cycle time. The flash prefetcher is provided to sustain
high processor performance under these conditions. It uses proprietary access prediction methods to anticipate the
core’s future accesses, so that effectively zero-wait-state accesses are nearly always achieved. Both code and data ac-
cesses are accelerated by the prefetcher.

These prediction methods are not inherently history-dependent, unlike traditional cache memory methods, so the
same high performance is achieved each time the code is executed: first time, every time.

Information Memory

Each flash block is associated with a separate 4 KB information block. Access controls are provided to manage access
to information blocks, including reading, writing and erasure.

The FLC_CTL.IRFWEN (information block write enable) bit controls write or erase command access to the infor-
mation block. If this bit =0, then neither write, program, erase, or mass erase commands are allowed to the informa-
tion block. If this bit =1, then these operations in the information block are allowed.

FLC Architectural Concepts

14–4 ADSP-CM41x Mixed-Signal Control Processor

The FLC_CTL.IRFREN (information block read enable) bit controls read access to the information block. If this
bit =0, neither bus reads nor register-command reads to the information block are allowed. In this case bus reads
return a bus error and register command reads return 0. If this bit =1, then read accesses to the information block
are allowed.

The flash controller provides mass erase operations, which can erase the main 512 KB blocks either with or without
the associated information block. Given these capabilities, the information blocks may be used to store protected
information about the system, such as serial numbers or system calibration or configuration data.

The information memory is also used by certain processor features, which use dedicated, reserved locations in the
information memory. These features include:

• The user’s Secure Debug Key (128 bits), which if non-blank requires a matching key to be provided by any
connected JTAG/SWD emulator/debugger in order to attach to the product;

• The user’s Secure Debug Key ID (128 bits), which can be used for any purpose by the user, and can be read by
an attached JTAG/SWD debugger prior to unlocking the part (for example to provide a serial number for iden-
tifying individual parts if individualized Secure Debug Keys are desired);

• Pre-boot system initialization features, including RunControl switches, lists of MMR address/value pairs for
hardware configuration, and a user-defined pre-boot initialization function. These can be used, for example, to
rapidly configure a peripheral like a Logic Block Array or a GPIO port.

Flash Block 0 Address Offset

Address Base 0xC 0x8 0x4 0x0

0x1180_0FF0 SDBGKEY3 SDBGKEY2 SDBGKEY_CON_3 SDBGKEY_CON_2

0x1180_0FE0 SDBGKEY1 SDBGKEY0 SDBGKEY_CON_1 SDBGKEY_CON_0

0x1180_0FD0 Reserved Reserved RCMSG RCMSG_KEY

0x1180_0FC0 Reserved RFUNC_CSIZ RFUNC_PTR RFUNC_KEY

0x1180_0FB0 RINIT_CNT RINIT_CSIZ RINIT_PTR RINIT_KEY

0x1180_0FA0 SDBGKEYID3 SDBGKEYID2 SDBGKEYID1 SDBGKEYID0

Flash Block 1 Address Offset

Address Base 0xC 0x8 0x4 0x0

0x1188_0FF0 SDBGKEY3 SDBGKEY2 SDBGKEY_CON_3 SDBGKEY_CON_2

0x1188_0FE0 SDBGKEY1 SDBGKEY0 SDBGKEY_CON_1 SDBGKEY_CON_0

At system initialization time, the flash controller hardware accesses these keys and sets the Locked or Unlocked se-
curity states for the product, which control access to the part by the JTAG/SWD debug port and the UART boot
loader. Refer to the Security chapter for more details about these fields.

FLC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 14–5

ECC Protection

The entire flash region is ECC protected by SEC-DED (single-error correcting and double-error detecting) codes.
The ECC checksum can detect and correct single bit errors in flash data and it can detect 2-bit errors and trigger
error interrupts to convey this condition to core.

Each 64-bits of flash data is associated with 1-byte of ECC. Therefore, SEC-DED ECC operations are performed
on 64-bits (8-bytes) of flash data. See the Figure 14-3 Flash Page Architecture figure for more details.

Flash can be programmed for 64-bits data at-a-time. While programming, 1-byte ECC is calculated internally and is
programmed along with data bits.

Note that flash data bits are writeable only from 1 to 0, and that the ECC pattern corresponding to a 64-bit data
word is complex. Cumulative programming of the same location is not supported (for example changing different
bits from 1 to 0 at different times), since the resulting ECC codes for each incremental pattern are likely to require
changing ECC bits in an illegal direction (0 back to 1). A given location can only be re-programmed after an erase
of the page in which it resides (or by a mass erase of that flash memory block.)

Each flash access provides 128-bits of flash data. Single or multi-bit errors can occur on either half of a 128-bit flash
read. Errors on both halves are reported irrespective of which 32-bit word was accessed by DMA or core reads.

Non-Volatile Write Control

The non-volatile write control unit provides low-level timing control for the flash memory, and implements flash
self-protection mechanisms. To use this feature, set the PADS_NVWR_RSTCTL.EN bit (=1). At power-on, the unit
is disabled.

The unit is typically enabled automatically by the boot ROM code, before control transfers to the user application.
The status of the write control unit can be queried by reading the PADS_NVWR_RSTCTL.EN bit. This bit must
read 1 before any programming or erase operations are performed.

Flash Performance Modes

The flash operates in the ARM M4 processor’s core clock domain, CCLK. The flash has four performance modes
called A, B, C, and E, which depend on the CCLK frequency. These modes control prefetcher operation and the
Flash wait state count for each physical flash access. Program the FLC_PRFCTL.PMODE field appropriate to the
Cortex-M4 core clock frequency.

The flash memory can only be accessed when the CCLK frequency does not exceed the upper limit for the selected
flash performance mode (including both core and DMA accesses). It is recommended (but not required) that the
performance mode be set so that the CCLK frequency is in the range of the selected performance mode, in order to
achieve optimum CPI (cycles per instruction) performance. Care must be taken whenever changing CCLK frequen-
cies to comply with these requirements throughout the frequency transition.

For example, when operating at a CCLK of 150 MHz, performance mode B is recommended in order to provide
the best CPI effective core performance, while modes C and E would be allowed but at less optimal performance,
and mode A would not be allowed. On the other hand, performance mode E is permitted at any CCLK frequency,
although it is the best choice only at speeds above 225 MHz.

FLC Architectural Concepts

14–6 ADSP-CM41x Mixed-Signal Control Processor

Flash Operations
The Flash controller controls all the flash operations, such as code fetch, data read, DMA read, page erase, mass
erase, program, entering or exiting flash low power mode and other operations.

The Flash controller operates in two modes: normal mode and command mode. In normal mode, flash controller
serves the flash read requests from core for direct code execution or data read operations. It also serves flash data read
operations from the system controller’s DMA interface for system peripherals. In this mode, the flash is directly ac-
cessed by its memory-map address.

For flash program or erase operations, the flash controller must be in command mode. This mode is entered by
setting (=1) the FLC_CTL.CMDM bit, followed by writing a specific set of keys to the FLC_CMD_KEY register.
The FLC_STAT.CMDM bit reflects flash controller mode. When in command mode, the flash controller disables all
traffic from the flash prefetch unit and DMA port. If memory-mapped flash accesses are attempted, the controller
returns ERROR on the respective bus. The command mode can be exited to enter into normal mode by clearing
(=0) the FLC_CTL.CMDM bit.

The non-volatile write control unit is enabled using the non-volatile write reset control register
(PADS_NVWR_RSTCTL). (See Non-Volatile Write Control). This unit is normally enabled by the boot ROM be-
fore the user application starts.

Programming and erase operations must be carried out by code resident outside the flash memory being operated
on, for example in SRAM or in the opposite flash block. This is because normal read/fetch access to a flash memory
is disabled during these operations.

The page erase, mass erase and program operations are timed by an internal 1 MHz clock, irrespective of the core
clock (CCLK) or system clock (SYSCLK) settings. These timings do not require any user intervention when CGU
clock ratios are changed. This 1 MHz clock is supplied by the OSCWD unit. Disabling the clock causes flash pro-
gramming and/or erase operations to fail.

A flash controller can perform the operations described in the following sections when in command mode. The
ARM M4 processor can issue these commands by writing to the FLC_CMD register.

Page Erase (PER)

When the flash controller is in command mode, it can accept the page erase command. The FLC_ADDR register
specifies the page address of flash to be erased. If an information memory page needs to be erased, then the applica-
ble write access permission is needed, which is controlled by the FLC_CTL.IRFWEN bit.

The erase operation is started by issuing the page erase (PER) command. When the controller accepts this com-
mand, the FLC_STAT.PERP bit is set (=1) to indicate that the page erase operation is in progress. Once this oper-
ation is complete, the FLC_STAT.PERP bit is cleared (=0) and the FLC_STAT.CMDEX bit is set. The optional
controller event interrupt is generated when the FLC_IMSK.PER bit is set.

Flash Operations

ADSP-CM41x Mixed-Signal Control Processor 14–7

The page erase operation erases all 4608 bytes within a page including the 4096 memory bytes and the 512 bytes
that contain the ECC. All the bits are set to 1 after the erase operation, which can be changed to 0 using the pro-
gram. One page from each flash block can be erased at the same time, as the two flash blocks are independently
controlled by their dedicated flash controller.

The erased state (all 1s) is a legal ECC state.

Mass Erase (MER)

When the flash controller is in command mode, it can accept the mass erase command. The command erases all 128
pages of main memory, with or without information memory. If the information memory page also needs to be
erased, then the info-block write access permission, controlled by the FLC_CTL.IRFWEN bit, is required.

The mass erase operation can be started by issuing the mass erase (MER) command. When the flash controller ac-
cepts this command, the FLC_STAT.MERP bit is set (=1) to indicate that the mass erase operation is in progress.
Once this operation is complete, the FLC_STAT.MERP bit is cleared (=0) and the FLC_STAT.CMDEX bit is set.
The optional controller event interrupt is generated when the FLC_IMSK.MER bit is set.

Both flash blocks can be erased at the same time, as the two flash blocks are independently controlled by their dedi-
cated flash controller.

Flash Program

A program cycle consists of three operations; program mode entry, program locations in the row, and program mode
exit.

• In program mode entry, a row within a particular flash page is activated.

• In program mode, any aligned 64-bit long word within the activated row can be programmed, along with its
ECC.

• In program exit mode, the activated row is deactivated.

Entering the Program Mode (SPGMM)

When the flash controller is in command mode, it can accept the command to enter into program mode. The
FLC_ADDR register should point to the required row address of flash. If the row address is within information
block, write access is required and is controlled by the FLC_CTL.IRFWEN bit.

The program mode can be entered by issuing the SPGMM (start program mode) command. When the flash con-
troller accepts this command, the FLC_STAT.PGMMP bit is set to indicate that the ‘set program mode’ operation
is in progress. Once this operation is complete, the FLC_STAT.PGMMP bit is cleared and the FLC_STAT.PGMM
bit is set to indicate that the flash controller is in program mode. At the end of execution, the Flash controller event
interrupt is generated if the FLC_IMSK.PGMMC bit is set.

Flash Operations

14–8 ADSP-CM41x Mixed-Signal Control Processor

Program Command (PGMC)

When the flash controller successfully executes the program mode entry command, it sets itself in program mode for
that particular row. The flash row contains 32-columns and each column contains 128-bits, of which any of the 64-
bit halves can be programmed at one time. All the bits within row (32 x 128-bits) can be programmed when a row is
activated. It is not recommended to reprogram the same 64-bits multiple times, as the ECC corresponding to that
data may become invalid with multiple writes.

The program command (PGMC) takes the data in the FLC_DATA0 register and the FLC_DATA1 register and
programs it to a flash location specified by contents of the FLC_ADDR register, along with the internally calculated
8-bit ECC. The FLC_ADDR registers must specify an address aligned to an 8-byte boundary. The
FLC_STAT.PGMCP bit is set to indicate that the program operation is in progress. After completion, the
FLC_STAT.PGMCP bit is cleared and the FLC_STAT.CMDEX bit is set. The optional controller event interrupt
is generated when the FLC_IMSK.PGM bit is set.

To program flash locations in a different row, execute the end program mode (EPGMM) command to exit the pro-
gram mode, followed by a start program mode (SPGMM) command with the FLC_ADDR register set to the new
row address.

Exiting the Program Mode (EPGMM)

After successfully programming the row contents, to finish the program cycle properly, the end program mode
(EPGMM) command must be issued at the end. If the flash controller accepts this command, the
FLC_STAT.PGMMP bit is set to indicate that the program mode change operation is pending. After this process
completes, the FLC_STAT.PGMMP bit is cleared and the FLC_STAT.CMDEX bit set.

Do not leave a flash block in programming mode after completing a programming operation. See the data sheet for
timing details.

Flash Read

When in command mode, the flash controller disables all the traffic from the flash prefetch unit and DMA port. If
memory mapped accesses to flash are attempted, it returns an ERROR on the respective bus.

To read the flash contents in command mode, use the register-based read (RDC) command. When the flash control-
ler receives the RDC command, the FLC_STAT.RDCP bit is set to indicate that a read operation is in progress.
The FLC_ADDR register should specify which flash location needs to be read. At the end of execution, the
FLC_STAT.RDCP bit is cleared and 64-bit flash read data is stored into the FLC_DATA0 (lower word) and the
FLC_DATA1 (upper word) registers. An ECC check is performed on the read data and the FLC_STAT.EERRMF
bit is set when multi-bit ECC errors occur.

NOTE: This read is through the command mode, it is unrelated to array reads by processor ICODE/DCODE
buses during normal operation.

Flash Operations

ADSP-CM41x Mixed-Signal Control Processor 14–9

Flash Sleep Mode and Wake from Sleep (SLPC and WKSL)

The flash supports a sleep mode, which can be used as a low power mode. It is entered by issuing the sleep (SLPC)
command. When the flash controller receives this command it completes all the outstanding requests and sets the
FLC_STAT.SLPCP bit (sleep command pending) to indicate that a sleep mode command is being executed. After
successful execution, the FLC_STAT.SLPCP bit is cleared and the FLC_STAT.SLP bit is set to indicate the flash
is in sleep mode.

When in sleep mode, the only allowed flash commands are wakeup from sleep (WKSL) and ABORT. If other com-
mands are attempted, the FLC_STAT.CFSLP error bit is set indicating that a command was issued in sleep mode
and optionally a Flash Error interrupt is triggered if the FLC_IMSK.IFL bit is set.

Sleep mode can be exited by issuing wakeup from sleep (WKSL) command. At the end of execution, the
FLC_STAT.WKUPP bit is cleared (=0) and a flash event interrupt is generated if the FLC_IMSK.WKUP bit is set.

In sleep mode, if the FLC_CTL.WKAE bit =0, the flash controller ignores the data requests from the pre-fetcher
and the DMA engines and triggers a bus error. When the FLC_CTL.WKAE bit =1, it enables flash sleep wakeup on
flash access. Therefore, any read access can cause the flash to wakeup from sleep mode.

The wakeup time from sleep mode to standby mode is determined by the FLC_TIM_PWR.WKS bit field. This
field is defined in terms of the core clock (CCLK) and should be programmed as per the wakeup time specified in
the data sheet.

Abort Operation (ABORT)

The abort command is used if a flash operation must be terminated before its normal completion. This is initiated
when the flash is in command mode and the FLC_CMD.FLCMDS bit field is written with the abort command val-
ue. This clears the FLC_STAT.PGMM bit and other command-pending bits, and sets the FLC_STAT.ABTP
(abort command pending) status bit. The abort completes after a short internally-timed delay. At the completion of
the abort sequence, the FLC_STAT.ABTP bit is cleared. The optional controller event interrupt is generated when
the FLC_IMSK.ABORT interrupt enable bit is set.

See FLC Operating Requirements below for more information about the abort mechanism.

FLC Operating Requirements
Certain flash memory operations require significant time to complete. Operations which erase or program the mem-
ory may take on the order of microseconds or milliseconds. (Refer to the data sheet for details.) In recommended
usage, programs may employ interrupts or status bits to synchronize the software program with the duration of the
internally-timed hardware operation.

For these flash operations to complete successfully, the device must remain supplied with power and clock within
device specifications and remain operating normally throughout the entire operation sequence (for example, not
subjected to a hard reset from the SYS_HWRST pin).

For cases where a flash operation must be terminated abruptly, the flash controller supports an abort mechanism.
This mechanism can be initiated in two ways: (1) by the abort command, or (2) by a loss-of-power event detected

Flash Operations

14–10 ADSP-CM41x Mixed-Signal Control Processor

by a Voltage Monitoring Unit (VMU). The abort mechanism does require a short time to complete, during which
internal flash protection mechanisms are bringing the flash into a safe state. The time required for the abort mecha-
nism is much shorter than the long erase operations (a few microseconds rather than many milliseconds. See the
product specific data sheet for details).

Like the program and erase mechanisms, the abort mechanism is internally self timed, and further, it is insensitive to
externally or internally initiated resets. All the abort needs to complete is for the power supplies to remain within
specification for the length of time specified in the datasheet. Note that if a short hard-reset pulse is applied after
starting a program, erase, or abort flash operation, the abort mechanism may still be in process when the chip
emerges from reset. New programming operations after reset should always test the state of the
PADS_NVWR_RSTCTL.EN bit before proceeding.

If a flash operation is not allowed to complete normally, its effect on the addressed flash memory is UNSPECIFIED.
The selected locations may not be completely erased or programmed. If a program or erase flash operation is started
but is terminated by a complete abort sequence, the remainder of the flash memory is unaffected.

CAUTION: If a program or erase operation is not completed normally and is not terminated by a complete abort,
for example before power loss, the effect on the entire flash memory block is UNSPECIFIED and de-
vice damage may result. For this reason, the VMU and other protective mechanisms are provided.
With careful system and power supply design, the safety and abort mechanisms function together to
protect the flash memory and its contents.

ADI recommends testing the Flash Security Enable state on each device prior to programming secure IP into the
ADSP-CM41x Flash memory. Flash Security Enable is a one-time setting that is programmed to 1 in every device
by ADI prior to shipment. The Flash Security Enable state can be checked by reading the
SYSBLK_LROM_STAT.FSEREG. This can be accomplished using either of two methods:

• From the debugger: Read the SYSBLK_LROM_STAT.FSEREG directly.

• From the UART loader: Load a program into SRAM that reads from the SYSBLK_LROM_STAT.FSEREG,
and reports the state to the master device.

If SYSBLK_LROM_STAT.FSEREG = 1, programming Secure IP into the flash memory can proceed.

If SYSBLK_LROM_STAT.FSEREG = 0, the flash programming operation must be halted, as the device cannot be
secured. Contact ADI for support.

FLC Event Control
The following sections provide information about the event and ECC interrupts associated with the Flash Control-
ler.

Interrupts

The Flash controller provides three interrupt channels corresponding to different events and error conditions.

FLC Event Control

ADSP-CM41x Mixed-Signal Control Processor 14–11

Flash Event Interrupt

The flash controller generates a Flash event interrupt on completion of various flash operations. These operations
include interrupts on:

• completion of Page Erase operation

• completion of Mass Erase operation

• completion of Program operation

• completion of Program mode entry operation

• completion of Sleep Wakeup command

• completion of Abort command

• Improper flash command

• command was issued while flash was busy

• command was issued while flash was in sleep or powered down mode

• command was issued when the controller was not in command mode

• command violated information block privileges

• command violated program mode guidelines

The interrupts from both flash controllers are combined on single flash Event interrupt channel. It is required to
check the status registers of both flash controllers to determine the source of interrupt.

Flash ECC Interrupt

Flash memory is protected by a SEC_DEC type ECC. The ECC checksum is performed on read accesses. Single-bit
errors are corrected. Two-bit error are detected and reported through the ECC interrupt.

The processor provides two separate error interrupts for multi-bit ECC errors when data is read in core mode (Flash
core ECC error interrupt) and when data is read by the DMA engine (Flash DMA ECC error interrupt). Interrupts
from both flash controllers are combined on their respective interrupt channel.

The Flash DMA ECC error interrupt can be enabled by setting the FLC_IMSK.MBERRD bit. The Flash core ECC
error interrupt can be enabled by setting the FLC_IMSK.MBERRC and FLC_IMSK.MBERRD bits.

CM41X_M4 FLC Register Descriptions
Flash Controller (FLC) contains the following registers.

CM41X_M4 FLC Register Descriptions

14–12 ADSP-CM41x Mixed-Signal Control Processor

Table 14-2: CM41X_M4 FLC Register List

Name Description

FLC_ADDR Command Address Register

FLC_CMD Command Register

FLC_CMD_KEY Command Key Register

FLC_CTL Control Register

FLC_DATA0 Command Data Register 0

FLC_DATA1 Command Data Register 1

FLC_ECC Command ECC Register

FLC_FILL_CNT Pre-fetcher Fill Count Register

FLC_IMSK Interrupt Enable Register

FLC_MISS_CNT Pre-fetcher Miss Count Register

FLC_PRFCTL Prefetch Control Register

FLC_REF_CNT Pre-fetcher Reference Count Register

FLC_REVID Revision ID Register

FLC_SBERR_THR ECC Single Bit Error Threshold Register

FLC_STAT Status Register

FLC_TIM_PWR Power Timing Register

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–13

Command Address Register

The FLC_ADDR register holds the address needed by the commands executed by flash controller in the command
mode. This is treated as a byte address. In normal mode, this register is updated on any multi-bit ECC error with
the address of the error location. In case of a simultaneous multi-bit errors, it is updated with address of one of the
DCODE, ICODE, DMA or pre-fetcher transactions listed in decreasing order of priority. If the controller is busy, a
write to this register is ignored to avoid corrupting data for the command being executed.

Column AddressRow Address

Row AddressInformation Block Select

YADR (R/W)XADR[6:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

XADR[9:7] (R/W)IRFSEL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-4: FLC_ADDR Register Diagram

Table 14-3: FLC_ADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W)

IRFSEL Information Block Select.

The FLC_ADDR.IRFSEL bit selects the information block for register-based com-
mands.

0 All commands (program, erase, mass erase, read) apply
to the main array.

1 The commands (read, program, erase) apply to the info
block. The command mass erase applies to the entire
memory both main and info blocks.

18:9

(R/W)

XADR Row Address.

The FLC_ADDR.XADR bit field holds the row address for the flash controller com-
mands.

8:0

(R/W)

YADR Column Address.

The FLC_ADDR.YADR bit field holds the column address for the flash controller
commands.

CM41X_M4 FLC Register Descriptions

14–14 ADSP-CM41x Mixed-Signal Control Processor

Command Register

Various flash controller commands are executed by writing the command code to the FLC_CMD register.

Flash Controller Commands
FLCMDS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-5: FLC_CMD Register Diagram

Table 14-4: FLC_CMD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

FLCMDS Flash Controller Commands.

The FLC_CMD.FLCMDS bit field executes the various flash commands.

1 Page Erase Command (PER). Erases a page specified by
the address in FLC_ADDR. If FLC_ADDR.IRFSEL
and FLC_CTL.IRFWEN bits are set, a page in infor-
mation block is erased instead of one in the data block.
FLC_STAT.PERP bit is set to indicate a page erase
operation is in progress. At the end of execution,
FLC_STAT.PERP bit is cleared and interrupt is gener-
ated if FLC_IMSK.PER bit is set.

2 Mass Erase command (MER). Erases the entire flash. If
FLC_ADDR.IRFSEL and FLC_CTL.IRFWEN bits
in FLC_CTL are set, information block is erased as
well. FLC_STAT.MERP bit is set to indicate a mass
erase operation is in progress. At the end of execution,
FLC_STAT.MERP bit is cleared and interrupt is gener-
ated if FLC_IMSK.MER bit is set.

3 Program command (PGMC). Programs data in
FLC_DATA0 and FLC_DATA1 to a location specified
by contents of FLC_ADDR. 8 ECC bits originating
from internal ECC generation logic are programmed as
well. FLC_STAT.PGMCP bit is set to indicate that the
program operation is in progress. At the end of execu-
tion, FLC_STAT.PGMCP bit is cleared and interrupt is
generated if FLC_IMSK.PGM bit is set.

4 Start Program Mode (SPGMM). Sets the flash control-
ler in program mode for a particular row.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–15

Table 14-4: FLC_CMD Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

FLC_STAT.PGMMP bit is set to indicate that the set
program mode operation is in progress. After the opera-
tion is complete, FLC_STAT.PGMM bit is set to indi-
cate that the flash controller is in program mode;
FLC_STAT.PGMMP is cleared as well. At the end of
execution, FLC_STAT.PGMMP bit is cleared and inter-
rupt is generated if FLC_IMSK.PGMMC bit is set.
Once in the program mode, any of the 64 double-words
in the row can be programmed. (A row contains 512-
bytes of data) To program locations in a different row,
EPGMM command needs to be executed to exit the
program mode followed by SPGMM command with
ADR register set to the new row address.

5 End Program Mode (EPGMM). Takes the flash control-
ler out of the program mode. FLC_STAT.PGMMP bit
is set to indicate that the exit program mode operation
is in progress. After the operation is complete,
FLC_STAT.PGMM bit is cleared to indicate that the
flash controller exited the program mode;
FLC_STAT.PGMMP is cleared as well. At the end of
execution, FLC_STAT.PGMMP bit is cleared and inter-
rupt is generated if FLC_IMSK.PGMMC bit is set.

6 Read Command (RDC). Reads flash data into
FLC_DATA0, FLC_DATA1 register from a location
specified by the contents of FLC_ADDR. ECC check is
performed on the read data and FLC_STAT.EERRMF
bit in FLC_STAT is set in case of multi-bit ECC error.
FLC_STAT.RDCP bit is set to indicate that a read op-
eration is in progress. At the end of execution,
FLC_STAT.RDCP bit is cleared.

7 Sleep command (SLPC). Asserts the Sleep mode enable
signal of flash memory to put it in sleep mode.
FLC_STAT.SLP bit is set to indicate that the flash is
in sleep mode.

8 Wakeup from sleep (WKSL). Wakes the flash from sleep
mode. After wake up delay defined in FLC_TIM_PWR
register, FLC_STAT.SLP bit is cleared.
FLC_STAT.WKUPP bit stays high while this com-
mand is being executed. At the end of execution,
FLC_STAT.WKUPP bit is cleared and interrupt is gen-
erated if FLC_IMSK.WKUP bit is set.

9 Reserved

CM41X_M4 FLC Register Descriptions

14–16 ADSP-CM41x Mixed-Signal Control Processor

Table 14-4: FLC_CMD Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10 Reserved

11 Reserved

15 Abort the current command (ABORT). Aborts the cur-
rent command being executed. This also discharges high
voltage buildup if any. This clears FLC_STAT.PGMM
bit along with other command pending bits. Results
may be unpredictable. FLC_STAT.ABTP bit is set to
indicate an abort operation in progress. At the end of
execution, FLC_STAT.ABTP bit is cleared and inter-
rupt is generated if FLC_IMSK.ABORT bit is set.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–17

Command Key Register

The FLC_CMD_KEY register holds a key which is used to provide protection against accidental execution of all
flash controller commands like page erase, mass erase, read, program, and other commands. A read of this register
returns 0. A procedure to enter the command mode using this register outlined below.

• The FLC_CTL.CMDM bit is set.

• A 16-bit key (CMD_KEY1 == 0xF378) is written to this register.

• A 16-bit key (CMD_KEY2 == 0x9D6A) is written to this register.

Command Key
VALUE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-6: FLC_CMD_KEY Register Diagram

Table 14-5: FLC_CMD_KEY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R0/W)

VALUE Command Key.

The FLC_CMD_KEY.VALUE bit field holds a key which is used to provide protec-
tion against accidental execution of all flash controller commands like page erase, mass
erase, read, program, and other commands.

CM41X_M4 FLC Register Descriptions

14–18 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The FLC_CTL register contains settings for the flash controller.

Information block Read Enable

Wake on access enableInformation block Write Enable

Command ModeManual ECC Mode

IRFREN (R/W)

WKAE (R/W)IRFWEN (R/W)

CMDM (R/W)MECC (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-7: FLC_CTL Register Diagram

Table 14-6: FLC_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

MECC Manual ECC Mode.

3

(R/W)

IRFWEN Information block Write Enable.

The FLC_CTL.IRFWEN bit controls write/erase command access to the information
block. If this bit = 0, then neither write, program, erase, or mass erase commands of
the information block are allowed. (A mass erase operation erases only the main array).
If the FLC_CTL.IRFWEN bit = 1, then these operations in the info block are al-
lowed.

2

(R/W)

IRFREN Information block Read Enable.

The FLC_CTL.IRFREN bit controls read access to the information block. If this bit
= 0, neither bus reads nor register-command reads to the info block are allowed. Bus
reads return a bus error, register-command reads return 0. If this bit = 1, read accesses
to the info block are allowed.

1

(R/W)

WKAE Wake on access enable.

If the FLC_CTL.WKAE bit = 1, access causes wakeup from sleep mode and stalls until
ready; if 0 or in powered down state, access causes bus error. Wakeup can also be
caused by power management unit and WKSL and WKPD commands.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–19

Table 14-6: FLC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

CMDM Command Mode.

The FLC_CTL.CMDM bit should be set during program and erase operations. This
bit, when set, disables all the traffic from flash pre-fetch unit and DMA port; accesses
return ERROR on the respective bus. Asserting this signal automatically invalidates all
hopper locations. The controller enters the command mode after setting this bit and
writing 2 keys to the FLC_CMD_KEY register.

This bit can not be cleared during program mode (FLC_STAT.PGMM is set) or con-
troller is busy executing a command. A forceful way to exit the command mode is issu-
ing ABORT command and then clear this bit, which may cause unpredictable results
and is not recommended.

CM41X_M4 FLC Register Descriptions

14–20 ADSP-CM41x Mixed-Signal Control Processor

Command Data Register 0

The FLC_DATA0 register holds the least significant part of the data used by flash controller commands. If the con-
troller is busy, a write to this register is ignored to avoid corrupting data for the command being executed.

Command Data bits [31:0]

Command Data bits [31:0]

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-8: FLC_DATA0 Register Diagram

Table 14-7: FLC_DATA0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Command Data bits [31:0].

The FLC_DATA0.VALUE bit field holds the least significant part of the data used by
flash controller commands.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–21

Command Data Register 1

The FLC_DATA1 register holds the most significant part of the data used by flash controller commands. If the
controller is busy, a write to this register is ignored to avoid corrupting data for the command being executed.

Command Data bits [63:32]

Command Data bits [63:32]

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-9: FLC_DATA1 Register Diagram

Table 14-8: FLC_DATA1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Command Data bits [63:32].

The FLC_DATA1.VALUE bit field holds most significant part of the data used by
flash controller commands.

CM41X_M4 FLC Register Descriptions

14–22 ADSP-CM41x Mixed-Signal Control Processor

Command ECC Register

Bits in the FLC_ECC register represent ECC bits for the data in FLC_DATA1 and FLC_DATA0. RDC command
always updates this register from flash read data. If the controller is busy, a write to this register is ignored to avoid
corrupting data for the command being executed.

Flash Controller ECC bits
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-10: FLC_ECC Register Diagram

Table 14-9: FLC_ECC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE Flash Controller ECC bits.

The FLC_ECC.VALUE bit field represent ECC bits for the data in FLC_DATA1 and
FLC_DATA0 registers.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–23

Pre-fetcher Fill Count Register

The FLC_FILL_CNT register indicates the number of accesses made to the flash. If this counter overflows,
FLC_FILL_CNT.OVF bit is set. This counter and the overflow bit are cleared when the FLC_PRFCTL.PEREN
bit is set while it was in the cleared state.

Fill Count

Fill CountFill Count Overflow

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[22:16] (R/W)OVF (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-11: FLC_FILL_CNT Register Diagram

Table 14-10: FLC_FILL_CNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W1C)

OVF Fill Count Overflow.

The FLC_FILL_CNT.OVF bit is set if the counter overflows.

22:0

(R/W)

CNT Fill Count.

The FLC_FILL_CNT.CNT bit field indicates the number of accesses made to the
flash.

CM41X_M4 FLC Register Descriptions

14–24 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Enable Register

The FLC_IMSK register contains the interrupt enable bits.

Wakeup CommandUpdate Timing Command

Power Down commandAbort command

Program Mode Change CommandImproper Flash Command

Program commandMulti bit error in core

Mass EraseMulti bit error DMA

Page EraseCommand Read Multi Bit Error

WKUP (R/W)UTM (R/W)

PDN (R/W)ABORT (R/W)

PGMMC (R/W)IFL (R/W)

PGM (R/W)MBERRC (R/W)

MER (R/W)MBERRD (R/W)

PER (R/W)MBERRF (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-12: FLC_IMSK Register Diagram

Table 14-11: FLC_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

MBERRF Command Read Multi Bit Error.

The FLC_IMSK.MBERRF bit enables an interrupt on a command read multi bit er-
ror.

10

(R/W)

MBERRD Multi bit error DMA.

The FLC_IMSK.MBERRD bit enables an interrupt on a DMA multi bit error.

9

(R/W)

MBERRC Multi bit error in core.

The FLC_IMSK.MBERRC bit enables an interrupt on a core multi bit error.

8

(R/W)

IFL Improper Flash Command.

The FLC_IMSK.IFL bit enables an interrupt on an improper flash command. These
include:

• A command was issued while flash was busy.

• A command was issued while flash was in sleep or powered down mode.

• A command was issued when the controller was not in command mode.

• A command violated information block privileges.

• A command violated program mode guidelines

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–25

Table 14-11: FLC_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

ABORT Abort command.

The FLC_IMSK.ABORT bit enables an interrupt on completion of the Abort com-
mand.

6

(R/W)

UTM Update Timing Command.

The FLC_IMSK.UTM bit enables an interrupt on completion of the Update Timing
command.

5

(R/W)

WKUP Wakeup Command.

The FLC_IMSK.WKUP bit enables an interrupt on completion of the Wakeup com-
mand.

4

(R/W)

PDN Power Down command.

The FLC_IMSK.PDN bit enables an interrupt on completion of the Power down
command.

3

(R/W)

PGMMC Program Mode Change Command.

The FLC_IMSK.PGMMC bit enables an interrupt on completion of the Program
Mode Change command.

2

(R/W)

PGM Program command.

The FLC_IMSK.PGM bit enables an interrupt on completion of the Program com-
mand.

1

(R/W)

MER Mass Erase.

The FLC_IMSK.MER bit enables an interrupt on completion of the Mass Erase com-
mand.

0

(R/W)

PER Page Erase.

The FLC_IMSK.PER bit enables an interrupt on completion of the Page Erase com-
mand.

CM41X_M4 FLC Register Descriptions

14–26 ADSP-CM41x Mixed-Signal Control Processor

Pre-fetcher Miss Count Register

The FLC_MISS_CNT register holds the number pre-fetch misses after the FLC_PRFCTL.PEREN bit is set. If
this counter overflows, the FLC_FILL_CNT.OVF bit is set. This counter and the overflow bit are cleared when
the FLC_PRFCTL.PEREN bit is set while it was in the cleared state.

Miss Count

Miss CountMiss Count Overflow

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[22:16] (R/W)OVF (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-13: FLC_MISS_CNT Register Diagram

Table 14-12: FLC_MISS_CNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W1C)

OVF Miss Count Overflow.

The FLC_MISS_CNT.OVF bit field indicates a miss count overflow.

22:0

(R/W)

CNT Miss Count.

The FLC_MISS_CNT.CNT bit field indicates the number pre-fetch misses after the
FLC_PRFCTL.PEREN bit is set.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–27

Prefetch Control Register

The FLC_PRFCTL register controls pre-fetcher behavior.

Performance Mode

Pre-fetcher EnablePerformance Counters Enable

PMODE (R/W)

PRFEN (R/W)PEREN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-14: FLC_PRFCTL Register Diagram

Table 14-13: FLC_PRFCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

PEREN Performance Counters Enable.

The FLC_PRFCTL.PEREN bit enables the FLC_FILL_CNT, FLC_MISS_CNT
and FLC_REF_CNT counters. Setting this bit in the cleared state clears these counters
and the associated overflow bits

3:1

(R/W)

PMODE Performance Mode.

The FLC_PRFCTL.PMODE bit field controls the Mode Frequency range.

0 Performance Mode A is <= 75 MHz

2 Performance Mode B is 76 to 150 MHz

4 Performance Mode C is 151 to 225 MHz

6 Performance Mode E is 226 to 240 MHz

0

(R/W)

PRFEN Pre-fetcher Enable.

When the FLC_PRFCTL.PRFEN bit is set the Pre-fetcher fetches ahead and per-
forms branch detection. When cleared, pre-fetching is disabled, although the internal
cache is used to feed ARM ICODE and DCODE accesses. Clearing this bit invalidates
all cache locations except the one used for DMA, which is cleared when the
FLC_CTL.CMDM bits in FLC_CTL change. This bit should be cleared before chang-
ing FLC_PRFCTL.PMODE bits.

CM41X_M4 FLC Register Descriptions

14–28 ADSP-CM41x Mixed-Signal Control Processor

Pre-fetcher Reference Count Register

The FLC_REF_CNT register holds the number of hoppers filled and used after the FLC_PRFCTL.PEREN bit is
set. If this counter overflows, the FLC_FILL_CNT.OVF bit is set. This counter and the overflow bit are cleared
when the FLC_PRFCTL.PEREN bit is set while it was in the cleared state.

Reference Count

Reference CountReference Count Overflow

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[22:16] (R/W)OVF (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-15: FLC_REF_CNT Register Diagram

Table 14-14: FLC_REF_CNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/W1C)

OVF Reference Count Overflow.

The FLC_REF_CNT.OVF bit field indicates a reference count overflow.

22:0

(R/W)

CNT Reference Count.

The FLC_REF_CNT.CNT bit field holds the number of hoppers filled and used after
the FLC_PRFCTL.PEREN bit is set.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–29

Revision ID Register

The FLC_REVID register contains the major and minor revision block IDs.

Incremental Revision IDMajor Revision ID
REV (R)MAJOR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-16: FLC_REVID Register Diagram

Table 14-15: FLC_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/NW)

MAJOR Major Revision ID.

3:0

(R/NW)

REV Incremental Revision ID.

Block revision ID

CM41X_M4 FLC Register Descriptions

14–30 ADSP-CM41x Mixed-Signal Control Processor

ECC Single Bit Error Threshold Register

The FLC_SBERR_THR register holds an ECC single-bit-error count threshold. When the number of single bit er-
ror corrections observed during all the flash reads exceeds the value in this register, FLC_STAT.EERRSRT bit is
set. The FLC_STAT.EERRSRT bit can be cleared by writing 1 to it which also restarts the error counter. The
counter is incremented each time a bit error is read from any word. In this case, reading the same word several times
causes the threshold to exceed.

Note that the single bit errors are corrected by an in-built ECC. Even if the register value exceeds, the application
runs correctly as ECC corrects all single bit errors.

ECC Single Bit Error ThresholdError Counter Enable
THR (R/W)CNTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-17: FLC_SBERR_THR Register Diagram

Table 14-16: FLC_SBERR_THR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

CNTEN Error Counter Enable.

The FLC_SBERR_THR.CNTEN bit enables the ECC single bit error counter.

7:0

(R/W)

THR ECC Single Bit Error Threshold.

The FLC_SBERR_THR.THR bit field holds an ECC single-bit-error count thresh-
old.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–31

Status Register

The FLC_STAT register holds status bits to convey information generated during the flash controller, pre-fetcher
and DMA operations.

Wakeup Command Pending
Update Timing Registers Pending

Power Down Command Pending
Abort Command Pending

Sleep Command Pending
Command Executed

Read Command Pending
Controller in Program Mode

Program Mode Change Pending
Controller in Command Mode

Program Command Pending
Command Issued in Busy State

Mass Erase Command Pending
Command Issued in Sleep Mode

Page Erase Command Pending
Mode
Command Issued in Non Command

reached All Reads
ECC Single Bit Correction Threshold

Flash in Sleep State
ECC Error Sticky Multi Bit Core reads

Flash in Power Down State
ECC Error Sticky Multi Bit DMA reads

Command Violated Program Mode Guidelines
Reads
ECC Error Sticky Multi Bit Command

Privileges
Command Violated Information Block

Read
ECC Error Sticky Multi Bit Pre-fetcher

WKUPP (R)
UTMP (R)

PDNCP (R)
ABTP (R)

SLPCP (R)
CMDEX (R/W1C)

RDCP (R)
PGMM (R)

PGMMP (R)
CMDM (R)

PGMCP (R)
CFBUSY (R/W1C)

MERP (R)
CFSLP (R/W1C)

PERP (R)CFNCMDM (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EERRSRT (R/W1C)

SLP (R)
EERRMC (R/W1C)

PDN (R)
EERRMD (R/W1C)

CPGMERR (R/W1C)EERRMF (R/W1C)

CIRFERR (R/W1C)EERRMP (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 14-18: FLC_STAT Register Diagram

CM41X_M4 FLC Register Descriptions

14–32 ADSP-CM41x Mixed-Signal Control Processor

Table 14-17: FLC_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

24

(R/W1C)

EERRMP ECC Error Sticky Multi Bit Pre-fetcher Read.

The FLC_STAT.EERRMP bit is set when a multi-bit ECC error occurred during a
pre-fetcher read operation. The read data may get stored into a hopper (cache line)
without ECC correction. If this data is read by core, an error response is sent on the
bus. FLC_ADDR is updated with the error address. This bit is sticky and can be
cleared by writing 1 to it. Clearing this bit also invalidates hoppers (cache lines).

23

(R/W1C)

EERRMF ECC Error Sticky Multi Bit Command Reads.

When set by hardware, the FLC_STAT.EERRMF bit indicates that a multi-bit error
occurred during flash controller command reads. This bit is sticky and can be cleared
by writing 1 to it. FLC_ADDR contains the error address of the last multi-bit error. An
interrupt is generated if FLC_IMSK.MBERRF bit is set.

22

(R/W1C)

EERRMD ECC Error Sticky Multi Bit DMA reads.

When set by hardware, the FLC_STAT.EERRMD bit indicates that a multi-bit error
occurred during DMA reads. FLC_ADDR contains the error address of the last multi-
bit error. An interrupt is generated if FLC_IMSK.MBERRD bit is set. This bit is
sticky and can be cleared by writing 1 to it. Clearing this bit also invalidates DMA
cache line (hopper)

21

(R/W1C)

EERRMC ECC Error Sticky Multi Bit Core reads.

When set by hardware, the FLC_STAT.EERRMC bit indicates that a multi-bit error
occurred during core reads. FLC_ADDR contains the error address of the last multi-bit
error. An interrupt is generated if FLC_IMSK.MBERRC bit is set. This bit is sticky
and can be cleared by writing 1 to it. Clearing this bit also invalidates pre-fetcher hop-
pers (cache lines).

20

(R/W1C)

EERRSRT ECC Single Bit Correction Threshold reached All Reads.

When set by hardware, the FLC_STAT.EERRSRT bit indicates that a single bit error
threshold was reached. This bit is sticky and can be cleared by writing 1 to it which
also restarts the error counter.

19

(R/NW)

SLP Flash in Sleep State.

When set by hardware, the FLC_STAT.SLP bit indicates that the flash is in sleep
mode.

18

(R/NW)

PDN Flash in Power Down State.

When set by hardware, the FLC_STAT.PDN bit indicates that the flash is powered
down.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–33

Table 14-17: FLC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W1C)

CPGMERR Command Violated Program Mode Guidelines.

When set by hardware, the FLC_STAT.CPGMERR bit indicates that a command vio-
lated command mode guidelines. This bit is set when PGMC or EPGMM is issued
when FLC_STAT.CMDM is LOW. It is also set when any command other than
PGMC, EPGMM or ABORT is issued when FLC_STAT.CMDM is HIGH. It is
sticky and can be cleared by writing 1 to it. An interrupt is generated if
FLC_IMSK.IFL bit is set.

16

(R/W1C)

CIRFERR Command Violated Information Block Privileges.

When set by hardware, the FLC_STAT.CIRFERR bit indicates that a command vio-
lated information block privileges. This bit is sticky and can be cleared by writing 1 to
it. An interrupt is generated if FLC_IMSK.IFL bit is set.

15

(R/W1C)

CFNCMDM Command Issued in Non Command Mode.

When set by hardware, the FLC_STAT.CFNCMDM bit indicates that a command was
issued while flash was not in command mode. This bit is sticky and can be cleared by
writing 1 to it. An interrupt is generated if FLC_IMSK.IFL bit is set.

14

(R/W1C)

CFSLP Command Issued in Sleep Mode.

When set by hardware, the FLC_STAT.CFSLP bit indicates that a command was is-
sued while flash was in sleep or powered down mode. This bit is sticky and can be
cleared by writing 1 to it. An interrupt is generated if FLC_IMSK.IFL bit is set.
Commands allowed in sleep and powered down modes are ABORT, SLPC, WKSL,
PDNC and WKPD.

13

(R/W1C)

CFBUSY Command Issued in Busy State.

When set by hardware, the FLC_STAT.CFBUSY bit indicates that a command was
issued while flash was busy executing other command. This bit is sticky and can be
cleared by writing 1 to it. An interrupt is generated if FLC_IMSK.IFL bit is set.

12

(R/NW)

CMDM Controller in Command Mode.

The FLC_STAT.CMDM bit indicates that the flash controller is in the command
mode.

11

(R/NW)

PGMM Controller in Program Mode.

The FLC_STAT.PGMM bit indicates that the flash controller is in the program mode.

10

(R/W1C)

CMDEX Command Executed.

The FLC_STAT.CMDEX bit is set when a controller command is executed. An inter-
rupt is generated if an interrupt enable bit corresponding to the executed command is
set in FLC_IMSK. It is sticky and can be cleared by writing 1 to it.

CM41X_M4 FLC Register Descriptions

14–34 ADSP-CM41x Mixed-Signal Control Processor

Table 14-17: FLC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/NW)

ABTP Abort Command Pending.

When set by hardware, the FLC_STAT.ABTP bit indicates that an abort command is
being executed. A new command should not be issued until this bit is cleared. An op-
tional interrupt can be generated when this bit is being cleared by the hardware at the
end of the operation.

8

(R/NW)

UTMP Update Timing Registers Pending.

When set by hardware, the FLC_STAT.UTMP bit indicates that timing registers are
being updated from core clock to aux clock domain. A new command should not be
issued until this bit is cleared. An optional interrupt can be generated when this bit is
being cleared by the hardware at the end of the operation.

7

(R/NW)

WKUPP Wakeup Command Pending.

When set by hardware, the FLC_STAT.WKUPP bit indicates that a wakeup sequence
is being executed. A new command should not be issued until this bit is cleared. An
optional interrupt can be generated when this bit is being cleared by the hardware at
the end of the operation.

6

(R/NW)

PDNCP Power Down Command Pending.

When set by hardware, the FLC_STAT.PDNCP bit indicates that a power down
command is being executed. A new command should not be issued until this bit is
cleared. An optional interrupt can be generated when this bit is being cleared by the
hardware at the end of the operation.

5

(R/NW)

SLPCP Sleep Command Pending.

When set by hardware, the FLC_STAT.SLPCP bit indicates that a sleep command is
being executed. A new command should not be issued until this bit is cleared. An op-
tional interrupt can be generated when this bit is being cleared by the hardware at the
end of the operation.

4

(R/NW)

RDCP Read Command Pending.

When set by hardware, the FLC_STAT.RDCP bit indicates that a read command is
being executed. A new command should not be issued until this is cleared. This com-
mand takes cycles equal to flash wait states plus 1 to complete.

3

(R/NW)

PGMMP Program Mode Change Pending.

When set by hardware, the FLC_STAT.PGMMP bit indicates that a program start or a
program end event is in progress, initiated by executing SPRGM or EPRGM com-
mands. A new command should not be issued until this status bit is cleared. An op-
tional interrupt can be generated when this bit is being cleared by the hardware at the
end of the operation.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–35

Table 14-17: FLC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/NW)

PGMCP Program Command Pending.

When set by hardware, the FLC_STAT.PGMCP bit indicates that a program com-
mand is being executed. A new command should not be issued until this is cleared. An
optional interrupt can be generated when this bit is being cleared by the hardware at
the end of the operation.

1

(R/NW)

MERP Mass Erase Command Pending.

When set by hardware, the FLC_STAT.MERP bit indicates that a mass erase opera-
tion is in progress. A new command should not be issued until this bit is cleared. An
optional interrupt can be generated when this bit is being cleared by the hardware at
the end of the operation.

0

(R/NW)

PERP Page Erase Command Pending.

When set by hardware, the FLC_STAT.PERP bit indicates that a page erase opera-
tion is in progress. A new command should not be issued until this bit is cleared. An
optional interrupt can be generated when this bit is being cleared by the hardware at
the end of the operation.

CM41X_M4 FLC Register Descriptions

14–36 ADSP-CM41x Mixed-Signal Control Processor

Power Timing Register

The FLC_TIM_PWR register specifies number of core clock cycles required to meet certain power management
timing specs.

Wakeup Time from Sleep to StandbyStandby Hold Time

Standby Hold Time

WKS (R/W)SH[3:0] (R/W)

0
15

1
14

0
13

0
12

0
11

1
10

1
9

1
8

1
7

1
6

0
5

1
4

0
3

0
2

0
1

0
0

SH[5:4] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

1
16

Figure 14-19: FLC_TIM_PWR Register Diagram

Table 14-18: FLC_TIM_PWR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

17:12

(R/W)

SH Standby Hold Time.

The FLC_TIM_PWR.SH bit field specifies the standby hold time (100ns min). The
same value used for PDM33 setup and hold time. Default represents min value at
200MHz.

11:0

(R/W)

WKS Wakeup Time from Sleep to Standby.

The FLC_TIM_PWR.WKS bit field specifies the wakeup time from sleep to standby
(7s min). The same value used for power-down to standby wakeup time WKPD. De-
fault represents min value at 200 MHz.

CM41X_M4 FLC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 14–37

15 System Memory Protection Unit (SMPU)

The SMPU provides a flexible way of protecting memory regions against read or write access from any or all masters
in the system. In addition, it can guard against memory access depending on security privileges of the system master.

SMPU Features
The system memory protection unit has the following features.

• After reset, the default state of the system is fully open. The SMPUs admit any access to memory spaces by any
master.

• Each SMPU instance can be configured to monitor multiple regions. Each can be individually enabled.

• Each region can be configured with its own protection settings.

• Provides general read or write protection.

• Read and write transactions are restricted or allowed depending on the transaction ID.

On the ADSP-CM41x, an SPMU is provided for each ARM Cortex core’s main memory and for external memory:

• SMPU0 protects the ARM Cortex-M0 System memory’s system (DMA) port.

• SMPU1 protects the ARM Cortex-M4 Main SRAM memory’s system (DMA) port.

• SMPU2 protects the external memory port managed by the SMC.

SMPU Functional Description
The following sections provide details on the function of the SMPU module. If the region security settings allow
transactions to go through, the ID in the ID-based region protection settings can still filter the transactions.

For the memory that an SMPU protects, programs can configure region-based settings with the SMPU_RCTL[n]
registers. (There can be multiple SMPUs in a system.) The SMPU_RCTL[n] registers define the ID-based protec-
tion for memory regions.

If the target address does not reside in any configured memory region, the transaction permission resorts back to the
global configuration setting.

System Memory Protection Unit (SMPU)

ADSP-CM41x Mixed-Signal Control Processor 15–1

Protection Units

Each SMPU provides two protection units, A and B for ID-based matching in the region-based memory protection.
This feature provides a degree of flexibility for the user to match against multiple IDs.

Instruction Fetches

When the core executes instructions from memory, this operation is also considered a memory transaction. If the
SMPU is configured to protect a memory region from read accesses that contain instructions, the core cannot fetch
and execute these instructions.

Speculative Reads

If speculative reads are enabled (SMPU_CTL.RSDIS =0), the SMPU forwards the read transaction directly to the
memory before checking the protection setting corresponding to the addressed memory region. This functionality
saves one clock cycle in the clock domain of the SMPU. The SMPU checks the protection setting while the read
transaction occurs with the memory. If the protection setting dictates that the target memory address is blocked, the
SMPU blocks the read to the master.

If speculative reads are disabled (SMPU_CTL.RSDIS =1), the SMPU checks the protection settings first and for-
wards the transaction to memory only if it passes the configured protection settings. This functionality incurs a one-
cycle latency per read.

NOTE: Reads affect certain memory operations such as automatic clearing of the memory (that is, FIFOs). When
the SMPU protects this type of memory, disable read speculation since the blocking can occur without the
read transaction reaching the target memory.

CM41X_M4 SMPU Register List

The System Memory Protection Unit (SMPU) provides selective protection of the processor's memory resources.
The SMPU includes a set of processor events that can be monitored during program execution. A set of registers
governs SMPU operations. For more information on SMPU functionality, see the SMPU register descriptions.

Table 15-1: CM41X_M4 SMPU Register List

Name Description

SMPU_BADDR Bus Error Address Register

SMPU_BDTLS Bus Error Details Register

SMPU_CTL SMPU Control Register

SMPU_IADDR Interrupt Address Register

SMPU_IDTLS Interrupt Details Register

SMPU_RADDR[n] Region n Address Register

SMPU_RCTL[n] Region n Control Register

SMPU Functional Description

15–2 ADSP-CM41x Mixed-Signal Control Processor

Table 15-1: CM41X_M4 SMPU Register List (Continued)

Name Description

SMPU_REVID SMPU Revision ID Register

SMPU_RIDA[n] Region n ID A Register

SMPU_RIDB[n] Region n ID B Register

SMPU_RIDMSKA[n] Region n ID Mask A Register

SMPU_RIDMSKB[n] Region n ID Mask B Register

SMPU_STAT SMPU Status Register

CM41X_M0 SMPU Interrupt List

Table 15-2: CM41X_M0 SMPU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

8 SMPU0_ERR SMPU0 Error Interrupt Level

Memory Writes

A write transaction to address n is prevented when the following is true.

Address n is in memory region m and memory region m is write-protected (SMPU_RCTL[n].WPROTEN =1) and
ID is not a match. (See ID Comparison). The block occurs because the memory region is configured for write-pro-
tection and the ID comparison does not result in a match. If an ID comparison results in a match, the write transac-
tion is allowed through.

Memory Reads

A read transaction from address n is prevented when the following is true:

• Address n is in memory region and memory region m is read-protected (SMPU_RCTL[n].RPROTEN =1)
and

• ID is not a match

The block occurs because the memory region is configured for read-protection and the ID comparison does not
result in a match. If the ID comparison results in a match, the read transaction is permitted. (See ID Comparison).

ID Comparison

ID comparison automatically occurs during region-based memory protection. ID matches allow the transaction to
bypass the configured memory protection for that region. The following sections describe the calculation of a write
ID match and read ID match.

SMPU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 15–3

Write Transaction

The state of the following values determines the ID value that is compared with the ID of an incoming write trans-
action:

• The SMPU_RCTL[n].WIDCINV bit

• The SMPU_RIDA[n].ID and SMPU_RIDB[n].ID bit fields

• The SMPU_RIDMSKA[n].MSK and SMPU_RIDMSKB[n].MSK bit fields

Write IDA match = ((ID of incoming write transaction AND SMPU_RIDMSKA[n].MSK) ==
(SMPU_RIDA[n].ID AND SMPU_RIDMSKA[n].MSK))

Write IDB match = ((ID of incoming write transaction AND SMPU_RIDMSKB[n].MSK) ==
(SMPU_RIDB[n].ID AND SMPU_RIDMSKB[n].MSK))

Write ID match = (Write IDA match OR Write IDB match) XOR SMPU_RCTL[n].WIDCINV bit

Read Transaction

The state of the following values determines the ID value that is compared with the ID of an incoming read transac-
tion:

• The SMPU_RCTL[n].RIDCINV bit

• The SMPU_RIDA[n].ID and SMPU_RIDB[n].ID bit fields

• The SMPU_RIDMSKA[n].MSK and SMPU_RIDMSKB[n].MSK bit fields

Read IDA match = ((ID of incoming read transaction AND SMPU_RIDMSKA[n].MSK) ==
(SMPU_RIDA[n].ID AND SMPU_RIDMSKA[n].MSK))

Read IDB match = ((ID of incoming read transaction AND SMPU_RIDMSKB[n].MSK) ==
(SMPU_RIDB[n].ID AND SMPU_RIDMSKB[n].MSK))

Read ID match = (Read IDA match OR Read IDB match) XOR SMPU_RCTL[n].RIDCINV
In the two cases described above, the incoming transaction (either write or read) ID is AND'ed with the configured
mask value in protection unit A. It is then compared to the value of the configured ID value which is also AND'ed
with the configured mask value in protection unit A. The mask provides a method to allow a group of IDs to match.
This process is also performed for protection unit B. The two outcomes (from A and B) are then OR'ed together.

Depending on the setting of the SMPU_RCTL[n].RIDCINV or the SMPU_RCTL[n].WIDCINV bits, the ID
match comparison is inverted or not. The final result after applying the inversion, SMPU_RCTL[n].RIDCINV,
or SMPU_RCTL[n].WIDCINV, determines whether the transaction bypasses the protection.

Usage

The masks, SMPU_RIDMSKA[n] and SMPU_RIDMSKB[n], are AND'ed with both the incoming transaction
ID and the configured ID in SMPU_RIDA[n].ID and SMPU_RIDB[n].ID, respectively. By default the masks

SMPU Functional Description

15–4 ADSP-CM41x Mixed-Signal Control Processor

are zero. If ID-based region protection is enabled by setting the SMPU_RCTL[n].WPROTEN or
SMPU_RCTL[n].RPROTEN bit fields and the masks are not set, the ID comparison essentially compares zeros.
The comparison allows all transactions to bypass (if the region-based security setting is also configured in a way to
allow transactions to go through for the region). To have the ID-based region protection to function, the mask regis-
ters and ID registers must also be set.

System IDs

The System Master IDs table provides the IDs for the system masters. An x means that the bit can be a 0 or a 1.
There are multiple IDs associated with that particular system master.

The table headings are defined in the list below. The A, B, and C characters have the meanings described in the
table.

A From DMA engine

B 4 bottom bits of 12-bit CONT_MST field

C All 9 bits of SUPER_SLV field

• MASTER: CONT_MST is the M4 controller as memory access master and controls load/stores by the M4
core.

• MASTER: SUPER_MST is the M0 supervisor subsystem. This acts as the memory access master into the main
system fabric and includes accesses by the M0 core as well as by DMA channels DMA0 through DMA3. The
bits ‘BBBB’ indicate the master ID within the M0 subsystem, from the System Master IDs for SMPU0 table.

• MASTER: SUPER_SLV is the M0 supervisor subsystem’s slave port from the M4 controller subsystem fabric.
The bits ‘CCCCCCCCC’ indicate the master ID within the M4 subsystem, from the System Master IDs for
SMPU2 and SMPU1 table.

• SLAVE: CONT_SLV is the M4 controller slave memory spaces which are M4 SRAM and flash.

• SLAVE: SUPER_SRAM is the M0 supervisor slave memory space. M0 SRAM is the only such space.

Table 15-3: System Master IDs for SMPU2 and SMPU1

MASTERS SLAVES

Master SMPU2 (SMC) SMPU1 (CONT_SLV)

DMA4: uart1_tx 9b00000A000 9b00000A000

DMA5: uart1_rx 9b00000A001 9b00000A001

DMA6: uart2_tx, spi1_tx 9b00000A010 9b00000A010

DMA7: uart2_rx, spi1_rx 9b00000A011 9b00000A011

DMA8: uart3_tx/hae_in0 9b00000A100 9b00000A100

DMA9: uart3_rx/hae_out 9b00000A101 9b00000A101

SMPU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 15–5

Table 15-3: System Master IDs for SMPU2 and SMPU1 (Continued)

MASTERS SLAVES

Master SMPU2 (SMC) SMPU1 (CONT_SLV)

DMA10: uart4_tx/sport0a/hae_in1 9b00000A110 9b00000A110

DMA11: uart4_rx/sport0b 9b00000A111 9b00000A111

DMA12: mdma0_rd 9b01000A000 9b01000A000

DMA13: mdma0_wr 9b01000A001 9b01000A001

SINC 9b10000A000 9b10000A000

AFE1: adcc1+dacc0 9b10000A001 9b10000A001

FFT 9b10000A010 9b10000A010

CONT_MST 9b110000011 --N/A--

SUPER_MST 9b11BBBB100 9b11BBBB100

Table 15-4: System Master IDs for SMPU0

Master SMPU0 (SUPER_SRAM)

DMA0: spi0_tx 12b00000000A000

DMA1: spi0_rx 12b00000000A001

DMA2: uart0_tx 12b00000000A010

DMA3: uart0_rx 12b00000000A011

AFE0: adcc0 12b00000000A100

SUPER_SLV 12bCCCCCCCCC101

M0_CORE N/A

Memory Region

Memory regions can start at address 0x00000000 or at any address that is a multiple of its size. The Supported
Memory Region Size and Alignment table shows the memory region sizes that the processor supports and the align-
ment of the memory region. (X values are do-not-care).

SMPU0 and SMPU2 support a maximum of four regions. SMPU1 supports a maximum of eight regions.

Table 15-5: Supported Memory Region Size and Alignment

Size SMPU_RCTLn.SIZE Address Possible Values for N

4KB 0b00000 0xXXXXX000 -

8KB 0b00001 0xXXXXN000 0x0, 0x2, 0x4, 0x8, 0xA, 0xC, 0xE

16KB 0b00010 0xXXXXN000 0x0, 0x4, 0x8, 0xC

SMPU Functional Description

15–6 ADSP-CM41x Mixed-Signal Control Processor

Table 15-5: Supported Memory Region Size and Alignment (Continued)

Size SMPU_RCTLn.SIZE Address Possible Values for N

32KB 0b00011 0xXXXXN000 0x0, 0x8

64KB 0b00100 0xXXXX0000 -

128KB 0b00101 0xXXXN0000 0x0, 0x2, 0x4, 0x8, 0xA, 0xC, 0xE

256KB 0b00110 0xXXXN0000 0x0, 0x4, 0x8, 0xC

512KB 0b00111 0xXXXN0000 0x0, 0x8

1MB 0b01000 0xXXX00000 -

2MB 0b01001 0xXXN00000 0x0, 0x2, 0x4, 0x8, 0xA, 0xC, 0xE

4MB 0b01010 0xXXN00000 0x0, 0x4, 0x8, 0xC

8MB 0b01011 0xXXN00000 0x0, 0x8

16MB 0b01100 0xXX000000 -

32MB 0b01101 0xXN000000 0x0, 0x2, 0x4, 0x8, 0xA, 0xC, 0xE

64MB 0b01110 0xXN000000 0x0, 0x4, 0x8, 0xC

128MB 0b01111 0xXN000000 0x0, 0x8

256MB 0b10000 0xX0000000 -

512MB 0b10001 0xN0000000 0x0, 0x2, 0x4, 0x8, 0xA, 0xC, 0xE

1GB 0b10010 0xN0000000 0x0, 0x4, 0x8, 0xC

2GB 0b10011 0xN0000000 0x0, 0x8

4GB 0b10100 0x00000000 -

For the case where the region size is selected as 4 GB, the region address must be at address 0x00000000.

NOTE: If a memory region address is not aligned to its size, the memory region start address protected by the
SMPU is the configured address with the corresponding least significant bits masked. For example, if the
size is configured for 16 KB (SMPU_RCTL[n].SIZE =0b00010), and the base address is configured for
SMPU_RADDR[n].BADDR=0x00005018, the actual base address used by the SMPU is 0x00004000.
When SMPU_RADDR[n].BADDR is read back, the program reads 0x00005000. This functionality is be-
cause only bits [11:0] are reserved as 0's. Programs must use care when setting the base address as it is not
always the true base address.

SMPU Definitions

To make the best use of the SMPU, it is useful to understand the terms in this section.

Global Protection

Guarding of the entire memory space for the particular SMPU instantiation.

SMPU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 15–7

Region-Based Protection

Guarding individual segments of memory inside the memory space for the particular SMPU instantiation.

ID Match

A successful comparison of the ID associated with the incoming transaction and the ID and MASK configured in
the SMPU.

SMPU Block Diagram

The SMPU Top-Level Block Diagram shows the SMPU block.

As seen in the diagram, the SMPU sits between the memory port (SCB master port) and the SCB fabric (SCB slave
port). It acts as a gateway analyzing the transaction requests. It either rejects the transaction request or allows access
based on the user-programmed configuration of the SMPU.

SMPU MEMORY
CHANNEL

SMPU CONTROL
AND REGISTER FILE

SMPU

PERIPHERAL
BUS

STATUS CONTROL

MEMORY
PORT

SYSTEM CROSS
BAR (SCB)

SMPUCK

RCU_SYSRES

Figure 15-1: SMPU Top-Level Block Diagram

SMPU Architectural Concepts

The following sections provide brief descriptions of the architecture of the SMPU module.

Default Setting

At reset, the default state of the system is fully open. The SMPUs admit any access to memory spaces.

Latency

The SMPU adds latency to all the transactions to the memory except reads when read speculation is enabled
(SMPU_CTL.RSDIS =0). In this case, read accesses are always forwarded to the memory and read responses are
generated according to the SMPU settings. If read speculation is disabled (SMPU_CTL.RSDIS =1), reads are

SMPU Functional Description

15–8 ADSP-CM41x Mixed-Signal Control Processor

blocked if they cause a security or protection violation. The SMPU generates the SCB read response that
corresponds to a blocked transaction.

If read speculation is enabled, the SMPU adds 1 clock cycle latency to the read transaction. If read speculation is
disabled, the SMPU adds 2 clock cycles latency to the read transaction.

SMPU Operating Modes
The SMPU does not have any strict modes of operation. However, it can be configured for region-based protection
where a master with a particular ID can be blocked or allowed based on settings in the SMPU_RCTL[n] register.

Region-based protection is programmed with registers:

• SMPU_RCTL[n]
• SMPU_RADDR[n]
• SMPU_RIDA[n]
• SMPU_RIDMSKA[n]
• SMPU_RIDB[n]
• SMPU_RIDMSKB[n]

SMPU Interrupt Signals
There is one interrupt signal associated with the SMPU. If interrupts are enabled, the SMPU_STAT.IRQ bit is set.
The SMPU_IRQ signal is asserted when the SMPU detects a memory access violation. The target address triggering
the interrupt is found in the SMPU_IADDR register. The SMPU_IDTLS register provides further details about the
cause of the interrupt.

Write errors are prioritized over read errors.

Protection violations (an ID-based violation) can trigger the SMPU interrupt, and can be enabled independently.
The protection violation interrupt is enabled by setting the SMPU_CTL.PINTEN bit.

The SMPU interrupt is asserted for any of the following conditions:

If a second memory access violation occurs while the SMPU_STAT.IRQ bit is set, the SMPU_STAT.IOVR (inter-
rupt overrun) bit is set. The SMPU_IADDR and the SMPU_IDTLS registers are not updated until the
SMPU_STAT.IRQ bit is cleared. Any information on the subsequent interrupt is lost. Once the
SMPU_STAT.IRQ bit and the SMPU_STAT.IOVR bit are cleared, any new memory access violations can trigger
an interrupt and its details can be captured.

NOTE: When a blocked access occurs, the SMPU triggers an interrupt when interrupt generation is enabled. The
SMPU can also be configured to generate a bus error that propagates back to the system master. The sys-
tem master can also trigger an interrupt due to this bus error.

SMPU Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 15–9

SMPU Status and Error Signals
If bus errors are enabled (SMPU_CTL.PBEDIS =0), the SMPU generates and returns a bus error to the master
initiating the blocked access. This bit also sets the SMPU_STAT.BERR bit. The SMPU_BADDR and
SMPU_BDTLS registers can be read to get the address and details of the transaction that caused the SMPU to gener-
ate the error.

Write errors are prioritized over read errors.

A bus error status is returned to the system master if:

• an ID-based violation happened and the SMPU_CTL.PBEDIS bit =0

If a second memory access violation occurs while the SMPU_STAT.BERR bit is set, the SMPU_STAT.BEOVR bit
(bus error overrun) is set. The SMPU_BADDR and the SMPU_BDTLS registers are not updated until the
SMPU_STAT.IRQ bit is cleared. The information about the transaction that caused the SMPU_STAT.BEOVR bit
to be set is lost.

NOTE: If both the protection violation interrupt is not enabled (SMPU_CTL.PINTEN =0) and the protection
bus error is disabled (SMPU_CTL.PBEDIS =1), the SMPU blocks invalid transactions. However, it does
not provide any status or interrupt information indicating that a transaction is blocked.

SMPU Programming Example
The following example corresponds to using SMPU1 to protect M4 SRAM from MDMA write accesses. In the ex-
ample the region configured for protection is 4KB at the start of M4 SRAM Bank A.

1. Enable SMPU1 interrupts by writing to the SMPU_CTL register.

2. Define the memory region to be protected by writing to the SMPU_RADDR[n] register.

*pREG_SMPU_RADDR0 = 0x20000000;

3. Program the SMPU_RIDA[n] and SMPU_RIDB[n] registers with the ID which is to be an exception to the
rule.

*pREG_SMPU_RIDA0 = 0x0081; //corresponds to MDMA_WR
*pREG_SMPU_RIDB0 = 0x0081;

4. Program the SMPU_RIDMSKA[n] andSMPU_RIDMSKB[n] registers with the mask to be applied to the ID
values programmed in the SMPU_RIDA[n] and SMPU_RIDB[n] registers respectively.

*pREG_SMPU_RIDMSKA0 = 0xFFFF;
*pREG_SMPU_RIDMSKB0 = 0xFFFF;

5. Program the Region Control register (SMPU_RCTL[n] register) with the required fields. Control fields like
ID invert, write protection enable, read protection enable and memory region size can be configured in this
register.

SMPU Status and Error Signals

15–10 ADSP-CM41x Mixed-Signal Control Processor

*pREG_SMPU_RCTL0 = ENUM_SMPU_RCTL_WPROTEN|ENUM_SMPU_RCTL_RPROTDIS|
BITM_SMPU_RCTL_WIDCINV|BITM_SMPU_RCTL_RIDCINV| ((0<<BITP_SMPU_RCTL_SIZE) &
BITM_SMPU_RCTL_SIZE)

6. Set the SMPU_RCTL[n].EN bit.

*pREG_SMPU_RCTL0 |= BITM_SMPU_RCTL_EN;

Any accesses violation to the protection enabled by this procedure will be blocked. If the corresponding interrupt is
enabled, an interrupt is generated on protection violations.

CM41X_M4 SMPU Register Descriptions
The System Memory Protection Unit (SMPU) contains the following registers.

Table 15-6: CM41X_M4 SMPU Register List

Name Description

SMPU_BADDR Bus Error Address Register

SMPU_BDTLS Bus Error Details Register

SMPU_CTL SMPU Control Register

SMPU_IADDR Interrupt Address Register

SMPU_IDTLS Interrupt Details Register

SMPU_RADDR[n] Region n Address Register

SMPU_RCTL[n] Region n Control Register

SMPU_REVID SMPU Revision ID Register

SMPU_RIDA[n] Region n ID A Register

SMPU_RIDB[n] Region n ID B Register

SMPU_RIDMSKA[n] Region n ID Mask A Register

SMPU_RIDMSKB[n] Region n ID Mask B Register

SMPU_STAT SMPU Status Register

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–11

Bus Error Address Register

Programs read the SMPU_BADDR and the SMPU_BDTLS registers to determine the cause of a bus error. Write er-
rors are prioritized over read errors.

Bus Error Address

Bus Error Address

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-2: SMPU_BADDR Register Diagram

Table 15-7: SMPU_BADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Bus Error Address.

The SMPU_BADDR.VALUE bit field contains the address of the bus error.

CM41X_M4 SMPU Register Descriptions

15–12 ADSP-CM41x Mixed-Signal Control Processor

Bus Error Details Register

The SMPU_BDTLS register indicates the ID of the bus error transaction, whether the transaction that caused the
last bus error was a read, a write, secure or non-secure.

Read/Write StatusID of Transaction

ID of Transaction

RNW (R)ID[7:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ID[8] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-3: SMPU_BDTLS Register Diagram

Table 15-8: SMPU_BDTLS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:8

(R/NW)

ID ID of Transaction.

The SMPU_BDTLS.ID bit field provides the ID of the transaction that caused the
bad address error.

1

(R/NW)

RNW Read/Write Status.

The SMPU_BDTLS.RNW bit indicates whether the last transaction that caused the
bad address error was a read or write.

0 Transaction that caused last bus error was a write

1 Transaction that caused last bus error was a read

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–13

SMPU Control Register

The SMPU_CTL register provides access to the locking control, error interrupts and SMPU violations.

Protection Violation Bus Error Type

Protection Violation Bus Error Disable
Protection Violation Interrupt Enable

Read Speculation Disable
Registers Lock Bit
RCTLn, RADDRn, RIDxn and RIDMxn

Lock Bit

PBETYPE (R/W)

PBEDIS (R/W)
PINTEN (R/W)

RSDIS (R/W)RLOCK (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-4: SMPU_CTL Register Diagram

Table 15-9: SMPU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock Bit.

When the SMPU_CTL.LOCK bit is set and the global lock signal is asserted from the
SPU, the SMPU_CTL register is write-protected. Write-protection is disabled only
when the global lock signal becomes deasserted again.

0 CTL Global Lock Disable. The SMPU_CTL register is
not write-protected.

1 CTL Global Lock Enable. The SMPU_CTL register is
write-protected.

4

(R/W)

RLOCK RCTLn, RADDRn, RIDxn and RIDMxn Registers Lock Bit.

When the SMPU_CTL.RLOCK bit is set, all the registers associated with region-based
control (SMPU_RCTL[n], SMPU_RADDR[n], SMPU_RIDA[n],
SMPU_RIDB[n], SMPU_RIDMSKA[n] and SMPU_RIDMSKB[n]) are write-pro-
tected when the global lock signal is active from the SPU. Write access is allowed again
when the global lock signal is deasserted.

0 Region Registers Write-Protect Enable. All region regis-
ters are not write-protected.

1 Region Registers Write-Protect Disable. All region regis-
ters are write-protected.

CM41X_M4 SMPU Register Descriptions

15–14 ADSP-CM41x Mixed-Signal Control Processor

Table 15-9: SMPU_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

PINTEN Protection Violation Interrupt Enable.

The SMPU_CTL.PINTEN bit controls whether or not an interrupt is generated when
a protection violation occurs.

0 Protection Violation IRQ Disable. The protection viola-
tion interrupt is disabled.

1 Protection Violation IRQ Enable. The protection viola-
tion interrupt is enabled.

2

(R/W)

PBETYPE Protection Violation Bus Error Type.

The SMPU_CTL.PBETYPE bit controls whether a protection violation produces a
decode error or a slave error.

0 Decode Error Type. Decode error for transactions that
violate the configured protection.

1 Save Error Type. Slave Error for transactions which vio-
late the configured protection

1

(R/W)

PBEDIS Protection Violation Bus Error Disable.

If set, the SMPU_CTL.PBEDIS bit blocks protection violations, but does not cause a
bus error.

0 Bus Error Generation Enable. Transactions which vio-
late the configured protection are blocked and cause a
bus error.

1 Bus Error Generation Disable. Transactions which vio-
late the configured protection are blocked but do not
cause a bus error.

0

(R/W)

RSDIS Read Speculation Disable.

The SMPU_CTL.RSDIS bit controls whether or not the read addresses are checked
before being sent to the slave.

0 Read Speculation Enable. Read addresses are sent to the
slave without checking.

1 Read Speculation Disable. Read addresses are checked
before being sent to the slave.

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–15

Interrupt Address Register

The SMPU_IADDR register indicates an attempt to make a read or write access to unimplemented addresses or ac-
cesses are non-aligned. The SMPU issues a bus error for this condition.

Interrupt Address

Interrupt Address

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-5: SMPU_IADDR Register Diagram

Table 15-10: SMPU_IADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Interrupt Address.

The SMPU_IADDR.VALUE bit field is the address where an attempt to access an un-
implemented address or a non-aligned access has occurred.

CM41X_M4 SMPU Register Descriptions

15–16 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Details Register

The SMPU_IDTLS register provides the ID of the last signaled interrupt, whether the interrupt was caused by a
read or write, and whether the transaction that caused the last signaled interrupt was secure.

Read/Write Status.ID of Transaction.

ID of Transaction.

RNW (R)ID[7:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ID[8] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-6: SMPU_IDTLS Register Diagram

Table 15-11: SMPU_IDTLS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:8

(R/NW)

ID ID of Transaction..

The SMPU_IDTLS.ID bit field provides the ID of the transaction that caused the
interrupt.

1

(R/NW)

RNW Read/Write Status..

The SMPU_IDTLS.RNW bit indicates whether the last transaction that caused the in-
terrupt was a read or write.

0 Transaction that caused last signaled interrupt was a
write

1 Transaction that caused last signaled interrupt was a
read

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–17

Region n Address Register

The SMPU_RADDR[n] register is used to define the base address for a memory region to be protected.

Bits
Region n Base Address 20 Most Significant

Bits
Region n Base Address 20 Most Significant

BADDR[3:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BADDR[19:4] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-7: SMPU_RADDR[n] Register Diagram

Table 15-12: SMPU_RADDR[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:12

(R/W)

BADDR Region n Base Address 20 Most Significant Bits.

The SMPU_RADDR[n].BADDR bit field defines the base address for a memory re-
gion to be protected.

CM41X_M4 SMPU Register Descriptions

15–18 ADSP-CM41x Mixed-Signal Control Processor

Region n Control Register

The SMPU_RCTL[n] register is used to define the level of protection for a region of memory. The protection of a
region is controlled and defined by this register and the SMPU_RADDR[n], SMPU_RIDA[n], SMPU_RIDB[n],
SMPU_RIDMSKA[n], and SMPU_RIDMSKB[n] registers.

Read Transaction Protection EnableRead Transaction ID Compare Invert

Memory Region SizeWrite Transaction Protection Enable

Region EnableWrite Transaction ID Compare Invert

RPROTEN (R/W)RIDCINV (R/W)

SIZE (R/W)WPROTEN (R/W)

EN (R/W)WIDCINV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-8: SMPU_RCTL[n] Register Diagram

Table 15-13: SMPU_RCTL[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

WIDCINV Write Transaction ID Compare Invert.

The SMPU_RCTL[n].WIDCINV bit inverts the write ID match result.

0 Write transaction ID comparison result not inverted

1 Write transaction ID comparison result inverted

10

(R/W)

WPROTEN Write Transaction Protection Enable.

The SMPU_RCTL[n].WPROTEN bit enables protection against ID-based write
transactions for the memory region.

0 Write transaction ID-based protection disabled

1 Write transaction ID-based protection enabled

9

(R/W)

RIDCINV Read Transaction ID Compare Invert.

When the SMPU_RCTL[n].RIDCINV bit is set, the read ID match result is invert-
ed.

0 Read transaction ID comparison result not inverted

1 Read transaction ID comparison result inverted

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–19

Table 15-13: SMPU_RCTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

RPROTEN Read Transaction Protection Enable.

The SMPU_RCTL[n].RPROTEN bit enable bit to turn on protection against ID-
based read transactions for the memory region.

0 Read transaction ID-based protection disabled

1 Read transaction ID-based protection enabled

5:1

(R/W)

SIZE Memory Region Size.

The SMPU_RCTL[n].SIZE bit defines the size of the memory region to be protect-
ed.

0 4 KB

1 8 KB

2 16 KB

3 32 KB

4 64 KB

5 128 KB

6 256 KB

7 512 KB

8 1 MB

9 2 MB

10 4 MB

11 8 MB

12 16 MB

13 32 MB

14 64 MB

15 128 MB

16 256 MB

17 512 MB

18 1 GB

19 2 GB

20 4 GB

21-31 Reserved

CM41X_M4 SMPU Register Descriptions

15–20 ADSP-CM41x Mixed-Signal Control Processor

Table 15-13: SMPU_RCTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Region Enable.

The SMPU_RCTL[n].EN bit enables the protection of a region.

0 Disabled

1 Enabled

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–21

SMPU Revision ID Register

The SMPU_REVID register provides the major and minor revision numbers of this module.

Incremental Version IDMajor Version ID
REV (R)MAJOR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-9: SMPU_REVID Register Diagram

Table 15-14: SMPU_REVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/NW)

MAJOR Major Version ID.

3:0

(R/NW)

REV Incremental Version ID.

CM41X_M4 SMPU Register Descriptions

15–22 ADSP-CM41x Mixed-Signal Control Processor

Region n ID A Register

The SMPU_RIDA[n] register is used for ID comparison 'A'. This comparison is performed after a mask is applied
to both the transaction ID (from either the read or write IDs) and the register value. An ID match means that the
ID is the exception to the rule and the read or write is allowed even if the region is read or write-protected. For more
detail, refer to the ID Comparison section.

Region n ID Register A
ID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-10: SMPU_RIDA[n] Register Diagram

Table 15-15: SMPU_RIDA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:0

(R/W)

ID Region n ID Register A.

The SMPU_RIDA[n].ID bit field, combined with the mask provides the means to
bypass the configured memory protection for a region.

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–23

Region n ID B Register

The SMPU_RIDB[n] register is used for ID comparison 'B'. This comparison is performed after a mask is applied
to both the transaction ID (from either the read or write IDs) and the register value. An ID match means that the
ID is the exception to the rule and the read or write is allowed even if the region is read or write-protected. For more
details, refer to the ID Comparison section.

Region n ID Register B
ID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-11: SMPU_RIDB[n] Register Diagram

Table 15-16: SMPU_RIDB[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:0

(R/W)

ID Region n ID Register B.

The SMPU_RIDB[n].ID bit field, combined with the mask provides the means to
bypass the configured memory protection for a region.

CM41X_M4 SMPU Register Descriptions

15–24 ADSP-CM41x Mixed-Signal Control Processor

Region n ID Mask A Register

The SMPU_RIDMSKA[n] register is used for ID comparison 'A'. The mask allows or disallows certain IDs from
affecting the final result of the ID match. For more details, refer to the ID Comparison section.

Region n ID Mask Register A
MSK (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-12: SMPU_RIDMSKA[n] Register Diagram

Table 15-17: SMPU_RIDMSKA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:0

(R/W)

MSK Region n ID Mask Register A.

The SMPU_RIDMSKA[n].MSK bit field, combined with the incoming transaction,
provides the means to bypass the configured memory protection for a region.

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–25

Region n ID Mask B Register

The SMPU_RIDMSKB[n] register is used for ID comparison 'B'. The mask allows or disallows certain IDs from
affecting the final result of the ID match. For more details, refer to the ID Comparison section.

Region n ID Mask Register B
MSK (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-13: SMPU_RIDMSKB[n] Register Diagram

Table 15-18: SMPU_RIDMSKB[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:0

(R/W)

MSK Region n ID Mask Register B.

The SMPU_RIDMSKB[n].MSK bit field, combined with the incoming transaction
provides the means to bypass the configured memory protection for a region.

CM41X_M4 SMPU Register Descriptions

15–26 ADSP-CM41x Mixed-Signal Control Processor

SMPU Status Register

The SMPU_STAT register provides the state of the SMPU and indicates various errors. All bits in this register are
write 1 to clear.

Interrupt OverrunBus Error

Interrupt RequestBus Error Overrun

Address ErrorLock Write Error

IOVR (R/W1C)BERR (R/W1C)

IRQ (R/W1C)BEOVR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADRERR (R/W1C)LWERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 15-14: SMPU_STAT Register Diagram

Table 15-19: SMPU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W1C)

LWERR Lock Write Error.

The SMPU_STAT.LWERR bit is set when SMPU_CTL.LOCK bit =1, the global lock
signal is asserted from the SPU and a read or write attempt was made to the
SMPU_CTL MMR.

0 No Lock Write Error

1 Lock Write Error

16

(R/W1C)

ADRERR Address Error.

The SMPU_STAT.ADRERR bit is set when the SMPU MMR is accessed as an un-
aligned address, or when a read-only MMR is written to.

0 No Address Error

1 Address Error

3

(R/W1C)

BEOVR Bus Error Overrun.

The SMPU_STAT.BEOVR bit indicates that another bus error had occurred. Any
new information about the most recent violation which caused the bus error is not
captured.

0 No Bus Error overrun

1 Bus Error overrun has occurred

CM41X_M4 SMPU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 15–27

Table 15-19: SMPU_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

BERR Bus Error.

This SMPU_STAT.BERR bit indicates if a bus error was generated.

0 No Bus Error since this bit has been cleared

1 Bus Error has been generated

1

(R/W1C)

IOVR Interrupt Overrun.

The SMPU_STAT.IOVR bit indicates if another violation occurred while the previ-
ous violation interrupt was not finished being serviced. Information about the most re-
cent violation is then not captured.

0 No Interrupt overrun

1 Interrupt overrun has occurred

0

(R/W1C)

IRQ Interrupt Request.

The SMPU_STAT.IRQ bit provides an indication that an interrupt has been generat-
ed.

0 No Interrupt since this bit has been cleared

1 Interrupt has been generated

CM41X_M4 SMPU Register Descriptions

15–28 ADSP-CM41x Mixed-Signal Control Processor

16 Cyclic Redundancy Check (CRC)

The CRC peripheral performs the cyclic redundancy check (CRC) of the block of data that is presented to the pe-
ripheral. The peripheral provides a means to verify periodically the integrity of the system memory, the contents of
memory-mapped registers (MMRs), or communication message objects. It is based on a CRC32 engine that com-
putes the signature of 32-bit data presented to the peripheral.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected signature. If the
two signatures fail to match, the peripheral generates an error.

The source channel of the memory-to-memory DMA channels can provide data. The CRC optionally forwards data
to memory through the destination DMA channel. Alternatively, the peripheral supports data presented by any
qualified master of the CRC peripheral bus.

The CRC peripheral implements a reduced table-look-up algorithm to compute the signature of the data. The CRC
uses a programmable 32-bit CRC polynomial to generate the look-up table (LUT) contents automatically.

More CRC peripheral modes allow for initializing large memory sections with a constant value, or for verifying that
sections of memory are equal to a constant value.

CRC Features
The CRC peripheral supports a number of key features.

• Memory scan modes for memory verification

• Memory transfer modes for on-the-fly CRC calculations while transferring data from one memory to another

• A programmable 32-bit CRC polynomial with automatic LUT generation

• Data mirroring options

The CRC module also includes the following features.

• CRC checksum computation and comparison modes

• 32-bit programmable CRC polynomial with bit reverse option

• Automatic look-up table (LUT) generation

• Data mirroring options for endian and reflected polynomial cases

Cyclic Redundancy Check (CRC)

ADSP-CM41x Mixed-Signal Control Processor 16–1

• Automatic clear and preset of results

• Fault and error interrupt reporting

• DMA and MMR based operation

Because the CRC module is closely tied to memory-to-memory DMA (MDMA) channel pairs, the use cases include
the following features.

• Memory scan mode with CRC compute or compare

• Memory transfer mode with CRC compute or compare

• Memory fill operation with 32-bit data patterns

• Memory verify operation

• MMR write access to FIFO of destination DMA

• MMR read access to FIFO of source DMA

• Profiting from advanced DMA features, like descriptor mode and bandwidth control or monitor

CRC Functional Description
The CRC peripheral supports a number of modes of operation that allow for the initialization and verification of
regions of memory. The peripheral supports efficient memory-fill and verification operations on regions of memory
with or against a constant value. These modes of operation do not require the CRC engine to calculate a signature.
Other modes of operation allow for the calculation of CRC signature and verification for a memory region. The
modes allow for on-the-fly CRC calculation when performing memory-to-memory DMA transfers from one memo-
ry region to another.

To minimize the need for core accesses, the peripheral interfaces with one or more (depending on processor features)
memory-to memory DMA (MDMA) channels. This connectivity permits flexible configuration, in which data can
be written-to or read-from the peripheral using DMA transactions, core transactions, or a combination of both.

F
I
F
O

SOURCE
MDMA

FROM
L1, L2, L3

CRC

F
I
F
O

DESTINATION
MDMA

TO
L1, L2, L3

Figure 16-1: Memory Flow

CM41X_M4 CRC Register List

The Cyclic Redundancy Check (CRC) unit includes the data comparison, polynomial operation, and look up table
generation features needed for CRC operation. The CRC provides CRC protection as specified by many functional
safety requirements. This unit facilitates the system software's ability to periodically check the correctness of the
code/data available in memory. A set of registers govern CRC operations. For more information on CRC functional-
ity, see the CRC register descriptions.

CRC Functional Description

16–2 ADSP-CM41x Mixed-Signal Control Processor

Table 16-1: CM41X_M4 CRC Register List

Name Description

CRC_COMP Data Compare Register

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTCAP Data Count Capture Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_DFIFO Data FIFO Register

CRC_FILLVAL Fill Value Register

CRC_INEN Interrupt Enable Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_POLY Polynomial Register

CRC_RESULT_CUR CRC Current Result Register

CRC_RESULT_FIN CRC Final Result Register

CRC_STAT Status Register

CM41X_M4 CRC Interrupt List

Table 16-2: CM41X_M4 CRC Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

57 CRC0_ERR CRC0 Error Level

145 CRC0_DCNTEXP CRC0 Data count expiration Level

CRC Definitions

To make the best use of the CRC, it is useful to understand the following terms.

CRC

Acronym for Cyclic Redundancy Check. An error detection code that can detect changes within a block of data.

CRC Polynomial

The 32-bit polynomial used by the CRC engine to generate the look-up table required for the CRC implementation

CRC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 16–3

LUT

Acronym for the Look-up Table. The look-up table is automatically generated from the supplied 32-bit CRC poly-
nomial.

DMA

Acronym for Direct Memory Access. Used to describe a data transfer that takes place through a DMA channel al-
lowing data distribution around a system without intervention from the core.

MDMA

Acronym for Memory-To-Memory DMA transfer that often requires the use of two DMA channels to transfer data
from one memory region to another memory region. One DMA channel is configured as a source channel and the
second as a destination channel.

CRC Block Diagram
The CRC Block Diagram shows the functional block diagram of the CRC. The following sections describe the
blocks.

CRC_RESULT_FIN

CRC_COMP

 FDSEL

CRC_RESULT_CUR

BYTMIRR
BITMIRR

W16SWP

CRC_DFIFO

DMA Request

 CRC Compare
Error

CRC_DCNTRLD

CRC_DCNT

MMR Access
Bus

Peripheral DMA
Bus

DMA
Request

Generator

Mirror
Block

Compare
Logic

CRC Engine

Peripheral DMA
Bus

MMR Access
Bus

Figure 16-2: CRC Block Diagram

CRC Block Diagram

16–4 ADSP-CM41x Mixed-Signal Control Processor

NOTE: The CRC Unit can be accessed by either the M0 or the M4 core. The CRC interrupts are not available to
the M0.

Peripheral DMA Bus

The CRC peripheral provides both an incoming and outgoing datapath to the peripheral DMA bus. The MDMA
source channel is interfaced to the incoming datapath providing data to the CRC peripheral. For memory transfer
and data fill modes, the CRC uses the MDMA destination channel to either output the data from the CRC FIFO or
use the data for the fill operation.

MMR Access Bus

The core uses the MMR access bus to access all the memory-mapped registers of the peripheral for configuration,
status, and debug purposes. The core can also use the MMR access bus to feed data to the CRC peripheral or read
data from the FIFO of the CRC peripheral. The CRC operation is an alternative to the DMA channel operation to
read data from the FIFO.

Data received by MMR writes can transfer to destination DMA. Similarly, data received by source DMA can be
output through the MMR interface. Optionally, intermediate results can be made available to the MMR interface.

Mirror Block

The mirror block individually controls bit-reversing of the polynomial, the computation results, and the expected
result. Bit mirroring, byte mirroring, word swapping, and any combination of these operations can control endian
and the reflection of processed data.

Data FIFO

The CRC data FIFO is a 32-bit-wide 4-entry FIFO. The FIFO is accessible to both the peripheral DMA bus and
the MMR access bus. The FIFO status is accessible from the CRC_STAT register.

DMA Request Generator

The DMA request generator is responsible for granting incoming DMA requests from the source DMA channel and
issuing outgoing DMA requests to the destination DMA channel.

CRC Engine

The CRC engine is a 32-bit CRC engine that implements the reduced table look-up scheme. The CRC engine pro-
vides support for a user-programmable 32-bit polynomial that the CRC uses to load the look-up table parameters
required for the CRC calculation. The CRC engine is a single cycle implementation operating on 32 bits of data per
cycle.

CRC Block Diagram

ADSP-CM41x Mixed-Signal Control Processor 16–5

Compare Logic

The compare logic takes the final CRC signature and compares it to the expected CRC signature, generating a CRC
compare error when the signatures do not match. A compare error can cause an error interrupt request to the
Cortex-M4 system or to SEC1.

CRC Architectural Concepts
A 32-bit polynomial is required before calculation of the CRC signature can occur. The CRC uses the polynomial to
generate the contents of an internal look-up table that the reduced table look-up implementation requires. The
look-up table is automatically generated when the polynomial is written. It must be initialized prior to any operation
that requires the use of the CRC engine.

The mirror block logic can manipulate the data presented to the CRC engine before the CRC uses the data in the
calculation of the CRC signature. The data mirror operation is configurable to allow for bit reversing, byte reversing,
and 16-bit word swapping operations on the incoming data. For memory transfer compute-and-compare opera-
tions, programs can configure the peripheral to output the data in the same form in which it was received. Or, the
operation can output the mirrored data in the same manner that it is presented to the CRC engine.

While the CRC peripheral is in operation, the status of the FIFO is continually updated and reflected in the
CRC_STAT register. The FIFO status is required for core-based accesses to the CRC peripheral. The status indicates
when:

• The CRC peripheral can receive data

• Data is available for reading from the FIFO

• The result of the CRC_RESULT_CUR register has been updated

The status of the CRC_RESULT_CUR register indicates that the current CRC calculation has completed and the
result is available.

Look-up Table

The look-up table consists of a set of sixteen 32-bit registers that hardware populates automatically when a write
access takes place to the CRC_POLY register. 16 clock cycles are required to generate all 16 look-up table entries.
The status of the process for generating the look-up table is reflected in CRC_STAT.LUTDONE allowing for soft-
ware to poll on the completion of the event or for generation of an interrupt.

NOTE: Hardware must populate the look-up table before any operation using the CRC peripheral can take place,
even if the operation does not use the CRC engine. The peripheral does not issue any data requests until
the table generation process is complete. In addition, the CRC_STAT.IBR field, that indicates the input
buffer status as required for core-based transfers, is only valid upon completion of the process for generat-
ing the look-up table.

CRC Block Diagram

16–6 ADSP-CM41x Mixed-Signal Control Processor

Data Mirroring

The data mirror block can be configured to manipulate the incoming data before the data passes to the CRC engine
and, optionally, to the FIFO. This configuration allows the peripheral to handle various forms of endianness and to
function with reflected polynomials.

There are three configuration bits that control the data mirroring process: CRC_CTL.BITMIRR,
CRC_CTL.BYTMIRR, and CRC_CTL.W16SWP. The Data Mirroring Options table details how these options af-
fect the incoming data and the output generated by the mirror block.

Table 16-3: Data Mirroring Options

W16SWP BYTMIRR BITMIRR Output Data

0 0 0 Dout[31:0] = Din[31:0]

0 0 1 Dout[31:0] = Din[24:31],Din[16:23],Din[8:15],Din[0:7]

0 1 0 Dout[31:0] = Din[7:0],Din[15:8],Din[23:16],Din[31:24]

0 1 1 Dout[31:0] = Din[0:7],Din[8:15],Din[16:23],Din[24:31]

1 0 0 Dout[31:0] = Din[15:0], D[31:16]

1 0 1 Dout[31:0] = Din[8:15],Din[0:7], Din[24:31],Din[16:23]

1 1 0 Dout[31:0] = Din[23:16],Din[31:24], Din[7:0],Din[15:8]

1 1 1 Dout[31:0] = Din[16:23],Din[24:31], Din[0:7],Din[8:15]

When the CRC is configured to operate in the memory transfer compute-and-compare mode, the bit-reversed out-
put data can be written to the FIFO. This feature is controlled through the CRC_CTL.FDSEL field.

In addition to providing bit swapping and mirror options to the incoming data, the CRC peripheral also supports
bit mirroring on the following registers.

• CRC_RESULT_CUR and CRC_RESULT_FIN, controlled through the CRC_CTL.RSLTMIRR field. When
mirroring is enabled, the values to be written to these registers are fully bit-reversed before the write operation
occurs.

• CRC_POLY, controlled through the CRC_CTL.POLYMIRR field. When mirroring is enabled, the 32-bit pol-
ynomial is fully bit-reversed before the write operation to the register occurs.

• CRC_COMP, controlled through the CRC_CTL.CMPMIRR field. When mirroring is enabled, the contents to
be loaded to this register are fully bit-reversed before the write operation occurs.

FIFO Status and Data Requests

The CRC peripheral provides indication of the input and output buffer status through CRC_STAT.IBR and
CRC_STAT.OBR respectively. For core-based operations, software must monitor these status fields prior to writing
to or reading from the CRC FIFO. No write to the CRC FIFO can occur while CRC_STAT.IBR indicates that
the buffer is not ready to accept data. Similarly, the CRC FIFO cannot be read until CRC_STAT.OBR indicates
that data is available.

CRC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 16–7

The memory scan modes of operation only require the monitoring of the input buffer status. The memory transfer,
compute-and-compare mode uses both input and output buffer status. If the current result of the CRC computation
is required, then software must verify that the current operation has completed and that the intermediate result is
ready. The CRC_STAT.IRR indicates the status.

NOTE: The memory transfer fill mode of operation requires the use of a DMA channel. The CRC does not sup-
port core reads from the CRC FIFO for this mode of operation.

Memory transfer, compute-and-compare mode uses burst transactions to make the most efficient use of the available
resources. In this mode, when the FIFO is initially empty and the peripheral is enabled, the CRC_STAT.IBR bit
indicates that the CRC is ready to accept data. The peripheral generates data requests to the source DMA channel (if
the CRC uses DMA). While the number of words remaining in the CRC_DCNT register is greater than the FIFO
depth, the peripheral issues data requests or accepts incoming data in bursts. The peripheral continues until the
CRC FIFO becomes full.

Once full, the CRC_STAT.IBR and CRC_STAT.OBR bits are updated, and then the CRC issues outgoing data
requests. Only when the FIFO is empty can the peripheral accept further incoming data, and the CRC_STAT.IBR
and CRC_STAT.OBR bits are updated once again.

Once CRC_DCNT is decremented such that the number of words waiting for processing is less than the number
required to fill the FIFO, the burst mode of operation is disabled. Incoming data is accepted as long as the FIFO is
not full. Outgoing data is available as long the FIFO is not empty. Therefore, there are no restrictions requiring the
word count to be a multiple of the FIFO depth.

All other CRC modes of operation indicate that incoming data can be accepted as long as the FIFO is not full.
Outgoing data is available as long as the FIFO is not empty.

The CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL bit configurations also influence how the CRC generates
data requests and status bits. The following list describes the bits.

• The CRC_CTL.OBRSTALL bit can be configured such that the CRC peripheral stalls as soon as there is out-
put data available in the FIFO. Use this mode of operation only in memory transfer, compute-and-compare
mode. This mode results in the processing of one 32-bit word at a time. The peripheral does not request or
accept incoming data until the current value being processed is read from the peripheral.

• The CRC_CTL.IRRSTALL bit can be configured so that the CRC peripheral stalls all further incoming data
requests until the CRC_RESULT_CUR register is read after being updated. Use this mode of operation for
CRC signature generation. It is not applicable to memory transfer data-fill mode or memory scan data-verify
mode of operation.

CRC Operating Modes
The following sections describe the various operating modes of the CRC interface.

Data Transfer Modes

The CRC peripheral supports two main categories of operation involving data transfers:

CRC Operating Modes

16–8 ADSP-CM41x Mixed-Signal Control Processor

• Memory scan mode

• Memory transfer mode

Memory scan modes are read-only operations that allow the contents of memory to be read into the peripheral and
verified for correctness. There are two forms of memory scan mode:

• CRC compute-and-compare performs a CRC calculation on data presented to the peripheral and compares the
CRC result with a pre-determined and pre-loaded result. An error is generated when the results differ.

• Data verify compares each 32-bit data word presented to the CRC peripheral to a pre-loaded 32-bit value and
generates an error when the data differs.

Both of these modes of operation require, at the most, a single DMA channel to read the data from memory into
the peripheral. No data is forwarded to the data output or destination DMA. The CRC can also use core-driven
transfers for either of these modes of operation.

The memory transfer modes involve memory write or memory read-and-write operations allowing for memory to be
initialized or transferred from one region of memory to another. There are two forms of memory transfer mode:

• CRC compute-and-compare performs a full data transfer from one memory region to another memory region.
The CRC generates a signature on the data presented and compares it with a pre-determined and pre-loaded
result. An error is generated when the results differ.

• Data fill initializes a region of memory with a pre-loaded 32-bit constant value.

The CRC compute-and-compare mode of operation requires both incoming and outgoing data channels. The oper-
ation occurs either using DMA channels, using core-driven write or read operations to and from the FIFO or using
a combination of both. The data fill mode of operation requires only a memory write DMA destination channel—
this mode does not support core driven operations.

Memory Scan Compute-and-Compare Mode

In this mode of operation, the CRC engine of the peripheral is enabled. The mode is configured through the
CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data stream.

The length of the data stream is configured through the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. As the CRC engine processes each 32-bit word, the
CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to
CRC_RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC uses the CRC_COMP register
to store the expected result of the operation. After the CRC calculation, CRC_COMP is compared with
CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
CRC_STAT.CMPERR must be cleared before the next CRC operation is performed.

The CRC peripheral also contains the CRC_DCNTRLD register. The CRC uses this register to reload CRC_DCNT
upon completion of the CRC operation in preparation for the next transfer.

Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 16–9

The initial seed of the CRC computation can be configured through CRC_CTL.AUTOCLRZ and
CRC_CTL.AUTOCLRF. This configuration provides a way to reset CRC_RESULT_CUR to 0x00000000,
0xFFFFFFFF or to leave the current register contents untouched for the next operation.

The peripheral can be configured to allow for the compare error and data expiration events to generate an interrupt.

Memory Scan Data Verify

In this mode of operation, the CRC engine of the peripheral is not required. The mode is enabled through the
CRC_CTL.OPMODE field. Each 32-bit word of the data stream is compared with a constant value that is stored in
the CRC_COMP register. The CRC_DCNT register contains the number of words for comparison. The CRC_DCNT
register is decremented upon receiving a new 32-bit word from the data stream. If the compare operation fails, the
CRC_STAT.CMPERR bit is updated and the contents of CRC_DCNT are captured in the CRC_DCNTCAP register.
This information can be used to identify the location in the data stream where the error occurred. Clear the
CRC_STAT.CMPERR field to reenable capturing of further errors.

Once CRC_DCNT decrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the op-
eration. The peripheral can be configured to allow for the compare error and data expiration events to generate an
interrupt.

Memory Transfer Compute-and-Compare Mode

In this mode of operation, the CRC engine of the peripheral is enabled. The mode is configured through the
CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data stream.

The length of the data stream is configured through the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. As the CRC engine processes each 32-bit word, the
CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to
CRC_RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC uses the CRC_COMP register
to store the expected result of the operation. Upon completion of the CRC calculation, CRC_COMP is compared
with CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
Clear CRC_STAT.CMPERR before the next CRC operation is performed.

The CRC peripheral also contains CRC_DCNTRLD register. The CRC uses this register to reload CRC_DCNT upon
completion of the CRC operation in preparation for the next transfer.

The initial seed of the CRC computation can be configured through CRC_CTL.AUTOCLRZ and
CRC_CTL.AUTOCLRF. This configuration provides a means to reset CRC_RESULT_CUR to 0x00000000,
0xFFFFFFFF or to leave the current register contents untouched for the next operation.

The peripheral can be configured to allow for the compare error and data expiration events to generate an interrupt.

Memory Transfer Data Fill Mode

In this mode of operation, the CRC engine of the peripheral is not required. The mode is enabled through the
CRC_CTL.OPMODE field. The CRC_FILLVAL register is written with a 32-bit value. The CRC uses this value to
initialize a block memory through the memory-to-memory DMA destination channel. When the CRC peripheral

Data Transfer Modes

16–10 ADSP-CM41x Mixed-Signal Control Processor

and the DMA destination channel are enabled, the contents of the CRC_FILLVAL register is written to the DMA
channel to initialize the memory region. The CRC_DCNT register contains the number of words for the write opera-
tion.

Once CRC_DCNT decrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the op-
eration. The peripheral can be configured to allow for the data expiration event to generate an interrupt.

CRC Event Control
The CRC peripheral can enable certain CRC status operations to generate an interrupt event to the system event
controller. There, a CRC error can be qualified as a system fault.

Interrupt Signals

The CRC peripheral can generate two interrupt requests that are optionally enabled as interrupts with the ARM
core, or as events to SEC1 for fault operations. One is a CRC status interrupt and the other is a CRC error inter-
rupt.

The CRC_STAT.CMPERR status bit can be configured as an interrupt and is signaled through the CRC error in-
terrupt signal. The CRC_STAT.CMPERR status field is set whenever the CRC peripheral performs a compare oper-
ation that fails. This status can be the result of a failed memory scan data-verify operation that compares the con-
tents of a memory range with a constant 32-bit value. Or, it can be the result of a CRC signature calculated for a
memory region that does not match the expected pre-programmed result for a memory-compare operation.

The CRC_STAT.DCNTEXP status bit is set when the CRC_DCNT register has decremented to zero. The status
indicates that the CRC peripheral has now processed all the data requested for the current CRC operation. The
CRC can also use this signal to generate an interrupt. The interrupt is signaled on the CRC status interrupt signal.

Both these status bits can be configured to generate and interrupt through the CRC_INEN register. The
CRC_INEN register also has bit set, CRC_INEN_SET, and bit clear CRC_INEN_CLR equivalent registers that the
CRC uses for the enabling and disabling of these interrupt sources.

The CRC_STAT register has two write one to clear (W1C) fields for clearing the two interrupt sources.

NOTE: Disabling the CRC peripheral through the CRC_CTL.BLKEN bit does not result in the clearing of inter-
rupt sources. Clear the interrupt sources using a W1C operation to the CRC_STAT register.

CRC Programming Model
It is important to note the following restrictions when using the CRC peripheral with the DMA channels:

1. When enabling the CRC peripheral and the DMA channels, enable the CRC peripheral prior to enabling the
DMA channels.

2. When disabling the CRC peripheral and the DMA channels, disable the DMA channels prior to disabling the
CRC peripheral.

CRC Event Control

ADSP-CM41x Mixed-Signal Control Processor 16–11

CRC Mode Configuration

Describes a number of tasks showing the various operation modes of the CRC peripheral.

• Look-up Table Generation

• Core Driven Memory Scan Compute-and-Compare Mode

• DMA Driven Memory Scan Compute-and-Compare Mode

• Core Driven Memory Scan Data Verify Mode

• DMA Driven Memory Scan Data Verify Mode

• Core Driven Memory Transfer Compute-and-Compare Mode

• DMA Driven Memory Transfer Compute-and-Compare Mode

• DMA Driven Memory Transfer Data Fill Mode

Look-up Table Generation

Describes the steps required to initialize the CRC peripheral LUT.

1. Write the 32-bit CRC polynomial of choice to the CRC_POLY register.

ADDITIONAL INFORMATION: This operation results in the CRC peripheral starting the LUT initialization
process. The CRC_STAT.LUTDONE bit is updated to reflect the operation is in progress.

2. Poll the CRC_STAT.LUTDONE bit until the status bit indicates that the operation is completed.

The CRC peripheral has completed initialization of all the LUT registers and is now ready for data operations. The
CRC_STAT.LUTDONE bit remains in the current state until the CRC_POLY register is written again, or the pe-
ripheral or processor are reset.

Core Driven Memory Scan Compute-and-Compare Mode

Performs CRC signature calculation and verification for a region of memory using core transactions. The CRC pe-
ripheral is configured such that it operates in burst mode due to the stalling options configured through disabling
the CRC_CTL register.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per CRC_CTL.BLKEN

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

CRC Programming Model

16–12 ADSP-CM41x Mixed-Signal Control Processor

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of
current CRC operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register can be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that the software uses in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC uses this register to enable the generation of the CRC interrupts
for notification of compare errors and block completion. Configure these interrupts. If enabled, ensure that the
corresponding interrupt handlers are also configured.

6. Initialize CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute-and-compare
mode and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

• Disable the CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL bit options for this task example.

• Configure all mirroring and bit reversal options.

• Configure CRC auto-clear options.

The CRC peripheral is now enabled and ready for the core or DMA channel to write data.

7. Write memory region data to the CRC peripheral.

a. While CRC_STAT.IBR bit indicates that the input buffer is ready, write the CRC_DFIFO register with
32-bit data.

ADDITIONAL INFORMATION: Repeat this step until all data has been written.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if counter expired interrupt is disabled. Polling en-
sures that all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: Perform this step only if the compare error interrupt is not enabled.

10. Write to the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled, then clear of these status bits within the interrupt
handlers for the respective interrupts.

CRC Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 16–13

The CRC compute-and-compare operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation.

The integrity check of the memory through the expected CRC signature has completed. The final result is indicated
through the CRC_STAT.CMPERR bit and the corresponding interrupt when enabled.

Clear any W1C CRC status bits before performing more CRC operations.

DMA Driven Memory Scan Compute-and-Compare Mode

Performs CRC signature calculation and verification for a region of memory using DMA transactions. The CRC
peripheral is configured such that it operates in the burst mode of operation due to the stalling options configured
through disabling CRC_CTL.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per the CRC_CTL.BLKEN bit.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of
current operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register can be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that the software uses in the final operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of compare errors and block completion. Configure these interrupts, as needed. If
enabled, ensure that the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute compare
mode and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

CRC Mode Configuration

16–14 ADSP-CM41x Mixed-Signal Control Processor

• Disable the CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL bit options for this task example.

• Configure all mirroring and bit reversal options.

• Configure all CRC auto clear options.

The CRC peripheral is now enabled and ready for the core or DMA channel to write data.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the da-
ta to the CRC peripheral.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if the counter expired interrupt is disabled. Polling
ensures all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: Perform this step only if the compare error interrupt is not enabled.

10. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled, then clear these status bits within the interrupt
handlers for the respective interrupts.

The CRC compute-and-compare operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation.

The integrity check of the memory through the expected CRC signature has completed and the final result indica-
ted is through CRC_STAT.CMPERR and the corresponding interrupt, when enabled.

Clear any W1C CRC status bits before performing a further CRC operation. Clear any W1C status bits of the
memory-to-memory source DMA channel before the next CRC operation.

Core Driven Memory Scan Data Verify Mode

Reads a region of memory using core transactions and performs a compare operation on each 32-bit word against a
single pre-loaded 32-bit constant. The compare error interrupt is enabled to capture and log the location of any
compare errors.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per CRC_CTL.BLKEN
The interrupt service routine for the compare error interrupt reads and stores the contents of CRC_DCNTCAP regis-
ter to a buffer before clearing the compare error interrupt.

CRC Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 16–15

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of
current CRC operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expec-
ted to be filled with. Each 32 bit of data presented to the peripheral is compared with this value.

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of compare errors and block completion. Configure these interrupts. If enabled, en-
sure that the corresponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan data verify mode and
the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

The CRC peripheral is now enabled and ready for the core or DMA channel to write data.

6. Write memory region data to the CRC peripheral.

a. Poll the CRC_STAT.IBR bit until input buffer is ready.

b. Write the CRC_DFIFO register with 32-bit data.

ADDITIONAL INFORMATION: Repeat these two steps until the entire memory region has been written
to the CRC peripheral.

7. Poll the CRC_INEN_SET.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if counter expired interrupt is disabled. Polling en-
sures all the data has been processed.

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write to the CRC_STAT to clear both the CRC_INEN_SET.DCNTEXP and CRC_INEN.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled, the clear these status bits within the interrupt
handlers for the respective interrupts.

The CRC memory scan-verify operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation.

CRC Mode Configuration

16–16 ADSP-CM41x Mixed-Signal Control Processor

The result of the integrity check of the memory with the 32-bit constant is indicated through the
CRC_INEN.CMPERR bit and the corresponding interrupt, when enabled. Each comparison error is traceable due
to the logging of CRC_DCNTCAP from within the compare error interrupt handler.

Clear any W1C CRC status bits before performing a further CRC operation.

DMA Driven Memory Scan Data Verify Mode

The memory scan data verify mode reads a region of memory using DMA transactions and performs a compare
operation on each 32-bit word against a single pre-loaded 32-bit constant. The compare error interrupt is enabled to
capture and log the location of any compare errors.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per the CRC_CTL.BLKEN bit

The interrupt service routine for the compare error interrupt reads and stores the contents of the CRC_DCNTCAP
register to a buffer before clearing the compare error interrupt.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: The CRC module uses this register to reload the CRC_DCNT register upon
completion of current CRC operation. If no further operation is needed, then this register can be initialized to
zero.

3. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expec-
ted to be filled with. Each 32 bit of data presented to the peripheral is compared with this value.

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of compare errors and block completion. Configure these interrupts, as needed. If
enabled, ensure that the corresponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan data verify mode and
CRC_CTL.BLKEN configured to enable the CRC peripheral.

The CRC peripheral is now enabled and ready for the core or DMA channel to write the data.

CRC Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 16–17

6. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the da-
ta to the CRC peripheral.

7. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if counter expired interrupt is disabled. Polling en-
sures all the data has been processed.

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled, then clear these status bits within the interrupt
handlers for the respective interrupts.

The CRC memory scan-verify operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation.

The result of the integrity check of the memory with the 32-bit constant is indicated through the
CRC_STAT.CMPERR bit and the corresponding interrupt when enabled. Each comparison error is traceable due to
the logging of the CRC_DCNTCAP register from within the compare error interrupt handler.

Clear any W1C CRC status bits and DMA status bits before performing a further CRC operation.

Core Driven Memory Transfer Compute-and-Compare Mode

The memory transfer compute-and-compare mode performs CRC signature calculation and verification for a region
of memory using core transactions while copying the contents to another memory region. The CRC peripheral is
configured such that it operates in the burst mode of operation due to the stalling options configured through disa-
bling the CRC_CTL register.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per the CRC_CTL.BLKEN bit

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

CRC Mode Configuration

16–18 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of the
current CRC operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register can be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that the software uses in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of compare errors and block completion. Configure these interrupts, as needed. If
enabled, ensure that the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute-and-compare
mode and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

a. Disable the CRC_CTL.OBRSTALL bit and the CRC_CTL.IRRSTALL bit options for this task exam-
ple.

b. Configure all mirroring and bit reversal options.

c. Configure CRC auto clear options

The CRC peripheral is now enabled and ready for the core or DMA channel to write data.

7. Write memory region data to the CRC peripheral and read it back to the new destination.

a. While the CRC_STAT.IBR bit indicates that the input buffer is ready, write the CRC_DFIFO register
with 32-bit data.

b. While the CRC_STAT.OBR bit indicates that the output buffer is ready, read the CRC_DFIFO register
and store data to new destination.

ADDITIONAL INFORMATION: Repeat these two steps until all required data has been processed
through the CRC peripheral and copied to the new destination.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if the counter expired interrupt is disabled. Polling
ensures all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: Perform this step only if the compare error interrupt is not enabled.

10. Write the CRC_STAT register to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

CRC Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 16–19

ADDITIONAL INFORMATION: If interrupts were enabled, then clear these status bits within the interrupt
handlers for the respective interrupts.

The CRC compute-and-compare operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation. The memory region has also been copied to its new destination.

The memory region has been copied to a new location and an integrity check of the memory through the expected
CRC signature has also completed. The final result is indicated through the CRC_STAT.CMPERR bit and the cor-
responding interrupt when enabled.

Clear any W1C CRC status bits before performing a further CRC operation.

DMA Driven Memory Transfer Compute-and-Compare Mode

The memory transfer compute-and-compare mode performs CRC signature calculation and verification for a region
of memory using DMA transactions. The memory region is also copied to another memory region using memory-
to-memory DMA transfers. The CRC peripheral is configured such that it operates in burst mode due to the stalling
options configured through disabling CRC_CTL.

The task assumes the following:

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per the CRC_CTL.BLKEN register.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of
current CRC operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register can be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that the software uses in the final compare operation.

5. Initialize the CRC_INEN register.

CRC Mode Configuration

16–20 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of compare errors and block completion. Configure these interrupts, as needed. If
enabled, ensure that the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute compare
mode and CRC_CTL.BLKEN configured to enable the CRC peripheral.

a. Disable the CRC_CTL.OBRSTALL and the CRC_CTL.IRRSTALL bit options for this task example.

b. Configure all mirroring and bit reversal options

c. Configure CRC auto clear options

The CRC peripheral is now enabled and ready for the core or DMA channel to write data.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode and desti-
nation DMA channel for memory write STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from one memory region to another
through the memory-to-memory DMA channels and the CRC peripheral.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if counter expired interrupt is disabled. Polling en-
sures all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: Perform this step only if the compare error interrupt is not enabled.

10. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and the CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled, then clear these status bits within the interrupt
handlers for the respective interrupts.

The CRC compute-and-compare operation is now complete. The CRC peripheral is ready to be configured for
the next CRC operation. The memory region has also been copied to its new destination.

The integrity check of the memory through the expected CRC signature has completed and the final result is indica-
ted through the CRC_STAT.CMPERR bit and the corresponding interrupt when enabled. The memory region has
also been copied to its final destination.

Clear any W1C CRC status bits before performing a further CRC operation. Also, clear any W1C status bits of the
memory-to-memory source and destination DMA channels before the next CRC operation.

DMA Driven Memory Transfer Data Fill Mode

This mode initializes a region of memory to a constant 32-bit value using DMA transactions.

The task assumes the following:

CRC Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 16–21

• The polynomial has been loaded and the look-up table is fully initialized

• All CRC interrupts have been serviced (none pending)

• The CRC block is disabled per the CRC_CTL.BLKEN bit

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the software calculates and verifies the signature.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This value is used to reload the CRC_DCNT register upon completion of
current CRC operation. If no further operation is needed, then this register can be initialized to zero.

3. Initialize the CRC_FILLVAL register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the CRC module uses to fill
the memory region.

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: The CRC module uses this register to enable the generation of the CRC
interrupts for notification of block completion. Configure these interrupts as required. If enabled, ensure that
the corresponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory transfer fill mode and the
CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

The CRC peripheral is now enabled and is ready for the DMA channel to write data.

6. Configure and enable the memory-to-memory destination DMA channel for memory write STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer taking the constant 32-bit value from the
CRC peripheral and writing the data to the DMA channel.

7. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: Perform this step only if counter expired interrupt is disabled. Polling en-
sures that all the data has been processed.

8. Write the CRC_STAT register to clear the CRC_STAT.DCNTEXP bit.

ADDITIONAL INFORMATION: If interrupts were enabled, then clear this status bit within the interrupt
handlers for the respective interrupts.

The CRC memory transfer fill operation is now complete and the CRC peripheral is ready to be configured for
the next CRC operation.

The memory region is now filled with the constant data and the CRC peripheral is ready to be configured for a new
operation.

CRC Mode Configuration

16–22 ADSP-CM41x Mixed-Signal Control Processor

Clear any W1C CRC status bits and DMA status bits before performing a further CRC operation.

CM41X_M4 CRC Register Descriptions
Cyclic Redundancy Check Unit (CRC) contains the following registers.

Table 16-4: CM41X_M4 CRC Register List

Name Description

CRC_COMP Data Compare Register

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTCAP Data Count Capture Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_DFIFO Data FIFO Register

CRC_FILLVAL Fill Value Register

CRC_INEN Interrupt Enable Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_POLY Polynomial Register

CRC_RESULT_CUR CRC Current Result Register

CRC_RESULT_FIN CRC Final Result Register

CRC_STAT Status Register

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–23

Data Compare Register

The CRC_COMP register contains the value corresponding to the expected CRC result or signature for the current
data stream. At the end of the operation, the content of this register is used to compare against the result produced
by the CRC operation. In data verify mode, each incoming data value is compared with the content of this register.

Expected CRC Result Value

Expected CRC Result Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-3: CRC_COMP Register Diagram

Table 16-5: CRC_COMP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Expected CRC Result Value.

The CRC_COMP.VALUE bit field contains the value corresponding to the expected
CRC result or signature for the current data stream.

CM41X_M4 CRC Register Descriptions

16–24 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The CRC_CTL register configures the operation modes and settings for the CRC.

Auto Clear to ZeroAuto Clear to One

Operation ModeOutput Buffer Ready Stall

Block EnableIntermediate Result Ready Stall

FIFO Data Select

Word16 SwappingResult Register Mirroring

Byte MirroringPolynomial Register Mirroring

Bit MirroringCOMPARE Register Mirroring

AUTOCLRZ (R/W)AUTOCLRF (R/W)

OPMODE (R/W)OBRSTALL (R/W)

BLKEN (R/W)IRRSTALL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FDSEL (R/W)

W16SWP (R/W)RSLTMIRR (R/W)

BYTMIRR (R/W)POLYMIRR (R/W)

BITMIRR (R/W)CMPMIRR (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-4: CRC_CTL Register Diagram

Table 16-6: CRC_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

22

(R/W)

CMPMIRR COMPARE Register Mirroring.

The CRC_CTL.CMPMIRR bit enables data mirroring for the CRC_COMP compare
register. When enabled, the 32-bit value in this register is fully bit mirrored (reversed).
The bit-reversed value is used for comparison with the CRC_RESULT_FIN register.

0 Disable compare mirroring

1 Enable compare mirroring

21

(R/W)

POLYMIRR Polynomial Register Mirroring.

The CRC_CTL.POLYMIRR bit enables data mirroring for the CRC_POLY polyno-
mial register. When enabled, the 32-bit value in this register is fully bit mirrored (re-
versed). The bit-reversed value is used for CRC computations.

0 Disable polynomial mirroring

1 Enable polynomial mirroring

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–25

Table 16-6: CRC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W)

RSLTMIRR Result Register Mirroring.

The CRC_CTL.RSLTMIRR bit enables data mirroring for the CRC_RESULT_CUR
and CRC_RESULT_FIN result registers. When enabled, the 32-bit values in these
registers are fully bit mirrored (reversed).

0 Disable result mirroring

1 Enable result mirroring

19

(R/W)

FDSEL FIFO Data Select.

The CRC_CTL.FDSEL bit selects whether the CRC writes modified or unmodified
data to the FIFO in memory transfer mode. If enabled, the data written is affected by
the state of the data mirroring selections (CRC_CTL.BITMIRR,
CRC_CTL.BYTMIRR, and CRC_CTL.W16SWP) before being written to the FIFO.

0 Write unmodified data to FIFO

1 Write modified data to FIFO

18

(R/W)

W16SWP Word16 Swapping.

The CRC_CTL.W16SWP bit enables the CRC's data mirror block to swap the upper
and lower 16-bit words within the 32-bit input data, before further processing.

0 Disable word16 swapping

1 Enable word16 swapping

17

(R/W)

BYTMIRR Byte Mirroring.

The CRC_CTL.BYTMIRR bit enables the CRC's data mirror block to mirror the
bytes within the 32-bit input data, before further processing.

0 Disable byte mirroring

1 Enable byte mirroring

16

(R/W)

BITMIRR Bit Mirroring.

The CRC_CTL.BITMIRR bit enables the CRC's data mirror block to mirror the bits
within each byte of the 32-bit input data, before further processing.

0 Disable bit mirroring

1 Enable bit mirroring

13

(R/W)

IRRSTALL Intermediate Result Ready Stall.

The CRC_CTL.IRRSTALL bit enables stalling the state machine for input data
when there is a valid intermediate result to be read in the CRC_RESULT_CUR regis-
ter. This feature should be used only in CRC computation modes (for example,
CRC_CTL.OPMODE =1 or =3).

0 Do not stall

1 Stall on IRR

CM41X_M4 CRC Register Descriptions

16–26 ADSP-CM41x Mixed-Signal Control Processor

Table 16-6: CRC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

OBRSTALL Output Buffer Ready Stall.

The CRC_CTL.OBRSTALL bit enables stalling the state machine for input data
when there is valid data in the output buffer. This feature should be used only in mem-
ory-to-memory transfer modes (for example, CRC_CTL.OPMODE =1).

0 Do not stall

1 Stall on OBR

9

(R/W)

AUTOCLRF Auto Clear to One.

The CRC_CTL.AUTOCLRF bit enables auto clear to one when the CRC is in inter-
mediate results ready stall mode (CRC_CTL.IRRSTALL=1) and the CRC data count
expires (CRC_DCNT=0).

Note that the CRC_CTL.AUTOCLRZ bit must be disabled, or the
CRC_CTL.AUTOCLRF bit has no effect.

0 No auto clear

1 Auto clear

8

(R/W)

AUTOCLRZ Auto Clear to Zero.

The CRC_CTL.AUTOCLRZ bit enables auto clear to zero when the CRC is in inter-
mediate results ready stall mode (CRC_CTL.IRRSTALL=1) and the CRC data count
expires (CRC_DCNT=0). Note that CRC_CTL.AUTOCLRF must be disabled, or the
CRC_CTL.AUTOCLRZ has no effect.

0 No auto clear

1 Auto clear

7:4

(R/W)

OPMODE Operation Mode.

The CRC_CTL.OPMODE bit field selects the memory transfer or scan mode.

0 Reserved

1 CRC compute/compare memory transfer

2 Data fill memory transfer

3 CRC compute/compare memory scan

4 Data verify memory scan

0

(R/W)

BLKEN Block Enable.

The CRC_CTL.BLKEN bit enables and disables the CRC operation.

0 Disable

1 Enable

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–27

Data Word Count Register

The CRC_DCNT register holds the word count that is used for the CRC operation. On transfer of every 32-bit
word, the CRC decrements by 1 the content of this register. When the count decrements to zero, this event triggers
a CRC compare action, and the CRC_DCNT register is automatically loaded from the CRC_DCNTRLD register for
the next CRC operation.

Note that the initial value programmed into the CRC_DCNT register may be different from what is programmed in
the CRC_DCNTRLD register.

Data Word Count

Data Word Count

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-5: CRC_DCNT Register Diagram

Table 16-7: CRC_DCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Data Word Count.

The CRC_DCNT.VALUE bit field holds the word count that is used for the CRC op-
eration.

CM41X_M4 CRC Register Descriptions

16–28 ADSP-CM41x Mixed-Signal Control Processor

Data Count Capture Register

The CRC_DCNTCAP register captures the CRC_DCNT value when a compare operation fails in data verify mode.
This capture can be used to track the position of an error in the data stream. The capture operation is enabled only
if the CRC_STAT.CMPERR bit indicates no compare error. After an error occurs and the data count is captured, no
further errors are logged until the CRC_STAT.CMPERR bit is cleared. To obtain the position of an error in the data
stream, subtract the CRC_DCNTCAP register value from the initial CRC_DCNT.

Data Count Capture Value

Data Count Capture Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-6: CRC_DCNTCAP Register Diagram

Table 16-8: CRC_DCNTCAP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Data Count Capture Value.

The CRC_DCNTCAP.VALUE bit field contains the CRC_DCNT value when a com-
pare operation fails in data verify mode.

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–29

Data Word Count Reload Register

The CRC_DCNTRLD register holds the value that the CRC automatically loads into CRC_DCNT when the
CRC_DCNT decrements to 0. At startup, the value programmed in CRC_DCNT and the CRC_DCNTRLD register
could be different. So, for the first iteration, the CRC operation happens for the count initially programmed in the
CRC_DCNT register. While for subsequent CRC operations, the count is taken from the CRC_DCNTRLD register.

Reload Value

Reload Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-7: CRC_DCNTRLD Register Diagram

Table 16-9: CRC_DCNTRLD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Reload Value.

The CRC_DCNTRLD.VALUE bit field holds the value that automatically loads into
CRC_DCNT when the CRC_DCNT decrements to 0.

CM41X_M4 CRC Register Descriptions

16–30 ADSP-CM41x Mixed-Signal Control Processor

Data FIFO Register

In memory transfer mode (non-data fill mode), the data from the DMA or processor core buses is written into the
CRC_DFIFO on each input data grant (DMA grant or core write). Data is read from this FIFO on each output
data grant (DMA grant or core read). FIFO status information is available in the CRC_STAT register. Whenever,
the FIFO has valid data, output data requests are generated.

Note that in non-memory transfer mode and in data fill mode, the input data does not get written into this FIFO.
So, this register should not be read in these modes.

Data FIFO Value

Data FIFO Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-8: CRC_DFIFO Register Diagram

Table 16-10: CRC_DFIFO Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Data FIFO Value.

The CRC_DFIFO.VALUE bit field is the data from the DMA or processor core bus-
es.

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–31

Fill Value Register

The CRC_FILLVAL register holds the value that the CRC uses for the memory fill operation. In data fill mode,
the value programmed in this register is used for the memory fill operation.

Memory Fill Value

Memory Fill Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-9: CRC_FILLVAL Register Diagram

Table 16-11: CRC_FILLVAL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Memory Fill Value.

The CRC_FILLVAL.VALUE bit field holds the value that the CRC uses for the
memory fill operation.

CM41X_M4 CRC Register Descriptions

16–32 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Enable Register

The CRC_INEN register unmasks (enables) or masks (disables) interrupt requests generated in the CRC from going
to the processor core.

Note that CRC interrupts are not disabled when the CRC is disabled (CRC_CTL.BLKEN =0).

Compare Error Interrupt Enable
Enable
Data Count Expired (Status) Interrupt

CMPERR (R/W)DCNTEXP (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-10: CRC_INEN Register Diagram

Table 16-12: CRC_INEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

DCNTEXP Data Count Expired (Status) Interrupt Enable.

The CRC_INEN.DCNTEXP enables (unmasks) the data count expired (CRC status)
interrupt.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

1

(R/W)

CMPERR Compare Error Interrupt Enable.

The CRC_INEN.CMPERR enables (unmasks) the data compare interrupt, which is
generated when CRC data comparison fails.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–33

Interrupt Enable Clear Register

The CRC_INEN_CLR register permits clearing individual bits in the CRC_INEN register without affecting other
bits in the register.

Compare Error ClearData Count Expired
CMPERR (R0/WC)DCNTEXP (R0/WC)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-11: CRC_INEN_CLR Register Diagram

Table 16-13: CRC_INEN_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R0/WC)

DCNTEXP Data Count Expired.

The CRC_INEN_CLR.DCNTEXP bit clears the data count expired (status) interrupt.

0 No effect

1 Clear bit

1

(R0/WC)

CMPERR Compare Error Clear.

The CRC_INEN_CLR.CMPERR bit clears the compare error interrupt.

0 No effect

1 Clear bit

CM41X_M4 CRC Register Descriptions

16–34 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Enable Set Register

The CRC_INEN_SET register permits setting individual bits in the CRC_INEN register without affecting other
bits in the register.

Compare Error Interrupt
Enable Set
Data Count Expired (Status) Interrupt

CMPERR (R0/WS)DCNTEXP (R0/WS)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-12: CRC_INEN_SET Register Diagram

Table 16-14: CRC_INEN_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R0/WS)

DCNTEXP Data Count Expired (Status) Interrupt Enable Set.

The CRC_INEN_SET.DCNTEXP bit sets the data count expired (status) interrupt.

0 No effect

1 Set bit

1

(R0/WS)

CMPERR Compare Error Interrupt.

The CRC_INEN_SET.CMPERR bit sets the compare error interrupt.

0 No effect

1 Set bit

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–35

Polynomial Register

The CRC_POLY register holds a 32-bit polynomial for CRC operations. Bit 31 corresponds to the coefficient of
x31 of the CRC polynomial, bit 30 corresponds to the coefficient of x30, and so on through bit 0. A coefficient of
x32 is assumed to be "1" for any polynomial that is selected. Based on the polynomial in the CRC_POLY register,
the CRC generates a look-up table (LUT), which is used to compute the CRC of the incoming data stream.

CRC Polynomial Value

CRC Polynomial Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-13: CRC_POLY Register Diagram

Table 16-15: CRC_POLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE CRC Polynomial Value.

The CRC_POLY.VALUE bit field holds the 32-bit polynomial for CRC operations.

CM41X_M4 CRC Register Descriptions

16–36 ADSP-CM41x Mixed-Signal Control Processor

CRC Current Result Register

The CRC_RESULT_CUR register holds the current or intermediate CRC result. It is updated when new data is
written into the CRC. Each time the CRC_DCNT expires, the CRC loads the value from this register into the
CRC_RESULT_FIN register. The CRC_RESULT_CUR register may be set to auto clear to zero or auto clear to
ones when CRC_DCNT expires by configuring the CRC_CTL.AUTOCLRZ and CRC_CTL.AUTOCLRF bits. Be-
fore starting a CRC operation, the CRC_RESULT_CUR register should be programmed to the desired value.

Note that this register can be read by the processor core at any time.

Intermediate CRC Result

Intermediate CRC Result

VALUE[15:0] (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

VALUE[31:16] (R/W)

X
31

X
30

X
29

X
28

X
27

X
26

X
25

X
24

X
23

X
22

X
21

X
20

X
19

X
18

X
17

X
16

Figure 16-14: CRC_RESULT_CUR Register Diagram

Table 16-16: CRC_RESULT_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Intermediate CRC Result.

The CRC_RESULT_CUR.VALUE bit field holds the current or intermediate CRC
result.

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–37

CRC Final Result Register

The CRC_RESULT_FIN register holds the final CRC computed for a data stream. A data stream is a DMA of
CRC_DCNT number of words into the CRC. When CRC_DCNT decrements to zero for each data stream, the CRC
loads the CRC_RESULT_FIN register with the value from the CRC_RESULT_CUR register.

Computed CRC

Computed CRC

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-15: CRC_RESULT_FIN Register Diagram

Table 16-17: CRC_RESULT_FIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Computed CRC.

The CRC_RESULT_FIN.VALUE bit field holds the final CRC computed for a data
stream.

CM41X_M4 CRC Register Descriptions

16–38 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The CRC_STAT register indicates the status for CRC operations and interrupt generation.

Compare ErrorData Count Expired

Intermediate Result Ready

Output Buffer ReadyLook-Up Table Done

Input Buffer ReadyFIFO Status

CMPERR (R/W1C)DCNTEXP (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

IRR (R)

OBR (R)LUTDONE (R)

IBR (R)FSTAT (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 16-16: CRC_STAT Register Diagram

Table 16-18: CRC_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

22:20

(R/NW)

FSTAT FIFO Status.

The CRC_STAT.FSTAT indicates the current FIFO status. This field is read-only.

0 FIFO empty

1 FIFO has 1 data

2 FIFO has 2 data

3 FIFO has 3 data

4 FIFO has 4 data (full)

19

(R/NW)

LUTDONE Look-Up Table Done.

The CRC_STAT.LUTDONE bit indicates that the CRC has generated the look-up ta-
ble for the current polynomial. This read-only bit is cleared at reset and cleared when
the CRC_POLY is written.

0 No status

1 LUT generation done

CM41X_M4 CRC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 16–39

Table 16-18: CRC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/NW)

IRR Intermediate Result Ready.

The CRC_STAT.IRR bit indicates that the CRC has updated the
CRC_RESULT_CUR register with intermediate CRC results for the new data written
to the CRC. The processor core should read from the CRC_RESULT_CUR register
only after detecting CRC_STAT.IRR =1. This read-only bit is cleared by CRC hard-
ware and is valid when the CRC_CTL.IRRSTALL bit is enabled.

0 No status

1 Intermediate results ready

17

(R/NW)

OBR Output Buffer Ready.

The CRC_STAT.OBR bit indicates that the CRC has data ready for the processor
core to read. The processor core should read from the CRC only after detecting
CRC_STAT.OBR =1. This read-only bit is cleared by CRC hardware.

0 No status

1 Output buffer ready

16

(R/NW)

IBR Input Buffer Ready.

The CRC_STAT.IBR bit indicates that the CRC is ready to accept a processor core
write. The processor core should write to the input register only after detecting that
CRC_STAT.IBR =1. This read-only bit is cleared by CRC hardware.

0 No status

1 Input buffer ready

4

(R/W1C)

DCNTEXP Data Count Expired.

The CRC_STAT.DCNTEXP bit indicates that the CRC_DCNT has expired. This
W1C bit is not automatically cleared when the CRC is disabled (CRC_CTL.BLKEN
=0). When the CRC sets this bit on CRC_DCNT expiry, the CRC generates the
CRC_INEN.DCNTEXP interrupt.

0 No status

1 Data counter expired

1

(R/W1C)

CMPERR Compare Error.

The CRC_STAT.CMPERR bit indicates that a CRC mismatch or data mismatch has
been detected. This W1C bit is not automatically cleared when the CRC is disabled
(CRC_CTL.BLKEN =0). When the CRC sets this bit on detecting a mismatch, the
CRC generates the CRC_INEN.CMPERR interrupt. While this bit is set, the
CRC_DCNTCAP register is disabled from capturing the data count values.

0 No status

1 Compare error

CM41X_M4 CRC Register Descriptions

16–40 ADSP-CM41x Mixed-Signal Control Processor

17 Direct Memory Access (DMA)

The processor architecture distributes the DMA channels throughout the infrastructure. Often, the channels cluster
together through system crossbars (SCB), sharing a single interface with the main system crossbar.

The DMA channels can perform transfers between memory and a peripheral or between one memory and another
memory. Memory-to-memory DMA transfers (MDMA) require two DMA channels. One channel is the source
channel, and the second, the destination channel.

All DMA channels can transport data to and from virtually all on-chip and off-chip memories.

DMA transfers on the processor use either a descriptor-based method or register-based method. Register-based
DMA allows the processor directly to program DMA controller registers to initiate a DMA transfer. On completion,
the controller registers can automatically update with their original setup values for continuous transfer, if needed.
Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a DMA sequence. De-
scriptor-based transfers allow the chaining together of multiple DMA sequences. In descriptor-based DMA opera-
tions, DMA channel programming can automatically set up and start another DMA transfer after the current se-
quence completes.

The DMA channel does not connect external memories and devices directly. Rather, data passes through an exter-
nal-memory interface port. DMA operations can access any device the external memory interface supports. These
interfaces typically include:

• Flash memory

• SRAM

• FIFOs

• Memory-mapped peripheral devices

• Dynamic Memory (if present)

DMA Channel Features
The processor uses Direct Memory Access (DMA) to transfer data within memory spaces or between a memory
space and a peripheral. The processor can specify data transfer operations and return to normal processing while the
fully integrated DMA channel carries out the data transfers independent of processor activity. The DMA channels
are dispersed throughout the infrastructure and interface with the system crossbar unit (SCB).

Direct Memory Access (DMA)

ADSP-CM41x Mixed-Signal Control Processor 17–1

The following is a list of DMA interface features.

• Supports integer byte strides including byte strides of 0 and negative byte strides

• Register-based configuration

• Core writes DMA configuration

• Supports automatic reloading for continuous operation

• Flexible descriptor-based configuration

• DMA descriptors are fetched from memory

• Support for variable descriptor sizes

• Flexible flow control – Transitions between the various descriptor-based modes and for DMA termination

• Orthogonal transfers

• Support for three transfer dimensions

• 1D and 2D transfers supported per descriptor set

• 3D support provided by chained descriptor sets

• Configurable memory and peripheral-transfer word sizes

• Memory interface supports 8-bit, 16-bit, 32-bit, 64-bit, 128-bit, and 256-bit transfers

•

• Peripheral interface supports for 8-bit, 16-bit, and 32-bit transfers

• Interrupt notification

• Row or work unit completion

• Error conditions

• Incoming and outgoing trigger support

• Trigger generation for row or work unit completion

• Work unit can wait for incoming trigger

• MMR access bus – Provides access to memory-mapped registers for configuration, monitoring, and debug

• SCB crossbar interface connects the DMA channel to the system crossbar

• Peripheral DMA bus – Interfaces the DMA channel to a peripheral or another DMA channel

• Peripheral data-request interrupt support

• Bandwidth monitoring and limiting for MDMA channels

DMA Channel Features

17–2 ADSP-CM41x Mixed-Signal Control Processor

DMA Channel Functional Description
This section provides a functional description of the DMA channel interface.

CM41X_M4 DMA Register List

The DMA channel controller (DMA) supports data transfers within memory spaces or between a memory space and
a peripheral. The processor can specify data transfer operations and return to normal processing while the fully inte-
grated DMA channel carries out the data transfers independent of processor activity. The DMA channels are dis-
persed throughout the infrastructure, as DMAn's. A set of registers governs DMA operations. For more information
on DMA functionality, see the DMA register descriptions.

Table 17-1: CM41X_M4 DMA Register List

Name Description

DMA_ADDRSTART Start Address of Current Buffer Register

DMA_ADDR_CUR Current Address Register

DMA_BWLCNT Bandwidth Limit Count Register

DMA_BWLCNT_CUR Bandwidth Limit Count Current Register

DMA_BWMCNT Bandwidth Monitor Count Register

DMA_BWMCNT_CUR Bandwidth Monitor Count Current Register

DMA_CFG Configuration Register

DMA_DSCPTR_CUR Current Descriptor Pointer Register

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor Register

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer Register

DMA_STAT Status Register

DMA_XCNT Inner Loop Count Start Value Register

DMA_XCNT_CUR Current Count (1D) or Intra-row XCNT (2D) Register

DMA_XMOD Inner Loop Address Increment Register

DMA_YCNT Outer Loop Count Start Value (2D only) Register

DMA_YCNT_CUR Current Row Count (2D only) Register

DMA_YMOD Outer Loop Address Increment (2D only) Register

CM41X_M4 DMA Channel List

Table 17-2: CM41X_M4 DMA Channel List

DMA ID DMA Channel Name Description

DMA0 SPI0_TXDMA SPI0 TX DMA Channel

DMA1 SPI0_RXDMA SPI0 RX DMA Channel

DMA Channel Functional Description

ADSP-CM41x Mixed-Signal Control Processor 17–3

Table 17-2: CM41X_M4 DMA Channel List (Continued)

DMA ID DMA Channel Name Description

DMA2 UART0_TXDMA UART0 Transmit DMA

DMA3 UART0_RXDMA UART0 Receive DMA

DMA4 UART1_TXDMA UART1 Transmit DMA

DMA5 UART1_RXDMA UART1 Receive DMA

DMA6 SPI1_TXDMA SPI1 TX DMA Channel

DMA6 UART2_TXDMA UART2 Transmit DMA

DMA7 SPI1_RXDMA SPI1 RX DMA Channel

DMA7 UART2_RXDMA UART2 Receive DMA

DMA8 HAE0_RXDMA_CH0 HAE0 RX0: DMA->HAE DATAI

DMA8 UART3_TXDMA UART3 Transmit DMA

DMA9 HAE0_TXDMA HAE0 TX: HAE->DMA

DMA9 UART3_RXDMA UART3 Receive DMA

DMA10 HAE0_RXDMA_CH1 HAE0 RX1: DMA->HAE DATAV

DMA10 SPORT0_A_DMA SPORT0 Channel A DMA

DMA10 UART4_TXDMA UART4 Transmit DMA

DMA11 SPORT0_B_DMA SPORT0 Channel B DMA

DMA11 UART4_RXDMA UART4 Receive DMA

DMA12 MDMA0_SRC MDMA0 Memory DMA Stream n
Source Channel

DMA13 MDMA0_DST MDMA0 Memory DMA Stream n
Destination Channel

DMA Definitions

To make the best use of the DMA controller, it is useful to understand the following terms.

Descriptor

An individual configuration fetched from memory that maps to a single register within a DMA channel.

Descriptor Fetch

The action of retrieving descriptors from memory through memory read operations and loading then into the DMA
channel registers upon their read return.

DMA Channel Functional Description

17–4 ADSP-CM41x Mixed-Signal Control Processor

Descriptor Set

A group of descriptors associated with a single work unit. See Descriptor-Based Flow Modes .

Disabled State

The channel is disabled because the enable bit = 0 or as a result of an error.

DMAC

An acronym used for a DMA cluster.

DMA Channel

A single DMA engine that has all the capabilities and registers as defined for a given processor. A DMA channel or
engine is connected to a single peripheral.

DMA Cluster

A grouping of multiple DMA channels with a shared SCB crossbar interface, controller, and arbiter. Also known as a
DMAC.

Initial Descriptor

The first descriptor in the descriptor set.

MDMA

Memory-to-Memory DMA data transfer. Two DMA channels are paired to perform a memory read from one ad-
dress location and a memory write of that data to another address location.

Stop State

A time where the channel is enabled but not currently programmed to perform a data transfer. Programming the
flow to STOP causes the channel to enter the stop state at the end of the work unit.

User

Any person, debug, emulator, software routine, or action taken by the core that accesses the MMR registers of the
DMA channel or peripherals, or sets up data and descriptors in memory.

DMA Channel Functional Description

ADSP-CM41x Mixed-Signal Control Processor 17–5

Wait State

If instructed to wait for a trigger, the channel enters this state once it has completed a work unit. The channel re-
mains in this state until a trigger occurs. If a trigger came in before reaching the wait state, the channel skips over the
wait state upon completion of the work unit.

Work Unit

A single data transaction or series of data transactions performed based on the configuration of the DMA channel.
For autobuffer mode, a new work unit is defined at the time all current count registers are initialized to start values.
Once all the current count registers count down to zero, the work unit has completed.

Work Unit Chain

A single work unit or a series of work units separated by a STOP or disabled state. The work units in the chain are
programmed to another descriptor flow. The last work unit in the chain is programmed to a flow of STOP or AUTO.
STOP terminates the state at the end of that work unit. AUTO must be be terminated by disabling the DMA channel.
A work unit chain is also known as a descriptor chain.

Block Diagram

The DMA Channel Block Diagram shows the functional blocks within the DMA interface.

DMA Channel Functional Description

17–6 ADSP-CM41x Mixed-Signal Control Processor

TRIGGER
REQUEST

ADDR_CUR

DSCPTR_CUR

XCNT_CUR

YCNT_CUR

TRIGGER
REQUEST

DMA
ERRORS

TRIGGER
CONTROL

ADDRESSING
UNIT

M
M

R
_W

R
IT

E_
D

AT
A

M
M

R
_R

EA
D

_D
AT

A

M
M

R
-_

R
EA

D
_A

D
D

R

FI
FO

_S
TA

T

DMA
ERRORS

CONTROL

MEMORY
MAPPED

REGISTERS

MMR ACCESS
BUS INTERFACE

STATE
MACHINE

XCNT_CUR

YCNT_CUR
DATA

TRANSFER
LOGIC

ADDR_CUR

DSCPTR_CUR

ADDR_CUR

DSCPTR_CUR

DESCRIPTOR
FETCH
UNIT

SCB
READ

INTERFACE
LOGIC

ERROR
UNIT

FIFO

DATA

FIFO
STATUS

DATA

PERIPHERAL
DMA BUS

INTERFACE

PD
M

A
_W

R
IT

E_
D

AT
A

PD
M

A
_R

EA
D

_D
AT

A

PD
M

A
_G

R
A

N
T

PD
M

A
_C

M
D

PD
M

A
_C

TR
L

DATA COMMANDS

D
M

A
_T

R
IG

_I
N

D
M

A
_T

R
IG

_O
U

T

D
O

N
E_

PI
R

Q
_I

N
T

D
M

A
_E

R
R

O
R

U
R

G
EN

T

SC
B

_W
R

IT
E_

D
AT

A

SC
B

_W
R

IT
E_

A
D

D
R

SC
B

_R
EA

D
_D

AT
A

SC
B

_R
EA

D
_A

D
D

R

TRIGGER
REQUEST

TRIGGER
CONTROL

TRIGGER
OVERRUN

ERROR

DMA
ERRORS

DATA
DESCRIPTOR

DATA

DATA ADDRESS

DATA

CONTROL

SCB
INTERFACE

INTERRUPT AND
TRIGGER UNIT

Figure 17-1: DMA Channel Block Diagram

For more information on the interfaces, see:

• DMA Channel Peripheral DMA Bus

• DMA Channel MMR Access Bus

• DMA Channel Event Control

• DMA Channel SCB Interface

Architectural Concepts

The DMA channel provides a method to transfer data between memory spaces or between memory and a peripheral
using a number of system interfaces. The DMA channel provides an efficient method of distributing data

DMA Channel Functional Description

ADSP-CM41x Mixed-Signal Control Processor 17–7

throughout the system, freeing up the processor core for other operations. Each peripheral that supports DMA
transfers has its own dedicated DMA channel or channels with its own register set. The register set configures and
controls the operating modes of the DMA transfers.

DMA Controller Multiplexing

The 14 DMA controllers are associated with one or more specific peripherals. Each controller supports the transfer
of one independent channel of data to or from memory. To assign a shared DMA controller to a specific peripheral,
program the appropriate selection in advance in the SYSBLK_DMA_MUXCTL register.

In general, all DMA-capable peripherals have more than one data channel—some have two (RX and TX), and the
HAE has three. When using a peripheral, all associated data channels for the peripheral must be assigned to the
appropriate DMA controller. The processor does not support assigning a subset of a peripheral’s DMA controllers to
that peripheral and the other controllers to another peripheral.

Some peripherals, the UART for example, support programming models for both DMA-driven and non-DMA (in-
terrupt-driven) transport operation. When using a peripheral, a DMA controller must be assigned in all cases, even
if not using a DMA-driven operation. In part this is because the DMA controller routes the DMA-request/data-
interrupt signal from the peripheral to the core, and without this interrupt connection, interrupt-driven operation
does not work.

Before changing the assignment of a shared DMA controller, ensure all of the DMA transactions are complete and
the controller is disabled (DMA_CFG.EN =0).

DMA Channel SCB Interface

The SCB interface connects the DMA channel to the SCB crossbar allowing for transfers to and from the processors
internal memory and other suitable system resources.

The DMA channel connects to the system interconnect through the SCB interface. This connection lets the DMA
channel perform work-unit data transfers with memories such as L1, L2 (internal), and L3 (external). In addition to
work unit data transfers, the SCB interface also is used for fetching descriptor sets for all the descriptor-based trans-
fer modes.

The DMA channel can support data bus widths of 16, 32, 64, or 128 bits. The data bus widths for a given DMA
channel on a specific processor can vary and are not configurable. Read the DMA_STAT.MBWID field to determine
the assigned bus widths.

SCB Interface Signals

The DMA channel operates at one of the SCLKn frequencies, as does the SCB interface. SCLK0 clocks all but four
DMA channels which are clocked by SCLK1. The SCB crossbar handles the internal arbitration of the transfer re-
quests of all the masters interfaced to the SCB crossbar instance.

The processor's SCB data buses are 32 bits. System ECC memories work most efficiently with aligned 32-bit access.
Word and byte accesses are fully supported but are less efficient.

Architectural Concepts

17–8 ADSP-CM41x Mixed-Signal Control Processor

Data Address Alignment

To prevent addressing errors and to maximize bandwidth of the SCB interface to the DMA channel, data addresses
align with a multiple of the programmable memory size of the DMA channels configuration. These configuration
options appear in the Descriptor Set Address Alignment table.

There are situations in which entire work units may not transfer at the maximum configurable memory size. In this
case, the entire work unit can transfer by reducing the configured memory size at the expense of bus bandwidth
using descriptor sets as follows:

• The first descriptor set can be configured to transfer data until the larger memory size alignments are met.

• A second descriptor set with a larger memory size configuration then can be used to transfer the bulk of the
data in the work unit.

• Finally, a third descriptor set can be used with a smaller memory size to complete any final data transfers that
cannot meet the alignment requirements of the previous descriptor set configuration.

Table 17-3: DMA Channel Address Alignment Requirements

Configured Memory Size Address Restriction

1 Byte No restriction

2 Bytes ADDR[0] == 0

4 Bytes ADDR[1:0] == 0

Descriptor Set Address Alignment

All descriptor set addresses and descriptors within a descriptor set must align to a 32-bit address. For descriptor set
fetches, the DMA engine ignores the memory-size configuration of the DMA channel. This feature avoids the need
to align descriptor sets based on the memory width configuration of the previous descriptor set.

For descriptor sets containing only a single descriptor, the transfer takes place as a single 32-bit transfer. For descrip-
tor sets containing multiple descriptors, the DMA engine fetches each 32-bit descriptor individually and treats it as
multiple 32-bit transfers.

DMA Channel Peripheral DMA Bus

The DMA channel connects to peripherals or other DMA channels through the peripheral DMA bus. This bus is a
dedicated point-to-point interface that supports a 32-bit bus width . The data bus widths for a given DMA channel
on a particular processor can vary and are not configurable. Reading the DMA_STAT.PBWID field permits deter-
mining the assigned bus width.

The DMA channel operates at one of the SCLKn frequencies, as does the peripheral DMA bus. The Peripheral
DMA Bus Signals table provides descriptions of the peripheral DMA bus signals.

DMA Channel SCB Interface

ADSP-CM41x Mixed-Signal Control Processor 17–9

Table 17-4: Peripheral DMA Bus Signals

Signal Width (bits) Description

PDMA_WRITE_DATA 32 Data bus used for write operations. The width of the bus can be deter-
mined from DMA_STAT.PBWID.

PDMA_READ_DATA 32 Data bus used for read operations. The width of the bus can be deter-
mined from DMA_STAT.PBWID.

PDMA_DMA_GRANT Control signals to indicate that data is valid for DMA channel read opera-
tions (peripheral transmit). These signals indicate that the DMA channel
is ready to receive data for write operations (peripheral receive).

PDMA_CMD 3 The peripheral uses the signal for issuing DMA channel control com-
mands.

PDMA_CTRL The peripheral uses the control signals to send various commands to the
DMA channel and control the direction of flow.

Peripheral Control Commands

The peripheral DMA bus of the DMA channel provides a means for peripherals on the processor to issue commands
to the DMA channel. These commands provide greater control over the DMA channel operation. This control im-
proves real-time performance and relieves control and interrupt demands on the core. Peripherals can send com-
mands to the DMA controller over the 3-bit PERI_CMD bus. The DMA control commands extend the set of oper-
ations available to the peripheral beyond the simple “request data” command used by peripherals in general. Refer to
the appropriate peripheral chapter for a description on how that peripheral uses DMA control commands.

These DMA control commands (see the PDMA_CMD Peripheral DMA Control Commands table) are not visible
to or controlled by the program. But, their use by a peripheral has implications for the structure of the DMA trans-
fers that the peripheral can support. It is important to write application software such that it complies with certain
restrictions, regarding work units and descriptor chains. Complying with this guideline makes the peripheral operate
properly whenever it issues DMA control commands.

The PDMA_CMD Peripheral DMA Control Commands table describes the commands the DMA controller issues.
The following sections describe these commands in more detail.

Table 17-5: PDMA_CMD Peripheral DMA Control Commands

Command Name Description

b#000 NOP No operation

b#001 Restart Restarts the current work unit from the beginning

b#010 Finish Finishes the current work unit and starts the next

b#011 Interrupt Immediately sets the DMA completion interrupt in the DMA chan-
nel

b#100 Request Data Typical DMA data request

b#101 Request Data Urgent Urgent DMA data request

DMA Channel Peripheral DMA Bus

17–10 ADSP-CM41x Mixed-Signal Control Processor

Table 17-5: PDMA_CMD Peripheral DMA Control Commands (Continued)

Command Name Description

b#110 Reserved Reserved

b#111 Reserved Reserved

Idle Command

The DMA channel drives this command when the enabled peripheral has no data requests required.

Restart Command

This command causes the current work unit to interrupt processing and start again, using the addresses and count
values from the DMA_ADDRSTART, DMA_XCNT, and DMA_YCNT registers. The DMA controller does not signal
an interrupt request when the work unit terminates.

If a channel programmed to transmit (memory read) receives a restart command, the channel momentarily pauses,
permitting any pending memory reads initiated before the restart command to complete. During this period, the
channel does not grant DMA requests. After all pending reads flush from the pipelines of the channel, the channel
resets its counters and FIFO, and then starts pre-fetch reads from memory. The DMA controller grants data requests
from the peripheral as soon as new prefetched data is available in the DMA FIFO. In this case, the peripheral can
use the restart command to reattempt a failed transmission of a work unit.

If a channel programmed to receive (memory write) receives a restart command, the channel stops writing to memo-
ry, discards any data held in its DMA FIFO, and resets its counters and FIFO. As soon as this initialization is com-
plete, the channel again grants DMA write requests from the peripheral. In this case, the peripheral can use the re-
start command to abort the transfer of received data into a work unit, and reuse the memory buffer for a later data
transfer.

The request from the restart control command is not granted or acknowledged. The DMA controller always accepts
the request.

Finish Command

The finish command causes the current work unit to terminate processing and move on to the next work unit. If
enabled within the DMA_CFG register, the DMA channel signals an interrupt or a trigger event. The peripheral can
then use the finish command to partition the DMA stream into work units on its own. This partitioning occurs---
perhaps as a result of parsing the data currently passing though its supported communication channel---without di-
rect real-time control by the processor.

When a DMA channel programmed to transmit (memory read) then receives a finish command, the channel mo-
mentarily pauses for the completion of any pending memory reads, which were initiated prior to the finish com-
mand. During this time, the channel does not grant DMA requests. After the flush of all pending reads from the
pipelines of the channel, the channel signals an interrupt request or a trigger (if enabled) and begins fetching the
next descriptor (if any). DMA data requests from the peripheral are granted as soon as new prefetched data is availa-
ble in the DMA FIFO.

Peripheral Control Commands

ADSP-CM41x Mixed-Signal Control Processor 17–11

If a channel programmed to receive (memory write) then receives a finish command, the channel stops granting new
DMA requests while it drains its FIFO. The channel writes to memory any DMA data received by the DMA
channel prior to the finish command. When the FIFO reaches an empty state, the channel signals an interrupt or a
trigger (if enabled) and begins fetching the next descriptor (if any). After fetching the next descriptor, the channel
initializes its FIFO, then resumes granting DMA requests from the peripheral.

The finish command request is not granted or acknowledged. The request is always accepted by the DMA channel.

Interrupt Command

The interrupt command causes the DMA channel to generate an interrupt request. When programming the channel
to support this command, configure the DMA_CFG.INT bit field to PIRQ mode. This configuration directs the
channel not to generate interrupt requests based on the work unit state. Instead, the channel generates interrupts
only when it receives the interrupt command from the peripheral. When the channel receives an interrupt request
command, the DMA_STAT.PIRQ bit indicates the event under the following conditions:

• The DMA_CFG.EN bit enables the DMA channel.

• The DMA channel is in the stop state.

• The interrupt in DMA_CFG.INT is configured for PIRQ mode.

The peripheral only issues the interrupt command in response to receiving the last grant command from the DMA
channel, indicating that the transfer is the last transfer in the work unit.

Request-Data Command

The request data command is a request for data transfers between the DMA channel and the peripheral. The request
is held by the peripheral until granted or acknowledged by the DMA channel.

Request-Data Urgent Command

The request-data urgent command behaves identically to the request data command, except that---during the com-
mands assertion---the DMA channel performs its memory accesses with urgent priority. This priority includes both
data and descriptor fetch memory accesses. For example, a DMA management capable peripheral can use this con-
trol command if an internal FIFO approaches a critical condition.

The request is held by the peripheral until granted or acknowledged by the DMA channel.

Peripheral-Control Command Restrictions

The proper operation of the DMA channel FIFO leads to certain restrictions in the sequence of DMA peripheral
control commands issued by a peripheral. The following sections describe these restrictions.

Transmit-Restart or Transmit-Finish Command

A peripheral only can issue a restart or finish control command to a channel configured for memory read under the
following conditions:

• The peripheral has already performed at least one DMA transfer in the current work unit.

• The current work unit has (FIFO_SIZE/DMA_CFG.MSIZE) + 1 memory transfers remaining.

Peripheral Control Commands

17–12 ADSP-CM41x Mixed-Signal Control Processor

The first item ensures that the work unit has started. The second item ensures that the work unit has not completed.
The second item is sufficiently large that it is always at least five more than the maximum data count before any
restart or finish command. If using restart or finish commands to manage a work unit, this requirement implies that
the work unit must have DMA_XCNT_CUR and DMA_YCNT_CUR register values representing at least five data
items.

To satisfy the second item, ensure that the number of memory transfers described by the descriptor is
(FIFO_SIZE/DMA_CFG.MSIZE) + 1 larger than the maximum number of memory transfers expected.

Receive-Restart or Receive-Finish Commands

A peripheral only can issue a restart or finish control command to a channel configured for memory write under the
following conditions:

• The number of peripheral transfers completed is less than (DMA_CFG.MSIZE/DMA_CFG.PSIZE) × (trans-
fers described by descriptor).

• In addition to the previous condition, one of the following conditions also must apply:

• A finish command terminated the previous work unit, and the peripheral has done at least one transfer in
the current work unit.

• The peripheral has done (FIFO_SIZE/DMA_CFG.PSIZE) + 1 transfers in the current work unit.

The first condition ensures that the descriptor is still active. The second set of conditions ensures that data from the
previous descriptor has left the FIFO and that the current descriptor has started.

Memory DMA and Triggering

A memory DMA (MDMA) channel provides a means of doing memory-to-memory DMA transfers among the vari-
ous memory spaces that have DMA support.

The DMA controller implements memory DMA (MDMA) channels by interfacing two DMA channels through the
peripheral DMA bus interface. One DMA channel serves for memory read operations, and the second channel serv-
ers for memory writes. Depending on the processor, a memory DMA channel can have an additional peripheral,
such as a CRC peripheral. The additional peripheral is inserted into the peripheral DMA bus that optionally can be
enabled.

MDMA channels utilize one predefined controller for memory read operations (MDMA_SRC) and a second prede-
fined controller for memory write operations (MDMA_DST).

Peripheral-Control Command Restrictions

ADSP-CM41x Mixed-Signal Control Processor 17–13

PERIPHERAL DMA BUS INTERFACE

SCB INTERFACE

DMA CHANNEL DMA CHANNEL

PERIPHERAL DMA BUS INTERFACE

SCB INTERFACE

CRC INTERFACE

Figure 17-2: MDMA Channel Dedicated Pair

PERIPHERAL DMA BUS INTERFACE

DMA CHANNEL

SCB INTERFACE

DMA CHANNEL

PERIPHERAL
INTERFACE BRIDGE

READ INTERFACE WRITE INTERFACE

PERIPHERAL

PERIPHERAL DMA BUS INTERFACE

SCB INTERFACE

Figure 17-3: MDMA Channel Pair with Peripheral

A memory-to-memory transfer always requires enabled source and destination channels. Because the channels inter-
face through the peripheral DMA bus and can have an additional peripheral inserted into the peripheral DMA bus,
programs must make sure to set the same values in the DMA_CFG.PSIZE of both the source and destination chan-
nels.

The memory DMA channels support the full range of the DMA_CFG.MSIZE options for the DMA transfers to
and from the memories.

Because the MDMA channel consists of two DMA channels, the entire MDMA channel has two sets of FIFOs, one
in the read channel and one in the write channel. This FIFO usage allows for more efficient bursting of both read
and write transactions using the available bandwidth. While the DMA_CFG.PSIZE configuration must be identical
for both source and destination DMA channels, this restriction does not apply for the DMA_CFG.MSIZE configu-
ration.

Architectural Concepts

17–14 ADSP-CM41x Mixed-Signal Control Processor

Configure the DMA_CFG.PSIZE bits to a value no larger than the supported bus width of the peripheral DMA
bus.

The independent source and destination DMA channels also have their own dedicated interrupt and trigger events.
While it is normal practice to have only event generation performed at destination DMA completion, programs also
can use other means of interrupt generation.

Configuration of an MDMA transfer is done in a similar manner to peripheral DMA transfers, except for writing
two DMA channel registers instead of one.

To control the pace of data transfers, use triggers on either the memory read or the memory write channel pair used
in an MDMA operation. Setting the DMA_CFG.TWAIT bit in the memory read channel prevents both channels
from transferring data before the system is ready. However, only configuring the memory write channel to wait for a
trigger allows for data fetch from the memory in anticipation of the memory write operation.

DMA Channel MMR Access Bus

The MMR access bus provides access to all the DMA channels memory-mapped registers for DMA channel config-
uration, monitoring, and debug. The interface has a fixed 32-bit data bus for read and write accesses.

The MMR Access Bus Signals table provides descriptions of the MMR access bus signals.

Table 17-6: MMR Access Bus Signals

Signal Width (bits) Description

MMR_WRITE_DATA 32 Data bus used for write operations to the MMRs from the core

MMR_READ_DATA 32 Data bus used to return read data from the MMRs

MMR_READ_ADDR 7 Address used to select the MMR to access

DMA Channel Operation Flow

A detailed description of the flow of operation of the DMA channel appears in the following topics:

• Startup Flow

• Refresh Flow

• DMA Operating Modes

• Stop Mode

• DMA Channel Errors

Startup Flow

Enabling a DMA operation on a given channel first requires directly writing some or all of the DMA parameter
registers. The minimum set of register required to be initialized depends on the desired mode of operation as descri-
bed in the following sections.

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 17–15

Startup Minimum-Enable Requirements

To start a DMA operation on a given channel, some or all of the DMA parameter registers must first be initialized
and configured to the desired DMA channels operating mode.

• For descriptor-array-based flow modes, at minimum, write the DMA_DSCPTR_CUR register prior to writing to
the DMA_CFG register, which is the special action required to start the DMA channel.

• For descriptor-list-based flow modes, at minimum, write the DMA_DSCPTR_NXT register prior to writing to
the DMA_CFG register, which is the special action required to start the DMA channel.

• For non-descriptor-based flow modes, write the DMA_ADDRSTART, DMA_XCNT, and DMA_XMOD registers
prior to writing the DMA_CFG register.

Programs can write other registers that can remain static throughout the course of the DMA activity. The write to
the DMA_CFG register begins the DMA operation.

ATTENTION: When software directly writes the DMA_CFG register, the DMA controller recognizes this action as
the special startup condition. This condition occurs when starting the DMA controller for the first
time on this channel or occurs after the DMA channel stops. It is possible for the channel to flag a
DMA error condition regardless of the DMA_CFG.EN bit setting.

Startup Operation

The startup operation is initiated by software directly writing the DMA_CFG register when starting DMA for the
first time on a channel or after the channel has entered to the stop state.

When the descriptor fetch is complete and the DMA channel is enabled, the DMA_CFG descriptor element in the
DMA_CFG register assumes control. Before this point, the direct write to the DMA_CFG register had control.

At startup, the selected flow mode and the descriptor size determine the course of the DMA initialization process.
The DMA_CFG.FLOW field determines whether to load more current registers from descriptor sets in memory. The
DMA_CFG.NDSIZE field details how many descriptor elements to fetch before starting the DMA operation. This
process does not affect DMA registers that are not in the descriptor; no modifications are made to their prior values.

For descriptor-list flow modes, the channel copies the DMA_DSCPTR_NXT register value into the
DMA_DSCPTR_CUR register. Then, the channel fetches new descriptor elements from memory. The
DMA_DSCPTR_CUR register indexes each fetch, and the channel increments the index after each fetch. After com-
pletion of the descriptor fetch, the DMA_DSCPTR_CUR register points to the next 32-bit word in memory past the
end of the descriptor.

If the descriptor fetch is for a descriptor-array mode transfer, the channel does not copy the DMA_DSCPTR_NXT
register into the DMA_DSCPTR_CUR register. Instead, the descriptor fetch indexing begins with the value in the
DMA_DSCPTR_CUR register.

If DMA_CFG is not part of the fetched descriptor set, the previous value (originally as written on startup) controls
the work unit operation. If the DMA_CFG register is part of the fetched descriptor set, the value programmed by the
MMR access controls only the loading of the first descriptor fetched from memory. The configuration of the
DMA_CFG register controls the subsequent DMA work units of the fetched descriptor set.

Startup Flow

17–16 ADSP-CM41x Mixed-Signal Control Processor

After the descriptor fetch is complete or if the flow configuration was originally for one of the register-based flow
modes, the DMA operation begins. The DMA channel immediately fills its FIFO. For a memory-write operation,
the DMA channel begins accepting data from the peripheral. For a memory-read operation, the DMA channel be-
gins memory reads when the SCB bus grants access to the DMA channel.

When the DMA channel performs its first data-memory access, its address and count computations take their input
operands from the start registers. These registers can include DMA_ADDRSTART, DMA_XCNT, and DMA_YCNT, if
necessary. The channel writes results back to the current registers. These registers include DMA_ADDR_CUR,
DMA_XCNT_CUR, and DMA_YCNT_CUR. Note that the current registers are not valid until the channel performs
the first memory access, which can be some time after the write to the DMA_CFG register starts the channel. Once
started, the channel automatically loads the current registers from the appropriate descriptor elements, overwriting
their previous contents. These automatic-load operations include:

• The channel copies the DMA_ADDRSTART value to DMA_ADDR_CUR.

• The channel copies the DMA_XCNT value to DMA_XCNT_CUR.

• The channel copies the DMA_YCNT to DMA_YCNT_CUR.

Refresh Flow

When the channel completes processing of a work unit, the DMA channel performs the following operations:

• Completes the transfer of all data between memory and the DMA channel.

• Performs a synchronized transition (if the DMA channel configuration is a memory read operation with the
DMA_CFG.SYNC bit enabled) and transfers all data to the peripheral before continuing.

• Forwards the signals from the DMA channel (if interrupts or triggers are enabled) and updates the DMA_STAT
register to indicate the interrupt request or trigger events.

• Clears the DMA_STAT.RUN bit field to stop DMA operation (if the flow was set to stop mode) and transfers
any remaining data in the FIFO of the DMA channel to the peripheral.

• Loads a new descriptor from memory into the DMA registers by way of the contents of the
DMA_DSCPTR_CUR register (for descriptor-array mode) and increments the DMA_DSCPTR_CUR register

The channel takes the descriptor size from the DMA_CFG.NDSIZE value before the fetch.

• Copies the DMA_DSCPTR_NXT register into the DMA_DSCPTR_CUR register (for descriptor-list mode),
fetches the descriptor from the new contents of the DMA_DSCPTR_CUR register, and places these contents
into the DMA registers while incrementing the DMA_DSCPTR_CUR register.

• Checks for detection of an incoming trigger event (for descriptor-on-demand array mode):

• If the channel detects a trigger event, the DMA channel loads a new descriptor from memory into the
DMA registers from the contents of the DMA_DSCPTR_CUR register, while incrementing the
DMA_DSCPTR_CUR register. The channel takes the descriptor size from the DMA_CFG.NDSIZE value
before the fetch.

DMA Channel Operation Flow

ADSP-CM41x Mixed-Signal Control Processor 17–17

• If the channel detects no trigger event, the DMA channel begins the next work unit by reloading the cur-
rent registers.

• Checks for detection of an incoming trigger event (for descriptor-on-demand list mode):

• If the channel detects a trigger event, the DMA channel copies the DMA_DSCPTR_NXT register value to
the DMA_DSCPTR_CUR register, fetches the descriptor memory from the DMA_DSCPTR_CUR register,
and places the contents into the DMA registers while incrementing the DMA_DSCPTR_CUR register.

• If the channel detects no trigger event, the DMA channel begins the next work unit by reloading the cur-
rent registers as described in the next step.

• Begins the next work unit (if flow configuration is anything other than stop mode) by reloading the current
registers (DMA_ADDR_CUR, DMA_XCNT_CUR, and DMA_YCNT_CUR) from their descriptor registers
(DMA_ADDRSTART, DMA_XCNT, and DMA_YCNT)

Work Unit Transition Flow

The DMA_CFG.SYNC bit controls transitions from one work unit to the next work unit. In general, continuous
transitions have lower latency at the cost of restrictions on changes of data format or addressed memory space in the
two work units. These latency gains and data restrictions arise from the way the channel handles the DMA FIFO
while fetching the next descriptor.

In continuous transitions, with disabled synchronization, the DMA FIFO pipeline continues to transfer data to and
from the peripheral or destination memory. These transfers continue during the descriptor fetch and during the
DMA channel pause between descriptor chains. By comparison, synchronized transitions provide better real-time
synchronization of interrupts and triggers with a given peripheral state. Synchronized transitions also provide greater
flexibility in the data formats and memory spaces of the two work units. This flexibility comes at the cost of higher
latency in the transition. In synchronized transitions, the DMA FIFO pipeline drains to the destination or flushes
(received data discarded) between work units.

NOTE: The DMA_CFG.SYNC bit of the MDMA source channel controls work unit transitions for MDMA
streams. Clear this reserved bit of the MDMA destination channel, placing it in the disabled state. In
transmit (memory read) channels, the DMA_CFG.SYNC bit of the last descriptor before the transition
controls the transition behavior. In contrast, in receive channels, the DMA_CFG.SYNC bit of the first de-
scriptor of the next descriptor chain controls the transition.

Work Unit Transmit and MDMA Source Transitions

In DMA transmit (memory read) and MDMA source channels, the DMA_CFG.SYNC bit controls the interrupt
timing at the end of the work unit. This bit also controls the handling of the DMA FIFO between the current and
the next work unit.

If the DMA_CFG.SYNC bit configuration disables synchronization, the DMA channel operates in continuous tran-
sition. In a continuous transition, just after reading the last data item from memory, the DMA channel starts all of
the following operations parallel:

• Signals the interrupt request or trigger

DMA Channel Operation Flow

17–18 ADSP-CM41x Mixed-Signal Control Processor

• Updates the DMA_STAT register to indicate DMA completion status

• Begins fetching the next descriptor

• Delivers the final data items from the DMA FIFO to the destination memory or peripheral

This process lets the DMA channel provide data from the FIFO to the peripheral continuously during the descriptor
fetch latency period.

If the configuration disables synchronization, the final interrupt request or trigger (if enabled) occurs when the
channel reads the last data from memory. This event occurs at the earliest time that the channel safely can modify
the output memory buffer without affecting the previous data transmission. There can be a number of data items
remaining in the FIFO and not yet at the peripheral. This number depends on the FIFO depth of the DMA chan-
nel. In this configuration, do not use the DMA interrupt request as the sole means of synchronizing the shutdown
or reconfiguration of the peripheral following a transmission.

NOTE: If the configuration selects continuous transition on a transmit (memory read) descriptor, the next descrip-
tor must have the same:

• Peripheral transfer size (DMA_CFG.PSIZE)

• Read or write direction

• Source memory (internal versus external) as the current descriptor

It is possible to disable synchronization by selecting continuous transition on a work unit with configuration for
stop-flow mode and with enabled interrupts or triggers. This approach can result in the execution of the event serv-
ice routine while draining of the final data is ongoing from the FIFO to the peripheral. If data transfers are in-pro-
gress, the FIFO is not yet empty. The DMA_STAT.RUN bits of the DMA channels indicate this status. Do not start
a new work unit with a different peripheral transfer size or direction while data transfers are in-progress.

CAUTION: Disabling the channel with the DMA_CFG.EN bit while data transfers are in-progress causes the loss
of the data in the FIFO.

A synchronized transition configuration directs the channel to drain the DMA FIFO to the destination memory or
peripheral. This FIFO operation occurs before the channel signals any interrupt and before the channel fetches any
subsequent descriptor or data. This operation incurs greater latency, but provides direct synchronization between the
DMA interrupt and the state of the data at the peripheral.

If the configuration enables synchronization and enables interrupts, on the last descriptor in a work unit, the inter-
rupt occurs when the channel transfers the final data to the peripheral. This event allows the service routine to
switch properly to non-DMA transmit operation. When the event vectors to the interrupt service routine, the DMA
channel FIFO is empty, and the DMA channel is no longer running (indicated by the DMA_STAT.RUN bits).

A synchronized transition also allows greater flexibility in the format of the DMA descriptor chain. When enabled,
the next descriptor can have any DMA_CFG.PSIZE configuration or read/write direction supported by the periph-
eral and can come from either memory space (internal or external). This feature can be useful in managing MDMA
work unit queues, since it is no longer necessary to interrupt the queue between dissimilar work units.

Work Unit Transition Flow

ADSP-CM41x Mixed-Signal Control Processor 17–19

Work Unit Receive and MDMA Destination Transitions

In DMA receive channels (memory write operations), the DMA_CFG.SYNC bit controls the handling of the DMA
FIFO between descriptor chains (not individual descriptor sets), during the DMA channel pause. The DMA chan-
nel pauses after the descriptor sets configured with stop flow mode are complete. Restart the channel (for example,
after an interrupt) by writing the DMA_CFG register of the channel with a value that enables the DMA channel. If
the configuration disables synchronization in the DMA_CFG value of the new work unit, the configuration selects a
continuous transition. In this mode, the DMA FIFO retains any data items received during the channel pause, and
they are the first items written to memory in the new work unit. This mode of operation provides lower latency at
work unit transitions and ensures no dropping of data items during a DMA pause. The channel provides this opera-
tion at the cost of certain restrictions on the DMA descriptors.

NOTE: If the DMA_CFG.SYNC bit disables synchronization on the first descriptor of a chain after a DMA pause,
do not change the configuration of the DMA_CFG.PSIZE field of the new chain from the previous de-
scriptor chain (active before the pause). This restriction applies unless the DMA channel is reset between
chains by disabling and then re-enabling the DMA channel.

If the DMA_CFG.SYNC bit configuration enables synchronization, the channel uses a synchronized transition. In
this mode, only the data that the DMA channel receives from the peripheral after the write to the DMA_CFG regis-
ter gets to memory. The channel discards any prior data items transferred from the peripheral to the DMA FIFO
before this register write occurs. This operation provides direct synchronization between the data stream received
from the peripheral and the timing of the channel restart, which occurs on the write to the DMA_CFG register.

For receive DMA operations, the synchronization has no effect in transitions between work units in the same de-
scriptor chain. When the flow mode of previous descriptor was not stopped, the DMA channel did not pause.

If a descriptor chain begins with synchronization enabled, there is no restriction on the DMA_CFG.PSIZE of the
new chain in comparison with the previous chain.

NOTE: The peripheral transfer size (DMA_CFG.PSIZE) must not change between one descriptor and the next in
any DMA receive (memory write) channel within a single descriptor chain, regardless of the
DMA_CFG.SYNC bit setting. In other words, all memory write descriptor sets in a descriptor chain must
have the same DMA_CFG.PSIZE value. For any DMA receive channel (memory write operation), there
is no restriction on changes of peripheral transfer size (internal versus external) between descriptors or de-
scriptor chains.

Transfer Termination and Shutdown Flow

This section describes channel transfer termination and shutdown in stop flow mode and in autobuffer flow mode.

Stop Flow Mode

In stop flow mode, the DMA channel stops automatically after the work unit is complete. If using a list or array of
descriptors to control DMA transfers and if every descriptor contains a DMA_CFG descriptor element, configure the
flow of the final DMA_CFG descriptor element to stop mode, stopping the channel gracefully. After completion, the
DMA channel remains in the stop state. Do not confuse this state with the disabled state, which either occurs due to
a DMA error or occurs through disabling the DMA channel by configuring the DMA_CFG.EN bit.

Work Unit Transition Flow

17–20 ADSP-CM41x Mixed-Signal Control Processor

The intention of disabling the DMA channel through a write to the DMA_CFG.EN bit is to shut down the DMA
channel and to enter the disabled state. All memory and peripheral data transfers cease, and only peripheral inter-
rupts pass through the DMA channels interrupt signals. However, the DMA channel maintains the
DMA_STAT.RUN bits. For a write to memory, the outstanding memory-transaction counter tracks returning mem-
ory write acknowledgments and updates as required.

For memory reads, the outstanding memory-transaction count also tracks returning memory reads. The channel
does not write the memory reads into the FIFO. The channel updates the counter to reflect the completion of the
transaction, but the channel ignores the data. The DMA_STAT.RUN bits remain in the waiting for write ACK or
FIFO drain to peripheral state and do not change to stop or idle state until the return of all outstanding transactions.

When the DMA_CFG.EN bit again enables the DMA channel, the channel performs a full reset and clears all coun-
ters. If an outstanding memory transaction returns an acknowledgment or read data after this event, a memory
transaction error occurred, which generates an error event. Programs must ensure that all outstanding memory trans-
actions complete before reconfiguring the DMA channel. For example, programs can poll the DMA_STAT.RUN
bits to return to the stop or idle state before proceeding.

Autobuffer Flow Mode

In this mode, the flow does not use any descriptors in stored memory. Instead, the channel performs DMA in a
continuous circular buffer fashion, based on user-programmed DMA register settings. On completion of the work
unit, the channel reloads the parameter registers into the current registers, and the DMA controller resumes immedi-
ately with zero overhead. Consider this mode as a succession of automatically restarted work units.

For autobuffer-flow modes, the only way to cease operations is to disable the DMA channel through the
DMA_CFG.EN bit. One method of changing to a new work unit is:

• Disable the DMA channel

• Set up all the registers (and descriptors in memory, if used) except for DMA_CFG
• Poll DMA_STAT.RUN to wait for the status to reflect stop or idle state, and

• Write DMA_CFG to the new configuration to begin the next work unit

In autobuffer-flow mode or for a list or array of descriptor sets without DMA_CFG descriptors, use an MMR write
to the DMA_CFG register to terminate the DMA transfer process. Configure the value of the DMA_CFG.EN bit in
this register to disable the DMA channel.

CAUTION: When the configuration disables a DMA channel, the DMA controller disables interrupt logic that is
based on work unit transitions. Be aware of the system environment and current actions, so that addi-
tional interrupts are not required from the DMA channel.

CAUTION: If disabled through DMA_CFG.EN in the middle of a transaction, the DMA channel completes any
transactions that have begun and avoids generating bus errors. However, the channel considers the ac-
tion of re-enabling the DMA as a hard reset for all internal DMA channel components. Therefore, pay
attention to that particular action to avoid unexpected results.

Transfer Termination and Shutdown Flow

ADSP-CM41x Mixed-Signal Control Processor 17–21

DMA Channel Errors

When an error occurs, the DMA channel maintains all the state and register values that allow programs to diagnose
error causes more thoroughly. The greatest benefit to the programmer is to know exactly what operational state the
DMA channel was in at the exact moment the error occurred.

Take care to address the root cause of the error, whether or not the problem originated in the DMA channel. If not
properly resolved, the error can result in an additional error shortly after operations resume. The problem can cause
other errors elsewhere in the DMA channel or associated modules and circuitry. So, take care also to address those
potential problems. Ensure that all outstanding memory reads and writes are complete or cleared before resuming
DMA channel operation.

After addressing all issues and neutralizing all side effects of any errors, clear the DMA_STAT.ERRC status field and
restart the DMA channel by disabling then re-enabling the DMA channel through the DMA_CFG.EN bit.

The following sections describe the error types.

Status and Debug Errors

DMA channel error conditions can cause the DMA process to end abnormally. The DMA channel provides error
detection as a tool for system development and debug, helping to identify DMA-related programming errors. When
the DMA channel detects an error, the channel immediately stops and discards any returned memory-read transac-
tions. The DMA_STAT.RUN field of the DMA channel indicates the idle state after acknowledging all outstanding
memory transactions. In addition, the channel asserts an error interrupt request and updates the
DMA_STAT.IRQERR field. Also, the channel updates the DMA_STAT.ERRC field, indicating the error cause of
the first detected error. Unless the error occurs at the exact moment that modification of register values occurs, the
registers contain the error values.

All the DMA error interrupt requests are combined into a single shared interrupt request output. Combined error
signals require reading the DMA_STAT register of each DMA channel associated with a combined error interrupt
request to determine the DMA channel responsible for the generation of the interrupt.

The DMA channel error interrupt handler performs the following actions:

• Read the DMA_STAT register of each DMA channel, seeking a channel with the DMA_STAT.IRQERR set to
indicate an error.

• Read the DMA_STAT.ERRC field of each DMA channel, determining the cause of the error.

• Clear the problem with the DMA channel. For example, fix the register values.

• Clear the error in the DMA channel through a write-1-to-clear operation to the DMA_STAT.IRQERR bit.

If the channel flags any uncleared error other than a bandwidth monitor error, the channel reports no other error. If
the channel reports an uncleared bandwidth monitor error, the channel reports any newly detected error through
updating the DMA_STAT.ERRC field.

DMA Configuration Register Errors

The channel only flags these configuration errors when the DMA_CFG.EN bit enables the DMA channel. Error
flagging occurs when the configuration:

Architectural Concepts

17–22 ADSP-CM41x Mixed-Signal Control Processor

• Uses a reserved setting

• Enables DMA_CFG.TWAIT in descriptor on-demand flow mode

• Uses an illegal DMA_CFG.NDSIZE
• Uses an illegal DMA_CFG.MSIZE
• Configures DMA_XCNT = 0 or, when DMA_YCNT = 0 in 2D DMA mode

• Uses non-zero value in DMA_CFG.NDSIZE when DMA is configured in stop mode or auto mode

• Enables interrupt or outgoing triggers on DMA_YCNT when DMA is configured in 1D mode

• Use a DMA_CFG.MSIZE that exceeds the FIFO size of the DMA channel

• Uses an illegal DMA_CFG.PSIZE
• Uses a DMA_CFG.PSIZE that exceeds the FIFO size

• Uses a DMA_CFG.PSIZE that exceeds the bus width

• Attempts to change from a transmit operation (memory read) to a receive operation without properly synching
in the previous work unit or when it is the first work unit in a new chain

• Attempts to change DMA_CFG.PSIZE of a transmit operation (memory read) without properly synching in
previous work unit or when it is the first work unit in a new chain

• Attempts to change from receive operation (memory write) to a transmit operation during a descriptor chain.

The channel only can change from receive to transmit if the new transmit is synchronized and is the first work
unit.

• Attempts to change DMA_CFG.PSIZE of a receive operation (memory write) when the operation was not the
first work unit (with DMA_CFG.SYNC enabled)

Illegal Register Write During Run

The channel generates an error when a write occurs to writable registers of an enabled, running DMA channel. The
channel blocks the write. The DMA_STAT, DMA_BWLCNT, and DMA_BWMCNT registers are exempt from this be-
havior. The DMA_STAT register is exempt from this behavior.

Address Alignment Error

The channel generates an address alignment error when any of the following apply:

• Alignment of a descriptor address is not on a 32-bit boundary.

• The current DMA_CFG.MSIZE configuration contains an unaligned transfer address. The
DMA_ADDRSTART register is not aligned according to the DMA_CFG.MSIZE field.

Memory Access Error

The channel generates a memory access error when the DMA process:

• attempts to access an unpopulated address,

DMA Channel Errors

ADSP-CM41x Mixed-Signal Control Processor 17–23

• attempts to access a location that provokes a security violation

The error returned from the memory triggers the memory access error.

Trigger Overrun Error

A trigger overrun error is generated when a new trigger input occurred while an outstanding trigger is waiting. This
error is only generated if DMA_CFG.TOVEN is enabled.

Bandwidth-Monitor Error

The channel generates this error when the bandwidth-monitor count expires. This error is not fatal, and the DMA
channel continues operation.

Control Interface Error

The channel reports control-interface errors as bus errors to the bus master. This error can result from:

• An address error

• A register write error (write to a read-only register)

DMA Operating Modes
The DMA channel supports a number of different flow modes that control how the DMA channel progresses from
one work unit to the next.

The flow mode of a DMA channel is not a global setting. A DMA descriptor set can include the descriptor responsi-
ble for configuring the flow of the work unit. There is no restriction, limiting the flow configuration to be the same
for the entire descriptor chain. If the descriptor chain is not endless, the last descriptor set configures the flow to
stop mode, which results in termination of the descriptor chain after the work unit completes. Another example for
mixing flow modes is to create an endless descriptor-array. The configuration of the last descriptor set in the array
selects the descriptor-list mode. The next descriptor pointer in this set of descriptors points to the first descriptor in
the array.

Register-Based Flow Modes

Register-based DMA operations require configuration by directly writing to the memory-mapped registers of the
DMA channel.

Register-based DMA is the traditional method of DMA operation. Software writes all of the configuration of the
DMA channel into the memory-mapped registers. This configuration includes information such as the source or
destination address and length of the data in the transfer. The DMA controller then starts channel operation. The
DMA channel supports the following register-based flow modes.

• Stop Mode

• Autobuffer Mode

DMA Channel Errors

17–24 ADSP-CM41x Mixed-Signal Control Processor

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor set can
contain as little as a single descriptor. The supported descriptor set sizes can differ between the various descriptor-
based flow modes. In addition to the descriptor set size being configurable, descriptor-based DMA also allows alter-
ing the flow mode of the next descriptor set. This feature allows for the transition from descriptor-array mode to
descriptor-list mode and permits configuring the flow to stop or autobuffer mode.

Stop Mode

In stop mode, the DMA operation executes only once. If started, the DMA channel transfers the desired number of
data words and stops itself again when finished. If the DMA channel is no longer used, software configures the ena-
ble bit to disable a paused channel. The channel also can generate interrupts and triggers for each row or work unit
completion, depending on the desired operation.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If the transfer of all data words completes,
the channel reloads the address pointer (DMA_ADDR_CUR) automatically with the DMA_ADDRSTART value. The
channel also can generate an interrupt.

The DMA_CFG.FLOW field enables autobuffer mode. The configuration must load the DMA_CFG.NDSIZE field
value, such that the next descriptor size is zero.

Descriptor-Based Flow Modes

Descriptor-based DMA operations fetch descriptor sets from memory allowing for autonomous loading of work
units on other work units. Software does not need to set up the DMA sequences directly by writing into the DMA
controller registers. Rather, software keeps DMA descriptor sets in memory.

Descriptor-based DMA operations have the following additional attributes.

• The DMA controller autonomously loads the descriptor set from memory to the affected DMA controller reg-
isters on demand.

• The channel can fetch descriptor sets from any memory space that supports DMA read operations.

• The descriptor set describes the next operation that the DMA controller performs.

• The descriptor set can include information such as the DMA configuration word as well as data source or desti-
nation address, transfer count, and address modify values.

A descriptor set describes a single work unit. The next work unit can reuse some values from the previous one de-
scriptor set. But, this reusage is possible only if they are not overwritten in the subsequent descriptor set fetches and
only if the work unit requires the use of this descriptor.

The DMA channel supports the following flow modes with descriptor-based operations.

• Descriptor-Array Mode

• Descriptor-List Mode

• Descriptor-On-Demand Modes

Register-Based Flow Modes

ADSP-CM41x Mixed-Signal Control Processor 17–25

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor set can
contain as little as a single descriptor and the supported descriptor set sizes can differ between the various descriptor-
based flow modes. In addition to configurable descriptor set size, descriptor-based DMA also allows for altering of
the flow mode of the next descriptor set. Programs can transition from one descriptor-based mode to another de-
scriptor-based mode and can also transition to any of the register-based flow modes.

Descriptor-Array Mode

When configured in this mode, the descriptor sets do not contain further descriptor pointers. Software writes the
initial descriptor-pointer value, which points to an array of descriptors. This operation assumes that the individual
descriptors reside next to each other and assumes that their addresses are known.

The Offsets for Descriptor-Array Mode Parameters and Descriptors table illustrates how to structure a descriptor set
in memory. The descriptor sets must reside in a contiguous block or memory in the format shown in the table.
Locate the first descriptor of the next descriptor set in the memory location immediately following the last descrip-
tor of the current descriptor set. The values have the same order as the corresponding offset addresses of the memo-
ry-mapped register.

Table 17-7: Offsets for Descriptor -Array Mode Parameters and Descriptors

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART

0x04 DMA_CFG

0x08 DMA_XCNT

0x0C DMA_XMOD

0x10 DMA_YCNT

0x14 DMA_YMOD

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous values. The
channel reloads all of the current registers between the descriptor set fetch and the start of the DMA operation for
the work unit.

NOTE: At a minimum, write the DMA_DSCPTR_CUR register prior to writing to the DMA_CFG register, which is
the special action required to start the DMA channel.

Descriptor-List Mode

In this flow mode, multiple descriptors form a chained list in which each descriptor set contains a pointer to the
next descriptor set, allowing greater flexibility in memory layout options. When the channel fetches the descriptor
set, the operation loads this pointer value into the next descriptor pointer register of the DMA channel.

Descriptor Sets

The Offsets for Descriptor-List Mode Parameters and Descriptors table shows how to structure a descriptor set in
memory. Disperse the placement of the descriptor sets throughout memory, having sets reside in different memory

Descriptor-Based Flow Modes

17–26 ADSP-CM41x Mixed-Signal Control Processor

blocks. But, each descriptor of the descriptor set must reside in a contiguous section of memory in the format shown
in the table. The values have the same order as the corresponding offset addresses of the memory-mapped registers.

Table 17-8: Offsets for Descriptor-List Mode Parameters and Descriptors

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT

0x04 DMA_ADDRSTART

0x08 DMA_CFG

0x0C DMA_XCNT

0x10 DMA_XMOD

0x14 DMA_YCNT

0x18 DMA_YMOD

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous values. The
channel reloads all of the current values of the registers between the descriptor set fetch and the start of the DMA
operation for the work unit.

Minimum Startup Requirements

At a minimum, write the DMA_DSCPTR_NXT register prior to write to the DMA_CFG register, which is the special
action required to start the DMA channel.

Descriptor-On-Demand Modes

The Descriptor-Array Mode and Descriptor-List Mode each have an on-demand mode of operation.

In on-demand mode, at the end of the work unit, if the DMA channel has not detected an incoming trigger event,
the channel repeats the current work unit. If the DMA channel receives an incoming trigger before completion of
the work unit, the channel fetches a new descriptor set.

The Offsets for Descriptor-Array Mode Parameters and Descriptors and Offsets for Descriptor-List Mode Parameters
and Descriptors tables illustrate how to structure each descriptor set in memory.

Table 17-9: Offsets for Descriptor-Array Mode Parameters and Descriptors

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART

0x04 DMA_CFG

0x08 DMA_XCNT

0x0C DMA_XMOD

0x10 DMA_YCNT

Descriptor-Based Flow Modes

ADSP-CM41x Mixed-Signal Control Processor 17–27

Table 17-9: Offsets for Descriptor-Array Mode Parameters and Descriptors (Continued)

Descriptor Offset Parameter Register

0x14 DMA_YMOD

NOTE: For descriptor-array mode, at a minimum, write the DMA_DSCPTR_CUR register prior to writing to the
DMA_CFG register, which is the special action required to start the DMA channel.

Table 17-10: Offsets for Descriptor-List Mode Parameters and Descriptors

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT

0x04 DMA_ADDRSTART

0x08 DMA_CFG

0x0C DMA_XCNT

0x10 DMA_XMOD

0x14 DMA_YCNT

0x18 DMA_YMOD

NOTE: For descriptor-list mode, at a minimum, write the DMA_DSCPTR_NXT register prior to write to the
DMA_CFG register, which is the special action required to start the DMA channel.

Data Transfer Modes

In addition to supporting basic one-dimensional DMA transfers, the DMA channel also supports two-dimensional
functionality.

Two-Dimensional DMA

Register-based flow modes and descriptor-based flow modes support two-dimensional data transfers.

In two-dimensional (2D) mode, the X-direction count (DMA_XCNT), the X-direction modifier (DMA_XMOD), the
Y-direction count (DMA_YCNT), and the Y-direction modifier (DMA_YMOD) support arbitrary row and column
sizes. Also, the modify values can be negative, allowing implementation of interleaved data streams. The
DMA_XCNT value specifies the row size, and the DMA_YCNT value specifies the column size; where the DMA_XCNT
value must be 2 or greater.

The DMA start address (DMA_ADDRSTART), the X-direction modifier (DMA_XMOD), and theY-direction modifier
(DMA_YMOD) specifications all are in bytes. The alignment must be a multiple of the DMA transfer word size; con-
figured using the DMA_CFG.MSIZE bit. Misalignment results in a DMA channel error.

The DMA_XMOD register value is the byte-address increment that the channel applies after each transfer, decrement-
ing the DMA_XCNT register. The channel does not apply the DMA_XCNT when the inner loop count ends with the
DMA_XCNT_CUR register decrementing to 0 from 1. Except, the channel does apply the DMA_XCNT on the final
transfer, when the DMA_YCNT register is 1 and the DMA_XCNT register decrements from 1 to 0.

DMA Operating Modes

17–28 ADSP-CM41x Mixed-Signal Control Processor

The DMA_YMOD register value is the byte-address increment that the channel applies after each decrement of the
value in DMA_YCNT_CUR. However, the channel does not apply the DMA_YMOD value to the last item in the array
on which the outer loop count (DMA_YCNT_CUR) also expires by decrementing from 1 to 0.

After the last transfer completes, DMA_YCNT_CUR is 1 and the DMA_XCNT_CUR register is 0. The DMA channels
current address points to the last items address plus the DMA_XMOD register value. If the DMA channel program-
ming selects automatic refresh (such as in autobuffer mode), the channel reloads the DMA_XCNT_CUR,
DMA_YCNT_CUR, and DMA_ADDR_CUR for the first data transfer of the next work unit.

Interrupt notification is configurable for end-of-row or end-of-work unit completion.

For example, two-dimensional DMA can be used to extract interleaved data (such as RGB values for a video frame)
by modifying both of the DMA_XMOD and DMA_YMOD values. The Capturing a Video Data Stream 2D DMA Ex-
ample depicts the process of receiving a stream of the R, G, B values from an N*M frame. The inner loop of the 2D
DMA configuration has three values (DMA_XCNT = 3) and a stride (DMA_XMOD) of N*M, chosen such that succes-
sive elements in each row are 1-2-3, 4-5-6 and so forth. The outer loop of the 2D DMA configuration has N*M
values (DMA_YCNT = N*M) and a negative stride (DMA_YMOD) of 1-2*N*M chosen to instruct the DMA control-
ler to jump from element 3 to 4, 6 to 7 and so forth at the end of each inner loop.

M

N

1 4

2 5

3 6

Figure 17-4: Capturing a Video Data Stream 2D DMA Example

DMA Channel Event Control
The DMA channel supports a number of events that provide notification of work unit state, peripheral data request,
peripheral interrupt request and completion events, and DMA channel error conditions. In addition to flexible in-
terrupt configuration, the DMA channel also supports incoming and outgoing triggers which are useful in synchro-
nizing the DMA channel with other system resources.

The DMA channel has two interrupt signals for support of a number of events such as work-unit state events, pe-
ripheral interrupt request (PIRQ) events, peripheral data request (PDR) events, and DMA channel errors. The chan-
nel reports DMA channel errors on a dedicated interrupt signal. All other interrupt sources share an interrupt signal.
In addition to flexible interrupt configuration, the DMA channel also supports incoming and outgoing triggers
which are useful in synchronizing the DMA channel with other system resources.

The channel can signal the processor on DMA channel events using status information and optional interrupt re-
quests. Programs can use these events to update the progress of data transfers and to request intervention from the
processor core. Configure most DMA channel interrupts using bits in the DMA_CFG register. Dedicated bits in the

DMA Channel Event Control

ADSP-CM41x Mixed-Signal Control Processor 17–29

DMA_STAT register report the occurrence of various events. Use write-one-to-clear (W1C) operations to clear
interrupt requests from the status register.

NOTE: Hardware does not clear the interrupt status bits automatically, even when programs disable then reenable
the DMA channel. In this situation, the channel deasserts the interrupt signal, after the program disables
the DMA channel. But, the status bit remains set until software either re-enables the DMA channel or
clears the status bit.

The DMA channel supports the following categories of events on the interrupt signals:

• Work-unit state events generate interrupts on row or on work unit DMA completion.

• A peripheral uses peripheral interrupt request (PIRQ) events to signal when it has completed the transfer of all
data.

• A peripheral uses peripheral data request (PDR) events to request data from a disabled or idle DMA channel.

• Error events signal a failure in the work unit.

ATTENTION: While in an error state, the DMA channel does not generate an interrupt to the processor for a work-
unit state event or a PIRQ event, nor does the channel forward a PDR event.

Event Signals

The Event Signals table provides descriptions of DMA channel events.

Table 17-11: Event Signals

Signal Width (bits) Description

DMA_ERROR 1 Used to signal an error condition in the DMA channel. The source of the error can be
determined by reading the DMA_STAT.ERRC bit.

DONE_PIRQ_INT 1 Signal used to indicate DMA completions events, PIRQ events and also for forwarding
PDR events based on configuration. Read the corresponding fields in DMA_STAT to de-
termine the source of the event.

DMA_TRIG_OUT 1 Trigger output that gets routed to the TRU and can be configured to provide notification
on row or work unit completion.

DMA_TRIG_IN 1 Trigger input from the TRU that can be used to control the start of a work unit.

Work Unit State Events

Completing a row or a work unit generates a work-unit state event. For either of these events to generate an inter-
rupt request, the configuration of the interrupt of the DMA channel must select one of the available work-unit com-
pletion modes.

• Current X count reaching 0 for row completion or 1D DMA work unit completion

• Current Y count reaching 0 for work unit completion of 2D DMA

DMA Channel Event Control

17–30 ADSP-CM41x Mixed-Signal Control Processor

NOTE: For 1D DMA, a DMA channel configuration error results if the configuration generates the interrupt re-
quest when the current Y counter reaches 0.

The DMA channel issues the last memory read or write transaction for the row or work unit, then pauses until the
return of the read or write acknowledge. After successful acknowledge of the transfer, the DMA channel issues the
interrupt request and continues to process the next row or work unit.

Waiting for acknowledgement of the memory access results in a delay. However, programs can read or modify data
in the memory without adversely affecting or being affected by the DMA transfer.

NOTE: While the DMA channel pauses waiting for acknowledgement of the memory transfer, the DMA channel
is still capable of fetching the next descriptor set. This fetch gets the channel ready to process the next
work unit as soon as the memory access completes.

The channel configuration of the synchronization feature also affects interrupt timing. For memory-read operations
with synchronization enabled, the channel delays the interrupt request until the completion of the last transfer from
the DMA channel FIFO to the peripheral. The synchronization feature does not affect interrupt timing for memory
write operations.

Peripheral Interrupt Request Events

For peripheral-transmit operations, a peripheral connected to the DMA channel can use peripheral interrupt request
(PIRQ) events to indicate that data has left the channel FIFO and to indicate transfer completion.

In order to support PIRQ interrupts, correctly configure the interrupt of the DMA channel. This configuration dis-
ables the generation of interrupt requests based on the work unit state and, instead, results in generating an interrupt
request when the DMA channel receives the command from the peripheral.

The channel only generates the interrupt request under the following conditions:

• The configuration enables the DMA channel

• The DMA channel is in the stop state

• The configuration of the DMA channel interrupt selects PIRQ operation

Peripheral Data Request Events

Peripheral data request (PDR) events occur when an interfaced peripheral requests data from the DMA channel and
the DMA channel (either disabled or enabled) is in the stop state.

When a peripheral sends a data request command to a disabled DMA channel, the DMA channel generates an in-
terrupt to the System Event Controller (SEC). There is no status information reported about this event in the status
register of the DMA channel. Instead, the channel identifies the PDR event from the fact that the DMA channel
generated an interrupt while disabled. It is possible to further confirm event status by verifying the status of the
peripheral interfaced to the DMA channel.

This operation forwards data requests as interrupts when the DMA channel is in the disabled state. Also, the DMA
channel is able to forward PDR events as an interrupt request when the DMA channel is in the stop state after the

DMA Channel Event Control

ADSP-CM41x Mixed-Signal Control Processor 17–31

completion of a work unit. The forwarding of this interrupt when the DMA channel is in the stop state is optional
and configured by the program during DMA channel configuration.

DMA Channel Triggers

DMA channel triggers are useful for synchronizing the DMA channel with other events in the system. One usage is
to combine channel triggers with each other to create ping-pong buffers. Another usage is to combine the triggers
with interrupt requests to notify the processor on reaching a particular milestone that requires service. The channel
also can use triggers to enforce a handshake DMA operation in which the trigger acts as a signal for a DMA request.

NOTE: Using the trigger to control the pace of data transfers, such as for handshake DMA, requires that all the
data for the entire work unit is ready for transfer.

The DMA channel has a single incoming trigger that can control the pace of the data transfers performed by the
DMA channel. The configuration can direct the DMA channel to wait for the incoming trigger before starting the
work unit transfer or fetching a descriptor set from memory.

The DMA channel also has a single outgoing trigger signal. This configuration can direct this trigger to signal the
end of row or an entire work unit. The DMA channel issues the last memory read or memory write transaction for
the row or work unit, then pauses until return of the transfer acknowledge. After acknowledgement of the transfer,
the DMA channel issues the trigger before processing the next row or work unit.

Issuing Triggers

The DMA channel configuration can direct the channel to generate an outgoing trigger signal at the end of row or
the end of a work unit. The DMA channel issues the last memory read or memory write transaction for the row or
work unit, then pauses until the return of the transfer acknowledge. After acknowledgement of the transfer, the
DMA channel issues the trigger before processing the next row or work unit.

NOTE: While the DMA channel pauses waiting for acknowledgement of the memory transfer, the DMA channel
is still capable of fetching the next descriptor set. This fetch gets the channel ready to process the next
work unit as soon as the memory access completes.

Waiting For Triggers

Programs can use triggering to control the pace of data transfers performed by the DMA channel. The DMA chan-
nel enters a wait state before beginning the next work unit if the configuration enables DMA_CFG.TWAIT and ei-
ther of the following apply:

• The channel receives a trigger since the last time the DMA channel left the wait state.

• The channel receives a trigger since its transition from disable to enable.

In the wait state, the DMA channel also does not perform a descriptor fetch. After receiving a trigger, the DMA
channel leaves the wait state and begins the next work unit or fetches the next descriptor if configured for a descrip-
tor-based mode of operation.

DMA Channel Event Control

17–32 ADSP-CM41x Mixed-Signal Control Processor

If a memory-mapped register write operation programs the channel with stop flow mode enabled
(DMA_CFG.TWAIT bit) and the channel has not already received a trigger, the DMA channel enters a wait state
before performing the data transfer. On receiving the trigger, the DMA channel begins the data transfer portion of
the work unit. Once the data transfer is complete, the DMA channel enters the stop state.

If a memory-mapped register write operation programs the DMA channel with the flow mode configured to one of
the descriptor-based modes, the DMA channel enters the wait state before performing the descriptor fetch. After
completing the descriptor fetch, the DMA channel immediately proceeds to the data transfer, regardless of the value
of the DMA_CFG.TWAIT bit. If another (next) descriptor fetch follows the descriptor fetch, the DMA channel en-
ters a wait state before fetching the next descriptor.

If the descriptor fetch returns a descriptor with stop flow mode, the DMA_CFG.TWAIT value for that descriptor
does not affect the DMA as the channel enters the stop state after completing the data transfer. The DMA channel
only enters the wait state based on DMA_CFG.TWAIT before the next work unit or descriptor fetch.

If the descriptor fetch returns a descriptor configured for autobuffer flow mode, the DMA_CFG.TWAIT for that
descriptor does not affect the DMA for the first work unit of the autobuffer transfer. After completing the first work
unit and not receiving another trigger, the DMA channel enters the wait state before reinitializing its counters and
address registers (if not configured for current addressing). The channel performs the next work unit after receiving
the trigger.

The incoming trigger can occur when the DMA channel has not entered the wait state. The trigger can occur while
the DMA channel is executing a work unit, is performing descriptor fetch, or is in the stop state. The trigger is held
internally. After the work unit is complete, the DMA channel skips the wait state and proceeds directly to executing
the following work unit. If the DMA_CFG.TWAIT bit is not enabled, the DMA channel also skips the wait state.
However, the trigger is held internally and is used the next time the configuration enables DMA_CFG.TWAIT. This
trigger retention allows programs to enable the DMA_CFG.TWAIT functionality several work units apart without
concern for losing a trigger. The DMA channels trigger-overrun enable functionality can be enabled in all work
units to ensure that multiple triggers do not occur between the work units with the DMA_CFG.TWAIT bit enabled.

DMA Channel Programming Model
Several synchronization and control methods are available for use in development of software tasks which manage
peripheral DMA and memory DMA. Software must accept requests for new DMA transfers from other software
tasks, integrate these transfers into existing transfer queues, and reliably notify other tasks when the transfers are
complete.

In the processor, it is possible to manage each peripheral DMA and memory DMA stream with a separate task or to
manage them together with any other stream. Each DMA channel has independent, orthogonal control registers,
resources, and interrupts. So, the selection of the control scheme for one channel does not affect the choice of con-
trol scheme on other channels. For example, one peripheral can use a linked-descriptor-list, interrupt-driven scheme
while another peripheral can simultaneously use a demand-driven, buffer-at-a-time scheme synchronized by polling
DMA events.

DMA Channel Programming Model

ADSP-CM41x Mixed-Signal Control Processor 17–33

The topics that follow describe the steps required to configure the DMA channel for the various modes in addition
to the programming concepts required for software synchronization.

NOTE: The ADSP-CM41x has different configurations so that multiple peripherals "share" the same DMA unit,
but not concurrently.

Mode Configuration

Use the step-by-step directions that follow to set up the DMA channel for operating modes.

Register-Based Linear-Buffer Stop Flow Mode

This procedure configures the DMA channel of a peripheral to read data from internal memory and to send it to the
peripheral for transmission. On DMA completion, the DMA channel enters the idle state until either disabled or
reconfigured for a new transfer.

Assume that the peripheral is in a state where it is ready to transmit data received from the DMA channel.

The task involves writing to a number of DMA channel MMR registers to configure a DMA channel to:

• Read data from internal memory, and

• Send it to a peripheral connected to the peripheral DMA bus.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: Software can use the address to calculate the most optimum possible
DMA_CFG.MSIZE.

2. Calculate the optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes in
work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected
DMA_CFG.MSIZE, and the calculation also must consider the start address alignment.

3. Write the DMA_XCNT register based on the calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: The DMA_XCNT value is the number of DMA_CFG.MSIZE transfers to
make up the entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a linear buffer transfer, determine the value in DMA_XMOD from the se-
lected DMA_CFG.MSIZE. Always specify this register as a number of bytes.

5. Write the DMA_CFG register with DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: Set the DMA_CFG.FLOW bit for STOP mode. Configure the
DMA_CFG.WNR bit for memory read operation. Configure the DMA_CFG.PSIZE bits to a value no larger
than the supported bus width of the peripheral DMA bus.

DMA Channel Programming Model

17–34 ADSP-CM41x Mixed-Signal Control Processor

• The DMA_CFG.SYNC bit can be configured to control DMA completion notification timing.

• Interrupts and triggers also can be configured at this step depending on requirements.

Now, the DMA channel is enabled, and the buffer is transferred. The DMA channel enters the IDLE state upon
completion of the work unit.

Register-Based Autobuffer Flow Mode

This procedure configures the DMA channel of a peripheral to read data from internal memory and send it to the
peripheral for transmission. The transmission of the buffer repeats endlessly. On DMA completion, the DMA chan-
nel restarts the DMA operation, creating an endless circular buffer transfer.

Assume the peripheral is in a state where it is ready to transmit data received from the DMA channel.

The task involves writing to a number of DMA channel MMR registers to configure a DMA channel to:

• Read data from internal memory, and

• Send it to a peripheral connected to the peripheral DMA bus.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: Use the address to calculate the optimum possible DMA_CFG.MSIZE.

2. Calculate the optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes in
work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected
DMA_CFG.MSIZE, and the calculation must consider the start address alignment.

3. Write the DMA_XCNT register based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: The DMA_XCNT register value is the number of DMA_CFG.MSIZE trans-
fers to make up the entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a linear buffer transfer, determine the value in DMA_XMOD from the se-
lected DMA_CFG.MSIZE. Always specify this register as a number of bytes.

5. Write the DMA_CFG register with the DMA_CFG.EN bit configured to enable the DMA channel.

ADDITIONAL INFORMATION: Set the DMA_CFG.FLOW bit for autobuffer mode. Configure the
DMA_CFG.WNR bit for memory read operation. Configure the DMA_CFG.PSIZE bit to a value no larger
than the supported bus width of the peripheral DMA bus.

• The DMA_CFG.SYNC bit can be configured to control DMA completion notification timing.

• Interrupts and triggers also can be configured at this step depending on requirements.

Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 17–35

Now, the DMA channel is enabled, and the buffer transfers until the DMA channel is disabled.

Descriptor-Array Flow Mode

This procedure configures the DMA channel of a peripheral to:

• Read data from memory as described by the descriptor sets in the array, and

• Send the data to the peripheral for transmission.

Descriptor sets are read from an array in memory to configure the individual work units.

Assume the peripheral is in a state where it is ready to transmit data received from the DMA channel. Assume that
the array of descriptors is to be initialized with the last descriptor set configured for STOP flow mode.

The task involves writing to a number of DMA channel MMR registers to:

• Configure a DMA channel to read the array in memory, containing the first descriptor set that configured the
DMA channel to retrieve, and

• Send the data to a peripheral connected to the peripheral DMA bus.

On DMA completion, the DMA channel enters the idle state until either disabled or reconfigured for a new trans-
fer.

1. Write the DMA_DSCPTR_CUR register with the address of the array in which the descriptor sets are stored.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with the DMA_CFG.EN bit configured to enable the DMA channel.

ADDITIONAL INFORMATION: Set the DMA_CFG.FLOW bit for descriptor-array mode. Configure the
DMA_CFG.NDSIZE bits to describe the number of descriptor elements contained within the first descriptor
set. Configure the DMA_CFG.WNR bit for memory read operation. Configure the DMA_CFG.PSIZE bits to
a value no larger than the supported bus width of the peripheral DMA bus.

• The descriptor set that is fetched controls the DMA_CFG.SYNC configuration and the interrupt or trig-
ger configurations.

The first descriptor set is fetched from memory location provided by the DMA_DSCPTR_CUR register and loa-
ded to the MMR registers of the DMA channel.

Now, the DMA channel is processing all the work units provided in the descriptor array. The DMA channel enters
the IDLE state on completion of the final work unit that was configured for STOP flow mode.

Descriptor-List Flow Mode

This procedure configures the DMA channel of a peripheral to:

Mode Configuration

17–36 ADSP-CM41x Mixed-Signal Control Processor

• Read data from memory as described by the descriptor sets in the list, and

• Send it to the peripheral for transmission.

The DMA controller reads the descriptor sets from a list of descriptors. With the list, each descriptor set has a de-
scriptor that points to the next descriptor set location in memory.

Assume the peripheral must be in a state where it is ready to transmit data received from the DMA channel. Assume
that the list of descriptors must be initialized with the last descriptor set in the list configured for Stop flow mode.

The task involves writing to a number of DMA channel MMR registers to:

• Configure a DMA channel to read the list in memory, containing the first descriptor set that configured the
DMA channel to retrieve, and

• Send the data to a peripheral connected to the peripheral DMA bus.

On DMA completion, the DMA channel enters the idle state until either disabled or reconfigured for a new trans-
fer.

1. Write the DMA_DSCPTR_NXT register with the address of the first descriptor in the list to be processed.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with the DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: Set the DMA_CFG.FLOW for descriptor-list mode. Configure the
DMA_CFG.NDSIZE bit to describe the number of descriptor elements contained within the first descriptor
set. Configure the DMA_CFG.WNR bit for memory read operation. Configure the DMA_CFG.PSIZE bit to a
value no larger than the supported bus width of the peripheral DMA bus.

• The descriptor set that is fetched controls the DMA_CFG.SYNC configuration and controls the interrupt
or trigger configurations.

The first descriptor set is fetched from the memory location provided by DMA_DSCPTR_NXT and is loaded to
the MMR registers of the DMA channel.

Now, the DMA channel is processing all the work units provided in the descriptor list. The DMA channel enters the
idle state when the final work unit that was configured for stop-flow mode is complete.

Register-Based Memory-to-Memory Transfer in Stop Flow Mode

This procedure configures a memory DMA channel pair in stop flow mode. One DMA channel is configured for
memory read operations, while the other DMA channel is configured for memory write.

The task involves writing to a number of DMA channels on two DMA channels that create a memory DMA pair.
On DMA completion, the DMA channel enters the idle state, until either the DMA channel is disabled or is recon-
figured for a new transfer.

Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 17–37

1. Write the DMA_ADDRSTART register of the source DMA channel.

ADDITIONAL INFORMATION: The address can be used to calculate the optimum DMA_CFG.MSIZE pos-
sible.

2. Calculate the optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes in
work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected
DMA_CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register of the source DMA channel based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers to make up the
entire work unit.

4. Write the DMA_XMOD register of the source DMA channel.

ADDITIONAL INFORMATION: For a linear buffer transfer, determine the value in DMA_XMOD from the se-
lected DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_ADDRSTART register of the destination DMA channel.

ADDITIONAL INFORMATION: The address can be used to calculate the most optimum DMA_CFG.MSIZE
possible.

6. Calculate the optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes in
work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected
DMA_CFG.MSIZE and the start address alignment must also be considered.

7. Write the DMA_XCNT register of the destination DMA channel based on the calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers to make up the
entire work unit.

8. Write the DMA_XMOD register of the destination DMA channel.

ADDITIONAL INFORMATION: For a linear buffer transfer, determine the value in DMA_XMOD from the se-
lected DMA_CFG.MSIZE. This register is always specified in the number of bytes.

9. Write the DMA_CFG register of the source DMA channel with DMA_CFG.EN configured to enable the DMA
channel.

ADDITIONAL INFORMATION: The DMA_CFG.FLOW bit field must be configured for stop mode. The
DMA_CFG.WNR bit must be cleared for memory read operation. The DMA_CFG.PSIZE bits must be config-
ured to a value no larger than the supported bus width of the peripheral DMA bus.

• The DMA_CFG.SYNC bit can be configured to control DMA completion notification timing.

Mode Configuration

17–38 ADSP-CM41x Mixed-Signal Control Processor

• Interrupts and triggers also can be configured at this step, depending on requirements. The interrupts and
triggers are enabled within the destination DMA channel configuration.

The memory read DMA transfer begins.

10. Write the DMA_CFG register of the destination DMA channel with DMA_CFG.EN configured to enable the
DMA channel.

ADDITIONAL INFORMATION: The DMA_CFG.FLOW bit field must be configured for stop mode. The
DMA_CFG.WNR bit must be set for memory write operation. The DMA_CFG.PSIZE bits must be configured
to a value no larger than the supported bus width of the peripheral DMA bus. This value must also match the
value written for the source DMA channel configuration.

• Interrupts and triggers also can be configured at this step depending on requirements.

The memory write DMA transfer begins.

Both memory DMA channels are now running and the data is transferred from the source address to the destination
address. The DMA channel enters the IDLE state upon completion of the work unit.

Programming Concepts

Using the features, operating modes, and event control for the DMA channel to their greatest potential requires an
understanding of some DMA channel-related concepts.

Synchronization of Software and DMA

A critical element of software DMA management is the synchronization of DMA work unit completion with soft-
ware. This synchronization can be achieved using DMA channel interrupt request and trigger events and using a
poll of the status bits of these events within the DMA channel registers, or combining these techniques. Processor
polling of DMA address/count/status for completion is not a recommended programming practice. The require-
ments and limitations of processor polling place significant responsibility onto the code developer to be deeply aware
of the underlying hardware. The interrupt requests and triggers are designed for efficient code development and re-
use.

Interrupt and Trigger Event-Based Synchronization

Interrupt and trigger based synchronization methods must avoid overrun. An overrun occurs when some events fail
to invoke the event handler of a DMA channel for every event due to excessive latency in processing of events. The
system design must ensure to either:

• Schedule only one event per channel (for example, at the end of a descriptor list), or

• Space the generated events sufficiently far apart in time that system processing budgets can guarantee service of
every event.

The DMA channel issues status information through an interrupt request or trigger event or changes event status
bits in the DMA_STAT register. This status guarantees that the last memory operation of the work unit is complete.
For memory read DMA transactions, this status means that the FIFO of the DMA channel safely receives the final

DMA Channel Programming Model

ADSP-CM41x Mixed-Signal Control Processor 17–39

memory read data. For DMA transactions writing to memory, this status indicates that the DMA channel received
an acknowledge of completion of the last write transfer of the work unit.

Register Polling Based Synchronization

Do not poll the DMA channel registers (DMA_ADDR_CUR, DMA_DSCPTR_CUR, DMA_XCNT_CUR, or
DMA_YCNT_CUR) as a method of precisely synchronizing DMA with data processing. This approach is inaccurate
due to the operation of the DMA channel FIFOs and DMA or memory pipelining. The current address, pointer,
and count registers change several cycles in advance of the completion of the corresponding memory operation. This
timing is measurable from the time at which the results of the operation are first visible to the core by memory read
or write instructions.

For example, in a DMA channel memory write operation to external memory, assume DMA channel A initiates a
DMA channel write operation. For memories with access latency, this operation requires many system-clock cycles.
Meanwhile, DMA channel B (which does not in itself incur latency) initiates a transfer, which stalls behind the slow
operation of channel A. Software monitoring channel B could not safely conclude whether the memory location
pointed to by the DMA_ADDR_CUR of channel B. Also, the software cannot conclude whether the register has been
written based solely on the contents of this register.

Polling of the current address, pointer, and count registers can permit loose synchronization of DMA with software.
But, the software must allow for the lengths of the DMA or memory pipeline. Also, software must consider the
length of the DMA FIFO for a particular peripheral. If the FIFOs are filled with incomplete work, the DMA chan-
nel does not advance current address, pointer, or count registers. The incomplete work includes reads that have been
started but have not yet finished.

Additionally, software must consider the length of the pipelines to the destination memory. If the DMA FIFO
length and channel memory-pipeline length are added, software can estimate the maximum number of incomplete
memory operations in progress.

NOTE: The estimate would be a maximum, as the DMA or memory pipeline can include traffic from other DMA
channels.

Descriptor Queues

A system designer may want to write a DMA manager facility which accepts DMA requests from other software.
The DMA manager software does not know in advance when new work requests are received or what these requests
contain. The software could manage these transfers using a circular linked list of DMA descriptors. In such a list,
each descriptor sets the DMA_DSCPTR_NXT descriptor, which points to the next descriptor set. And, the last de-
scriptor set in the list points to the first descriptor set.

The code that writes into this descriptor list could use the circular addressing modes of the processor. This approach
does not need to use comparison and conditional instructions to manage the circular structure. In this case, the
DMA_DSCPTR_NXT descriptor of each descriptor set can be written once at startup, and skipped over as new con-
tents are written for each descriptor.

Synchronization of Software and DMA

17–40 ADSP-CM41x Mixed-Signal Control Processor

The recommended method for synchronization of a descriptor queue is to use an interrupt or trigger. The descriptor
queue is structured, such that (at least) the final valid descriptor set is always programmed to generate an interrupt
or trigger event upon completion. More detail is provided in the following sections.

• Queues Using Event Generation for Every Descriptor Set

• Queues Using Minimal Events

Queues Using Event Generation for Every Descriptor Set

In this system, the DMA manager software synchronizes with the DMA channel by enabling an interrupt request or
trigger on every descriptor set. Only use this method if the system design can guarantee that each work unit comple-
tion event is serviced separately (no interrupt or trigger overrun).

To maintain synchronization of the descriptor set queue, the non-interrupt software maintains a count of descriptor
sets added to the queue. The event handler (either interrupt or trigger) maintains a count of completed descriptor
sets removed from the queue. The counts are equal only when the DMA channel is paused after having processed all
the descriptor sets.

When each new work unit event is received, the DMA manager software initializes a new descriptor set, taking care
to set the flow to stop mode. Next, the software compares the descriptor set counts to determine whether the DMA
channel is running. If the DMA channel is paused (counts equal), the software increments its count. Then, the soft-
ware starts the DMA channel by writing the DMA_CFG of the new descriptor set.

If the counts are unequal, the software instead modifies the DMA_CFG of the next-to-last descriptor set, such that it
now describes the newly queued descriptor set. This operation does not disrupt the DMA channel provided the rest
of the descriptors of the set are initialized in advance. It is necessary to synchronize the software to the DMA to
determine whether the DMA channel read the new or the old DMA_CFG value.

The event handler performs the synchronization operation. When an event is detected, the handler reads the
DMA_STAT register of the DMA channel. If the DMA_STAT.RUN bit indicates that the DMA channel is running,
the channel has moved on to processing another descriptor. The event handler can increment its count and exit. If
the DMA_STAT.RUN bit indicates that the channel is not running, the channel is paused because either:

• There are no more descriptor sets to process, or

• The last descriptor set was queued too late

Where too late means that the modification of the DMA_CFG of the next-to-last descriptor set occurred after that
descriptor was read into the DMA channel. In this case, the event handler does the following:

• Writes the DMA_CFG value appropriate for the last descriptor set to DMA_CFG register of the DMA channel,

• Increments the completed descriptor count, and

• Exits

Descriptor Queues

ADSP-CM41x Mixed-Signal Control Processor 17–41

If the event latencies of the system are large enough to cause any of the events to be dropped, this system can fail. An
event handler capable of safely synchronizing multiple descriptor set interrupt requests is complex, performing sever-
al MMR accesses to ensure robust operation. In such a system environment, a minimal event synchronization meth-
od is preferred.

Queues Using Minimal Events

In this system, only one DMA interrupt request or trigger event is generated in the queue at any time. The DMA
event handler for this system can also be extremely short. Here, the descriptor queue is organized into an active and a
waiting portion, where events are enabled only on the last descriptor set in each portion.

When each new DMA request is processed, the software fills in the content of a new descriptor set and adds it to the
waiting portion of the queue. The DMA_CFG descriptor of the descriptor set must have the flow set to stop mode. If
more than one request is received before the DMA queue completion event occurs, the non-interrupt code queues
later descriptor sets. It forms a waiting portion of the queue separate from the active portion of the queue that the
DMA channel is processing. In other words, all but the last active descriptor sets contain flow values for a descriptor-
based mode and have no event enable set.

The last active descriptor set has the stop flow mode and an event generation enabled. Also, all but the last waiting
descriptor sets are configured for descriptor-based flow modes with no event generation. Only the last waiting de-
scriptor set is configured for stop flow mode and event generation enabled. This configuration ensures that the
DMA channel can automatically process the whole active queue before then issuing one event. Also, this arrange-
ment makes it easy to start the waiting queue within the event handler by a single DMA_CFG register write.

After queuing a new waiting descriptor, the non-interrupt software leaves a message for its interrupt handler in a
memory mailbox location. The location contains the desired DMA_CFG value for starting the first waiting descriptor
set in the waiting queue (or 0, indicating no waiting descriptors).

The software must not modify the contents of the active descriptor set queue directly once processing by the DMA
channel has started, unless careful synchronization measures are taken. In the most straightforward implementation
of a descriptor set queue, the DMA manager software never modifies descriptors on the active queue. Instead, the
DMA manager waits until the DMA queue completion event indicates that the processing of the entire active queue
is complete.

When a DMA queue completion event is received, the event handler reads the mailbox from the non-interrupt soft-
ware and writes the value to the DMA_CFG register of the DMA channel. This write to a register restarts the queue,
effectively transforming the waiting queue to an active queue. The event handler then passes a message back to the
non-interrupt software indicating the location of the last descriptor set accepted into the active queue.

However, the event handler can read its mailbox and find a DMA_CFG value of zero, indicating there is no more
work to perform. It then passes an appropriate message back to the non-interrupt software indicating that the queue
has stopped.

The non-interrupt software which accepts new DMA work unit requests must synchronize the activation of a new
work unit with the interrupt handler. If the queue has stopped (the mailbox from the event handler is zero), the
non-interrupt software must start the queue. (The queue starts by writing the first descriptor sets DMA_CFG value
to the DMA_CFG register of the channel). If the queue is not stopped, the non-interrupt software must not write the

Descriptor Queues

17–42 ADSP-CM41x Mixed-Signal Control Processor

DMA_CFG register. (This write causes a DMA error). Instead, it must queue the descriptor onto the waiting queue
and update its mailbox directed to the event handler.

CM41X_M4 DMA Register Descriptions
The Direct Memory Access module (DMA) contains the following registers.

Table 17-12: CM41X_M4 DMA Register List

Name Description

DMA_ADDRSTART Start Address of Current Buffer Register

DMA_ADDR_CUR Current Address Register

DMA_BWLCNT Bandwidth Limit Count Register

DMA_BWLCNT_CUR Bandwidth Limit Count Current Register

DMA_BWMCNT Bandwidth Monitor Count Register

DMA_BWMCNT_CUR Bandwidth Monitor Count Current Register

DMA_CFG Configuration Register

DMA_DSCPTR_CUR Current Descriptor Pointer Register

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor Register

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer Register

DMA_STAT Status Register

DMA_XCNT Inner Loop Count Start Value Register

DMA_XCNT_CUR Current Count (1D) or Intra-row XCNT (2D) Register

DMA_XMOD Inner Loop Address Increment Register

DMA_YCNT Outer Loop Count Start Value (2D only) Register

DMA_YCNT_CUR Current Row Count (2D only) Register

DMA_YMOD Outer Loop Address Increment (2D only) Register

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–43

Start Address of Current Buffer Register

The DMA_ADDRSTART register contains the start address of the work unit currently targeted for DMA. This regis-
ter is read/write prior to enabling the channel, but is read-only after enabling channel.

Work Unit Address Start Value

Work Unit Address Start Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-5: DMA_ADDRSTART Register Diagram

Table 17-13: DMA_ADDRSTART Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Work Unit Address Start Value.

The DMA_ADDRSTART.VALUE bit field contains the start address of the work unit
currently targeted for DMA.

CM41X_M4 DMA Register Descriptions

17–44 ADSP-CM41x Mixed-Signal Control Processor

Current Address Register

The DMA_ADDR_CUR register contains the present memory transfer address for a given work unit. At the start of a
work unit, the DMA_ADDR_CUR register is loaded from the DMA_ADDRSTART register, and the
DMA_ADDR_CUR register is incremented as each transfer occurs. The DMA_ADDR_CUR register is read/write prior
to enabling the channel, but is read-only after enabling the channel.

Work Unit Current Address Value

Work Unit Current Address Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-6: DMA_ADDR_CUR Register Diagram

Table 17-14: DMA_ADDR_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Work Unit Current Address Value.

The DMA_ADDR_CUR.VALUE bit field contains the present memory transfer address
for a given work unit.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–45

Bandwidth Limit Count Register

The DMA_BWLCNT register contains a count that determines how often the DMA issues memory transactions. The
DMA loads the value from the DMA_BWLCNT register into the DMA_BWLCNT_CUR register and decrements the
current value each SCLK cycle. When DMA_BWLCNT_CUR reaches 0x0000, the next request is issued, and the
DMA reloads DMA_BWLCNT_CUR. This bandwidth limit functionality is not applied to descriptor fetch requests.
Programming 0x0000 allows the DMA to request as often as possible. 0xFFFF is a special case and causes requests to
stop.

Bandwidth Limit Count
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-7: DMA_BWLCNT Register Diagram

Table 17-15: DMA_BWLCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Bandwidth Limit Count.

The DMA_BWLCNT.VALUE bit field contains a count that determines how often the
DMA issues memory transactions.

CM41X_M4 DMA Register Descriptions

17–46 ADSP-CM41x Mixed-Signal Control Processor

Bandwidth Limit Count Current Register

The DMA_BWLCNT_CUR register contains the number of SCLK count cycles remaining before the next request is
issued.

Bandwidth Limit Count Current
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-8: DMA_BWLCNT_CUR Register Diagram

Table 17-16: DMA_BWLCNT_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE Bandwidth Limit Count Current.

The DMA_BWLCNT_CUR.VALUE bit field contains the number of SCLK count cy-
cles remaining before the next request is issued.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–47

Bandwidth Monitor Count Register

The DMA_BWMCNT register contains the maximum number of SCLK cycles allowed for a work unit to complete.
Each time the DMA_CFG register is written (MMR access only), a work unit ends or an autobuffer wraps. The
DMA loads the value in this register into the DMA_BWMCNT_CUR register.

The DMA decrements DMA_BWMCNT_CUR every SCLK a work unit is active. If the DMA_BWMCNT_CUR register
reaches 0x0000_0000, the DMA_STAT.IRQERR bit is set, and the DMA_STAT.ERRC bit field is set to 0x6. The
DMA_BWMCNT_CUR remains at 0x0000_0000 until it is reloaded when the work unit completes.

Unlike other errors, a bandwidth monitor error does not stop work unit processing. Programming 0x0000_0000
disables bandwidth monitor functionality.

Bandwidth Monitor Count

Bandwidth Monitor Count

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-9: DMA_BWMCNT Register Diagram

Table 17-17: DMA_BWMCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Bandwidth Monitor Count.

The DMA_BWMCNT.VALUE bit field contains the maximum number of SCLK cycles
allowed for a work unit to complete.

CM41X_M4 DMA Register Descriptions

17–48 ADSP-CM41x Mixed-Signal Control Processor

Bandwidth Monitor Count Current Register

The DMA_BWMCNT_CUR register contains the number of cycles remaining for the current descriptor to complete.

Bandwidth Monitor Count Current

Bandwidth Monitor Count Current

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-10: DMA_BWMCNT_CUR Register Diagram

Table 17-18: DMA_BWMCNT_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Bandwidth Monitor Count Current.

The DMA_BWMCNT_CUR.VALUE bit field contains the number of cycles remaining
for the current descriptor to complete.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–49

Configuration Register

The DMA_CFG register sets up DMA parameters and operation modes. Writing to the DMA_CFG register while a
DMA process is already running causes a DMA error (except when clearing the DMA_CFG.EN bit).

Use Current AddressPeripheral Transfer Word Size

Synchronize Work Unit TransitionsMemory Transfer Word Size

Write/Read Channel DirectionNext Operation

DMA Channel EnableWait for Trigger

Trigger Overrun Error Enable

Generate Outgoing TriggerDescriptor ID Copy Control

Generate Interrupt RequestTwo Dimension Addressing Enable

Next Descriptor Set SizePeripheral Data Request Forward

CADDR (R/W)PSIZE (R/W)

SYNC (R/W)MSIZE (R/W)

WNR (R/W)FLOW (R/W)

EN (R/W)TWAIT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TOVEN (R/W)

TRIG (R/W)DESCIDCPY (R/W)

INT (R/W)TWOD (R/W)

NDSIZE (R/W)PDRF (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-11: DMA_CFG Register Diagram

Table 17-19: DMA_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

28

(R/W)

PDRF Peripheral Data Request Forward.

The DMA_CFG.PDRF bit defines how the DMA handles data requests from the pe-
ripheral while in idle state after a stop mode or memory read work unit. If set, the
DMA forwards the peripheral data request as an interrupt.

This bit applies only to the DMA_CFG.FLOW bits configured for stop and
DMA_CFG.WNR bits configured for memory read.

0 Peripheral Data Request Not Forwarded

1 Peripheral Data Request Forwarded

CM41X_M4 DMA Register Descriptions

17–50 ADSP-CM41x Mixed-Signal Control Processor

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/W)

TWOD Two Dimension Addressing Enable.

The DMA_CFG.TWOD bit selects whether the DMA addressing involves only
DMA_XCNT and DMA_XMOD (one-dimensional DMA) or also involves DMA_YCNT
and DMA_YMOD (two-dimensional DMA).

0 One-Dimensional Addressing

1 Two-Dimensional Addressing

25

(R/W)

DESCIDCPY Descriptor ID Copy Control.

The DMA_CFG.DESCIDCPY bit specifies when to copy the initial descriptor pointer
to the DMA_DSCPTR_PRV register.

A bus write to the DMA_CFG register to clear the DMA_CFG.EN bit causes the DMA
to immediately use the new value of the DMA_CFG.DESCIDCPY bit. To preserve
consistency (if required by application), match the new value of this bit to the previous
value.

0 Never Copy

1 Copy on Work Unit Complete

24

(R/W)

TOVEN Trigger Overrun Error Enable.

A trigger overrun occurs if more than one trigger was received before the DMA
reached the trigger wait state. If DMA_CFG.TOVEN is set, a trigger overrun causes the
DMA to flag an error. In cases where a trigger overrun is not a problem, clearing
DMA_CFG.TOVEN prevents the overrun from causing an error and halting the DMA.
The DMA_CFG.TOVEN operates independently of the DMA_CFG.TWAIT bit selec-
tion.

0 Ignore Trigger Overrun

1 Error on Trigger Overrun

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–51

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

23:22

(R/W)

TRIG Generate Outgoing Trigger.

The DMA_CFG.TRIG selects whether the DMA issues an outgoing trigger, based on
the work unit counter values. In one-dimensional mode, the only options are to trigger
at the end of the whole work unit (trigger when DMA_XCNT_CUR reaches 0) or not to
trigger at all. If in one-dimensional addressing mode, programming the
DMA_CFG.TRIG bit field to trigger when DMA_YCNT_CUR reaches 0 (or to re-
served) causes the DMA to flag a configuration error.

In two-dimensional addressing mode, the trigger options are: at the end of each row of
the inner loop (when DMA_XCNT_CUR reaches 0), only after completing the whole
work unit (when DMA_YCNT_CUR reaches 0), or no trigger. If in two-dimensional
mode and set to trigger when DMA_XCNT_CUR reaches 0, the DMA also issues a trig-
ger at the end of the work unit. If in two-dimensional addressing mode, programming
DMA_CFG.TRIG to reserved causes the DMA to flag a configuration error.

If DMA_CFG.TRIG is non-zero and the peripheral issues a finish command, the
DMA issues a trigger after the finish procedure is complete.

For more information about trigger generation timing, see the trigger section of the
DMA functional description.

0 Never Assert Trigger

1 Trigger When XCNTCUR Reaches 0

2 Trigger When YCNTCUR Reaches 0

3 Reserved

CM41X_M4 DMA Register Descriptions

17–52 ADSP-CM41x Mixed-Signal Control Processor

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/W)

INT Generate Interrupt Request.

The DMA_CFG.INT bit field selects whether an interrupt request goes to the core
based on work unit status or a peripheral interrupt request.

For one-dimensional mode, setting the DMA_CFG.INT bits to generate an interrupt
request when the DMA_YCNT_CUR register reaches 0 causes the DMA to flag a con-
figuration error.

The peripheral interrupt setting lets the DMA generate the last grant indication and to
accept and or forward the peripheral interrupt command.

The peripheral interrupt selection applies only to the DMA_CFG.FLOW bits set for
stop and the DMA_CFG.WNR bits set for memory read.

If the DMA_CFG.INT is set for interrupt request on count completion
(DMA_XCNT_CUR or DMA_YCNT_CUR reach 0) and the peripheral issues a finish
command, the DMA issues an interrupt request after the finish procedure is complete.

For more information, see the sections on interrupt generation and peripheral control
in the DMA functional description.

0 Never Assert Interrupt

1 Interrupt When X Count Expires

2 Interrupt When Y Count Expires

3 Peripheral Interrupt request

18:16

(R/W)

NDSIZE Next Descriptor Set Size.

The DMA_CFG.NDSIZE bit field specifies the number of descriptor elements in
memory to load during the next descriptor fetch. The DMA loads the descriptors in a
specific order. The descriptor set contains the next descriptor pointer when it is a de-
scriptor list. The descriptor set does not contain the next descriptor pointer when it is
a descriptor array.

0 Fetch One Descriptor Element

1 Fetch Two Descriptor Elements

2 Fetch Three Descriptor Elements

3 Fetch Four Descriptor Elements

4 Fetch Five Descriptor Elements

5 Fetch Six Descriptor Elements

6 Fetch Seven Descriptor Elements

7 Reserved

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–53

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

TWAIT Wait for Trigger.

The DMA_CFG.TWAIT bit controls whether the DMA waits for an incoming trigger
from another channel or user. If the DMA_CFG.TWAIT bit is set, the DMA enters the
wait state before starting the next work unit, including descriptor fetch when in de-
scriptor mode. Do not use the wait for trigger control for descriptor-on-demand mode
which causes an error. For more information, see the trigger section of the DMA func-
tional description.

0 Begin Work Unit Automatically (No Wait)

1 Wait for Trigger (Halt before Work Unit)

14:12

(R/W)

FLOW Next Operation.

The DMA_CFG.FLOW bit field selects the descriptor handling options.

0 STOP. See the Stop Flow Mode section.

1 AUTO. See the Autobuffer Flow Mode section.

2 Reserved

3 Reserved

4 DSCL. See the Descriptor List Mode section.

5 DSCA. See the Descriptor Array Mode section.

6 Descriptor On-Demand List. See the Descriptor List
Mode section.

7 Descriptor On Demand Array. See the Descriptor On
Demand section.

10:8

(R/W)

MSIZE Memory Transfer Word Size.

The DMA_CFG.MSIZE bits select memory transfer sizes of 8-, 16-, 32-, 64-, 128-, or
256-bit words. The transfer start address (DMA_ADDRSTART) and transfer increment
values (DMA_XMOD, and, if needed, DMA_YMOD) must be a multiple of the memory
transfer unit size.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

4 16 Bytes

5 32 Bytes

CM41X_M4 DMA Register Descriptions

17–54 ADSP-CM41x Mixed-Signal Control Processor

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6:4

(R/W)

PSIZE Peripheral Transfer Word Size.

The DMA_CFG.PSIZE bits select peripheral transfer sizes as 8, 16, 32, or 64 bits
wide. Each request and grant results in a single peripheral access. There are no bursts
on the peripheral bus, so the DMA_CFG.PSIZE selection must be less than, or equal
to, the width of the bus. If the selection is greater than the bus width, a configuration
error occurs. The peripheral bus of the processor is dedicated to DMA and peripheral
accesses.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

3

(R/W)

CADDR Use Current Address.

When the DMA_CFG.CADDR bit is cleared, the DMA loads the DMA_ADDRSTART
register on the first access of the work unit. When the DMA_CFG.CADDR bit is set,
the DMA uses the DMA_ADDR_CUR register value for the starting address for the
work unit and writes the same value to the DMA_ADDRSTART register.

This operation permits continuation of a previous work unit. When DMA uses this
mode, the fetched start address value (as part of the descriptor set at the end of a de-
scriptor list or array) is ignored.

0 Load Starting Address

1 Use Current Address

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–55

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

SYNC Synchronize Work Unit Transitions.

Setting the DMA_CFG.SYNC bit clears the DMA FIFO and pointers before starting
the first work unit of a work unit chain.

When the transfer direction is memory read/transmit (DMA_CFG.WNR =0), the DMA
waits until all data transmits to a peripheral before moving on to the next work unit,
clearing the FIFO and pointers.

When the transfer direction is memory write/receive (DMA_CFG.WNR =1), the DMA
ignores the DMA_CFG.SYNC bit value after processing the first work unit of a work
unit chain. As a channel can receive data when turned on but idle, data from the pe-
ripheral can still be in the FIFO even though the channel was not programmed. When
the DMA_CFG.SYNC bit field is set at the beginning of a work unit chain (during the
first work unit), the DMA clears the FIFO, erasing the data put into the FIFO while
the channel was idle.

Syncing lets programs change the DMA_CFG.PSIZE between individual work units
and (in some cases) work unit chains. The sync resets the pointers in the FIFO, pre-
venting misaligned FIFO access.

Programs can change the DMA_CFG.MSIZE field between consecutive work units,
independent of the DMA_CFG.SYNC bit setting.

Syncing also permits changes to transfer direction. Because the data in the FIFO is
eliminated, the data that went into the FIFO from one direction (transmit or receive)
is not sent back in the other direction after the direction change.

0 No Synchronization

1 Synchronize Channel

1

(R/W)

WNR Write/Read Channel Direction.

The DMA_CFG.WNR bit selects receive (write to memory) or transmit (read from
memory) channel direction.

0 Transmit (Read from memory)

1 Receive (Write to memory)

CM41X_M4 DMA Register Descriptions

17–56 ADSP-CM41x Mixed-Signal Control Processor

Table 17-19: DMA_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN DMA Channel Enable.

The DMA_CFG.EN bit enables the selected DMA channel.

When a peripheral DMA channel is enabled, data requests from the peripheral denote
DMA requests. When a channel is disabled, the DMA unit ignores the peripheral data
request and passes it directly to the system event controller.

To avoid unexpected results, enable the DMA channel before enabling the peripheral,
and disable the peripheral before disabling the DMA channel.

A transition of the DMA_CFG.EN bit from 0 to 1 creates a hard reset of all internal
counters and states, including the DMA_STAT register. (All other register values re-
main unaffected.) A transition from 1 to 0 maintains all counters and registers for
reading and analysis.

Note that if a descriptor loads when this bit is cleared (see the DMA_CFG.FLOW
field), the DMA transitions to the off or idle state after the descriptor load is complete.

0 Disable

1 Enable

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–57

Current Descriptor Pointer Register

The DMA_DSCPTR_CUR register contains the memory address for the next descriptor to be loaded. The
DMA_DSCPTR_CUR register is read/write prior to enabling the channel, but is read-only after enabling the channel.
For DMA_CFG.FLOW mode settings that involve descriptor fetches, this register is used to read descriptors into ap-
propriate MMRs before a work unit begins. For descriptor list mode, the DMA_DSCPTR_CUR register is initialized
from the DMA_DSCPTR_NXT register before fetching each descriptor set. Then, the address in the
DMA_DSCPTR_CUR register increments as each descriptor is read.

When the entire descriptor set has been read, the DMA_DSCPTR_CUR register contains this value:

DMA_DSCPTR_CUR = Descriptor Start Address + Descriptor Size (# of elements)

For descriptor array mode, the DMA_DSCPTR_CUR register, and not the DMA_DSCPTR_NXT register, must be
programmed by a MMR access before starting DMA operation.

Pointer for Current Descriptor Element

Pointer for Current Descriptor Element

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-12: DMA_DSCPTR_CUR Register Diagram

Table 17-20: DMA_DSCPTR_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Pointer for Current Descriptor Element.

The DMA_DSCPTR_CUR.VALUE bit field contains the memory address for the next
descriptor to be loaded.

CM41X_M4 DMA Register Descriptions

17–58 ADSP-CM41x Mixed-Signal Control Processor

Pointer to Next Initial Descriptor Register

The DMA_DSCPTR_NXT register specifies the start location of the next descriptor set, which begins when the
DMA activity specified by the current descriptor set completes. This register is read/write prior to enabling the
channel, but is read-only after enabling channel.

The DMA_DSCPTR_NXT register is only used in descriptor list mode. At the start of a descriptor fetch in this
mode, the DMA_DSCPTR_NXT register is copied into the DMA_DSCPTR_CUR register. During descriptor fetch,
the DMA increments the DMA_DSCPTR_CUR register value after reading each element of the descriptor set.

In descriptor list mode, the DMA_DSCPTR_NXT register (not the DMA_DSCPTR_CUR register) must be program-
med directly through MMR access, before the DMA operation is started. In descriptor array mode, the DMA disre-
gards the DMA_DSCPTR_NXT register and uses the DMA_DSCPTR_CUR register to control descriptor fetch.

Pointer to Next Descriptor Set

Pointer to Next Descriptor Set

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-13: DMA_DSCPTR_NXT Register Diagram

Table 17-21: DMA_DSCPTR_NXT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Pointer to Next Descriptor Set.

The DMA_DSCPTR_NXT.VALUE bit field specifies the start location of the next de-
scriptor set.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–59

Previous Initial Descriptor Pointer Register

The DMA_DSCPTR_PRV register contains the initial descriptor pointer for the previous work unit. If
DMA_CFG.DESCIDCPYis set, the DMA copies the initial descriptor pointer to DMA_DSCPTR_PRV after the
work unit completes. Otherwise, the value is not updated.

To indicate an overrun, bit 0 of the DMA_DSCPTR_PRV register is used as a previous descriptor pointer overrun
(PDPO) status bit. Due to aligned addressing combined with all descriptors being 32 bits in width, bits 0 and 1 of
all descriptor pointers must be zero. Otherwise, an alignment error occurs when used for descriptor fetches. As a
result, bit 1 and 0 of the DMA_DSCPTR_PRV register can be used for status. For more information, see the section
on descriptor pointer capture in the DMA functional description.

Previous Descriptor Pointer OverrunDescriptor Pointer for Previous Element

Descriptor Pointer for Previous Element

PDPO (R)DESCPPREV[13:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DESCPPREV[29:14] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-14: DMA_DSCPTR_PRV Register Diagram

Table 17-22: DMA_DSCPTR_PRV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:2

(R/NW)

DESCPPREV Descriptor Pointer for Previous Element.

The DMA_DSCPTR_PRV.DESCPPREV bit field contains the initial descriptor
pointer for the previous work unit.

0

(R/NW)

PDPO Previous Descriptor Pointer Overrun.

The DMA_DSCPTR_PRV.PDPO bit signifies an alignment error. Due to aligned ad-
dressing combined with all descriptors being 32 bits in width, bits 0 and 1 of all de-
scriptor pointers must be zero. Otherwise, an alignment error would occur when used
for descriptor fetches.

0 No Error Occurred

1 Error Occurred

CM41X_M4 DMA Register Descriptions

17–60 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The DMA_STAT register indicates the status of DMA work units, the FIFO, errors, interrupts, and triggers.

Error Cause

Peripheral Interrupt RequestRun Status

Error Interrupt RequestPeripheral Bus Width

Work Unit/Row Done InterruptMemory Bus Width

FIFO Fill StatusTrigger Wait Status

ERRC (R)

PIRQ (R/W1C)RUN (R)

IRQERR (R/W1C)PBWID (R)

IRQDONE (R/W1C)MBWID (R)

0
15

1
14

1
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FIFOFILL (R)TWAIT (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-15: DMA_STAT Register Diagram

Table 17-23: DMA_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/NW)

TWAIT Trigger Wait Status.

The DMA_STAT.TWAIT bit indicates whether the DMA has or has not received a
trigger. This bit is set until it reaches the next wait state. At that point, the bit is
cleared, the DMA stops processing that work unit, and the following work unit proc-
esses. The DMA does not distinguish between one or more triggers received.

0 No Trigger Received

1 Trigger Received

18:16

(R/NW)

FIFOFILL FIFO Fill Status.

The DMA_STAT.FIFOFILL bit field reports the quantity of data in the FIFO rela-
tive to available space.

0 Empty

1 Empty < FIFO = 1/4 Full

2 1/4 Full < FIFO = 1/2 Full

3 1/2 Full < FIFO = 3/4 Full

4 3/4 Full < FIFO = Full

5 Reserved

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–61

Table 17-23: DMA_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6 Reserved

7 Full

15:14

(R/NW)

MBWID Memory Bus Width.

The DMA_STAT.MBWID bit field indicates the width of the memory bus connected
to this DMA.

0 2 Bytes

1 4 Bytes

2 8 Bytes

3 16 Bytes

13:12

(R/NW)

PBWID Peripheral Bus Width.

The DMA_STAT.PBWID bit field indicates the width of the peripheral bus connected
to this DMA.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

10:8

(R/NW)

RUN Run Status.

The DMA_STAT.RUN bit field reports the DMA's current operational state. If the
DMA is in idle or stop state, the DMA_CFG.EN bit is either 0 or 1. This bit field does
not clear when a transition of the DMA_CFG.EN bit from 0 to 1 occurs. The
DMA_STAT.RUN clears automatically when the DMA completes.

0 Idle/Stop State

1 Descriptor Fetch

2 Data Transfer

3 Waiting for Trigger

4 Waiting for Write ACK/FIFO Drain to Peripheral

5 Reserved

6 Reserved

7 Reserved

6:4

(R/NW)

ERRC Error Cause.

When an interrupt request error occurs (DMA_STAT.IRQERR), the DMA updates
the DMA_STAT.ERRC bit field to identify the type of error. For more information,
see the errors section of the DMA functional description.

CM41X_M4 DMA Register Descriptions

17–62 ADSP-CM41x Mixed-Signal Control Processor

Table 17-23: DMA_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0 Configuration Error

1 Illegal Write Occurred While Channel Running

2 Address Alignment Error

3 Memory Access or Fabric Error

4 Reserved

5 Trigger Overrun

6 Bandwidth Monitor Error

7 Reserved

2

(R/W1C)

PIRQ Peripheral Interrupt Request.

The DMA_STAT.PIRQ bit indicates a peripheral interrupt request. Programs can use
the DMA_STAT.PIRQ bit status to help determine which DMA asserted the inter-
rupt request. This bit also helps to distinguish between an interrupt request caused by
the state of the work unit and an interrupt request caused by the peripheral.

0 No Interrupt request

1 Interrupt Request signaled by peripheral

1

(R/W1C)

IRQERR Error Interrupt Request.

The DMA_STAT.IRQERR bit indicates that the DMA has detected a documented
rule violation during DMA programming or operation. The DMA cannot, however,
flag all possible programming or operation issues to indicate errors. Programmers can
use the DMA_STAT.IRQERR bit to help determine which DMA issued the error in-
terrupt request. The DMA_STAT.IRQERR does not clear a transition of the
DMA_CFG.EN bit from 0 to 1. Clear the DMA_STAT.IRQERR bit with a write-1-
to-clear operation prior to the DMA_CFG.EN transition for the fields to be reset.

0 No Error

1 Error Occurred

0

(R/W1C)

IRQDONE Work Unit/Row Done Interrupt.

The DMA_STAT.IRQDONE bit indicates that the DMA has detected the completion
of a work unit or row (inner loop count) and has issued an interrupt request. Programs
can use the DMA_STAT.IRQDONE status to help determine which DMA asserted the
interrupt request. Programs can also use these bits to help distinguish between an in-
terrupt request based on the state of the work unit and an interrupt request made by
the peripheral. For more information, see the interrupts section of the DMA function-
al description.

0 Inactive

1 Active

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–63

Inner Loop Count Start Value Register

For 2D DMA, the DMA_XCNT register contains the inner loop count. This value selects the number of
DMA_CFG.MSIZE size data transfers that make up the length of a row. For 1D DMA, the DMA_XCNT register
specifies the number of DMA_CFG.MSIZE size data transfers for the entire work unit. The DMA_XCNT register is
read/write prior to enabling the channel, but is read-only after enabling channel. Note that the DMA generates a
configuration error if this register is 0x0 when a work unit begins.

Value
Work Unit Inner Loop Counter Start

Value
Work Unit Inner Loop Counter Start

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-16: DMA_XCNT Register Diagram

Table 17-24: DMA_XCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Work Unit Inner Loop Counter Start Value.

For 2D DMA, the DMA_XCNT.VALUE bit field contains the inner loop count. For
1D DMA, DMA_XCNT.VALUE specifies the number of DMA_CFG.MSIZE size data
transfers for the entire work unit.

CM41X_M4 DMA Register Descriptions

17–64 ADSP-CM41x Mixed-Signal Control Processor

Current Count (1D) or Intra-row XCNT (2D) Register

For 1D DMA, the DMA loads the DMA_XCNT_CUR register from the DMA_XCNT register at the beginning of
each work unit. For 2D DMA, the DMA loads the DMA_XCNT_CUR register from the DMA_XCNT register after
the end of each row. The DMA decrements the value in DMA_XCNT_CUR register each time a DMA_CFG.MSIZE
size data transfer occurs. When the count in DMA_XCNT_CUR register expires, the work unit is complete. In 2D
DMA, the DMA_XCNT_CUR value is 0 only when the entire transfer is complete.

Value
Work Unit Outer Loop Counter Start

Value
Work Unit Outer Loop Counter Start

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-17: DMA_XCNT_CUR Register Diagram

Table 17-25: DMA_XCNT_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Work Unit Outer Loop Counter Start Value.

For 1D DMA, the DMA_XCNT_CUR.VALUE bit field holds the DMA_XCNT value at
the beginning of each work unit. For 2D DMA, the DMA_XCNT_CUR.VALUE bit
field holds the DMA_XCNT value after the end of each row.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–65

Inner Loop Address Increment Register

The DMA_XMOD register contains a signed, two's-complement byte address increment. In 1D DMA, this increment
is the stride that is applied after each DMA_CFG.MSIZE size data transfer. The DMA_XMOD register is read/write
prior to enabling the channel, but is read-only after enabling the channel.

The DMA_XMOD register value is specified in bytes, regardless of the work unit size. In 2D DMA, this increment is
applied after each DMA_CFG.MSIZE size data transfer in the inner loop, up to but not including the last
DMA_CFG.MSIZE size data transfer in each inner loop. After the last DMA_CFG.MSIZE size data transfer in each
inner loop, the DMA_YMOD register is applied instead, including the last DMA_CFG.MSIZE size data transfer of a
work unit.

The DMA_XMOD field can be set to 0. In this case, DMA is performed repeatedly to or from the same address. This
approach can be useful for transferring data between a data register and an external memory-mapped peripheral.

Inner Loop Address Increment in Bytes

Inner Loop Address Increment in Bytes

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-18: DMA_XMOD Register Diagram

Table 17-26: DMA_XMOD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Inner Loop Address Increment in Bytes.

The DMA_XMOD.VALUE bit field contains a signed, two's-complement byte address
increment.

CM41X_M4 DMA Register Descriptions

17–66 ADSP-CM41x Mixed-Signal Control Processor

Outer Loop Count Start Value (2D only) Register

For 2D DMA, the DMA_YCNT register contains the outer loop count. This register is not used in 1D DMA mode.
The DMA_YCNT register specifies the number of rows in the outer loop of a 2D DMA sequence. The DMA_YCNT
register is read/write prior to enabling the channel, but is read-only after enabling channel. Note that the DMA
generates a configuration error if this register is 0x0 when a work unit begins.

Value
Work Unit Inner Loop Counter Current

Value
Work Unit Inner Loop Counter Current

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-19: DMA_YCNT Register Diagram

Table 17-27: DMA_YCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Work Unit Inner Loop Counter Current Value.

For 2D DMA, the DMA_YCNT.VALUE bit field contains the outer loop count.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–67

Current Row Count (2D only) Register

For 2D DMA, the DMA loads the DMA_YCNT_CUR register from the DMA_YCNT register at the beginning of
each 2D DMA session. The DMA_YCNT_CUR register is not used for 1D DMA. The DMA decrements the
DMA_YCNT_CUR register each time the DMA_XCNT_CUR register expires during 2D DMA operation, signifying
the completion of an entire row transfer.

Value
Work Unit Outer Loop Counter Current

Value
Work Unit Outer Loop Counter Current

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-20: DMA_YCNT_CUR Register Diagram

Table 17-28: DMA_YCNT_CUR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Work Unit Outer Loop Counter Current Value.

For 2D DMA, the DMA_YCNT_CUR.VALUE bit field holds the value from the
DMA_YCNT register at the beginning of each 2D DMA session.

CM41X_M4 DMA Register Descriptions

17–68 ADSP-CM41x Mixed-Signal Control Processor

Outer Loop Address Increment (2D only) Register

The DMA_YMOD register contains a signed, two's-complement value. This byte address increment is applied after
each decrement of the DMA_YCNT_CUR register. The value is the offset between the last word of one row and the
first word of the next row. Note that DMA_YMOD is specified in bytes, regardless of the work unit size. The
DMA_YMOD register is read/write prior to enabling the channel, but is read-only after enabling the channel.

Outer Loop Address Increment in Bytes

Outer Loop Address Increment in Bytes

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 17-21: DMA_YMOD Register Diagram

Table 17-29: DMA_YMOD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Outer Loop Address Increment in Bytes.

The DMA_YMOD.VALUE bit field contains a signed, two's-complement value.

CM41X_M4 DMA Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 17–69

18 General-Purpose Ports (PORT)

This section describes general-purpose ports, pin multiplexing, general-purpose input/output (GPIO) functionality,
and pin interrupts. The general-purpose ports provide the following three functions:

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupt requests

NOTE: In this chapter, the naming convention for registers and bits omits the alphabetic group enumeration
to refer to any and all of the ports. For example, PORT_FER represents registers PORTA_FER,
PORTB_FER, and so on. Likewise PORT_FER.PX1 represents bits PA1, PB1, and so on.

PAD

PORT_FER /

PORT_MUX

PORTX (WRITE)

PORT_DIR

PORT_INEN

PORTX (READ)
TO/FROM

PERIPHERALS

PINT_POL_SET

PINT_PINSTATE
PINT_EDGE

PINT_MSK

PINT_REQ (READ)

PINT_ASSIGN
PINT_LATCH (READ)

PINT_REQ (W1C)

PINT_LATCH (W1C)

PORT_POL

SIGNAL OUTPUT

OUTPUT ENABLE

INPUT ENABLE

SIGNAL INPUT TEST_IE

Figure 18-1: Simplified GPIO and Pin Interrupt Signal Flow

General-Purpose Ports (PORT)

ADSP-CM41x Mixed-Signal Control Processor 18–1

PORT Features
The PORTs include the following features:

• Input mode, output mode, and open-drain mode of GPIO operation

• Port multiplexing controlled on a pin-by-pin basis

• No external glue hardware required for unused pins

• All port pins provide interrupt request functionality

• Byte-wide pin-to-interrupt request assignment

PORT Functional Description
The number of ports and each's composition are defined in the processor datasheet. Each port has a dedicated set of
MMR registers that control pin functions and operates in general-purpose I/O (GPIO) mode by default, as control-
led by the port-specific PORT_FER register. Each bit in this register, as well as the other PORT MMRs, represents a
specific GPIO pin on the specified port.

Input Mode, Output Mode, and Open-Drain Mode of GPIO Operation

At reset, every GPIO pin defaults to input mode with the input drivers disabled. To enable any GPIO input
driver, set the bits corresponding to the individual pins in the appropriate input enable register
(PORT_INEN).

The GPIO output drivers are enabled by setting the corresponding bits in the direction registers
(PORT_DIR).

The PORT can use every GPIO in open-drain mode by clearing the respective bit in the PORT_DATA regis-
ter or setting the respective bit in the PORT_DATA_CLR register. Then, set the corresponding bit in the
PORT_INEN register. Read from the PORT_DATA register to obtain the status from the pin.

Port Multiplexing Controlled on Pin-by-Pin Basis

Each port has two dedicated MMRs that control the port multiplexing, the 16-bit function enable
(PORT_FER) registers and the 32-bit port multiplexing (PORT_MUX) registers.

All Port Pins Provide Interrupt Functionality

Pin interrupts are completely decoupled from GPIO functionality. Pins are connected to the system event con-
troller (SEC) via the PINTx modules, each of which is configurable in terms of which port pins are sensed for
interrupt generation.

PORT Features

18–2 ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 PORT Register List

The PORT module (PORT) regulates the use of the multiplexable processor pins. Every port pin can operate in
general-purpose I/O (GPIO) mode or as an alternate function. This GPIO operation is the default after processor
reset and is controlled by a set of registers that control GPIO functionality. Every bit in these registers represents a
certain GPIO pin of a specific port. For more information on PORT functionality, see the PORT register descrip-
tions.

Table 18-1: CM41X_M4 PORT Register List

Name Description

PORT_DATA Port x GPIO Data Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_TGL Port x GPIO Output Toggle Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_FER Port x Function Enable Register

PORT_FER_CLR Port x Function Enable Clear Register

PORT_FER_SET Port x Function Enable Set Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_LOCK Port x GPIO Lock Register

PORT_MUX Port x Multiplexer Control Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_TRIG_TGL Port x GPIO Trigger Toggle Register

CM41X_M4 PORT Trigger List

Table 18-2: CM41X_M4 PORT Trigger List Masters

Trigger ID Name Description Sensitivity

None

PORT Functional Description

ADSP-CM41x Mixed-Signal Control Processor 18–3

Table 18-3: CM41X_M4 PORT Trigger List Slaves

Trigger ID Name Description Sensitivity

19 PORTB_TOGGLE PORTB Port Toggle Trigger Pulse

20 PORTC_TOGGLE PORTC Port Toggle Trigger Pulse

21 PORTD_TOGGLE PORTD Port Toggle Trigger Pulse

22 PORTE_TOGGLE PORTE Port Toggle Trigger Pulse

23 PORTF_TOGGLE PORTF Port Toggle Trigger Pulse

CM41X_M4 PINT Register List

The Pin Interrupt module (PINT) controls the pin-to-interrupt assignment in a byte-wide manner. The pin-inter-
rupt assignment registers do not consist of 32 individual bits. They consist of four control bytes, each functioning as
a multiplexer control. For more information, see the PINT register descriptions.

All PINT registers are 32 bits wide and can be accessed by 32-bit load/store instructions. They also support 16-bit
operation where the upper 16 bits are ignored and the application uses the lower 16 bits only. Consequently, all
PINT registers support 32-bit accesses as well as 16-bit accesses for the lower half words. Applications may use faster
16-bit accesses as long as they do not require functionality of upper register halves.

Table 18-4: CM41X_M4 PINT Register List

Name Description

PINT_ASSIGN PINT Assign Register

PINT_EDGE_CLR PINT Edge Clear Register

PINT_EDGE_SET PINT Edge Set Register

PINT_INV_CLR PINT Invert Clear Register

PINT_INV_SET PINT Invert Set Register

PINT_LATCH PINT Latch Register

PINT_MSK_CLR PINT Mask Clear Register

PINT_MSK_SET PINT Mask Set Register

PINT_PINSTATE PINT Pin State Register

PINT_REQ PINT Request Register

CM41X_M4 PINT Interrupt List

Table 18-5: CM41X_M4 PINT Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

82 PINT1_BLOCK PINT1 Pin Interrupt Block Level

PORT Functional Description

18–4 ADSP-CM41x Mixed-Signal Control Processor

Table 18-5: CM41X_M4 PINT Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

83 PINT2_BLOCK PINT2 Pin Interrupt Block Level

84 PINT3_BLOCK PINT3 Pin Interrupt Block Level

85 PINT4_BLOCK PINT4 Pin Interrupt Block Level

86 PINT5_BLOCK PINT5 Pin Interrupt Block Level

87 PINT0_BLOCK PINT0 Pin Interrupt Block Level

CM41X_M0 PINT Interrupt List

Table 18-6: CM41X_M0 PINT Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

14 PINT0_BLOCK PINT0 Pin Interrupt Block Level

CM41X_M4 PINT Trigger List

Table 18-7: CM41X_M4 PINT Trigger List Masters

Trigger ID Name Description Sensitivity

21 PINT0_BLOCK PINT0 Pin Interrupt Block Level

22 PINT1_BLOCK PINT1 Pin Interrupt Block Level

23 PINT2_BLOCK PINT2 Pin Interrupt Block Level

24 PINT3_BLOCK PINT3 Pin Interrupt Block Level

25 PINT4_BLOCK PINT4 Pin Interrupt Block Level

26 PINT5_BLOCK PINT5 Pin Interrupt Block Level

Table 18-8: CM41X_M4 PINT Trigger List Slaves

Trigger ID Name Description Sensitivity

None

PORT Functional Description

ADSP-CM41x Mixed-Signal Control Processor 18–5

18.2.7

CM41X_M0 PINT Trigger List

Table 18-9: CM41X_M0 PINT Trigger List Masters

Trigger ID Name Description Sensitivity

12 PINT0_BLOCK PINT0 Pin Interrupt Block Level

Table 18-10: CM41X_M0 PINT Trigger List Slaves

Trigger ID Name Description Sensitivity

None

PORT Architectural Concepts

These sections describe in more detail how the PORT module connects externally to pins and internally to the
MMR bus. Ports are named alphabetically beginning with A.

• Internal Interfaces

• External Interfaces

• GPIO Pin Function

• Port Multiplexing Control

Internal Interfaces

All of the pin multiplexing, GPIO, and pin interrupt control block MMRs can be accessed through the MMR bus. .
Each of the pin interrupt (PINTx) modules has its own dedicated interrupt request output signal.

External Interfaces

The pin multiplexing hardware can be seen as a layer between the on-chip peripherals and the silicon pads connect-
ing to the physical pins/balls or the package, as controlled by the PORT unit.

GPIO Pin Function

By default, the PORT sets every GPIO pin to input mode. The input drivers are not enabled, which avoids the need
for unnecessary current sinks and external termination resistors on unused pins.

Input Mode

The default mode of every GPIO pin after reset is input mode, but the input drivers are not enabled. To enable
GPIO input drivers, set the bits corresponding to the PORT pins in the appropriate input enable register
(PORT_INEN). When enabled, a read from the PORT_DATA register returns the logical state of the input pins.
However, the input signal does not overwrite the state of the internal flip-flop used for providing output to the same
pin. Only software can alter the state. If the input driver is enabled, a write to the PORT_DATA register can alter the
state of the flip-flop, but the change cannot be read back.

PORT Functional Description

18–6 ADSP-CM41x Mixed-Signal Control Processor

Output Mode

Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled by setting the bits corre-
sponding to the PORT pins in the appropriate direction register. The PORT implements direction registers as a pair
of write-1-to-set (W1S) and write-1-to-clear (W1C) MMRs called PORT_DIR_SET and PORT_DIR_CLR, re-
spectively. As such, software can alter the direction of the signal flow on individual GPIO pins without impacting
other GPIOs on the same port.

Both the PORT_DIR_SET and PORT_DIR_CLR registers return the same value when read, and a logical 1 indi-
cates an enabled output. The PORT_DATA registers control the state of output pins. A logical 0 drives the output
low while a logical 1 drives the output high.

While writes to the PORT_DATA register can alter all of the GPIOs on a specific port at once, there are also a pair
of W1S and W1C MMRs called PORT_DATA_SET and PORT_DATA_CLR, respectively. These registers enable
the manipulation of individual GPIO outputs. The state of the outputs can be obtained by reading the
PORT_DATA registers. Because the state of the GPIO output can be controlled before the output driver is enabled,
set or clear the internal flip-flop first by programming this register to avoid volatile levels on the output pin.

Trigger Toggle Mode

Any GPIO pin that has been configured for output mode can be toggled using a trigger input from the Trigger
Routing Unit (TRU). To enable this functionality for a particular GPIO, set the appropriate bit in the
PORT_TRIG_TGL register. Any subsequent trigger for the designated port causes all GPIO outputs set in the
PORT_TRIG_TGL register to toggle.

To avoid unpredictable behavior, do not set, clear, or toggle the PORT_DATA, PORT_DATA_SET,
PORT_DATA_CLR, or PORT_DATA_TGL registers when the GPIO output has the corresponding
PORT_TRIG_TGL bit set. To change the state of the GPIO output using one of these registers, first clear the corre-
sponding bit in the PORT_TRIG_TGL register.

Open-Drain Mode

Every GPIO can also be used in open-drain mode. First, either clear the respective bit in the PORT_DATA register
or set the respective bit in the PORT_DATA_CLR register. Then, set the appropriate bit in the PORT_INEN regis-
ter. Read from the PORT_DATA register to return the status from the pin rather than the state of the internal flip-
flop.

By toggling the output driver through the PORT_DIR_SET and PORT_DIR_CLR register pair, the output signal
can be pulled low or three-stated, as required. The polarity of the driven signal can be inverted when the internal
flip-flop is set. When using a GPIO port in open-drain mode, take care to not exceed the VIH operating condition
associated with the respective pins.

Port Multiplexing Control

To configure pins properly, consult the processor datasheet to determine which bits in the PORT_FER and
PORT_MUX register map to the pin of interest, and then set these registers appropriately for the desired function.

After reset, all port pins default to GPIO input mode with their output and input drivers disabled. As a result, all
unused port pins can be left unconnected. Disabled pins appear as high-impedance to external circuits.

GPIO Pin Function

ADSP-CM41x Mixed-Signal Control Processor 18–7

Each port has two dedicated MMRs that control the port multiplexing, the 16-bit function enable (PORT_FER)
registers and the 32-bit port multiplexing (PORT_MUX) registers.

The function enable register specifies whether the pin is used as a GPIO pin or allocated for use by a specific periph-
eral, but it does not specify what the peripheral function is. Each bit in the 16-bit PORT_FER register corresponds
to an individual port pin. For example, if bit 1 (PA1) of the PORTA_FER register is cleared, the PA_01 pin is con-
figured as a GPIO. When set, one of the available peripheral functions becomes active on the PA_01 pin instead.

Pairs of bits in the PORT_MUX register control the multiplexing between the peripheral functions available to an
individual pin, as some PORT pins provide up to four possible peripheral functions.

Refer to the Signal Muxing table in the datasheet for the specific PORT_MUX settings.

PORT Event Control
The following sections describe event generation in the PORT module.

PORT Interrupt Signals

The pin interrupts are decoupled from GPIO functionality, providing the following advantages.

• Flexible mapping scheme enables pins from up to four different ports to be grouped into one common inter-
rupt scheme.

• Interrupt requests work on input and output pins regardless of whether the pin is functioning as a GPIO or a
peripheral.

The processor has a number of interrupt channels dedicated to pin interrupts, managed by a set of pin interrupt
(PINTx) blocks. Each PINTx block can sense up to 32 GPIO pins, as described in the following list and figure.

• PINT0 can sense pin activity on PORTA

• PINT1 can sense pin activity on PORTB and PORTC

• PINT2 can sense pin activity on PORTC and PORTD

• PINT3 can sense pin activity on PORTD and PORTE

• PINT4 can sense pin activity on PORTE and PORTF

• PINT1 can sense pin activity on PORTF and PORTB

The processor supports both 32-bit and 16-bit peripheral bus accesses to PINTx registers.

PINT0 PINT1 PINT2 PINT3 PINT4 PINT5

PORTB PORTC PORTD PORTE PORTF PORTBPORTA

Figure 18-2: ADSP-CM41x GPIO to PINTx Assignment

PORT Event Control

18–8 ADSP-CM41x Mixed-Signal Control Processor

Pins connect to the PINTx module and then to the system event controller (SEC), as shown in the PINTx Block
Diagram.

BYTE3

PAH PBH

BYTE2

PAL PBL

BYTE1

PAH PBH

BYTE0

PAL PBL

M
M

R
 A

C
C

ES
S

B
U

S

IRQ

Figure 18-3: PINTx Block Diagram

As shown in the PINTx Block Diagram, each port is subdivided into two 8-pin half ports, upper (PxH) and lower
(PxL). The PINT_ASSIGN registers control the 8-bit multiplexers associated with these half ports, where the low-
er half units (eight pins) can be forwarded to either byte 0 or byte 2 of the PINTx blocks, and the upper half units
(eight pins) can be forwarded to either byte 1 or byte 3 of the PINTx blocks.

When a half port is assigned to a byte in any PINTx block, the state of the eight pins appears in the
PINT_PINSTATE register, regardless of whether the pin is enabled for GPIO or peripheral functions (input or
output). When neither the input nor output drivers of the pin are enabled, the pin state is read as zero. The
PINT_PINSTATE register reports the inverted state of the pin when the PINT_INV_SET register activates the
signal inverter. The inverter can be enabled on an individual bit-by-bit basis. Each bit in the PINT_INV_SET/
PINT_INV_CLR register pair represents a pin signal.

By default, PORT interrupt request generation is level-sensitive, and an interrupt request occurs when the enabled
pin is sensed as active high. Use the PINT_EDGE_SET register to change the interrupt request genearion scheme
to instead be edge-sensitive (rising edge generates the interrupt request). Use the PINT_INV_SET register to invert
the polarity such that the PINTx block generates the interrupt request on active-low signals or falling edges.

The PINTx modules also assist when both signal edges must generate unique interrupt requests. If two different
interrupt requests are required, the PINT_ASSIGN registers can route a single input signal to two different PINTx
blocks, where one block inverts the signal in the PINT_INV_SET register and the other one does not. In this fash-
ion, a unique software routine is associated with the hardware PINTx block that is generating the unique interrupt
request for each signal edge. When both signal edges can be serviced by the same interrupt request, each half port
can be routed to two separate bytes within a single PINTx block using the PINT_ASSIGN register, and then one of
the half ports needs to have the inversion enabled in the PINT_INV_SET register. The servicing software routine
can then detect from the PINT_LATCH register whether a falling, rising, or both edges have occurred.

Regardless of whether level-sensitive or edge-sensitive mode is used, the hardware always latches an interrupt request.
Latched signals can be read from the PINT_LATCH registers. Only a software or hardware reset clears the latches.
To clear the latch, a W1C operation must be performed to the PINT_REQ or PINT_LATCH register. When in
level-sensitive mode, the interrupt request remains asserted if the pin state does not change by the time the interrupt
service routine exits.

PORT Event Control

ADSP-CM41x Mixed-Signal Control Processor 18–9

Because every PINTx block groups up to 32 pin signals, the PINT_MSK_SET/ PINT_MSK_CLR register pair can
control which of the signals can request an interrupt at the system level. Software can interrogate the PINT_REQ
register for signaling pins. The PINT_REQ bits represent a logical AND between the mask and the latch. When any
of these bits is set, the block output interrupt request is asserted.

GPIO Pin Safe State

The GPIOs in the ADSP-CM41x can be configured to a high, low, hold or threestate state in the event of a power
failure or a bad clock signal. More information on the GPIO Pin Safe State can be found in GPIO Safe Pin States in
the VMU chapter.

PORT Programming Model

The GPIO Programming Model Flow (Part 1), GPIO Programming Model Flow (Part 2), and GPIO Programming
Model Flow (Part 3) figures show the programming model for the general-purpose ports. This programming in-
cludes the GPIO input and output operation, open-drain mode, and the pin interrupt PINTx modules.

NOTE: These process flow diagrams connect where call-out letters appear. For example, call-out A in the GPIO
Programming Model Flow (Part 1) diagram connects to call-out A in the GPIO Programming Model Flow
(Part 2) diagram.

The following flowcharts describe the processes for setting up pins for various functions. Begin the process from the
start label in the GPIO Programming Model Flow (Part 1) figure. The first decision (GPIO or peripheral) deter-
mines how to program the PORT_FER register. Set the bit(s) corresponding to the pin(s) to 1 to enable peripheral
functionality or to 0 to enable GPIO mode. For more information on setting up for peripheral functions, refer to
Port Multiplexing Control.

If the pin is to be a GPIO pin, a subsequent series of decisions must be made that will impact how the
PORT_DATA, PORT_POL, PORT_DIR, and PORT_INEN configuration registers must be programmed. Depend-
ing on the type of GPIO pin desired, some configurations do not apply and can have different meanings. The fol-
lowing paragraphs briefly describe the function of the different settings for each of the pin functions in the input,
output, and open-drain GPIO modes. It is a best practice to use the SET or CLR versions of the PORT registers,
where applicable, to effect changes on a pin-by-pin basis rather than on the full port.

For output mode, first clear the PORT_DATA register to set all the pins low. Then write the PORT_DIR register to
define the direction of each pin (set the bits associated with the desired output pins to 1). In output mode, the other
registers are not significant. The GPIO Programming Model Flow (Part 1) chart shows this flow starting at label 2.

PORT Event Control

18–10 ADSP-CM41x Mixed-Signal Control Processor

WRITE PORT_DATA_SET FOR REQUIRED PINS

WRITE PORT_FER TO CLEAR REQUIRED BITS (OPTIONAL IF
PORT_FER HAS NOT BEEN MODIFIED AFTER RESET

WRITE PORT_FER
TO ENABLE FEATURE

WRITE PORT_DIR_ SET TO ENABLE OUTPUT DRIVERS FOR REQUIRED PINS

GPIO OR
PERIPHERAL

CHANGE DIR

GPIO OUTPUT OR
INPUT/OPEN-DRAIN

INITIAL STATE

A

SET

NO

YES

START

DONE

CLEAR

WRITE PORT_MUX
TO SELECT PERIPHERAL

SEE PERIPHERAL
FOR MORE DETAILS

WRITE PORT_DATA_CLR FOR REQUIRED PINS

CLEAR APPROPRIATE BITS

WRITE PORT_DIR_SET FOR REQUIRED PINS WRITE PORT_DIR_CLR FOR REQUIRED PINS

CHANGE STATE

SET CLEAR

SET &
CLEAR

OUTPUT
INPUT/

OPEN-DRAIN

GPIO

PERIPHERAL

1

2

Figure 18-4: GPIO Programming Model Flow (Part 1)

For input mode, first decide the polarity for each pin using the PORT_POL register. Program the PORT_DIR regis-
ter to define the appropriate pins as inputs (write a 0 to the bit location associated with the pin). If interrupt re-
quests are desired, configure the PINT module as shown in the GPIO Programming Model Flow (Part 3) figure
starting at label B. Finally, write the PORT_INEN register to enable the associated input drivers. The GPIO Pro-
gramming Model Flow (Part 2) chart shows this entire flow starting at label 3.

For open-drain mode, set all pins low by clearing the PORT_DATA register. Then, use the PORT_INEN register to
enable the appropriate input drivers. Set the PORT_DIR register in this mode to indicate whether the pin is in an
active state or not (active being 0). The GPIO Programming Model Flow (Part 2) chart shows this flow starting at
label 4.

PORT Programming Model

ADSP-CM41x Mixed-Signal Control Processor 18–11

WRITE PORT_DATA_CLR
FOR REQUIRED PINS

WRITE PORT_INEN_SET TO SET
APPROPRIATE BITS TO ENABLE

THE INPUT DRIVERS

WRITE PINT_INV_SET
TO INVERT THE POLARITY OF

THE APPROPRIATE PINS

WRITE PINT_INV_CLR
TO DISABLE THE INVERTERS ON

THE APPROPRIATE PINS

WRITE PORT_DIR_CLR
TO SET APPROPRIATE

PINS AS INPUTS

WRITE PORT_INEN_SET TO SET
APPROPRIATE BITS TO ENABLE

THE INPUT DRIVERS

WRITE PORT_DIR_ SET
TO SET APPROPRIATE PINS AS
OUTPUTS AND ENTER ACTIVE

STATE (LOGIC 0)

WRITE PORT_DIR_ CLR
TO SET APPROPRIATE PINS AS

INPUTS AND ENTER NOT ACTIVE
STATE (LOGIC 1)

INPUT OR
OPEN DRAIN**

PIN POLARITY
INVERTED*

INTERRUPT
ABILITY

ACTIVE OR
NOT ACTIVE

STATE

CHANGE
STATE

A

B

OPEN DRAIN

YES

NO

NO

NO

ACTIVE NOT ACTIVE

INPUT

DONE DONE

YES

YES

34

Figure 18-5: GPIO Programming Model Flow (Part 2)

PORT Programming Model

18–12 ADSP-CM41x Mixed-Signal Control Processor

REGISTER ISR TO REQUIRED EVTX

EDGE OR
LEVEL SENSITIVE

B

ASSIGN PINTx TO REQUIRED IVGX

UNMASK PINTx INTERRUPT

UNMASK EVT_IVGX

ASSIGN PORT PINS TO
APPROPRIATE PINTx BLOCK

CLEAR PONTENTIAL LATCHES
DUE TO HISTORY

UNMASK PINTx INTERRUPT

WRITE PORT_INEN TO SET APPROPRIATE
BITS TO ENABLE THE INPUT DRIVERS

WRITE PINT_EDGE_CLEAR
TO SET APPROPRIATE BITS FOR

LEVEL SENSITIVITY

LEVEL EDGE

DONE

WRITE PINT_EDGE_SET
TO SET APPROPRIATE BITS FOR

EDGE SENSITIVITY

Figure 18-6: GPIO Programming Model Flow (Part 3)

CM41X_M4 PORT Register Descriptions
The General-Purpose Input/Output Port (PORT) contains the following registers.

Table 18-11: CM41X_M4 PORT Register List

Name Description

PORT_DATA Port x GPIO Data Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_TGL Port x GPIO Output Toggle Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–13

Table 18-11: CM41X_M4 PORT Register List (Continued)

Name Description

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_FER Port x Function Enable Register

PORT_FER_CLR Port x Function Enable Clear Register

PORT_FER_SET Port x Function Enable Set Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_LOCK Port x GPIO Lock Register

PORT_MUX Port x Multiplexer Control Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_TRIG_TGL Port x GPIO Trigger Toggle Register

CM41X_M4 PORT Register Descriptions

18–14 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Data Register

The operation of the PORT_DATA register depends on whether the bit/pin is in output mode or input mode. In
both modes, a set bit in the PORT_DATA register corresponds to a signal high on a GPIO pin. A cleared bit in the
PORT_DATA register corresponds to a signal low on a GPIO pin.

The PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers control the state of GPIO pins in output
mode. To enable output mode (and output drivers), use the PORT_DIR_SET and PORT_DIR_CLR registers.

Writes to the PORT_DATA register affect the state of all pins of the port that are in output mode. To set or clear
specific pins without impacting other pins of the port, use the PORT_DATA_SET and PORT_DATA_CLR regis-
ters.

When the GPIO pins are in input mode (input driver is enabled with the PORT_INEN register), reads from the
PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers return the state of the respective GPIO pins.

Note that when the input driver is not enabled, reads from the PORT_DATA, PORT_DATA_SET, and
PORT_DATA_CLR registers return the value previously written to the registers.

Port x Bit 7 DataPort x Bit 8 Data

Port x Bit 6 DataPort x Bit 9 Data

Port x Bit 5 DataPort x Bit 10 Data

Port x Bit 4 DataPort x Bit 11 Data

Port x Bit 3 DataPort x Bit 12 Data

Port x Bit 2 DataPort x Bit 13 Data

Port x Bit 1 DataPort x Bit 14 Data

Port x Bit 0 DataPort x Bit 15 Data

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-7: PORT_DATA Register Diagram

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–15

Table 18-12: PORT_DATA Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Data.

The PORT_DATA.PX15 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

14

(R/W)

PX14 Port x Bit 14 Data.

The PORT_DATA.PX14 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

13

(R/W)

PX13 Port x Bit 13 Data.

The PORT_DATA.PX13 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

12

(R/W)

PX12 Port x Bit 12 Data.

The PORT_DATA.PX12 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

11

(R/W)

PX11 Port x Bit 11 Data.

The PORT_DATA.PX11 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

10

(R/W)

PX10 Port x Bit 10 Data.

The PORT_DATA.PX10 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

9

(R/W)

PX9 Port x Bit 9 Data.

The PORT_DATA.PX9 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

CM41X_M4 PORT Register Descriptions

18–16 ADSP-CM41x Mixed-Signal Control Processor

Table 18-12: PORT_DATA Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

PX8 Port x Bit 8 Data.

The PORT_DATA.PX8 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

7

(R/W)

PX7 Port x Bit 7 Data.

The PORT_DATA.PX7 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

6

(R/W)

PX6 Port x Bit 6 Data.

The PORT_DATA.PX6 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

5

(R/W)

PX5 Port x Bit 5 Data.

The PORT_DATA.PX5 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

4

(R/W)

PX4 Port x Bit 4 Data.

The PORT_DATA.PX4 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

3

(R/W)

PX3 Port x Bit 3 Data.

The PORT_DATA.PX3 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

2

(R/W)

PX2 Port x Bit 2 Data.

The PORT_DATA.PX2 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–17

Table 18-12: PORT_DATA Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

PX1 Port x Bit 1 Data.

The PORT_DATA.PX1 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

0

(R/W)

PX0 Port x Bit 0 Data.

The PORT_DATA.PX0 bit indicates a signal on a GPIO pin.

0 Signal Low

1 Signal High

CM41X_M4 PORT Register Descriptions

18–18 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Data Clear Register

The PORT_DATA_CLR register operates differently for port bits/pins, depending on whether the bit/pin is output
mode or input mode. For more information, see the PORT_DATA register description.

Port x Bit 7 Data ClearPort x Bit 8 Data Clear

Port x Bit 6 Data ClearPort x Bit 9 Data Clear

Port x Bit 5 Data ClearPort x Bit 10 Data Clear

Port x Bit 4 Data ClearPort x Bit 11 Data Clear

Port x Bit 3 Data ClearPort x Bit 12 Data Clear

Port x Bit 2 Data ClearPort x Bit 13 Data Clear

Port x Bit 1 Data ClearPort x Bit 14 Data Clear

Port x Bit 0 Data ClearPort x Bit 15 Data Clear

PX7 (R/W1C)PX8 (R/W1C)

PX6 (R/W1C)PX9 (R/W1C)

PX5 (R/W1C)PX10 (R/W1C)

PX4 (R/W1C)PX11 (R/W1C)

PX3 (R/W1C)PX12 (R/W1C)

PX2 (R/W1C)PX13 (R/W1C)

PX1 (R/W1C)PX14 (R/W1C)

PX0 (R/W1C)PX15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-8: PORT_DATA_CLR Register Diagram

Table 18-13: PORT_DATA_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PX15 Port x Bit 15 Data Clear.

The PORT_DATA_CLR.PX15 bit clears the pin without impacting other pins of the
port.

0 No Effect

1 Clear Bit. Write 1 for signal low in output mode.

14

(R/W1C)

PX14 Port x Bit 14 Data Clear.

The PORT_DATA_CLR.PX14 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–19

Table 18-13: PORT_DATA_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1C)

PX13 Port x Bit 13 Data Clear.

The PORT_DATA_CLR.PX13 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

12

(R/W1C)

PX12 Port x Bit 12 Data Clear.

The PORT_DATA_CLR.PX12 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

11

(R/W1C)

PX11 Port x Bit 11 Data Clear.

The PORT_DATA_CLR.PX11 bit clears the pin without impacting other pins of the
port.

0 No Effect

1 Clear Bit. Write 1 for signal low in output mode.

10

(R/W1C)

PX10 Port x Bit 10 Data Clear.

The PORT_DATA_CLR.PX10 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode. Write
0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

9

(R/W1C)

PX9 Port x Bit 9 Data Clear.

The PORT_DATA_CLR.PX9 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

8

(R/W1C)

PX8 Port x Bit 8 Data Clear.

The PORT_DATA_CLR.PX8 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

CM41X_M4 PORT Register Descriptions

18–20 ADSP-CM41x Mixed-Signal Control Processor

Table 18-13: PORT_DATA_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

PX7 Port x Bit 7 Data Clear.

The PORT_DATA_CLR.PX7 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

6

(R/W1C)

PX6 Port x Bit 6 Data Clear.

The PORT_DATA_CLR.PX6 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

5

(R/W1C)

PX5 Port x Bit 5 Data Clear.

The PORT_DATA_CLR.PX5 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

4

(R/W1C)

PX4 Port x Bit 4 Data Clear.

The PORT_DATA_CLR.PX4 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

3

(R/W1C)

PX3 Port x Bit 3 Data Clear.

The PORT_DATA_CLR.PX3 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

2

(R/W1C)

PX2 Port x Bit 2 Data Clear.

The PORT_DATA_CLR.PX2 bit clears the pin without impacting other pins of the
port.

0 No Effect Write 0 has no effect in output mode.

1 Clear Bit Write 1 for signal low in output mode.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–21

Table 18-13: PORT_DATA_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

PX1 Port x Bit 1 Data Clear.

The PORT_DATA_CLR.PX1 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

0

(R/W1C)

PX0 Port x Bit 0 Data Clear.

The PORT_DATA_CLR.PX0 bit clears the pin without impacting other pins of the
port.

0 No Effect. Write 0 has no effect in output mode.

1 Clear Bit. Write 1 for signal low in output mode.

CM41X_M4 PORT Register Descriptions

18–22 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Data Set Register

The PORT_DATA_SET register operates differently for port bits/pins, depending on whether the bit/pin is output
mode or input mode. For more information, see the PORT_DATA register description.

Port x Bit 7 Data SetPort x Bit 8 Data Set

Port x Bit 6 Data SetPort x Bit 9 Data Set

Port x Bit 5 Data SetPort x Bit 10 Data Set

Port x Bit 4 Data SetPort x Bit 11 Data Set

Port x Bit 3 Data SetPort x Bit 12 Data Set

Port x Bit 2 Data SetPort x Bit 13 Data Set

Port x Bit 1 Data SetPort x Bit 14 Data Set

Port x Bit 0 Data SetPort x Bit 15 Data Set

PX7 (R/W1S)PX8 (R/W1S)

PX6 (R/W1S)PX9 (R/W1S)

PX5 (R/W1S)PX10 (R/W1S)

PX4 (R/W1S)PX11 (R/W1S)

PX3 (R/W1S)PX12 (R/W1S)

PX2 (R/W1S)PX13 (R/W1S)

PX1 (R/W1S)PX14 (R/W1S)

PX0 (R/W1S)PX15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-9: PORT_DATA_SET Register Diagram

Table 18-14: PORT_DATA_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PX15 Port x Bit 15 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

14

(R/W1S)

PX14 Port x Bit 14 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

13

(R/W1S)

PX13 Port x Bit 13 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–23

Table 18-14: PORT_DATA_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1S)

PX12 Port x Bit 12 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

11

(R/W1S)

PX11 Port x Bit 11 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit.

10

(R/W1S)

PX10 Port x Bit 10 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

9

(R/W1S)

PX9 Port x Bit 9 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

8

(R/W1S)

PX8 Port x Bit 8 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

7

(R/W1S)

PX7 Port x Bit 7 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

6

(R/W1S)

PX6 Port x Bit 6 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

5

(R/W1S)

PX5 Port x Bit 5 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

4

(R/W1S)

PX4 Port x Bit 4 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

3

(R/W1S)

PX3 Port x Bit 3 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

CM41X_M4 PORT Register Descriptions

18–24 ADSP-CM41x Mixed-Signal Control Processor

Table 18-14: PORT_DATA_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1S)

PX2 Port x Bit 2 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

1

(R/W1S)

PX1 Port x Bit 1 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

0

(R/W1S)

PX0 Port x Bit 0 Data Set.

0 No Effect. Write 0 has no effect in output mode.

1 Set Bit. Write 1 for signal high in output mode.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–25

Port x GPIO Output Toggle Register

The PORT_DATA_TGL register permits toggling the state of output GPIO pins. Setting bits in the
PORT_DATA_TGL register affects the state of specific pins without impacting other pins of the port.

Reading the PORT_DATA_TGL returns the state of the PORT_DATA register output pin state, but does not return
the input pin/signal state.

Port x Bit 7 TogglePort x Bit 8 Toggle

Port x Bit 6 TogglePort x Bit 9 Toggle

Port x Bit 5 TogglePort x Bit 10 Toggle

Port x Bit 4 TogglePort x Bit 11 Toggle

Port x Bit 3 TogglePort x Bit 12 Toggle

Port x Bit 2 TogglePort x Bit 13 Toggle

Port x Bit 1 TogglePort x Bit 14 Toggle

Port x Bit 0 TogglePort x Bit 15 Toggle

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-10: PORT_DATA_TGL Register Diagram

Table 18-15: PORT_DATA_TGL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Toggle.

The PORT_DATA_TGL.PX15 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit.

14

(R/W)

PX14 Port x Bit 14 Toggle.

The PORT_DATA_TGL.PX14 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

CM41X_M4 PORT Register Descriptions

18–26 ADSP-CM41x Mixed-Signal Control Processor

Table 18-15: PORT_DATA_TGL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

PX13 Port x Bit 13 Toggle.

The PORT_DATA_TGL.PX13 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

12

(R/W)

PX12 Port x Bit 12 Toggle.

The PORT_DATA_TGL.PX12 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

11

(R/W)

PX11 Port x Bit 11 Toggle.

The PORT_DATA_TGL.PX11 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

10

(R/W)

PX10 Port x Bit 10 Toggle.

The PORT_DATA_TGL.PX10 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

9

(R/W)

PX9 Port x Bit 9 Toggle.

The PORT_DATA_TGL.PX9 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

8

(R/W)

PX8 Port x Bit 8 Toggle.

The PORT_DATA_TGL.PX8 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

7

(R/W)

PX7 Port x Bit 7 Toggle.

The PORT_DATA_TGL.PX7 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–27

Table 18-15: PORT_DATA_TGL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

PX6 Port x Bit 6 Toggle.

The PORT_DATA_TGL.PX6 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

5

(R/W)

PX5 Port x Bit 5 Toggle.

The PORT_DATA_TGL.PX5 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

4

(R/W)

PX4 Port x Bit 4 Toggle.

The PORT_DATA_TGL.PX4 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

3

(R/W)

PX3 Port x Bit 3 Toggle.

The PORT_DATA_TGL.PX3 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

2

(R/W)

PX2 Port x Bit 2 Toggle.

The PORT_DATA_TGL.PX2 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

1

(R/W)

PX1 Port x Bit 1 Toggle.

The PORT_DATA_TGL.PX1 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

0

(R/W)

PX0 Port x Bit 0 Toggle.

The PORT_DATA_TGL.PX0 bit toggles the output GPIO bit/pin state.

0 No Effect

1 Toggle Bit

CM41X_M4 PORT Register Descriptions

18–28 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Direction Register

The PORT_DIR, PORT_DIR_SET, and PORT_DIR_CLR registers select output or input mode for GPIO pins
and enable output drivers. Use the PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers to enable
or disable input drivers.

Writes to the PORT_DIR register affect the state of all pins of the port. To select a direction for specific pins with-
out impacting other pins of the port, use the PORT_DIR_SET and PORT_DIR_CLR registers.

Setting a bit in the PORT_DIR register enables output mode on the corresponding a GPIO pin. Clearing a bit in
the PORT_DIR register disables output mode on the corresponding GPIO pin.

Input Mode - The default mode of every GPIO pin after reset is the input mode, but the input drivers are not
enabled. To enable GPIO input drivers, set the corresponding bits in the PORT_INEN register. When enabled, a
read from the PORT_DATA register returns the logical state of the input pin. The input signal does not overwrite
the state of the bit used for the output case. That state can only be altered by software. If the input driver is enabled,
a write to the PORT_DATA register can alter the state of the bit, but the change cannot be read back.

Output Mode - Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled by setting
the corresponding bits in the PORT_DIR, PORT_DIR_SET, or PORT_DIR_CLR registers. By using the
PORT_DIR_SET and PORT_DIR_CLR registers, the direction of the signal flow of individual GPIO pins can be
altered by separate software threads without mutually impacting other GPIOs on the same port. Both registers re-
turn the same value when read. Because the state of the GPIO output can already be controlled before the output
driver is enabled, it is recommended to first set or clear the bit (using the PORT_DATA, PORT_DATA_SET, or
PORT_DATA_CLR registers) to avoid any volatile levels on the output.

Open-Drain Mode - Every GPIO can also be used in open-drain mode. To accomplish this, first, clear the respective
bit in the PORT_DATA or PORT_DATA_CLR register. Then, set the one bit in the PORT_INEN register. Reads
from the PORT_DATA register then return the status from the pin and do not return the state of the internal flip-
flop. By toggling the output driver through the PORT_DIR_SET and PORT_DIR_CLR register pair, the output
signal can be pulled low or three-stated as required. Note that the polarity of the driven signal can be inverted when
the internal flip-flop is set instead. When a GPIO port is used in open-drain mode, take care to not exceed the VIH

operating condition associated with the respective pin.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–29

Port x Bit 7 DirectionPort x Bit 8 Direction

Port x Bit 6 DirectionPort x Bit 9 Direction

Port x Bit 5 DirectionPort x Bit 10 Direction

Port x Bit 4 DirectionPort x Bit 11 Direction

Port x Bit 3 DirectionPort x Bit 12 Direction

Port x Bit 2 DirectionPort x Bit 13 Direction

Port x Bit 1 DirectionPort x Bit 14 Direction

Port x Bit 0 DirectionPort x Bit 15 Direction

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-11: PORT_DIR Register Diagram

Table 18-16: PORT_DIR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

14

(R/W)

PX14 Port x Bit 14 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

13

(R/W)

PX13 Port x Bit 13 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

12

(R/W)

PX12 Port x Bit 12 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

CM41X_M4 PORT Register Descriptions

18–30 ADSP-CM41x Mixed-Signal Control Processor

Table 18-16: PORT_DIR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

PX11 Port x Bit 11 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

10

(R/W)

PX10 Port x Bit 10 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

9

(R/W)

PX9 Port x Bit 9 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

8

(R/W)

PX8 Port x Bit 8 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

7

(R/W)

PX7 Port x Bit 7 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

6

(R/W)

PX6 Port x Bit 6 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

5

(R/W)

PX5 Port x Bit 5 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

4

(R/W)

PX4 Port x Bit 4 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

3

(R/W)

PX3 Port x Bit 3 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

2

(R/W)

PX2 Port x Bit 2 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–31

Table 18-16: PORT_DIR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

PX1 Port x Bit 1 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

0

(R/W)

PX0 Port x Bit 0 Direction.

0 Input mode. The output driver is disabled.

1 Output mode. The output driver is enabled.

CM41X_M4 PORT Register Descriptions

18–32 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Direction Clear Register

The PORT_DIR_CLR register disables output mode and disables the output drivers for GPIO pins. For more in-
formation, see the PORT_DIR register description.

Port x Bit 7 Direction ClearPort x Bit 8 Direction Clear

Port x Bit 6 Direction ClearPort x Bit 9 Direction Clear

Port x Bit 5 Direction ClearPort x Bit 10 Direction Clear

Port x Bit 4 Direction ClearPort x Bit 11 Direction Clear

Port x Bit 3 Direction ClearPort x Bit 12 Direction Clear

Port x Bit 2 Direction ClearPort x Bit 13 Direction Clear

Port x Bit 1 Direction ClearPort x Bit 14 Direction Clear

Port x Bit 0 Direction ClearPort x Bit 15 Direction Clear

PX7 (R/W1C)PX8 (R/W1C)

PX6 (R/W1C)PX9 (R/W1C)

PX5 (R/W1C)PX10 (R/W1C)

PX4 (R/W1C)PX11 (R/W1C)

PX3 (R/W1C)PX12 (R/W1C)

PX2 (R/W1C)PX13 (R/W1C)

PX1 (R/W1C)PX14 (R/W1C)

PX0 (R/W1C)PX15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-12: PORT_DIR_CLR Register Diagram

Table 18-17: PORT_DIR_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PX15 Port x Bit 15 Direction Clear.

The PORT_DIR_CLR.PX15 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

14

(R/W1C)

PX14 Port x Bit 14 Direction Clear.

The PORT_DIR_CLR.PX14 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–33

Table 18-17: PORT_DIR_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1C)

PX13 Port x Bit 13 Direction Clear.

The PORT_DIR_CLR.PX13 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

12

(R/W1C)

PX12 Port x Bit 12 Direction Clear.

The PORT_DIR_CLR.PX12 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

11

(R/W1C)

PX11 Port x Bit 11 Direction Clear.

The PORT_DIR_CLR.PX11 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

10

(R/W1C)

PX10 Port x Bit 10 Direction Clear.

The PORT_DIR_CLR.PX10 bit disables output mode and the output drivers for
port x.

0 No Effect

1 Disable output mode/driver

9

(R/W1C)

PX9 Port x Bit 9 Direction Clear.

The PORT_DIR_CLR.PX9 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

8

(R/W1C)

PX8 Port x Bit 8 Direction Clear.

The PORT_DIR_CLR.PX8 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

CM41X_M4 PORT Register Descriptions

18–34 ADSP-CM41x Mixed-Signal Control Processor

Table 18-17: PORT_DIR_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

PX7 Port x Bit 7 Direction Clear.

The PORT_DIR_CLR.PX7 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

6

(R/W1C)

PX6 Port x Bit 6 Direction Clear.

The PORT_DIR_CLR.PX6 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

5

(R/W1C)

PX5 Port x Bit 5 Direction Clear.

The PORT_DIR_CLR.PX5 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

4

(R/W1C)

PX4 Port x Bit 4 Direction Clear.

The PORT_DIR_CLR.PX4 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

3

(R/W1C)

PX3 Port x Bit 3 Direction Clear.

The PORT_DIR_CLR.PX3 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

2

(R/W1C)

PX2 Port x Bit 2 Direction Clear.

The PORT_DIR_CLR.PX2 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–35

Table 18-17: PORT_DIR_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

PX1 Port x Bit 1 Direction Clear.

The PORT_DIR_CLR.PX1 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

0

(R/W1C)

PX0 Port x Bit 0 Direction Clear.

The PORT_DIR_CLR.PX0 bit disables output mode and the output drivers for port
x.

0 No Effect

1 Disable output mode/driver

CM41X_M4 PORT Register Descriptions

18–36 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Direction Set Register

The PORT_DIR_SET register enables output mode and output drivers for GPIO pins. For more information, see
the PORT_DIR register description.

Port x Bit 7 Direction SetPort x Bit 8 Direction Set

Port x Bit 6 Direction SetPort x Bit 9 Direction Set

Port x Bit 5 Direction SetPort x Bit 10 Direction Set

Port x Bit 4 Direction SetPort x Bit 11 Direction Set

Port x Bit 3 Direction SetPort x Bit 12 Direction Set

Port x Bit 2 Direction SetPort x Bit 13 Direction Set

Port x Bit 1 Direction SetPort x Bit 14 Direction Set

Port x Bit 0 Direction SetPort x Bit 15 Direction Set

PX7 (R/W1S)PX8 (R/W1S)

PX6 (R/W1S)PX9 (R/W1S)

PX5 (R/W1S)PX10 (R/W1S)

PX4 (R/W1S)PX11 (R/W1S)

PX3 (R/W1S)PX12 (R/W1S)

PX2 (R/W1S)PX13 (R/W1S)

PX1 (R/W1S)PX14 (R/W1S)

PX0 (R/W1S)PX15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-13: PORT_DIR_SET Register Diagram

Table 18-18: PORT_DIR_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PX15 Port x Bit 15 Direction Set.

The PORT_DIR_SET.PX15 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

14

(R/W1S)

PX14 Port x Bit 14 Direction Set.

The PORT_DIR_SET.PX14 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–37

Table 18-18: PORT_DIR_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1S)

PX13 Port x Bit 13 Direction Set.

The PORT_DIR_SET.PX13 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

12

(R/W1S)

PX12 Port x Bit 12 Direction Set.

The PORT_DIR_SET.PX12 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

11

(R/W1S)

PX11 Port x Bit 11 Direction Set.

The PORT_DIR_SET.PX11 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

10

(R/W1S)

PX10 Port x Bit 10 Direction Set.

The PORT_DIR_SET.PX10 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

9

(R/W1S)

PX9 Port x Bit 9 Direction Set.

The PORT_DIR_SET.PX9 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

8

(R/W1S)

PX8 Port x Bit 8 Direction Set.

The PORT_DIR_SET.PX8 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

7

(R/W1S)

PX7 Port x Bit 7 Direction Set.

The PORT_DIR_SET.PX7 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

CM41X_M4 PORT Register Descriptions

18–38 ADSP-CM41x Mixed-Signal Control Processor

Table 18-18: PORT_DIR_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1S)

PX6 Port x Bit 6 Direction Set.

The PORT_DIR_SET.PX6 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

5

(R/W1S)

PX5 Port x Bit 5 Direction Set.

The PORT_DIR_SET.PX5 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

4

(R/W1S)

PX4 Port x Bit 4 Direction Set.

The PORT_DIR_SET.PX4 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

3

(R/W1S)

PX3 Port x Bit 3 Direction Set.

The PORT_DIR_SET.PX3 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

2

(R/W1S)

PX2 Port x Bit 2 Direction Set.

The PORT_DIR_SET.PX2 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

1

(R/W1S)

PX1 Port x Bit 1 Direction Set.

The PORT_DIR_SET.PX1 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

0

(R/W1S)

PX0 Port x Bit 0 Direction Set.

The PORT_DIR_SET.PX0 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–39

Port x Function Enable Register

The PORT_FER register bits indicate each port bit's operating mode: general purpose I/O mode or peripheral
mode. After reset, all pins default to GPIO mode. Setting a bit in the PORT_FER registers enables a peripheral
module to take ownership of the pin. The function enable bits impact output control only. Regardless of the setting
of the function enable bits, both GPIO and peripherals can still sense the pin input. After a function is enabled, it is
up to the PORT_MUX registers as to which peripheral takes control.

Port x Bit 7 ModePort x Bit 8 Mode

Port x Bit 6 ModePort x Bit 9 Mode

Port x Bit 5 ModePort x Bit 10 Mode

Port x Bit 4 ModePort x Bit 11 Mode

Port x Bit 3 ModePort x Bit 12 Mode

Port x Bit 2 ModePort x Bit 13 Mode

Port x Bit 1 ModePort x Bit 14 Mode

Port x Bit 0 ModePort x Bit 15 Mode

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-14: PORT_FER Register Diagram

Table 18-19: PORT_FER Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Mode.

The PORT_FER.PX15 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

14

(R/W)

PX14 Port x Bit 14 Mode.

The PORT_FER.PX14 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

CM41X_M4 PORT Register Descriptions

18–40 ADSP-CM41x Mixed-Signal Control Processor

Table 18-19: PORT_FER Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

PX13 Port x Bit 13 Mode.

The PORT_FER.PX13 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

12

(R/W)

PX12 Port x Bit 12 Mode.

The PORT_FER.PX12 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

11

(R/W)

PX11 Port x Bit 11 Mode.

The PORT_FER.PX11 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

10

(R/W)

PX10 Port x Bit 10 Mode.

The PORT_FER.PX10 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

9

(R/W)

PX9 Port x Bit 9 Mode.

The PORT_FER.PX9 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

8

(R/W)

PX8 Port x Bit 8 Mode.

The PORT_FER.PX8 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

7

(R/W)

PX7 Port x Bit 7 Mode.

The PORT_FER.PX7 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–41

Table 18-19: PORT_FER Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

PX6 Port x Bit 6 Mode.

The PORT_FER.PX6 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

5

(R/W)

PX5 Port x Bit 5 Mode.

The PORT_FER.PX5 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

4

(R/W)

PX4 Port x Bit 4 Mode.

The PORT_FER.PX4 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

3

(R/W)

PX3 Port x Bit 3 Mode.

The PORT_FER.PX3 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

2

(R/W)

PX2 Port x Bit 2 Mode.

The PORT_FER.PX2 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

1

(R/W)

PX1 Port x Bit 1 Mode.

The PORT_FER.PX1 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

0

(R/W)

PX0 Port x Bit 0 Mode.

The PORT_FER.PX0 bit indicates the operating mode for port x.

0 GPIO Mode

1 Peripheral Mode

CM41X_M4 PORT Register Descriptions

18–42 ADSP-CM41x Mixed-Signal Control Processor

Port x Function Enable Clear Register

The PORT_FER_CLR register permits enabling GPIO mode for each bit and corresponding GPIO pin. Writing 1
to a bit in PORT_FER_CLR enables GPIO mode for the corresponding pin.

Port x Bit 7 Mode ClearPort x Bit 8 Mode Clear

Port x Bit 6 Mode ClearPort x Bit 9 Mode Clear

Port x Bit 5 Mode ClearPort x Bit 10 Mode Clear

Port x Bit 4 Mode ClearPort x Bit 11 Mode Clear

Port x Bit 3 Mode ClearPort x Bit 12 Mode Clear

Port x Bit 2 Mode ClearPort x Bit 13 Mode Clear

Port x Bit 1 Mode ClearPort x Bit 14 Mode Clear

Port x Bit 0 Mode ClearPort x Bit 15 Mode Clear

PX7 (R/W1C)PX8 (R/W1C)

PX6 (R/W1C)PX9 (R/W1C)

PX5 (R/W1C)PX10 (R/W1C)

PX4 (R/W1C)PX11 (R/W1C)

PX3 (R/W1C)PX12 (R/W1C)

PX2 (R/W1C)PX13 (R/W1C)

PX1 (R/W1C)PX14 (R/W1C)

PX0 (R/W1C)PX15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-15: PORT_FER_CLR Register Diagram

Table 18-20: PORT_FER_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PX15 Port x Bit 15 Mode Clear.

The PORT_FER_CLR.PX15 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

14

(R/W1C)

PX14 Port x Bit 14 Mode Clear.

The PORT_FER_CLR.PX14 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–43

Table 18-20: PORT_FER_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1C)

PX13 Port x Bit 13 Mode Clear.

The PORT_FER_CLR.PX13 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

12

(R/W1C)

PX12 Port x Bit 12 Mode Clear.

The PORT_FER_CLR.PX12 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

11

(R/W1C)

PX11 Port x Bit 11 Mode Clear.

The PORT_FER_CLR.PX11 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

10

(R/W1C)

PX10 Port x Bit 10 Mode Clear.

The PORT_FER_CLR.PX10 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

9

(R/W1C)

PX9 Port x Bit 9 Mode Clear.

The PORT_FER_CLR.PX9 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

8

(R/W1C)

PX8 Port x Bit 8 Mode Clear.

The PORT_FER_CLR.PX8 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

7

(R/W1C)

PX7 Port x Bit 7 Mode Clear.

The PORT_FER_CLR.PX7 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

CM41X_M4 PORT Register Descriptions

18–44 ADSP-CM41x Mixed-Signal Control Processor

Table 18-20: PORT_FER_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

PX6 Port x Bit 6 Mode Clear.

The PORT_FER_CLR.PX6 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

5

(R/W1C)

PX5 Port x Bit 5 Mode Clear.

The PORT_FER_CLR.PX5 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

4

(R/W1C)

PX4 Port x Bit 4 Mode Clear.

The PORT_FER_CLR.PX4 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

3

(R/W1C)

PX3 Port x Bit 3 Mode Clear.

The PORT_FER_CLR.PX3 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

2

(R/W1C)

PX2 Port x Bit 2 Mode Clear.

The PORT_FER_CLR.PX2 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

1

(R/W1C)

PX1 Port x Bit 1 Mode Clear.

The PORT_FER_CLR.PX1 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

0

(R/W1C)

PX0 Port x Bit 0 Mode Clear.

The PORT_FER_CLR.PX0 bit enables GPIO mode.

0 No Effect

1 Set Bit for GPIO Mode

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–45

Port x Function Enable Set Register

The PORT_FER_SET register permits enabling peripheral mode for each bit and corresponding GPIO pin. Writ-
ing 1 to a bit in PORT_FER_SET enables peripheral mode for the corresponding pin.

Port x Bit 7 Mode SetPort x Bit 8 Mode Set

Port x Bit 6 Mode SetPort x Bit 9 Mode Set

Port x Bit 5 Mode SetPort x Bit 10 Mode Set

Port x Bit 4 Mode SetPort x Bit 11 Mode Set

Port x Bit 3 Mode SetPort x Bit 12 Mode Set

Port x Bit 2 Mode SetPort x Bit 13 Mode Set

Port x Bit 1 Mode SetPort x Bit 14 Mode Set

Port x Bit 0 Mode SetPort x Bit 15 Mode Set

PX7 (R/W1S)PX8 (R/W1S)

PX6 (R/W1S)PX9 (R/W1S)

PX5 (R/W1S)PX10 (R/W1S)

PX4 (R/W1S)PX11 (R/W1S)

PX3 (R/W1S)PX12 (R/W1S)

PX2 (R/W1S)PX13 (R/W1S)

PX1 (R/W1S)PX14 (R/W1S)

PX0 (R/W1S)PX15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-16: PORT_FER_SET Register Diagram

Table 18-21: PORT_FER_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PX15 Port x Bit 15 Mode Set.

The PORT_FER_SET.PX15 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

14

(R/W1S)

PX14 Port x Bit 14 Mode Set.

The PORT_FER_SET.PX14 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

CM41X_M4 PORT Register Descriptions

18–46 ADSP-CM41x Mixed-Signal Control Processor

Table 18-21: PORT_FER_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1S)

PX13 Port x Bit 13 Mode Set.

The PORT_FER_SET.PX13 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

12

(R/W1S)

PX12 Port x Bit 12 Mode Set.

The PORT_FER_SET.PX12 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

11

(R/W1S)

PX11 Port x Bit 11 Mode Set.

The PORT_FER_SET.PX11 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

10

(R/W1S)

PX10 Port x Bit 10 Mode Set.

The PORT_FER_SET.PX10 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

9

(R/W1S)

PX9 Port x Bit 9 Mode Set.

The PORT_FER_SET.PX9 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

8

(R/W1S)

PX8 Port x Bit 8 Mode Set.

The PORT_FER_SET.PX8 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

7

(R/W1S)

PX7 Port x Bit 7 Mode Set.

The PORT_FER_SET.PX7 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–47

Table 18-21: PORT_FER_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1S)

PX6 Port x Bit 6 Mode Set.

The PORT_FER_SET.PX6 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

5

(R/W1S)

PX5 Port x Bit 5 Mode Set.

The PORT_FER_SET.PX5 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

4

(R/W1S)

PX4 Port x Bit 4 Mode Set.

The PORT_FER_SET.PX4 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

3

(R/W1S)

PX3 Port x Bit 3 Mode Set.

The PORT_FER_SET.PX3 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

2

(R/W1S)

PX2 Port x Bit 2 Mode Set.

The PORT_FER_SET.PX2 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

1

(R/W1S)

PX1 Port x Bit 1 Mode Set.

The PORT_FER_SET.PX1 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

0

(R/W1S)

PX0 Port x Bit 0 Mode Set.

The PORT_FER_SET.PX0 bit enables peripheral mode.

0 No Effect

1 Set Bit for Peripheral Mode

CM41X_M4 PORT Register Descriptions

18–48 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Input Enable Register

The PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers enable or disable input drivers, which are
required for using a GPIO pin in input mode.

Writes to the PORT_INEN register affect the input drivers for all pins of the port. To set or clear specific pin drivers
without impacting other pin drivers of the port, use the PORT_INEN_SET and PORT_INEN_CLR registers.

If the input is enabled, reads from the PORT_DATA, PORT_DATA_SET, or PORT_DATA_CLR registers return
the state of the pins. However, the state of the output is not overwritten by the input. It is altered by software writes
only. Input and output drivers can be enabled at the same time. In this case, a read of the data register returns the
true value of the data register and not the pin state.

For more information, see the PORT_DATA register description and the PORT_DIR register description.

Port x Bit 7 Input EnablePort x Bit 8 Input Enable

Port x Bit 6 Input EnablePort x Bit 9 Input Enable

Port x Bit 5 Input EnablePort x Bit 10 Input Enable

Port x Bit 4 Input EnablePort x Bit 11 Input Enable

Port x Bit 3 Input EnablePort x Bit 12 Input Enable

Port x Bit 2 Input EnablePort x Bit 13 Input Enable

Port x Bit 1 Input EnablePort x Bit 14 Input Enable

Port x Bit 0 Input EnablePort x Bit 15 Input Enable

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-17: PORT_INEN Register Diagram

Table 18-22: PORT_INEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–49

Table 18-22: PORT_INEN Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

PX14 Port x Bit 14 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

13

(R/W)

PX13 Port x Bit 13 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

12

(R/W)

PX12 Port x Bit 12 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

11

(R/W)

PX11 Port x Bit 11 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

10

(R/W)

PX10 Port x Bit 10 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

9

(R/W)

PX9 Port x Bit 9 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

8

(R/W)

PX8 Port x Bit 8 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

7

(R/W)

PX7 Port x Bit 7 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

6

(R/W)

PX6 Port x Bit 6 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

5

(R/W)

PX5 Port x Bit 5 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

CM41X_M4 PORT Register Descriptions

18–50 ADSP-CM41x Mixed-Signal Control Processor

Table 18-22: PORT_INEN Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

PX4 Port x Bit 4 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

3

(R/W)

PX3 Port x Bit 3 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

2

(R/W)

PX2 Port x Bit 2 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

1

(R/W)

PX1 Port x Bit 1 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

0

(R/W)

PX0 Port x Bit 0 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–51

Port x GPIO Input Enable Clear Register

The PORT_INEN_CLR register disables the input drivers for GPIO pins. For more information, see the
PORT_INEN register description.

Port x Bit 7 Input Enable ClearPort x Bit 8 Input Enable Clear

Port x Bit 6 Input Enable ClearPort x Bit 9 Input Enable Clear

Port x Bit 5 Input Enable ClearPort x Bit 10 Input Enable Clear

Port x Bit 4 Input Enable ClearPort x Bit 11 Input Enable Clear

Port x Bit 3 Input Enable ClearPort x Bit 12 Input Enable Clear

Port x Bit 2 Input Enable ClearPort x Bit 13 Input Enable Clear

Port x Bit 1 Input Enable ClearPort x Bit 14 Input Enable Clear

Port x Bit 0 Input Enable ClearPort x Bit 15 Input Enable Clear

PX7 (R/W1C)PX8 (R/W1C)

PX6 (R/W1C)PX9 (R/W1C)

PX5 (R/W1C)PX10 (R/W1C)

PX4 (R/W1C)PX11 (R/W1C)

PX3 (R/W1C)PX12 (R/W1C)

PX2 (R/W1C)PX13 (R/W1C)

PX1 (R/W1C)PX14 (R/W1C)

PX0 (R/W1C)PX15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-18: PORT_INEN_CLR Register Diagram

Table 18-23: PORT_INEN_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PX15 Port x Bit 15 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

14

(R/W1C)

PX14 Port x Bit 14 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

13

(R/W1C)

PX13 Port x Bit 13 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

CM41X_M4 PORT Register Descriptions

18–52 ADSP-CM41x Mixed-Signal Control Processor

Table 18-23: PORT_INEN_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1C)

PX12 Port x Bit 12 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

11

(R/W1C)

PX11 Port x Bit 11 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

10

(R/W1C)

PX10 Port x Bit 10 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

9

(R/W1C)

PX9 Port x Bit 9 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

8

(R/W1C)

PX8 Port x Bit 8 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

7

(R/W1C)

PX7 Port x Bit 7 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

6

(R/W1C)

PX6 Port x Bit 6 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

5

(R/W1C)

PX5 Port x Bit 5 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

4

(R/W1C)

PX4 Port x Bit 4 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

3

(R/W1C)

PX3 Port x Bit 3 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–53

Table 18-23: PORT_INEN_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

PX2 Port x Bit 2 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

1

(R/W1C)

PX1 Port x Bit 1 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

0

(R/W1C)

PX0 Port x Bit 0 Input Enable Clear.

0 No Effect

1 Clear Bit. Set to disable the input driver.

CM41X_M4 PORT Register Descriptions

18–54 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Input Enable Set Register

The PORT_INEN_SET register enables input drivers for GPIO pins. For more information, see the PORT_INEN
register description.

Port x Bit 7 Input Enable SetPort x Bit 8 Input Enable Set

Port x Bit 6 Input Enable SetPort x Bit 9 Input Enable Set

Port x Bit 5 Input Enable SetPort x Bit 10 Input Enable Set

Port x Bit 4 Input Enable SetPort x Bit 11 Input Enable Set

Port x Bit 3 Input Enable SetPort x Bit 12 Input Enable Set

Port x Bit 2 Input Enable SetPort x Bit 13 Input Enable Set

Port x Bit 1 Input Enable SetPort x Bit 14 Input Enable Set

Port x Bit 0 Input Enable SetPort x Bit 15 Input Enable Set

PX7 (R/W1S)PX8 (R/W1S)

PX6 (R/W1S)PX9 (R/W1S)

PX5 (R/W1S)PX10 (R/W1S)

PX4 (R/W1S)PX11 (R/W1S)

PX3 (R/W1S)PX12 (R/W1S)

PX2 (R/W1S)PX13 (R/W1S)

PX1 (R/W1S)PX14 (R/W1S)

PX0 (R/W1S)PX15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-19: PORT_INEN_SET Register Diagram

Table 18-24: PORT_INEN_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PX15 Port x Bit 15 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

14

(R/W1S)

PX14 Port x Bit 14 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

13

(R/W1S)

PX13 Port x Bit 13 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–55

Table 18-24: PORT_INEN_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1S)

PX12 Port x Bit 12 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

11

(R/W1S)

PX11 Port x Bit 11 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

10

(R/W1S)

PX10 Port x Bit 10 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

9

(R/W1S)

PX9 Port x Bit 9 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

8

(R/W1S)

PX8 Port x Bit 8 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

7

(R/W1S)

PX7 Port x Bit 7 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

6

(R/W1S)

PX6 Port x Bit 6 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

5

(R/W1S)

PX5 Port x Bit 5 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

4

(R/W1S)

PX4 Port x Bit 4 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

3

(R/W1S)

PX3 Port x Bit 3 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

CM41X_M4 PORT Register Descriptions

18–56 ADSP-CM41x Mixed-Signal Control Processor

Table 18-24: PORT_INEN_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1S)

PX2 Port x Bit 2 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

1

(R/W1S)

PX1 Port x Bit 1 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

0

(R/W1S)

PX0 Port x Bit 0 Input Enable Set.

0 No Effect

1 Set Bit. Set to enable the input driver.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–57

Port x GPIO Lock Register

The PORT_LOCK register enables (unlocks) or disables (locks) write access selectively for the PORT control regis-
ters.

Data, TGL LockDirection Lock

Function Multiplexer LockInput Enable Lock

Function Enable LockPolarity Lock

Lock

DATA (R/W)DIR (R/W)

MUX (R/W)INEN (R/W)

FER (R/W)POLAR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-20: PORT_LOCK Register Diagram

Table 18-25: PORT_LOCK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the PORT_LOCK.LOCK
bit is set, the PORT_LOCK register is read only (locked).

0 Unlock

1 Lock

5

(R/W)

POLAR Polarity Lock.

The PORT_LOCK.POLAR disables write access to the PORT_POL,
PORT_POL_SET, and PORT_POL_CLR registers.

0 Unlock POL

1 Lock POL

4

(R/W)

INEN Input Enable Lock.

The PORT_LOCK.INEN disables write access to the PORT_INEN,
PORT_INEN_SET, and PORT_INEN_CLR registers.

0 Unlock INEN

1 Lock INEN

CM41X_M4 PORT Register Descriptions

18–58 ADSP-CM41x Mixed-Signal Control Processor

Table 18-25: PORT_LOCK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

DIR Direction Lock.

The PORT_LOCK.DIR disables write access to the PORT_DIR, PORT_DIR_SET,
PORT_DIR_CLR registers.

0 Unlock DIR

1 Lock DIR

2

(R/W)

DATA Data, TGL Lock.

The PORT_LOCK.DATA disables write access to the PORT_DATA,
PORT_DATA_SET, PORT_DATA_CLR, and PORT_DATA_TGL registers.

0 Unlock DATA

1 Lock DATA

1

(R/W)

MUX Function Multiplexer Lock.

The PORT_LOCK.MUX disables write accesses to the PORT_MUX register.

0 Unlock MUX

1 Lock MUX

0

(R/W)

FER Function Enable Lock.

The PORT_LOCK.FER disables write access to the PORT_FER, PORT_FER_SET,
and PORT_FER_CLR registers.

0 Unlock FER

1 Lock FER

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–59

Port x Multiplexer Control Register

When a pin is in peripheral mode (not GPIO mode), the PORT_MUX register controls which peripheral takes own-
ership of a pin. Ports may have multiple, different peripheral functions. Two bits are required to describe every mul-
tiplexer on an individual pin-by-pin scheme. For example, bit 0 and bit 1 of the PORT_MUX register control the
multiplexer of pin 0, bit 2 and bit 3 of PORT_MUX control the multiplexer of pin 1, and so on. The value of any
PORT_MUX bit has no effect on the port pins when the associated bit in the PORT_FER register is 0 (selects GPIO
mode). Even if a port has only one function, the PORT_MUX register is still present. For single function ports (no
multiplexing is needed), leave the PORT_MUX bits at 0 (default). For all PORT_MUX bit fields: 00 = default/reset
peripheral option, 01 = first alternate peripheral option, 10 = second alternate peripheral option, and 11 = third
alternate peripheral option.

See the processor data sheet for details regarding the peripheral options associated with each port.

Mux for Port x Bit 3Mux for Port x Bit 4

Mux for Port x Bit 2Mux for Port x Bit 5

Mux for Port x Bit 1Mux for Port x Bit 6

Mux for Port x Bit 0Mux for Port x Bit 7

Mux for Port x Bit 11Mux for Port x Bit 12

Mux for Port x Bit 10Mux for Port x Bit 13

Mux for Port x Bit 9Mux for Port x Bit 14

Mux for Port x Bit 8Mux for Port x Bit 15

MUX3 (R/W)MUX4 (R/W)

MUX2 (R/W)MUX5 (R/W)

MUX1 (R/W)MUX6 (R/W)

MUX0 (R/W)MUX7 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MUX11 (R/W)MUX12 (R/W)

MUX10 (R/W)MUX13 (R/W)

MUX9 (R/W)MUX14 (R/W)

MUX8 (R/W)MUX15 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-21: PORT_MUX Register Diagram

Table 18-26: PORT_MUX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

MUX15 Mux for Port x Bit 15.

The PORT_MUX.MUX15 bit provides multiplexer control for port x bit 15.

CM41X_M4 PORT Register Descriptions

18–60 ADSP-CM41x Mixed-Signal Control Processor

Table 18-26: PORT_MUX Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29:28

(R/W)

MUX14 Mux for Port x Bit 14.

The PORT_MUX.MUX14 bit provides multiplexer control for port x bit 14.

27:26

(R/W)

MUX13 Mux for Port x Bit 13.

The PORT_MUX.MUX13 bit provides multiplexer control for port x bit 13.

25:24

(R/W)

MUX12 Mux for Port x Bit 12.

The PORT_MUX.MUX12 bit provides multiplexer control for port x bit 12.

23:22

(R/W)

MUX11 Mux for Port x Bit 11.

The PORT_MUX.MUX11 bit provides multiplexer control for port x bit 11.

21:20

(R/W)

MUX10 Mux for Port x Bit 10.

The PORT_MUX.MUX10 bit provides multiplexer control for port x bit 10.

19:18

(R/W)

MUX9 Mux for Port x Bit 9.

The PORT_MUX.MUX9 bit provides multiplexer control for port x bit 9.

17:16

(R/W)

MUX8 Mux for Port x Bit 8.

The PORT_MUX.MUX8 bit provides multiplexer control for port x bit 8.

15:14

(R/W)

MUX7 Mux for Port x Bit 7.

The PORT_MUX.MUX7 bit provides multiplexer control for port x bit 7.

13:12

(R/W)

MUX6 Mux for Port x Bit 6.

The PORT_MUX.MUX6 bit provides multiplexer control for port x bit 6.

11:10

(R/W)

MUX5 Mux for Port x Bit 5.

The PORT_MUX.MUX5 bit provides multiplexer control for port x bit 5.

9:8

(R/W)

MUX4 Mux for Port x Bit 4.

The PORT_MUX.MUX4 bit provides multiplexer control for port x bit 4.

7:6

(R/W)

MUX3 Mux for Port x Bit 3.

The PORT_MUX.MUX3 bit provides multiplexer control for port x bit 3.

5:4

(R/W)

MUX2 Mux for Port x Bit 2.

The PORT_MUX.MUX2 bit provides multiplexer control for port x bit 2.

3:2

(R/W)

MUX1 Mux for Port x Bit 1.

The PORT_MUX.MUX1 bit provides multiplexer control for port x bit 1.

1:0

(R/W)

MUX0 Mux for Port x Bit 0.

The PORT_MUX.MUX0 bit provides multiplexer control for port x bit 0.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–61

Port x GPIO Polarity Invert Register

The PORT_POL, PORT_POL_SET, and PORT_POL_CLR registers enable or disable inverting polarity of GPIO
signals. To invert polarity of peripheral signals, use the inversion selection programming in the signal's correspond-
ing module.

Writes to the PORT_POL register affect the polarity inversion selection of all pins of the port. To enable or disable
polarity inversion for specific pins without impacting other pins of the port, use the PORT_POL_SET and
PORT_POL_CLR registers.

Setting a bit in the PORT_POL register enables polarity inversion on the corresponding inversion GPIO pin, mak-
ing the pin active-low or falling-edge sensitive. Clearing a bit in the PORT_POL register disables polarity (default
state) on the corresponding GPIO pin, making it active-high or rising-edge sensitive.

Port x Bit 7 Polarity InvertPort x Bit 8 Polarity Invert

Port x Bit 6 Polarity InvertPort x Bit 9 Polarity Invert

Port x Bit 5 Polarity InvertPort x Bit 10 Polarity Invert

Port x Bit 4 Polarity InvertPort x Bit 11 Polarity Invert

Port x Bit 3 Polarity InvertPort x Bit 12 Polarity Invert

Port x Bit 2 Polarity InvertPort x Bit 13 Polarity Invert

Port x Bit 1 Polarity InvertPort x Bit 14 Polarity Invert

Port x Bit 0 Polarity InvertPort x Bit 15 Polarity Invert

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-22: PORT_POL Register Diagram

Table 18-27: PORT_POL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 Port x Bit 15 Polarity Invert.

The PORT_POL.PX15 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

CM41X_M4 PORT Register Descriptions

18–62 ADSP-CM41x Mixed-Signal Control Processor

Table 18-27: PORT_POL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

PX14 Port x Bit 14 Polarity Invert.

The PORT_POL.PX14 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

13

(R/W)

PX13 Port x Bit 13 Polarity Invert.

The PORT_POL.PX13 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

12

(R/W)

PX12 Port x Bit 12 Polarity Invert.

The PORT_POL.PX12 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

11

(R/W)

PX11 Port x Bit 11 Polarity Invert.

The PORT_POL.PX11 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

10

(R/W)

PX10 Port x Bit 10 Polarity Invert.

The PORT_POL.PX10 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

9

(R/W)

PX9 Port x Bit 9 Polarity Invert.

The PORT_POL.PX9 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

8

(R/W)

PX8 Port x Bit 8 Polarity Invert.

The PORT_POL.PX8 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–63

Table 18-27: PORT_POL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

PX7 Port x Bit 7 Polarity Invert.

The PORT_POL.PX7 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

6

(R/W)

PX6 Port x Bit 6 Polarity Invert.

The PORT_POL.PX6 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

5

(R/W)

PX5 Port x Bit 5 Polarity Invert.

The PORT_POL.PX5 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

4

(R/W)

PX4 Port x Bit 4 Polarity Invert.

The PORT_POL.PX4 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

3

(R/W)

PX3 Port x Bit 3 Polarity Invert.

The PORT_POL.PX3 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

2

(R/W)

PX2 Port x Bit 2 Polarity Invert.

The PORT_POL.PX2 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

1

(R/W)

PX1 Port x Bit 1 Polarity Invert.

The PORT_POL.PX1 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

CM41X_M4 PORT Register Descriptions

18–64 ADSP-CM41x Mixed-Signal Control Processor

Table 18-27: PORT_POL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

PX0 Port x Bit 0 Polarity Invert.

The PORT_POL.PX0 bit enables polarity inversion.

0 No Invert. GPIO is active high or rising edge sensitive.

1 Invert. GPIO is active low or falling edge sensitive.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–65

Port x GPIO Polarity Invert Clear Register

The PORT_POL_CLR register disables polarity inversion for GPIO pins. For more information, see the
PORT_POL register description.

Port x Bit 7 Polarity Invert ClearPort x Bit 8 Polarity Invert Clear

Port x Bit 6 Polarity Invert ClearPort x Bit 9 Polarity Invert Clear

Port x Bit 5 Polarity Invert ClearPort x Bit 10 Polarity Invert Clear

Port x Bit 4 Polarity Invert ClearPort x Bit 11 Polarity Invert Clear

Port x Bit 3 Polarity Invert ClearPort x Bit 12 Polarity Invert Clear

Port x Bit 2 Polarity Invert ClearPort x Bit 13 Polarity Invert Clear

Port x Bit 1 Polarity Invert ClearPort x Bit 14 Polarity Invert Clear

Port x Bit 0 Polarity Invert ClearPort x Bit 15 Polarity Invert Clear

PX7 (R/W1C)PX8 (R/W1C)

PX6 (R/W1C)PX9 (R/W1C)

PX5 (R/W1C)PX10 (R/W1C)

PX4 (R/W1C)PX11 (R/W1C)

PX3 (R/W1C)PX12 (R/W1C)

PX2 (R/W1C)PX13 (R/W1C)

PX1 (R/W1C)PX14 (R/W1C)

PX0 (R/W1C)PX15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-23: PORT_POL_CLR Register Diagram

Table 18-28: PORT_POL_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PX15 Port x Bit 15 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

14

(R/W1C)

PX14 Port x Bit 14 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

13

(R/W1C)

PX13 Port x Bit 13 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

18–66 ADSP-CM41x Mixed-Signal Control Processor

Table 18-28: PORT_POL_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1C)

PX12 Port x Bit 12 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

11

(R/W1C)

PX11 Port x Bit 11 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

10

(R/W1C)

PX10 Port x Bit 10 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

9

(R/W1C)

PX9 Port x Bit 9 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

8

(R/W1C)

PX8 Port x Bit 8 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

7

(R/W1C)

PX7 Port x Bit 7 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

6

(R/W1C)

PX6 Port x Bit 6 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

5

(R/W1C)

PX5 Port x Bit 5 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

4

(R/W1C)

PX4 Port x Bit 4 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

3

(R/W1C)

PX3 Port x Bit 3 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–67

Table 18-28: PORT_POL_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

PX2 Port x Bit 2 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

1

(R/W1C)

PX1 Port x Bit 1 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

0

(R/W1C)

PX0 Port x Bit 0 Polarity Invert Clear.

0 No Effect

1 Clear Bit. Set to disable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

18–68 ADSP-CM41x Mixed-Signal Control Processor

Port x GPIO Polarity Invert Set Register

The PORT_POL_SET register enables polarity inversion for GPIO pins. For more information, see the
PORT_POL register description.

Port x Bit 7 Polarity Invert SetPort x Bit 8 Polarity Invert Set

Port x Bit 6 Polarity Invert SetPort x Bit 9 Polarity Invert Set

Port x Bit 5 Polarity Invert SetPort x Bit 10 Polarity Invert Set

Port x Bit 4 Polarity Invert SetPort x Bit 11 Polarity Invert Set

Port x Bit 3 Polarity Invert SetPort x Bit 12 Polarity Invert Set

Port x Bit 2 Polarity Invert SetPort x Bit 13 Polarity Invert Set

Port x Bit 1 Polarity Invert SetPort x Bit 14 Polarity Invert Set

Port x Bit 0 Polarity Invert SetPort x Bit 15 Polarity Invert Set

PX7 (R/W1S)PX8 (R/W1S)

PX6 (R/W1S)PX9 (R/W1S)

PX5 (R/W1S)PX10 (R/W1S)

PX4 (R/W1S)PX11 (R/W1S)

PX3 (R/W1S)PX12 (R/W1S)

PX2 (R/W1S)PX13 (R/W1S)

PX1 (R/W1S)PX14 (R/W1S)

PX0 (R/W1S)PX15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-24: PORT_POL_SET Register Diagram

Table 18-29: PORT_POL_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PX15 Port x Bit 15 Polarity Invert Set.

The PORT_POL_SET.PX15 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

14

(R/W1S)

PX14 Port x Bit 14 Polarity Invert Set.

The PORT_POL_SET.PX14 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–69

Table 18-29: PORT_POL_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W1S)

PX13 Port x Bit 13 Polarity Invert Set.

The PORT_POL_SET.PX13 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

12

(R/W1S)

PX12 Port x Bit 12 Polarity Invert Set.

The PORT_POL_SET.PX12 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

11

(R/W1S)

PX11 Port x Bit 11 Polarity Invert Set.

The PORT_POL_SET.PX11 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

10

(R/W1S)

PX10 Port x Bit 10 Polarity Invert Set.

The PORT_POL_SET.PX10 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

9

(R/W1S)

PX9 Port x Bit 9 Polarity Invert Set.

The PORT_POL_SET.PX9 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

8

(R/W1S)

PX8 Port x Bit 8 Polarity Invert Set.

The PORT_POL_SET.PX8 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

7

(R/W1S)

PX7 Port x Bit 7 Polarity Invert Set.

The PORT_POL_SET.PX7 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

18–70 ADSP-CM41x Mixed-Signal Control Processor

Table 18-29: PORT_POL_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1S)

PX6 Port x Bit 6 Polarity Invert Set.

The PORT_POL_SET.PX6 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

5

(R/W1S)

PX5 Port x Bit 5 Polarity Invert Set.

The PORT_POL_SET.PX5 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

4

(R/W1S)

PX4 Port x Bit 4 Polarity Invert Set.

The PORT_POL_SET.PX4 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

3

(R/W1S)

PX3 Port x Bit 3 Polarity Invert Set.

The PORT_POL_SET.PX3 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

2

(R/W1S)

PX2 Port x Bit 2 Polarity Invert Set.

The PORT_POL_SET.PX2 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

1

(R/W1S)

PX1 Port x Bit 1 Polarity Invert Set.

The PORT_POL_SET.PX1 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

0

(R/W1S)

PX0 Port x Bit 0 Polarity Invert Set.

The PORT_POL_SET.PX0 bit enables pin polarity inversion.

0 No Effect

1 Set Bit. Set to enable GPIO pin polarity invert.

CM41X_M4 PORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–71

Port x GPIO Trigger Toggle Register

The PORT_TRIG_TGL register permits toggling the state of output GPIO pins in response to a trigger from the
TRU for the corresponding port. Setting bits in the PORT_TRIG_TGL register enables triggers to toggle the state
of those specific pins without impacting other pins of the port.

PX7 Data Toggle on TriggerPX8 Data Toggle on Trigger

PX6 Data Toggle on TriggerPX9 Data Toggle on Trigger

PX5 Data Toggle on TriggerPX10 Data Toggle on Trigger

PX4 Data Toggle on TriggerPX11 Data Toggle on Trigger

PX3 Data Toggle on TriggerPX12 Data Toggle on Trigger

PX2 Data Toggle on TriggerPX13 Data Toggle on Trigger

PX1 Data Toggle on TriggerPX14 Data Toggle on Trigger

PX0 Data Toggle on TriggerPX15 Data Toggle on Trigger

PX7 (R/W)PX8 (R/W)

PX6 (R/W)PX9 (R/W)

PX5 (R/W)PX10 (R/W)

PX4 (R/W)PX11 (R/W)

PX3 (R/W)PX12 (R/W)

PX2 (R/W)PX13 (R/W)

PX1 (R/W)PX14 (R/W)

PX0 (R/W)PX15 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-25: PORT_TRIG_TGL Register Diagram

Table 18-30: PORT_TRIG_TGL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

PX15 PX15 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX15 bit enables triggers to toggle the state of the pin.

14

(R/W)

PX14 PX14 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX14 bit enables triggers to toggle the state of the pin.

13

(R/W)

PX13 PX13 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX13 bit enables triggers to toggle the state of the pin.

12

(R/W)

PX12 PX12 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX12 bit enables triggers to toggle the state of the pin.

11

(R/W)

PX11 PX11 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX11 bit enables triggers to toggle the state of the pin.

CM41X_M4 PORT Register Descriptions

18–72 ADSP-CM41x Mixed-Signal Control Processor

Table 18-30: PORT_TRIG_TGL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W)

PX10 PX10 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX10 bit enables triggers to toggle the state of the pin.

9

(R/W)

PX9 PX9 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX9 bit enables triggers to toggle the state of the pin.

8

(R/W)

PX8 PX8 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX8 bit enables triggers to toggle the state of the pin.

7

(R/W)

PX7 PX7 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX7 bit enables triggers to toggle the state of the pin.

6

(R/W)

PX6 PX6 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX6 bit enables triggers to toggle the state of the pin.

5

(R/W)

PX5 PX5 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX5 bit enables triggers to toggle the state of the pin.

4

(R/W)

PX4 PX4 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX4 bit enables triggers to toggle the state of the pin.

3

(R/W)

PX3 PX3 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX3 bit enables triggers to toggle the state of the pin.

2

(R/W)

PX2 PX2 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX2 bit enables triggers to toggle the state of the pin.

1

(R/W)

PX1 PX1 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX1 bit enables triggers to toggle the state of the pin.

0

(R/W)

PX0 PX0 Data Toggle on Trigger.

The PORT_TRIG_TGL.PX0 bit enables triggers to toggle the state of the pin.

CM41X_M4 PINT Register Descriptions
The Pin Interrupt module (PINT) contains the following registers.

Table 18-31: CM41X_M4 PINT Register List

Name Description

PINT_ASSIGN PINT Assign Register

PINT_EDGE_CLR PINT Edge Clear Register

PINT_EDGE_SET PINT Edge Set Register

PINT_INV_CLR PINT Invert Clear Register

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–73

Table 18-31: CM41X_M4 PINT Register List (Continued)

Name Description

PINT_INV_SET PINT Invert Set Register

PINT_LATCH PINT Latch Register

PINT_MSK_CLR PINT Mask Clear Register

PINT_MSK_SET PINT Mask Set Register

PINT_PINSTATE PINT Pin State Register

PINT_REQ PINT Request Register

CM41X_M4 PINT Register Descriptions

18–74 ADSP-CM41x Mixed-Signal Control Processor

PINT Assign Register

The PINT_ASSIGN register controls the pin-to-interrupt request assignment in a byte-wide manner. This register
consists of four control bytes that each function as a multiplexer control.

The PINT ports are subdivided into 8-bit half ports, resulting in lower and upper half 8-bit units. Using the multi-
plexers controlled by the PINT_ASSIGN register, the lower half units of eight pins can be forwarded to either byte
0 or byte 2 of either associated PINT block. The upper half units can be forwarded to either byte 1 or byte 3 of the
PINT block, without further restrictions.

Byte 0 MappingByte 1 Mapping

Byte 2 MappingByte 3 Mapping

B0MAP (R/W)B1MAP (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

B2MAP (R/W)B3MAP (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-26: PINT_ASSIGN Register Diagram

Table 18-32: PINT_ASSIGN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W)

B3MAP Byte 3 Mapping.

0 B3MAP_PAH. Byte 3 = PA.H

1 B3MAP_PBH. Byte 3 = PB.H

23:16

(R/W)

B2MAP Byte 2 Mapping.

0 B2MAP_PAL. Byte 2 = PA.L

1 B2MAP_PBL. Byte 2 = PB.L

15:8

(R/W)

B1MAP Byte 1 Mapping.

0 B1MAP_PAH. Byte 1 = PA.H

1 B1MAP_PBH. Byte 1 = PB.H

7:0

(R/W)

B0MAP Byte 0 Mapping.

0 B0MAP_PAL. Byte 0 = PA.L

1 B0MAP_PBL. Byte 0 = PB.L

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–75

PINT Edge Clear Register

The PINT_EDGE_CLR register permits selecting level-sensitive interrupts. Writing 1 to a bit in
PINT_EDGE_CLR enables level sensitivity for the corresponding pin interrupt.

Pin Interrupt 7 LevelPin Interrupt 8 Level

Pin Interrupt 6 LevelPin Interrupt 9 Level

Pin Interrupt 5 LevelPin Interrupt 10 Level

Pin Interrupt 4 LevelPin Interrupt 11 Level

Pin Interrupt 3 LevelPin Interrupt 12 Level

Pin Interrupt 2 LevelPin Interrupt 13 Level

Pin Interrupt 1 LevelPin Interrupt 14 Level

Pin Interrupt 0 LevelPin Interrupt 15 Level

Pin Interrupt 23 LevelPin Interrupt 24 Level

Pin Interrupt 22 LevelPin Interrupt 25 Level

Pin Interrupt 21 LevelPin Interrupt 26 Level

Pin Interrupt 20 LevelPin Interrupt 27 Level

Pin Interrupt 19 LevelPin Interrupt 28 Level

Pin Interrupt 18 LevelPin Interrupt 29 Level

Pin Interrupt 17 LevelPin Interrupt 30 Level

Pin Interrupt 16 LevelPin Interrupt 31 Level

PIQ7 (R/W1C)PIQ8 (R/W1C)

PIQ6 (R/W1C)PIQ9 (R/W1C)

PIQ5 (R/W1C)PIQ10 (R/W1C)

PIQ4 (R/W1C)PIQ11 (R/W1C)

PIQ3 (R/W1C)PIQ12 (R/W1C)

PIQ2 (R/W1C)PIQ13 (R/W1C)

PIQ1 (R/W1C)PIQ14 (R/W1C)

PIQ0 (R/W1C)PIQ15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1C)PIQ24 (R/W1C)

PIQ22 (R/W1C)PIQ25 (R/W1C)

PIQ21 (R/W1C)PIQ26 (R/W1C)

PIQ20 (R/W1C)PIQ27 (R/W1C)

PIQ19 (R/W1C)PIQ28 (R/W1C)

PIQ18 (R/W1C)PIQ29 (R/W1C)

PIQ17 (R/W1C)PIQ30 (R/W1C)

PIQ16 (R/W1C)PIQ31 (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-27: PINT_EDGE_CLR Register Diagram

CM41X_M4 PINT Register Descriptions

18–76 ADSP-CM41x Mixed-Signal Control Processor

Table 18-33: PINT_EDGE_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

PIQ31 Pin Interrupt 31 Level.

Set the PINT_EDGE_CLR.PIQ31 bit to enable level sensitivity.

30

(R/W1C)

PIQ30 Pin Interrupt 30 Level.

Set the PINT_EDGE_CLR.PIQ30 bit to enable level sensitivity.

29

(R/W1C)

PIQ29 Pin Interrupt 29 Level.

Set the PINT_EDGE_CLR.PIQ29 bit to enable level sensitivity.

28

(R/W1C)

PIQ28 Pin Interrupt 28 Level.

Set the PINT_EDGE_CLR.PIQ28 bit to enable level sensitivity.

27

(R/W1C)

PIQ27 Pin Interrupt 27 Level.

Set the PINT_EDGE_CLR.PIQ27 bit to enable level sensitivity.

26

(R/W1C)

PIQ26 Pin Interrupt 26 Level.

Set the PINT_EDGE_CLR.PIQ26 bit to enable level sensitivity.

25

(R/W1C)

PIQ25 Pin Interrupt 25 Level.

Set the PINT_EDGE_CLR.PIQ25 bit to enable level sensitivity.

24

(R/W1C)

PIQ24 Pin Interrupt 24 Level.

Set the PINT_EDGE_CLR.PIQ24 bit to enable level sensitivity.

23

(R/W1C)

PIQ23 Pin Interrupt 23 Level.

Set the PINT_EDGE_CLR.PIQ23 bit to enable level sensitivity.

22

(R/W1C)

PIQ22 Pin Interrupt 22 Level.

Set the PINT_EDGE_CLR.PIQ22 bit to enable level sensitivity.

21

(R/W1C)

PIQ21 Pin Interrupt 21 Level.

Set the PINT_EDGE_CLR.PIQ21 bit to enable level sensitivity.

20

(R/W1C)

PIQ20 Pin Interrupt 20 Level.

Set the PINT_EDGE_CLR.PIQ20 bit to enable level sensitivity.

19

(R/W1C)

PIQ19 Pin Interrupt 19 Level.

Set the PINT_EDGE_CLR.PIQ19 bit to enable level sensitivity.

18

(R/W1C)

PIQ18 Pin Interrupt 18 Level.

Set the PINT_EDGE_CLR.PIQ18 bit to enable level sensitivity.

17

(R/W1C)

PIQ17 Pin Interrupt 17 Level.

Set the PINT_EDGE_CLR.PIQ17 bit to enable level sensitivity.

16

(R/W1C)

PIQ16 Pin Interrupt 16 Level.

Set the PINT_EDGE_CLR.PIQ16 bit to enable level sensitivity.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–77

Table 18-33: PINT_EDGE_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PIQ15 Pin Interrupt 15 Level.

Set the PINT_EDGE_CLR.PIQ15 bit to enable level sensitivity.

14

(R/W1C)

PIQ14 Pin Interrupt 14 Level.

Set the PINT_EDGE_CLR.PIQ14 bit to enable level sensitivity.

13

(R/W1C)

PIQ13 Pin Interrupt 13 Level.

Set the PINT_EDGE_CLR.PIQ13 bit to enable level sensitivity.

12

(R/W1C)

PIQ12 Pin Interrupt 12 Level.

Set the PINT_EDGE_CLR.PIQ12 bit to enable level sensitivity.

11

(R/W1C)

PIQ11 Pin Interrupt 11 Level.

Set the PINT_EDGE_CLR.PIQ11 bit to enable level sensitivity.

10

(R/W1C)

PIQ10 Pin Interrupt 10 Level.

Set the PINT_EDGE_CLR.PIQ10 bit to enable level sensitivity.

9

(R/W1C)

PIQ9 Pin Interrupt 9 Level.

Set the PINT_EDGE_CLR.PIQ9 bit to enable level sensitivity.

8

(R/W1C)

PIQ8 Pin Interrupt 8 Level.

Set the PINT_EDGE_CLR.PIQ8 bit to enable level sensitivity.

7

(R/W1C)

PIQ7 Pin Interrupt 7 Level.

Set the PINT_EDGE_CLR.PIQ7 bit to enable level sensitivity.

6

(R/W1C)

PIQ6 Pin Interrupt 6 Level.

Set the PINT_EDGE_CLR.PIQ6 bit to enable level sensitivity.

5

(R/W1C)

PIQ5 Pin Interrupt 5 Level.

Set the PINT_EDGE_CLR.PIQ5 bit to enable level sensitivity.

4

(R/W1C)

PIQ4 Pin Interrupt 4 Level.

Set the PINT_EDGE_CLR.PIQ4 bit to enable level sensitivity.

3

(R/W1C)

PIQ3 Pin Interrupt 3 Level.

Set the PINT_EDGE_CLR.PIQ3 bit to enable level sensitivity.

2

(R/W1C)

PIQ2 Pin Interrupt 2 Level.

Set the PINT_EDGE_CLR.PIQ2 bit to enable level sensitivity.

1

(R/W1C)

PIQ1 Pin Interrupt 1 Level.

Set the PINT_EDGE_CLR.PIQ1 bit to enable level sensitivity.

0

(R/W1C)

PIQ0 Pin Interrupt 0 Level.

Set the PINT_EDGE_CLR.PIQ0 bit to enable level sensitivity.

CM41X_M4 PINT Register Descriptions

18–78 ADSP-CM41x Mixed-Signal Control Processor

PINT Edge Set Register

The PINT_EDGE_SET register permits selecting edge-sensitive interrupts. Writing 1 to a bit in
PINT_EDGE_SET enables edge sensitivity for the corresponding pin interrupt.

Pin Interrupt 7 EdgePin Interrupt 8 Edge

Pin Interrupt 6 EdgePin Interrupt 9 Edge

Pin Interrupt 5 EdgePin Interrupt 10 Edge

Pin Interrupt 4 EdgePin Interrupt 11 Edge

Pin Interrupt 3 EdgePin Interrupt 12 Edge

Pin Interrupt 2 EdgePin Interrupt 13 Edge

Pin Interrupt 1 EdgePin Interrupt 14 Edge

Pin Interrupt 0 EdgePin Interrupt 15 Edge

Pin Interrupt 23 EdgePin Interrupt 24 Edge

Pin Interrupt 22 EdgePin Interrupt 25 Edge

Pin Interrupt 21 EdgePin Interrupt 26 Edge

Pin Interrupt 20 EdgePin Interrupt 27 Edge

Pin Interrupt 19 EdgePin Interrupt 28 Edge

Pin Interrupt 18 EdgePin Interrupt 29 Edge

Pin Interrupt 17 EdgePin Interrupt 30 Edge

Pin Interrupt 16 EdgePin Interrupt 31 Edge

PIQ7 (R/W1S)PIQ8 (R/W1S)

PIQ6 (R/W1S)PIQ9 (R/W1S)

PIQ5 (R/W1S)PIQ10 (R/W1S)

PIQ4 (R/W1S)PIQ11 (R/W1S)

PIQ3 (R/W1S)PIQ12 (R/W1S)

PIQ2 (R/W1S)PIQ13 (R/W1S)

PIQ1 (R/W1S)PIQ14 (R/W1S)

PIQ0 (R/W1S)PIQ15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1S)PIQ24 (R/W1S)

PIQ22 (R/W1S)PIQ25 (R/W1S)

PIQ21 (R/W1S)PIQ26 (R/W1S)

PIQ20 (R/W1S)PIQ27 (R/W1S)

PIQ19 (R/W1S)PIQ28 (R/W1S)

PIQ18 (R/W1S)PIQ29 (R/W1S)

PIQ17 (R/W1S)PIQ30 (R/W1S)

PIQ16 (R/W1S)PIQ31 (R/W1S)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-28: PINT_EDGE_SET Register Diagram

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–79

Table 18-34: PINT_EDGE_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1S)

PIQ31 Pin Interrupt 31 Edge.

Set the PINT_EDGE_SET.PIQ31 bit to enable edge sensitivity.

30

(R/W1S)

PIQ30 Pin Interrupt 30 Edge.

Set the PINT_EDGE_SET.PIQ30 bit to enable edge sensitivity.

29

(R/W1S)

PIQ29 Pin Interrupt 29 Edge.

Set the PINT_EDGE_SET.PIQ29 bit to enable edge sensitivity.

28

(R/W1S)

PIQ28 Pin Interrupt 28 Edge.

Set the PINT_EDGE_SET.PIQ28 bit to enable edge sensitivity.

27

(R/W1S)

PIQ27 Pin Interrupt 27 Edge.

Set the PINT_EDGE_SET.PIQ27 bit to enable edge sensitivity.

26

(R/W1S)

PIQ26 Pin Interrupt 26 Edge.

Set the PINT_EDGE_SET.PIQ26 bit to enable edge sensitivity.

25

(R/W1S)

PIQ25 Pin Interrupt 25 Edge.

Set the PINT_EDGE_SET.PIQ25 bit to enable edge sensitivity.

24

(R/W1S)

PIQ24 Pin Interrupt 24 Edge.

Set the PINT_EDGE_SET.PIQ24 bit to enable edge sensitivity.

23

(R/W1S)

PIQ23 Pin Interrupt 23 Edge.

Set the PINT_EDGE_SET.PIQ23 bit to enable edge sensitivity.

22

(R/W1S)

PIQ22 Pin Interrupt 22 Edge.

Set the PINT_EDGE_SET.PIQ22 bit to enable edge sensitivity.

21

(R/W1S)

PIQ21 Pin Interrupt 21 Edge.

Set the PINT_EDGE_SET.PIQ21 bit to enable edge sensitivity.

20

(R/W1S)

PIQ20 Pin Interrupt 20 Edge.

Set the PINT_EDGE_SET.PIQ20 bit to enable edge sensitivity.

19

(R/W1S)

PIQ19 Pin Interrupt 19 Edge.

Set the PINT_EDGE_SET.PIQ19 bit to enable edge sensitivity.

18

(R/W1S)

PIQ18 Pin Interrupt 18 Edge.

Set the PINT_EDGE_SET.PIQ18 bit to enable edge sensitivity.

17

(R/W1S)

PIQ17 Pin Interrupt 17 Edge.

Set the PINT_EDGE_SET.PIQ17 bit to enable edge sensitivity.

16

(R/W1S)

PIQ16 Pin Interrupt 16 Edge.

Set the PINT_EDGE_SET.PIQ16 bit to enable edge sensitivity.

CM41X_M4 PINT Register Descriptions

18–80 ADSP-CM41x Mixed-Signal Control Processor

Table 18-34: PINT_EDGE_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PIQ15 Pin Interrupt 15 Edge.

Set the PINT_EDGE_SET.PIQ15 bit to enable edge sensitivity.

14

(R/W1S)

PIQ14 Pin Interrupt 14 Edge.

Set the PINT_EDGE_SET.PIQ14 bit to enable edge sensitivity.

13

(R/W1S)

PIQ13 Pin Interrupt 13 Edge.

Set the PINT_EDGE_SET.PIQ13 bit to enable edge sensitivity.

12

(R/W1S)

PIQ12 Pin Interrupt 12 Edge.

Set the PINT_EDGE_SET.PIQ12 bit to enable edge sensitivity.

11

(R/W1S)

PIQ11 Pin Interrupt 11 Edge.

Set the PINT_EDGE_SET.PIQ11 bit to enable edge sensitivity.

10

(R/W1S)

PIQ10 Pin Interrupt 10 Edge.

Set the PINT_EDGE_SET.PIQ10 bit to enable edge sensitivity.

9

(R/W1S)

PIQ9 Pin Interrupt 9 Edge.

Set the PINT_EDGE_SET.PIQ9 bit to enable edge sensitivity.

8

(R/W1S)

PIQ8 Pin Interrupt 8 Edge.

Set the PINT_EDGE_SET.PIQ8 bit to enable edge sensitivity.

7

(R/W1S)

PIQ7 Pin Interrupt 7 Edge.

Set the PINT_EDGE_SET.PIQ7 bit to enable edge sensitivity.

6

(R/W1S)

PIQ6 Pin Interrupt 6 Edge.

Set the PINT_EDGE_SET.PIQ6 bit to enable edge sensitivity.

5

(R/W1S)

PIQ5 Pin Interrupt 5 Edge.

Set the PINT_EDGE_SET.PIQ5 bit to enable edge sensitivity.

4

(R/W1S)

PIQ4 Pin Interrupt 4 Edge.

Set the PINT_EDGE_SET.PIQ4 bit to enable edge sensitivity.

3

(R/W1S)

PIQ3 Pin Interrupt 3 Edge.

Set the PINT_EDGE_SET.PIQ3 bit to enable edge sensitivity.

2

(R/W1S)

PIQ2 Pin Interrupt 2 Edge.

Set the PINT_EDGE_SET.PIQ2 bit to enable edge sensitivity.

1

(R/W1S)

PIQ1 Pin Interrupt 1 Edge.

Set the PINT_EDGE_SET.PIQ1 bit to enable edge sensitivity.

0

(R/W1S)

PIQ0 Pin Interrupt 0 Edge.

Set the PINT_EDGE_SET.PIQ0 bit to enable edge sensitivity.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–81

PINT Invert Clear Register

The PINT_INV_CLR register disables inverting input polarity. Writing 1 to a bit in PINT_INV_CLR disables an
inverter for input on the corresponding pin.

Pin Interrupt 7 No InvertPin Interrupt 8 No Invert

Pin Interrupt 6 No InvertPin Interrupt 9 No Invert

Pin Interrupt 5 No InvertPin Interrupt 10 No Invert

Pin Interrupt 4 No InvertPin Interrupt 11 No Invert

Pin Interrupt 3 No InvertPin Interrupt 12 No Invert

Pin Interrupt 2 No InvertPin Interrupt 13 No Invert

Pin Interrupt 1 No InvertPin Interrupt 14 No Invert

Pin Interrupt 0 No InvertPin Interrupt 15 No Invert

Pin Interrupt 23 No InvertPin Interrupt 24 No Invert

Pin Interrupt 22 No InvertPin Interrupt 25 No Invert

Pin Interrupt 21 No InvertPin Interrupt 26 No Invert

Pin Interrupt 20 No InvertPin Interrupt 27 No Invert

Pin Interrupt 19 No InvertPin Interrupt 28 No Invert

Pin Interrupt 18 No InvertPin Interrupt 29 No Invert

Pin Interrupt 17 No InvertPin Interrupt 30 No Invert

Pin Interrupt 16 No InvertPin Interrupt 31 No Invert

PIQ7 (R/W1C)PIQ8 (R/W1C)

PIQ6 (R/W1C)PIQ9 (R/W1C)

PIQ5 (R/W1C)PIQ10 (R/W1C)

PIQ4 (R/W1C)PIQ11 (R/W1C)

PIQ3 (R/W1C)PIQ12 (R/W1C)

PIQ2 (R/W1C)PIQ13 (R/W1C)

PIQ1 (R/W1C)PIQ14 (R/W1C)

PIQ0 (R/W1C)PIQ15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1C)PIQ24 (R/W1C)

PIQ22 (R/W1C)PIQ25 (R/W1C)

PIQ21 (R/W1C)PIQ26 (R/W1C)

PIQ20 (R/W1C)PIQ27 (R/W1C)

PIQ19 (R/W1C)PIQ28 (R/W1C)

PIQ18 (R/W1C)PIQ29 (R/W1C)

PIQ17 (R/W1C)PIQ30 (R/W1C)

PIQ16 (R/W1C)PIQ31 (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-29: PINT_INV_CLR Register Diagram

CM41X_M4 PINT Register Descriptions

18–82 ADSP-CM41x Mixed-Signal Control Processor

Table 18-35: PINT_INV_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

PIQ31 Pin Interrupt 31 No Invert.

Set the PINT_INV_CLR.PIQ31 bit to disable inverted input.

30

(R/W1C)

PIQ30 Pin Interrupt 30 No Invert.

Set the PINT_INV_CLR.PIQ30 bit to disable inverted input.

29

(R/W1C)

PIQ29 Pin Interrupt 29 No Invert.

Set the PINT_INV_CLR.PIQ29 bit to disable inverted input.

28

(R/W1C)

PIQ28 Pin Interrupt 28 No Invert.

Set the PINT_INV_CLR.PIQ28 bit to disable inverted input.

27

(R/W1C)

PIQ27 Pin Interrupt 27 No Invert.

Set the PINT_INV_CLR.PIQ27 bit to disable inverted input.

26

(R/W1C)

PIQ26 Pin Interrupt 26 No Invert.

Set the PINT_INV_CLR.PIQ26 bit to disable inverted input.

25

(R/W1C)

PIQ25 Pin Interrupt 25 No Invert.

Set the PINT_INV_CLR.PIQ25 bit to disable inverted input.

24

(R/W1C)

PIQ24 Pin Interrupt 24 No Invert.

Set the PINT_INV_CLR.PIQ24 bit to disable inverted input.

23

(R/W1C)

PIQ23 Pin Interrupt 23 No Invert.

Set the PINT_INV_CLR.PIQ23 bit to disable inverted input.

22

(R/W1C)

PIQ22 Pin Interrupt 22 No Invert.

Set the PINT_INV_CLR.PIQ22 bit to disable inverted input.

21

(R/W1C)

PIQ21 Pin Interrupt 21 No Invert.

Set the PINT_INV_CLR.PIQ21 bit to disable inverted input.

20

(R/W1C)

PIQ20 Pin Interrupt 20 No Invert.

Set the PINT_INV_CLR.PIQ20 bit to disable inverted input.

19

(R/W1C)

PIQ19 Pin Interrupt 19 No Invert.

Set the PINT_INV_CLR.PIQ19 bit to disable inverted input.

18

(R/W1C)

PIQ18 Pin Interrupt 18 No Invert.

Set the PINT_INV_CLR.PIQ18 bit to disable inverted input.

17

(R/W1C)

PIQ17 Pin Interrupt 17 No Invert.

Set the PINT_INV_CLR.PIQ17 bit to disable inverted input.

16

(R/W1C)

PIQ16 Pin Interrupt 16 No Invert.

Set the PINT_INV_CLR.PIQ16 bit to disable inverted input.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–83

Table 18-35: PINT_INV_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PIQ15 Pin Interrupt 15 No Invert.

Set the PINT_INV_CLR.PIQ15 bit to disable inverted input.

14

(R/W1C)

PIQ14 Pin Interrupt 14 No Invert.

Set the PINT_INV_CLR.PIQ14 bit to disable inverted input.

13

(R/W1C)

PIQ13 Pin Interrupt 13 No Invert.

Set the PINT_INV_CLR.PIQ13 bit to disable inverted input.

12

(R/W1C)

PIQ12 Pin Interrupt 12 No Invert.

Set the PINT_INV_CLR.PIQ12 bit to disable inverted input.

11

(R/W1C)

PIQ11 Pin Interrupt 11 No Invert.

Set the PINT_INV_CLR.PIQ11 bit to disable inverted input.

10

(R/W1C)

PIQ10 Pin Interrupt 10 No Invert.

Set the PINT_INV_CLR.PIQ10 bit to disable inverted input.

9

(R/W1C)

PIQ9 Pin Interrupt 9 No Invert.

Set the PINT_INV_CLR.PIQ9 bit to disable inverted input.

8

(R/W1C)

PIQ8 Pin Interrupt 8 No Invert.

Set the PINT_INV_CLR.PIQ8 bit to disable inverted input.

7

(R/W1C)

PIQ7 Pin Interrupt 7 No Invert.

Set the PINT_INV_CLR.PIQ7 bit to disable inverted input.

6

(R/W1C)

PIQ6 Pin Interrupt 6 No Invert.

Set the PINT_INV_CLR.PIQ6 bit to disable inverted input.

5

(R/W1C)

PIQ5 Pin Interrupt 5 No Invert.

Set the PINT_INV_CLR.PIQ5 bit to disable inverted input.

4

(R/W1C)

PIQ4 Pin Interrupt 4 No Invert.

Set the PINT_INV_CLR.PIQ4 bit to disable inverted input.

3

(R/W1C)

PIQ3 Pin Interrupt 3 No Invert.

Set the PINT_INV_CLR.PIQ3 bit to disable inverted input.

2

(R/W1C)

PIQ2 Pin Interrupt 2 No Invert.

Set the PINT_INV_CLR.PIQ2 bit to disable inverted input.

1

(R/W1C)

PIQ1 Pin Interrupt 1 No Invert.

Set the PINT_INV_CLR.PIQ1 bit to disable inverted input.

0

(R/W1C)

PIQ0 Pin Interrupt 0 No Invert.

Set the PINT_INV_CLR.PIQ0 bit to disable inverted input.

CM41X_M4 PINT Register Descriptions

18–84 ADSP-CM41x Mixed-Signal Control Processor

PINT Invert Set Register

The PINT_INV_SET register enables inverting input polarity. Writing 1 to a bit in PINT_INV_SET enables an
inverter for input on the corresponding pin.

Pin Interrupt 7 InvertPin Interrupt 8 Invert

Pin Interrupt 6 InvertPin Interrupt 9 Invert

Pin Interrupt 5 InvertPin Interrupt 10 Invert

Pin Interrupt 4 InvertPin Interrupt 11 Invert

Pin Interrupt 3 InvertPin Interrupt 12 Invert

Pin Interrupt 2 InvertPin Interrupt 13 Invert

Pin Interrupt 1 InvertPin Interrupt 14 Invert

Pin Interrupt 0 InvertPin Interrupt 15 Invert

Pin Interrupt 23 InvertPin Interrupt 24 Invert

Pin Interrupt 22 InvertPin Interrupt 25 Invert

Pin Interrupt 21 InvertPin Interrupt 26 Invert

Pin Interrupt 20 InvertPin Interrupt 27 Invert

Pin Interrupt 19 InvertPin Interrupt 28 Invert

Pin Interrupt 18 InvertPin Interrupt 29 Invert

Pin Interrupt 17 InvertPin Interrupt 30 Invert

Pin Interrupt 16 InvertPin Interrupt 31 Invert

PIQ7 (R/W1S)PIQ8 (R/W1S)

PIQ6 (R/W1S)PIQ9 (R/W1S)

PIQ5 (R/W1S)PIQ10 (R/W1S)

PIQ4 (R/W1S)PIQ11 (R/W1S)

PIQ3 (R/W1S)PIQ12 (R/W1S)

PIQ2 (R/W1S)PIQ13 (R/W1S)

PIQ1 (R/W1S)PIQ14 (R/W1S)

PIQ0 (R/W1S)PIQ15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1S)PIQ24 (R/W1S)

PIQ22 (R/W1S)PIQ25 (R/W1S)

PIQ21 (R/W1S)PIQ26 (R/W1S)

PIQ20 (R/W1S)PIQ27 (R/W1S)

PIQ19 (R/W1S)PIQ28 (R/W1S)

PIQ18 (R/W1S)PIQ29 (R/W1S)

PIQ17 (R/W1S)PIQ30 (R/W1S)

PIQ16 (R/W1S)PIQ31 (R/W1S)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-30: PINT_INV_SET Register Diagram

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–85

Table 18-36: PINT_INV_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1S)

PIQ31 Pin Interrupt 31 Invert.

Set the PINT_INV_SET.PIQ31 bit to enable inverted input.

30

(R/W1S)

PIQ30 Pin Interrupt 30 Invert.

Set the PINT_INV_SET.PIQ30 bit to enable inverted input.

29

(R/W1S)

PIQ29 Pin Interrupt 29 Invert.

Set the PINT_INV_SET.PIQ29 bit to enable inverted input.

28

(R/W1S)

PIQ28 Pin Interrupt 28 Invert.

Set the PINT_INV_SET.PIQ28 bit to enable inverted input.

27

(R/W1S)

PIQ27 Pin Interrupt 27 Invert.

Set the PINT_INV_SET.PIQ27 bit to enable inverted input.

26

(R/W1S)

PIQ26 Pin Interrupt 26 Invert.

Set the PINT_INV_SET.PIQ26 bit to enable inverted input.

25

(R/W1S)

PIQ25 Pin Interrupt 25 Invert.

Set the PINT_INV_SET.PIQ25 bit to enable inverted input.

24

(R/W1S)

PIQ24 Pin Interrupt 24 Invert.

Set the PINT_INV_SET.PIQ24 bit to enable inverted input.

23

(R/W1S)

PIQ23 Pin Interrupt 23 Invert.

Set the PINT_INV_SET.PIQ23 bit to enable inverted input.

22

(R/W1S)

PIQ22 Pin Interrupt 22 Invert.

Set the PINT_INV_SET.PIQ22 bit to enable inverted input.

21

(R/W1S)

PIQ21 Pin Interrupt 21 Invert.

Set the PINT_INV_SET.PIQ21 bit to enable inverted input.

20

(R/W1S)

PIQ20 Pin Interrupt 20 Invert.

Set the PINT_INV_SET.PIQ20 bit to enable inverted input.

19

(R/W1S)

PIQ19 Pin Interrupt 19 Invert.

Set the PINT_INV_SET.PIQ19 bit to enable inverted input.

18

(R/W1S)

PIQ18 Pin Interrupt 18 Invert.

Set the PINT_INV_SET.PIQ18 bit to enable inverted input.

17

(R/W1S)

PIQ17 Pin Interrupt 17 Invert.

Set the PINT_INV_SET.PIQ17 bit to enable inverted input.

16

(R/W1S)

PIQ16 Pin Interrupt 16 Invert.

Set the PINT_INV_SET.PIQ16 bit to enable inverted input.

CM41X_M4 PINT Register Descriptions

18–86 ADSP-CM41x Mixed-Signal Control Processor

Table 18-36: PINT_INV_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PIQ15 Pin Interrupt 15 Invert.

Set the PINT_INV_SET.PIQ15 bit to enable inverted input.

14

(R/W1S)

PIQ14 Pin Interrupt 14 Invert.

Set the PINT_INV_SET.PIQ14 bit to enable inverted input.

13

(R/W1S)

PIQ13 Pin Interrupt 13 Invert.

Set the PINT_INV_SET.PIQ13 bit to enable inverted input.

12

(R/W1S)

PIQ12 Pin Interrupt 12 Invert.

Set the PINT_INV_SET.PIQ12 bit to enable inverted input.

11

(R/W1S)

PIQ11 Pin Interrupt 11 Invert.

Set the PINT_INV_SET.PIQ11 bit to enable inverted input.

10

(R/W1S)

PIQ10 Pin Interrupt 10 Invert.

Set the PINT_INV_SET.PIQ10 bit to enable inverted input.

9

(R/W1S)

PIQ9 Pin Interrupt 9 Invert.

Set the PINT_INV_SET.PIQ9 bit to enable inverted input.

8

(R/W1S)

PIQ8 Pin Interrupt 8 Invert.

Set the PINT_INV_SET.PIQ8 bit to enable inverted input.

7

(R/W1S)

PIQ7 Pin Interrupt 7 Invert.

Set the PINT_INV_SET.PIQ7 bit to enable inverted input.

6

(R/W1S)

PIQ6 Pin Interrupt 6 Invert.

Set the PINT_INV_SET.PIQ6 bit to enable inverted input.

5

(R/W1S)

PIQ5 Pin Interrupt 5 Invert.

Set the PINT_INV_SET.PIQ5 bit to enable inverted input.

4

(R/W1S)

PIQ4 Pin Interrupt 4 Invert.

Set the PINT_INV_SET.PIQ4 bit to enable inverted input.

3

(R/W1S)

PIQ3 Pin Interrupt 3 Invert.

Set the PINT_INV_SET.PIQ3 bit to enable inverted input.

2

(R/W1S)

PIQ2 Pin Interrupt 2 Invert.

Set the PINT_INV_SET.PIQ2 bit to enable inverted input.

1

(R/W1S)

PIQ1 Pin Interrupt 1 Invert.

Set the PINT_INV_SET.PIQ1 bit to enable inverted input.

0

(R/W1S)

PIQ0 Pin Interrupt 0 Invert.

Set the PINT_INV_SET.PIQ0 bit to enable inverted input.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–87

PINT Latch Register

The PINT_LATCH register indicates the interrupt latch status for pin interrupts. When set, an interrupt request is
latched. When cleared, there is no interrupt request latched.

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the respective
pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of the PINT_REQ
register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_LATCH register and
the interrupt mask.

Having two separate registers here enables the user to interrogate certain pins in polling mode while others work in
interrupt mode. The PINT_LATCH registers can be used for edge detection or pin activity detection.

Both registers have W1C behavior. Writing a 1 to either register clears the respective bits in both registers. For inter-
rupt operation, the user may prefer to W1C the PINT_REQ register (address still loaded in Px pointer). In polling
mode, it might be cleaner to W1C the PINT_LATCH register.

Whether in edge-sensitive mode or level-sensitive mode, PINT_LATCH bits are never cleared by hardware except at
system reset. Even in level-sensitive mode, the PINT_LATCH register functions as latch.

CM41X_M4 PINT Register Descriptions

18–88 ADSP-CM41x Mixed-Signal Control Processor

Pin Interrupt 7 LatchPin Interrupt 8 Latch

Pin Interrupt 6 LatchPin Interrupt 9 Latch

Pin Interrupt 5 LatchPin Interrupt 10 Latch

Pin Interrupt 4 LatchPin Interrupt 11 Latch

Pin Interrupt 3 LatchPin Interrupt 12 Latch

Pin Interrupt 2 LatchPin Interrupt 13 Latch

Pin Interrupt 1 LatchPin Interrupt 14 Latch

Pin Interrupt 0 LatchPin Interrupt 15 Latch

Pin Interrupt 23 LatchPin Interrupt 24 Latch

Pin Interrupt 22 LatchPin Interrupt 25 Latch

Pin Interrupt 21 LatchPin Interrupt 26 Latch

Pin Interrupt 20 LatchPin Interrupt 27 Latch

Pin Interrupt 19 LatchPin Interrupt 28 Latch

Pin Interrupt 18 LatchPin Interrupt 29 Latch

Pin Interrupt 17 LatchPin Interrupt 30 Latch

Pin Interrupt 16 LatchPin Interrupt 31 Latch

PIQ7 (R/W1C)PIQ8 (R/W1C)

PIQ6 (R/W1C)PIQ9 (R/W1C)

PIQ5 (R/W1C)PIQ10 (R/W1C)

PIQ4 (R/W1C)PIQ11 (R/W1C)

PIQ3 (R/W1C)PIQ12 (R/W1C)

PIQ2 (R/W1C)PIQ13 (R/W1C)

PIQ1 (R/W1C)PIQ14 (R/W1C)

PIQ0 (R/W1C)PIQ15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1C)PIQ24 (R/W1C)

PIQ22 (R/W1C)PIQ25 (R/W1C)

PIQ21 (R/W1C)PIQ26 (R/W1C)

PIQ20 (R/W1C)PIQ27 (R/W1C)

PIQ19 (R/W1C)PIQ28 (R/W1C)

PIQ18 (R/W1C)PIQ29 (R/W1C)

PIQ17 (R/W1C)PIQ30 (R/W1C)

PIQ16 (R/W1C)PIQ31 (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-31: PINT_LATCH Register Diagram

Table 18-37: PINT_LATCH Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

PIQ31 Pin Interrupt 31 Latch.

If the PINT_LATCH.PIQ31 bit is set, the request is latched.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–89

Table 18-37: PINT_LATCH Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W1C)

PIQ30 Pin Interrupt 30 Latch.

If the PINT_LATCH.PIQ30 bit is set, the request is latched.

29

(R/W1C)

PIQ29 Pin Interrupt 29 Latch.

If the PINT_LATCH.PIQ29 bit is set, the request is latched.

28

(R/W1C)

PIQ28 Pin Interrupt 28 Latch.

If the PINT_LATCH.PIQ28 bit is set, the request is latched.

27

(R/W1C)

PIQ27 Pin Interrupt 27 Latch.

If the PINT_LATCH.PIQ27 bit is set, the request is latched.

26

(R/W1C)

PIQ26 Pin Interrupt 26 Latch.

If the PINT_LATCH.PIQ26 bit is set, the request is latched.

25

(R/W1C)

PIQ25 Pin Interrupt 25 Latch.

If the PINT_LATCH.PIQ25 bit is set, the request is latched.

24

(R/W1C)

PIQ24 Pin Interrupt 24 Latch.

If the PINT_LATCH.PIQ24 bit is set, the request is latched.

23

(R/W1C)

PIQ23 Pin Interrupt 23 Latch.

If the PINT_LATCH.PIQ23 bit is set, the request is latched.

22

(R/W1C)

PIQ22 Pin Interrupt 22 Latch.

If the PINT_LATCH.PIQ22 bit is set, the request is latched.

21

(R/W1C)

PIQ21 Pin Interrupt 21 Latch.

If the PINT_LATCH.PIQ21 bit is set, the request is latched.

20

(R/W1C)

PIQ20 Pin Interrupt 20 Latch.

If the PINT_LATCH.PIQ20 bit is set, the request is latched.

19

(R/W1C)

PIQ19 Pin Interrupt 19 Latch.

If the PINT_LATCH.PIQ19 bit is set, the request is latched.

18

(R/W1C)

PIQ18 Pin Interrupt 18 Latch.

If the PINT_LATCH.PIQ18 bit is set, the request is latched.

17

(R/W1C)

PIQ17 Pin Interrupt 17 Latch.

If the PINT_LATCH.PIQ17 bit is set, the request is latched.

16

(R/W1C)

PIQ16 Pin Interrupt 16 Latch.

If the PINT_LATCH.PIQ16 bit is set, the request is latched.

15

(R/W1C)

PIQ15 Pin Interrupt 15 Latch.

If the PINT_LATCH.PIQ15 bit is set, the request is latched.

CM41X_M4 PINT Register Descriptions

18–90 ADSP-CM41x Mixed-Signal Control Processor

Table 18-37: PINT_LATCH Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W1C)

PIQ14 Pin Interrupt 14 Latch.

If the PINT_LATCH.PIQ14 bit is set, the request is latched.

13

(R/W1C)

PIQ13 Pin Interrupt 13 Latch.

If the PINT_LATCH.PIQ13 bit is set, the request is latched.

12

(R/W1C)

PIQ12 Pin Interrupt 12 Latch.

If the PINT_LATCH.PIQ12 bit is set, the request is latched.

11

(R/W1C)

PIQ11 Pin Interrupt 11 Latch.

If the PINT_LATCH.PIQ11 bit is set, the request is latched.

10

(R/W1C)

PIQ10 Pin Interrupt 10 Latch.

If the PINT_LATCH.PIQ10 bit is set, the request is latched.

9

(R/W1C)

PIQ9 Pin Interrupt 9 Latch.

If the PINT_LATCH.PIQ9 bit is set, the request is latched.

8

(R/W1C)

PIQ8 Pin Interrupt 8 Latch.

If the PINT_LATCH.PIQ8 bit is set, the request is latched.

7

(R/W1C)

PIQ7 Pin Interrupt 7 Latch.

If the PINT_LATCH.PIQ7 bit is set, the request is latched.

6

(R/W1C)

PIQ6 Pin Interrupt 6 Latch.

If the PINT_LATCH.PIQ6 bit is set, the request is latched.

5

(R/W1C)

PIQ5 Pin Interrupt 5 Latch.

If the PINT_LATCH.PIQ5 bit is set, the request is latched.

4

(R/W1C)

PIQ4 Pin Interrupt 4 Latch.

If the PINT_LATCH.PIQ4 bit is set, the request is latched.

3

(R/W1C)

PIQ3 Pin Interrupt 3 Latch.

If the PINT_LATCH.PIQ3 bit is set, the request is latched.

2

(R/W1C)

PIQ2 Pin Interrupt 2 Latch.

If the PINT_LATCH.PIQ2 bit is set, the request is latched.

1

(R/W1C)

PIQ1 Pin Interrupt 1 Latch.

If the PINT_LATCH.PIQ1 bit is set, the request is latched.

0

(R/W1C)

PIQ0 Pin Interrupt 0 Latch.

If the PINT_LATCH.PIQ0 bit is set, the request is latched.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–91

PINT Mask Clear Register

The PINT_MSK_CLR register permits masking (disabling) of interrupt requests. Writing 1 to a bit in
PINT_MSK_CLR masks the corresponding pin interrupt.

Pin Interrupt 7 MaskPin Interrupt 8 Mask

Pin Interrupt 6 MaskPin Interrupt 9 Mask

Pin Interrupt 5 MaskPin Interrupt 10 Mask

Pin Interrupt 4 MaskPin Interrupt 11 Mask

Pin Interrupt 3 MaskPin Interrupt 12 Mask

Pin Interrupt 2 MaskPin Interrupt 13 Mask

Pin Interrupt 1 MaskPin Interrupt 14 Mask

Pin Interrupt 0 MaskPin Interrupt 15 Mask

Pin Interrupt 23 MaskPin Interrupt 24 Mask

Pin Interrupt 22 MaskPin Interrupt 25 Mask

Pin Interrupt 21 MaskPin Interrupt 26 Mask

Pin Interrupt 20 MaskPin Interrupt 27 Mask

Pin Interrupt 19 MaskPin Interrupt 28 Mask

Pin Interrupt 18 MaskPin Interrupt 29 Mask

Pin Interrupt 17 MaskPin Interrupt 30 Mask

Pin Interrupt 16 MaskPin Interrupt 31 Mask

PIQ7 (R/W1C)PIQ8 (R/W1C)

PIQ6 (R/W1C)PIQ9 (R/W1C)

PIQ5 (R/W1C)PIQ10 (R/W1C)

PIQ4 (R/W1C)PIQ11 (R/W1C)

PIQ3 (R/W1C)PIQ12 (R/W1C)

PIQ2 (R/W1C)PIQ13 (R/W1C)

PIQ1 (R/W1C)PIQ14 (R/W1C)

PIQ0 (R/W1C)PIQ15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1C)PIQ24 (R/W1C)

PIQ22 (R/W1C)PIQ25 (R/W1C)

PIQ21 (R/W1C)PIQ26 (R/W1C)

PIQ20 (R/W1C)PIQ27 (R/W1C)

PIQ19 (R/W1C)PIQ28 (R/W1C)

PIQ18 (R/W1C)PIQ29 (R/W1C)

PIQ17 (R/W1C)PIQ30 (R/W1C)

PIQ16 (R/W1C)PIQ31 (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-32: PINT_MSK_CLR Register Diagram

CM41X_M4 PINT Register Descriptions

18–92 ADSP-CM41x Mixed-Signal Control Processor

Table 18-38: PINT_MSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

PIQ31 Pin Interrupt 31 Mask.

Set the PINT_MSK_CLR.PIQ31 bit to disable the interrupt.

30

(R/W1C)

PIQ30 Pin Interrupt 30 Mask.

Set the PINT_MSK_CLR.PIQ30 bit to disable the interrupt.

29

(R/W1C)

PIQ29 Pin Interrupt 29 Mask.

Set the PINT_MSK_CLR.PIQ29 bit to disable the interrupt.

28

(R/W1C)

PIQ28 Pin Interrupt 28 Mask.

Set the PINT_MSK_CLR.PIQ28 bit to disable the interrupt.

27

(R/W1C)

PIQ27 Pin Interrupt 27 Mask.

Set the PINT_MSK_CLR.PIQ27 bit to disable the interrupt.

26

(R/W1C)

PIQ26 Pin Interrupt 26 Mask.

Set the PINT_MSK_CLR.PIQ26 bit to disable the interrupt.

25

(R/W1C)

PIQ25 Pin Interrupt 25 Mask.

Set the PINT_MSK_CLR.PIQ25 bit to disable the interrupt.

24

(R/W1C)

PIQ24 Pin Interrupt 24 Mask.

Set the PINT_MSK_CLR.PIQ24 bit to disable the interrupt.

23

(R/W1C)

PIQ23 Pin Interrupt 23 Mask.

Set the PINT_MSK_CLR.PIQ23 bit to disable the interrupt.

22

(R/W1C)

PIQ22 Pin Interrupt 22 Mask.

Set the PINT_MSK_CLR.PIQ22 bit to disable the interrupt.

21

(R/W1C)

PIQ21 Pin Interrupt 21 Mask.

Set the PINT_MSK_CLR.PIQ21 bit to disable the interrupt.

20

(R/W1C)

PIQ20 Pin Interrupt 20 Mask.

Set the PINT_MSK_CLR.PIQ20 bit to disable the interrupt.

19

(R/W1C)

PIQ19 Pin Interrupt 19 Mask.

Set the PINT_MSK_CLR.PIQ19 bit to disable the interrupt.

18

(R/W1C)

PIQ18 Pin Interrupt 18 Mask.

Set the PINT_MSK_CLR.PIQ18 bit to disable the interrupt.

17

(R/W1C)

PIQ17 Pin Interrupt 17 Mask.

Set the PINT_MSK_CLR.PIQ17 bit to disable the interrupt.

16

(R/W1C)

PIQ16 Pin Interrupt 16 Mask.

Set the PINT_MSK_CLR.PIQ16 bit to disable the interrupt.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–93

Table 18-38: PINT_MSK_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

PIQ15 Pin Interrupt 15 Mask.

Set the PINT_MSK_CLR.PIQ15 bit to disable the interrupt.

14

(R/W1C)

PIQ14 Pin Interrupt 14 Mask.

Set the PINT_MSK_CLR.PIQ14 bit to disable the interrupt.

13

(R/W1C)

PIQ13 Pin Interrupt 13 Mask.

Set the PINT_MSK_CLR.PIQ13 bit to disable the interrupt.

12

(R/W1C)

PIQ12 Pin Interrupt 12 Mask.

Set the PINT_MSK_CLR.PIQ12 bit to disable the interrupt.

11

(R/W1C)

PIQ11 Pin Interrupt 11 Mask.

Set the PINT_MSK_CLR.PIQ11 bit to disable the interrupt.

10

(R/W1C)

PIQ10 Pin Interrupt 10 Mask.

Set the PINT_MSK_CLR.PIQ10 bit to disable the interrupt.

9

(R/W1C)

PIQ9 Pin Interrupt 9 Mask.

Set the PINT_MSK_CLR.PIQ9 bit to disable the interrupt.

8

(R/W1C)

PIQ8 Pin Interrupt 8 Mask.

Set the PINT_MSK_CLR.PIQ8 bit to disable the interrupt.

7

(R/W1C)

PIQ7 Pin Interrupt 7 Mask.

Set the PINT_MSK_CLR.PIQ7 bit to disable the interrupt.

6

(R/W1C)

PIQ6 Pin Interrupt 6 Mask.

Set the PINT_MSK_CLR.PIQ6 bit to disable the interrupt.

5

(R/W1C)

PIQ5 Pin Interrupt 5 Mask.

Set the PINT_MSK_CLR.PIQ5 bit to disable the interrupt.

4

(R/W1C)

PIQ4 Pin Interrupt 4 Mask.

Set the PINT_MSK_CLR.PIQ4 bit to disable the interrupt.

3

(R/W1C)

PIQ3 Pin Interrupt 3 Mask.

Set the PINT_MSK_CLR.PIQ3 bit to disable the interrupt.

2

(R/W1C)

PIQ2 Pin Interrupt 2 Mask.

Set the PINT_MSK_CLR.PIQ2 bit to disable the interrupt.

1

(R/W1C)

PIQ1 Pin Interrupt 1 Mask.

Set the PINT_MSK_CLR.PIQ1 bit to disable the interrupt.

0

(R/W1C)

PIQ0 Pin Interrupt 0 Mask.

Set the PINT_MSK_CLR.PIQ0 bit to disable the interrupt.

CM41X_M4 PINT Register Descriptions

18–94 ADSP-CM41x Mixed-Signal Control Processor

PINT Mask Set Register

The PINT_MSK_SET register permits unmasking (enabling) of interrupt requests. Writing 1 to a bit in
PINT_MSK_SET unmasks the corresponding pin interrupt.

Pin Interrupt 7 UnmaskPin Interrupt 8 Unmask

Pin Interrupt 6 UnmaskPin Interrupt 9 Unmask

Pin Interrupt 5 UnmaskPin Interrupt 10 Unmask

Pin Interrupt 4 UnmaskPin Interrupt 11 Unmask

Pin Interrupt 3 UnmaskPin Interrupt 12 Unmask

Pin Interrupt 2 UnmaskPin Interrupt 13 Unmask

Pin Interrupt 1 UnmaskPin Interrupt 14 Unmask

Pin Interrupt 0 UnmaskPin Interrupt 15 Unmask

Pin Interrupt 23 UnmaskPin Interrupt 24 Unmask

Pin Interrupt 22 UnmaskPin Interrupt 25 Unmask

Pin Interrupt 21 UnmaskPin Interrupt 26 Unmask

Pin Interrupt 20 UnmaskPin Interrupt 27 Unmask

Pin Interrupt 19 UnmaskPin Interrupt 28 Unmask

Pin Interrupt 18 UnmaskPin Interrupt 29 Unmask

Pin Interrupt 17 UnmaskPin Interrupt 30 Unmask

Pin Interrupt 16 UnmaskPin Interrupt 31 Unmask

PIQ7 (R/W1S)PIQ8 (R/W1S)

PIQ6 (R/W1S)PIQ9 (R/W1S)

PIQ5 (R/W1S)PIQ10 (R/W1S)

PIQ4 (R/W1S)PIQ11 (R/W1S)

PIQ3 (R/W1S)PIQ12 (R/W1S)

PIQ2 (R/W1S)PIQ13 (R/W1S)

PIQ1 (R/W1S)PIQ14 (R/W1S)

PIQ0 (R/W1S)PIQ15 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1S)PIQ24 (R/W1S)

PIQ22 (R/W1S)PIQ25 (R/W1S)

PIQ21 (R/W1S)PIQ26 (R/W1S)

PIQ20 (R/W1S)PIQ27 (R/W1S)

PIQ19 (R/W1S)PIQ28 (R/W1S)

PIQ18 (R/W1S)PIQ29 (R/W1S)

PIQ17 (R/W1S)PIQ30 (R/W1S)

PIQ16 (R/W1S)PIQ31 (R/W1S)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-33: PINT_MSK_SET Register Diagram

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–95

Table 18-39: PINT_MSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1S)

PIQ31 Pin Interrupt 31 Unmask.

Set the PINT_MSK_SET.PIQ31 bit to enable the interrupt.

30

(R/W1S)

PIQ30 Pin Interrupt 30 Unmask.

Set the PINT_MSK_SET.PIQ30 bit to enable the interrupt.

29

(R/W1S)

PIQ29 Pin Interrupt 29 Unmask.

Set the PINT_MSK_SET.PIQ29 bit to enable the interrupt.

28

(R/W1S)

PIQ28 Pin Interrupt 28 Unmask.

Set the PINT_MSK_SET.PIQ28 bit to enable the interrupt.

27

(R/W1S)

PIQ27 Pin Interrupt 27 Unmask.

Set the PINT_MSK_SET.PIQ27 bit to enable the interrupt.

26

(R/W1S)

PIQ26 Pin Interrupt 26 Unmask.

Set the PINT_MSK_SET.PIQ26 bit to enable the interrupt.

25

(R/W1S)

PIQ25 Pin Interrupt 25 Unmask.

Set the PINT_MSK_SET.PIQ25 bit to enable the interrupt.

24

(R/W1S)

PIQ24 Pin Interrupt 24 Unmask.

Set the PINT_MSK_SET.PIQ24 bit to enable the interrupt.

23

(R/W1S)

PIQ23 Pin Interrupt 23 Unmask.

Set the PINT_MSK_SET.PIQ23 bit to enable the interrupt.

22

(R/W1S)

PIQ22 Pin Interrupt 22 Unmask.

Set the PINT_MSK_SET.PIQ22 bit to enable the interrupt.

21

(R/W1S)

PIQ21 Pin Interrupt 21 Unmask.

Set the PINT_MSK_SET.PIQ21 bit to enable the interrupt.

20

(R/W1S)

PIQ20 Pin Interrupt 20 Unmask.

Set the PINT_MSK_SET.PIQ20 bit to enable the interrupt.

19

(R/W1S)

PIQ19 Pin Interrupt 19 Unmask.

Set the PINT_MSK_SET.PIQ19 bit to enable the interrupt.

18

(R/W1S)

PIQ18 Pin Interrupt 18 Unmask.

Set the PINT_MSK_SET.PIQ18 bit to enable the interrupt.

17

(R/W1S)

PIQ17 Pin Interrupt 17 Unmask.

Set the PINT_MSK_SET.PIQ17 bit to enable the interrupt.

16

(R/W1S)

PIQ16 Pin Interrupt 16 Unmask.

Set the PINT_MSK_SET.PIQ16 bit to enable the interrupt.

CM41X_M4 PINT Register Descriptions

18–96 ADSP-CM41x Mixed-Signal Control Processor

Table 18-39: PINT_MSK_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1S)

PIQ15 Pin Interrupt 15 Unmask.

Set the PINT_MSK_SET.PIQ15 bit to enable the interrupt.

14

(R/W1S)

PIQ14 Pin Interrupt 14 Unmask.

Set the PINT_MSK_SET.PIQ14 bit to enable the interrupt.

13

(R/W1S)

PIQ13 Pin Interrupt 13 Unmask.

Set the PINT_MSK_SET.PIQ13 bit to enable the interrupt.

12

(R/W1S)

PIQ12 Pin Interrupt 12 Unmask.

Set the PINT_MSK_SET.PIQ12 bit to enable the interrupt.

11

(R/W1S)

PIQ11 Pin Interrupt 11 Unmask.

Set the PINT_MSK_SET.PIQ11 bit to enable the interrupt.

10

(R/W1S)

PIQ10 Pin Interrupt 10 Unmask.

Set the PINT_MSK_SET.PIQ10 bit to enable the interrupt.

9

(R/W1S)

PIQ9 Pin Interrupt 9 Unmask.

Set the PINT_MSK_SET.PIQ9 bit to enable the interrupt.

8

(R/W1S)

PIQ8 Pin Interrupt 8 Unmask.

Set the PINT_MSK_SET.PIQ8 bit to enable the interrupt.

7

(R/W1S)

PIQ7 Pin Interrupt 7 Unmask.

Set the PINT_MSK_SET.PIQ7 bit to enable the interrupt.

6

(R/W1S)

PIQ6 Pin Interrupt 6 Unmask.

Set the PINT_MSK_SET.PIQ6 bit to enable the interrupt.

5

(R/W1S)

PIQ5 Pin Interrupt 5 Unmask.

Set the PINT_MSK_SET.PIQ5 bit to enable the interrupt.

4

(R/W1S)

PIQ4 Pin Interrupt 4 Unmask.

Set the PINT_MSK_SET.PIQ4 bit to enable the interrupt.

3

(R/W1S)

PIQ3 Pin Interrupt 3 Unmask.

Set the PINT_MSK_SET.PIQ3 bit to enable the interrupt.

2

(R/W1S)

PIQ2 Pin Interrupt 2 Unmask.

Set the PINT_MSK_SET.PIQ2 bit to enable the interrupt.

1

(R/W1S)

PIQ1 Pin Interrupt 1 Unmask.

Set the PINT_MSK_SET.PIQ1 bit to enable the interrupt.

0

(R/W1S)

PIQ0 Pin Interrupt 0 Unmask.

Set the PINT_MSK_SET.PIQ0 bit to enable the interrupt.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–97

PINT Pin State Register

When a half port is assigned to a byte in any PINT block, the state of the eight pins (regardless of GPIO or func-
tion, input or output) can be seen in the PINT_PINSTATE register. While neither input nor output drivers of the
pin are enabled, reads of the pin state in PINT_PINSTATE return zero. The PINT_PINSTATE register reports
the inverted state of the pin if the signal inverter is activated by the PINT_INV_SET register. The inverter can be
enabled on an individual bit-by-bit basis. Every bit in the PINT_INV_SET and PINT_INV_CLR register pair
represents a pin signal.

The pin interrupt pin state registers enable the service routine to read the current state of the pin without reading
from GPIO space. If there was an edge-sensitive interrupt, the service routine can check whether the state of the pin
is still high or turned low.

CM41X_M4 PINT Register Descriptions

18–98 ADSP-CM41x Mixed-Signal Control Processor

Pin Interrupt 7 StatePin Interrupt 8 State

Pin Interrupt 6 StatePin Interrupt 9 State

Pin Interrupt 5 StatePin Interrupt 10 State

Pin Interrupt 4 StatePin Interrupt 11 State

Pin Interrupt 3 StatePin Interrupt 12 State

Pin Interrupt 2 StatePin Interrupt 13 State

Pin Interrupt 1 StatePin Interrupt 14 State

Pin Interrupt 0 StatePin Interrupt 15 State

Pin Interrupt 23 StatePin Interrupt 24 State

Pin Interrupt 22 StatePin Interrupt 25 State

Pin Interrupt 21 StatePin Interrupt 26 State

Pin Interrupt 20 StatePin Interrupt 27 State

Pin Interrupt 19 StatePin Interrupt 28 State

Pin Interrupt 18 StatePin Interrupt 29 State

Pin Interrupt 17 StatePin Interrupt 30 State

Pin Interrupt 16 StatePin Interrupt 31 State

PIQ7 (R)PIQ8 (R)

PIQ6 (R)PIQ9 (R)

PIQ5 (R)PIQ10 (R)

PIQ4 (R)PIQ11 (R)

PIQ3 (R)PIQ12 (R)

PIQ2 (R)PIQ13 (R)

PIQ1 (R)PIQ14 (R)

PIQ0 (R)PIQ15 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R)PIQ24 (R)

PIQ22 (R)PIQ25 (R)

PIQ21 (R)PIQ26 (R)

PIQ20 (R)PIQ27 (R)

PIQ19 (R)PIQ28 (R)

PIQ18 (R)PIQ29 (R)

PIQ17 (R)PIQ30 (R)

PIQ16 (R)PIQ31 (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-34: PINT_PINSTATE Register Diagram

Table 18-40: PINT_PINSTATE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/NW)

PIQ31 Pin Interrupt 31 State.

A read of the PINT_PINSTATE.PIQ31 bit returns the pin state.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–99

Table 18-40: PINT_PINSTATE Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/NW)

PIQ30 Pin Interrupt 30 State.

A read of the PINT_PINSTATE.PIQ30 bit returns the pin state.

29

(R/NW)

PIQ29 Pin Interrupt 29 State.

A read of the PINT_PINSTATE.PIQ29 bit returns the pin state.

28

(R/NW)

PIQ28 Pin Interrupt 28 State.

A read of the PINT_PINSTATE.PIQ28 bit returns the pin state.

27

(R/NW)

PIQ27 Pin Interrupt 27 State.

A read of the PINT_PINSTATE.PIQ27 bit returns the pin state.

26

(R/NW)

PIQ26 Pin Interrupt 26 State.

A read of the PINT_PINSTATE.PIQ26 bit returns the pin state.

25

(R/NW)

PIQ25 Pin Interrupt 25 State.

A read of the PINT_PINSTATE.PIQ25 bit returns the pin state.

24

(R/NW)

PIQ24 Pin Interrupt 24 State.

A read of the PINT_PINSTATE.PIQ24 bit returns the pin state.

23

(R/NW)

PIQ23 Pin Interrupt 23 State.

A read of the PINT_PINSTATE.PIQ23 bit returns the pin state.

22

(R/NW)

PIQ22 Pin Interrupt 22 State.

A read of the PINT_PINSTATE.PIQ22 bit returns the pin state.

21

(R/NW)

PIQ21 Pin Interrupt 21 State.

A read of the PINT_PINSTATE.PIQ21 bit returns the pin state.

20

(R/NW)

PIQ20 Pin Interrupt 20 State.

A read of the PINT_PINSTATE.PIQ20 bit returns the pin state.

19

(R/NW)

PIQ19 Pin Interrupt 19 State.

A read of the PINT_PINSTATE.PIQ19 bit returns the pin state.

18

(R/NW)

PIQ18 Pin Interrupt 18 State.

A read of the PINT_PINSTATE.PIQ18 bit returns the pin state.

17

(R/NW)

PIQ17 Pin Interrupt 17 State.

A read of the PINT_PINSTATE.PIQ17 bit returns the pin state.

16

(R/NW)

PIQ16 Pin Interrupt 16 State.

A read of the PINT_PINSTATE.PIQ16 bit returns the pin state.

15

(R/NW)

PIQ15 Pin Interrupt 15 State.

A read of the PINT_PINSTATE.PIQ15 bit returns the pin state.

CM41X_M4 PINT Register Descriptions

18–100 ADSP-CM41x Mixed-Signal Control Processor

Table 18-40: PINT_PINSTATE Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/NW)

PIQ14 Pin Interrupt 14 State.

A read of the PINT_PINSTATE.PIQ14 bit returns the pin state.

13

(R/NW)

PIQ13 Pin Interrupt 13 State.

A read of the PINT_PINSTATE.PIQ13 bit returns the pin state.

12

(R/NW)

PIQ12 Pin Interrupt 12 State.

A read of the PINT_PINSTATE.PIQ12 bit returns the pin state.

11

(R/NW)

PIQ11 Pin Interrupt 11 State.

A read of the PINT_PINSTATE.PIQ11 bit returns the pin state.

10

(R/NW)

PIQ10 Pin Interrupt 10 State.

A read of the PINT_PINSTATE.PIQ10 bit returns the pin state.

9

(R/NW)

PIQ9 Pin Interrupt 9 State.

A read of the PINT_PINSTATE.PIQ9 bit returns the pin state.

8

(R/NW)

PIQ8 Pin Interrupt 8 State.

A read of the PINT_PINSTATE.PIQ8 bit returns the pin state.

7

(R/NW)

PIQ7 Pin Interrupt 7 State.

A read of the PINT_PINSTATE.PIQ7 bit returns the pin state.

6

(R/NW)

PIQ6 Pin Interrupt 6 State.

A read of the PINT_PINSTATE.PIQ6 bit returns the pin state.

5

(R/NW)

PIQ5 Pin Interrupt 5 State.

A read of the PINT_PINSTATE.PIQ5 bit returns the pin state.

4

(R/NW)

PIQ4 Pin Interrupt 4 State.

A read of the PINT_PINSTATE.PIQ4 bit returns the pin state.

3

(R/NW)

PIQ3 Pin Interrupt 3 State.

A read of the PINT_PINSTATE.PIQ3 bit returns the pin state.

2

(R/NW)

PIQ2 Pin Interrupt 2 State.

A read of the PINT_PINSTATE.PIQ2 bit returns the pin state.

1

(R/NW)

PIQ1 Pin Interrupt 1 State.

A read of the PINT_PINSTATE.PIQ1 bit returns the pin state.

0

(R/NW)

PIQ0 Pin Interrupt 0 State.

A read of the PINT_PINSTATE.PIQ0 bit returns the pin state.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–101

PINT Request Register

The PINT_REQ register indicates the interrupt request status for pin interrupts. When set, an interrupt request is
pending. When cleared, there is no interrupt request pending.

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the respective
pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of the PINT_REQ
register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_LATCH register and
the interrupt mask.

CM41X_M4 PINT Register Descriptions

18–102 ADSP-CM41x Mixed-Signal Control Processor

Pin Interrupt 7 RequestPin Interrupt 8 Request

Pin Interrupt 6 RequestPin Interrupt 9 Request

Pin Interrupt 5 RequestPin Interrupt 10 Request

Pin Interrupt 4 RequestPin Interrupt 11 Request

Pin Interrupt 3 RequestPin Interrupt 12 Request

Pin Interrupt 2 RequestPin Interrupt 13 Request

Pin Interrupt 1 RequestPin Interrupt 14 Request

Pin Interrupt 0 RequestPin Interrupt 15 Request

Pin Interrupt 23 RequestPin Interrupt 24 Request

Pin Interrupt 22 RequestPin Interrupt 25 Request

Pin Interrupt 21 RequestPin Interrupt 26 Request

Pin Interrupt 20 RequestPin Interrupt 27 Request

Pin Interrupt 19 RequestPin Interrupt 28 Request

Pin Interrupt 18 RequestPin Interrupt 29 Request

Pin Interrupt 17 RequestPin Interrupt 30 Request

Pin Interrupt 16 RequestPin Interrupt 31 Request

PIQ7 (R/W1C)PIQ8 (R/W1C)

PIQ6 (R/W1C)PIQ9 (R/W1C)

PIQ5 (R/W1C)PIQ10 (R/W1C)

PIQ4 (R/W1C)PIQ11 (R/W1C)

PIQ3 (R/W1C)PIQ12 (R/W1C)

PIQ2 (R/W1C)PIQ13 (R/W1C)

PIQ1 (R/W1C)PIQ14 (R/W1C)

PIQ0 (R/W1C)PIQ15 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PIQ23 (R/W1C)PIQ24 (R/W1C)

PIQ22 (R/W1C)PIQ25 (R/W1C)

PIQ21 (R/W1C)PIQ26 (R/W1C)

PIQ20 (R/W1C)PIQ27 (R/W1C)

PIQ19 (R/W1C)PIQ28 (R/W1C)

PIQ18 (R/W1C)PIQ29 (R/W1C)

PIQ17 (R/W1C)PIQ30 (R/W1C)

PIQ16 (R/W1C)PIQ31 (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 18-35: PINT_REQ Register Diagram

Table 18-41: PINT_REQ Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W1C)

PIQ31 Pin Interrupt 31 Request.

If the PINT_REQ.PIQ31 bit is set, a request is pending.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–103

Table 18-41: PINT_REQ Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W1C)

PIQ30 Pin Interrupt 30 Request.

If the PINT_REQ.PIQ30 bit is set, a request is pending.

29

(R/W1C)

PIQ29 Pin Interrupt 29 Request.

If the PINT_REQ.PIQ29 bit is set, a request is pending.

28

(R/W1C)

PIQ28 Pin Interrupt 28 Request.

If the PINT_REQ.PIQ28 bit is set, a request is pending.

27

(R/W1C)

PIQ27 Pin Interrupt 27 Request.

If the PINT_REQ.PIQ27 bit is set, a request is pending.

26

(R/W1C)

PIQ26 Pin Interrupt 26 Request.

If the PINT_REQ.PIQ26 bit is set, a request is pending.

25

(R/W1C)

PIQ25 Pin Interrupt 25 Request.

If the PINT_REQ.PIQ25 bit is set, a request is pending.

24

(R/W1C)

PIQ24 Pin Interrupt 24 Request.

If the PINT_REQ.PIQ24 bit is set, a request is pending.

23

(R/W1C)

PIQ23 Pin Interrupt 23 Request.

If the PINT_REQ.PIQ23 bit is set, a request is pending.

22

(R/W1C)

PIQ22 Pin Interrupt 22 Request.

If the PINT_REQ.PIQ22 bit is set, a request is pending.

21

(R/W1C)

PIQ21 Pin Interrupt 21 Request.

If the PINT_REQ.PIQ21 bit is set, a request is pending.

20

(R/W1C)

PIQ20 Pin Interrupt 20 Request.

If the PINT_REQ.PIQ20 bit is set, a request is pending.

19

(R/W1C)

PIQ19 Pin Interrupt 19 Request.

If the PINT_REQ.PIQ19 bit is set, a request is pending.

18

(R/W1C)

PIQ18 Pin Interrupt 18 Request.

If the PINT_REQ.PIQ18 bit is set, a request is pending.

17

(R/W1C)

PIQ17 Pin Interrupt 17 Request.

If the PINT_REQ.PIQ17 bit is set, a request is pending.

16

(R/W1C)

PIQ16 Pin Interrupt 16 Request.

If the PINT_REQ.PIQ16 bit is set, a request is pending.

15

(R/W1C)

PIQ15 Pin Interrupt 15 Request.

If the PINT_REQ.PIQ15 bit is set, a request is pending.

CM41X_M4 PINT Register Descriptions

18–104 ADSP-CM41x Mixed-Signal Control Processor

Table 18-41: PINT_REQ Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W1C)

PIQ14 Pin Interrupt 14 Request.

If the PINT_REQ.PIQ14 bit is set, a request is pending.

13

(R/W1C)

PIQ13 Pin Interrupt 13 Request.

If the PINT_REQ.PIQ13 bit is set, a request is pending.

12

(R/W1C)

PIQ12 Pin Interrupt 12 Request.

If the PINT_REQ.PIQ12 bit is set, a request is pending.

11

(R/W1C)

PIQ11 Pin Interrupt 11 Request.

If the PINT_REQ.PIQ11 bit is set, a request is pending.

10

(R/W1C)

PIQ10 Pin Interrupt 10 Request.

If the PINT_REQ.PIQ10 bit is set, a request is pending.

9

(R/W1C)

PIQ9 Pin Interrupt 9 Request.

If the PINT_REQ.PIQ9 bit is set, a request is pending.

8

(R/W1C)

PIQ8 Pin Interrupt 8 Request.

If the PINT_REQ.PIQ8 bit is set, a request is pending.

7

(R/W1C)

PIQ7 Pin Interrupt 7 Request.

If the PINT_REQ.PIQ7 bit is set, a request is pending.

6

(R/W1C)

PIQ6 Pin Interrupt 6 Request.

If the PINT_REQ.PIQ6 bit is set, a request is pending.

5

(R/W1C)

PIQ5 Pin Interrupt 5 Request.

If the PINT_REQ.PIQ5 bit is set, a request is pending.

4

(R/W1C)

PIQ4 Pin Interrupt 4 Request.

If the PINT_REQ.PIQ4 bit is set, a request is pending.

3

(R/W1C)

PIQ3 Pin Interrupt 3 Request.

If the PINT_REQ.PIQ3 bit is set, a request is pending.

2

(R/W1C)

PIQ2 Pin Interrupt 2 Request.

If the PINT_REQ.PIQ2 bit is set, a request is pending.

1

(R/W1C)

PIQ1 Pin Interrupt 1 Request.

If the PINT_REQ.PIQ1 bit is set, a request is pending.

0

(R/W1C)

PIQ0 Pin Interrupt 0 Request.

If the PINT_REQ.PIQ0 bit is set, a request is pending.

CM41X_M4 PINT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 18–105

19 General-Purpose Timer (TIMER)

The general-purpose timer (GP Timer) module serves as a collection of system timers that support various system-
level functions. These functions include:

• Synchronized PWM waveform output capability

• External signal capture

• External event count

• General time-base functionality

Additionally, interrupt requests can be generated upon completion of timer events. Moreover, GP timers can act
both as trigger masters and trigger slaves.

GP Timer Features
Each timer can be individually configured in any of these modes:

• Pin interrupt capture mode

• Windowed watchdog mode

• Pulse-width count and capture (WDTH_CAP) mode

• External Event (EXT_CLK) mode

• Pulse-width modulation (PWM_OUT) mode

Other features include:

• Synchronous operation

• Consistent management of period and pulse width values

• Autobaud detection for UART module (where available)

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

General-Purpose Timer (TIMER)

ADSP-CM41x Mixed-Signal Control Processor 19–1

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

CM41X_M4 TIMER Register List

The General-Purpose Timer block (TIMER) provides timers that may be used for external event capture and meas-
urement, system timing, and PWM waveform generation. A set of registers governs TIMER operations. For more
information on TIMER functionality, see the TIMER register descriptions.

Table 19-1: CM41X_M4 TIMER Register List

Name Description

TIMER_BCAST_DLY Broadcast Delay Register

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_ERR_TYPE Error Type Status Register

TIMER_RUN Run Register

TIMER_RUN_CLR Run Clear Register

TIMER_RUN_SET Run Set Register

TIMER_STAT_ILAT Status Interrupt Latch Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_TMR[n]_CFG Timer n Configuration Register

TIMER_TMR[n]_CNT Timer n Counter Register

TIMER_TMR[n]_DLY Timer n Delay Register

TIMER_TMR[n]_PER Timer n Period Register

TIMER_TMR[n]_WID Timer n Width Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_TRG_MSK Trigger Master Mask Register

CM41X_M0 TIMER Interrupt List

GP Timer Features

19–2 ADSP-CM41x Mixed-Signal Control Processor

Table 19-2: CM41X_M0 TIMER Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

15 TIMER0_STAT TIMER0 Status Level

15 TIMER0_TMR0 TIMER0 Timer 0 Level

15 TIMER0_TMR1 TIMER0 Timer 1 Level

15 TIMER0_TMR2 TIMER0 Timer 2 Level

15 TIMER0_TMR3 TIMER0 Timer 3 Level

15 TIMER0_TMR4 TIMER0 Timer 4 Level

15 TIMER0_TMR5 TIMER0 Timer 5 Level

15 TIMER0_TMR6 TIMER0 Timer 6 Level

15 TIMER0_TMR7 TIMER0 Timer 7 Level

CM41X_M4 TIMER Interrupt List

Table 19-3: CM41X_M4 TIMER Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

88 TIMER1_TMR0 TIMER1 Timer 0 Level

89 TIMER1_TMR1 TIMER1 Timer 1 Level

90 TIMER1_TMR2 TIMER1 Timer 2 Level

91 TIMER1_TMR3 TIMER1 Timer 3 Level

92 TIMER1_TMR4 TIMER1 Timer 4 Level

93 TIMER1_TMR5 TIMER1 Timer 5 Level

94 TIMER1_TMR6 TIMER1 Timer 6 Level

95 TIMER1_TMR7 TIMER1 Timer 7 Level

96 TIMER0_TMR0 TIMER0 Timer 0 Level

97 TIMER0_TMR1 TIMER0 Timer 1 Level

98 TIMER0_TMR2 TIMER0 Timer 2 Level

99 TIMER0_TMR3 TIMER0 Timer 3 Level

100 TIMER0_TMR4 TIMER0 Timer 4 Level

101 TIMER0_TMR5 TIMER0 Timer 5 Level

102 TIMER0_TMR6 TIMER0 Timer 6 Level

103 TIMER0_TMR7 TIMER0 Timer 7 Level

GP Timer Features

ADSP-CM41x Mixed-Signal Control Processor 19–3

Table 19-3: CM41X_M4 TIMER Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

104 TIMER1_STAT TIMER1 Status Level

105 TIMER0_STAT TIMER0 Status Level

CM41X_M0 TIMER Trigger List

Table 19-4: CM41X_M0 TIMER Trigger List Masters

Trigger ID Name Description Sensitivity

4 TIMER0_TMR0_MST TIMER0 TMR 0 Trigger Master Edge

5 TIMER0_TMR1_MST TIMER0 TMR 1 Trigger Master Edge

6 TIMER0_TMR2_MST TIMER0 TMR 2 Trigger Master Edge

7 TIMER0_TMR3_MST TIMER0 TMR 3 Trigger Master Edge

8 TIMER0_TMR4_MST TIMER0 TMR 4 Trigger Master Edge

9 TIMER0_TMR5_MST TIMER0 TMR 5 Trigger Master Edge

10 TIMER0_TMR6_MST TIMER0 TMR 6 Trigger Master Edge

11 TIMER0_TMR7_MST TIMER0 TMR 7 Trigger Master Edge

Table 19-5: CM41X_M0 TIMER Trigger List Slaves

Trigger ID Name Description Sensitivity

1 TIMER0_TMR0_SLV0 TIMER0 TMR 0 Trigger Slave 0 Pulse

2 TIMER0_TMR0_SLV1 TIMER0 TMR 0 Trigger Slave 1 Pulse

3 TIMER0_TMR1_SLV0 TIMER0 TMR 1 Trigger Slave 0 Pulse

4 TIMER0_TMR1_SLV1 TIMER0 TMR 1 Trigger Slave 1 Pulse

5 TIMER0_TMR2_SLV0 TIMER0 TMR 2 Trigger Slave 0 Pulse

6 TIMER0_TMR2_SLV1 TIMER0 TMR 2 Trigger Slave 1 Pulse

7 TIMER0_TMR3_SLV0 TIMER0 TMR 3 Trigger Slave 0 Pulse

8 TIMER0_TMR3_SLV1 TIMER0 TMR 3 Trigger Slave 1 Pulse

9 TIMER0_TMR4_SLV0 TIMER0 TMR 4 Trigger Slave 0 Pulse

10 TIMER0_TMR4_SLV1 TIMER0 TMR 4 Trigger Slave 1 Pulse

11 TIMER0_TMR5_SLV0 TIMER0 TMR 5 Trigger Slave 0 Pulse

12 TIMER0_TMR5_SLV1 TIMER0 TMR 5 Trigger Slave 1 Pulse

13 TIMER0_TMR6_SLV0 TIMER0 TMR 6 Trigger Slave 0 Pulse

GP Timer Features

19–4 ADSP-CM41x Mixed-Signal Control Processor

Table 19-5: CM41X_M0 TIMER Trigger List Slaves (Continued)

Trigger ID Name Description Sensitivity

14 TIMER0_TMR6_SLV1 TIMER0 TMR 6 Trigger Slave 1 Pulse

15 TIMER0_TMR7_SLV0 TIMER0 TMR 7 Trigger Slave 0 Pulse

16 TIMER0_TMR7_SLV1 TIMER0 TMR 7 Trigger Slave 1 Pulse

CM41X_M4 TIMER Trigger List

Table 19-6: CM41X_M4 TIMER Trigger List Masters

Trigger ID Name Description Sensitivity

5 TIMER0_TMR0_MST TIMER0 TMR 0 Trigger Master Edge

6 TIMER0_TMR1_MST TIMER0 TMR 1 Trigger Master Edge

7 TIMER0_TMR2_MST TIMER0 TMR 2 Trigger Master Edge

8 TIMER0_TMR3_MST TIMER0 TMR 3 Trigger Master Edge

9 TIMER0_TMR4_MST TIMER0 TMR 4 Trigger Master Edge

10 TIMER0_TMR5_MST TIMER0 TMR 5 Trigger Master Edge

11 TIMER0_TMR6_MST TIMER0 TMR 6 Trigger Master Edge

12 TIMER0_TMR7_MST TIMER0 TMR 7 Trigger Master Edge

13 TIMER1_TMR0_MST TIMER1 TMR 0 Trigger Master Edge

14 TIMER1_TMR1_MST TIMER1 TMR 1 Trigger Master Edge

15 TIMER1_TMR2_MST TIMER1 TMR 2 Trigger Master Edge

16 TIMER1_TMR3_MST TIMER1 TMR 3 Trigger Master Edge

17 TIMER1_TMR4_MST TIMER1 TMR 4 Trigger Master Edge

18 TIMER1_TMR5_MST TIMER1 TMR 5 Trigger Master Edge

19 TIMER1_TMR6_MST TIMER1 TMR 6 Trigger Master Edge

20 TIMER1_TMR7_MST TIMER1 TMR 7 Trigger Master Edge

Table 19-7: CM41X_M4 TIMER Trigger List Slaves

Trigger ID Name Description Sensitivity

3 TIMER1_TMR0_SLV0 TIMER1 TMR 0 Trigger Slave 0 Pulse

4 TIMER1_TMR0_SLV1 TIMER1 TMR 0 Trigger Slave 1 Pulse

5 TIMER1_TMR1_SLV0 TIMER1 TMR 1 Trigger Slave 0 Pulse

6 TIMER1_TMR1_SLV1 TIMER1 TMR 1 Trigger Slave 1 Pulse

7 TIMER1_TMR2_SLV0 TIMER1 TMR 2 Trigger Slave 0 Pulse

GP Timer Features

ADSP-CM41x Mixed-Signal Control Processor 19–5

Table 19-7: CM41X_M4 TIMER Trigger List Slaves (Continued)

Trigger ID Name Description Sensitivity

8 TIMER1_TMR2_SLV1 TIMER1 TMR 2 Trigger Slave 1 Pulse

9 TIMER1_TMR3_SLV0 TIMER1 TMR 3 Trigger Slave 0 Pulse

10 TIMER1_TMR3_SLV1 TIMER1 TMR 3 Trigger Slave 1 Pulse

11 TIMER1_TMR4_SLV0 TIMER1 TMR 4 Trigger Slave 0 Pulse

12 TIMER1_TMR4_SLV1 TIMER1 TMR 4 Trigger Slave 1 Pulse

13 TIMER1_TMR5_SLV0 TIMER1 TMR 5 Trigger Slave 0 Pulse

14 TIMER1_TMR5_SLV1 TIMER1 TMR 5 Trigger Slave 1 Pulse

15 TIMER1_TMR6_SLV0 TIMER1 TMR 6 Trigger Slave 0 Pulse

16 TIMER1_TMR6_SLV1 TIMER1 TMR 6 Trigger Slave 1 Pulse

17 TIMER1_TMR7_SLV0 TIMER1 TMR 7 Trigger Slave 0 Pulse

18 TIMER1_TMR7_SLV1 TIMER1 TMR 7 Trigger Slave 1 Pulse

76 TIMER1_ACI1 TIMER1 Alternate Capture Input 1 Pulse

77 TIMER1_ACI7 TIMER1 Alternate Capture Input 7 Pulse

Internal Interface

The processor core always accesses the timer registers through the MMR access bus. Hardware ensures that all read
and write operations from and to 32-bit timer registers are atomic. Every timer has a dedicated data interrupt re-
quest. There is also one common timer status and error interrupt request output that connects to the system event
controller. Whenever a data interrupt request is generated, a data trigger master pulse is also driven out, if enabled.
Each timer has an individual trigger input line, and each timer can be either started or stopped as a trigger slave.

In total, the GP timer module can have up to (N + 1) interrupt request output lines and N data trigger lines.

External Interface

Each GP timer module can support up to 16 individual timers. However, most processors have less than this num-
ber. The exact number of timers available on a given processor is available in the data sheet for the processor.

Every timer has one main input/output signal (TIMER_TMR[n]) and, usually, one auxiliary input pin, used as an
alternate capture input (TIMER_ACI[n]). Each timer can either run with a time base of SCLK or can reference an
external clock on one of two TIMER_ACLK[n] pins. The TMR_ALT_CLK0 signal maps to individual alternate
clock (TIMER_ACLK[n]) pins for one or more timers. For instance, a TM_ACLK3 pin would provide an alter-
nate site to supply an external signal that would serve as reference clock for TMR3. Likewise, the TMR_ALT_CLK1
signal from each timer unit connects together internally to provide a single global timer clock pin (TIMER_CLK)
for the GP timer module. It is used as an additional time base.

In the Timer Alternate Input and Alternate Clock table, column 4 is the alternative capture input list and columns 6
and 7 are alternative clock input0 and alternative clock input1, respectively.

GP Timer Features

19–6 ADSP-CM41x Mixed-Signal Control Processor

Table 19-8: Timer Alternate Input and Alternate Clock

Timer
Group

Timer TMn_TMRm TMn_ACIm Peripheral connec-
tion

TMn_ACLKm TMn_ACLKm

Alternate Capture Input on same GPIO: Auxiliary Clock 0 Auxiliary Clock 1

0 0 PA_12 PA_04 UART0_RXb PA_09 PA_00(TM0_CLK)

0 1 PA_13 PA_06 CAN0_RX PA_10 PA_00

0 2 unused(0) PA_01 PA_07 PA_00

0 3 unused(0) PA_02 PA_08 PA_00

0 4 unused(0) PA_03 PA_05 PA_00

0 5 unused(0) M0 Trigger SlaveTIM-
ER0_ACI5

AUXCLK (OSCWD
1Mhz)

PA_00

0 6 AUXCLK
(OSCWD
1Mhz)

M0 Trigger SlaveTIM-
ER0_ACI6

SYS_CLKIN0 PA_00

0 7 unused(0) M0 Trigger Slave

TIMER0_ACI7

SYS_CLKIN1 PA_00

1 0 PE_14, PB_14 PE_12 CAN1_RX SYS_CLKIN0 PC_06(TM1_CLK)

1 1 PE_15, PB_15 M4 Trigger Slave

TIMER1_ACI1

SYS_CLKIN0 PC_06

1 2 PB_13 PC_08 UART3_RXb AUXCLK (OSCWD
1Mhz)

PC_06

1 3 PC_10 CNT_TO PC_15 PC_06

1 4 PE_04 PC_09 UART2_RXb PC_00 PC_06

1 5 PF_06 PE_09 UART1_RXb PE_08 PC_06

1 6 PE_02 PF_05 UART4_RXb SYS_CLKIN0 PC_06

1 7 PC_12 TIMER1_ACI7

M4 Trigger Slave

SYS_CLKIN1 PC_06

GP Timer Operating Modes
The following sections provide information on the various operating modes of the GP timer.

General Operation

The core of every timer is a 32-bit counter that can be interrogated through the read-only TIMER_TMR[n]_CNT
register. Once the module enables a timer, it loads the timer TIMER_TMR[n]_CNT register with a starting value.

GP Timer Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 19–7

A timer can operate in one of several different modes, configured through the TIMER_TMR[n]_CFG register for
that timer. These modes are: PWMOUT, EXTCLK, WIDCAP, WATCHDOG, PININT, and IDLE. The Timer
Mode Descriptions table summarizes the modes.

Table 19-9: Timer Mode Descriptions

Timer Mode Description

PWMOUT Generates single or continuous PWM waveforms with programmable pulse width, period, and
delay

EXTCLK Counts edges of an externally applied waveform

WIDCAP Captures pulse width or period of an externally applied waveform

WATCHDOG Monitors pulse width or period of an external signal and compares against a window of accepta-
ble values, optionally generating an interrupt when it falls inside or outside of that window

PININT Can generate an interrupt request on an active edge applied to a timer pin

IDLE Idle; no activity

Period, Width and Delay Register Interaction

When the timer is started, writes to the buffer registers are immediately copied through to the double-buffered peri-
od, pulse width, and delay registers. These values are then ready for use in the first timer period. When a timer is
already running, software can write new values to the TIMER_TMR[n]_PER, TIMER_TMR[n]_WID, and
TIMER_TMR[n]_DLY registers. The written values are buffered and do not update into the registers until the end
of the current period. (The update occurs when the value in the TIMER_TMR[n]_CNT register equals the value in
the TIMER_TMR[n]_PER register.)

If new values are not written to these registers, the value from the previous period is reused. Writes to these registers
are atomic; it is not possible for the high word to be written without the low word also being written. Values written
to the period, pulse width, and delay registers are always stored in the buffer registers. Reads from the same register
always return the current, active value of period, pulse width, or delay value. Written values are not readback until
they become active.

The usage of the TIMER_TMR[n]_PER, TIMER_TMR[n]_WID, and TIMER_TMR[n]_DLY registers varies,
depending on the mode of the timer specified by the TIMER_TMR[n]_CFG.TMODE bits. See the Usage of the
Period, Width, and Delay Registers in Different Timer Modes table for more information.

Table 19-10: Usage of the Period, Width, and Delay Registers in Different Timer Modes

Timer Mode TIMER_TMR[n]_PER TIMER_TMR[n]_WID TIMER_TMR[n]_DLY
IDLE Not writable Not writable Not writable

WATCHDOG Update on-the-fly. New value takes
effect either at timer start or when
an asserting edge on the input sig-
nal is sensed.

Read-only. Retains value of last
measured width or period of the in-
put signal.

Update on-the-fly. New value takes ef-
fect either at timer start or when an as-
serting edge on the input signal is
sensed.

General Operation

19–8 ADSP-CM41x Mixed-Signal Control Processor

Table 19-10: Usage of the Period, Width, and Delay Registers in Different Timer Modes (Continued)

Timer Mode TIMER_TMR[n]_PER TIMER_TMR[n]_WID TIMER_TMR[n]_DLY
WIDCAP Read-only. Period value captured at

the appropriate time and updated
from its buffer register simultane-
ously with the Width register.

Read-only. Width value captured at
the appropriate time and updated
from its buffer register simultane-
ously with the Period register.

Not used

PWMOUT Update on-the-fly. New value takes
effect either at timer start or at the
end of the current period. A write
followed by immediate read returns
the current operating values.

Update on-the-fly. New value takes
effect either at timer start or at the
end of the current period. A write
followed by immediate read returns
the current operating values.

Update on-the-fly. New value takes ef-
fect either at timer start or at the end
of the current period. A write followed
by immediate read returns the current
operating values.

EXTCLK Can be updated on-the-fly. Not used Not used

PININT Not used Not used Not used

If any of the period, pulse width, and delay registers are not used, then programs cannot write into that register. For
example, in WIDCAP mode, the delay registers are not used. So, the program is not allowed to write any value to
the TIMER_TMR[n]_DLY register. To prevent undesired operation, program the
TIMER_TMR[n]_CFG.TMODE bits before programming the period, width, or delay registers.

If a program changes the TIMER_TMR[n]_CFG.TMODE bits from a status register to writable register (for exam-
ple in PWMOUT mode), hardware does not clear these registers. These values are automatically overwritten by new
values specified by software.

In PWMOUT mode with small periods, there may not be enough time between updates from the buffer registers to
write these registers. The next period can use one old value and one new value. To prevent (width + pulse delay) >
period errors, write the width and delay registers before the period register when decreasing the values. Write the
period register before the width and delay registers when increasing the value.

Single-Pulse PWMOUT Mode

In single-pulse PWMOUT mode, the timer generates a single pulse on the TIMER_TMR[n] pin. This mode is
frequently used to implement a precise delay, often with generating an output trigger. The timer module uses the
value in the TIMER_TMR[n]_DLY register to control the assertion of a pulse. The value in the
TIMER_TMR[n]_WID register defines the pulse width. The TIMER_TMR[n]_PER is not used and cannot be
written in this mode. After completion of the pulse, the timer is automatically stopped, and optionally generates an
interrupt. The timer uses the TIMER_TMR[n]_CFG.PULSEHI bit to control pulse polarity.

The timer can be configured to generate a data interrupt request after satisfying various conditions specified by the
TIMER_TMR[n]_CFG.IRQMODE bits.

It is not necessary to clear the relevant TIMER_RUN bit to stop the timer cleanly. At the end of the pulse, the timer
stops automatically and the corresponding TIMER_RUN bit is cleared. To generate multiple discrete pulses (as op-
posed to a continuous PWM waveform), write a 1 to the appropriate TIMER_RUN bit, and wait for the timer to
stop. Then, write another 1 to the same TIMER_RUN bit.

GP Timer Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 19–9

Continuous PWMOUT Mode

In continuous PWMOUT mode, the timer generates a repetitive pulse with a well-defined period, duty cycle, and
pulse position. The TIMER_TMR[n]_DLY, TIMER_TMR[n]_PER, and TIMER_TMR[n]_WID registers are
programmed with the values of the required PWM pulse. After the timer is started, the counter counts towards the
value programmed in the TIMER_TMR[n]_PER register. Initially, the TIMER_TMR[n] pin remains in a deas-
serted state. The pin toggles to an asserted state when the value in the TIMER_TMR[n]_CNT register equals the
value in the TIMER_TMR[n]_DLY register.

The timer can control the assertion sense of the TIMER_TMR[n] pin with the
TIMER_TMR[n]_CFG.PULSEHI bit. The TIMER_TMR[n] pin holds this value for the number of clock cycles
specified in the TIMER_TMR[n]_WID register. Then, the pin deasserts and holds this value until the completion
of the programmed period. The same waveform is generated repeatedly until the timer is disabled.

The timer can be configured to generate a data interrupt request after satisfying any of various conditions specified
by the TIMER_TMR[n]_CFG.IRQMODE bits.

It is important to guarantee that the programmed period is greater than or equal to the sum of width and delay.
Similarly, delay must be less than period. Violating either of these criteria results in an unpredictable waveform on
the TIMER_TMR[n] pin until the situation is rectified by writing proper values to these registers.

The maximum frequency possible to generate on the TIMER_TMR[n] pin is achieved by setting
TIMER_TMR[n]_PER to 2 and TIMER_TMR[n]_WID to 1. This operation makes the TIMER_TMR[n] pin
toggle each SCLK clock cycle (assuming the timer is configured to clock internally), producing a duty cycle of 50%.

When the TIMER_STOP_CFG.TMR[nn] bit of a timer is 0, the timer treats a stop operation as a stop-is-pending
condition. When terminated with this setting, the timer automatically completes the current waveform and then
stops cleanly, remaining in a deasserted state. This funtionality prevents truncation of the current pulse and unwant-
ed PWM patterns at the TIMER_TMR[n] pin. The processor can determine when the timer stops running by poll-
ing the corresponding TIMER_RUN.TMR[nn] bit until it reads 0 or by waiting for the last interrupt (if enabled).

GP Timer Operating Modes

19–10 ADSP-CM41x Mixed-Signal Control Processor

TIMER_RUN

TMR_CNT 01

TMR CLK

PULSEHI = 0

TMR OUT

TMR_PER

TMR_DLY

TMR_WID

PULSEHI = 1

INTERRUPT
SET SIGNAL

02 03 04 01 02 03 04 01

WIDTH WIDTH

TMR OUT

4

2

1

PERIOD PERIOD

DELAY DELAY

Figure 19-1: Signal Generation in Continuous PWMOUT Mode

The TIMER_TMR[n]_CFG register cannot be reconfigured until after the timer stops and the TIMER_RUN regis-
ter reads 0.

Programs can force a timer to stop immediately in PWMOUT mode by writing a 1 to the TIMER_STOP_CFG
register followed by writing a 1 to the TIMER_RUN_CLR register. (Or, a program can stop a timer by writing a 0 to
the appropriate TIMER_RUN.TMR[nn] bit.) This operation stops the timer whether the pending stop is waiting
for the end of the current period or the end of the current pulse width. The timer can use this feature to regain
immediate control of a timer during an error recovery sequence.

Use this feature carefully, as it can corrupt the PWM pattern generated at the TIMER_TMR[n] pin, though after
such a stop the pin deasserts automatically. Each timer samples its TIMER_RUN.TMR[nn] bit at the end of each
period. It stops cleanly at the end of the first period after the TIMER_RUN.TMR[nn] bit is low. A timer that is
disabled and then restarted (before the end of the current period), continues to run as if nothing happened. Typical-
ly, the program disables a PWMOUT timer and then waits for it to stop itself.

Width Capture (WIDCAP) Mode

The timer uses WIDCAP mode, often called capture mode, to measure pulse widths on the TIMER_TMR[n] or
TIMER_ACI[n] inputs. The polarity (active high or low) of the input signal can be selected with the
TIMER_TMR[n]_CFG.PULSEHI bit. The Timer Signal Flow in Width Capture Mode figure shows the control
signal flow for WIDCAP_CAP mode.

GP Timer Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 19–11

SCLK

TIMER_ENABLE

RESET

DATA INTERRUPT

PERIOD_CNT

TMR_IN

INTERRUPT
LOGIC

PULSE_HI

ERROR_OVERFLOW

TMR_IN

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

STATUS INTERRUPT

Figure 19-2: Timer Signal Flow in Width Capture Mode

NOTE: SCLK in the Timer Signal Flow in Width Capture Mode figure is SCLK.

In this mode, the timer uses the TIMER_TMR[n]_CFG.TINSEL bit to select between the TIMER_TMR[n] or
TIMER_ACI[n] input. The internally clocked timer is used to determine the period and pulse width of the exter-
nally applied rectangular waveforms.

NOTE: In WIDCAP_CAP mode, when TMR_AUX_IN input is selected, a number of the timers sense internal
signals from the GP counter-module through their alternate input. (These internal signals appear as “TO
GP TIMER TMR_AUX_IN (IF ENABLED)” in the Figure 22-1 GP Counter Block Diagram). This fea-
ture lets the timer capture the period between counter-events and supports autobaud detection for the
UART and the CAN modules.

When a timer is enabled in this mode, the timer resets the count in its TIMER_TMR[n]_CNT register to 0x0000
0001. It does not start counting until it detects a leading edge on the selected input pin.

When the timer detects the first leading edge, it starts incrementing. When it detects a trailing edge of a waveform,
it captures the current 32-bit value of its TIMER_TMR[n]_CNT register into its width buffer register. At the next
leading edge, the timer transfers the current 32-bit value of its TIMER_TMR[n]_CNT register into its period buf-
fer register. The TIMER_TMR[n]_CNT register is reset to 0x0000 0001 again, and the timer continues counting
and capturing until it is disabled.

In this mode, programs can measure both the pulse width and the pulse period of a waveform. The timer does not
use the TIMER_TMR[n]_DLY register in this mode. The timer uses the TIMER_TMR[n]_CFG.PULSEHI bit
to control the definition of leading edge and trailing edge of the TIMER_TMR[n]/TIMER_ACI[n] pin.

In WIDCAP mode, the following events always occur at the same time as one unit:

1. The TIMER_TMR[n]_PER register is updated from the period buffer register.

2. The TIMER_TMR[n]_WID register is updated from the width buffer register.

GP Timer Operating Modes

19–12 ADSP-CM41x Mixed-Signal Control Processor

3. The TIMER_DATA_ILAT.TMR[nn] bit is set (if enabled).

4. A timer data trigger pulse is generated (if enabled).

The TIMER_TMR[n]_CFG.TMODE bit 0 controls the point in time at which this set of events is executed. Taken
together, these four events are called a measurement report. The TIMER_STAT_ILAT register is not set at a meas-
urement report. A measurement report occurs, at most, once per input signal period. The current
TIMER_TMR[n]_CNT value is always copied to the width buffer and period buffer registers at the trailing and
leading edges of the input signal, respectively. But, these values are not visible to software. A measurement report
event samples the captured values into visible registers and sets the timer interrupt request to signal that the
TIMER_TMR[n]_PER and the TIMER_TMR[n]_WID registers are ready to be read.

When the TIMER_TMR[n]_CFG.TMODE bit =b#1011, the measurement report occurs just after the width buffer
register captures its value at a falling edge. Then, the TIMER_TMR[n]_WID register reports the pulse width meas-
ured in the pulse that has ended, but the TIMER_TMR[n]_PER register reports the pulse period measured at the
end of the previous period. If only the first trailing edge has occurred, then the first period value has not yet been
measured at the first measurement report. So, the period value is not valid. A read of the TIMER_TMR[n]_PER
value in this case returns 0. See the Example of Width Capture Deasserted Mode (TMODE=b#1011) figure for
more information.

SCLK

1

TMRx, PULSE_HI =

 0

TMRx, PULSE_HI =

 1

2 3 5 6 8 3 4 34 7 1 2 1X

8 4

3

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

TIMER_TMRn_CNT

TIMER_TMRn_PER BUFFER

TIMER_TMRn_WID BUFFER

TIMER_TMRn_PER

TIMER_TMRn_WID

TIMER_STAT_ILAT

TIMER_ERR_TYPE

Figure 19-3: Example of Width Capture Deasserted Mode (TMODE=b#1011)

NOTE: SCLK in the Example of Width Capture Deasserted Mode (TMODE=b#1011) figure is SCLK.

When the TIMER_TMR[n]_CFG.TMODE bit =b#1010, the measurement report occurs just after the period buf-
fer register captures its value at a leading edge. Then, the TIMER_TMR[n]_PER and TIMER_TMR[n]_WID

GP Timer Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 19–13

registers report the pulse period and pulse width measured in the period that has ended. Refer to the Example of
Width Capture Asserted Mode (TMODE=b#1010) figure for more information.

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

4

2 3

4

2

8

8

3

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

TIMER_TMRn_CNT

TIMER_TMRn_PER BUFFER

TIMER_TMRn_WID BUFFER

TIMER_TMRn_PER

TIMER_TMRn_WID

TIMER_STAT_ILAT

TIMER_ERR_TYPE

Figure 19-4: Example of Width Capture Asserted Mode (TMODE=b#1010)

NOTE: SCLK in the Example of Width Capture Asserted Mode (TMODE=b#1010) figure is SCLK.

To measure the pulse width of a waveform that has only one leading edge and one trailing edge, set
TIMER_TMR[n]_CFG.TMODE = b#1011. If TIMER_TMR[n]_CFG.TMODE = b#1010 for this case, no period
value is captured in the period buffer register. Instead, the timer genererates an error report interrupt request (if ena-
bled) when the TIMER_TMR[n]_CNT range is exceeded and the counter wraps around. In this case, both the
TIMER_TMR[n]_PER and TIMER_TMR[n]_WID registers read 0 (because no measurement report occurred to
copy the value captured in the width buffer register to the TIMER_TMR[n]_WID register).

If using the TIMER_TMR[n]_CFG.TMODE bit =b#1010 mode to measure the width of a single pulse, programs
can disable the timer after taking the interrupt that ends the measurement interval. If desired, restart the timer as
appropriate in preparation for another measurement. This procedure prevents the timer from free-running after the
width measurement and logging errors generated by the timer count overflowing.

Width Capture Mode Overflow

A timer status interrupt request (when enabled) is generated when the TIMER_TMR[n]_CNT register wraps
around from 0xFFFF FFFF to 0 in the absence of a leading edge. At that point, the TIMER_STAT_ILAT bit is set
and the TIMER_ERR_TYPE bits change to indicate a count overflow due to a period greater than the range of the
counter. This indication is referred to as an error report. A data interrupt request in WIDCAP mode indicates that a
new measurement is ready to be read (a measurement report). Similarly, an interrupt request on the timer status
interrupt line (shared interrupt request for all timers) indicates an overflow error when generated in this mode.

Width Capture (WIDCAP) Mode

19–14 ADSP-CM41x Mixed-Signal Control Processor

The TIMER_TMR[n]_PER and TIMER_TMR[n]_WID registers are never updated at the time an overflow error
is signaled. If the timer overflows and the TIMER_TMR[n]_CFG.TMODE bit =b#1010, the
TIMER_TMR[n]_PER and TIMER_TMR[n]_WID registers are not updated. If the timer overflows and the
TIMER_TMR[n]_CFG.TMODE bit =b#1011, the TIMER_TMR[n]_PER and TIMER_TMR[n]_WID registers
are updated only if a trailing edge is detected at a previous measurement report.

Software can count the number of error reports between measurement report interrupt requests to measure input

signal periods longer than 0xFFFF FFFF. Each error report interrupt request adds a full 232SCLK counts to the total
for the period, but the width is ambiguous. Ensure that if software monitors only the status interrupt request, then
status interrupt requests from all other timers are masked.

Refer to the Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1010) fig-
ure. The period is 0x1 0000 0004, but the pulse width could be either 0x0 0000 0002 or 0x1 0000 0002.

SCLK

1

TMRx, PULSE_HI =
0

TMRx, PULSE_HI =

1

2 1 2 3 40X

4X

3

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3TIMER_TMRn_CNT

TIMER_TMRn_PER BUFFER

TIMER_TMRn_WID BUFFER

TIMER_TMRn_PER

TIMER_TMRn_WID

TIMER_STAT_ILAT

TIMER_ERR_TYPE

Figure 19-5: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1010)

NOTE: SCLK in the Example Timing for Width Capture Followed by Period Overflow figure is SCLK.

The waveform applied to the TIMER_TMR[n] (or TIMER_ACI[n]) pin is not required to have a 50% duty cy-
cle. The minimum input low time is little more than one SCLK period. The minimum input high time is a little
more than one SCLK period. (Refer to the product data sheet for details.) The maximum TIMER_TMR[n] input
frequency is less than SCLK/2, with a 50% duty cycle. Under these conditions, the WIDCAP mode timer measures:
period =2 and pulse width =1.

Width Capture (WIDCAP) Mode

ADSP-CM41x Mixed-Signal Control Processor 19–15

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40XTIMER_TMRn_CNT

4TIMER_TMRn_PER BUFFER

2TIMER_TMRn_WID BUFFER

TIMER_TMRn_PER

TIMER_TMRn_WID

TIMER_STAT_ILAT

TIMER_ERR_TYPE

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Figure 19-6: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1011)

NOTE: SCLK in the Example Timing for Width Capture Followed by Period Overflow figure is SCLK.

Windowed Watchdog (WATCHDOG) Modes

In windowed watchdog (WATCHDOG) modes, a timer can take inputs from either the TIMER_TMR[n] pin or
the TIMER_ACI[n] pin. With this mode, the timer can monitor pulse width (width watchdog mode) or pulse
period (period watchdog mode) on the input line. It also compares the measured value against a minimum required
value and maximum allowed value and generates an interrupt request appropriately. The timer uses the
TIMER_TMR[n]_CFG.PULSEHI bit to select polarity of the input signal.

The waveform applied to the input pin in watchdog mode is not required to have a 50% duty cycle. The minimum
input pulse low time, high time, and total period specifications are available in the product data sheet.

Windowed Watchdog Width Mode

In windowed watchdog width mode, the timer counter monitors the pulse width of an input signal on either the
TIMER_TMR[n] pin or one of the alternate clock pins (TIMER_ACLK[n]). Program the minimum pulse width
(pMIN) in the TIMER_TMR[n]_DLY register and the maximum pulse width (pMAX) in the
TIMER_TMR[n]_PER register. Both values are programmed in terms of number of clock cycles (SCLK or alter-
nate clock). The timer can generate an interrupt if the deasserting pulse edge occurs:

• Inside the window (pMIN < pulse width ≤ pMAX), or

• Outside the window (pulse width ≤ pMIN or pulse width > pMAX)

GP Timer Operating Modes

19–16 ADSP-CM41x Mixed-Signal Control Processor

After enabling the timer in this mode, it always starts counting at the asserting edge of the input signal. Any pulse
that is already active when the timer is enabled is ignored.

With the TIMER_TMR[n]_CFG.IRQMODE bit =b#11, the timer generates an interrupt if the timed pulse width
exceeds pMAX, or if the pulse width is less than pMIN. After attaining pMAX, the pulse stays at an active level, and the
counter keeps on counting until it sees a deasserting edge. When the input pulse is not active, the counter holds its
current value until it again sees an asserting edge, or it restarts. An interrupt can also be generated for when the pulse
occurs within the specified window condition, by setting TIMER_TMR[n]_CFG.IRQMODE =b#10.

In this mode, a trailing edge on the input pin triggers capturing of pulse width into the TIMER_TMR[n]_WID
register. During the inactive portion of the input signal, the internal counter does not increment. The Watchdog
Width Mode Timing figure shows the signal flow in this mode.

TIMER_RUN

TMR IN

TMR_CNT 07 0801 02 03 01 02 03 04 05 06

SCLK

Pmin/TMR_DLY = 2
Pmax/TMR_PER = 5

NO INTERRUPT;
EDGE DEASSERT
WITHIN WINDOW

INTERRUPT;
EDGE DEASSERT

BEFORE DELAY VALUE

INTERRUPT;
EDGE DEASSERT

AFTER PERIOD VALUE

INTERRUPT;
EDGE DEASSERT
WITHIN WINDOW

NO INTERRUPT;
EDGE DEASSERT
OUTSIDE WINDOW

NO INTERRUPT;
EDGE DEASSERT
OUTSIDE WINDOW

TMR_WID

09 10 11 12

IRQMODE = b#11

IRQMODE = b#10

00 03 01 12

Figure 19-7: Watchdog Width Mode Timing

NOTE: SCLK in the Watchdog Width Mode Timing figure is SCLK.

To check only the upper limit on pulse width (pMAX but not pMIN), then program pMIN as 0 or 1. In such a case, it
is better to use TIMER_TMR[n]_CFG.IRQMODE =b#11. With TIMER_TMR[n]_CFG.IRQMODE = b#10, a
pulse width of 1 clock cycle results in an interrupt. For details, see the Windowed Watchdog Width Mode Interpreta-
tion table.

Windowed Watchdog (WATCHDOG) Modes

ADSP-CM41x Mixed-Signal Control Processor 19–17

Table 19-11: Windowed Watchdog Width Mode Interpretation

Timer Delay Timer Period Incoming Pulse
Width

IRQMODE= b#10 IRQMODE= b#11 Error Interrupt?

0 or 1 Anything ≥ 1 PW = 1 Interrupt at deassert-
ing edge of input sig-
nal

No Interrupt No Error Interrupt

PW ≤ TMR_PER Interrupt at deassert-
ing edge of input sig-
nal

No Interrupt No Error Interrupt

PW > TMR_PER No Interrupt Interrupt when pulse
width exceeds Pmax
(Period Register) Val-
ue

No Error Interrupt

> 1 but ≤ (Period -1) Anything > 1 PW ≤ TMR_DLY No Interrupt Interrupt at deassert-
ing edge of input sig-
nal

No Error Interrupt

TMR_DLY < PW≤
TMR_PER

Interrupt at deassert-
ing edge of input sig-
nal

No Interrupt No Error Interrupt

PW > TMR_PER No Interrupt Interrupt when pulse
width exceeds Pmax
(Period Register) Val-
ue

No Error Interrupt

≥ Period - PW ≤ TMR_PER Undefined Undefined No Error Interrupt

- PW > TMR_PER Undefined Undefined b#11 Error Type

- 0 - Undefined Undefined b#10 Error Type

Windowed Watchdog Period Mode

In this mode, the timer monitors the number of clock cycles between two consecutive rising or falling edges of an
input signal on either the TIMER_TMR[n] or TIMER_ACI[n] pin. Program the required minimum number of
clock cycles (tMIN) in the TIMER_TMR[n]_DLY register and the required maximum allowed number of clock
cycles (tMAX) in the TIMER_TMR[n]_PER register. Both values are programmed in terms of number of clock cy-
cles (SCLK) or alternate time clock (TIMER_ACLK[n]). The timer can generate an interrupt when two consecu-
tive occurrences of an active edge are:

• Within a specified window (tMIN < Pulse Period ≤ tMAX), or

• Outside a specified window (pulse width ≤ (tMIN or tMAX < pulse width)

When the TIMER_TMR[n]_CFG.IRQMODE bit =b#11 and the pulse period > tMAX or is ≤ tMIN, the timer gen-
erates an interrupt (if unmasked). After attaining the tMAX value, the counter keeps on counting until it sees an
active edge on the input line. An interrupt can also be generated for when the pulse occurs within the specified

Windowed Watchdog (WATCHDOG) Modes

19–18 ADSP-CM41x Mixed-Signal Control Processor

window condition, by setting TIMER_TMR[n]_CFG.IRQMODE =b#10. Refer to the Watchdog Period Mode
Timing figure for timer functionality in period watchdog mode.

TIMER_RUN

TMR IN

TMR_CNT 01 02 03 04 05 06 07 0801 02 03 04 01 02 01 02 03 04 05 06

SCLK

Tmin/TMR_DLY = 2
Tmax/TMR_PER = 5

P1 P2 P3 P4

NO INTERRUPT;
EDGE RE-OCCURS
WITHIN WINDOW

INTERRUPT;
EDGE OCCURS ≤

DELAY VALUE

INTERRUPT;
EDGE RE-OCCURS

AFTER PERIOD VALUE

INTERRUPT;
EDGE RE-OCCURS
WITHIN WINDOW

NO INTERRUPT;
EDGE OCCURS

OUTSIDE WINDOW

NO INTERRUPT;
EDGE OCCURS

OUTSIDE WINDOW

TMR_WID 00 04 02 06

Figure 19-8: Watchdog Period Mode Timing

NOTE: SCLK in the Watchdog Period Mode Timing figure is SCLK.

To check only the upper limit on period (the tMAX value, not the tMIN value), program tMIN as 0 or 1. For details,
refer to the Windowed Watchdog Period Mode Interpretation table.

Table 19-12: Windowed Watchdog Period Mode Interpretation

Timer Delay Timer Period Incoming Pulse
Width

IRQMODE=b#10 IRQMODE =b#11 Error Interrupt?

0 or 1 Anything ≥ 2 Pulse Period ≤
TMR_PER

Interrupt at deassert-
ing edge of input sig-
nal

No Interrupt No Error Interrupt

Pulse Period >
TMR_PER

No Interrupt Interrupt when pulse
period crosses Pmax
(Period Register) val-
ue

No Error Interrupt

> 1 but ≤ Period -1 Anything ≥ 2 Pulse Period ≤
TMR_DLY

No Interrupt Interrupt at deassert-
ing edge of input sig-
nal

No Error Interrupt

TMR_DLY < Pulse
Period ≤TMR_PER

Interrupt at deassert-
ing edge of input sig-
nal

No Interrupt No Error Interrupt

Pulse Period >
TMR_PER

No Interrupt Interrupt when pulse
width exceeds Pmax
(Period Register) val-
ue

No Error Interrupt

Windowed Watchdog (WATCHDOG) Modes

ADSP-CM41x Mixed-Signal Control Processor 19–19

Table 19-12: Windowed Watchdog Period Mode Interpretation (Continued)

Timer Delay Timer Period Incoming Pulse
Width

IRQMODE=b#10 IRQMODE =b#11 Error Interrupt?

≥ Period - Pulse Period <
TMR_PER

Undefined Undefined No Error Interrupt

Pulse Period ≥
TMR_PER

Undefined Undefined b#11 Error Type

- 0 or 1 - Undefined Undefined b#10 Error Type

Pin Interrupt (PININT) Mode

In PININT mode, any active edges on either the TIMER_TMR[n] pin or the TIMER_ACI[n] pin can cause an
edge-based interrupt, if enabled. (The timer uses the TIMER_TMR[n]_CFG.TINSEL register to select the pin).
The event on the input pin can set the TIMER_DATA_ILAT.TMR[nn] bit and issue a system interrupt request.
Program the TIMER_TMR[n]_CFG.PULSEHI bit to change active edge polarity.

Since the interrupt request is generated in the SCLK clock domain, the width of the input signal must be more than
one SCLK period. Along with generating the interrupt request, the timer also generates a trigger pulse (configured
using the TIMER_TRG_MSK register). Due to the configuration of polarity, glitches can cause the generation of an
undesired interrupt request at the input. To avoid this problem, programs must ensure that interrupt requests are
unmasked only after configuring the desired polarity.

External Clock (EXTCLK) Mode

The timer uses EXTCLK mode, sometimes referred to as the counter mode, to count external events (signal edges),
on either the TIMER_TMR[n] or TIMER_ACI[n] input pin. The timer works as a counter clocked by an exter-
nal source (the signal at the pin), which can be asynchronous to SCLK. The current count in the
TIMER_TMR[n]_CNT register represents the number of leading-edge events detected. The
TIMER_TMR[n]_PER register is programmed with the value of the maximum timer external count before stop-
ping or issuing an interrupt request or trigger.

The TIMER_TMR[n]_CFG.PULSEHI bit determines the polarity of the leading edge on the input pin. The tim-
er uses the TIMER_TMR[n]_CFG.TINSEL bit to select whether the event is counted on the TIMER_TMR[n]
or on the TIMER_ACI[n] pin. The TIMER_STAT_ILAT.TMR[nn] and TIMER_ERR_TYPE bits are set if
one of these conditions is met:

• TIMER_TMR[n]_CNT wraps around from 0xFFFF FFFF to 0

• The period = 0 at startup

• TIMER_TMR[n]_CNT register rolls over (from count = period to count = 0x1)

The TIMER_TMR[n]_WID and TIMER_TMR[n]_DLY registers are unused in this mode and must not be writ-
ten.

The EXTCLK Mode Control Flow figure shows a flow diagram for EXTCLK mode.

GP Timer Operating Modes

19–20 ADSP-CM41x Mixed-Signal Control Processor

CLOCKRESET

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLEx

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

Figure 19-9: EXTCLK Mode Control Flow

The waveform applied to the input pin is not required to have a 50% duty cycle. The minimum input pulse low
time, high time, and total period specifications are available in the product data sheet. Program the period to any

value from 1 to (232 – 1), inclusive.

After the timer has started, it resets the TIMER_TMR[n]_CNT register to 0x0 and then waits for the first leading
edge on the input pin. This edge causes TIMER_TMR[n]_CNT to be incremented to the value 0x1, and every
subsequent leading edge increments it by one. After the TIMER_TMR[n]_CNT register reaches the value program-
med in the TIMER_TMR[n]_PER register, the corresponding TIMER_DATA_ILAT bit is set, and an interrupt
and trigger are both generated (if enabled). The next leading-edge reloads the TIMER_TMR[n]_CNT register with
0x1, and the timer continues counting until it is disabled.

GP Timer Programming Concepts
Using the features, operating modes, and event control for the GP timer to their greatest potential requires an un-
derstanding of some GP timer-related concepts.

Setting Up Constantly Changing Timer Conditions

This task shows how to use different period, pulse width, and delay settings for each of the first three timer periods
after the timer starts.

1. Program the first set of TIMER_TMR[n]_PER, TIMER_TMR[n]_WID, and TIMER_TMR[n]_DLY regis-
ter values.

2. Enable the timer using the TIMER_RUN register.

3. Immediately program the second set of TIMER_TMR[n]_PER, TIMER_TMR[n]_WID, and
TIMER_TMR[n]_DLY register values, as needed.

4. Wait for the first timer interrupt request.

5. Program the third set of TIMER_TMR[n]_PER, TIMER_TMR[n]_WID, and TIMER_TMR[n]_DLY reg-
ister values.

GP Timer Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 19–21

Each new setting is then programmed when the preceding timer interrupt request is received.

Configuring, Enabling, and Disabling One or More Timers

1. Configure the relevant timers for the operating mode and other properties using the TIMER_TMR[n]_CFG
register.

2. Write a 1 to the representative TIMER_RUN.TMR[nn] bit. Or, use the TIMER_RUN_SET register to avoid
disturbing the settings of other timers that are not going through configuration.

The timer is enabled and operating.

3. To stop one or more timers, first program the TIMER_STOP_CFG register to determine whether to stop im-
mediately or gracefully upon receiving a stop command.

ADDITIONAL INFORMATION: PWMOUT modes are the only modes where a timer can be configured for
graceful termination.

4. Write a 0 to the representative TIMER_RUN.TMR[nn] bits to stop the timer according to their
TIMER_STOP_CFG settings. Alternately, write a 1 to the appropriate TIMER_RUN_CLR.TMR[nn] bits to
avoid disturbing the settings of other timers that are not terminating.

The timers stop.

Configuring Timer Data and Status Interrupts

1. Configure the TIMER_TMR[n]_CFG.IRQMODE bit field with the desired interrupt properties.

2. Unmask the interrupt source.

3. Set the TIMER_TMR[n]_CFG.IRQMODE field but leave the interrupt masked at the system level to poll the
TIMER_DATA_ILAT.TMR[nn] bit of the timer without generating an interrupt.

4. Use the TIMER_STAT_IMSK register to generate interrupt requests by overflow or error conditions (incorrect
programming values). The timer uses the TIMER_STAT_ILAT.TMR[nn] bits to report interrupt errors,
when the timer status interrupt source is unmasked.

5. To poll the TIMER_STAT_ILAT.TMR[nn] bit of the timer without generating an interrupt, unmask the
corresponding bit in the TIMER_STAT_IMSK register, but leave the interrupt masked at the system level.

Configuring the Timer as a Trigger Slave

The timer can be configured to either start or stop or toggle between these two states on the input trigger pulse
depending on the configuration of the TIMER_TMR[n]_CFG.TGLTRIG and
TIMER_TMR[n]_CFG.SLAVETRIG bits.

• If TIMER_TMR[n]_CFG.TGLTRIG bit =0 and TIMER_TMR[n]_CFG.SLAVETRIG bit =1 then the
trigger pulse starts timer, if it is stopped.

GP Timer Programming Concepts

19–22 ADSP-CM41x Mixed-Signal Control Processor

• If TIMER_TMR[n]_CFG.TGLTRIG bit =0 and TIMER_TMR[n]_CFG.SLAVETRIG bit =0 then the
trigger pulse stops timer, if it is running.

• When TIMER_TMR[n]_CFG.TGLTRIG bit =0, the trigger pulse has no effect when the timer is already in
the requested state.

If TIMER_TMR[n]_CFG.TGLTRIG bit is 1, the trigger pulse starts the timer if it is stopped, or stops the timer if
it is running. The TIMER_TMR[n]_CFG.SLAVETRIG bit has no effect on trigger mechanism. In continuous
PWMOUT mode, the timer stops gracefully or abruptly depending on the stop mechanism programmed in the
TIMER_STOP_CFG_CLR register. In other modes, the timer stops immediately.

Using the Timer Broadcast Feature

The broadcast feature provides a means to update period, width, and delay registers simultaneously across more than
one timer.

Timer triggers TIMER_TMR[n]_SLV0 and TIMER_TMR[n]_SLV1 are logically OR'd so each individual timer
can have two input triggers.

1. Enable the appropriate broadcast bits (TIMER_TMR[n]_CFG.BPEREN, TIMER_TMR[n]_CFG.BWIDEN
are TIMER_TMR[n]_CFG.BDLYEN) for the timers involved in the broadcast. The use of these bits de-
pends on which broadcast registers the timer uses (TIMER_BCAST_PER, TIMER_BCAST_WID, or
TIMER_BCAST_DLY).

2. Program the TIMER_BCAST_PER register (for example), to broadcast the period setting across the multiple
timers enabled.

The enabled timers load their TIMER_TMR[n]_PER registers with the value specified in the
TIMER_BCAST_PER register.

3. Repeat Step 2 as needed for the TIMER_BCAST_WID and TIMER_BCAST_DLY register settings.

Timer Illegal States
The following sections use these definitions:

• Startup. The first clock period during which the timer counter is running after the timer is started by writing
the TIMER_RUN register.

• Rollover. The time when the current count in TIMER_TMR[n]_CNT matches the value in
TIMER_TMR[n]_PER and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a rollover when it was holding the maximum
count value of 0xFFFF FFFF. The counter does not have a large enough range to express the next greater value
and so it erroneously loads a new value of 0x0000 0000.

• Unchanged. No new error.

GP Timer Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 19–23

When the TIMER_ERR_TYPE register is designated unchanged, it displays the previously reported error code orb#
00 when there has been no error since this timer was enabled.

When the TIMER_STAT_ILAT register is unchanged, it reads 0 when there has been no error or overflow since
this timer was enabled. Or, it reads 0 if software has performed a W1C to clear any previous error. If software has
not acknowledged a previous error, the TIMER_STAT_ILAT register reads 1. Software can read the
TIMER_STAT_ILAT register to check for errors. If a particular bit of a timer is set in this register, software can
then read the TIMER_ERR_TYPE register for more information. Once detected, software can W1C the appropri-
ate TIMER_STAT_ILAT bit to acknowledge the error.

Read the following tables as:

• In mode __ at event __,

• if TIMER_TMR[n]_PER is __ and TIMER_TMR[n]_WID is __ and TIMER_TMR[n]_DLY is __,

• then TIMER_ERR_TYPE is __ and TIMER_STAT_ILAT is __.

Startup error conditions do not prevent the timer from starting. Similarly, overflow and rollover error conditions do
not stop the timer. Illegal cases can cause unwanted behavior of the TIMER_TMR[n] pin.

NOTE: For PININT mode, the timer does not use error functionality.

Continuous PWMOUT Mode

Table 19-13: Startup Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

≤ 1 Anything other than peri-
od[8]

Anything Anything b#10 Set

≥ 2 Anything including 0, ex-
cluding TMR_PER value

Anything in-
cluding 0

≤ PERIOD Unchanged Unchanged

Anything including 0 Anything in-
cluding 0

> PERIOD Unchanged[9] (De-
tected at rollover)

Unchanged (Detected at roll-
over)

Anything Anything > 232 − 1 b#11 Set

=Period =0 =Period No error Unchanged (Detected at roll-
over)

Timer Illegal States

19–24 ADSP-CM41x Mixed-Signal Control Processor

Table 19-14: Rollover Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

≥ 1 Anything Anything Anything b#10[timer running
at SCLK] b#11 [tim-
er running at
ALT_CLKx]

Set

≥ 2 Anything including 0, ex-
cluding TMR_PER value

Anything in-
cluding 0

≤PERIOD Unchanged Unchanged

Anything including 0, ex-
cluding TMR_PER value

Anything >0 >PERIOD b#11 Set

Anything Anything > 232− 1 b#11 Set

= Period[10] =0 =Period b#11 Set

>Period =0 >Period Unchanged Unchanged

Table 19-15: Overflow Event (On TMR_PER Register Programming Error Only)

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

Anything Anything Anything Anything b#01 Set

Single Pulse PWMOUT Mode

For single pulse PWMOUT mode, there are no rollover events.

Table 19-16: Startup Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +

TIMER_TMR[
n]_DLY

TIMER_STAT_
ILAT (if enabled)

TIMER_STAT_ILAT (if
enabled)

N/A Anything == 0 Anything b#11[11] Set

N/A Anything including 0 ≥1 > 232˗ 1 Unchanged Unchanged

N/A Anything including 0 ≥1 > 232˗ 1 b#11 Set

Timer Illegal States

ADSP-CM41x Mixed-Signal Control Processor 19–25

Table 19-17: Overflow Event (On another error, such as DELAY + WIDTH ≥ 232− 1)

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID +

TIMER_TMR[
n]_DLY

TIMER_STAT_ILAT (if
enabled)

Anything Anything Anything Anything b#01 Set

WIDCAP Mode

For WIDCAP mode, the TIMER_TMR[n]_PER and TIMER_TMR[n]_WID registers are read-only and the
TIMER_TMR[n]_DLY register is not used. Therefore, no startup or rollover errors are possible.

Table 19-18: Overflow Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

Anything N/A Anything N/A b#01 Set

EXTCLK Mode

Table 19-19: Startup Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

=0 N/A N/A N/A b#01 Set

≥1 N/A N/A N/A Unchanged Unchanged

Table 19-20: Rollover Event

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

=0 N/A N/A N/A b#01 Set

≥1 N/A N/A N/A Unchanged Unchanged

Timer Illegal States

19–26 ADSP-CM41x Mixed-Signal Control Processor

Table 19-21: Overflow Event (On TMR_PER Register = 0 Only)

TIMER_TMR[
n]_PER

TIMER_TMR[n]_DLY TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

Anything N/A N/A N/A b#01 Set

WATCHDOG Events

Table 19-22: Startup Event

TIMER_TMR[n]_
PER

TIMER_TMR[n]_
DLY

TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

≤ Allowed MIN[12] Anything < PERIOD N/A N/A b#01 Set

> Allowed MIN Anything < PERIOD N/A N/A Unchanged Unchanged

> Allowed MIN Anything ≥ PERIOD Refer to WATCHDOG Mode tables

Table 19-23: Rollover Event

TIMER_TMR[n]_
PER

TIMER_TMR[n]_
DLY

TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

≤ Allowed MIN[10] Anything < PERIOD N/A N/A b#01 Set

> Allowed MIN Anything N/A N/A Unchanged Unchanged

> Allowed MIN Anything ≥ PERIOD Refer to WATCHDOG Mode tables

Table 19-24: Overflow Event

TIMER_TMR[n]_
PER

TIMER_TMR[n]_
DLY

TIMER_TMR[
n]_WID

TIMER_TMR[
n]_WID +
TIMER_TMR[
n]_DLY

TIMER_ERR_
TYPE

TIMER_STAT_ILAT (if
enabled)

Anything Anything N/A N/A b#01 Set

CM41X_M4 TIMER Register Descriptions
General-Purpose Timer Block (TIMER) contains the following registers.

Table 19-25: CM41X_M4 TIMER Register List

Name Description

TIMER_BCAST_DLY Broadcast Delay Register

Timer Illegal States

ADSP-CM41x Mixed-Signal Control Processor 19–27

Table 19-25: CM41X_M4 TIMER Register List (Continued)

Name Description

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_ERR_TYPE Error Type Status Register

TIMER_RUN Run Register

TIMER_RUN_CLR Run Clear Register

TIMER_RUN_SET Run Set Register

TIMER_STAT_ILAT Status Interrupt Latch Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_TMR[n]_CFG Timer n Configuration Register

TIMER_TMR[n]_CNT Timer n Counter Register

TIMER_TMR[n]_DLY Timer n Delay Register

TIMER_TMR[n]_PER Timer n Period Register

TIMER_TMR[n]_WID Timer n Width Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_TRG_MSK Trigger Master Mask Register

CM41X_M4 TIMER Register Descriptions

19–28 ADSP-CM41x Mixed-Signal Control Processor

Broadcast Delay Register

For timers with TIMER_TMR[n]_CFG.BDLYEN enabled, a write to the TIMER_BCAST_DLY register concur-
rently updates the delay (TIMER_TMR[n]_DLY) registers of only those timers. A read of the
TIMER_BCAST_DLY register returns 0x00000000, and no bus error is generated. To read back a written value,
read that TMR's TIMER_TMR[n]_DLY register.

Broadcast Delay Value

Broadcast Delay Value

VALUE[15:0] (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R0/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-10: TIMER_BCAST_DLY Register Diagram

Table 19-26: TIMER_BCAST_DLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W)

VALUE Broadcast Delay Value.

A write to the TIMER_BCAST_DLY.VALUE bit field concurrently updates the delay
(TIMER_TMR[n]_DLY) registers of only those timers. A read of the
TIMER_BCAST_DLY.VALUE bit field returns 0x0000 0000, and no bus error is
generated.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–29

Broadcast Period Register

For timers with TIMER_TMR[n]_CFG.BPEREN enabled, a write to the TIMER_BCAST_PER register concur-
rently updates the period (TIMER_TMR[n]_PER) registers of only those timers. A read of TIMER_BCAST_PER
returns 0x00000000, and no bus error is generated. To read back a written value, read that TMR's
TIMER_TMR[n]_PER register.

Broadcast Period Value

Broadcast Period Value

VALUE[15:0] (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R0/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-11: TIMER_BCAST_PER Register Diagram

Table 19-27: TIMER_BCAST_PER Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W)

VALUE Broadcast Period Value.

A write to the TIMER_BCAST_PER.VALUE bit field concurrently updates the peri-
od (TIMER_TMR[n]_PER) registers of only those timers. A read of the
TIMER_BCAST_PER.VALUE bit fields returns 0x0000 0000, and no bus error is
generated.

CM41X_M4 TIMER Register Descriptions

19–30 ADSP-CM41x Mixed-Signal Control Processor

Broadcast Width Register

For timers with TIMER_TMR[n]_CFG.BWIDEN enabled, a write to the TIMER_BCAST_WID register concur-
rently updates the width (TIMER_TMR[n]_WID) registers of only those timers. A read of the
TIMER_BCAST_WID register returns 0x00000000, and no bus error is generated. To read back a written value,
read that TMR's TIMER_TMR[n]_WID register.

Broadcast Width Value

Broadcast Width Value

VALUE[15:0] (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R0/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-12: TIMER_BCAST_WID Register Diagram

Table 19-28: TIMER_BCAST_WID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W)

VALUE Broadcast Width Value.

A write to the TIMER_BCAST_WID.VALUE bit field concurrently updates the
width (TIMER_TMR[n]_WID) registers of only those timers. A read of the
TIMER_BCAST_WID.VALUE bit field returns 0x0000 0000, and no bus error is
generated.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–31

Data Interrupt Latch Register

The TIMER_DATA_ILAT holds the latched interrupt status for interrupt requests that have been unmasked (ena-
bled) by the TIMER_DATA_IMSK register and generated according to the conditions selected by the
TIMER_TMR[n]_CFG.IRQMODE bits. If a bit in TIMER_DATA_ILAT is already set and the corresponding in-
terrupt is masked in TIMER_DATA_IMSK, the latch holds its old value, leaving the interrupt request asserted until
it is reset by software with a W1C operation.

Note that interrupt service routines (ISRs) should clear the appropriate bits in TIMER_DATA_ILAT before return-
ing from the ISR, to ensure that the interrupt is not re-issued. To make sure that no timer event is missed, the latch
should be reset at the very beginning of the ISR when in EXTCLK mode.

Data Interrupt Latch
TMR[nn] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-13: TIMER_DATA_ILAT Register Diagram

Table 19-29: TIMER_DATA_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W1C)

TMR[nn] Data Interrupt Latch.

For all TIMER_DATA_ILAT.TMR[nn] bits, status of =0 indicates no interrupt is
latched, and status of =1 indicates a latched interrupt (indicating an unmasked inter-
rupt request from a timer with a condition matching the one selected with correspond-
ing TIMER_TMR[n]_CFG.IRQMODE bit has occurred).

CM41X_M4 TIMER Register Descriptions

19–32 ADSP-CM41x Mixed-Signal Control Processor

Data Interrupt Mask Register

Each timer may generate a unique processor data interrupt request signal. The TIMER_DATA_IMSK register con-
tains an interrupt mask for these requests, masking (disabling) or unmasking (enabling) the interrupts as program-
med. The reset value of the TIMER_DATA_IMSK register is 0xFFFF, masking these interrupts after reset.

Data Interrupt Mask
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-14: TIMER_DATA_IMSK Register Diagram

Table 19-30: TIMER_DATA_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Data Interrupt Mask.

For all TIMER_DATA_IMSK.TMR[nn] bits, write =0 unmasks (enables) the corre-
sponding data interrupt request, and write =1 masks (disables) the corresponding data
interrupt request.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–33

Error Type Status Register

The TIMER_ERR_TYPE register contains error type status bits for each timer. These bits indicate the type of error
(if any) in a running timer. This register is read-only. These status bits are cleared at reset and when a particular
timer is enabled.

Each time an error request interrupt is latched in the TIMER_STAT_ILAT register, the corresponding TERRx bits
in the TIMER_ERR_TYPE register are loaded with a code that identifies the type of error that was detected. This
status value is held until the next error or until a particular timer is restarted. No bus error is generated if a write is
performed on the TIMER_ERR_TYPE register.

Error Type for Timer 3Error Type for Timer 4

Error Type for Timer 2Error Type for Timer 5

Error Type for Timer 1Error Type for Timer 6

Error Type for Timer 0Error Type for Timer 7

TERR3 (R)TERR4 (R)

TERR2 (R)TERR5 (R)

TERR1 (R)TERR6 (R)

TERR0 (R)TERR7 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-15: TIMER_ERR_TYPE Register Diagram

Table 19-31: TIMER_ERR_TYPE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:14

(R/NW)

TERR7 Error Type for Timer 7.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

13:12

(R/NW)

TERR6 Error Type for Timer 6.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

CM41X_M4 TIMER Register Descriptions

19–34 ADSP-CM41x Mixed-Signal Control Processor

Table 19-31: TIMER_ERR_TYPE Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11:10

(R/NW)

TERR5 Error Type for Timer 5.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

9:8

(R/NW)

TERR4 Error Type for Timer 4.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

7:6

(R/NW)

TERR3 Error Type for Timer 3.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

5:4

(R/NW)

TERR2 Error Type for Timer 2.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

3:2

(R/NW)

TERR1 Error Type for Timer 1.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

1:0

(R/NW)

TERR0 Error Type for Timer 0.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–35

Run Register

The TIMER_RUN allows all timers to be enabled simultaneously, permitting them to run synchronously. For each
timer, there is a single start/stop control bit. Writing a 1 to this bit starts the corresponding timer; writing a 0 stops
the timer with mechanism specified in the timer stop configuration TIMER_STOP_CFG register.

The start/stop control bits can be set/reset individually or in any combination. While starting or stopping one par-
ticular timer directly with this register, software must perform a read-modify write, so the bits corresponding to oth-
er timers remain unchanged. To avoid this need, software can use the TIMER_RUN_CLR register.

Reading the TIMER_RUN register shows the start status for the corresponding timer. A 1 indicates that the timer is
running.

If a timer is in run state (corresponding run bit is =1), a software write of 1 in this bit does not have any effect on
the timer state. The write does not result in restarting the timer.

Note that the TIMER_RUN register is not used in PININT mode. PININT mode starts as soon as the
TIMER_TMR[n]_CFG.TMODE bits are set to 111.

Start/Stop Timer n
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-16: TIMER_RUN Register Diagram

Table 19-32: TIMER_RUN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Start/Stop Timer n.

For all TIMER_RUN.TMR[nn] bits, write =0 for stop, and write =1 for start. Read
=1 when timer is running.

CM41X_M4 TIMER Register Descriptions

19–36 ADSP-CM41x Mixed-Signal Control Processor

Run Clear Register

The TIMER_RUN_CLR register is an alias register, providing a mechanism to clear a specific start/stop bit in the
TIMER_RUN register without affecting other bits in TIMER_RUN. To stop a particular timer, software must write a
1 into the corresponding TIMER_RUN_CLR bit. Writing a 0 has no effect. Because TIMER_RUN_CLR is a write-
only register, the result of any write to this register must be checked by reading the TIMER_RUN register. A read of
the TIMER_RUN_CLR returns 0x0000.

Note that the stopping mechanism of a timer may be abrupt or graceful (after completion of current waveform peri-
od) depending on the selection in the TIMER_STOP_CFG register.

Start/Stop Timer n
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-17: TIMER_RUN_CLR Register Diagram

Table 19-33: TIMER_RUN_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W1C)

TMR[nn] RUN Clear Alias.

For all TIMER_RUN_CLR.TMR[nn] bits, write =0 has no effect, and write =1 for
stop (clearing the corresponding in start/stop bit in the TIMER_RUN register). Using
TIMER_RUN_CLR to clear start/stop bits permits stopping specific timers without in-
fluencing run status of other timers.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–37

Run Set Register

The TIMER_RUN_SET register is an alias register, providing a mechanism to set a specific start/stop bit in the
TIMER_RUN register without affecting other bits in TIMER_RUN. To start a particular timer, software must write a
1 into the corresponding TIMER_RUN_SET bit. Writing a zero has no effect. For an example, to start timer 3
without affecting any other timer, write 0x0008 into TIMER_RUN_SET. Because TIMER_RUN_SET is a write-
only register, the result of any write to this register must be checked by reading the TIMER_RUN register. A read of
the TIMER_RUN_SET returns 0x0000.

Start/Stop Timer n
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-18: TIMER_RUN_SET Register Diagram

Table 19-34: TIMER_RUN_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W1S)

TMR[nn] RUN Set Alias.

For all TIMER_RUN_SET.TMR[nn] bits, write =0 has no effect, and write =1 for
start (setting the corresponding start/stop bit in the TIMER_RUN register). Using
TIMER_RUN_SET to set start/stop bits permits starting specific timers without influ-
encing the run status of other timers.

CM41X_M4 TIMER Register Descriptions

19–38 ADSP-CM41x Mixed-Signal Control Processor

Status Interrupt Latch Register

The TIMER_STAT_ILAT holds the latched interrupt status for error interrupt requests, indicating a timer over-
flow condition or indicating that prohibited programming has occurred for a timer. These interrupt status bits are
sticky and are W1C. The bits in the TIMER_STAT_ILAT register provide information regarding each timer inter-
rupt request source.

Status Interrupt Latch
TMR[nn] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-19: TIMER_STAT_ILAT Register Diagram

Table 19-35: TIMER_STAT_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W1C)

TMR[nn] Status Interrupt Latch.

For all TIMER_STAT_ILAT.TMR[nn] bits, status of 0 indicates no error interrupt
request is latched, and status of 1 indicates a timer counter overflow or programming
error interrupt request is latched.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–39

Status Interrupt Mask Register

While each timer may generate a status interrupt request, these requests are OR'ed to generate a single status inter-
rupt signal to the system event controller. The TIMER_STAT_IMSK register contains an interrupt mask for these
requests, masking (disabling) or unmasking (enabling) the interrupts as programmed. The reset value of the
TIMER_STAT_IMSK register is 0xFFFF, masking these interrupts after reset.

Status Interrupt Mask
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-20: TIMER_STAT_IMSK Register Diagram

Table 19-36: TIMER_STAT_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Status Interrupt Mask.

For all TIMER_STAT_IMSK.TMR[nn] bits, write =0 unmasks (enables) the corre-
sponding status interrupt request, and write =1 masks (disables) the corresponding sta-
tus interrupt request.

CM41X_M4 TIMER Register Descriptions

19–40 ADSP-CM41x Mixed-Signal Control Processor

Stop Configuration Register

The TIMER_STOP_CFG register selects the stop mode for each timer. Timers may be stopped abruptly (immediate
halt - all modes) or gracefully in PWMOUT modes (single pulse and continuous). The halt is achieved through
either a write =0 to the corresponding bit in TIMER_RUN or a write =1 to the corresponding bit in
TIMER_RUN_CLR. A read of TIMER_STOP_CFG returns the last value written.

Stop Mode Select
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-21: TIMER_STOP_CFG Register Diagram

Table 19-37: TIMER_STOP_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Stop Mode Select.

For all TIMER_STOP_CFG.TMR[nn] bits, write =0 for graceful termination
(PWMOUT modes only), and write =1 for abrupt (immediate halt) on stop.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–41

Stop Configuration Clear Register

This is an alias register, providing a mechanism to clear a specific bit in the TIMER_STOP_CFG register without
affecting other bits in TIMER_STOP_CFG. To clear a bit in TIMER_STOP_CFG, software must write a 1 to the
corresponding bit of TIMER_STOP_CFG_CLR register. Writing a zero has no effect. Because the
TIMER_STOP_CFG_CLR register is a write-only register, the result of any write to this register must be checked
by reading the TIMER_STOP_CFG register. A read of the TIMER_STOP_CFG_CLR register returns 0x0000.

Stop Mode Select
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-22: TIMER_STOP_CFG_CLR Register Diagram

Table 19-38: TIMER_STOP_CFG_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W1C)

TMR[nn] STOP_CFG Clear Alias.

For all TIMER_STOP_CFG_CLR.TMR[nn] bits, write =0 has no effect, and write
=1 for graceful stop in PWMOUT modes (clearing the corresponding stop mode select
bit in the TIMER_STOP_CFG register). Using TIMER_STOP_CFG_CLR to clear
stop mode bits permits configuring specific timers without influencing the stop mode
configuration of other timers.

CM41X_M4 TIMER Register Descriptions

19–42 ADSP-CM41x Mixed-Signal Control Processor

Stop Configuration Set Register

This is an alias register, providing a mechanism to set a specific bit in the TIMER_STOP_CFG register without
affecting other bits in TIMER_STOP_CFG. To set a bit in the TIMER_STOP_CFG register, software must write a
1 to the corresponding bit of the TIMER_STOP_CFG_SET register. Writing a zero has no effect. Because the
TIMER_STOP_CFG_SET register is a write-only register, the result of any write to this register must be checked
by reading the TIMER_STOP_CFG register. A read of the TIMER_STOP_CFG_SET register returns 0x0000.

Stop Mode Select
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-23: TIMER_STOP_CFG_SET Register Diagram

Table 19-39: TIMER_STOP_CFG_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W1S)

TMR[nn] STOP_CFG Set Alias.

For all TIMER_STOP_CFG_SET.TMR[nn] bits, write =0 has no effect, and write
=1 for abrupt stop (setting the corresponding stop mode select bit in the
TIMER_STOP_CFG register). Using TIMER_STOP_CFG_SET to set stop mode
bits permits configuring specific timers without influencing the stop mode configura-
tion of other timers.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–43

Timer n Configuration Register

Each timer has a TIMER_TMR[n]_CFG register that specifies its operating mode. Only write to a
TIMER_TMR[n]_CFG register when the corresponding timer is not running.

After disabling a timer operating in PWMOUT mode, verify that the timer has stopped running by checking the
start/stop status of the timer in the TIMER_RUN register before writing to the timer's TIMER_TMR[n]_CFG
register.

Note that a timer’s TIMER_TMR[n]_CFG register may be read at any time.

PININT modes)
Timer Input Select (for WIDCAP, WATCHDOG,

Clock SelectOutput Disable

Polarity Response SelectBroadcast Delay Enable

Slave Trigger Response.Broadcast Width Enable

Interrupt ModesBroadcast Period Enable

Timer Mode SelectEmulation Run

Slave Trigger Toggle Enable

TINSEL (R/W)

CLKSEL (R/W)OUTDIS (R/W)

PULSEHI (R/W)BDLYEN (R/W)

SLAVETRIG (R/W)BWIDEN (R/W)

IRQMODE (R/W)BPEREN (R/W)

TMODE (R/W)EMURUN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TGLTRIG (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-24: TIMER_TMR[n]_CFG Register Diagram

Table 19-40: TIMER_TMR[n]_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

TGLTRIG Slave Trigger Toggle Enable.

The TIMER_TMR[n]_CFG.TGLTRIG bit stops the timer if it is running and starts
the timer if it is halted (in the stop state). If the TIMER_TMR[n]_CFG.TGLTRIG
bit is set, then the setting of the TIMER_TMR[n]_CFG.SLAVETRIG bit is ignor-
ed.

0 Slave Trigger Response Depends on SLAVETRIG Bit
Setting

1 Slave Trigger Toggles Timer State

CM41X_M4 TIMER Register Descriptions

19–44 ADSP-CM41x Mixed-Signal Control Processor

Table 19-40: TIMER_TMR[n]_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

EMURUN Emulation Run.

The TIMER_TMR[n]_CFG.EMURUN bit causes the timer to run (count) during
emulation.

0 Stop Timer During Emulation

1 Run Timer During Emulation

14

(R/W)

BPEREN Broadcast Period Enable.

The TIMER_TMR[n]_CFG.BPEREN bit enables updates to the
TIMER_TMR[n]_PER register simultaneously across more than one timer.

0 Disable Broadcast to PER Register

1 Enable Broadcast to PER Register

13

(R/W)

BWIDEN Broadcast Width Enable.

The TIMER_TMR[n]_CFG.BWIDEN bit enables updates to the
TIMER_TMR[n]_WID register simultaneously across more than one timer.

0 Disable Broadcast to WID Register

1 Enable Broadcast to WID Register

12

(R/W)

BDLYEN Broadcast Delay Enable.

The TIMER_TMR[n]_CFG.BDLYEN bit enables updates to the
TIMER_TMR[n]_DLY register simultaneously across more than one timer.

0 Disable Broadcast to DLY Register

1 Enable Broadcast to DLY Register

11

(R/W)

OUTDIS Output Disable.

The TIMER_TMR[n]_CFG.OUTDIS bit enables or disables the timer pin output
buffer.

0 Enable TMR Pin Output Buffer

1 Disable TMR Pin Output Buffer

10

(R/W)

TINSEL Timer Input Select (for WIDCAP, WATCHDOG, PININT modes).

0 Use TMR Pin Input

1 Use TMR Alternate Capture Input

9:8

(R/W)

CLKSEL Clock Select.

The TIMER_TMR[n]_CFG.CLKSEL bit field selects the TIMER clock to use.

0 Use SCLK

1 Use TMR_ALT_CLK0 as TMR Clock

3 Use TMR_ALT_CLK1 as TMR Clock

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–45

Table 19-40: TIMER_TMR[n]_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

PULSEHI Polarity Response Select.

The TIMER_TMR[n]_CFG.PULSEHI bit defines specific behaviors of the timer
based on the operating mode. For more information, see the specific operating mode
in the Programming Concepts section.

0 Negative Response or Pulse. A Negative Edge Response
or Negative Action Pulse on the TMR pin.

1 Positive Response or Pulse. A Positive Edge Response or
Positive Action Pulse on the TMR pin.

6

(R/W)

SLAVETRIG Slave Trigger Response..

The TIMER_TMR[n]_CFG.SLAVETRIG bit controls the trigger response. The
trigger pulse has no effect (to stop or start the timer) if the timer is already in the re-
quested state.

0 Pulse Stops Timer if it is Running

1 Pulse Starts Timer if it is Stopped

CM41X_M4 TIMER Register Descriptions

19–46 ADSP-CM41x Mixed-Signal Control Processor

Table 19-40: TIMER_TMR[n]_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

IRQMODE Interrupt Modes.

The TIMER_TMR[n]_CFG.IRQMODE bit field selects the interrupt request mode.

Note that any mismatched combination of the TIMER_TMR[n]_CFG.IRQMODE
and the TIMER_TMR[n]_CFG.TMODE bits results in no interrupt being generated.

In WIDCAP modes, the position of the interrupt is controlled with the
TIMER_TMR[n]_CFG.TMODE bit, and the TIMER_TMR[n]_CFG.IRQMODE
bit is ignored.

Whenever an interrupt is generated, a trigger master pulse is also generated, if enabled
in the TIMER_TRG_MSK register.

0 Active Edge Mode. The timer generates an interrupt at
every active edge. The active edge polarity depends on
the state of the TIMER_TMR[n]_CFG.PULSEHI
bit. Valid for PININT mode only.

1 Delay Expired Mode. The timer generates an interrupt
when the TIMER_TMR[n]_CNT value reaches the val-
ue in the TIMER_TMR[n]_DLY register. This mode is
valid for all PWMOUT modes.

2 Width Plus Delay Expired Mode. The timer generates
an interrupt when the TIMER_TMR[n]_CNT value
reaches the value in the TIMER_TMR[n]_WID regis-
ter plus the value in the TIMER_TMR[n]_DLY regis-
ter. (PWMOUT modes only)

The timer generates an interrupt if the deasserting edge
is within the specified window. (WATCHDOG modes
only)

3 Period Expired Mode. The timer generates an interrupt
when the TIMER_TMR[n]_CNT value reaches the val-
ue in the TIMER_TMR[n]_PER register. (Continuous
PWMOUT and EXTCLK modes only)

The timer generates an interrupt if the deasserting edge
is outside the specified window.(WATCHDOG modes
only)

3:0

(R/W)

TMODE Timer Mode Select.

The TIMER_TMR[n]_CFG.TMODE bit field selects the operating mode of each
timer.

0-7 Idle Mode

8 Period Watchdog Mode

9 Width Watchdog Mode

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–47

Table 19-40: TIMER_TMR[n]_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10 Measurement Report at Asserting Edge of Waveform

11 Measurement Report at Deasserting Edge of Waveform

12 Continuous PWMOUT Mode

13 Single Pulse PWMOUT Mode

14 EXTCLK Mode

15 PININT (pin interrupt) Mode

CM41X_M4 TIMER Register Descriptions

19–48 ADSP-CM41x Mixed-Signal Control Processor

Timer n Counter Register

The TIMER_TMR[n]_CNT register holds the current timer count. After enabling, the count is re-initialized to ei-
ther 0x0 or 0x1, depending on the configuration and mode. The TIMER_TMR[n]_CNT register is read-only and
may be read at any time (whether the timer is running or stopped). Reading the TIMER_TMR[n]_CNT register
returns an atomic 32-bit value.

Depending on the timer operation mode, the counter increment can be clocked by a number of sources, including
SCLK, the TMR or alternate capture input pins, TIMER_ACLK[n]. The counter retains its value after the timer is
disabled.

Counter Value

Counter Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-25: TIMER_TMR[n]_CNT Register Diagram

Table 19-41: TIMER_TMR[n]_CNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Counter Value.

The TIMER_TMR[n]_CNT.VALUE bit field holds the current timer count.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–49

Timer n Delay Register

The TIMER_TMR[n]_DLY register holds the delay value for the corresponding timer. This register's use is based
on the selected timer mode.

Delay Value

Delay Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-26: TIMER_TMR[n]_DLY Register Diagram

Table 19-42: TIMER_TMR[n]_DLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Delay Value.

The TIMER_TMR[n]_DLY.VALUE bit field holds the delay value for the corre-
sponding timer.

CM41X_M4 TIMER Register Descriptions

19–50 ADSP-CM41x Mixed-Signal Control Processor

Timer n Period Register

The TIMER_TMR[n]_PER register holds the period value for the corresponding timer. This register's use is based
on the selected timer mode.

Period Value

Period Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-27: TIMER_TMR[n]_PER Register Diagram

Table 19-43: TIMER_TMR[n]_PER Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Period Value.

The TIMER_TMR[n]_PER.VALUE bit field holds the period value for the corre-
sponding timer.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–51

Timer n Width Register

The TIMER_TMR[n]_WID register holds the width value for the corresponding timer. This register's use is based
on the selected timer mode.

Width Value

Width Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-28: TIMER_TMR[n]_WID Register Diagram

Table 19-44: TIMER_TMR[n]_WID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Width Value.

The TIMER_TMR[n]_WID.VALUE bit field holds the width value for the corre-
sponding timer.

CM41X_M4 TIMER Register Descriptions

19–52 ADSP-CM41x Mixed-Signal Control Processor

Trigger Slave Enable Register

As a trigger slave, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_IE contains trigger
input enable bits for these signals, disabling or enabling the triggers as programmed. The reset value of the
TIMER_TRG_IE register is 0xFFFF, masking these triggers after reset.

Trigger Input Enable
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-29: TIMER_TRG_IE Register Diagram

Table 19-45: TIMER_TRG_IE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Trigger Input Enable.

For all TIMER_TRG_IE.TMR[nn] bits, write =0 disables the corresponding trigger
input, and write =1 enables the corresponding trigger input.

CM41X_M4 TIMER Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 19–53

Trigger Master Mask Register

As a trigger master, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_MSK register con-
tains a trigger mask for these outputs, masking (disabling) or unmasking (enabling) the triggers as programmed. The
reset value of the TIMER_TRG_MSK register is 0xFFFF, masking these triggers after reset.

Trigger Output Mask
TMR[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 19-30: TIMER_TRG_MSK Register Diagram

Table 19-46: TIMER_TRG_MSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

TMR[nn] Trigger Output Mask.

For all TIMER_TRG_MSK.TMR[nn] bits, write =0 unmasks (enables) the corre-
sponding data trigger output, and write =1 masks (disables) the corresponding data
trigger output.

CM41X_M4 TIMER Register Descriptions

19–54 ADSP-CM41x Mixed-Signal Control Processor

20 Capture Timer (CPTMR)

The Capture Timer (CPTMR) module measures the total on-time of the input signal between two triggers. The
module performs this measurement by counting clock pulses during the on-time of the input signal. The total on-
time is captured when the stop trigger is received.

The CPTMR is used in inverter applications to measure the total inverter on-time. The application can capture the
total on-time of the inverter output between PWM cycles. The triggers required to start and stop the capture timer
are received from the TRU, where the PWM is the master.

CPTMR Functional Description
The processor has three capture timers. Each capture timer block can be enabled and configured to capture the total
on-time of the CPTMR_IN[n] input pin between two trigger assertions (CPTMR_CPT[n]_SLV0 or
CPTMR_CPT[n]_SLV1). The core of the capture timer is a 32-bit counter that can be interrogated through the
read-only CPTMR_CNT[n] register. The counter is reset to 0x1 when the start trigger is received. Between the start
and stop triggers, the total on-time of the CPTMR_IN[n] input pin is captured in the CPTMR_TON[n] register.

CPTMR Block Diagram

The Capture Timer Block Diagram illustrates the block diagram of the CPTMR module. The block diagram is
comprised of two primary sections:

Internal Interface. The core always accesses the capture timer registers through the peripheral bus interface. The
capture timer has dedicated data and status interrupt request outputs that connect to the SEC module.

External Interface. The capture timer has an asynchronous input pin (CPTMR_IN[n]) and asynchronous trigger
inputs (CPTMR_CPT[n]_SLV0 and CPTMR_CPT[n]_SLV1). The requirement for minimum input pulse
width timing on the external pins is 2 × tSCLK, to guarantee that SCLK samples the asynchronous pulse.

Capture Timer (CPTMR)

ADSP-CM41x Mixed-Signal Control Processor 20–1

CPTMRx_CNT

SCB
SLAVE IF

TO/FROM MMR
FABRIC

CPTMRx_TON

INTR

CPTMR0
COMMON_REGS

CPTMR
Common
Control &

Status Regs

CPTMR1
CPTMR2

CPTMR_TRIG
FROM TRU

CPTMR_IN
FROM PINs

Figure 20-1: Capture Timer Block Diagram

CM41X_M4 CPTMR Register List

The Capture Timer (CPTMR) measures total on-time of the input signal between two triggers.

Table 20-1: CM41X_M4 CPTMR Register List

Name Description

CPTMR_CFG[n] Configuration Register

CPTMR_CNT[n] Counter Register

CPTMR_DATA_ILAT Data Interrupt Latch Status Register

CPTMR_DATA_IMSK Data Interrupt Mask Register

CPTMR_DATA_IMSK_CLR Data Interrupt Mask Clear Register

CPTMR_DATA_IMSK_SET Data Interrupt Mask Set Register

CPTMR_RUN Run Register

CPTMR_RUN_CLR Run Clear Register

CPTMR_RUN_SET Run Set Register

CPTMR_STAT_ILAT Interrupt Latch Status Register

CPTMR_STAT_IMSK Status Interrupt Mask Register

CPTMR_STAT_IMSK_CLR Status Interrupt Mask Clear Register

CPTMR_STAT_IMSK_SET Status Interrupt Mask Set Register

CPTMR Functional Description

20–2 ADSP-CM41x Mixed-Signal Control Processor

Table 20-1: CM41X_M4 CPTMR Register List (Continued)

Name Description

CPTMR_TON[n] On-time Capture Register

CM41X_M4 CPTMR Trigger List

Table 20-2: CM41X_M4 CPTMR Trigger List Masters

Trigger ID Name Description Sensitivity

None

Table 20-3: CM41X_M4 CPTMR Trigger List Slaves

Trigger ID Name Description Sensitivity

46 CPTMR0_CPT0_SLV0 CPTMR0 CPT 0, Trigger Slave 0 Pulse

47 CPTMR0_CPT0_SLV1 CPTMR0 CPT 0, Trigger Slave 1 Pulse

48 CPTMR0_CPT1_SLV0 CPTMR0 CPT 1, Trigger Slave 0 Pulse

49 CPTMR0_CPT1_SLV1 CPTMR0 CPT 1, Trigger Slave 1 Pulse

50 CPTMR0_CPT2_SLV0 CPTMR0 CPT 2, Trigger Slave 0 Pulse

51 CPTMR0_CPT2_SLV1 CPTMR0 CPT 2, Trigger Slave 1 Pulse

CM41X_M0 CPTMR Interrupt List

Table 20-4: CM41X_M0 CPTMR Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

16 CPTMR0_CPT0_MEAS CPTMR0 CPT 0 Measure Interrupt Level

16 CPTMR0_CPT1_MEAS CPTMR0 CPT 1 Measure Interrupt Level

16 CPTMR0_CPT2_MEAS CPTMR0 CPT 2 Measure Interrupt Level

CM41X_M4 CPTMR Interrupt List

Table 20-5: CM41X_M4 CPTMR Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

54 CPTMR0_CPT0_ERR CPTMR0 CPT 0 Error Interrupt Level

55 CPTMR0_CPT1_ERR CPTMR0 CPT 1 Error Interrupt Level

CPTMR Functional Description

ADSP-CM41x Mixed-Signal Control Processor 20–3

Table 20-5: CM41X_M4 CPTMR Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

56 CPTMR0_CPT2_ERR CPTMR0 CPT 2 Error Interrupt Level

106 CPTMR0_CPT0_MEAS CPTMR0 CPT 0 Measure Interrupt Level

107 CPTMR0_CPT1_MEAS CPTMR0 CPT 1 Measure Interrupt Level

108 CPTMR0_CPT2_MEAS CPTMR0 CPT 2 Measure Interrupt Level

CPTMR Operation
The CPTMR is used to measure the total on-time of the input waveform between two trigger assertions. When the
capture timer is enabled, the start trigger resets the count in the CPTMR_CNT[n] register to 1, and the timer starts
counting and incrementing on the following SCLK rising edges, if the CPTMR_IN[n] input pin is asserted.

The CPTMR_IN[n] input pin is used directly or with inverted polarity, based on the CPTMR_CFG[n].TINPOL
bit setting. Similarly, the capture timer trigger is used directly or with inverted polarity, based on the
CPTMR_CFG[n].TRIGPOL bit setting. On the start trigger assertion, the contents of the CPTMR_CNT[n] reg-
ister are transferred to the CPTMR_TON[n] register and the CPTMR_CNT[n] register is reset to 0x1. The capture
timer counter continues counting and capturing until the timer is disabled.

When the 32-bit counter range exceeds 0xFFFFFFFF, the counter rolls over to 0, and an error report interrupt is
generated. The capture timer status interrupt latch register (CPTMR_STAT_ILAT) bits indicate the occurrence of
the overflow, if enabled in the status interrupt mask register (CPTMR_STAT_IMSK) bits. To measure on-time lon-
ger than 0xFFFF FFFF cycles, software can count the number of errors reported between measurement report inter-

rupts. Since the reset value of the counter is 1, the first overflow error report interrupt adds 232− 1 SCLK cycles to

the total on-time captured. As the counter rolls over to 0 after the overflow, 232SCLK cycles are added to the total
on-time from the second overflow interrupt onward.

The timer data interrupt latch bits in the CPTMR_DATA_ILAT register are set (if enabled) to indicate an interrupt
request from a particular capture timer instance. The on-time data interrupt is generated when the stop trigger is
asserted. The bits in the CPTMR_DATA_ILAT and CPTMR_STAT_ILAT registers are sticky bits, and software
has to explicitly clear them. Disabling the CPTMR module clears the CPTMR_DATA_ILAT and
CPTMR_STAT_ILAT register bits along with the corresponding IRQ.

Since the timer can also accept external asynchronous inputs, the external input signal is shifted by close to 2 SCLK
cycles to align the input edge with the SCLK edge. This synchronized input is then provided to the capture timer
module for on-time calculations. There can be a maximum accuracy loss of 2 SCLK cycles in on-time calculations,
but only if the input level is active and very near the leading edge of a trigger. The input given in the following
figure is a synchronized signal going to the capture timer module.

Refer to the On-Time Capture Timing (TINPOL=0 and TRIGPOL=0) figure. For CPTMR_CFG[n].TINPOL =0
and CPTMR_CFG[n].TRIGPOL =0, the counter value in CPTMR_CNT[n] is reset to 1 at the assertion of the
start trigger. Thereafter, the CPTMR_CNT[n] counter value increments with every SCLK rising edge, if the

CPTMR Operation

20–4 ADSP-CM41x Mixed-Signal Control Processor

CPTMR_IN[n] input is active. When the stop trigger is then asserted, the CPTMR_TON[n] total on-time is cop-
ied from the CPTMR_CNT[n] counter value, and the CPTMR_CNT[n] count value is reset to 1. The operation
continues this way for subsequent trigger assertions until the timer is disabled.

SCLK

TRIG

CPTMR_IN[n]

1 2 3 4 15

5

CPTMR_CNT[n]

CPTMR_TON[n]

Figure 20-2: On-Time Capture Timing (TINPOL=0 and TRIGPOL=0)

CPTMR Interrupt Signals
The CPTMR is capable of signaling the system about its state and error conditions that occur during its operation,
by providing status and data interrupt requests.

Data Interrupts

The capture timer can generate a processor data interrupt request signal if the data interrupt is unmasked by pro-
gramming a 0 in the mask bit of the timer data interrupt mask register (CPTMR_DATA_IMSK). For a data inter-
rupt to be serviced, clear the CPTMR_DATA_ILAT register with software using a W1C operation. The total on-
time can be monitored when the data interrupt is generated at the assertion of the stop trigger.

Status Interrupts

The capture timer indicates a counter overflow condition through the status interrupt latch register
(CPTMR_STAT_ILAT). The capture timer can generate a status interrupt for an overflow condition if the status
interrupt is unmsasked by programming 0 in the mask bit of the status interrupt mask register
(CPTMR_STAT_IMSK). The interrupt is serviced by performing a W1C operation to the CPTMR_STAT_ILAT
register.

CM41X_M4 CPTMR Register Descriptions
Capture Timer (CPTMR) contains the following registers.

Table 20-6: CM41X_M4 CPTMR Register List

Name Description

CPTMR_CFG[n] Configuration Register

CPTMR_CNT[n] Counter Register

CPTMR_DATA_ILAT Data Interrupt Latch Status Register

CPTMR_DATA_IMSK Data Interrupt Mask Register

CPTMR Interrupt Signals

ADSP-CM41x Mixed-Signal Control Processor 20–5

Table 20-6: CM41X_M4 CPTMR Register List (Continued)

Name Description

CPTMR_DATA_IMSK_CLR Data Interrupt Mask Clear Register

CPTMR_DATA_IMSK_SET Data Interrupt Mask Set Register

CPTMR_RUN Run Register

CPTMR_RUN_CLR Run Clear Register

CPTMR_RUN_SET Run Set Register

CPTMR_STAT_ILAT Interrupt Latch Status Register

CPTMR_STAT_IMSK Status Interrupt Mask Register

CPTMR_STAT_IMSK_CLR Status Interrupt Mask Clear Register

CPTMR_STAT_IMSK_SET Status Interrupt Mask Set Register

CPTMR_TON[n] On-time Capture Register

CM41X_M4 CPTMR Register Descriptions

20–6 ADSP-CM41x Mixed-Signal Control Processor

Configuration Register

The CPTMR_CFG[n] register contains bits that are used to configure various module options.

Trigger PolarityTimer Input Enable

Input PolarityTrigger Input Enable

TRIGPOL (R/W)TIN_INEN (R/W)

TINPOL (R/W)TRIG_INEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-3: CPTMR_CFG[n] Register Diagram

Table 20-7: CPTMR_CFG[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

TRIG_INEN Trigger Input Enable.

The CPTMR_CFG[n].TRIG_INEN bit enables trigger input (=1).

4

(R/W)

TIN_INEN Timer Input Enable.

The CPTMR_CFG[n].TIN_INEN bit enables timer input (=1).

3

(R/W)

TRIGPOL Trigger Polarity.

The CPTMR_CFG[n].TRIGPOL bit selects whether a trigger is not inverted (active
high/rising edge as leading edge, =0) or a trigger is inverted (active low/falling edge as
leading edge, =1).

2

(R/W)

TINPOL Input Polarity.

The CPTMR_CFG[n].TINPOL bit selects whether input is not inverted (active
high/rising edge as leading edge, =0) or input is inverted (active low/falling edge as
leading edge, =1).

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–7

Counter Register

Counter Value

Counter Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-4: CPTMR_CNT[n] Register Diagram

Table 20-8: CPTMR_CNT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Counter Value.

CM41X_M4 CPTMR Register Descriptions

20–8 ADSP-CM41x Mixed-Signal Control Processor

Data Interrupt Latch Status Register

The CPTMR_DATA_ILAT register indicates data interrupt requests.

Data Interrupt Latch
CPT[nn] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-5: CPTMR_DATA_ILAT Register Diagram

Table 20-9: CPTMR_DATA_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CPT[nn] Data Interrupt Latch.

A 1 in any of the CPTMR_DATA_ILAT.CPT[nn] bits indicates a data interrupt re-
quest from timer n.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–9

Data Interrupt Mask Register

The CPTMR_DATA_IMSK register is used to mask data interrupts.

Data Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-6: CPTMR_DATA_IMSK Register Diagram

Table 20-10: CPTMR_DATA_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W)

CPT[nn] Data Interrupt Mask.

Writing a 0 to any of the CPTMR_DATA_IMSK.CPT[nn] bits enables the data in-
terrupt requests for timer n.

CM41X_M4 CPTMR Register Descriptions

20–10 ADSP-CM41x Mixed-Signal Control Processor

Data Interrupt Mask Clear Register

The CPTMR_DATA_IMSK_CLR register enables the data interrupt request for timer n

Data Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-7: CPTMR_DATA_IMSK_CLR Register Diagram

Table 20-11: CPTMR_DATA_IMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CPT[nn] Data Interrupt Mask Clear.

Writing a 1 to any of the CPTMR_DATA_IMSK_CLR.CPT[nn] bits enables the
data interrupt request for timer n. Writing a 0 has no effect.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–11

Data Interrupt Mask Set Register

The CPTMR_DATA_IMSK_SET register disables the data interrupt for timer n.

Data Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-8: CPTMR_DATA_IMSK_SET Register Diagram

Table 20-12: CPTMR_DATA_IMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1S)

CPT[nn] Data Interrupt Mask Set.

Writing a 1 to any of the CPTMR_DATA_IMSK_SET.CPT[nn] bits disables the
data interrupt for timer n. Writing a 0 has no effect.

CM41X_M4 CPTMR Register Descriptions

20–12 ADSP-CM41x Mixed-Signal Control Processor

Run Register

Writing a 1 to bit n of the CPTMR_RUN register starts timer n. Writing a 0 to bit n halts timer n.

Run
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-9: CPTMR_RUN Register Diagram

Table 20-13: CPTMR_RUN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W)

CPT[nn] Run.

Writing 1 to any of the CPTMR_RUN.CPT[nn] bits starts timer n. Writing 0 stops
the timer.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–13

Run Clear Register

Writing a 1 to bit n of the CPTMR_RUN_CLR register stops timer n. Writing a 0 has no effect.

Run
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-10: CPTMR_RUN_CLR Register Diagram

Table 20-14: CPTMR_RUN_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CPT[nn] Run Clear.

Writing a 1 to any of the CPTMR_RUN_CLR.CPT[nn] bits stops timer n. Writing a
0 has no effect.

CM41X_M4 CPTMR Register Descriptions

20–14 ADSP-CM41x Mixed-Signal Control Processor

Run Set Register

Writing a 1 to bit n of the CPTMR_RUN_SET register starts timer n. Writing a 0 has no effect.

Run
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-11: CPTMR_RUN_SET Register Diagram

Table 20-15: CPTMR_RUN_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1S)

CPT[nn] Run Set Register.

Write a 1 to any of the CPTMR_RUN_SET.CPT[nn] bits to start timer n.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–15

Interrupt Latch Status Register

The CPTMR_STAT_ILAT register indicates counter overflow errors.

Counter Overflow
CPT[nn] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-12: CPTMR_STAT_ILAT Register Diagram

Table 20-16: CPTMR_STAT_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CPT[nn] Counter Overflow.

A 1 in any of the CPTMR_STAT_ILAT.CPT[nn] bits indicates an overflow error
for timer n.

CM41X_M4 CPTMR Register Descriptions

20–16 ADSP-CM41x Mixed-Signal Control Processor

Status Interrupt Mask Register

The CPTMR_STAT_IMSK register is used to mask status interrupts.

Status Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-13: CPTMR_STAT_IMSK Register Diagram

Table 20-17: CPTMR_STAT_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W)

CPT[nn] Status Interrupt Mask.

Writing a 0 to any of the CPTMR_STAT_IMSK.CPT[nn] bits enables the status in-
terrupt for timer n.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–17

Status Interrupt Mask Clear Register

The CPTMR_STAT_IMSK_CLR register is used to unmask status interrupts.

Status Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-14: CPTMR_STAT_IMSK_CLR Register Diagram

Table 20-18: CPTMR_STAT_IMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CPT[nn] Status Interrupt Mask Clear.

Writing a 1 to any of the CPTMR_STAT_IMSK_CLR.CPT[nn] bits enables the
status interrupt request for timer n. Writing a 0 has no effect.

CM41X_M4 CPTMR Register Descriptions

20–18 ADSP-CM41x Mixed-Signal Control Processor

Status Interrupt Mask Set Register

The CPTMR_STAT_IMSK_SET register is used to mask status interrupt requests.

Status Interrupt Mask
CPT[nn] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-15: CPTMR_STAT_IMSK_SET Register Diagram

Table 20-19: CPTMR_STAT_IMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1S)

CPT[nn] Status Interrupt Mask Set.

Writing a 1 to any of the CPTMR_STAT_IMSK_SET.CPT[nn] bits disables the
status interrupt request for timer n. Writing a 0 has no effect.

CM41X_M4 CPTMR Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 20–19

On-time Capture Register

The CPTMR_TON[n] register captures the total on-time of the input waveform.

On-time Value

On-time Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 20-16: CPTMR_TON[n] Register Diagram

Table 20-20: CPTMR_TON[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE On-time Value.

CM41X_M4 CPTMR Register Descriptions

20–20 ADSP-CM41x Mixed-Signal Control Processor

21 Watchdog Timer (WDOG)

The processor has a 32-bit watchdog timer that can be used to verify system reliability by generating an event to the
processor core when the watchdog expires before software updates it.

There are two watchdog timers, one that uses SYSCLK one that uses SCLK0.

WDOG Features
The watchdog timer has the following features:

• Programmable 32-bit watchdog count value

• 8-bit disable bit pattern

• General-purpose system event generation

The watchdog timer can supervise system software stability by periodically reloading it to prevent expiration of the
downward-counting timer (such that the count never becomes 0). When used in this fashion, an expiring timer can
indicate the system software is not running normally.

Expiration of the WDOG counter generates a general-purpose interrupt, which can be used in a variety of ways:

• as an interrupt vector sent through the System Event Controller (SEC) to the core to be serviced by a handler
function, providing full software control of device resources (for example, GPIO management and reset con-
trol).

• as a fault condition through the SEC to provide hardware-automated:

• signalling of the fault condition on external pins to the system,

• system reset requests to the Reset Control Unit (RCU), and/or

• trigger outputs (SEC0_FAULT trigger master) through the Trigger Routing Unit (TRU) to initiate activi-
ties in a variety of potential trigger slaves (for example, GPIO control).

To facilitate debugging, the system may optionally prevent the watchdog from decrementing during emulation halt.

Watchdog Timer (WDOG)

ADSP-CM41x Mixed-Signal Control Processor 21–1

WDOG Functional Description
When enabled, the 32-bit watchdog timer counts downward every SCLK0_0 cycle. If it reaches zero, the watchdog
expiration event is generated, which can be used in many ways.

To start the watchdog timer:

1. Program the watchdog timeout period (in SCLK0_0 cycles) in the WDOG_CNT register. With the watchdog
disabled, this write also preloads the WDOG_STAT register.

2. Enable the watchdog timer by writing any value other than 0xAD to the WDOG_CTL.WDEN field.

Once the watchdog is enabled, writes to the WDOG_CNT register are ignored. The counter begins decrementing, and
the current counter value can be read from the 32-bit WDOG_STAT register at any time.

To prevent the counter from expiring, software must "kick" the watchdog by writing any value to the WDOG_STAT
register while the current count is non-zero. While the value written is irrelevant and ignored, this action resets the
current counter in the WDOG_STAT register to the programmed WDOG_CNT value, and decrementing continues.
The internal counter continues decrementing until it reaches zero, at which point the expiration event is generated,
and the WDOG_CTL.WDRO rollover bit is set.

Watchdog operation continues in this manner unless disabled by explicitly writing 0xAD to the WDOG_CTL.WDEN
field.

The watchdog expiration event can be used in a variety of ways, as listed below.

• The watchdog expiration event itself is one of numerous interrupt sources that is managed by the System Event
Controller. Like other peripheral sources, this event can be used to cause a vector to a handler function that
executes based on interrupt priority.

• The watchdog expiration event can be used to initiate automated hardware response through the SEC Fault
Interface (SFI).

For this, the WDOG expiry has to be configured as the fault source in the SEC. Then the response to the WDOG
expiry can be set to any of the below:

• Signalling through the external fault pin.

• System reset

• Trigger outputs to numerous potential trigger slaves.

For further details on how watchdog expiration event can be used with the SFI, see Configuring the WDOG Expiry
Event to Issue a System Reset.

WDOG Functional Description

21–2 ADSP-CM41x Mixed-Signal Control Processor

CM41X_M4 WDOG Register List

The Watchdog Timer unit (WDOG) provides a software-based watchdog timer that can improve system reliability
by generating an event to the processor core if the watchdog expires before being updated by software. A set of regis-
ters governs WDOG operations. For more information on WDOG functionality, see the WDOG register
descriptions.

Table 21-1: CM41X_M4 WDOG Register List

Name Description

WDOG_CNT Count Register

WDOG_CTL Control Register

WDOG_STAT Watchdog Timer Status Register

CM41X_M4 WDOG Interrupt List

Table 21-2: CM41X_M4 WDOG Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

34 WDOG1_EXP WDOG1 Expiration Level

35 WDOG0_EXP WDOG0 Expiration Level

CM41X_M0 WDOG Interrupt List

Table 21-3: CM41X_M0 WDOG Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

9 WDOG0_EXP WDOG0 Expiration Level

WDOG Block Diagram

The Watchdog Timer Block Diagram figure shows the detailed block diagram for the watchdog timer.

WDOG Functional Description

ADSP-CM41x Mixed-Signal Control Processor 21–3

EVENT
CONTROL

WRITE

SCLK0

WDOG_CNT

32

SCB BUS

READ

RELOAD

RESET
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

Figure 21-1: Watchdog Timer Block Diagram

Internal Interface

There are two watchdog units. One is clocked by SCLK0 and the other by SYSCLK The registers are accessed
through the 32-bit peripheral MMR access bus. 32-bit read/write operations always access the 32-bit WDOG_CNT
and WDOG_STAT registers. Hardware ensures that those accesses are atomic. When the counter expires, the
WDOG expiration event is generated.

External Interface

The watchdog timer does not directly interact with any external pins.

CM41X_M4 WDOG Register Descriptions
Watchdog Timer Unit (WDOG) contains the following registers.

Table 21-4: CM41X_M4 WDOG Register List

Name Description

WDOG_CNT Count Register

WDOG_CTL Control Register

WDOG_STAT Watchdog Timer Status Register

WDOG Functional Description

21–4 ADSP-CM41x Mixed-Signal Control Processor

Count Register

The WDOG_CNT register holds the programmable, unsigned count value. A valid write to this register also pre-loads
the WDOG counter. For added safety, the WDOG_CNT register can be updated only when the WDOG timer is
disabled. A write to the WDOG_CNT register while the timer is enabled does not modify the contents of this register.
This register must be accessed with 32-bit read/writes only.

Count Value

Count Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 21-2: WDOG_CNT Register Diagram

Table 21-5: WDOG_CNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Count Value.

The WDOG_CNT.VALUE bit field holds the programmable, unsigned count value.

CM41X_M4 WDOG Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 21–5

Control Register

The WDOG_CTL register controls the watchdog timer. This register supports enabling/disabling the watchdog timer
and supports checking the timer rollover status. Note that when the processor is in emulation mode, the watchdog
timer counter will not decrement even if it is enabled.

Watch Dog EnableWatch Dog Rollover
WDEN (R/W)WDRO (R/W1C)

0
15

0
14

0
13

0
12

1
11

0
10

1
9

0
8

1
7

1
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 21-3: WDOG_CTL Register Diagram

Table 21-6: WDOG_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

WDRO Watch Dog Rollover.

Software can determine whether the timer has rolled over by interrogating the
WDOG_CTL.WDRO status bit. This is a sticky bit that is set whenever the watch dog
timer count reaches 0 and cleared only by disabling the watch dog timer and then
writing a 1 to the bit.

0 WDT Has Not Expired

1 WDT Has Expired

11:4

(R/W)

WDEN Watch Dog Enable.

The WDOG_CTL.WDEN field is used to enable and disable the watchdog timer. Writ-
ing any value other than the disable value into this field enables the watchdog timer.
This multi-bit disable key minimizes the chance of inadvertently disabling the watch-
dog timer.

173 Counter Disabled. All other values mean that the coun-
ter is enabled.

CM41X_M4 WDOG Register Descriptions

21–6 ADSP-CM41x Mixed-Signal Control Processor

Watchdog Timer Status Register

The WDOG_STAT register contains the current count value of the watchdog timer. Reads of this register return the
current count value. When the watchdog timer is enabled, the WDOG_STAT register is decremented by 1 on each
SCLK cycle. When the count value reaches 0, the watchdog timer stops counting, and the expiry event is generated.
The WDOG_STAT register is a 32-bit unsigned system MMR that must be accessed with 32-bit reads and writes.

Values cannot be stored directly in this register but are instead copied from the WDOG_CNT register. This copy proc-
ess can happen in two ways:

• While the watchdog timer is disabled, writing the WDOG_CNT register pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, writing the WDOG_STAT register loads it with the value in the
WDOG_CNT register.

• While the watchdog timer is disabled, writing to the WDOG_STAT register also reloads it with the value in the
WDOG_CNT register.

When the processor executes a write (of an arbitrary value) to the WDOG_STAT register, the value in the
WDOG_CNT register is copied into the WDOG_STAT register. Typically, software sets the value of WDOG_CNT at
initialization, then periodically writes to the WDOG_STAT register before the watchdog timer expires. This reloads
the watchdog timer with the value from WDOG_CNT and prevents generation of the expiry event.

If the program does not reload the counter before SCLK x count register cycles, an expiry event is generated, and the
WDOG_CTL.WDRO bit is set. When this happens, the counter stops decrementing and remains at zero. If the coun-
ter is enabled with a zero loaded to the counter, the WDOG_CTL.WDRO bit is set immediately and the counter re-
mains at zero and does not decrement.

Current Count Value (Status)

Current Count Value (Status)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 21-4: WDOG_STAT Register Diagram

CM41X_M4 WDOG Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 21–7

Table 21-7: WDOG_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Current Count Value (Status).

The WDOG_STAT.VALUE bit field contains the current count value of the watchdog
timer.

CM41X_M4 WDOG Register Descriptions

21–8 ADSP-CM41x Mixed-Signal Control Processor

22 General-Purpose Counter (CNT)

The GP counter converts pulses from incremental position encoders into data that is representative of the actual
position of the pulse. This conversion is done by integrating (counting) pulses on one or two inputs. Since integra-
tion provides relative position, some devices also feature a zero-position input (zero marker). The GP counter can
use the zero position input feature to establish a reference point for verifying that the acquired position does not
drift over time. In addition, the GP counter can use the incremental position information to determine speed, if the
time intervals are measured.

The GP counter provides flexible ways to establish position information. When used with the GP timer block, the
GP counter can allow for the acquisition of coherent position or time stamp information that enables speed calcula-
tion.

GP Counter Features
The GP counter includes the following features:

• 32-bit up or down counter

• Quadrature encode mode (Gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up or down counting modes

• Zero marker or push-button support

• Capture event timing in association with GP Timer

• Boundary comparison and boundary setting features

• M/N frequency scaling of the inputs CUD/CDG

General-Purpose Counter (CNT)

ADSP-CM41x Mixed-Signal Control Processor 22–1

GP Counter Functional Description
The GP Counter Block Diagram shows a block diagram of the GP counter. The CNT_UD and CNT_DG pins accept
various forms of incremental inputs. The 32-bit counter processes the inputs. The GP counter uses the CNT_ZM
pin to sense the pressing of a push button.

NOTE: When enabled, the GP counter requires 3 SCLK cycles of initialization before recognizing valid toggles on
its input pins.

The three input pins can be filtered (debounced) before the GP counter evaluates them.

The GP counter features a flexible boundary comparison. In all of the operating modes, the counter can be com-
pared to an upper and lower limit. It takes various actions when reaching these limits.

The module can optionally generate an interrupt request to the system through its IRQ line. On many processors, a
GP timer module can use an output to generate time stamps on certain events.

PROGRAMMABLE
NOISE FILTERING

QEP
DIVIDER

32-BIT
QUADRATURE

COUNTER

BOUNDARY
DETECTION

LOGIC AND EVENT
GENERATION

CONTROL BLOCK
AND

PROCESSOR
INTERFACE

IRQ PERIPHERAL
BUS

CNT_UD

CNT_DG

CNT_ZM

CNT_OUTA

CNT_OUTB

TO GP TIMER
TMR_AUX_IN
(IF ENABLED)

Figure 22-1: GP Counter Block Diagram

The inputs CNT_UD (A-In) and CNT_DG (B-In) to the rotary counter may be selectively connected to the following
sources, under control of the SYSBLK_ROT_UPDN_CFG.SELA and SYSBLK_ROT_UPDN_CFG.SELB regis-
ter bit fields with the following options.

• Input from the CNT_UD and CNT_DG pins

• LBA SYS_OUT outputs

• TRU Trigger slaves for CNT_UD and CNT_DG

CM41X_M4 CNT Register List

The GP Counter (CNT) provides support for manually controlled rotary controllers, such as the volume wheel on a
radio device. This unit also supports industrial encoders.

GP Counter Functional Description

22–2 ADSP-CM41x Mixed-Signal Control Processor

The CNT converts pulses from incremental position encoders into data that is representative of the actual position.
To complete this task, the CNT integrates (counts) pulses on one or two inputs. Because integration provides rela-
tive position, a zero position input (zero marker) is usually provided that establishes a reference point, verifying that
the acquired position does not drift over time. The incremental position information may also be used to determine
speed, if the relevant time intervals are measured. The CNT provides flexible ways to establish position information.
When used in conjunction with the General-purpose Timer (TIMER), the CNT allows acquisition of coherent po-
sition/time stamp information, enabling speed calculation.

A set of registers govern CNT operations. For more information on CNT functionality, see the CNT register de-
scriptions.

Table 22-1: CM41X_M4 CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_CMD Command Register

CNT_CNTR Counter Register

CNT_DEBNCE Debounce Register

CNT_IMSK Interrupt Mask Register

CNT_MAX Maximum Count Register

CNT_MDIV M Value for Divider

CNT_MIN Minimum Count Register

CNT_NDIV N Value for Divider

CNT_STAT Status Register

CM41X_M4 CNT Interrupt List

Table 22-2: CM41X_M4 CNT Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

152 CNT0_STAT CNT0 Status Level

CM41X_M4 CNT Trigger List

Table 22-3: CM41X_M4 CNT Trigger List Masters

Trigger ID Name Description Sensitivity

27 CNT0_STAT CNT0 Status Level

85 CNT0_TO CNT0 Counter Output to Timer Block Level

86 CNT0_OUTA CNT0 Output Divider A Level

GP Counter Functional Description

ADSP-CM41x Mixed-Signal Control Processor 22–3

Table 22-3: CM41X_M4 CNT Trigger List Masters (Continued)

Trigger ID Name Description Sensitivity

87 CNT0_OUTB CNT0 Output Divider B Level

Table 22-4: CM41X_M4 CNT Trigger List Slaves

Trigger ID Name Description Sensitivity

78 CNT0_DG CNT0 Count Down and Gate Pulse

79 CNT0_UD CNT0 Count Up and Direction Pulse

GP Counter Operating Modes
The GP counter has the following five modes of operation.

1. Quadrature Encoder

2. Binary Encoder

3. Up/Down Counter

4. Direction Counter

5. Timed Direction

With the exception of the timed direction mode, the GP counter can operate with the GP timer block to capture
additional timing information (time stamps) associated with events detected by this block.

Quadrature Encoder Mode

In this mode, the CNT_UD and CNT_DG inputs expect a quadrature-encoded signal that is interpreted as a two-bit
Gray code. The order of transitions of the CNT_UD and CNT_DG inputs determines whether the counter incre-
ments or decrements. The CNT_CNTR register contains the number of transitions that have occurred as shown in
the Quadrature Events and Counting Mechanism table. Optionally, an interrupt is generated when both inputs
change within one SCLK cycle. Gray coding prohibits such transitions. Therefore, the CNT_CNTR register remains
unchanged, and an error condition is signaled.

Table 22-5: Quadrature Events and Counting Mechanism

CNT_COUNTER Reg-
ister Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG, CUD Inputs 00 01 11 10 00 01 11 10 00

It is possible to reverse the count direction of the Gray-coded signal by enabling the polarity inverter of either the
CNT_UD pin or the CNT_DG pin. Inverting both pins does not alter the behavior. The GP counter can enable this
feature with the CNT_CFG.CDGINV and CNT_CFG.CUDINV bits.

GP Counter Operating Modes

22–4 ADSP-CM41x Mixed-Signal Control Processor

As an example, the CNT_DG and CNT_UD inputs are 00 and the next transition is to 01. These inputs normally
change the counter in increments as shown in the table. If the CNT_UD polarity is inverted, this condition generates
a received input of 01 followed by 00. The results is a decrement of the counter, altering the behavior of the connec-
ted hardware.

Binary Encoder Mode

This mode is almost identical to quadrature encoder mode, with the exception that the CNT_UD: CNT_DG inputs
expect a binary-encoded signal. The order of transitions of the CNT_UD and CNT_DG inputs determines whether
the counter increments or decrements. The CNT_CNTR register contains the number of transitions that have occur-
red as shown in the Binary Events and Counting Mechanism table. Optionally, an interrupt is generated when the
detected code steps by more than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are erroneous.
Therefore, the CNT_CNTR register remains unchanged, and an error condition is signaled.

Table 22-6: Binary Events and Counting Mechanism

CNT_COUNTER Register Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 10 11 00 01 10 11 00

Reversing the CNT_UD and CNT_DG pin polarity has a different effect in binary encoder mode than for the quadra-
ture encoder mode. Inverting the polarity of the CNT_UD pin only, or inverting both the CNT_UD and CNT_DG
pins, results in reversing the count direction.

Up/Down Counter Mode

In this mode, the counter increments or decrements at every active edge of the input pins. The GP counter uses the
CNT_CFG.CUDINV bit to select an active edge and has the following results.

• If the GP counter module detects an active edge at the CNT_UD input, the counter increments.

• If the GP counter module detects an active edge at the CNT_DG input, the counter decrements.

• If simultaneous edges occur on the CNT_DG and CNT_UD pins, the counter remains unchanged, and both up-
count and down-count events are signaled in the CNT_STAT register.

Direction Counter Mode

In this mode, the counter is incremented or decremented at every active edge of the CNT_DG input pin. The state of
the CNT_UD input determines whether the counter increments or decrements. The GP counter uses the
CNT_CFG.CUDINV bit to select the polarity.

If the GP counter detects an active edge at the CNT_DG input, the counter value changes by one in the selected
direction.

Timed Direction Mode

In this mode, the counter is incremented or decremented at each SCLK cycle. The state of the CNT_UD input deter-
mines whether the counter increments or decrements. The GP counter uses the CNT_CFG.CUDINV bit to select

GP Counter Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 22–5

the polarity. The CNT_DG pin can be used to gate the clock. The GP counter uses the CNT_CFG.CDGINV bit to
select the polarity.

M/N Scaling

The GP counter provides programmable M/N frequency scaling of the CNT_UD and CNT_DG inputs. It supports
frequency scaling only when the inputs are in quadrature encoded mode, with support for both incrementing and
decrementing gray code, and with on-the-fly direction changing. The divided outputs are available on the GP coun-
ter output pins CNT_OUTA and CNT_OUTB.

To use M/N frequency scaling, set the CNT_CFG.DIVEN bit and program the M and N values in the CNT_MDIV
and CNT_NDIV registers. With division enabled, the output frequency on the CNT_OUTA and CNT_OUTB pins is:

fQOUT = fQIN × (M/N)

Where the frequency of the inputs on the CNT_UD and CNT_DG input pins is:

fQIN=1/tPERIOD

The M/N Scaling figure shows the M/N scaling implemented by the QEP dividers.

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 28262422 30 32 34

tPERIOD

tPERIOD(M/N)

CNT_DG

CNT_UD

CNT_OUTA

CNT_OUTB

Figure 22-2: M/N Scaling

The divided outputs (CNT_OUTA and CNT_OUTB pins) start after 1 QEP input pulse period as shown in the fig-
ure (and 1 or 2 system clocks (SCLK) based on the implementation). If debouncing is enabled and the
CNT_CFG.DIVNTV bit is not set, then the divided outputs start after 1 QEP pulse + the debouncing period
(tFILTER).

The M/N Scaling figure shows the full period scaled M/N (tPERIOD/(M/N). However, the value for scaling is meas-
ured from the rising edge of either of the inputs (CNT_UD or CNT_DG) to the rising edge of the other input. This
value gives the width of the QEP pulse and the value measured is scaled to create the M/N version. Each QEP pulse
is continuously measured and the values are constantly updated to create the divided outputs. The QEP width seen
on the output is not the exact M/N- scaled version of a measured QEP input width because the input frequency
changes. There is not a one-to-one correspondence for the QEP measured-width and the actual QEP M/N output.

GP Counter Operating Modes

22–6 ADSP-CM41x Mixed-Signal Control Processor

This difference is because the design constantly updates the measured values to the dividers. The output reflects a
type of weighted-average of the multiple QEP pulses measured. The Scaled Outputs with Increasing Frequency at
Inputs (Increasing Motor Speed) shows waveforms for an increasing input frequency.

CNT_OUTA

CNT_OUTB

CNT_DG

CNT_UD x2

x4

x3

x5

Y1

Y2

Y3

Y4

x1

Figure 22-3: Scaled Outputs with Increasing Frequency at Inputs (Increasing Motor Speed)

In the Scaled Outputs with Increasing Frequency at Inputs figure, X1, X2, X3, X4 and X5 are the input QEP widths
measured. (After X5 measurements, the widths remain constant. This period is also known as frequency stabilized.)
Y1, Y2, Y3 and Y4 are the QEP output widths (and all outputs keep to Y4 as the input frequency stabilized). Impor-
tantly,

• Y1 = X1/(M/N)

• Y2 = (Weighted Average of {X2 ,X3})/(M/N)

• Y3 = (Weighted Average of {X3, X4, X5})/(M/N)

• Y4 = X5/(M/N)

The weight applied for each measurement depends on when the measurement completes based on the outputs. It is
difficult to predict the exact weight. Similar behavior occurs with the decreasing frequency of inputs.

Set the CNT_CFG.DIVMODE bit to avoid weighted averaging. Once the bit is set, the output values are:

• Y1 = X1/(M/N)

• Y2 = X2/(M/N)

• Y3 = X3/(M/N)

• Y4 = X5/(M/N)

The default behavior of the QEP dividers is weighted-averaging.

The maximum error in the input width measured by the QEP dividers is ± 1 SCLK cycles. The maximum error on
the QEP divided outputs is ± N/M SCLK cycles.

NOTE: The count of output pulses created by this M/N scaling is not always M/N times the input pulses. The
input pulse counts are scaled N/M without many errors for large values of M/N. For small values, there are
errors. These errors can accumulate as the number of input pulses increases.

GP Counter Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 22–7

M/N Stop Detection

If there are no QEP input pulses after the last measured and translated QEP input pulse, then the QEP divider
responds as if the input (and therefore, the motor) has stopped. Once the stop condition is detected, the QEP divid-
er-outputs do not switch. A W1C status bit (CNT_STAT.STP) is set in the status register, and an interrupt is gen-
erated when the CNT_IMSK.STP bit is unmasked. Once the input QEP pulses restart, the QEP output pulses
restart after a delay of 1 QEP pulse.

CNT_UD

CNT_DG

CNT_OUTA

CNT_OUTB

STOP DETECT

Last Measured QEP Pulse Pulse Restarts

Output RestartsX Y

2Y

Figure 22-4: M/N Stop Detection

NOTE: The figure depicts an N/M ratio of 3/2.

Y = X × N/M

If there are no QEP pulses seen during the period 2Y, then the QEP dividers assume that inputs have stopped. The
QEP output does not toggle until a new input pulse is identified. Even if there are errors such as trembles or illegal
Gray code that occur during this period, the stop condition is still detected. The error cases are not treated as a valid
QEP pulse.

If the input width varies from one QEP pulse to the other more by more than 2Y, then a false stop is detected.
Therefore, the maximum supported deceleration rate is from X to 2Y. This rate translates to a width-change of X to
2X × N/M between two QEP pulses. Using a worst case of N/M = 1, the maximum a pulse width can change is
twice the size of the previous pulse. So, the allowable width of a QEP pulse following a 20 µs pulse is <40 µs (with
N/M=1). Similarly, if there is a 1 ms QEP, the pulse that follows is within 2 ms. If not, a stop condition is detected
at N/M=1.

The stop detection interrupt or status is also raised when a QEP pulse is wide and caused the internal counter to
overflow. The internal counter-overflow occurs if the pulse is larger than 4,026,531,840 × M (or hex
(0xF000_0000) × M) system clock cycles.

NOTE: If new QEP pulses are identified with a different direction after a STOP is detected, no direction-change
interrupt occurs. (The dividers assume that the pulse is new start after the STOP detection.) However, the
QEP dividers start providing the output with the new direction.

M/N Scaling

22–8 ADSP-CM41x Mixed-Signal Control Processor

M/N Error Condition

If the CNT_UD/CNT_DG does not follow the quadrature encoder mode, then the outputs continue to run in quad-
rature encoder mode using the QEP input width measured before the error condition. (The error is ignored.) Al-
though the output continues to run, the counter raises an illegal Gray code interrupt when the inputs are not in
quadrature encode mode with CNT_CFG.CNTMODE set to QUAD_ENC mode.

To stop the QEP dividers on an error condition, disable the CNT_CFG.DIVEN bit to three-state the CNT_OUTA/
CNT_OUTB divided outputs immediately.

M/N Restrictions

The following restrictions apply to the programmable M and N values.

a) M, N values cannot be changed on-the-fly (when the CNT_CFG.DIVEN bit =1).

b) M<fSYSCLK/fQIN(max), where fQIN is input frequency, fSYSCLK is the frequency of the system clock.

c) N is greater than or equal to M (n≥M)

d) N is greater than 1 (N>1)

e) M is greater than 1 (M>1)

If M>fSYSCLK/fQIN(max), then an error status bit (CNT_STAT.MERR) is set and an interrupt is generated (if the
interrupt enable bit (CNT_IMSK.MERR) is set). This sequence of events occurs each time the QEP input pulse
frequency does not meet the requirement after the end of each QEP input pulse.

The Max M Values table shows the maximum M values for fSYSCLK = 100 MHz.

Table 22-7: Max M Values

fQIN(KHz) M

6666.66 15

2000.0 50

333.33 300

166.67 600

GP Counter Programming Model
The following sections provide information for programming the interface.

GP Counter General Programming Flow

The following are general guidelines for configuring and enabling the GP counter.

1. Initialize (but do not enable) the GP counter for the desired mode and settings through the CNT_CFG register.

M/N Scaling

ADSP-CM41x Mixed-Signal Control Processor 22–9

2. Usually, events of interest are processed using interrupts rather than by polling status bits. In this case, clear all
status bits and activate the interrupt generation requests with the CNT_IMSK register.

3. Configure interrupts at the system level to insure desired interrupt signaling to the system.

4. If timing information is required, set up the relevant GP Timer in width capture mode.

5. Finally, enable interrupt requests and the GP Counter itself using the CNT_IMSK and CNT_CFG registers,
respectively.

M/N Scaling Programming Guidelines

To use the QEP dividers, set both the CNT_CFG.EN and CNT_CFG.DIVEN bits. Note that the counter must be
enabled at least two system clock (SCLK) cycles before enabling the rotary dividers (set CNT_CFG.EN at least 2
SCLK cycles before setting the CNT_CFG.DIVEN bit. To detect an illegal gray code error condition, program the
CNT_CFG.CNTMODE for quadrature encode mode (QUAD_ENC).

The polarity bits (CNT_CFG.CDGINV and CNT_CFG.CUDINV) do not invert the QEP divider outputs, the
QEP divider output polarity is the same as the input polarity. However the polarity bits cannot be changed on the
fly when the rotary dividers are running (the polarity bits should not be changed when the CNT_CFG.DIVEN bit
=1). If this occurs, it may be treated as an error or a direction change by the QEP dividers. Do not change the
CNT_CFG bits on the fly when QEP dividers are enabled.

GP Counter Mode Configuration

The GP counter can use the CNT_ZM input pin to sense the zero marker output of a rotary device or to detect the
pressing of a push button. There are four programming schemes, which are functional in all counter modes:

• Push-button mode

• Zero-marker-zeros-counter mode

• Zero-marker-error mode

• Zero-once mode

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation:

1. Set CNT_IMSK.CZM to enable (unmask) the zero marker interrupt.

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

An active edge at the CNT_ZM input sets the CNT_IMSK.CZM bit.

Configuring Zero-Marker-Zeros-Counter Mode

The following provides information on configuring zero-marker-zeros-counter mode for the GP counter.

GP Counter Programming Model

22–10 ADSP-CM41x Mixed-Signal Control Processor

1. Set CNT_IMSK.CZMZ to enable CNT_CNTR. The zero marker interrupt zeroes the counter.

2. Set CNT_CFG.ZMZC to enable ZMZC mode.

3. Select the active edge polarity through the CNT_CFG.CZMINV bit.

4. Proceed with any other desired configuration steps and enable the peripheral.

This configuration causes an active level at the CNT_ZM pin to clear the CNT_CNTR register and keep it cleared
until the CNT_ZM pin is deactivated. In addition, the CNT_STAT.CZMZ bit is set.

Configuring Zero-Marker-Error Mode

The GP counter uses this mode to detect discrepancies between counter-value and the zero marker output of certain
rotary encoder devices.

1. Set the CNT_STAT.CZME bit to enable this mode.

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

When the GP counter detects an active edge at the CNT_ZM input pin, it compares the four LSBs of the
CNT_CNTR register to zero. If they are not zero, the GP counter uses CNT_STAT.CZME bit to signal a mismatch.

Configuring Zero-Once Mode

The GP counter uses this mode to perform an initial reset of the counter-value when it detects an active zero marker.
After that, the zero marker is ignored (the counter is no longer reset).

1. Set the CNT_CMD.W1ZMONCE bit to enable this mode.

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Ensure that at least one of the following bits is enabled: CNT_IMSK.CZM, CNT_IMSK.CZME,
CNT_IMSK.CZMZ.

4. Proceed with any other desired configuration steps and enable the peripheral.

The CNT_CNTR register and the CNT_CMD.W1ZMONCE bit are cleared on the next active edge of the CNT_ZM
pin. Now the CNT_CMD.W1ZMONCE bit can be read to check whether the event has already occurred.

Configuring Boundary Auto-Extend Mode

In this mode, hardware modifies the boundary registers (CNT_MIN and CNT_MAX) whenever the CNT_CNTR val-
ue reaches either of them. The GP counter uses this mode to monitor the widest angle a thumb wheel even if the
software did not generate interrupts.

1. Initialize CNT_CNTR with the desired value.

2. Set both CNT_MIN and CNT_MAX to this same value.

GP Counter Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 22–11

3. Configure the CNT_CFG.BNDMODE field for auto extend mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

The CNT_MAX register is loaded with the current CNT_CNTR value when the latter increments beyond the
CNT_MAX value. Similarly, the CNT_MIN register is loaded with the CNT_CNTR value when the latter decrements
below the CNT_MIN value. The CNT_STAT.MAXC and CNT_STAT.MINC status bits are set when the
CNT_CNTR value matches the respective boundary register value.

Configuring Boundary Capture Mode

In this mode, the CNT_CNTR value is latched into the CNT_MIN register at one detected edge of the CNT_ZM
input pin, and latched into the CNT_MAX boundary register at the opposite edge.

1. To capture the CNT_ZM pin rising edge into CNT_MIN and the falling edge into CNT_MAX, program
CNT_CFG.CZMINV for active high polarity. Conversely, to capture the CNT_ZM pin falling edge into
CNT_MIN and the rising edge into CNT_MAX, program CNT_CFG.CZMINV for active low polarity.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

3. Configure the CNT_CFG.BNDMODE field for boundary capture mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

The CNT_STAT.MAXC and CNT_STAT.MINC status bits report the capture event, depending on how interrupt
masks are configured.

Configuring Boundary Compare and Boundary Zero Modes

In these modes, the two boundary registers (CNT_MAX and CNT_MIN) are compared to the value in the
CNT_CNTR register.

1. Program CNT_MAX and CNT_MIN registers with appropriate upper and lower range values.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

3. Configure the CNT_CFG.BNDMODE field for boundary compare mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

If after incrementing, CNT_CNTR = CNT_MAX, then the CNT_STAT.MAXC bit is set. Similarly if after decre-
menting, CNT_CNTR = CNT_MIN, then the CNT_STAT.MINC bit is set.

Additionally, for boundary zero mode, the counter-value in CNT_CNTR is set to zero. The CNT_STAT.MAXC and
CNT_STAT.MINC bits are not set when software updates the CNT_MAX or CNT_MIN registers.

GP Counter Mode Configuration

22–12 ADSP-CM41x Mixed-Signal Control Processor

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation:

1. Set CNT_IMSK.CZM to enable (unmask) the zero marker interrupt.

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

An active edge at the CNT_ZM input sets the CNT_IMSK.CZM bit.

GP Counter Programming Concepts

Using the features, operating modes, and event control for the GP counter to their greatest potential requires an
understanding of some GP counter-related concepts. Some key aspects to consider are input noise filtering and cap-
turing timing information.

CNT Input Noise Filtering

In all modes, the three input pins can be filtered to present clean signals to the GP counter logic. The GP counter
uses the CNT_CFG.DEBEN bit to enable or disable this filtering. The Programmable Noise Filtering figure shows
the filtering operation for the CNT_UD pin.

NOISY EDGES

CUD FILTERED

CNT_UD

t filter

Figure 22-5: Programmable Noise Filtering

The CNT module implements the filtering mechanism using counters for each GP counter pin, where each counter
is initialized from the CNT_DEBNCE.DPRESCALE field. When a transition is detected on a pin, the correspond-
ing counter starts counting up to the programmed number of SCLK cycles. The state of the pin is latched after time
tfilter and passed on to the GP counter logic.

The following formula determines the time tfilter, given SCLK and the CNT_DEBNCE.DPRESCALE value, where
lower values of CNT_DEBNCE.DPRESCALE result in shorter debounce delays:

tfilter = 128 × (2 DPRESCALE × SCLK)

Capturing Counter Interval and CNT_CNTR Read Timing

When the count speed is low, it is often useful to capture the time elapsed since the last count event. Program the
TIMER_TMR[n]_CFG register of the associated GP timer in a width capture mode with the following bit settings.

• TIMER_TMR[n]_CFG.PULSEHI = 0

• TIMER_TMR[n]_CFG.TMODE = b#1011

• TIMER_TMR[n]_CFG.TINSEL = 1

GP Counter Mode Configuration

ADSP-CM41x Mixed-Signal Control Processor 22–13

The Capture Intervals figure shows and the following list describe the operation of the GP counter and the GP
timer in this mode.

SCLK

CNT_TO Output

CNT_CNTR

CNT_CNTR Read

TMR_PER

Measurement
report of interest
due to read of
CNT_CNTR

1 2 3 4 5 6

12 3 3 8

142211

x 2 3 3 8

142211

12 1 2 1 2 3 1 2 3 1 2 3 4 5 6 7 8 1 2

x 2

1

12

1

CNT_UD

CNT_DG

TIMER_TMRn_CNT

TIMER_TMRn_PER
BUFFER

TIMER_TMRn_WID
BUFFER

TIMER_TMRn_PER

TIMER_TMRn_WID

Figure 22-6: Capture Intervals

NOTE: SCLK in the Capture Intervals figure is SCLK.

1. The CNT_TO signal generates a pulse every time a count event occurs. In addition, when the processor reads
the CNT_CNTR register, the CNT_TO signal presents a pulse which is extended (high) until the next count
event.

2. The GP timer updates its TIMER_TMR[n]_PER register with the period (measured from falling edge to fall-
ing edge, because TIMER_TMR[n]_CFG.PULSEHI = 0) of the CNT_TO signal.

3. The TIMER_TMR[n]_WID register is updated with the pulse width (the portion where CNT_TO is low,
again because TIMER_TMR[n]_CFG.PULSEHI = 0).

4. Both registers are updated at every rising edge of the CNT_TO signal (because
TIMER_TMR[n]_CFG.TMODE= b#011).

The TIMER_TMR[n]_PER register contains the period between the last two count events. The
TIMER_TMR[n]_WID register contains the time since the last count event and the read of the CNT_CNTR regis-
ter, both measured in SCLK cycles.

Read the CNT_CNTR register to latch the two time measurements, providing a coherent triplet of information to
calculate speed and position.

GP Counter Programming Concepts

22–14 ADSP-CM41x Mixed-Signal Control Processor

NOTE: Speed restrictions apply to the use of the CNT_TO signal. Therefore, programs must not operate at count
event rates that are high. For instance, if CNT_CNTR is incremented or decremented every SCLK cycle
(timed direction mode), the CNT_TO signal is not valid.

Capturing Time Interval Between Successive Counter Events

When the required timing information is the interval between successive count events, program the associated timer
in a width capture mode. Set the TIMER_TMR[n]_CFG bit of TIMER_TMR[n]_CFG.PULSEHI = 1,
TIMER_TMR[n]_CFG.TMODE = b#1010 and TIMER_TMR[n]_CFG.TINSEL = 1. Typically, this informa-
tion is sufficient if the speed of GP counter events does not to reach low values.

The Period Register Timing figure shows the operation of the GP counter and the GP timer in this mode.

SCLK

CNT_UD

CNT_DG

CNT_TO
SIGNAL

CNT_CNTR

TIMER_TMRn_CNT

TIMER_TMRn_PER
BUFFER

TIMER_TMRn_WID
BUFFER

TIMER_TMRn_PER

TMR_PER

TIMER_TMRn_WID

Measurement
reports available

1 2 3 4 5

10 3 7 3 4

11111

10 3 7 3 4

11111

1 2 3 1 2 3 4 5 6 7 1 2 3 1 2 3 4 1 2

Figure 22-7: Period Register Timing

The CNT_TO signal generates a pulse every time a count event occurs. The GP timer updates its
TIMER_TMR[n]_PER register with the period (measured from rising edge to rising edge) of the CNT_TO signal.
The TIMER_TMR[n]_PER register is updated at every rising edge of the CNT_TO signal and contains the num-
ber of SCLK cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_TMR[n]_WID register is also updated at the same time, but is generally of no interest in
this mode of operation. If no reads of the CNT_CNTR register occur between counter events, the
TIMER_TMR[n]_WID register only contains the width of the CNT_TO pulse. If a read of CNT_CNTR has occur-
red between events, the TIMER_TMR[n]_WID register contains the time between the read of CNT_CNTR and the
next event.

This mode can also be used with TIMER_TMR[n]_CFG.PULSEHI = 0. In this case, the period of CNT_TO is
measured between falling edges. It results in the same values as in the previous case, only the latching occurs one
SCLK cycle later.

GP Counter Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 22–15

GP Counter Event Control
Eleven events can be signaled to the processor using status information and optional interrupt requests. The GP
counter uses the respective bits in the CNT_IMSK register to enable the interrupt requests. It uses dedicated bits in
the CNT_STAT register to report events. When an interrupt request from the GP counter is serviced, the applica-
tion software is responsible for correct interpretation of the events. It is recommended to logically AND the content
of the CNT_IMSK and CNT_STAT registers to identify pending interrupt requests.

Perform a write-one-to-clear (W1C) operation to the CNT_STAT register to clear the interrupt requests. Hardware
does not clear the status bits automatically, unless the counter module is disabled.

The following sections describe the events associated with the GP counter.

Illegal Gray and Binary Code Events

When illegal transitions occur in quadrature encoder or binary encoder modes, the CNT_STAT.IC bit is set. If
enabled by the CNT_STAT.IC bit, the counter module generates an interrupt request. Set the CNT_STAT.IC bit
only in the quadrature encoder or binary encoder modes.

Up/Down Count Events

The GP counter uses the CNT_STAT.UC bit to indicate whether the counter has been incremented. Similarly, the
CNT_STAT.DC bit reports decrements. The two events are independent. For instance, if the counter increments by
one and then decrements by two, both bits remain set, even though the resulting counter-value shows a decrement
by one.

In up/down counter mode, hardware can detect simultaneous active edges on the CNT_UD and CNT_DG inputs. In
that case, the CNT_CNTR remains unchanged, but both the CNT_STAT.UC and CNT_STAT.DC bits are set. In-
terrupt requests for these events can be enabled through the CNT_IMSK.UC and CNT_IMSK.DC bits. Use this
feature carefully when the counter is clocked at high rates. This suggestion is especially critical when the counter
operates in DIR_TMR mode, as interrupts are generated every SCLK cycle.

These events can also be used for more push buttons, when GP counter features are unnecessary. When up/down
counter mode is enabled, the GP counter can use these count events to report interrupts from push buttons that
connect to the CNT_UD and CNT_DG inputs.

Zero-Count Events

The CNT_STAT.CZERO status bit indicates that the CNT_CNTR has reached a value equal to 0x0000 0000 after
an increment or decrement. This bit is not set when the counter value is set to zero by a write to CNT_CNTR or by
setting the CNT_CMD.W1LCNTZERO bit. If enabled by the CNT_IMSK.CZERO bit, the GP counter module gen-
erates an interrupt request.

GP Counter Event Control

22–16 ADSP-CM41x Mixed-Signal Control Processor

Overflow Events

There are two status bits that indicate whether the signed counter-register has overflowed from a positive to a nega-
tive value or conversely. The CNT_STAT.COV31 bit reports that the 32-bit CNT_CNTR register has either
incremented from 0x7FFF FFFF to 0x8000 0000, or decremented from 0x8000 0000 to 0x7FFF FFFF.

If enabled by the CNT_IMSK.COV31 bit, an interrupt request is generated. Similarly, in applications where only
the lower 16 bits of the counter are of interest, the CNT_STAT.COV15 status bit reports counter transitions from
0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to 0xXXXX 7FFF. If enabled by the
CNT_IMSK.COV15 bit, an interrupt request is generated.

Boundary Match Events

The CNT_STAT.MINC and CNT_STAT.MAXC status bits report boundary events as described in Configuring
Boundary Capture Mode. These bits are not set if the software updates the CNT_CNTR, CNT_MAX, or CNT_MIN
registers or writes to the CNT_CMD register. The CNT_IMSK.MINC and CNT_IMSK.MAXC bits enable interrupt
request generation on boundary events.

Zero Marker Events

The CNT_STAT.CZM, CNT_STAT.CZME, and CNT_STAT.CZMZ bits are associated with zero marker events,
as described in Configuring GP Counter Push-Button Operation. Each of these events can optionally generate an
interrupt request, when enabled by the corresponding CNT_IMSK.CZM, CNT_IMSK.CZME and
CNT_IMSK.CZMZ bits.

CM41X_M4 CNT Register Descriptions
CNT (CNT) contains the following registers.

Table 22-8: CM41X_M4 CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_CMD Command Register

CNT_CNTR Counter Register

CNT_DEBNCE Debounce Register

CNT_IMSK Interrupt Mask Register

CNT_MAX Maximum Count Register

CNT_MDIV M Value for Divider

CNT_MIN Minimum Count Register

CNT_NDIV N Value for Divider

CNT_STAT Status Register

GP Counter Event Control

ADSP-CM41x Mixed-Signal Control Processor 22–17

Configuration Register

The CNT_CFG register configures counter modes, configures input pins, and enables the CNT.

CUD Pin Polarity InvertCZM Pin Polarity Invert

CDG Pin Polarity InvertDivider Mode

Non-debounced Inputs to Divider EnableCounter Operating Mode

Divider EnableCZM Zeros Counter Enable

Debounce EnableBoundary Register Mode

Counter EnableCUD and CDG Pin Input Disable

CUDINV (R/W)CZMINV (R/W)

CDGINV (R/W)DIVMODE (R/W)

DIVNTV (R/W)CNTMODE (R/W)

DIVEN (R/W)ZMZC (R/W)

DEBEN (R/W)BNDMODE (R/W)

EN (R/W)INPDIS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-8: CNT_CFG Register Diagram

Table 22-9: CNT_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

INPDIS CUD and CDG Pin Input Disable.

The CNT_CFG.INPDIS disables or enables the CNT_UD input pin and the
CNT_DG pin.

0 Enable

1 Pin Input Disable

13:12

(R/W)

BNDMODE Boundary Register Mode.

The CNT_CFG.BNDMODE bit field selects the mode for the CNT_MIN and
CNT_MAX boundary registers.

0 BND_COMP. Boundary Compare Mode

1 BND_ZERO. Boundary Zero Mode

2 BND_CAPT. Boundary Capture Mode

3 BND_AEXT. Boundary Auto-extend Mode

CM41X_M4 CNT Register Descriptions

22–18 ADSP-CM41x Mixed-Signal Control Processor

Table 22-9: CNT_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

ZMZC CZM Zeros Counter Enable.

The CNT_CFG.ZMZC bit enables or disables level sensitive - active CNT_ZM pin op-
eration to zero the CNT_CNTR register.

0 Disable

1 Enable

10:8

(R/W)

CNTMODE Counter Operating Mode.

The CNT_CFG.CNTMODE bit field selects the operating mode for the CNT_UD input
pin and the CNT_DG pin.

0 QUAD_ENC. Quadrature Encoder Mode

1 BIN_ENC. Binary Encoder Mode

2 UD_CNT. Rotary Counter Mode

4 DIR_CNT. Direction Counter Mode

5 DIR_TMR. Direction Timer Mode

7

(R/W)

DIVMODE Divider Mode.

The CNT_CFG.DIVMODE bit selects between weighted and non weighted averaging.
This bit is used in M/N Scaling mode.

0 Weighted Average Division

1 Non Weighted Division

6

(R/W)

CZMINV CZM Pin Polarity Invert.

The CNT_CFG.CZMINV bit selects the polarity for the CNT_ZM pin. This polarity
must be configured before the counter is enabled. It must not change on-the-fly while
the counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

5

(R/W)

CUDINV CUD Pin Polarity Invert.

The CNT_CFG.CUDINV bit selects the polarity for the CNT_UD pin. This polarity
must be configured before the counter is enabled. It must not change on-the-fly while
the counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–19

Table 22-9: CNT_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

CDGINV CDG Pin Polarity Invert.

The CNT_CFG.CDGINV bit selects the polarity for the CNT_DG pin. This polarity
must be configured before the counter is enabled. It must not change on-the-fly while
the counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

3

(R/W)

DIVNTV Non-debounced Inputs to Divider Enable.

The CNT_CFG.DIVNTV bit enables non-debounced inputs to the divider.

0 Disable

1 Enable

2

(R/W)

DIVEN Divider Enable.

The CNT_CFG.DIVEN bit enables the divider.

0 Disable

1 Enable

1

(R/W)

DEBEN Debounce Enable.

The CNT_CFG.DEBEN bit enables or disables CNT input debounce filtering opera-
tion selected with the CNT_DEBNCE register.

0 Disable

1 Enable

0

(R/W)

EN Counter Enable.

The CNT_CFG.EN bit enables or disables CNT operation.

0 Counter Disable

1 Counter Enable

CM41X_M4 CNT Register Descriptions

22–20 ADSP-CM41x Mixed-Signal Control Processor

Command Register

The CNT_CMD register configures the CNT, enabling operations such as zeroing a counter register and copying or
swapping boundary registers. These actions are taken by setting the appropriate bit.

Read operations from this register do not return meaningful values, with the exception of the
CNT_CMD.W1ZMONCE bit, where a set bit indicates that the bit has been set by software before, but a zero marker
event has not yet been detected on the CNT_ZM pin yet. For more information, see the CNT functional description.

The CNT_CNTR, CNT_MIN, and CNT_MAX registers can be initialized to zero by setting the
CNT_CMD.W1LCNTZERO, CNT_CMD.W1LMINZERO, and CNT_CMD.W1LMAXZERO bits. In addition to clear-
ing registers, the CNT_CMD register permits modifying the CNT_MIN and CNT_MAX boundary registers in a num-
ber of ways. The current counter value in the CNT_CNTR register can be captured and loaded into either of the two
boundary registers to create new boundary limits. This operation is performed by setting the
CNT_CMD.W1LMAXCNT and CNT_CMD.W1LMINCNT bits. Alternatively, the counter can be loaded from
CNT_MAX or CNT_MIN using the CNT_CMD.W1LCNTMAX and CNT_CMD.W1LCNTMIN bits. It is also possible
to transfer the current CNT_MAX value into CNT_MIN (or conversely) through the CNT_CMD.W1LMINMAX and
CNT_CMD.W1LMAXMIN bits.

Another counter operation is the ability to only have the zero marker clear the CNT_CNTR register once. For more
information, see the CNT functional description.

It is possible for multiple actions to be performed simultaneously by setting multiple bits in the CNT_CMD register.
However, there are restrictions. The bits associated with each command have been grouped together such that all
bits that involve a write to the CNT_CNTR, CNT_MAX, or CNT_MIN registers are located within bits 4-bit groups
of the CNT_CMD register.

Note that a maximum of three commands can be issued at any one time, excluding the CNT_CMD.W1ZMONCE
command. Also, note that CNT_CMD.W1LCNTMIN, CNT_CMD.W1LCNTMAX, and CNT_CMD.W1LCNTZERO
bits have to be used exclusively. Never set more than one of them at the same time.

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–21

Write 1 MIN Capture from CNTRWrite 1 MIN Copy from MAX

Write 1 MIN to ZeroWrite 1 MAX to Zero

Write 1 CNTR Load from MAXWrite 1 MAX Capture from CNTR

Write 1 CNTR Load from MINWrite 1 MAX Copy from MIN

Write 1 CNTR to ZeroWrite 1 Zero Marker Clear Once Enable

W1LMINCNT (R0/W)W1LMINMAX (R0/W)

W1LMINZERO (R0/W)W1LMAXZERO (R0/W)

W1LCNTMAX (R0/W)W1LMAXCNT (R0/W)

W1LCNTMIN (R0/W)W1LMAXMIN (R0/W)

W1LCNTZERO (R0/W)W1ZMONCE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-9: CNT_CMD Register Diagram

Table 22-10: CNT_CMD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

W1ZMONCE Write 1 Zero Marker Clear Once Enable.

The CNT_CMD.W1ZMONCE enables a single zero marker clear of the CNT_CNTR
register. Reading a 1 in this bit indicates that the bit has been set by software before,
but no zero marker event has been detected on the CNT_ZM pin yet.

10

(R0/W)

W1LMAXMIN Write 1 MAX Copy from MIN.

The CNT_CMD.W1LMAXMIN bit transfers the current CNT_MIN register value into
CNT_MAX register.

9

(R0/W)

W1LMAXCNT Write 1 MAX Capture from CNTR.

The CNT_CMD.W1LMAXCNT bit loads the current value in the CNT_CNTR register
into the CNT_MAX register to create a new boundary limit.

8

(R0/W)

W1LMAXZERO Write 1 MAX to Zero.

Writing a 1 to the CNT_CMD.W1LMAXZERO bit clears the CNT_MAX register.

7

(R0/W)

W1LMINMAX Write 1 MIN Copy from MAX.

The CNT_CMD.W1LMINMAX bit transfers the current CNT_MAX register value into
CNT_MIN register.

5

(R0/W)

W1LMINCNT Write 1 MIN Capture from CNTR.

The CNT_CMD.W1LMINCNT bit loads the current value in the CNT_CNTR register
into the CNT_MIN register to create a new boundary limit.

4

(R0/W)

W1LMINZERO Write 1 MIN to Zero.

Writing a 1 to the CNT_CMD.W1LMINZERO bit clears the CNT_MIN register.

CM41X_M4 CNT Register Descriptions

22–22 ADSP-CM41x Mixed-Signal Control Processor

Table 22-10: CNT_CMD Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R0/W)

W1LCNTMAX Write 1 CNTR Load from MAX.

The CNT_CMD.W1LCNTMAX bit loads the current value in the CNT_MAX register
into the CNT_CNTR register to create a new boundary limit.

2

(R0/W)

W1LCNTMIN Write 1 CNTR Load from MIN.

The CNT_CMD.W1LCNTMIN bit loads the current value in the CNT_MIN register
into the CNT_CNTR register to create a new boundary limit.

0

(R0/W)

W1LCNTZERO Write 1 CNTR to Zero.

Writing a 1 to the CNT_CMD.W1LCNTZERO bit clears the CNT_CNTR register.

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–23

Counter Register

The CNT_CNTR register holds the 32-bit, two's-complement count value. It can be read and written at any time.
Hardware ensures that reads and write are atomic, by providing respective shadow registers. This register can be ac-
cessed with either 32-bit or 16-bit operations. This allows use of the CNT as a 16-bit counter if sufficient for the
application.

CNTR Value

CNTR Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-10: CNT_CNTR Register Diagram

Table 22-11: CNT_CNTR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE CNTR Value.

The CNT_CNTR.VALUE bit field holds the 32-bit, two's-complement count value.

CM41X_M4 CNT Register Descriptions

22–24 ADSP-CM41x Mixed-Signal Control Processor

Debounce Register

The CNT_DEBNCE register selects the noise filtering characteristic of the three input pins according to the formula:

tfilter = 128 x (2DPRESCALE/ SCLK)

Debounce Prescale
DPRESCALE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-11: CNT_DEBNCE Register Diagram

Table 22-12: CNT_DEBNCE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4:0

(R/W)

DPRESCALE Debounce Prescale.

The CNT_DEBNCE.DPRESCALE selects the desired number of input filtering cycles
(and resulting input debounce time) in multiples of SCLK.

0 1x cycles = 128 SCLK cycles

1 2x cycles

2 4x cycles

3 8x cycles

4 16x cycles

5 32x cycles

6 64x cycles

7 128x cycles

8 256x cycles

9 512x cycles

10 1024x cycles

11 2048x cycles

12 4096x cycles

13 8192x cycles

14 16384x cycles

15 32768x cycles

16 65536x cycles

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–25

Table 22-12: CNT_DEBNCE Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17 131072x cycles

18 Reserved from this value. The values 10010 - 11111 are
reserved.

31 Reserved until this value

CM41X_M4 CNT Register Descriptions

22–26 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Mask Register

The CNT_IMSK register supports enabling (unmasking) interrupt request generation from each of the CNT events.

All bits in CNT_IMSK either disable/mask an interrupt request (if bit cleared) or enable/unmask an interrupt re-
quest (if bit set).

Enable
CNT_CNTR Counts To Zero Interrupt

Bit 15 Overflow Interrupt Enable

CZM Pin/Pushbutton Interrupt Enable

Bit 31 Overflow Interrupt Enable

Zero Marker Error Interrupt Enable

Max Count Interrupt Enable

Enable
Counter Zeroed by Zero Marker Interrupt

Min Count Interrupt Enable
Stop Detect Interrupt Enable

Downcount Interrupt Enable
Enable
M Value Programming Error Interrupt

Upcount Interrupt EnableDirection Error Interrupt Enable

Illegal Gray/Binary Code Interrupt EnableDirection Change Interrupt Enable

CZERO (R/W)

COV15 (R/W)

CZM (R/W)

COV31 (R/W)

CZME (R/W)

MAXC (R/W)
CZMZ (R/W)

MINC (R/W)
STP (R/W)

DC (R/W)MERR (R/W)

UC (R/W)DERR (R/W)

IC (R/W)DCHNG (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-12: CNT_IMSK Register Diagram

Table 22-13: CNT_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W)

DCHNG Direction Change Interrupt Enable.

The CNT_IMSK.DCHNG bit enables (unmasks) the direction change interrupt re-
quest.

0 Mask Interrupt

1 Unmask Interrupt

13

(R/W)

DERR Direction Error Interrupt Enable.

0 Mask Interrupt

1 Unmask Interrupt

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–27

Table 22-13: CNT_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

MERR M Value Programming Error Interrupt Enable.

The CNT_IMSK.MERR bit enables (unmasks) the M value programming error inter-
rupt request.

0 Mask Interrupt

1 Unmask Interrupt

11

(R/W)

STP Stop Detect Interrupt Enable.

The CNT_IMSK.STP bit enables (unmasks) the stop detect interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

10

(R/W)

CZMZ Counter Zeroed by Zero Marker Interrupt Enable.

The CNT_IMSK.CZMZ bit enables (unmasks) the counter zeroed by zero marker in-
terrupt request.

0 Mask Interrupt

1 Unmask Interrupt

9

(R/W)

CZME Zero Marker Error Interrupt Enable.

The CNT_IMSK.CZME bit enables (unmasks) the zero marker error interrupt re-
quest.

0 Mask Interrupt

1 Unmask Interrupt

8

(R/W)

CZM CZM Pin/Pushbutton Interrupt Enable.

The CNT_IMSK.CZM bit enables (unmasks) the CZM pin/pushbutton interrupt re-
quest.

0 Mask Interrupt

1 Unmask Interrupt

7

(R/W)

CZERO CNT_CNTR Counts To Zero Interrupt Enable.

The CNT_IMSK.CZERO bit enables (unmasks) the counts to zero interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

6

(R/W)

COV15 Bit 15 Overflow Interrupt Enable.

The CNT_IMSK.COV15 bit enables (unmasks) the bit 15 overflow interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

CM41X_M4 CNT Register Descriptions

22–28 ADSP-CM41x Mixed-Signal Control Processor

Table 22-13: CNT_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

COV31 Bit 31 Overflow Interrupt Enable.

The CNT_IMSK.COV31 bit enables (unmasks) the bit 31 overflow interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

4

(R/W)

MAXC Max Count Interrupt Enable.

The CNT_IMSK.MAXC bit enables (unmasks) the max count interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

3

(R/W)

MINC Min Count Interrupt Enable.

The CNT_IMSK.MINC bit enables (unmasks) the min count interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

2

(R/W)

DC Downcount Interrupt Enable.

The CNT_IMSK.DC bit enables (unmasks) the down count interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

1

(R/W)

UC Upcount Interrupt Enable.

The CNT_IMSK.UC bit enables (unmasks) the up count interrupt request.

0 Mask Interrupt

1 Unmask Interrupt

0

(R/W)

IC Illegal Gray/Binary Code Interrupt Enable.

The CNT_IMSK.IC bit enables (unmasks) the illegal Gray/Binary Code interrupt re-
quest and should only be used in these modes.

0 Mask Interrupt

1 Unmask Interrupt

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–29

Maximum Count Register

The CNT_MAX register holds the 32-bit, two's-complement, higher boundary value. It can be read and written at
any time. Hardware ensures that reads and write are atomic, by providing respective shadow registers. This register
can be accessed with either 32-bit or 16-bit operations. This allows for using the CNT as a 16-bit counter if suffi-
cient for the application.

MAX Value

MAX Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-13: CNT_MAX Register Diagram

Table 22-14: CNT_MAX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE MAX Value.

The CNT_MAX.VALUE bit field holds the 32-bit, two's-complement, higher boun-
dary value.

CM41X_M4 CNT Register Descriptions

22–30 ADSP-CM41x Mixed-Signal Control Processor

M Value for Divider

The CNT_MDIV register determines the M value for the M/N division of the QEP inputs that are provided on the
CNT_UD/CNT_DG pins.

M Value for Divider
MDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-14: CNT_MDIV Register Diagram

Table 22-15: CNT_MDIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MDIV M Value for Divider.

The CNT_MDIV.MDIV bit field determines the M value for the M/N division of the
QEP inputs that are provided on the CNT_UD/CNT_DG pins.

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–31

Minimum Count Register

The CNT_MIN register holds the 32-bit, two's-complement, lower boundary value. It can be read and written at any
time. Hardware ensures that reads and write are atomic, by providing respective shadow registers. This register can
be accessed with either 32-bit or 16-bit operations. This allows for using the CNT as a 16-bit counter if sufficient
for the application.

MIN Value

MIN Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-15: CNT_MIN Register Diagram

Table 22-16: CNT_MIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE MIN Value.

The CNT_MIN.VALUE bit field holds the 32-bit, two's-complement, lower boundary
value.

CM41X_M4 CNT Register Descriptions

22–32 ADSP-CM41x Mixed-Signal Control Processor

N Value for Divider

The CNT_NDIV register determines the N value for the M/N division of the QEP inputs that are provided on the
CNT_UD/CNT_DG pins.

N Value for Divider
NDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-16: CNT_NDIV Register Diagram

Table 22-17: CNT_NDIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

NDIV N Value for Divider.

The CNT_NDIV.NDIV bit field determines the N value for the M/N division of the
QEP inputs that are provided on the CNT_UD/CNT_DG pins.

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–33

Status Register

The CNT_STAT register provides status information for each of the CNT events as configured in the CNT_IMSK
register. When a CNT event is detected, the corresponding bit in this register is set. It remains set until either soft-
ware writes a 1 to the bit (write-1-to-clear) or the CNT is disabled.

All bits in the CNT_STAT register indicate either no interrupt request pending (if bit cleared) or an interrupt re-
quest pending (if bit set).

CNT_CNTR Counts To Zero Interrupt

Bit 15 Overflow InterruptCZM Pin/Pushbutton Interrupt

Bit 31 Overflow InterruptZero Marker Error Interrupt

Max Count InterruptCounter Zeroed By Zero Marker Interrupt

Min Count InterruptStop Detect Interrupt

Down Count InterruptM Value Programming Error Interrupt

Up Count InterruptDirection Error Interrupt

Illegal Gray/Binary Code InterruptDirection Change Interrupt Enable

CZERO (R/W1C)

COV15 (R/W1C)CZM (R/W1C)

COV31 (R/W1C)CZME (R/W1C)

MAXC (R/W1C)CZMZ (R/W1C)

MINC (R/W1C)STP (R/W1C)

DC (R/W1C)MERR (R/W1C)

UC (R/W1C)DERR (R/W1C)

IC (R/W1C)DCHNG (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 22-17: CNT_STAT Register Diagram

Table 22-18: CNT_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

14

(R/W1C)

DCHNG Direction Change Interrupt Enable.

The CNT_STAT.DCHNG bit is set if the direction change is valid. Direction change
status and interrupt request are generated only if QEP dividers are enabled.

13

(R/W1C)

DERR Direction Error Interrupt.

CM41X_M4 CNT Register Descriptions

22–34 ADSP-CM41x Mixed-Signal Control Processor

Table 22-18: CNT_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1C)

MERR M Value Programming Error Interrupt.

The CNT_STAT.MERR bit indicates a M value programming error. This interrupt re-
quest is generated when a M value greater than SYSCLK frequency/QIN frequency is
programmed.

11

(R/W1C)

STP Stop Detect Interrupt.

The CNT_STAT.STP bit indicates a stop detect error. This interrupt request is gen-
erated if the QEP pulse is wider than 2 x X x N/M. The internal counter overflow also
causes STOP condition and it occurs if pulse was larger than 4,026,531,840
(0xF000_0000) x M) system clock cycles.

10

(R/W1C)

CZMZ Counter Zeroed By Zero Marker Interrupt.

The CNT_STAT.CZMZ bit indicates a zero marker error. If the CNT_CFG.ZMZC bit
=1, this interrupt request is generated when the CZMII latch reports a significant edge
on the CZM input. Once cleared by software the CNT_STAT.CZM bit is not set
again when the CZM input remains active without pulsing.

0 No error

1 Error occurred

9

(R/W1C)

CZME Zero Marker Error Interrupt.

The CNT_STAT.CZME bit behaves similarly to the CNT_STAT.CZM bit, with the
exception that CNT_STAT.CZME is not set on the CZM edge when the lower four
bits of the CNT_CNTR are not zero. In many applications this indicates an error con-
dition, as the zero marker might be out of sync with the counter.

0 No error

1 Error occurred

8

(R/W1C)

CZM CZM Pin/Pushbutton Interrupt.

The CNT_STAT.CZM bit indicates a CZM pin/pushbutton error. This interrupt re-
quest is generated when a significant edge is seen on the CZM pin, regardless what
mode the counter is operating in. This is often used to sense push buttons (especially
with the debouncing circuit enabled).

0 No error

1 Error occurred

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–35

Table 22-18: CNT_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

CZERO CNT_CNTR Counts To Zero Interrupt.

The CNT_STAT.CZERO bit indicates a counts to zero error. This error is generated
when the CNT_CNTR register has incremented or decremented toward 0x0000.0000.
The latch is not set when software writes to the CNT_CNTR register directly or when
the counter is zeroed by writes to the CNT_CMD register.

0 No error

1 Error occurred

6

(R/W1C)

COV15 Bit 15 Overflow Interrupt.

The CNT_STAT.COV15 bit indicates a bit 15 overflow error. This error is generated
when the 16-bit twos-complement CNT_CNTR register has incremented from 0xxxxx.
7FFF to 0xxxxx.8000 or decremented from 0xxxxx.8000 to 0xxxxx.7FFF.

0 No error

1 Error occurred

5

(R/W1C)

COV31 Bit 31 Overflow Interrupt.

The CNT_STAT.COV31 bit indicates a bit 31 overflow error. This error is generated
when the 32-bit twos-complement CNT_CNTR register has incremented from
0x7FFF.FFFF to 0x8000.0000 or decremented from 0x8000.0000 to 0x7FFF.FFFF.

0 No error

1 Error occurred

4

(R/W1C)

MAXC Max Count Interrupt.

The CNT_STAT.MAXC bit indicates a max count error. This interrupt is used in
boundary compare (BND_COMP) mode. If after incrementing the CNT_CNTR regis-
ter equals CNT_MAX, the CNT_STAT.MAXC bit is set.

0 No error

1 Error occurred

3

(R/W1C)

MINC Min Count Interrupt.

The CNT_STAT.MINC bit indicates a minimum count error. This interrupt is used
in boundary compare (BND_COMP) mode. If, after decrementing, the CNT_CNTR
register equals CNT_MIN, the CNT_STAT.MINC bit is set.

0 No error

1 Error occurred

CM41X_M4 CNT Register Descriptions

22–36 ADSP-CM41x Mixed-Signal Control Processor

Table 22-18: CNT_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

DC Down Count Interrupt.

The CNT_STAT.DC bit indicates a down count error. This interrupt is generated
when the CNT_CNTR register decrements.

0 No error

1 Error occurred

1

(R/W1C)

UC Up Count Interrupt.

The CNT_STAT.UC bit indicates an up count interrupt. This interrupt is generated
when the CNT_CNTR register increments.

0

(R/W1C)

IC Illegal Gray/Binary Code Interrupt.

The CNT_STAT.IC bit indicates a illegal Gray/Binary Code interrupt and should
only be used in these modes. In normal operation those codes can increment or decre-
ment the CNT_CNTR register by one at a time. If the sensed inputs instruct the coun-
ter to increment or decrement by two, the CNT_STAT.IC bit is set. Hardware sets
the CNT_STAT.IC bit in QUAD_ENC and BIN_ENC encoder modes only.

0 No error

1 Error occurred

CM41X_M4 CNT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 22–37

23 Debounce Filter (DBC)

The Debounce block accepts a noisy input (which may have multiple transitions) and synchronizes and digitally
filters the input to create a clean single transition on the output. Filter parameters control the response of the digital
filter. For de-bouncing of relays/switches the parameters may be set for response times on the order of milliseconds.
When used as a deglitching filter the parameters may be set for response times on the order of 100 ns.

NOTE: The register descriptions for the Debounce Filter are located in the System Block (SYSBLK) and PADS
chapter.

DBC Features
The DBC module has the following features:

• Digital filter implemented with 4-bit counter/accumulator clocked by a sample clock

• Sample clock frequency can be adjusted to meet different signal/noise bandwidth requirements. For example,
debouncing may require a low frequency and deglitching may be high.

• Two filter modes are available depending upon specific response desired

• Counter Filter mode toggles output after N successive samples of new state

• Accumulator Filter mode toggles output after N accumulated samples of new state

• Digital pre-filter is clocked at the system clock rate. This feature limits aliasing into lower sample frequencies.
In strict mode, this filter requires all values within a sample clock period to be in the same state. In non-strict
mode only the two values before the sample clock edge are considered.

• Debounce filter defaults to bypass mode. In this mode the input signal is passed directly to the output and no
filtering is applied.

DBC Functional Description
The DBC unit consists of a set of identical channel filter blocks, each of which filters one input channel signal
DBC_IN[n] and generates a corresponding channel output signal DBC_OUT[n].

The inputs are asynchronous signals and are connected at the SoC top level directly to asynchronous pad inputs.

Debounce Filter (DBC)

ADSP-CM41x Mixed-Signal Control Processor 23–1

The outputs may be connected at the SoC top level to a variety of signal destinations, such as GPIO PORT blocks,
PWM TRIP input signals, and so on. The outputs of the filter block may also be asynchronous (if the channel’s
filter block is bypassed with PADS_DBC[n]_CTL.EN =1) or may be synchronous to SCLK
(PADS_DBC[n]_CTL.EN =0).

The four filter blocks associated with the DBC module are shown in the Debounce Filter Connections table.

Table 23-1: Debounce Filter Connections

Channel DBC_IN Connection DBC_OUT Connection

0 (~PWM_TRIPAb) pin PWM_TRIP matrix

1 (~PWM_TRIPBb) pin PWM_TRIP matrix

2 (~PWM_TRIPCb) pin PWM_TRIP matrix

3 COMP_OUT_IRQ AFE_FOCP_IN

Block Diagram

The Debounce Filter Block Diagram shows the DBC module.

SCLK PRESCALER

PRE
FILTER

CHANNEL
FILTER

B
YPA

SS

PRE
FILTER

CHANNEL
FILTER

B
YPA

SS

PRE
FILTER

CHANNEL
FILTER

B
YPA

SS

DBC_IN[0]

DBC_IN[1]

DBC_IN[2]

DBC_OUT[0]

DBC_OUT[1]

DBC_OUT[n]

FUPD

BYPASS

PRE
FILTER

CHANNEL
FILTER

B
YPA

SS

DBC_IN[3]
DBC_OUT[n]

Figure 23-1: Debounce Filter Block Diagram

The Debounce Filter consists of a set of channel filter blocks, each with a synchronization pre-filter, and a global
clock prescaler block that is shared between all channels.

• The prescaler divides the system clock by a programmable amount. The output of the prescaler is provided to
each de-bounce filter block as a filter update enable signal (FUPD) for the counter and accumulator.

DBC Functional Description

23–2 ADSP-CM41x Mixed-Signal Control Processor

NOTE: The filter update (FUPD) clock period is generated by the prescaler and is limited to integer multi-
ples of the system clock period. This period can range from 1 SCLK period to ~65,536.

• The anti-aliasing pre-filter always samples the channel input at the system clock rate. This filter also acts as a
synchronizer to ensure that meta-stability issues are addressed.

• In Counter Filter mode, a filter block output remains in its current state until the new (opposite) state is recog-
nized for N successive samples in a row. If a sample is detected which agrees with the current state, the counter
is reset to zero.

• In Accumulator Filter mode, a filter block output remains in its current state until an averaging threshold is
reached. Then the new (opposite) state is recognized for N samples more than the current state. The accumula-
tor increments if the new state is recognized, and decrements if the current state is recognized. The accumula-
tor is initially reset to 0 and is also set to 0 after any toggle, therefor accumulator must increment to a threshold
of N before another toggle occurs.

DBC Architectural Concepts

The Debounce digital filter creates a clean signal from a very noisy one. Signals tend to be stable for fairly long
periods of time. During the transition period of a signal change, noise is introduced. When the transition stops, the
signal goes back to a stable state for a long period of time. The duration of the noisy transition region is assumed to
be less than the stable period.

A key consideration in making a clean signal is response time. The signal can be sampled very slowly (much slower
than the length of the transition region) and clean edges can be achieved. However, the response may be slower than
desired. For example, slow response time may lead to missed events.

Mechanical Switch Debounce Filtering

The debounce filter takes advantage of this large ratio of stable periods to switching periods.

A mechanical switch may bounce intermittently between two logic levels when pressed or released. This bounce pe-
riod may be on the order of 10 milliseconds duration. To debounce this signal, the program creates a sampling win-
dow larger than the bounce period and then checks that the signal remains stable for more than the worst case speci-
fied bounce period. For example, if the bounce period is specified at a maximum of 8 milliseconds, a program sam-
ples the signal at 2 milliseconds intervals for 16 milliseconds before changing to the new state.

Glitch Filtering

Some signals may have slow edge rates and be susceptible to noise from adjacent wires, transmission line effects or
power supply noise. These signals may “glitch” a few times during a short noisy period. An example of this is a two-
wire interface signal which has edge rates on the order of 100 ns. In this case, glitches of 50 ns must be filtered and
the response time must be fast enough to transmit data every 2.5 microseconds (400 kHz rate).

DBC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 23–3

Dynamic Range and Prescaling

Response time cannot be faster than the width of any glitch which is desired to be rejected. A key feature of the
DBC is that the sampling clock used for the filter covers a fairly wide range to handle different types of signals and
minimize response times.

Each channel’s filter has an 8-bit state accumulator and a corresponding 8-bit programmable filter threshold. This
allows each channel to filter out (exclude) transitions from 1 to 255 samples in length. This defines the dynamic
range of the DBC unit.

Some electrical and mechanical processes act on longer timescales than SCLK/256. A global prescaler is provided

which divides SCLK to create the filter update pseudo-clock FUPD. The prescaler has a range of 1 to 216. This

allows the DBC unit to filter input transitions on timescales up to 224 SCLK periods in length, or about 160 milli-
seconds at a 100 MHz SCLK rate.

The range of input signal pulse durations that can be filtered at various Prescale and Threshold settings is illustrated
in the examples in the Range of Input Signal Pulse Duration Examples table.

Table 23-2: Range of Input Signal Pulse Duration Examples

Prescale Value Threshold=4 (SCLK cy-
cles)

Time Assuming 100
MHz SCLK

Threshold=255 (SCLK
cycles)

Time Assuming 100
MHz SCLK

1 (prescale disabled) 4 40 ns 255 2.55 µs

16 64 640 ns 4,080 4.1 µs

256 1,024 1 µs 65,280 65.2 µs

1,024 4,096 4.1 µs 261,120 261 µs

8,192 32,768 32.8 µs 2,088,960 2.1 ms

65,535 212,140 212.1 µs 16,711,425 167.1 ms

DBC Operating Modes
The following sections provide details on DBC operation.

Bypass Mode (Disabled)

In Bypass mode (PADS_DBC[n]_CTL.EN =0), the debounce filter is disabled and the signal path is completely
bypassed; the input signal DBC_IN[n] is combinatorially passed to the output DBC_OUT[n] with no clocked la-
tency. This replicates the behavior that would be observed if the DBC unit were not present at all.

This mode is provided for use cases which require no input debouncing and which may need to operate in the ab-
sence of the system clock (for example, PWM_TRIP). Note that if the SCLK is sometimes stopped, the debounce
filter units may need to be disabled (bypassed) to retain a connection path to the destination unit (for example, for a
safety-related signal).

DBC Operating Modes

23–4 ADSP-CM41x Mixed-Signal Control Processor

SCLK

DBC_IN

DBC_OUT

Figure 23-2: Disabled Mode

When the debounce filter is not bypassed, the asynchronous input DBC_IN[n] is synchronized to SCLK by the pre-
filter to produce a DBC_IN_sync signal for the filter block.

SCLK

DBC_IN

DBC_IN_SYNC

Figure 23-3: Filtering (Non-Bypass mode)

When the debounce filter is enabled by setting the PADS_DBC[n]_CTL.EN bit =1 (not in bypass mode), the
input signal DBC_IN is synchronized by the pre-filter, which adds one SCLK of latency in addition to the latency
of the debounce filter.

Counter Filter Mode

In counter mode, successive samples for a channel are counted and compared to a threshold (T) programmed in the
PADS_DBC[n]_CTL.THRESH bit field. The programmed value of T is PADS_DBC[n]_CTL.THRESH + 1.
The output remains at its current state until T successive samples of the opposite state are recorded. Then, the out-
put toggles, the counter is reset, and the filter begins monitoring for the opposite input polarity.

The Counter Filter Mode, Threshold = 5 timing diagram shows the counter filter mode for a threshold value T = 5.
In the portion of the diagram with a white background, the filter is monitoring for 0-to-1 transitions; in the portion
with the shaded background, the filter is monitoring for 1-to-0 transitions.

1

FUPD

2 1 2 1 2 3 4 1 2 3 4 5 1 2

2 2 4 5

WAIT FOR H WAIT FOR L

ACC

DBC_IN_SYNC*

DBC_OUT

NOTE: THE 1-SYSCLK LATENCY OF THE PRE-FILTER SYNCHRONIZER IS NOT SHOWN IN THE FIGURE.
THE SIGNAL SHOWN IS DBC_IN_SYNC, WHICH IS THE OUTPUT OF THE PRE-FILTER.

Figure 23-4: Counter Filter Mode, Threshold =5

A boundary value of 0 in the PADS_DBC[n]_CTL.THRESH bit field is legal and corresponds to an identity filter
—the DBC_IN_SYNC signal is replicated one prescaled FUPD later on the DBC_OUT signal.

DBC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 23–5

Accumulator Filter Mode

In Accumulator mode, the channel’s signal is averaged until it crosses a positive or negative threshold (T). The accu-
mulator operates as follows.

1. The input is compared on each cycle to the current output.

a. If the polarity is different, the accumulator increments.

b. If the polarity is the same, the accumulator decrements (but does not decrement below zero).

2. If the accumulator exceeds the programmed threshold (reaches T):

a. The output toggles to the new value.

b. The accumulator is reset.

c. The filter begins monitoring for the opposite input polarity.

The Accumulator Filter T = 5 timing diagram shows accumulator filter mode for a threshold value T = 5. In the
portion of the diagram with a white background, the filter is monitoring for 0-to-1 transitions; in the portion with
the shaded background, the filter is monitoring for 1-to-0 transitions.

1

FUPD

2 1 2 23 4 13 5 1 2

WAIT FOR H WAIT FOR L

ACC

DBC_IN_SYNC

DBC_OUT

+ + - + + - + + + + - - - - - - - - + +- -

Figure 23-5: Accumulator Filter, Threshold = 5

A PADS_DBC[n]_CTL.THRESH boundary value of 0 is legal and corresponds to an identity filter; the
DBC_IN_SYNC signal is replicated one prescaled FUPD clock later on DBC_OUT.

Input Prescaling Modes

The rate at which channel data is sampled is controlled by the channel’s prescaling mode. The programmed value of
prescale is PADS_DBC_PRESCALE + 1. The prescaler is common to all DBCs.

In System Clock mode, (PADS_DBC[n]_CTL.PRECLKSEL =0), the filter accepts a new data sample on each
SCLK.

In Prescaled Clock mode (PADS_DBC[n]_CTL.PRECLKSEL =1), the filter updates its state based on the pre-
scaled filter clock FUPD. The prescaler’s period is selected by the PADS_DBC_PRESCALE register and has a range

of 1:1 to 1:(216).

• A nonzero value of N in the PADS_DBC_PRESCALE register selects a SCLK:FUPD frequency divisor of N +
1:1.

DBC Operating Modes

23–6 ADSP-CM41x Mixed-Signal Control Processor

• A zero value in the PADS_DBC_PRESCALE register selects a SCLK:FUPD frequency divisor of 1:1. In this
case FUPD = SCLK and the filter units act exactly as if prescaling was not selected (updating the state on each
SCLK cycle.)

Prescaled Decimated Mode

When the Prescaled clock is used, the method of taking samples at the prescaled rate is controlled by the
PADS_DBC[n]_CTL.DEC bit field. In Decimate mode (where PADS_DBC[n]_CTL.PRECLKSEL =1 and
PADS_DBC[n]_CTL.DEC =1), the data sample is taken only from the value of the input when the prescaled
clock FUPD is asserted, and the values of the input signal between FUPD pulses are discarded. The current phase of
the filter output does not influence the prescaled input sampling.

In Counter mode, a pulse wider than ((threshold × update clock period) + system clock period) is never filtered. A
pulse smaller than ((threshold × update clock period) – update clock period) – system clock period) is always fil-
tered.

Prescaled=4 (Program DBC_PRESCALE to 3), Decimated Mode, Threshold=4 (Program
THRESH to 3)

SCLK

DBC_IN_SYNC
sampled at:

DBC_OUT
phase

0 1 02 3

FUPD

Scaled D_IN

CNT

Figure 23-6: Prescaled Decimated Mode Timing

Prescaled Continuous Mode

In Continuous mode (PADS_DBC[n]_CTL.PRECLKSEL =1, PADS_DBC[n]_CTL.DEC =0), the input signal
is observed continuously, including the interval between FUPD falling edges (more precisely, starting with the first
SCLK cycle after an FUPD pulse, and continuing until the cycle of the next FUPD pulse). The observation consid-
ers input states relative to the current filter phase (the current state of the filter output.)

• If and only if ALL of the input states are in opposite phase (the polarity OPPOSITE to the filter output), then
the prescaled input sample is the OPPOSITE polarity to the filter output.

• If SOME or ALL of the input states are in phase (the SAME as the polarity of the filter output), then the
prescaled input sample is the SAME polarity as the filter output.

• In Counter mode, a pulse wider than ((Threshold period × update clock period) + Update clock period + Sys-
tem Clock period) always gets through the filter but a pulse smaller than ((Threshold period × update clock
period) - System Clock period) always gets filtered.

DBC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 23–7

In the Prescaled Continous Mode DBC Low Timing figure, the prescaler operation is shown for the case where the
filter is in the Low phase (DBC_OUT is low).

Prescaled=4 (Program PADS_DBC_PRESCALE to 3), Continuous Mode (output phase low)

SCLK

DBC_IN_SYNC

sampled over:

FUPD

DBC_OUT
phase

0 1 2

Scaled D_IN

CNT

Figure 23-7: Prescaled Continous Mode DBC Low Timing

In the Prescaled Continous Mode DBC High Timing figure, the prescaler operation is shown for the case where the
filter is in the high phase (DBC_OUT is high).

Prescaled=4 (Program DBC_PRESCALE to 3), Continuous Mode (output phase high)

SCLK

DBC_IN_SYNC

sampled over:

FUPD

DBC_OUT
phase

0 1 2

Scaled D_IN

CNT

Figure 23-8: Prescaled Continous Mode DBC High Timing

Programming Model
The prescaler (PRESCALE) may only be changed when all of the filter units are bypassed (disabled).

NOTE: Note that the pinmux connections to the DBC unit should be configured prior to enabling the DBC, as
spurious logic transitions from changes in the pinmux selection may be interpreted by the DBC as signal
edges.

To configure the debounce unit:

1. Configure the pinmux.

Programming Model

23–8 ADSP-CM41x Mixed-Signal Control Processor

2. Write the desired prescaler value.

3. Configure each channel in turn by writing to the PADS_DBC[n]_CTL.EN bit.

Register Descriptions
The Debounce Filter does not have a MMR interface. Control signals are provided by generic system registers. For
the See the System Block (SYSBLK) and PADS chapter for details on Debounce Filter control registers.

Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 23–9

24 Pulse-Width Modulator (PWM)

The pulse-width modulator (PWM) module is a flexible and programmable waveform generator. With minimal
CPU intervention, the PWM peripheral can generate complex waveforms for:

• Motor control

• Pulse-coded modulation (PCM)

• Digital-to-analog conversion (DAC)

• Power switching

• Power conversion

The PWM module has four PWM pairs capable of three-phase PWM generation for source inverters for AC induc-
tion and DC brushless motors.

PWM Features
Each PWM generation unit features:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single or double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transition to full-on and full-off states

• Dedicated asynchronous PWM shutdown signal

• Debounce filter option on trip inputs that allow the system programmer to filter out short transients

Functional Description
The following sections provide details on the functionality of the PWM.

• Architectural Concepts

Pulse-Width Modulator (PWM)

ADSP-CM41x Mixed-Signal Control Processor 24–1

• Timer Units

• Channel Timing Control Unit

• Output Disable and Cross-Over Modes

• Sync Operation Modes

CM41X_M4 PWM Register List

The Pulse-Width Modulator unit (PWM) includes multiple timers (providing period flexibility) and channels (pro-
viding mode, interrupt, and pulse shape flexibility), permitting a wide variety of PWM output options for motor
control and other applications. A set of registers governs PWM operations. For more information on PWM func-
tionality, see the PWM register descriptions.

Table 24-1: CM41X_M4 PWM Register List

Name Description

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PWM_AH0_HP Channel A-High Heightened-Precision Duty-0 Register

PWM_AH1 Channel A-High Duty-1 Register

PWM_AH1_HP Channel A-High Heightened-Precision Duty-1 Register

PWM_AH_DUTY0 Channel A-High Full Duty0 Register

PWM_AH_DUTY1 Channel A-High Full Duty1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL0_HP Channel A-Low Heightened-Precision Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_AL1_HP Channel A-Low Heightened-Precision Duty-1 Register

PWM_AL_DUTY0 Channel A-Low Full Duty0 Register

PWM_AL_DUTY1 Channel A-Low Full Duty1 Register

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

PWM_BH0_HP Channel B-High Heightened-Precision Duty-0 Register

PWM_BH1 Channel B-High Duty-1 Register

PWM_BH1_HP Channel B-High Heightened-Precision Duty-1 Register

PWM_BH_DUTY0 Channel B-High Full Duty0 Register

PWM_BH_DUTY1 Channel B-High Full Duty1 Register

PWM_BL0 Channel B-Low Duty-0 Register

Functional Description

24–2 ADSP-CM41x Mixed-Signal Control Processor

Table 24-1: CM41X_M4 PWM Register List (Continued)

Name Description

PWM_BL0_HP Channel B-Low Heightened-Precision Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_BL1_HP Channel B-Low Heightened-Precision Duty-1 Register

PWM_BL_DUTY0 Channel B-Low Full Duty0 Register

PWM_BL_DUTY1 Channel B-Low Full Duty1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH0_HP Channel C-High Pulse Heightened-Precision Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CH1_HP Channel C-High Pulse Heightened-Precision Duty Register 1

PWM_CHANCFG Channel Configuration Register

PWM_CHA_DT Channel A Dead-time Register

PWM_CHB_DT Channel B Dead-time Register

PWM_CHC_DT Channel C Dead-time Register

PWM_CHD_DT Channel D Dead-time Register

PWM_CHOPCFG Chop Configuration Register

PWM_CH_DUTY0 Channel C-High Full Duty0 Register

PWM_CH_DUTY1 Channel C-High Full Duty1 Register

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL0_HP Channel C-Low Pulse Duty Register 1

PWM_CL1 Channel C-Low Duty-1 Register

PWM_CL1_HP Channel C-Low Heightened-Precision Duty-1 Register

PWM_CL_DUTY0 Channel C-Low Full Duty0 Register

PWM_CL_DUTY1 Channel C-Low Full Duty1 Register

PWM_CTL Control Register

PWM_DCTL Channel D Control Register

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH0_HP Channel D-High Pulse Heightened-Precision Duty Register 0

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DH1_HP Channel D High Pulse Heightened-Precision Duty Register 1

PWM_DH_DUTY0 Channel D-High Full Duty0 Register

Functional Description

ADSP-CM41x Mixed-Signal Control Processor 24–3

Table 24-1: CM41X_M4 PWM Register List (Continued)

Name Description

PWM_DH_DUTY1 Channel D-High Full Duty1 Register

PWM_DL0 Channel D-Low Pulse Duty Register 0

PWM_DL0_HP Channel D-Low Heightened-Precision Duty-0 Register

PWM_DL1 Channel D-Low Pulse Duty Register 1

PWM_DL1_HP Channel D-Low Heightened-Precision Duty-1 Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_DL_DUTY0 Channel D-Low Full Duty0 Register

PWM_DL_DUTY1 Channel D-Low Full Duty1 Register

PWM_ILAT Interrupt Latch Register

PWM_IMSK Interrupt Mask Register

PWM_STAT Status Register

PWM_SWTRIP Software Trip Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_TRIPCFG Trip Configuration Register

PWM_TRIP_POL Trip Polarity Register

Additional PWM Registers

The PWM module contains an additional configuration register, SYSBLK_PWM_SYS_CFG that provides addi-
tional functionality. See the System Block (SYSBLK) and PADS chapter.

CM41X_M4 PWM Interrupt List

Functional Description

24–4 ADSP-CM41x Mixed-Signal Control Processor

Table 24-2: CM41X_M4 PWM Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

39 PWM0_TRIP PWM0 Trip Level

40 PWM1_TRIP PWM1 Trip Level

41 PWM2_TRIP PWM2 Trip Level

79 PWM0_SYNC PWM0 PWMTMR Grouped Edge

80 PWM1_SYNC PWM1 PWMTMR Grouped Edge

81 PWM2_SYNC PWM2 PWMTMR Grouped Edge

CM41X_M4 PWM Trigger List

Table 24-3: CM41X_M4 PWM Trigger List Masters

Trigger ID Name Description Sensitivity

71 PWM0_SYNC PWM0 PWMTMR Grouped Edge

72 PWM1_SYNC PWM1 PWMTMR Grouped Edge

73 PWM2_SYNC PWM2 PWMTMR Grouped Edge

Table 24-4: CM41X_M4 PWM Trigger List Slaves

Trigger ID Name Description Sensitivity

73 PWM0_SYNC PWM0 PWMTMR Grouped Pulse

74 PWM1_SYNC PWM1 PWMTMR Grouped Pulse

75 PWM2_SYNC PWM2 PWMTMR Grouped Pulse

PWM Definitions

The following definitions are helpful when using the PWM module.

Chopping

Used to simplify the design of isolated gate drive circuits for PWM inverters. If using a transformer coupled power
device gate drive amplifier, then the active PWM signal must be chopped at a high frequency.

Dead-Time

A short delay introduced between turning off one PWM signal (for example, AH) and turning on the complementa-
ry signal (for example, AL). This short time delay permits turning off a power switch (AH in this case) to completely
recover its blocking capability before the complementary switch is turned on. This time delay prevents a potentially
destructive short-circuit condition from developing across the dc link capacitor of a typical voltage source inverter.

Functional Description

ADSP-CM41x Mixed-Signal Control Processor 24–5

Duty Cycle

The proportion of on time to the regular interval or period of time (expressed in percent, 100% being fully on). A
low duty cycle corresponds to low power, because the power is off for most of the time.

Switching Frequency

The average value of voltage (and current) fed to the load is controlled by turning the switch between supply and
load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power
supplied to the load.

Architectural Concepts

A clock, whose period is tSCLK, drives the PWM controller. The PWM generator produces four pairs (four high-side
and four low-side) of PWM signals on the eight PWM output pins. Each high and low pair signal constitutes a
channel. For example, the PWM_AL and PWM_AH signals make up channel A, and the PWM_BL and PWM_BH
signals make up channel B, and so on.

Each pair of channel outputs references either a main timer or an independent timer. These timers operate on a
switching frequency determined by the PWM_TM0 through PWM_TM4 registers. There are two duty registers for ev-
ery PWM output. The registers enable generation of symmetrical or asymmetrical waveforms. The waveforms pro-
duce lower harmonic distortion in three-phase PWM inverters, with minimal CPU intervention.

Block Diagram

The PWM Block Diagram figure shows a block diagram that represents the main functional blocks of the PWM
controller.

 CHANNEL C
TIMING CONTROL UNIT

 CHANNEL B
TIMING CONTROL UNIT

 AH
AL

 SYNC
GENERATION

SECURITY

 PWM_TM1
PWM_DLY1

PWM_TM0 PWMTMR0

 DEAD-TIME
AND

GATE DRIVE
UNIT

 TRIP
CTRL
UNIT

 PWM_CTL
PWM_SYNC_WID

 PWM_DT
PWM_CHOPCFG

 TRIP0
TRIP1

 PWM_TM2
PWM_DLY2

 PWM_TM3
PWM_DLY3

 PWM_TM4
PWM_DLY4

PWM_SYNC_OUT

 CHANNEL A
TIMING CONTROL UNIT

PWM_AH0, PWM_AL0

 CHANNEL D
TIMING CONTROL UNIT

PWM_xCTL

 DEAD-TIME
AND

GATE DRIVE
UNIT

 DEAD-TIME
AND

GATE DRIVE
UNIT

 DEAD-TIME
AND

GATE DRIVE
UNIT

 PWM_TRIPCFG
CONTROL

 PWM_TRIP_INT
PWM_SYNC_INT

 BH
BL
 CH
CL
 DH
DL

 PWM_IMASK
PWM_ILAT

 INTERRUPT
GENERATION

CIRCUITRY

PWM_BH0, PWM_BL0

PWM_CH0, PWM_CL0

PWM_DH0, PWM_DL0

PWMTMR1

PWMTMR2

PWMTMR3

PWMTMR4

Figure 24-1: PWM Block Diagram

Functional Description

24–6 ADSP-CM41x Mixed-Signal Control Processor

The following list describes the primary blocks.

• Each pair of PWM signals references either the main timer or the independent timer.

• PWMTMR0 is the main timer and can trigger the delayed start of the other timers.

• Timing control units, one for each channel, together form the core of the PWM. The unit generates the re-
quired complex waveforms on the high-side and low-side outputs for the respective channel.

• Dead-time insertion occurs after the ideal PWM output pair is generated.

• The gate drive unit generates the high-frequency chopping signal and then mixes it with the requisite PWM
output signals.

• The PWM shutdown and interrupt controller manage the various PWM shutdown modes for the timing unit
and generate the requisite interrupt signals.

• The PWM sync pulse control unit generates the internal PWM_SYNC pulse and also controls whether the ex-
ternal PWM_SYNC input pulse is used.

Timer Units

Five timers make up the time base for the PWM module. The main timer, PWMTMR0 operates at a switching
frequency determined by the period register PWM_TM0. The four remaining timers (PWMTMR1 through
PWMTMR4) can operate at independent switching frequencies determined by their respective registers.

The respective time registers (PWM_TM1 through PWM_TM4) can be programmed to work at a multiple of the main
timer frequency. In this case, the PWM_DLYA through PWM_DLYD registers control the lead-lag phase of a given
timer based on the main timer PWMTMR0.

NOTE: The delayed operation of a timer requires one of the following:

• The register value of the timer must be equal to the PWM_TM0 register value.

• The PWM_TM0 value must be an integer multiple of each register of the timer. Non-integer multiples
are not allowed.

PWM Timer Period (PWM_TM) Registers

The 16-bit read/write PWM period registers (PWM_TM0 through PWM_TM4) control the PWM switching frequen-
cy. The fundamental timing unit of the PWM controller is tSCLK. Therefore, the time increment (tSCLK) is 10 ns for
a 100-MHz system clock (SCLK) frequency, fSCLK. The value written to the register of a timer is effectively the
number of tSCLK clock increments in one half of a PWM period. The following equation describes the required
timer register value as a function of the desired PWM switching frequency (fPWM):

PWM_TM = fSCLK/2 × fPWM

Therefore, the PWM switching period (Ts) is:

Ts = 2 × PWM_TM × tSCLK

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 24–7

For example, for an fSCLK of 100 MHz and a desired PWM switching frequency (fPWM) of 10 kHz (Ts = 100 ms),
the correct value to load into the timer register is:

PWM_TM = 100 × 106 ÷ 2 × 10 × 103 = 5000

The largest value that can be written to the 16-bit timer register is 0xFFFF = 65,535. For an fSCLK of 100 MHz, this
value corresponds to a minimum PWM switching frequency of:

fPWM(min) = 100 × 106 ÷ 2 x 65535 = 762 Hz

NOTE: Timer register values of 0 and 1 are not defined. Do not use these values when the PWM outputs or PWM
is enabled.

Timer Unit Operation

The PWM timers are up-down counters, and they operate on the peripheral clock with a period of tCK. The period
of the PWM timer is divided into two halves. In the first half, the timer roughly counts down from PWM_TMx/2
to –PWM_TMx/2. During this half, the PWM_STAT.TMR0PHASE through PWM_STAT.TMR4PHASE bits are
held at 0. In the second half of the period, the timer roughly counts up from –PWM_TMx/2 to PWM_TMx/2.
The PWM_STAT.TMR0PHASE through PWM_STAT.TMR4PHASE bits indicates a 1 during this half.

The actual partition of the periods varies slightly between odd and even values of the half-period, in the
PWM_TM[n] registers.

If a timer register value is odd, for example 11, then that timer loads +5 at the beginning of the period. The timer
counts down from +5 to –5 in the first half, reloads –5 at the midpoint and counts up from –5 to +5 in the second
half. The reload values at the period and mid-period boundaries are the same as the previous count. The timer
counts 2 × 11 half-periods = 22 total counts in the entire period as shown in the Operation of Timer for Odd Value
of PWM_TM figure.

Timer Units

24–8 ADSP-CM41x Mixed-Signal Control Processor

5

0

4
3

2
1

-1
-2

-3
-4

-5

Load (PWM_TMx-1)/2

TMRxPHASE

PWM_SYNC

Pe
rio

d
bo

un
da

ry

Pe
rio

d
m

id
po

in
t

PWMTMRx

PWM_TMx = 12

4

-1

3
2

1
0

-2
-3

-4

-5

5

0

4
3

2
1

11 11

Same as
previous count

Count till -(PWM_TMx-1)/2

tCK

5

Same as
previous count

22

Load -(PWM_TMx-1)/2 Load (PWM_TMx-1)/2

Count till (PWM_TMx-1)/2

Figure 24-2: Operation of Timer for Odd Value of PWM_TM

When the timer register value is even, for example 12, then that timer loads +5 at the beginning of the period. The
timer counts from +5 to –6 in the first half, reloads –5 at the midpoint and counts up from –5 to +6 in the second
half. The reload values at the period and mid-period boundaries are different from the previous count. It counts 2 ×
12 half-periods = 24 total counts in the entire period as shown in the Operation of Timer for Even Value of
PWM_TM figure.

5

0

4
3

2
1

-1
-2

-3
-4

-5

Load PWM_TMx/2-1

Count till -PWM_TMx -1/2

TMRxPHASE

PWM_SYNC

Load -(PWM_TMx/2-1) Load PWM_TMx/2 -1

Pe
rio

d
bo

un
da

ry

Pe
rio

d
m

id
po

in
t

PWMTMRx

PWM_TMx = 12

4

-1

3
2

1
0

-2
-3

-4
-5

-6

5

0

4
3

2
1

12

Different from
previous count

Count till -PWM_TMx -1/2

tCK

5
6

Different from
previous count

24

12

Figure 24-3: Operation of Timer for Even Value of PWM_TM

Timer Units

ADSP-CM41x Mixed-Signal Control Processor 24–9

NOTE: In the operation discussed in this section, double-buffering of all channel registers and the timer registers
takes place at the period boundary of the respective timers.

Phase Offset Control

The PWM timers (PWMTMR1 through PWMTMR4) can operate with a programmable phase lag relative to the
main timer, PWMTMR0. To implement phase offset for a channel, use the counter-registers for channel delay
(PWM_DLYA - PWM_DLYD) with the PWMTMR0 and set the PWM_CTL.DLYAEN bit to l.

Phase offset works as follows.

1. If phase lag is used for channel A (and channel A uses PWMTMR1 to generate a duty cycle), when
PWMTMR0 reaches its period boundary, it triggers the PWM_DLYA register. The register counts out the num-
ber SCLK cycles that are equal to the value programmed in the PWM_DLYA register.

2. At the end of this count, the PWM_DLYA register sends out a trigger to PWMTMR1. It receives a synchroniza-
tion pulse in every period of PWMTMR0 at a point delayed from its period boundary by the value in the
PWM_DLYA register.

For more information on how channels can reference different timers for their outputs, see Channel Timing Control
Unit.

NOTE: Satisfy the following conditions when using this feature on timer y for channel Y relative to PWMTMRx.

• Program the PWM_DLY[n] register to a value less than 2 × PWM_TM[n].

• PWM_TM0 = N × PWM_TM[n], where N is an integer.

The function of PWM_TM[n] (PWMTMR1 in the example) differs in cases where PWM_TM0 = PWM_TM1 (Case
1) to cases where PWM_TM0 = N × PWM_TM1 (Case 2). The following examples describe both cases.

Case 1: PWM_TM0 = PWM_TMy

When PWM_TM0 = PWM_TMy, PWMTMRy restarts its period after receiving the synchronization pulse from the
channel delay register (PWM_DLY[n]). If the trigger from the PWM_DLY[n] register is late, PWMTMRy holds its
count until the trigger occurs. If the trigger is a bit early, PWMTMRy reloads without regard to whether it has com-
pleted its current period. As a result, PWMTMRy resyncs with PWMTMR0 with the phase lag programmed in the
PWM_DLYA register in every one of its periods.

In this case, the expiration of the delay registers (PWM_DLY[n]) is the period boundary of PWMTMRy. Now, all
the double buffered registers related to the given channel update (except the delay registers which are double buf-
fered at the period boundary of PWMTMR0).

The Phase Offset Control Using DELAY figure shows an example where:

• PWM_TM0, PWM_TM1, and PWM_TM2 are programmed with the same value.

• PWM_DLYA and PWM_DLYB are programmed with values DELAY1 and DELAY2 respectively, such that DE-
LAY2 > DELAY1.

Timer Units

24–10 ADSP-CM41x Mixed-Signal Control Processor

• The outputs of Channel A are referenced to PWMTMR1. The outputs of channel B are referenced to
PWMTMR2.

DELAY1

DELAY2

AH

BH

DELAY1 DELAY1 DELAY1

DELAY2 DELAY2 DELAY2

PWMTMR0

PWMTMR1

PWMTMR2

Figure 24-4: Phase Offset Control Using DELAY

The delay registers are double buffered and the new value of DELAY reloads at the period boundary of
PWMTMR0. The two options exist when the new value is different from the older one. The behavior of
PWMTMRy in both these cases is discussed. The Impact of New DELAY Value on Timer Count for Equal Timer
Periods figure shows the behavior in the two cases. It is assumed that channel B references its outputs to
PWMTMR0 and channel A references its outputs to PWMTMR1.

1. The new delay value is higher than the previous value. Here the corresponding PWMTMRy allows more than
one time period between consecutive triggers from the channel delay (PWM_DLYA - PWM_DLYD) registers. In
this case, after reaching its period boundary, PWMTMRy holds its count at the period boundary and waits for
the trigger from the channel delay register. The Impact of New DELAY Value on Timer Count for Equal Timer
Periods figure shows case A functionality.

2. The next delay value programmed is smaller than the previous value. Here, the corresponding PWMTMRy
allows only less than one time period between consecutive triggers from the channel delay register. Though the
trigger comes earlier in this case, before PWMTMRy has counted out one full period, it reloads and starts its
period again. The Impact of New DELAY Value on Timer Count for Equal Timer Periods figure shows case B
functionality.

Therefore, PWMTMR1 waits and obeys a synchronization pulse from the PWM_DLYA register in every one of its
periods.

Timer Units

ADSP-CM41x Mixed-Signal Control Processor 24–11

More than one period Less than one period

DELAY1 DELAY2 DELAY1

TMR1
waits

TMR1 forced to
restart period

CASE A: Increasing DELAY CASE B:Decreasing DELAY

PWM_BH

PWM_AH

 PWMTMR0

PWM_DLYA

PWMTMR1

Figure 24-5: Impact of New DELAY Value on Timer Count for Equal Timer Periods

Case 2: PWM_TM0 = N x PWM_TMy

In this case, within a single period of PWMTMR0 a program can fit multiple periods (N) of PWMTMRy. Addi-
tionally, the channel delay register is triggered only once every N periods of PWMTMRy.

The operation is as follows: Every Nth period of PWMTMRy, PWMTMRy expects a synchronization pulse from
the PWM_DLY[n] register. When this register counts out that period and the trigger has not yet arrived,
PWMTMRy waits at the end of the period for the trigger. PWMTMRy starts counting down once the trigger ar-
rives. If the trigger comes earlier, PWMTMRy restarts immediately without waiting to complete the period count.

In the intervening periods, PWMTMRy operates independently. As the period ends, PWMTMRy reloads and starts
the next period without intervention from the channel delay register.

The Impact of DELAY Value Change for the Multiple Timer Periods shows an example with N = 2. PWMTMRy
syncs up with PWMTMR0 every second period, and is free running across every odd period boundary.

DELAY1 DELAY2 DELAY1

Period starts unhindered Period starts unhindered

Case A: Increasing Delay Case B: Decreasing Delay

PWM_DLYA

PWM_BH

PWM_AH

Re-synced at every Nth period Re-synced at every Nth period

PWMTMR0

PWMTMR1

Figure 24-6: Impact of DELAY Value Change for Multiple Timer Periods

Timer Units

24–12 ADSP-CM41x Mixed-Signal Control Processor

Channel Timing Control Unit

The channel timing control unit is the core of the PWM. There are four separate channels, each channel controlling
a pair of output signals – the high-side output and the low-side output.

Channel Control

The PWM_CHANCFG register controls the static configuration of all the channels and is initialized once before the
beginning of a PWM operation.

NOTE: The PWM_CHANCFG register is not double buffered. Do not change the contents of the register once the
PWM is enabled.

Each channel works with a reference timer base. The time base can be either the main timer PWMTMR0 or the
appropriate PWMTMRx. Configure the time base with the PWM_CHANCFG.REFTMRA bit field as follows.

• Channel A works with PWMTMR0 or PWMTMR1

• Channel B works with PWMTMR0 or PWMTMR2

• Channel C works with PWMTMR0 or PWMTMR3

• Channel D works with PWMTMR0 or PWMTMR4

The double-buffered channel control registers (PWM_ACTL through PWM_DCTL) contain bits that control the dy-
namic pulse behavior of the channel outputs. These registers have bits that enable or disable outputs and select the
pulse position of outputs (explained in the following section).

Pulse Positioning and Duty Cycle Registers

The PWM uses the PULSEMODEHI and PULSEMODELO bit fields of the PWM_[n]CTL registers to define the
region within the timer period where the output pulses are positioned.

• When the PWM_CHANCFG.MODELSC bit is 0, the PWM uses the PULSEMODEHI field to specify the pulse
positioning for both the high-side and low-side outputs of the channel.

• When the bit is 1, the PWM uses PWM_ACTL.PULSEMODELO to define the pulse positioning for the low-
side output of the channel. It uses the PWM_ACTL.PULSEMODEHI to define the pulse positioning for the
high-side output of the channel.

Each channel output has two duty-cycle registers: PWM_AH0 and PWM_AH1 for the high-side output, and
PWM_AL0 and PWM_AL1 for the low-side output. These registers determine the width of the output pulses. When
the PWM_CHANCFG.MODELSC bit is 0, the high-side duty-cycle registers are used to determine the width of the
output pulse for the low side. The duty cycle range that can be programmed into these registers is between –
PWM_TM[n]/2 and +PWM_TM[n]/2 , when ignoring dead time.

When including dead time for channel A, for PULSEMODEs 00 and 01, the programmed duty cycle is modified.
The range is limited between the values [–PWM_TM[n]/2 + PWM_CHA_DT] and [+PWM_TM[n]/2 +
PWM_CHA_DT] considering the high-side output. For PULSEMODEs 10 and 11, the high-side duty cycle registers
range is limited between values [PWM_TM[n]/2 + PWM_CHA_DT] and [–PWM_TM[n]/2 – PWM_CHA_DT].

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 24–13

The following section explains dead time in detail.

• Switching Dead Time (PWM_DT) Register

NOTE: Values programmed into these registers that fall outside these limits result in over or under modulation.

Duty Cycle and Pulse Positioning Control

The PWM_ACTL.PULSEMODEHI and PWM_ACTL.PULSEMODELO fields control how the duty cycle registers
modify the waveform of the high and low-side outputs. (The PWM_ACTL.PULSEMODEHI and
PWM_ACTL.PULSEMODELO fields are referred to as pulse mode in the subsequent discussion.)

• Pulse mode = 00 – Produce a symmetrical pulse waveform around the center of the PWM period. In this
mode, PWM uses only one of the duty cycle registers for an output. For example, for the AH output, PWM
uses only the PWM_AH0 register. In this mode, the values in the duty cycle registers are scaled such that a value
of 0 produces a 50% duty cycle.

• Pulse mode = 01 – Produce an asymmetrical pulse waveform around the center of the PWM period. In this
mode, PWM uses both duty cycle registers. For example, for the PWM_AH output, PWM uses the PWM_AH0
and PWM_AH1 registers. In this mode, if the PWM_AH1 register is programmed with the same value as the
PWM_AH0 register, the output is identical to the output when pulse mode =00.

• Pulse mode = 10 or 11 – Produce pulse waveforms either on the first half or the second half of the PWM
period respectively. PWM uses both PWM_AH0 and PWM_AH1 registers.

Pulse mode = 10. If the low side works from the low-side duty-cycle registers, strictly adhere to the condition
PWM_AL0> PWM_AL1.

In pulse mode = 11. If the low side works from the low-side duty-cycle registers, strictly adhere to the condition
PWM_AL0< PWM_AL1.

The Pulse Positioning Modes figure shows the pulse positioning modes as previously described for PWM_AH. In
the figure, DUTY0 is the value in the PWM_AL0 register and DUTY1 is the value in the PWM_AH1 register. The
step signal, count, indicates the output of the timer for channel A. In the example, the signal is configured as active
high and dead time is zero.

Channel Timing Control Unit

24–14 ADSP-CM41x Mixed-Signal Control Processor

Centre of Period

DUTY0

DUTY1

0

DUTY1

De-Assert for
count <
DUTY1

DUTY0 > DUTY1
DUTY0

DUTY1

De-
count >

Centre of Period

Assert for count < DUTY0

DUTY0

DUTY0 < DUTY1

PULSEMODE = 11

PWM_AH

count

PWM_AH

count

PWM_AH

count

PWM_AH

count

DUTY

Assert for
DUTY1

De-assert for count > DUTY1 Assert for count < DUTY0
 De-assert for
count > DUTY1

PULSEMODE = 00 PULSEMODE = 01

PULSEMODE = 10

 Assert for count <
DUTY0

 Assert for
count <
DUTY0

Figure 24-7: Pulse Positioning Modes

Channel Low Side Output Dependent Operation Mode and Dead Time

The low-side output waveform can be programmed to depend on the waveform of the high-side output or to be
independent. The PWM uses the PWM_CHANCFG.MODELSC bit to control this functionality.

For example, channel A produces the high-side output PWM_AH and the low-side output PWM_AL. When the
PWM_CHANCFG.MODELSC bit =0, the low-side output is also generated using the high-side duty-cycle registers for
pulse width, the PWM_ACTL.PULSEMODEHI bits for pulse positioning and the PWM_CHANCFG.POLAH bit for
polarity. If the PWM_CH[x]_DT register is 0, the low-side output is an inverted version of the high-side output.

When the PWM_CH[x]_DT register is programmed with a non-zero value, both the high-side and low-side outputs
are scaled symmetrically about the points of transition in the zero dead time case. The PWM scales the output by
the value programmed in the PWM_CH[x]_DT register.

The Channel Outputs in Dependent Mode for Pulse Mode figures show the high and low-side outputs for the case
with zero and non-zero dead time for PWM_ACTL.PULSEMODEHI =00 and 01. DUTY0 is the value programmed
into the PWM_AH0 register. DUTY1 is the value programmed into the PWM_AH1 register. The
PWM_CHANCFG.POLAH bit =1, indicates that both signals are active high. The PWM_CHA_DT register holds the
value DT.

Channel Timing Control Unit

ADSP-CM41x Mixed-Signal Control Processor 24–15

DUTY0

DT

DT

PWM_AH

PWM_AL

PWM_AH

PWM_AL

Zero Dead-Time

DT

DT

Non-zero Dead-Time

PULSEMODE = 00

Figure 24-8: Channel Outputs in Dependent Mode for Pulse Mode = 00

DUTY0

DT

DT

PWM_AH

PWM_AL

PWM_AH

PWM_AL

DTDT

PULSEMODE = 01

DUTY1

Zero Dead-Time

Non-zero Dead-Time

Figure 24-9: Channel Outputs in Dependent Mode for Pulse Mode = 01

The following pair of figures shows the high and low-side outputs for the case with zero and non-zero dead-time for
PWM_ACTL.PULSEMODEHI =10 and 11. In the figures, DUTY0 is the value programmed into PWM_AH0 regis-
ter and DUTY1 is the value programmed into the PWM_AH1 register. PWM_CHANCFG.POLAH is 1 indicating that
both signals are active high. The channel dead-time registers hold the value DT.

NOTE: Using dead time, the guidelines for programming the duty-cycle registers in pulse modes 10 and 11 given
in Duty Cycle and Pulse Positioning Control are modified as follows:

Pulse mode 10: PWM_xH0 – DT > PWM_xH1 + DT

Pulse mode 11: PWM_xH0 + DT < PWM_xH1 – DT

Channel Timing Control Unit

24–16 ADSP-CM41x Mixed-Signal Control Processor

DUTY0

PWM_AH

DT
DT

DT
DTDUTY1

PWM_AL

PWM_AH

PWM_AL

Case with non-zero dead-time

PULSEMODE = 10

Case with Zero Dead-time

Figure 24-10: Channel Outputs in Dependent Mode for Pulse Mode = 10

DT

DT

DT

DT

PWM_AH

PWM_AL

PWM_AH

PWM_AL

DUTY1

DUTY0

Case with Zero Dead-time

PULSEMODE = 11

Case with non-zero dead-time

Figure 24-11: Channel Outputs in Dependent Mode for Pulse Mode = 11

Channel High Side and Low Side Outputs, Independent Operation Mode

Independent control of the PWM_AH0 and PWM_AL0 channel outputs is possible by setting the
PWM_CHANCFG.MODELSA bit to 1. In this case, the PWM module:

• Generates PWM_AH using the PWM_AH0 register

• Uses the PWM_AH1 register to configure pulse width

Channel Timing Control Unit

ADSP-CM41x Mixed-Signal Control Processor 24–17

• Uses the PWM_ACTL.PULSEMODEHI bit to configure pulse position

• Uses the PWM_CHANCFG.POLAH bit to configure polarity

• Generates PWM_AL using PWM_AL0
• Uses the PWM_AL1 register to configure pulse width

• Uses the PWM_ACTL.PULSEMODELO bit to configure pulse position

• Uses the PWM_CHANCFG.POLAL bit to configure polarity

NOTE: In independent mode, the dead-time insertion is not applicable. The hardware forces dead time to zero.

The PWM_AH and PWM_AL in Independent Operation Mode figure shows an example of the independent mode
of operation where PWM_AH and PWM_AL work from different register bits.

PWM_AH0

PWM_AH

PWM_AH1

PWM_AL

PWM_AL0

PWM_AL1

PULSEMODEHI = 10
POLHI = 1

PULSEMODELO = 01
POLLO = 1

PWM_AH and PWM_AL in Independent Mode of operation

Figure 24-12: PWM_AH and PWM_AL in Independent Operation Mode

PWM_AH and PWM_AL can be positioned in the timer period with a given phase difference between them. Pro-
gram the PWM_ACTL.PULSEMODEHI and PWM_ACTL.PULSEMODELO bits to different values to achieve this
positioning as shown in the Channel Outputs Controlled Independently figure.

Channel Timing Control Unit

24–18 ADSP-CM41x Mixed-Signal Control Processor

PWM_CH0 PWM_CH0

2 × DT

PWM_AH

PWM_AL

+PWM_TM/2 +PWM_TM/2-PWM_TM/2

COUNT

0 0

2 × DT

PWM_TM PWM_TM

PWM_PHASE

PWM_SYNC_OUT

Figure 24-13: Channel Outputs Controlled Independently

Switched Reluctance Motors Application

In typical power converter configurations for switched or variable reluctance motors, motor winding is connected
between the two power switches of a given inverter leg. To allow for a complete circuit in the motor winding, turn
on both switches at the same time.

PWM uses switched reluctance motors in the following configurations: hard chop, alternate chop, soft chop—bot-
tom on, and soft chop— top on.

The Four SR Mode Types, Active High PWM Output Signals figure shows the four SR mode types as active high
PWM output signals.

Hard chop mode contains independently programmed rising edges of the high and low signals of a channel in the
same PWM half cycle. Both signals contain independently programmed falling edges in the next PWM half cycle.
The PWM_CHANCFG.POLAH and PWM_CHANCFG.POLAL bits are programmed to same values.

Alternate chop mode is similar to normal PWM operation except that the PWM channel high and low signal edges
are always opposite and are independently programmed. The PWM_CHANCFG.POLAH and
PWM_CHANCFG.POLAL bits are programmed to opposite values. The low-side invert is the only difference be-
tween hard chop mode and alternate chop mode.

Soft chop - bottom on uses a 100% duty on the low side of the channel. Soft chop - top on uses a 100% duty on the
high side of the channel. Similar to hard chop mode, PWM uses the PWM_AH0 duty register for the high channel
and the PWM_AL0 duty register for the low channel.

Channel Timing Control Unit

ADSP-CM41x Mixed-Signal Control Processor 24–19

 SOFT
CHOP-
TOP
ON

 SOFT
CHOP-
BOTTOM
ON

 HARD
CHOP

 ALTER-
NATE
CHOP

PWM_AH01

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWM_AH

PWM_AL

PWM_TM1
PWM_TM2

+PWM_TM/2 +PWM_TM/2-PWM_TM/2

PWM_AH

COUNT

0 0

PWM_AL01

PWM_AH01

PWM_AL01

PWM_AH01

PWM_AL01

PWM_AH02

PWM_AL02

PWM_AH02

PWM_AL02

PWM_AH02

PWM_AL02

Figure 24-14: Four SR Mode Types, Active High PWM Output Signals

Switching Dead Time (PWM_DT) Register

The second important parameter that must be set up in the initial configuration of the PWM controller is the
switching dead time. Dead time is a short delay introduced between turning off one PWM signal (for example, AH)
and turning on the complementary signal (for example, AL). This short time delay permits turning off a power
switch (AH in this case) to completely recover its blocking capability before the complementary switch is turned on.
This time delay prevents a potentially destructive short-circuit condition from developing across the DC link capaci-
tor of a typical voltage source inverter.

The 10-bit, read/write channel A through channel D dead-time registers (PWM_CHA_DT through PWM_CHD_DT)
control the dead time for channel-x. If the value carried by any dead-time register is PWMDT, the dead time, Td,
for that channel is:

Td = PWM_CH[x]_DT × 2 × tSCLK

Therefore, a dead-time value of 0x00A introduces a 200-ns delay (for an SCLK of 100 MHz). The delay occurs
between turning off any PWM signal (for example, AH) and then turning on its complementary signal (for exam-
ple, AL). The length of dead time can be programmed in increments of 2 × tSCLK (or 20 ns for an SCLK of 100
MHz). The channel A through channel D dead-time registers have a maximum value of 0x3FF (1023 decimal) and
correspond to a maximum programmed dead time of:

Td(max) = 1023 × 2 × tSCLK = 1023 × 2 × 10 × 10-9 = 20.5 µs for an fSCLK rate of 100 MHz.

Write 0 to the PWM_CHA_DT through PWM_CHD_DT registers to program the dead time.

Duty Cycle with Dead Time Control: Calculations for PULSEMODE 00

The duty cycle registers are scaled so that a value of 0 represents a 50% PWM duty cycle. The switching signals
produced are also adjusted to incorporate the programmed dead-time value using the channel dead-time registers

Channel Timing Control Unit

24–20 ADSP-CM41x Mixed-Signal Control Processor

(PWM_CHA_DT through PWM_CHD_DT). The unit in this case produces active low signals so that a low level corre-
sponds to a command to turn-on the associated power device.

The Dead Time Between Outputs in Dependent Mode figure shows a typical pair of PWM outputs, PWM_AH and
PWM_AL. The time values in the figure indicate the integer value in the associated register and can be converted to
time by multiplying by the fundamental time increment, tCK. In the example, channel A is working from
PWM_TM0.

In the example, the pulse mode is set to 00 so that the switching patterns are perfectly symmetrical about the mid-
point of the switching period. The dead time is incorporated by moving the switching instants of both PWM signals
away from the instant set by the PWM_AH0 register. Both switching edges are moved by an equal amount (DT ×
tCK) to preserve the symmetrical output patterns. Also shown is the PWM_SYNC output pulse whose rising edge
denotes the beginning of the switching period, and the PWM_STAT.TMR0PHASE bit.

PWM_CH0 PWM_CH0

2 × DT

PWM_AH

PWM_AL

+PWM_TM/2 +PWM_TM/2-PWM_TM/2

COUNT

0 0

2 × DT

PWM_TM PWM_TM

PWM_PHASE

PWM_SYNC_OUT

Figure 24-15: Dead Time Between Outputs in Dependent Mode

The PWM timing unit produces the resulting on-times (active low) of the PWM signals over the full PWM period
(two half-periods). The figure illustrates this timing. The timing can be written per the following equation.

TAH = (PWM_TM0 + 2 × (PWM_AH0 − PWM_CH[x]_DT)) × tCK;

Range of TAH is [0:2 × PWM_TM0 × tCK]

TAL = (PWM_TM0 − 2 × (PWM_AH0 + PWM_CH[x]_DT)) × tCK;

Range of TAL is [0:2 × PWM_TM0 × tCK]

PWM_TM0
DTPWM_AH0

2
1

Ts
Td

PWM_TM
DTPWM_AH0

2
1

Ts
Td

AL
AL

AH
AH

+−==

−
+==

Channel Timing Control Unit

ADSP-CM41x Mixed-Signal Control Processor 24–21

The negative values of TAH and TAL are not permitted and the minimum permissible value is zero, corresponding to
a 0% duty cycle. In a similar fashion, the maximum value is Ts, the PWM switching period, corresponding to a
100% duty cycle. Calculation of duty for other pulse modes can be similarly executed.

Special Consideration for PWM Operation in Over-Modulation

The PWM timing unit can produce PWM signals with variable duty cycle values at the PWM output pins. In pulse
modes 00 and 01, at the extremities of the modulation process, duty cycles of 0% and 100% occur. In pulse modes
01 and 10, at the extremities of the modulation process, duty cycles of 0% and 50% occur. The modulation is called
full off when the lower extremity of modulation is set for any PWM timer period for the corresponding channel.
The modulation is called full on when the higher extremity of modulation is set for any PWM timer period for the
corresponding channel. In between, for other duty cycle values, the operation is termed normal modulation.

Full On Modulation

In pulse modes 00 and 01, a PWM channel is in full on modulation if the high-side output of that channel is asser-
ted. The output is asserted for the whole duration of the period of the PWM timer that channel is referencing. The
conditions for full on modulation are:

• PWM_xH0 - DT > PWM_TMy/2 for pulse mode 00

• PWM_xH1 - DT > PWM_TMy/2 for pulse modes 00 and 01

In pulse mode 10, a PWM channel is in full on modulation if the high-side output of that channel is asserted. The
output is asserted for the whole duration of the first half period of the PWM timer that the channel is referencing.
The conditions for full on modulation are:

• PWM_xH0 - DT > PWM_TMy/2 for pulse mode 10

• PWM_xH1 + DT < PWM_TMy/2 for pulse mode 10

In pulse mode 11, a PWM channel is in full on modulation if the high-side output of that channel is asserted. The
output is asserted for the whole duration of the second half period of the PWM timer that the channel is referenc-
ing. The conditions for full on modulation are:

• PWM_xH0 + DT < PWM_TMy/2 for pulse mode 11

• PWM_xH1 - DT > PWM_TMy/2 for pulse mode 11

Full Off Modulation

In pulse modes 00 and 01, a PWM channel is in full off modulation if the high-side output of that channel is deas-
serted. The output is deasserted for the whole duration of the period of the PWM timer that channel is referencing.
The conditions for full off modulation are:

• PWM_xH0 - DT < PWM_TMy/2 for pulse mode 00

• PWM_xH1 - DT < PWM_TMy/2 for pulse modes 00 and 01

Channel Timing Control Unit

24–22 ADSP-CM41x Mixed-Signal Control Processor

In pulse mode 10, a PWM channel is in full off modulation if the high-side output of that channel is deasserted.
The output is deasserted for the whole duration of the first half period of the PWM timer that the channel is refer-
encing. In the second half-period, it is deasserted anyway. The conditions for full off modulation are:

• PWM_xH0 - DT < PWM_TMy/2 for pulse mode 10

• PWM_xH1 + DT < PWM_xH0 DT for pulse mode 10

In pulse mode 11, a PWM channel is in full off modulation if the high-side output of that channel is deasserted.
The output is deasserted for the whole duration of the second half period of the PWM timer that the channel is
referencing. In the first half of the period, it is deasserted anyway. The conditions for full off modulation are:

• PWM_xH0 + DT > PWM_TMy/2 for pulse mode 11

• PWM_xH1 - DT > PWM_xH0 + DT for pulse mode 11

Normal Modulation

All other cases of modulation fall under this category.

Emergency Dead-Time Delays

Sometimes, during modulation transition, it is necessary to insert more emergency dead-time delays to prevent po-
tential shoot through conditions in the inverter. (For example, when the PWM transitions into or out of full on or
full off modulation.) Disabling and enabling usage (related to the PWM_ACTL.DISHI and PWM_ACTL.DISLO
bits) also can potentially cause outputs to violate shoot-through condition criteria. Another case is when large values
vary the phase delay of a PWM timer. These transitions are detected automatically. If appropriate for safety, an
emergency dead-time is inserted to prevent shoot through conditions.

There is another atypical case for the insertion of the additional emergency dead time. It occurs when both PWM
signals do not toggle within a dead time of each other. In this case, insert more emergency dead time into one of the
PWM signals of a given pair during these transitions. The dead-time delay is inserted into the PWM signal that is
toggling into the on-state. In effect, an amount (2 × DT × tCK) from the rising edge of the opposite output delays
the turn-on of this signal. After this delay, the PWM signal is allowed to turn-on provided the desired output is still
scheduled to be in the on-state after the emergency dead-time delay.

The Over Modulation Transition Example figure illustrates two examples of such a transition. In the figure,
PWM_ACTL.PULSEMODEHI is kept at 1. The PWM_AH signal has been in full on modulation for some time and,
during the current period, its pulse mode is changed to 10, keeping the full on condition. At the half-period boun-
dary, PWM_AH is forced to transition to a deasserted state because pulse mode is 10. An emergency dead-time is
inserted on the low-side output.

Channel Timing Control Unit

ADSP-CM41x Mixed-Signal Control Processor 24–23

PWM_AH

PWM_AL

+PWM_TMy/2 +PWM_TMy/2-PWM_TMy/20 0

2 × DT

EMERGENCY DEADTIME

PWM_TM PWM_TM

FULL ON

PULSEMODE 10

Figure 24-16: Over Modulation Transition Example

Gate Drive Unit

The gate drive unit of the PWM adds features that simplify the design of isolated gate drive circuits for PWM inver-
ters. When using a transformer coupled power device gate drive amplifier, the active PWM signal must be chopped
at a high frequency. The PWM_CHOPCFG register allows the programming of this chopping mode for high frequen-
cy. The chopped active PWM signals can be required for the high-side drivers only, for the low-side drivers only, or
for both the high-side and low-side switches. Therefore, independent control of this mode for both high and low-
side switches is included with two separate control bits in the PWM_CHANCFG register.

The High-Side and Low-Side Outputs With Gate Chop Enabled figure shows the typical PWM output signals with
high-frequency chopping enabled on both high-side and low-side signals. Chopping of the PWM outputs is enabled
by setting bits in PWM_CHANCFG register. The 8-bit PWM_CHOPCFG.VALUE value controls the high frequency
chopping. The following equation gives the period of this high frequency carrier.

Tchop = [4 × (CHOPDIV + 1)] × tCK

and the chopping frequency is therefore an integral subdivision of the peripheral clock frequency:

fchop = fCK/[4 × (CHOPDIV + 1)]

The PWM_CHOPCFG.VALUE value can range from 0 to 255, corresponding to a programmable chopping frequen-
cy rate from 122 kHz to 31.25 MHz for a 125 MHz, fCK rate. Program the gate drive features before enabling the
PWM controller. Do not change the gate drive features during normal operation of the controller. Following a reset,
clear all bits of the PWM_CHANCFG register so that high frequency chopping is disabled, by default.

PWM_CH0 PWM_CH0

2 × DT

PWM_AH

PWM_AL

+PWM_TM/2 +PWM_TM/2-PWM_TM/2

COUNT

0 0

2 × DT

Figure 24-17: High-Side and Low-Side Outputs With Gate Chop Enabled

Architectural Concepts

24–24 ADSP-CM41x Mixed-Signal Control Processor

Output Control Feature Precedence

The order of applying output control features to the PWM signal is important and significant. Use the following
order for applying the signal features to the PWM output signal.

1. Duty generation

2. Cross-over

3. High-side or low-side disable

4. Emergency dead-time insertion

5. HPPWM correction for wrong programming

6. Gate-drive chopping

7. Polarity

8. Heightened-Precision PWM (HPPWM) edge placement

NOTE: When HPPWM operation is enabled, the cross-over feature and the gate-drive chopping feature must be
disabled.

Operating Modes
The PWM generator is capable of operating in the following modes:

• Sync Operation Modes

• Output Disable and Cross-Over Modes

• Heightened-Precision Edge Placement

• Emulation Mode

Sync Operation Modes

The PWMx_SYNC pins can operate as internally generated or externally generated. If its internally generated,
PWMs can drive the signal to synchronize other PWMs and other devices. If externally generated, the PWMs can be
synchronized externally.

Synchronizing Other Devices

The PWM may be programmed to generate a SYNC pulse of any width, which can be driven via the pinmux onto a
GPIO. This operation allows synchronization with other off-chip slave devices and is controlled by the pinmux, and
the PWM_CTL.EXTSYNC and PWM SYNC out secondary enable bits
(SYSBLK_PWM_SYS_CFG.PWM0SYNCOE through SYSBLK_PWM_SYS_CFG.PWM2SYNCOE). To perform
this operation:

• The pinmux must select FER =1 and set MUX to select the PWM function, AND

Functional Description

ADSP-CM41x Mixed-Signal Control Processor 24–25

• either the PWM_CTL.EXTSYNC =0 (internal PWM sync), OR

• The SYSBLK_PWM_SYS_CFG.PWM0SYNCOE through SYSBLK_PWM_SYS_CFG.PWM2SYNCOE bits
=1 (for PWM accepting a SYNC trigger input, but also generating a SYNC output GPIO pulse of programma-
ble width).

Internal PWM Sync Generation

The PWM controller produces an output PWM synchronization pulse at a rate equal to period of a selected PWM
timer. Programming the PWM_CTL.INTSYNCREF field controls this selection.

The PWM_SYNC pulses are generated at their respective period boundaries if:

• the other timers are running with a non-zero delay offset in relation to PWMTMR0, and

• the PWM_SYNC pulse is referenced to any of these timers.

The boundaries have a lag-lead offset compared to PWMTMR0.

This pulse is available for external use at the PWM_SYNC_OUT pin. The width of the PWM_SYNC pulse is program-
mable by the 10-bit read/write PWM_SYNC_WID register. The following equation gives the width of the
PWM_SYNC pulse:

tPWMSYNC = tSCLK× (PWMSYNCWT + 1)

The width of the pulse is programmable from tCK to 1024 tCK (corresponding to 8 ns to 8.19 μs for a fCK rate of
125 MHz). Following a reset, the PWM_SYNC_WID register contains 0x3FF (1023 decimal) so that the default
PWM_SYNC width is 8.19 μs, for a 125 MHz fCK.

External (Triggered) PWM Sync Generation

By setting the PWM_CTL.EXTSYNC bit, the PWM is set up in a mode to expect an external PWM_SYNC signal on
the PWM_SYNC_IN pin through the TRU. The trigger source can be any TRU1 trigger master. Multiple PWM
units can be precisely synchronized by selecting the same trigger master as the sources for each PWM sync trigger
slave. Examples of useful trigger masters include:

• A PWM_SYNC GPIO master. This option allows synchronizing the PWMs to an off-chip timing source. (The
PWM_CTL.EXTSYNC bit must be programmed to 1 to enable the GPIO input.) The PWM_SYNC GPIO pads
are connected through the pin mux to configurable trigger masters using PWM master IDs
TRGM_SYS_PWMn_SYNC_IN. Using the TRU, these masters can be connected to the PWM_SYNC trigger
slaves in any desired combination.

• A TTU trigger output. This option can include a member of a TTU trigger group, which can also control the
timing of other devices such as ADCs, SINC filter inputs, or GP timers. The TTU supports relative trigger
delays so that timing offsets can be applied to manage system latencies with precision.

• A general-purpose timer trigger master

• A software trigger master. This option allows starting one or more PWM units simultaneously by an MMR
write.

Synchronizing Other Devices

24–26 ADSP-CM41x Mixed-Signal Control Processor

The external PWM_SYNC signal only determines the operation of the main timer PWMTMR0.

Synchronize the external sync by setting the PWM_CTL.EXTSYNCSEL bit to 0 (assumes the external PWM_SYNC
selected is asynchronous).

The external PWM_SYNC period is expected to be an integer multiple of the value of the PWM_TM0 period register.
When the rising edge of the external PWM_SYNC is detected, the PWMTMR0 timer is restarted at the beginning of
its period. If the external PWM_SYNC period is not exactly an integer multiple of the internal PWM_SYNC, the be-
havior of the PWM channel outputs which are referenced to PWMTMR0 are clipped.

CAUTION: Do not change the value of the PWM_CTL.EXTSYNC bit while the PWM is enabled
(PWM_CTL.GLOBEN =1).

Output Disable and Cross-Over Modes

Each PWM_ACTL channel control register contains separate enable bits for the high and low-side signals. The PWM
module uses the PWM_ACTL.DISHI and PWM_ACTL.DISLO bits in the channel A control register to enable or
disable the PWM_AH and PWM_AL outputs respectively. If the disable bit is set (=1), then the corresponding PWM
output is disabled, irrespective of the value of the corresponding duty cycle register. This PWM output signal re-
mains in the OFF state as long as the corresponding enable or disable bit is set.

The cross-over bit (PWM_ACTL.XOVR) allows programs to send the low-side output through the high-side output
pin and the high-side output through the low-side output pin.

One example uses the following configuration:

• The PWM_AH0 register =0

• The PWM_CHANCFG.MODELSC bit =0

• The PWM_ACTL.DISLO bit =1

• The PWM_ACTL.XOVR bit =1

The low-side output remains off, as in the case without crossover. The difference in cross-over is that the high-side
output changes character and becomes like the low-side. What actually occurs is that the low-side duty cycle is sent
to the high-side output pins, and the high-side duty cycle is sent to the low side pins. Because the
PWM_ACTL.DISLO bit =1, the low-side pin remains off (see Output Control Feature Precedence).

The XOVR and DISHI/DISLO Functionality figure shows this example. In case 1, PWM_ACTL.XOVR =0; and in
case 2, PWM_ACTL.XOVR =1.

Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 24–27

DT DT

PWM_AH

PWM_AL

PWM_AH

PWM_AL

CASE 1
PWM_AH0 = 0
MODELSCHx = 0
XOVER = 0
POLHI = 1
DISLO = 1

CASE 2
PWM_AH0 = 0
MODELSCHx = 0
XOVER = 1
POLHI = 1
DISLO = 1

50% DUTY CYCLE

Figure 24-18: XOVR and DISHI/DISLO Functionality

Brushless DC Motor (Electronically Commutated Motor) Control

In the control of an electronically commutated motor (ECM), only two inverter legs are switched at any time. Of-
ten, the high-side device in one leg must be switched on at the same time as the low-side driver in a second leg. It is
possible to turn on the high-side switch of phase A and the low-side switch of phase B at the same time by:

• Programming identical values for the duty cycles for two PWM channels (for example, PWM_CH0 =
PWM_CH1), and

• Setting the PWM_BCTL.XOVR bit to crossover the BH and BL pair of PWM signals

To control ECM, normally the third inverter leg (phase C in this example) is disabled for a number of PWM cycles.
To implement this function, both the PWM_CH and PWM_CL outputs are disabled by setting the
PWM_CCTL.DISHI and PWM_CCTL.DISLO bits.

In normal ECM operation, each inverter leg is disabled for certain time periods so that the PWM channel registers
change based on the position of the rotor shaft (motor commutation).

2 × DT

PWM_AH

PWM_AL

PWM_BH

PWM_BL

PWM_CH

PWM_CL

+PWM_TM/2 +PWM_TM/2-PWM_TM/2

COUNT
0 0

2 × DT

PWM_AH0=PWM_CH0 PWM_AH0=PWM_CH0

Figure 24-19: ECM Control

Output Disable and Cross-Over Modes

24–28 ADSP-CM41x Mixed-Signal Control Processor

Heightened-Precision Edge Placement

Heightened-precision edge placement allows a fine-grained edge placement within the system clock period. The
Heightened-Precision Steps in a Single SCLK Period figure shows how the SCLK aligned edge is moved to finer
resolution.

The heightened-precision mode is enabled by setting bits that correspond to the high or low side output option for
the channel in the PWM_CHANCFG register. bit. The PWM_AH0_HP and PWM_AH1_HP registers work alongside
the PWM_AH0 and PWM_AH1 registers to provide the overall resolution. The following example explains how sign-
ed decimal programming is implied for the heightened-precision duty values.

For the PWM_AH output, the duty-cycle register-pair PWM_AH0 and PWM_AH0_HP work together in a Q15.8 sign-
ed two’s complement fixed-point format as shown in the Duty Cycle Notation for Heightened-Precision Edge Place-
ment figure. The weight of bit position at k is 2k.

s 01234567891011121314 -1 -2 -3 -4 -5 -6 -7 -8

PWM_AH0 PWM_AH0_HP

Figure 24-20: Duty Cycle Notation for Heightened-Precision Edge Placement

In the normal modes of operation (not involving heightened-precision edge placement), only the PWM_AH0 register
value is programmed. The duty value programmed is a two’s complement integer value. If a value of -1 is desired,
the PWM_AH0 register is programmed with the number 0xFFFF (which is the two’s complement of 1 in 16 bits).

In the heightened-precision mode, if a duty value corresponding to 0.75 is required, the equivalent two’s comple-
ment value of 0.75 in the Q15.8 format is computed: 1111_1111_1111_1111.0100_0000 = 0xFFFF.40. In this
case, the PWM_AH0 register is programmed to 0xFFFF and the PWM_AH0_HP register is programmed to 0x40.

Heightened-Precision Edge Placement Example

The following is an example of heightened precision edge placement.

On the positive side of the fractional of the duty cycle, at 2 tCK + 0.25 tCK, the values for the PWM_AH0 and
PWM_AH0_HP registers are calculated as follows.

The PWM_AH0 =0x0002 and PWM_AH0_HP =0x40 (bits 7:6).

The PWM_AH_DUTY0 register contains the bit fields from both the PWM_AH0 and PWM_AH0_HP registers. Bits
[15:14] represent the decimal part or heightened-precision value and bits [31:16] represent the coarse duty cycle.
The value for the combined registers is PWM_AH_DUTY0 =0x00024000.

On the negative side of the fractional of the duty cycle, at –2 tCK – 0.25 tCK, the values for the PWM_AH0 and
PWM_AH0_HP registers are calculated as follows:

The coarse register represents the next count of the coarse value for negative values so that –2 becomes –3. These
values are the two's complement of the positive offset (value = 3) PWM_AH0 = 0xFFFD and PWM_AH0_HP =0xC0
(bits 7:6).

Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 24–29

To derive the correct format for a negative duty-cycle value, for example, –2.25, use: coarse value + 1 =3 for the
coarse value and 1 for 0.25. Write out the absolute value as a 32-bit number first:

0000 0000 0000 0011 (.) 0100 0000 0000 0000

Then take the two’s complement of the entire 32-bit number:

1111 1111 1111 1101 (.) 1100 0000 0000 0000

NOTE: This value is also written into the full duty register (PWM_AH_DUTY0). The correct value for the com-
bined registers written in the PWM_AH_DUTY0 register is 0xFFFDC000.

NOTE: The above examples only consider 2 bits of precision, while the ADSP-CM41xF supports up to 4 bits (re-
fer to the product datasheet for maximum heightened precision resolution in time). That means bits [7:4]
of the PWM_AH_DUTY0 register can be used to define the higher precision. Bits [15:12] of represent the
decimal part or heightened-precision value and bits [31:16] represent the coarse duty cycle.

1 SCLK Period

AH

AH

HPDUTY (Programmed by ENHDIV)

AH

HPDUTY- Maximum (Programmed by MAXDIV)

Figure 24-21: Heightened-Precision Steps in a Single SCLK Period

Sample Waveforms for High- and Low-Side with Precision Placement

When the PWM module uses heightened-precision in the dependent mode of operation, both high and low-side
outputs shift in the same direction. This operation can result in pulse-expansion of the high-side and pulse-contrac-
tion of the low-side or conversely.

The Output Shift in The Same Direction figure shows an example of a case with DT =1, and pulse expansion occurs
on the high-side and pulse-contraction on the low-side. It juxtaposes a case where the PWM module does not use
heightened-precision and a case where PWM does use it.

Heightened-Precision Edge Placement

24–30 ADSP-CM41x Mixed-Signal Control Processor

Figure 24-22: Output Shift in The Same Direction

The following Precision Placement: PULSEMODE figures illustrate the cases for pulse modes 1, 2, and 3 (pulse
mode 00 is a trivial case of pulse mode 01). The pulse modes are configured in the PWM_ACTL and PWM_BCTL
channel control registers. The figures show what happens to the edges as a decimal part is added to a programmed
positive duty. In each case, assume that the original PWM_AH0.DUTY register value, which is the coarse duty value,
changes to the PWM_AH1.DUTY value after programming the enhanced-resolution (PWM_AH0_HP,
PWM_AH1_HP) registers. For example, changing 14 to 14.25 and 10 to 10.75. The figures are not drawn to these
numbers. For negative duty values, the shifts are in the opposite direction.

Figure 24-23: Precision Placement: PULSEMODE=01

Heightened-Precision Edge Placement

ADSP-CM41x Mixed-Signal Control Processor 24–31

Figure 24-24: Precision Placement: PULSEMODE=10

Figure 24-25: Precision Placement: PULSEMODE=11

Emulation Mode

Depending upon system configuration, a debug halt may be presented to the PWM unit. The PWM has local con-
trol of its response to an emulator halt based on the PWM_CTL.EMURUN bit setting.

• PWM_CTL.EMURUN =1. When the processor is halted in emulation mode, the outputs continue to toggle and
be driven out of the PWM block. The counters and status register bits are set or reset according to the PWM
timer count or period settings.

• PWM_CTL.EMURUN =0. When the processor is halted in emulation mode, the outputs are shut down (enter
their inactive state based on polarity), and all counters that affect status register bits are paused.

The PWM_STAT.EMU bit is set.

• At restart, the PWM counters resume from their paused value. The outputs are still held in their inactive state.

To reactivate the outputs, clear the PWM_STAT.EMU bit with a W1C operation.

Operating Modes

24–32 ADSP-CM41x Mixed-Signal Control Processor

NOTE: The PWM_STAT.EMU bit is not cleared by disabling the PWM or writing 0 to the PWM_CTL.EMURUN
bit.

Emergency dead time is not ensured on re-enabling the outputs by a W1C operation to the
PWM_STAT.EMU bit.

Sub SCLK heightened-precision edge placements can be off on the first output edge for every channel on
clearing the PWM_STAT.EMU bit.

Event Control
The PWM uses bits in the PWM_IMSK and PWM_ILAT registers for event control. These registers allow masking
and show masked interrupt request status bits, respectively. The interrupt status bits are latched and held on the
interrupt event. The software must write a 1 to clear the interrupt status bit, usually during the interrupt service
routine.

The timer period (TMRxPER) interrupt requests are configured using the PWM_ILAT.TMR0PER -
PWM_ILAT.TMR4PER bits. The PWM uses the interrupts to execute an interrupt service routine (ISR) periodical-
ly. The ISR updates the PWM channel control and duty registers (according to a control algorithm based on expec-
ted operation and sampled existing operation). The TMRxPER interrupts also can trigger an ADC to sample data
for use during the ISR.

The PWM uses the PWM_CTL.INTSYNCREF bit field to control the PWM_SYNC interrupt request. The PWM
uses the bit field to assign the interrupt request to a system user interrupt of the core. The PWM_SYNC can be
configured to be either internal or externally driven using the PWM_CTL.EXTSYNC bit. When configured as an
external sync, the signal can be further configured as synchronous or asynchronous using the
PWM_CTL.EXTSYNCSEL bit.

As an example, when the PWM_SYNC interrupt is serviced:

• The ADC samples data

• The data is algorithmically interpreted

• New PWM channel duties are calculated and written to the PWM

More sophisticated implementations include different startup, run time, and shutdown algorithms to determine
PWM channel duties based on expected behavior and further features.

During the PWM_SYNC interrupt driven control loop, only the channel delay registers, the duty registers, and the
channel C high pulse duty register values are typically updated. To see programming limitations on the PWM regis-
ters, see the "Register Descriptions".

Status information about the PWM is available in the PWM_STAT register, which stores all status bits, including raw
interrupt status bits. In particular, the period boundary of each timer is available, as well as status bits. The PWM
uses the status bits to indicate whether the operation is in the first half or the second half of the timer. Additionally,
the TRIP status is also available. For more information on TRIP interrupts, see Trip Control Unit .

Event Control

ADSP-CM41x Mixed-Signal Control Processor 24–33

Trip Control Unit

Each PWM unit features two TRIP input ports: TRIP0 and TRIP1. The TRIP0 port can be connected to any of
five input signals as noted below: three active-low pins PWM_TRIPA, PWM_TRIPB, and PWM_TRIPC and two
pins from the analog front end: AFE_OK and COMP_OUT_IRQ. The PWM Trip Signal Mapping table details
the control bits which enable the signal connection. Note that the SYSBLK_PWM_SYS_CFG register allows pro-
gramming any combination of trigger sources independently for TRIP0 port of each PWM unit. The PWM Trip
Input Ports figure shows how the package pins and control bits are used as inputs to the PWM trip unit port.

Table 24-5: PWM Trip Signal Mapping

Enable bit in SYSBLK_PWM_SYS_CFG Destination PWM Unit PWM Trip Unit Port

SYSBLK_PWM_SYS_CFG.PWM0TRIPMX[0] PWM0 TRIP0

SYSBLK_PWM_SYS_CFG.PWM0TRIPMX[1]

SYSBLK_PWM_SYS_CFG.PWM0TRIPMX[2]

SYSBLK_PWM_SYS_CFG.FOCPTRIPEN0
SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN0
SYSBLK_PWM_SYS_CFG.PWM1TRIPMX[0] PWM1 TRIP0

SYSBLK_PWM_SYS_CFG.PWM0TRIPMX[1]

SYSBLK_PWM_SYS_CFG.PWM0TRIPMX[2]

SYSBLK_PWM_SYS_CFG.FOCPTRIPEN1
SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN0
SYSBLK_PWM_SYS_CFG.PWM2TRIPMX[0] PWM2 TRIP0

SYSBLK_PWM_SYS_CFG.PWM2TRIPMX[1]

SYSBLK_PWM_SYS_CFG.PWM2TRIPMX[2]

Event Control

24–34 ADSP-CM41x Mixed-Signal Control Processor

Package Pins

~A
F

E
_O

K

FOCPTRIPEN0

AFEOKTRIPEN0

C
O

M
P

_O
U

T
_IR

Q

~P
W

M
_T

R
IPA

b

Control Bits

PWM0TRIPMX[2:0]

~P
W

M
_T

R
IP

B
b

~P
W

M
_T

R
IP

C
b

PWM0_TRIP_SLV0
PWM0_TRIP_SLV1
PWM0_TRIP_SLV2

PWM0

TRIP0

TRIP1

PWM Unit Trip Inputs

TRU1 TRGS_SYS

[0]

[1]

[2]

FOCPTRIPEN1

AFEOKTRIPEN1

PWM1TRIPMX[2:0]

PWM1_TRIP_SLV0
PWM1_TRIP_SLV1
PWM1_TRIP_SLV2

PWM1

TRIP0

TRIP1

[0]

[1]

[2]

FOCPTRIPEN2

AFEOKTRIPEN2

PWM2TRIPMX[2:0]

PWM2_TRIP_SLV0
PWM2_TRIP_SLV1
PWM2_TRIP_SLV2

PWM2

TRIP0

TRIP1

[0]

[1]

[2]

Figure 24-26: PWM Trip Input Ports

The PWM output signals can be shut-off in a number of different ways. The trip inputs (PWM_TRIP[n]) can be
mapped to provide either a temporary or permanent shutdown on any channel outputs (hi/lo/pair). This shutdown
mechanism is asynchronous so that the associated PWM output disable circuitry does not go through any clocked
logic. This functionality ensures correct PWM shutdown even in the event of a loss of the processor clock. In addi-
tion to the hardware shutdown features, the PWM system can be shut down in software with the
PWM_CTL.SWTRIP bit.

The external trip signals PWM_TRIP0, and PWM_TRIP1 that come from GPIO generate the TRIP0 input whereas
the trigger slaves PWM0_TRIP_TRIGn, PWM1_TRIP_TRIGn and PWM2_TRIP_TRIGn generate TRIP1 in-
put.

Event Control

ADSP-CM41x Mixed-Signal Control Processor 24–35

The external trip signals PWM_TRIPA, PWM_TRIPB, and PWM_TRIPC that come from GPIO generate the
TRIP0 input whereas the trigger slaves PWM0_TRIP_SLVn, PWM1_TRIP_SLVn and PWM2_TRIP_SLVn gen-
erate TRIP1 input. In addition, the internal signals SYSBLK_SYSSTAT.AFE_LIMIT (indicating a detection on
the AFE fast overcurrent protection comparators) and SYSBLK_SYSSTAT.AFE_OK (indicating a fault condition
on the AFE) can also generate the TRIPO0 input. Each input connection of the GPIO or AFE to INPUT0 of each
PWM block can be individually enabled. See the SYSBLK_PWM_SYS_CFG register for details.

During any external trip event (if not disabled), the PWM outputs are turned off. When a PWM output is turned
off, it means that the output level is held at a polarity opposite that given in the PWM_CHANCFG.POLAH through
PWM_CHANCFG.POLDH (channel high side polarity) bits. The PWM sync pulse continues to operate, when it is
already enabled. A PWMTRIP interrupt occurs if unmasked, to notify the software of this event. In dependent
mode of operation, both high and low-side outputs refer to the channel high side polarity bits.

Even if the clock to the PWM is damaged, an external trip event turns off the PWM outputs. In this case, the
PWMTRIP interrupt request may not occur.

An additional level of protection for PWM outputs is available in the PORTs (GPIO) units, called pin safe state.
This feature allows a pre-programmed safe state (0,1, or tristate) to be individually selected for each GPIO. The state
is asserted asynchronously upon selected conditions, and with a selected microsecond-scale delay even if the clocks
or one of the power supplies is out of specification. See the PORT chapter for details.

The PWM trip unit processes hardware or software fault conditions and shuts down the PWM channel outputs
immediately on the occurrence of these conditions. The PWM can enable the shutdown mechanism separately for
each channel. The design also allows for a self-restart mechanism to be enabled on a channel. Self-restart reenables
the channel outputs following the fault condition (allowed only on hardware trips) when the PWMTMRy that the
channel is using reaches its period boundary.

1. PWM_TRIPA input pin

2. PWM_TRIPB input pin

3. PWM_TRIPC input pin

4. SYSBLK_SYSSTAT.AFE_OK signal

5. SYSBLK_SYSSTAT.AFE_LIMIT signal

The PWM_TRIPA, PWM_TRIPB, and PWM_TRIPC and SYSBLK_SYSSTAT.AFE_OK signals are active low for
the trip mechanism, where a falling edge indicates a fault condition. The SYSBLK_SYSSTAT.AFE_LIMIT is
active-high, where a rising edge indicates a fault condition.

The trip unit can shut down an output of a particular channel in response to the fault event on any of these signal
sources. To enable this functionality, program the connection of the signal source to the TRIP0 input of the particu-
lar PWM unit using the SYSBLK1.PWM_TRIP_CFG register. Then, program the PWM_TRIPCFG.EN0A bit
corresponding to the channel.

Program the PWM_TRIPCFG.MODE0A bits to specify the restart mechanism for a channel that has been tripped.

Event Control

24–36 ADSP-CM41x Mixed-Signal Control Processor

1. If the PWM_TRIPCFG.MODE0A bit =0, once tripped, a trip condition is registered on this channel in the
PWM_STAT.FLTTRIPA bit and the outputs of that channel are immediately shut down. This condition is
called a fault trip condition. To resume channel output when a fault trip occurs, write a 1 to clear the
PWM_STAT.FLTTRIPA bit. A processor write cannot clear the bit when the trip condition is still active. The
raw trip status is available for both pins in the PWM_STAT.RAWTRIP0 register bits.

2. If the PWM_TRIPCFG.MODE0A bit =1, once tripped, a trip condition is registered on this channel in the
PWM_STAT.SRTRIPA bit and the outputs of that channel are immediately shut down. This condition is
called a self-restart trip condition. If the trip condition is not active at the next period boundary of the
PWMTMRy that the channel is using, the status register bit is cleared. The outputs are restored.

The trip input pins have an internal pull-up resistor on the chip pin.

In addition to the hardware trip conditions, a global software trip bit in the PWM_CTL register allows for a software-
forced fault trip condition. When the global software trip bit is set to 1, irrespective of the values in the
PWM_TRIPCFG register, it sets all the PWM_STAT.FLTTRIPA bits and also gates the channel outputs. To remove
the trip condition from the channel, perform a W1C on the PWM_STAT.FLTTRIPA bit of the particular channel.

If the PWM_TRIPCFG.EN0A bit is set to 1 to, for any channel, then the occurrence of a fault condition on the
PWMTRIPy bit is logged in the PWM_STAT.FLTTRIPA register bit. If the corresponding PWM_IMSK.TRIP0
bit = 1, then an interrupt request is generated. Tripping a channel output does not interfere with PWM_SYNC gener-
ation.

The Operation Under Hardware Fault Conditions figure shows an example where PWMTRIP0 is enabled on chan-
nel A as self-restart trip. Channel A works with the PWM_CHANCFG.POLAH bit =1. In period 2, the PWM_AH
signal is full on modulated, and tries to rise at the period boundary where the self-restart occurs for the channel.
However, since the low-side output of the channel was only recently removed due to a trip, the rise edge on
PWM_AH is delayed until the emergency dead-time period is over. PWMTRIP1 is enabled on channel B as a fault
trip. Channel B works with the PWM_CHANCFG.POLAH bit =0. PWMTRIP1 stays low for an extended time peri-
od. The first processor write to reenable the channel output fails. The second processor write passes since the fault
condition has gone away.

Event Control

ADSP-CM41x Mixed-Signal Control Processor 24–37

PWM_AH

PWM_AL

+PWM_TMy/2 +PWM_TMy/2-PWM_TMy/2 +PWM_TMy/2-PWM_TMy/2

PWMTRIP0

PERIOD 0 PERIOD 1

Emergency dead-time pushes
back over-modulated PWM_AH

rise edge

Channel A outputs re-enabled at the
period boundary since PWMTRIP0 is
no longer active

FAILS! since PWMTRIP1
is still active SUCCEEDS! Trip

condition is gone
Processor write to
clear CHBFLTTRIP

Emergency
dead-time
inserted

PWMTRIP0 enabled on channel A as FAULT RESTART TRIP

Figure 24-27: PWM Trip Input Ports, Restart

PWM_BH

PWM_BL

+PWM_TMy/2 +PWM_TMy/2-PWM_TMy/2 +PWM_TMy/2-PWM_TMy/2

PWMTRIP1

PERIOD 0 PERIOD 1

FAILS! since PWMTRIP1
is still active SUCCEEDS! Trip

condition is gone
Processor write to
clear CHBFLTTRIP

PWMTRIP1 enabled on channel B as FAULT TRIP

Figure 24-28: PWM Trip Input Ports, Fault

NOTE: Dead time is ensured on re-enabling the channel outputs after trip.

NOTE: Programs must not allow changes in the configuration or enable bits of PWM_TRIPCFG register within ±
10 clock cycles of when the external trip pulse toggles. (The configuration or enable bits of
PWM_TRIPCFG register select between trip enable and disable). If this time frame is not followed, then
unexpected behavior occurs.

Trip Mechanisms

The PWM controller has various mechanisms that send the PWM output into the trip state.

Software Trip - With a single write to the PWM_CTL.SWTRIP register, any combination of the eight PWM out-
puts can be forced into the trip state. (Each PWM unit has a separate such register). This mechanism a synchronous.

Event Control

24–38 ADSP-CM41x Mixed-Signal Control Processor

The processor and clocks must be functioning, and separate MMR writes trip the PWM outputs in different PWM
units.

TRU Hardware Trip - Events routed (synchronously) through the TRU1 can cause any desired combination of indi-
vidual trip outputs to go to their trip states. Each output can be individually programmed to be sensitive to this trip
source (TRIP1) (for example, FOCP over-current protection comparator limit detection from the AFE).

Pin Input Hardware Trip - Events detected outside the processor (for example, from external gate drivers), can cause
trips by connecting such signals to the PWM_TRIPA/PWM_TRIPB/PWM_TRIPC package input pins (assignable
GPIOs).

Output Pin Safe State

For each PWM output, there are several mechanisms available for switching the output waveform to its predefined
safe state The mechanisms can be individually programmed in either the PWM_TRIPCFG register within the PWM
unit, or within the PADS_PORT[n]_TRIPSTm registers for GPIO control.

Using the GPIO pin safe state functions in the PORT blocks, each pin assigned to PWM outputs can be program-
med to (asynchronously) respond to serious system faults, including VDD supply out-of-range and system clocks
out-of-frequency range.

Any pin safe state response to arbitrary events detected by M4-side or M0-side resources can be enabled using TRU1
or TRU0 trigger routing to the TRU1 TRGS_SYS_FRC_PIN_SAFE_SLVn slaves. For example, a pin-input hard-
ware trip can be debounced in the DBC unit and routed through the TRGM_SYS_PWM_DBC_TRIPA/B/C_IN
trigger master to the trigger slaves.

Although the GPIO pin safe state control and PWM trip configuration provide overall control, there are a few dif-
ferences to note:

• The GPIO pin safe state mechanism has higher priority than the mechanism of the PWM unit.

• If both trip mechanisms are activated at the same time, the state programmed in the GPIO pin safe state
logic is applied.

• The GPIO pin safe state can be programmed for a trip delay, measured in microseconds. This option fa-
cilitates programming an early trip state in the PWM unit registers, and programming an independent
late trip state in the GPIO registers. Both states are unrelated to the output level generated by the PWM
timer.

• The GPIO pin safe states are stored in asynchronous 3.3v logic, while the PWM unit is embodied in syn-
chronous 1.2v logic. In the event of loss of clock or of loss of VDDINT, the GPIO pin safe state mecha-
nism responds as programmed.

• In the PWM unit registers, a state of High_Z selects disabling the output driver, but the weak pull-up resistor
continues to drive (assuming the GPIO pin safe state for that output is not activated or selected).

• In the GPIO pin safe state registers, a state of High-Z selects disabling both the output driver and the weak
pull-up resistor, for a true high-impedance state.

Event Control

ADSP-CM41x Mixed-Signal Control Processor 24–39

Programming Model
The following sections provide general (and some application-specific) programming steps for configuring and using
the PWM module.

• Programming Model for Three-Phase AC Motor Control

Programming Model for Three-Phase AC Motor Control

The PWM Module and Interaction with System figure shows how the PWM unit (green) interfaces to both software
(blue) and hardware (yellow). The software configures the unit, calculates duty cycles (Duty A, Duty B, Duty C),
and services the interrupts generated by the module (PWM SYNC IRQ, TRIP IRQ). The hardware applies the gate
signals (AH, AL, BH, BL, CH, CL) to the inverter and provides an over-current trip signal back to the unit
(TRIP0).

The typical three-phase AC motor configuration shown in the PWM Module and Interaction with System figure
applies for both permanent magnet and induction motor types.

 M OTOR

ωr

 GATE
DRIVER PWM

UNIT

 A H
 A L
 B H
 B L
 C H
 C L

M

ODULATOR

 DUTY B

 D UTY A

 D UTY C

 S ETUP AND CONTROL
 H W CONFIGURATION
 P W M CONFIGURATION
CONTROL
 G LOBAL SYSTEM
PARAMETERS

 H W TRIP
+ T R I P 0

 P W M SYNC I R Q

 T R I P I R Q
-

Figure 24-29: PWM Module and Interaction with System

System Parameters

The following system parameters (characteristics) influence the module configuration for this application. This ex-
ample system features:

• One three-phase AC machine

• B6 inverter

• SVPWM, including both linear- and over-modulation

• Switching frequency of 20 kHz

• Dead time of 1us

Programming Model

24–40 ADSP-CM41x Mixed-Signal Control Processor

• Trip signal generated by hardware

• Active high-level gate drive

• Core frequency of 200 MHz

• Peripheral clock of 100 MHz

System State Sequencing

Managing the system state and sequence of states is critically important when programming the PWM module. The
PWM System States figure provides an overview of these states.

INIT PWM

ENABLE PWMSTOP PWM

MOTOR RUNNING PWM SYNC IRQ

MOTOR STOPPED

Figure 24-30: PWM System States

As shown in the state diagram, the module configuration is updated on state transitions (indicated by the arrows).
The transitions are initialization, motor start, PWM sync interrupt request (on each), and motor stop. The follow-
ing sections discuss the transitions in detail.

• PWM Initialization for Motor Control

• PWM Enable for Motor Control

• PWM Response to Sync Interrupt for Motor Control

• PWM Disable (and Stop the Motor) for Motor Control

PWM Initialization for Motor Control

The processor must program the PWM at power-up as follows and repeat this programming to bring the PWM and
the system into a known (safe) state.

1. Place the PWM module in a safe state and set up synchronization of the module using the following bitwise
operations on the PWM_CTL and PWM_CHANCFG registers:

PWM_CTL &= 0xFFE0FF08
PWM_CTL |= 0x20000

Programming Model for Three-Phase AC Motor Control

ADSP-CM41x Mixed-Signal Control Processor 24–41

PWM_CHANCFG &= 0x80808080
PWM_CHANCFG |= 0x24242424

These operations result in the following bit settings:

• Disable PWM (PWM_CTL.GLOBEN =0)

• Disable delay for channels A, B, C, D (PWM_CTL.DLYAEN through PWM_CTL.DLYDEN =0). All pha-
ses must run with same phase.

• Use internal synchronization by timer TMR0 (PWM_CTL.EXTSYNC =0, PWM_CTL.EXTSYNCSEL
=1)

• The same timer, TMR0 (PWM_CTL.INTSYNCREF = b#000) synchronizes all phases.

• Low-side is always the inverse of high-side (PWM_CHANCFG.POLAL through PWM_CHANCFG.POLDL
= 1).

• System uses active high gate driver (PWM_CHANCFG.ENCHOPAH through
PWM_CHANCFG.ENCHOPDH =1).

• Disable gate chopping (PWM_CHANCFG.ENCHOPAL through PWM_CHANCFG.ENCHOPDL =0).
PWM does not use the pulse transformer.

2. Set up the trip and associated interrupt requests using the following bitwise operations on the PWM_TRIPCFG
and PWM_ILAT registers:

PWM_TRIPCFG &= 0xF0F0F0F0
PWM_TRIPCFG |= 0x1010101
PWM_ILAT &= 0xFFE0FFFC
PWM_ILAT |= 0x1

These operations result in the following bit settings:

• All phases must shut down simultaneously in case of fault: (PWM_TRIPCFG.EN0A through
PWM_TRIPCFG.EN0D =0, PWM_TRIPCFG.MODE0A through PWM_TRIPCFG.MODE0D =0,
PWM_TRIPCFG.EN1A through PWM_TRIPCFG.EN1D =0, PWM_TRIPCFG.MODE1A through
PWM_TRIPCFG.MODE1D =0)

• Enable TRIP0 as fault trigger for all channels (PWM_TRIPCFG.EN0A through
PWM_TRIPCFG.MODE1D =1).

• For thermal control and synchronization, SW intervention is needed at trip. Do not use automatic restart
of any channels.

• Generate an interrupt at trip on TRIP0 (PWM_ILAT.TMR0PER = 1).

3. Configure the PWM channels using the following bitwise operations on the PWM_TRIPCFG and PWM_ILAT
registers:

Programming Model for Three-Phase AC Motor Control

24–42 ADSP-CM41x Mixed-Signal Control Processor

 PWM_CHA_DT=0x32 PWM_CHB_DT=0x32 PWM_CHC_DT=0x32
 PWM_TM0 = 0x9C4
 PWM_ACTL = 0xFFFFF0000
 PWM_BCTL = 0xFFFFF0000
 PWM_CCTL = 0xFFFFF0000
 PWM_AH0 = 0x0
 PWM_BH0 = 0x0
 PWM_CH0 = 0x0

These operations result in the following bit settings:

• Configure a dead time of 1 μs (DT =0x32 =0x32)

• Configure a PWM frequency of 20 kHz (assuming a system clock frequency of 100Mhz, so a clock divisor
of 5000:1) (PWM_TM0 =0x9C4)

• Disable all outputs (PWM_ACTL.DISHI through PWM_CCTL.DISHI =0, PWM_ACTL.DISLO
through PWM_CCTL.DISLO =0)

• Use conventional PWM, disable crossover (PWM_ACTL.XOVR through PWM_CCTL.XOVR =0)

• Use symmetrical pulse position on all outputs (PWM_ACTL.PULSEMODEHI through
PWM_CCTL.PULSEMODEHI =0, PWM_ACTL.PULSEMODELO through
PWM_CCTL.PULSEMODELO =0)

• Set an initial duty-cycle of 50% (PWM_AH0 throughPWM_CH0 =0x0)

PWM Enable for Motor Control

The processor must do the following programming to enable the PWM before starting the motor.

1. Start the PWM timer TMR0 using the PWM_CTL |=0x1 bitwise operation on the PWM_CTL register.

ADDITIONAL INFORMATION: This operation has the same effect as setting the PWM_CTL.GLOBEN bit
=1.

2. Enable six PWM outputs using the following bitwise operations on the PWM_ACTL through PWM_CCTL reg-
isters.

PWM_ACTL|=0x3
PWM_BCTL|=0x3
PWM_CCTL|=0x3

ADDITIONAL INFORMATION: These operations have the same effect as enabling high and low-side channel
outputs by setting the PWM_ACTL.DISHI through PWM_CCTL.DISHI bits =1 and the
PWM_ACTL.DISLO through PWM_CCTL.DISLO bits =1.

Programming Model for Three-Phase AC Motor Control

ADSP-CM41x Mixed-Signal Control Processor 24–43

3. Enable the PWM TRIP0 interrupt using the PWM_ILAT |= 0x1 bitwise operation on the PWM_ILAT
register.

ADDITIONAL INFORMATION: This operation has the same effect as setting the PWM_ILAT.TRIP0 bit
=1

PWM Response to Sync Interrupt for Motor Control

When the PWM sync interrupt occurs, the processor could need to update to the PWM duty cycle with a value
calculated by the motor control algorithm. This application uses symmetric pulses position and uses dependent high
and low-side output. So, the PWM updates only one register for each phase.

1. Write the new duty cycle value (calculated by motor control algorithm) to the timer when the sync interrupt
occurs.

The following bitwise operations on the PWM_AH0 through PWM_CH0 registers accomplish this task:
PWM_AH0 = Duty_A_mc_algorithm_current_value
PWM_BH0 = Duty_B_mc_algorithm_current_value
PWM_CH0 = Duty_C_mc_algorithm_current_value

PWM Disable (and Stop the Motor) for Motor Control

The processor must program the PWM as follows to stop the motor, disable the PWM, and disable PWM inter-
rupts. These actions place the PWM and system in a safe, passive state.

1. Disable the PWM timer using the PWM_CTL &= 0xFFFFFFFE bitwise operation on the PWM_CTL regis-
ter.

ADDITIONAL INFORMATION: This operation has the same effect as clearing the PWM_CTL.GLOBEN bit
=0.

2. Disable all PWM outputs using the following bitwise operations on the PWM_ACTL through PWM_CCTL reg-
isters.

PWM_ACTL &= 0xFFFFFFFFC
PWM_BCTL &= 0xFFFFFFFFC
PWM_CCTL &= 0xFFFFFFFFC

These operations disable PWM outputs where the PWM_ACTL.DISHI through PWM_CCTL.DISHI bits =1
and the PWM_ACTL.DISLO through PWM_CCTL.DISLO bits =0)

3. Set the PWM duty-cycle to 50% using the following bitwise operations on the PWM_AH0 through PWM_CH0
registers.

PWM_AH0 =0x0
PWM_BH0 =0x0
PWM_CH0 =0x0

These operations have the same effect as clearing the PWM_AH0.DUTY through PWM_CH0.DUTY bit =0.

Programming Model for Three-Phase AC Motor Control

24–44 ADSP-CM41x Mixed-Signal Control Processor

4. Disable the PWM TRIP0 interrupt request using the PWM_ILAT &= 0xFFFFFFFE bitwise operation on
the PWM_ILAT register.

ADDITIONAL INFORMATION: This operation has the same effect as clearing the PWM TRIP0 interrupt
request PWM_ILAT.TRIP0 =0.

CM41X_M4 PWM Register Descriptions
Pulse-Width Modulator (PWM) contains the following registers.

Table 24-6: CM41X_M4 PWM Register List

Name Description

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PWM_AH0_HP Channel A-High Heightened-Precision Duty-0 Register

PWM_AH1 Channel A-High Duty-1 Register

PWM_AH1_HP Channel A-High Heightened-Precision Duty-1 Register

PWM_AH_DUTY0 Channel A-High Full Duty0 Register

PWM_AH_DUTY1 Channel A-High Full Duty1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL0_HP Channel A-Low Heightened-Precision Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_AL1_HP Channel A-Low Heightened-Precision Duty-1 Register

PWM_AL_DUTY0 Channel A-Low Full Duty0 Register

PWM_AL_DUTY1 Channel A-Low Full Duty1 Register

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

PWM_BH0_HP Channel B-High Heightened-Precision Duty-0 Register

PWM_BH1 Channel B-High Duty-1 Register

PWM_BH1_HP Channel B-High Heightened-Precision Duty-1 Register

PWM_BH_DUTY0 Channel B-High Full Duty0 Register

PWM_BH_DUTY1 Channel B-High Full Duty1 Register

PWM_BL0 Channel B-Low Duty-0 Register

PWM_BL0_HP Channel B-Low Heightened-Precision Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_BL1_HP Channel B-Low Heightened-Precision Duty-1 Register

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–45

Table 24-6: CM41X_M4 PWM Register List (Continued)

Name Description

PWM_BL_DUTY0 Channel B-Low Full Duty0 Register

PWM_BL_DUTY1 Channel B-Low Full Duty1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH0_HP Channel C-High Pulse Heightened-Precision Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CH1_HP Channel C-High Pulse Heightened-Precision Duty Register 1

PWM_CHANCFG Channel Configuration Register

PWM_CHA_DT Channel A Dead-time Register

PWM_CHB_DT Channel B Dead-time Register

PWM_CHC_DT Channel C Dead-time Register

PWM_CHD_DT Channel D Dead-time Register

PWM_CHOPCFG Chop Configuration Register

PWM_CH_DUTY0 Channel C-High Full Duty0 Register

PWM_CH_DUTY1 Channel C-High Full Duty1 Register

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL0_HP Channel C-Low Pulse Duty Register 1

PWM_CL1 Channel C-Low Duty-1 Register

PWM_CL1_HP Channel C-Low Heightened-Precision Duty-1 Register

PWM_CL_DUTY0 Channel C-Low Full Duty0 Register

PWM_CL_DUTY1 Channel C-Low Full Duty1 Register

PWM_CTL Control Register

PWM_DCTL Channel D Control Register

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH0_HP Channel D-High Pulse Heightened-Precision Duty Register 0

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DH1_HP Channel D High Pulse Heightened-Precision Duty Register 1

PWM_DH_DUTY0 Channel D-High Full Duty0 Register

PWM_DH_DUTY1 Channel D-High Full Duty1 Register

PWM_DL0 Channel D-Low Pulse Duty Register 0

PWM_DL0_HP Channel D-Low Heightened-Precision Duty-0 Register

CM41X_M4 PWM Register Descriptions

24–46 ADSP-CM41x Mixed-Signal Control Processor

Table 24-6: CM41X_M4 PWM Register List (Continued)

Name Description

PWM_DL1 Channel D-Low Pulse Duty Register 1

PWM_DL1_HP Channel D-Low Heightened-Precision Duty-1 Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_DL_DUTY0 Channel D-Low Full Duty0 Register

PWM_DL_DUTY1 Channel D-Low Full Duty1 Register

PWM_ILAT Interrupt Latch Register

PWM_IMSK Interrupt Mask Register

PWM_STAT Status Register

PWM_SWTRIP Software Trip Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_TRIPCFG Trip Configuration Register

PWM_TRIP_POL Trip Polarity Register

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–47

Channel A Control Register

The PWM_ACTL register selects the low and high side output pulse mode, enables low and high side output, and
enables low/high side output crossover.

high-low Crossover Enable

Channel Low Side Output DisableHigh Side Output Pulse Position

Channel High Side Output DisableLow Side Output Pulse Position

XOVR (R/W)

DISLO (R/W)PULSEMODEHI (R/W)

DISHI (R/W)PULSEMODELO (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-31: PWM_ACTL Register Diagram

Table 24-7: PWM_ACTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:10

(R/W)

PULSEMODELO Low Side Output Pulse Position.

The PWM_ACTL.PULSEMODELO bits select the pulse position for Channel A low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_AL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_AL0 and PWM_AL1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_AL0 and PWM_AL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

CM41X_M4 PWM Register Descriptions

24–48 ADSP-CM41x Mixed-Signal Control Processor

Table 24-7: PWM_ACTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

PULSEMODEHI High Side Output Pulse Position.

The PWM_ACTL.PULSEMODEHI bits select the pulse position for Channel A high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_AH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_AH0 and PWM_AH1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_AH0 and PWM_AH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2

(R/W)

XOVR high-low Crossover Enable.

The PWM_ACTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1

(R/W)

DISLO Channel Low Side Output Disable.

The PWM_ACTL.DISLO bit enables the channels low side output.

0 Enable Low Side Output

1 Disable Low Side Output

0

(R/W)

DISHI Channel High Side Output Disable.

The PWM_ACTL.DISHI bit enables the channels high side output.

0 Enable High Side Output

1 Disable High Side Output

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–49

Channel A-High Duty-0 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the high side output pulses for the channel A duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_ACTL.PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_AH0 register to determine the assertion and deassertion count for the high side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel A high pulse output for a count less than
PWM_AH0 and deasserts this output for a count greater than PWM_AH1.

The value range for the PWM_AH0 and PWM_AH1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHA_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_AH0 and
PWM_AH1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHA_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHA_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHA_DT (two’s complement) and -PWM_TM0/2 - PWM_CHA_DT .

Note that using values in the PWM_AH0 or PWM_AH1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-32: PWM_AH0 Register Diagram

Table 24-8: PWM_AH0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_AH0.DUTY bits select the duty cycle asserted count for Channel A high
side output.

CM41X_M4 PWM Register Descriptions

24–50 ADSP-CM41x Mixed-Signal Control Processor

Channel A-High Heightened-Precision Duty-0 Register

The PWM_AH0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_AH0 register, allows programs to specify fractional duty cycles.The PWM_AH0_HP regis-
ter and the PWM_AH0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_AH0_HP and the PWM_AH0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-33: PWM_AH0_HP Register Diagram

Table 24-9: PWM_AH0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

The PWM_AH0_HP.MAXDIV bits provide fractional duty cycles for Channel A high
side output.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–51

Channel A-High Duty-1 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. For more information,
see the PWM_AH0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-34: PWM_AH1 Register Diagram

Table 24-10: PWM_AH1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_AH1.DUTY bits select the duty cycle de-asserted count for Channel A high
side output.

CM41X_M4 PWM Register Descriptions

24–52 ADSP-CM41x Mixed-Signal Control Processor

Channel A-High Heightened-Precision Duty-1 Register

The PWM_AH1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_AH0 register, allows programs to specify fractional duty cycles.The PWM_AH1_HP regis-
ter and the PWM_AH1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_AH1_HP and the PWM_AH1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-35: PWM_AH1_HP Register Diagram

Table 24-11: PWM_AH1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AH1_HP.ENHDIV bits provide fractional duty cycles for Channel A high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–53

Channel A-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_AH_DUTY0 register contains the PWM_AH_DUTY0.DUTY bit field from the PWM_AH0 register and the
PWM_AH_DUTY0.ENHDIV bit field from the PWM_AH0_HP register.

Note that the PWM_AH_DUTY0 register reads the PWM_AH0 and the PWM_AH0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-36: PWM_AH_DUTY0 Register Diagram

Table 24-12: PWM_AH_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_AH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_AH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–54 ADSP-CM41x Mixed-Signal Control Processor

Channel A-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_AH_DUTY1 register contains the PWM_AH_DUTY1.DUTY bit field from the PWM_AH1 register and the
PWM_AH_DUTY1.ENHDIV bit field from the PWM_AH1_HP register.

Note that the PWM_AH_DUTY1 register reads the PWM_AH1 and the PWM_AH1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-37: PWM_AH_DUTY1 Register Diagram

Table 24-13: PWM_AH_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_AH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_AH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–55

Channel A-Low Duty-0 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the channel A duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_ACTL.PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_AL0 register to determine the assertion and deassertion count for the low side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel A low pulse output for count less than
PWM_AL0 and deasserts this output for count greater than PWM_AL1.

The value range for the PWM_AL0 and PWM_AL1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHA_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_AL0 and
PWM_AL1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHA_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHA_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHA_DT (two’s complement) and -PWM_TM0/2 - PWM_CHA_DT.

Note that using values in the PWM_AL0 or PWM_AL1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-38: PWM_AL0 Register Diagram

Table 24-14: PWM_AL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_AL0.DUTY bits select the duty cycle asserted count for Channel A low side
output.

CM41X_M4 PWM Register Descriptions

24–56 ADSP-CM41x Mixed-Signal Control Processor

Channel A-Low Heightened-Precision Duty-0 Register

The PWM_AL0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_AL0 register, allows programs to specify fractional duty cycles.The PWM_AL0_HP regis-
ter and the PWM_AL0 register work together in a Q15.8 signed two’s complement fixed-point format. Note that the
bit fields in the PWM_AL0_HP and the PWM_AL0 registers are also present in the single full duty register (if availa-
ble).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-39: PWM_AL0_HP Register Diagram

Table 24-15: PWM_AL0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AL0_HP.ENHDIV bits provide fractional duty cycles for Channel A low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–57

Channel A-Low Duty-1 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. For more information,
see the PWM_AL0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-40: PWM_AL1 Register Diagram

Table 24-16: PWM_AL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_AL1.DUTY bits select the duty cycle de-asserted count for Channel A low
side output.

CM41X_M4 PWM Register Descriptions

24–58 ADSP-CM41x Mixed-Signal Control Processor

Channel A-Low Heightened-Precision Duty-1 Register

The PWM_AL1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_AL1 register, allows programs to specify fractional duty cycles.The PWM_AL1_HP regis-
ter and the PWM_AL1 register work together in a Q15.8 signed two’s complement fixed-point format. Note that the
bit fields in the PWM_AL1_HP and the PWM_AL1 registers are also present in the single full duty register (if availa-
ble).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-41: PWM_AL1_HP Register Diagram

Table 24-17: PWM_AL1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AL1_HP.ENHDIV bits provide fractional duty cycles for Channel A low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–59

Channel A-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_AL_DUTY0 register contains the PWM_AL_DUTY0.DUTY bit field from the PWM_AL0 register and the
PWM_AL_DUTY0.ENHDIV bit field from the PWM_AL0_HP register.

Note that the PWM_AL_DUTY0 register reads the PWM_AL0 and the PWM_AL0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-42: PWM_AL_DUTY0 Register Diagram

Table 24-18: PWM_AL_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_AL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_AL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–60 ADSP-CM41x Mixed-Signal Control Processor

Channel A-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_AL_DUTY1 register contains the PWM_AL_DUTY1.DUTY bit field from the PWM_AL1 register and the
PWM_AL_DUTY1.ENHDIV bit field from the PWM_AH0_HP register.

Note that the PWM_AL_DUTY1 register reads the PWM_AL1 and the PWM_AL1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-43: PWM_AL_DUTY1 Register Diagram

Table 24-19: PWM_AL_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_AL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_AL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_AL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–61

Channel B Control Register

The PWM_BCTL register selects the low and high side output pulse mode, enables low and high side output, and
enables low/high side output crossover.

high-low Crossover Enable

Channel Low Side Output DisableHigh Side Output Pulse Position

Channel High Side Output DisableLow Side Output Pulse Position

XOVR (R/W)

DISLO (R/W)PULSEMODEHI (R/W)

DISHI (R/W)PULSEMODELO (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-44: PWM_BCTL Register Diagram

Table 24-20: PWM_BCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:10

(R/W)

PULSEMODELO Low Side Output Pulse Position.

The PWM_BCTL.PULSEMODELO bits select the pulse position for Channel B low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_BL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_BL0 and PWM_BL1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_BL0 and PWM_BL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

CM41X_M4 PWM Register Descriptions

24–62 ADSP-CM41x Mixed-Signal Control Processor

Table 24-20: PWM_BCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

PULSEMODEHI High Side Output Pulse Position.

The PWM_BCTL.PULSEMODEHI bits select the pulse position for Channel B high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_BH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_BH0 and PWM_BH1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_BH0 and PWM_BH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2

(R/W)

XOVR high-low Crossover Enable.

The PWM_BCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1

(R/W)

DISLO Channel Low Side Output Disable.

The PWM_BCTL.DISLO bit enables the channels low side output.

0 Enable Low Side Output

1 Disable Low Side Output

0

(R/W)

DISHI Channel High Side Output Disable.

The PWM_BCTL.DISHI bit enables the channels high side output.

0 Enable High Side Output

1 Disable High Side Output

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–63

Channel B-High Duty-0 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the high side output pulses for the channel B duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_BCTL.PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_BH0 register to determine the assertion and deassertion count for the high side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel B high pulse output for count less than
PWM_BH0 and deasserts this output for count greater than PWM_BH1.

The value range for the PWM_BH0 and PWM_BH1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHB_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_BH0 and
PWM_BH1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHB_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHB_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHB_DT (two’s complement) and -PWM_TM0/2 - PWM_CHB_DT.

Note that using values in the PWM_BH0 or PWM_BH1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-45: PWM_BH0 Register Diagram

Table 24-21: PWM_BH0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

CM41X_M4 PWM Register Descriptions

24–64 ADSP-CM41x Mixed-Signal Control Processor

Channel B-High Heightened-Precision Duty-0 Register

The PWM_BH0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_BH0 register, allows programs to specify fractional duty cycles. The PWM_BH0_HP reg-
ister and the PWM_BH0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_BH0_HP and the PWM_BH0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-46: PWM_BH0_HP Register Diagram

Table 24-22: PWM_BH0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BH0_HP.ENHDIV bits provide fractional duty cycles for Channel B high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–65

Channel B-High Duty-1 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. For more information,
see the PWM_BH0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-47: PWM_BH1 Register Diagram

Table 24-23: PWM_BH1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

CM41X_M4 PWM Register Descriptions

24–66 ADSP-CM41x Mixed-Signal Control Processor

Channel B-High Heightened-Precision Duty-1 Register

The PWM_BH1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_BH1 register, allows programs to specify fractional duty cycles. The PWM_BH1_HP reg-
ister and the PWM_BH1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_BH1_HP and the PWM_BH1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-48: PWM_BH1_HP Register Diagram

Table 24-24: PWM_BH1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BH1_HP.ENHDIV bits provide fractional duty cycles for Channel B high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–67

Channel B-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_BH_DUTY0 register contains the PWM_BH_DUTY0.DUTY bit field from the PWM_BH0 register and the
PWM_BH_DUTY0.ENHDIV bit field from the PWM_BH0_HP register.

Note that the PWM_BH_DUTY0 register reads the PWM_BH0 and the PWM_BH0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-49: PWM_BH_DUTY0 Register Diagram

Table 24-25: PWM_BH_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_BH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_BH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–68 ADSP-CM41x Mixed-Signal Control Processor

Channel B-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_BH_DUTY1 register contains the PWM_BH_DUTY1.DUTY bit field from the PWM_BH1 register and the
PWM_BH_DUTY1.ENHDIV bit field from the PWM_BH1_HP register.

Note that the PWM_BH_DUTY1 register reads the PWM_BH1 and the PWM_BH1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-50: PWM_BH_DUTY1 Register Diagram

Table 24-26: PWM_BH_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_BH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_BH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–69

Channel B-Low Duty-0 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the channel B duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_BCTL.PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_BL0 register to determine the assertion and deassertion count for the low side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel B low pulse output for count less than
PWM_BL0 and deasserts this output for count greater than PWM_BL1.

The value range for the PWM_BL0 and PWM_BL1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHB_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_BL0 and
PWM_BL1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHB_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHB_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHB_DT (two’s complement) and -PWM_TM0/2 - PWM_CHB_DT.

Note that using values in the PWM_BL0 or PWM_BL1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-51: PWM_BL0 Register Diagram

Table 24-27: PWM_BL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_BL0.DUTY bits select the duty cycle asserted count for Channel B low side
output.

CM41X_M4 PWM Register Descriptions

24–70 ADSP-CM41x Mixed-Signal Control Processor

Channel B-Low Heightened-Precision Duty-0 Register

The PWM_BL0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_BL0 register, allows programs to specify fractional duty cycles. The PWM_BL0_HP reg-
ister and the PWM_BL0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_BL0_HP and the PWM_BL0 registers are also present in the single full duty
register (PWM_BL_DUTY0).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-52: PWM_BL0_HP Register Diagram

Table 24-28: PWM_BL0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BL0_HP.ENHDIV bits provide fractional duty cycles for Channel B low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–71

Channel B-Low Duty-1 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. For more information,
see the PWM_BL0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-53: PWM_BL1 Register Diagram

Table 24-29: PWM_BL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_BL1.DUTY bits select the duty cycle de-asserted count for Channel B low
side output.

CM41X_M4 PWM Register Descriptions

24–72 ADSP-CM41x Mixed-Signal Control Processor

Channel B-Low Heightened-Precision Duty-1 Register

The PWM_BL1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_BL1 register, allows programs to specify fractional duty cycles. The PWM_BL1_HP reg-
ister and the PWM_BL1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_BL1_HP and the PWM_BL1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-54: PWM_BL1_HP Register Diagram

Table 24-30: PWM_BL1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BL1_HP.ENHDIV bits provide fractional duty cycles for Channel B low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–73

Channel B-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_BL_DUTY0 register contains the PWM_BL_DUTY0.DUTY bit field from the PWM_BL0 register and the
PWM_BL_DUTY0.ENHDIV bit field from the PWM_BL0_HP register.

Note that the PWM_BL_DUTY0 register reads the PWM_BL0 and the PWM_BL0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-55: PWM_BL_DUTY0 Register Diagram

Table 24-31: PWM_BL_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_BL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_BL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–74 ADSP-CM41x Mixed-Signal Control Processor

Channel B-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_BL_DUTY1 register contains the PWM_BL_DUTY1.DUTY bit field from the PWM_BL1 register and the
PWM_BL_DUTY1.ENHDIV bit field from the PWM_BL1_HP register.

Note that the PWM_BL_DUTY1 register reads the PWM_BL1 and the PWM_BL1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-56: PWM_BL_DUTY1 Register Diagram

Table 24-32: PWM_BL_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_BL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_BL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_BL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–75

Channel C Control Register

The PWM_CCTL register selects the low and high side output pulse mode, enables low and high side output, and
enables low/high side output crossover.

high-low Crossover Enable

Channel Low Side Output DisableHigh Side Output Pulse Position

Channel High Side Output DisableLow Side Output Pulse Position

XOVR (R/W)

DISLO (R/W)PULSEMODEHI (R/W)

DISHI (R/W)PULSEMODELO (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-57: PWM_CCTL Register Diagram

Table 24-33: PWM_CCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:10

(R/W)

PULSEMODELO Low Side Output Pulse Position.

The PWM_CCTL.PULSEMODELO bits select the pulse position for Channel C low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_CL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_CL0 and PWM_CL1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_CL0 and PWM_CL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

CM41X_M4 PWM Register Descriptions

24–76 ADSP-CM41x Mixed-Signal Control Processor

Table 24-33: PWM_CCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

PULSEMODEHI High Side Output Pulse Position.

The PWM_CCTL.PULSEMODEHI bits select the pulse position for Channel C high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_CH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_CH0 and PWM_CH1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_CH0 and PWM_CH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2

(R/W)

XOVR high-low Crossover Enable.

The PWM_CCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1

(R/W)

DISLO Channel Low Side Output Disable.

The PWM_CCTL.DISLO bit enables the channels low side output.

0 Enable Low Side Output

1 Disable Low Side Output

0

(R/W)

DISHI Channel High Side Output Disable.

The PWM_CCTL.DISHI bit enables the channels high side output.

0 Enable High Side Output

1 Disable High Side Output

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–77

Channel C-High Pulse Duty Register 0

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the high side output pulses for the channel C duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_CCTL.PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_CH0 register to determine the assertion and deassertion count for the high side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel C high pulse output for count less than
PWM_CH0 and deasserts this output for count greater than PWM_CH1.

The value range for the PWM_CH0 and PWM_CH1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHC_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_CH0 and
PWM_CH1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHC_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHC_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHC_DT (two’s complement) and -PWM_TM0/2 - PWM_CHC_DT.

Note that using values in the PWM_CH0 or PWM_CH1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-58: PWM_CH0 Register Diagram

Table 24-34: PWM_CH0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_CH0.DUTY bits select the duty cycle asserted count for Channel C high
side output.

CM41X_M4 PWM Register Descriptions

24–78 ADSP-CM41x Mixed-Signal Control Processor

Channel C-High Pulse Heightened-Precision Duty Register 0

The PWM_CH0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_CH0 register, allows programs to specify fractional duty cycles. The PWM_CH0_HP reg-
ister and the PWM_CH0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_CH0_HP and the PWM_CH0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-59: PWM_CH0_HP Register Diagram

Table 24-35: PWM_CH0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CH0_HP.ENHDIV bits provide fractional duty cycles for Channel C high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–79

Channel C-High Pulse Duty Register 1

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. For more information,
see the PWM_CH0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-60: PWM_CH1 Register Diagram

Table 24-36: PWM_CH1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_CH1.DUTY bits select the duty cycle de-asserted count for Channel C high
side output.

CM41X_M4 PWM Register Descriptions

24–80 ADSP-CM41x Mixed-Signal Control Processor

Channel C-High Pulse Heightened-Precision Duty Register 1

The PWM_CH1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_CH1 register, allows programs to specify fractional duty cycles. The PWM_CH1_HP reg-
ister and the PWM_CH1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_CH1_HP and the PWM_CH1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-61: PWM_CH1_HP Register Diagram

Table 24-37: PWM_CH1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CH1_HP.ENHDIV bits provide fractional duty cycles for Channel C high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–81

Channel Configuration Register

The PWM_CHANCFG register configures Channel A, B, C, and D reference timer selection, high and low side out-
put features, and enables high frequency chopping operation. Do not change the value of any bits in the PWM
register while the PWM is enabled (PWM_CTL.GLOBEN =1).

Side
Channel A Gate Chopping Enable Low

Channel B Timer Reference

Channel A low side Polarity
Channel B Mode of low Side Output

for high side Output
Channel A heightened-precision enable

Channel B High side Polarity

Side
Channel A Gate Chopping Enable High

Side
Channel B Gate Chopping Enable High

Channel A High side Polarity

for high side Output
Channel B heightened-precision enable

Channel A Mode of low Side Output
Channel B low side Polarity

Channel A Timer Reference
Side
Channel B Gate Chopping Enable Low

Side
Channel C Gate Chopping Enable Low

Channel D Timer Reference

Channel C low side Polarity
Channel D Mode of low Side Output

for high side Output
Channel C heightened-precision enable

Channel D High side Polarity

Side
Channel C Gate Chopping Enable High

Side
Channel D Gate Chopping Enable High

Channel C High side Polarity

for high side Output
Channel D heightened-precision enable

Channel C Mode of low Side Output
Channel D low side Polarity

Channel C Timer Reference
Side
Channel D Gate Chopping Enable Low

ENCHOPAL (R/W)
REFTMRB (R/W)

POLAL (R/W)
MODELSB (R/W)

ENHPAH (R/W)

POLBH (R/W)

ENCHOPAH (R/W)

ENCHOPBH (R/W)

POLAH (R/W)
ENHPBH (R/W)

MODELSA (R/W)
POLBL (R/W)

REFTMRA (R/W)ENCHOPBL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ENCHOPCL (R/W)
REFTMRD (R/W)

POLCL (R/W)
MODELSD (R/W)

ENHPCH (R/W)

POLDH (R/W)

ENCHOPCH (R/W)

ENCHOPDH (R/W)

POLCH (R/W)
ENHPDH (R/W)

MODELSC (R/W)
POLDL (R/W)

REFTMRC (R/W)ENCHOPDL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-62: PWM_CHANCFG Register Diagram

CM41X_M4 PWM Register Descriptions

24–82 ADSP-CM41x Mixed-Signal Control Processor

Table 24-38: PWM_CHANCFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

ENCHOPDL Channel D Gate Chopping Enable Low Side.

The PWM_CHANCFG.ENCHOPDL bit enables mixing of the Channel D low side out-
put signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel D Low Side

1 Enable Chopping Channel D Low Side

29

(R/W)

POLDL Channel D low side Polarity.

The PWM_CHANCFG.POLDL bit selects the Channel D low side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

28

(R/W)

ENHPDH Channel D heightened-precision enable for high side Output.

The PWM_CHANCFG.ENHPDH bit enables heightened-precision Channel D high side
output.

0 Disable HP Output Channel D High

1 Enable HP Output Channel D High

27

(R/W)

ENCHOPDH Channel D Gate Chopping Enable High Side.

The PWM_CHANCFG.ENCHOPDH bit enables mixing of the Channel D high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel D High Side

1 Enable Chopping Channel D High Side

26

(R/W)

POLDH Channel D High side Polarity.

The PWM_CHANCFG.POLDH bit selects the Channel D high side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–83

Table 24-38: PWM_CHANCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

MODELSD Channel D Mode of low Side Output.

The PWM_CHANCFG.MODELSD bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSD =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

24

(R/W)

REFTMRD Channel D Timer Reference.

The PWM_CHANCFG.REFTMRD bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel D operation.

0 PWMTMR0 is Channel D reference

1 PWMTMR4 is Channel D reference

22

(R/W)

ENCHOPCL Channel C Gate Chopping Enable Low Side.

The PWM_CHANCFG.ENCHOPCL bit enables mixing of the Channel C low side out-
put signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel C Low Side

1 Enable Chopping Channel C Low Side

21

(R/W)

POLCL Channel C low side Polarity.

The PWM_CHANCFG.POLCL bit selects the Channel C low side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

20

(R/W)

ENHPCH Channel C heightened-precision enable for high side Output.

The PWM_CHANCFG.ENHPCH bit enables heightened-precision Channel C high side
output.

0 Disable HP Output Channel C High

1 Enable HP Output Channel C High

CM41X_M4 PWM Register Descriptions

24–84 ADSP-CM41x Mixed-Signal Control Processor

Table 24-38: PWM_CHANCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R/W)

ENCHOPCH Channel C Gate Chopping Enable High Side.

The PWM_CHANCFG.ENCHOPCH bit enables mixing of the Channel C high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel C High Side

1 Enable Chopping Channel C High Side

18

(R/W)

POLCH Channel C High side Polarity.

The PWM_CHANCFG.POLCH bit selects the Channel C high side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

17

(R/W)

MODELSC Channel C Mode of low Side Output.

The PWM_CHANCFG.MODELSC bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSC =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

16

(R/W)

REFTMRC Channel C Timer Reference.

The PWM_CHANCFG.REFTMRC bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel C operation.

0 PWMTMR0 is Channel C reference

1 PWMTMR3 is Channel C reference

14

(R/W)

ENCHOPBL Channel B Gate Chopping Enable Low Side.

The PWM_CHANCFG.ENCHOPBL bit enables mixing of the Channel B low side out-
put signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel B Low Side

1 Enable Chopping Channel B Low Side

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–85

Table 24-38: PWM_CHANCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

POLBL Channel B low side Polarity.

The PWM_CHANCFG.POLBL bit selects the Channel B low side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

12

(R/W)

ENHPBH Channel B heightened-precision enable for high side Output.

The PWM_CHANCFG.ENHPBH bit enables heightened-precision Channel B high side
output.

0 Disable HP Output Channel B High

1 Enable HP Output Channel B High

11

(R/W)

ENCHOPBH Channel B Gate Chopping Enable High Side.

The PWM_CHANCFG.ENCHOPBH bit enables mixing of the Channel B high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel B High Side

1 Enable Chopping Channel B High Side

10

(R/W)

POLBH Channel B High side Polarity.

The PWM_CHANCFG.POLBH bit selects the Channel B high side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

9

(R/W)

MODELSB Channel B Mode of low Side Output.

The PWM_CHANCFG.MODELSB bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSB =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

8

(R/W)

REFTMRB Channel B Timer Reference.

The PWM_CHANCFG.REFTMRB bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel B operation.

0 PWMTMR0 is Channel B reference

1 PWMTMR2 is Channel B reference

CM41X_M4 PWM Register Descriptions

24–86 ADSP-CM41x Mixed-Signal Control Processor

Table 24-38: PWM_CHANCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

ENCHOPAL Channel A Gate Chopping Enable Low Side.

The PWM_CHANCFG.ENCHOPAL bit enables mixing of the Channel A low side out-
put signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel A Low Side

1 Enable Chopping Channel A Low Side

5

(R/W)

POLAL Channel A low side Polarity.

The PWM_CHANCFG.POLAL bit selects the Channel A low side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

4

(R/W)

ENHPAH Channel A heightened-precision enable for high side Output.

The PWM_CHANCFG.ENHPAH bit enables heightened-precision Channel A high side
output.

0 Disable HP Output Channel A High

1 Enable HP Output Channel A High

3

(R/W)

ENCHOPAH Channel A Gate Chopping Enable High Side.

The PWM_CHANCFG.ENCHOPAH bit enables mixing of the Channel A high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel A High Side

1 Enable Chopping Channel A High Side

2

(R/W)

POLAH Channel A High side Polarity.

The PWM_CHANCFG.POLAH bit selects the Channel A high side output polarity (ac-
tive-high or active-low).

0 Active Low

1 Active High

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–87

Table 24-38: PWM_CHANCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

MODELSA Channel A Mode of low Side Output.

The PWM_CHANCFG.MODELSA bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSA =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_AH0 and
PWM_AH1 registers for pulse width, using the PWM_ACTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLAH bits for polarity.

0 Invert of high output

1 Independent control

0

(R/W)

REFTMRA Channel A Timer Reference.

The PWM_CHANCFG.REFTMRA bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel A operation.

0 PWMTMR0 is Channel A reference

1 PWMTMR1 is Channel A reference

CM41X_M4 PWM Register Descriptions

24–88 ADSP-CM41x Mixed-Signal Control Processor

Channel A Dead-time Register

The PWM_CHA_DT register controls the value of dead-time for channel A independently.

Dead-time value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-63: PWM_CHA_DT Register Diagram

Table 24-39: PWM_CHA_DT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

VALUE Dead-time value.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–89

Channel B Dead-time Register

The PWM_CHB_DT register controls the value of dead-time for channel B independently.

Dead-time value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-64: PWM_CHB_DT Register Diagram

Table 24-40: PWM_CHB_DT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

VALUE Dead-time value.

The PWM_CHB_DT.VALUE bit field contains the dead-time value.

CM41X_M4 PWM Register Descriptions

24–90 ADSP-CM41x Mixed-Signal Control Processor

Channel C Dead-time Register

The PWM_CHC_DT register controls the value of dead-time for channel C independently.

Dead-time value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-65: PWM_CHC_DT Register Diagram

Table 24-41: PWM_CHC_DT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

VALUE Dead-time value.

The PWM_CHC_DT.VALUE bit field contains the dead-time value.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–91

Channel D Dead-time Register

The PWM_CHD_DT register controls the value of dead-time for channel D independently.

Dead-time value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-66: PWM_CHD_DT Register Diagram

Table 24-42: PWM_CHD_DT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

VALUE Dead-time value.

The PWM_CHD_DT.VALUE bit field contains the dead-time value.

CM41X_M4 PWM Register Descriptions

24–92 ADSP-CM41x Mixed-Signal Control Processor

Chop Configuration Register

The PWM_CHOPCFG register holds a divisor value that controls the chopping frequency. The PWM permits a mix-
ing of the output signals with a high-frequency chopping signal to aid with interfacing to pulse transformers. Also
note that high-frequency chopping may be independently enabled for each channel’s high-side and the low-side out-
puts using channel control bits. (For example, control chopping for Channel A with the
PWM_CHANCFG.ENCHOPAH and PWM_CHANCFG.ENCHOPAH bits.)

Gate Chopping Divisor
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-67: PWM_CHOPCFG Register Diagram

Table 24-43: PWM_CHOPCFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE Gate Chopping Divisor.

The PWM_CHOPCFG.VALUE bits provide the high frequency chopping divisor.
When the divisor value is changed, the new period takes effect from the next edge of
the chopping signal. The PWM_CHOPCFG.VALUE value may be calculated using ei-
ther of the following formulas:

CHOPDIV = [(TCHOP/TCK) / 4] - 1

CHOPDIV = [(fCK / fCHOP) / 4] - 1

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–93

Channel C-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_CH_DUTY0 register contains the PWM_CH_DUTY0.DUTY bit field from the PWM_CH0 register and the
PWM_CH_DUTY0.ENHDIV bit field from the PWM_CH0_HP register.

Note that the PWM_CH_DUTY0 register reads the PWM_CH0 and the PWM_CH0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-68: PWM_CH_DUTY0 Register Diagram

Table 24-44: PWM_CH_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_CH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_CH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–94 ADSP-CM41x Mixed-Signal Control Processor

Channel C-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_CH_DUTY1 register contains the PWM_CH_DUTY1.DUTY bit field from the PWM_CH1 register and the
PWM_CH_DUTY1.ENHDIV bit field from the PWM_CH1_HP register.

Note that the PWM_CH_DUTY1 register reads the PWM_CH1 and the PWM_CH1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-69: PWM_CH_DUTY1 Register Diagram

Table 24-45: PWM_CH_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_CH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_CH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–95

Channel C-Low Pulse Duty Register 0

The PWM_CL0 and PWM_CL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the channel C duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_CCTL.PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_CL0 register to determine the assertion and deassertion count for the low side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel C low pulse output for count less than
PWM_CL0 and deasserts this output for count greater than PWM_CL1.

The value range for the PWM_CL0 and PWM_CL1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHC_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_CL0 and
PWM_CL1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHC_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHC_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHC_DT (two’s complement) to -PWM_TM0/2 - PWM_CHC_DT.

Note that using values in the PWM_CL0 or PWM_CL1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-70: PWM_CL0 Register Diagram

Table 24-46: PWM_CL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_CL0.DUTY bits select the duty cycle asserted count for Channel C low side
output.

CM41X_M4 PWM Register Descriptions

24–96 ADSP-CM41x Mixed-Signal Control Processor

Channel C-Low Pulse Duty Register 1

The PWM_CL0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_CL0 register, allows programs to specify fractional duty cycles. The PWM_CL0_HP reg-
ister and the PWM_CL0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_CL0_HP and the PWM_CL0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-71: PWM_CL0_HP Register Diagram

Table 24-47: PWM_CL0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CL0_HP.ENHDIV bits provide fractional duty cycles for Channel C low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–97

Channel C-Low Duty-1 Register

The PWM_CL0 and PWM_CL1 registers determine the width for the low side output pulses. For more information,
see the PWM_CL0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-72: PWM_CL1 Register Diagram

Table 24-48: PWM_CL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

CM41X_M4 PWM Register Descriptions

24–98 ADSP-CM41x Mixed-Signal Control Processor

Channel C-Low Heightened-Precision Duty-1 Register

The PWM_CL1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_CL1 register, allows programs to specify fractional duty cycles. The PWM_CL1_HP reg-
ister and the PWM_CL1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_CL1_HP and the PWM_CL1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-73: PWM_CL1_HP Register Diagram

Table 24-49: PWM_CL1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CL1_HP.ENHDIV bits provide fractional duty cycles for Channel C low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–99

Channel C-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_CL_DUTY0 register contains the PWM_CL_DUTY0.DUTY bit field from the PWM_CL0 register and the
PWM_CL_DUTY0.ENHDIV bit field from the PWM_CL0_HP register.

Note that the PWM_CL_DUTY0 register reads the PWM_CL0 and the PWM_CL0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-74: PWM_CL_DUTY0 Register Diagram

Table 24-50: PWM_CL_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_CL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_CL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–100 ADSP-CM41x Mixed-Signal Control Processor

Channel C-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_CL_DUTY1 register contains the PWM_CL_DUTY1.DUTY bit field from the PWM_CL1 register and the
PWM_CL_DUTY1.ENHDIV bit field from the PWM_CL1_HP register.

Note that the PWM_CL_DUTY1 register reads the PWM_CL1 and the PWM_CL1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-75: PWM_CL_DUTY1 Register Diagram

Table 24-51: PWM_CL_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_CL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_CL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_CL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–101

Control Register

The PWM_CTL register enables the PWM, enables delay counters for the channels, and configures sync features.
This register also provides support for tripping a PWM fault condition through software.

Enable Delay Counter for Channel A

Double Update Mode EnableEnable Delay Counter for Channel B

Software TripEnable Delay Counter for Channel C

Output Behavior During Emulation ModeEnable Delay Counter for Channel D

Module EnableAsymmetric Dead-time Enable

External Sync Select

External SyncTimer reference for Internal Sync

DLYAEN (R/W)

DUEN (R/W)DLYBEN (R/W)

SWTRIP (R0/W)DLYCEN (R/W)

EMURUN (R/W)DLYDEN (R/W)

GLOBEN (R/W)ADEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EXTSYNCSEL (R/W)

EXTSYNC (R/W)INTSYNCREF (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

1
17

0
16

Figure 24-76: PWM_CTL Register Diagram

Table 24-52: PWM_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

20:18

(R/W)

INTSYNCREF Timer reference for Internal Sync.

The PWM_CTL.INTSYNCREF bits select the timer reference for the internal sync.
Note that all other combinations reserved.

0 PWMTMR0 provides sync reference

1 PWMTMR1 provides sync reference

2 PWMTMR2 provides sync reference

3 PWMTMR3 provides sync reference

4 PWMTMR4 provides sync reference

CM41X_M4 PWM Register Descriptions

24–102 ADSP-CM41x Mixed-Signal Control Processor

Table 24-52: PWM_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W)

EXTSYNCSEL External Sync Select.

The PWM_CTL.EXTSYNCSEL bit selects whether the external sync signal is synchro-
nous or asynchronous. Note that latency in PWM sync response differs between asyn-
chronous and synchronous external sync modes. For more information, see the PWM
functional description.

0 Asynchronous External Sync

1 Synchronous External Sync

16

(R/W)

EXTSYNC External Sync.

The PWM_CTL.EXTSYNC bit selects whether the PWM uses an external or internal
sync signal for the main timer (PWMTMR0). Do not change the value of the
PWM_CTL.EXTSYNC bit while the PWM is enabled (PWM_CTL.GLOBEN =1).

0 Internal sync used

1 External sync used

8

(R/W)

ADEN Asymmetric Dead-time Enable.

When symmetric dead-time is enabled (PWM_CTL.ADEN = 0), in the dependent
mode, both the high-side and low-side outputs are reduced by DT cycles on both the
assertion and de-assertion edges. When symmetric dead-time is disabled
(PWM_CTL.ADEN = 1), the falling edges of both high and low-side outputs occur at
the programmed duty value, but their rise-times are delayed by 2 x DT.

0 Dead-time is symmetric

1 Dead-time is asymmetric

7

(R/W)

DLYDEN Enable Delay Counter for Channel D.

The PWM_CTL.DLYDEN bit enables the Channel D delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYDEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

6

(R/W)

DLYCEN Enable Delay Counter for Channel C.

The PWM_CTL.DLYCEN bit enables the Channel C delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYCEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–103

Table 24-52: PWM_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

DLYBEN Enable Delay Counter for Channel B.

The PWM_CTL.DLYBEN bit enables the Channel B delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYBEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

4

(R/W)

DLYAEN Enable Delay Counter for Channel A.

The PWM_CTL.DLYAEN bit enables the Channel A delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYAEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

3

(R/W)

DUEN Double Update Mode Enable.

In Single Update Mode, double buffering of all registers happens at the period boun-
dary of the PWM timer. In Double Update Mode, double buffering of all registers (ex-
cept delay counter registers) happens at the middle of the period as well as the begin-
ning of the period.

0 Single Update Mode

1 Double Update Mode

2

(R0/W)

SWTRIP Software Trip.

The PWM_CTL.SWTRIP bit permits tripping a fault condition through software,
shutting down PWM output. This bit always read as 0. If the PWM_CTL.SWTRIP
bit and PWM_CTL.GLOBEN bit are set in the same write, the write does not trip the
fault condition.

0 Don't force fault

1 Force a Fault Trip Condition

1

(R/W)

EMURUN Output Behavior During Emulation Mode.

The PWM_CTL.EMURUN bit selects PWM output behavior during emulation mode.

0 Disable Outputs

1 Enable Outputs

CM41X_M4 PWM Register Descriptions

24–104 ADSP-CM41x Mixed-Signal Control Processor

Table 24-52: PWM_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

GLOBEN Module Enable.

The PWM_CTL.GLOBEN bit enables the PWM, enabling all timers and outputs.
While this bit is enabled, processor code should not change the value of the
PWM_CTL.DLYAEN bit, PWM_CTL.DLYBEN bit, PWM_CTL.DLYCEN bit,
PWM_CTL.DLYDEN bit, PWM_CTL.EXTSYNCSEL bit, or any bits in the
PWM_CHANCFG register. Note that there is a latency between PWM disable and the
cessation of output waveforms. There is also a latency between PWM enable and start
of output waveforms. For the latency description, see the PWM functional description.

0 Disable

1 Enable

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–105

Channel D Control Register

The PWM_DCTL register selects the low and high side output pulse mode, enables low and high side output, and
enables low/high side output crossover.

high-low Crossover Enable

Channel Low Side Output DisableHigh Side Output Pulse Position

Channel High Side Output DisableLow Side Output Pulse Position

XOVR (R/W)

DISLO (R/W)PULSEMODEHI (R/W)

DISHI (R/W)PULSEMODELO (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-77: PWM_DCTL Register Diagram

Table 24-53: PWM_DCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:10

(R/W)

PULSEMODELO Low Side Output Pulse Position.

The PWM_DCTL.PULSEMODELO bits select the pulse position for Channel D low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_DL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_DL0 and PWM_DL1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_DL0 and PWM_DL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

CM41X_M4 PWM Register Descriptions

24–106 ADSP-CM41x Mixed-Signal Control Processor

Table 24-53: PWM_DCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

PULSEMODEHI High Side Output Pulse Position.

The PWM_DCTL.PULSEMODEHI bits select the pulse position for Channel D high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_DH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode, the
channel forms an asymmetrical pulse waveform around the center of the PWM period.
This mode uses both the duty cycle registers (PWM_DH0 and PWM_DH1). In left half
or right half mode, the channel forms the pulse waveforms on either the first half (left)
or the second half (right) of the PWM period. This mode uses both the duty cycle reg-
isters (PWM_DH0 and PWM_DH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2

(R/W)

XOVR high-low Crossover Enable.

The PWM_DCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1

(R/W)

DISLO Channel Low Side Output Disable.

The PWM_DCTL.DISLO bit enables the channels low side output.

0 Enable Low Side Output

1 Disable Low Side Output

0

(R/W)

DISHI Channel High Side Output Disable.

The PWM_DCTL.DISHI bit enables the channels high side output.

0 Enable High Side Output

1 Disable High Side Output

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–107

Channel D-High Duty-0 Register

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the high side output pulses for the channel D duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_DCTL.PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_DH0 register to determine the assertion and deassertion count for the high side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel D high pulse output for count less than
PWM_DH0 and deasserts this output for count greater than PWM_DH1.

The value range for the PWM_DH0 and PWM_DH1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHD_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_DH0 and
PWM_DH1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHD_DT
(two’s complement) to +PWM_TM0/2 + PWM_CHD_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHD_DT (two’s complement) to -PWM_TM0/2 - PWM_CHD_DT.

Note that using values in the PWM_DH0 or PWM_DH1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-78: PWM_DH0 Register Diagram

Table 24-54: PWM_DH0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_DH0.DUTY bits select the duty cycle asserted count for Channel D high
side output.

CM41X_M4 PWM Register Descriptions

24–108 ADSP-CM41x Mixed-Signal Control Processor

Channel D-High Pulse Heightened-Precision Duty Register 0

The PWM_DH0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_DH0 register, allows programs to specify fractional duty cycles. The PWM_DH0_HP reg-
ister and the PWM_DH0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_DH0_HP and the PWM_DH0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-79: PWM_DH0_HP Register Diagram

Table 24-55: PWM_DH0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DH0_HP.ENHDIV bits provide fractional duty cycles for Channel D high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–109

Channel D-High Pulse Duty Register 1

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. For more information,
see the PWM_DH0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-80: PWM_DH1 Register Diagram

Table 24-56: PWM_DH1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_DH1.DUTY bits select the duty cycle de-asserted count for Channel D high
side output.

CM41X_M4 PWM Register Descriptions

24–110 ADSP-CM41x Mixed-Signal Control Processor

Channel D High Pulse Heightened-Precision Duty Register 1

The PWM_DH1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_DH1 register, allows programs to specify fractional duty cycles. The PWM_DH1_HP reg-
ister and the PWM_DH1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_DH1_HP and the PWM_DH1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-81: PWM_DH1_HP Register Diagram

Table 24-57: PWM_DH1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DH1_HP.ENHDIV bits provide fractional duty cycles for Channel D high
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–111

Channel D-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_DH_DUTY0 register contains the PWM_DH_DUTY0.DUTY bit field from the PWM_DH0 register and the
PWM_DH_DUTY0.ENHDIV bit field from the PWM_DH0_HP register.

Note that the PWM_DH_DUTY0 register reads the PWM_DH0 and the PWM_DH0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-82: PWM_DH_DUTY0 Register Diagram

Table 24-58: PWM_DH_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_DH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_DH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–112 ADSP-CM41x Mixed-Signal Control Processor

Channel D-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_DH_DUTY1 register contains the PWM_DH_DUTY1.DUTY bit field from the PWM_DH1 register and the
PWM_DH_DUTY1.ENHDIV bit field from the PWM_DH1_HP register.

Note that the PWM_DH_DUTY1 register reads the PWM_DH1 and the PWM_DH1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-83: PWM_DH_DUTY1 Register Diagram

Table 24-59: PWM_DH_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_DH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_DH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–113

Channel D-Low Pulse Duty Register 0

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the channel D duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the
PWM_DCTL.PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the
PWM_DL0 register to determine the assertion and deassertion count for the low side output pulses. When the pulse
mode is asymmetrical, left half, or right half, the PWM asserts channel D low pulse output for count less than
PWM_DL0 and deasserts this output for count greater than PWM_DL1.

The value range for the PWM_DL0 and PWM_DL1 registers depends on the period of the timer being used by the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two’s comple-
ment) and +PWM_TM0/2, when dead time (PWM_CHD_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_DL0 and
PWM_DL1 depends on the period of the time being used by the channel and the amount of dead time applied to the
channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 + PWM_CHD_DT
(two’s complement) and +PWM_TM0/2 + PWM_CHD_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle values may
be between PWM_TM0/2 + PWM_CHD_DT (two’s complement) and -PWM_TM0/2 - PWM_CHD_DT.

Note that using values in the PWM_DL0 or PWM_DL1 registers that fall outside these limits causes PWM over or
under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Duty Cycle Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-84: PWM_DL0 Register Diagram

Table 24-60: PWM_DL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle Asserted Count.

The PWM_DL0.DUTY bits select the duty cycle asserted count for Channel D low
side output.

CM41X_M4 PWM Register Descriptions

24–114 ADSP-CM41x Mixed-Signal Control Processor

Channel D-Low Heightened-Precision Duty-0 Register

The PWM_DL0_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_DL0 register, allows programs to specify fractional duty cycles. The PWM_DL0_HP reg-
ister and the PWM_DL0 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_DL0_HP and the PWM_DL0 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-85: PWM_DL0_HP Register Diagram

Table 24-61: PWM_DL0_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DL0_HP.ENHDIV bits provide fractional duty cycles for Channel D low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–115

Channel D-Low Pulse Duty Register 1

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. For more information,
see the PWM_DL0 register description.

Duty Cycle De-Asserted Count
DUTY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-86: PWM_DL1 Register Diagram

Table 24-62: PWM_DL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DUTY Duty Cycle De-Asserted Count.

The PWM_DL1.DUTY bits select the duty cycle de-asserted count for Channel D low
side output.

CM41X_M4 PWM Register Descriptions

24–116 ADSP-CM41x Mixed-Signal Control Processor

Channel D-Low Heightened-Precision Duty-1 Register

The PWM_DL1_HP register provides a fine-grained edge placement within the system clock period. This register, in
conjunction with the PWM_DL1 register, allows programs to specify fractional duty cycles. The PWM_DL1_HP reg-
ister and the PWM_DL1 register work together in a Q15.8 signed two’s complement fixed-point format.

Note that the bit fields in the PWM_DL1_HP and the PWM_DL1 registers are also present in the single full duty
register (if available).

Divider Bits
Maximum Precision SupplementaryEnhanced Precision Divider Bits
MAXDIV (R/W)ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-87: PWM_DL1_HP Register Diagram

Table 24-63: PWM_DL1_HP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DL1_HP.ENHDIV bits provide fractional duty cycles for Channel D low
side output.

5:0

(R/W)

MAXDIV Maximum Precision Supplementary Divider Bits.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–117

Channel A Delay Register

The PWM_DLYA register controls a delay for the Channel A timer (only PWMTMR1, PWMTMR2, PWMTMR3
or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the delay must be enabled
(PWM_CTL.DLYAEN =1). For more information about applying the delay, see the PWM Functional Description
section. Note that the PWM_DLYA delay value must be less that less that twice the period value of the timer being
used for the channel (for example, if PWMTMR1 is used, PWM_DLYA must be less than 2xPWMTMR1). Also,
note that the period of the main timer must be an integer multiple of the timer being used for the channel (for
example, if PWMTMR1 is used, PWMTMR0 = NxPWMTMR1, where N is an integer).

Channel A Delay Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-88: PWM_DLYA Register Diagram

Table 24-64: PWM_DLYA Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Channel A Delay Value.

The PWM_DLYA.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel A.

CM41X_M4 PWM Register Descriptions

24–118 ADSP-CM41x Mixed-Signal Control Processor

Channel B Delay Register

The PWM_DLYB register controls a delay for the Channel B timer (only PWMTMR1, PWMTMR2, PWMTMR3
or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the delay must be enabled
(PWM_CTL.DLYBEN =1). For more information about applying the delay, see the PWM Functional Description
section. Note that the PWM_DLYB delay value must be less that less that twice the period value of the timer being
used for the channel (for example, if PWMTMR1 is used, PWM_DLYB must be less than 2xPWMTMR1). Also,
note that the period of the main timer must be an integer multiple of the timer being used for the channel (for
example, if PWMTMR1 is used, PWMTMR0 = NxPWMTMR1, where N is an integer).

Channel B Delay Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-89: PWM_DLYB Register Diagram

Table 24-65: PWM_DLYB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Channel B Delay Value.

The PWM_DLYB.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel B.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–119

Channel C Delay Register

The PWM_DLYC register controls a delay for the Channel C timer (only PWMTMR1, PWMTMR2, PWMTMR3
or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the delay must be enabled
(PWM_CTL.DLYCEN =1). For more information about applying the delay, see the PWM Functional Description
section. Note that the PWM_DLYC delay value must be less that less that twice the period value of the timer being
used for the channel (for example, if PWMTMR1 is used, PWM_DLYC must be less than 2xPWMTMR1). Also,
note that the period of the main timer must be an integer multiple of the timer being used for the channel (for
example, if PWMTMR1 is used, PWMTMR0 = NxPWMTMR1, where N is an integer).

Channel C Delay Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-90: PWM_DLYC Register Diagram

Table 24-66: PWM_DLYC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Channel C Delay Value.

The PWM_DLYC.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel C.

CM41X_M4 PWM Register Descriptions

24–120 ADSP-CM41x Mixed-Signal Control Processor

Channel D Delay Register

The PWM_DLYD register controls a delay for the Channel D timer (only PWMTMR1, PWMTMR2, PWMTMR3
or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the delay must be enabled
(PWM_CTL.DLYDEN =1). For more information about applying the delay, see the PWM Functional Description
section. Note that the PWM_DLYD delay value must be less that less that twice the period value of the timer being
used for the channel (for example, if PWMTMR1 is used, PWM_DLYD must be less than 2xPWMTMR1). Also,
note that the period of the main timer must be an integer multiple of the timer being used for the channel (for
example, if PWMTMR1 is used, PWMTMR0 = NxPWMTMR1, where N is an integer).

Channel D Delay Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-91: PWM_DLYD Register Diagram

Table 24-67: PWM_DLYD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Channel D Delay Value.

The PWM_DLYD.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel D.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–121

Channel D-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_DL_DUTY0 register contains the PWM_DL_DUTY0.DUTY bit field from the PWM_DL0 register and the
PWM_DL_DUTY0.ENHDIV bit field from the PWM_DL0_HP register.

Note that the PWM_DL_DUTY0 register reads the PWM_DL0 and the PWM_DL0_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-92: PWM_DL_DUTY0 Register Diagram

Table 24-68: PWM_DL_DUTY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_DL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_DL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

24–122 ADSP-CM41x Mixed-Signal Control Processor

Channel D-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.The
PWM_DL_DUTY1 register contains the PWM_DL_DUTY1.DUTY bit field from the PWM_DL1 register and the
PWM_DL_DUTY1.ENHDIV bit field from the PWM_DL1_HP register.

Note that the PWM_DL_DUTY1 register reads the PWM_DL1 and the PWM_DL1_HP register values and visa-versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part of a non-
integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Enhanced Precision Divider Bits

Coarse Duty Value

ENHDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DUTY (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-93: PWM_DL_DUTY1 Register Diagram

Table 24-69: PWM_DL_DUTY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

DUTY Coarse Duty Value.

The PWM_DL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the
PWM_DL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point
duty cycle value in Q15.8 format.

15:14

(R/W)

ENHDIV Enhanced Precision Divider Bits.

The PWM_DL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.8
format.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–123

Interrupt Latch Register

The PWM_ILAT register latches the occurrence of unmasked (enabled) PWM interrupt requests. These interrupt
requests are unmasked or masked with the PWM_IMSK register.

TRIP0 Interrupt Latched StatusTRIP1 Interrupt Latched Status

Status
PWMTMR2 Period Latched Interrupt

Status
PWMTMR1 Period Latched Interrupt

Status
PWMTMR3 Period Latched Interrupt

Latched Status
PWMTMR0 Period Boundary Interrupt

Status
PWMTMR4 Period Latched Interrupt

TRIP0 (R/W1C)TRIP1 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TMR2PER (R/W1C)

TMR1PER (R/W1C)TMR3PER (R/W1C)

TMR0PER (R/W1C)TMR4PER (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-94: PWM_ILAT Register Diagram

Table 24-70: PWM_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W1C)

TMR4PER PWMTMR4 Period Latched Interrupt Status.

The PWM_ILAT.TMR4PER bit indicates the latched status of the PWMTMR4 peri-
od boundary interrupt request.

0 No Interrupt Latched

1 Interrupt Latched

19

(R/W1C)

TMR3PER PWMTMR3 Period Latched Interrupt Status.

The PWM_ILAT.TMR3PER bit indicates the latched status of the PWMTMR3 peri-
od boundary interrupt request.

0 No Interrupt Latched

1 Interrupt Latched

18

(R/W1C)

TMR2PER PWMTMR2 Period Latched Interrupt Status.

The PWM_ILAT.TMR2PER bit indicates the latched status of the PWMTMR2 peri-
od boundary interrupt request.

0 No Interrupt Latched

1 Interrupt Latched

CM41X_M4 PWM Register Descriptions

24–124 ADSP-CM41x Mixed-Signal Control Processor

Table 24-70: PWM_ILAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W1C)

TMR1PER PWMTMR1 Period Latched Interrupt Status.

The PWM_ILAT.TMR1PER bit indicates the latched status of the PWMTMR1 peri-
od boundary interrupt request.

0 No Interrupt Latched

1 Interrupt Latched

16

(R/W1C)

TMR0PER PWMTMR0 Period Boundary Interrupt Latched Status.

The PWM_ILAT.TMR0PER bit indicates the latched status of the PWMTMR0 peri-
od boundary interrupt request.

0 No Interrupt Latched

1 Interrupt Latched

1

(R/W1C)

TRIP1 TRIP1 Interrupt Latched Status.

The PWM_ILAT.TRIP1 bit indicates the latched status of the TRIP1 interrupt re-
quest.

0 No Interrupt Latched

1 Interrupt Latched

0

(R/W1C)

TRIP0 TRIP0 Interrupt Latched Status.

The PWM_ILAT.TRIP0 bit indicates the latched status of the TRIP0 interrupt re-
quest.

0 No Interrupt Latched

1 Interrupt Latched

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–125

Interrupt Mask Register

The PWM_IMSK register masks (disables) or unmasks (enables) PWM interrupt requests. When an unmasked inter-
rupt occurs, the PWM latches the interrupt status in the PWM_ILAT register.

TRIP0 Interrupt EnableTRIP1 Interrupt Enable

Enable
PWMTMR2 Period Boundary Interrupt

Enable
PWMTMR1 Period Boundary Interrupt

Enable
PWMTMR3 Period Boundary Interrupt

Enable
PWMTMR0 Period Boundary Interrupt

Enable
PWMTMR4 Period Boundary Interrupt

TRIP0 (R/W)TRIP1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TMR2PER (R/W)

TMR1PER (R/W)TMR3PER (R/W)

TMR0PER (R/W)TMR4PER (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-95: PWM_IMSK Register Diagram

Table 24-71: PWM_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W)

TMR4PER PWMTMR4 Period Boundary Interrupt Enable.

The PWM_IMSK.TMR4PER bit enables (unmasks) the PWMTMR4 period boundary
interrupt request. This condition occurs when the timers period boundary is reached
(PWM_STAT.TMR4PER =1).

0 Mask PWMTMR4 Period Interrupt

1 Unmask PWMTMR4 Period Interrupt

19

(R/W)

TMR3PER PWMTMR3 Period Boundary Interrupt Enable.

The PWM_IMSK.TMR3PER bit enables (unmasks) the PWMTMR3 period boundary
interrupt request. This condition occurs when the timers period boundary is reached
(PWM_STAT.TMR3PER =1).

0 Mask PWMTMR3 Period Interrupt

1 Unmask PWMTMR3 Period Interrupt

CM41X_M4 PWM Register Descriptions

24–126 ADSP-CM41x Mixed-Signal Control Processor

Table 24-71: PWM_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

TMR2PER PWMTMR2 Period Boundary Interrupt Enable.

The PWM_IMSK.TMR2PER bit enables (unmasks) the PWMTMR2 period boundary
interrupt request. This condition occurs when the timers period boundary is reached
(PWM_STAT.TMR2PER =1).

0 Mask PWMTMR2 Period Interrupt

1 Unmask PWMTMR2 Period Interrupt

17

(R/W)

TMR1PER PWMTMR1 Period Boundary Interrupt Enable.

The PWM_IMSK.TMR1PER bit enables (unmasks) the PWMTMR1 period boundary
interrupt request. This condition occurs when the timers period boundary is reached
(PWM_STAT.TMR1PER =1).

0 Mask PWMTMR1 Period Interrupt

1 Unmask PWMTMR1 Period Interrupt

16

(R/W)

TMR0PER PWMTMR0 Period Boundary Interrupt Enable.

The PWM_IMSK.TMR0PER bit enables (unmasks) the PWMTMR0 period boundary
interrupt request. This condition occurs when the timers period boundary is reached
(PWM_STAT.TMR0PER =1).

0 Mask PWMTMR0 Period Interrupt

1 Unmask PWMTMR0 Period Interrupt

1

(R/W)

TRIP1 TRIP1 Interrupt Enable.

The PWM_IMSK.TRIP1 bit enables (unmasks) the TRIP1 interrupt request. This
condition occurs when fault input is tripped (PWM_STAT.TRIP1 =1).

0 Mask TRIP1 Interrupt

1 Unmask TRIP1 Interrupt

0

(R/W)

TRIP0 TRIP0 Interrupt Enable.

The PWM_IMSK.TRIP0 bit enables (unmasks) the TRIP0 interrupt request. This
condition occurs when fault input is tripped (PWM_STAT.TRIP0 =1).

0 Mask TRIP0 Interrupt

1 Unmask TRIP0 Interrupt

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–127

Status Register

The PWM_STAT register indicates the PWM PWMTRIP1-0 fault and input level status, indicates the Channel A-D
fault and self-restart status, and indicates the PWMTMR4-0 phase.

Self-Restart Trip Status for Channel A

Fault Trip Status for Channel B
Fault Trip Status for Channel A

Self-Restart Trip Status for Channel B
Raw Trip 1 Status

Fault Trip Status for Channel C
Raw Trip 0 Status

Self-Restart Trip Status for Channel C
low
Status bit set when TRIP1 is active

Fault Trip Status for Channel D

low
Status bit set when TRIP0 is activeSelf-Restart Trip Status for Channel D

PWMTMR0 Phase StatusPWMTMR1 Phase Status

PWMTMR4 Period Boundary StatusPWMTMR2 Phase Status

PWMTMR3 Period Boundary StatusPWMTMR3 Phase Status

PWMTMR2 Period Boundary StatusPWMTMR4 Phase Status

PWMTMR1 Period Boundary StatusEmulator Status

PWMTMR0 Period Boundary StatusHeightened-Precision Ready Status

SRTRIPA (R)

FLTTRIPB (R/W1C)
FLTTRIPA (R/W1C)

SRTRIPB (R)
RAWTRIP1 (R)

FLTTRIPC (R/W1C)
RAWTRIP0 (R)

SRTRIPC (R)

TRIP1 (R/W1C)
FLTTRIPD (R/W1C)

TRIP0 (R/W1C)SRTRIPD (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TMR0PHASE (R/W1C)TMR1PHASE (R/W1C)

TMR4PER (R/W1C)TMR2PHASE (R/W1C)

TMR3PER (R/W1C)TMR3PHASE (R/W1C)

TMR2PER (R/W1C)TMR4PHASE (R/W1C)

TMR1PER (R/W1C)EMU (R/W1C)

TMR0PER (R/W1C)HPRDY (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-96: PWM_STAT Register Diagram

CM41X_M4 PWM Register Descriptions

24–128 ADSP-CM41x Mixed-Signal Control Processor

Table 24-72: PWM_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/NW)

HPRDY Heightened-Precision Ready Status.

The PWM_STAT.HPRDY bit indicates whether or not the PWM is ready for height-
ened-precision operation.

0 HPPWM Not Ready For Operation

1 HPPWM Ready For Operation

30

(R/W1C)

EMU Emulator Status.

28

(R/W1C)

TMR4PHASE PWMTMR4 Phase Status.

The PWM_STAT.TMR4PHASE bit indicates the current phase for the PWMTMR4
waveform.

0 1st Half Phase

1 2nd Half Phase

27

(R/W1C)

TMR3PHASE PWMTMR3 Phase Status.

The PWM_STAT.TMR3PHASE bit indicates the current phase for the PWMTMR3
waveform.

0 1st Half Phase

1 2nd Half Phase

26

(R/W1C)

TMR2PHASE PWMTMR2 Phase Status.

The PWM_STAT.TMR2PHASE bit indicates the current phase for the PWMTMR2
waveform.

0 1st Half Phase

1 2nd Half Phase

25

(R/W1C)

TMR1PHASE PWMTMR1 Phase Status.

The PWM_STAT.TMR1PHASE bit indicates the current phase for the PWMTMR1
waveform.

0 1st Half Phase

1 2nd Half Phase

24

(R/W1C)

TMR0PHASE PWMTMR0 Phase Status.

The PWM_STAT.TMR0PHASE bit indicates the current phase for the PWMTMR0
waveform.

0 1st Half Phase

1 2nd Half Phase

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–129

Table 24-72: PWM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/W1C)

TMR4PER PWMTMR4 Period Boundary Status.

The PWM_STAT.TMR4PER bit indicates whether or not the PWMTMR4 period
boundary has been reached.

0 PWMTMR4 period boundary not reached

1 PWMTMR4 period boundary reached

19

(R/W1C)

TMR3PER PWMTMR3 Period Boundary Status.

The PWM_STAT.TMR3PER bit indicates whether or not the PWMTMR3 period
boundary has been reached.

0 PWMTMR3 period boundary not reached

1 PWMTMR3 period boundary reached

18

(R/W1C)

TMR2PER PWMTMR2 Period Boundary Status.

The PWM_STAT.TMR2PER bit indicates whether or not the PWMTMR2 period
boundary has been reached.

0 PWMTMR2 period boundary not reached

1 PWMTMR2 period boundary reached

17

(R/W1C)

TMR1PER PWMTMR1 Period Boundary Status.

The PWM_STAT.TMR1PER bit indicates whether or not the PWMTMR1 period
boundary has been reached.

0 PWMTMR1 period boundary not reached

1 PWMTMR1 period boundary reached

16

(R/W1C)

TMR0PER PWMTMR0 Period Boundary Status.

The PWM_STAT.TMR0PER bit indicates whether or not the PWMTMR0 period
boundary has been reached.

0 PWMTMR0 period boundary not reached

1 PWMTMR0 period boundary reached

11

(R/NW)

SRTRIPD Self-Restart Trip Status for Channel D.

The PWM_STAT.SRTRIPD bit indicates whether the PWM Channel D self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit de-
scription.

0 Channel D Self-Restart Trip Status is "not tripped"

1 Channel D Self-Restart Trip Status is "tripped"

CM41X_M4 PWM Register Descriptions

24–130 ADSP-CM41x Mixed-Signal Control Processor

Table 24-72: PWM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W1C)

FLTTRIPD Fault Trip Status for Channel D.

The PWM_STAT.FLTTRIPD bit indicates whether the PWM Channel D fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit descrip-
tion.

0 Channel D Fault Trip Status is "not tripped"

1 Channel D Fault Trip Status is "tripped"

9

(R/NW)

SRTRIPC Self-Restart Trip Status for Channel C.

The PWM_STAT.SRTRIPC bit indicates whether the PWM Channel C self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit de-
scription.

0 Channel C Self-Restart Trip Status is "not tripped"

1 Channel C Self-Restart Trip Status is "tripped"

8

(R/W1C)

FLTTRIPC Fault Trip Status for Channel C.

The PWM_STAT.FLTTRIPC bit indicates whether the PWM Channel C fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit descrip-
tion.

0 Channel C Fault Trip Status is "not tripped"

1 Channel C Fault Trip Status is "tripped"

7

(R/NW)

SRTRIPB Self-Restart Trip Status for Channel B.

The PWM_STAT.SRTRIPB bit indicates whether the PWM Channel B self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit de-
scription.

0 Channel B Self-Restart Trip Status is "not tripped"

1 Channel B Self-Restart Trip Status is "tripped"

6

(R/W1C)

FLTTRIPB Fault Trip Status for Channel B.

The PWM_STAT.FLTTRIPB bit indicates whether the PWM Channel B fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit descrip-
tion.

0 Channel B Fault Trip Status is "not tripped"

1 Channel A Fault Trip Status is "tripped"

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–131

Table 24-72: PWM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/NW)

SRTRIPA Self-Restart Trip Status for Channel A.

The PWM_STAT.SRTRIPA bit indicates whether the PWM Channel A self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit de-
scription.

0 Channel A Self-Restart Trip Status is "not tripped"

1 Channel A Self-Restart Trip Status is "tripped"

4

(R/W1C)

FLTTRIPA Fault Trip Status for Channel A.

The PWM_STAT.FLTTRIPA bit indicates whether the PWM Channel A fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit descrip-
tion.

0 Channel A Fault Trip Status is "not tripped"

1 Channel A Fault Trip Status is "tripped"

3

(R/NW)

RAWTRIP1 Raw Trip 1 Status.

The PWM_STAT.RAWTRIP1 bit indicates the raw input level for the PWM TRIP1
input.

0 TRIP1 Level is Low

1 TRIP1 Level is High

2

(R/NW)

RAWTRIP0 Raw Trip 0 Status.

The PWM_STAT.RAWTRIP0 bit indicates the raw input level for the PWM TRIP0
input.

0 TRIP0 Level is Low

1 TRIP0 Level is High

1

(R/W1C)

TRIP1 Status bit set when TRIP1 is active low.

The PWM_STAT.TRIP1 bit indicates whether the PWM TRIP1 fault has been trip-
ped with an active-low input.

0 TRIP1 status is "not tripped"

1 TRIP1 status is "tripped" (active low)

0

(R/W1C)

TRIP0 Status bit set when TRIP0 is active low.

The PWM_STAT.TRIP0 bit indicates whether the PWM TRIP0 fault has been trip-
ped with an active-low input.

0 TRIP0 status is "not tripped"

1 TRIP0 status is "tripped" (active low)

CM41X_M4 PWM Register Descriptions

24–132 ADSP-CM41x Mixed-Signal Control Processor

Software Trip Register

The PWM_SWTRIP register has individual, independent control for software trip of all PWM Channels. Unlike the
Global SWTRIP bit, each channel (High and Low) has its own SWTRIP bit.

Side
Software Trip Bit for Channel B Low

Side
Software Trip Bit for Channel C Low

Side
Software Trip Bit for Channel A Low

Side
Software Trip Bit for Channel D Low

Side
Software Trip Bit for Channel B High

Side
Software Trip Bit for Channel C High

Side
Software Trip Bit for Channel A High

Side
Software Trip Bit for Channel D High

SWTRIPBL (R0/W1S)SWTRIPCL (R0/W1S)

SWTRIPAL (R0/W1S)SWTRIPDL (R0/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SWTRIPBH (R0/W1S)SWTRIPCH (R0/W1S)

SWTRIPAH (R0/W1S)SWTRIPDH (R0/W1S)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-97: PWM_SWTRIP Register Diagram

Table 24-73: PWM_SWTRIP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R0/W1S)

SWTRIPDH Software Trip Bit for Channel D High Side.

Writing 1 forces Channel D High Side to trip.

18

(R0/W1S)

SWTRIPCH Software Trip Bit for Channel C High Side.

Writing 1 forces Channel C High Side to trip.

17

(R0/W1S)

SWTRIPBH Software Trip Bit for Channel B High Side.

Writing 1 forces Channel B High Side to trip.

16

(R0/W1S)

SWTRIPAH Software Trip Bit for Channel A High Side.

Writing 1 forces Channel A High Side to trip.

3

(R0/W1S)

SWTRIPDL Software Trip Bit for Channel D Low Side.

Writing 1 forces Channel D Low Side to trip.

2

(R0/W1S)

SWTRIPCL Software Trip Bit for Channel C Low Side.

Writing 1 forces Channel C Low Side to trip.

1

(R0/W1S)

SWTRIPBL Software Trip Bit for Channel B Low Side.

Writing 1 forces Channel B Low Side to trip.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–133

Table 24-73: PWM_SWTRIP Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R0/W1S)

SWTRIPAL Software Trip Bit for Channel A Low Side.

Writing 1 forces Channel A Low Side to trip.

CM41X_M4 PWM Register Descriptions

24–134 ADSP-CM41x Mixed-Signal Control Processor

Sync Pulse Width Register

The PWM_SYNC_WID register selects the pulse width for the external sync pulse available on the PWM_SYNC pin.
The relation between the PWM_SYNC_WID register value and the pulse width (TPWM_SYNC) is give by the formu-
la:

PWM_SYNC_WID = (TPWM_SYNC / tCK) -1

For more information about applying the sync pulse width, see the PWM Functional Description section. Note that
if the pulse width is changed in between sync pulses, the PWM applies the changed width on the next internal sync
pulse. If, while the sync pulse is active, the chosen timer reaches its period boundary, the changed pulse width takes
effect on that period boundary.

Sync Pulse Width
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-98: PWM_SYNC_WID Register Diagram

Table 24-74: PWM_SYNC_WID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

VALUE Sync Pulse Width.

The PWM_SYNC_WID.VALUE bits select the pulse width for the external sync pulse
available on the PWM_SYNC pin.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–135

Timer 0 Period Register

The PWM_TM0 register controls the switch period TSP of the PWMTMR0 timer. The PWM_TM0 value is in units
of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM0= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the respective
timer. For more information about applying the switch period, see the PWM Functional Description section. Note
that PWM_TM0 values of 0 and 1 are not defined and must not be used when the PWM is enabled.

Timer PWMTMR0 Period Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-99: PWM_TM0 Register Diagram

Table 24-75: PWM_TM0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timer PWMTMR0 Period Value.

The PWM_TM0.VALUE bits select the period for the PWMTMR0 timer.

CM41X_M4 PWM Register Descriptions

24–136 ADSP-CM41x Mixed-Signal Control Processor

Timer 1 Period Register

The PWM_TM1 register controls the switch period (TSP of the PWMTMR1 timer. The PWM_TM1 value is in units
of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the respective
timer. For more information about applying the switch period, see the PWM Functional Description section. Note
that PWM_TM1 values of 0 and 1 are not defined and must not be used when the PWM is enabled.

Timer PWMTMR1 Period Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-100: PWM_TM1 Register Diagram

Table 24-76: PWM_TM1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timer PWMTMR1 Period Value.

The PWM_TM1.VALUE bits select the period for the PWMTMR1 timer.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–137

Timer 2 Period Register

The PWM_TM2 register controls the switch period (TSP of the PWMTMR2 timer. The PWM_TM2 value is in units
of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the respective
timer. For more information about applying the switch period, see the PWM Functional Description section. Note
that PWM_TM2 values of 0 and 1 are not defined and must not be used when the PWM is enabled.

Timer PWMTMR2 Period Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-101: PWM_TM2 Register Diagram

Table 24-77: PWM_TM2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timer PWMTMR2 Period Value.

The PWM_TM2.VALUE bits select the period for the PWMTMR2 timer.

CM41X_M4 PWM Register Descriptions

24–138 ADSP-CM41x Mixed-Signal Control Processor

Timer 3 Period Register

The PWM_TM3 register controls the switch period (TSP of the PWMTMR3 timer. The PWM_TM3 value is in units
of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM3= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the respective
timer. For more information about applying the switch period, see the PWM Functional Description section. Note
that PWM_TM3 values of 0 and 1 are not defined and must not be used when the PWM is enabled.

Timer PWMTMR3 Period Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-102: PWM_TM3 Register Diagram

Table 24-78: PWM_TM3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timer PWMTMR3 Period Value.

The PWM_TM3.VALUE bits select the period for the PWMTMR3 timer.

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–139

Timer 4 Period Register

The PWM_TM4 register controls the switch period (TSP of the PWMTMR4 timer. The PWM_TM4 value is in units
of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM4= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the respective
timer. For more information about applying the switch period, see the PWM Functional Description section. Note
that PWM_TM4 values of 0 and 1 are not defined and must not be used when the PWM is enabled.

Timer PWMTMR4 Period Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-103: PWM_TM4 Register Diagram

Table 24-79: PWM_TM4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Timer PWMTMR4 Period Value.

The PWM_TM4.VALUE bits select the period for the PWMTMR4 timer.

CM41X_M4 PWM Register Descriptions

24–140 ADSP-CM41x Mixed-Signal Control Processor

Trip Configuration Register

The PWM_TRIPCFG register configures Channel A, B, C, and D trip operation for trip inputs TRIP0 and TRIP1.

Low Side
TRIP1 Enable Select for Channel A

Enable TRIP0 as a trip source for Channel B

Enable TRIP1 for Channel A Low Side

Mode of TRIP0 for Channel B

Low Side
TRIP0 Enable Select for Channel A

Enable TRIP1 for Channel B

Enable TRIP0 for Channel A Low Side

Mode of TRIP1 for Channel B

Mode of TRIP1 for Channel A

Enable TRIP0 for Channel B Low Side

Enable TRIP1 as a trip source for Channel A

Low Side
TRIP0 Enable Select for Channel B

Mode of TRIP0 for Channel A

B Low Side
Enable TRIP1 as a trip source for Channel

Enable TRIP0 as a trip source for Channel A
Low Side
TRIP1 Enable Select for Channel B

Low Side
TRIP1 Enable Select for Channel C

Enable TRIP0 for Channel D

Enable TRIP1 for Channel C Low Side
Mode of TRIP0 for Channel D

Low Side
TRIP0 Enable Select for Channel C

Enable TRIP1 for Channel D

Enable TRIP0 for Channel C Low Side

Mode of TRIP1 for Channel D

Mode of TRIP1 for Channel C

Enable TRIP0 for Channel D Low Side

Enable TRIP1 as a trip source for Channel C

Low Side
TRIP0 Enable Select for Channel D

Mode of TRIP0 for Channel C
Enable TRIP1 for Channel D Low Side

Enable TRIP0 for Channel C
Low Side
TRIP1 Enable Select for Channel D

EN1SELA (R/W)

EN0B (R/W)

EN1AL (R/W)

MODE0B (R/W)

EN0SELA (R/W)

EN1B (R/W)

EN0AL (R/W)

MODE1B (R/W)

MODE1A (R/W)

EN0BL (R/W)

EN1A (R/W)

EN0SELB (R/W)

MODE0A (R/W)
EN1BL (R/W)

EN0A (R/W)EN1SELB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EN1SELC (R/W)
EN0D (R/W)

EN1CL (R/W)
MODE0D (R/W)

EN0SELC (R/W)

EN1D (R/W)

EN0CL (R/W)

MODE1D (R/W)

MODE1C (R/W)

EN0DL (R/W)

EN1C (R/W)
EN0SELD (R/W)

MODE0C (R/W)
EN1DL (R/W)

EN0C (R/W)EN1SELD (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-104: PWM_TRIPCFG Register Diagram

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–141

Table 24-80: PWM_TRIPCFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

EN1SELD TRIP1 Enable Select for Channel D Low Side.

The PWM_TRIPCFG.EN1SELD bit selects the TRIP1 Enable bit for Channel D
Low Side.

If cleared (=0), Channel D Low Side TRIP1 Enable depends on the
PWM_TRIPCFG.EN0D bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0DL bit setting.

0 Select EN0D for Channel D Low Side Trip1 Enable

1 Select EN0DL for Channel D Low Side Trip1 Enable

30

(R/W)

EN1DL Enable TRIP1 for Channel D Low Side.

The PWM_TRIPCFG.EN1DL bit independently enables TRIP1 as a source for Chan-
nel D Low Side.

0 Disable Trip1 for Channel D Low Side

1 Enable Trip1 for Channel D Low Side

29

(R/W)

EN0SELD TRIP0 Enable Select for Channel D Low Side.

The PWM_TRIPCFG.EN0SELD bit selects the TRIP0 Enable bit for Channel D
Low Side.

If cleared (=0), Channel D Low Side TRIP0 Enable depends on the
PWM_TRIPCFG.EN0D bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0DL bit setting.

0 Select EN0D for Channel D Low Side Trip0 Enable

1 Select EN0DL for Channel D Low Side Trip0 Enable

28

(R/W)

EN0DL Enable TRIP0 for Channel D Low Side.

The PWM_TRIPCFG.EN0DL bit independently enables TRIP0 as a source for Chan-
nel D Low Side.

0 Disable Trip0 for Channel D Low Side

1 Enable Trip0 for Channel D Low Side

27

(R/W)

MODE1D Mode of TRIP1 for Channel D.

The PWM_TRIPCFG.MODE1D bit selects the trip mode of TRIP1 for Channel D.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

CM41X_M4 PWM Register Descriptions

24–142 ADSP-CM41x Mixed-Signal Control Processor

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/W)

EN1D Enable TRIP1 for Channel D.

The PWM_TRIPCFG.EN1D bit enables TRIP1 as a trip source for Channel D.

0 Disable TRIP1 for Channel D

1 Enable TRIP1 for Channel D

25

(R/W)

MODE0D Mode of TRIP0 for Channel D.

The PWM_TRIPCFG.MODE0D bit selects the trip mode of TRIP0 for Channel D.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

24

(R/W)

EN0D Enable TRIP0 for Channel D.

The PWM_TRIPCFG.EN0D bit enables TRIP0 as a trip source for Channel D.

0 Disable TRIP0 for Channel D

1 Enable TRIP0 for Channel D

23

(R/W)

EN1SELC TRIP1 Enable Select for Channel C Low Side.

The PWM_TRIPCFG.EN1SELC bit selects the TRIP1 Enable bit for Channel C
Low Side.

If cleared (=0), Channel C Low Side TRIP1 Enable depends on the
PWM_TRIPCFG.EN0C bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0CL bit setting.

0 Select EN0C for Channel C Low Side Trip1 Enable

1 Select EN0CL for Channel C Low Side Trip1 Enable

22

(R/W)

EN1CL Enable TRIP1 for Channel C Low Side.

The PWM_TRIPCFG.EN1CL bit independently enables TRIP0 as a source for Chan-
nel C Low Side.

0 Disable Trip1 for Channel C Low Side

1 Enable Trip1 for Channel C Low Side

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–143

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

EN0SELC TRIP0 Enable Select for Channel C Low Side.

The PWM_TRIPCFG.EN0SELC bit selects the TRIP0 Enable bit for Channel C
Low Side.

If cleared (=0), Channel C Low Side TRIP0 Enable depends on the
PWM_TRIPCFG.EN0C bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0CL bit setting.

0 Select EN0C for Channel C Low Side Trip0 Enable

1 Select EN0CL for Channel C Low Side Trip0 Enable

20

(R/W)

EN0CL Enable TRIP0 for Channel C Low Side.

The PWM_TRIPCFG.EN0CL bit independently enables TRIP0 as a source for Chan-
nel C Low Side.

0 Disable Trip0 for Channel C Low Side

1 Enable Trip0 for Channel C Low Side

19

(R/W)

MODE1C Mode of TRIP1 for Channel C.

The PWM_TRIPCFG.MODE1C bit selects the trip mode of TRIP1 for Channel C.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

18

(R/W)

EN1C Enable TRIP1 as a trip source for Channel C.

The PWM_TRIPCFG.EN1C bit enables TRIP1 as a trip source for Channel C.

0 Disable TRIP1 for Channel C

1 Enable TRIP1 for Channel C

17

(R/W)

MODE0C Mode of TRIP0 for Channel C.

The PWM_TRIPCFG.MODE0C bit selects the trip mode of TRIP0 for Channel C.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

16

(R/W)

EN0C Enable TRIP0 for Channel C.

The PWM_TRIPCFG.EN0C bit enables TRIP0 as a trip source for Channel C.

0 Disable TRIP0 for Channel C

1 Enable TRIP0 for Channel C

CM41X_M4 PWM Register Descriptions

24–144 ADSP-CM41x Mixed-Signal Control Processor

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

EN1SELB TRIP1 Enable Select for Channel B Low Side.

The PWM_TRIPCFG.EN1SELB bit selects the TRIP1 Enable bit for Channel B Low
Side.

If cleared (=0), Channel B Low Side TRIP1 Enable depends on the
PWM_TRIPCFG.EN0B bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0BL bit setting.

0 Select EN0B for Channel B Low Side Trip1 Enable

1 Select EN0BL for Channel B Low Side Trip1 Enable

14

(R/W)

EN1BL Enable TRIP1 as a trip source for Channel B Low Side.

The PWM_TRIPCFG.EN1BL bit enables TRIP1 as a source for Channel B Low Side
independently

0 Disable Trip1 for Channel B Low Side

1 Enable Trip1 for Channel B Low Side

13

(R/W)

EN0SELB TRIP0 Enable Select for Channel B Low Side.

The PWM_TRIPCFG.EN0SELB bit selects the TRIP0 Enable bit for Channel B Low
Side.

If cleared (=0), Channel B Low Side TRIP0 Enable depends on the
PWM_TRIPCFG.EN0B bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0BL bit setting.

0 Select EN0B for Channel B Low Side Trip0 Enable

1 Select EN0BL for Channel B Low Side Trip0 Enable

12

(R/W)

EN0BL Enable TRIP0 for Channel B Low Side.

The PWM_TRIPCFG.EN0BL bit independently enables TRIP0 as a source for Chan-
nel B Low Side.

0 Disable Trip0 for Channel B Low Side

1 Enable Trip0 for Channel B Low Side

11

(R/W)

MODE1B Mode of TRIP1 for Channel B.

The PWM_TRIPCFG.MODE1B bit selects the trip mode of TRIP1 for Channel B.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–145

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W)

EN1B Enable TRIP1 for Channel B.

The PWM_TRIPCFG.EN1B bit enables TRIP1 as a trip source for Channel B.

0 Disable TRIP1 for Channel B

1 Enable TRIP1 for Channel B

9

(R/W)

MODE0B Mode of TRIP0 for Channel B.

The PWM_TRIPCFG.MODE0B bit selects the trip mode of TRIP0 for Channel B.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

8

(R/W)

EN0B Enable TRIP0 as a trip source for Channel B.

The PWM_TRIPCFG.EN0B bit enables TRIP0 as a trip source for Channel B.

0 Disable TRIP0 for Channel B

1 Enable TRIP0 for Channel B

7

(R/W)

EN1SELA TRIP1 Enable Select for Channel A Low Side.

The PWM_TRIPCFG.EN1SELA bit selects the TRIP1 Enable bit for Channel A Low
Side.

If cleared (=0), Channel A Low Side TRIP1 Enable depends on the
PWM_TRIPCFG.EN0A bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0AL bit setting.

0 Select EN0A for Channel A Low Side Trip1 Enable

1 Select EN0AL for Channel A Low Side Trip1 Enable

6

(R/W)

EN1AL Enable TRIP1 for Channel A Low Side.

The PWM_TRIPCFG.EN1AL bit independently enables TRIP1 as a source for Chan-
nel A Low Side.

0 Disable Trip1 for Channel A Low Side

1 Enable Trip1 for Channel A Low Side

CM41X_M4 PWM Register Descriptions

24–146 ADSP-CM41x Mixed-Signal Control Processor

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

EN0SELA TRIP0 Enable Select for Channel A Low Side.

The PWM_TRIPCFG.EN0SELA bit selects the TRIP0 Enable bit for Channel A Low
Side.

If cleared (=0), Channel A Low Side TRIP0 Enable depends on the
PWM_TRIPCFG.EN0A bit setting.

If set (=1), it depends on the PWM_TRIPCFG.EN0AL bit setting.

0 Select EN0A for Channel A Low Side Trip0 Enable

1 Select EN0AL for Channel A Low Side Trip0 Enable

4

(R/W)

EN0AL Enable TRIP0 for Channel A Low Side.

The PWM_TRIPCFG.EN0AL bit independently enables TRIP0 as a source for Chan-
nel A Low Side.

0 Disable Trip0 for Channel A Low Side

1 Enable Trip0 for Channel A Low Side

3

(R/W)

MODE1A Mode of TRIP1 for Channel A.

The PWM_TRIPCFG.MODE1A bit selects the trip mode of TRIP1 for Channel A.
For more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

2

(R/W)

EN1A Enable TRIP1 as a trip source for Channel A.

The PWM_TRIPCFG.EN1A bit enables TRIP1 as a trip source for Channel A.

0 Disable TRIP1 for Channel A

1 Enable TRIP1 for Channel A

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–147

Table 24-80: PWM_TRIPCFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

MODE0A Mode of TRIP0 for Channel A.

The PWM_TRIPCFG.MODE0A bit selects the trip mode of TRIP0 for Channel A.

In fault-trip mode (PWM_TRIPCFG.MODE0A =0), after the input is tripped, the trip
status appears in the corresponding channels fault-trip status bit (for example,
PWM_STAT.FLTTRIPA), and the PWM immediately shuts down outputs of that
channel. After a fault trip occurs, when the trip condition is no longer active, the pro-
cessor may cause channel outputs to resume by completing a write-1-to-clear the corre-
sponding fault-trip status bit. The raw (input level) trip input state is available from
the PWM_STAT.RAWTRIP0 and PWM_STAT.RAWTRIP0 bits.

In self-restart mode (PWM_TRIPCFG.MODE0A =1), after the input is tripped, the
trip status appears in the corresponding channels self-restart status bit (for example,
PWM_STAT.SRTRIPA), and the PWM immediately shuts down outputs of that
channel. On the next timer period boundary (of the PWMTMRx used by that chan-
nel), if the trip condition is not active, the PWM clears the status and restarts the
channels output.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

0

(R/W)

EN0A Enable TRIP0 as a trip source for Channel A.

The PWM_TRIPCFG.EN0A bit enables TRIP0 as a trip source for Channel A.

0 Disable TRIP0 for Channel A

1 Enable TRIP0 for Channel A

CM41X_M4 PWM Register Descriptions

24–148 ADSP-CM41x Mixed-Signal Control Processor

Trip Polarity Register

The PWM_TRIP_POL register controls the Channel Polarity upon tripping for each PWM Channel independently.

Channel B Low Side Trip PolarityChannel C Low Side Trip Polarity

Channel A Low Side Trip PolarityChannel D Low Side Trip Polarity

Channel B High Side Trip PolarityChannel C High Side Trip Polarity

Channel A High Side Trip PolarityChannel D High Side Trip Polarity

TPOLBL (R/W)TPOLCL (R/W)

TPOLAL (R/W)TPOLDL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TPOLBH (R/W)TPOLCH (R/W)

TPOLAH (R/W)TPOLDH (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 24-105: PWM_TRIP_POL Register Diagram

Table 24-81: PWM_TRIP_POL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:22

(R/W)

TPOLDH Channel D High Side Trip Polarity.

0 Set Channel D High Side to Inactive Polarity upon Trip

1 Set Channel D High Side to Active Polarity upon Trip

2 Set Channel D High Side to High Impedance upon
Trip

21:20

(R/W)

TPOLCH Channel C High Side Trip Polarity.

0 Set Channel C High Side to Inactive Polarity upon Trip

1 Set Channel C High Side to Active Polarity upon Trip

2 Set Channel C High Side to High Impedance upon Trip

19:18

(R/W)

TPOLBH Channel B High Side Trip Polarity.

0 Set Channel B High Side to Inactive Polarity upon Trip

1 Set Channel B High Side to Active Polarity upon Trip

2 Set Channel B High Side to High Impedance upon Trip

17:16

(R/W)

TPOLAH Channel A High Side Trip Polarity.

0 Set Channel A High Side to Inactive Polarity upon Trip

1 Set Channel A High Side to Active Polarity upon Trip

2 Set Channel A High Side to High Impedance upon Trip

CM41X_M4 PWM Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 24–149

Table 24-81: PWM_TRIP_POL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7:6

(R/W)

TPOLDL Channel D Low Side Trip Polarity.

0 Set Channel D Low Side to Inactive Polarity upon Trip

1 Set Channel D Low Side to Active Polarity upon Trip

2 Set Channel D Low Side to High Impedance upon Trip

5:4

(R/W)

TPOLCL Channel C Low Side Trip Polarity.

0 Set Channel C Low Side to Inactive Polarity upon Trip

1 Set Channel C Low Side to Active Polarity upon Trip

2 Set Channel C Low Side to High Impedance upon Trip

3:2

(R/W)

TPOLBL Channel B Low Side Trip Polarity.

0 Set Channel B Low Side to Inactive Polarity upon Trip

1 Set Channel B Low Side to Active Polarity upon Trip

2 Set Channel B Low Side to High Impedance upon Trip

1:0

(R/W)

TPOLAL Channel A Low Side Trip Polarity.

0 Set Channel A Low Side to Inactive Polarity upon Trip

1 Set Channel A Low Side to Active Polarity upon Trip

2 Set Channel A Low Side to High Impedance upon Trip

CM41X_M4 PWM Register Descriptions

24–150 ADSP-CM41x Mixed-Signal Control Processor

25 Universal Asynchronous Receiver/Trans-
mitter (UART)

The UART module is a full-duplex peripheral compatible with PC-style industry-standard UARTs. The UART con-
verts data between serial and parallel formats. The serial communication follows an asynchronous protocol that sup-
ports various word lengths, stop bits, bit rates, and parity-generation options. Multiple events can generate inter-
rupts.

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually requires external
transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode, the UART meets the
half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the UART meets the full-duplex
MDB/ICP v2.0 protocol.

The UART module supports partial modem status and control functionality to allow for hardware flow control.

The UART is a DMA-capable peripheral with separate transmit and receive DMA master channels. The use of
DMA requires minimal software intervention as the DMA engine moves the data. The UART can also use a pro-
grammed core mode of operation. The core mode requires software management of the data flow using either inter-
rupts or polling.

The UART can use one of the peripheral timers for a hardware-assisted auto-baud detection mechanism. The timers
are external to the UART.

UART Features
Each UART includes the following features.

• 5–8 data bits

• Programmable extra stop bit and programmable extra half-stop bit

• Even, odd, and sticky parity bit options

• Extra 8-stage receive FIFO with programmable threshold interrupt request

• Flexible transmit and receive interrupt request timing

• A status interrupt output

Universal Asynchronous Receiver/Transmitter (UART)

ADSP-CM41x Mixed-Signal Control Processor 25–1

• Independent DMA operation for receive and transmit

• Programmable automatic request to send (RTS)/clear to send (CTS) hardware flow control

• False start bit detection

• SIR IrDA operation mode

• MDB/ICP v2.0 operation mode

• Internal loopback

• Improved bit rate granularity

• LIN break command/Inter-frame gap transmission support

Table 25-1: UART Specifications

Feature Availability

Protocol

Master-Capable Yes

Slave-Capable Yes

Transmission Simplex Yes

Transmission Half-Duplex Yes

Transmission Full-Duplex Yes

Access Type

Data Buffer Yes

Core Data Access Yes

DMA Data Access Yes

DMA Channels 2 (per UART Port)

DMA Descriptor Yes

Boot Capable Yes (Slave Mode)

Local Memory No

Clock Operation SCLK/16

UART Functional Description
The following sections provide details on the UARTs functionality.

CM41X_M4 UART Register List

The Universal Asynchronous Receiver/Transmitter module (UART) is a full-duplex peripheral compatible with PC-
style industry-standard UARTs. The UART converts data between serial and parallel formats. The serial communi-
cation follows an asynchronous protocol that supports various word length, stop bit, parity, and interrupt generation

UART Functional Description

25–2 ADSP-CM41x Mixed-Signal Control Processor

options. A set of registers governs UART operations. For more information on UART functionality, see the UART
register descriptions.

Table 25-2: CM41X_M4 UART Register List

Name Description

UART_CLK Clock Rate Register

UART_CTL Control Register

UART_IMSK Interrupt Mask Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_IMSK_SET Interrupt Mask Set Register

UART_RBR Receive Buffer Register

UART_RSR Receive Shift Register

UART_RXCNT Receive Counter Register

UART_SCR Scratch Register

UART_STAT Status Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_THR Transmit Hold Register

UART_TSR Transmit Shift Register

UART_TXCNT Transmit Counter Register

CM41X_M4 UART Interrupt List

Table 25-3: CM41X_M4 UART Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

139 UART1_STAT UART1 Status Level

140 UART2_STAT UART2 Status Level

141 UART3_STAT UART3 Status Level

142 UART4_STAT UART4 Status Level

143 UART0_STAT UART0 Status Level

CM41X_M0 UART Interrupt List

UART Functional Description

ADSP-CM41x Mixed-Signal Control Processor 25–3

Table 25-4: CM41X_M0 UART Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

26 UART0_STAT UART0 Status Level

25.2.4 Trigger List

CM41X_M4 UART DMA Channel List

Table 25-5: CM41X_M4 UART DMA Channel List

DMA ID DMA Channel Name Description

DMA2 UART0_TXDMA UART0 Transmit DMA

DMA3 UART0_RXDMA UART0 Receive DMA

DMA4 UART1_TXDMA UART1 Transmit DMA

DMA5 UART1_RXDMA UART1 Receive DMA

DMA6 UART2_TXDMA UART2 Transmit DMA

DMA7 UART2_RXDMA UART2 Receive DMA

DMA8 UART3_TXDMA UART3 Transmit DMA

DMA9 UART3_RXDMA UART3 Receive DMA

DMA10 UART4_TXDMA UART4 Transmit DMA

DMA11 UART4_RXDMA UART4 Receive DMA

UART Block Diagram

The UART Block Diagram figure shows a simplified block diagram of one UART module and how it interconnects
to the processor system.

UART Functional Description

25–4 ADSP-CM41x Mixed-Signal Control Processor

UART_STATUS

UARTx_THR

UARTx_TAIP

UART_EMASK

UARTx_CONTROL

SEC CONTROLLER

DMA CONTROLLER
(DMA CHANNEL)

UARTx_SCR TSR

P2P
(8-BIT DATA)

R
X

 R
E

Q

T
X

 R
E

Q

MMR ACCESS BUS
(32-BIT DATA)

S
TA

T
U

S
 R

E
Q

U
E

S
T

PROCESSOR

UARTx_CLOCK

SET

CLEAR

T
R

A
N

S
C

E
IV

E
R

RSRUARTx_RBR RX FIFO (8 DEEP)

P
O

R
T

S

UART

8
32

UARTxCTS

UARTxRX

UARTxTX

UARTxRTS

T
O

 T
IM

E
R

x
(F

O
R

 A
U

T
O

B
A

U
D

 D
E

T
E

C
T

IO
N

Figure 25-1: UART Block Diagram

UART Architectural Concepts

The following sections provide information about the UART architecture.

Internal Interface

The UART is a DMA-capable peripheral with support for separate transmit and receive DMA master channels. It
operates in either DMA or programmed core modes. The core mode requires software management of the data flow
using either interrupts or polling. The DMA method requires minimal software intervention, as the DMA engine
itself moves the data. The UART_RBR and UART_THR registers also connect to one of the peripheral DMA buses.

All UART registers are 32 bits wide and the registers connect to the peripheral MMR bus. Not all MMRs can be
used and unused bits are zero-filled. The UART has three interrupt outputs described as follows.

• The transmit and receive request outputs can function as DMA requests and connect to the DMA controller.
Therefore, if the DMA is not enabled, the DMA controller simply forwards the request to the system event
controller (SEC).

• The status interrupt output connects directly to one or more processor cores and event controllers. On many
processors, the alternative capture input (TIMER_ACI[n]) of one of the GP timers also senses the UART_RX
pin. When configured in capture mode, the processor can then use the GP timer to detect the bit rate of the
received signal.

External Interface

Each UART features a UART_RX (receive) pin and a UART_TX (transmit) pin available through the general-pur-
pose ports. These two pins usually connect to an external transceiver device that meets the electrical requirements of
full-duplex or half-duplex standards. For example, EIA-232, EIA-422, 4-wire EIA-485 for full-duplex or 2-wire
EIA-485, LIN for half-duplex. Additionally, the UART features a pair of clear-to-send, input pins (UART_CTS),

UART Functional Description

ADSP-CM41x Mixed-Signal Control Processor 25–5

and request-to-send, output pins (UART_RTS) for hardware flow control. UART signals are multiplexed with other
functions at the pin level.

Hardware Flow Control

To prevent the UART transmitter from sending data while the receiving counterpart is not ready, the UART features
a UART_RTS/UART_CTS hardware flow control mechanism. The UART_RTS signal is an output that connects to
the UART_CTS input of the communication partner. If data transfer is bidirectional, the figure shows the UART
Hardware Flow Control handshake.

PROCESSOR

UARTxCTS

UARTxRTS

UARTx

UARTxRX

UARTxTX

CTS

RTS

OTHER UART
DEVICE

RX

TX

Figure 25-2: UART Hardware Flow Control

In both DMA and core mode, the receiver can deassert the UART_RTS signal to indicate that its receive buffer is
almost full. Continued data transfers can cause an overrun error. The transmitter pauses when the UART_CTS in-
put is in a deasserted state. In this state, the transmitter completes transmission of the data currently held in the
transmit shift register (UART_TSR) but it does not continue with the data in the transmit hold register
(UART_THR). If the UART_CTS pin is asserted again, the transmitter resumes and loads the content of
UART_THR register into the UART_TSR register.

Bit Rate Generation

The peripheral clock (SCLK) and the 16-bit divisor in the UART_CLK register characterize the sample clock. The
UART uses the UART_CTL.EN bit to enable the clock. By default, every serial bit is oversampled 16 times. The bit
clock is 1/16th of the sample clock. If not in IrDA mode, the bit clock can equal the sample clock if the
UART_CLK.EDBO bit is set, so that the following equation applies:

Bit Rate = SCLK/16 (1-EDBO) × Divisor

ADSP-CM41x Processor Example

The following table provides example divide factors required to support standard baud rates at a SCLK of 100 MHz.

Table 25-6: Uart Bit Rate Examples with 100 MHz SCLK

Bit Rate (bits/
sec)

D Factor = 16 D Factor = 1

DL Actual % Error DL Actual % Error

2400 2604 2400.15 0.006 41667 2399.98 0.001

UART Architectural Concepts

25–6 ADSP-CM41x Mixed-Signal Control Processor

Table 25-6: Uart Bit Rate Examples with 100 MHz SCLK (Continued)

Bit Rate (bits/
sec)

D Factor = 16 D Factor = 1

DL Actual % Error DL Actual % Error

4800 1302 4800.31 0.006 20833 4800.08 0.002

9600 651 9600.61 0.006 10417 9599.69 0.003

19200 326 19171.78 0.147 5208 19201.23 0.006

38400 163 38343.56 0.147 2604 38402.46 0.006

57600 109 57339.45 0.452 1736 57603.69 0.006

115200 54 115740.74 0.469 868 115207.37 0.006

921600 7 892857.14 3.119 109 917431.19 0.452

1500000 4 1562500 4.167 67 1492537.31 0.498

3000000 2 3125000 4.167 33 3030303.03 1.01

6250000 1 6250000 0 16 6250000 0

NOTE: Careful selection of SCLK frequencies—that is, even multiples of desired bit rates— can result in lower
error percentages. Setting the bit clock equal to the sample clock (UART_CLK.EDBO =1) improves bit
rate granularity and enables the bit clock to more closely match the bit rate of the communication partner.
The disadvantage to this configuration is that the power dissipation is higher and the sample points may
not be as accurate. Therefore, it is recommended to use UART_CLK.EDBO =1 mode only when bit rate
accuracy is not acceptable in UART_CLK.EDBO =0 mode. The UART_CLK.EDBO =1 mode is not in-
tended to increase operation speed beyond the electrical limitations of the UART transfer protocol.

Autobaud Detection

At the chip level, the UART_RX pin is typically routed to an alternate capture input (TIMER_ACI[n]) of a gener-
al-purpose timer. When working in width capture mode, the processor uses this general-purpose timer to detect the
bit rate applied to the UART_RX pin automatically by an external device. It often uses the capture capabilities of the
timer to supervise the bit rate at run time. If the UART communicates with any device supplied by a weak clock
oscillator that drifts over time, the processor can then readjust its UART bit rate dynamically, as required.

Often, the processor uses autobaud detection for initial bit rate negotiations where it is most likely a slave device
waiting for the host to send a predefined autobaud character. This situation is common for UART booting. Do not
enable the UART_CTL.EN bit while autobaud detection is in-process, to prevent the UART from starting a receive
operation with incorrect bit rate matching. Alternatively, set the UART_CTL.LOOP_EN bit to disconnect the
UART from its UART_RX pin.

A software routine can detect the pulse widths of serial stream bit cells. The sample base of the timer is synchronous
with the UART operation (all derived from the same SCLK). The UART uses pulse widths to calculate the bit rate
divider as follows:

Divisor = TIMER_TMR[n]_WID/16(1–EDBO) × Number of captured UART bits

UART Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 25–7

To increase the number of timer counts and the resolution of the captured signal, do not measure just the pulse
width of a single bit. Instead, enlarge the pulse of interest over more bits. Traditionally, a NULL character (ASCII
0x00) is used in autobaud detection, as shown in the Autobaud Detection figure.

STOPS 1 2 3 4 5 6 7

FRAME WIDTH

0

Figure 25-3: Autobaud Detection

Because the example frame encloses 8 data bits and 1 start bit, apply the following formula:

Divisor = TIMER_TMR[n]_WID/16(1–EDBO) × 9

NOTE: For processor-specific mapping of timer alternate capture inputs to the UARTs of the processor, see
"Width Capture (WIDCAP) Mode" in the "General-Purpose Timer (TIMER)" chapter.

Real receive signals often have asymmetrical falling and rising edges, and the sampling logic level is not exactly in the
middle of the signal voltage range. At higher bit rates, such pulse-width-based autobaud detection does not always
return adequate results without extra conditioning of the analog signal. Measure signal periods to work around this
issue.

For example, predefine the ASCII character “@” (0x40) as the autobaud detection character and measure the period
between two subsequent falling edges. As shown in the Autobaud Detection Character 0x40 figure, measure the pe-
riod between the falling edge of the start bit and the falling edge after bit 6. Since this period encloses 8 bits, apply
the following formula:

Divisor = TIMER_TMR[n]_PER/16(1–EDBO) × 8

or:

• Divisor = TIMER_TMR[n]_PER>> 7, if UART_CLK.EDBO=0

• Divisor = TIMER_TMR[n]_PER>> 3, if UART_CLK.EDBO=1

The Autobaud Detection Character 0x40 figure shows the ASCII “@” (0x40) detection character.

STOPS 1 2 3 4 5 6 7

PERIOD

0

Figure 25-4: Autobaud Detection Character 0x40

For each UART unit, a general-purpose timer can be used to provide a hardware-assisted auto-baud detection mech-
anism for use with the UART. The Autobaud Timer Instances table shows these connections.

UART Architectural Concepts

25–8 ADSP-CM41x Mixed-Signal Control Processor

Table 25-7: Autobaud Timer Instances

UART Instance TIMER Instance

UART0 TIMER0 TMRx

UART1 TIMER1 TMRx

UART2 TIMER1 TMRx

UART3 TIMER1 TMRx

UART4 TIMER1 TMRx

UART Debug Features

The UART can automatically calculate and transmit a parity bit. The UART Parity table summarizes parity behav-
ior assuming 8-bit data words (UART_CTL.WLS=b#11).

Table 25-8: UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 1 x x 0

The two force error bits, UART_CTL.FPE and UART_CTL.FFE, are intended for test purposes. They are useful
for debugging software, especially in loopback mode.

The UART can be set to internal loopback mode (UART_CTL.LOOP_EN=1). Loopback mode disconnects the in-
put of the receiver from the receive pin and internally redirects the transmit output to the receiver. The transmit pin
remains active and continues to transmit data externally as well. Loopback mode also forces the UART_RTS pin to
deassert, disconnects the UART_STAT.CTS bit from the UART_CTS input pin, and connects the internal version
of UART_RTS to the UART_STAT.CTS bit.

Additionally, the UART_TX pin can be forced to zero asynchronously using the UART_CTL.SB bit.

UART Operating Modes
The following sections describe the main operating modes of the UART.

• UART Mode

• IrDA SIR Mode

UART Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 25–9

• Multi-Drop Bus Mode

UART Mode

The UART mode follows an asynchronous serial communication protocol with these options:

• 1 start bit

• 5–8 data bits

• Address bit (available in MDB mode only)

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits valid only in 5-bit word length)

The UART_CTL register controls the format of received and transmitted character frames. Data is always transmit-
ted and received with the least significant bit (LSB) first.

The Bit Stream on a UART TX Pin Transmitting an “S” Character (0x53) figure shows a typical physical bit stream
measured on a UART_TX pin.

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

Figure 25-5: Bit Stream on a UART TX Pin Transmitting an “S” Character (0x53)

IrDA SIR Mode

The UART also supports serial data communication by way of infrared signals, according to the recommendations
of the Infrared Data Association (IrDA). The physical layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. The UART does not support pulse position modulation.

Using the 16x data rate clock, RZI modulation is achieved by inverting and modulating the non-return-to-zero
(NRZ) code normally transmitted by the UART. On the receive side, the UART uses a 16x clock to determine an
IrDA pulse sample window, from which it recovers the RZI modulated NRZ code.

NOTE: The UART_CLK.EDBO bit is not valid in IrDA mode. Clear (=0) this bit in this mode.

Multi-Drop Bus Mode

The UART uses a protocol for point-to-point connections as well as in networks where the EIA-485 standard is
representative of UART-based bus systems. The EIA-232 standard defines point-to-point connections. In such net-
works, node addressing is important.

UART Operating Modes

25–10 ADSP-CM41x Mixed-Signal Control Processor

In a multidrop bus (MDB) network, for example, an address bit enhances the UART frame. The address bit is inser-
ted between the data bits and the optional parity bit. To configure the UART for MDB mode, set the mode of
operation bits (UART_CTL.MOD [5:4]) to 01.

By convention, the address bit is transmitted low for regular data bytes. When set, it marks special address bytes that
require the attention of all nodes on the network.

ADDRESS
BIT

DATA BITS (0x53)

S D0 D1 D2 D3 D4 D7D6D5 A P

STOP BIT(S)

PARITY BIT (OPTIONAL,
INCLUDES ADDRESS BIT)

START
BIT

Figure 25-6: UART Frame with Address Bit

All transmit operations are processed through the transmit buffer register (UART_THR), so all DMA data transmis-
sions clear the address bit. If data is written to the transmit address or insert pulse register (UART_TAIP) instead,
the same transmit operation is initiated with the only exception that the address bit is sent high.

The UART uses the UART_STAT.ADDR bit of the receiver to signal whether the previously received frame had the
address bit set or not. Hardware updates it every time a new frame is received. When the enable address word inter-
rupt bit (UART_IMSK.EAWI) is set, the reception of an address byte triggers a special status interrupt request.

The address sticky bit (UART_STAT.ASTKY) is the sticky version of the UART_STAT.ADDR bit. Hardware sets
it whenever the UART_STAT.ADDR bit is set. Software can clear the UART_STAT.ASTKY bit with a W1C oper-
ation.

In MDB mode, only address bytes progress to the receive FIFO by default. Data bytes are gated unless the
UART_STAT.ASTKY bit is set. The receiver ignores all traffic on the UART bus. This way, the processor can go
into low-power mode and interrupt activity does not load the processor every time a frame is transmitted on the
UART bus. If, however, an address frame is transmitted, the receiver immediately samples all further traffic. A soft-
ware routine can analyze the received data, decide whether it was of relevance for the local network node, and W1C
the UART_STAT.ASTKY bit if it was not.

Software can overrule of the hardware address frame detection by setting the UART_STAT.ADDR bit and (indirect-
ly) the UART_STAT.ASTKY bit with a W1S operation.

The MDB mode follows an asynchronous serial communication protocol with the following options.

• 1 start bit

• 5–8 data bits

• Address bit

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits are valid only in 5-bit word length)

UART Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 25–11

NOTE: If the address bit and parity bit are both enabled, the parity check and generation includes the address bit
in its parity calculation.

UART Data Transfer Modes

The UART can transfer data using both the core and DMA. Receive and transmit paths operate independently ex-
cept that the bit rate and the frame format are identical for both transfer directions. Transmit and receive channels
are both buffered. The UART_THR register buffers the transmit shift register (UART_TSR) and the UART_RBR
register buffers the receive shift register (UART_RSR).

UART Mode Transmit Operation (Core)

In core mode, the processor core moves data to and from the UART. A write to the UART_THR register initiates the
transmit operation. If no former operation is pending, the UART_THR register passes the data immediately to the
UART_TSR register. There, it is shifted out at the bit rate characterized by the UART_CLK register, with start, stop,
and parity bits appended as defined by the UART_CTL register.

The UART_THR register and the UART_TSR register can be modeled as a two-stage transmit buffer. The least sig-
nificant bit (LSB) always transmits first. This bit is bit 0 of the value written to the UART_THR register.

UART Mode LIN Break Command

Some UART-based protocols demand synchronization methods that are not native to standard UART implementa-
tions. For example, the Local Interconnect Network (LIN) protocol requires a low-pulse of well-defined transmit
length as a prologue to every multi-byte message. Its length must be at least 13 bit-times.

With previous UARTs, there were two options to implement this protocol:

• A null byte is transmitted with a temporarily lowered bit rate, or

• A software counter generates the period and the asynchronous set break (SB) mechanisms pull the transmit pin
low

Since both methods have their disadvantages, the newer UART introduces a new inter-frame gap technique.

The feature is not available in MDB or IrDA operating modes. However, in standard UART mode (bits
UART_CTL.MOD [5:4] =00), a write to the UART_TAIP register initiates the transmission of an inter-frame pulse.
If the transmit buffer is not empty, the UART first transmits all bytes in the queue. It only initiates with pulse gener-
ation after the last stop bit of the last byte has been shifted out.

The value written into the UART_TAIP register defines the nature and the duration of the transmitted pulse. Bits
[6:0] control the duration in bit-times and bit [7] controls the value (duration = UART_TAIP[6:0] /
UART_CLK[15:0]). If UART_TAIP[7] is set, and an active high pulse is issued, the number of stop bits is exten-
ded. If UART_TAIP[7] is cleared, a low pulse is generated. Invert the polarity using the UART_CTL.FCPOL bit.
Writing a value of 13 into the UART_TAIP register generates the break command as required by the LIN protocol.

NOTE: If the UART_CTL.TPOLC bit is enabled, an inverted most-significant bit can be transmitted.

UART Operating Modes

25–12 ADSP-CM41x Mixed-Signal Control Processor

NOTE: If another transmission is pending (in the UART_TSR register), the UART_TAIP initiated pulse is
queued until after all pending operations have finished and all stop bits are transmitted.

The transmission of break command/inter-frame gap precedes transmission of the number of stop bits as set in the
UART_CTL.STB and UART_CTL.STBH bit fields.

The UART receiver can detect break commands through the break indicator (UART_STAT.BI) flag. This flag re-
ports that an entire UART frame has been received in low state. It does not report whether the duration of the re-
ceived low pulse was exact or at least 13 bit-times as LIN masters transmit. Typically, the break indicator meets LIN
requirements. The processor can use GP timers to determine the pulse width more precisely, if necessary.

Each UART_RX pin is also routed to a GP timer through its alternate capture input (TACI). This functionality is
not only useful for bit rate detection (autobaud) but also helps to measure the pulse widths precisely on the
UART_RX input. Additionally, the GP timers can issue an interrupt request or a fault condition when the received
pulse width is shorter than a bit time or longer than the worst-case break condition. The windowed watchdog width
mode of the GP timers controls this functionality.

UART Mode Receive Operation (Core)

The receive operation uses the same data format as the transmit configuration except that one valid stop bit is always
sufficient. The UART_CTL.STB and UART_CTL.STBH bits have no impact on the receiver.

The UART receiver senses the falling edges of the receive input. When it detects an edge, the receiver starts sampling
the input according to settings in the UART_CLK register. The receiver samples the start bit (majority sampling)
close to its midpoint. If sampled low, it assumes a valid start condition. Otherwise, it discards the detected falling
edge.

After detection of the start bit, the received word is shifted into the UART_RSR register.

After the corresponding stop bit is received, the content of the UART_RSR register is transferred to the 8-deep re-
ceive FIFO and is accessible by reading the UART_RBR register.

The receive FIFOs and the UART_RBR register act as a 9-stage receive buffer. If the stop bit of the ninth word is
received before software reads the UART_RBR register, an overrun error is reported. Overruns protect data in the
UART_RBR register and the receive FIFO from being overwritten by further data until the software clears the
UART_STAT.OE bit. However, the data in the UART_RSR register is immediately destroyed as soon as the over-
run occurs.

The sampling clock is 16 times faster than the bit clock. The receiver oversamples every bit 16 times and makes a
majority-decision based on the middle three samples. This functionality improves immunity against noise and haz-
ards on the line. The receiver disregards spurious pulses of less than two times the sampling clock period.

Normally, the receiver samples every incoming bit at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set to 1, the receiver samples bits roughly at 7/16th, 8/16th, and 9/16th of their period.
This configuration achieves better bit rate granularity and accuracy as required at high operation speeds. Hardware
design must ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit period.

UART Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 25–13

Reception starts when the UART receiver detects a falling edge on the UART_RX input pin. The receiver attempts
to see a start bit. The data is shifted into the UART_RSR register. After the ninth sample of the first, the receiver
processes the stop bit and copies the received data to the 8-stage receive FIFO. The UART_RSR recovers for further
data reception.

The receiver samples data bits close to their midpoint. Because the receiver clock is typically asynchronous to the
data rate of the transmitter, the sampling point can drift relative to the center of the data bits. The sampling point is
synchronized again with each start bit, so the error accumulates only over the length of a single word. The polarity
of received data is selectable, using the UART_CTL.RPOLC bit.

NOTE: The receiver checks for only a single stop bit. After the third sample of the first stop bit has been received
(at time 9/16th of the stop bit duration), the receiver immediately acts (status update). It then prepares for
new falling edge detection (start detection).

IrDA Transmit Operation

To generate the IrDA pulse transmitted by the UART, the normal NRZ output of the transmitter is first inverted if
the UART_CTL.TPOLC bit is configured for active-low operation. In this configuration, a zero is transmitted as a
high pulse of 16 UART clock periods and a one is transmitted as a low pulse for 16 UART clock periods. Then, six
UART clock periods delay the leading edge of the pulse. Similarly, eight UART clock periods truncate the trailing
edge of the pulse. For a 16-cycle UART clock period, this operation results in the final representation of the original
zero as a high pulse of only 3/16 clock periods. The IrDA Transmit Pulse figure shows how the pulse is centered
around the middle of the bit time. The final IrDA pulse is fed to the off-chip infrared driver.

This modulation approach ensures a pulse width output from the UART of three cycles high out of every 16 UART
clock cycles. As shown in the IrDA Transmit Pulse figure, the error terms associated with the bit rate generator are
small and well within the tolerance of most infrared transceiver specifications.

NOTE: In IrDA mode, writes to the UART_TAIP register are equivalent to writes to the UART_THR register.

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

Figure 25-7: IrDA Transmit Pulse

IrDA Receive Operation

The IrDA receiver function is more complex than the transmit function. The receiver must discriminate the IrDA
pulse and reject noise. The receiver looks for the IrDA pulse in a narrow window centered around the middle of the
expected pulse.

UART Data Transfer Modes

25–14 ADSP-CM41x Mixed-Signal Control Processor

Glitch filtering is accomplished by counting 16 system clocks from the time the receiver detects an initial pulse. If
the pulse is absent when the counter expires, the receiver interprets it as a glitch. Otherwise, the receiver interprets it
as a zero. This assessment is acceptable because glitches originating from on-chip capacitive cross-coupling typically
do not last for more than a fraction of the system clock (SCLK) period. Appropriate shielding avoids sources outside
of the chip and not part of the transmitter. The only other source of a glitch is the transmitter itself. The processor
relies on the transmitter to perform within specification. If the transmitter violates the specification, unpredictable
results can occur. The 4-bit counter adds an extra level of protection at a minimal cost.

NOTE: Because SCLK can change across systems, the longest glitch tolerated is inversely proportional to the
SCLK frequency.

A counter that is clocked at the 16x bit-time sample clock determines the receive sampling window. The sampling
window is resynchronized with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit. The IrDA Receiver Pulse Detection
figure provides examples of each polarity type.

 0 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOWN

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

Figure 25-8: IrDA Receiver Pulse Detection

MDB Transmit Operation

In MDB mode, receive and transmit paths operate independently from each other, except for sharing bit rate and
frame formats for both transfer directions.

Transmit operation is initiated by writing the UART_THR or UART_TAIP registers. A write to the UART_THR
register transmits the written word with the appending address bit set low. A write to the UART_TAIP register
transmits the written word with the appended address bit set high. The data is moved into the UART_TSR register,
where it is shifted out at the bit rate programmed by the UART_CLK register, with start, stop, address, and parity
bits appended, as required.

UART Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 25–15

If DMA is enabled, the DMA engine always writes the data into the UART_THR register, and the written word is
transmitted with the appending address bit set low.

The polarity of transmit data is selectable, using the UART_CTL.TPOLC bit.

MDB Receive Operation

Receive operations use the same data format as the transmit configuration, except that the number of stop bits is
always assumed to be 1. After detection of the start bit, the received word is shifted into the UART_RSR register at
the programmed bit.

Normally, the receiver samples every incoming bit at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set, the receiver samples the bits roughly at 7/16th, 8/16th, and 9/16th of their period.
This configuration achieves better bit rate granularity and accuracy needed at high operation speeds. Hardware de-
sign must ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit period.

After the appropriate number of bits (including address, parity, and stop bits) is received, the UART_RSR register is
transferred to the receive FIFO and accessible through the UART_RBR register.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit.

DMA Mode

In DMA mode, separate receive and transmit DMA channels move data between the UART and memory. The soft-
ware does not have to move data; it just has to set up the appropriate transfers either through the descriptor mecha-
nism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabilities of 6 words at the transmit side and 9
words at the receive side. In DMA mode, the bus activity and arbitration mechanism determine the latency. The
processor loading and interrupt priorities do not determine the latency.

To enable UART DMA, first set up the system DMA control registers. Then, enable the UART_IMSK.ERBFI or
UART_IMSK.ETBEI interrupts. This sequence is necessary because these interrupt request lines double as DMA
request lines. With DMA enabled, once these requests are received, the DMA control unit generates a direct memo-
ry access. If DMA is not enabled, the UART interrupt is passed on to the system interrupt handling unit. The status
interrupt for the UART goes directly to one or more processor cores and event controllers, bypassing the DMA unit
completely.

For transmit DMA, programs must set the DMA_CFG.SYNC bit. With this bit set, interrupt generation is delayed
until the entire DMA FIFO is drained to the UART module. The UART transmit DMA interrupt service routine
can disable the DMA or to clear the UART_IMSK.ETBEI control bit only when the DMA_CFG.SYNC bit is set.
Otherwise, up to four data bytes can be lost.

When the UART_IMSK.ETBEI bit is set, an initial transmit DMA request is issued immediately. The program
then clears the UART_IMSK.ETBEI bit through the DMA service routine.

In DMA transmit mode, the UART_IMSK.ETBEI bit enables the peripheral request to the DMA FIFO. The
DMA_CFG.EN bit enables the strobe on the memory side. If the DMA count is less than the DMA FIFO depth,

UART Data Transfer Modes

25–16 ADSP-CM41x Mixed-Signal Control Processor

which is 4, then the DMA interrupt can be requested before the UART_IMSK.ETBEI bit is set. If this behavior is
unwanted, set the DMA_CFG.SYNC bit.

Regardless of the DMA_CFG.SYNC setting, the DMA stream has not left the UART transmitter completely at the
time the interrupt request is generated. Transmission can abort in the middle of the stream, causing data loss, when
the UART clock was disabled without extra synchronization with the UART_STAT.TEMT bit.

The UART provides functionality to avoid resource-consuming polling of the UART_STAT.TEMT bit. The
UART_IMSK_SET.EDTPTI bit enables the UART_STAT.TEMT bit to trigger a DMA interrupt. To delay the
DMA completion interrupt until the last data word of a STOP DMA has left the UART, keep the DMA_CFG.INT
bit cleared and set the UART_IMSK_SET.EDTPTI bit instead. Then, the normal DMA completion interrupt is
suppressed. Later, the UART_STAT.TEMT event triggers a DMA interrupt after the last word of the DMA has left
the UART transmit buffers. If DMA_CFG.INT and UART_IMSK.EDTPTI are set, when finishing STOP mode,
the DMA requests two interrupts.

The DMA of the UART module supports 8-bit and 16-bit operation, but not 32-bit operation. It does not support
sign-extension.

Mixing DMA and Core Modes

Switching from DMA mode to core operation dynamically requires some consideration, especially for transmit oper-
ations. By default, the interrupt timing of the DMA is synchronized with the memory side of the DMA FIFOs.
Normally, the transmit DMA completion interrupt is generated after the last byte is copied from the memory into
the DMA FIFO. The transmit DMA interrupt service routine is not yet permitted to disable the DMA_CFG.EN
bit. The interrupt is requested when the DMA_STAT.IRQDONE bit is set. The DMA_STAT.RUN bit, however,
remains set until the data has completely left the transmit DMA FIFO.

When planning to switch from a DMA to core mode, set the DMA_CFG.SYNC bit in the word of the last descrip-
tor or work unit before handing over control. Then, after the interrupt request occurs, software can write new data
into the UART_THR register as soon as the UART_STAT.THRE bit permits. If the DMA_CFG.SYNC bit cannot
be set, software can poll the DMA_STAT.RUN bit instead. Alternatively, using the UART_IMSK.EDTPTI bit can
avoid expensive status bit polling.

When switching from core to DMA operation, ensure that the first DMA request is issued properly. If the DMA is
enabled while the UART is still transmitting, no precaution is required. If, however, the DMA is enabled after the
UART_STAT.TEMT bit is high, pulse the UART_IMSK.ETBEI bit to initiate DMA transmission.

Setting Up Hardware Flow Control

The following steps show how to set up UART hardware flow control:

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit, or
the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

On reset, when the UART is not yet enabled and the port multiplexing has not been programmed, the UART_RTS
pin is not driven. Some applications require a resistor pull the UART_RTS signal to either state during reset.

UART Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 25–17

UART Event Control
Status flags in the UART_STAT register are available to signal data reception, parity, and error conditions, if neces-
sary.

DMA and Interrupt Multiplexing

See the Direct Memory Access (DMA) chapter on for information on DMA multiplexing. Several interrupts and
DMA channels in thr UART can be multiplexed.

NOTE: To operate in interrupt mode without using DMA channels, set the UART_IMSK.ELSI bit. This config-
uration redirects receive and transmit requests to the status interrupt output. The status interrupt goes di-
rectly to the system without going through the DMA controller.

Interrupt Masks

Each UART features a set of interrupt mask registers: UART_IMSK, UART_IMSK_SET, and UART_IMSK_CLR.
The UART_IMSK register supports read/write operations. Writing ones to the UART_IMSK_SET register enables
interrupts, writing ones to the UART_IMSK_CLR register disables them. Reads from either register return the ena-
bled bits. This way, different interrupt service routines can control transmit, receive, and status interrupt requests
independently and easily.

The UART module uses the UART_IMSK registers to enable requests for system handling of empty or full states of
data registers. Unless polling is used as a means of action, the UART_IMSK.ERBFI and UART_IMSK.ETBEI
bits in this register are normally set.

Each UART module has three interrupt outputs. It uses one for transmission, one for reception, and one for report-
ing status events. The UART module routes transmit and receive requests through the DMA controller. The status
request goes directly to the system for event processing.

If the associated DMA channel is enabled, the request functions as a DMA request. If the DMA channel is disabled,
it simply forwards the request to the SEC. A DMA channel must be associated with the UART module to enable
transmit and receive interrupts. Otherwise, transmit and receive requests cannot be forwarded.

NOTE: To operate in interrupt mode without using DMA channels, set the UART_IMSK.ELSI bit. This config-
uration redirects receive and transmit requests to the status interrupt request output. The status interrupt
goes directly to the system without going through the DMA controller.

Interrupt Servicing

Interrupt service routines (ISRs) perform UART writes and reads. Separate interrupt lines are provided for transmit,
receive, and status. The UART_IMSK register group enables the independent interrupts individually. To enable
UART transmit interrupts, set the UART_CTL.EN bit.

The ISRs evaluate the status bits in the UART_STAT register to determine the signaling interrupt source. The sys-
tem event controller for the processor assigns and unmasks interrupts. The ISRs must clear the interrupt latches
explicitly. To reduce interrupt frequency on the receive side in core mode, use the UART_IMSK.ERFCI status

UART Event Control

25–18 ADSP-CM41x Mixed-Signal Control Processor

interrupt as an alternative to the regular UART_IMSK.ERBFI receive interrupt. Hardware must ensure that at
least two (if UART_CTL.RFIT=0) or four (if UART_CTL.RFIT=1) words are available in the receive buffer by
the time the interrupt is requested.

Transmit Interrupts

The UART module uses the UART_IMSK_SET.ETBEI bit to enable transmit interrupt requests.

The UART_THR and UART_TAIP registers are the same physical register, and both affect the signaling of the
UART_STAT.TEMT, UART_STAT.TFI, and UART_STAT.THRE bits similarly.

MEMORY

DMA FIFO

DMA_CFG.SYNC=0 UART_STAT.THRE

UART_THR UART_TSR

TXPERIPHERAL
DMA BUS

PERIPHERAL BUS

1 2 3 4

UART_STAT.TFIDMA_CFG.SYNC=1

Figure 25-9: Transmit Interrupts

The UART module asserts the transmit request along with the UART_STAT.THRE bit, indicating that the trans-
mit buffer is ready for new data. The UART_STAT.THRE bit resets to 1. When the UART_IMSK_SET.ETBEI
bit is set, the UART module immediately issues an interrupt or DMA request. This way, no special handling of the
first character is required when transmission of a string is initiated. Set the UART_IMSK_SET.ETBEI bit and let
the interrupt service routine load the first character from memory and write it to the UART_THR register in the
normal manner. ISRs can clear the UART_IMSK.ETBEI bit through the UART_IMSK_CLR register when the
string transmission has completed.

Hardware clears the UART_STAT.THRE bit when new data is written to the UART_THR register. These write op-
erations also clear the transmit interrupt request. However, they also initiate further transmission. If continued trans-
mission is undesirable, the UART module can alternatively clear the transmit request through the
UART_IMSK_CLR.ETBEI bit register. Transfers of data from the UART_THR register to the UART_TSR register
reset this status flag in the UART_STAT register.

ISRs can interrogate the UART_STAT.TEMT bit to discover any ongoing transmission. The sticky counterpart of
the UART_STAT.TEMT bit, UART_STAT.TFI, indicates when the transmit buffer has drained and can trigger a
status interrupt. When data is pending in either one of these registers, the UART_STAT.TEMT flag is low. As soon
as all data has left the UART_TSR register, the UART_STAT.TEMT bit goes high again and indicates that all pend-
ing transmit operations (including stop bits) have finished. Then, it is safe to disable the UART_CTL.EN bit or to
three-state off-chip line drivers. Then, the UART module can generate an interrupt either through the status inter-
rupt channel when the UART_IMSK.ETFI bit is set, or through the DMA controller when enabled by the
UART_IMSK.EDTPTI bit.

UART Event Control

ADSP-CM41x Mixed-Signal Control Processor 25–19

When enabled by the UART_IMSK.ETBEI bit, the UART_STAT.THRE flag requests data along the peripheral
command lines to the DMA controller (referred to as TXREQ). This signal is routed through the DMA controller.
If the associated DMA channel is enabled, the TXREQ signal functions as a DMA request, otherwise the DMA
controller simply forwards it to the system. Alternatively the UART_IMSK.ETXS bit can redirect the transmit in-
terrupts to the UART status interrupt.

With interrupts disabled, the UART module can poll the status flags to determine when data is ready to move. Be-
cause polling is processor intensive, it is not typically used in real-time signal processing environments. Since read
operations from UART_STAT registers have no side effects, different software threads can interrogate these registers
without mutual impacts.

Receive Interrupts

The UART module uses the UART_IMSK_SET.ERBFI bit to enable receive interrupt requests. If set, the
UART_STAT.DR flag requests an interrupt on the dedicated RXREQ output, indicating that new data is available
in the UART_RBR register. This signal is routed through the DMA controller. If the associated DMA channel is
enabled, the RXREQ signal functions as a DMA request; otherwise the DMA controller simply forwards it to the
system. Alternatively, if no DMA channel is assigned to the UART, the UART_IMSK.ERXS bit can redirect the
receive interrupts to the UART status interrupt. When software reads the UART_RBR register, hardware clears the
UART_STAT.DR bit again, which, in turn, clears the receive interrupt request.

MEMORY

RX FIFO

ERBFI:
DR set
ELSI:
PE, FE, & BI set
EAWI:
DR = ADDR = set

DMA_DONE=1 ERFCI:
RFIT=0

ERFCI:
RFIT=1

RBR RSR

RXP2P

PERIPHERAL
BUS

1 2 3 4

DMA FIFO

5

ELSI:
OE set

RX BUFFER

Figure 25-10: Receive Interrupts

Hardware updates the following:

• UART_STAT.DR bits

• UART_STAT.ADDR bits

• UART_STAT.ASTKY bits

• UART_STAT.PE bits

• UART_STAT.FE bits

• UART_STAT.BI bits

UART Event Control

25–20 ADSP-CM41x Mixed-Signal Control Processor

• UART_RBR register

The UART_STAT.OE bit is updated as soon as an overflow condition occurs (for example when a stop bit for a
frame is received and the receive FIFO is full). When software does not read the UART_RBR register in time, the
received data is protected from being overwritten by new data until software clears the UART_STAT.OE bit. Only
the content of the UART_RSR register can be overwritten in the overrun case.

The UART module uses the UART_STAT.RFCS bit to monitor the state of the 8-deep receive FIFO. It uses the
UART_CTL.RFIT bit to control the behavior of the buffer. If UART_CTL.RFIT is zero, the
UART_STAT.RFCS bit is set when the receive buffer holds four or more words. If UART_CTL.RFIT is set, the
UART_STAT.RFCS bit is set when the receive buffer holds seven or more words. Hardware clears the
UART_STAT.RFCS bit when a core or DMA reads the UART_RBR register and when the buffer is flushed below
the level of four (UART_CTL.RFIT=0) or seven (UART_CTL.RFIT=1). If the associated interrupt bit
UART_IMSK.ERFCI is enabled, a status interrupt request is reported when the UART_STAT.RFCS bit is set.

If errors are detected during reception, an interrupt can be requested from the status interrupt output. This status
interrupt request goes directly to the system. The bit enables status interrupt requests.

The controller detects the following error conditions, shown with their associated bits in the UART_STAT register.

• Overrun error (UART_STAT.OE bit)

• Parity error (UART_STAT.PE bit)

• Framing error or invalid stop bit (UART_STAT.FE bit)

• Break indicator (UART_STAT.BI bit)

Status Interrupts

The UART module uses status interrupt channels for the following purposes:

• Line status interrupt requests

• Flow control interrupt requests

• Receive FIFO threshold interrupt requests

• Transmission finished interrupt request

The UART module uses the UART_IMSK.ELSI bit to enable the line status interrupts. If set, the status interrupt
request is asserted with one of the UART_STAT.BI, UART_STAT.FE, UART_STAT.PE, or UART_STAT.OE
receive errors bits. A W1C operation to the UART_STAT register clears the error bits. Once all error conditions are
cleared, the interrupt request deasserts.

The UART module uses the UART_IMSK_SET.ERFCI bit to enable the receive FIFO count interrupt. If set, a
status interrupt request is generated when the UART_STAT.RFCS is active. The UART_STAT.RFCS bit indi-
cates a receive buffer threshold level. If the UART_CTL.RFIT bit is cleared, software can safely read two words out
of the UART_RBR register by the time the UART_STAT.RFCS interrupt occurs.

UART Event Control

ADSP-CM41x Mixed-Signal Control Processor 25–21

If the UART_CTL.RFIT bit is set, software can safely read four words. The interrupt request and the
UART_STAT.RFCS bit are cleared when the UART_RBR is read enough of times, so that the receive buffer drains
below the threshold of two (UART_CTL.RFIT=0) or four (UART_CTL.RFIT=1). Because in DMA mode a sta-
tus service routine may not be permitted to read UART_RBR, this interrupt is only recommended in core mode. In
DMA mode, use this functionality for error recovery only.

The UART module uses the UART_IMSK_SET.EDSSI bit to enable the flow control interrupts. If active, a status
interrupt is generated when the sticky UART_STAT.SCTS bit register is set, indicating that the UART_CTS input
of the transmitter been reasserted. A W1C operation to the UART_STAT.SCTS bit clears the interrupt request.

The UART module uses the UART_IMSK_SET.ETFI bit to enable the transmission finished interrupt. If active,
a status interrupt request is asserted when the UART_STAT.TFI bit is set. The UART_STAT.TFI is the sticky
version of the UART_STAT.TEMT bit, indicating that a byte that started transmission has finished. A W1C opera-
tion to the UART_STAT.TFI bit clears the interrupt request.

Multi-Drop Bus Events

Several status bits and interrupt features in the UART_STAT and UART_IMSK registers facilitate efficient data han-
dling in multi-drop bus mode. These features include the address (UART_STAT.ADDR) bit, the address sticky
(UART_STAT.ASTKY) bit and the enable address word interrupt (UART_IMSK.EAWI). One of the key features
of the multi-drop bus protocol is its address bit. The address bit signifies to the slaves that the master is transmitting
an address word (all read it) or a data word (only the addressed slave reads its). The UART hardware provides an
efficient method of handling the situation described with the use of UART_STAT.ASTKY bit.

NOTE: The UART module uses the UART_STAT.ASTKY bit in multi-drop bus mode to indicate when an ad-
dress operation for a peripheral is occurring. The UART_STAT.ASTKY bit is a sticky version of the
UART_STAT.ADDR bit. Hardware sets the bit whenever the UART_STAT.ADDR bit is set. Only soft-
ware clears it with a W1C operation. With the UART_STAT.ASTKY bit set, words are received irrespec-
tive of the mode bit or address bit setting. With the UART_STAT.ASTKY bit cleared, only address words
(mode bit =1) are received and words with mode bit =0 are ignored in MDB mode. This bit does not
affect reception in non-MDB modes. (Words with mode bit =0 are not moved from the UART_RSR regis-
ter to the receive FIFO.)

UART Programming Model
The following sections provide basic procedures for configuring various UART operations.

Detecting Autobaud

To detect Autobaud:

1. Ensure that the timer is disabled.

2. Configure the following bits: UART_CTL.MOD =00, UART_CTL.LOOP_EN =1, UART_CTL.WLS =11 (8-
bit data), and UART_CTL.EN =1

UART Event Control

25–22 ADSP-CM41x Mixed-Signal Control Processor

3. Configure the following bits: TIMER_TMR[n]_CFG.TMODE =1101, TIMER_TMR[n]_CFG.OUTDIS
=1, TIMER_TMR[n]_CFG.IRQMODE =10 and enable the timer.

4. Send test data through the host device and wait for the timer interrupt and disable the timer.

The bit rate can be derived from the timer period register value according to the formula provided in the Auto-
baud Detection section.

Using Common Initialization Steps

When using the core or the DMA to execute transfers, the following steps are common to all UART modes.

1. All UART signals are multiplexed and compete with other functions at pin level. First, program the port regis-
ters according to the guidelines in the PORT chapter.

2. Program the UART_CLK register. Refer to Bit Rate Generation topic.

3. Program the UART_CTL register and enable the UART clock.

Using Core Transfers

Write data into the UART_THR register, when the UART_STAT.THRE bit is set, to initiate a core transmit opera-
tion. If the UART_STAT.DR bit is set, received data can be read from the UART_RBR register.

Using DMA Transfers

1. Make sure that the UART_IMSK.ETBEI or the UART_IMSK.ERBFI bits are cleared before configuring
the DMA.

2. Configure the dedicated DMA channel.

3. Set the UART_IMSK.ETBEI or UART_IMSK.ERBFI bits to start the transfer.

Using Interrupts

Each UART features three interrupt signal outputs.

1. Enable individual interrupts in the appropriate processor or SEC fualt handler.

2. Register IRQ handlers.

3. Use the interrupts mask registers to enable specific IRQ events.

Setting Up Hardware Flow Control

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit, or
the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

UART Programming Model

ADSP-CM41x Mixed-Signal Control Processor 25–23

CM41X_M4 UART Register Descriptions
UART (UART) contains the following registers.

Table 25-9: CM41X_M4 UART Register List

Name Description

UART_CLK Clock Rate Register

UART_CTL Control Register

UART_IMSK Interrupt Mask Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_IMSK_SET Interrupt Mask Set Register

UART_RBR Receive Buffer Register

UART_RSR Receive Shift Register

UART_RXCNT Receive Counter Register

UART_SCR Scratch Register

UART_STAT Status Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_THR Transmit Hold Register

UART_TSR Transmit Shift Register

UART_TXCNT Transmit Counter Register

CM41X_M4 UART Register Descriptions

25–24 ADSP-CM41x Mixed-Signal Control Processor

Clock Rate Register

The UART_CLK register divides the system clock (SCLK) down to the bit clock.

Divisor

Enable Divide By One

DIV (R/W)

1
15

1
14

1
13

1
12

1
11

1
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

EDBO (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-11: UART_CLK Register Diagram

Table 25-10: UART_CLK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

EDBO Enable Divide By One.

The UART_CLK.EDBO bit enables the bypassing of the divide-by-16 prescaler in bit
clock generation. This functionality improves bit rate granularity, especially at high bit
rates. Do not set this bit in IrDA mode.

0 Bit clock prescaler = 16

1 Bit clock prescaler = 1

15:0

(R/W)

DIV Divisor.

The UART_CLK.DIV provides the divisor for the UART's clock bit rate calculation.

The bit rate is defined by:

Bit Rate = SCLK / (16(1-EDBo) x UART_CLK.DIV)

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–25

Control Register

The UART_CTL register provides enable and disable control for internal UART and for the IrDA mode of opera-
tion. This register also provides UART line control, permitting selection of the format of received and transmitted
character frames. Modem feature control also is available from this register, including partial modem functionality to
allow for hardware flow control and loopback mode.

Word Length SelectStop Bits

Mode of OperationStop Bits (Half Bit Time)

Loopback EnableParity Enable

Enable UARTEven Parity Select

IrDA TX Polarity Change

IrDA RX Polarity ChangeManual Request to Send

Flow Control Pin PolarityTransmitter off

Set BreakAutomatic RTS

Force Framing Error on TransmitAutomatic CTS

Force Parity Error on TransmitReceive FIFO IRQ Threshold

Sticky ParityReceive FIFO RTS Threshold

WLS (R/W)STB (R/W)

MOD (R/W)STBH (R/W)

LOOP_EN (R/W)PEN (R/W)

EN (R/W)EPS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TPOLC (R/W)

RPOLC (R/W)MRTS (R/W)

FCPOL (R/W)XOFF (R/W)

SB (R/W)ARTS (R/W)

FFE (R/W)ACTS (R/W)

FPE (R/W)RFIT (R/W)

STP (R/W)RFRT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-12: UART_CTL Register Diagram

CM41X_M4 UART Register Descriptions

25–26 ADSP-CM41x Mixed-Signal Control Processor

Table 25-11: UART_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

RFRT Receive FIFO RTS Threshold.

The UART_CTL.RFRT bit controls UART_RTS pin assertion and deassertion tim-
ing. This bit is ignored if UART_CTL.ARTS is cleared. If set, the UART_RTS pin is
deasserted when the receive buffer already holds seven words and an eighth start bit is
detected. It is reasserted when the FIFO contains seven words or less. If cleared, the
UART_RTS pin is deasserted when the RX buffer already holds four words and a fifth
start bit is detected. The UART_RTS pin is reasserted when the RX buffer contains no
more than 4 words.

0 Deassert RTS if RX FIFO word count > 4; assert if <= 4

1 Deassert RTS if RX FIFO word count > 7; assert if <= 7

29

(R/W)

RFIT Receive FIFO IRQ Threshold.

The UART_CTL.RFIT bit controls the timing of the UART_STAT.RFCS bit. If
UART_CTL.RFIT is cleared, the receive threshold is two. If UART_CTL.RFIT is
set, the threshold is four words in the receive buffer.

0 Set RFCS=1 if RX FIFO count >= 4

1 Set RFCS=1 if RX FIFO count >= 7

28

(R/W)

ACTS Automatic CTS.

The UART_CTL.ACTS bit must be set to enable the UART_CTS input pin for
UART_TX handshaking. If enabled, the UART_STAT.CTS bit holds the value (if
UART_CTL.FCPOL is set) or complement value (if UART_CTL.FCPOL is cleared)
of the UART_CTS input pin. The UART_STAT.CTS bit can be used to determine
whether the external device is ready to receive data (if UART_STAT.CTS is set) or
whether it is busy (if UART_STAT.CTS is cleared). If UART_CTL.ACTS is cleared,
the UART_TX handshaking protocol is disabled, and the UART_TX line transmits da-
ta whenever there is data to send, regardless of the value of UART_CTS. Software can
pause ongoing transmission by setting the UART_CTL.XOFF bit.

0 Disable TX handshaking protocol

1 Enable TX handshaking protocol

27

(R/W)

ARTS Automatic RTS.

The UART_CTL.ARTS bit must be set to enable the UART_RTS input pin for
UART_TX handshaking. If set, the hardware guarantees a minimal UART_RTS pin
deassertion pulse width of at least the number of data bits defined by the
UART_CTL.WLS bit field. If cleared, the UART_RTS pin is not generated automati-
cally by hardware. The UART_RTS pin can still be manually controlled by the
UART_CTL.MRTS bit, and software is responsible for UART_RTS pulse width con-
trol (if needed).

0 Disable RX handshaking protocol.

1 Enable RX handshaking protocol.

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–27

Table 25-11: UART_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/W)

XOFF Transmitter off.

The UART_CTL.XOFF bit (if set) turns off transmission (XOFF) by preventing the
content of THR from being continued to TSR. When set, this bit turns on transmis-
sion (XON). The state of the UART_CTL.XOFF bit is ignored if the
UART_CTL.ACTS bit is set.

0 Transmission ON, if ACTS=0

1 Transmission OFF, if ACTS=0

25

(R/W)

MRTS Manual Request to Send.

The UART_CTL.MRTS bit controls the state of the UART_RTS output pin when the
UART_CTL.ARTS bit is cleared. When UART_CTL.MRTS is cleared, the UART
deasserts the UART_RTS pin, signaling to the external device that the UART is not
ready to receive. When UART_CTL.MRTS is set, the UART asserts the UART_RTS
pin, signaling to the external device that the UART is ready to receive.

0 Deassert RTS pin when ARTS=0

1 Assert RTS pin when ARTS=0

24

(R/W)

TPOLC IrDA TX Polarity Change.

The UART_CTL.TPOLC bit selects the active low or high polarity for IrDA commu-
nications. This bit is effective only in IrDA mode. If set, in IrDA mode, the UART_TX
pin idles high. In UART or MDB mode, it is inverted-NRZ. If cleared, in IrDA mode,
the UART_TX pin idles low. In UART or MDB mode, it is NRZ.

0 Active-low TX polarity setting

1 Active-high TX polarity setting

23

(R/W)

RPOLC IrDA RX Polarity Change.

The UART_CTL.RPOLC bit selects the active low or high polarity for IrDA commu-
nications. This bit is effective only in IrDA mode. If set, in IrDA mode, the UART_RX
pin idles high. In UART or MDB mode, it is inverted-NRZ. If cleared, in IrDA mode,
the UART_RX pin idles low. In UART or MDB mode, it is NRZ.

0 Active-low RX polarity setting

1 Active-high RX polarity setting

CM41X_M4 UART Register Descriptions

25–28 ADSP-CM41x Mixed-Signal Control Processor

Table 25-11: UART_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

22

(R/W)

FCPOL Flow Control Pin Polarity.

The UART_CTL.FCPOL bit selects the polarities of the UART_CTS and
UART_RTS pins. When the UART_CTL.FCPOL bit is cleared, the UART_RTS and
UART_CTS pins are active low, and the UART is halted when the UART_RTS and
UART_CTS pin state is high. When UART_CTL.FCPOL bit is set, the UART_RTS
and UART_CTS pins are active high, and the UART is halted when the UART_RTS
and UART_CTS pin state is low.

0 Active low CTS/RTS

1 Active high CTS/RTS

19

(R/W)

SB Set Break.

If set, the UART_CTL.SB bit forces the UART_TX pin to low asynchronously, re-
gardless of whether or not data is currently transmitted. This bit functions even when
the UART clock is disabled. Because the UART_TX pin normally drives high, it can be
used as a flag output pin, if the UART is not used. (For example, if
UART_CTL.TPOLC is cleared, drive UART_TX pin low; or if UART_CTL.TPOLC
is set, drive UART_TX pin high.)

0 No force

1 Force TX pin to 0

18

(R/W)

FFE Force Framing Error on Transmit.

The UART_CTL.FFE bit is intended for test purposes. This bit is useful for debug-
ging software, especially in loopback mode.

0 Normal operation

1 Force error

17

(R/W)

FPE Force Parity Error on Transmit.

The UART_CTL.FPE bit is intended for test purposes. This bit is useful for debug-
ging software, especially in loopback mode.

0 Normal operation

1 Force parity error

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–29

Table 25-11: UART_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

STP Sticky Parity.

The UART_CTL.STP bit controls whether the parity is generated by hardware based
on the data bits or whether it is set to a fixed value. If this bit is cleared, the hardware
calculates the parity bit value based on the data bits. Then, the EPS bit determines
whether odd or even parity mode is chosen. If this bit is set, odd parity is used. That
means that the total count of logical-1 data bits including the parity bit must be an
odd value. Even parity is chosen by UART_CTL.STP cleared and UART_CTL.EPS
set. Then, the count of logical-1 bits must be a even value. If the UART_CTL.STP
bit is set, hardware parity calculation is disabled. In this case, the sent and received par-
ity equals the inverted UART_CTL.EPS bit.

0 No forced parity

1 Force (Stick) parity to defined value (if PEN=1)

15

(R/W)

EPS Even Parity Select.

0 Odd parity

1 Even parity

14

(R/W)

PEN Parity Enable.

The UART_CTL.PEN bit enables parity transmission and parity check. The
UART_CTL.PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on data and the
UART_CTL.STP and UART_CTL.EPS control bits. Both transmitter and receiver
calculate the parity value. The receiver compares the received parity bit with the ex-
pected value and issues a parity error if they do not match. If the UART_CTL.PEN
bit is cleared, the UART_CTL.STP and the UART_CTL.EPS bits are ignored.

0 Disable

1 Enable parity transmit and check

13

(R/W)

STBH Stop Bits (Half Bit Time).

0 0 half-bit-time stop bit

1 1 half-bit-time stop bit

12

(R/W)

STB Stop Bits.

The UART_CTL.STB bit controls how many stop bits are appended to transmitted
data.

0 1 stop bit

1 2 stop bits

CM41X_M4 UART Register Descriptions

25–30 ADSP-CM41x Mixed-Signal Control Processor

Table 25-11: UART_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

WLS Word Length Select.

The UART_CTL.WLS field determines whether the transmitted and received UART
word consists of 5, 6, 7, or 8 data bits.

0 5-bit word

1 6-bit word

2 7-bit word

3 8-bit word

5:4

(R/W)

MOD Mode of Operation.

The UART_CTL.MOD selects the UART operation mode (UMOD).

0 UART mode

1 MDB mode

2 IrDA SIR mode

1

(R/W)

LOOP_EN Loopback Enable.

The UART_CTL.LOOP_EN bit enables UART loopback mode. When set, this bit
disconnects the input of the receiver from the UART_RX pin, and internally redirects
the transmit output to the receiver. The UART_TX pin remains active and continues
to transmit data externally as well. Loopback mode also forces the UART_RTS pin to
its deassertive state, disconnects the UART_CTS bit from the UART_CTS input pin,
and directly connects the UART_CTL.MRTS bit to the UART_STAT.CTS bit. In
loopback mode, setting the UART_CTL.MRTS bit sets the UART_STAT.CTS bit
and enables the transmitter of the UART. Clearing the UART_CTL.MRTS bit clears
the UART_STAT.CTS bit and disables the transmitter of the UART.

0 Disable

1 Enable

0

(R/W)

EN Enable UART.

The UART_CTL.EN enables the UART clocks. This bit also resets the state machine
and control registers when cleared. Using this bit to disable the UART -- when not
used -- reduces power consumption.

0 Disable

1 Enable

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–31

Interrupt Mask Register

The UART_IMSK register indicates the interrupt mask status (unmasked, if set, or masked, if cleared) of the UART
status interrupt requests. This register is not a data register. Instead, it is controlled by the UART_IMSK_SET and
UART_IMSK_CLR register pair. Writing ones to the UART_IMSK_SET register enables (unmasks) interrupt re-
quests, and writing ones to the UART_IMSK_CLR register disables (masks) them. Reads from either register return
the enabled bits.

The UART_IMSK register is used to enable requests for system handling of empty or full states of UART data regis-
ters. Unless polling is used as a means of action, the UART_IMSK.ERBFI and UART_IMSK.ETBEI bits are nor-
mally set. Setting this register without enabling system DMA causes the UART to notify the processor of the data
inventory state using interrupts. For proper operation in this mode, system interrupts must be enabled, and appro-
priate interrupt handling routines must be present.

Each UART features three separate interrupt channels to handle the data transmit, data receive, and line status
events independently, regardless of whether DMA is enabled or not. If no DMA channels are assigned to the UART,
set the UART_IMSK.ELSI bit to reroute the transmit and receive interrupts to the status interrupt request output.

With system DMA enabled, the UART uses DMA to transfer data to or from the processor. Dedicated DMA chan-
nels are available for receive and transmit operations. Line error handling can be configured independently from the
receive or transmit setup.

The DMA of the UART is enabled by first setting up the system DMA control registers and then enabling the
UART_IMSK.ERBFI and UART_IMSK.ETBEI interrupts. This configuration is because the interrupt request
lines double as DMA request lines. Depending on whether DMA is enabled or not, upon receiving these requests,
the DMA control unit either generates a direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit(s). However, the error interrupt for the UART goes directly to the system interrupt handling
unit(s), bypassing the DMA unit completely.

CM41X_M4 UART Register Descriptions

25–32 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Mask Status
Enable DMA TX Peripheral Triggered

Mask Status
Enable Transmission Finished Interrupt

Status
Enable Modem Status Interrupt Mask

Mask Status
Enable Receive FIFO Count Interrupt

Enable Line Status Interrupt Mask Status
Status
Enable Address Word Interrupt Mask

Mask Status
Enable Transmit Buffer Empty Interrupt

Status
Enable RX to Status Interrupt Mask

Mask Status
Enable Receive Buffer Full Interrupt

Status
Enable TX to Status Interrupt Mask

EDTPTI (R/W)
ETFI (R/W)

EDSSI (R/W)
ERFCI (R/W)

ELSI (R/W)EAWI (R/W)

ETBEI (R/W)ERXS (R/W)

ERBFI (R/W)ETXS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-13: UART_IMSK Register Diagram

Table 25-12: UART_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

ETXS Enable TX to Status Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ETXS bit indicates re-direction of the
TX interrupt requests to status interrupt output. If cleared, TX interrupt requests are
routed to normal interrupt outputs.

0 Interrupt is masked

1 Interrupt is unmasked

8

(R/W)

ERXS Enable RX to Status Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ERXS bit indicates re-direction of RX
interrupt requests to status interrupt output. If cleared, RX interrupt requests are rout-
ed to normal interrupt outputs.

0 Interrupt is masked

1 Interrupt is unmasked

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–33

Table 25-12: UART_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

EAWI Enable Address Word Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.EAWI bit indicates generation of a sta-
tus interrupt request when an Address word in MDB-mode is present in the
UART_RBR. A received word is an address word if the UART_STAT.ADDR bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

6

(R/W)

ERFCI Enable Receive FIFO Count Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ERFCI bit indicates enabling of the
receive buffer threshold interrupt request if signaled by the UART_STAT.RFCS bit.
Read the UART_RBR register sufficient times to clear the interrupt request.

0 Interrupt is masked

1 Interrupt is unmasked

5

(R/W)

ETFI Enable Transmission Finished Interrupt Mask Status.

If set (interrupt unmasked) the UART_IMSK.ETFI bit indicates enabling of inter-
rupt generation on the status interrupt channel when the transmit buffer register, the
transmit address register, and the transmit shift register are all empty as indicated by
the UART_STAT.TFI. The UART_IMSK.ETFI interrupt can be used to avoid ex-
pensive polling of the UART_STAT.TEMT bit, when the UART clock or line drivers
should be disabled after transmission has completed. W1C the UART_STAT.TFI bit
to clear the interrupt request. In DMA operation, the UART_IMSK.ETFI bits func-
tionality might be preferred.

0 Interrupt is masked

1 Interrupt is unmasked

4

(R/W)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.EDTPTI bit indicates enabling of the
DMA completion interrupt request to be delayed until the data has left the UART
completely. This bit is required for DMA transmit operation only. If set, the UART
can generate a DMA interrupt request by the time the UART_STAT.TEMT bit goes
high after the last DMA data word is transmitted.

When UART_IMSK.EDTPTI is set, usually the DMA_CFG.INT field is cleared to
00 in a STOP mode DMA. This set up suppresses the normal completion interrupt
request, and the UART_STAT.TEMT event is signaled through the DMA controller
and triggers the DMA interrupt. If both (DMA_CFG.INT not 00 and
UART_IMSK.EDTPTI set), two interrupts are requested at the end of a STOP mode
DMA.

0 Interrupt is masked

1 Interrupt is unmasked

CM41X_M4 UART Register Descriptions

25–34 ADSP-CM41x Mixed-Signal Control Processor

Table 25-12: UART_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

EDSSI Enable Modem Status Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.EDSSI bit indicates enabling of a mo-
dem status interrupt request on the same status interrupt channel when the
UART_STAT.SCTS bit is set. This indicates UART_CTS pin re-assertion. Write-1-
to-clear (W1C) the UART_STAT.SCTS bit to clear the interrupt request.

0 Interrupt is masked

1 Interrupt is unmasked

2

(R/W)

ELSI Enable Line Status Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ELSI bit indicates that redirection of
TX and RX interrupt requests to the status interrupt output of the UART by OR'ing
them with the UART_STAT.OE, UART_STAT.PE, UART_STAT.FE, and
UART_STAT.BI interrupt requests. Set this bit when no DMA channel is associated
with the UART. Enabling UART_IMSK.ELSI disables the RX/TX interrupt chan-
nels and negates the UART_IMSK.EDTPTI bit.

0 Interrupt is masked

1 Interrupt is unmasked

1

(R/W)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ETBEI bit indicates generation of a
TX interrupt request if the UART_STAT.THRE bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

0

(R/W)

ERBFI Enable Receive Buffer Full Interrupt Mask Status.

If set (interrupt unmasked), the UART_IMSK.ERBFI indicates generation of an RX
interrupt request if the UART_STAT.DR bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–35

Interrupt Mask Clear Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status interrupts.
This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_CLR regis-
ter pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupt requests, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more informa-
tion, see the UART_IMSK register description.

Interrupt Mask Clear
Enable DMA TX Peripheral Triggered

Mask Clear
Enable Transmission Finished Interrupt

Clear
Enable Modem Status Interrupt Mask

Mask Clear
Enable Receive FIFO Count Interrupt

Enable Line Status Interrupt Mask Clear
Clear
Enable Address Word Interrupt Mask

Mask Clear
Enable Transmit Buffer Empty Interrupt

Clear
Enable RX to Status Interrupt Mask

Mask Clear
Enable Receive Buffer Full Interrupt

Clear
Enable TX to Status Interrupt Mask

EDTPTI (R/W1C)
ETFI (R/W1C)

EDSSI (R/W1C)
ERFCI (R/W1C)

ELSI (R/W1C)EAWI (R/W1C)

ETBEI (R/W1C)ERXS (R/W1C)

ERBFI (R/W1C)ETXS (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-14: UART_IMSK_CLR Register Diagram

Table 25-13: UART_IMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W1C)

ETXS Enable TX to Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

8

(R/W1C)

ERXS Enable RX to Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

7

(R/W1C)

EAWI Enable Address Word Interrupt Mask Clear.

0 No action

1 Mask interrupt

CM41X_M4 UART Register Descriptions

25–36 ADSP-CM41x Mixed-Signal Control Processor

Table 25-13: UART_IMSK_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

ERFCI Enable Receive FIFO Count Interrupt Mask Clear.

0 No action

1 Mask interrupt

5

(R/W1C)

ETFI Enable Transmission Finished Interrupt Mask Clear.

0 No action

1 Mask interrupt

4

(R/W1C)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Clear.

0 No action

1 Mask interrupt

3

(R/W1C)

EDSSI Enable Modem Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

2

(R/W1C)

ELSI Enable Line Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

1

(R/W1C)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Clear.

0 No action

1 Mask interrupt

0

(R/W1C)

ERBFI Enable Receive Buffer Full Interrupt Mask Clear.

0 No action

1 Mask interrupt

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–37

Interrupt Mask Set Register

The UART_IMSK indicates interrupt request mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_CLR
register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupt requests, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more informa-
tion, see the UART_IMSK register description.

Interrupt Mask Set
Enable DMA TX Peripheral Triggered

Mask Set
Enable Transmission Finished Interrupt

Set
Enable Modem Status Interrupt Mask

Mask Set
Enable Receive FIFO Count Interrupt

Enable Line Status Interrupt Mask Set
Set
Enable Address Word Interrupt Mask

Mask Set
Enable Transmit Buffer Empty Interrupt

Set
Enable RX to Status Interrupt Mask

Mask Set
Enable Receive Buffer Full Interrupt

Set
Enable TX to Status Interrupt Mask

EDTPTI (R/W1S)
ETFI (R/W1S)

EDSSI (R/W1S)
ERFCI (R/W1S)

ELSI (R/W1S)EAWI (R/W1S)

ETBEI (R/W1S)ERXS (R/W1S)

ERBFI (R/W1S)ETXS (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-15: UART_IMSK_SET Register Diagram

Table 25-14: UART_IMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W1S)

ETXS Enable TX to Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

8

(R/W1S)

ERXS Enable RX to Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

7

(R/W1S)

EAWI Enable Address Word Interrupt Mask Set.

0 No action

1 Unmask interrupt

CM41X_M4 UART Register Descriptions

25–38 ADSP-CM41x Mixed-Signal Control Processor

Table 25-14: UART_IMSK_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1S)

ERFCI Enable Receive FIFO Count Interrupt Mask Set.

0 No action

1 Unmask interrupt

5

(R/W1S)

ETFI Enable Transmission Finished Interrupt Mask Set.

0 No action

1 Unmask interrupt

4

(R/W1S)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Set.

0 No action

1 Unmask interrupt

3

(R/W1S)

EDSSI Enable Modem Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

2

(R/W1S)

ELSI Enable Line Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

1

(R/W1S)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Set.

0 No action

1 Unmask interrupt

0

(R/W1S)

ERBFI Enable Receive Buffer Full Interrupt Mask Set.

0 No action

1 Unmask interrupt

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–39

Receive Buffer Register

The read-only UART_RBR register is the UART’s receive buffer. It is updated when there is pending data in the
receive FIFO. Newly available data is signaled by the UART_STAT.DR bit.

8-bit data
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-16: UART_RBR Register Diagram

Table 25-15: UART_RBR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

VALUE 8-bit data.

CM41X_M4 UART Register Descriptions

25–40 ADSP-CM41x Mixed-Signal Control Processor

Receive Shift Register

The read only UART_RSR register which returns the content of the UART’s receive shift register.

The frame data is moved into this shift register after polarity inversion, if any (including the native polarity inversion
in the IrDA case).

In the case of the longest frame (MDB, with parity mode, and 8 bit data word-length), the start bit may be shifted
out and not available for reading at the end of the frame reception. This register is NOT reset at the start of frame.
If read, in the middle of a frame reception, data corresponding the previous frame may not have entirely shifted out
(for example, the read data that have been read may NOT correspond entirely to the frame being received).

Because the UART is receiving only 1 stop bit, the UART_RSR contains only 1 stop bit even if more than one stop
bit is present in the actual transfer. This register may be considered as storing the 10 most recently received bits
(taking into consideration the stop bit receive limitation above).

Contents of RSR
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-17: UART_RSR Register Diagram

Table 25-16: UART_RSR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/NW)

VALUE Contents of RSR.

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–41

Receive Counter Register

The UART_RXCNT register returns the content of 16-bit counter in the UART receiver. This count is used for baud
rate clock generation (the lower [15:0] is the count data).

16-bit Counter Value
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-18: UART_RXCNT Register Diagram

Table 25-17: UART_RXCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE 16-bit Counter Value.

CM41X_M4 UART Register Descriptions

25–42 ADSP-CM41x Mixed-Signal Control Processor

Scratch Register

The UART_SCR registers contain 8-bit scratch pad data. These registers are used for general purpose data storage
and do not control the UART hardware in any way.

Stored 8-bit Data
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-19: UART_SCR Register Diagram

Table 25-18: UART_SCR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE Stored 8-bit Data.

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–43

Status Register

The UART_STAT register contains the UART line status and UART modem status, as indicated by the current
states of the UART’s UART_CTS pin and internal receive buffers. Writes to this register can perform write-one-to-
clear (W1C) operations on most status bits. Reading this register has no side effects.

Transmit Hold Register EmptyTSR and THR Empty

Break IndicatorTransmission Finished Indicator

Framing ErrorAddress Sticky

Parity ErrorAddress Bit Status

Overrun ErrorReception On-going

Data ReadySticky CTS

Clear to SendReceive FIFO Count Status

THRE (R)TEMT (R)

BI (R/W1C)TFI (R/W1C)

FE (R/W1C)ASTKY (R/W1C)

PE (R/W1C)ADDR (R/W1S)

OE (R/W1C)RO (R)

DR (R)SCTS (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

CTS (R)RFCS (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-20: UART_STAT Register Diagram

Table 25-19: UART_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/NW)

RFCS Receive FIFO Count Status.

The UART_STAT.RFCS bit is set when the receive buffer holds more or equal entries
than a certain threshold. The threshold is controlled by the UART_CTL.RFIT bit. If
UART_CTL.RFIT is cleared, the threshold is four entries. If UART_CTL.RFIT is
set, the threshold is seven entries. The UART_STAT.RFCS bit is cleared when the
UART_RBR register is read sufficient times until the buffer is drained below the
threshold. The UART_STAT.RFCS bit can trigger a status interrupt request if ena-
bled by the UART_IMSK_SET.ERFCI bit.

0 RX FIFO has less than 4 (7) entries when RFIT=0 (1)

1 RX FIFO has at least 4 (7) entries when RFIT=0 (1)

CM41X_M4 UART Register Descriptions

25–44 ADSP-CM41x Mixed-Signal Control Processor

Table 25-19: UART_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

CTS Clear to Send.

The UART_STAT.CTS bit holds the value (if UART_CTL.FCPOL set) or the com-
plement value (if UART_CTL.FCPOL cleared) of the UART_CTS input pin. The
UART_CTL.ACTS bit must be set to enable this feature. The core can read the value
of the UART_STAT.CTS bit to determine whether the external device is ready to re-
ceive (UART_STAT.CTS set) or if it is busy (UART_STAT.CTS cleared). If
UART_CTL.ACTS is cleared, the UART_TX handshaking protocol is disabled, and
the UART transmits data as long as there is data to transmit, regardless of the value of
UART_STAT.CTS. When UART_CTL.ACTS is cleared, the software can pause
transmission temporarily by setting the XOFF bit. Note that in loopback mode
(UART_CTL.LOOP_EN set), the UART_STAT.CTS bit is disconnected from the
UART_CTS input pin. Instead, the bit is directly connected to the
UART_CTL.MRTS bit.

0 Not clear to send (External device not ready to receive)

1 Clear to send (External device ready to receive)

12

(R/W1C)

SCTS Sticky CTS.

The UART_STAT.SCTS bit is a sticky bit that is set when UART_STAT.CTS tran-
sitions from 0 to 1. The UART_STAT.SCTS bit is cleared by software with a W1C
operation. This bit can trigger a line status interrupt request if enabled by the
UART_IMSK_SET.EDSSI bit.

0 CTS has not transitioned from low to high

1 CTS has transitioned from low to high

11

(R/NW)

RO Reception On-going.

0 No data reception in progress

1 Data reception in progress

10

(R/W1S)

ADDR Address Bit Status.

The UART_STAT.ADDR bit is used to mirror the address bit of the word in
UART_RBR in multi-drop bus protocol, and is enabled only in MDB mode. The
UART_STAT.ADDR bit is updated by hardware upon detecting a received word with
the address bit in UART_RBR set or cleared. Additionally, software can set the ADDR
bit with a write-1-to-set (W1S) operation.

0 Address bit is low

1 Address bit is high

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–45

Table 25-19: UART_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W1C)

ASTKY Address Sticky.

The UART_STAT.ASTKY bit is used in multi-drop bus mode to indicate whether a
peripheral is currently being addressed. This bit is a sticky version of the
UART_STAT.ADDR bit and is set by hardware when setting the
UART_STAT.ADDR bit. The UART_STAT.ASTKY bit can only be cleared by soft-
ware with a write-one-to-clear (W1C) operation. With the UART_STAT.ASTKY bit
set, words will be received irrespective of the UART_CTL.MOD bit or
UART_STAT.ADDR bit selection. With the UART_STAT.ASTKY bit cleared, only
address words (UART_CTL.MOD bit set) will be received and words with
UART_CTL.MOD bit cleared are ignored (not moved from the RSR to the RX FIFO)
in MDB mode. The UART_STAT.ASTKY bit does not affect reception in non-MDB
modes.

0 ADDR bit has not been set

1 ADDR bit has been set

8

(R/W1C)

TFI Transmission Finished Indicator.

The UART_STAT.TFI bit is a sticky version of the UART_STAT.TEMT bit. While
UART_STAT.TEMT is automatically cleared by hardware when new data is written to
the UART_THR register, the sticky UART_STAT.TFI bit remains set, until it is
cleared by software (W1C). The UART_STAT.TFI bit enables more flexible transmit
interrupt request timing.

0 TEMT did not transition from 0 to 1

1 TEMT transition from 0 to 1

7

(R/NW)

TEMT TSR and THR Empty.

The UART_STAT.TEMT bit indicates that the UART_THR and UART_TAIP regis-
ters and the UART_TSR register are empty. In this case, the program is permitted to
write to the UART_THR and UART_TAIP registers twice without losing data. The
UART_STAT.TEMT bit can also be used as indicator that pending UART transmis-
sion is completed. At that time, it is safe to disable the UART_CTL.EN bit or to
three-state the off-chip line driver.

0 Not empty TSR/THR

1 TSR/THR Empty

CM41X_M4 UART Register Descriptions

25–46 ADSP-CM41x Mixed-Signal Control Processor

Table 25-19: UART_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/NW)

THRE Transmit Hold Register Empty.

The UART_STAT.THRE bit indicates that the UART transmit channel is ready for
new data and software can write to the UART_THR and UART_TAIP registers.
Writes to the UART_THR and UART_TAIP registers clear the UART_STAT.THRE.
The bit is set again when the UART_THR and UART_TAIP registers are empty and
ready to accept data.

0 Not empty THR/TAIP

1 Empty THR/TAIP

4

(R/W1C)

BI Break Indicator.

The UART_STAT.BI bit indicates that the first stop bit is sampled low and the en-
tire data word, including parity bit, consists of low bits only. (This condition indicates
that UART_RX was held low for more than the maximum word length.) The
UART_STAT.BI bit is updated simultaneously with the UART_STAT.DR bit, that
is, by the time the first stop bit is received or when data is loaded from the receive
FIFO to the UART_RBR register. The bit is sticky and can be cleared by W1C opera-
tions.

0 No break interrupt

1 Break interrupt this indicates UARTxRX was held
low(RPOLC=0) / high (RPOLC=1) for more than the
maximum word length

3

(R/W1C)

FE Framing Error.

The UART_STAT.FE bit indicates that the first stop bit is sampled. This bit is up-
dated simultaneously with the UART_STAT.DR bit, that is, by the time the first stop
bit is received or when data is loaded from the receive FIFO to the UART_RBR regis-
ter. The UART_STAT.FE bit is sticky and can be cleared by W1C operations. Note
that invalid stop bits can be simulated by setting the UART_CTL.FFE bit.

0 No error

1 Invalid stop bit error

2

(R/W1C)

PE Parity Error.

The UART_STAT.PE bit indicates that the received parity bit does not match the ex-
pected value. This bit is updated simultaneously with the UART_STAT.DR bit, that
is, by the time the first stop bit is received or when data is loaded from the receive
FIFO to the UART_RBR register. The UART_STAT.PE bit is sticky and can be
cleared by W1C operations. Note that invalid parity bits can be simulated by setting
the UART_CTL.FPE bit.

0 No parity error

1 Parity error

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–47

Table 25-19: UART_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

OE Overrun Error.

The UART_STAT.OE bit indicates that further data is received while the internal re-
ceive buffer was full. This bit is set when sampling the stop bit of the sixth data word.
To avoid overruns, read the UART_RBR register in time. In DMA receive mode, over-
runs are very unlikely to happen ever. After an overrun occurs, the UART_RBR and
receive FIFO are protected from being overwritten by new data until the
UART_STAT.OE bit is cleared by software. The content of the UART_RSR register is
lost as soon as the overrun occurs. The UART_STAT.OE bit is sticky and can be
cleared by W1C operations.

0 No overrun

1 Overrun error

0

(R/NW)

DR Data Ready.

The UART_STAT.DR bit indicates that data is available in the receiver and can be
read from the UART_RBR register. The bit is set by hardware when the receiver detects
the first valid stop bit. The bit is cleared by hardware when the UART_RBR register is
read.

0 No new data

1 New data in RBR

CM41X_M4 UART Register Descriptions

25–48 ADSP-CM41x Mixed-Signal Control Processor

Transmit Address/Insert Pulse Register

The UART_TAIP register and the UART_THR register share the same physical register, but UART_TAIP has dif-
ferent effect than the UART_THR register when UART_TAIP is written to in MDB and UART modes.

In MDB mode, data written to the UART_TAIP register is transmitted as an address frame (as with the
UART_CTL.MOD bit set).

In UART mode, a write to UART_TAIP causes a pulse of value UART_TAIP [7] for a duration of UART_TAIP
[6:0] x bit time. (There is additional inversion if the UART_CTL.TPOLC bit is set).

Bit time is defined by the UART_CLK register. The transmission of the pulse is followed by stop bit transmission as
specified by the UART_CTL.STB and UART_CTL.STBH bits. This could be used for supporting line break com-
mand and inter-frame gap.

In IrDA mode, writes to UART_TAIP is treated the same as writes to UART_THR.

Accesses to the UART_TAIP register have the same affects as the UART_THR register with respect to the
UART_STAT.THRE, UART_STAT.TEMT, and UART_STAT.TFI flags.

8-bit data
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-21: UART_TAIP Register Diagram

Table 25-20: UART_TAIP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE 8-bit data.

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–49

Transmit Hold Register

The write-only UART_THR register is the UART’s transmit buffer. The UART_STAT.THRE bit indicates whether
data can be written to UART_THR. Writes to this register automatically propagate to the internal UART_TSR regis-
ter as soon as UART_TSR is ready. Then, transmit operation is initiated immediately.

8 bit data
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-22: UART_THR Register Diagram

Table 25-21: UART_THR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE 8 bit data.

CM41X_M4 UART Register Descriptions

25–50 ADSP-CM41x Mixed-Signal Control Processor

Transmit Shift Register

The read only UART_TSR register which returns the content of the UART’s transmit shift register.

Contents of TSR
VALUE (R)

0
15

0
14

0
13

0
12

0
11

1
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-23: UART_TSR Register Diagram

Table 25-22: UART_TSR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

10:0

(R/NW)

VALUE Contents of TSR.

CM41X_M4 UART Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 25–51

Transmit Counter Register

The UART_TXCNT read only register returns the content of 16-bit counter in the UART transmitter. This count is
used for baud rate clock generation (the lower [15:0] is the count data).

16-bit Counter Value
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 25-24: UART_TXCNT Register Diagram

Table 25-23: UART_TXCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE 16-bit Counter Value.

CM41X_M4 UART Register Descriptions

25–52 ADSP-CM41x Mixed-Signal Control Processor

26 Two-Wire Interface (TWI)

The processor has a two-wire interface (TWI), that provides a simple exchange method of control data between

multiple devices. The TWI module is compatible with the widely used I2C bus standard. Additionally, the TWI
module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS
camera sensor devices.

The TWI module offers the capabilities of simultaneous master and slave operation and support for both 7-bit ad-
dressing and multimedia data arbitration. The TWI interface uses two pins for transferring clock (TWI_SCL) and
data (TWI_SDA) and supports the protocol at speeds up to 400K bits/sec. The TWI interface pins are compatible
with 5-V logic levels.

To preserve processor bandwidth, the TWI module can be set up with transfer-initiated interrupts to only service
FIFO buffer data reads and writes. Protocol-related interrupts are optional. The TWI externally moves 8-bit data

while maintaining compliance with the I2C bus protocol.

TWI Features
The TWI is fully compatible with the widely used I2C bus standard.

The TWI controller includes the following features.

• Simultaneous master and slave operation on multiple device systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of bus lock-up

• Input filter for spike suppression

Two-Wire Interface (TWI)

ADSP-CM41x Mixed-Signal Control Processor 26–1

• Serial camera control bus support as specified in the OmniVision Serial Camera Control Bus (SCCB) Functional
Specification

TWI Functional Description
The TWI interface is a shift register that serially transmits and receives data bits. It moves data 1 bit at a time at the
SCL rate, to and from other TWI devices. The SCL signal synchronizes the shifting and sampling of the data on the
serial data pin.

CM41X_M4 TWI Register List

The Two-Wire Interface controller TWI allows a device to interface to an inter-IC bus as specified by the Philips

I2C Bus Specification version 2.1, dated January 2000. A set of registers governs TWI operations. For more infor-
mation on TWI functionality, see the TWI register descriptions.

Table 26-1: CM41X_M4 TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

TWI_CTL Control Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_IMSK Interrupt Mask Register

TWI_ISTAT Interrupt Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_RXDATA16 Rx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

TWI_SLVADDR Slave Mode Address Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_TXDATA8 Tx Data Single-Byte Register

CM41X_M4 TWI Interrupt List

TWI Functional Description

26–2 ADSP-CM41x Mixed-Signal Control Processor

Table 26-2: CM41X_M4 TWI Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

154 TWI0_DATA TWI0 Data Interrupt Level

CM41X_M0 TWI Interrupt List

Table 26-3: CM41X_M0 TWI Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

29 TWI0_DATA TWI0 Data Interrupt Level

TWI Block Diagram

The TWI Block Diagram figure shows the basic blocks of the TWI interface.

16

TWI INTERFACE LOGIC

 CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALER ADDRESS
COMPARE

TWI_SCLTWI_SDA

SCB BUS

Figure 26-1: TWI Block Diagram

External Interface

The TWI_SDA (serial data) and TWI_SCL (serial clock) signals are open drain and require pull-up resistors. These

bidirectional signals externally interface the TWI controller to the I2C bus and no other external connections or
logic are necessary.

TWI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 26–3

Serial Clock Signal (SCL)

The serial clock signal (TWI_SCL) is an input in slave mode. In master mode, the TWI controller must set this
signal to the desired frequency.

The TWI controller supports the standard mode of operation (up to 100 kHz) or fast mode (up to 400 kHz). The
TWI control register (TWI_CTL) sets the TWI_CTL.PRESCALE value which sets the relationship between the
system clock (SCLK) and the internally timed events of the TWI controller. The internal time reference is derived
from SCLK using a prescaled value. The prescale value is the number of SCLK periods used in the generation of one
internal time reference. Set the value of prescale to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value as follows.

PRESCALE = f SCLK/10MHz

NOTE: It is not always possible to achieve 10-MHz accuracy. In such cases, it is safe to round up the PRESCALE
value to the next highest integer. For example, if SCLK is 100 MHz, the PRESCALE value is calculated as
100 MHz/10 MHz = 10. A prescale value of 14 in this case ensures that all timing requirements are met.

During master mode operation, the TWI module uses the TWI_CLKDIV register values to create the minimum
TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO durations of the TWI_SCL signal. The
TWI_CLKDIV.CLKHI field specifies the minimum number of 10-MHz time reference periods the TWI_SCL
waits before a new clock low period begins, assuming a single master. (The 10-MHz time reference periods are rep-
resented as an 8-bit binary value). The TWI uses the TWI_CLKDIV.CLKLO field to specify the minimum number
of internal time reference periods (represented as an 8-bit binary value). The TWI_SCL signal is held low.

Serial clock frequencies can vary from 400 kHz to less than 20 kHz. The resolution of the clock generated is 1/10
MHz or 100 ns. The following equation describes the frequency.

TWI_CLKDIV = TWI_SCL period/10 MHz time reference.

For example, for an TWI_SCL of 400 kHz (period = 1/400 kHz = 2500 ns) and an internal time reference of 10
MHz (period = 100 ns), the following equation applies:

TWI_CLKDIV = 2500 ns/100 ns = 25

Therefore, a TWI_SCL signal with a 30% duty cycle has TWI_CLKDIV.CLKLO=17 and
TWI_CLKDIV.CLKHI=8. Adding TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI equals TWI_CLKDIV.

NOTE: The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields are not intended to guarantee a certain
frequency. Rather, they guarantee a certain minimum high and low duration for the TWI_SCL signal.
Slew rate controls falling edges. The RC time constant governs the rising edges. The pull-up resistor and
the TWI_SCL capacitance form the time constant. See the “Register Descriptions” section for more de-
tails.

Serial Data Signal (SDA)

The TWI transmits and receives serial data, depending on the direction of the transfer, on the bidirectional serial
data signal (SDA).

External Interface

26–4 ADSP-CM41x Mixed-Signal Control Processor

Internal Interface

The peripheral bus interface supports the transfer of 16-bit wide data. The processor uses the interface in the sup-
port of register and FIFO buffer reads and writes. The TWI internal interface is comprised of the blocks described
as follows.

Register block. Contains all control and status bits and reflects what can be written or read as outlined by the pro-
gramming model. Each function block updates their corresponding status bits.

FIFO buffer. Configured as a 1-byte-wide, 2-deep transmit FIFO buffer and a 1-byte-wide, 2-deep receive FIFO
buffer.

Transmit shift register. Serially shifts its data out externally off chip. The output can be controlled for generation of
acknowledgments or it can be manually overwritten.

Receive shift register. Receives its data serially from off chip. The receive shift register is 1 byte wide and data received
can either be transferred to the FIFO buffer or used in an address comparison.

Address compare block. Supports address comparison in the event the TWI controller module is accessed as a slave.

Prescaler block. Must be programmed to generate a 10-MHz time reference relative to the system clock. The block
uses this time base for filtering of data and timing events specified by the electrical data sheet (See the Philips specifi-
cation). The block uses the time base to generate the TWI_SCL clock as well.

Clock generation module. Generates an external TWI_SCL clock when in master mode. It includes the logic neces-
sary for synchronization in a multi-master clock configuration and clock stretching when configured in slave mode.

NOTE: The TWI does not support DMA based operation.

TWI Architectural Concepts

The TWI controller follows the transfer protocol of the Philips I2C Bus specification version 2.1 dated January
2000.

NOTE: The TWI unit does not support DMA-based operation.

TWI Protocol

The Data Transfer figure shows a simple complete transfer.

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

Figure 26-2: Data Transfer

The TWI controller register contents maps to a basic transfer. The Data Transfer with Bit Illustration figure details
the same transfer from the Data Transfer figure noting the corresponding TWI controller bit names. In this illustra-
tion, the TWI controller successfully transmits 1 byte of data. The slave has acknowledged both address and data.

TWI Block Diagram

ADSP-CM41x Mixed-Signal Control Processor 26–5

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

Figure 26-3: Data Transfer with Bit Illustration

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master mode operation and only at the time a trans-
fer initiates. If arbitration for the bus is lost, the serial clock output immediately three-states. If multiple clocks at-
tempt to drive the serial clock line, the TWI controller synchronizes its clock with the other remaining clocks. The
Clock Synchronization figure shows this functionality.

HIGH
COUNT LOW

COUNT
TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL0
RESULT

Figure 26-4: Clock Synchronization

The TWI controller serial clock (TWI_SCL) output follows these rules:

• Once the clock high (TWI_CLKDIV.CLKHI) count is complete, the serial clock output is driven low and the
clock low (TWI_CLKDIV.CLKLO) count begins.

• Once the clock low count is complete, the serial clock line is three-stated. This state allows the external pull-up
resistor to pull the TWI_SCL signal high. The clock synchronization logic enters into a delay mode (shaded
area) until the TWI_SCL signal is detected at logic 1 level. Now, the clock high count begins.

Bus Arbitration

The TWI controller initiates a master mode transmission only when the bus is idle. If the bus is idle and two mas-
ters initiate a transfer, arbitration for the bus begins. The Bus Arbitration figure shows the arbitration.

TWI Architectural Concepts

26–6 ADSP-CM41x Mixed-Signal Control Processor

START

SCL0 (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDAx (BUS)
ARBITRATION
LOST

Figure 26-5: Bus Arbitration

The TWI controller monitors the serial data bus (SDA) while the TWI_SCL signal is high. If the TWI_SDA signal
is determined to be an active logic 0 level while the data of the TWI controller is a logic 1 level, the TWI controller
has lost arbitration. It stops generating the clock and data signals. Arbitration is not only performed at the serial
clock edges, but also during the entire time the TWI_SCL signal is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial clock is a logic 1 level. The TWI controller
generates and recognizes these transitions. Typically, start and stop conditions occur at the beginning and at the con-
clusion of a transmission, except repeated start combined transfers. The Start and Stop Conditions figure shows the
transitions.

START

SCL (BUS)

SDA (BUS)

STOP

Figure 26-6: Start and Stop Conditions

The TWI special case start and stop conditions of the TWI controller include the following.

• Controller addressed as a slave-receiver. If the master asserts a stop condition during the data phase of a trans-
fer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP).

• Controller addressed as a slave-transmitter. If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP) and indicates a slave transfer error
(TWI_ISTAT.SERR).

• Controller as a master-transmitter or master-receiver. If the stop bit (TWI_MSTRCTL.STOP) is set during an
active master transfer, the TWI controller issues a stop condition as soon as possible avoiding any error condi-
tions. The TWI controller operates as if data transfer count had been reached.

General Call Support

The TWI controller always decodes and acknowledges a general call address if:

• The TWI controller is enabled as a slave

TWI Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 26–7

• General call is enabled

The TWI_SLVCTL.GEN bit configures general call addressing (0x00) only when the TWI controller is a slave-
receiver.

If the data associated with the transfer is (NAK) not acknowledged, the TWI_SLVCTL.NAK bit can be set. If the
TWI controller issues a general call as a master-transmitter, set the appropriate address (TWI_MSTRADDR register)
and transfer direction (TWI_MSTRCTL.DIR bit) and load the transmit FIFO data.

NOTE: The byte following the general call address usually defines the slaves response to the call. The interpreta-
tion of the command in the second byte is based on the value of its LSB. For a TWI slave device, the bytes
received after the general call address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as the standard mode of operation. Fast mode affects electrical specifi-
cations and timing. When fast mode is enabled, (FAST) timing is modified to meet the following electrical require-
ments.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data (tSUSTO)

• Bus free time between a stop and start condition (tBUF)

TWI Operating Modes
The TWI has two modes of operation: repeated start and clock stretching. The following sections describe the oper-
ating modes.

Repeated Start

A repeated start condition is the absence of a stop condition between two transfers. The two transfers can be of any
direction type. Examples include a transmit followed by a receive, or a receive followed by a transmit. The following
sections guide the programmer in developing a service routine.

Transmit Receive Repeated Start

The Repeated Start Followed by Data Receive figure shows a repeated start followed by a data receive sequence. The
shading in the figure indicates that the slave has control of the bus.

ACKR/WS 8-BIT DATA NACK7-BIT
ADDRESS

TXSERV
INTERRUPT

ACKR/WS P8-BIT DATA ACK7-BIT ADDRESS

MCOMP
INTERRUPT

RXSERV
INTERRUPT

MCOMP
INTERRUPT

Figure 26-7: Repeated Start Followed by Data Receive

TWI Architectural Concepts

26–8 ADSP-CM41x Mixed-Signal Control Processor

The tasks performed at each interrupt are:

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt request. This interrupt is generated due to a FIFO
access. Since this byte is the last of this transfer, the TWI uses the TWI_FIFOSTAT register to indicate that
the transmit FIFO is empty. When read, TWI_MSTRCTL.DCNT bit field=0. Set the
TWI_MSTRCTL.RSTART bit to indicate a repeated start and set the TWI_MSTRCTL.DIR bit if the follow-
ing transfer is a data receive.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt request is generated when all data
transfers (TWI_MSTRCTL.DCNT bit field=0). If no errors occur, a start condition initiates. Clear the
TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired number of
bytes to receive.

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt request is generated due to the arrival
of a byte in the receive FIFO. Simple data handling is the only requirement.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt request is generated when the
transfer completes.

Receive Transmit Repeated Start

The Repeated Start Data Receive Followed by Data Transmit figure illustrates a repeated start data receive followed
by a data transmit sequence. The shading in the figure indicates that the slave has control of the bus.

ACKR/WS 8-BIT DATA NACK7-BIT
ADDRESS

RCVSERV
INTERRUPT

ACKR/WS P8-BIT DATA ACK7-BIT ADDRESS

MCOMP
INTERRUPT

XMTSERV
INTERRUPT

MCOMP
INTERRUPT

Figure 26-8: Repeated Start Data Receive Followed by Data Transmit

The tasks performed at each interrupt are:

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt request is generated due to the arrival
of a data byte in the receive FIFO. Set the TWI_MSTRCTL.RSTART bit to indicate a repeated start and clear
the TWI_MSTRCTL.DIR bit if the following transfer is a data transmit.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt request has occurred due to the
completion of the data receive transfer. If no errors occur, a start condition initiates. Clear the
TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired number of
bytes to transmit.

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt. This interrupt request is generated due to a FIFO
access. Simple data handling is the only requirement.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt request is generated when the
transfer completes.

TWI Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 26–9

NOTE: There is no timing constraint to meet the conditions—program the bits as required. Refer to Clock
Stretching During Repeated Start section for more on how the controller stretches the clock during repeat-
ed start transfers.

Clock Stretching

Clock stretching is an added function of the TWI controller in master mode operation. This behavior uses self-in-

duced stretching of the I 2C clock while waiting to service interrupts. Hardware initiates stretching automatically.
No programming is necessary. The TWI controller as a master supports three modes of clock stretching:

• Clock Stretching During FIFO Underflow

• Clock Stretching During FIFO Overflow

• Clock Stretching During Repeated Start

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt request occurs the instant the transmit FIFO becomes empty. The
most recent byte begins transmission. If the TWI_ISTAT.TXSERV interrupt request is not serviced, the conclud-
ing acknowledge phase of the transfer stretches.

Stretching of the clock continues until new data bytes are written to the transmit FIFO (TWI_TXDATA8 or
TWI_TXDATA16 registers). No other action is required to release the clock and continue the transmission. This
behavior continues until the transmission completes (TWI_MSTRCTL.DCNT=0). The transmission concludes
(TWI_ISTAT.MCOMP). The Clock Stretching during FIFO Underflow figure and table show the stretching.

S ADDRESS DATA ACK WITH
STRETCH ACK DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWIx_XMT_DATA IS WRITTEN AT THIS TIME
AND CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

11

Figure 26-9: Clock Stretching during FIFO Underflow

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer is empty. Acknowledge: Clear the interrupt request source bits. Write to the
transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit complete (DCNT= 0x00). Acknowledge: Clear the interrupt request source bits.

TWI Operating Modes

26–10 ADSP-CM41x Mixed-Signal Control Processor

Clock Stretching During FIFO Overflow

During a master mode receive operation, an interrupt occurs at the instant the receive FIFO becomes full. It is dur-
ing the acknowledge phase of this received byte that clock stretching begins. The TWI module makes no attempt to
initiate the reception of another byte. Stretching of the clock continues until the data bytes previously received are
read from the receive FIFO buffer (TWI_RXDATA8 or TWI_RXDATA16 registers). No other action is required to
release the clock and continue the reception of data. This behavior continues until the reception is complete
(TWI_MSTRCTL.DCNT=0). Reception concludes (TWI_ISTAT.MCOMP). The Clock Stretching During FIFO
Overflow figure and table show the clock stretching.

S ADDRESS DATA
ACK WITH
STRETCH ACK DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWIx_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

Figure 26-10: Clock Stretching During FIFO Overflow

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is full. Acknowledge: Clear the interrupt request source bits. Read the re-
ceive FIFO buffer.

... ...

Acknowledge: Clear the interrupt source bits. Interrupt: MCOMP – Master receive complete.

Clock Stretching During Repeated Start

The repeated start feature in I2C protocol requires a transition between two subsequent transfers. With the use of
clock stretching, the task of managing transitions becomes simpler and common to all transfer types.

Once an initial TWI master transfer completes (transmit or receive), the clock initiates a stretch during the repeated
start phase between transfers. Concurrent with this event, the initial transfer generates a TWI_ISTAT.MCOMP in-
terrupt to signify the initial transfer has completed (TWI_MSTRCTL.DCNT=0). This initial transfer is handled
without any special bit setting sequences or timing.

The clock stretching logic described applies here. With no system-related timing constraints, the subsequent transfer
(receive or transmit) is set up and activated. This sequence can repeat as many times as required to string a series of
repeated start transfers together. The Clock Stretching during Repeated Start Condition figure and table show the
clock stretching.

Clock Stretching

ADSP-CM41x Mixed-Signal Control Processor 26–11

S ADDRESS RSTART/
STRETCH ADDRESSACK DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.

CLOCK STRETCHING
IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCLx

REPEATED START "STRETCH" BEGINS SOON AFTER SCLx FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK

Figure 26-11: Clock Stretching during Repeated Start Condition

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has completed and DCNT =
0x00. Note: transfer in progress, RSTART previously set.

Acknowledge: Clear the interrupt request source bits. Write to
TWIx_MASTER_CTL, setting MDIR (receive), clearing RSTART,
and setting new DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear the interrupt request source bits. Read the re-
ceive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete Acknowledge: Clear the interrupt request source bits.

TWI Programming Model
The topics in this section provide information on the basic programming steps required to set up and run the two
wire interface.

General Setup

General setup refers to register writes that are required for both slave mode and master mode operations.

Perform general setup before setting either the master or slave enable bits.

1. Program the TWI_CTL.EN bit to enable the TWI controller and set the prescale value
(TWI_CTL.PRESCALE bit).

2. Program the prescale value to the binary representation of fSCLK0/10 MHz. Round up all values to the next
whole number.

3. Set the TWI_CTL.EN bit to enable the controller.

TWI Programming Model

26–12 ADSP-CM41x Mixed-Signal Control Processor

Once the TWI controller is enabled, a bus busy condition can be detected. This condition clears after tBUF has ex-
pired, assuming no additional bus activity has been detected.

Slave Mode

When enabled, slave mode operation supports both receive and transmit data transfers.

It is not possible to enable only one data transfer direction and not acknowledge (NAK) the other. The following
setup reflects this functionality.

1. Program the TWI_SLVADDR register. The TWI uses the appropriate 7 bits in determining a match during the
address phase of the transfer.

2. Program the TWI_TXDATA8.VALUE or TWI_TXDATA16 registers. These values are the initial data values
for transmission when the slave is addressed and transmission is needed. This step is optional. If no data is
written when the slave is addressed and transmission is needed, the serial clock (TWI_SCL) stretches. An inter-
rupt is generated until data is written to the transmit FIFO.

3. Program the TWI_IMSK register. There are enable-bits associated with the desired interrupt sources. For exam-
ple, programming the value 0x000F results in an interrupt request output to the processor, when the TWI
module detects a valid address match. An interrupt request also occurs when a valid slave transfer completes or
has an error, or a subsequent transfer has begun and the previous transfer has not been serviced.

4. Program the TWI_SLVCTL register. This step prepares and enables slave mode operation. For example, pro-
gramming the value 0x0005 enables slave mode operation and requires 7-bit addressing. It indicates that data
in the transmit FIFO buffer is for slave mode transmission.

The Slave Mode Interaction table and TWI Slave Mode Program Flow diagram represent the interaction between
the TWI controller and the processor using this example.

TWI Programming Model

ADSP-CM41x Mixed-Signal Control Processor 26–13

WRITE TO TWIx_CTL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_SLVADDR

DONE

WRITE DATA INTO
TWIx_TXDATA

 REGISTER
INTERRUPT

SOURCE

SCOMP

TXSERV

WRITE TO TWIx_TXDATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWIx_FIFOCTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_IMASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWIx_SLVCTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWIx_ISTAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RXDATA

REGISTER
RXSERV

WRITE TWIx_ISTAT
TO CLEAR INTERRUPT

WRITE TWIx_ISTAT TO CLEAR INTERRUPT

Figure 26-12: TWI Slave Mode Program Flow

Table 26-4: Slave Mode Interaction

TWI Controller Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear the interrupt source bits.

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear the interrupt source bits. Read
TWIx_FIFO_STAT. Read the receive FIFO buffer.

... ...

Interrupt: SCOMP – Slave transfer complete. Acknowledge: Clear the interrupt source bits. Read the receive
FIFO buffer.

Master Mode Program Flow

The Master Mode Program Flow figure shows the program for the TWI in master mode.

TWI Programming Model

26–14 ADSP-CM41x Mixed-Signal Control Processor

DONE

WRITE DATA INTO
TWIx_TXDATA

 REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWIx_CTL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWIx_CLKDIV

WRITE TO TWIx_MSTRADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWIx_FIFOCTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWIx_IMASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWIx_MSTRCTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER
RECEIVE

WRITE TWIx_ISTAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

TXSERVMCOMP

WRITE TWIx_MSTRCTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMPRXSERV

WRITE TWIx_ISTAT
TO CLEAR INTERRUPT

READ DATA FROM
TWIx_RXDATA

 REGISTER

WRITE TWIx_ISTAT
TO CLEAR INTERRUPT

MERR

READ TWIx_MSTRSTAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWIx_MSTRSTAT

WRITE TWIx_ISTAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS

Figure 26-13: Master Mode Program Flow

Master Mode Clock Setup

Master mode operation is set up and executed on a per-transfer basis.

An example of programming steps for a receive and for a transmit is given separately in following sections. The pro-
gramming step for clock setup listed here is common to both transfer types.

1. Program the TWI_CLKDIV register to define the minimum high and minimum low duration for the clock.

The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields do not guarantee a certain frequency. Rather, they
guarantee a certain minimum high and low duration for TWI_SCL. The slew rate controls falling edges. The RC
time constant formed by the pull-up resistor and the SCL capacitance govern rising edges. See the “Register Descrip-
tions” section for more details.

Master Mode Transmit

Follow these programming steps for a single master mode transmission:

1. Program the TWI_MSTRADDR register. This step defines the address transmitted during the address phase of
the transfer.

TWI Programming Model

ADSP-CM41x Mixed-Signal Control Processor 26–15

2. Program the TWI_TXDATA8 or TWI_TXDATA16 register. This step configures the initial data transmitted. It
is an error to complete the address phase of the transfer and not have data available in the transmit FIFO buf-
fer.

3. Program the TWI_FIFOCTL register. The programming indicates if the transmit FIFO buffer interrupt re-
quests occur with each byte transmitted (8-bits) or with every 2 bytes transmitted (16-bits).

4. Program the TWI_IMSK register. This step enables the bits associated with the desired interrupt request sour-
ces. For example, programming the value 0x0030 results in an interrupt output to the processor when the mas-
ter transfer completes, and the master transfer has an error.

5. Program the TWI_MSTRCTL register. This step prepares and enables master mode operation. For example,
programming the value 0x0201: enables master mode operation, generates a 7-bit address, sets the direction to
master-transmit, uses standard mode timing, and transmits 8 data bytes before generating a stop condition.

The Master Mode Transmit Setup Interaction table represents the interaction between the TWI controller and the
processor using this example.

Table 26-5: Master Mode Transmit Setup Interaction

TWI Controller Processor

Interrupt: XMTSERV – Transmit buffer is empty. Acknowledge: Clear the interrupt request source bits. Write to the
transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear the interrupt request source bits.

Master Mode Receive

Follow these programming steps for a single master mode receive.

1. Program the TWI_MSTRADDR register. This step defines the address transmitted during the address phase of
the transfer.

2. Program the TWI_FIFOCTL register. This step indicates if the receive FIFO buffer interrupt requests occur
with each byte received (8-bits) or with every 2 bytes received (16-bits).

3. Program the TWI_IMSK register. This step configures the enable bits associated with the desired interrupt
sources. For example, programming the value 0x0030 results in an interrupt request output to the processor
when the master transfer completes, and the master transfer has an error.

4. Program the TWI_MSTRCTL register. This step prepares and enables master mode operation. For example,
programming the value 0x0205: enables master mode operation, generates a 7-bit address, sets the direction to
master-receive, uses standard mode timing, and receives 8 data bytes before generating a stop condition.

The Master Mode Receive Setup Interaction table shows the interaction between the TWI controller and the pro-
cessor using this example.

TWI Programming Model

26–16 ADSP-CM41x Mixed-Signal Control Processor

Table 26-6: Master Mode Receive Setup Interaction

TWI Controller Processor

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear the interrupt request source bits. Read the re-
ceive FIFO buffer.

... ...

Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear the interrupt request source bits. Read the re-
ceive FIFO buffer.

NOTE: After the TWI_MSTRCTL.DCNT bit decrements to zero, the TWI master device sends a NAK to indicate
to the slave transmitter to release the bus. This operation allows the master to send the stop signal to ter-
minate the transfer.

CM41X_M4 TWI Register Descriptions
Two-Wire Interface (TWI) contains the following registers.

Table 26-7: CM41X_M4 TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

TWI_CTL Control Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_IMSK Interrupt Mask Register

TWI_ISTAT Interrupt Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_RXDATA16 Rx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

TWI_SLVADDR Slave Mode Address Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_TXDATA8 Tx Data Single-Byte Register

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–17

SCL Clock Divider Register

During master mode operation, the TWI_CLKDIV holds values, which the TWI uses to create the high and low
durations of the serial clock (SCL). The clock signal SCL is an output in master mode and an input in slave mode.
The values in the TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI fields add up to the CLKDIV value the
following equation.

CLKDIV = TWI SCL period / 10 MHz time reference

Serial clock frequencies can vary from 400 KHz to less than 20 KHz. The resolution of the clock generated is 1/10
MHz or 100 ns. For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and an internal time refer-
ence of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, use TWI_CLKDIV.CLKLO = 17 and TWI_CLKDIV.CLKHI = 8.

SCL Clock Low PeriodsSCL Clock High Periods
CLKLO (R/W)CLKHI (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-14: TWI_CLKDIV Register Diagram

Table 26-8: TWI_CLKDIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

CLKHI SCL Clock High Periods.

The TWI_CLKDIV.CLKHI specifies the number of 10 MHz time reference periods
the serial clock (SCL) waits before a new clock low period begins, assuming a single
master.

7:0

(R/W)

CLKLO SCL Clock Low Periods.

The TWI_CLKDIV.CLKLO specifies the number of internal time reference periods
the serial clock (SCL) is held low.

CM41X_M4 TWI Register Descriptions

26–18 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The TWI_CTL enables the TWI, establishes a relationship between the system clock (SCLK) and the TWI control-
ler's internally timed events, and enables SCCB compatibility.

Enable Module

SCLK Prescale ValueSCCB Compatibility

EN (R/W)

PRESCALE (R/W)SCCB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-15: TWI_CTL Register Diagram

Table 26-9: TWI_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

SCCB SCCB Compatibility.

The TWI_CTL.SCCB enables SCCB compatible operation for the TWI. SCCB com-

patibility is an optional feature and should not be used in an I2C bus system. When
this feature is enabled, all slave asserted acknowledgement bits are ignored by this mas-
ter. This feature is valid only during transfers where the TWI is mastering an SCCB
bus. Slave mode transfers should be avoided when this feature is enabled because the
TWI controller always generates an acknowledge in slave mode.

0 Disable SCCB compatibility. When disabled, master
transfers are not SCCB compatible.

1 Enable SCCB compatibility. When enabled, master
transfers are SCCB compatible. All slave-asserted ac-
knowledgment bits are ignored by this master.

7

(R/W)

EN Enable Module.

The TWI_CTL.EN enables TWI controller operation for either master and/or slave
mode of operation. It is recommended that this bit be set at the time
TWI_CTL.PRESCALE is initialized and remain set. This method guarantees accurate
operation of bus busy detection logic.

0 Disable

1 Enable

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–19

Table 26-9: TWI_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6:0

(R/W)

PRESCALE SCLK Prescale Value.

The TWI_CTL.PRESCALE holds the pre-scaled value for the TWI internal time ref-
erence. This reference is derived from SCLK according to the formula:

TWI_CTL.PRESCALE = f SCLK/10MHz

The TWI_CTL.PRESCALE specifies the number of system clock (SCLK) periods
used in the generation of one internal time reference. The value of
TWI_CTL.PRESCALE must be set to create an internal time reference with a period
of 10 MHz. It is represented as a 7-bit binary value.

CM41X_M4 TWI Register Descriptions

26–20 ADSP-CM41x Mixed-Signal Control Processor

FIFO Control Register

The TWI_FIFOCTL control bits affect only the FIFO and are not tied in any way with master or slave mode oper-
ation.

Rx Buffer FlushTx Buffer Interrupt Length

Tx Buffer FlushRx Buffer Interrupt Length

RXFLUSH (R/W)TXILEN (R/W)

TXFLUSH (R/W)RXILEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-16: TWI_FIFOCTL Register Diagram

Table 26-10: TWI_FIFOCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

RXILEN Rx Buffer Interrupt Length.

The TWI_FIFOCTL.RXILEN determines the rate at which receive buffer interrupts
are to be generated. Interrupts may be generated with each byte received or after two
bytes are received. Interrupt status is available in TWI_FIFOSTAT.RXSTAT.

0 RXSERVI on 1 or 2 Bytes in FIFO

1 RXSERVI on 2 Bytes in FIFO

2

(R/W)

TXILEN Tx Buffer Interrupt Length.

The TWI_FIFOCTL.TXILEN determines the rate at which transmit buffer inter-
rupts are to be generated. Interrupts may be generated with each byte transmitted or
after two bytes are transmitted. Interrupt status is available in
TWI_FIFOSTAT.TXSTAT.

0 TXSERVI on 1 Byte of FIFO Empty

1 TXSERVI on 2 Bytes of FIFO Empty

1

(R/W)

RXFLUSH Rx Buffer Flush.

The TWI_FIFOCTL.RXFLUSH directs the TWI to flush the contents of the receive
buffer and update TWI_FIFOSTAT.RXSTAT to indicate the buffer is empty. This
state is held until this bit is cleared. During an active receive, the receive buffer in this
state responds to the receive logic as if it is full.

0 Normal Operation of Rx Buffer

1 Flush Rx Buffer

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–21

Table 26-10: TWI_FIFOCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

TXFLUSH Tx Buffer Flush.

The TWI_FIFOCTL.TXFLUSH directs the TWI to flush the contents of the trans-
mit buffer and update TWI_FIFOSTAT.TXSTAT to indicate the buffer is empty.
This state is held until this bit is cleared. During an active transmit, the transmit buffer
in this state responds to the transmit logic as if it is empty.

0 Normal Operation of Tx Buffer

1 Flush Tx Buffer

CM41X_M4 TWI Register Descriptions

26–22 ADSP-CM41x Mixed-Signal Control Processor

FIFO Status Register

The TWI_FIFOSTAT fields indicate the state of the FIFO buffers' receive and transmit contents. The FIFO buf-
fers do not discriminate between master data and slave data. By using the status and control bits provided, the FIFO
can be managed to allow simultaneous master and slave operation.

Tx FIFO StatusRx FIFO Status
TXSTAT (R)RXSTAT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-17: TWI_FIFOSTAT Register Diagram

Table 26-11: TWI_FIFOSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:2

(R/NW)

RXSTAT Rx FIFO Status.

The read-only TWI_FIFOSTAT.RXSTAT indicates the number of valid data bytes
in the receive FIFO buffer. The status is updated with each FIFO buffer read using the
peripheral data bus or write access by the receive shift register. Simultaneous accesses
are allowed.

0 Empty. The FIFO is empty.

1 Contains 1 Byte. The FIFO contains one byte of data. A
single byte peripheral read of the FIFO is allowed.

2 Reserved

3 Full. The FIFO is full and contains two bytes of data.
Either a single or double byte peripheral read of the
FIFO is allowed.

1:0

(R/NW)

TXSTAT Tx FIFO Status.

The read-only TWI_FIFOSTAT.TXSTAT field indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO buffer write using the
peripheral data bus or read access by the transmit shift register. Simultaneous accesses
are allowed.

0 Empty. The FIFO is empty. Either a single or double
byte peripheral write of the FIFO is allowed.

1 Contains 1 Byte. The FIFO contains one byte of data. A
single byte peripheral write of the FIFO is allowed.

2 Reserved

3 Full. The FIFO is full and contains two bytes of data.

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–23

Interrupt Mask Register

The TWI_IMSK enables interrupt sources to assert the interrupt output. Each mask bit corresponds with one inter-
rupt request source bit in TWI_ISTAT. Reading and writing TWI_IMSK does not affect the contents of the
TWI_ISTAT.

Mask
Master Transfer Complete Interrupt

Master Transfer Error Interrupt Mask

Slave Overflow Interrupt Mask
Tx FIFO Service Interrupt Mask

Slave Transfer Error Interrupt Mask
Rx FIFO Service Interrupt Mask

Mask
Slave Transfer Complete InterruptSerial Data Interrupt Mask

Slave Transfer Initiated Interrupt MaskSerial Clock Interrupt Mask

MCOMP (R/W)
MERR (R/W)

SOVF (R/W)
TXSERV (R/W)

SERR (R/W)
RXSERV (R/W)

SCOMP (R/W)SDAI (R/W)

SINIT (R/W)SCLI (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-18: TWI_IMSK Register Diagram

Table 26-12: TWI_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

SCLI Serial Clock Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

14

(R/W)

SDAI Serial Data Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

7

(R/W)

RXSERV Rx FIFO Service Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

6

(R/W)

TXSERV Tx FIFO Service Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

CM41X_M4 TWI Register Descriptions

26–24 ADSP-CM41x Mixed-Signal Control Processor

Table 26-12: TWI_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

MERR Master Transfer Error Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

4

(R/W)

MCOMP Master Transfer Complete Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

3

(R/W)

SOVF Slave Overflow Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

2

(R/W)

SERR Slave Transfer Error Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

1

(R/W)

SCOMP Slave Transfer Complete Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

0

(R/W)

SINIT Slave Transfer Initiated Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–25

Interrupt Status Register

The TWI_ISTAT contains information about functional areas requiring servicing. Many of the bits serve as an in-
dicator to further read and service various status registers. After servicing the interrupt source associated with a bit,
the user must clear that interrupt source bit by writing a 1 to it.

Master Transfer CompleteMaster Transfer Error

Slave OverflowTx FIFO Service

Slave Transfer ErrorRx FIFO Service

Slave Transfer CompleteSerial Data Interrupt

Slave Transfer InitiatedSerial Clock Interrupt

MCOMP (R/W1C)MERR (R/W1C)

SOVF (R/W1C)TXSERV (R/W1C)

SERR (R/W1C)RXSERV (R/W1C)

SCOMP (R/W1C)SDAI (R/W1C)

SINIT (R/W1C)SCLI (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-19: TWI_ISTAT Register Diagram

Table 26-13: TWI_ISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

SCLI Serial Clock Interrupt.

If the TWI is enabled (TWI_CTL.EN), SCLI is set on a high-to-low transition of the

serial clock pin (SCLx). Normally, this bit is not required for I2C bus transfers. It will

be initially set on an I2C transfer and does not require clearing.

0 No Interrupt. No transition was detected on the SCLx
pin.

1 Interrupt Detected. A high-to-low transition was detect-
ed on the SCLx pin. This bit is W1C.

14

(R/W1C)

SDAI Serial Data Interrupt.

If the TWI is enabled (TWI_CTL.EN), SDAI is set on a high-to-low transition of the

serial data pin (SDAx). Normally, this bit is not required for I2C bus transfers. It will

be initially set on an I2C transfer and does not require clearing.

0 No Interrupt. No transition was detected on the SDAx
pin.

1 Interrupt Detected. A high-to-low transition was detect-
ed on the SDAx pin. This bit is W1C.

CM41X_M4 TWI Register Descriptions

26–26 ADSP-CM41x Mixed-Signal Control Processor

Table 26-13: TWI_ISTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

RXSERV Rx FIFO Service.

If TWI_FIFOCTL.RXILEN =0, the TWI_ISTAT.RXSERV is set each time the
TWI_FIFOSTAT.RXSTAT field is updated to either 01 or 11. If
TWI_FIFOCTL.RXILEN =1, the TWI_ISTAT.RXSERV is set each time
TWI_FIFOSTAT.RXSTAT is updated to 11.

0 No Interrupt. The FIFO does not require servicing, or
the TWI_FIFOSTAT.RXSTAT field has not changed
since this bit was last cleared.

1 Interrupt Detected. The receive FIFO buffer has one or
two 8-bit words of data available to be read.

6

(R/W1C)

TXSERV Tx FIFO Service.

If TWI_FIFOCTL.TXILEN =0, the TWI_ISTAT.TXSERV is set each time the
TWI_FIFOSTAT.TXSTAT field is updated to either 01 or 00. If
TWI_FIFOCTL.TXILEN =1, the TWI_ISTAT.TXSERV is set each time
TWI_FIFOSTAT.TXSTAT is updated to 00.

0 No Interrupt. FIFO does not require servicing, or the
TWI_FIFOSTAT.TXSTAT field has not changed
since this bit was last cleared.

1 Interrupt Detected. The transmit FIFO buffer has one
or two 8-bit locations available to be written.

5

(R/W1C)

MERR Master Transfer Error.

The TWI_ISTAT.MERR indicates that a master error has occurred. The conditions
surrounding the error are indicated by the master status register (TWI_MSTRSTAT).

0 No Interrupt

1 Interrupt Detected

4

(R/W1C)

MCOMP Master Transfer Complete.

The TWI_ISTAT.MCOMP indicates that the initiated master transfer has completed.
In the absence of a repeat start, the bus has been released.

0 No Interrupt

1 Interrupt Detected

3

(R/W1C)

SOVF Slave Overflow.

The TWI_ISTAT.SOVF indicates that the TWI_ISTAT.SCOMP bit was set at the
time a subsequent transfer has acknowledged an address phase. The transfer continues,
however, it may be difficult to delineate data of one transfer from another.

0 No Interrupt

1 Interrupt Detected

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–27

Table 26-13: TWI_ISTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

SERR Slave Transfer Error.

The TWI_ISTAT.SERR indicates that a slave error has occurred. A restart or stop
condition has occurred during the data receive phase of a transfer.

0 No Interrupt

1 Interrupt Detected

1

(R/W1C)

SCOMP Slave Transfer Complete.

The TWI_ISTAT.SCOMP indicates that the transfer is complete and either a stop, or
a restart was detected.

0 No Interrupt

1 Interrupt Detected

0

(R/W1C)

SINIT Slave Transfer Initiated.

The TWI_ISTAT.SINIT indicates whether or not a slave transfer is in progress.

0 No Interrupt. A transfer is not in progress, or an address
match has not occurred since the last time this bit was
cleared.

1 Interrupt Detected. The slave has detected an address
match, and a transfer has been initiated.

CM41X_M4 TWI Register Descriptions

26–28 ADSP-CM41x Mixed-Signal Control Processor

Master Mode Address Register

During the addressing phase of a transfer, the TWI controller, with its master enabled, transmits the contents of
TWI_MSTRADDR. When programming this register, omit the read/write bit. That is, only the upper 7 bits that
make up the slave address should be written to this register. For example, if the slave address is b#1010000X, where
X is the read/write bit, the TWI_MSTRADDR is programmed with b#1010000, which corresponds to 0x50. When
sending out the address on the bus, the TWI controller appends the read/write bit as appropriate based on the state
of the TWI_MSTRCTL.DIR bit.

Master Mode Address
ADDR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-20: TWI_MSTRADDR Register Diagram

Table 26-14: TWI_MSTRADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6:0

(R/W)

ADDR Master Mode Address.

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–29

Master Mode Control Registers

The TWI_MSTRCTL controls the logic associated with master mode operation. Bits in this register do not affect
slave mode operation and should not be modified to control slave mode functionality.

Issue Stop ConditionRepeat Start

Fast ModeData Transfer Count

Transfer Direction for MasterSerial Data Override

Enable Master ModeSerial Clock Override

STOP (R/W)RSTART (R/W)

FAST (R/W)DCNT (R/W)

DIR (R/W)SDAOVR (R/W)

EN (R/W)SCLOVR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-21: TWI_MSTRCTL Register Diagram

Table 26-15: TWI_MSTRCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

SCLOVR Serial Clock Override.

The TWI_MSTRCTL.SCLOVR provides direct control of the serial clock line when
required. Normal master and slave mode operation should not require override opera-
tion. When TWI_MSTRCTL.SCLOVR is set, the TWI overrides normal serial clock
output, driving it to an active 0 level and overriding all other logic. This state is held
until this bit is cleared. When TWI_MSTRCTL.SCLOVR is cleared, the TWI permits
normal serial clock operation under the control of master mode clock generation and
slave mode clock stretching logic.

0 Permit Normal SCL Operation

1 Override Normal SCL Operation

14

(R/W)

SDAOVR Serial Data Override.

The TWI_MSTRCTL.SDAOVR provides direct control of the serial data line when re-
quired. Normal master and slave mode operation should not require override opera-
tion. When TWI_MSTRCTL.SDAOVR is set, the TWI overrides normal serial data
operation under the control of the transmit shift register and acknowledge logic, driv-
ing serial data output to an active 0 level and overriding all other logic. This state is
held until this bit is cleared. When TWI_MSTRCTL.SDAOVR is cleared, the TWI
permits normal serial data operation.

0 Permit Normal SDA Operation

1 Override Normal SDA Operation

CM41X_M4 TWI Register Descriptions

26–30 ADSP-CM41x Mixed-Signal Control Processor

Table 26-15: TWI_MSTRCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13:6

(R/W)

DCNT Data Transfer Count.

The TWI_MSTRCTL.DCNT indicates the number of data bytes to transfer. As each
data word is transferred, the TWI decrements this counter. When
TWI_MSTRCTL.DCNT decrements to 0, a stop condition is generated. Setting
TWI_MSTRCTL.DCNT to 0xFF disables the counter. In this transfer mode, data con-
tinues to be transferred until it is concluded by setting the TWI_MSTRCTL.STOP
bit. In the event a master transmit is aborted due to a slave data NAK, the value of
TWI_MSTRCTL.DCNT equals the number of bytes not sent. The byte which was
NAK'ed by the slave is counted as a sent byte.

5

(R/W)

RSTART Repeat Start.

The TWI_MSTRCTL.RSTART enables the TWI to issue a repeat start condition at
the conclusion of the current transfer (TWI_MSTRCTL.DCNT =0) and begin the next
transfer. The current transfer concludes with updates to the appropriate status and in-
terrupt bits. If errors occurred during the previous transfer, a repeat start does not oc-
cur. In the absence of any errors, master enable (TWI_MSTRCTL.EN) does not self
clear on a repeat start.

0 Disable Repeat Start

1 Enable Repeat Start

4

(R/W)

STOP Issue Stop Condition.

The TWI_MSTRCTL.STOP directs the TWI to issue a stop condition. The transfer
concludes as soon as possible avoiding any error conditions (as if data transfer count
had been reached). At that time, the TWI_IMSK is updated along with any associated
status bits.

0 Permit Normal Operation

1 Issue Stop

3

(R/W)

FAST Fast Mode.

The TWI_MSTRCTL.FAST selects whether the TWI operates in fast mode or stand-
ard mode. In fast mode, the TWI uses timing specifications for transfers at up to 400K
bits/s. In standard mode, the TWI uses timing specifications for transfers at up to
100K bits/s.

0 Select Standard Mode

1 Select Fast Mode

2

(R/W)

DIR Transfer Direction for Master.

The TWI_MSTRCTL.DIR selects the transfer direction for the TWI as master initiat-
ed receive or transmit.

0 Master Transmit

1 Master Receive

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–31

Table 26-15: TWI_MSTRCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable Master Mode.

The TWI_MSTRCTL.EN enables master mode functionality. A start condition is gen-
erated if the bus is idle. This bit self clears at the completion of a transfer (after
TWI_MSTRCTL.DCNT decrements to zero), including transfers terminated due to er-
rors.

If disabled (=0) during operation, the transfer is aborted, and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA, SCL) are no longer
driven. Write-1-to-clear status bits are not affected.

0 Disable

1 Enable

CM41X_M4 TWI Register Descriptions

26–32 ADSP-CM41x Mixed-Signal Control Processor

Master Mode Status Register

The TWI_MSTRSTAT holds information during master mode transfers and at their conclusion. Generally, master
mode status bits are not directly associated with the generation of interrupt requests, but these bits offer information
on the current transfer. Slave mode operation does not affect master mode status bits.

Note that while TWI_MSTRSTAT.SCLSEN is set (this condition could be due to having no pull-up resistor on
TWI_SCL or another agent is driving TWI_SCL low), the acknowledge bits (TWI_MSTRSTAT.ANAK and
TWI_MSTRSTAT.DNAK) do not update. This result occurs because the acknowledge conditions are sampled dur-
ing the high phase of TWI_SCL.

Buffer Read Error

Data Not AcknowledgedBuffer Write Error

Address Not AcknowledgedSerial Data Sense

Lost ArbitrationSerial Clock Sense

Master Transfer in ProgressBus Busy

BUFRDERR (R/W1C)

DNAK (R/W1C)BUFWRERR (R/W1C)

ANAK (R/W1C)SDASEN (R)

LOSTARB (R/W1C)SCLSEN (R)

MPROG (R)BUSBUSY (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-22: TWI_MSTRSTAT Register Diagram

Table 26-16: TWI_MSTRSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/NW)

BUSBUSY Bus Busy.

The TWI_MSTRSTAT.BUSBUSY indicates whether the bus is currently busy or free.
This indication is not limited to only this device but is for all devices. On a start con-
dition, the setting of the register value is delayed due to the input filtering. On a stop
condition the clearing of the register value occurs after tBUF.

0 Bus Free. The bus is free. The clock and data bus signals
have been inactive for the appropriate bus free time.

1 Bus Busy. The bus is busy. Clock or data activity has
been detected.

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–33

Table 26-16: TWI_MSTRSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/NW)

SCLSEN Serial Clock Sense.

The TWI_MSTRSTAT.SCLSEN indicates the active or inactive state of the serial
clock. Use this status bit when direct sensing of the serial clock line is required. The
register value is delayed due to the input filter (nominally 50 ns). Normal master and
slave mode operation should not require this feature.

0 SCL Inactive "One". An inactive "one" is being sensed
on the serial clock.

1 SCL Active "Zero". An active "zero" is being sensed on
the serial clock. The source of the active driver is not
known and can be internal or external.

6

(R/NW)

SDASEN Serial Data Sense.

The TWI_MSTRSTAT.SDASEN indicates the active or inactive status of the serial
data. Use this status bit when direct sensing of the serial data line is required. The reg-
ister value is delayed due to the input filter (nominally 50 ns). Normal master and
slave mode operation should not require this feature.

0 SDA Inactive "One". An inactive "one" is currently be-
ing sensed on the serial data line.

1 SDA Active "Zero". An active "zero" is currently being
sensed on the serial data line. The source of the active
driver is not known and can be internal or external.

5

(R/W1C)

BUFWRERR Buffer Write Error.

The TWI_MSTRSTAT.BUFWRERR indicates whether the current master transfer was
aborted due to a receive buffer write error. The receive buffer and receive shift register
were both full at the same time. This bit is W1C.

0 No Status

1 Buffer Write Error

4

(R/W1C)

BUFRDERR Buffer Read Error.

The TWI_MSTRSTAT.BUFRDERR indicates whether the current master transfer was
aborted due to the detection of a NAK during data transmission. This bit is W1C.

0 No Status

1 Buffer Read Error

3

(R/W1C)

DNAK Data Not Acknowledged.

The TWI_MSTRSTAT.DNAK indicates whether the current master transfer was
aborted due to the detection of a NAK during data transmission. This bit is W1C.

0 No Status

1 Data NAK

CM41X_M4 TWI Register Descriptions

26–34 ADSP-CM41x Mixed-Signal Control Processor

Table 26-16: TWI_MSTRSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

ANAK Address Not Acknowledged.

The TWI_MSTRSTAT.ANAK indicates whether the current master transfer was
aborted due to the detection of a NAK during the address phase of the transfer. This
bit is W1C.

0 No Status

1 Address NAK

1

(R/W1C)

LOSTARB Lost Arbitration.

The TWI_MSTRSTAT.LOSTARB indicates whether the current transfer was aborted
due to the loss of arbitration with another master. This bit is W1C.

0 No Status

1 Lost Arbitration

0

(R/NW)

MPROG Master Transfer in Progress.

The TWI_MSTRSTAT.MPROG indicates whether or not a master transfer is in prog-
ress. If clear (TWI_MSTRSTAT.MPROG =0), currently no transfer is taking place.
This can occur after a transfer is complete or while an enabled master is waiting for an
idle bus.

0 No Status

1 Master Transfer in Progress

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–35

Rx Data Double-Byte Register

The TWI_RXDATA16 holds a 16-bit data value read from the FIFO buffer. To reduce interrupt output rates and
peripheral bus access times, a double byte receive data access can be performed. Two data bytes can be read, effec-
tively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order, where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (TWI_FIFOSTAT.RXSTAT) field is updated to indicate it is empty.
If an access is performed while the FIFO buffer is not full, the read data is unknown and the existing FIFO buffer
data and its status remains unchanged.

Rx Data 16-Bit Value
VALUE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-23: TWI_RXDATA16 Register Diagram

Table 26-17: TWI_RXDATA16 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R0/W)

VALUE Rx Data 16-Bit Value.

CM41X_M4 TWI Register Descriptions

26–36 ADSP-CM41x Mixed-Signal Control Processor

Rx Data Single-Byte Register

The TWI_RXDATA8 holds an 8-bit data value read from the FIFO buffer. Receive data is read from the corre-
sponding receive buffer in a first-in first-out order. Although peripheral bus reads are 16 bits, a read access to
TWI_RXDATA8 accesses only one transmit data byte from the FIFO buffer. With each access, the receive status
(TWI_FIFOSTAT.RXSTAT) field is updated. If an access is performed while the FIFO buffer is empty, the data is
unknown and the FIFO buffer status remains indicating it is empty.

Rx Data 8-Bit Value
VALUE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-24: TWI_RXDATA8 Register Diagram

Table 26-18: TWI_RXDATA8 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W)

VALUE Rx Data 8-Bit Value.

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–37

Slave Mode Address Register

The TWI_SLVADDR holds the slave mode address, which is the valid address to which the slave-enabled TWI
controller responds. The TWI controller compares this value with the received address during the addressing phase
of a transfer.

Slave Mode Address
ADDR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-25: TWI_SLVADDR Register Diagram

Table 26-19: TWI_SLVADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6:0

(R/W)

ADDR Slave Mode Address.

CM41X_M4 TWI Register Descriptions

26–38 ADSP-CM41x Mixed-Signal Control Processor

Slave Mode Control Register

The TWI_SLVCTL controls the logic associated with slave mode operation. Settings in this register do not affect
master mode operation and should not be modified to control master mode functionality.

Transmit Data Valid for SlaveNot Acknowledge

Enable Slave ModeGeneral Call Enable

TDVAL (R/W)NAK (R/W)

EN (R/W)GEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-26: TWI_SLVCTL Register Diagram

Table 26-20: TWI_SLVCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

GEN General Call Enable.

The TWI_SLVCTL.GEN enables general call address matching. When enabled, a
general call slave receive transfer is accepted. All status and interrupt source bits associ-
ated with transfers are updated. Note that general call address detection is available on-
ly when slave mode is enabled.

0 Disable General Call Matching

1 Enable General Call Matching

3

(R/W)

NAK Not Acknowledge.

The TWI_SLVCTL.NAK directs the TWI to generate a NAK (if set) or an ACK (if
cleared) at the conclusion of data transfer for slave receive. For NAK, the slave is still
considered to be addressed at the conclusion of transfer.

0 Generate ACK

1 Generate NAK

2

(R/W)

TDVAL Transmit Data Valid for Slave.

The TWI_SLVCTL.TDVAL selects whether the data in the transmit FIFO is available
(valid) for slave transmission (TWI_SLVCTL.TDVAL set). If the FIFO data is not
available (invalid) for slave transmission (TWI_SLVCTL.TDVAL cleared), the data in
the transmit FIFO is for master mode transmits, and the data is not allowed to be used
during a slave transmit; the transmit FIFO is treated as if it is empty.

0 Data Invalid for Slave Tx

1 Data Valid for Slave Tx

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–39

Table 26-20: TWI_SLVCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable Slave Mode.

The TWI_SLVCTL.EN enables slave operation. Enabling slave and master modes of
operation concurrently is allowed. If disabled, no attempt is made to identify a valid
address. If TWI_SLVCTL.EN is cleared during a valid transfer, clock stretching
ceases, the serial data line is released, and the current byte is not acknowledged.

0 Disable

1 Enable

CM41X_M4 TWI Register Descriptions

26–40 ADSP-CM41x Mixed-Signal Control Processor

Slave Mode Status Register

During and at the conclusion of register slave mode transfers, the TWI_SLVSTAT holds information on the current
transfer. Generally slave mode status bits are not associated with the generation of interrupt requests. Master mode
operation does not affect slave mode status bits.

Transfer Direction for SlaveGeneral Call
DIR (R)GCALL (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-27: TWI_SLVSTAT Register Diagram

Table 26-21: TWI_SLVSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

GCALL General Call.

The TWI_SLVSTAT.GCALL indicates whether or not--at the time of addressing--
the address was determined to be a general call. This bit self clears if slave mode is disa-
bled (TWI_SLVCTL.EN =0).

0 Not a General Call Address

1 General Call Address

0

(R/NW)

DIR Transfer Direction for Slave.

The TWI_SLVSTAT.DIR indicates whether--at the time of addressing--the transfer
direction was determined to be slave transmit or receive. This bit self clears if slave
mode is disabled (TWI_SLVCTL.EN =0).

0 Slave Receive

1 Slave Transmit

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–41

Tx Data Double-Byte Register

The TWI_TXDATA16 register holds a 16-bit data value written into the FIFO buffer. To reduce interrupt latency
output rates and peripheral bus access times, a double byte transfer data access can be done. Two data bytes can be
written, effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order, where byte 0 is the first byte to be transferred and byte 1 is the second
byte to be transferred. With each access, the transmit status (TWI_FIFOSTAT.TXSTAT) field is updated. If an
access is performed while the FIFO buffer is not empty, the write is ignored and the existing FIFO buffer data and
its status remains unchanged. This register when read back returns zero.

Tx Data 16-Bit Value
VALUE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-28: TWI_TXDATA16 Register Diagram

Table 26-22: TWI_TXDATA16 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R0/W)

VALUE Tx Data 16-Bit Value.

CM41X_M4 TWI Register Descriptions

26–42 ADSP-CM41x Mixed-Signal Control Processor

Tx Data Single-Byte Register

The TWI_TXDATA8 register holds an 8-bit data value written into the FIFO buffer. Transmit data is entered into
the corresponding transmit buffer in a first-in first-out order. For 16-bit peripheral bus writes, a write access to this
register adds only one transmit data byte to the FIFO buffer. With each access, the transmit status
(TWI_FIFOSTAT.TXSTAT) field is updated. If an access is performed while the FIFO buffer is full, the write is
ignored and the existing FIFO buffer data and its status remains unchanged. This register returns zero when read
back.

Tx Data 8-Bit Value
VALUE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 26-29: TWI_TXDATA8 Register Diagram

Table 26-23: TWI_TXDATA8 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W)

VALUE Tx Data 8-Bit Value.

CM41X_M4 TWI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 26–43

27 Controller Area Network (CAN)

The processor contains a Controller Area Network (CAN) module based on the CAN 2.0B (active) protocol. This
protocol is an asynchronous communications protocol used in both industrial and automotive control systems. The
CAN protocol is compatible with the control applications. It can communicate reliably over a network and incorpo-
rates CRC checking, message error tracking, and fault node confinement.

NOTE: This document assumes familiarity with the CAN standard. For more information, refer to Version 2.0 of
the CAN specification from Robert Bosch GmbH.

CAN Features
Key features of the CAN module include:

• Conformity to the CAN 2.0B (active) standard

• Dedicated acceptance mask for each mailbox

• Support for data rates of up to 1M bit/s

• Support for standard (11-bit) and extended (29-bit) identifiers

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Data filtering (first 2 bytes) for acceptance filtering (DeviceNetTM mode)

• Error status and warning registers

• Universal counter-module

• Readable receive and transmit pin values

• Support for remote frames

• Active or passive network support

• Interrupts, including transmit or receive complete, error, and global

• Clock derived from SCLK through a programmable divider, eliminating the need for an extra crystal

Controller Area Network (CAN)

ADSP-CM41x Mixed-Signal Control Processor 27–1

CAN Functional Description
The following sections provide information on the functional operation of the CAN module. This section also pro-
vides listings of the CAN registers and interrupts.

CM41X_M4 CAN Register List

The controller area network (CAN) module implements the CAN 2.0B (active) protocol. This protocol is an asyn-
chronous communications protocol used in both industrial and automotive control systems. A set of registers govern
CAN operations. For more information on CAN functionality, see the CAN register descriptions.

Table 27-1: CM41X_M4 CAN Register List

Name Description

CAN_AA1 Abort Acknowledge 1 Register

CAN_AA2 Abort Acknowledge 2 Register

CAN_AM[nn]H Acceptance Mask (H) Register

CAN_AM[nn]L Acceptance Mask (L) Register

CAN_CEC Error Counter Register

CAN_CLK Clock Register

CAN_CTL CAN Master Control Register

CAN_DBG Debug Register

CAN_ESR Error Status Register

CAN_EWR Error Counter Warning Level Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIS Global CAN Interrupt Status Register

CAN_INT Interrupt Pending Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBTD Temporary Mailbox Disable Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MB[nn]_DATA0 Mailbox Word 0 Register

CAN_MB[nn]_DATA1 Mailbox Word 1 Register

CAN Functional Description

27–2 ADSP-CM41x Mixed-Signal Control Processor

Table 27-1: CM41X_M4 CAN Register List (Continued)

Name Description

CAN_MB[nn]_DATA2 Mailbox Word 2 Register

CAN_MB[nn]_DATA3 Mailbox Word 3 Register

CAN_MB[nn]_ID0 Mailbox ID 0 Register

CAN_MB[nn]_ID1 Mailbox ID 1 Register

CAN_MB[nn]_LENGTH Mailbox Length Register

CAN_MB[nn]_TIMESTAMP Mailbox Time Stamp Register

CAN_MC1 Mailbox Configuration 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD1 Mailbox Direction 1 Register

CAN_MD2 Mailbox Direction 2 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_RML2 Receive Message Lost 2 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RMP2 Receive Message Pending 2 Register

CAN_STAT Status Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_TIMING Timing Register

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TRS1 Transmission Request Set 1 Register

CAN_TRS2 Transmission Request Set 2 Register

CAN_UCCNF Universal Counter Configuration Mode Register

CAN_UCCNT Universal Counter Register

CAN_UCRC Universal Counter Reload/Capture Register

CM41X_M4 CAN Interrupt List

CAN Functional Description

ADSP-CM41x Mixed-Signal Control Processor 27–3

Table 27-2: CM41X_M4 CAN Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

146 CAN1_TX CAN1 Transmit Level

147 CAN1_RX CAN1 Receive Level

148 CAN1_STAT CAN1 Status Level

149 CAN0_TX CAN0 Transmit Level

150 CAN0_RX CAN0 Receive Level

151 CAN0_STAT CAN0 Status Level

CM41X_M0 CAN Interrupt List

Table 27-3: CM41X_M0 CAN Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

28 CAN0_RX CAN0 Receive Level

28 CAN0_STAT CAN0 Status Level

28 CAN0_TX CAN0 Transmit Level

CM41X_M0 CAN Trigger List

Table 27-4: CM41X_M0 CAN Trigger List Masters

Trigger ID Name Description Sensitivity

19 CAN0_STAT CAN0 Status Level

Table 27-5: CM41X_M0 CAN Trigger List Slaves

Trigger ID Name Description Sensitivity

None

CM41X_M4 CAN Trigger List

Table 27-6: CM41X_M4 CAN Trigger List Masters

Trigger ID Name Description Sensitivity

53 CAN0_STAT CAN0 Status Level

54 CAN1_STAT CAN1 Status Level

CAN Functional Description

27–4 ADSP-CM41x Mixed-Signal Control Processor

Table 27-7: CM41X_M4 CAN Trigger List Slaves

Trigger ID Name Description Sensitivity

None

External Interface

The interface to the CAN bus is a simple two-wire line. The Representation of CAN Transceiver Interconnection
shows a symbolic representation of the CAN transceiver interconnection. Typically, the CAN_TX output and
CAN_RX input pins of the processor connect to an external CAN CAN_TX and CAN_RX pins (respectively) of the
tranceiver. The CAN_TX and CAN_RX pins operate with TTL levels and are appropriate for operation with CAN
bus transceivers according to ISO/DIS 11898.

PROCESSOR

CANxRX

CAN
TRANSCEIVER

RX

CANxTX TX

CANL

CANH
FIELD BUS

Figure 27-1: Representation of CAN Transceiver Interconnection

CAN data is either dominant (logic 0) or recessive (logic 1). The default state of the CAN_TX output is recessive.

Architectural Concepts

The full CAN controller features 32 message buffers called mailboxes. Eight mailboxes are dedicated for message
transmission, eight are for reception, and 16 are programmable in direction.

The CAN module architecture is based around a 32-entry mailbox RAM. The CAN serial interface or the processor
core accesses the mailbox sequentially. Each mailbox consists of eight 16-bit control and data registers and two op-
tional 16-bit acceptance mask registers. Configure all of these registers before enabling the mailbox.

Since the mailbox area is implemented as RAM, the reset values of these registers are undefined. The CAN Mailbox
Area figure shows the mailbox area. The data is divided into fields, which include a message identifier, a time stamp,
a byte count, up to 8 bytes of data, and several control bits.

FDF

EXTID_LO / DFC

AME

EXTID_LO / DFC

TSV

DLC

BASEIDAMIDEFMD

BYTE 6

CANx_AM00H

CANx_AM00L

CANx_MB00_ID1

CANx_MB00_ID0

CANx_MB00_TIMESTAMP

CANx_MB00_LENGTH

CANx_MB00_DATA3

CANx_MB00_DATA2

CANx_MB00_DATA1

CANx_MB00_DATA0BYTE 7

BYTE 4 BYTE 5

BYTE 2 BYTE 3

BYTE 0 BYTE 1

EXTID_HI

BASEIDIDERTR EXTID_HI

WORD9

WORD8

WORD7

WORD6

WORD5

WORD4

WORD3

WORD2

WORD1

WORD0

Figure 27-2: CAN Mailbox Area

CAN Functional Description

ADSP-CM41x Mixed-Signal Control Processor 27–5

The CAN mailbox identification register pair (CAN_MB[nn]_ID0/1) includes:

• The 29-bit identifier (base part CAN_AM[nn]H.BASEID plus the extended part CAN_AM[nn]L.EXTID/
CAN_AM[nn]H.EXTID)

• The acceptance mask enable bit (CAN_MB[nn]_ID1.AME)

• The remote transmission request bit (CAN_MB[nn]_ID1.RTR)

• The identifier extension bit (CAN_MB[nn]_ID1.IDE)

NOTE: Do not write to the identifier of a message object while the mailbox is enabled for the CAN module (the
corresponding bit in CAN_MC1 is set).

The other mailbox area registers and bits are:

• The data length code bit (CAN_MB[nn]_LENGTH.DLC). The upper 12 bits of this register for each mailbox
are marked as reserved. Always, set these 12 bits to zero.

• The mailbox word registers (CAN_MB[nn]_DATA0/1/2/3) supply up to 8 bytes for the data field. The data
is sent MSB first based on the number of bytes defined in the CAN_MB[nn]_LENGTH.DLC bit. For exam-
ple, if only one byte is transmitted or received (CAN_MB[nn]_LENGTH.DLC=1), then it is stored in the
most significant byte of the CAN_MB[nn]_DATA3 register.

• The time stamp value bits (CAN_MB[nn]_TIMESTAMP.TSV)

The final registers in the mailbox area are the acceptance mask registers (CAN_AM[nn]H and CAN_AM[nn]L).
The acceptance mask is enabled when the CAN_MB[nn]_ID1.AME bit is set.

Setting the CAN_CTL.DNM and CAN_AM[nn]H.FDF bits enables the filtering on data field option. When ena-
bled, the CAN_MB[nn]_ID0.EXTID[15:0] bits are reused as acceptance code (DFC) for the data field filtering.

Block Diagram

The CAN Controller Block Diagram figure shows a block diagram of the CAN module.

Architectural Concepts

27–6 ADSP-CM41x Mixed-Signal Control Processor

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 2

MAILBOX INTERRUPT TRANSMIT 2

MAILBOX INTERRUPT MASK 2

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 2

OVERWRITE PROTECTION/SINGLE SHOT 2

AILBOX INTERRUPT RECEIVE 2

TRANSMIT REQUEST RESET 2

RECEIVE MESSAGE PENDING 2

MAILBOX DIRECTION 1

2TRANSMIT ACKNOWLEDGE 2
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 2

DATA

TIMESTAMP

DATA LENGTH

M
A

IL
B

O
X

 31

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 18

M
A

IL
B

O
X

 17

M
A

IL
B

O
X

 16

M
A

IL
B

O
X

 15
DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 2

M
A

IL
B

O
X

 1

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 1

TRANSMIT

MAILBOX INTERRUPT TRANSMIT 1

MAILBOX INTERRUPT MASK 1

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 1

OVERWRITE PROTECTION/SINGLE SHOT 1

MAILBOX INTERRUPT RECEIVE 1

TRANSMIT REQUEST RESET 1

RECEIVE MESSAGE PENDING 1

MAILBOX DIRECTION 1

TRANSMIT ACKNOWLEDGE 1
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 1

IN
T

E
R

R
U

P
T

S

GLOBAL INTERRUPT MASK

GLOBAL INTERRUPT FLAG

GLOBAL INTERRUPT STATUS

E
R

R
O

R
 H

A
N

D
L

E
R

ERROR STATUS

ERROR COUNTERS

ERROR WARNING
C

O
U

N
T

E
R

MODE

COUNTER

RELOAD/CAPTURE

G
L

O
B

A
L

 C
O

N
T

R
O

L

GLOBAL STATUS

GLOBAL CONTROL

DEBUG

T
IM

IN
GBIT TIMING

CLOCK DIVIDEM
A

IL
B

O
X

 0

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

RECEIVE

ACCEPTANCE
FILTER

...

...

...

...

INTERRUPT

SYSTEM EVENT CONTROLLER

P
O

R
T

T
R

A
N

S
C

E
IV

E
R

PE
RI

PH
ER

AL
 B

U
S

16

CAN MODULE

PROCESSOR

Figure 27-3: CAN Controller Block Diagram

Mailbox Control

Mailbox control memory-mapped registers (MMRs) function as control and status registers for the 32 mailboxes.
Each bit in these registers represents one specific mailbox. Since CAN MMRs are all 16 bits wide, pairs of registers
manage certain functionality for all 32 individual mailboxes. Mailboxes 0–15 are configured or monitored in regis-
ters with a suffix of 1. Similarly, mailboxes 16–31 use the same named register with a suffix of 2. For example, the
CAN mailbox direction registers (CAN_MD1 / CAN_MD2) control mailboxes. See the CAN Mailbox Register Pair
figure. The CAN Register List table shows the mailbox control registers.

MD15

15

CANx_MD1

0

MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0

MD31

15

CANx_MD2

0

MD30 MD29 MD28 MD27 MD26 MD25 MD24 MD23 MD22 MD21 MD20 MD19 MD18 MD17 MD16

Figure 27-4: CAN Mailbox Register Pair

Mailboxes 24–31 support transmit operation only and mailboxes 0–7 are receive-only mailboxes. Therefore, the
lower 8 bits in the 1 registers and the upper 8 bits in the 2 registers are sometimes reserved or are restricted in their
use.

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 27–7

Protocol Fundamentals

Although the CAN_RX and CAN_TX pins are TTL-compliant signals, the CAN signals beyond the transceiver have
asymmetric drivers. A low state on the CAN_TX pin activates strong drivers while a high state activates weak drivers.
So, the active low state is the dominant state and the active high state is the recessive state. If the CAN module is
passive, the CAN_TX pin is always high. If two CAN nodes transmit at the same time, dominant bits overwrite
recessive bits.

The CAN protocol specifies that all nodes trying to send a message on the CAN bus attempt to send a frame once
the bus is available. The Standard CAN Frame figure shows the frame. The Start of Frame (SOF) indicator signals
the beginning of a new frame. Each CAN node then begins transmitting its message starting with the message ID.

SOF IDENTIFIER RTR

1 11 1

ARBITRATION PHASE

CRCIDE ACK0...8 BYTESr0 DLC

1 41 0 ... 64 16 2 7 3

EOF IFS

SOF
RTR

CRC

IDE

ACK

r0
DLC

EOF
IFS

- START OF FRAME (SINGLE BIT = 0)
- REMOTE TRANSMISSION REQUEST (REMOTE FRAME = 1)
- IDENTIFIER EXTENSION (EXTENDED ID FRAME = 1)
- RESERVED FOR FUTURE EXPANSION
- DATA LENGTH CONTROL (NUMBER OF DATA BYTES IN FRAME)
- CYCLIC REDUNDANCY CHECK (ERROR BITS IN FRAME)
- ACKNOWLEDGE (RECEIVER DRIVES ONE DOMINANT BIT TO ACK)
- END OF FRAME (SERIES OF 7 RECESSIVE BITS = b#1111111)
- INTERFRAME SPACE (3 RECESSIVE BITS = b#111)

Figure 27-5: Standard CAN Frame

While transmitting, the CAN controller samples the CAN_RX pin to verify that the driven logic level is the value it
placed on the CAN_TX pin. The names for the logic levels apply here. When a transmitting node places a recessive 1
on the CAN_TX pin and detects a dominant 0 on the CAN_RX pin, another node has placed a dominant bit on the
bus. In this case, the dominant bit from from the other node has a higher priority.

Therefore, if the value sensed on the CAN_RX pin is the value driven on the CAN_TX pin, transmission continues.
Otherwise, the CAN controller senses that it has lost arbitration. Module configuration determines the next course
of action.

The Standard CAN Frame figure shows a basic 11-bit identifier frame. The CAN_MB[nn]_ID1.RTR bit follows
the SOF and identifier. The CAN_MB[nn]_ID1.RTR bit indicates whether the frame contains data (data frame)
or is a request for data associated with the message identifier in the frame sent (remote frame).

NOTE: In the CAN protocol, a dominant bit in the CAN_MB[nn]_ID1.RTR field wins arbitration against a
remote frame request (CAN_MB[nn]_ID1.RTR=1) for the same message ID. This functionality allows a
remote request to be a lower priority than a data frame.

The next field of interest in the frame is the CAN_MB[nn]_ID1.IDE bit. When set, it indicates that the message
is an extended frame with a 29-bit identifier instead of an 11-bit identifier. In an extended frame, the first part of
the message resembles the Extended CAN Frame figure.

Architectural Concepts

27–8 ADSP-CM41x Mixed-Signal Control Processor

SOF IDENTIFIER SRR

1 11 1 1 18 1 1 4

RTRIDE r1

1

IDENTIFIER r0 DLC

Figure 27-6: Extended CAN Frame

For the CAN_MB[nn]_ID1.RTR field, a dominant bit in the CAN_MB[nn]_ID1.IDE field wins arbitration
against an extended frame with the same lower 11 bits. Standard frames have a higher priority than extended frames.

The internal logic automatically generates the Substitute Remote Request (SRR), the reserved bits r0 and r1, and the
checksum (CRC). (The SRR is always sent as recessive; reserved bits r0 and r1 are always sent as dominant).

CAN Operating Modes
The CAN controller is in configuration mode when coming out of processor reset. Hardware behavior can be al-
tered only when CAN is in configuration mode. Before initializing the mailboxes, configure the CAN bit timing to
work on the CAN bus. The controller connect to the CAN bus.

Data Transfer Modes

The following sections provide information on the data transfer modes supported by the CAN controller.

Transmit Operations

The CAN Transmit Operation Flowchart shows the CAN transmit operation. Mailboxes 24–31 are dedicated trans-
mitters. Configure mailboxes 8–23 as transmitters by writing 0 to the corresponding bit in the CAN_MD1 or
CAN_MD2 registers. Enable mailbox n (CAN_MC1.MB=1). After writing the data and the identifier into the mail-
box area, the message is sent. Then, the corresponding transmit request bit is set (CAN_TRS1.MB=1).

AT LEAST 1 BIT SET IN CANx_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

Figure 27-7: CAN Transmit Operation Flowchart

When a transmission completes, the corresponding bits in the CAN_TRS1 or CAN_TRS2 and CAN_TRR1 or
CAN_TRR2 registers are cleared. If the transmission is successful, the corresponding bit in the CAN_TA1/
CAN_TA2 register is set. If the transmission aborts due to lost arbitration or a CAN error, the corresponding bit in

CAN Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 27–9

the CAN_AA1/CAN_AA2 register is set. A requested transmission can also be manually aborted by setting the corre-
sponding bit in the CAN_TRR1/CAN_TRR2 register.

Software sets multiple CAN_TRS1.MB bits simultaneously. These bits are reset after either a successful or an abort-
ed transmission.

The CAN hardware sets these bits in the following cases:

• When using the auto-transmit mode of the universal counter

• When a message loses arbitration and the single-shot CAN_OPSS1.MB bit is not set

• When a remote frame request occurs (only possible for receive or transmit mailboxes if the feature for automat-
ic remote frame handling is enabled (CAN_RFH1.MB=1)).

NOTE: Manage the mailbox area when a CAN_TRS1 or CAN_TRS2 bit is set. Write access to the mailbox is
permissible with a bit set. But, changing data in such a mailbox can lead to unexpected data during trans-
mission.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1 or CAN_TRS2 bit
associated with a disabled mailbox can result in erroneous behavior. Similarly, disabling a mailbox before the associ-
ated CAN_TRS1 or CAN_TRS2 bit is reset by the internal logic can cause unpredictable results.

Retransmission

Normally, the current message object is resent after the loss of arbitration or error frame detection on the CAN bus
line. If there is more than one transmit message object pending, the message object with the highest mailbox trans-
mits first. See the Transmit Flow figure. The currently aborted transmission restarts after any messages with higher
priority are sent.

AT LEAST 1 BIT SET IN CANx_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

Figure 27-8: Transmit Flow

Transmit Operations

27–10 ADSP-CM41x Mixed-Signal Control Processor

A message written into the mailbox does not replace a message under preparation. The message under preparation is
copied into the temporary transmit buffer when the internal transmit request for the CAN core module is set. The
message in the buffer is not replaced until:

• The message is sent successfully

• The arbitration on the CAN bus line is lost

• There is an error frame on the CAN bus line

Single-Shot Transmission

When using the single-shot transmission feature (CAN_OPSS1.MB=1), the corresponding CAN_TRS1 bit is
cleared after the message is successfully sent. The bit is cleared even if the transmission aborts due to a lost arbitra-
tion or an error frame on the CAN bus line. Therefore, there is no further attempt to transmit the message again
when the initial try failed, and the abort error is reported (CAN_AA1.MB=1).

Auto-Transmission

In auto-transmit mode, the message in mailbox 11 (MB11) can be sent periodically using the universal counter.
This mode often broadcasts heartbeats to all CAN nodes. So, messages sent this way usually have a high priority.

The period value is written to the CAN_UCRC register. Auto-transmission mode is enabled by setting the
CAN_UCCNF.UCCNF field to 0x03. When enabled, the counter CAN_UCCNT is loaded with the value in the
CAN_UCRC register. The counter decrements to 0 at the CAN bit clock rate and is then reloaded from CAN_UCRC.
Each time the counter reaches a value of 0, internal logic automatically sends the CAN_TRS1.MB bit. The corre-
sponding message from mailbox 11 transfers.

For proper auto-transmit operation, configure mailbox 11 as a transmit mailbox. The mailbox must contain valid
data (identifier, control bits, and data) before the counter expires and after this mode is enabled.

Receive Operation

The CAN hardware autonomously receives messages and discards invalid messages. Once a valid message is success-
fully received, the receive logic interrogates all enabled receive mailboxes. The logic interrogates sequentially, from
mailbox 23 down to mailbox 0, whether the message is of interest to the local node or not.

Each incoming data frame is compared to all identifiers stored in the active receive and transmit mailboxes with the
feature for remote frame handling enabled (=1). The active receive mailboxes indices of CAN_MD1 and CAN_MC1
registers are set to 1. The message identifier of the received message, along with the identifier extension
(CAN_MB[nn]_ID1.IDE) and remote transmission request (CAN_MB[nn]_ID1.RTR) bits, are compared
with the register settings of each mailbox. In standard mode, the message is compared with the content of the
CAN_MB[nn]_ID1 register. In extended mode, the content of the CAN_MB[nn]_ID0 register must also match.

If the acceptance mask enable CAN_MB[nn]_ID1.AME bit is not set, a match is signaled only if
CAN_MB[nn]_ID1.IDE, CAN_MB[nn]_ID1.RTR, and all (11 or 29) identifier bits are exact. If, however, the
CAN_MB[nn]_ID1.AME bit is set, the acceptance mask registers (CAN_AM[nn]H/L) determine which of the
CAN_MB[nn]_ID1.IDE and CAN_MB[nn]_ID1.RTR bits must match.

The following logic applies:

Transmit Operations

ADSP-CM41x Mixed-Signal Control Processor 27–11

[(Received Message ID) XNOR (CAN_MB[nn]_ID0/1)] OR [(CAN_MB[nn]_ID1.AME) AND
(CAN_AM[nn]H /L)].

This logic appears graphically in the CAN Message Receive Logic figure.

ma t c h

AME

CANx_AMyy_H/L

CANx_MByy_ID1/0

r eceived m essage

Figure 27-9: CAN Message Receive Logic

A one (1) at the respective bit position in the CAN_AM[nn]H/CAN_AM[nn]L mask registers means that the bit
does not need to match when CAN_MB[nn]_ID1.AME=1. This way, a mailbox can accept a group of messages.

Table 27-8: Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 X X Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled; Mailbox n configured for transmit; Remote
frame handling disabled

1 0 1 Used Mailbox n enabled; Mailbox n configured for transmit; Remote
frame handling enabled

1 1 X Used Mailbox n enabled; Mailbox n configured for receive

If the acceptance filter finds a matching identifier, the content of the received data frame is stored in that mailbox. A
received message is stored only once, even if multiple receive mailboxes match its identifier. If the current identifier
does not match any mailbox, the message is not stored.

The CAN Receive Operation Flowchart illustrates the decision tree of the receive logic when processing the individu-
al mailboxes.

If a message is received for a mailbox and that mailbox still contains unread data (CAN_RMP1.MB), then the pro-
gram decides whether to overwrite the old message. If the CAN_OPSS1.MB bit is cleared, the corresponding
CAN_RML1.MB bit is set, and the stored message is overwritten. The receive message lost interrupt request occurs
(CAN_GIS.RMLIS is set). If, however, the CAN_OPSS1.MB bit is set, the next mailboxes are checked for another
matching identifier. If no match is found, the message is discarded, and the next message is checked.

NOTE: If a receive mailbox is disabled, an ongoing receive message for that mailbox is lost even if a second mail-
box is configured to receive the same identifier.

Data Transfer Modes

27–12 ADSP-CM41x Mixed-Signal Control Processor

MAILBOX
ENABLED?

AME?

Y

FROM MESSAGE RECEIVER/PREVIOUS MAILBOX

0COMPARE ALL
BITS

MATCH?

Y

N

EXIT

NEXT MAILBOX
N

1 COMPARE
UNMASKED
BITS ONLY

NEXT MAILBOX

MAILBOX
DIRECTION?

RECEIVE

MAILBOX
READY?

TRANSMIT

REMOTE

 MAILBOX?
N

NEXT MAILBOX

Y
OVERWRITE

PROTECTION?

N

N

Y

REPORT
OVERFLOW

ERROR

SAVE MESSAGE
TO MAILBOX

TRANSMIT
REMOTE

MESSAGE

Y
NEXT MAILBOX

EXIT EXIT

Figure 27-10: CAN Receive Operation Flowchart

Data Acceptance Filtering

If Device Net mode is enabled (CAN_CTL.DNM = 1) and the mailbox is set up for filtering on data field, the filter-
ing occurs on the standard ID of the message and data fields. The data field filtering can be programmed for either
the first byte only or the first 2 bytes, as shown the Data Field Filtering table.

If the CAN_AM[nn]H.FDF bit is set, the corresponding CAN_AM[nn]L register holds the data field mask (DFM
bits 15:0]). If the CAN_AM[nn]H.FDF bit is cleared, the corresponding CAN_AM[nn]L register holds the ex-
tended identifier mask (CAN_AM[nn]H.EXTID bits 15:0).

Table 27-9: Data Field Filtering

FDF (Filter on Data Field) FMD (Full Mask Data Field) Description

0 0 Do not allow filtering on the data field

0 1 Not allowed. FMF must be 0 when FDF is 0

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

Watchdog Mode

Watchdog mode ensures that messages are received periodically. It also observes whether a certain node on the net-
work is alive and functioning properly. Watchdog mode detects and manages the failure cases, as needed.

Enable this mode by programming the universal counter to watchdog mode by setting the CAN_UCCNF.UCCNF
to 0x2. Once enabled, the CAN_UCCNT register is loaded with the predefined value contained in CAN_UCRC. This
counter decrements at the CAN bit rate.

Receive Operation

ADSP-CM41x Mixed-Signal Control Processor 27–13

If the CAN_UCCNF.UCCT and CAN_UCCNF.UCRC bits are set and a message is received in mailbox 4 before the
counter counts down to 0, the counter is reloaded with the CAN_UCRC contents. If the counter has counted down
to 0 without receiving a message in mailbox 4, then the CAN_GIS.UCEIS bit is set. The counter reloads automat-
ically with the contents of the CAN_UCRC register. If an interrupt request is desired for this event, set the
CAN_GIM.UCEIM bit. With the mask bit set, when a watchdog interrupt request occurs, the CAN_GIF.UCEIF
bit is also set.

Write to the CAN_UCCNF register to reload the counter with the contents of CAN_UCRC or to disable the register.

The CAN_UCRC register controls the time period it takes for the watchdog interrupt request to occur.

Time Stamps

To get an indication of the time of the receive or transmit time for each message, program the CAN universal coun-
ter to time stamp mode. Enable this mode by setting the CAN_UCCNF.UCCNF field to 0x01.

If enabled, the value of the 16-bit free-running counter (CAN_UCCNT) is written into the
CAN_MB[nn]_TIMESTAMP register of the corresponding mailbox. The operation occurs when a received mes-
sage is stored or a message is transmitted.

The time stamp value is captured at the sample point of the Start of Frame (SOF) bit of each incoming or outgoing
message. Afterwards, this time stamp value is copied to the CAN_MB[nn]_TIMESTAMP register of the corre-
sponding mailbox.

If the mailbox is configured for automatic remote frame handling (CAN_RFH1.MB = 1), the time stamp value is
written for transmission of a data frame or the reception of the requested data frame. The mailbox is configured for
transmit or receive.

Clear the counter by setting the CAN_UCCNF.UCRC bit to 1. Or, disable the counter by clearing the
CAN_UCCNF.UCE bit. Write to the CAN_UCCNT register to load the counter with a value.

It is also possible to clear the counter (CAN_UCCNT) by the reception of a message in mailbox number 4 (synchro-
nization of all time stamp counters in the system). This operation is accomplished by setting the
CAN_UCCNF.UCCT bit.

The CAN_GIS.UCEIS bit is set when the counter overflows. A global CAN interrupt request can optionally occur
by unmasking the CAN_GIM.UCEIM bit. If the interrupt source is unmasked, the CAN_GIF.UCEIF bit is also
set.

Remote Frame Handling

Automatic handling of remote frames for a transmit mailbox is enabled by setting the corresponding
CAN_RFH1.MB bit.

Remote frames are data frames that have no data field and the CAN_MB[nn]_ID1.RTR bit is set. The data length
code (DLC) of the requesting remote frame overrules the DLC of the responding data frame. A DLC can be pro-
grammed with values in the range of 0–15, but DLC values greater than 8 are considered as 8.

A remote frame contains:

Data Transfer Modes

27–14 ADSP-CM41x Mixed-Signal Control Processor

• The identifier bits

• The control field CAN_MB[nn]_LENGTH.DLC (data length count)

• The remote transmission request (CAN_MB[nn]_ID1.RTR) bit

Only configurable mailboxes MB8–MB23 can process remote frames, but all mailboxes can receive and transmit
remote frame requests. The CAN_OPSS1 register has no effect when configured for automatic remote frame han-
dling. All content of a mailbox is always overwritten by an incoming message.

NOTE: If a remote frame is received, the DLC of the corresponding mailbox is overwritten with the received val-
ue.

Erroneous behavior can result when the CAN_RFH1.MB bit is changed while the corresponding mailbox is process-
ing. To avoid the risk of inconsistent messages, programs must temporarily disable the mailbox while its data regis-
ters are updating.

Temporarily Disabling CAN Mailbox

If a mailbox is enabled and configured to transmit, monitor the write accesses to the data field to avoid transmitting
inconsistent messages. Be careful if the mailbox is transmitting (or attempting to transmit) repeatedly. Also, if this
mailbox is used for automatic remote frame handling, the data field must be updated without losing an incoming
remote request frame and without sending inconsistent data. Therefore, the CAN controller allows for temporarily
disabling the mailbox using the mailbox temporary disable register (CAN_MBTD).

The pointer to the requested mailbox to the CAN_MBTD.TDPTR field is written, and the CAN_MBTD.TDR bit is
set. Internal logic then sets the corresponding CAN_MBTD.TDA flag.

If a mailbox is configured as transmit (CAN_MD1 = 0) and the CAN_MBTD.TDA bit is set, the content of the data
field of that mailbox can be updated. If there is an incoming remote request frame while the mailbox is temporarily
disabled,

• Internal logic sets the corresponding transmit request bit (CAN_TRS1.MB), and

• The data length code (DLC) of the incoming message is written to the corresponding mailbox.

However, the requested message is not sent until the CAN_MBTD.TDR bit is cleared. Similarly, all transmit requests
for temporarily disabled mailboxes are ignored until the CAN_MBTD.TDR bit is cleared. Additionally, transmission
of a message immediately aborts when the mailbox is temporarily disabled and the corresponding transmission re-
quest reset (CAN_TRR1.MB) bit for this mailbox is set.

If a mailbox is configured to receive (CAN_MD1 = 1), then after issuing a temporary disable request, the
CAN_MBTD.TDA flag is set. The mailbox is not processed. If there is an incoming message for a temporarily disa-
bled mailbox, the internal logic waits until reception is complete or there is an error on the CAN bus before setting
CAN_MBTD.TDA. Once this flag is set, the mailbox can then be disabled (CAN_MC1 = 0) without the risk of losing
an incoming frame. The CAN_MBTD.TDR bit must then be reset as soon as possible.

When the CAN_MBTD.TDA flag is set for a given mailbox, only the data field of that mailbox can be updated.
Accesses to the control bits and the identifier are denied.

Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 27–15

Bit Timing

The CAN controller does not have a dedicated clock. Instead, the CAN clock is derived from the system clock based
on a configurable number of time quanta. The time quantum (TQ) is derived from the formula:

TQ = (BRP + 1)/SCLK

where BRP is the 10-bit bit rate prescaler field in the CAN_CLK register.

Although the CAN_CLK.BRP field can be set to any value, it is recommended that the value be greater than or
equal to 4. Restrictions apply to the bit timing configuration when BRP is less than 4.

The CAN_CLK register defines the TQ value, and multiple time quanta make up the duration of a CAN bit on the
bus. The CAN_TIMING register controls the nominal bit time and the sample point of the individual bits in the
CAN protocol. The Three Phases of a CAN Bit figure shows the three phases of a CAN bit: the synchronization
segment, the segment before the sample point, and the segment after the sample point.

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

Figure 27-11: Three Phases of a CAN Bit

The synchronization segment is fixed to one TQ. Synchronize the nodes on the bus. All signal edges are expected to
occur within this segment.

The CAN_TIMING.TSEG1 and CAN_TIMING.TSEG2 fields control how many TQs the CAN bits consist of,
resulting in the CAN bit rate. The following formula gives the nominal bit time.

tBIT = TQ × [1 + (1 + TSEG1) + (1 + TSEG2)]

For safe receive operations on given physical networks, the sample point is programmable by the
CAN_TIMING.TSEG1 field. The CAN_TIMING.TSEG2 field holds the number of TQs to complete the bit
time. Often, best sample reliability is achieved with sample points in the high 80% range of the bit time. Never use
sample points lower than 50%. Therefore, CAN_TIMING.TSEG1 must always be greater than or equal to
CAN_TIMING.TSEG2.

The CAN module does not distinguish between the propagation segment and the phase segment-1 as defined by the
standard. The CAN_TIMING.TSEG1 value is intended to cover both of them. The CAN_TIMING.TSEG2 value
represents the phase segment-2.

If the CAN module detects a recessive-to-dominant edge outside the synchronization segment, it can automatically
move the sampling point such that the CAN bit is still handled properly. The synchronization jump width
(CAN_TIMING.SJW) field specifies the maximum number of TQs, ranging from 1 to 4 (SJW + 1), allowed for
such a resynchronization attempt. The SJW value must not exceed CAN_TIMING.TSEG2 or
CAN_TIMING.TSEG1. Therefore, the fundamental rule for writing CAN_TIMING is:

SJW ≤ TSEG2 ≤ TSEG1

CAN Operating Modes

27–16 ADSP-CM41x Mixed-Signal Control Processor

In addition to this fundamental rule, CAN_TIMING.TSEG2 must also be greater than or equal to the information
processing time (IPT). IPT is the time required by the logic to sample the CAN_RX input, which is 3 system clock
cycles.

Therefore, restrictions apply to the minimal value of CAN_TIMING.TSEG2 if CAN_CLK.BRP is less than 2. If
CAN_CLK.BRP is set to 0, the CAN_TIMING.TSEG2 field must be greater than or equal to 2. If
CAN_CLK.BRP is set to 1, the minimum CAN_TIMING.TSEG2 value is 1.

NOTE: Use the same nominal bit rate for all nodes on a CAN bus.

With all the timing parameters set, the final consideration is sampling performance. The default behavior of the
CAN controller is to sample the CAN bit once. The controller samples at the point described by the CAN_TIMING
register and controlled by the CAN_TIMING.SAM bit. If this bit is set, however, the input signal is oversampled
three times at the system clock rate. The resulting value is generated by a majority decision of the three sample val-
ues. Always keep the CAN_TIMING.SAM bit cleared if the BRP value is less than 4.

Do not modify the CAN_CLK and CAN_TIMING registers during normal operation. Always enter configuration
mode first. Writes to these registers have no effect when CAN is not in configuration or debug mode. If not coming
out of processor reset, enter configuration mode by setting the CAN_CTL.CCR bit and poll the CAN_STAT regis-
ter until CAN_STAT.CCA is set.

NOTE: If the CAN_TIMING.TSEG1 field is programmed to 0, the module does not leave the configuration
mode.

During configuration mode, the module is not active on the CAN bus line. The CAN_TX output pin remains reces-
sive and the module does not receive or transmit messages or error frames. After leaving the configuration mode, all
CAN internal core registers and the CAN error counters are set to their initial values.

A soft reset does not change the values of CAN_CLK and CAN_TIMING. Therefore, an ongoing transfer through
the CAN bus cannot be corrupted by changing the bit timing parameter or initiating the soft reset (by setting the
CAN_CTL.SRS bit).

CAN Low Power Features

The CAN module includes built-in sleep and suspend modes to save power.

The following sections describe the behavior of the CAN module in these modes.

Built-In Suspend Mode

The most modest of power savings mode is the suspend mode. This mode is entered by setting the CAN_CTL.CSR
bit. The module enters the suspend mode after the current operation of the CAN bus finishes. Then, the internal
logic sets the CAN_STAT.CSA bit. Once CAN enters this mode, the module is no longer active on the CAN bus
line, slightly reducing power consumption.

In suspend mode, the CAN_TX output pin remains in a recessive state, and the module does not receive or transmit
messages or error frames. The content of the CAN_CEC register remains unchanged. Clear CAN_CTL.CSR to exit
suspend mode.

CAN Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 27–17

The only difference between suspend mode and configuration mode is that the CAN_CTL and CAN_STAT registers
are not reset when exiting suspend mode.

Built-In Sleep Mode

The next level of power savings can be realized by using the built-in sleep mode for the module. This mode is en-
tered by setting the CAN_CTL.SMR bit. The module enters the sleep mode after the current operation of the CAN
bus finishes. Once this mode is entered, many of the internal CAN module clocks are shut off, reducing power con-
sumption, and the CAN_INT.SMACK bit is set.

When the CAN module is in sleep mode, all register reads return the contents of CAN_INT instead of the usual
contents. All register writes, except to CAN_INT, are ignored in sleep mode. A small part of the module is clocked
continuously to allow for waking up out of sleep mode.

A write to the CAN_INT register ends sleep mode. If the CAN_CTL.WBA bit is set before entering sleep mode, a
dominant bit on the CAN_RX pin also ends sleep mode. When software sets the CAN_CTL.SMR bit, hardware sets
the CAN_CTL.CSR bit as well, making sleep mode a super set of suspend mode. When the controller wakes up
from sleep mode, hardware automatically clears CAN_CTL.SMR and CAN_CTL.CSR. If, however, the controller
never enters sleep mode because the wake-up condition was met before CAN_INT.SMACK bit turns to 1, the
CAN_CTL.SMR and CAN_CTL.CSR bits do not always automatically clear. Therefore, clear the two bits using
software, when returning from sleep mode.

Soft Reset

The CAN controller features a build-in reset mechanism called soft reset. Soft reset is entered immediately after soft-
ware has set the CAN_CTL.SRS bit. Soft reset brings all control registers to a defined state. Mailbox and error reg-
isters remain unaffected. Soft reset does not alter the CAN_TIMING and CAN_CLK registers and does not disturb
the on-going transmission of a currently pending message, acknowledge bit or error frame. However, when recover-
ing from soft reset, software can lose track of transmission or reception reports and interrupt requests.

CAN Event Control
The following section describe how the CAN module generates and controls events.

CAN Interrupt Signals

The CAN module provides three independent interrupt requests: two mailbox interrupt requests (mailbox receive
interrupt request (MBRIRQ) and mailbox transmit interrupt request (MBTIRQ)) and a global CAN status inter-
rupt request (GIRQ). The values of these three interrupt requests can also be read through the CAN_GIS register.

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module can generate a receive or transmit interrupt request, depending on the
mailbox configuration. To enable a mailbox to generate an interrupt request, set the corresponding CAN_MBIM1
bit.

CAN Low Power Features

27–18 ADSP-CM41x Mixed-Signal Control Processor

If a mailbox is configured as a receive mailbox, the corresponding CAN_MBRIF1 bit and CAN_RMP1 bit are set
after a received message is stored in mailbox n. When using the feature for automatic remote frame handling
(CAN_RFH1=1), the receive interrupt flag is set after the requested data frame is stored in the mailbox.

If any CAN_MBRIF1 bits are set, the mailbox generates a CAN_INT.MBRIRQ interrupt request. To clear the
CAN_INT.MBRIRQ interrupt request, software must clear all of the set CAN_MBRIF1 bits by writing a 1 to those
bit locations in CAN_MBRIF1. Prior to this operation, software must clear the corresponding CAN_RMP1 bit.

If a mailbox is configured as a transmit mailbox, the corresponding CAN_MBTIF1 bit in the transmit interrupt flag
is set after the message in mailbox n is sent correctly. The corresponding CAN_TA1 bit is also set. The CAN_TA1
bits maintain their state even after the corresponding mailbox n is disabled (CAN_MC1=0). When using the feature
for automatic remote frame handling, the transmit interrupt flag is set after the requested data frame is sent from the
mailbox.

If any CAN_MBTIF1.MB bits are set, the MBTIRQ interrupt output is raised in the CAN_INT register. To clear
the MBTIRQ interrupt request, software must clear all of the bits that are set in the CAN_MBTIF1 register by writ-
ing a 1 to those bit locations. Additionally, software must clear the associated CAN_TA1 bit or set the associated
CAN_TRS1 bit to clear the interrupt source that asserts the CAN_MBTIF1 bit.

Global Interrupt

The global CAN interrupt logic implements with three registers:

• The CAN_GIM register, where each interrupt source can be enabled or disabled separately

• The CAN_GIS register

• The CAN_GIF register

The interrupt mask bits only affect the content of the CAN_GIF register. If the mask bit is not set in the CAN_GIM
register, the corresponding flag bit is not set when the event occurs. The interrupt status bits in the CAN_GIS
register, however, are always set when the corresponding interrupt event occurs, independent of the mask bits. Thus,
the interrupt status bits can be used to poll interrupt events.

The CAN_INT.GIRQ bit is only asserted if a bit in the CAN_GIF register is set. The read-only CAN_INT.GIRQ
bit remains set as long as at least 1 bit in CAN_GIF is set. All bits in the interrupt status and interrupt flag registers
remain set until cleared by software or a soft reset has occurred.

NOTE: The CAN_GIF register is read-only (RO). In the global CAN interrupt ISR, clear the interrupt latch by
writing a 1 to the corresponding bit of the CAN_GIS register. The operations clear the related bits of the
CAN_GIS and CAN_GIF registers, as well as the CAN_INT.GIRQ bit.

There are several interrupt events that can activate this GIRQ interrupt request:

• Access denied event interrupt (CAN_GIM.ADIM, CAN_GIS.ADIS, CAN_GIF.ADIF): At least one access
to the mailbox RAM occurred during a data update by internal logic.

CAN Interrupt Signals

ADSP-CM41x Mixed-Signal Control Processor 27–19

• Universal counter exceeded event interrupt (CAN_GIM.UCEIM, CAN_GIS.UCEIS, CAN_GIF.UCEIF):
There is an overflow of the universal counter (in time stamp mode or event counter mode) or the counter has
reached the value 0x0000 (in watchdog mode).

• Receive message lost event interrupt (CAN_GIM.RMLIM, CAN_GIS.RMLIS, CAN_GIF.RMLIF): A mes-
sage is received for a mailbox that currently contains unread data. At least 1 bit in the CAN_RMLn register is
set. If the bit in CAN_GIS and CAN_GIF registers is cleared and there is at least 1 bit in CAN_RML1 still set,
then the bit in the CAN_GIS and CAN_GIF registers is not set again. The internal interrupt source signal is
only active if a new bit in CAN_RML1 is set.

• Abort acknowledge event interrupt (CAN_GIM.AAIM, CAN_GIS.AAIS, CAN_GIF.AAIF): At least 1
CAN_AA1.MB bit in the CAN_AA1 registers is set. If the bit in the CAN_GIS and CAN_GIF registers is
cleared and there is at least 1 bit in CAN_AA1 still set, then the bit in the CAN_GIS and CAN_GIF registers is
not set again. The internal interrupt source signal is only active if a new bit in CAN_AA1 is set. The
CAN_AA1.MB bits maintain state even after the corresponding mailbox n is disabled (CAN_MC1 = 0).

• Access to unimplemented address event interrupt (CAN_GIM.UIAIM, CAN_GIS.UIAIS,
CAN_GIF.UIAIF): There was a CPU access to an address which is not implemented in the controller mod-
ule.

• Wake-up event interrupt (CAN_GIM.WUIM, CAN_GIS.WUIS, CAN_GIF.WUIF): The CAN module has
left the sleep mode because of detected activity on the CAN bus line.

• Bus-off event interrupt (CAN_GIM.BOIM, CAN_GIS.BOIS, CAN_GIF.BOIF): The CAN module has en-
tered the bus-off state. This interrupt source is active if the status of the CAN core changes from normal opera-
tion mode to the bus-off mode. If the bit in the CAN_GIS and CAN_GIF registers is cleared and the bus-off
mode is still active, then this bit is not set again. If the module leaves the bus-off mode, the bit in the
CAN_GIS and CAN_GIF registers remains set, if not explicitly cleared.

• Error-passive event interrupt (CAN_GIM.EPIM, CAN_GIS.EPIS, CAN_GIF.EPIF): The CAN module
has entered the error-passive state. This interrupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in the CAN_GIS and CAN_GIF registers is cleared
and the error-passive mode is still active, then this bit is not set again. If the module leaves the error-passive
mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not explicitly cleared.

• Error warning receive event interrupt (CAN_GIM.EWRIM, CAN_GIS.EWRIS, CAN_GIF.EWRIF): The
CAN receive error counter (CAN_CEC.RXECNT) has reached the warning limit. If the bit in the CAN_GIS
and CAN_GIF registers) is cleared and the error warning mode is still active, this bit is not set again. If the
module leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not
explicitly cleared.

• Error warning transmit interrupt (CAN_GIM.EWTIM, CAN_GIS.EWTIS, CAN_GIF.EWTIF): The CAN
transmit error counter (CAN_CEC.TXECNT) has reached the warning limit. If the bit in the CAN_GIS and
CAN_GIF registers is cleared and the error warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not explicitly
cleared.

CAN Interrupt Signals

27–20 ADSP-CM41x Mixed-Signal Control Processor

Event Counter

For diagnostic functions, it is possible to use the universal counter as an event counter. The counter can be program-
med in the CAN_UCCNF[3:0] field to increment on one of these conditions:

• 0x6 – CAN error frame. Counter increments if there is an error frame on the CAN bus line.

• 0x7 – CAN overload frame. Counter increments if there is an overload frame on the CAN bus line.

• 0x8 – Lost arbitration. Counter increments every time arbitration on the CAN line is lost during transmission.

• 0x9 – Transmission aborted. Counter increments every time arbitration is lost or a transmit request is canceled
(CAN_AA1 is set).

• 0xA – Transmission succeeded. Counter increments every time a message sends without detected errors
(CAN_TA1 is set).

• 0xB – Receive message rejected. Counter increments every time a message is received without detected errors
but not stored in a mailbox because there is no matching identifier found.

• 0xC – Receive message lost. Counter increments every time a message is received without detected errors but
not stored in a mailbox because the mailbox contains unread data (CAN_RML1 is set).

• 0xD – Message received. Counter increments every time a message is received without detected errors, whether
the received message is rejected or stored in a mailbox.

• 0xE – Message stored. Counter increments every time a message is received without detected errors, has an
identifier that matches an enabled receive mailbox, and is stored in the receive mailbox (CAN_RMP1 is set).

• 0xF – Valid message. Counter increments every time a valid transmit or receive message is detected on the
CAN bus line.

CAN Warnings and Errors

The processor controls CAN warnings and errors using the error counter (CAN_CEC) register, the error status
(CAN_ESR) register, and the error counter warning level (CAN_EWR) register. The following sections describe error
handling.

Programmable Warning Limits

Programs can set the warning level for CAN_GIS.EWTIS and CAN_GIS.EWRIS separately by writing to the
CAN_EWR.EWLREC and CAN_EWR.EWLTEC fields. After power-on reset, the CAN_EWR register is set to the de-
fault warning level of 96 for both error counters. After a soft reset, the contents of this register remain unchanged.

Error Handling

Error management is a part of the CAN standard. Several different kinds of bus errors can occur during transmis-
sions:

• Bit error – Only the transmitting node detects this error. Whenever a node transmits, it continuously monitors
its receive pin (CAN_RX) and compares the received bit with the transmitted bit. During the arbitration phase,

CAN Event Control

ADSP-CM41x Mixed-Signal Control Processor 27–21

the node postpones the transmission if the received and transmitted bits do not match. However, after the arbi-
tration phase, a bit error is signaled any time the value on CAN_RX does not equal what is transmitted on the
CAN_TX pin. (The arbitration phase completes when the CAN_MB[nn]_ID1.RTR bit is sent successfully.)

• Form error. Occurs when a fixed-form bit position in the CAN frame contains one or more illegal bits. Occurs
when a dominant bit is detected at a delimiter or end of frame bit position.

• Acknowledge error. Occurs whenever a message is sent and no receivers drive an acknowledge bit.

• CRC error. Occurs whenever a receiver calculates the CRC on the data it received and finds it different than
the CRC that transmitted on the bus itself.

• Stuff error. The CAN specification requires the transmitter to insert an extra stuff bit of opposite value after 5
bits have transmitted with the same value. The receiver disregards the value of the stuff bits. However, it takes
advantage of the signal edge to resynchronize itself. A stuff error occurs on receiving nodes whenever the sixth
consecutive bit value is the same as the previous 5 bits.

Once the CAN module detects any of the errors, it updates the CAN_ESR and CAN_CEC registers. In addition to
the standard errors, the CAN_ESR.SAO flag signals when the CAN_RX pin sticks at dominant level, indicating a
possibility of shorted wires.

Error Frames

It is important that all nodes on the CAN bus ignore data frames that any single node failed to receive. Every node
sends an error frame as soon as it has detected an error as shown in the CAN Error Example figure.

A device that has detected an error still completes the ongoing bit. It initiates an error frame by sending six domi-
nant and eight recessive bits to the bus. Since this activity is a violation of the bit stuffing rule, all nodes are signaled
to discard the ongoing frame. (All receivers that did not detect the transmission error in the first instance now detect
a stuff bit error.)

The transmitter can detect a normal bit error sooner. It aborts the transmission of the ongoing frame and tries re-
sending it later.

When all nodes on the bus have detected the error, they also send six dominant and eight recessive bits to the bus.
The resulting error frame consists of two different fields. The first field is the superposition of error flags contributed
from the different stations, which are a sequence of 6–12 dominant bits. The second field is the error delimiter and
consists of eight recessive bits indicating the end of frame.

CAN Warnings and Errors

27–22 ADSP-CM41x Mixed-Signal Control Processor

8 BITS

6 BITS

NODE 2 TX

NODE 1 TX

NODE 2 DETECTS
ANY ERROR AND
INITIATES ERROR
FRAME

NODE 1 DETECTS
A BIT EROR AND
SIGNALS THE
ERROR ALSO

NODE 1
WAS
TRANS-
MITTING
DATA

NEW START
BIT

NODE 3 TX

ERROR FRAME

RESULTING BUS

6 BITS

6 BITS

NODE 3 DETECTS
A STUFF BIT ERROR
AND SIGNALS THE
ERROR ALSO

Figure 27-12: CAN Error Example

For CRC errors, the error frame initiates at the end of the frame, rather than immediately after the failing bit.

After having received eight recessive bits, every node knows that the error condition is resolved and, if messages are
pending, starts transmission. The transmitter that had to abort its operation must win the new arbitration again;
otherwise its message is delayed as determined by priority.

Because the transmission of an error frame destroys the frame under transmission, a faulty node erroneously detect-
ing an error can block the bus. So, there are two node states which determine a nodes right to signal an error—error-
active and error-passive.

• Error-active nodes have an error detection rate below a certain limit. These nodes drive an active error flag of six
dominant bits.

• Error-passive nodes have a higher error detection rate and can have a local problem and therefore have a limited
right to signal errors. These nodes drive a passive error flag consisting of six recessive bits. Therefore, an error-
passive transmitting node is still able to inform the other nodes about the aborting of a self-transmitted frame.
But, it is no longer able to destroy correctly received frames of other nodes.

Error Levels

The CAN specification requires each node in the system to operate at one of three levels. The CAN Error Level
Description table describes the levels. This functionality prevents nodes with high error rates from blocking the en-
tire network, as local hardware can cause the errors. The CAN module provides an error counter for transmit (TEC)
and an error counter for receive (REC). The CAN_CEC register contains each of these 8-bit counters.

After initialization, both the TEC and the REC counters are 0. Each time a bus error occurs, one of the counters
increments by either 1 or 8, depending on the error situation. Refer to version 2.0 of the CAN specification. Suc-
cessful transmit or receive operations decrement the respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into an error-passive state and the
CAN_STAT.EP bit is set. Once this state occurs, the module is not allowed to send any more active error frames.
However, the module can still transmit messages and signal passive error frames in case the transmission fails due to
bit errors.

CAN Warnings and Errors

ADSP-CM41x Mixed-Signal Control Processor 27–23

If one of the counters exceeds 255 (that is, when an 8-bit counter overflows), the CAN module disconnects from the
bus and it goes into bus-off mode. In this mode, the CAN_STAT.EBO bit is set. Software intervention is needed for
recovery from this state, unless the CAN_CTL.ABO bit is enabled. The bit puts the module into active mode after
the bus-off recovery sequence.

Table 27-10: CAN Error Level Description

Level Condition Description

Error active Transmit and receive error counters <128 This level is the initial condition level. As long as errors stay be-
low 128, the node drives active error flags during error frames.

Error passive Transmit or receive error counter-value from
128 through 255, inclusive

Errors have accumulated to a level that requires the node to
drive passive error flags during error frames

Bus off Transmit or receive error counters greater
than 255

CAN module goes into bus-off mode

In addition to the three levels in the table, the CAN module also generates separate transmit and receive warnings
(CAN specification enhancement). By default, when one of the error counters exceeds 96, it signals and reports a
warning in the CAN_STAT register. The CAN receive warning flag (CAN_STAT.WR) bit is set when
CAN_CEC.RXECNT exceeds 96. The CAN transmit warning flag (CAN_STAT.WT) bit is set when
CAN_CEC.TXECNT exceeds 96. The error warning level can be programmed using the error warning register
(CAN_EWR).

Additionally, interrupt requests can occur for all of these levels by unmasking them in the global CAN interrupt
mask register (CAN_GIM). These sources include: the bus-off interrupt (CAN_GIM.BOIM), the error-passive inter-
rupt (CAN_GIM.EPIM), the error warning receive interrupt (CAN_GIM.EWRIM), and the error warning transmit
interrupt (CAN_GIM.EWTIM).

During the bus-off recovery sequence, internal logic sets the configuration mode request CAN_CTL.CCR bit. The
CAN core module does not automatically come out of the bus-off mode. The CAN_CTL.CCR bit cannot be reset
until the bus-off recovery sequence completes.

NOTE: Set the CAN_CTL.ABO bit to override this behavior. After exiting the bus-off or configuration modes, the
CAN error counters are reset.

CAN Debug and Test Modes

The CAN module contains test mode features that aid in the debugging of the CAN software and system.

NOTE: When using these features, the CAN module does not always comply to the CAN specification. Enable or
disable all test modes only when the module is in configuration mode (CAN_STAT.CCA=1) or suspend
mode (CAN_STAT.CSA=1).

The CAN_DBG.CDE bit provides access to all of the debug features. Set this bit to enable the test mode. Write to
the bit first before writing to the CAN_DBG register. When the CAN_DBG.CDE bit is cleared, all debug features are
disabled.

CAN Event Control

27–24 ADSP-CM41x Mixed-Signal Control Processor

When the CAN_DBG.CDE bit is set, it enables writes to the other bits of the CAN_DBG register. It also enables
these features, which are not compliant to the CAN standard:

• Bit timing registers can be changed anytime, not only during configuration mode. The group includes the
CAN_CLK and CAN_TIMING registers.

• Write access is allowed to the normally read-only CAN_CEC register.

The following list describes other bits in the debug register.

• The CAN module uses the CAN_DBG.MRB bit to enable the read back mode. In this mode, a message trans-
mitted on the CAN bus (or through an internal loopback mode) is received back directly to the internal receive
buffer. After a correct transmission, the internal logic treats this transfer as a normal receive message. This fea-
ture allows testing of most of the CAN features without an external device.

• The CAN_DBG.MAA bit allows the CAN module to generate its own acknowledge during the ACK slot of the
CAN frame. No external devices or connections are necessary to read back a transmit message. In this mode,
the sent message is automatically stored in the internal receive buffer. In auto-acknowledge mode, the module
itself transmits the acknowledge. This acknowledge can be programmed to appear on the CAN_TX pin, if
CAN_DBG.DIL=1 and CAN_DBG.DTO= 0. If the acknowledge is only used internally, then set these test
mode bits to CAN_DBG.DIL= 0 and CAN_DBG.DTO=1.

• The CAN module uses the CAN_DBG.DIL bit to internally enable the transmit output to be routed back to
the receive input.

• The CAN module uses the CAN_DBG.DTO bit to disable the CAN_TX output pin. When this bit is set, the
CAN_TX pin continuously drives recessive bits.

• The CAN module uses the CAN_DBG.DRI bit to disable the CAN_RX input. When set, the internal logic
receives recessive bits or receives the internally-generated transmit value in the case of the internal loop enabled
(CAN_DBG.DIL= 0). In either case, the value on the CAN_RX input pin is ignored.

• The CAN module uses the CAN_DBG.DEC bit to disable the transmit and receive error counters in the
CAN_CEC register. When this bit is set, the CAN_CEC holds its current contents and is not allowed to incre-
ment or decrement the error counters. This mode does not conform to the CAN specification.

NOTE: Write to the error counter registers in debug mode only. Write-access during reception can lead to unde-
fined values. The maximum value which can be written into the error counters is 255. Therefore, the error
counter value of 256, which forces the module into the bus off state, cannot be written into the error
counter registers.

Table 27-11: Common CAN Test Mode Bit Combinations

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode

0 X X X X X No readback of transmit message

CAN Event Control

ADSP-CM41x Mixed-Signal Control Processor 27–25

Table 27-11: Common CAN Test Mode Bit Combinations (Continued)

MRB MAA DIL DTO DRI CDE Functional Description

1 0 1 0 0 1 Normal transmission on CAN bus line.

Read back.

External acknowledge from external device required.

1 1 1 0 0 1 Normal transmission on CAN bus line.

Read back.

No external acknowledge required.

Transmit message and acknowledge are transmitted on CAN bus line.

CAN_RX input is enabled.

1 1 0 0 0 1 Normal transmission on CAN bus line.

Read back.

No external acknowledge required.

Transmit message and acknowledge transmit on CAN bus line.

CAN_RX input and internal loop are enabled (internal OR of TX and
RX)

1 1 0 0 1 1 Normal transmission on CAN bus line.

Read back.

No external acknowledge required.

Transmit message and acknowledge are transmitted on CAN bus line.

CAN_RX input is ignored.

Internal loop is enabled.

1 1 0 1 1 1 No transmission on CAN bus line.

Read back.

No external acknowledge required.

Nether transmit message nor acknowledge are transmitted on
CAN_TX.

CAN_RX input is ignored.

Internal loop is enabled.

CM41X_M4 CAN Register Descriptions
Controller Area Network (CAN) contains the following registers.

Table 27-12: CM41X_M4 CAN Register List

Name Description

CAN_AA1 Abort Acknowledge 1 Register

CM41X_M4 CAN Register Descriptions

27–26 ADSP-CM41x Mixed-Signal Control Processor

Table 27-12: CM41X_M4 CAN Register List (Continued)

Name Description

CAN_AA2 Abort Acknowledge 2 Register

CAN_AM[nn]H Acceptance Mask (H) Register

CAN_AM[nn]L Acceptance Mask (L) Register

CAN_CEC Error Counter Register

CAN_CLK Clock Register

CAN_CTL CAN Master Control Register

CAN_DBG Debug Register

CAN_ESR Error Status Register

CAN_EWR Error Counter Warning Level Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIS Global CAN Interrupt Status Register

CAN_INT Interrupt Pending Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBTD Temporary Mailbox Disable Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MB[nn]_DATA0 Mailbox Word 0 Register

CAN_MB[nn]_DATA1 Mailbox Word 1 Register

CAN_MB[nn]_DATA2 Mailbox Word 2 Register

CAN_MB[nn]_DATA3 Mailbox Word 3 Register

CAN_MB[nn]_ID0 Mailbox ID 0 Register

CAN_MB[nn]_ID1 Mailbox ID 1 Register

CAN_MB[nn]_LENGTH Mailbox Length Register

CAN_MB[nn]_TIMESTAMP Mailbox Time Stamp Register

CAN_MC1 Mailbox Configuration 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD1 Mailbox Direction 1 Register

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–27

Table 27-12: CM41X_M4 CAN Register List (Continued)

Name Description

CAN_MD2 Mailbox Direction 2 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_RML2 Receive Message Lost 2 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RMP2 Receive Message Pending 2 Register

CAN_STAT Status Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_TIMING Timing Register

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TRS1 Transmission Request Set 1 Register

CAN_TRS2 Transmission Request Set 2 Register

CAN_UCCNF Universal Counter Configuration Mode Register

CAN_UCCNT Universal Counter Register

CAN_UCRC Universal Counter Reload/Capture Register

CM41X_M4 CAN Register Descriptions

27–28 ADSP-CM41x Mixed-Signal Control Processor

Abort Acknowledge 1 Register

The CAN_AA1 register indicates a transmission abort (due to lost arbitration or a CAN error) for mailboxes 8
through 15. Each bit in this register indicates a transmission abort for the corresponding mailbox when set (=1). Bits
0 through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Mailbox n Abort Acknowledge
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-13: CAN_AA1 Register Diagram

Table 27-13: CAN_AA1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W1C)

MB Mailbox n Abort Acknowledge.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–29

Abort Acknowledge 2 Register

The CAN_AA2 register indicates a transmission abort (due to lost arbitration or a CAN error) for mailboxes 16 (bit
0) through 31 (bit 15). Each bit in this register indicates a transmission abort for the corresponding mailbox when
set (=1).

Mailbox n Abort Acknowledge
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-14: CAN_AA2 Register Diagram

Table 27-14: CAN_AA2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W1C)

MB Mailbox n Abort Acknowledge.

CM41X_M4 CAN Register Descriptions

27–30 ADSP-CM41x Mixed-Signal Control Processor

Acceptance Mask (H) Register

The CAN_AM[nn]H register and CAN_AM[nn]L register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

Acceptance Mask Identifier Extension

Base IdentifierFull Mask Data

Extended IdentifierFilter on Delay Field

AMIDE (R/W)

BASEID (R/W)FMD (R/W)

EXTID (R/W)FDF (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-15: CAN_AM[nn]H Register Diagram

Table 27-15: CAN_AM[nn]H Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

FDF Filter on Delay Field.

The CAN_AM[nn]H.FDF bit selects the operation of the CAN_AM[nn]H register
and CAN_AM[nn]L register when the CAN_CTL.DNM bit is enabled.

If the CAN_AM[nn]H.FDF bit is set, the corresponding CAN_AM[nn]L.EXTID
bits hold the data field mask. If the CAN_AM[nn]H.FDF bit is cleared, the corre-
sponding CAN_AM[nn]L.EXTID bits hold the high bits of the extended identifier
mask.

14

(R/W)

FMD Full Mask Data.

The CAN_AM[nn]H.FMD bit works with the CAN_AM[nn]H.FDF bit to deter-
mine data field filtering. For information about data field filtering, see the Receive Op-
eration section.

13

(R/W)

AMIDE Acceptance Mask Identifier Extension.

The CAN_AM[nn]H.AMIDE bit enables the comparison of the received message ID
to the value in the CAN_AM[nn]H.EXTID and CAN_AM[nn]L.EXTID bits.

12:2

(R/W)

BASEID Base Identifier.

The CAN_AM[nn]H.BASEID bits hold the base ID for acceptance mask operations.

1:0

(R/W)

EXTID Extended Identifier.

The CAN_AM[nn]H.EXTID bits hold the extended ID (upper two bits) for accept-
ance mask operations.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–31

Acceptance Mask (L) Register

The CAN_AM[nn]L register and CAN_AM[nn]H register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

Extended Identifier/Data Field Mask
EXTID (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-16: CAN_AM[nn]L Register Diagram

Table 27-16: CAN_AM[nn]L Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

EXTID Extended Identifier/Data Field Mask.

The CAN_AM[nn]L.EXTID bits hold the extended ID (lower 16 bits) for data field
mask in acceptance mask operations.

CM41X_M4 CAN Register Descriptions

27–32 ADSP-CM41x Mixed-Signal Control Processor

Error Counter Register

The CAN_CEC register, CAN_ESR register, and CAN_EWR register control CAN warnings and errors. For detailed
information about error and warning operations, see the Event Control section.

The CAN_CEC register holds an error counter for transmit (CAN_CEC.TXECNT) and an error counter for receive
(CAN_CEC.RXECNT). After initialization, both counters are 0. Each time a bus error occurs, one of the counters is
incremented by either 1 or 8, depending on the error situation (documented in Version 2.0 of CAN Specification).
Successful transmit and receive operations decrement the respective counter by 1.

Receive Error CounterTransmit Error Counter
RXECNT (R/W)TXECNT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-17: CAN_CEC Register Diagram

Table 27-17: CAN_CEC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

TXECNT Transmit Error Counter.

The CAN_CEC.TXECNT bits hold the transmit error counter, which is incremented
for errors (by either 1 or 8) and is decremented (by 1) for successful transmit opera-
tions.

7:0

(R/W)

RXECNT Receive Error Counter.

The CAN_CEC.RXECNT bits hold the receive error counter, which is incremented for
errors (by either 1 or 8) and is decremented (by 1) for successful receive operations.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–33

Clock Register

The CAN_CLK register selects the bit rate prescaler for calculating the time quantum (TQ), which is used to derive
the CAN clock from the system clock (SCLK). For more information about bit timing and clock operation, see the
CAN Operating Modes section.

Bit Rate Prescaler
BRP (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-18: CAN_CLK Register Diagram

Table 27-18: CAN_CLK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/W)

BRP Bit Rate Prescaler.

The CAN_CLK.BRP bits select the bit rate prescaler value, which is used to calculate
the time quantum for CAN bit timing. The formula using CAN_CLK.BRP to calcu-
late the time quantum is:

TQ = (BRP+1) / SCLK

Note that it is recommended that the CAN_CLK.BRP value be greater than or equal
to 4. For more information about bit timing, see the Operating Modes section.

CM41X_M4 CAN Register Descriptions

27–34 ADSP-CM41x Mixed-Signal Control Processor

CAN Master Control Register

The CAN_CTL register controls CAN mode requests, including soft reset.

Wake Up on CAN Bus Activity

Auto Bus OnSleep Mode Request

Device Net ModeCAN Suspend Mode Request

Software ResetCAN Configuration Mode Request

WBA (R/W)

ABO (R/W)SMR (R/W)

DNM (R/W)CSR (R/W)

SRS (R/W)CCR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-19: CAN_CTL Register Diagram

Table 27-19: CAN_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

CCR CAN Configuration Mode Request.

The CAN_CTL.CCR bit requests that the CAN enter configuration mode. Note that
the CAN should always be put in configuration mode before modifying the CAN_CLK
or CAN_TIMING registers.

0 No Request (Exit Configuration Mode)

1 Request Configuration Mode

6

(R/W)

CSR CAN Suspend Mode Request.

The CAN_CTL.CSR bit requests that the CAN enter suspend mode. The CAN enters
suspend mode after the current operation of the CAN bus is finished.

0 No Request (Exit Suspend Mode)

1 Request Suspend Mode

5

(R/W)

SMR Sleep Mode Request.

The CAN_CTL.SMR bit requests that the CAN enter sleep mode. The CAN enters
sleep mode after the current operation of the CAN bus is finished.

0 No Request (Exit Sleep Mode)

1 Request Sleep Mode

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–35

Table 27-19: CAN_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

WBA Wake Up on CAN Bus Activity.

The CAN_CTL.WBA bit enables wake on CAN bus activity. When enabled, a domi-
nant bit on the CAN_RX pin ends sleep mode (also, the default wake up condition of a
write to the CAN_INT register).

0 Disable Wake on Bus Activity

1 Enable Wake on Bus Activity

2

(R/W)

ABO Auto Bus On.

The CAN_CTL.ABO bit selects whether (if enabled) the CAN enters active mode af-
ter the bus-off recovery sequence or (if disabled) the CAN enters configuration mode
after the bus-off recovery sequence.

0 Disable Auto Bus On

1 Enable Auto Bus On

1

(R/W)

DNM Device Net Mode.

The CAN_CTL.DNM bit enables mailbox filtering on a data field. The filtering is done
on the standard ID of the message and data fields. For more information, see the
CAN_AM[nn]H.FDF bit description.

0 Disable Device Net Mode

1 Enable Device Net Mode

0

(R/W)

SRS Software Reset.

The CAN_CTL.SRS bit resets the CAN, bringing all control registers to a defined
state. Soft reset is entered immediately after software has set the CAN_CTL.SRS bit.

0 No Action

1 Reset CAN

CM41X_M4 CAN Register Descriptions

27–36 ADSP-CM41x Mixed-Signal Control Processor

Debug Register

The CAN_DBG register controls CAN debug modes, including CAN_TX and CAN_RX pin enable and disable.

Disable Internal Loop

Disable Tx Output Pin
Mode Auto Acknowledge

Disable Receive Input Pin
Mode Read Back

Counters
Disable Transmit and Receive ErrorCAN Debug Mode Enable

DIL (R/W)

DTO (R/W)
MAA (R/W)

DRI (R/W)
MRB (R/W)

DEC (R/W)CDE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-20: CAN_DBG Register Diagram

Table 27-20: CAN_DBG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

CDE CAN Debug Mode Enable.

The CAN_DBG.CDE bit enables debug mode. This bit must be written first before
subsequent writes to the CAN_DBG register. When the CAN_DBG.CDE bit is cleared,
all CAN debug features are disabled.

0 Disable Debug Mode

1 Enable Debug Mode

5

(R/W)

MRB Mode Read Back.

The CAN_DBG.MRB bit enables read back mode. When enabled, a message transmit-
ted on the CAN bus or through an internal loop back mode is received back directly to
the internal receive buffer.

0 Disable Read Back Mode

1 Enable Read Back Mode

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–37

Table 27-20: CAN_DBG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

MAA Mode Auto Acknowledge.

The CAN_DBG.MAA bit enables auto acknowledge mode, allowing the CAN to gen-
erate its own acknowledge during the ACK slot of the CAN frame. The
CAN_DBG.MAA acknowledge appears on the CAN_TX pin if CAN_DBG.DIL =1
and CAN_DBG.DTO =0. If the acknowledge is only going to be used internally, these
test mode bits should be set to CAN_DBG.DIL = 0 and CAN_DBG.DTO =1.

0 Disable Auto Acknowledge Mode

1 Enable Auto Acknowledge Mode

3

(R/W)

DIL Disable Internal Loop.

The CAN_DBG.DIL bit disables internal loop mode, which routes the transmit out-
put to the receive input.

0 Enable Internal Loop

1 Disable Internal Loop

2

(R/W)

DTO Disable Tx Output Pin.

The CAN_DBG.DTO bit disables the CAN_TX pin.

0 Enable Tx Output Pin

1 Disable Tx Output Pin, Drive Recessive

1

(R/W)

DRI Disable Receive Input Pin.

The CAN_DBG.DRI bit disables the CAN_RX pin.

0 Enable Rx Input Pin

1 Disable Rx Input Pin, Drive Recessive Internally

0

(R/W)

DEC Disable Transmit and Receive Error Counters.

The CAN_DBG.DEC bit disables the transmit and receive error counters in the
CAN_CEC register. When set, the CAN_CEC holds its current contents and is not al-
lowed to increment or decrement the error counters. Note that this mode does not
conform to the CAN specification.

0 Enable CEC Tx and Rx Error Counters

1 Disable CEC Tx and Rx Error Counters

CM41X_M4 CAN Register Descriptions

27–38 ADSP-CM41x Mixed-Signal Control Processor

Error Status Register

The CAN_ESR register, CAN_CEC register, and CAN_EWR register control CAN warnings and errors. All bits in
the CAN_ESR register are W1C. Note that the CAN updates the CAN_CEC register when error status is detected in
the CAN_ESR register. For detailed information about error and warning operations, see the Operating Modes sec-
tion.

CRC ErrorStuck at Dominant

Stuff Bit ErrorBit Error Flag

Acknowledge ErrorForm Error

CRCE (R/W1C)SAO (R/W1C)

SER (R/W1C)BEF (R/W1C)

ACKE (R/W1C)FER (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-21: CAN_ESR Register Diagram

Table 27-21: CAN_ESR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

FER Form Error.

The CAN_ESR.FER bit indicates when a form error occurs, indicating that a fixed-
form bit position in the CAN frame contains one or more illegal bits. This occurs
when a dominant bit is detected at a delimiter or end-of-frame bit position.

0 No Status

1 Form Error

6

(R/W1C)

BEF Bit Error Flag.

The CAN_ESR.BEF bit indicates (detected by the transmitting node only) when the
value on the CAN_RX pin does not equal what is being transmitted on the CAN_TX
pin.

When a node is transmitting, it continuously monitors its receive pin (CAN_RX) and
compares the received data with the transmitted data. The node postpones the trans-
mission (during the arbitration phase) if the received and transmitted data do not
match. After the arbitration phase (CAN_MB[nn]_ID1.RTR bit sent successfully), a
bit error is signaled when the value on the CAN_RX pin does not equal what is being
transmitted on the CAN_TX pin.

0 No Status

1 Bit Error Flag

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–39

Table 27-21: CAN_ESR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1C)

SAO Stuck at Dominant.

The CAN_ESR.SAO bit indicates when the CAN_RX pin sticks at dominant level, in-
dicating that shorted wires are likely.

0 No Status

1 Stuck At Dominant

4

(R/W1C)

CRCE CRC Error.

The CAN_ESR.CRCE bit indicates when a CRC error occurs. This error may occur
when a receiver calculates the CRC on the data it received and finds the value different
than the CRC that was transmitted on the bus.

0 No Status

1 CRC Error

3

(R/W1C)

SER Stuff Bit Error.

The CAN_ESR.SER bit indicates when a stuff bit error (stuffed 6th consecutive bit
value is the same as the previous five bits) occurs.

The CAN specification requires that the transmitter insert an extra stuff bit of opposite
value after 5 bits have been transmitted with the same value. The receiver disregards
the value of these stuff bits. The receiver takes advantage of the signal edge to re-syn-
chronize itself. A stuff bit error occurs on receiving nodes when the 6th consecutive bit
value is the same as the previous five bits.

0 No Status

1 Stuff Bit Error Receive

2

(R/W1C)

ACKE Acknowledge Error.

The CAN_ESR.ACKE bit indicates when an acknowledge error occurs, indicating
that a message is sent and no receivers drive an acknowledge bit.

0 No Status

1 Acknowledge Error

CM41X_M4 CAN Register Descriptions

27–40 ADSP-CM41x Mixed-Signal Control Processor

Error Counter Warning Level Register

The CAN_EWR register, CAN_CEC register, and CAN_ESR register control CAN warnings and errors. For detailed
information about error and warning operations, see the Operating Modes section.

Receive Error Warning LimitTransmit Error Warning Limit
EWLREC (R/W)EWLTEC (R/W)

0
15

1
14

1
13

0
12

0
11

0
10

0
9

0
8

0
7

1
6

1
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-22: CAN_EWR Register Diagram

Table 27-22: CAN_EWR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

EWLTEC Transmit Error Warning Limit.

The CAN_EWR.EWLTEC bits select the transmit error warning limit, which is used as
a condition for the CAN_GIS.EWTIS interrupt.

7:0

(R/W)

EWLREC Receive Error Warning Limit.

The CAN_EWR.EWLREC bits select the receive error warning limit, which is used as a
condition for the CAN_GIS.EWRIS interrupt.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–41

Global CAN Interrupt Flag Register

The CAN_GIF register, CAN_GIF register, and CAN_GIM register control CAN interrupt requests. For detailed
information about interrupt operations, see the Event Control section.

The CAN_GIF register holds the interrupt flag. The CAN_INT.GIRQ bit is only asserted if a bit in the CAN_GIF
is set. The CAN_INT.GIRQ bit remains set as long as at least one bit in the CAN_GIF register is set. All bits in
this register are W1C.

Wake Up Interrupt Flag
Unimplemented Address Interrupt Flag

Bus Off Interrupt Flag
Abort Acknowledge Interrupt Flag

Error Passive Interrupt Flag
Receive Message Lost Interrupt Flag

Error Warning Receive Interrupt Flag
Flag
Universal Counter Exceeded Interrupt

Error Warning Transmit Interrupt FlagAccess Denied Interrupt Flag

WUIF (R)
UIAIF (R)

BOIF (R)
AAIF (R)

EPIF (R)
RMLIF (R)

EWRIF (R)UCEIF (R)

EWTIF (R)ADIF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-23: CAN_GIF Register Diagram

Table 27-23: CAN_GIF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/NW)

ADIF Access Denied Interrupt Flag.

The CAN_GIF.ADIF bit indicates that the access denied interrupt flag is set (latch-
ed).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

8

(R/NW)

UCEIF Universal Counter Exceeded Interrupt Flag.

The CAN_GIF.UCEIF bit indicates that the universal counter exceeded interrupt
flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

CM41X_M4 CAN Register Descriptions

27–42 ADSP-CM41x Mixed-Signal Control Processor

Table 27-23: CAN_GIF Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/NW)

RMLIF Receive Message Lost Interrupt Flag.

The CAN_GIF.RMLIF bit indicates that the receive message lost interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

6

(R/NW)

AAIF Abort Acknowledge Interrupt Flag.

The CAN_GIF.AAIF bit indicates that the abort acknowledge interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

5

(R/NW)

UIAIF Unimplemented Address Interrupt Flag.

The CAN_GIF.UIAIF bit indicates that the unimplemented address interrupt flag is
set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

4

(R/NW)

WUIF Wake Up Interrupt Flag.

The CAN_GIF.WUIF bit indicates that the wake up interrupt flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

3

(R/NW)

BOIF Bus Off Interrupt Flag.

The CAN_GIF.BOIF bit indicates that the bus off interrupt flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

2

(R/NW)

EPIF Error Passive Interrupt Flag.

The CAN_GIF.EPIF bit indicates that the error passive mode interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

1

(R/NW)

EWRIF Error Warning Receive Interrupt Flag.

The CAN_GIF.EWRIF bit indicates that the error warning receive interrupt flag is
set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–43

Table 27-23: CAN_GIF Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/NW)

EWTIF Error Warning Transmit Interrupt Flag.

The CAN_GIF.EWTIF bit indicates that the error warning transmit interrupt flag is
set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

CM41X_M4 CAN Register Descriptions

27–44 ADSP-CM41x Mixed-Signal Control Processor

Global CAN Interrupt Mask Register

The CAN_GIM register, CAN_GIF register, and CAN_GIF register control CAN interrupt requests. For detailed
information about interrupt operations, see the Event Control section.

The CAN_GIM register holds the interrupt mask. The interrupt mask bits only affect the content of the CAN_GIF
register. If the mask bit is not set (enabled/unmasked), the corresponding flag bit is not set when the event occurs.

Wake Up Interrupt Mask
Unimplemented Address Interrupt Mask

Bus Off Interrupt Mask
Abort Acknowledge Interrupt Mask

Error Passive Interrupt Mask
Receive Message Lost Interrupt Mask

Error Warning Receive Interrupt Mask
Mask
Universal Counter Exceeded Interrupt

Error Warning Transmit Interrupt MaskAccess Denied Interrupt Mask

WUIM (R/W)
UIAIM (R/W)

BOIM (R/W)
AAIM (R/W)

EPIM (R/W)
RMLIM (R/W)

EWRIM (R/W)UCEIM (R/W)

EWTIM (R/W)ADIM (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-24: CAN_GIM Register Diagram

Table 27-24: CAN_GIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W)

ADIM Access Denied Interrupt Mask.

The CAN_GIM.ADIM bit enables (unmasks) the access denied interrupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

8

(R/W)

UCEIM Universal Counter Exceeded Interrupt Mask.

The CAN_GIM.UCEIM bit enables (unmasks) the universal counter exceeded inter-
rupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–45

Table 27-24: CAN_GIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

RMLIM Receive Message Lost Interrupt Mask.

The CAN_GIM.RMLIM bit enables (unmasks) the receive message lost interrupt re-
quest.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

6

(R/W)

AAIM Abort Acknowledge Interrupt Mask.

The CAN_GIM.AAIM bit enables (unmasks) the abort acknowledge interrupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

5

(R/W)

UIAIM Unimplemented Address Interrupt Mask.

The CAN_GIM.UIAIM bit enables (unmasks) the unimplemented address interrupt
request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

4

(R/W)

WUIM Wake Up Interrupt Mask.

The CAN_GIM.WUIM bit enables (unmasks) the wake up interrupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

3

(R/W)

BOIM Bus Off Interrupt Mask.

The CAN_GIM.BOIM bit enables (unmasks) the bus off interrupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

2

(R/W)

EPIM Error Passive Interrupt Mask.

The CAN_GIM.EPIM bit enables (unmasks) the error passive mode interrupt request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

1

(R/W)

EWRIM Error Warning Receive Interrupt Mask.

The CAN_GIM.EWRIM bit enables (unmasks) the error warning receive interrupt re-
quest.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

CM41X_M4 CAN Register Descriptions

27–46 ADSP-CM41x Mixed-Signal Control Processor

Table 27-24: CAN_GIM Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EWTIM Error Warning Transmit Interrupt Mask.

The CAN_GIM.EWTIM bit enables (unmasks) the error warning transmit interrupt
request.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–47

Global CAN Interrupt Status Register

The CAN_GIS register, CAN_GIF register, and CAN_GIM register control CAN interrupt requests. For detailed
information about interrupt operations, see the Event Control section.

The CAN_GIS register holds the interrupt status. All bits in this register are W1C.

Wake Up Interrupt Status
Unimplemented Address Interrupt Status

Bus Off Interrupt Status
Abort Acknowledge Interrupt Status

Error Passive Interrupt Status
Receive Message Lost Interrupt Status

Error Warning Receive Interrupt Status
Status
Universal Counter Exceeded Interrupt

Error Warning Transmit Interrupt StatusAccess Denied Interrupt Status

WUIS (R/W1C)
UIAIS (R/W1C)

BOIS (R/W1C)
AAIS (R/W1C)

EPIS (R/W1C)
RMLIS (R/W1C)

EWRIS (R/W1C)UCEIS (R/W1C)

EWTIS (R/W1C)ADIS (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-25: CAN_GIS Register Diagram

Table 27-25: CAN_GIS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W1C)

ADIS Access Denied Interrupt Status.

The CAN_GIS.ADIS bit indicates when at least one access to the mailbox RAM oc-
curred during a data update by internal logic.

0 No Interrupt Pending

1 Interrupt Pending

8

(R/W1C)

UCEIS Universal Counter Exceeded Interrupt Status.

The CAN_GIS.UCEIS bit indicates when there has been an overflow of the universal
counter (in time stamp mode or event counter mode) or the counter has reached the
value 0x0000 (in watchdog mode).

0 No Interrupt Pending

1 Interrupt Pending

CM41X_M4 CAN Register Descriptions

27–48 ADSP-CM41x Mixed-Signal Control Processor

Table 27-25: CAN_GIS Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W1C)

RMLIS Receive Message Lost Interrupt Status.

The CAN_GIS.RMLIS bit indicates when a message is received for a mailbox that
currently contains unread data. At least one bit in the receive message lost register
(CAN_RML1 or CAN_RML2) is set. If the bit in CAN_GIS (and CAN_GIF) is reset
and there is at least one bit in CAN_RML1 or CAN_RML2 still set, the bit in
CAN_GIF (and CAN_GIF) is not set again. The internal interrupt source signal is on-
ly active if a new bit in CAN_RML1 or CAN_RML2 is set.

0 No Interrupt Pending

1 Interrupt Pending

6

(R/W1C)

AAIS Abort Acknowledge Interrupt Status.

The CAN_GIS.AAIS bit indicates when At least one abort acknowledge bit is set in
the CAN_AA1 or the CAN_AA2 registers. If the bit in CAN_GIS (and CAN_GIF) is
reset and there is at least one bit in CAN_AA1 or CAN_AA2 still set, the bit in
CAN_GIS (and CAN_GIF) is not set again. The internal interrupt source signal is on-
ly active if a new bit in CAN_AA1 or CAN_AA2 is set. The abort acknowledge bits
maintain state even after the corresponding mailbox n is disabled.

0 No Interrupt Pending

1 Interrupt Pending

5

(R/W1C)

UIAIS Unimplemented Address Interrupt Status.

The CAN_GIS.UIAIS bit indicates when there was a processor core access to an ad-
dress that is not implemented in the CAN.

0 No Interrupt Pending

1 Interrupt Pending

4

(R/W1C)

WUIS Wake Up Interrupt Status.

The CAN_GIS.WUIS bit indicates when the CAN has left the sleep mode because of
detected activity on the CAN bus line.

0 No Interrupt Pending

1 Interrupt Pending

3

(R/W1C)

BOIS Bus Off Interrupt Status.

The CAN_GIS.BOIS bit indicates when the CAN has entered the bus-off state. This
interrupt source is active if the status of the CAN changes from normal operation
mode to the bus-off mode. If the bit in CAN_GIS (and CAN_GIF) is reset and the
bus-off mode is still active, this bit is not set again. If the module leaves the bus-off
mode, the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–49

Table 27-25: CAN_GIS Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

EPIS Error Passive Interrupt Status.

The CAN_GIS.EPIS bit indicates when the CAN has entered the error passive state.
This interrupt source is active if the status of the CAN changes from the error active
mode to the error passive mode. If the bit in CAN_GIS (and CAN_GIF) is reset and
the error passive mode is still active, this bit is not set again. If the CAN leaves the
error passive mode, the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

1

(R/W1C)

EWRIS Error Warning Receive Interrupt Status.

The CAN_GIS.EWRIS bit indicates when the CAN_CEC.RXECNT has reached the
warning limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error warning
mode is still active, this bit is not set again. If the CAN leaves the error warning mode,
the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

0

(R/W1C)

EWTIS Error Warning Transmit Interrupt Status.

The CAN_GIS.EWTIS bit indicates when the CAN_CEC.TXECNT has reached the
warning limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error warning
mode is still active, this bit is not set again. If the CAN leaves the error warning mode,
the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

CM41X_M4 CAN Register Descriptions

27–50 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Pending Register

The CAN_INT register indicates the status of pending CAN interrupts and indicates the state of the CAN_RX and
CAN_TX pins. Though this register is read-only, a write is allowed to exit the built-in sleep mode of the module on
processors supporting this feature.

Global CAN Interrupt OutputSleep Mode Acknowledge

Mailbox Transmit Interrupt OutputSerial Input To Transceiver

Mailbox Receive Interrupt OutputSerial Input From Transceiver

GIRQ (R/W)SMACK (R/W)

MBTIRQ (R/W)CANTX (R)

MBRIRQ (R/W)CANRX (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

X
7

X
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-26: CAN_INT Register Diagram

Table 27-26: CAN_INT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/NW)

CANRX Serial Input From Transceiver.

The CAN_INT.CANRX bit indicates the logic value that the CAN detects on the
CAN_RX pin. Note that the reset/default value for CAN_INT.CANRX is dependent
on pin values.

0 Dominant Value (Low Active)

1 Recessive Value (High Active)

6

(R/NW)

CANTX Serial Input To Transceiver.

The CAN_INT.CANTX bit indicates the logic value that the CAN detects on the
CAN_TX pin. Note that the reset/default value for CAN_INT.CANTX is dependent
on pin values.

0 Dominant Value (Low Active)

1 Recessive Value (High Active)

3

(R/W)

SMACK Sleep Mode Acknowledge.

The CAN_INT.SMACK bit indicates when the CAN has entered sleep mode.

0 Not in Sleep Mode

1 Sleep Mode

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–51

Table 27-26: CAN_INT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

GIRQ Global CAN Interrupt Output.

The CAN_INT.GIRQ bit indicates when at least one bit is set in the CAN_GIF regis-
ter, indicating at least one unmasked CAN is flagged (latched). The CAN_INT.GIRQ
bit remains set as long as at least one bit is set in the CAN_GIF register.

0 No CAN Global Interrupt Flag Set

1 CAN Global Interrupt Flag (1 or More) Set

1

(R/W)

MBTIRQ Mailbox Transmit Interrupt Output.

The CAN_INT.MBTIRQ bit indicates when any bits are set in the CAN_MBTIF1
register or CAN_MBTIF2 register, indicating transmit.

0 No CAN Transmit Flags Set

1 CAN Transmit Flags Set (1 or More)

0

(R/W)

MBRIRQ Mailbox Receive Interrupt Output.

The CAN_INT.MBRIRQ bit indicates when any bits are set in the CAN_MBRIF1
register or CAN_MBRIF2 register, indicating receive.

0 No CAN Receive Flags Set

1 CAN Receive Flags Set (1 or More)

CM41X_M4 CAN Register Descriptions

27–52 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Interrupt Mask 1 Register

The CAN_MBIM1 register enables transmit and receive interrupt requests for mailboxes 0 through 15. Each bit in
this register requests enables the transmit or receive interrupt request for the corresponding mailbox when set (=1).

Request Enable
Mailbox n Transmit and Receive Interrupt
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-27: CAN_MBIM1 Register Diagram

Table 27-27: CAN_MBIM1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Transmit and Receive Interrupt Request Enable.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–53

Mailbox Interrupt Mask 2 Register

The CAN_MBIM2 register enables transmit and receive interrupt requests for mailboxes 16 (bit 0) through 31 (bit
15). Each bit in this register requests enables the transmit or receive interrupt request for the corresponding mailbox
when set (=1).

Enable
Mailbox n Transmit and Receive Interrupt
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-28: CAN_MBIM2 Register Diagram

Table 27-28: CAN_MBIM2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Transmit and Receive Interrupt Enable.

CM41X_M4 CAN Register Descriptions

27–54 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Receive Interrupt Flag 1 Register

The CAN_MBRIF1 register indicates when a receive interrupt request is pending---due to successful reception (cor-
responding CAN_RMP1 bit set) and the interrupt is enabled (corresponding CAN_MBIM1 bit set)---for mailboxes 0
through 15. Each bit in this register indicates the receive interrupt pending status for the corresponding mailbox
when set (=1). When any bit in CAN_MBRIF1 is set, the CAN receive interrupt request is raised
(CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in CAN_RMP1 must be cleared by
software, then the associated bits set in CAN_MBRIF1 must be cleared (W1C).

Pending
Mailbox n Receive Interrupt Request
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-29: CAN_MBRIF1 Register Diagram

Table 27-29: CAN_MBRIF1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W1C)

MB Mailbox n Receive Interrupt Request Pending.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–55

Mailbox Receive Interrupt Flag 2 Register

The CAN_MBRIF2 register indicates when a receive interrupt request is pending---due to successful reception (cor-
responding CAN_RMP2 bit set) and the interrupt is enabled (corresponding CAN_MBIM2 bit set)---for mailboxes
16 (bit 0) through 23 (bit 7). Each bit in this register indicates the receive interrupt pending status for the corre-
sponding mailbox when set (=1). When any bit in CAN_MBRIF2 is set, the CAN receive interrupt request is raised
(CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in CAN_RMP2 must be cleared by
software, then the associated bits set in CAN_MBRIF2 must be cleared (W1C). Bits 8 through 15 are reserved and
read-only, as the corresponding mailboxes (24 through 31) are transmit-only mailboxes.

Mailbox n Receive Interrupt Pending
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-30: CAN_MBRIF2 Register Diagram

Table 27-30: CAN_MBRIF2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W1C)

MB Mailbox n Receive Interrupt Pending.

CM41X_M4 CAN Register Descriptions

27–56 ADSP-CM41x Mixed-Signal Control Processor

Temporary Mailbox Disable Register

The CAN_MBTD register supports temporarily and selectively disabling CAN mailboxes. For more information
about this feature, see the Operating Modes section.

Temporary Disable Acknowledge

Temporary Disable PointerTemporary Disable Request

TDA (R)

TDPTR (R/W)TDR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-31: CAN_MBTD Register Diagram

Table 27-31: CAN_MBTD Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

TDR Temporary Disable Request.

The CAN_MBTD.TDR bit holds the pointer to mailbox, which is disabled when the
CAN_MBTD.TDR bit is set.

0 No Request

1 Request Temporary Mailbox Disable

6

(R/NW)

TDA Temporary Disable Acknowledge.

The CAN_MBTD.TDA bit indicates when the mailbox (to which the
CAN_MBTD.TDPTR bit points) is disabled. When this bit is set for a mailbox, only
the data field of that mailbox may be updated. Accesses that mailboxs control bits and
the identifier are denied.

0 No Acknowledge

1 Acknowledge Temporary Mailbox Disable

4:0

(R/W)

TDPTR Temporary Disable Pointer.

The CAN_MBTD.TDPTR bits hold the pointer to mailbox, which is disabled when
the CAN_MBTD.TDR bit is set.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–57

Mailbox Transmit Interrupt Flag 1 Register

The CAN_MBTIF1 register indicates when a transmit interrupt request is pending---due to successful transmission
(corresponding CAN_TA1 bit is set) and the interrupt is enabled (corresponding CAN_MBIM1 bit is set)---for mail-
boxes 8 through 15. Each bit in this register indicates the transmit interrupt pending status for the corresponding
mailbox when set (=1). When any bit in CAN_MBTIF1 is set, the CAN transmit interrupt request is raised
(CAN_INT.MBTIRQ bit set). To clear the interrupt request, all of the set bits in CAN_MBTIF1 must be cleared by
software (W1C). Also, software must clear the associated bits set in CAN_TA1 or set the associated bits in
CAN_TRS1 bit to clear the interrupt source asserting the bits in CAN_MBTIF1. Bits 0 through 7 are read-only, as
the corresponding mailboxes are receive-only mailboxes.

Pending
Mailbox n Transmit Interrupt Request
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-32: CAN_MBTIF1 Register Diagram

Table 27-32: CAN_MBTIF1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W1C)

MB Mailbox n Transmit Interrupt Request Pending.

CM41X_M4 CAN Register Descriptions

27–58 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Transmit Interrupt Flag 2 Register

The CAN_MBTIF2 register indicates when a transmit interrupt request is pending---due to successful transmission
(corresponding CAN_TA2 bit is set) and the interrupt is enabled (corresponding CAN_MBIM2 bit is set)---for mail-
boxes 16 (bit 0) through 31 (bit 15). Each bit in this register indicates the transmit interrupt pending status for the
corresponding mailbox when set (=1). When any bit in CAN_MBTIF2 is set, the CAN transmit interrupt request is
raised (CAN_INT.MBTIRQ bit is set). To clear the interrupt request, all of the set bits in CAN_MBTIF2 must be
cleared by software (W1C). Also, software must clear the associated bits set in CAN_TA2 or set the associated bits in
CAN_TRS2 bit to clear the interrupt source asserting the bits in CAN_MBTIF2.

Mailbox n Transmit Interrupt Pending
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-33: CAN_MBTIF2 Register Diagram

Table 27-33: CAN_MBTIF2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W1C)

MB Mailbox n Transmit Interrupt Pending.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–59

Mailbox Word 0 Register

The CAN_MB[nn]_DATA0 register holds mailbox data bytes.

Data Field Byte 7Data Field Byte 6
DFB7 (R/W)DFB6 (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-34: CAN_MB[nn]_DATA0 Register Diagram

Table 27-34: CAN_MB[nn]_DATA0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

DFB6 Data Field Byte 6.

The CAN_MB[nn]_DATA0.DFB6 bits hold mailbox data.

7:0

(R/W)

DFB7 Data Field Byte 7.

The CAN_MB[nn]_DATA0.DFB7 bits hold mailbox data.

CM41X_M4 CAN Register Descriptions

27–60 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Word 1 Register

The CAN_MB[nn]_DATA1 register holds mailbox data bytes.

Data Field Byte 5Data Field Byte 4
DFB5 (R/W)DFB4 (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-35: CAN_MB[nn]_DATA1 Register Diagram

Table 27-35: CAN_MB[nn]_DATA1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

DFB4 Data Field Byte 4.

The CAN_MB[nn]_DATA1.DFB4 bits hold mailbox data.

7:0

(R/W)

DFB5 Data Field Byte 5.

The CAN_MB[nn]_DATA1.DFB5 bits hold mailbox data.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–61

Mailbox Word 2 Register

The CAN_MB[nn]_DATA2 register holds mailbox data bytes.

Data Field Byte 3Data Field Byte 2
DFB3 (R/W)DFB2 (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-36: CAN_MB[nn]_DATA2 Register Diagram

Table 27-36: CAN_MB[nn]_DATA2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

DFB2 Data Field Byte 2.

The CAN_MB[nn]_DATA2.DFB2 bits hold mailbox data.

7:0

(R/W)

DFB3 Data Field Byte 3.

The CAN_MB[nn]_DATA2.DFB3 bits hold mailbox data.

CM41X_M4 CAN Register Descriptions

27–62 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Word 3 Register

The CAN_MB[nn]_DATA3 register holds mailbox data bytes.

Data Field Byte 1Data Field Byte 0
DFB1 (R/W)DFB0 (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-37: CAN_MB[nn]_DATA3 Register Diagram

Table 27-37: CAN_MB[nn]_DATA3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

DFB0 Data Field Byte 0.

The CAN_MB[nn]_DATA3.DFB0 bits hold mailbox data.

7:0

(R/W)

DFB1 Data Field Byte 1.

The CAN_MB[nn]_DATA3.DFB1 bits hold mailbox data.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–63

Mailbox ID 0 Register

The CAN_MB[nn]_ID0 register contains the lower 16 bits of the 18-bit extended identifier.

Code
Extended Identifier/Data Field Acceptance
EXTID (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-38: CAN_MB[nn]_ID0 Register Diagram

Table 27-38: CAN_MB[nn]_ID0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

EXTID Extended Identifier/Data Field Acceptance Code.

The CAN_MB[nn]_ID0.EXTID bits hold the lower 16 bits of the 18-bit extended
ID.

CM41X_M4 CAN Register Descriptions

27–64 ADSP-CM41x Mixed-Signal Control Processor

Mailbox ID 1 Register

The CAN_MB[nn]_ID1 register contains the identifier bits of mailbox. The 11-bit BASE_ID is mapped to The
CAN_MB[nn]_ID1.BASEID field. It also enables the extended identification and contains upper two bits of 18-
bit extended identifier.

Identifier Extension

Base IdentifierRemote Transmission Request

Extended IdentifierAcceptance Mask Enable

IDE (R/W)

BASEID (R/W)RTR (R/W)

EXTID (R/W)AME (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-39: CAN_MB[nn]_ID1 Register Diagram

Table 27-39: CAN_MB[nn]_ID1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

AME Acceptance Mask Enable.

The CAN_MB[nn]_ID1.AME bit enables acceptance mask operations if the mailbox
is configured as receiver. When enabled (=1), only those bits that have the correspond-
ing mask bit cleared are compared to the received message ID. A bit position that is set
in the mask register does not need to match. This bit should be set to 0 when the mail-
box is configured in transmit mode.

14

(R/W)

RTR Remote Transmission Request.

The CAN_MB[nn]_ID1.RTR bit selects whether the frame contains data (data
frame) or contains a request for data associated with the message identifier in the frame
being sent (remote frame).

13

(R/W)

IDE Identifier Extension.

The CAN_MB[nn]_ID1.IDE bit enables the comparison of the received message
ID to the value in the CAN_MB[nn]_ID1.EXTID and
CAN_MB[nn]_ID0.EXTID bits. When configured as transmitter, it sends the ex-
tended identifier in addition to the base identifier.

12:2

(R/W)

BASEID Base Identifier.

The CAN_MB[nn]_ID1.BASEID bits hold the base identifier for acceptance mask
operations.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–65

Table 27-39: CAN_MB[nn]_ID1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1:0

(R/W)

EXTID Extended Identifier.

The CAN_MB[nn]_ID1.EXTID bits hold the upper two bits of 18-bit extended
identifier.

CM41X_M4 CAN Register Descriptions

27–66 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Length Register

The CAN_MB[nn]_LENGTH register holds the data length code for the received remote frame. For more informa-
tion about remote frames, see the Remote Frame Handling section.

Data Length Code
DLC (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-40: CAN_MB[nn]_LENGTH Register Diagram

Table 27-40: CAN_MB[nn]_LENGTH Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

DLC Data Length Code.

The CAN_MB[nn]_LENGTH.DLC bits hold the DLC value of the received remote
frame. The received value overwrites any previous value.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–67

Mailbox Time Stamp Register

The CAN_MB[nn]_TIMESTAMP register holds an indication of the time of reception or transmission for each
message, when the universal counter is in time stamp mode (CAN_UCCNF.UCCNF =0x1). In this mode, the CAN
writes the value of the counter (CAN_UCCNT) to the CAN_MB[nn]_TIMESTAMP register when a received mes-
sage is stored or a message is transmitted. For more information about time stamps, see the Time Stamps section.

Time Stamp Value
TSV (R/W)

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-41: CAN_MB[nn]_TIMESTAMP Register Diagram

Table 27-41: CAN_MB[nn]_TIMESTAMP Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

TSV Time Stamp Value.

The CAN_MB[nn]_TIMESTAMP.TSV bits hold the message time stamp value.

CM41X_M4 CAN Register Descriptions

27–68 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Configuration 1 Register

The CAN_MC1 register enables mailboxes 0 through 15. Each bit in this register enables or disables the correspond-
ing mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0) to disable the mailbox.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1 bit associated with a
disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the associated CAN_TRS1
bit is reset by the internal logic can cause unpredictable results.

Mailbox n Enable/Disable
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-42: CAN_MC1 Register Diagram

Table 27-42: CAN_MC1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Enable/Disable.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–69

Mailbox Configuration 2 Register

The CAN_MC2 register enables mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register enables or disables
the corresponding mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0) to disable the
mailbox.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS2 bit associated with a
disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the associated CAN_TRS2
bit is reset by the internal logic can cause unpredictable results.

Mailbox n Enable/Disable
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-43: CAN_MC2 Register Diagram

Table 27-43: CAN_MC2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Enable/Disable.

CM41X_M4 CAN Register Descriptions

27–70 ADSP-CM41x Mixed-Signal Control Processor

Mailbox Direction 1 Register

The CAN_MD1 register selects the data transfer direction for mailboxes 0 through 15. Each bit in this register selects
receive mode or transmit mode for the corresponding mailbox. For all bits, set the bit (=1) for receive mode from the
mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 0 through 7 are read-only, as the correspond-
ing mailboxes are receive-only mailboxes.

Mailbox n Transmit/Receive
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-44: CAN_MD1 Register Diagram

Table 27-44: CAN_MD1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

MB Mailbox n Transmit/Receive.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–71

Mailbox Direction 2 Register

The CAN_MD2 register selects the data transfer direction for mailboxes 16 (bit 0) through 23 (bit 7). Each bit in this
register selects receive mode or transmit mode for the corresponding mailbox. For all bits, set the bit (=1) for receive
mode from the mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 8 through 15 are read-only, as
the corresponding mailboxes (24 through 31) are transmit-only mailboxes.

Mailbox n Transmit/Receive
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-45: CAN_MD2 Register Diagram

Table 27-45: CAN_MD2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

MB Mailbox n Transmit/Receive.

CM41X_M4 CAN Register Descriptions

27–72 ADSP-CM41x Mixed-Signal Control Processor

Overwrite Protection/Single Shot Transmission 1 Register

The CAN_OPSS1 register enables overwrite protection for mailboxes 0 through 15. Each bit in this register enables
overwrite protection for the corresponding mailbox when set (=1). Note that enabling this bit affects transmit and
receive operations for mailboxes. For more information about remote overwrite protection, see the detailed feature
description in the CAN Functional Description section. For more information about how this feature affects trans-
mit and receive operations, see the CAN Operating Modes sections, describing transmit and receive operations.

Mailbox n Overwrite Protection Enable
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-46: CAN_OPSS1 Register Diagram

Table 27-46: CAN_OPSS1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Overwrite Protection Enable.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–73

Overwrite Protection/Single Shot Transmission 2 Register

The CAN_OPSS2 register enables overwrite protection for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register enables overwrite protection for the corresponding mailbox when set (=1). Note that enabling this bit affects
transmit and receive operations for mailboxes. For more information about remote overwrite protection, see the de-
tailed feature description in the CAN Functional Description section. For more information about how this feature
affects transmit and receive operations, see the CAN Operating Modes sections, describing transmit and receive op-
erations.

Mailbox n Overwrite Protection Enable
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-47: CAN_OPSS2 Register Diagram

Table 27-47: CAN_OPSS2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Overwrite Protection Enable.

CM41X_M4 CAN Register Descriptions

27–74 ADSP-CM41x Mixed-Signal Control Processor

Remote Frame Handling 1 Register

The CAN_RFH1 register enables remote frame handling for mailboxes 8 through 15. Each bit in this register ena-
bles remote frame handling for the corresponding mailbox when set (=1). Note that enabling this bit affects transmit
and receive operations for mailboxes. For more information about remote frame handling, see the CAN Operating
Modes sections, describing transmit and receive operations. Bits 0 through 7 are read-only, as the corresponding
mailboxes are receive-only mailboxes.

Enable
Mailbox n Remote Frame Handling
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-48: CAN_RFH1 Register Diagram

Table 27-48: CAN_RFH1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

MB Mailbox n Remote Frame Handling Enable.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–75

Remote Frame Handling 2 Register

The CAN_RFH2 register enables remote frame handling for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in
this register enables remote frame handling for the corresponding mailbox when set (=1). Note that enabling this bit
affects transmit and receive operations for mailboxes. For more information about remote frame handling, see the
CAN Operating Modes sections, describing transmit and receive operations.

Enable
Mailbox n Remote Frame Handling
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-49: CAN_RFH2 Register Diagram

Table 27-49: CAN_RFH2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

MB Mailbox n Remote Frame Handling Enable.

CM41X_M4 CAN Register Descriptions

27–76 ADSP-CM41x Mixed-Signal Control Processor

Receive Message Lost 1 Register

The CAN_RML1 register indicates when a message is lost---due to a message coming while there is pending data
(corresponding CAN_RMP1 bit set) and overwrite protection is disabled (CAN_OPSS1 bit cleared)---for mailboxes
0 through 15. Each bit in this register indicates the message lost status for the corresponding mailbox when set (=1).

Mailbox n Message Lost
MB (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-50: CAN_RML1 Register Diagram

Table 27-50: CAN_RML1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

MB Mailbox n Message Lost.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–77

Receive Message Lost 2 Register

The CAN_RML2 register indicates when a message is lost---due to a message coming while there is pending data
(corresponding CAN_RMP2 bit set) and overwrite protection is disabled (CAN_OPSS2 bit cleared)---for mailboxes
16 (bit 0) through 23 (bit 7). Each bit in this register indicates the message lost status for the corresponding mailbox
when set (=1). Bits 8 through 15 are reserved, as the corresponding mailboxes (24 through 31) are transmit-only
mailboxes.

Mailbox n Message Lost
MB (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-51: CAN_RML2 Register Diagram

Table 27-51: CAN_RML2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

MB Mailbox n Message Lost.

CM41X_M4 CAN Register Descriptions

27–78 ADSP-CM41x Mixed-Signal Control Processor

Receive Message Pending 1 Register

The CAN_RMP1 register indicates when a message is pending (unread data) for mailboxes 0 through 15. Each bit in
this register indicates the message pending status for the corresponding mailbox when set (=1).

Mailbox n Message Pending
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-52: CAN_RMP1 Register Diagram

Table 27-52: CAN_RMP1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W1C)

MB Mailbox n Message Pending.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–79

Receive Message Pending 2 Register

The CAN_RMP2 register indicates when a message is pending (unread data) for mailboxes 16 (bit 0) through 23 (bit
7). Each bit in this register indicates the message pending status for the corresponding mailbox when set (=1). Bits 8
through 15 are reserved, as the corresponding mailboxes (24 through 31) are transmit-only mailboxes.

Mailbox n Message Pending
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-53: CAN_RMP2 Register Diagram

Table 27-53: CAN_RMP2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W1C)

MB Mailbox n Message Pending.

CM41X_M4 CAN Register Descriptions

27–80 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The CAN_STAT register indicates status for CAN modes and error conditions.

CAN Suspend Mode Acknowledge

CAN Error Bus Off ModeCAN Configuration Mode Acknowledge

CAN Error Passive ModeMailbox Pointer

CAN Receive Warning FlagTransmit Mode

CAN Transmit Warning FlagReceive Mode

CSA (R)

EBO (R)CCA (R)

EP (R)MBPTR (R)

WR (R)TRM (R)

WT (R)REC (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-54: CAN_STAT Register Diagram

Table 27-54: CAN_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/NW)

REC Receive Mode.

The CAN_STAT.REC bit indicates whether the CAN is in receive mode.

0 Not in Receive Mode

1 Receive Mode

14

(R/NW)

TRM Transmit Mode.

The CAN_STAT.TRM bit indicates whether the CAN is in transmit mode.

0 Not in Transmit Mode

1 Transmit Mode

12:8

(R/NW)

MBPTR Mailbox Pointer.

The CAN_STAT.MBPTR bits represent the mailbox number of the current transmit
message. After a successful transmission, these bits remain unchanged.

0-31 Processing Mailbox 0 to31 Message

7

(R/NW)

CCA CAN Configuration Mode Acknowledge.

The CAN_STAT.CCA bit indicates whether the CAN is in configuration mode.

0 Not in Configuration Mode

1 Configuration mode

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–81

Table 27-54: CAN_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/NW)

CSA CAN Suspend Mode Acknowledge.

The CAN_STAT.CSA bit indicates whether the CAN is in suspend mode.

0 Not in Suspend Mode

1 Suspend mode

3

(R/NW)

EBO CAN Error Bus Off Mode.

The CAN_STAT.EBO bit indicates whether the CAN is in error bus off mode.

0 TXECNT Below 256

1 TXECNT Above Bus Off Limit

2

(R/NW)

EP CAN Error Passive Mode.

The CAN_STAT.EP bit indicates whether the CAN is in error passive mode.

0 TXECNT and RXECNT Below 128

1 TXECNT or RXECNT Above EP Level

1

(R/NW)

WR CAN Receive Warning Flag.

The CAN_STAT.WR bit indicates whether the CAN has detected a receive warning
flag condition.

0 RXECNT Below Limit

1 RXECNT at Limit

0

(R/NW)

WT CAN Transmit Warning Flag.

The CAN_STAT.WT bit indicates whether the CAN detected a transmit warning flag
condition.

0 TXECNT Below Limit

1 TXECNT at Limit

CM41X_M4 CAN Register Descriptions

27–82 ADSP-CM41x Mixed-Signal Control Processor

Transmission Acknowledge 1 Register

The CAN_TA1 register indicates transmission success for mailboxes 8 through 15. Each bit in this register indicates
transmission success for the corresponding mailbox when set (=1). Bits 0 through 7 are read-only, as the correspond-
ing mailboxes are receive-only mailboxes.

Mailbox n Transmit Acknowledge
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-55: CAN_TA1 Register Diagram

Table 27-55: CAN_TA1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W1C)

MB Mailbox n Transmit Acknowledge.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–83

Transmission Acknowledge 2 Register

The CAN_TA2 register indicates transmission success for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register indicates transmission success for the corresponding mailbox when set (=1).

Mailbox n Transmit Acknowledge
MB (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-56: CAN_TA2 Register Diagram

Table 27-56: CAN_TA2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W1C)

MB Mailbox n Transmit Acknowledge.

CM41X_M4 CAN Register Descriptions

27–84 ADSP-CM41x Mixed-Signal Control Processor

Timing Register

The CAN_TIMING register select the time segments, sampling, and synchronization for CAN bit timing. For more
information about bit timing and clock operation, see the CAN Operating Modes section.

Time Segment 2Sampling

Time Segment 1Synchronization Jump Width

TSEG2 (R/W)SAM (R/W)

TSEG1 (R/W)SJW (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-57: CAN_TIMING Register Diagram

Table 27-57: CAN_TIMING Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

SJW Synchronization Jump Width.

The CAN_TIMING.SJW bits select the maximum number of time quanta, ranging
from 1 to 4(SJW + 1). This selection allows for a re-synchronization attempt when the
CAN detects a recessive-to-dominant edge outside the synchronization segment. The
re-synchronization automatically moves the sampling point such that the CAN bit is
still handled properly. Note that the CAN_TIMING.SJW value should not exceed
CAN_TIMING.TSEG2 or CAN_TIMING.TSEG1.

7

(R/W)

SAM Sampling.

The CAN_TIMING.SAM bit selects whether the CAN performs normal sampling
(once at the sampling point described by the CAN_TIMING register) or performs over
sampling. If CAN_TIMING.SAM is set, the CAN over samples the input signal at
three times at the SCLK rate. The resulting value is generated by a majority decision of
the three sample values. Note that the CAN_TIMING.SAM bit should always be
cleared if the CAN_CLK.BRP value is less than 4.

6:4

(R/W)

TSEG2 Time Segment 2.

The CAN_TIMING.TSEG2 bits and CAN_TIMING.TSEG1 bits control how many
time quanta of which the CAN bits consist, resulting in the CAN bit rate. For more
information about bit timing and clock operation, see the CAN Operating Modes sec-
tion. Note that the CAN_TIMING.TSEG1 value should always be greater than or
equal to the CAN_TIMING.TSEG2 value.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–85

Table 27-57: CAN_TIMING Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TSEG1 Time Segment 1.

The CAN_TIMING.TSEG1 bits and CAN_TIMING.TSEG2 bits control how many
time quanta of which the CAN bits consist, resulting in the CAN bit rate. For more
information about bit timing and clock operation, see the CAN Operating Modes sec-
tion. Note that the CAN_TIMING.TSEG1 value should always be greater than or
equal to the CAN_TIMING.TSEG2 value.

CM41X_M4 CAN Register Descriptions

27–86 ADSP-CM41x Mixed-Signal Control Processor

Transmission Request Reset 1 Register

The CAN_TRR1 register requests transmit abort for mailboxes 8 through 15. Bits in this register request transmit
abort for the corresponding mailbox when set (=1). When a transmission completes, the corresponding bits in the
transmit request set register (CAN_TRS1) and in the CAN_TRR1 are cleared. Bits 0 through 7 are read-only, as the
corresponding mailboxes are receive-only mailboxes.

Mailbox n Transmit Abort
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-58: CAN_TRR1 Register Diagram

Table 27-58: CAN_TRR1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

MB Mailbox n Transmit Abort.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–87

Transmission Request Reset 2 Register

The CAN_TRR2 register requests transmit abort for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this regis-
ter requests transmit abort for the corresponding mailbox when set (=1). When a transmission completes, the corre-
sponding bits in the transmit request set register (CAN_TRS2) and in the CAN_TRR2 are cleared.

Mailbox n Transmit Abort
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-59: CAN_TRR2 Register Diagram

Table 27-59: CAN_TRR2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Transmit Abort.

CM41X_M4 CAN Register Descriptions

27–88 ADSP-CM41x Mixed-Signal Control Processor

Transmission Request Set 1 Register

The CAN_TRS1 register requests transmit for mailboxes 8 through 15. Bits in this register request transmit for the
corresponding mailbox when set (=1). After writing the data and the identifier into the mailbox area, the message is
sent after mailbox n is enabled (with the corresponding bit in CAN_MC1 = 1), and (subsequently) the corresponding
transmit request bit is set (in CAN_TRS1). When a transmission completes, the corresponding bits in CAN_TRS1
and in the transmit request reset register (CAN_TRR1) are cleared. Bits 0 through 7 are read-only, as the corre-
sponding mailboxes are receive-only mailboxes.

Mailbox n Transmit Request
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-60: CAN_TRS1 Register Diagram

Table 27-60: CAN_TRS1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

MB Mailbox n Transmit Request.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–89

Transmission Request Set 2 Register

The CAN_TRS2 register requests transmit for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register
requests transmit for the corresponding mailbox when set (=1). After writing the data and the identifier into the
mailbox area, the message is sent after mailbox n is enabled (with the corresponding bit in CAN_MC2 = 1), and
(subsequently) the corresponding transmit request bit is set (in CAN_TRS2). When a transmission completes, the
corresponding bits in CAN_TRS2 and in the transmit request reset register (CAN_TRR2) are cleared.

Mailbox n Transmit Request
MB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-61: CAN_TRS2 Register Diagram

Table 27-61: CAN_TRS2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

MB Mailbox n Transmit Request.

CM41X_M4 CAN Register Descriptions

27–90 ADSP-CM41x Mixed-Signal Control Processor

Universal Counter Configuration Mode Register

The CAN_UCCNF register controls the operation of the universal counter, including counter enable and counter
mode selection.

Universal Counter Reload/ClearUniversal Counter CAN Trigger

Universal Counter ConfigurationUniversal Counter Enable

UCRC (R/W)UCCT (R/W)

UCCNF (R/W)UCE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-62: CAN_UCCNF Register Diagram

Table 27-62: CAN_UCCNF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

UCE Universal Counter Enable.

The CAN_UCCNF.UCE bit enables universal counter operation in the mode selected
by the CAN_UCCNF.UCCNF bits.

0 Disable Counter

1 Enable Counter

6

(R/W)

UCCT Universal Counter CAN Trigger.

The CAN_UCCNF.UCCT bit enables the universal counter trigger, directing the CAN
to re-load the counter on mailbox 4 reception in watchdog mode and clear the counter
on mailbox 4 reception in time stamp mode. This bit has no effect in all other modes.

0 Disable Trigger

1 Enable Trigger

5

(R/W)

UCRC Universal Counter Reload/Clear.

The CAN_UCCNF.UCRC bit re-loads or clears the universal counter, depending on
the counter mode. In watchdog mode, setting this bit directs the CAN to re-load the
counter. In all other modes, setting this bit directs the CAN to clear the counter.

0 No Action

1 Re-load or Clear the Counter

3:0

(R/W)

UCCNF Universal Counter Configuration.

The CAN_UCCNF.UCCNF bits select the universal counter operating mode. For more
information about these modes, see the Operating Modes section.

0 Reserved

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–91

Table 27-62: CAN_UCCNF Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1 Time Stamp Mode

2 Watchdog Mode

3 Auto-transmit Mode

4 Reserved

5 Reserved

6 Count Error Frames

7 Count Overload Frames

8 Count Arbitration Lost

9 Count Aborted Transmissions

10 Count Successful Transmissions

11 Count Rejected Receive Messages

12 Count Receive Message Lost

13 Count Successful Receptions

14 Count Stored Receptions

15 Count Valid Messages

CM41X_M4 CAN Register Descriptions

27–92 ADSP-CM41x Mixed-Signal Control Processor

Universal Counter Register

The CAN_UCCNT register holds the current universal count. This register is reloaded from the CAN_UCRC register
when counter the decrements to zero in auto-transmit mode.

Count Value
COUNT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-63: CAN_UCCNT Register Diagram

Table 27-63: CAN_UCCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

COUNT Count Value.

The CAN_UCCNT.COUNT bits hold the current universal count value.

CM41X_M4 CAN Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 27–93

Universal Counter Reload/Capture Register

The CAN_UCRC register holds the period value (universal count), which is used in auto-transmit mode as the peri-
od for sending the message in mailbox 11 (broadcast heartbeat) to all CAN nodes. Accordingly, messages sent this
way usually have high priority.

The period value is written to the CAN_UCRC register. When auto-transmit mode is enabled
(CAN_UCCNF.UCCNF = 0x3), the CAN loads the counter with the value in CAN_UCRC. The counter decrements
to 0 at the CAN bit clock rate, then is reloaded. Each time the counter decrements to 0, the CAN sets the
CAN_TRS1.MB bit for mailbox 11 and sends the corresponding message from mailbox 11.

Note that for auto-transmit mode, mailbox 11 must be configured as a transmit mailbox and must contain valid
data (identifier, control bits, and data). This setup must occur before the counter first expires after this mode is ena-
bled.

Universal Counter Value
UCVAL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 27-64: CAN_UCRC Register Diagram

Table 27-64: CAN_UCRC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

UCVAL Universal Counter Value.

The CAN_UCRC.UCVAL bits hold the value for the universal count period, which is
used in auto-transmit mode.

CM41X_M4 CAN Register Descriptions

27–94 ADSP-CM41x Mixed-Signal Control Processor

28 Serial Peripheral Interface (SPI)

The serial peripheral interface is an industry-standard synchronous serial link that supports communication with
multiple SPI-compatible devices. The baseline SPI peripheral is a synchronous, four-wire interface consisting of two
data pins, one device select pin, and a gated clock pin. The two data pins allow full-duplex operation to other SPI-
compatible devices. Two extra (optional) data pins are provided on specific SPIs to support quad SPI operation.
Enhanced modes of operation such as flow control, fast mode, and dual-I/O mode (DIOM) are also supported. In
addition, a direct memory access (DMA) mode allows for transferring several words with minimal CPU interaction.

With a range of configurable options, the SPI ports provide a glueless hardware interface with other SPI-compatible
devices in master mode, slave mode, and multimaster environments. The SPI peripheral includes programmable
baud rates, clock phase, and clock polarity. The peripheral can operate in a multimaster environment by interfacing
with several other devices, acting as either a master device or a slave device. In a multimaster environment, the SPI
peripheral uses open-drain outputs to avoid data bus contention. The flow control features enable slow slave devices
to interface with fast master devices by providing an SPI ready pin which flexibly controls the transfers.

SPI Features
The SPI module supports the following features:

• Full-duplex, synchronous serial interface

• 8, 16-bit and 32-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Programmable inter-frame latency

• Flow control

• Support for Fast and DIOM modes

• Quad and memory-mapped modes are supported by SPI2 only

• Independent receive and transmit DMA channels

• Burst transfer mode for non-DMA write accesses

Serial Peripheral Interface (SPI)

ADSP-CM41x Mixed-Signal Control Processor 28–1

SPI Functional Description
This section provides information on the function of the SPI module.

Shift register functionality

The SPI is essentially a shift register that serially transmits and receives data bits to or from other SPI devices.
During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in serial-
ly). A serial clock line synchronizes shifting and sampling of the information on the two serial data lines.

Master slave functionality

During a data transfer, one SPI system acts as the link master which controls the data flow. The other system
acts as the slave, which has data shifted into and out of it by the master. Different devices can take turn being
masters, and one master can simultaneously shift data into multiple slaves (broadcast mode). However, only
one slave can drive its output to write data back to the master at any given time. This rule must be enforced in
the broadcast mode. Several slaves can be selected to receive data from the master in this mode. But only one
slave can be enabled to send data back to the master.

Enhanced operating modes

SPI supports enhanced modes of operation like fast mode, DIOM, and Quad-SPI, and optional flow control.
In fast mode, received data is sampled on the transmit edge instead of the standard receive edge, thus enabling
a full-cycle path for the received data. In DIOM, both MOSI and MISO are configured as input or output
pins, and 2 bits are shifted in or out on each receive or transmit edge. In Quad-SPI mode, SPI_D3:0 are con-
figured as input or output pins and 4 bits are shifted in or out on each receive or transmit edge. A slower slave
can use flow control to stall a faster master device.

Single and multi-master use

The SPI can be used in a single master as well as multi-master environment. The SPI_MOSI, SPI_MISO,
and the SPI_CLK signals are all tied together in both configurations. SPI transmission and reception can be
enabled simultaneously or individually, depending on SPI_RXCTL and SPI_TXCTL settings. In broadcast
mode, several slaves can be enabled to receive, but only one slave must be in transmit mode and driving the
SPI_MISO line.

CM41X_M4 SPI Register List

The Serial Peripheral Interface (SPI) provides a full-duplex, synchronous serial interface, which supports both mas-
ter/slave modes and multi-master environments. The SPI's baud rate and clock phase/polarities are programmable,
and it has integrated DMA channels for both transmit and receive data streams. A set of registers governs SPI opera-
tions. For more information on SPI functionality, see the SPI register descriptions.

SPI Functional Description

28–2 ADSP-CM41x Mixed-Signal Control Processor

Table 28-1: CM41X_M4 SPI Register List

Name Description

SPI_CLK Clock Rate Register

SPI_CTL Control Register

SPI_DLY Delay Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SPI_RFIFO Receive FIFO Data Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SPI_RXCTL Receive Control Register

SPI_SLVSEL Slave Select Register

SPI_STAT Status Register

SPI_TFIFO Transmit FIFO Data Register

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_TXCTL Transmit Control Register

CM41X_M0 SPI Interrupt List

Table 28-2: CM41X_M0 SPI Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

25 SPI0_ERR SPI0 Error Level

25 SPI0_STAT SPI0 Status Level

CM41X_M4 SPI Interrupt List

Table 28-3: CM41X_M4 SPI Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

58 SPI1_ERR SPI1 Error Level

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–3

Table 28-3: CM41X_M4 SPI Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

59 SPI0_ERR SPI0 Error Level

135 SPI1_STAT SPI1 Status Level

136 SPI0_STAT SPI0 Status Level

28.2.4 SPI ITrigger List

CM41X_M4 SPI DMA Channel List

Table 28-4: CM41X_M4 SPI DMA Channel List

DMA ID DMA Channel Name Description

DMA0 SPI0_TXDMA SPI0 TX DMA Channel

DMA1 SPI0_RXDMA SPI0 RX DMA Channel

DMA6 SPI1_TXDMA SPI1 TX DMA Channel

DMA7 SPI1_RXDMA SPI1 RX DMA Channel

SPI Block Diagram

The SPI Controller Block Diagram illustrates the blocks of the SPI module. The module is comprised of three pri-
mary parts:

• SPI core contains the receive and transmit FIFOs and their associated shift registers

• Control blocks contain the synchronizer and logic to control the data flow through the data pipelines

• Register block

Transfer Protocol

The SPI module implements two channels that are independent of each other. The SPI module uses the
SPI_RXCTL and SPI_TXCTL dedicated control registers to control these channels. Except in dual and quad
modes, SPI can enable and use both channels simultaneously.

The SPI protocol supports four different combinations of serial clock phase and polarity. These combinations are
selected through the SPI_CTL.CPOL and SPI_CTL.CPHA bits.

The SPI Transfer Protocol figures demonstrate the two basic transfer formats as defined by the CPHA bit. Two
waveforms are shown for SPI_CLK; one for SPI_CTL.CPOL=0 and the other for SPI_CTL.CPOL=1. The dia-
grams can be interpreted as master or slave timing diagrams since the SPI_CLK, SPI_MISO, and SPI_MOSI
pins are directly connected between the master and the slave. The SPI_MISO signal is the output from the slave
(slave transmission), and the SPI_MOSI signal is the output from the master (master transmission). The master

SPI Functional Description

28–4 ADSP-CM41x Mixed-Signal Control Processor

generates the SPI_CLK signal. The SPI_SS signal is the slave device select input to the slave from the master. The
diagrams represent an 8-bit transfer (SPI_CTL.SIZE=0) with the MSB first (SPI_CTL.LSBF=0). Any combi-
nation of the SPI_CTL.SIZE and SPI_CTL.LSBF bits is permissible. For example, a 16-bit transfer with the
LSB first is another possible configuration.

The clock polarity and the clock phase could be identical for the master device and the slave device involved in the
communication link. The transfer format from the master can be changed between transfers to adjust for various
requirements of a slave device.

The SPI module uses the SPI_CTL.ASSEL bit to determine when the SPI hardware or software control the
SPI_SEL[n] line. When SPI_CTL.ASSEL=1, the slave select line must be set to the polarity set in the
SPI_CTL.SELST field between each serial transfer. The actual behavior of SPI_SEL[n] also depends on the
parameters programmed into the SPI_DLY register. The SPI hardware logic automatically controls this functionali-
ty. When SPI_CTL.ASSEL=0, SPI_SEL[n] can either remain active between successive transfers or be inac-
tive. The software must control this activity through manipulation of the SPI_SLVSEL register.

The SPI Transfer Protocol pair of figures illustrates the case when SPI_CTL.ASSEL = 1 and the SPI_SEL[n]
line is inactive between frames. If ASSEL = 0, the SPI_SEL[n] line can remain active between frames; however,
the first bit is only driven when an active transition of SPI_CLK occurs.

1 CLOCK CYCLE
NUMBER

 SPI_CLK
(CPOL = 0)

2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB *

MSB

MSB

* = UNDEFINED

 SPI_MOSI
FROM MASTER

 SPI_MISO
FROM SLAVE

 SPI_SS

(CPOL = 1) SPI_CLK

OR SPI_SELn

Figure 28-1: SPI Transfer Protocol for CPHA=0

1 2 3 4 5 6 7 8

* 6

6 5 4 3

5 4 3 2 1 LSB *

2 1 LSB

MSB

MSB

* = UNDEFINED

*

 CLOCK CYCLE
NUMBER

(CPOL = 0)

 SPI_MOSI
FROM MASTER

 SPI_MISO
FROM SLAVE

 SPI_SS
OR SPI_SELn

(CPOL = 1) SPI_CLK

SPI_CLK

Figure 28-2: SPI Transfer Protocol for CPHA=1

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–5

Clock Considerations

The SPI_CLK signal is a gated clock that is only active during data transfers, for the time of the transferred word.
In normal mode, the number of active edges is equal to the number of bits to be transmitted or received. In dual-
I/O mode, it is half of the number of bits to be transmitted or received, and in quad-SPI mode it is one-fourth of
the number. The clock rate can be as high as the SCLK/2, and both even and odd dividers from SCLK are support-
ed. The clock rate can be derived using both even and odd dividers from

For master devices, the SPI uses the SPI_CLK register value to determine the clock rate, whereas this value is ignor-
ed for slave devices.

When the SPI controller is a master, SPI_CLK is an output signal. Conversely, when the SPI controller is a slave,
SPI_CLK is an input signal. Slave devices ignore the SPI clock when the slave select input is driven inactive. The
SPI uses the SPI_CLK signal to shift out and shift in the data driven onto the SPI_MISO and SPI_MOSI lines.
The data is always shifted out on one edge of the clock (the active edge) and sampled on the opposite edge of the
clock (the sampling edge). Clock polarity and clock phase relative to data are programmable through the SPI_CTL
register and define the transfer format.

Controlling Delay Between Frames

The SPI Timing with Lead and Lag Programming (Independent of SPI_CTL.CPHA Setting) figure illustrates SPI
timing using the SPI_DLY.LEADX and SPI_DLY.LAGX programming. The SPI uses the SPI_DLY.LAGX
bits to control the timing between the slave select (SPI_SS) signal assertion and the first SPI_CLK edge. The SPI
uses the SPI_DLY.LEADX bits to control the timing between the last SPI_CLK edge and deassertion of the
SPI_SS signal. The lead and lag timing can be extended by a 1 SPI_CLK duration to ease timing restrictions on
the slave device.

SPI Functional Description

28–6 ADSP-CM41x Mixed-Signal Control Processor

SPI Timing: LEAD = 1, LAG = 11 1/2 SPI_CLK

SPI_SEL

SPI_SEL

SPI_SEL

SPI_SEL

1 SPI_CLK

1 SPI_CLK

1 SPI_CLK

1 SPI_CLK

SPI_CLK Pol - 0

1 SPI_CLK

1 SPI_CLK1/2 SPI_CLK

1 1/2 SPI_CLK

1/2 SPI_CLK

SPI_CLK Pol - 1

SPI_CLK Pol - 0

SPI_CLK Pol - 1

SPI_CLK Pol - 0

SPI_CLK Pol - 1

SPI_CLK Pol - 0

SPI_CLK Pol - 1

SPI Timing: LEAD = 1, LAG = 0

SPI Timing: LEAD = 0, LAG = 1

SPI Timing: LEAD = 0, LAG = 0

Figure 28-3: SPI Timing with Lead and Lag Programming (Independent of SPI_CTL.CPHA Setting)

The SPI Timing with SPI_DLY.STOP Programming (Independent of SPI_CTL.CPHA Setting) figure illustrates
SPI timing with STOP programming. The SPI module uses this timing to insert multiples of SPI_CLK period
delays between transfers. The SPI_SS line is deasserted for the duration specified in the SPI_DLY.STOP bit
field, assuming the SPI_CTL.SELST bit is configured for deassertion between transfers.

If the SPI_DLY.STOP bit =0, the master operates in a continuous mode. This mode causes an immediate start of
the second word after the last bit is transferred from the first word. During this mode of operation, the slave select
line is continuously asserted.

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–7

1/2 SPI_CLK

SPI Timing : LEAD = 0, LAG = 0 , STOP = 3, SELST= 0

3 SPI_CLK Minimum

LSB

SPI Timing : LEAD = X, LAG = X , STOP = 0, SELST= X

LSB

MSB

MSB

SPI Timing : LEAD = 0, LAG = 0 , STOP = 3, SELST= 1
3 SPI_CLK Minimum

LSB
MSB

Remain Asserted

Remain Asserted

SPI_SEL

SPI_CLK Pol-0

SPI_SEL

SPI_SEL

SPI_CLK Pol-1

SPI_CLK Pol-0

SPI_CLK Pol-1

SPI_CLK Pol-0

SPI_CLK Pol-1

1/2 SPI_CLK

1 SPI_CLK

1 SPI_CLK

Figure 28-4: SPI Timing with SPI_DLY.STOP Programming (Independent of SPI_CTL.CPHA Setting)

When the SPI_DLY.STOP bit =0 and initial conditions for a transfer are not met, the interface pauses before the
next transfer. During this pause, the SPI uses the SPI_CTL.SELST bit to determine the state of the slave select
pin. The SPI uses the SPI_DLY.LEADX and SPI_DLY.LAGX bits to determine the timing between SPI_CLK
edges and the slave select line.

Flow Control

In master mode, the slave device must drive the SPI_RDY pin. The pin acts as an input signal. The slave can deas-
sert the SPI_RDY pin to stop the master from initiating any new transfer. If SPI_RDY is deasserted in the middle
of a transfer, the current transfer continues, and the next transfer will not start unless the slave asserts the SPI_RDY
signal. Whenever the slave deasserts SPI_RDY and stalls the master, the SPI controller goes into a waiting state, and
the SPI_STAT.FCS bit is set. When the slave asserts SPI_RDY, the SPI controller resumes operation, and the
SPI_STAT.FCS bit is cleared.

In slave mode, the SPI_RDY pin acts as an output signal. Flow control can be configured on either the TX channel
or the RX channel. The SPI uses the SPI_CTL.FCCH bit to control this configuration. If flow control is config-
ured on the TX channel, as the SPI_TFIFO status nears the empty condition, the SPI_RDY pin is deasserted. If
flow control is configured on the RX channel, as the SPI_RFIFO status nears the full condition, the SPI_RDY
pin is deasserted. The SPI uses the SPI_CTL.FCWM bits to control the FIFO status at which SPI_RDY deasser-
tion takes place. Flow control in slave mode is purely based on the FIFO status and does not depend on the word
counters.

The SPI Flow Control Timing in Master Mode figure illustrates this timing.

SPI Functional Description

28–8 ADSP-CM41x Mixed-Signal Control Processor

 SPI_CLK
(CPOL = 0)

(CPOL = 1)

MSB

MSB

MSB

MSB

LSB

LSB

. . .

. . .

SPI_RDY

(CPOL = 0)

SPI_MOSI

(CPOL = 1)

MSB

MSB

MSB

MSB

LSB

LSB

. . .

. . .SPI_MISO

SPI_SS

SPI timing with flow-control stall, CPHA = 0

SPI timing with flow-control stall, CPHA = 1

SPI_CLK

SPI_CLK

SPI_CLK

SPI_MOSI

SPI_MISO

SPI_SS

SPI_RDY

Figure 28-5: SPI Flow Control Timing in Master Mode.

Slave Select Operation

If the SPI is in slave mode, SPI_SS acts as the slave select input. When SPI is enabled as a master, SPI_SS can
serve as an error detection input for the SPI in a multi-master environment. The SPI_CTL.PSSE bit enables this
feature. When SPI_CTL.PSSE=1, the SPI_SS input is the master mode error input. Otherwise, SPI_SS is
ignored.

The SPI_SS signal is an active-low signal. The master asserts the signal during the transfer. The signal can be deas-
serted or remain asserted between transfers. When SPI_SS is deasserted, SPI_CLK and inputs are ignored, and
outputs are three-stated.

The slave select bits (SPI_SLVSEL.SSEL1 – SPI_SLVSEL.SSEL7) are used in a multiple-slave SPI environ-
ment. For example, if there are eight SPI devices in the system including a processor master, the master processor
can support the SPI mode transactions across the other seven devices. This configuration requires only one master
processor in this multi-slave environment.

For example, assume that the SPI of the processor is the master. The SPI_SLVSEL.SSEL1 –
SPI_SLVSEL.SSEL7 bits on the processor can be connected to the slave select pin of each slave device. In this
configuration, the slave select bits can be used in three ways. In cases 1 and 2, the processor is the master and the
seven microcontrollers or peripherals with SPI interfaces are slaves. The processor can do one of the following:

1. Transmit to all seven SPI devices at the same time in a broadcast mode. Here, all slave select bits are set.

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–9

2. Receive and transmit from one SPI device by enabling only one slave SPI device at a time.

3. If all the slaves are also processors, then the requester can receive data from only one processor at a time. (The
functionality is enabled by clearing the SPI_CTL.EMISO bit in the six other slave processors.) The requestor
can transmit broadcast data to all seven at the same time. This MISO enabling feature is available in some
other microcontrollers. Therefore, it is possible to use the MISO enabling feature with any other SPI device
that includes this functionality.

SLAVE DEVICE

SPI_MISO SPI_CLK SPI_MOSI SPI_SS

 MASTER
DEVICE

SPI_SEL3

VDD

SPI_SEL1

SPI_SEL2

SLAVE DEVICE

SPI_MISO SPI_CLK SPI_MOSI SPI_SS

SLAVE DEVICE

SPI_MISO SPI_CLK SPI_MOSI SPI_SS

SPI_MISO SPI_CLK SPI_MOSI SPI_SS

Figure 28-6: Single-Master, Multiple-Slave Configuration

Beginning and Ending a Non-DMA SPI Transfer

The start and finish of a non-DMA SPI transfer depend on the following settings.

1. Whether the device is configured as a master or a slave.

2. The state of the SPI_CTL.ASSEL bit, which selects between hardware and software control over
SPI_SLVSEL.

When SPI_CTL.CPHA=0, the enabled slave select outputs are driven active. However, the SPI_CLK signal re-
mains inactive for the first half of the first cycle of SPI_CLK. For a slave with SPI_CTL.CPHA=0, the transfer
starts as soon as the SPI_SS input goes low.

When SPI_CTL.CPHA=1, a transfer starts with the first active edge of SPI_CLK for both slave and master devi-
ces. For a master device, a transfer is complete after it sends the last data and simultaneously receives the last data bit.
A transfer for a slave device ends after the last sampling edge of SPI_CLK. If SPI_CTL.ASSEL=0, the hardware
maintains responsibility for toggling SPI_SS between frames. If SPI_CTL.ASSEL=1, software controls the
SPI_SS line and can keep it active between frames.

The SPI_STAT.RFE bit defines when the receive buffer can be read, indicating that SPI_RFIFO is not empty.
The SPI_STAT.TFF bit defines when the transmit buffer can be written, indicating that the SPI_TFIFO is not
full. The end of a single word transfer occurs when the SPI_STAT.RFE bit is cleared. The status indicates that a
new word has been received and written into the receive FIFO. The SPI_STAT.RFE bit remains cleared as long as
the receive FIFO has valid data.

SPI Functional Description

28–10 ADSP-CM41x Mixed-Signal Control Processor

To maintain software compatibility with other SPI devices, the SPI_STAT.SPIF bit is also available for polling.
This bit can have a slightly different behavior from other commercially available devices.

In master mode with the SPI_CTL.ASSEL bit cleared, software manually asserts the required slave select signal
before starting the transaction. After all data transfers, software typically releases the slave select line.

When the receive or transmit word counters are enabled in the SPI_TXCTL or SPI_RXCTL registers, the SPI
generates a finish interrupt at the end of the transfer. It signals the end of all transfers related to that transaction.

Transmit Operation in Non-DMA Mode

The transmit operation in non-DMA mode is enabled through the SPI_TXCTL.TEN bit. It can be enabled inde-
pendently from the receive operation, and the transmit channel can become the initiating channel based on the
SPI_TXCTL.TTI bit setting.

Transmit underrun is not possible in this mode, as no new transfer initiates unless the transmit FIFO is empty (in
the case that SPI_TXCTL.TTI =1). A receive overflow is detected when data from a new frame transfer replaces
older data in a full receive FIFO. This event can occur if SPI_TXCTL.TTI =1 and the receive channel is enabled
in a non-initiating capacity.

An SPI transmit interrupt request is signaled once the transmit channel has been enabled and the transmit FIFO is
not full. The SPI uses the SPI_TXCTL.TDR bit setting to control the frequency of the interrupt request.

Receive Operation in Non-DMA Mode

The receive operation in non-DMA mode is enabled through the SPI_RXCTL.REN bit. It can be enabled inde-
pendently from the transmit operation, and the receive channel can become the initiating channel based on the
SPI_RXCTL.RTI bit setting.

Receive overflow is not possible in this mode, as no new transfer initiates when the receive FIFO is full (in the case
of SPI_RXCTL.RTI =1). A transmit underrun can occur (SPI_TXCTL.TDU bit) when no valid data is in the
SPI_TFIFO register when a transfer is initiated. This event can occur if SPI_RXCTL.RTI =1 and the transmit
channel is enabled in a non-initiating capacity.

An SPI receive interrupt request is signaled once the receive channel has been enabled and there is data waiting to be
read. The SPI uses the SPI_RXCTL.RDR bit setting to control the frequency of the interrupt request.

DMA and Interrupt Multiplexing

Please refer to the Direct Memory Access (DMA) chapter for information about DMA multiplexing. Several interrupts
and DMA channels in the SPI can be multiplexed.

The SPI1 DMA units are multiplexed with other periperals and may require configuration to support SPI DMA.

Dual I/O Mode

In Dual I/O mode, the SPI_MISO and SPI_MOSI pins are configured to operate in the same direction which
doubles bandwidth. The SPI uses the SPI_CTL.SOSI bit to determine the order of bits on the pins. When set,

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–11

the processor sends the first bit on the SPI_MOSI pin and the second bit on the SPI_MISO pin. If the
SPI_CTL.SOSI bit is cleared, the order is reversed. Since dual I/O mode uses both pins to transmit or receive
data, only one channel can be enabled, either transmit or receive. Flow control through the SPI_RDY pin is sup-
ported. Interrupt request generation is unaffected by dual I/O mode. However, the interrupt service interval is re-
duced, since the individual transfer latency is halved.

Changing to quad SPI mode must be done when the SPI is in a quiescent state.

MSB

6

5

4

3

2

1

LSB

1 32 4
Cycle
Number

SPI_CLK
(CPOL=0)

SPI_MOSI

SPI_MISO

Slave
Select

SPI_CLK
(CPOL=1)

Figure 28-7: Dual I/O Mode Transfer Protocol for CPHA=0, SOSI=1, 8-Bit Transfer, LSBF=0.

MSB

6

5

4

3

2

1

LSB

1 32 4
Cycle
Number

SPI_CLK
(CPOL=0)

SPI_MOSI

SPI_MISO

Slave
Select

SPI_CLK
(CPOL=1)

Figure 28-8: Dual I/O Mode Transfer Protocol for CPHA=1, SOSI=0, 8-Bit Transfer, LSBF=0.

Quad I/O Mode (SPI2 only)

In quad SPI mode, the SPI_MISO and SPI_MOSI pins, in tandem with the SPI_D2 and SPI_D3 pins, are
configured to operate in the same direction. The SPI uses the SPI_CTL.SOSI bit to determine the order of bits
on the pins. When set, the processor sends:

• The first bit on the SPI_MOSI pin

• The second bit on the SPI_MISO pin

• The third bit on the SPI_D2 pin

• The fourth bit on the SPI_D3 pin

SPI Functional Description

28–12 ADSP-CM41x Mixed-Signal Control Processor

If the SPI_CTL.SOSI bit is cleared, the order is reversed. Since quad SPI mode uses all four pins to transmit or
receive data, only one channel can be enabled as either transmit or receive. Flow control through the SPI_RDY pin
is supported.However, the interrupt service interval is reduced, since the individual transfer latency is halved.

Changing to quad SPI mode must be done when the SPI is in a quiescent state.

While using dual or quad I/O mode for communicating with flash devices, program the SPI_CTL.CPHA and the
SPI_CTL.CPOL bits =1. This programming avoids bus contention during read operations, because the flash de-
vice starts driving out the bits immediately after dummy cycles in read header.

MSB

14

11

10

7

6

3

2

1 32 4Cycle
Number

SPI_CLK
(CPOL=0)

Slave
Select

13

12

9

8

5

4

1

LSB

D2

D3

SPI_CLK
(CPOL=1)

SPI_MOSI/
D0

SPI_MISO/
D1

Figure 28-9: Quad Mode Timing for CPHA=0, SOSI=1, 16-Bit Transfer, LSBF=0.

NOTE: The SPI does support quad SPI 8-bit transfer in slave continuous mode of operation with an
SCLK:SPI_CLK ratio of less than 1:2. A minimum of 2 SCLK cycles is required between transfers in 8-
bit quad SPI slave mode with an SCLK:SPI_CLK ratio of less than 1:2.

Fast Mode

Fast mode is similar to the normal mode of operation when transmitting. When receiving, data is sampled at the
next transmit edge allowing a full cycle of timing in the receive direction. This mode is valid in master mode opera-
tion only. When the SPI operates in fast mode, the slave drives the data for one full cycle.

 CPOL=0

1
st

 s
la

ve
 s

am
pl

e

2
nd

 m
st

r &
 s

la
ve

dr

iv
e

MISO

MOSI

La
st

 s
la

ve
 s

am
pl

e

La
st

 m
st

r a
nd

 s
la

ve

dr
iv

e

D6 D5 D4 D3 D2 D1 D0D7

1
st

 m
st

r s
am

pl
e

Mstr,slave
drive MSB

already

La
st

 m
st

r s
am

pl
e

CPOL=1

D6 D5 D4 D3 D2 D1 D0D7

Figure 28-10: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 0

SPI Functional Description

ADSP-CM41x Mixed-Signal Control Processor 28–13

CPOL=0

1
st

 s
la

ve
 s

am
pl

e

2
nd

 m
st

r &
 s

la
ve

dr

iv
e

MISO

MOSI

La
st

 s
la

ve
 s

am
pl

e

La
st

 m
st

r a
nd

 s
la

ve

dr
iv

e

D6 D5 D4 D3 D2 D1 D0D7

1
st

 m
st

r s
am

pl
e

La
st

 m
st

r s
am

pl
e

CPOL=1

D6 D5 D4 D3 D2 D1 D0D7
1

st
 m

st
r &

 s
la

ve

dr
iv

e

Note : Last Master sample edge
is internally generated to latch

incoming data

Figure 28-11: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 1

SPI Interrupt Signals
The SPI controller supports three types of interrupt request signals that correspond to data, status, and error condi-
tions.

Data Interrupts

The SPI peripheral supports two data interrupt channels – receive and transmit. These interrupt signals are multi-
plexed into the DMA request lines. Since the peripheral interfaces with separate read and write interfaces with
DMA, the read and write data interrupts are independent. When the DMA channels are not used, the interrupts are
routed directly to the system event controller. The interrupts occupy the same vector locations as the corresponding
DMA channels.

When the DMA channels are not used, but still properly configured using the system multiplexing scheme, the in-
terrupt requests are routed through DMA unit to the system for event processing.

Each of the data interrupt requests can be individually controlled. Program the SPI_RXCTL.RDR and
SPI_TXCTL.TDR bit fields for receive and transmit, respectively. When receive is enabled, the RX interrupt re-
quest is issued whenever there is data available in the receive datapath for reading. (The event occurs according to
the SPI_RXCTL.RDR bit setting.) When transmit is enabled, the TX interrupt request is issued whenever the
transmit datapath can be written. (The event occurs according to the SPI_TXCTL.TDR setting.) DMA data inter-
rupts are compatible with second-generation DMA to incorporate urgent data requests and transfer finish interrupt
requests apart from the usual data request interrupts. Transmit interrupt requests operate independently from the
word counter-value in the SPI_TWC register.

Status Interrupts

The SPI controller supports several status interrupt requests to indicate different conditions of the receiver and
transmitter. All status interrupt requests can be masked. Status interrupt requests are signaled directly through a sin-
gle SPI status IRQ line. The line cannot be combined with the SPI error IRQ line for some processors. The SPI
Status Interrupts table describes the status interrupt requests that are available for the SPI controller.

SPI Interrupt Signals

28–14 ADSP-CM41x Mixed-Signal Control Processor

Table 28-5: SPI Status Interrupts

SPI_STAT Bit Description

SPI_STAT.RUWM Receive FIFO urgent watermark interrupt request. Issued when the level of the RFIFO breaches the water-
mark set in the SPI_RXCTL.RUWM field. It is cleared when the level of the RFIFO reaches the watermark
set in the SPI_RXCTL.RRWM field. If the RX channel is configured in DMA mode, SPI_RXCTL.RUWM
is multiplexed with the data request.

SPI_STAT.TUWM Transmit FIFO urgent watermark interrupt request. Issued when the level of the TFIFO breaches the water-
mark set using the SPI_TXCTL.TUWM bit. It is cleared when the level of the TFIFO reaches the watermark
set in the SPI_TXCTL.TRWM field. If the TX channel is configured in DMA mode, SPI_STAT.TUWM is
multiplexed with the data request.

SPI_STAT.TS Transmit start interrupt request. Issued when the start of a transmit burst is detected by loading of the
SPI_TWC register with the contents of the SPI_TWCR register.

SPI_STAT.RS Receive start interrupt request. Issued when the start of a receive burst is detected by the loading of
SPI_RWC with the contents of SPI_RWCR.

SPI_STAT.TF Transmit finish interrupt request. Issued when a transmit burst completes (SPI_TWC decrements to zero).

SPI_STAT.RF Receive finish interrupt request. Issued when a receive burst completes (SPI_RWC decrements to zero).

Error Conditions

The SPI controller supports interrupt requests upon several different error conditions. All interrupt requests are
maskable. The individual error indications combine into a single SPI error IRQ signal, which can be multiplexed on
some processors with the aggregated SPI status IRQ signal. The SPI Error Interrupts table details the possible error
indications.

Error conditions arise depending on which of the channels (transmit or receive) are enabled. If a channel is disabled,
all errors related to it are ignored. When both channels are enabled, errors from both channels are enabled.

Table 28-6: SPI Error Interrupts

Bit Description

SPI_STAT.MF Mode fault. Signaled when another device also tries to be a master in a multi-master system and drives the
SPI_SS input low. This error is signaled in master mode operation.

SPI_STAT.TUR Transmission error. Signaled when an underflow condition occurs on the transmit channel. This event occurs
when a new transfer starts but SPI_TFIFO is empty. This error does not occur in master transmit initiating
mode since SPI_TFIFO Not Empty is one of the conditions for transfer initiation.

SPI_STAT.ROR Reception error. Signaled when an overflow condition occurs on the receive channel. This event occurs when
a new data word is received, but the SPI_RFIFO is full. This error condition does not occur in master re-
ceive initiating mode since SPI_RFIFO Not Full is one of the conditions for transfer initiation.

SPI_STAT.TC Transmit collision error. Signaled when loading data to the transmit shift register happens near the first trans-
mitting edge of SPI_CLK. In slave mode of operation, the SPI controller is unaware of when the next trans-
fer starts. Loading of data to the transmit shift register can happen just after the transmitting edge. This event
results in the setup time not being met for the first bit transmitted. The transmitted data is corrupt. In
SPI_CTL.CPHA 1 mode, the first SPI_CLK edge is taken as the first transmitting edge. If

SPI Interrupt Signals

ADSP-CM41x Mixed-Signal Control Processor 28–15

Table 28-6: SPI Error Interrupts (Continued)

Bit Description

SPI_CTL.CPHA =0, then the last SPI_CLK edge of the last transmission (SPI_CTL.SELST =1) or slave
select deassertion (SPI_CTL.SELST =0) is taken as the first transmitting edge. This error is signaled only in
the slave mode of operation. In master mode of operation, loading of data happens before the first transmit-
ting edge of SPI_CLK.

SPI Programming Concepts
The following sections provide general programming guidelines and procedures.

Programming Guidelines

It is acceptable to program SPI_RXCTL and SPI_TXCTL registers after programming the SPI_CTL register.
However, program the initiating mode register and its counter-register, if enabled, after the non-initiating mode reg-
ister. For example, if transmit is the initiating mode and receive is the non-initiating mode, then program the
SPI_RXCTL and SPI_RWC registers before the SPI_TXCTL and SPI_TWC registers. If enabling both transmit
and receive in initiating mode, enable the SPI_CTL register after programming both the SPI_RXCTL and
SPI_TXCTL registers.

These programming guidelines prevent SPI from starting a transfer when SPI registers are not fully programmed.
Other ways of programming are also allowed as long as the initiating conditions prevent the start of communication
until after programming of SPI registers is complete.

Avoid data corruption when changing the SPI module configuration. Do not change the configuration during a data
transfer. Additionally, change the clock polarity only when no slave is selected. However, an exception to this rule
exists. When an SPI communication link consists of a single master and slave, SPI_CTL.ASSEL = 0. The slave
select input of the slave is permanently tied low. In this case, the slave is always selected. Avoid data corruption by
enabling the slave only after both the master and slave devices are configured.

The module supports 8, 16-bit and 32-bit word sizes. To ensure correct operation, configure both the master and
slave with the same word size.

Master Operation in Non-DMA Modes

This section describes the operation of the SPI as a master in non-DMA mode.

1. Write to the SPI_SLVSEL register, setting one or more of the SPI select enable bits. This operation ensures
that the desired slaves are properly deselected while the master is configured.

2. The SPI_RXCTL.RTI and SPI_TXCTL.TTI bits determine the SPI initiating mode. The initiating mode
defines the primary transfer channel, and also the initiating condition for the transfer.

3. Write to the SPI_CLK, SPI_CTL, SPI_RXCTL, and SPI_TXCTL registers. This operation enables the de-
vice as a master and configures the SPI system. It specifies the transfer modes and channels, appropriate word
length, transfer format, baud rate, and other control information.

SPI Programming Concepts

28–16 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: If SPI_RXCTL.RTI is enabled and SPI_TXCTL.TTI is not, write to
the SPI_RXCTL register after writing into SPI_CTL, SPI_TXCTL, and SPI_TFIFO registers to prevent a
transmit underrun for the first transfer.

4. If SPI_CTL.ASSEL=0, activate the desired slaves by clearing one or more of the SPI_SLVSEL flag bits.
Otherwise, the SPI hardware performs slave activation.

5. The SPI controller then generates the programmed clock pulses on SPI_CLK and simultaneously shifts data
out of SPI_MOSI while shifting data in from SPI_MISO. Before a shift, the shift register is loaded with the
contents of the SPI_TFIFO register. At the end of the transfer, the contents of the shift register are loaded
into SPI_RFIFO.

6. Whenever the initiating conditions are satisfied, the SPI continues to send and receive words. If the transmit
buffer remains empty or the receive buffer remains full, the device operates according to the states of the
SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

7. It is possible to program a secondary channel in addition to the initiating channel. This feature allows usage of
available channel resources for receives or transmits simultaneously with the initiating channel.

Slave Operation in Non-DMA Modes

When a device is enabled as a slave in a non-DMA mode, a transition of the SPI_SS select signal to the active state
(low) triggers the the start of a transfer. Or, the first active edge of SPI_CLK triggers the start, depending on the
state of SPI_CTL.CPHA bit. The interface operates in the following manner.

1. The core writes to the SPI_CTL, SPI_RXCTL, and SPI_TXCTL registers. The operation defines the mode
of the serial link to be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be transmitted into SPI_TFIFO.

3. Once the SPI_SS falling edge is detected, the slave starts sending data on active SPI_CLK edges and sam-
pling data on inactive SPI_CLK edges.

4. Reception or transmission continues until SPI_SS is released or until the slave has received the proper num-
ber of clock cycles.

5. The slave device continues to receive or transmit with each new falling edge transition on SPI_SS or active
SPI_CLK edge. If the transmit buffer remains empty or the receive buffer remains full, the device operates
according to the states of the SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

Configuring DMA Master Mode

The SPI interface supports a write DMA channel and a read DMA channel. It can use these functions individually
or in a lock-step manner in duplex mode (SPI_TXCTL.TTI= SPI_RXCTL.RTI=1).

1. Write to the appropriate DMA registers to enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on.

2. Write to the SPI_SLVSEL register, setting one or more of the SPI flag select bits.

SPI Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 28–17

3. Write to the SPI_CLK and SPI_CTL registers, enabling the device as a master and configuring the SPI sys-
tem by specifying the appropriate word length, transfer format, baud rate, and so forth.

4. Write to SPI_RXCTL to configure SPI master receive mode, or write to SPI_TXCTL to configure SPI master
transmit mode.

5. Finally, write to the SPI_RXCTL.REN bit to enable the receive channel, or write to SPI_TXCTL.TEN to
enable the transmit channel.

6. If the SPI_RXCTL.RTI bit is enabled, a receive transfer is initiated upon enabling SPI_CTL.EN bit. If the
receive word counter is enabled (SPI_RXCTL.RWCEN), then the SPI_RWC register must be non-zero for a
transfer to initiate.

ADDITIONAL INFORMATION: If enabling both receive and transmit DMA channels, but not enabling
SPI_TXCTL.TTI, write to the SPI_RXCTL register after writing the SPI_CTL and SPI_TXCTL regis-
ters. In this way, a transmit underrun can be prevented for the first transfer. Subsequent transfers are initiated as
the SPI reads data from the receive shift register and writes to the SPI receive FIFO. The SPI then requests a
write from DMA to memory. Upon a DMA grant, the DMA engine reads a word from the SPI receive FIFO
and writes to memory. New requests continue to be initiated as long as the receive FIFO does not fill up, when
SPI_RWC does not become zero while SPI_RXCTL.RWCEN=1.

7. If SPI_TXCTL.TTI is enabled, the SPI controller requests DMA reads from memory as long as there is space
for more data in the transmit pipe. Upon a DMA grant, the DMA engine reads a word from memory and
writes to the transmit FIFO. As long as transmit data is available in the FIFO, and the SPI_TWC register is
non-zero when SPI_TXCTL.TWCEN=1, the SPI continues to initiate transfers until disabled.

8. If both the SPI_TXCTL.TTI and SPI_RXCTL.RTI bits are enabled, the SPI controller requests a DMA
read from memory. However, there must be space for more data in the transmit pipe and the number of words
written into the SPI must be less than SPI_TWC if SPI_TXCTL.TWCEN=1. Upon a DMA grant, the DMA
engine reads a word from memory and writes to the transmit FIFO.

ADDITIONAL INFORMATION: As the SPI writes data from the transmit FIFO into the transmit shift regis-
ter, it initiates a transfer on the SPI link. Data received from the transfer is moved from the SPI receive shift
register to the receive FIFO. The SPI controller requests a write from DMA to memory. Upon a DMA grant,
the DMA engine reads a word from the receive FIFO and writes to memory. Transfer continues to be initiated
as long as both receives and transmits can accommodate new data.

9. If the receive pipe fills up due to unavailability of DMA grants, the transmit pipe stalls until the pipe is drained.
If the transmit pipe fills up, the SPI stops requesting for DMA writes. If the value in SPI_RWC expires, further
write-requests to DMA stop. However, data already written into the transmit FIFO is sent, and read requests to
DMA continue until the receive data is read from the receive FIFO.

10. The SPI then generates the programmed clock pulses on SPI_CLK and simultaneously shifts data out of
SPI_MOSI while shifting data in from SPI_MISO. For receive transfers, the value in the shift register is loa-
ded into the SPI_RFIFO register at the end of the transfer. For transmit transfers, the value in the
SPI_TFIFO register is loaded into the shift register at the start of the transfer.

SPI Programming Concepts

28–18 ADSP-CM41x Mixed-Signal Control Processor

Configuring DMA Slave Mode Operation

This mode occurs when the SPI is enabled as a slave and the DMA engine is configured to transmit or receive data.
A transition of the SPI_SS signal to the active-low state triggers the start of a transfer. Or, the first active edge of
SPI_CLK triggers the start of a transfer, depending on the state of the SPI_CTL.CPHA bit. The following steps
illustrate the SPI receive or transmit DMA sequence in an SPI slave (in response to a master command). The SPI
supports a receive DMA channel and a transmit DMA channel.

1. Write to the appropriate DMA registers to enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on.

2. Write to the SPI_CTL, SPI_RXCTL, and SPI_TXCTL registers to define the mode of the serial link to be
the same as the mode configured in the SPI master.

3. If the receive channel is enabled (SPI_RXCTL.REN is asserted), the following actions occur:

a. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_CLK
edges.

b. The value in the shift register is loaded into the SPI_RFIFO register at the end of the transfer.

c. Once SPI_RFIFO has valid data, it requests a write from DMA to memory.

d. Upon a DMA grant, the DMA engine reads a word from the receive FIFO and writes to memory.

e. As long as there is data in the receive FIFO, the SPI slave continues to request a DMA write to memory.
The DMA engine continues to read a word from the FIFO and writes to memory. The SPI slave contin-
ues receiving words on active SPI_CLK edges as long as the SPI_SS input is active.

f. If the data collected in the receive pipe breaches the set level, and the DMA engine cannot keep up with
the receive rate, the slave can deassert the SPI_RDY signal. This signaling throttles the master. The re-
ceive pipe level is set according to the SPI_CTL.FCWM field. The signal is deasserted as the DMA drains
the receive FIFO. Alternatively, the SPI can use the SPI_RXCTL.RDO bit to decide when the incoming
data is discarded or overwritten into the receive FIFO (when SPI_CTL.FCEN is inactive).

4. If the transmit channel is enabled (SPI_TXCTL.TEN is asserted), the following actions occur:

a. The SPI requests a DMA read from memory.

b. Upon a DMA grant, the DMA engine reads a word from memory and writes to the transmit FIFO.

c. The SPI then reads DMA data from the transmit FIFO and writes to the transmit shift register, awaiting
the start of the next transfer.

d. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_CLK
edges.

e. As long as there is room in the transmit FIFO, the SPI slave continues to request a DMA read from mem-
ory. The DMA engine continues to read a word from memory and write to the transmit FIFO. The SPI
slave continues transmitting words on active SPI_CLK edges as long as the SPI_SS input is active.

SPI Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 28–19

f. If the number of outstanding data entries in the transmit pipe breaches the level set and the DMA cannot
keep up with the transmit rate, the slave deasserts the SPI_RDY signal. This signaling throttles the mas-
ter. The transmit pipe level is set according to the SPI_CTL.FCWM field. The signal is deasserted as the
DMA fills the transmit FIFO. Alternately, the SPI_TXCTL.TDU bit decides the state of the transmit
data (when SPI_CTL.FCEN is deasserted).

5. If both receive and transmit channels are enabled, the following actions occur after the actions for each chan-
nel. Transfers continue as long as both receive and transmit channels can accommodate new data.

a. If the receive pipe fills up due to the unavailability of DMA grant, the SPI interface stalls the master by
asserting the SPI_RDY pin. This signal is deasserted as the DMA drains the receive FIFO. Alternately,
the SPI uses the SPI_RXCTL.RDO bit to decide when the incoming data is discarded or overwritten in
the receive FIFO (when SPI_CTL.FCEN is deasserted).

b. If the transmit pipe fills up, the SPI stops requesting DMA writes until the pipe clears.

c. If there is an underflow problem in the transmit pipe, the slave stalls the master by deasserting SPI_RDY
while the DMA fills the transmit FIFO. Alternately, the SPI uses the SPI_TXCTL.TDU bit to decide the
state of the transmit data (when SPI_CTL.FCEN is deasserted).

CM41X_M4 SPI Register Descriptions
Serial Peripheral Interface (SPI) contains the following registers.

Table 28-7: CM41X_M4 SPI Register List

Name Description

SPI_CLK Clock Rate Register

SPI_CTL Control Register

SPI_DLY Delay Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SPI_RFIFO Receive FIFO Data Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SPI_RXCTL Receive Control Register

SPI_SLVSEL Slave Select Register

SPI_STAT Status Register

CM41X_M4 SPI Register Descriptions

28–20 ADSP-CM41x Mixed-Signal Control Processor

Table 28-7: CM41X_M4 SPI Register List (Continued)

Name Description

SPI_TFIFO Transmit FIFO Data Register

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_TXCTL Transmit Control Register

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–21

Clock Rate Register

The SPI_CLK register selects the baud rate for SPI data transfers, relating this rate to the SPI serial clock (SPI
clock) and the system clock (SCLK).

Baud Rate
BAUD (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-12: SPI_CLK Register Diagram

Table 28-8: SPI_CLK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

BAUD Baud Rate.

The SPI_CLK.BAUD bits set the SPI baud rate according to the formula:

BAUD = (SCLK / SPI Clock) - 1

CM41X_M4 SPI Register Descriptions

28–22 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The SPI_CTL register enables the SPI and configures settings for operating modes, communication protocols, and
buffer operations.

Slave Select Pin ControlSlave Select Polarity Between Transfers

Clock PolarityEnable MISO

Clock PhaseWord Transfer Size

Open Drain ModeLeast Significant Bit First

Protected Slave Select EnableFlow Control Enable

Master/SlaveFlow Control Channel Selection

EnableFlow Control Polarity

Fast-Mode EnableMultiple I/O Mode

Flow Control WatermarkStart on MOSI

ASSEL (R/W)SELST (R/W)

CPOL (R/W)EMISO (R/W)

CPHA (R/W)SIZE (R/W)

ODM (R/W)LSBF (R/W)

PSSE (R/W)FCEN (R/W)

MSTR (R/W)FCCH (R/W)

EN (R/W)FCPL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

1
6

0
5

1
4

0
3

0
2

0
1

0
0

FMODE (R/W)MIOM (R/W)

FCWM (R/W)SOSI (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-13: SPI_CTL Register Diagram

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–23

Table 28-9: SPI_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

22

(R/W)

SOSI Start on MOSI.

The SPI_CTL.SOSI bit is valid only when SPI_CTL.MIOM is enabled for either
DIOM or QIOM, and this bit selects the starting pin and the bit placement on pins
for these modes.

In DIOM, by default, (SPI_CTL.SOSI =0) SPI sends the first bit on the
SPI_MISO pin and the second bit on the SPI_MOSI pin. In QIOM, by default, the
SPI sends the first bit on the SPI_D3 pin, the second bit on the SPI_D2 pin, the
third bit on the SPI_MISO pin and the fourth bit on the SPI_MOSI pin. This order
can be reversed by setting the SPI_CTL.SOSI bit. When this bit is set, the SPI
sends the first bit on the SPI_MOSI pin. The first bit referred to here depends on the
SPI_CTL.LSBF bit setting (MSB bit or LSB bit).

0 Start on MISO (DIOM) or start on SPI_D3

1 Start on MOSI

21:20

(R/W)

MIOM Multiple I/O Mode.

The SPI_CTL.MIOM bits enable SPI operation in dual I/O mode (DIOM) or quad
I/O mode (QIOM).

These bits can only be changed when the SPI is disabled (SPI_CTL.EN =0).

0 No MIOM (disabled)

1 DIOM operation

2 QIOM operation

3 Reserved

18

(R/W)

FMODE Fast-Mode Enable.

The SPI_CTL.FMODE bit enables fast mode operation for SPI receive transfers. SPI
transmit operations in fast mode are the same as normal mode.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

28–24 ADSP-CM41x Mixed-Signal Control Processor

Table 28-9: SPI_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17:16

(R/W)

FCWM Flow Control Watermark.

The SPI_CTL.FCWM bits select the watermark level of the transmit channel
(SPI_TFIFO buffer) or receive channel (SPI_RFIFO buffer) that triggers flow con-
trol operation. These bits are applicable only when the SPI is a slave
(SPI_CTL.MSTR = 0) and flow control is enabled (SPI_CTL.FCEN =1). When
the watermark condition is met, the SPI slave deasserts the SPI_RDY pin.

0 TFIFO empty or RFIFO full

1 TFIFO 75% or more empty, or RFIFO 75% or more
full

2 TFIFO 50% or more empty, or RFIFO 50% or more
full

3 Reserved

15

(R/W)

FCPL Flow Control Polarity.

The SPI_CTL.FCPL bit selects flow control polarity for the SPI_RDY pin when
flow control is enabled. When the SPI_RDY pin is active, the SPI is indicating it is
ready for data transfer.

0 Active-low RDY

1 Active-high RDY

14

(R/W)

FCCH Flow Control Channel Selection.

The SPI_CTL.FCCH bit selects whether the SPI applies flow control to the transmit
channel (SPI_TFIFO buffer) or receive channel (SPI_RFIFO buffer). This bit is
applicable only when the SPI is a slave and flow control is enabled.

0 Flow control on RX buffer

1 Flow control on TX buffer

13

(R/W)

FCEN Flow Control Enable.

The SPI_CTL.FCEN bit enables SPI flow control operation, which permits slow
slave devices to interface with fast master devices. This bit controls the operation of the
SPI_RDY pin.

Note that options for flow control operation are available using the SPI_CTL.FCCH,
SPI_CTL.FCPL, and SPI_CTL.FCWM bits.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–25

Table 28-9: SPI_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

LSBF Least Significant Bit First.

The SPI_CTL.LSBF bit selects whether the SPI transmits/receives data as LSB first
(little endian) or MSB first (big endian). This bit can only be changed when the SPI is
disabled.

0 MSB sent/received first (big endian)

1 LSB sent/received first (little endian)

10:9

(R/W)

SIZE Word Transfer Size.

The SPI_CTL.SIZE bits select the SPI transfer word size as 8, 16 or 32 bits. To
ensure correct operation, both the master and slave must be configured with the same
word size. This bit can only be changed when the SPI is disabled (SPI_CTL.EN =0).

0 8-bit word

1 16-bit word

2 32-bit word

3 Reserved

8

(R/W)

EMISO Enable MISO.

The SPI_CTL.EMISO bit enables master-in-slave-out (MISO) mode. This SPI
mode is applicable only when the SPI is a slave.

0 Disable

1 Enable

7

(R/W)

SELST Slave Select Polarity Between Transfers.

The SPI_CTL.SELST bit selects the state (polarity) for the SPI_SEL[n] pin be-
tween SPI transfers when the SPI is a master and hardware slave select assertion is ena-
bled (SPI_CTL.ASSEL =1). In slave mode, this bit affects the detection of both
transmit collision (SPI_STAT.TC and underrun (SPI_STAT.TUR) errors.

0 Deassert slave select (high)

1 Assert slave select (low)

CM41X_M4 SPI Register Descriptions

28–26 ADSP-CM41x Mixed-Signal Control Processor

Table 28-9: SPI_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

ASSEL Slave Select Pin Control.

The SPI_CTL.ASSEL bit selects whether the SPI hardware sets the SPI_SEL[n]
pin output value (ignoring the slave select SPI_SLVSEL.SSEL1 -
SPI_SLVSEL.SSEL7 bits) or whether software control of the slave select bits set
the SPI_SEL[n] pin output value. This feature is applicable only when the SPI is a
master.

When hardware control is enabled, the SPI_SEL[n] pin output is asserted during
the transfers, and the pin polarity between transfers is selected by the
SPI_CTL.SELST bit.

When software control is enabled, the SPI_SEL[n] pin output value is set through
software control of the slave select bits, and as such, the pin may either remain asserted
(low) or be deasserted between transfers.

0 Software slave select control

1 Hardware slave select control

5

(R/W)

CPOL Clock Polarity.

The SPI_CTL.CPOL bit selects whether the SPI uses an active-low or active-high
signal for the SPI clock (SPI_CLK). This bit works with the SPI_CTL.CPHA bit to
select combinations of clock phase and polarity for the SPI_CLK pin. This bit can
only be changed when the SPI is disabled.

0 Active-high SPI CLK

1 Active-low SPI CLK

4

(R/W)

CPHA Clock Phase.

The SPI_CTL.CPHA bit selects whether the SPI starts toggling the signal for the SPI
clock (SPI_CLK) from the start of the first data bit or from the middle of the first
data bit. The SPI_CTL.CPHA bit works with the SPI_CTL.CPOL bit to select
combinations of clock phase and polarity for the SPI_CLK pin. This bit can only be
changed when the SPI is disabled.

0 SPI CLK toggles from middle

1 SPI CLK toggles from start

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–27

Table 28-9: SPI_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

ODM Open Drain Mode.

The SPI_CTL.ODM bit configures the data output pins (SPI_MOSI and
SPI_MISO) to behave as open drain outputs, which prevents contention and possible
damage to pin drivers in multi-master or multi-slave SPI systems.

When SPI_CTL.ODM is enabled and the SPI is a master, the SPI three-states the
SPI_MOSI pin when the data driven out on MOSI is a logic-high. The SPI does not
three-state the SPI_MOSI pin when the driven data is a logic-low.

When SPI_CTL.ODM is enabled and the SPI is a slave, the SPI three-states the
SPI_MISO pin when the data driven out on SPI_MISO is a logic-high.

Note that an external pull-up resistor is required on both the SPI_MOSI and
SPI_MISO pins when SPI_CTL.ODM is enabled.

0 Disable

1 Enable

2

(R/W)

PSSE Protected Slave Select Enable.

The SPI_CTL.PSSE bit enables the SPI_SS pin to provide error detection input
in a multi-master environment when the SPI is in master mode. If some other device
in the system asserts the SPI_SS pin while SPI is enabled as master (and
SPI_CTL.PSSE is enabled), this condition causes a mode fault error.

0 Disable

1 Enable

1

(R/W)

MSTR Master/Slave.

The SPI_CTL.MSTR bit toggles the SPI between master mode and slave mode. This
bit can only be changed when the SPI is disabled.

0 Slave

1 Master

0

(R/W)

EN Enable.

The SPI_CTL.EN bit enables SPI operation.

0 Disable SPI module

1 Enable

CM41X_M4 SPI Register Descriptions

28–28 ADSP-CM41x Mixed-Signal Control Processor

Delay Register

The SPI_DLY register selects a transfer delay and the lead/lag timing between slave select signals and SPI clock
edge assertion/deassertion.

Extended SPI Clock Lead Control

SPI Clock Period
Transfer Delay Time in Multiples ofExtended SPI Clock Lag Control

LEADX (R/W)

STOP (R/W)LAGX (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

1
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-14: SPI_DLY Register Diagram

Table 28-10: SPI_DLY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

LAGX Extended SPI Clock Lag Control.

The SPI_DLY.LAGX bit enables insertion of a 1-SPI_CLK cycle lag (extend lag) in
the timing between the slave select (SPI_SEL[n]) assertion and first SPI clock edge.

0 Disable

1 Enable

8

(R/W)

LEADX Extended SPI Clock Lead Control.

The SPI_DLY.LEADX bit enables insertion of a 1-SPI_CLK cycle lead (extend lead)
in the timing between the slave select (SPI_SEL[n]) deassertion and last SPI clock
edge.

0 Disable

1 Enable

7:0

(R/W)

STOP Transfer Delay Time in Multiples of SPI Clock Period.

The SPI_DLY.STOP bits select a delay (number of stop bits in multiples of SPI
clock duration) at the end of each SPI transfer. The default delay is the minimum val-
ue required to comply with the SPI protocol (1-bit duration). The SPI_DLY.STOP
bits can be programmed with smaller delay values, resulting in continuous operation
(for example, stop bits =0).

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–29

Masked Interrupt Condition Register

The SPI_ILAT register latches interrupts, queuing the interrupt requests for service. When a condition is indicat-
ed by a bit in the SPI_STAT register and the corresponding interrupt request is unmasked in SPI_IMSK, the SPI
latches the interrupt request bit in SPI_ILAT.

Transmit Collision Interrupt Latch

Mode Fault Interrupt Latch
Transmit Underrun Interrupt Latch

Receive Start Interrupt Latch
Receive Overrun Interrupt Latch

Transmit Start Interrupt Latch
Latch
Transmit Urgent Watermark Interrupt

Receive Finish Interrupt Latch

Latch
Receive Urgent Watermark InterruptTransmit Finish Interrupt Latch

TC (R)

MF (R)
TUR (R)

RS (R)
ROR (R)

TS (R)

TUWM (R)
RF (R)

RUWM (R)TF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-15: SPI_ILAT Register Diagram

Table 28-11: SPI_ILAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/NW)

TF Transmit Finish Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

10

(R/NW)

RF Receive Finish Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

9

(R/NW)

TS Transmit Start Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

8

(R/NW)

RS Receive Start Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

CM41X_M4 SPI Register Descriptions

28–30 ADSP-CM41x Mixed-Signal Control Processor

Table 28-11: SPI_ILAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/NW)

MF Mode Fault Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

6

(R/NW)

TC Transmit Collision Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

5

(R/NW)

TUR Transmit Underrun Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

4

(R/NW)

ROR Receive Overrun Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

2

(R/NW)

TUWM Transmit Urgent Watermark Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

1

(R/NW)

RUWM Receive Urgent Watermark Interrupt Latch.

0 No interrupt request

1 Latched interrupt request

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–31

Masked Interrupt Clear Register

The SPI_ILAT_CLR register permits clearing individual mask bits in the SPI_ILAT register without affecting
other bits in the register. Use write-1-to-clear on a bit in the SPI_ILAT_CLR register to clear the corresponding
bit in the SPI_ILAT register.

Clear Transmit CollisionClear Mode Fault

Clear Transmit UnderrunClear Receive Start

Clear Receive OverrunClear Transmit Start

Clear Transmit Urgent WatermarkClear Receive Finish

Clear Receive Urgent WatermarkClear Transmit Finish

TC (R/W1C)MF (R/W1C)

TUR (R/W1C)RS (R/W1C)

ROR (R/W1C)TS (R/W1C)

TUWM (R)RF (R/W1C)

RUWM (R)TF (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-16: SPI_ILAT_CLR Register Diagram

Table 28-12: SPI_ILAT_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W1C)

TF Clear Transmit Finish.

The SPI_ILAT_CLR.TF bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

10

(R/W1C)

RF Clear Receive Finish.

The SPI_ILAT_CLR.RF bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

9

(R/W1C)

TS Clear Transmit Start.

The SPI_ILAT_CLR.TS bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

28–32 ADSP-CM41x Mixed-Signal Control Processor

Table 28-12: SPI_ILAT_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

RS Clear Receive Start.

The SPI_ILAT_CLR.RS bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

7

(R/W1C)

MF Clear Mode Fault.

The SPI_ILAT_CLR.MF bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

6

(R/W1C)

TC Clear Transmit Collision.

The SPI_ILAT_CLR.TC bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

5

(R/W1C)

TUR Clear Transmit Underrun.

The SPI_ILAT_CLR.TUR bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

4

(R/W1C)

ROR Clear Receive Overrun.

The SPI_ILAT_CLR.ROR bit clears the corresponding mask bit in the SPI_ILAT
register.

0 No effect

1 Clear mask bit

2

(R/NW)

TUWM Clear Transmit Urgent Watermark.

The SPI_ILAT_CLR.TUWM bit clears the corresponding mask bit in the
SPI_ILAT register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–33

Table 28-12: SPI_ILAT_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

RUWM Clear Receive Urgent Watermark.

The SPI_ILAT_CLR.RUWM bit clears the corresponding mask bit in the
SPI_ILAT register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

28–34 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Mask Register

The SPI_IMSK register unmasks (enables) or masks (disables) SPI interrupt requests. When a condition is indicat-
ed by a bit in the SPI_STAT register and the corresponding interrupt request is unmasked in SPI_IMSK, the SPI
latches the interrupt request bit in the SPI_ILAT register, queuing the interrupt request for service.

Transmit CollisionMode Fault

Transmit UnderrunReceive Start

Receive OverrunTransmit Start

Transmit Urgent WatermarkReceive Finish

Receive Urgent WatermarkTransmit Finish

TC (R)MF (R)

TUR (R)RS (R)

ROR (R)TS (R)

TUWM (R)RF (R)

RUWM (R)TF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-17: SPI_IMSK Register Diagram

Table 28-13: SPI_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/NW)

TF Transmit Finish.

The SPI_IMSK.TF bit unmasks (enables) or masks (disables) the TF interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

10

(R/NW)

RF Receive Finish.

The SPI_IMSK.RF bit unmasks (enables) or masks (disables) the RF interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

9

(R/NW)

TS Transmit Start.

The SPI_IMSK.TS bit unmasks (enables) or masks (disables) the TS interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–35

Table 28-13: SPI_IMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/NW)

RS Receive Start.

The SPI_IMSK.RS bit unmasks (enables) or masks (disables) the RS interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

7

(R/NW)

MF Mode Fault.

The SPI_IMSK.MF bit unmasks (enables) or masks (disables) the MF interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

6

(R/NW)

TC Transmit Collision.

The SPI_IMSK.TC bit unmasks (enables) or masks (disables) the TC interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

5

(R/NW)

TUR Transmit Underrun.

The SPI_IMSK.TUR bit unmasks (enables) or masks (disables) the TUR interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

4

(R/NW)

ROR Receive Overrun.

The SPI_IMSK.ROR bit unmasks (enables) or masks (disables) the ROR interrupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

2

(R/NW)

TUWM Transmit Urgent Watermark.

The SPI_IMSK.TUWM bit unmasks (enables) or masks (disables) the TUWM inter-
rupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

1

(R/NW)

RUWM Receive Urgent Watermark.

The SPI_IMSK.RUWM bit unmasks (enables) or masks (disables) the RUWM inter-
rupt.

0 Disable (mask) interrupt request

1 Enable (unmask) interrupt request

CM41X_M4 SPI Register Descriptions

28–36 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Mask Clear Register

The SPI_IMSK_CLR register permits clearing individual mask bits in the SPI_IMSK register without affecting
other bits in the register. Use write-1-to-clear on a bit in the SPI_IMSK_CLR register to clear the corresponding
bit in the SPI_IMSK register.

Clear Transmit CollisionClear Mode Fault

Clear Transmit UnderrunClear Receive Start

Clear Receive OverrunClear Transmit Start

Clear Transmit Urgent WatermarkClear Receive Finish

Clear Receive Urgent WatermarkClear Transmit Finish

TC (R/W1C)MF (R/W1C)

TUR (R/W1C)RS (R/W1C)

ROR (R/W1C)TS (R/W1C)

TUWM (R/W1C)RF (R/W1C)

RUWM (R/W1C)TF (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-18: SPI_IMSK_CLR Register Diagram

Table 28-14: SPI_IMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W1C)

TF Clear Transmit Finish.

The SPI_IMSK_CLR.TF bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

10

(R/W1C)

RF Clear Receive Finish.

The SPI_IMSK_CLR.RF bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

9

(R/W1C)

TS Clear Transmit Start.

The SPI_IMSK_CLR.TS bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–37

Table 28-14: SPI_IMSK_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

RS Clear Receive Start.

The SPI_IMSK_CLR.RS bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

7

(R/W1C)

MF Clear Mode Fault.

The SPI_IMSK_CLR.MF bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

6

(R/W1C)

TC Clear Transmit Collision.

The SPI_IMSK_CLR.TC bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

5

(R/W1C)

TUR Clear Transmit Underrun.

The SPI_IMSK_CLR.TUR bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

4

(R/W1C)

ROR Clear Receive Overrun.

The SPI_IMSK_CLR.ROR bit clears the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Clear mask bit

2

(R/W1C)

TUWM Clear Transmit Urgent Watermark.

The SPI_IMSK_CLR.TUWM bit clears the corresponding mask bit in the
SPI_IMSK register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

28–38 ADSP-CM41x Mixed-Signal Control Processor

Table 28-14: SPI_IMSK_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

RUWM Clear Receive Urgent Watermark.

The SPI_IMSK_CLR.RUWM bit clears the corresponding mask bit in the
SPI_IMSK register.

0 No effect

1 Clear mask bit

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–39

Interrupt Mask Set Register

The SPI_IMSK_SET register permits setting individual mask bits in the SPI_IMSK register without affecting
other bits in the register. Use write-1-to-set on a bit in the SPI_IMSK_SET register to set the corresponding bit in
the SPI_IMSK register.

Set Transmit CollisionSet Mode Fault

Set Transmit UnderrunSet Receive Start

Set Receive OverrunSet Transmit Start

Set Transmit Urgent WatermarkSet Receive Finish

Set Receive Urgent WatermarkSet Transmit Finish

TC (R/W1S)MF (R/W1S)

TUR (R/W1S)RS (R/W1S)

ROR (R/W1S)TS (R/W1S)

TUWM (R/W1S)RF (R/W1S)

RUWM (R/W1S)TF (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-19: SPI_IMSK_SET Register Diagram

Table 28-15: SPI_IMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W1S)

TF Set Transmit Finish.

The SPI_IMSK_SET.TF bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

10

(R/W1S)

RF Set Receive Finish.

The SPI_IMSK_SET.RF bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

9

(R/W1S)

TS Set Transmit Start.

The SPI_IMSK_SET.TS bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

CM41X_M4 SPI Register Descriptions

28–40 ADSP-CM41x Mixed-Signal Control Processor

Table 28-15: SPI_IMSK_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1S)

RS Set Receive Start.

The SPI_IMSK_SET.RS bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

7

(R/W1S)

MF Set Mode Fault.

The SPI_IMSK_SET.MF bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

6

(R/W1S)

TC Set Transmit Collision.

The SPI_IMSK_SET.TC bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

5

(R/W1S)

TUR Set Transmit Underrun.

The SPI_IMSK_SET.TUR bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

4

(R/W1S)

ROR Set Receive Overrun.

The SPI_IMSK_SET.ROR bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

2

(R/W1S)

TUWM Set Transmit Urgent Watermark.

The SPI_IMSK_SET.TUWM bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–41

Table 28-15: SPI_IMSK_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1S)

RUWM Set Receive Urgent Watermark.

The SPI_IMSK_SET.RUWM bit sets the corresponding mask bit in the SPI_IMSK
register.

0 No effect

1 Set mask bit

CM41X_M4 SPI Register Descriptions

28–42 ADSP-CM41x Mixed-Signal Control Processor

Receive FIFO Data Register

The SPI_RFIFO register has an interface to the receive shift register in the SPI and has an interface to the process-
or’s data buses. The top level of the buffer is visible to programs as the 32-bit SPI_RFIFO register, but the size
(number of word locations) of the receive FIFO is actually flexible with transfer word size. The size of the receive
FIFO is 8 if the word size is 8-bit, or the size is 4 if the word size is 16-bit, or the size is 2 if the word size is 32-bit.

Both masters and slaves may stop or stall receive transfers based on FIFO status. When the receive FIFO is full, the
SPI master stops initiating new transfers on the SPI if SPI_RXCTL.RTI is enabled. A slave may stall the SPI
interface when the content of the FIFO crosses the selected watermark. If data reception continues after
SPI_RFIFO is full, the data in the receive FIFO is invalid. The SPI indicates this condition with receive overrun
(SPI_STAT.ROR) error. This condition is possible when SPI_RXCTL.RTI =0 and SPI_RXCTL.REN =1 for a
master, or for a slave that does not exercise flow control.

Note that the receive FIFO is reset (cleared) when the SPI is disabled after being enabled.

Receive FIFO Data

Receive FIFO Data

DATA[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-20: SPI_RFIFO Register Diagram

Table 28-16: SPI_RFIFO Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

DATA Receive FIFO Data.

The SPI_RFIFO.DATA bit field contains the FIFO receive data.

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–43

Received Word Count Register

The SPI_RWC register holds a count of the number of words remaining to be received by the SPI. To start the
decrement of the word count in SPI_RWC, enable the receive word counter (SPI_RXCTL.RWCEN =1). The SPI
uses the word count to control the duration of transfers and to signal the completion of a burst of transfers with the
receive finish interrupt (SPI_ILAT.RF). In DMA mode, the SPI uses the SPI_RWC register to ensure that the
number of frames received during a DMA transfer is equal to the number of words programmed in the DMA chan-
nel controller. The values programmed into the SPI_RWC registers should match the word count in the DMA con-
figuration. The SPI_RWC register maintains the number of frames to be received in a transfer. The SPI_RWC
should only be changed when the counter is disabled.

Received Word Count
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-21: SPI_RWC Register Diagram

Table 28-17: SPI_RWC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Received Word Count.

The SPI_RWC.VALUE bits hold the receive transfer word count.

CM41X_M4 SPI Register Descriptions

28–44 ADSP-CM41x Mixed-Signal Control Processor

Received Word Count Reload Register

The SPI_RWCR register holds the receive word count value that the SPI loads into the SPI_RWC register when the
transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for the reload count val-
ue. The SPI_RWCR register should only be changed when the counter is disabled.

Received Word Count Reload
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-22: SPI_RWCR Register Diagram

Table 28-18: SPI_RWCR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Received Word Count Reload.

The SPI_RWCR.VALUE bits hold the receive transfer word count reload value.

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–45

Receive Control Register

The SPI_RXCTL register enables the SPI receive channel, initiates receive transfers, and configures SPI_RFIFO
buffer watermark settings.

Receive Word Counter EnableReceive Data Request

Receive Transfer InitiateReceive Data Overrun

Receive EnableReceive FIFO Regular Watermark

Receive FIFO Urgent Watermark

RWCEN (R/W)RDR (R/W)

RTI (R/W)RDO (R/W)

REN (R/W)RRWM (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

RUWM (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-23: SPI_RXCTL Register Diagram

Table 28-19: SPI_RXCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

RUWM Receive FIFO Urgent Watermark.

The SPI_RXCTL.RUWM bits select the receive FIFO (SPI_RFIFO) watermark level
for urgent data bus requests. The SPI also uses this watermark level for generation of
the SPI_ILAT.RUWM interrupt. When an urgent SPI_RFIFO watermark is ena-
bled with SPI_RXCTL.RUWM, the SPI_RXCTL.RRWM selection is used as the
deassertion condition for any SPI_ILAT.RUWM interrupts that are latched.

0 Disabled

1 25% full RFIFO

2 50% full RFIFO

3 75% full RFIFO

4 Full RFIFO

5 Reserved

6 Reserved

7 Reserved

CM41X_M4 SPI Register Descriptions

28–46 ADSP-CM41x Mixed-Signal Control Processor

Table 28-19: SPI_RXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13:12

(R/W)

RRWM Receive FIFO Regular Watermark.

The SPI_RXCTL.RRWM bits select the receive FIFO (SPI_RFIFO) watermark level
for regular data bus requests. When an urgent SPI_RFIFO watermark is enabled
with SPI_RXCTL.RUWM, the SPI_RXCTL.RRWM selection is used as the deasser-
tion condition for any SPI_ILAT.RUWM interrupts that are latched.

0 Empty RFIFO

1 RFIFO less than 25% full

2 RFIFO less than 50% full

3 RFIFO less than 75% full

8

(R/W)

RDO Receive Data Overrun.

The SPI_RXCTL.RDO bit selects handling for receive data requests when the receive
buffer (SPI_RFIFO) is full. If enabled and SPI_RFIFO is full, the SPI overwrites
old data in the buffer with incoming data. If disabled and SPI_RFIFO is full, the SPI
keeps old data in the buffer and discards incoming data.

0 Discard incoming data if SPI_RFIFO is full

1 Overwrite old data if SPI_RFIFO is full

6:4

(R/W)

RDR Receive Data Request.

The SPI_RXCTL.RDR bits select receive FIFO (SPI_RFIFO) watermark condi-
tions that direct the SPI to generate a receive data request.

0 Disabled

1 Not empty RFIFO

2 25% full RFIFO

3 50% full RFIFO

4 75% full RFIFO

5 Full RFIFO

6 Reserved

7 Reserved

3

(R/W)

RWCEN Receive Word Counter Enable.

The SPI_RXCTL.RWCEN bit enables the decrement of the SPI_RWC register when
the count is not zero and SPI_RXCTL.RTI is enabled. Enabling
SPI_RXCTL.RWCEN prevents receive overrun errors from occurring. The
SPI_RXCTL.RWCEN bit is valid only when the SPI is a master.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–47

Table 28-19: SPI_RXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

RTI Receive Transfer Initiate.

The SPI_RXCTL.RTI bit enables initiation of receive transfers if the receive FIFO
(SPI_RFIFO) is not full. The bit also enables this initiation if SPI_RWC is not zero
when SPI_RXCTL.RWCEN is enabled. Enabling SPI_RXCTL.RTI prevents re-
ceive overrun errors from occurring. The SPI_RXCTL.RTI bit is valid only when
the SPI is a master.

0 Disable

1 Enable

0

(R/W)

REN Receive Enable.

The SPI_RXCTL.REN bit enables SPI receive channel operation.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

28–48 ADSP-CM41x Mixed-Signal Control Processor

Slave Select Register

The SPI_SLVSEL register enables the SPI_SEL[n] pins for output and indicates the state (high or low) of
these pins when enabled.

Slave Select 7 EnableSlave Select 1 Output

Slave Select 6 EnableSlave Select 2 Output

Slave Select 5 EnableSlave Select 3 Output

Slave Select 4 EnableSlave Select 4 Output

Slave Select 3 EnableSlave Select 5 Output

Slave Select 2 EnableSlave Select 6 Output

Slave Select 1 EnableSlave Select 7 Output

SSE7 (R/W)SSEL1 (R/W)

SSE6 (R/W)SSEL2 (R/W)

SSE5 (R/W)SSEL3 (R/W)

SSE4 (R/W)SSEL4 (R/W)

SSE3 (R/W)SSEL5 (R/W)

SSE2 (R/W)SSEL6 (R/W)

SSE1 (R/W)SSEL7 (R/W)

1
15

1
14

1
13

1
12

1
11

1
10

1
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-24: SPI_SLVSEL Register Diagram

Table 28-20: SPI_SLVSEL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

SSEL7 Slave Select 7 Output.

The SPI_SLVSEL.SSEL7 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

14

(R/W)

SSEL6 Slave Select 6 Output.

The SPI_SLVSEL.SSEL6 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–49

Table 28-20: SPI_SLVSEL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

SSEL5 Slave Select 5 Output.

The SPI_SLVSEL.SSEL5 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

12

(R/W)

SSEL4 Slave Select 4 Output.

The SPI_SLVSEL.SSEL4 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

11

(R/W)

SSEL3 Slave Select 3 Output.

The SPI_SLVSEL.SSEL3 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

10

(R/W)

SSEL2 Slave Select 2 Output.

The SPI_SLVSEL.SSEL2 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

9

(R/W)

SSEL1 Slave Select 1 Output.

The SPI_SLVSEL.SSEL1 bit state indicates the value driven on the related
SPI_SEL[n] pin.

0 Low

1 High

7

(R/W)

SSE7 Slave Select 7 Enable.

The SPI_SLVSEL.SSE7 bit enables the related SPI_SEL[n] pin for output. If
disabled, the SPI three-states the related SPI_SEL[n] pin.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

28–50 ADSP-CM41x Mixed-Signal Control Processor

Table 28-20: SPI_SLVSEL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

SSE6 Slave Select 6 Enable.

The SPI_SLVSEL.SSE6 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

5

(R/W)

SSE5 Slave Select 5 Enable.

The SPI_SLVSEL.SSE5 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

4

(R/W)

SSE4 Slave Select 4 Enable.

The SPI_SLVSEL.SSE4 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

3

(R/W)

SSE3 Slave Select 3 Enable.

The SPI_SLVSEL.SSE3 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

2

(R/W)

SSE2 Slave Select 2 Enable.

The SPI_SLVSEL.SSE2 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

1

(R/W)

SSE1 Slave Select 1 Enable.

The SPI_SLVSEL.SSE1 bit enables the related SPI_SEL[n] pin for output. See
the SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–51

Status Register

The SPI_STAT register indicates SPI status including FIFO status, error conditions, and interrupt conditions.
When an interrupt condition from this register is unmasked (enabled) by the corresponding bit in the SPI_IMSK
register, the interrupt request is latched into the corresponding bit in the SPI_ILAT register.

Transmit Collision IndicationMode Fault Indication

Transmit Underrun IndicationReceive Start

Receive Overrun IndicationTransmit Start

Transmit Urgent Watermark BreachedReceive Finish Indication

Receive Urgent Watermark BreachedTransmit Finish Indication

SPI FinishedSPI_RFIFO Status

Flow Control Stall IndicationSPI_RFIFO Empty

SPI_TFIFO StatusSPI_TFIFO Full

TC (R/W1C)MF (R/W1C)

TUR (R/W1C)RS (R/W1C)

ROR (R/W1C)TS (R/W1C)

TUWM (R)RF (R/W1C)

RUWM (R)TF (R/W1C)

SPIF (R)RFS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

FCS (R)RFE (R)

TFS (R)TFF (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

1
22

0
21

0
20

0
19

1
18

0
17

0
16

Figure 28-25: SPI_STAT Register Diagram

Table 28-21: SPI_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23

(R/NW)

TFF SPI_TFIFO Full.

The SPI_STAT.TFF bit indicates whether the SPI_TFIFO is full or not full.

0 Not full Tx FIFO

1 Full Tx FIFO

22

(R/NW)

RFE SPI_RFIFO Empty.

The SPI_STAT.RFE bit indicates whether the SPI_RFIFO is empty or not empty.

0 Rx FIFO not empty

1 Rx FIFO empty

CM41X_M4 SPI Register Descriptions

28–52 ADSP-CM41x Mixed-Signal Control Processor

Table 28-21: SPI_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

20

(R/NW)

FCS Flow Control Stall Indication.

The SPI_STAT.FCS bit indicates whether a slave has deasserted the SPI_RDY pin
to stall the SPI master while the slave is unable to service the SPI masters request. This
bit is valid only when the SPI is a master (SPI_CTL.MSTR =1) and flow control is
enabled (SPI_CTL.FCEN =1).

0 No Stall (RDY pin asserted)

1 Stall (RDY pin deasserted)

18:16

(R/NW)

TFS SPI_TFIFO Status.

The SPI_STAT.TFS bits indicate the status of the SPI_TFIFO. The SPI uses this
status when evaluating transmit watermark conditions.

0 Full TFIFO

1 25% empty TFIFO

2 50% empty TFIFO

3 75% empty TFIFO

4 Empty TFIFO

14:12

(R/NW)

RFS SPI_RFIFO Status.

The SPI_STAT.RFS bits indicate the status of the SPI_RFIFO. The SPI uses this
status when evaluating receive watermark conditions.

0 Empty RFIFO

1 25% full RFIFO

2 50% full RFIFO

3 75% full RFIFO

4 Full RFIFO

11

(R/W1C)

TF Transmit Finish Indication.

The SPI_STAT.TF bit indicates that the SPI has detected the finish of a transmit
burst transfer (the SPI_TWC count decrements to zero). This condition can only oc-
cur when SPI_TXCTL.TTI and SPI_TXCTL.TWCEN are enabled.

0 No status

1 Transmit finish detected

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–53

Table 28-21: SPI_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W1C)

RF Receive Finish Indication.

The SPI_STAT.RF bit indicates that the SPI has detected the finish of a receive
burst transfer (the SPI_RWC count decrements to zero). This condition can only oc-
cur when SPI_RXCTL.RTI and SPI_RXCTL.RWCEN are enabled.

0 No status

1 Receive finish detected

9

(R/W1C)

TS Transmit Start.

The SPI_STAT.TS bit indicates that the SPI has detected the start of a transmit
burst transfer. A transmit bursts starts with the load of SPI_TWC from the
SPI_TWCR. This condition can only occur when SPI_TXCTL.TTI and
SPI_TXCTL.TWCEN are enabled.

0 No status

1 Transmit start detected

8

(R/W1C)

RS Receive Start.

The SPI_STAT.RS bit indicates that the SPI has detected the start of a receive burst
transfer. A receive bursts starts with the load of SPI_RWC from the SPI_RWCR. This
condition can only occur when SPI_RXCTL.RTI and SPI_RXCTL.RWCEN are
enabled.

0 No status

1 Receive start detected

7

(R/W1C)

MF Mode Fault Indication.

The SPI_STAT.MF bit, when SPI is a master and SPI_CTL.PSSE is enabled, in-
dicates that multiple masters have asserted slave select inputs.

0 No status

1 Mode fault occurred

6

(R/W1C)

TC Transmit Collision Indication.

The SPI_STAT.TC bit, when SPI is a slave, indicates that the load of data into the
shift register has occurred too close to the first transmitting edge of the SPI clock.

0 No status

1 Transmit collision occurred

CM41X_M4 SPI Register Descriptions

28–54 ADSP-CM41x Mixed-Signal Control Processor

Table 28-21: SPI_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1C)

TUR Transmit Underrun Indication.

The SPI_STAT.TUR bit, when the transmit FIFO (SPI_TFIFO) is empty, indi-
cates that the last word in the transmit FIFO has been re-sent as transmit data. Alter-
nately, it indicates that zero has been sent as transmit data.

0 No status

1 Transmit underrun occurred

4

(R/W1C)

ROR Receive Overrun Indication.

The SPI_STAT.ROR bit, when the receive FIFO (SPI_RFIFO) is full, indicates
that a word in the receive FIFO has been overwritten with incoming receive data. Al-
ternately, it indicates that incoming receive data has been discarded.

0 No status

1 Receive overrun occurred

2

(R/NW)

TUWM Transmit Urgent Watermark Breached.

The SPI_STAT.TUWM bit indicates that the transmit urgent watermark
(SPI_TXCTL.TUWM) has been reached. This condition is cleared when the transmit
FIFO fills enough to reach the transmit regular watermark (SPI_TXCTL.TRWM).

0 Tx regular watermark reached

1 Tx urgent watermark breached

1

(R/NW)

RUWM Receive Urgent Watermark Breached.

The SPI_STAT.RUWM bit indicates that the receive urgent watermark
(SPI_RXCTL.RUWM) has been reached. This condition is cleared when the receive
FIFO empties enough to reach the receive regular watermark (SPI_RXCTL.RRWM).

0 Rx regular watermark reached

1 Rx urgent watermark breached

0

(R/NW)

SPIF SPI Finished.

The SPI_STAT.SPIF bit indicates that a single word transfer is complete.

0 No status

1 Completed single word transfer

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–55

Transmit FIFO Data Register

The SPI_TFIFO register has an interface to the transmit shift register in the SPI and has an interface to the pro-
cessor’s data buses. The top level of the buffer is visible to programs as the 32-bit SPI_TFIFO register, but the size
(number of word locations) of the transmit FIFO is actually flexible with transfer word size. The size of the transmit
FIFO is 8 if the word size is 8-bit, or the size is 4 if the word size is 16-bit, or the size is 2 if the word size is 32-bit.

Both masters and slaves may stop or stall transmit transfers based on FIFO status. When the transmit FIFO is emp-
ty, the SPI master stops initiating new transfers on the SPI if SPI_TXCTL.TTI is enabled. A slave may stall the
SPI interface when the content of the FIFO crosses the selected watermark. If data transmit requests continue after
SPI_TFIFO is empty, the data sent from the transmit FIFO is invalid, and the SPI indicates this condition with
transmit underrun (SPI_STAT.TUR). This condition is possible when SPI_TXCTL.TTI =0 and
SPI_TXCTL.TEN =1 for a master, or for a slave that does not exercise flow control.

Note that the transmit FIFO is reset (cleared) when the SPI is disabled after being enabled.

Transmit FIFO Data

Transmit FIFO Data

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-26: SPI_TFIFO Register Diagram

Table 28-22: SPI_TFIFO Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Transmit FIFO Data.

The SPI_TFIFO.DATA bit field contains the FIFO transmit data.

CM41X_M4 SPI Register Descriptions

28–56 ADSP-CM41x Mixed-Signal Control Processor

Transmitted Word Count Register

The SPI_TWC register holds a count of the number of words remaining to be transmitted by the SPI. To start the
decrement of the word count in SPI_TWC, enable the transmit word counter (SPI_TXCTL.TWCEN =1). The SPI
uses the word count to control the duration of transfers and to signal the completion of a burst of transfers with the
transmit finish interrupt request. In DMA mode, the SPI uses the SPI_TWC to ensure that the number of frames
transmitted during a DMA transfer is equal to the number of words programmed in the DMA channel controller.
The values programmed into the SPI_TWC registers should match the word count in the DMA configuration. The
SPI_TWC maintains the number of frames to be transmitted in a transfer. The SPI_TWC should only be changed
when the counter is disabled.

Transmitted Word Count
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-27: SPI_TWC Register Diagram

Table 28-23: SPI_TWC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Transmitted Word Count.

The SPI_TWC.VALUE bits hold the transmit transfer word count.

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–57

Transmitted Word Count Reload Register

The SPI_TWCR register holds the transmit word count value that the SPI loads into the SPI_TWC register when
the transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for the reload count
value. The SPI_TWCR should only be changed when the counter is disabled.

Transmitted Word Count Reload
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-28: SPI_TWCR Register Diagram

Table 28-24: SPI_TWCR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Transmitted Word Count Reload.

The SPI_TWCR.VALUE bits hold the transmit transfer word count reload value.

CM41X_M4 SPI Register Descriptions

28–58 ADSP-CM41x Mixed-Signal Control Processor

Transmit Control Register

The SPI_TXCTL register enables the SPI transmit channel, initiates transmit transfers, and configures
SPI_TFIFO buffer watermark settings.

Transmit Word Counter EnableTransmit Data Request

Transmit Transfer InitiateTransmit Data Underrun

Transmit EnableFIFO Regular Watermark

FIFO Urgent Watermark

TWCEN (R/W)TDR (R/W)

TTI (R/W)TDU (R/W)

TEN (R/W)TRWM (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TUWM (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 28-29: SPI_TXCTL Register Diagram

Table 28-25: SPI_TXCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18:16

(R/W)

TUWM FIFO Urgent Watermark.

The SPI_TXCTL.TUWM bits select the transmit FIFO (SPI_TFIFO) watermark
level for urgent data bus requests. The SPI also uses this watermark level for generation
of the SPI_ILAT.TUWM interrupt request. When an urgent SPI_TFIFO water-
mark is enabled with SPI_TXCTL.TUWM, the SPI_TXCTL.TRWM selection is used
as the deassertion condition for any SPI_ILAT.TUWM interrupt requests that are
latched.

0 Disabled

1 25% empty TFIFO

2 50% empty TFIFO

3 75% empty TFIFO

4 Empty TFIFO

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–59

Table 28-25: SPI_TXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13:12

(R/W)

TRWM FIFO Regular Watermark.

The SPI_TXCTL.TRWM bits select the transmit FIFO (SPI_TFIFO) watermark
level for regular data bus requests. When an urgent SPI_TFIFO watermark is ena-
bled with SPI_TXCTL.TUWM, the SPI_TXCTL.TRWM selection is used as the
deassertion condition for any SPI_ILAT.TUWM interrupt requests that are latched.

0 Full TFIFO

1 TFIFO less than 25% empty

2 TFIFO less than 50% empty

3 TFIFO less than 75% empty

8

(R/W)

TDU Transmit Data Underrun.

The SPI_TXCTL.TDU bit selects handling for transmit data requests when the trans-
mit buffer (SPI_TFIFO) is empty. If enabled and SPI_TFIFO is empty, the SPI
transmits zero as data. If disabled and SPI_TFIFO is empty, the SPI transmits the
last word in the buffer as data.

0 Send last word when SPI_TFIFO is empty

1 Send zeros when SPI_TFIFO is empty

6:4

(R/W)

TDR Transmit Data Request.

The SPI_TXCTL.TDR bits select transmit FIFO (SPI_TFIFO) watermark condi-
tions that direct the SPI to generate a transmit status interrupt request.

0 Disabled

1 Not full TFIFO

2 25% empty TFIFO

3 50% empty TFIFO

4 75% empty TFIFO

5 Empty TFIFO

3

(R/W)

TWCEN Transmit Word Counter Enable.

The SPI_TXCTL.TWCEN bit enables the decrement of the transmit word count
(SPI_TWC) register when the count is not zero and SPI_TXCTL.TTI is enabled.
Enabling SPI_TXCTL.TWCEN prevents transmit underrun errors from occurring.
The SPI_TXCTL.TWCEN bit is valid only when the SPI is a master.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

28–60 ADSP-CM41x Mixed-Signal Control Processor

Table 28-25: SPI_TXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

TTI Transmit Transfer Initiate.

The SPI_TXCTL.TTI bit enables initiation of transmit transfers if the transmit
FIFO (SPI_TFIFO) is not empty. The bit also enables this initiation if SPI_TWC is
not zero when SPI_TXCTL.TWCEN is enabled. Enabling SPI_TXCTL.TTI pre-
vents transmit underrun errors from occurring. The SPI_TXCTL.TTI bit is valid
only when the SPI is a master.

0 Disable

1 Enable

0

(R/W)

TEN Transmit Enable.

The SPI_TXCTL.TEN bit enables SPI transmit channel operation.

0 Disable

1 Enable

CM41X_M4 SPI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 28–61

29 Serial Port (SPORT)

The programmable serial ports (SPORTs) support various protocols for serial data communication and provide a
glueless hardware interface to many industry-standard data converters and codecs. They have high data rates and
dual half-duplex datapaths and are ideal for establishing a direct serial connection among two or more processors in
a multiprocessor system, as many processors provide compatible serial interfaces.

The SPORT top module consists of two half SPORTs with identical functionality and programming requirements.
Each half SPORT can be independently configured as either a transmitter or receiver and can be coupled with the
other half SPORT within the same SPORT top module. Further, each half SPORT provides two synchronous half-
duplex data lines to double the total supported throughput. As such, a single SPORT top module can be used to
provide up to four unidirctional or up to two full-duplex data streams. Further channels are possible as well, but
utilization of multiple SPORT top modules is required, thus requiring external connections to provide a common
time base.

Features
An individual SPORT top module consists of two independently configurable SPORT halves with identical func-
tionality. These SPORT halves offer the following features:

• Up to two bidirectional data lines - each half SPORT supports up to two transmit or receive channels, thus
allowing two unidirectional streams into or out of each half SPORT and providing greater flexibility for serial
communications. If full-duplex functionality is desired, two SPORT halves can be combined to enable dual-
stream bidirectional communication.

• Six operating modes:

1. Standard DSP serial mode

2. I2S mode

3. Left-Justified mode

4. Right-Justified mode

5. Multichannel (TDM) mode

6. Packed mode

Serial Port (SPORT)

ADSP-CM41x Mixed-Signal Control Processor 29–1

• Supports internally or externally generated clock.

• Support for both even and odd SCLK to SPORT clock (SPORT_CLK) ratios. If both data lines of a half
SPORT are active, the maximum throughput is 2 x SPORT_CLK bps.

• Configurable rising or falling edge of the SPORT_CLK for driving and sampling data and frame syncs.

• Gated clock mode support for internallly or externally generated clocks in DSP serial mode and stereo modes

(left-justified and I2S mode).

• Supports frameless operation.

• Supports internally or externally generated frame sync signals.

• Programmable frame sync polarity.

• Programmable frame sync timing (synchronous to data or 1 SPORT clock in advance of it).

• Detection of prematurely received external frame syncs (with optional interrupt request generation).

• Programmable level-/edge-sensitivity for external frame syncs.

• Programmable (4–32-bit) data length, either in most significant bit (MSB) first or in least significant bit (LSB)
first format, with optional sign-extension on received data.

• Optional 16-bit to 32-bit word packing (as receiver) and 32-bit to 16-bit word unpacking (as transmitter).

• Support for A-law and μ-law compression/decompression hardware companding, according to the G.711 speci-
fication, on transmitted/received words in all operating modes.

• Transmit underrun and receive overflow detection (with optional interrupt request generation).

• TDM mode transfers data on 128 contiguous channels from a stream of up to 1024 total channels (useful for
H.100/H.110 and other telephony interfaces as a network communication scheme for multiple processors).

• Performs interrupt-driven, single word core transfers to and from on-chip or off-chip memory.

• Dedicated DMA channel for each SPORT half supporting autobuffer (for a repeated, identical range of trans-
fers) and numerous descriptor-based (individual or repeated ranges of transfers with differing DMA parame-
ters) modes.

• Master and slave trigger functionality.

• Unique transfer finish interrupt (TFI) signaling when the last transmit word is fully out of the transmit shift
register.

• Multiplexer to internally connect critical timing signals between SPORT halves.

Signal Descriptions
Each half SPORT module has five dedicated signals, as described in the SPORT Signal Descriptions table. The ac-
tual pin name varies with different SPORT halves. Individual SPORT halves do not share any of its signals across

Signal Descriptions

29–2 ADSP-CM41x Mixed-Signal Control Processor

the pair that comprises the SPORT top module; however, it is possible to connect the clock and frame sync signals
between the SPORT half pair, as explained in the Multiplexer Logic section.

All of the SPORT signals are multiplexed on the PORT pins, possibly sharing functionality with other peripherals
on the device. By default, the PORT pins are in GPIO mode and must be reconfigured for SPORT functionality by
setting the appropriate bits in the PORT_FER and PORT_MUX registers. Consult the processor datasheet for details
regarding which ports the SPORT signals are available on, and be sure to configure the PORT_MUX register before
the PORT_FER register.

Table 29-1: SPORT Signal Descriptions

Internal Node Direction Description

SPORTx_CLK I/O Transmit or receive serial clock. Data and frame syncs are driven or sampled on this clock's
edges. This signal can be either internally or externally generated.

SPORTx_FS I/O Transmit or receive frame sync. The frame sync pulse initiates shifting of serial data. This sig-
nal is either internally or externally generated.

SPORTx_D0 I/O Primary transmit or receive data channel. This signal can be configured as an output to trans-
mit serial data or as an input to receive serial data.

SPORTx_D1 I/O Secondary transmit or receive data channel. This signal can be configured as an output to
transmit serial data or as an input to receive serial data.

SPORTx_TDV O Multichannel transmit data valid. This signal is only active in multichannel transmit mode
and is asserted during enabled slots, as defined by the channel selection registers
(SPORT_CS0_A through SPORT_CS3_B).

The data channel signals are transmit signals when the serial port is configured in transmit mode
(SPORT_CTL_A.SPTRAN = 1). They are receive signals when the serial port is configured in receive mode
(SPORT_CTL_A.SPTRAN = 0). The following sections further describe the SPORT signals.

NOTE: These sections explicitly refer to the registers associated with half SPORT A, but the same concepts also
apply to half SPORT B.

Serial Clock

The serial port clock (SPORT_ACLK) is either a receive serial clock or a transmit serial clock, depending on the
transfer direction (SPORT_CTL_A.SPTRAN), governing when the data bits are serially shifted into or out of the
SPORT and when the frame sync signal is driven (in internal frame sync mode) or sampled (in external frame sync
mode). It can be internally generated from the processor's system clock (SCLK) or externally provided. If the half
SPORT is configured in internal clock mode (SPORT_CTL_A.ICLK= 1), then the SPORT_DIV_A.CLKDIV
field specifies the divisor applied to SCLK to generate the SPORT clock. As it is a 16-bit divisor, a wide range of
serial clock rates is possible. Use the following equation to calculate the serial clock frequency:

SPORT_ACLK = [SCLK ÷ (SPORT_DIV_A.CLKDIV + 1)]

From this, the following equation can be used to determine the value of SPORT_DIV_A.CLKDIV, given the
SCLK frequency and the desired frequency of the SPORT clock:

Signal Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–3

SPORT_DIV_A.CLKDIV= [(SCLK ÷ SPORT_ACLK) - 1]

The half SPORT also supports a 1:1 SPORT_ACLK to SCLK ratio (per the equations above, program the clock
divisor field to zero). In this case, the resulting SPORT clock frequency is equal to SCLK.

NOTE: Be careful not to exceed the maximum SPORT_ACLK frequency specified in the processor datasheet.

In certain operating modes, the SPORT can be configured to generate a gated clock, which is active only during
valid data. In some applications, a SPORT uses it to generate a general-purpose clock in the system. In this case,
enable the SPORT with the appropriate SPORT_DIV_A.CLKDIV divisor field in internal clock mode.

If a SPORT is configured in external clock mode (SPORT_CTL_A.ICLK= 0), the serial clock is an input signal,
thus making the SPORT operate in slave mode. In this mode, the SPORT_DIV_A.CLKDIV is irrelevant and is
ignored. The optional loopback capability provided by the internal SPORT multiplexer (SPMUX) block allows the
slave SPORT to use the serial clock from the neighboring SPORT half in the same SPORT top module.

An externally-supplied serial clock does not need to be synchronous with the processor clocks. Further, the external
clock can be a gated clock, but it must comply with the requirements described in the Gated Clock Mode section.

Refer to the product datasheet for exact AC timing specifications.

Frame Sync

The SPORT frame sync (SPORT_AFS) signal is either a receive frame sync or a transmit frame sync, depending on
the transfer direction (SPORT_CTL_A.SPTRAN), which is used to determine the start of a new word or frame.
When this signal goes active, the serial port starts serially shifting data into or out of the SPORT. The frame sync
signal can be internally generated based on its serial clock (SPORT_ACLK) or externally provided, as configured by
the SPORT_CTL_A.IFS bit.

If the half SPORT is configured to generate frame syncs (SPORT_CTL_A.IFS= 1), then the
SPORT_DIV_A.FSDIV field specifies the divisor used to generate the periodic SPORT_AFS signal from the
SPORT clock. As this is a 16-bit divisor, a wide range of frame sync rates to initiate periodic transfers is possible.
Whether the serial clock is internally or externally generated, this divisor is a count of SPORT clock cycles between
frame sync pulses, the formula for which is:

Number of serial clocks between frame syncs = (SPORT_DIV_A.FSDIV + 1)

From this, the following equation can be used to determine the value of SPORT_DIV_A.FSDIV, given the serial
clock frequency and the desired frame sync frequency:

SPORT_DIV_A.FSDIV = [(SPORT_ACLK ÷ SPORT_AFS) – 1]

The frame sync is continuously active when SPORT_DIV_A.FSDIV= 0. The value of SPORT_DIV_A.FSDIV
cannot be less than the serial word length minus one (the value of the SPORT_CTL_A.SLEN bit field). Failure to
adhere to this guideline can cause an external device to abort the current operation or cause other unpredictable
results.

Signal Descriptions

29–4 ADSP-CM41x Mixed-Signal Control Processor

NOTE: After enabling the SPORT, the first internal frame sync appears after a delay of SPORT_DIV_A.FSDIV
+ 3 SPORT clock cycles.

If a SPORT is configured for external frame syncs (SPORT_CTL_A.IFS = 0), then SPORT_AFS is an input sig-
nal and the SPORT_DIV_A.FSDIV field of the SPORT_DIV_A register is irrelevant and ignored. By default,
this external signal is level-sensitive, but it can be configured as an edge-sensitive signal by setting the
SPORT_CTL_A.FSED bit. The frame sync is expected to be synchronous with the serial clock. If not, it must
meet the timing requirements that appear in the datasheet.

The SPORT can be used as a counter for dividing an external clock to generate periodic pulses or periodic inter-
rupts. To do so, enable the SPORT with the appropriate SPORT_DIV_A.FSDIV divisor field with the SPORT
configured for an external clock and internal data-independent frame syncs.

In some of the operating modes, the SPORT can be programmed to treat the frame sync signal as an optional signal
by clearing the SPORT_CTL_A.FSR bit. Even with this bit cleared, the SPORT requires a single frame sync asser-
tion to start the continuous transfers, after which it is ignored (for externally supplied frame syncs) or not generated
(for internally-generated frame syncs). Characteristics of the frame sync depend on the settings in the SPORT con-
trol registers and the operating mode of the SPORT. For more information, refer to the SPORT_CTL_A register.

Data Signals

Each half SPORT has two bidirectional data lines known as the primary (SPORT_AD0) and secondary
(SPORT_AD1) data channels. Both of the data lines can be configured as either transmitters or receivers using the
SPORT_CTL_A.SPTRAN bit, thus permitting dual unidirectional data streams to increase the data throughput of
the SPORT.

NOTE: Configuring one transmit data channel and one receive data channel on a single half SPORT is not sup-
ported.

The primary and secondary data lines can be individually enabled or disabled using the
SPORT_CTL_A.SPENPRI and the SPORT_CTL_A.SPENSEC bits, respectively. However, if using both, enable
or disable them concurrently. These data lines operate in a synchronous manner (sharing a clock and frame sync)
but have separate datapaths with unique data buffers, shift registers and optional companding logic. All of the
SPORT control settings are common for both channels, but the single DMA channel per half SPORT serves both
the primary and secondary data channels.

When a SPORT is configured in multichannel transmit mode, the data pins three-state during inactive channel
slots, thus allowing multiple transmitters to operate on the same bus with different active channels.

See the Architectural Concepts section for more details about data transfer operation.

Transmit Data Valid Signal

The transmit data valid (SPORT_ATDV) signal is available only in transmit multichannel modes (including packed
mode). It is driven active during enabled multichannel slots, and it is driven inactive during the disabled channels.
In other words, the SPORT_ATDV signal is active when data is being driven to the data pins and inactive when the

Signal Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–5

data pins are being three-stated. As such, the SPORT_ATDV signal can serve as an output-enable signal for the data
transmit pin.

Functional Description
The following sections provide general information about the functionality of the processor's serial ports:

• Architectural Concepts

• Data Types and Companding

• Transmit Path

• Receive Path

CM41X_M4 SPORT Register List

The Serial Port (SPORT) controller, with its range of clock and frame synchronization options, supports a variety of
serial communication protocols and provides a glueless hardware interface to many industry-standard data convert-
ers and CODECs. Each SPORT has two independent halves (A and B), and each half contains two channels (pri-
mary and secondary). A set of registers governs SPORT operations. For more information on SPORT functionality,
see the SPORT register descriptions.

Table 29-2: CM41X_M4 SPORT Register List

Name Description

SPORT_CS0_A Half SPORT 'A' Multichannel 0-31 Select Register

SPORT_CS0_B Half SPORT 'B' Multichannel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multichannel 32-63 Select Register

SPORT_CS1_B Half SPORT 'B' Multichannel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multichannel 64-95 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multichannel 96-127 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_CTL_B Half SPORT 'B' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_ERR_A Half SPORT 'A' Error Register

Functional Description

29–6 ADSP-CM41x Mixed-Signal Control Processor

Table 29-2: CM41X_M4 SPORT Register List (Continued)

Name Description

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MCTL_A Half SPORT 'A' Multichannel Control Register

SPORT_MCTL_B Half SPORT 'B' Multichannel Control Register

SPORT_MSTAT_A Half SPORT 'A' Multichannel Status Register

SPORT_MSTAT_B Half SPORT 'B' Multichannel Status Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

CM41X_M4 SPORT Interrupt List

Table 29-3: CM41X_M4 SPORT Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

137 SPORT0_A_STAT SPORT0 Channel A Status Level

138 SPORT0_B_STAT SPORT0 Channel B Status Level

29.3.3 SPORT Trigger List

CM41X_M4 SPORT DMA Channel List

Table 29-4: CM41X_M4 SPORT DMA Channel List

DMA ID DMA Channel Name Description

DMA10 SPORT0_A_DMA SPORT0 Channel A DMA

DMA11 SPORT0_B_DMA SPORT0 Channel B DMA

Functional Description

ADSP-CM41x Mixed-Signal Control Processor 29–7

Block Diagram

Each SPORT top module consists of two separate blocks, known as half SPORTs (HSPORT) A and B, each with
identical functionality and programming models. The Half Serial Port Block Diagram shows a detailed block
diagram of a half SPORT.

32

SPT_AD0 SPT_ACLK SPT_AFS SPT_AD1

SCB BUS

PRIMARY TRANSMIT
DATA BUFFER

SPORT_TXPRI_A

HARDWARE
COMPANDING

(COMPRESSION)

TRANSMIT SHIFT
REGISTER

PRIMARY RECEIVE
DATA BUFFER

SPORT_RXPRI_A

RECEIVE SHIFT
REGISTER

SPTRAN=1
SPENPRI=1

3232

32

HARDWARE
COMPANDING
(EXPANSION)

SERIAL PORT
CONTROL

32

SECONDARY TRANSMIT
DATA BUFFER

SPORT_TXSEC_A

HARDWARE
COMPANDING

(COMPRESSION)

TRANSMIT SHIFT
REGISTER

SECONDARY RECEIVE
DATA BUFFER

SPORT_RXSEC_A

RECEIVE SHIFT
REGISTER

3232

32

HARDWARE
COMPANDING
(EXPANSION)

SPENPRI SPENSEC

SPTRAN=0
SPENPRI=1

SPTRAN=0
SPENSEC=1

SPTRAN=1
SPENSEC=1

Figure 29-1: Half Serial Port Block Diagram

Architectural Concepts

Each half SPORT (HSPORT) block has its own set of control registers and data buffers, grouped per SPORT mod-
ule. The HSPORT A and B blocks can be independently configured as either a transmitter or a receiver, with the
option to be coupled together internally within the single SPORT top module. Each HSPORT also supports two
synchronous bidirectional datapaths, referred to as the primary (D0) and secondary (D1) data lines, as shown in the
Top-Level SPORT Diagram figure.

Functional Description

29–8 ADSP-CM41x Mixed-Signal Control Processor

SERIAL CLOCK

FRAME SYNC

PRIMARY DATA CHANNEL

SECONDARY DATA CHANNEL

TRANSMIT DATA VALID

SPORTx_ACLK

SPORTx_AFS

SPORTx_AD0

SPORTx_AD1

SPORTx_ATDV

HSPORT-A

SERIAL CLOCK

FRAME SYNC

PRIMARY DATA CHANNEL

SECONDARY DATA CHANNEL

TRANSMIT DATA VALID

SPORTx_BCLK

SPORTx_BFS

SPORTx_BD0

SPORTx_BD1

SPORTx_BTDV

HSPORT-B

SPORTx

Figure 29-2: Top-Level SPORT Diagram

The SPORT_CTL_A.SPTRAN bit controls the direction for both datapaths of the HSPORT. Depending on
whether the HSPORT is a transmitter or a receiver, the pair of data signals respectfully transmit or receive data bits
synchronously. The dual data signals of each HSPORT cannot transmit and receive the data simultaneously in sup-
port of full-duplex operation, however, two HSPORTs can be combined to achieve this.

Serial communications are synchronized to the serial clock signal, where a valid clock pulse must accompany each
data bit. Each HSPORT can take its clock from an external source or internally generate it from the processor's
system clock using the SPORT_DIV_A.CLKDIV clock divisor bit field. Both primary and secondary data chan-
nels shift data based on the SPORT_CLK rate and the clock polarity defined by the SPORT_CTL_A.CKRE bit.

In addition to the serial clock signal, a frame synchronization signal is used to signify the beginning of an individual
data word or a multichannel data stream (block of words). Each SPORT can take the frame sync signal from an
external source or generate it (SPORT_FS), depending on the SPORT_CTL_A.IFS bit. An internally generated
frame sync is derived from the SPORT clock using the SPORT_DIV_A.FSDIV divisor field. Both primary and
secondary datapaths start shifting data either synchronous to or one serial clock in advance of detecting/generating a
valid frame sync signal, as determined by the SPORT_CTL_A.LAFS bit. Various communication protocols for se-
rial data can be emulated according to the frame sync format, and all frame sync options are available whether the
signal is generated internally or externally.

NOTE: These SPORTs are not UARTs and cannot communicate with an RS-232 device or any other asynchro-
nous communications protocol.

Multiplexer Logic

The SPORT multiplexing block (SPMUX) is situated between the SPORT hardware block and the processor's pin
multiplexing logic. It allows the flexibility to route and share the clock and frame sync signals between the HSPORT
A and B halves within each SPORT top module, which can double the data throughput (if both SPORT halves are
transmitters or both are receivers) or provide full-duplex capabilities (if one HSPORT is a receiver and the other a

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 29–9

transmitter) without the need to allocate pins for the peripheral or make physical connections outside the processor.
The SPORT_CTL2_A register is used to configure this loopback feature.

NOTE: Throughout this section, HSPORT A is used as a reference, but all concepts also apply to HSPORT B.

The multiplexing depends on the configuration of the SPORT_CTL_A.IFS and SPORT_CTL_A.ICLK bits,
and the SPORT_CTL2_A.CKMUXSEL and SPORT_CTL2_A.FSMUXSEL bit settings control the multiplexing.
The Frame Sync Combinations and Clock Combinations tables show the valid combinations for the bit settings.

NOTE: All other settings are illegal. However, hardware does not check or prevent the illegal settings. Ensure that
programs use only legal combinations.

The column headers in the Frame Sync Combinations table are defined as follows:

• FS Combination = Frame sync combination, referenced in the notes that follow the Clock Combinations table.

• HSA_IFS = the setting of the SPORT_CTL_A.IFS configuration bit.

• HSB_IFS = the setting of the SPORT_CTL_B.IFS configuration bit.

• FSAMUX = the setting of the SPORT_CTL2_A.FSMUXSEL configuration bit.

• FSBMUX = the setting of the SPORT_CTL2_B.FSMUXSEL configuration bit.

The Routing column in the Frame Sync Combinations table defines how the signals are used between the SPORT
halves and which pin is used for the frame sync (whether it is an input or an output). Within the column, the in-
equality characters (≤ and ≥) are used to show the direction of the signal, and the following abbreviations are used
(where x = A or B):

• HSx_FI = Frame sync input signal, provided by an external device or the complementing HSPORT.

• HSx_FO = Frame sync output signal.

• SPx_FS = HSPORT's frame sync pin, where the signal is either:

• provided by an external source and distributed to both HSPORT frame sync signals, or

• internally generated by one HSPORT and routed to both the pin and to the complementary HSPORT
frame sync signal.

Table 29-5: Frame Sync Combinations

FS Combination HSA_IFS HSB_IFS FSAMUX FSBMUX Routing

1 0 0 0 0 Native FS Operation

2 0 1 0 0 Native FS Operation

3 1 0 0 0 Native FS Operation

4 1 1 0 0 Native FS Operation

Architectural Concepts

29–10 ADSP-CM41x Mixed-Signal Control Processor

Table 29-5: Frame Sync Combinations (Continued)

FS Combination HSA_IFS HSB_IFS FSAMUX FSBMUX Routing

5 0 0 1 0 HSA_FI ≤ SPB_FS;

HSB_FI ≤ SPB_FS

6 0 1 1 0 HSA_FI ≤ HSB_FO ≥ SPB_FS

7 0 0 0 1 HSB_FI ≤ SPA_FS;

HSA_FI ≤ SPA_FS

8 1 0 0 1 HSB_FI ≤ HSA_FO ≥ SPA_FS

The column headers in the Clock Combinations table are defined as follows:

• CLK Combination = Clock combination, referenced in the notes that follow the table.

• HSA_ICLK = the setting of the SPORT_CTL_A.ICLK configuration bit.

• HSB_ICLK = the setting of the SPORT_CTL_B.ICLK configuration bit.

• CKAMUX = the setting of the SPORT_CTL2_A.CKMUXSEL configuration bit.

• CKBMUX = the setting of the SPORT_CTL2_B.CKMUXSEL configuration bit.

The Routing column in the Clock Combinations table defines how the signals are used between the SPORT halves
and which pin is used for the serial clock (whether it is an input or an output). Within the column, the inequality
characters (≤ and ≥) are used to show the direction of the signal, and the following abbreviations are used (x = A or
B):

• HSx_CI = Serial clock input signal, provided by an external device or the complementing HSPORT.

• HSx_CO = Serial clock output signal.

• SPx_CLK = HSPORT's serial clock pin, where the signal is either:

• provided by an external source and distributed to both HSPORT serial clock signals, or

• internally generated by one HSPORT and routed to both the pin and to the complementary HSPORT
serial clock signal.

Table 29-6: Clock Combinations

CLK Combination HSA_ICLK HSB_ICLK CKAMUX CKBMUX Routing

9 0 0 0 0 Native CLK Operation

10 0 1 0 0 Native CLK Operation

11 1 0 0 0 Native CLK Operation

12 1 1 0 0 Native CLK Operation

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 29–11

Table 29-6: Clock Combinations (Continued)

CLK Combination HSA_ICLK HSB_ICLK CKAMUX CKBMUX Routing

13 0 0 1 0 HSA_CI ≤ SPB_CLK;

HSB_CI ≤ SPB_CLK

14 0 1 1 0 HSA_CI ≤ HSB_CO ≥ SPB_CLK

15 0 0 0 1 HSB_CI ≤ SPA_CLK;

HSA_CI ≤ SPA_CLK

16 1 0 0 1 HSB_CI ≤ HSA_CO ≥ SPA_CLK

The following is a comprehensive list of the legal combinations for the above described frame sync and clock multi-
plexing configurations:

• FS Combinations 1–4 are compatible with all CLK Combinations (9–16)

• CLK Combinations 9–12 are compatible with all FS Combinations (1–8)

• FS Combination 5 is only compatible with CLK Combination 13 (and vice versa)

• FS Combination 6 is only compatible with CLK Combination 14 (and vice versa)

• FS Combination 7 is only compatible with CLK Combination 15 (and vice versa)

• FS Combination 8 is only compatible with CLK Combination 16 (and vice versa)

NOTE: Program only the SPORT_CTL2 register of the HSPORT that is accepting the signal from the other
HSPORT. However, be sure to set the SPORT_CTL_A.CKRE and SPORT_CTL_A.LFS polarity bits
to have identical settings between the HSPORTs when making internal connections via the SPMUX
block.

Data Types and Companding

The SPORT uses the data type select field SPORT_CTL_A.DTYPE bit to specify one of the four data formats
supported by serial ports. These formats apply to any of the operating modes of serial port.

Table 29-7: Data Type Bit Field Settings

DTYPE field SPORT Receiver SPORT Transmitter

00 Right-justify, zero-fill unused most significant bits Normal operation

01 Right-justify, sign-extend unused most significant bits Reserved

10 Expand using μ-law Compress using μ-law

11 Expand using A-law Compress using A-law

These formats apply to data words loaded into the SPORT transmit or receive data buffers. The first two data for-
mats (00 and 01 values of SPORT_CTL_A.DTYPE) are applicable only when SPORT is configured as receiver.

Functional Description

29–12 ADSP-CM41x Mixed-Signal Control Processor

When SPORT is configured as transmitter, only the significant bits are transmitted (per the field defined in control
register). Therefore, the transmit data buffers are not actually zero-filled or sign-extended.

The other two data formats enable the companding logic on the transmit or receive path. Companding (compress-
ing or expanding) is the process of logarithmically encoding and decoding data to minimize the number of bits sent.
The SPORTs of the processor support the two most widely used companding algorithms, A-law, and μ-law. The
algorithms are performed according to the CCITT G.711 specification.

If selected, companding applies to both the enabled data channels. When enabled as SPORT transmitter, writes to
transmit buffer make the content compressed to 8 bits according to algorithm selected. (The content is zero filled to
the width of the transmit word.) Similarly, if configured in receive mode, the 8 bits in the receive data buffers ex-
pand in right-justified, zero fill format per the algorithm selected. If companding is enabled in multichannel mode,
it applies to all the active channels.

The compression for transmit data requires a minimum word length of 8 for proper function. If
SPORT_CTL_A.SLEN is less than 7, then expansion does not work correctly. Also, if the data value is greater than
13-bit A-law or 14-bit μ-law maximum, it automatically compresses to the maximum value.

NOTE: The processor companding logic supports in-place companding feature. So, companding can be used for
debug without enabling SPORT.

Companding as a Function

Since the values in the transmit and receive buffers are companded in place, the SPORT can use the companding
hardware without transmitting or receiving data, which can be useful during testing or debugging. For companding
to execute properly, program the SPORT registers prior to loading data values into the SPORT buffers.

To compress data in place without transmitting, use the following procedure:

1. Set the SPORT as a transmitter (SPORT_CTL_A.SPTRAN = 1) with both primary and secondary data chan-
nels disabled (SPORT_CTL_A.SPENPRI = SPORT_CTL_A.SPENSEC= 0).

2. Enable companding in the SPORT_CTL_A.DTYPE field.

3. Write a 32-bit data word to the transmit buffer.

4. Wait two system clock cycles to allow the SPORT companding hardware to reload the transmit buffer with the
companded value. Any instructions that do not access the transmit buffer can be used to cause this delay.

5. Read the 8-bit compressed value from the transmit buffer.

To expand data in place, use the same sequence of operations with the receive buffer instead of the transmit buffer.

Transmit Path

When the SPORT_CTL_A.SPTRAN control bit is set, the HSPORT is in transmit mode. Primary and secondary
transmit data paths are then enabled using the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.SPENSEC bits,
respectively. The primary and secondary datapaths are unique and identical, each including its own transmit data
buffer, optional companding logic, and transmit shift register.

Data Types and Companding

ADSP-CM41x Mixed-Signal Control Processor 29–13

The data buffer on the primary transmit data path is SPORT_TXPRI_A, and the data buffer on the secondary
transmit data path is SPORT_TXSEC_A. The transmit data buffer and output shift register form a FIFO type of
structure. When packing is disabled (SPORT_CTL_A.PACK = 0), the SPORT can hold as many as three data
words. If packing is enabled (SPORT_CTL_A.PACK = 1), the serial port can hold two packed data words at any
time.

The transmit data for primary and secondary channels is written to the SPORT_TXPRI_A and
SPORT_TXSEC_A transmit data buffers, respectively. The transmit data buffers can be accessed in core mode
through the peripheral bus or in DMA mode through the DMA bus. When a SPORT is configured in transmit
mode, the receive paths are deactivated and do not respond to serial clock or frame sync signals. Because the receive
data buffers and receive shift registers are also deactivated, reading from an empty and inactive receive data buffer
can cause the core to hang indefinitely.

NOTE: Be sure to avoid accesses to inactive data buffers. Such accesses can cause unpredictable SPORT behavior
or a hang condition and are not reported in any status register.

This data can optionally be compressed in hardware according to the selected algorithm (μ-law or A-law) and then
automatically transferred to the transmit shift register. The shift register, clocked by the SPORT_ACLK signal, then
serially outputs this data on the SPORT_AD0 and/or SPORT_AD1 pins (if both are enabled, these output data bits
are transmitted synchronously). If the SPORT uses a framing signal, the SPORT_AFS signal indicates the start of
the serial word transmission.

When using DMA mode, a single DMA feeds the data buffers of the enabled channels (primary and/or secondary).
When using both channels, interleave the data of these channels starting with the primary channel in the transmit
buffer.

When the SPORT is configured in non-multichannel mode as a transmitter, the enabled SPORT data pins
(SPORT_AD0 and/or SPORT_AD1) are always driven. When a SPORT channel is enabled, data from the transmit
data buffer is loaded into the transmit shift register. The shift register then immediately latches the first bit of data
(either the LSB or MSB, depending on the SPORT_CTL_A.LSBF configuration bit) and drives it to the respective
data pin such that it is ready when the frame sync signal asserts. Similarly, if the frame sync period exceeds the serial
word length, then the data pins are driven with the first bit of the next word for transmission immediately after the
active word completes, and the outputs are held during the inactive serial clock cycles (clock cycles between frame
sync pulses).

When the SPORT is configured in multichannel mode, the data pins are driven only during active transmit chan-
nels and are always three-stated during inactive channel slots.

The SPORT provides status of transmit data buffers and also error detection logic for transmit errors such as an
underrun condition. See the Error Detection (Status) Interrupt section for more details.

Functional Description

29–14 ADSP-CM41x Mixed-Signal Control Processor

Receive Path

When the SPORT_CTL_A.SPTRAN bit is cleared, the SPORT is in receive mode. Primary and/or secondary re-
ceive data paths can be enabled by setting the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.SPENSEC con-
figuration bits, respectively. These data paths are unique but identical, each with a receive shift register, optional
companding logic, and a receive data buffer.

The data buffer on the primary receive path is SPORT_RXPRI_A, and the data buffer on the secondary receive
path is SPORT_RXSEC_A. The receive data paths act like a three-deep (32-bit words) FIFO because they have two
data registers plus an input shift register.

Upon enabling the SPORT data channels, the input shift register shifts in data bits on the SPORT_AD0 and/or
SPORT_AD1 pins, synchronous to the SPORT clock signal. If the SPORT uses a framing signal, the SPORT_AFS
signal indicates the beginning of the serial word (or frame) to be received. When an entire word is shifted into the
primary and secondary channels, the data can be optionally expanded in hardware according to a selected algorithm
(μ-law or A-law) and then automatically transferred to the SPORT_RXPRI_A and/or SPORT_RXSEC_A data
buffers.

The receive data buffers can be read in core mode through the peripheral bus or in DMA mode through the DMA
bus. When the SPORT uses DMA mode, a single DMA reads the data buffers of the enabled channels (primary
and/or secondary) and interleaves them in memory beginning with the primary channel when both channels are
enabled. When using both channels, software must de-interleave the data of these channels.

The SPORT provides the status of receive data buffers and also error detection logic for receive errors such as over-
flow. See the Error Detection (Status) Interrupt section for more details.

When a SPORT is configured in receive mode, the transmit paths are deactivated and do not respond to serial clock
or frame sync signals. As the transmit data buffers and transmit shift registers in the data paths are also deactivated,
programs must not try to access them.

NOTE: Be sure to avoid accesses to inactive data buffers. Such accesses can cause unpredictable SPORT behavior
or a hang condition and are not reported in any status register.

Operating Modes and Options
The SPORT has a number of operating modes:

• Standard DSP Serial mode

• I2S mode

• Left-Justified mode

• Right-Justified mode

• Multichannel (TDM) mode

• Packed I2S mode

Functional Description

ADSP-CM41x Mixed-Signal Control Processor 29–15

The SPORT halves within a SPORT top module can be independently configured in any of these operating modes
unless they are coupled together using SPMUX logic, in which case they must be configured identically. Each half
SPORT has its own set of control and data registers and is programmed similarly.

The Control Bits for SPORT Operating Modes table lists all the programmable configuration bits in the
SPORT_CTL_A control register, which combine to determine the overall function and operating mode of the
SPORT. The columns are arranged according to the setting of the SPORT_CTL_A.OPMODE bit that selects be-

tween standard DSP/multichannel modes and the various I2S modes, and the cell contents are defined as follows:

• Yes − bit is programmable for this mode of operation and may be written

• Reserved − bit is not programmable for this mode of operation and must not be written

• = value − bit must be set to this value to enable this mode of operation

• FUNCTION − indicates alternate function for this bit in this mode

NOTE: When changing operating modes, first clear the SPORT_CTL_A register before again writing the register
with the new configuration settings.

Table 29-8: Control Bits for SPORT Operating Modes

Name (Bit #) Standard DSP Seri-
al Mode

I2S and Left-Justi-
fied Mode

Right-Justified Mode Multichannel
(TDM) Mode

Packed I2S Mode

SPENPRI (0) Valid

DTYPE (2:1) Valid Reserved Valid

LSBF (3) Valid Reserved Valid

SLEN (8:4) Valid

PACK (9) Valid

ICLK (10) Valid

OPMODE (11) = 0 = 1 = 1 = 0 = 1

CKRE (12) Valid

FSR (13) Valid Reserved

IFS (14) Valid

DIFS (15) Valid Reserved

LFS (16) Valid L_FIRST/PLFS Valid L_FIRST/PLFS

LAFS (17) Valid OPMODE2 Valid Reserved

RJUST (18) Reserved = 1 Reserved

FSED (19) Valid Reserved Valid Reserved

TFIEN (20) Valid

GCLKEN (21) Valid Reserved

Operating Modes and Options

29–16 ADSP-CM41x Mixed-Signal Control Processor

Table 29-8: Control Bits for SPORT Operating Modes (Continued)

Name (Bit #) Standard DSP Seri-
al Mode

I2S and Left-Justi-
fied Mode

Right-Justified Mode Multichannel
(TDM) Mode

Packed I2S Mode

SPENSEC (24) Valid

SPTRAN (25) Valid

Serial Word Length

The SPORT uses the SPORT_CTL_A.SLEN field to determine the word length of the serial data to transmit or
receive. Each half SPORT can independently handle word lengths up to 32 bits, and the value that must be pro-
grammed to the SPORT_CTL_A.SLEN field is obtained from:

SLEN = Desired SPORT word length - 1

The minimal word length depends on the selected operating mode. Words smaller than 32 bits are right-justified in
the transmit or receive buffers; however, data can be shifted in or out in MSB or LSB first format, as configured by
the SPORT_CTL_A.LSBF bit. The received word can also be sign-extended or zero-filled when storing the data to
processor memory, as governed by the SPORT_CTL_A.DTYPE bit.

The Data Lengths for SPORT Operating Modes table shows the range of valid word lengths for each of the suppor-
ted SPORT operating modes.

Table 29-9: Data Lengths for SPORT Operating Modes

Mode SPORT Word Length (SLEN+1)

Standard DSP Serial 4–32

I2S 5–32

Left-Justified 5–32

Right-Justified 5–32

Multichannel (TDM) 5–32

Packed I2S 5–32

NOTE: If the companding feature is enabled on the datapath, it limits the word length settings. See Data Types
and Companding for more details about word lengths required for companding. If more than 32 bits per
frame sync are required to transmit or receive, use the multichannel mode to spread the data across numer-
ous continuous channels.

Clock Sample and Drive Edges

The SPORT uses two control signals to sample or drive the serial data:

1. Serial clock (SPORT_ACLK) - bit clock for the serial data.

2. Frame sync (SPORT_AFS) - divides the incoming data stream into frames.

Operating Modes and Options

ADSP-CM41x Mixed-Signal Control Processor 29–17

These control signals can be internally generated or externally provided, as determined by the
SPORT_CTL_A.ICLK and SPORT_CTL_A.IFS bit settings, respectively.

Data and frame syncs can be sampled on the rising or falling edges of the SPORT clock signal, as determined by the
SPORT_CTL_A.CKRE bit. By default, the SPORT_CTL_A.CKRE = 0 setting configures the falling edge of the
SPORT_ACLK signal as the sampling edge for receive data and externally supplied frame syncs. The receive data
and frame syncs can be sampled on the rising edges of SPORT_ACLK when SPORT_CTL_A.CKRE = 1.

NOTE: The SPORT drives transmit data and internal frame sync signals on the opposite serial clock edge of the
sampling edge. Be sure to select the same value for SPORT_CTL_A.CKRE for transmit and receive func-
tions for any two HSPORTs that are connected together, and always verify the correct polarity for any
external device connected to the SPORT.

The Frame Sync and Data Driven on Rising Edge figure provides an example of the drive and sample edges when
two HSPORTs are connected together, each with SPORT_CTL_A.CKRE = 0. In this example, the HSPORT that
is configured as the transmitter drives the serial clock and frame sync signals, and both HSPORTs are configured for
early, active high frame syncs and a word length of eight bits.

DRIVE
SCLK

DRIVE
DATA

DRIVE
FS

D7 D6 D5 D4 D3 D2 D1 D0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

SAMPLED
FS

SAMPLED
DATA

SLEN
COUNTER

Figure 29-3: Frame Sync and Data Driven on Rising Edge

NOTE: The SCLK in the Frame Sync and Data Driven on Rising Edge figure is SCLK.

As shown, the transmitting HSPORT provides the clock and generates the frame sync. Because the HSPORTs are
configured for early frame mode, the first bit of data is driven one serial clock later, with subsequent bits being driv-
en on the following rising clock edges in the signal train. When the receiving HSPORT samples the frame sync
signal (as indicated in the SAMPLED FS waveform), the SPORT_CTL_A.SLEN bit counter is loaded with the
SPORT_CTL_A.SLEN setting, after which each SPORT_ACLK decrements the SPORT_CTL_A.SLEN counter
until the full word is received. In this figure, the DRIVE FS and SAMPLED FS waveforms show the frame sync
required for the next word in a continuous data stream. Note that it is legal for this frame sync to be sampled syn-
chronous to the last bit of the previous data being sampled, as the early frame mode means that the data lags the
frame sync by one serial clock cycle. If the frame sync were sampled as asserted before the D0 bit is sampled, the
frame sync error is logged in the receiver's status register.

Since the transmitter drives the internally-generated frame sync and data on the rising edge of the serial clock, the
receiver must use the falling edge to sample the externally-supplied frame sync and data.

Operating Modes and Options

29–18 ADSP-CM41x Mixed-Signal Control Processor

Frame Sync Options

The following sections provide details regarding the programmable aspects of the SPORT frame sync signal. See the
specific operating mode sections for additional information regarding frame sync requirements and behavior for each
specific operating modes.

Data-Dependent versus Data-Independent Frame Syncs

By default, the generation of a frame sync signal is data-dependent:

• When the SPORT is configured as a transmitter (SPORT_CTL_A.SPTRAN = 1), an internally generated
transmit frame sync is output when a new data word has been loaded into the channel transmit buffer of the
SPORT (by either the core or the DMA engine).

• When the SPORT is configured as a receiver (SPORT_CTL_A.SPTRAN = 0), an internally-generated receive
frame sync is output only when the receive data buffer is not full.

The data-independent frame sync option, enabled by setting the SPORT_CTL_A.DIFS bit, allows for the genera-
tion of a periodic framing signal, regardless of the status of the data buffers. When this bit is set, the frame sync
output will be continuous and periodic, according to the setting of the SPORT_DIV_A.FSDIV field.

Support for Edge-Detected and Level-Sensitive Frame Syncs

The level-sensitive nature of frame sync signals operates well in a noise-free environment. However, if noise corrupts
the signals coming into the SPORT, the internal logic can lose synchronization. For example, excessive noise on the
frame sync signal may cause the frame sync to be sampled as inactive on the clock edge that it is intended to be
synchronous to, but then be sampled at the correct active level one cycle later. Similarly, a noisy clock signal can
cause an unintended clock edge, resulting in potential premature sampling of the frame sync signal being applied to
the pin.

The Level-Sensitive Frame Sync versus Edge Sensitive Frame Sync figure describes a scenario where an external frame
sync signal is corrupted due to noise, causing the receiving SPORT module to incorrectly sample the signal. If the
frame sync is driven on the rising edge of the serial clock at tA, the SPORT would normally sample the signal on the
falling edge of the serial clock at tB. Due to the noise, however, the SPORT misses the first edge of the frame sync
and instead samples it at tC.

SP_CLK

Actual Ext. FS

RX_DATA

tA

SLEN

SLEN

SLEN

FS edge not detected; no sampling

Data sampling interval
for level sensitive FS

Data sampling interval
for edge sensitive FS

RX_DATA

tEtDtCtB tF

Figure 29-4: Level-Sensitive Frame Sync versus Edge Sensitive Frame Sync

Operating Modes and Options

ADSP-CM41x Mixed-Signal Control Processor 29–19

NOTE: SCLK in the Level-Sensitive Frame Sync versus Edge Sensitive Frame Sync figure is SCLK.

When the above occurs, the internal word length counter runs for a period equal to the SPORT_CTL_A.SLEN
field of the control register, but it erroneously expires at tE rather than at the appropriate point at tD, thus receiving
incorrect data. Further, if a new level-sensitive frame sync edge arrives at time tD, the SPORT samples this framing
signal again at tE. As such, the frame sync sampling continues to be misaligned with the external data.

To help address this, the SPORT module provides an option to configure the frame sync signal to instead be edge-
sensitive via the SPORT_CTL_A.FSED configuration bit. When this bit is set with active high frame syncs enabled
(SPORT_CTL_A.LFS = 0), the rising edge of the frame sync is valid. Conversely, when the frame sync is active
low (SPORT_CTL_A.LFS= 1), the falling edge is defined to be valid.

NOTE: SPORT_CTL_A.FSED is valid only in external frame sync mode. In internal frame sync mode, the set-
ting of this bit is irrelevant and ignored.

In the above example, an edge-sensitive frame sync signal is not detected at tE because the edge of the framing signal
already occurred in the previous cycle (tD) and there is no new edge to detect at tE. As a result, the internal word
length counter remains idle for this frame, thus ignoring the incorrect data, and the counter correctly resumes opera-
tion at tF when a new frame sync edge is detected.

This activity sets the SPORT_ERR_A.FSERRSTAT bit and optionally generates a premature frame sync error in-
terrupt.

Frame sync edge detection is used by default for stereo modes. MCM mode and DSP serial mode choose between
edge detection and normal mode of FS detection.

NOTE: When the SPORT is first enabled, an already active externally applied frame sync will not commence op-
eration. The SPORT will wait for a valid change in the frame sync's state from inactive to active before
operation begins.

Early versus Late Frame Syncs

Frame sync signals can occur in the same serial clock cycle as the first bit of the data word (late) or one serial clock
cycle before the first bit (early), as controlled by the SPORT_CTL_A.LAFS bit.

By default, the frame sync signal is configured to be early (SPORT_CTL_A.LAFS = 0). The first bit of the trans-
mit data word will be driven one serial clock cycle after the frame sync is asserted (whether sensed externally or inter-
nally provided), and the first bit of the receive data word is expected to lag the frame sync by one serial clock cycle.
The frame sync is not checked again until the entire word has been transferred.

If data transmission is continuous in early framing mode, then an internally-generated frame sync signal will be as-
serted (pulsed active for one serial clock cycle) synchronous to the last data bit of the current transfer, as the first bit
of the next transfer will be immediately driven in the next serial clock cycle (no clocks are wasted). This event is not
a premature frame sync error, so the SPORT_ERR_A.FSERRSTAT bit is not set.

The frame sync can alternatively be configured as late (SPORT_CTL_A.LAFS = 1), in which case the first bit of
the transmit data word is available in the same serial clock cycle that the frame sync is asserted (whether sensed

Frame Sync Options

29–20 ADSP-CM41x Mixed-Signal Control Processor

externally or internally provided), and the first bit of the receive data word is also latched in the same cycle. Serial
clock edges latch the receive data bits, but the frame sync signal is checked only during the first bit of each word.
Internally generated frame syncs remain asserted for the entire length of the data word in late framing mode.

The Normal Framing (Early Frame Sync) Versus Alternate Framing (Late Frame Sync) figure illustrates these con-
cepts.

.. .

SPORTX_CLK

LATE
FRAME

SYNC

DATA

EARLY

FRAME

SYNC

B3 B2 B1 B0

Figure 29-5: Normal Framing (Early Frame Sync) Versus Alternate Framing (Late Frame Sync)

Framed versus Unframed Frame Syncs

The use of a frame sync signal is optional for SPORT operation, as controlled by the SPORT_CTL_A.FSR bit.
When the frame sync is configured to be required (SPORT_CTL_A.FSR = 1), the data is defined to be framed (a
frame sync signal must accompany every data word). To allow continuous transmission from the processor, ensure
that a new data word is loaded into the transmit buffer before the ongoing transfer is completed (this is automatical-
ly cared for when DMA is used to transmit blocks of data).

Data words can be transferred continuously in what is referred to as unframed data mode, which is appropriate for
continuous reception, by setting SPORT_CTL_A.FSR = 0. In this configuration, a single frame sync is still re-
quired to initiate communication, but it is subsequently unrequired once the communication begins. From that
point onward, externally provided frame syncs are ignored and internally generated frame syncs are not driven. The
Framed versus Unframed Data Stream figure shows the differences in SPORT operation between framed and un-
framed data modes with the frame sync configured to be early (SPORT_CTL_A.LAFS = 0).

NOTE: When DMA is enabled in a mode where frame syncs are not required, chaining can delay DMA requests.
DMA requests are not always serviced frequently enough to guarantee continuous unframed data flow.
Monitor status bits or check for a SPORT error interrupt to detect underflow or overflow of data.

SPORTX_CLK

FRAMED
DATA

UNFRAMED

DATA

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

Figure 29-6: Framed versus Unframed Data Stream

Frame Sync Options

ADSP-CM41x Mixed-Signal Control Processor 29–21

Frame Sync Polarity

The framing signals can be active high or active low, as governed by the SPORT_CTL_A.LFS bit:

• When SPORT_CTL_A.LFS = 0, the corresponding frame sync signal is active high.

• When SPORT_CTL_A.LFS = 1, the corresponding frame sync signal is active low.

Active high is the default polarity of the frame sync signal.

Premature Frame Sync Error Detection

A SPORT framing signal is used to synchronize transmit or receive data. In external frame sync mode, any frame
sync received during an active frame is premature and invalid. When this occurs, the
SPORT_ERR_A.FSERRSTAT bit is set to indicate the framing error, and an optional error interrupt request can
be generated for this event by setting the SPORT_ERR_A.FSERRMSK bit.

NOTE: The SPORT_ERR_A.FSERRSTAT bit is not set in the presence of uncleared underflow or overflow er-
rors.

Refer to the Frame Sync Error Detection figure. The frame sync error bit gets set when an unexpected frame sync
occurs during the ongoing data transfer (transmission or reception).

DRIVE
SCLK

DRIVE
DATA

DRIVE
FS

D7 D6 D5 D4 D3 D2 D1 D0

7 6 5 4 3 2 1 0

D7 D6 D5 D4 D3 D2 D1 D0

SAMPLED
FS

SAMPLED
DATA

SLEN
COUNTER

ERRONEOUS
EARLY FS

SLEN COUNTER NOT ZERO
=> SPERRI INTERRUPT

Figure 29-7: Frame Sync Error Detection

NOTE: SCLK in the Frame Sync Error Detection figure is SCLK.

Whether a SPORT is receiving or transmitting, its bit count is set to the programmed serial word length when the
frame sync is sampled, which is then decremented every subsequent serial clock cycle until the transfer has comple-
ted. At this point, the bit count reaches zero and will be reset to the programmed serial length when the next frame
sync is sampled. As such, the bit count value is non-zero during an active transfer, and the frame sync error is asser-
ted if a frame sync is sampled when this count is non-zero.

Frame Sync Options

29–22 ADSP-CM41x Mixed-Signal Control Processor

Mode Selection

The SPORT's operating mode is configured in the SPORT_CTL_A and SPORT_MCTL_A registers. The SPORT
Operating Modes table provides specific guidance to properly program these SPORT control registers for the desired
mode of operation.

Table 29-10: SPORT Operating Modes

Operating Modes SPORT_CTL_A.
OPMODE

SPORT_CTL_A.LAFS SPORT_CTL_A.
RJUST

SPORT_MCTL_A.MCE

Standard DSP Serial 0 Programmable Reserved 0

I2S 1 0 Reserved 0

Left-Justified 1 1 Reserved 0

Right-Justified 1 1 1 0

Multichannel 0 Reserved Reserved 1

Packed I2S mode 1 Reserved Reserved 1

The following sections provide detailed information for each of the supported SPORT modes of operation.

Standard DSP Serial Mode

The SPORT can be configured in standard DSP serial mode by clearing the SPORT_CTL_A.OPMODE and
SPORT_MCTL_A.MCE bits. This mode provides great flexibility in terms of programmable options to configure
the SPORTs to communicate with various serial devices such as serial data converters and audio codecs. In order to
properly connect to such devices, various clocking, framing, and data formatting options are available.

Timing Control Bits

Several bits in the SPORT_CTL_A control register define the configuration of the SPORT in standard DSP serial
mode:

• SLEN: serial word length (4–32 bits)

• LSBF: shift LSB or MSB first

• ICLK: internally generated or externally provided serial clock

• CKRE: sample on rising or falling edge of the serial clock

• IFS: internally generated or externally provided frame sync

• FSR: framed or continuous operation

• DIFS: data-dependent or data-independent frame sync

• LFS: active high or active low frame sync

• LAFS: frame sync synchronous to data or one clock cycle before it

• PACK: 16-bit to 32-bit packing option

Operating Modes and Options

ADSP-CM41x Mixed-Signal Control Processor 29–23

• GCLKEN: free-running or gated clock

Clocking Options

In standard DSP serial mode, the SPORTs can either accept an external serial clock or generate one internally, as
controlled by the SPORT_CTL_A.ICLK bit. For internally generated serial clocks (SPORT_CTL_A.ICLK = 1),
the SPORT_DIV_A.CLKDIV field configures the serial clock rate from the system clock.

The SPORT clock can also be gated, where it is only valid during an active transfer, as controlled by the
SPORT_CTL_A.GCLKEN bit.

The SPORT clock edge used for driving and sampling of serial data and frame syncs is configured using the
SPORT_CTL_A.CKRE bit:

• If SPORT_CTL_A.CKRE = 0, input data and frame sync signals are sampled on the falling edge of the serial
clock, and output data and frame sync signals are driven on the rising edge.

• If SPORT_CTL_A.CKRE = 1, input data and frame sync signals are sampled on the rising edge of the serial
clock, and output data and frame sync signals are driven on the falling edge.

Stereo Modes

The SPORTs support three widely used stereo modes of operation:

• I2S mode

• Left-Justified mode

• Right-Justified mode

In these modes, the serial data stream consists of left and right channels. The following sections describe these modes
in more detail.

Channel Order

The active low frame sync (SPORT_CTL_A.LFS) bit is used to determine the polarity of the frame sync signal in
the non-stereo modes of operation. For the stereo modes of operation, it instead controls whether the right or left
channel is first in the data transfer. The Channel Order Bit Settings table shows which word is transmitted or re-
ceived first, based on the setting of the SPORT_CTL_A.LFS bit.

Table 29-11: Channel Order Bit Settings

Mode SPORT_CTL_A.LFS=0 SPORT_CTL_A.LFS=1

Left-Justified or Right-Justified Left channel first Right channel first

I2S or Packed I2S Right channel first Left channel first

Mode Selection

29–24 ADSP-CM41x Mixed-Signal Control Processor

I2S Mode

I2S mode is a commonly used stereo mode, where left and right channel data words are interleaved in the serial data
stream and each transition of the frame sync signal is associated with one of the channels. The left channel data is
transferred during the low segment of the frame sync signal, and the right channel data is transferred during the high
segment of the frame sync signal. As such, the frame sync signal is considered to be a left-right (L/R) clock in this
mode.

To set the SPORT up in I2S mode, the following configuration is required:

• SPORT_CTL_A.OPMODE = 1

• SPORT_CTL_A.LFS = 0

• SPORT_MCTL_A.MCE = 0

Protocol Configuration Options

Several bits in the SPORT_CTL_A control register must be configured to be compliant with the I2S standard, but
they can be otherwise configured to support non-standard operation as well:

• SLEN: programmable (allowable word lengths are 5–32 bits)

• LSBF: set to 0 (MSB first)

• ICLK: programmable (serial bit clock can be internally generated or externally provided)

• IFS: programmable (serial L/R clock source must match serial bit clock source)

• LFS: set to 1 (left channel first)

• CKRE: set to 1 (sample L/R clock and data on rising edge of bit clock)

Serial Bit Clock and L/R Clock Rates

If the SPORT is configured to generate the bit clock and the L/R clock (SPORT_CTL_A.ICLK =
SPORT_CTL_A.IFS = 1), set the serial bit clock rate using the SPORT_DIV_A.CLKDIV bit field and the L/R
clock rate using the SPORT_DIV_A.FSDIV bit field.

The Word Select Timing in I2S Mode figure shows the SPORT timing in I2S mode. The data lags the L/R clock
transition by one SCLK cycle, and the transfer begins with the left channel data word first.

I2S MODE
SPORTx_DA/DB DATA

MSBn

WORD n
LEFT CHANNEL

WORD n+1
RIGHT CHANNEL

LSBn MSBn+1

WORD n-1
RIGHT CHANNEL

LSBn-1

SPORTx_CLK

SPORTx_FS/WS

Figure 29-8: Word Select Timing in I2S Mode

Stereo Modes

ADSP-CM41x Mixed-Signal Control Processor 29–25

Left-Justified Mode

Left-justified mode is a stereo mode subset of the I2S standard. As in I2S mode, the frame sync signal acts as a left-
right clock (L/R clock), where left and right data samples are transferred each L/R clock period. The left channel is
associated with the high segment of the frame sync, and the right channel aligns with the low segment of the frame

sync. The difference between left-justified mode and standard I2S mode is that the channel data is driven in the
same bit clock cycle as the L/R clock transition (rather than one bit clock cycle later), such that the MSB is synchro-
nous with the leading edge of the frame sync transition.

To set the SPORT up in left-justified mode, the following configuration is required:

• SPORT_CTL_A.OPMODE = 1

• SPORT_CTL_A.LAFS = 1

• SPORT_MCTL_A.MCE = 0

Protocol Configuration Options

Several bits in the SPORT_CTL_A control register must be configured to operate the SPORT in left-justified mode,
but they can be otherwise configured as well:

• SLEN: programmable (allowable word lengths are 5–32 bits)

• LSBF: set to 0 (MSB first)

• ICLK: programmable (serial bit clock can be internally generated or externally provided)

• IFS: programmable (serial L/R clock source must match serial bit clock source)

• LFS: set to 0 (left channel first)

• CKRE: set to 1 (sample L/R clock and data on rising edge of bit clock)

Serial Bit Clock and L/R Clock Rates

If the SPORT is configured to generate the bit clock and the L/R clock (SPORT_CTL_A.ICLK =
SPORT_CTL_A.IFS = 1), set the serial bit clock rate using the SPORT_DIV_A.CLKDIV bit field and the L/R
clock rate using the SPORT_DIV_A.FSDIV bit field.

The Word Select Timing in Left-Justified Mode figure shows the SPORT timing in left-justified mode. The start of a
data sample is synchronous to the L/R clock transition, and the transfer begins with the left channel data word first.

SPORTx_CLK

LEFT-JUSTIFIED SAMPLE
PAIR MODE
SPORTx_DA/DB DATA

SAMPLE n-1

LSBn-1

SPORTx_FS/WS

SAMPLE n
LEFT CHANNEL

SAMPLE n+1

MSBn LSBn MSBn+1

Figure 29-9: Word Select Timing in Left-Justified Mode

Stereo Modes

29–26 ADSP-CM41x Mixed-Signal Control Processor

Right-Justified Mode

Right-justified mode is a stereo mode subset of the I2S standard. As in I2S mode and left-justified mode, the frame
sync signal acts as a left-right clock (L/R clock), where left and right data samples are transferred each L/R clock
period. The left channel is associated with the high segment of the frame sync, and the right channel aligns with the

low segment of the frame sync. The difference between right-justified mode and standard I2S mode is that the LSB
of the channel data ends at the point that the L/R clock transitions to frame the next sample (rather than one bit
clock cycle after the L/R clock transition).

To set the SPORT up in right-justified mode, the following configuration is required:

• SPORT_CTL_A.OPMODE = 1

• SPORT_CTL_A.RJUST = 1

• SPORT_MCTL_A.MCE = 0

Timing Control Bits

Several bits in the SPORT_CTL_A control register must be configured to operate the SPORT in right-justified
mode, but they can be otherwise configured as well:

• SLEN: programmable (allowable word lengths are 5–32 bits)

• LSBF: set to 0 (MSB first)

• ICLK: programmable (serial bit clock can be internally generated or externally provided)

• IFS: programmable (serial L/R clock source must match serial bit clock source)

• LFS: set to 0 (left channel first)

• CKRE: set to 1 (sample L/R clock and data on rising edge of bit clock)

Serial Bit Clock and L/R Clock Rates

If the SPORT is configured to generate the bit clock and the L/R clock (SPORT_CTL_A.ICLK =
SPORT_CTL_A.IFS = 1), set the serial bit clock rate using the SPORT_DIV_A.CLKDIV bit field and the L/R
clock rate using the SPORT_DIV_A.FSDIV bit field.

The Word Select Timing in Right-Justified Mode figure shows the SPORT timing in right-justified mode. The trans-
mitter aligns the transmit data such that the last bit of the serial word is sent in the last clock cycle of the L/R clock
(frame sync) signal marking the channels.

Stereo Modes

ADSP-CM41x Mixed-Signal Control Processor 29–27

FRAME SYNC

N-1 N-2 01 N-1 N-2 01SERIAL DATA

SERIAL CLOCK

MSB LSB MSB LSB

LEFT CHANNEL RIGHT CHANNEL

Figure 29-10: Word Select Timing in Right-Justified Mode

NOTE: For some SPORT-compatible ADCs or DACs such as the AD1871, right-justified mode is limited to com-
monly used ratios such as 64 FS and 128 FS. FS is the sampling frequency of ADCs and DACs, referrd to
as the SPORT's L/R clock (frame sync) signal.

Consider the SPORT timing for right-justified mode, as shown in the Timing Comparison Between Different Stereo
Modes figure. The frame sync width is limited to 32 SPORT clock periods (or 32 bits per channel) if:

• the SPORT's frame sync (L/R clock) runs at the FS rate, and

• the SPORT's serial bit clock runs at the 64 FS rate

The limitation applies to the frame sync width of either channel. If the data is confined to 24 bits, the SPORT
introduces a 32–24=8-bit clock delay before it starts to transmit or capture data.

BCLK

LRCLK

DAC_SDATA
LEFT-JUSTIFIED

MODE

LSB

DAC_SDATA
I2S MODE

DAC_SDATA
RIGHT-JUSTIFIED

MODE

tBIH

MSB MSB – 1

MSB

MSB

8-BIT CLOCKS
(24-BIT DATA)

12-BIT CLOCKS
(20-BIT DATA)

14-BIT CLOCKS
(18-BIT DATA)

16-BIT CLOCKS
(16-BIT DATA)

tLIS

tSIS

tSIH

tSIH

tSIS

tSIS

tSIH

tSIS

tSIH

tLIH

tBIL

Figure 29-11: Timing Comparison Between Different Stereo Modes

Similarly, to support the 128 FS bit clock frequency, the frame sync width becomes 64 serial bit clock periods per
channel. In this case, the delay can be a maximum of 59 bit clocks (64 – 5, which is the minimum serial data length
in right-justified mode).

The starting point of the first bit is delayed so that the LSB of the serial data aligns properly with the end of the
channel. A 6-bit counter is added for this purpose in the stereo mode counter, which is programmed by writing the
least significant six bits of the SPORT_MCTL_A.WOFFSET field. Though this is a multichannel mode configura-
tion register, the SPORT uses these bits in right-justified mode to configure the offset from the transition of the L/R

Stereo Modes

29–28 ADSP-CM41x Mixed-Signal Control Processor

clock to where the first data bit must be driven in order to have the end of the last bit align properly with the next
L/R clock transition. Software must program this register with the appropriate delay.

Multichannel (TDM) Mode

The multichannel mode of SPORT operation allows the SPORT to communicate as part of a time division multi-
plexed (TDM) serial system. In TDM communications, a large frame of streamed serial data words is defined to be
a particular length. It consists of a specific number of channels, and each channel contains one serial data word of
the defined data length. For example, a 24-word block of 24-bit data can be defined to be a window within a frame,
having a duration of 576 bit clocks and comprised of 24 continuous channels. The SPORT is configured to transfer
on specific channels within a defined window in this frame.

To set the SPORT up in multichannel mode, the following configuration is required:

• SPORT_CTL_A.OPMODE = 0

• SPORT_MCTL_A.MCE = 1

In multichannel mode, the SPORT can selectively transfer data on up to a maximum window size of 128 continu-
ous channels out of a maximum 1024-channel frame while ignoring all the disabled channels within the window
and all the channels outside the window. The SPORT can do any of the following on each channel:

• Transmit data (SPORT_CTL_A.SPTRAN = 1)

• Receive data (SPORT_CTL_A.SPTRAN = 0)

• Do nothing (during inactive channels)

Channel selection is configured in the half SPORT multichannel select registers (SPORT_CS0_A -
SPORT_CS3_A) before enabling SPORT operation for multichannel mode. Programming of these registers is espe-
cially important in DMA data unpacked mode, since the SPORT data buffers begin operation immediately after the
SPORT data lines are enabled. Be sure to enable multichannel operation (set the SPORT_MCTL_A.MCE bit) prior
to enabling the SPORT itself.

Clocking Options

In multichannel mode, the SPORTs can either accept an external serial clock or generate one internally, as governed
by the SPORT_CTL_A.ICLK bit. For an internally-generated serial clock (SPORT_CTL_A.ICLK = 1), the
SPORT_DIV_A.CLKDIV bit field is used to configure the serial clock rate, as derived from the system clock.

The serial clock edges used to drive and sample data and frame syncs are also configurable using the
SPORT_CTL_A.CKRE bit:

• If SPORT_CTL_A.CKRE= 0, input data and frame sync signals are sampled on the falling edge of the serial
clock, and output data and frame sync signals are driven on the rising edge.

• If SPORT_CTL_A.CKRE = 1, input data and frame sync signals are sampled on the rising edge of the serial
clock, and output data and frame sync signals are driven on the falling edge.

Mode Selection

ADSP-CM41x Mixed-Signal Control Processor 29–29

Frame Sync Options

The frame sync signal synchronizes the channels and restarts each multichannel sequence, starting with the channel
0 data word. For internally-generated frame syncs (SPORT_CTL_A.IFS = 1), the frame sync period in multichan-
nel mode is defined as:

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1

The active level for the frame sync signal is also configurable by programming the SPORT_CTL_A.LFS bit. Set
this bit to make the frame sync an active low signal, and clear it to make it active high.

In multichannel mode, frame sync timing resembles late framing mode (although the SPORT_CTL_A.LAFS bit is
reserved in this mode). The first bit of the transmit data word is driven and the first bit of the receive data word is
sampled in the same serial clock cycle as the frame sync, provided there is no programmed frame delay
(SPORT_MCTL_A.MFD = 0).

Once the frame sync signal is asserted, word transfers are performed continuously for the duration of the active win-
dow, and no further frame syncs are required for different channels within the window. As such, internally-generated
frame syncs are always data-independent, and the SPORT_CTL_A.DIFS bit is reserved.

Transmit Data Valid (TDV)

Each SPORT features a transmit data valid signal (SPORT_ATDV), which is driven high during enabled transmit
channels. Because the SPORT output data signals are three-stated during inactive channels, the SPORT_ATDV sig-
nal signifies when the processor is actively driving the SPORT data outputs, thus serving as an output-enable signal
for the data transmit pin(s).

Active Channel Selection Registers

In multichannel mode, the SPORT supports a window size of up to 128 channels for transmitting or receiving data,
where it can selectively receive or transmit data in any of these 128 channels. Each channel can be individually ena-
bled or disabled using the multichannel selection registers (SPORT_CS0_A to SPORT_CS3_A) to select the chan-
nels in which to transfer data during a multichannel communication stream. Data words associated with enabled
channels are transmitted or received in the respective channels, while disabled channels cause a transmit SPORT to
three-state the data output pins and a receive SPORT to ignore the data.

The four 32-bit multichannel selection registers combine to form up to a 128-bit meta-register to accommodate the
maximum window size of 128 channels. Setting any bit within these registers enables the associated channel. The
128 channels are sequentially numbered from bit 0 in the SPORT_CS0_A register (corresponding to channel 0 of
the window) to bit 31 of the SPORT_CS3_A register (corresponding to channel 127 of the window). For example,
setting bit 13 of the SPORT_CS1_A register enables channel number 45 (add 32 for the channels in the
SPORT_CS0_A). Likewise, setting bit 5 of the SPORT_CS3_A register enables channel number 101 (add 96 for
the 32 channels in each of the SPORT_CS0_A, SPORT_CS1_A, and SPORT_CS2_A registers).

Mode Selection

29–30 ADSP-CM41x Mixed-Signal Control Processor

Multichannel Frame Delay (MFD)

The multichannel frame delay (SPORT_MCTL_A.MFD) field specifies the delay in serial bit clocks between the
frame sync pulse and the first data bit in the frame. This configurability allows the processor to work with different
types of telephony interface devices.

As SPORT_MCTL_A.MFD is a 4-bit field, the maximum value allowed for the frame delay is 15 serial clock cycles.
When set to 0, the frame sync is concurrent with the first data bit. If SPORT_MCTL_A.MFD>0, a new frame sync
can occur during the last channel(s) of a previous frame and still be valid (does not cause a frame sync error).

NOTE: If the required frame delay exceeds 15 serial clocks, use the window offset field
(SPORT_MCTL_A.WOFFSET) to delay the start of channel 0 in increments of the serial word length,
and then adjust SPORT_MCTL_A.MFDaccordingly. For example, if the serial word length is 12 bits and
the desired frame delay is 16 serial clock cycles, set the SPORT_MCTL_A.WOFFSET to 1 to insert a 12-
bit delay after the frame sync to where the channel 0 data begins, and then program
SPORT_MCTL_A.MFD to 4 (i.e., 16 - 12).

Window Size (WSIZE)

Select the number of channels used in multichannel operation by programming the 7-bit
SPORT_MCTL_A.WSIZE field. This field must be set to the actual number of channels minus one
(SPORT_MCTL_A.WSIZE = Number of channels -1).

The 10-bit SPORT_MSTAT_A.CURCHAN field holds the channel number currently being serviced during multi-
channel operation.

Window Offset (WOFFSET)

The window offset (SPORT_MCTL_A.WOFFSET) field specifies where in the 1024-channel frame to place the
start of the active window (up to 128 channels long). A value of 0 specifies no channel offset from the frame sync
(channel 0 immediately follows it). Any non-zero value indicates the number of channels that come between the
frame sync and the start of channel 0 of the active frame, with 896 (for example, 1024–128) being the largest value
that permits using all 128 channels.

As an example, a program could define an active window comprised of eight channels (SPORT_MCTL_A.WSIZE
= 7) with a window offset of 93 (SPORT_MCTL_A.WOFFSET = 93). If configured in this fashion, the 8-channel
window that the SPORT will transfer within resides in the channel range from 93 to 100 in the up-to-1024-channel
frame.

Do not change the window offset or the number of multichannel slots (SPORT_MCTL_A.WSIZE) while the
SPORT is enabled. If the combination of the window size and offset place any portion of the window out-of-range
relative to the channel counter, none of the channels are enabled.

Mode Selection

ADSP-CM41x Mixed-Signal Control Processor 29–31

Companding Selection

Like the other operating modes, companding logic can optionally be applied to serial data (compression logic for
transmit mode or expansion logic for receive mode). The two widely used companding algorithms, A-law and μ-law,
are selectable using the SPORT_CTL_A.DTYPE field.

If companding is enabled, the companding algorithm is applied to both the primary and secondary datapaths. In
multichannel mode, companding can be applied to either all or none of the enabled channels (companding cannot
be selected on a per-channel basis).

Multichannel DMA Data Packing (MCPDE)

Multichannel DMA data packing and unpacking are enabled using the SPORT_MCTL_A.MCPDE bit.

When set, data is packed, and the SPORT expects the data in the DMA buffer to correspond only with enabled
SPORT channels. For example, if only channels 1 and 9 are enabled in a 10-channel window
(SPORT_MCTL_A.WSIZE = 9), the SPORT expects the buffer to be exactly two words in length, where channel 1
is associated with the first element in the buffer and channel 9 is associated with the second.

When cleared, data is unpacked, and the SPORT expects the DMA buffer to have a word for each of the channels in
the active window, whether the channel is enabled or not. As such, the DMA buffer size must be exactly the size of
the window. Using the same example as the packed case above, if only channels 1 and 9 are enabled in a 10-channel
window (SPORT_MCTL_A.WSIZE = 9), then the DMA buffer size is ten words. The data at offsets 1 and 9 with-
in the buffer are associated with the data transfers of channels 1 and 9, respectively. The rest of the words in the
buffer are unused.

Packed I2S Mode

The SPORT supports a packed I2S mode, which can be used for audio codec communications using multiple chan-
nels. This mode allows applications to send more than the standard 32 bits per channel available through standard

I2S mode. Packed mode is implemented using standard multichannel mode (and is therefore programmed similarly
to multichannel mode).

To set the SPORT up in packed I2S mode, the following configuration is required:

• SPORT_CTL_A.OPMODE = 1

• SPORT_MCTL_A.MCE = 1

Like multichannel mode, packed I2S mode also supports a maximum of 128 channels, where up to 128 channels of
data can be transferred for every transition of the frame sync signal acting as an L/R clock (for example, up to 128
left-channel words transfer during the high portion of the L/R clock, and up to 128 right-channel words transfer
during the low portion).

As shown in the Packed I2S Mode 128 Operation figure, the packed waveforms are the same as those waveforms

used in multichannel mode, except the frame sync is toggled for every frame and emulates I2S mode.

Mode Selection

29–32 ADSP-CM41x Mixed-Signal Control Processor

SLOT 1
LEFT 0

SLOT 2
LEFT 1

SLOT 3
LEFT 2

BLANK SLOT
4 SCLK

SLOT 4
RIGHT 0

SLOT 5
RIGHT 1

SLOT 6
RIGHT 2

BLANK SLOT
4 SCLK

DATA

20-BIT DATA

16-BIT DATA

BCLK

BCLK

MSB
–1

MSB
–2

MSB
–3

MSB
–4

MSB
–1

MSB
–2

MSB
–3

MSB
–4

LSB
+4

LSB
+3

LSB
+2

LSB
+1

MSB LSB

LSBMSB

L/RCLK

Figure 29-12: Packed I2S Mode 128 Operation

Serial Bit Clock Options

In packed I2S mode, the SPORTs can either accept an external serial bit clock or generate one internally, as governed
by the SPORT_CTL_A.ICLK configuration bit. For an internally-generated serial bit clock
(SPORT_CTL_A.ICLK = 1), use the SPORT_DIV_A.CLKDIV bit field to configure the serial bit clock rate
from the system clock.

The serial bit clock edge that is used for sampling or driving data and frame syncs is programmable using the
SPORT_CTL_A.CKRE bit.

L/R Clock (Frame Sync) Options

The frame sync period in packed I2S mode is defined as:

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1.

The L/R clock can be supplied externally or internally generated depending on the SPORT_CTL_A.IFS bit set-
ting. The logic level of the L/R clock associated with the left and right channel data can be changed using the
SPORT_CTL_A.LFS configuration bit.

Gated Clock Mode

Some system components such as ADCs and DACs utilize a SPI-compatible protocol for the interface. To commu-
nicate with such devices, the SPORT must support a gated clock, where the data valid information is embedded in
the clock (for example, the clock only toggles when data is valid). This gated clock feature is enabled using the
SPORT_CTL_A.GCLKEN bit.

To enable the gated clock mode of operation, program the SPORT to comply with the following requirements.

• Do not enable gated clock functionality in right-justified or multichannel mode

• Gated clock mode has the following requirements for other control bits:

Mode Selection

ADSP-CM41x Mixed-Signal Control Processor 29–33

• The serial clock and frame sync signals must have the same source (SPORT_CTL_A.ICLK =
SPORT_CTL_A.IFS)

• Unframed mode is not supported (SPORT_CTL_A.FSR must be set)

• Clear the SPORT_CTL_A.DIFS bit in transmit mode; set it in receive mode

• Satisfy the following necessary conditions when gated clock mode is enabled:

• Seven serial clock cycles are required between enabling the SPORT and the first frame sync. If this re-
quirement is not met, the SPORT can drop the first data (for subsequent data, this requirement is not
applicable)

• For externally-provided clock and frame sync, the frame sync must be inactive during clock synchroniza-
tion after the SPORT has been enabled

• For an edge-detected frame sync (SPORT_CTL_A.FSED = 1), the frame sync must transition back to
the inactive state before the current word transfer is complete (or when the clock is still running). If this
requirement is not met, the SPORT does not recognize the next valid frame sync and skips the channel.
The SPORT continues to skip the frame syncs until the frame sync transitions back to an inactive state
while the clock is active.

Data Transfers and Interrupts
SPORT data can be transferred to or from internal or external memory by two methods:

• Core-driven, single-word transfers

• DMA-driven, multiple-word transfers (optionally with multiple work units)

Core-driven transfers use SPORT interrupts to signal the processor core to perform MMR-based single-word trans-
fers to or from the SPORT data buffers. DMA can be set up to automatically transfer a configurable number of
serial words between the SPORT transmit/receive data buffers and memory, and then generate a data completion
interrupt request when a work unit or a series of work units completes, thus signaling to the processor core that a
block of data has been transferred.

The following sections provide information on core-driven and DMA-driven data transfers.

Data Buffers

When programming the serial port data channels (primary or secondary) as a transmitter by setting
SPORT_CTL_A.SPTRAN =1, only the corresponding transmit data buffers (SPORT_TXPRI_A and
SPORT_TXSEC_A) become active. The receive data buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) remain
inactive. Similarly, when the SPORT data channels are programmed for receive operation
(SPORT_CTL_A.SPTRAN =0), then only corresponding receive data buffers (SPORT_RXPRI_A and
SPORT_RXSEC_A) are active. Do not attempt to read or write inactive data buffers. If the processor operates on
the inactive transmit or receive buffers while the SPORT is enabled, unpredictable results can occur.

Data Transfers and Interrupts

29–34 ADSP-CM41x Mixed-Signal Control Processor

Each of these buffers is 32-bit wide (corresponds to maximum serial data word length). When using word lengths
less than 32 bits for SPORT operation, the data in these buffers is automatically right-justified. (The LSB bit of data
is at the bit 0 location of the buffer). The upper unused bits can be zero-filled or sign-extended depending on
SPORT_CTL_A.DTYPE field.

Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A)

When enabled as a transmitter (SPORT_CTL_A.SPTRAN =1), each SPORT half has its own set of transmit data
buffers. The primary (0) and secondary (1) datapaths of each SPORT half have separate data buffers, referred to as
SPORT_TXPRI_A and SPORT_TXSEC_A respectively.

These transmit data buffers are 32 bits wide. Load these buffers with the data for transmission on the primary and
secondary data channels. The DMA controller loads the data automatically. Or, the program running on the pro-
cessor core loads the data manually.

Together with the output shift register, transmit data buffers act like a two-location FIFO. If data packing is disabled
(SPORT_CTL_A.PACK =0), the transmit path can hold as many as three data words. If data packing is enabled
(SPORT_CTL_A.PACK =1), it can hold two packed data words at any given time.

When the transmit shift register becomes empty (transfer out all the bits of previous word), data in the transmit data
buffer is automatically loaded into it. An interrupt occurs when the output transmit shift register has been loaded,
signifying that the transmit data buffer is empty and ready to accept the next word. This interrupt does not occur
when serial port is operating in DMA mode or when the corresponding interrupt enable mask bit is set.

If only the primary datapath of a SPORT half is enabled, programs must not write to the inactive secondary trans-
mit data buffer and conversely. If the core keeps writing to the inactive buffer, the status of that transmit buffer
becomes full. This state can cause the core to hang indefinitely, since data is never transmitted to the output shift
register.

Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A)

When enabled as receiver (SPORT_CTL_A.SPTRAN =0), each SPORT half has its own set of receive data buffers.
The primary (0) and secondary (1) datapaths of each SPORT half have separate data buffers, referred as
SPORT_RXPRI_A and SPORT_RXSEC_A respectively. Together with input shift register, the receive data buffers
act like a three-location FIFO, as the receive path has two data registers.

These receive data buffers are the 32 bits wide. These buffers are automatically loaded from the receive shift register
when a complete word has been received into it. An interrupt occurs when the receive data buffer is loaded, signify-
ing that new data is available in the receive data buffer and is ready to read. This interrupt does not occur when the
serial port is operating in DMA mode or when the corresponding interrupt enable mask bit is set.

If only the primary datapath of a SPORT half is enabled, programs must not read from the inactive secondary re-
ceive data buffer and conversely. If the core keeps reading from the inactive buffer, the status of that receive buffer
becomes empty. This state can cause the core to hang indefinitely since new data is never received through the input
shift register.

Data Transfers and Interrupts

ADSP-CM41x Mixed-Signal Control Processor 29–35

Data Buffer Status

The SPORT provides status information about its primary and secondary data buffers through the
SPORT_CTL_A.DXSPRI and SPORT_CTL_A.DXSSEC bits, respectively. It also provides error status informa-
tion through the corresponding SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC bits, respectively.
Depending on the SPORT_CTL_A.SPTRAN bit setting, these bits reflect the status of either the pair of transmit
(SPORT_TXPRI_A and SPORT_TXSEC_A) or receive (SPORT_RXPRI_A and SPORT_RXSEC_A) buffers,
indicating whether the buffer is full, partially full, or empty.

When attempting to read from an empty receive buffer or write to a full transmit buffer, the SPORT delays access
until the buffer is ready, potentially resulting in excessive MMR bus response times. To avoid this when doing core-
driven transfers, always check the buffer status to determine if the access can be made. The SPORT updates the
status bits in the SPORT_CTL_A register during reads and writes by the core processor.

NOTE: These status bits are updated during reads and writes from the core processor even when the SPORT is
disabled.

Two complete 32-bit words can be stored in the receive buffer while a third word shifts in. Therefore, almost three
complete words can be received without the receive buffer being read before an overflow occurs. After receiving the
third word completely, the shift register contents overwrite the second word, which will occur if the first word has
not yet been read by the processor core or the DMA controller. This receive overflow condition is flagged through
the error status bits of the SPORT_CTL_A register on the last bit of the third word.

Data Buffer Packing

When the SPORT is configured as a receiver with a serial data word length of 16 or less, the received data words can
be packed into a 32-bit word. Similarly, if the SPORT is configured as a transmitter with a serial data word length of
16 or less, then 32-bit words being transmitted can be unpacked into 16-bit words. The SPORT_CTL_A.PACK
bit is used to select this packing or unpacking feature.

When SPORT_CTL_A.PACK = 1, two consecutive received words are packed into a single 32-bit word, or each
32-bit word is unpacked and transmitted as two 16-bit words. The first 16-bit (or smaller) word is right-justified in
bits 15–0 of the packed word, and the second 16-bit (or smaller) word is right-justified in bits 31–16. This packing
method applies to both receive (packing) and transmit (unpacking) operations. In this case, the transmit and receive
interrupt requests are generated for the 32-bit packed words, not for each 16-bit word.

NOTE: When 16-bit received data is packed into 32-bit words and stored in normal word space in the processor's
internal memory, the 16-bit words can be read or written using short word space addressing.

Single-Word (Core) Transfers

The SPORTs can transmit or receive individual data words with interrupt requests occurring as each data word is
transferred. When a SPORT is enabled with the corresponding DMA channel disabled, interrupt requests are gener-
ated when:

• a complete word has been received in the receive data buffer or

Data Buffers

29–36 ADSP-CM41x Mixed-Signal Control Processor

• the transmit data buffer is not full

When performing core transfers, be sure to access only those buffers that are associated with enabled datapaths, as
governed by the transfer direction (SPORT_CTL_A.SPTRAN) bit and the primary/secondary
(SPORT_CTL_A.SPENPRI/SPORT_CTL_A.SPENSEC) data enable bits. If inactive SPORT data buffers are
read from or written to by the core while the SPORT is enabled, the core can hang. For example, if a half SPORT is
programmed to be a transmitter and the core reads from one of the receive buffers associated with that half SPORT,
the core can hang as if it were reading an empty buffer that is active and awaiting new data to arrive. Because this is
a transmitting HSPORT, that data will never arrive, thus locking the core up until the SPORT is reset. To avoid
such a situation, be sure to check the status of the appropriate data buffer before attempting a core access to it by
interrogating the SPORT_CTL_A.DXSPRI or SPORT_CTL_A.DXSSEC status bits.

DMA Transfers

Direct memory access (DMA) provides a mechanism for transferring an entire block of serial data before an inter-
rupt is generated. The processor's on-chip DMA controller automatically handles the DMA transfer, thus allowing
the processor core to run in parallel until the entire block of data is transferred. When the interrupt request occurs, a
service routine can then process the entire block of data (rather than react to single words), thus significantly reduc-
ing overhead.

Each half SPORT has a dedicated DMA channel that serves both the primary and secondary datapaths. When con-
figured as a transmitter (SPORT_CTL_A.SPTRAN = 1) with both the primary and secondary datapaths enabled
(SPORT_CTL_A.SPENPRI = SPORT_CTL_A.SPENSEC = 1), the DMA channel requires that the source
DMA buffer interleave the data beginning with the primary channel, as it will alternately load to the primary and
secondary transmit data buffers once it is enabled. The complementary operation is true in receive mode
(SPORT_CTL_A.SPTRAN = 0) when both datapaths are enabled, as the DMA channel alternately reads from the
primary and secondary receive data buffers and interleaves them in the destination DMA buffer. As such, software
must de-interleave the data corresponding to the primary and secondary channels from the receive DMA buffer.

If the SPORT is configured in stereo mode, the same DMA channel handles both the left and right channels of both
datapaths (primary and/or secondary). Therefore, for a transmit DMA with only one datapath enabled, the source
buffer must be populated such that the left- and right-channel data is interleaved. If both datapaths are enabled, the
DMA channel alternately loads to the primary and secondary transmit data buffers once it is enabled. As such, the
interleaving requirement is for the primary left-channel data to be followed by the secondary left-channel data, then
the primary right-channel data, and finally the secondary right-channel data. The complementary operation is true
in receive mode, where the DMA channel alternately reads from the primary and secondary receive data buffers and
interleave them in the destination DMA buffer. For the stereo modes of operation, the destination DMA buffer is
interleaved as left-right data for a single data input. If both datapaths are enabled, the destination DMA buffer is
written with the primary and secondary left-channel data followed by the primary and secondary right-channel data.
As such, software must de-interleave the primary and secondary left- and right-channel data from the receive DMA
buffer, as defined by this scheme.

Data Transfers and Interrupts

ADSP-CM41x Mixed-Signal Control Processor 29–37

Since both the primary and secondary datapaths share the single DMA channel, each half SPORT has a single inter-
rupt request for data completion, as well as an error interrupt request. The DMA controller can generate an inter-
rupt request at the end of a chain of DMA work units (when using multiple descriptors) or at the end of individual
DMA work unit.

The SPORT DMA channels are assigned a higher priority than all the other DMA channels (for example, the SPI
port). Having higher priority causes the SPORT DMA transfers to execute first when multiple DMA requests occur
in the same cycle. The SPORT DMA channels are numbered and prioritized in the DMA channel list table in the
DMA chapter.

Although the most efficient DMA transfers execute with 32-bit words, the SPORTs can handle word sizes from 4 to
32 bits (as defined by SPORT_CTL_A.SLEN field). If the serial data length is 16 bits or smaller, two pieces of data
can be packed into 32-bit words for each DMA transfer, as selected by setting the SPORT_CTL_A.PACK bit.
When this bit is set, the SPORT generates the transmit and receive interrupts for the 32-bit packed words, not for
each 16-bit word. For more information, see the Data Buffer Status section.

NOTE: The SPORT DMA channel can access both internal memory and external memory of the processor with-
out any core overhead.

Data Transfer Interrupt

Each half SPORT features a data transfer interrupt request that is shared by both the primary and secondary data
channels in both transmit and receive modes. To determine the source of the data transfer interrupt request, applica-
tions can check the primary and secondary data buffer status bits (SPORT_CTL_A.DXSPRI and ,
SPORT_CTL_A.DXSSEC , respectively).

When using core-driven transfers, this interrupt's meaning depends on the direction of the SPORT:

• As transmitter (SPORT_CTL_A.SPTRAN = 1) - the transmit data buffer is empty

• As receiver (SPORT_CTL_A.SPTRAN = 0) - new data is available in the receive data buffer

NOTE: When data packing is enabled (SPORT_CTL_A.PACK = 1), the core-driven transmit and receive inter-
rupt requests are generated for 32-bit packed words, not for each 16-bit word.

In both cases, the interrupt request can be used to signal the core that an individual transfer has completed. For
transmit operations, it indicates that the transmit data buffer can be safely loaded (either the buffer is already empty
or the last data has moved from the data buffer to the shift register). For receive operations, it indicates that new data
has arrived and can be read (or must be read before a subsequent word overwrites it).

When the SPORT is configured to use DMA to move data between memory and the peripheral (the most generic
way to use dedicated DMA for sport data transfers), the same data transfer interrupt request instead indicates the
completion of the transfer of a block of serial data (rather than a single word). When DMA is used, the DMA count
register must be initialized to specify the number of words to transfer. This count decrements after each DMA trans-
fer on the channel, and the data transfer interrupt request signal is asserted when the word count reaches zero (for
example, a DMA work unit has finished).

Data Transfers and Interrupts

29–38 ADSP-CM41x Mixed-Signal Control Processor

For transmit DMA, the interrupt request is raised when the last word in the DMA work unit is loaded from the
source memory to the HSPORT FIFO. This interrupt request can signal to the core that a new DMA work unit can
be configured or that other software threads can now run. The transmit interrupt request can optionally be deferred
until the last word of the work unit has fully shifted out of the shift register (see the Transfer Finish Interrupt (TFI)
section for details).

For receive DMA, the interrupt request is raised when the last word is loaded to the destination memory. In addi-
tion to that described for transmit DMA, this interrupt request also serves as an indication to the core that there is a
buffer of newly acquired data that is ready to be processed.

See the DMA chapter for further details regarding enabling of the DMA interrupt requests associated with the vari-
ous modes of DMA operation.

NOTE: As a single DMA channel services both the primary and secondary datapaths associated with the SPORT,
there is a single DMA completion interrupt request.

Transfer Finish Interrupt (TFI)

When configured for transmit DMA (SPORT_CTL_A.SPTRAN =1), the data transfer interrupt request gets gen-
erated by the DMA engine itself when it decrements its count register upon loading the last element from memory
to the HSPORT hardware. Alternately, the SPORT can use a Transmit Finish Interrupt (TFI) to signal the actual
end of the transmission (for example, when the last bit of the last data word of the buffer has shifted out of the
SPORT to the system) by setting the SPORT_CTL_A.TFIEN bit. When this bit is set, then DMA signal that
would normally assert the data transfer interrupt request instead signals the SPORT that the DMA work unit is
complete. The SPORT then waits until all the data in the FIFO is shifted out (including the transmit shift register)
and asserts the TFI interrupt request upon completion.

NOTE: To enable this functionality in the DMA engine, be sure to configure the interrupt type field in the DMA
configuration register for Peripheral interrupt. See the DMA chapter for further details.

The DMA muxing must also be configured for the SPORT or the interrupt is not be passed by DMA
unit.

Error Detection (Status) Interrupt

In addition to the dedicated data transfer interrupt request, each half SPORT also features an optional error status
interrupt request that can be triggered when error conditions occur relative to data or frame syncs associated with
the half SPORT.

Data-related errors depend on the direction of the SPORT and reflect overflow or underflow conditions, which are
depicted in the SPORT_CTL_A control register as read-only sticky bits SPORT_CTL_A.DERRPRI and
SPORT_CTL_A.DERRSEC (for the primary and secondary channels, respectively).

• When the SPORT is configured as a transmitter, these bits provide transmit data buffer underflow status.
When the frame sync signal occurs when the transmit data buffer is empty, the underflow bit corresponding
with the offending transmit data buffer is set, as the SPORT will transmit data whenever it detects a valid
frame sync signal, whether new data is present or not.

Data Transfers and Interrupts

ADSP-CM41x Mixed-Signal Control Processor 29–39

• When the SPORT is configured as a receiver, these bits provide receive overflow status. When a channel re-
ceives new data while the receive buffer is already full, the new data overwrites the existing data, thus causing
an overflow. When this occurs, the overflow bit corresponding with the offending receive data buffer is set, as
the SPORT receives data whenever it detects a valid frame sync signal, whether there is room in the receive
buffer or not.

Each half SPORT also features an error register (SPORT_ERR_A), which is the source for the assertion of the de-
scribed data-related error status bits. When a data-related error occurs on the primary or secondary datapaths, the
error is logged in the SPORT_ERR_A.DERRPSTAT or SPORT_ERR_A.DERRSSTAT bits, respectively. To ena-
ble these status bits to generate the HSPORT status interrupt request in the SEC, the corresponding
SPORT_ERR_A.DERRPMSK and SPORT_ERR_A.DERRSMSK bits must be set (for the primary and secondary
datapaths, respectively).

The SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC channel error status bits are sticky read-only
bits that can be cleared in two ways:

• Reset the error detection logic by disabling the channel associated with the error condition (clear the
SPORT_CTL_A.SPENPRI or SPORT_CTL_A.SPENSEC control bit).

• Clear the source of the interrupt by writing-1-to-clear the SPORT_ERR_A.FSERRSTAT,
SPORT_ERR_A.DERRPSTAT, or SPORT_ERR_A.DERRSSTAT status bits.

In addition to data-related errors, SPORT_ERR_A also tracks frame sync errors in the
SPORT_ERR_A.FSERRSTAT status bit. Similar to the data-related errors, the frame sync error can be enabled as
a source for raising the error status interrupt request via the SEC by setting the SPORT_ERR_A.FSERRMSK bit. A
frame sync error occurs when the frame sync is detected prematurely, as explained in the Premature Frame Sync
Error Detection section.

A frame sync error is not detected in the following cases:

• When there is no active transmit or receive data, and the frame sync pulse occurs due to noise on the input
signal − if there is no active transfer, a noise-induced frame sync pulse is valid.

• If there is an active underflow or overflow error − frame sync errors cannot be detected because the SPORT
error logic does not run after one of the data errors has occurred and remains unserviced.

• When the frame sync pulse doesn't meet minimum timing requirements − if the frame sync pulse is shorter
than a SPORT clock period, there is no guarantee that it gets sampled at all and may go unnoticed.

SPORT Programming Model
The following sections provide programming guidance for setting up the SPORTs for use in an application:

• Initializing Core-Driven (Non-MCM) Transfers

• Initializing Multichannel Transfers

• Using DMA for SPORT Transfers

SPORT Programming Model

29–40 ADSP-CM41x Mixed-Signal Control Processor

• Using Companding as a Function

Initializing Core-Driven (Non-MCM) Transfers

The following programming model applies to all of Standard DSP Serial Mode, I2S Mode, Left-Justified Mode, and
Right-Justified Mode for core-driven transfers. More steps are required to properly initialize the SEC to service the
SPORT interrupts (see the SEC chapter for details).

NOTE: This example uses half SPORT A registers. With appropriate changes to register names, this example also
applies to half SPORT B.

1. Clear the SPORT_CTL_A and SPORT_MCTL_A configuration registers.

ADDITIONAL INFORMATION: Clearing these registers ensures that the SPORT logic (including the multi-
channel logic) is fully reset before attempting to reprogram it.

2. Optionally program the SPORT_DIV_A clock divisor register.

ADDITIONAL INFORMATION: This step is only required for internally-generated timing signals. Configure
the serial bit clock and/or frame sync (or L/R clock, for stereo modes) rates according to the guidance in the
Serial Clock and Frame Sync sections.

3. Program the SPORT_CTL_A primary configuration register.

ADDITIONAL INFORMATION: Set the SPORT operating mode along with the configurable clock, frame
sync, word length, direction, and data format options (see the Operating Modes and Options section for de-
tails). Do not set the SPORT_CTL_A.SPENPRI and/or SPORT_CTL_A.SPENSEC buffer enable bits in
this step.

4. Optionally program the SPORT_CTL2_A secondary configuration register.

ADDITIONAL INFORMATION: This step is required only if internal multiplexing logic must be enabled to
share clock and frame sync signals between a top SPORT module's A and B halves (see the Multiplexer Logic
section for details).

5. Optionally program the SPORT_ERR_A error register.

ADDITIONAL INFORMATION: This step is required only if a separate SPORT error interrupt is desired (see
the Error Detection (Status) Interrupt section for details).

6. For Right-Justified mode only, program the SPORT_MCTL_A.WOFFSET field.

ADDITIONAL INFORMATION: In Right-Justified mode, this field serves as the delay count (DCNT) required
to align the LSB of each stereo channel with the L/R clock transition and must be programmed manually (see
the Right-Justified Mode section for details).

7. Enable the primary/secondary datapath(s) in the SPORT_CTL_A register.

ADDITIONAL INFORMATION: This should be performed in a read-modify-write operation setting the
SPORT_CTL_A.SPENPRI and/or SPORT_CTL_A.SPENSEC bits, as appropriate.

SPORT Programming Model

ADSP-CM41x Mixed-Signal Control Processor 29–41

8. Write data to be transmitted to the transmit buffer (SPORT_TXPRI_A and/or SPORT_TXSEC_A) or read
data that has been received from the receive buffer (SPORT_RXPRI_A and/or SPORT_RXSEC_A).

ADDITIONAL INFORMATION: These accesses are typically performed in the context of an interrupt service
routine. See the SEC chapter for further information. Do not attempt to read or write inactive data buffers. If
the core attempts to access inactive transmit or receive buffers while the SPORT is enabled, unpredictable re-
sults may occur.

Initializing Multichannel Transfers

When in Multichannel (TDM) Mode or Packed I2S Mode, the SPORT is in a multichannel operational mode. Fol-
low the steps below to properly initialize the SPORT for multichannel modes of operation. More steps are required
to properly configure the system to service the SPORT interrupt requests (see the SEC chapter for details).

NOTE: This example uses half SPORT A registers. With appropriate register changes, this example also applies to
half SPORT B.

1. Clear the SPORT_CTL_A and SPORT_MCTL_A registers.

ADDITIONAL INFORMATION: Clearing these registers ensures that the SPORT logic (including the multi-
channel logic) is fully reset before attempting to reprogram it.

2. Optionally program the SPORT_DIV_A clock divisor register.

ADDITIONAL INFORMATION: This step is only required for internally-generated timing signals. Configure
the serial bit clock and/or frame sync (or L/R clock, for stereo modes) rates according to the guidance in the
Serial Clock and SPORT_CTL2_A sections.

3. Program the SPORT_CS0_A - SPORT_CS3_A channel select registers.

4. Program the SPORT_MCTL_A multichannel configuration register.

ADDITIONAL INFORMATION: The SPORT supports many multichannel options. For more information,
see the Multichannel (TDM) Mode section. Do not set the SPORT_MCTL_A.MCE enable bit in this step.

5. Program the SPORT_CTL_A primary configuration register.

ADDITIONAL INFORMATION: Set the SPORT operating mode along with the configurable clock, frame
sync, word length, direction, and data format options (see the Operating Modes and Options section for de-
tails). Do not set the SPORT_CTL_A.SPENPRI and/or SPORT_CTL_A.SPENSEC buffer enable bits in
this step.

6. Optionally program the SPORT_CTL2_A secondary configuration register.

ADDITIONAL INFORMATION: This step is required only if internal multiplexing logic must be enabled to
share clock and frame sync signals between a top SPORT module's A and B halves (see the Multiplexer Logic
section for details).

7. Optionally program the SPORT_ERR_A error register.

SPORT Programming Model

29–42 ADSP-CM41x Mixed-Signal Control Processor

ADDITIONAL INFORMATION: This step is required only if a separate SPORT error interrupt request is de-
sired (see the Error Detection (Status) Interrupt section for details).

8. Set the SPORT_MCTL_A.MCE bit to enable multichannel mode.

9. Enable the primary/secondary datapath(s) in the SPORT_CTL_A register.

ADDITIONAL INFORMATION: This should be performed in a read-modify-write operation setting the
SPORT_CTL_A.SPENPRI and/or SPORT_CTL_A.SPENSEC bits, as appropriate. DMA mode is recom-
mended for multichannel modes of operation. For more information, see the Using DMA for SPORT Trans-
fers programming model.

Using DMA for SPORT Transfers

DMA is supported in all SPORT operating modes (Standard DSP Serial Mode, I2S Mode, Left-Justified Mode,

Right-Justified Mode, Multichannel (TDM) Mode or Packed I2S Mode). To enable DMA operation with the
SPORT, execute the steps described in this section after initializing and enabling the SPORT. Instead of using the
single word read or write operations described in the referenced programming models, the DMA engine automates
accesses to the enabled SPORT data buffers.

NOTE: This example uses half SPORT A registers. With appropriate changes to register names, it also applies to
half SPORT B.

1. Follow the guidance in the multichannel (Initializing Multichannel Transfers) or non-multichannel (Initializing
Core-Driven (Non-MCM) Transfers) programming models to properly initialize and enable the SPORT hard-
ware.

2. Prepare the data buffers in memory.

ADDITIONAL INFORMATION: Ensure that the DMA buffer is defined according to the DMA Transfers
section. For the multichannel modes of operation, be sure to also consider the setting of the
SPORT_MCTL_A.MCPDE bit, as described in the Multichannel DMA Data Packing (MCPDE) section.

3. Initialize and enable the DMA channel allocated for the SPORT, as described in the Direct Memory Access
(DMA) chapter.

Using Companding as a Function

The data in the transmit and receive buffers are actually companded in place. As such, the following programming
model can be used to exercise the companding hardware without transferring data, which is useful for test/debug
purposes.

NOTE: This example uses half SPORT A registers. With appropriate changes to register names, this example also
applies to half SPORT B.

1. Configure the SPORT as a transmitter (SPORT_CTL_A.SPTRAN=1) with both the primary and secondary
data channels disabled (SPORT_CTL_A.SPENPRI=0 and SPORT_CTL_A.SPENSEC=0).

SPORT Programming Model

ADSP-CM41x Mixed-Signal Control Processor 29–43

2. Enable the desired companding scheme in the SPORT_CTL_A.DTYPE field.

3. Write a 32-bit word to one of the transmit buffers.

4. Wait two system clock cycles.

ADDITIONAL INFORMATION: This delay is required to allow the SPORT companding hardware to reload
the transmit buffer with the companded result. Any instructions that do not access the transmit buffer can be
used to cause this delay.

5. Read the 8-bit compressed value from the transmit buffer written above.

To expand data in place, use the same sequence of operations with the receive buffer instead of the transmit buffer.
When expanding data in this way, set the appropriate serial word length (SPORT_CTL_A.SLEN).

CM41X_M4 SPORT Register Descriptions
Serial Port (SPORT) contains the following registers.

Table 29-12: CM41X_M4 SPORT Register List

Name Description

SPORT_CS0_A Half SPORT 'A' Multichannel 0-31 Select Register

SPORT_CS0_B Half SPORT 'B' Multichannel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multichannel 32-63 Select Register

SPORT_CS1_B Half SPORT 'B' Multichannel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multichannel 64-95 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multichannel 96-127 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_CTL_B Half SPORT 'B' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_ERR_A Half SPORT 'A' Error Register

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MCTL_A Half SPORT 'A' Multichannel Control Register

SPORT_MCTL_B Half SPORT 'B' Multichannel Control Register

SPORT_MSTAT_A Half SPORT 'A' Multichannel Status Register

CM41X_M4 SPORT Register Descriptions

29–44 ADSP-CM41x Mixed-Signal Control Processor

Table 29-12: CM41X_M4 SPORT Register List (Continued)

Name Description

SPORT_MSTAT_B Half SPORT 'B' Multichannel Status Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–45

Half SPORT 'A' Multichannel 0-31 Select Register

Each of the bits (when set, =1) of the SPORT_CS0_A register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 0-31

Channel Enable 0-31

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-13: SPORT_CS0_A Register Diagram

Table 29-13: SPORT_CS0_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 0-31.

CM41X_M4 SPORT Register Descriptions

29–46 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Multichannel 0-31 Select Register

Each of the bits (when set, =1) of the SPORT_CS0_B register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 0-31

Channel Enable 0-31

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-14: SPORT_CS0_B Register Diagram

Table 29-14: SPORT_CS0_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 0-31.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–47

Half SPORT 'A' Multichannel 32-63 Select Register

Each of the bits (when set, =1) of the SPORT_CS1_A register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 32-63

Channel Enable 32-63

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-15: SPORT_CS1_A Register Diagram

Table 29-15: SPORT_CS1_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 32-63.

CM41X_M4 SPORT Register Descriptions

29–48 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Multichannel 32-63 Select Register

Each of the bits (when set, =1) of the SPORT_CS1_B register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 32-63

Channel Enable 32-63

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-16: SPORT_CS1_B Register Diagram

Table 29-16: SPORT_CS1_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 32-63.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–49

Half SPORT 'A' Multichannel 64-95 Select Register

Each of the bits (when set, =1) of the SPORT_CS2_A register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 64-95

Channel Enable 64-95

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-17: SPORT_CS2_A Register Diagram

Table 29-17: SPORT_CS2_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 64-95.

CM41X_M4 SPORT Register Descriptions

29–50 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Multichannel 64-95 Select Register

Each of the bits (when set, =1) of the SPORT_CS2_B register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 64-95

Channel Enable 64-95

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-18: SPORT_CS2_B Register Diagram

Table 29-18: SPORT_CS2_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 64-95.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–51

Half SPORT 'A' Multichannel 96-127 Select Register

Each of the bits (when set, =1) of the SPORT_CS3_A register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 96-127

Channel Enable 96-127

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-19: SPORT_CS3_A Register Diagram

Table 29-19: SPORT_CS3_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 96-127.

CM41X_M4 SPORT Register Descriptions

29–52 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Multichannel 96-127 Select Register

Each of the bits (when set, =1) of the SPORT_CS3_B register correspond to an active channel for the half SPORT
in multichannel mode. When the register activates a channel (corresponding bit =1), the half SPORT transmits or
receives the word in that channel's position of the data stream. When the register deactivates a channel (correspond-
ing bit =0), the half SPORT either three-states its data transmit pin (during the channel's transmit time slot) or
ignores incoming data (during the channel's receive time slot).

Channel Enable 96-127

Channel Enable 96-127

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-20: SPORT_CS3_B Register Diagram

Table 29-20: SPORT_CS3_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Channel Enable 96-127.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–53

Half SPORT 'A' Control 2 Register

The SPORT_CTL2_A register controls multiplexing options for sharing serial clock and frame sync signals across
the related half SPORTs.

Frame Sync Multiplexer SelectClock Multiplexer Select
FSMUXSEL (R/W)CKMUXSEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-21: SPORT_CTL2_A Register Diagram

Table 29-21: SPORT_CTL2_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

CKMUXSEL Clock Multiplexer Select.

The SPORT_CTL2_A.CKMUXSEL bit enables multiplexing of the half SPORT' se-
rial clock. In this mode, the serial clock of the related half SPORT is used instead of
the half SPORT's own serial clock. For example, if the
SPORT_CTL2_A.CKMUXSEL bit is enabled, half SPORT 'A' uses SPORT_BCLK
instead of SPORT_ACLK.

0 Disable serial clock multiplexing

1 Enable serial clock multiplexing

0

(R/W)

FSMUXSEL Frame Sync Multiplexer Select.

The SPORT_CTL2_A.FSMUXSEL bit enables multiplexing of the half SPORT'
frame sync. In this mode, the frame sync of the related half SPORT is used instead of
the half SPORT's own frame sync. For example, if the
SPORT_CTL2_A.FSMUXSEL bit is enabled, half SPORT 'A' uses SPORT_BFS in-
stead of SPORT_AFS.

0 Disable frame sync multiplexing

1 Enable frame sync multiplexing

CM41X_M4 SPORT Register Descriptions

29–54 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Control 2 Register

The SPORT_CTL2_B register controls multiplexing options for sharing serial clock and frame sync signals across
the related half SPORTs.

Frame Sync Multiplexer SelectClock Multiplexer Select
FSMUXSEL (R/W)CKMUXSEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-22: SPORT_CTL2_B Register Diagram

Table 29-22: SPORT_CTL2_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

CKMUXSEL Clock Multiplexer Select.

The SPORT_CTL2_B.CKMUXSEL bit enables multiplexing of the half SPORT' se-
rial clock. In this mode, the serial clock of the related half SPORT is used instead of
the half SPORT's own serial clock. For example, if the
SPORT_CTL2_B.CKMUXSEL bit is enabled, half SPORT 'B' uses SPORT_ACLK
instead of SPORT_BCLK.

0 Disable serial clock multiplexing

1 Enable serial clock multiplexing

0

(R/W)

FSMUXSEL Frame Sync Multiplexer Select.

The SPORT_CTL2_B.FSMUXSEL bit enables multiplexing of the half SPORT'
frame sync. In this mode, the frame sync of the related half SPORT is used instead of
the half SPORT's own frame sync. For example, if the
SPORT_CTL2_B.FSMUXSEL bit is enabled, half SPORT 'B' uses SPORT_AFS in-
stead of SPORT_BFS.

0 Disable frame sync multiplexing

1 Enable frame sync multiplexing

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–55

Half SPORT 'A' Control Register

The SPORT_CTL_A register contains transmit and receive control bits for SPORT half 'A', including serial port
mode selection for the half SPORT's primary and secondary channels. The function of some bits in the
SPORT_CTL_A register vary depending on the SPORT's operating mode. For more information, see the SPORT
operating modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

Internal Clock

Packing EnableOperation mode

Serial Word LengthClock Rising Edge

Least-Significant Bit FirstFrame Sync Required

Data TypeInternal Frame Sync

Serial Port Enable (Primary)Data-Independent Frame Sync

Gated Clock Enable
Serial Port Enable (Secondary)

Transmit Finish Interrupt Enable
Serial Port Transfer Direction

Frame Sync Edge Detect
Data Error Status (Secondary)

Right-Justified Operation Mode
Data Transfer Buffer Status (Secondary)

Late Frame Sync / OPMODE2
Data Error Status (Primary)

PLFS
Active-Low Frame Sync / L_FIRST /Data Transfer Buffer Status (Primary)

ICLK (R/W)

PACK (R/W)OPMODE (R/W)

SLEN (R/W)CKRE (R/W)

LSBF (R/W)FSR (R/W)

DTYPE (R/W)IFS (R/W)

SPENPRI (R/W)DIFS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

GCLKEN (R/W)
SPENSEC (R/W)

TFIEN (R/W)
SPTRAN (R/W)

FSED (R/W)
DERRSEC (R)

RJUST (R/W)
DXSSEC (R)

LAFS (R/W)
DERRPRI (R)

LFS (R/W)DXSPRI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-23: SPORT_CTL_A Register Diagram

CM41X_M4 SPORT Register Descriptions

29–56 ADSP-CM41x Mixed-Signal Control Processor

Table 29-23: SPORT_CTL_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).

The SPORT_CTL_A.DXSPRI bit field indicates the status of the half SPORT's pri-
mary channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

29

(R/NW)

DERRPRI Data Error Status (Primary).

The SPORT_CTL_A.DERRPRI bit reports the half SPORT's primary channel trans-
mit underflow status or receive overflow status, depending on the SPORT transfer di-
rection.

If the SPORT_CTL_A.FSR bit =1, the SPORT_CTL_A.DERRPRI bit indicates
whether the SPORT_AFS signal (from an internal or external source) occurred while
the SPORT_TXPRI_A data buffer was empty (during transmit) or the
SPORT_RXPRI_A data buffer was full (during receive). The SPORT transmits or re-
ceives data whenever it detects the SPORT_AFS signal. It is important to note that, as
a receiver, the SPORT_CTL_A.DERRPRI bit indicates when the channel has re-
ceived new data while the SPORT_RXPRI_A receive buffer is full. This new data
overwrites existing data.

If the SPORT_CTL_A.FSR bit =0, the SPORT_CTL_A.DERRPRI bit is set when-
ever the SPORT is required to transmit while the SPORT_TXPRI_A transmit buffer
is empty. It is also set whenever the SPORT is required to receive while the
SPORT_RXPRI_A receive buffer is full.

The SPORT clears the SPORT_CTL_A.DERRPRI bit if the
SPORT_ERR_A.DERRPSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

28:27

(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).

The SPORT_CTL_A.DXSSEC bit field indicates the status of the half SPORT's sec-
ondary channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–57

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/NW)

DERRSEC Data Error Status (Secondary).

The SPORT_CTL_A.DERRSEC bit reports the half SPORT's secondary channel
transmit underflow status or receive overflow status, depending on the SPORT transfer
direction.

If the SPORT_CTL_A.FSR bit =1, the SPORT_CTL_A.DERRSEC bit indicates
whether the SPORT_AFS signal (from an internal or external source) occurred while
the SPORT_TXSEC_A data buffer was empty (during transmit) or the
SPORT_RXSEC_A data buffer was full (during receive). The SPORT transmits or re-
ceives data whenever it detects the SPORT_AFS signal. It is important to note that, as
a receiver, the SPORT_CTL_A.DERRSEC bit indicates when the channel has re-
ceived new data while the SPORT_RXSEC_A receive buffer is full. This new data
overwrites existing data.

If the SPORT_CTL_A.FSR bit =0, the SPORT_CTL_A.DERRSEC bit is set when-
ever the SPORT is required to transmit while the SPORT_TXSEC_A transmit buffer
is empty. It is also set whenever the SPORT is required to receive while the
SPORT_RXSEC_A receive buffer is full.

The SPORT clears the SPORT_CTL_A.DERRSEC bit if the
SPORT_ERR_A.DERRSSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

25

(R/W)

SPTRAN Serial Port Transfer Direction.

The SPORT_CTL_A.SPTRAN bit selects the transfer direction (receive or transmit)
for the half SPORT's primary and secondary channels.

When the direction is receive, the half SPORT activates the receive buffers, and the
SPORT_ACLK and SPORT_AFS pins control the receive buffers. The transmit buf-
fers are inactive when the half SPORT's transfer direction is receive.

When the direction is transmit, the half SPORT activates the transmit buffers, and the
SPORT_ACLK and SPORT_AFS pins control the transmit shift registers. The receive
buffers are inactive when the half SPORT's transfer direction is transmit.

0 Receive

1 Transmit

24

(R/W)

SPENSEC Serial Port Enable (Secondary).

The SPORT_CTL_A.SPENSEC bit enables the half SPORT's secondary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically flush-
es the channel's data buffers.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–58 ADSP-CM41x Mixed-Signal Control Processor

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

GCLKEN Gated Clock Enable.

The SPORT_CTL_A.GCLKEN bit enables gated clock operation for the half SPORT
when in DSP serial mode or left-justified stereo modes (SPORT_CTL_A.OPMODE =
0 or 1). This bit is ignored when the half SPORT is in right-justified mode
(SPORT_CTL_A.RJUST =1) or multichannel mode (SPORT_MCTL_A.MCE =1).

When the SPORT_CTL_A.GCLKEN bit is enabled, the SPORT clock is active when
the SPORT is transferring data or when the frame sync changes (transitions to active
state).

0 Disable

1 Enable

20

(R/W)

TFIEN Transmit Finish Interrupt Enable.

The SPORT_CTL_A.TFIEN bit selects when the half SPORT issues its transmission
complete interrupt request, if a DMA complete interrupt request is enabled by the
DMA_CFG.INT configuration. When enabled (SPORT_CTL_A.TFIEN =1), the
DMA complete peripheral interrupt request is generated when the last bit of last word
in the DMA is shifted out. When disabled (SPORT_CTL_A.TFIEN =0), the DMA
interrupt request is generated when the DMA counter expires (the last word goes to
the transmit buffer).

0 Last word sent (DMA count done) interrupt

1 Last bit sent (Tx buffer done) interrupt

19

(R/W)

FSED Frame Sync Edge Detect.

The SPORT_CTL_A.FSED bit enables the half SPORT to start transmitting or re-
ceiving after detecting an active edge of an external frame sync. The
SPORT_CTL_A.FSED bit may be enabled even during an active frame sync, and the
half SPORT starts the transfer on the next valid rising or falling edge of external frame
sync. If disabled (SPORT_CTL_A.FSED =0), the half SPORT operates in the stand-
ard level-sensitive detection mode for external frame sync.

0 Level detect frame sync

1 Edge detect frame sync

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–59

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

RJUST Right-Justified Operation Mode.

The SPORT_CTL_A.RJUST bit enables the half SPORT (if
SPORT_CTL_A.OPMODE =1) to transfer data in right-justified operation mode. In
this mode, the half SPORT aligns data to the end of the frame sync, rather than the
start of the frame sync. When using right-justified mode, systems should program an
appropriate delay count to introduce a clock delay before the half SPORT state ma-
chine starts to capture data. This value is set in the DCNT field (right-justified mode
usage of the SPORT_MCTL_A.WOFFSET field). For information about appropriate
delay selections, see the SPORT operating modes section.

0 Disable

1 Enable

17

(R/W)

LAFS Late Frame Sync / OPMODE2.

When the half SPORT is in DSP standard mode (SPORT_CTL_A.OPMODE =0) or
in right-justified mode (SPORT_CTL_A.RJUST =1), the SPORT_CTL_A.LAFS
bit selects whether the half SPORT generates a late frame sync (SPORT_AFS during
first data bit) or generates an early frame sync signal (SPORT_AFS during serial clock

cycle before first data bit). When the half SPORT is in I2S / left-justified mode
(SPORT_CTL_A.OPMODE =1), the SPORT_CTL_A.LAFS bit acts as OP-

MODE2, selecting whether the half SPORT is in left-justified mode or I2S mode.
When the half SPORT is in multichannel mode (SPORT_MCTL_A.MCE =1), the
SPORT_CTL_A.LAFS bit is reserved.

0 Early frame sync (or I2S mode)

1 Late frame sync (or left-justified mode)

16

(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.

When the half SPORT is in DSP standard mode and multichannel mode
(SPORT_CTL_A.OPMODE =0), the SPORT_CTL_A.LFS bit selects whether the
half SPORT uses active low or active high frame sync. When the half SPORT is in

I2S / packed / left-justified mode (SPORT_CTL_A.OPMODE =1), the
SPORT_CTL_A.LFS bit acts as L_FIRST, selecting whether the half SPORT trans-
fers data first for the left or right channel.

0 Active high frame sync (DSP standard mode) or rising
edge frame sync (multichannel mode)

or right channel first (I2S/packed mode)

or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode) or falling
edge frame sync (multichannel mode)

or left channel first (I2S/packed mode)

or right channel first (left-justified mode)

CM41X_M4 SPORT Register Descriptions

29–60 ADSP-CM41x Mixed-Signal Control Processor

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W)

DIFS Data-Independent Frame Sync.

The SPORT_CTL_A.DIFS bit selects whether the half SPORT uses a data-inde-
pendent or data-dependent frame sync. When using a data-independent frame sync,
the half SPORT generates the sync at the interval selected by the
SPORT_DIV_A.FSDIV bit. When using a data-dependent frame sync, the half
SPORT generates the sync on the selected interval when the transmit buffer is not
empty or when the receive buffer is not full. Note that the SPORT_CTL_A.DIFS bit
is automatically set when the half SPORT is in packed or multichannel modes.

0 Data-dependent frame sync

1 Data-independent frame sync

14

(R/W)

IFS Internal Frame Sync.

The SPORT_CTL_A.IFS bit selects whether the half SPORT uses an internal frame
sync or uses an external frame sync.

Note that the externally-generated frame sync does not need to be synchronous with
the processor's system clock.

0 External frame sync

1 Internal frame sync

13

(R/W)

FSR Frame Sync Required.

The SPORT_CTL_A.FSR bit selects whether or not the half SPORT requires frame

sync for data transfer. This bit is automatically set when the half SPORT is in I2S /
packed / left-justified mode (SPORT_CTL_A.OPMODE =1) or is in multichannel
mode (SPORT_MCTL_A.MCE =1).

0 No frame sync required

1 Frame sync required

12

(R/W)

CKRE Clock Rising Edge.

The SPORT_CTL_A.CKRE bit selects the rising or falling edge of the
SPORT_ACLK clock for the half SPORT to sample receive data and frame sync. Note
that the half SPORT changes the state of transmit data and frame sync signals on the
non-selected edge of the SPORT_ACLK. Also, note that the transmit and receive relat-
ed SPORT halves (A and B) should be programmed with the same value for the
SPORT_CTL_A.CKRE bit. This programming drives the internally-generated signals
on one edge of SPORT_ACLK and samples the received signals on the opposite edge.

0 Clock falling edge

1 Clock rising edge

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–61

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

OPMODE Operation mode.

The SPORT_CTL_A.OPMODE bit selects whether the half SPORT operates in DSP

standard/multichannel mode or operates in I2S/packed/left-justified mode. The mode
selection affects the operation of the SPORT_CTL_A.LAFS and
SPORT_CTL_A.LFS bits. Also, the SPORT_CTL_A.OPMODE bit enables or disa-
bles operation of the SPORT_CTL_A.GCLKEN, SPORT_CTL_A.FSED,
SPORT_CTL_A.RJUST, SPORT_CTL_A.DIFS, SPORT_CTL_A.FSR, and
SPORT_CTL_A.CKRE bits.

0 DSP standard/multichannel mode

1 I2S/packed/left-justified mode

10

(R/W)

ICLK Internal Clock.

When the half SPORT is in DSP standard mode (SPORT_CTL_A.OPMODE =0), the
SPORT_CTL_A.ICLK bit selects whether the half SPORT uses an internal or exter-
nal clock. For internal clock enabled, the half SPORT generates the SPORT_ACLK
clock signal, and SPORT_ACLK is an output. The SPORT_DIV_A.CLKDIV serial
clock divisor value determines the clock frequency. For internal clock disabled, the
SPORT_ACLK clock signal is an input, and the serial clock divisor is ignored. Note
that the externally-generated serial clock does not need to be synchronous with the
processor's system clock.

0 External clock

1 Internal clock

9

(R/W)

PACK Packing Enable.

The SPORT_CTL_A.PACK bit enables the half SPORT to perform 16- to 32-bit
packing on received data and to perform 32- to 16-bit unpacking on transmitted data.
The receive packing operation packs two successive received words into a single 32-bit
word. The transmit unpacking operation unpacks each 32-bit word and transmits it as
two 16-bit words. The first 16-bit (or smaller) word is right-justified in bits 15:0 of the
packed word, and the second 16-bit (or smaller) word is right-justified in bits 31:16.
This format applies to both receive (packing) and transmit (unpacking) operations.
Companding may be used with word packing or unpacking. The half SPORT gener-
ates data transfer related interrupts when packing is enabled. The transmit and receive
interrupts are generated for the 32-bit packed words, not for each 16-bit word.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–62 ADSP-CM41x Mixed-Signal Control Processor

Table 29-23: SPORT_CTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8:4

(R/W)

SLEN Serial Word Length.

The SPORT_CTL_A.SLEN bits selects word length in bits for the half SPORT's data
transfers. Word may be from 4- to 32-bits in length. The formula for selecting the
word length in bits is:

SPORT_CTL_A.SLEN = (serial word length in bits) - 1

For DSP standard mode (SPORT_CTL_A.OPMODE =0), use
SPORT_CTL_A.SLEN of 3 to 31 bits.

For I2S / packed / left-justified mode (SPORT_CTL_A.OPMODE =1), use
SPORT_CTL_A.SLEN of 4 to 31 bits.

3

(R/W)

LSBF Least-Significant Bit First.

The SPORT_CTL_A.LSBF bit selects whether the half SPORT transmits or receives
data LSB first or MSB first.

0 MSB first sent/received (big endian)

1 LSB first sent/received (little endian)

2:1

(R/W)

DTYPE Data Type.

The SPORT_CTL_A.DTYPE bits selects the data type formatting for the half
SPORT's data transfers in DSP standard mode (SPORT_CTL_A.OPMODE =0).

0 Right-justify data, zero-fill unused MSBs

1 Right-justify data, sign-extend unused MSBs

2 u-law compand data

3 A-law compand data

0

(R/W)

SPENPRI Serial Port Enable (Primary).

The SPORT_CTL_A.SPENPRI bit enables the half SPORT's primary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically flush-
es the channel's data buffers.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–63

Half SPORT 'B' Control Register

The SPORT_CTL_B register contains transmit and receive control bits for SPORT half 'B', including serial port
mode selection for the half SPORT's primary and secondary channels. The function of some bits in the
SPORT_CTL_B register vary, depending on the SPORT's operating mode. For more information, see the SPORT
operating modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

Internal Clock

Packing EnableOperation Mode

Serial Word LengthClock Rising Edge

Least-Significant Bit FirstFrame Sync Required

Data TypeInternal Frame Sync

Serial Port Enable (Primary)Data-Independent Frame Sync

Gated Clock Enable
Serial Port Enable (Secondary)

Transmit Finish Interrupt Enable
Serial Port Transfer Direction

Frame Sync Edge Detect
Data Error Status (Secondary)

Right-Justified Operation Mode
Data Transfer Buffer Status (Secondary)

Late Frame Sync / OPMODE2
Data Error Status (Primary)

PLFS
Active-Low Frame Sync / L_FIRST /Data Transfer Buffer Status (Primary)

ICLK (R/W)

PACK (R/W)OPMODE (R/W)

SLEN (R/W)CKRE (R/W)

LSBF (R/W)FSR (R/W)

DTYPE (R/W)IFS (R/W)

SPENPRI (R/W)DIFS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

GCLKEN (R/W)
SPENSEC (R/W)

TFIEN (R/W)
SPTRAN (R/W)

FSED (R/W)
DERRSEC (R)

RJUST (R/W)
DXSSEC (R)

LAFS (R/W)
DERRPRI (R)

LFS (R/W)DXSPRI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-24: SPORT_CTL_B Register Diagram

CM41X_M4 SPORT Register Descriptions

29–64 ADSP-CM41x Mixed-Signal Control Processor

Table 29-24: SPORT_CTL_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).

The SPORT_CTL_B.DXSPRI bit field indicates the status of the half SPORT's pri-
mary channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

29

(R/NW)

DERRPRI Data Error Status (Primary).

The SPORT_CTL_B.DERRPRI bit reports the half SPORT's primary channel trans-
mit underflow status or receive overflow status, depending on the SPORT transfer di-
rection.

If the SPORT_CTL_B.FSR bit =1, the SPORT_CTL_B.DERRPRI bit indicates
whether the SPORT_BFS signal (from an internal or external source) occurred while
the SPORT_TXPRI_B data buffer was empty (during transmit) or the
SPORT_RXPRI_B data buffer was full (during receive). The SPORT transmits or re-
ceives data whenever it detects the SPORT_BFS signal. It is important to note that, as
a receiver, the SPORT_CTL_B.DERRPRI bit indicates when the channel has re-
ceived new data while the SPORT_RXPRI_B receive buffer is full. This new data
overwrites existing data.

If the SPORT_CTL_B.FSR bit =0, the SPORT_CTL_B.DERRPRI bit is set when-
ever the SPORT is required to transmit while the SPORT_TXPRI_B transmit buffer
is empty and is set whenever the SPORT is required to receive while the
SPORT_RXPRI_B receive buffer is full.

The SPORT clears the SPORT_CTL_B.DERRPRI bit if the
SPORT_ERR_B.DERRPSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

28:27

(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).

The SPORT_CTL_B.DXSSEC bit field indicates the status of the half SPORT's sec-
ondary channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–65

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/NW)

DERRSEC Data Error Status (Secondary).

The SPORT_CTL_B.DERRSEC bit reports the half SPORT's secondary channel
transmit underflow status or receive overflow status, depending on the SPORT transfer
direction.

If the SPORT_CTL_B.FSR bit =1, the SPORT_CTL_B.DERRSEC bit indicates
whether the SPORT_BFS signal (from an internal or external source) occurred while
the SPORT_TXSEC_B data buffer was empty (during transmit) or the
SPORT_RXSEC_B data buffer was full (during receive). The SPORT transmits or re-
ceives data whenever it detects the SPORT_BFS signal. It is important to note that, as
a receiver, the SPORT_CTL_B.DERRSEC bit indicates when the channel has re-
ceived new data while the SPORT_RXSEC_B receive buffer is full. This new data
overwrites existing data.

If the SPORT_CTL_B.FSR bit =0, the SPORT_CTL_B.DERRSEC bit is set when-
ever the SPORT is required to transmit while the SPORT_TXSEC_B transmit buffer
is empty. It is also set whenever the SPORT is required to receive while the
SPORT_RXSEC_B receive buffer is full.

The SPORT clears the SPORT_CTL_B.DERRSEC bit if the
SPORT_ERR_B.DERRSSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

25

(R/W)

SPTRAN Serial Port Transfer Direction.

The SPORT_CTL_B.SPTRAN bit selects the transfer direction (receive or transmit)
for the half SPORT's primary and secondary channels.

When the direction is receive, the half SPORT activates the receive buffers, and the
SPORT_BCLK and SPORT_BFS pins control the receive buffers. The transmit buf-
fers are inactive when the half SPORT's transfer direction is receive.

When the direction is transmit, the half SPORT activates the transmit buffers, and the
SPORT_BCLK and SPORT_BFS pins control the transmit shift registers. The receive
buffers are inactive when the half SPORT's transfer direction is transmit.

0 Receive

1 Transmit

24

(R/W)

SPENSEC Serial Port Enable (Secondary).

The SPORT_CTL_B.SPENSEC bit enables the half SPORT's secondary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically flush-
es the channel's data buffers.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–66 ADSP-CM41x Mixed-Signal Control Processor

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

GCLKEN Gated Clock Enable.

The SPORT_CTL_B.GCLKEN bit enables gated clock operation for the half SPORT
when in DSP serial mode or left-justified stereo modes (SPORT_CTL_B.OPMODE =
0 or 1). This bit is ignored when the half SPORT is in right-justified mode
(SPORT_CTL_B.RJUST =1) or multichannel mode (SPORT_MCTL_B.MCE =1).

When SPORT_CTL_B.GCLKEN is enabled, the SPORT clock is active when the
SPORT is transferring data or when the frame sync changes (transitions to active
state).

0 Disable

1 Enable

20

(R/W)

TFIEN Transmit Finish Interrupt Enable.

The SPORT_CTL_B.TFIEN bit selects when the half SPORT issues its transmission
complete interrupt request, if a DMA complete interrupt request is enabled by the
DMA_CFG.INT configuration. When enabled (SPORT_CTL_B.TFIEN =1), the
DMA complete peripheral interrupt request is generated when the last bit of last word
in the DMA is shifted out. When disabled (SPORT_CTL_B.TFIEN =0), the DMA
interrupt request is generated when the DMA counter expires (the last word goes to
the transmit buffer).

0 Last word sent (DMA count done) interrupt

1 Last bit sent (Tx buffer done) interrupt

19

(R/W)

FSED Frame Sync Edge Detect.

The SPORT_CTL_B.FSED bit enables the half SPORT to start transmitting or re-
ceiving after detecting an active edge of an external frame sync. The
SPORT_CTL_B.FSED may be enabled even during an active frame sync, and the
half SPORT starts the transfer on the next valid rising or falling edge of external frame
sync. If disabled (SPORT_CTL_B.FSED =0), the half SPORT operates in the stand-
ard level-sensitive detection mode for external frame sync.

0 Level detect frame sync

1 Edge detect frame sync

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–67

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

RJUST Right-Justified Operation Mode.

The SPORT_CTL_B.RJUST bit enables the half SPORT (if
SPORT_CTL_B.OPMODE =1) to transfer data in right-justified operation mode. In
this mode, the half SPORT aligns data to the end of the frame sync, rather than the
start of the frame sync. When using right-justified mode, systems should program an
appropriate delay count to introduce a clock delay before the half SPORT state ma-
chine starts to capture data. This value is set in the DCNT field (right-justified mode
usage of the SPORT_MCTL_B.WOFFSET field). For information about appropriate
delay selections, see the SPORT operating modes section.

0 Disable

1 Enable

17

(R/W)

LAFS Late Frame Sync / OPMODE2.

When the half SPORT is in DSP standard mode (SPORT_CTL_B.OPMODE =0) or
in right-justified mode (SPORT_CTL_B.RJUST =1), the SPORT_CTL_B.LAFS
bit selects whether the half SPORT generates a late frame sync (SPORT_BFS during
first data bit) or generates an early frame sync signal (SPORT_BFS during serial clock
cycle before first data bit).

When the half SPORT is in I2S / left-justified mode (SPORT_CTL_B.OPMODE =1),
the SPORT_CTL_B.LAFS bit acts as OPMODE2, selecting whether the half

SPORT is in left-justified mode or I2S mode.

When the half SPORT is in multichannel mode (SPORT_MCTL_B.MCE =1), the
SPORT_CTL_B.LAFS bit is reserved.

0 Early frame sync (or I2S mode)

1 Late frame sync (or left-justified mode)

CM41X_M4 SPORT Register Descriptions

29–68 ADSP-CM41x Mixed-Signal Control Processor

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.

When the half SPORT is in DSP standard mode and multichannel mode
(SPORT_CTL_B.OPMODE =0), the SPORT_CTL_B.LFS bit selects whether the
half SPORT uses active low or active high frame sync.

When the half SPORT is in I2S / packed / left-justified mode
(SPORT_CTL_B.OPMODE =1), the SPORT_CTL_B.LFS bit acts as L_FIRST, se-
lecting whether the half SPORT transfers data first for the left or right channel.

0 Active high frame sync (DSP standard mode) or rising
edge frame sync (multichannel mode)

or right channel first (I2S/packed mode)

or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode) or falling
edge frame sync (multichannel mode)

or left channel first (I2S/packed mode)

or right channel first (left-justified mode)

15

(R/W)

DIFS Data-Independent Frame Sync.

The SPORT_CTL_B.DIFS bit selects whether the half SPORT uses a data-inde-
pendent or data-dependent frame sync. When using a data-independent frame sync,
the half SPORT generates the sync at the interval selected by
SPORT_DIV_B.FSDIV. When using a data-dependent frame sync, the half SPORT
generates the sync on the selected interval when the transmit buffer is not empty or
when the receive buffer is not full. Note that the SPORT_CTL_B.DIFS bit is auto-
matically set when the half SPORT is in packed or multichannel modes.

0 Data-dependent frame sync

1 Data-independent frame sync

14

(R/W)

IFS Internal Frame Sync.

The SPORT_CTL_B.IFS bit selects whether the half SPORT uses an internal frame
sync or uses an external frame sync.

Note that the externally-generated frame sync does not need to be synchronous with
the processor's system clock.

0 External frame sync

1 Internal frame sync

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–69

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13

(R/W)

FSR Frame Sync Required.

The SPORT_CTL_B.FSR selects whether or not the half SPORT requires frame

sync for data transfer. This bit is automatically set when the half SPORT is in I2S /
packed / left-justified mode (SPORT_CTL_B.OPMODE =1) or is in multichannel
mode (SPORT_MCTL_B.MCE =1).

0 No frame sync required

1 Frame sync required

12

(R/W)

CKRE Clock Rising Edge.

The SPORT_CTL_B.CKRE selects the rising or falling edge of the SPORT_BCLK
clock for the half SPORT to sample receive data and frame sync. Note that the half
SPORT changes the state of transmit data and frame sync signals on the non-selected
edge of the SPORT_BCLK. Also note that the transmit and receive related SPORT
halves (A and B) should be programmed with the same value for
SPORT_CTL_B.CKRE. This programming drives the internally-generated signals on
one edge of SPORT_BCLK and samples the received signals on the opposite edge.

0 Clock falling edge

1 Clock rising edge

11

(R/W)

OPMODE Operation Mode.

The SPORT_CTL_B.OPMODE bit selects whether the half SPORT operates in DSP

standard / multichannel mode or operates in I2S / packed / left-justified mode. The
mode selection affects the operation of the SPORT_CTL_B.LAFS and
SPORT_CTL_B.LFS bits. Also, the SPORT_CTL_B.OPMODE bit enables or disa-
bles operation of the SPORT_CTL_B.GCLKEN, SPORT_CTL_B.FSED,
SPORT_CTL_B.RJUST, SPORT_CTL_B.DIFS, SPORT_CTL_B.FSR, and
SPORT_CTL_B.CKRE bits.

0 DSP standard/multichannel mode

1 I2S/packed/left-justified mode

10

(R/W)

ICLK Internal Clock.

When the half SPORT is in DSP standard mode (SPORT_CTL_B.OPMODE =0), the
SPORT_CTL_B.ICLK bit selects whether the half SPORT uses an internal or exter-
nal clock. For internal clock enabled, the half SPORT generates the SPORT_BCLK
clock signal, and the SPORT_BCLK is an output. The SPORT_DIV_B.CLKDIV
serial clock divisor value determines the clock frequency. For internal clock disabled,
the SPORT_BCLK clock signal is an input, and the serial clock divisor is ignored.
Note that the externally-generated serial clock does not need to be synchronous with
the processor's system clock.

0 External clock

1 Internal clock

CM41X_M4 SPORT Register Descriptions

29–70 ADSP-CM41x Mixed-Signal Control Processor

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

PACK Packing Enable.

The SPORT_CTL_B.PACK bit enables the half SPORT to perform 16- to 32-bit
packing on received data and to perform 32- to 16-bit unpacking on transmitted data.
The receive packing operation packs two successive received words into a single 32-bit
word. The transmit unpacking operation unpacks each 32-bit word and transmits it as
two 16-bit words. The first 16-bit (or smaller) word is right-justified in bits 15:0 of the
packed word, and the second 16-bit (or smaller) word is right-justified in bits 31:16.
This format applies to both receive (packing) and transmit (unpacking) operations.
Companding may be used with word packing or unpacking. The half SPORT gener-
ates data transfer related interrupts when packing is enabled. The transmit and receive
interrupts are generated for the 32-bit packed words, not for each 16-bit word.

0 Disable

1 Enable

8:4

(R/W)

SLEN Serial Word Length.

The SPORT_CTL_B.SLEN bits selects word length in bits for the half SPORT's data
transfers. Word may be from 4- to 32-bits in length. The formula for selecting the
word length in bits is:

SPORT_CTL_B.SLEN = (serial word length in bits) - 1

For DSP standard mode (SPORT_CTL_B.OPMODE =0), use
SPORT_CTL_B.SLEN of 3 to 31 bits.

For I2S / packed / left-justified mode (SPORT_CTL_B.OPMODE =1), use
SPORT_CTL_B.SLEN of 4 to 31 bits.

3

(R/W)

LSBF Least-Significant Bit First.

The SPORT_CTL_B.LSBF bit selects whether the half SPORT transmits or receives
data LSB first or MSB first.

0 MSB first sent/received (big endian)

1 LSB first sent/received (little endian)

2:1

(R/W)

DTYPE Data Type.

The SPORT_CTL_B.DTYPE bits selects the data type formatting for the half
SPORT's data transfers in DSP standard mode (SPORT_CTL_B.OPMODE =0).

0 Right-justify data, zero-fill unused MSBs

1 Right-justify data, sign-extend unused MSBs

2 u-law compand data

3 A-law compand data

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–71

Table 29-24: SPORT_CTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

SPENPRI Serial Port Enable (Primary).

The SPORT_CTL_B.SPENPRI bit enables the half SPORT's primary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically flush-
es the channel's data buffers.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–72 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Divisor Register

The SPORT_DIV_A register contains divisor values that determine frequencies of internally-generated clocks and
frame syncs for half SPORT 'A'.

Clock Divisor

Frame Sync Divisor

CLKDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FSDIV (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-25: SPORT_DIV_A Register Diagram

Table 29-25: SPORT_DIV_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

FSDIV Frame Sync Divisor.

The SPORT_DIV_A.FSDIV bits select the number of transmit or receive clock cy-
cles that the half SPORT counts before generating a frame sync pulse. The half
SPORT counts serial clock cycles whether these are from an internally- or an external-
ly-generated serial clock. The formula relating SPORT_DIV_A.FSDIV to the num-
ber of cycles between frame sync pulses is:

SPORT_DIV_A.FSDIV = (number of serial clocks between frame syncs) - 1

Use the following equation to determine the value of SPORT_DIV_A.FSDIV, given
the serial clock frequency and desired frame sync frequency:

FSDIV = (SPORT_ACLK / SPORT_AFS) - 1

Note that the frame sync is continuously active when SPORT_DIV_A.FSDIV = 0.
The value of SPORT_DIV_A.FSDIV should not be less than the serial word length
(SPORT_CTL_A.SLEN), as this may cause an external device to abort the current
operation or cause other unpredictable results.

15:0

(R/W)

CLKDIV Clock Divisor.

The SPORT_DIV_A.CLKDIV bits select the divisor that the half SPORT uses to
calculate the serial clock (SPORT_ACLK) from the processor system clock (SCLK).
The divisor is a 16-bit value, allowing a wide range of serial clock rates. When config-
ured for internal clock (SPORT_CTL_A.ICLK =1), legal
SPORT_DIV_A.CLKDIV values are 0 to 65535. Given the processor system clock
frequency and desired serial clock frequency, use the following formula to calculate the
value of SPORT_DIV_A.CLKDIV:

CLKDIV = (SCLK / SPORT_ACLK) - 1

For the maximum serial clock frequency, see the processor data sheet.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–73

Half SPORT 'B' Divisor Register

The SPORT_DIV_B contains divisor values that determine frequencies of internally-generated clocks and frame
syncs for SPORT half 'B'.

Clock Divisor

Frame Sync Divisor

CLKDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FSDIV (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-26: SPORT_DIV_B Register Diagram

Table 29-26: SPORT_DIV_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

FSDIV Frame Sync Divisor.

The SPORT_DIV_B.FSDIV bits select the number of transmit or receive clock cy-
cles that the half SPORT counts before generating a frame sync pulse. The half
SPORT counts serial clock cycles whether these are from an internally- or an external-
ly-generated serial clock. The formula relating SPORT_DIV_B.FSDIV to the num-
ber of cycles between frame sync pulses is:

SPORT_DIV_B.FSDIV = (number of serial clocks between frame syncs) - 1

Use the following equation to determine the value of SPORT_DIV_B.FSDIV, given
the serial clock frequency and desired frame sync frequency:

FSDIV = (SPORT_BCLK / SPORT_BFS) - 1

Note that the frame sync is continuously active when SPORT_DIV_B.FSDIV = 0.
The value of SPORT_DIV_B.FSDIV should not be less than the serial word length
(SPORT_CTL_B.SLEN), as this may cause an external device to abort the current
operation or cause other unpredictable results.

15:0

(R/W)

CLKDIV Clock Divisor.

The SPORT_DIV_B.CLKDIV bits select the divisor that the half SPORT uses to
calculate the serial clock (SPORT_BCLK) from the processor system clock (SCLK).
The divisor is a 16-bit value, allowing a wide range of serial clock rates. When config-
ured for internal clock (SPORT_CTL_B.ICLK =1), legal
SPORT_DIV_B.CLKDIV values are 0 to 65535. Given the processor system clock
frequency and desired serial clock frequency, use the following formula to calculate the
value of SPORT_DIV_B.CLKDIV:

CLKDIV = (SCLK SPORT_BCLK) - 1

For the maximum serial clock frequency, see the processor data sheet.

CM41X_M4 SPORT Register Descriptions

29–74 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Error Register

The SPORT_ERR_A register contains error status and error interrupt mask bits for SPORT half 'A', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are frame sync
violations or buffer over/underflow conditions.

Frame Sync Error (Interrupt) MaskData Error Primary Status

Data Error Secondary (Interrupt) MaskData Error Secondary Status

Data Error Primary (Interrupt) MaskFrame Sync Error Status

FSERRMSK (R/W)DERRPSTAT (R/W1C)

DERRSMSK (R/W)DERRSSTAT (R/W1C)

DERRPMSK (R/W)FSERRSTAT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-27: SPORT_ERR_A Register Diagram

Table 29-27: SPORT_ERR_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

FSERRSTAT Frame Sync Error Status.

The SPORT_ERR_A.FSERRSTAT bit indicates that the half SPORT has detected a
frame sync when the bit count (bits remaining in the frame) is non-zero. When a half
SPORT is receiving or transmitting, its bit count is set to a word length (for example,
SPORT_CTL_A.SLEN = 31). After each serial clock edge, the half SPORT decre-
ments the transfer's bit count. After the word is received or transmitted, the transfer's
bit count reaches zero, and the half SPORT resets it (for example, to 32) on next frame
sync. Normal SPORT data transfers always have a non-zero bit count value when ac-
tive transmission or reception is occurring. Normal SPORT frame syncs occur after the
bit count becomes zero.

0 No error

1 Error (non-zero bit count at frame sync)

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–75

Table 29-27: SPORT_ERR_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1C)

DERRSSTAT Data Error Secondary Status.

The SPORT_ERR_A.DERRSSTAT bit indicates the error status for the half
SPORT's secondary channel data buffers. During transmit
(SPORT_CTL_A.SPTRAN =1), the SPORT_ERR_A.DERRSSTAT bit indicates
the transmit underflow status. During receive (SPORT_CTL_A.SPTRAN =0), the
SPORT_ERR_A.DERRSSTAT bit indicates the receive overflow status. This bit is
used to clear the latch of SPORT status interrupt request when triggered by a secon-
dary data error. This bit can also be used to clear the read-only
SPORT_CTL_A.DERRSEC status bit.

0 No error

1 Error (transmit underflow or receive overflow)

4

(R/W1C)

DERRPSTAT Data Error Primary Status.

The SPORT_ERR_A.DERRPSTAT bit indicates the error status for the half
SPORT's primary channel data buffers. During transmit (SPORT_CTL_A.SPTRAN
=1), the SPORT_ERR_A.DERRPSTAT bit indicates the transmit underflow status.
During receive (SPORT_CTL_A.SPTRAN =0), the SPORT_ERR_A.DERRPSTAT
bit indicates the receive overflow status. This bit is used to clear the latch of SPORT
status interrupt request when triggered by a primary data error. This bit can also be
used to clear the read-only SPORT_CTL_A.DERRPRI status bit.

0 No error

1 Error (transmit underflow or receive overflow)

2

(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.

The SPORT_ERR_A.FSERRMSK unmasks (enables) the half SPORT to generate the
frame sync error interrupt request.

0 Mask (disable)

1 Unmask (enable)

1

(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.

The SPORT_ERR_A.DERRSMSK unmasks (enables) the half SPORT to generate the
data error interrupt request for the secondary channel.

0 Mask (disable)

1 Unmask (enable)

0

(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.

The SPORT_ERR_A.DERRPMSK unmasks (enables) the half SPORT to generate the
data error interrupt request for the primary channel.

0 Mask (disable)

1 Unmask (enable)

CM41X_M4 SPORT Register Descriptions

29–76 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Error Register

The SPORT_ERR_B register contains error status and error interrupt mask bits for SPORT half 'B', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are frame sync
violations or buffer over/underflow conditions.

Frame Sync Error (Interrupt) MaskData Error Primary Status

Data Error Secondary (Interrupt) MaskData Error Secondary Status

Data Error Primary (Interrupt) MaskFrame Sync Error Status

FSERRMSK (R/W)DERRPSTAT (R/W1C)

DERRSMSK (R/W)DERRSSTAT (R/W1C)

DERRPMSK (R/W)FSERRSTAT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-28: SPORT_ERR_B Register Diagram

Table 29-28: SPORT_ERR_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

FSERRSTAT Frame Sync Error Status.

The SPORT_ERR_B.FSERRSTAT bit indicates that the half SPORT has detected a
frame sync when the bit count (bits remaining in the frame) is non-zero. When a half
SPORT is receiving or transmitting, its bit count is set to a word length (for example,
SPORT_CTL_B.SLEN = 31). After each serial clock edge, the half SPORT decre-
ments the transfer's bit count. After the word is received or transmitted, the transfer's
bit count reaches zero, and the half SPORT resets it (for example, to 32) on next frame
sync. Normal SPORT data transfers always have a non-zero bit count value when ac-
tive transmission or reception is occurring. Normal SPORT frame syncs occur after the
bit count becomes zero.

0 No error

1 Error (non-zero bit count at frame sync)

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–77

Table 29-28: SPORT_ERR_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1C)

DERRSSTAT Data Error Secondary Status.

The SPORT_ERR_B.DERRSSTAT bit indicates the error status for the half
SPORT's secondary channel data buffers. During transmit
(SPORT_CTL_B.SPTRAN =1), SPORT_ERR_B.DERRSSTAT indicates the trans-
mit underflow status. During receive (SPORT_CTL_B.SPTRAN =0),
SPORT_ERR_B.DERRSSTAT indicates the receive overflow status. This bit is used
to clear the latch of SPORT status interrupt request when triggered by a secondary da-
ta error. This bit can also be used to clear the read-only SPORT_CTL_B.DERRSEC
status bit.

0 No error

1 Error (transmit underflow or receive overflow)

4

(R/W1C)

DERRPSTAT Data Error Primary Status.

The SPORT_ERR_B.DERRPSTAT bit indicates the error status for the half
SPORT's primary channel data buffers. During transmit (SPORT_CTL_B.SPTRAN
=1), the SPORT_ERR_B.DERRPSTAT bit indicates the transmit underflow status.
During receive (SPORT_CTL_B.SPTRAN =0), the SPORT_ERR_B.DERRPSTAT
bit indicates the receive overflow status. This bit is used to clear the latch of SPORT
status interrupt request when triggered by a primary data error. This bit can also be
used to clear the read-only SPORT_CTL_B.DERRPRI status bit.

0 No error

1 Error (transmit underflow or receive overflow)

2

(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.

The SPORT_ERR_B.FSERRMSK unmasks (enables) the half SPORT to generate the
frame sync error interrupt request.

0 Mask (disable)

1 Unmask (enable)

1

(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.

The SPORT_ERR_B.DERRSMSK unmasks (enables) the half SPORT to generate the
data error interrupt request for the secondary channel.

0 Mask (disable)

1 Unmask (enable)

0

(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.

The SPORT_ERR_B.DERRPMSK unmasks (enables) the half SPORT to generate the
data error interrupt request for the primary channel.

0 Mask (disable)

1 Unmask (enable)

CM41X_M4 SPORT Register Descriptions

29–78 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Multichannel Control Register

The SPORT_MCTL_A register controls the half SPORT's multichannel operations. This register enables multichan-
nel operation, enables multichannel data packing, selects the multichannel frame delay, selects the number of multi-
channel slots, and selects the multichannel window offset size.

Multichannel Packing DMA EnableMultichannel Frame Delay

Multichannel enableWindow Size

Window Offset

MCPDE (R/W)MFD (R/W)

MCE (R/W)WSIZE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

WOFFSET (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-29: SPORT_MCTL_A Register Diagram

Table 29-29: SPORT_MCTL_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25:16

(R/W)

WOFFSET Window Offset.

The SPORT_MCTL_A.WOFFSET bits select the start location for the half SPORT's
active window of channels within the 1024-channel range. A value of 0 specifies no
offset and 896 is the largest value that permits using all 128 channels. When multi-
channel mode is disabled (SPORT_MCTL_A.MCE =0) and the right-justified mode is
enabled (SPORT_CTL_A.RJUST =1), the least significant 6 bits of
SPORT_MCTL_A.WOFFSET serve as the delay count (DCNT) field. These bits in-
troduce a clock delay before the half SPORT state machine starts to capture data. For
information about appropriate delay selections, see the SPORT operating modes sec-
tion.

14:8

(R/W)

WSIZE Window Size.

The SPORT_MCTL_A.WSIZE bits select the window size for the half SPORT's ac-
tive window of channels. Use the following formula to calculate the window size value:

SPORT_MCTL_A.WSIZE = (number of channel slots) -1

7:4

(R/W)

MFD Multichannel Frame Delay.

The SPORT_MCTL_A.MFD bits select the delay (in serial clock cycles) between the
half SPORT's multichannel frame sync pulse and channel 0. The 4-bit field allows se-
lecting multichannel frame delay of 0-15 serial clocks.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–79

Table 29-29: SPORT_MCTL_A Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

MCPDE Multichannel Packing DMA Enable.

The SPORT_MCTL_A.MCPDE bit enables DMA data packing for transmit and ena-
bles DMA data unpacking for the half SPORT's multichannel data transfers.

0 Disable

1 Enable

0

(R/W)

MCE Multichannel enable.

The SPORT_MCTL_A.MCE bit enables multichannel operations for the half SPORT.
The half SPORT is configured in normal multichannel mode if
SPORT_CTL_A.OPMODE=0; while it is configured in packed mode if
SPORT_CTL_A.OPMODE=1. When configuring in these modes, the multichannel
enable bit (SPORT_MCTL_A.MCE) should be set before enabling the SPORT data
channel enable bits (SPORT_CTL_A.SPENPRI and/or
SPORT_CTL_A.SPENSEC). When these channel bits transition from 1 to 0, note
that the half SPORT's data transfer buffers are cleared, and the
SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC bits are cleared.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–80 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'B' Multichannel Control Register

The SPORT_MCTL_B register controls the half SPORT's multichannel operations. This register enables multichan-
nel operation, enables multichannel data packing, selects the multichannel frame delay, selects the number of multi-
channel slots, and selects the multichannel window offset size.

Multichannel Packing DMA EnableMultichannel Frame Delay

Multichannel EnableWindow Size

Window Offset

MCPDE (R/W)MFD (R/W)

MCE (R/W)WSIZE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

WOFFSET (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-30: SPORT_MCTL_B Register Diagram

Table 29-30: SPORT_MCTL_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25:16

(R/W)

WOFFSET Window Offset.

The SPORT_MCTL_B.WOFFSET bits select the start location for the half SPORT's
active window of channels within the 1024-channel range. A value of 0 specifies no
offset and 896 is the largest value that permits using all 128 channels. When multi-
channel mode is disabled (SPORT_MCTL_B.MCE =0) and right-justified mode is en-
abled (SPORT_CTL_B.RJUST =1), the least significant 6 bits of
SPORT_MCTL_B.WOFFSET serve as the delay count (DCNT) field. These bits in-
troduce a clock delay before the half SPORT state machine starts to capture data. For
information about appropriate delay selections, see the SPORT operating modes sec-
tion.

14:8

(R/W)

WSIZE Window Size.

The SPORT_MCTL_B.WSIZE bits select the window size for the half SPORT's ac-
tive window of channels. Use the following formula to calculate the window size value:

SPORT_MCTL_B.WSIZE = (number of channel slots) -1

7:4

(R/W)

MFD Multichannel Frame Delay.

The SPORT_MCTL_B.MFD bits select the delay (in serial clock cycles) between the
half SPORT's multichannel frame sync pulse and channel 0. The 4-bit field allows se-
lecting a multichannel frame delay of 0-15 serial clocks.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–81

Table 29-30: SPORT_MCTL_B Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

MCPDE Multichannel Packing DMA Enable.

The SPORT_MCTL_B.MCPDE bit enables DMA data packing for transmit and ena-
bles DMA data unpacking for the half SPORT's multichannel data transfers.

0 Disable

1 Enable

0

(R/W)

MCE Multichannel Enable.

The SPORT_MCTL_B.MCE bit enables multichannel operations for the half SPORT.
The half SPORT is configured in normal multichannel mode if
SPORT_CTL_B.OPMODE=0; while it is configured in packed mode if
SPORT_CTL_B.OPMODE=1. When configuring in these modes, the multichannel
enable bit (SPORT_MCTL_B.MCE) should be set before enabling SPORT data chan-
nel enable bits (SPORT_CTL_B.SPENPRI and/or SPORT_CTL_B.SPENSEC).
When these channel bits transition from 1 to 0, note that the half SPORT's data trans-
fer buffers are cleared, and the SPORT_CTL_B.DERRPRI and
SPORT_CTL_B.DERRSEC bits are cleared.

0 Disable

1 Enable

CM41X_M4 SPORT Register Descriptions

29–82 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Multichannel Status Register

The SPORT_MSTAT_A register indicates the current multichannel being serviced among the half SPORT's active
channels in multichannel mode. The half SPORT increments the value by one in this register as each channel is
serviced. The value in the SPORT_MSTAT_A register restarts at 0 at each frame sync.

Current Channel
CURCHAN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-31: SPORT_MSTAT_A Register Diagram

Table 29-31: SPORT_MSTAT_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/NW)

CURCHAN Current Channel.

The SPORT_MSTAT_A.CURCHAN bits indicate the half SPORT's current channel
being serviced in multichannel mode.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–83

Half SPORT 'B' Multichannel Status Register

The SPORT_MSTAT_B register indicates the current multichannel being serviced among the half SPORT's active
channels in multichannel mode. The half SPORT increments the value by one in this register as each channel is
serviced. The value in the SPORT_MSTAT_B register restarts at 0 at each frame sync.

Current Channel
CURCHAN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-32: SPORT_MSTAT_B Register Diagram

Table 29-32: SPORT_MSTAT_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

9:0

(R/NW)

CURCHAN Current Channel.

The SPORT_MSTAT_B.CURCHAN bits indicate the half SPORT's current channel
being serviced in multichannel mode.

CM41X_M4 SPORT Register Descriptions

29–84 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Rx Buffer (Primary) Register

The SPORT_RXPRI_A register buffers the half SPORT's primary channel receive data. This buffer becomes active
when the half SPORT is configured to receive data on the primary channel. After a complete word has been received
in the receive shifter, it is placed into the SPORT_RXPRI_A register. This data can be read in core mode (in inter-
rupt-based or polling-based mechanism) or directly transferred into processor memory using the DMA controller.
With a data buffer and an input shift register, the SPORT_RXPRI_A register acts as a two-location buffer. So, the
SPORT can keep a maximum of two 32-bit received words at any given time (independent of the
SPORT_CTL_A.PACK bit setting).

Receive Buffer (Primary)

Receive Buffer (Primary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-33: SPORT_RXPRI_A Register Diagram

Table 29-33: SPORT_RXPRI_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Receive Buffer (Primary).

The SPORT_RXPRI_A.VALUE bits hold the half SPORT's primary channel receive
data. Note that changes to the half SPORT operation mode (for example, toggling the
SPORT_MCTL_A.MCE) empty the contents of this data buffer. For more informa-
tion, see the SPORT_CTL_A and SPORT_MCTL_A register descriptions.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–85

Half SPORT 'B' Rx Buffer (Primary) Register

The SPORT_RXPRI_B register buffers the half SPORT's primary channel receive data. This buffer becomes active
when the half SPORT is configured to receive data on the primary channel. After a complete word has been received
in the receive shifter, it is placed into the SPORT_RXPRI_B register. This data can be read in core mode (in inter-
rupt-based or polling-based mechanism) or directly transferred into processor memory using the DMA controller.
With a data buffer and an input shift register, the SPORT_RXPRI_B register acts as a two-location buffer. So, the
SPORT can keep a maximum of two 32-bit received words at any given time (independent of the
SPORT_CTL_A.PACK bit setting).

Receive Buffer (Primary)

Receive Buffer (Primary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-34: SPORT_RXPRI_B Register Diagram

Table 29-34: SPORT_RXPRI_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Receive Buffer (Primary).

The SPORT_RXPRI_B.VALUE bits hold the half SPORT's primary channel receive
data. Note that changes to the half SPORT operation mode (for example, toggling the
SPORT_MCTL_B.MCE) empty the contents of this data buffer. For more informa-
tion, see the SPORT_CTL_B and SPORT_MCTL_B register descriptions.

CM41X_M4 SPORT Register Descriptions

29–86 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Rx Buffer (Secondary) Register

The SPORT_RXSEC_A register buffers the half SPORT's secondary channel receive data. This buffer becomes ac-
tive when the half SPORT is configured to receive data on the secondary channel. After a complete word has been
received in the receive shifter, it is placed into the SPORT_RXSEC_A register. This data can be read in core mode
(in interrupt-based or polling-based mechanism) or directly transferred into processor memory using the DMA con-
troller. With a data buffer and an input shift register, the SPORT_RXSEC_A register acts as a two-location buffer.
So, the SPORT can keep a maximum of two 32-bit received words at any given time (independent of the
SPORT_CTL_A.PACK bit setting).

Receive Buffer (Secondary)

Receive Buffer (Secondary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-35: SPORT_RXSEC_A Register Diagram

Table 29-35: SPORT_RXSEC_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Receive Buffer (Secondary).

The SPORT_RXSEC_A.VALUE bits hold the half SPORT's secondary channel re-
ceive data. Note that changes to the half SPORT operation mode (for example, tog-
gling the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_A and SPORT_MCTL_A register descriptions.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–87

Half SPORT 'B' Rx Buffer (Secondary) Register

The SPORT_RXSEC_B register buffers the half SPORT's secondary channel receive data. This buffer becomes ac-
tive when the half SPORT is configured to receive data on the secondary channel. After a complete word has been
received in the receive shifter, it is placed into the SPORT_RXSEC_B register. This data can be read in core mode
(in interrupt-based or polling-based mechanism) or directly transferred into processor memory using the DMA con-
troller. With a data buffer and an input shift register, the SPORT_RXSEC_B register acts as a two-location buffer.
So, the SPORT can keep a maximum of two 32-bit received words at any given time (independent of the
SPORT_CTL_A.PACK bit setting).

Receive Buffer (Secondary)

Receive Buffer (Secondary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-36: SPORT_RXSEC_B Register Diagram

Table 29-36: SPORT_RXSEC_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Receive Buffer (Secondary).

The SPORT_RXSEC_B.VALUE bits hold the half SPORT's secondary channel re-
ceive data. Note that changes to the half SPORT operation mode (for example, tog-
gling the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_B and SPORT_MCTL_B register descriptions.

CM41X_M4 SPORT Register Descriptions

29–88 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Tx Buffer (Primary) Register

The SPORT_TXPRI_A register buffers the half SPORT's primary channel transmit data. This register must be
loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary channel. Either a
program running on the processor core loads the data into the buffer (word-by-word process) or the DMA control-
ler automatically loads the data into the buffer (DMA process).

The SPORT_TXPRI_A register acts as a three-location buffer if SPORT data packing is disabled
(SPORT_CTL_A.PACK =0); while it acts as a two-location buffer when packing is enabled
(SPORT_CTL_A.PACK =1). So, depending on the PACK bit setting, two 32-bit words or three 32-bit words can
be stored in the transmit queue at any time. When the transmit register is loaded and any previous word has been
transmitted, the SPORT_TXPRI_A register contents are automatically loaded into the output shifter. The half
SPORT can issue an interrupt request (transmit buffer is not full) when it has loaded the output transmit shifter,
signifying that the transmit buffer is ready to accept the next word. This interrupt request does not occur when the
half SPORT is executing a DMA-based transfer.

Transmit Buffer (Primary)

Transmit Buffer (Primary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-37: SPORT_TXPRI_A Register Diagram

Table 29-37: SPORT_TXPRI_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Transmit Buffer (Primary).

The SPORT_TXPRI_A.VALUE bits hold the half SPORT's primary channel trans-
mit data. Note that changes to the half SPORT operation mode (for example, toggling
the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For more infor-
mation, see the SPORT_CTL_A and SPORT_MCTL_A register descriptions.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–89

Half SPORT 'B' Tx Buffer (Primary) Register

The SPORT_TXPRI_B register buffers the half SPORT's primary channel transmit data. This register must be
loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary channel. Either a
program running on the processor core loads the data into the buffer (word-by-word process) or the DMA control-
ler automatically loads the data into the buffer (DMA process).

The SPORT_TXPRI_B register acts as a three-location buffer if SPORT data packing is disabled
(SPORT_CTL_B.PACK =0); while it acts as a two-location buffer when packing is enabled
(SPORT_CTL_B.PACK =1). So, depending on the PACK bit setting, two 32-bit words or three 32-bit words can
be stored in the transmit queue at any time. When the transmit register is loaded and any previous word has been
transmitted, the SPORT_TXPRI_B register contents are automatically loaded into the output shifter. The half
SPORT can issue an interrupt request (transmit buffer is not full) when it has loaded the output transmit shifter,
signifying that the transmit buffer is ready to accept the next word. This interrupt request does not occur when the
half SPORT is executing a DMA-based transfer.

Transmit Buffer (Primary)

Transmit Buffer (Primary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-38: SPORT_TXPRI_B Register Diagram

Table 29-38: SPORT_TXPRI_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Transmit Buffer (Primary).

The SPORT_TXPRI_B.VALUE bits hold the half SPORT's primary channel trans-
mit data. Note that changes to the half SPORT operation mode (for example, toggling
the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For more infor-
mation, see the SPORT_CTL_B and SPORT_MCTL_B register descriptions.

CM41X_M4 SPORT Register Descriptions

29–90 ADSP-CM41x Mixed-Signal Control Processor

Half SPORT 'A' Tx Buffer (Secondary) Register

The SPORT_TXSEC_A register buffers the half SPORT's secondary channel transmit data. This register must be
loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary channel. Either
a program running on the processor core loads the data into the buffer (word-by-word process) or the DMA con-
troller automatically loads the data into the buffer (DMA process).

The SPORT_TXSEC_A register acts as a three-location buffer if SPORT data packing is disabled
(SPORT_CTL_A.PACK =0); while it acts as a two-location buffer when packing is enabled
(SPORT_CTL_A.PACK =1). So, depending on the PACK bit setting, two 32-bit words or three 32-bit words can
be stored in the transmit queue at any time. When the transmit register is loaded and any previous word has been
transmitted, the SPORT_TXSEC_A register contents are automatically loaded into the output shifter. The half
SPORT can issue an interrupt request (transmit buffer is not full) when it has loaded the output transmit shifter,
signifying that the transmit buffer is ready to accept the next word. This interrupt request does not occur when the
half SPORT is executing a DMA-based transfer.

Transmit Buffer (Secondary)

Transmit Buffer (Secondary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-39: SPORT_TXSEC_A Register Diagram

Table 29-39: SPORT_TXSEC_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Transmit Buffer (Secondary).

The SPORT_TXSEC_A.VALUE bits hold the half SPORT's secondary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_A and SPORT_MCTL_A register descriptions.

CM41X_M4 SPORT Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 29–91

Half SPORT 'B' Tx Buffer (Secondary) Register

The SPORT_TXSEC_B register buffers the half SPORT's secondary channel transmit data. This register must be
loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary channel. Either
a program running on the processor core loads the data into the buffer (word-by-word process) or the DMA con-
troller automatically loads the data into the buffer (DMA process).

The SPORT_TXSEC_B register acts as a three-location buffer if SPORT data packing is disabled
(SPORT_CTL_B.PACK =0); while it acts as two-location buffer when packing is enabled
(SPORT_CTL_B.PACK =1). So, depending on the PACK bit setting, two 32-bit words or three 32-bit words can
be stored in the transmit queue at any time. When the transmit register is loaded and any previous word has been
transmitted, the SPORT_TXSEC_B register contents are automatically loaded into the output shifter. The half
SPORT can issue an interrupt request (transmit buffer is not full) when it has loaded the output transmit shifter,
signifying that the transmit buffer is ready to accept the next word. This interrupt request does not occur when the
half SPORT is executing a DMA-based transfer.

Transmit Buffer (Secondary)

Transmit Buffer (Secondary)

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 29-40: SPORT_TXSEC_B Register Diagram

Table 29-40: SPORT_TXSEC_B Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Transmit Buffer (Secondary).

The SPORT_TXSEC_B.VALUE bits hold the half SPORT's secondary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_B and SPORT_MCTL_B register descriptions.

CM41X_M4 SPORT Register Descriptions

29–92 ADSP-CM41x Mixed-Signal Control Processor

30 Analog-to-Digital Converter Controller
(ADCC)

The ADCC provides an interface that synchronizes the controls between the processor and an analog-to-digital con-
verter (ADC). The processor or its peripheral infrastructure initiate the analog-to-digital conversions, based on ei-
ther external or internal events, by giving the triggers to ADCC module.

NOTE: The ADCC and DACC chapters describe the control and data interface to the AFE die. For information
about the analog portion (I/O pins and electrical specifications) of the AFE die, see the product data sheet.

The ADCC hardware initiates the ADC sampling (based on some processor or its peripheral events) by providing
sampling signals with required timings in real time. Using the ADCC permits flexible scheduling of sampling in-
stants and provides precise control execution of timing and analog sampling events on the ADCs. The ADCC saves
both processor MIPS and provides precise controllability for ADC sampling time.

The converted ADC data from the ADCs is directly available in ADCC registers. The data can be read in core mode
to store data into processor memory or can be directly routed through a dedicated DMA.

NOTE: In this chapter, the terms Chip Select and Convert Start are interchangeably used.

ADCC Features
The ADCC provides many architecture-based features (basic to the design) and mode-selectable features (usage is
optional or configurable).

Architecture-based features of the ADCC include:

• One ADC interface (ADCC0) to control one ADC channel (ADC0) and a second ADC interface (ADCC1) to
control two ADC channels (ADC1 and ADC2).

• Automated ADC sampling with ADC control hardware for sending the control word, executing conversion
cycles, and reading the converted data with programmable timing.

• Up to six trigger inputs which permit the ADCC to initiate the ADC precise event sampling.

Either the processor core or its peripheral infrastructure generates the trigger inputs internally.

• Up to 32 ADC sampling events per valid trigger received.

Analog-to-Digital Converter Controller (ADCC)

ADSP-CM41x Mixed-Signal Control Processor 30–1

Each event must be assigned to either of the ADCC timers and assigned to one of the ADCs (and its channel).
Each event is independently programmable to specify when to initiate ADC sampling based on the trigger in-
put.

• 32 event status registers (one per each event), which indicate the amount of delay before the start of event han-
dling after the event match occurs.

• Two independent 32-bit ADCC timers for controlling ADCC operation from two different sources.

Any of the 32 events must be assigned to any ADCC timer. The ADCC automatically stops these timers after
completion of associated events to save power. The trigger input to ADCC timer can be enabled or masked on-
the-fly to temporarily disable all the events related to a trigger source.

• Separate eight-deep pending FIFOs for each ADC interface to queue the active events when the corresponding
ADC is busy.

• Automated ADC sampling process, placing the converted data from the ADC in a directly available ADCC
event data register.

This data can be read in core mode to store the data in required memory space, or the data can be directly
DMA transferred.

• Internally generated ADC clock from the processor system clock.

This clock is gated (for example, it is active only when controlling the ADC) to provide excellent noise immun-
ity during conversion process. The clock polarity (for example, the first edge after the convert start signal is
asserted) is configurable.

• Serial clock, chip select, control signals, and data signals to control the ADC operations during control, conver-
sion, and data read phases.

• A built-in DMA unit.

There is a DMA unit with a channel for each ADCC timer for transferring the converted data of the associated
events. The DMA unit supports an optional mechanism for circular buffering.

• Error detection capabilities, including support for the detection of an event miss, event collision, ADCC timer
trigger overrun, bandwidth monitor error when using DMA and memory write response error conditions.

• Trigger master capability provides two trigger signals to the TRU unit on the completion of each ADCC timer
frame.

Mode-selectable features of the ADCC include:

• Bandwidth monitoring option (when using DMA mode of data read operation), which identifies whether the
timer count has gone beyond an expected limit when receiving an ADC data frame.

This option also provides a status bit to indicate whether a DMA is pending reception of data from the ADC.

• Status indication (status bits) and optional interrupt request generation (when using core mode of data read
operation) to the core on the completion of each event.

ADCC Features

30–2 ADSP-CM41x Mixed-Signal Control Processor

• An interrupt request can be optionally generated at the end of each ADCC timer frame completion or on
ADCC error detection.

ADCC Functional Description
The ADCC controller provides a means to automate the ADC sampling sequence precisely. It reduces the core over-
head required (compared to sampling methods where no dedicated ADC controller is present) and simplifies the
ADC accesses. Two independent ADC interfaces in the ADCC synchronize the controls between the processor and
the two on-chip ADCs. These features permit flexible scheduling of sampling instants and provide precise control
execution of timing and analog sampling events on the ADCs.

NOTE: Refer to the following sections for more information about ADCC functionality:

• ADCC Signal Descriptions

• ADCC Block Diagram

• ADCC Architectural Concepts

CM41X_M4 ADCC Register List

The ADC Controller (ADCC) automates the ADC sampling process and simplifies ADC accesses. The ADCC
provides an interface that synchronizes the controls between the processor and an analog-to-digital converter
(ADC). A set of registers governs ADCC operations. For more information on ADCC functionality, see the ADCC
register descriptions.

Table 30-1: CM41X_M4 ADCC Register List

Name Description

ADCC_ADCRW0 ADC2 Interface RW Access Register

ADCC_ADCRW1 ADC2 Interface RW Access Register

ADCC_BPTR0 Base Pointer 0 Register

ADCC_BPTR1 DMA Base Pointer 1 Register

ADCC_BWMON0 Bandwidth Monitor 0 Register

ADCC_BWMON1 Bandwidth Monitor 1 Register

ADCC_CBNUM0 Timer0 Circular Buffer DMA Wrap Number Register

ADCC_CBNUM1 Timer1 Circular Buffer DMA Wrap Number Register

ADCC_CBSIZ0 Circular Buffer Size 0 Register

ADCC_CBSIZ1 Circular Buffer Size 1 Register

ADCC_CTL Control Register

ADCC_DATOVF Data Overflow Indication Register

ADCC_ECOL Event Collision Status Register

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–3

Table 30-1: CM41X_M4 ADCC Register List (Continued)

Name Description

ADCC_EIMSK Event Interrupt Mask Register

ADCC_EIMSK_CLR Event Interrupt Mask Clear Register

ADCC_EIMSK_SET Event Interrupt Mask Set Register

ADCC_EISTAT Event Interrupt Status Register

ADCC_EMISS Event Miss Status Register

ADCC_EPND Pending Events Status Register

ADCC_ERRMSK Error Mask Register

ADCC_ERRMSK_CLR Error Mask Clear Register

ADCC_ERRMSK_SET Error Mask Set Register

ADCC_ERRSTAT Error Status Register

ADCC_EVCTL[nn] Event n Control Register

ADCC_EVDAT[nn] Event n Data Register

ADCC_EVSTAT[nn] Event n Status Register

ADCC_EVTEN Event Enable Register

ADCC_EVTEN_CLR Event Enable Clear Register

ADCC_EVTEN_SET Event Enable Set Register

ADCC_EVT[nn] Event n Time Register

ADCC_FIMSK Frame Interrupt Mask Register

ADCC_FIMSK_CLR Frame Interrupt Mask Clear Register

ADCC_FIMSK_SET Frame Interrupt Mask Set Register

ADCC_FISTAT Frame Interrupt Status Register

ADCC_FRINC0 Frame Increment 0 Register

ADCC_FRINC1 Frame Increment 1 Register

ADCC_NUMFRAM0 Timer0 Frame Limit Count Register

ADCC_NUMFRAM1 Timer1 Frame Limit Count Register

ADCC_T0STAT Timer 0 Status Register

ADCC_T1STAT Timer 1 Status Register

ADCC_TCA0 Timing Control A (ADC0) Register

ADCC_TCA1 Timing Control A (ADC1) Register

ADCC_TCB0 Timing Control B (ADC0) Register

ADCC_TCB1 Timing Control B (ADC1) Register

ADCC Functional Description

30–4 ADSP-CM41x Mixed-Signal Control Processor

Table 30-1: CM41X_M4 ADCC Register List (Continued)

Name Description

ADCC_TMR0 Timer 0 Current Count Register

ADCC_TMR1 Timer 1 Current Count Register

ADCC_TRGCNT0 Trigger Count TIMER0 Register

ADCC_TRGCNT1 Trigger Count TIMER1 Register

CM41X_M0 ADCC Interrupt List

Table 30-2: CM41X_M0 ADCC Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

13 ADCC0_ERR ADCC0 ADC Error Level

23 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

24 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

CM41X_M4 ADCC Interrupt List

Table 30-3: CM41X_M4 ADCC Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

62 ADCC1_ERR ADCC1 ADC Error Level

64 ADCC0_ERR ADCC0 ADC Error Level

129 ADCC1_TMR0_EVT ADCC1 Timer 0 Event Complete Level

130 ADCC1_TMR1_EVT ADCC1 Timer 1 Event Complete Level

131 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

132 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

CM41X_M0 ADCC Trigger List

Table 30-4: CM41X_M0 ADCC Trigger List Masters

Trigger ID Name Description Sensitivity

13 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

14 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–5

Table 30-5: CM41X_M0 ADCC Trigger List Slaves

Trigger ID Name Description Sensitivity

20 ADCC0_SLV0 ADCC0 Trigger Slave 0 Pulse

21 ADCC0_SLV1 ADCC0 Trigger Slave 1 Pulse

22 ADCC0_SLV2 ADCC0 Trigger Slave 2 Pulse

23 ADCC0_SLV3 ADCC0 Trigger Slave 3 Pulse

24 ADCC0_SLV4 ADCC0 Trigger Slave 4 Pulse

25 ADCC0_SLV5 ADCC0 Trigger Slave 5 Pulse

CM41X_M4 ADCC Trigger List

Table 30-6: CM41X_M4 ADCC Trigger List Masters

Trigger ID Name Description Sensitivity

29 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete Level

30 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete Level

31 ADCC1_TMR0_EVT ADCC1 Timer 0 Event Complete Level

32 ADCC1_TMR1_EVT ADCC1 Timer 1 Event Complete Level

Table 30-7: CM41X_M4 ADCC Trigger List Slaves

Trigger ID Name Description Sensitivity

28 ADCC1_SLV0 ADCC1 Trigger Slave 0 Pulse

29 ADCC1_SLV1 ADCC1 Trigger Slave 1 Pulse

30 ADCC1_SLV2 ADCC1 Trigger Slave 2 Pulse

31 ADCC1_SLV3 ADCC1 Trigger Slave 3 Pulse

32 ADCC1_SLV4 ADCC1 Trigger Slave 4 Pulse

33 ADCC1_SLV5 ADCC1 Trigger Slave 5 Pulse

ADC to ADCC Interface

There are two ADCCs for each of the cortex core platforms in the system. Each ADCC works independently from
the other.

ADCC Functional Description

30–6 ADSP-CM41x Mixed-Signal Control Processor

14-Bit
ADC0 ADCC0 ADCC0

DMA
M0

SRAM

16-Bit
ADC1/ADC2 ADCC1 M4

SRAM
ADCC1

DMA

ADC0
Channels

ADC1
Channels

ANALOG
FRONT END

PROCESSOR PLATFORMS

Figure 30-1: ADC to ADCC Interface

ADC Multiplexed Input Scheme

The ADC0 supports 7 input channels (D0 through D6) that are multiplexed as 7:1 input to ADC0 for sampling.
ADC0 can support sampling only one channel at a time. This channel is chosen while sending the control word to
the ADC from the ADCC0.

ADC0 D0
ADC0 D1
ADC0 D2
ADC0 D3

ADC0 D4
ADC0 D5
ADC0 D6

ADC0 INPUT
ADC0 ADCC0

Figure 30-2: ADC0 Multiplexed Input

ADC1 and ADC2 support a total of 12 channels each as shown in the multiplex diagram below. ADC1 and ADC2
can both support sampling multiple channels at same time. This is achieved through the Track and Hold circuits
(T/H) in the input of the ADCs. Each ADC can support simultaneous sampling of three input channels at a time,
via three T/H circuits. Note that data is sent to ADCC one after the other serially, even if the sampling is done
simultaneously.

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–7

T/H

ADC1T/H

T/H

A0
A1
A2
A3

B0
B1
B2
B3

C0
C1
C2
C3

T/H

T/H

T/H

A4
A5
A6
A7

B4
B5
B6
B7

C4
C5
C6
C7

ADC2

ADCC1

Figure 30-3: ADC1, ADC2 Multiplexed Input

ADCC Block Diagram

The ADCC controller consists of a trigger input selection multiplexer, two independent 32-bit timers, 32 event reg-
ister bank, 32 event comparators, a pending event FIFO, and a timing generation unit for two ADC interfaces. Also,
the ADCC incorporates two in-built DMA units, one for each ADCC timer, to store ADC samples directly in re-
quired memory space.

The following figures are block diagrams of ADCC0 and ADCC1. See ADCC Signal Descriptions for more details
on the various input and output signals specified in the block diagrams. The digital interfaces of ADCC0 and
ADCC1 are exactly alike.The differences in the ADC Timing and Control Unit interface level as follows:

• ADCC0 has only one ADC interface (for ADC0) and only one ADC unit (Unit A)

• ADCC1 has two ADC interfaces (ADC1 and ADC2) and two ADC units exist (Units A and B).

The ADCC interface to the digital side includes core and DMA access, interrupts and triggers. DMA is the prefer-
red way to operate the ADCC because it allows the cores to perfrom other tasks. It is possible to synchronize the
operation of ADC sampling and other peripherals. For instance, a PWM sync trigger maybe used to trigger an ADC
sampling by interconnecting a PWM sync trigger and a ADCC input trigger via the Trigger Routing Unit. The
ADCC also has multiple ways to interrupt the core, in order to process the data or to let the core take an action
based on sampling completion.

ADCC Functional Description

30–8 ADSP-CM41x Mixed-Signal Control Processor

NOTE: ADCC0 runs on SCLK and ADCC1 runs on SYSCLK. This chapter uses a common system clock and
must be interpreted as SYSCLK/SCLK0, as appropriate for programming.

EVENT
DATA

EVENT
STAT

EVENT
CTL

EVENT
TIME

EVENT
DATA

EVENT
STAT

EVENT
CTL

EVENT
TIME

FABRIC
INTERFACE

FABRIC
INTERFACE

DMA CORE DMA CORE

TMR0 TMR1

ADCC_SLV[5:0]

ADCC_TRIG_SEL0 ADCC_TRIG_SEL1

1 1

EVENTS
ASSIGNED
TO TMR0

EVENTS
ASSIGNED
TO TMR1

6

EVENT TIME
COMPARATORS

EVENT TIME
COMPARATORS

ADCC_TMR0_EVT
TRIGGER/INTERRUPT

ADCC_TMR0_EVT
TRIGGER/INTERRUPT

TRU

SCLK DOMAIN
ACLK DOMAIN

ADCC_
AD0/1

ADCC_
ACTL0

ADCC_
ACS

ADCC_
ACLKADC0

INTERFACE

ADCC_TCA0.NCK
ADCC_TCB0.TCSCK
ADCC_TCB0.TCKCS
ADCC_TCB0.TCSCS

ADCC_TCA0.CKDIV

ADC0 TIMING
CONTROL UNIT

ADC0

ADC0 CHANNELS

SCLK

ADC0 EVENT
FIFO

Figure 30-4: ADCC0 Block Diagram

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–9

EVENT
DATA

EVENT
STAT

EVENT
CTL

EVENT
TIME

EVENT
DATA

EVENT
STAT

EVENT
CTL

EVENT
TIME

FABRIC
INTERFACE

FABRIC
INTERFACE

DMA CORE DMA CORE

TMR0 TMR1

ADCC_SLV[5:0]

ADCC_TRIG_SEL0 ADCC_TRIG_SEL1

1 1

EVENTS
ASSIGNED
TO TMR0

EVENTS
ASSIGNED
TO TMR1

6

ADC1
EVENT
FIFO

ADC2
EVENT
FIFO

EVENT TIME
COMPARATORS

EVENT TIME
COMPARATORS

ADCC_TMR0_EVT
TRIGGER/INTERRUPT

ADCC_TMR0_EVT
TRIGGER/INTERRUPT

TRU

SYSCLK DOMAIN
ACLK DOMAIN BCLK DOMAIN

SYSCLK DOMAIN

ADCC_
AD0/1

ADCC_
ACTL0

ADCC_
ACS

ADCC_
ACLK

ADCC_
BD0/1

ADCC_
BCTL0

ADCC_
BCS

ADCC_
BCLK

ADC1
INTERFACE

ADC2
INTERFACE

ADCC_TCA0.NCK
ADCC_TCB0.TCSCK
ADCC_TCB0.TCKCS
ADCC_TCB0.TCSCS

ADCC_TCA0.CKDIV

SYSCLK

ADCC_TCA1.NCK
ADCC_TCB1.TCSCK
ADCC_TCB1.TCKCS
ADCC_TCB1.TCSCS

ADCC_TCA1.CKDIV

ADC1 TIMING
CONTROL UNIT

ADC2 TIMING
CONTROL UNIT

ADC1 ADC2

ADC1 CHANNELS ADC2 CHANNELS

Figure 30-5: ADCC1 Block Diagram

NOTE: For more information about each part of the ADCC, see ADCC Architectural Concepts.

NOTE: ADCC1 and ADCC0 have the same function and design, even though they connect to a different set of
ADCs.

NOTE: The hard reset or system reset signals that go to the processor and digital units such as ADCCs are not
connected to the Analog Front end.

ADCC Functional Description

30–10 ADSP-CM41x Mixed-Signal Control Processor

ADCC Signal Descriptions

The ADCC controls the operation of internal ADCs, based on the settings for enabled events and trigger input. As
the ADCs are internal, none of the ADCC signals are available as external package pins.

ADC Interface Signals

A number of signals connect the ADCC to the ADCs for providing ADC clock, chip select, and control. Using
these signals, the ADCC regulates the ADC sampling sequence and reads the converted data. These signals appear
in the ADCC-to-ADC1/2 Signal Descriptions table.

Table 30-8: ADCC-to-ADC1/2 Signal Descriptions

Name I/O Description

ADCC_ACS or ADCC_BCS O ADCC chip select (or start-of-conversion) for the ADC

ADCC_ACLK or ADCC_BCLK O ADCC clock for ADC communication

ADCC_ACTL0 or ADCC_BCTL0 O ADCC control signal for sending control word

ADCC_ACTL1 or ADCC_BCTL1 O ADCC ADC0/1 (A) control 1 for sending control word

ADCC_AD0 and ADCC_AD1 or
ADCC_BD0 and ADCC_BD1

I ADCC data lines for reading converted data from the ADC

ADCC_SLV[n] Trigger Slaves

The ADCC can accept up to six trigger slave inputs, which the trigger routing unit (TRU) of the processorroutes
internally. Only two of these trigger slaves can be accepted at a time. The ADCC trigger selection field (for example,
ADCC_CTL.TRGSEL0 bit field) assigns one trigger for each ADCC timer, which can be same or different.

Table 30-9: ADCC0 Triggers

ADCC0_SLV0

ADCC0_SLV1

ADCC0_SLV2

ADCC0_SLV3

ADCC0_SLV4

ADCC0_SLV5

Table 30-10: ADCC1 Triggers

ADCC1_SLV0

ADCC1_SLV1

ADCC1_SLV2

ADCC1_SLV3

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–11

Table 30-10: ADCC1 Triggers

(Continued)

ADCC1_SLV4

ADCC1_SLV5

Two 32-bit internal timers (TMR0/TMR1) in the ADC can be independently configured to start up on being trig-
gered by a trigger master (for example, PWM).

When the ADCC detects a valid trigger, the corresponding ADCC timer starts counting at the rate of the processor
system clock (SCLK). The ADCC treats trigger inputs as edge-sensitive.

If the trigger input appears before completion of an ADCC frame, the trigger overrun status bit is set and the
ADCC (optionally) generates an error interrupt. As each ADCC timer can initiate the ADCC frame, the ADCC
provides two trigger overrun bits, one for each timer.

ADCC_TMRn_EVT Trigger Masters

The ADCC can act as a trigger master, providing one of two trigger signals to the TRU on completion of each of
the ADCC timer frames. The triggers can be selectively enabled (for example, using the ADCC_CTL.TRGOE0 bit).

ADCC_ACLK, ADCC_BCLK

The ADCC clock provides the clock source for communicating with ADCs, which the ADCs also use for the con-
versionprocess. The ADCC provides this clock in gated format (for example, active only when controlling the
ADCs) to ensure excellent noise immunity during the conversion process.

The ADC clock is internally generated from the system clock of the processor. For example, the
ADCC_TCA0.CKDIV bit field specifies the divider to generate the ADC clock signal from SCLK. This divisor is a
16-bit field, allowing a wide range of clock rates for ADC operation.

Use the following equation to calculate the ADC clock frequency:

ADCC_ACLK = (SYSCLK) ÷ (ADCC_TCA0.CKDIV + 1)

Alternatively, calculate the clock divisor required for the ADC0 clock frequency as:

ADCC_TCA0.CKDIV = (SYSCLK ÷ ADCC_ACLK) – 1

The minimum and default value of ADCC_TCA0.CKDIV field is 0. Do not set the divisor field to zero when
SCLK is greater than the maximum clock frequency the ADC supports.

Both the ADC and the ADCC use this clock to drive the output signals and sample the incoming signals.

NOTE: ADCC0 runs on SCLK and ADCC1 runs on SYSCLK. The above programming is common for ADCC0/
SCLK as well.

ADCC Functional Description

30–12 ADSP-CM41x Mixed-Signal Control Processor

ADCC_ACS, ADCC_BCS

The ADCC provides a chip select signal to select the ADC for communication. It asserts the signal while sending
the control word, during conversion period, or while readingconverted data. These three phases form the ADC sam-
pling sequence, which starts based on a trigger input and the settings of one or more enabled events.

The width and period of the chip select signal is configurable based on ADCC timing register settings.

• Time-CS-to-CK-setup (for example, ADCC_TCB0.TCSCK) is the minimum delay between the assertion edge
of the chip select and the first edge of the ADC clock

• Number-of-clocks (for example, ADCC_TCA0.NCK) is the number of ADC clock cycles to be given in each
chip select pulse.

• Time-CK-to-CS-hold (for example, ADCC_TCB0.TCKCS) is the minimum delay between last edge of the
ADC clock and the de-assertion edge of the chip select signal

• Time-CS-to-CS-delay (for example, ADCC_TCB0.TCSCS) is the minimum delay between the completion of
one phase and starting of another phase of the ADC sampling sequence. (For example, the delay is the time
between the de-assertion edge of one chip select signal to the assertion edge of the next chip select signal).

All parameters are specified in terms of ADC clock cycles.

For example, on ADC, the width of the chip select signal is configurable based on the ADCC_TCA0.NCK,
ADCC_TCB0.TCSCK, and bit fields. The active duration of ADC clock select is calcula- ted as (in terms of ADC
clock cycles):

ADCC_ACS Active Duration = (ADCC_TCB0.TCSCK + ADCC_TCA0.NCK)

The ADCC uses the ADCC_TCB0.TCSCS field to control the inactive period of the ADC chip select.

Total Period (TCSP) = ADCC_ACS Active Duration + ADCC_TCB0.TCSCS)

The figure shows the timing relationships provided through the timing register settings.

TCSCK TCKCS TCSCK TCKCS

TCSCSNCK NCK

TCS

Figure 30-6: ADCC Clock Signal and Chip Select Signal Description

ADCC_CS Active Duration = ADCC_TCB0.TCSCK + ADCC_TCA0.NCK + ADCC_TCB0.TCKCS
ADCC_CS Inactive Duration = ADCC_TCB0.TCSCS
Total ADCC_CS period = TCS = ADCC_CS Active Duration + ADCC_CS Inactive Duration

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–13

ADC1 and ADC2 Timing Calculation

Substituting the values for the ADSP-CM41x, with an example TCSP as 340 ns for ADC1 and ADC2, the follow-
ing timing can be configured. Refer to the product data sheet for timing specifications.

NCK (Number of Clocks) is fixed as 8, TCSCK (Time CS to CK Setup) is fixed as 1 TCKCS (Time CK to CS
Hold) is fixed as 0.

To achieve 340 ns, with the requirements above, the TCSCS value can be derived as 8 as given: TCSCK + TCKCS +
NCK + TCSCS = 1 + 0 + 8 + 8 = 17 ADCC_ACK clocks. With a System clock (SYSCLK) of 100 MHz and an
ADCC_ACK divider of 2, the ADCs can achieve 50 MHz of ADC clock. With an ADCC_ACK = 50 MHz, the
period = 20 nsec and the final configuration achieves 340 nsec.

8 8

1 0

8

1 0

17 x ADCC_ACK
340 ns

Figure 30-7: ADC1 and ADC2 Timing Calculation

ADC0 Timing Calculation

Substituting the values for the ADSP-CM41x, with an example TCSP as 500 ns for ADC0, the following timing
can be configured. Refer to the product data sheet for timing specifications.

NCK (Number of Clocks) is fixed as 8, TCSCK (Time CS to CK Setup) is fixed as 1 TCKCS (Time CK to CS
Hold) is fixed as 0.

To achieve 500 ns, with the requirements above, the TCSCS value can be derived as 16 as given: TCSCK + TCKCS
+ NCK + TCSCS = 1 + 0 + 8 + 16 = 25 ADCC_ACK clocks. With a System clock (SYSCLK) of 100 MHz and an
ADCC_ACK divider of 2, the ADCs can achieve 50 MHz of ADC clock. With an ADCC_ACK = 50 MHz, the
period = 20 nsec and the final configuration achieves 500 nsec.

8 16

1 0

8

1 0

25 x ADCC_ACK
500 ns

Figure 30-8: ADC0 Timing Calculation

Timing and Control Unit

The ADCC Timing and Control Unit provides two ADC interfaces. Each interface can independently control one
ADC with the required timing and interface protocol.

ADCC Functional Description

30–14 ADSP-CM41x Mixed-Signal Control Processor

When an event becomes ready to handle, the ADC interface unit initiates the ADC sampling sequence, according to
the ADCC settings for that particular event. The ADC sampling sequence is divided into phases:

• Control phase – the control word is sent to ADC

• Conversion phase – the conversion pulse is provided

• Data phase – the converted data from the ADC is read

The ADC interface provides an ADC clock, an ADC chip select, control lines for sending the control word, and
data lines for reading converted data.

The ADCC timing registers determine the timing of the ADCC_ACLK, ADCC_ACS, ADCC_BCLK, and
ADCC_BCS signals. The ADC clock signals are gated and are provided only while controlling the ADC. The chip
select signal has programmable timing in terms of the ADC clock. The ADCC uses the bits of the ADCC_CTL
register to determine the timings and protocol of ADC control lines and data lines.

ADCC_ACS
ADCC_BCS

ADCC_ACTLx
ADCC_BCTLx

ADCC_ACLK
ADCC_BCLK

ADCC_ADx
ADCC_BDx

CONTROL

DATA

CONTROL CONVERSION DATA

Figure 30-9: Control Unit Timing

Control Conversion and data phase can be pipelined to achieve high throughput. Refer to the Programming Con-
cepts on how ADC sampling timing can be arrived at, for high throughput cases. It is application’s responsibility to
arrange the Event timing in such a way that the three phases can be pipelined, within the timing restrictions.

NOTE: The application does not have direct access to the ADC interface lines clock, data and chip select men-
tioned above and these are embedded internally in the design. These signals are automatically driven
whenever ADCC performs an access to ADC, based on the sampling requirement programmed as per
Event Registers.

General Operation

The processor or its peripheral infrastructure (based on either external or internal conditions) provides trigger signals
to the ADCC module to initiate the ADC conversions. The ADCC can simultaneously accept up to six trigger in-
puts from different sources (for example, from trigger masters of the TRU of the processor).

Two 32-bit counters, known as ADCC timers, are central to ADCC operation. These timers each independently
accept one of the trigger inputs and start counting at the system clock rate of the processor. The counting begins
when a valid edge is detected on the selected trigger input.

The ADCC provides 32 events that can be independently programmed to occur at the specified time after the trig-
ger signal. This time is configured in the time bit field, ADCC_EVT[nn].TIME of the corresponding event time
register. The event can be assigned to either to ADCC TMR0 or ADCC TMR1, by configuring the timer select bit
field, ADCC_EVCTL[nn].TMRSEL of the corresponding event control register. As the ADCC timers count at

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–15

SCLK rate, the event comparator unit compares the event time of enabled events with the current count of the as-
signed ADCC timer. If the count matches, the particular event is active.

The event control register of each event also specifies which ADC interface executes the sampling sequence of the
event. The ADCC_EVCTL[nn].ADCSEL bit field selects either ADC1 interface or ADC2 interface. Also, the
event control register stores a control word, which (when sent to an ADC) selects the analog input channel that the
ADC uses for conversion. When an event becomes active, the comparators signal the activity to the timing and con-
trol unit of the corresponding ADC interface.

If the ADC interface is ready to initiate an ADC sampling sequence, the interface starts the sequence for the current
active event. When the ADC interface is busy, the new active event is stored in an 8-deep pending event FIFO.(For
example, the ADC interface is busy when an event becomes active while it is already executing the sampling se-
quence of another event). The interface executes events from the pending FIFO (in chronologically order) when the
ADC interface is free.

Introduction to Events

A sample to be taken from an ADC is referred to as an event and events can also be inserted as NOP (No Opera-
tion/Sampling) instructions. The events can be programmed to occur at specified times after a trigger input to the
ADCC. The sample can be from any ADC channel within the ADCC domain, either in asynchronous mode or
synchronous mode. An event is complete when the data reception (for the event) completes. The ADCC can handle
a total of 32 events which can be independently configured and enabled. Each event can be assigned to an ADCC
timer and can instruct the ADCC to start a sampling sequence for ADCs.

A typical waveform is shown in the following figure.

ADCC_ACS
ADCC_BCS

ADCC_ACTLx
ADCC_BCTLx

ADCC_ACLK
ADCC_BCLK

ADCC_ADx
ADCC_BDx

CONTROL

DATA

CONTROL
CS

CONVERSION
CS

DATA
CS

Figure 30-10: ADCC Operation Example

The ADCC hardware automates this sampling process, and the converted data is directly available to read in the
data register (ADCC_EVDAT[nn]) of that event. When the ADCC starts to execute an event, the conversion data
is only available during the third frame being sent. If another event becomes active during this time, service for the
newly arrived frame is delayed. To reduce the latency of service for an event in collision events, the ADCC can de-
cide to pipeline the ADC sampling sequence of different events. (An event is in collision if it becomes active while
the ADCC is busy executing a previously received event).

The ADCC can handle a total of 32events which can be independently configured and enabled. Each event can be
assigned to an ADCC timer and can instruct the ADCC to start a sampling sequence for either ADC1 and ADC2
OR ADC0.

ADCC Functional Description

30–16 ADSP-CM41x Mixed-Signal Control Processor

Each event consists of a four register bank, including an event control register (ADCC_EVCTL[nn]), an event time
register (ADCC_EVT[nn]), an event status register (ADCC_EVSTAT[nn]), and an event data register
(ADCC_EVDAT[nn]). The ADCC_EVTEN register contains event enable bits.

The event control register determines the following:

• Event assignment to TMR0 or TMR1

• Event execution on the ADC0 interface when using ADCC0 OR Event execution on the ADC1/2 interface
when using ADCC1

• ADC channel selection for sampling

• Requirement for simultaneous sampling with another ADC

• Memory offset for event data storage for reading ADC data in DMA mode

The event time register specifies the time offset from the corresponding ADCC timer trigger input to the start of
that particular event. (For example, the time offset is when the event must happen based on the trigger input). This
time offset is specified in terms of system clock of the processor.

The event status register provides the delay in number of system clock cycles after the event match occurred. This
information is useful for debugging purpose.

The result of ADC sampling (for example, converted data from the ADC) is directly stored into the event data regis-
ter. The data can be accessed in core mode or can be directly DMA transferred into processor memory.

An ADCC timer frame completes when all the events associated with that ADCC timer complete after detecting a
valid trigger. At least one event per ADCC timer must be enabled for the ADCC to execute an ADC sampling se-
quence.

Event Examples

The following example illustrates the trigger, event, sample, and data transfer (channel) process. The ADCC Opera-
tion Example - Relating All Signals figure provides an overview of ADCC operations.

In the example the application samples two analog inputs. One input is from each ADC interface, at every PWM
period. Another input is comprised of two samples from different analog inputs, one from each ADC interface,
whenever there is some activity on a general-purpose input pin.

The application requires a total of four ADCC events. Two are triggered every PWM period, and the other two are
triggered when ever there is an edge on the general-purpose input pin. This example also assumes that events 0
through 3 (EVT-0 through EVT-3) are selected for this purpose.

• The pulse-width modulator (PWM) triggers EVT-0 and EVT-1.

EVT-0 initiates ADC1 sampling for the ADC1_CHN0 channel, while EVT-1 initiates ADC2 sampling for the
ADC2_CHN2 channel.

• A general-purpose pin input triggers EVT-2 and EVT-3.

Introduction to Events

ADSP-CM41x Mixed-Signal Control Processor 30–17

EVT-2 initiates ADC1 sampling for the ADC1_CHN2 channel, while EVT-3 initiates ADC2 sampling for the
ADC2_CHN3 channel.

Because there are two trigger sources in the application, both ADCC timers (TMR0 and TMR1) are enabled. One
of the timers (in the example, TMR0) accepts a trigger from the PWM master, while the other timer (in the exam-
ple, TMR1) accepts a trigger from the general-purpose pin input. The PWM_SYNC signal is used to generate the
trigger signal in each cycle. The PINT block is used to provide the trigger signal from the edges that appear on the
general-purpose input pin. The TRU of the processor routes the trigger signals from the trigger masters (in the ex-
ample, PWM and PINT) to the trigger slave (in the example, TMR0 and TMR1).

The activation of events after the trigger input is configurable in the ADCC_EVT[nn] (Event Time) register. The
ADCC Operation Example - Event Information table provides a list of event information.

Table 30-11: ADCC Operation Example - Event Information

Event ADC Interface ADC Channel ADCC Timer Triggered by Event Time

EVT-0 1 ADC1_CHN0 0 PWM Sync EVT0 < EVT1

EVT-1 2 ADC2_CHN1 0 PWM Sync EVT0 < EVT1

EVT-2 1 ADC1_CHN2 1 GP Input EVT3 < EVT2

EVT-3 2 ADC2_CHN3 1 GP Input EVT3 < EVT2

In this case, the ADCC signals can look as shown in ADCC Operation Example - Relating All Signals.

SCLK

TMR0
TRIGGER

EVT-0
EVT-1

TMR1
TRIGGER

EVT-0 EVT-1

EVT-3 EVT-2

EVT-3 EVT-2

CHN-0 CHN-2

CHN-1 CHN-3

EVT-0 EVT-1

EVT-3 EVT-2

CHN-3

CHN-0 CHN-2

EVT-0 EVT-1EVT-3 EVT-2

CHN-1

TMR0 TMR0TMR1 TMR1

ADC1
INTERFACE

ADC2
INTERFACE

TMR0
EVENT
READY

TMR1
EVENT
READY

EVENT TIME

EVT-1

EVT-3

Figure 30-11: ADCC Operation Example - Relating All Signals

Introduction to Events

30–18 ADSP-CM41x Mixed-Signal Control Processor

Note the following key points from the ADCC Operation Example - Relating All Signals figure:

• The ADCC timers start counting at the SCLK rate when a valid edge on a selected trigger is detected. The
event comparators compare the timer count with the event time register of associated events. The comparators
signal that the event is Ready on a count match.

• Each timer continues to run until all the associated events complete. The exact time depends on whether the
core or DMA operating modes are used for reading the ADC data. After all the events complete, the ADCC
timer count is reset to zero.

• The trigger inputs of both of the timers are asynchronous to each other. Events associated with the trigger in-
puts can overlap.

In the example, note that EVT-1 and EVT-3haveoccurred at the same time. (For example, event comparators
have signaled EVT-1 of TMR0 and EVT-3 of TMR1 as ready in the same ADCC_ACLK cycle). The priority
in this case goes to the event associated with TMR0, and EVT-1 is serviced first. EVT-3 is placed in the pend-
ing event FIFO, and the event collision error bit is set.

• For simplicity, the ADCC Operation Example - Relating All Signals figure shows the collided events as sepa-
rately serviced, one after the other. The ADC interface can decide during real-world operation to pipeline the
ADC sampling. The ADCC Operation Example - Event Tightly Pipelined figure describes this operation.

• The pulse on the ADC interface line shows ADC sampling sequence symbolically. This presentation does not
detail the exact sampling sequence and does not show the ADCC signals used to control the ADCs.

• There is no restriction for assigning events to ADCC timer 0 or timer 1. There is also no restriction for assign-
ing a particular event to the ADC1 interface or ADC2 interface. All the events can be independently program-
med.

When an event becomes active, the ADC sampling sequence related to it starts when the ADC interface is ready to
initiate the sampling process. The ADC sampling sequence is divided into phases:

• Control phase – the ADCC sends the control word to select the ADC channel for conversion. Typically, one
ADC provides multiple input channels, one of which is selected for conversion by specifying the channel-ID
while sending the control word. The control word for each event is stored in the
ADCC_EVCTL[nn].CTLWD field. For more information about the ADC control word, see Control Word
Format.

• Conversion phase – the ADCC sends a conversion pulse to initiate the conversion for the selected ADC chan-
nel.

• Data phase – the ADCC reads the converted data from the ADC. The ADCC provides the chip select or start
of conversion signal for each of these phases.

Introduction to Events

ADSP-CM41x Mixed-Signal Control Processor 30–19

ADCC Operation Example - Event Overlapped

Consider a case in which event 1 becomes active while the ADC interface is providing the conversion pulse for the
event 0 ADC sampling sequence. The ADCC starts the sampling sequence for event 1 in the next phase. For exam-
ple, the ADCC sends the control word (using the ADCC_EVCTL[nn].CTLWD bit field) for event 1 while
receiving data for the event 0 sample. Refer to the ADCC Operation Example - Event Overlapped figure.

ADCC_ACS
ADCC_BCS

ADCC_ACTLx
ADCC_BCTLx

ADCC_ACLK
ADCC_BCLK

ADCC_ADx
ADCC_BDx

CONTROL 0

DATA 0

EVENT 0

DATA 1

CONTROL 1

EVENT 1

Figure 30-12: ADCC Operation Example - Event Overlapped

ADCC Operation Example - Event Tightly Pipelined

The ADC interface can tightly pack the ADC sampling sequence, in such a way that events can be pipelined in a
tight manner. This helps to achieve maximum throughput from the ADC interface as well as to achieve the maxi-
mum sampling rate. When the ADC interface sends the control word for an event, the interface provides a conver-
sion pulse to the previous event and reads the converted data of the previous event.

ADCC0 Operation Example

This example assumes that event timing is configured for maximum throughput for ADC0.

ADCC_ACS
ADCC_BCS

ADCC_ACTLx
ADCC_BCTLx

ADCC_ACLK
ADCC_BCLK

ADCC_ADx
ADCC_BDx

CONTROL 0

DATA 0

EVENT 0

DATA 1

CONTROL 1

EVENT 1

DATA 2

CONTROL 2 CONTROL 3 CONTROL 4

EVENT 2 EVENT 3 EVENT 4

Figure 30-13: ADC0 Tight Sampling

ADC0 can support pipelining events in such a way that, sampling and reading of samples can be done back to back
on every event operation as shown above. It is a case of true tight pipelining because CONTROL, CONVERSION
and DATA cycles pertaining to subsequent pipelined events can all occur at same time.

ADCC1 Operation Example

This example assumes that event timings are configured for maximum throughput with single channel/MUX sam-
pling.

Introduction to Events

30–20 ADSP-CM41x Mixed-Signal Control Processor

ADCC_ACS
ADCC_BCS

ADCC_ACTLx
ADCC_BCTLx

ADCC_ACLK
ADCC_BCLK

ADCC_ADx
ADCC_BDx

CONTROL 0

DATA 0

EVENT 0

DATA 1

NOP

EVENT 1

CONTROL 1 NOP CONTROL 2

EVENT 2 EVENT 3 EVENT 4

Figure 30-14: ADC1 and ADC2 1x Tight Sampling

ADC1 and ADC2 use track-and-hold circuits to sample input channels. Multiplexers control these circuits, support-
ing simultaneous sampling of three channels. When sampling from the same multiplexer back-to-back, the program
needs to insert a NOP. The NOP ensures that no control word is sent.

AQUISITION FRAME 1 AQUISITION B AQUISITION C

MUX A MUX B MUX C

CONV A CONV B

ADCCS1

ADCCTL1

ConvStartA

ConvStartC

ConvStartB

Figure 30-15: Consecutive Channel Sampling, Maximum Throughput

As shown in the figure, the NOP is only required when the same multiplexer is used for consecutive sampling. If a
different multiplexer (and in turn a different input channel) is used, analog data can be sampled consecutively. For
more information, see Simultaneous Sampling Mode.

ADCC Architectural Concepts

The following sections describe the blocks appearing in the ADCC Block Diagram.

• Core and DMA Interfaces

• Trigger Inputs

• Timers

• Event Register Banks

• Event Comparators

• Pending Event FIFO

• Timing and Control Unit

ADCC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 30–21

Core and DMA Interfaces

The ADCC has a 32-bit core interface through which the core programs the ADCC control registers and reads the
ADCC status registers. The ADCC can also use this interface for reading the 16-bit converted ADC data stored in
event data registers in core mode.

To minimize the core overhead, the ADCC provides a 16-bit DMA interface for directly transferring converted
ADC data from the event data registers to the required memory space. This interface consists of two built-in DMA
units, one for each ADCC timer.

Trigger Inputs

The ADCC can accept up to six trigger inputs, based on which ADCC timers start running at processor system
clock rate (SCLK). Also, the ADCC contains two 32-bit internal timers (TMR0 and TMR1). Each timer can be
independently configured to use one of the trigger inputs. The ADCC_CTL.TRGSEL0 bit field selects the trigger
input for TMR0, and the ADCC_CTL.TRGSEL1 bit field selects the trigger input for TMR1. When both ADCC
timers are enabled for different trigger inputs, the ADCC uses two trigger inputs. The ADCC uses one trigger input
when both ADCC timers are enabled for same trigger input or if only one ADCC timer is enabled. The ADCC
ignores non-selected trigger inputs.

The TRU provides system-level sequence control without core intervention. Configure the slave-select (SSR) field of
the selected trigger input to the receive triggers from a specific trigger master. In this way, the ADCC slave trigger
can accept triggers asserted by that particular trigger master or asserted through software. Software writes the ID of
that trigger master to one of the fields in the TRU_MTR register. The trigger-out response from the selected master is
internally routed to the ADCC trigger input. For more information about the TRU and trigger slaves or masters, see
the Trigger Routing Unit (TRU) chapter.

Timers

The ADCC provides two independent 32-bit timers (TMR0 and TMR1). TMR0 is enabled by default when the
controller is enabled. TMR1 is enabled optionally using the ADCC_CTL.TMR1EN bit.

These timers start counting at system clock rate (SCLK) when a valid edge is detected on the selected trigger input.
The timer only stops counting under one of the following conditions:

• A timer rollover occurs.

• All the events associated with the trigger have completed.

NOTE: The ADCC supports continuous data sampling, in which timer-driven sampling schedule frames abut
back-to-back. In this situation, the timer runs continuously, and cycles back to zero on each new timer
trigger to start a new timer frame.

The timer-rollover case can never happen unless the event time register of an event is programmed at some point after
the trigger occurs. This programming is a practice that is contrary to the guidelines provided in the Programming
Model.

ADCC Architectural Concepts

30–22 ADSP-CM41x Mixed-Signal Control Processor

In the all-events-completed case, the exact time at which the timer stops counting depends on the core mode or DMA
mode of the ADC data read operation. In DMA mode, the timer stops counting only when all ADC data related to
ADCC frame are written into processor memory and the memory write response returns successfully.

The ADCC supports continuous data sampling, in which timer-driven sampling schedule frames abut back-to-back.
In this case, the timer runs continuously, and cycles back to zero upon each new timer trigger to start a new timer
frame.

When an ADCC timer is disabled or the ADCC controller is disabled, the timer resets to zero.

Event Register Banks

Typically, a sample to be taken from an ADC is referred to as an event. The events can be programmed to occur at
specified times after a trigger input to the ADCC. The sample can be from any ADC channel within the ADCC
domain, either in asynchronous mode or synchronous mode. An event is complete when the data reception (for the
event) completes.

The ADCC can handle a total of 32 events which can be independently configured and enabled. Each event can be
assigned to an ADCC timer and can instruct the ADCC to start a sampling sequence for ADCs.

Each event consists of a four register bank, including an event control register (ADCC_EVCTL[nn]), an event time
register (ADCC_EVT[nn]), an event status register (ADCC_EVSTAT[nn]), and an event data register
(ADCC_EVDAT[nn]). The ADCC_EVTEN register contains event enable bits.

The event control register determines the following:

• Event assignment to TMR0 or TMR1

• Event execution on the ADC0 interface when using ADCC0 OR Event execution on the ADC1/2 interface
when using ADCC1

• ADC channel selection for sampling.

• ADC MUX selection for ADC1 and ADC2.

• Requirement for simultaneous sampling with another ADC.

• Memory offset for event data storage for reading ADC data in DMA mode

The event time register specifies the time offset from the corresponding ADCC timer trigger input to the start of
that particular event.(For example, the time offset is when the event must happen based on the trigger input). This
time offset is specified in terms of system clock of the processor.

The event status register provides the delay in number of system clock cycles after the event match occurred. This
information is useful for debugging purpose.

The result of ADC sampling (for example, converted data from the ADC) is directly stored into the event data regis-
ter. The data can be accessed in core mode or can be directly DMA transferred into processor memory.

ADCC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–23

An ADCC timer frame completes when all the events associated with that ADCC timer complete after detecting a
valid trigger. At least one event per ADCC timer must be enabled for the ADCC to execute an ADC sampling
sequence.

Event Comparators

The event comparator block consists of 32 event time comparators, which determine when an enabled event is ready
for handling. After detecting a valid edge on a selected trigger input, the ADCC timer starts running at the system
clock rate. The comparators compare the ADCC timer count with the event time specified in the
ADCC_EVT[nn].TIME bit field of the enabled event. If the time value matches, the comparators signal the tim-
ing and control unit, indicating that an event has become active and is ready to handle. In response, the timing and
control unit starts the ADC sampling sequence (if the ADC interface is available).

Ifmore than one event is active during the same system clock cycle, the ADCC processes only the highest priority
event. (The event in this case is associated with an ADCC timer and is assigned to the same ADC interface). All
other eventsare missed (even if there was space available in the pending event FIFO). When an event is missed, the
corre- sponding event miss bit is set in the ADCC_EMISS register.

The priority of events is fixed, with the event with the lowest event ID having higher priority than other compared
events. The priority of the registers from highest to lowest is ADCC_EVT0>ADCC_EVT1>…
>ADCC_EVT22>ADCC_EVT31. The events assigned to TMR0 have higher priority than events assigned to
TMR1. If the events from both ADCC timers to the same ADC interface become active in the same system clock
cycles, the event triggeredby TMR0 receives higher priority.

Pending Event FIFO

The ADCC provides a separate, 8-deep FIFO for each ADC interface. If an event becomes ready when another
event is ongoing on the same ADC interface, the occurred event is stored in the pending event FIFO. The stored
event is an event in collision, and the corresponding event collision bit is set in the ADCC_ECOL register.

If the pending event FIFO is full when an event becomes active, the event is missed, and the corresponding event
miss bit is set in the ADCC_EMISS register.

After the ADC interface unit is free to start the new ADC sampling sequence, the event from the FIFO is shifted to
the timing and control unit.

On disabling the ADCC, all pending events in the pending event FIFO are flushed.

ADCC Operating Modes

Data Transfer Modes

The ADC interface of ADCC has a data acquisition capability in which the converted data from ADC is directly
stored into the data register of the corresponding event. The event setup instructs the ADCC as to the ADC to use
and the channel to sample. When the ADC interface handles the events, it initiates the ADC sampling sequence by
providing the control word and conversion pulse to ADC. Then, the ADCC reads the converted ADC data and
collects the data into the data register of that event, ADCC_EVDAT[nn].

ADCC Architectural Concepts

30–24 ADSP-CM41x Mixed-Signal Control Processor

The ADCC can read the newly received data in the ADCC_EVSTAT[nn] register either in core mode or in DMA
mode, which permits storing the data in the required memory space. The ADCC supports the following methods
for reading ADC samples:

• Core-driven single data reception for each ADC sample

• DMA-driven data read for multiple words transfers with minimal intervention of core.

The ADCC_CTL.DMAEN bit enables the DMA-driven mode of ADCC operation. When disabled, the ADCC uses
core-driven mode. Core-driven transfers use ADCC data interrupts to signal the processor core to perform single
word read from the event data register, which is ready. DMA transfers can be set up to transfer a configurable num-
ber of ADC samples to internal or external memory of processor without core intervention.

For more information, see Core-Driven Data Read Mode and DMA-Driven Data Read Mode.

Core-Driven Data Read Mode

The ADCC provides 32 event data registers (one for each ADCC event) for storing sampled ADC data associated
with that event. These registers, ADCC_EVDAT[nn], are accessible in core mode. Typically, when an ADC sam-
pling sequence completes, the newly available read data is stored in the data register of that event. The ADCC sig-
nals the data ready interrupt to the core. In the interrupt service routine, the core checks the ADCC event interrupt
status register, ADCC_EISTAT, to determine which event is complete and reads the ADC sample from its data reg-
ister.

The ADCC event interrupt mask register, ADCC_EIMSK, provides bits to unmask (enable) or mask (disable) the
data read interrupt requests for individual events. If there are multiple events in an ADCC frame, to reduce the
interrupt requests for every event in that frame, the ADCC provides a frame completion interrupt. The interrupt
request is triggered once in a frame after completion of all the events. The individual data requests from events can
be masked, then their data can be read based on the ADCC timer frame completion interrupt request.

In core mode, the “end of the ADCC timer frame” is when all the event data related to that ADCC timer has been
received from the ADC. The ADCC timer stops at the end of frame and is reset to zero.

DMA-Driven Data Read Mode

The ADCC includes two built-in DMA units for reading the ADC samples received in event data registers. The
controller provides a 16-bit DMA interface to store these ADC samples directly in processor memory without core
intervention. One DMA unit handles data read requests for the events associated with TMR0, and the other DMA
unit handles data requests for the events associated with TMR1.

Each DMA unit provides a set of registers to configure the DMA work-unit:

• Base pointer register (for example, ADCC_BPTR0) contains the base address of memory space for storing ADC
samples.

• Frame increment register (for example, ADCC_FRINC0) contains the address increment applicable to the
DMA base pointer register between the ADCC timer frames.

• Circular buffer size register (for example,ADCC_CBSIZ0) holds number of ADCC timer frames to be re-
ceived.

Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 30–25

Apart from these registers, the DMA unit uses the event offset field of control register of the respective event to store
the ADC samples related to it. The ADCC_EVCTL[nn].EVTOFS field specifies the memory offset in the frame
block defined by the base pointer and frame increment registers for each ADCC frame.

Each ADC timer frame can consist of many ADCC events. The ADCC_BPTR0 or ADCC_BPTR1 registers hold
the base-address used for placing the event data of the first frame into memory. The event data are each placed in a
location calculated from the base pointer and the event offset (for example, ADCC_BPTR0 +
ADCC_EVCTL[nn].EVTOFS). The base address of the second frame is calculated from the base pointer and the
frame increment (for example, ADCC_BPTR0 + ADCC_FRINC0). The base address of the third frame includes a
multiple of the frame increment (for example, ADCC_BPTR0 + 2 ADCC_FRINC0). This linear buffering mode
calculation pattern continues through the series of frames. The calculation of the address for placing the received

data of an event in the nth frame applies all of these factors. For example:

Location = ADCC_BPTR0 + (n1) ADCC_FRINC0 + ADCC_EVCTL[nn].EVTOFS
When the circular buffer size register (for example, ADCC_CBSIZ0) is programmed to zero, the DMA operates (as
previously described) in linear buffering mode.

When the circular buffer size register is programmed to a non-zero value, the DMA operates in circular buffering
mode. In this mode, the DMA initially follows the same pattern as given for the linear buffering. But, after a speci-
fied number of frames, the frame base pointer is reset to the base pointer address (for example, ADCC_BPTR0). It is
reset to the address instead of calculating the value from the base pointer plus frame increment. The ADCC uses the
circular buffer size register (for example, ADCC_CBSIZ0) to set the number of frames after which circular buffer
wraparound (resetting to the base pointer) occurs. After receiving the selected number of frames, the circular buffer
wraparound occurs, and the DMA begins overwriting the data from previous frames.

NOTE: Circular buffer wraparound is sometimes referred to as circular buffer loopback.

Considering operation in both DMA modes, the base pointer register holds the address for the following frames:

• The first frame after the ADCC is enabled (both DMA modes)

• The first frame after the core writes to the base pointer register (in linear buffering mode)

• The first frame after a circular buffer wraparound occurs (in circular buffering mode)

NOTE: There is no DMA burst feature, and each event data is written separately after completion of all the events
in that frame.

In DMA mode, the end of an ADCC timer frame occurs when all the event data related to that ADCC timer is
written into memory and responses have been received. The ADCC timer stops at the end of frame and is reset to
zero. When there are multiple pending events to write into memory, the priority is from the highest priority for
event 0 to the lowest for event 31.

Because the ADC data is 16 bits wide, bit 0 of the base pointer register and the frame increment register is non-
writable and reads as 0. This read-no-write access for bit 0 is to avoid address alignment error, by ensuring 16-bit
alignment. Do not attempt to access the event data registers directly while in DMA mode.

Data Transfer Modes

30–26 ADSP-CM41x Mixed-Signal Control Processor

If the ADCC is disabled while a DMA transfer is in progress, the DMA completes (gracefully). It writes all data
received (up to the point the ADCC was disabled) into memory. The DMA pending status for the corresponding
timer (for example, ADCC_T0STAT.DPND) remains high until all such transactions complete on the DMA bus,
including the write response signaling.

DMA Bandwidth Monitoring

In DMA mode, the ADCC provides a DMA bandwidth monitoring feature, which permits identifying whether the
ADCC timer count has gone beyond an expected limit while completing a frame. The ADCC provides a bandwidth
monitor register (for example, ADCC_BWMON0) for each ADCC timer to use bandwidth monitoring for their
frames.

For example, consider a case where each frame of an ADCC timer can complete much earlier than Q number of
SCLK cycles after receiving the trigger. The program can use the DMA bandwidth monitoring feature to check
whether all the events and their DMA transfers in each ADCC timer frame complete within that time. Program the
register of the related ADCC timer with a count of Q in this case.

The ADCC raises the error interrupt when the corresponding ADCC timer crosses this count while completing a
frame. The ADCC timers count until the DMA transfer of all events completes.

If the bandwidth monitoring feature is not needed, program the bandwidth monitor register to zero, disabling this
feature.

Simultaneous Sampling Mode

The simultaneous sampling feature in ADC1 and ADC2 of ADSP-CM41x permits reading samples from multiple
MUXs as well as from both the ADCs in a simultaneous synchronous fashion. Thus the processor ADC system can
support the following modes of simultaneous operation:

• 3x channel OR 2x channel sampling from any of MUXs (A OR B OR C) in an ADC.

• 6x channel OR 4x channel sampling from any of MUXs (A OR B OR C) between both the ADCs.

• Example 1: 3x channel on ADC1 and 3x channel on ADC2, making it 6x together.

• Example 2: 2x channel on ADC1 and 2x channel on ADC2, making it 4x together.

3x OR 2x Simultaneous Sampling

When 2 or all the 3 MUXs are selected in the ADCC_EVCTL[nn].CTLWD bit field, then the ADC is in simulta-
neous sampling mode. If this mode is enabled in first frame then the conversion of all subsequent MUXs happens in
the next frames automatically, and data transfer to ADCC in subsequent cycles. Data is available after each conver-
sion cycle for each of the MUX.

Data Transfer Modes

ADSP-CM41x Mixed-Signal Control Processor 30–27

MUX A,B,C CTL NOP

CONV A CONV B

ADCCS1

ADCCTL1

ConvStartA

ConvStartC

ConvStartB

MUX B

CONV C

Simult_sample_en

CTL NOP

Figure 30-16: 3x Simultaneous Sampling

For simultaneous sampling to take place, the ADCC has to send NOP frames (where no MUX is enabled), after the
first frame for the number of subsequent MUXs enabled in simultaneous mode. For example, if 3x sampling is ena-
bled, the following control word programmed from the ADCC_EVCTL[nn].CTLWD bit field must be sent to
ADC from ADCC:

• First Frame – Enable MUX A, B and C

• Second Frame – NOP Frame

• Third Frame – NOP Frame

The data is presented sequentially in the order of A, B and C. Corresponding Event numbers can be used to specify
the locations to place the data.

If 2x sampling is enabled, the following control word programmed from the ADCC_EVCTL[nn].CTLWD bit field
must be sent to ADC from ADCC:

• First Frame – Enable MUX A, B

• Second Frame – NOP Frame

The data is presented sequentially in the order of A and B. Corresponding Event numbers can be used to specify the
locations to place the data.

NOTE: No consecutive use of the same MUX is allowed in any of the sampling conditions (1x/2x/3x/6x, in a max-
imum throughput case), while an active conversion is on-going. For instance, if A, B and C MUXs are
simultaneously selected, conversion phases of all three MUXs must complete before another set of simulta-
neous sampling can be started with a new CTL word. However, programs can send a start conversion for
another MUX. For example, for the case of 2x where A and B MUXs are selected, the program can send a
control word (using the ADCC_EVCTL[nn].CTLWD bit field) to start a conversion for MUX B, while
the MUX C conversion is still on-going.

Ideally simultaneous sampling sequences (MUX A+B+C) can’t be interrupted and the sequence is followed as is, but
special care must be taken if a conversion is externally triggered and can’t be predicted. This operation can be called
an asynchronous timer operation, where the two timers are completely uncorrelated. This can cause an unpredicted

ADCC Operating Modes

30–28 ADSP-CM41x Mixed-Signal Control Processor

event to intrude in a MUX A−B−C sequence, or to violate the requirement of NOP frames. To prevent violating
these ADCC constraints, use one of the following programming models.

Synchronized, pre-planned timer schedules.

• Both timer frame periods run at integer multiples of each other (length of timer schedule).

• All event times in both timers are all placed at multiples of the same ‘slot time’ or ADC sample period.

• All slot usage is scheduled in advance by the user to avoid collisions and to avoid back-to-back MUX rule viola-
tions.

• Advantage is that both timers can freely use both ADCs.

Partition of resources between unsynchronized timers.

• ADCs are partitioned between timers, so they don’t share.

• Disadvantage is that simultaneous sampling between ADCs is not available.

• Also, this requires partitioning the ADC input pins 50/50 between timers.

• Advantage is that both timers can run fully asynchronously from one another and no collisions between timers
are possible.

6x or 4x Simultaneous Sampling

The simultaneous sampling feature ensures that the samples on two ADC channels are taken simultaneously, using a
shared chip select. (For example, one sample is from ADC1 and another from ADC2). The simultaneous sampling
sequence on both ADCs is initiated only after all the pending events are handled on the respective ADC interface.
This functionality ensures that the two ADC interfaces are synchronized.

The Simultaneous Sampling with Two Events figure shows a case of simultaneous sampling. Event 0 is configured to
initiate sampling of channel-m of ADC1, and event 1 is configured to initiate sampling of channel-n of ADC2.

ADCC_ACS

ADCC_BCS

ADC0 CONTROL

ADC1 CONTROL

ADC0 CONVERSION ADC0 DATA
ADC1 CONVERSION

ADC1 DATA

EVT-0
EVT-1

SHARED SAMPLING
INSTANT

TIME

Figure 30-17: Simultaneous Sampling with Two Events

Event 0 and event 1 are triggered at the same time, because both events are assigned to same ADCC timer and the
event time registers of both events are same. As there are no pending events on both ADC interfaces, the ADCC
immediately chooses to start the ADC sampling sequence on both ADC interfaces synchronously.

If pending events are present on either of the ADCs, simultaneous sampling happens only after both ADCs are
available. The Simultaneous Sample with Many Events figure shows a case in which events 0 and 1 sample on the

ADCC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 30–29

ADC1 channels. Events 2, 3, 4, 5, and 10 sample on the ADC2 channels so that event 1 and event 10 are a simulta-
neous sampling event pair. Assume that the ADC1 interface has only event 0 before simultaneous sampling; while
the ADC2 interface has events 2, 3, 4, and 5 before simultaneous sampling. This case demonstrates the wait imple-
mented by the ADC interface to manage pending events until it processes the simultaneous sampling pair.

ADCC_ACS

ADCC_BCS

EVT0_CTL

EVT-1
EVT-10

SHARED SAMPLING
INSTANT

TIME

EVT0_CNV EVT0_DAT

EVT2_CTL EVT3_CTL
EVT2_CNV EVT3_CNV

EVT2_DAT

EVT4_CTL
EVT4_CNV
EVT3_DAT

EVT5_CTL
EVT5_CNV
EVT4_DAT

EVT10_CTL

EVT5_DAT EVT10_DAT

EVT1_CTL
EVT1_CNV

EVT1_DATEVT10_CNV

EVT-4EVT-0 EVT-2 EVT-5

EVT-3

WAITING UNTIL
BOTH ADC UNITS
ARE AVAILABLE

SIMULTANEOUS SAMPLING
FOR ADC1 EVT1

AND ADC2 EVT10

EVT-15

Figure 30-18: Simultaneous Sample with Many Events

From the figure, it is important to observe that when the simultaneous sampling event pair becomes active, the
ADC2 interface is idle. The interface does not initiate the sampling sequence for event 1 associated with it. The
ADC2 interface is busy servicing pending events activated before the paired event (event-10) is ready. The ADC1
interface waits until the ADC2 interface becomes available to handle the paired event. Also, note that the ADC in-
terface treats simultaneous sampling event pairs as individual (non-paired or normal) events based on prioritization.
There is no priority assigned to paired events over normal events.

Due to the inherent nature of the ADC interface to handle the events in serial, the event triggered first is handled
first. The ADC interface handles subsequent triggered events only after all other triggered pending events. If another
event (for example, event 15) is triggered on ADC1 interface, the event is stored in pending event FIFO, even if
ADC1 interface is not handling any event. Event 15 is handled only after execution of the pending events triggered
before it (for example, after executing event 1).

Refer to the Simultaneous Sampling with Two Events figure and the Simultaneous Sample with Many Events figure.
While executing simultaneous sampling events, the conversion pulse to ADC2 in the ADC sampling sequence is not
given from ADC2 interface, but is shared from the ADC1 interface.

Diagnostic Mode

The processor has a special feature to verify the internal supply and signals for the user in a diagnostic mode. In this
mode, the ADC1 OR ADC0 captures data from following signals instead of the actual external ADC pins. It is also
possible to route the internal 12-bit DAC output to ADCs as given below. This diagnostic feature is enabled by
setting the DIAG_ADC_CHN_EN in the AFE Registers (AFE_Regs.h) register.

Table 30-12: ADC1 Multiplex and Channels

Multiplex/Channel 2 1 0

A DAC AVDD0 REGCAPA0

B DAC AVCOMP REGCAPD

ADCC Operating Modes

30–30 ADSP-CM41x Mixed-Signal Control Processor

Table 30-12: ADC1 Multiplex and Channels (Continued)

Multiplex/Channel 2 1 0

C DAC REFBUFOUT0 AVDD0

Table 30-13: ADC0 Channels

Channel Input

0 REGCAPA0

1 REGCAPA1

2 REFBUFOUT2

3 REFBUFOUT1

4 DAC

5 AVDD1

NOTE: Please consult the product specific datasheet for the specifications of all of these signals except for the DAC
output signal.

ADCC Event Control (SEC and TRU Related)
For the ADCC, the term event typically refers to ADC-related sampling and data conversion. The processor consid-
ers events as interrupt requests (related to the NVIC/SEC) and triggers (related to the TRU).

The ADCC provides status and error bits through different registers to signal the core about its state and various
error conditions that occurred during its operation.

The ADCC provides a primary error status register (ADCC_ERRSTAT) and two supplementary error status registers
(ADCC_ECOL and ADCC_EMISS). The supplementary registers provide more information about the errors flag-
ged in ADCC_ERRSTAT register. Optionally, the ADCC can generate an error interrupt request based on these
conditions.

Also, the ADCC provides an event completion status register (ADCC_EISTAT), which is used in core mode to
service the ADC data read requests. A frame interrupt status register (ADCC_FISTAT) provides timer frame com-
pletion status, which indicates whether all the events related to a frame have completed successfully. Optionally, the
ADCC data interrupt request can be generated based on these conditions.

The ADCC provides a timer status register (for example, ADCC_T0STAT) for each ADCC timer. This status regis-
ter indicates the current frame number the ADCC is handling. Also, this register indicates whether DMA is pending
reception of data from the ADC. An event pending register (ADCC_EPND) indicates which events are yet to start
after the trigger.

More information about ADCC features relating to processor events (NVIC/SEC interrupts and TRU triggers) is
available in the following sections:

• Interrupt Status

ADCC Event Control (SEC and TRU Related)

ADSP-CM41x Mixed-Signal Control Processor 30–31

• Error Status

• Pending, Frame, and Delay Status

• Event Handling Latency

Interrupt Status

The ADCC provides a data interrupt channel for each ADCC timer. ADCC_TMR0_EVT carries the TMR0 related
interrupts, and ADCC_TMR1_EVT carries the TMR1 related interrupts. The ADCC uses the same interrupt chan-
nel whether executing data reads in core mode or in DMA mode.

When operating in core mode, the ADCC uses the same data interrupt request to service the data read requests from
each event. The event completion bit (ADCC_EISTAT.EVT[nn]) indicates that data for the corresponding event
is pending and ready for the core to read. Based on the selection in the timers select bit
(ADCC_EVCTL[nn].TMRSEL) of the event, the corresponding event interrupt requests are sent on either the
ADCC_TMR0_EVT or on the ADCC_TMR1_EVT channel. Optionally, this interrupt request from each event can
be individually masked off from being signaled, using the bits in the ADCC_EIMSK register. The event data ready
bits in ADCC_EISTAT register are sticky. Clear these bits with a W1C operation.

The ADCC supports Last frame completion status (LFINT) as well as per Frame completion status (FNIT) descri-
bed below.

Frame Completion Status

The frame completion status bits for each ADCC timer (ADCC_FISTAT.FINT0 and ADCC_FISTAT.FINT1)
are applicable when using either core or DMA mode. In core mode, this bit is set when data corresponding to all
events (which were not missed) in a frame are received from the ADC. In DMA mode, this bit is set when:

• the data corresponding to all the events of a frame are received

• the data is DMA-transferred into processor memory, and

• are successfully received from the SCB

Clear the frame completion status bits to acknowledge before the next trigger appears. Otherwise, the trigger is ig-
nored, and the trigger overrun error condition is flagged. Clear these sticky status bits with a W1C operation.

Last Frame Completion Status

The last frame completion status bits for each ADCC timer (ADCC_FISTAT.LFINT0 and
ADCC_FISTAT.LFINT1) are applicable when using either core or DMA mode, and if total number of frames
(ADCC_NUMFRAM0/ADCC_NUMFRAM1) in the ADCC is a non-zero value. In core mode, this bits get set when all
data corresponding to events (which were not missed) of all the frames are successfully received by ADCC from
ADC. In DMA mode, this bit is set when:

• the data corresponding to all events of all the frames in total number of frames are received

• the data is DMA-transferred in to processor memory, and

ADCC Event Control (SEC and TRU Related)

30–32 ADSP-CM41x Mixed-Signal Control Processor

• the memory write responses are successfully received from the SCB.

Umasking the Status Interrupts

The frame interrupt mask register (ADCC_FIMSK) unmasks (enables) OR masks (disables) the frame completion
interrupts (Last Frame Interrupt and Frame Interrupt) from each ADCC timer.

NOTE: It is possible to perform back to back continuous sampling without having to clear the FINTn/LFINTn
status bits. For this, the corresponding bits in the ADCC_FIMSK register must be used to mask these in-
terrupts. In such a case, ADCCs can continue to do further sampling without any core intervention at all.
Additionally no trigger over run would be registered.

If the status interrupts as unmasked: Clear the frame completion status bits to acknowledge before the next
trigger appears. Otherwise, the incoming trigger is ignored, and the trigger overrun error condition is flag-
ged which can lead to data loss. Clear these sticky status bits with a W1C operation. This operation can be
done inside the interrupt handler, and optimally done by using a Memory DMA approach, where the
MDMA write operation is automatically triggered from an ADCC trigger output.

ADCC Interrupts

There are two interrupt handlers for the ADCC: ADCC_ERR for all error interrupts ADCC_TMR_EVT for event
interrupts and frame status interrupts.

Error Status

The ADCC can signal error conditions during its operation. It reports these conditions in an error status register
(ADCC_ERRSTAT), which holds the error status for the following:

• Trigger overrun error

• Event miss in frame error

• Event collision in frame error

• DMA bandwidth monitoring error

• Memory write response error

The trigger overrun error, DMA bandwidth monitoring error, and memory write response errors for ADCC timers
are individually flagged through separate bits.

The event miss bit is flagged when any one of the events are missed during the ADCC frame. The ADCC provides a
separate event miss register (ADCC_EMISS), which indicates which event was missed.

Similarly, the event collision bit is flagged when any one of the events collided with an active event. For example,
this flagging occurs when an event becomes active while the ADC interface is already handling another event. The
collided event is placed in pending event FIFO, and its handling is delayed. The ADCC provides a separate event
collision register (ADCC_ECOL), which indicates which event collided.

ADCC Event Control (SEC and TRU Related)

ADSP-CM41x Mixed-Signal Control Processor 30–33

The ADCC provides an error interrupt channel (ADCC_ERR) to signal these error conditions to the core. This in-
terrupt request carries error-related interrupts for both ADCC timers and for both ADC interfaces. By default, all
the error conditions generate interrupt requests. But, the error conditions can be individually masked from appear-
ing on the ADCC_ERR signal by programming the error mask register (ADCC_ERRMSK).

The following sections provide additional information about the most common ADCC error conditions.

Trigger Overrun Error Status

Trigger overrun is a condition in which the ADCC timer detects a valid trigger edge on the selected trigger
input before a previously triggered frame completes.

The ADCC timer starts counting when it detects a valid edge on its trigger input. Then, the ADCC handles
the events associated with the trigger by initiating ADC sampling sequences at the required time offsets. After
all the events complete, the frame is completed, and the ADCC sets the frame completion status bit (for exam-
ple, ADCC_FISTAT.FINT0). In DMA mode, the frame completion status bit is set when:

• the data corresponding to all the events of a frame are received

• then DMA is transferred into processor memory, and

• the successful memory write responses are received from the SCB.

If the status interrupts (FINT/LFINT) are unmasked via the ADCC_FIMSK regiater, then the frame comple-
tion conditions must be acknowledgedby clearing these bits in the software. After the bit is cleared, the ADCC
timer is ready to accept new trigger, initiating a new frame. If the new trigger pulse is receivedbefore this time,
it is treated as prematuretrigger, and the trigger overrun condition is flagged.

When this condition occurs, the ADCC ignores this trigger, sets the respective trigger overrun status bit (for
example, ADCC_ERRSTAT.TRGOV0), generates the error interrupt request (if enabled), and continues its
operation normally.

A trigger overrun condition also occurs when a new trigger is detected while ADC programming is in-progress
(indicated by the ADCC_ADCRW0.PND bit). This case can be avoided if the timer trigger enable (for exam-
ple, the ADCC_CTL.TRGIE0 bit) is disabled before ADC programming then re-enabled at the end of ADC
programming.

Event Miss Error Status

An ADCC event is considered missed when the ADC sampling sequence corresponding to that event is not
executing on the required ADC interface. When an event is missed, the ADCC_ERRSTAT.EMIS bit is flag-
ged and in the ADCC_EMISS.EVT[nn] bit corresponding to that event is set to provide more information
to the application.

In the following scenarios, a programmed event can be missed:

• FIFO overrun

An event is missed if the event pending FIFO is full when the event match occurs.

ADCC Event Control (SEC and TRU Related)

30–34 ADSP-CM41x Mixed-Signal Control Processor

• Event time conflict

One or more events is missed if:

• two or more events requiring sampling at the same ADC interface are assigned to same ADCC tim-
er, and

• the events have identical event time values in their event time registers.

Only the higher priority event is forwarded, and the lower priority events are missed.

• Non-paired simultaneous sampling

An event is missed if it is enabled for simultaneous sampling (ADCC_EVCTL[nn].SIMSAMP bit) on
one ADC interface, but there is no paired simultaneous sampling event programmed for the other ADC
interface.

• ADC interface conflict for simultaneous sampling pair

An event is missed if both events in a simultaneous sampling event pair are configured for same the ADC
interface. The event pair in this case is considered as two normal events (not a simultaneously sampled
pair), and the lower priority event is missed.

• Missed half of simultaneous sampling pair

Both events are missed if one event in a simultaneous sampling pair is missed at one ADC interface due
to any event miss reasons previously mentioned.

The priority of event is based on its event number ID. For example, the event with lowest event ID has higher
priority compared to other events, such that EVT0>EVT1>…>EVT22>EVT31. The priority does not depend
on whether it is assigned to the ADC1 interface or to the ADC2 interface. The priority does depend on
whether the event is assigned to TMR0 or assigned to TMR1. The events assigned to TMR0 have higher pri-
ority than events assigned to TMR1.

This priority is checked only at the event comparator block, when more than two events become active at the
same system clock cycle. After the events are queued, the ADC interface does not check the priority, and
events are handled in sequence as they become active.

As mentioned in event time conflict, low priority events are missed when two or more events are assigned to
same ADCC timer with identical event time register value. (Events are assigned to same ADC interface). Con-
sider a case in which two events (EVT1 and EVT5) occur simultaneously.

• If both events are assigned to same ADCC timer and route to the same ADC interface (ADC1 or
ADC2):

• the EVT5 event (being the lower priority event) is missed, and

• the EVT1 event is forwarded to the ADC interface for handling.

ADCC Event Control (SEC and TRU Related)

ADSP-CM41x Mixed-Signal Control Processor 30–35

Do not assign the same event time for multiple normal events of same ADCC timer and send them to the
same ADC interface. It is the responsibility of the programmer to ensure that the values in the event time
registers do not lead to event misses.

• If one of the events is assigned to TMR0 and the other to TMR1 (both route to same ADC interface),
the event assigned to TMR0 is forwarded first to the ADC interface. Then, the event assigned to TMR1
is forwarded. Typically, the event is stored in the event pending FIFO when the FIFO is not full. This
case appears when sources that are not synchronized trigger TMR0 and TMR1. And, the event time reg-
ister is not always the same for both events. It is important to consider the possibility of events occurring
either simultaneously or being missed when enabling events on two asynchronously triggered timers. Suf-
ficient time must space the events, so the pending event FIFO does not operate at its maximum capacity.

• If both events are assigned to the same ADCC timer, both events are forwarded to the respective ADC
interfaces for handling, assuming there is no pending event. (In this case, one event routes to the ADC1
interface and the other to ADC2 interface). A simultaneous event pair is assigned to same ADCC timer
with same event time but going to different ADC interfaces. If one of the events is missed for some rea-
son, the paired event also is missed. (For example, the pending event FIFO on the particular ADC inter-
face is full or if another high priority event from same timer becomes active in the same system clock
cycle)

NOTE: To reduce the event miss condition resulting from pending event FIFO full conditions,
the ADCC provides an 8-deep event FIFO for each ADC interface. But, the program-
mer must ensure that the events are sufficiently spaced apart from each other (event han-
dling in pipelined manner can also be considered). The programmer must ensure that
event miss conditions do not lead to FIFO overrun.

Event Collision Error Status

If event times are not sufficiently spaced apart, an event could occur while a previous event is underway. An
ADCC event is considered in collision if:

• that event becomes active (the event comparator unit signaled it as ready-to-handle) when the ADC in-
terface is busy handling a previous event, or

• there are already some events in the pending event FIFO waiting to be handled

In such cases, the newly active event cannot be issued to the ADC at the earliest possible time because of some
previous events are not complete yet.

The ADCC provides an 8-deep FIFO for queuing collided events. The ADCC_ERRSTAT.ECOL bit flags the
collision condition, and the ADCC_EVT[nn] bit corresponding to that event is set to provide more informa-
tion to the application. The ADCC also provides a means for the application to know (by how many system
clock cycles) the event was delayed. It indicates this time in the ADCC_EVSTAT[nn].DLYCNT field of that
event, which is updated only when the control word (ADCC_EVCTL[nn].CTLWD) for the event is sent to
the ADC.

ADCC Event Control (SEC and TRU Related)

30–36 ADSP-CM41x Mixed-Signal Control Processor

If one event of a simultaneous sampling pair undergoes collision, the other event (in the simultaneous sam-
pling pair) also is indicated as undergoing collision.

Due to inherent nature of ADCC to queue the ready events, the collided event can be handled before comple-

tion of all the pending events. For example, this previous event (for instance, (n−1)th) is completed only after

the reception of its data. When a collision occurs, it indicates that the nth event is sent to the ADC only after

some delay. But, it is not after the completion of (n−1)th event. When a chip select pulse of the conversion

phase or data phase of (n−1)th word must be sent to the ADC, the ADCC state-machine sends the control

word for nth event with the earliest chip select pulse.

NOTE: The event collision is an error condition in which the expected sampling time of the
ADC for the collided event can be delayed. The event is not missed.

DMA Bandwidth Monitoring Error Status

The ADCC can be configured to store the ADC samples related to enabled events directly in the processor
memory through the built-in DMA unit. When using this mode, the ADCC provides a DMA bandwidth
monitoring feature, which identifies whether the ADCC timer count has gone beyond an expected limit while
completing its frame. The bandwidth monitor register (for example, ADCC_BWMON0) specifies this count.

When the ADCC timer count crosses the count specified in bandwidth monitor register while completing a
frame, the bandwidth error bit flags the DMA bandwidth error for the respective DMA unit. (An example of
the bandwidth error bit is ADCC_ERRSTAT.BWERR0).Clear this sticky error bit with a W1C operation.
Optionally, the ADCC can assert the error interrupt request to the system on a bandwidth error. Optionally,
the ADCC can use an error interrupt to notify the core of this error condition.

Memory Write Response Error Status

If the ADCC detects a memory write error response that corresponds to a data write issued for an ADCC
timer event, the memory response error bit flags the condition. (An example of the memory response error bit
is ADCC_ERRSTAT.MERR0). Clear this sticky error bit with a W1C operation. Optionally, the ADCC can
use an error interrupt to notify the core of this error condition.

Pending, Frame, and Delay Status

In addition to data request status and error bits, the ADCC provides bits for DMA pending status, event pending
status, current frame number, and event delay status. These conditions operate as follows:

DMA Pending Status

If the ADCC is disabled while a DMA transaction is in-process, the DMA finishes (gracefully). It does not
shut down until the data corresponding to all completed events is sent to memory and responses are received.
The DMA pending bit (for example, ADCC_T0STAT.DPND) indicates the DMA activity associated with an

ADCC Event Control (SEC and TRU Related)

ADSP-CM41x Mixed-Signal Control Processor 30–37

ADCC timer. This status bit is useful for cases in which the ADCC is later re-enabled. The application
typically polls this bit before re-enabling the ADC controller.

If the ADCC is disabled while a DMA transaction is in-process, the DMA finishes (gracefully). It does not
shut down until the data corresponding to all completed events is sent to memory and responses are received.
The DMA pending bit (for example, ADCC_T0STAT.DPND) indicates the DMA activity associated with an
ADCC timer. This status bit is useful for cases in which the ADCC is later re-enabled. The application typi-
cally polls this bit before re-enabling the ADC controller.

Event Pending Status

The ADCC provides an event pending register (ADCC_EPND) to indicate the events within the current
frames that are pending execution. This register contains a dedicated bit corresponding to each ADCC event.
At the trigger pulse, when a frame corresponding to an ADCC timer is initiated, all the bits corresponding to
enabled events in that frame are set. The bits are cleared upon receiving the data from the ADC for the corre-
sponding events. Because the bits in this register indicate whether the event is pending, if an event is missed,
the respective bit also is cleared.

.

Current Frame Status (Number)

In DMA mode, the application can require knowledge of the number of frames the ADCC handled. The cur-
rent frame count bit field (for example, ADCC_T0STAT.CURFR) of the associated ADCC timer provides
this information. The field indicates the current frame number in chronological order after the ADCC was
enabled (in linear buffer mode). Or, the field indicates the frame number after the last wraparound (in circular
buffer mode). This field wraps over after 0xFFFF frames.

Event Delay Status

When an event is in collision, the application can need knowledge of the amount of time the event was de-
layed (in system clock cycles). The ADCC uses the delay count bit field (ADCC_EVSTAT[nn].DLYCNT) of
the event to indicate this information. The ADCC updates the field only when it sends the control word of
the event to the ADC.

Event Handling Latency

The event handling latency of the ADC interface is the time between the internal occurrence of the event and start
of the ADC sampling sequence for the event. The latency is the time between:

• the event time value matching the ADCC timer count value, and

• the assertion of chip-select for the control phase of the ADC sampling sequence

If an event becomes active when the ADC interface of ADCC is idle, the timing and control unit immediately starts
handling that event. (The event has a predictable latency of 4–5 system clock cycles).

ADCC Event Control (SEC and TRU Related)

30–38 ADSP-CM41x Mixed-Signal Control Processor

If the event becomes active when the ADC interface is busy handling a previous sampling event, the new event is
held in the pending event FIFO. The latency increases by the duration that the new event is held in the pending
event FIFO. To reduce the latency in servicing this new event, the ADC interface can decide to queue the sampling
sequence for this event with the sampling sequence of an ongoing event. For more information about this operation,
see the ADCC Functional Description.

For a simultaneous sampling event pair, the latency can depend on the activities on other the ADC interface. This
event pair is executed only when both ADC interfaces are ready.

Sometimes there can be few cycles of latency at the trigger routing unit (TRU) of processor when providing trigger
inputs to the ADCC from different trigger master sources. This situation is especially prone to occur when an asyn-
chronous external trigger input is selected as the trigger input of ADCC. The time needed for synchronization to
this external signal can lead to few system clock cycles of delay.

The ADCC provides an event delay count status field (ADCC_EVSTAT[nn].DLYCNT) for each event to convey
the latency that occurred in handling an event. This count indicates the number of system clock cycles the event was
delayed, after the event match occurred. This field gets updated in every ADCC timer frame, when the ADC con-
vert start signal goes active to transmit the control word to the ADC corresponding to that event.

The ADCC provides an event delay count status field (ADCC_EVSTAT[nn].DLYCNT) for each event to convey
the latency that occurred in handling an event. This count indicates the number of system clock cycles the event was
delayed, after the event match occurred. This field gets updated in every ADCC timer frame, when the ADC con-
vert start signal goes active to transmit the control word (ADCC_EVCTL[nn].CTLWD) to the ADC corresponding
to that event.

ADCC Programming Concepts
There are general programming concepts for using the ADCC when it is present on any processor.

NOTE: There can also be processor-specific guidelines for programming the ADCC.

Fully configure the ADCC including trigger setup, ADCC events, and DMA programming (if necessary) before en-
abling the controller by setting ADCC_CTL.EN bit. Set the trigger input bits (for example, ADCC_CTL.TRGIE0)
just before enabling the ADCC.

Do not configure two or more events assigned to the same timer and going to the same ADC interface with the
same event time. If the ADCC has this configuration, other event miss error conditions can occur.

If different sources that are not synchronized trigger the ADCC timers, it is important to consider the possibility of
events occurring either simultaneously or being missed. Space apart the events with sufficient time, so the pending
event FIFO does not operate at (or beyond) its maximum capacity.

The frame completion status bit must be acknowledged for every frame. If they are not acknowledged, trigger over-
run conditions can occur.

There is no restriction on dividing the events among ADCC timers and among ADC interfaces.

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–39

When configuring a simultaneous sampling event pair, certain restrictions apply in terms of configuring event attrib-
utes. See Simultaneous Sampling Mode for more details.

The event registers can be modified after the ADC controller is enabled; these registers include the event time
(ADCC_EVT[nn]), event control (ADCC_EVCTL[nn]), and event enable (ADCC_EVTEN). Do not modify
these registers when the frame is in-progress. If necessary, modify these registers only after completion of the frame
associated with the ADCC timer to which the event is assigned. Modify them before clearing the frame completion
interrupt status bit. These registers must be stable when the trigger arrives.

In linear DMA mode, the base pointer register (for example, ADCC_BPTR0) and frame increment register (for ex-
ample,ADCC_FRINC0) can be modified after enabling the ADC controller. Do not modify the base pointer regis-
ter in circular buffer DMA mode. The changes in DMA registers are considered only in the next frame.

Do not disable the ADC controller while a frame is in-progress (for example, disable the ADCC only after the frame
interrupt). This protocol prevents unfinished transfers on ADC interface. Before re-enabling the ADCC, poll the
DMA pending bit (for example, ADCC_T0STAT.DPND) to confirm that there is no DMA activity. Before reconfi-
guring the ADCC_CTL register, disable the ADCC. The only write allowed into an enabled ADCC control register
is to disable it.

The ADCC status registers and counter-values are retained upon disabling ADCC (for debug purposes) and are
cleared on re-enabling the controller (a 0-to-1 transition on the ADCC_CTL.EN bit). Error status bits are not
cleared with this transition. Clear errors with a W1C operation.

ADCC Control and Timing Registers

The ADCC block is a common design extended for other products. Some of the interface programming (using
ADCC Control and Timing registers) are specific to the ADSP-CM41xF processor and should be programmed ac-
cording to the specification given below. Alternate values are not applicable for ADSP-CM41xF.

BIT name in ADCC_CTL Value

MODE 1

CSIZE 0

DSIZE 1

TRGPOL0 1

TRGPOL1 1

CKPOL0 0

CKPOL1 0

CSPOL0 0

CSPOL1 0

TIDLE0 0

TIDLE1 0

DSWP0 0

ADCC Programming Concepts

30–40 ADSP-CM41x Mixed-Signal Control Processor

BIT name in ADCC_CTL Value

DSWP1 0

LSBF0 0

LSBF1 0

BIT name in ADCC_TCAy Value

CKTGRE 1

NCK 8

BIT name in ADCC_TCBy Value

TCSCK 1

TCSCS 0

Control Word Format

The following tables present the controlword format programmed using the ADCC_EVCTL[nn].CTLWD bit
field. The actual Control Word furnished below is 8-bit and is LSB-aligned in the 16-bit
ADCC_EVCTL[nn].CTLWD field.

Table 30-14: ADC1 and ADC2 Control (CTL) Word Format

Bit Position Field Entries Program as

[7:5] (ADC_CHAN) ADC Channel Number, there are up
to 8 channels.

7 = CHAN 7

6 = CHAN 6

5 = CHAN 5

4 = CHAN 4

3 = CHAN 3

2 = CHAN 2

1 = CHAN 1

0 = CHAN 0

ADC Channel Number

[4:2] (ADC_MUX) ADC Channel Mux, Multiple selec-
tions allowed for first event of single channel 2x/3x si-
multaneous sampling

4 = MUX A

3 = MUX B

2 = MUX C

Select any or all muxes

[1] Share CS (Share chip select) Program as 1 if simultaneous sam-
pling is necessary

[0] RESERVED Program as 0

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–41

Table 30-15: ADC0 Control (CTL) Word format

Bit Position Field Entries Program as

[7] RESERVED Program as 0

[6:4] (ADC_CHAN) ADC Channel Number, there are up
to 7 channels.

6 = CHAN 6

5 = CHAN 5

4 = CHAN 4

3 = CHAN 3

2 = CHAN 2

1 = CHAN 1

0 = CHAN 0

ADC Channel Number

[3:0] Progam as 0

ADCC Continuous Sampling Sequence

The following table shows a method to understand the back-to-back sampling sequence when a minimum chip se-
lect for the three ADCs is assumed. The table can be interpreted as control word and timing sequences for achieving
maximum throughput scenarios.

ADC CS Period
(TCS)

340ns 340ns 340ns 340ns 340ns

ADC CS Period
Count

1 2 3 4 5

ADC 1 OR ADC2
3x sim-sampling

Control Phase CTLWD:

MUX ABC &
CHNL

CTLWD:

NOP (No Mux)

CTLWD:

NOP (No Mux)

NOP (delay) CTLWD:

MUX ABC &
CHNL

Conversion
Phase

CNV A CNV B CNV C

Data Phase DATA A DATA B DATA C

ADC CS Period
Count

1 2 3 4

ADC 1 OR ADC2
2x sim-sampling

Control Phase CTLWD:

MUX AB &
CHNL

CTLWD:

NOP (No Mux)

NOP

(delay)

CTLWD:

MUX AB &
CHNL

Conversion
Phase

CNV A CNV B NOP

(delay)

Data Phase DATA A DATA B

ADC CS Period
Count

1 2 3 4

ADCC Programming Concepts

30–42 ADSP-CM41x Mixed-Signal Control Processor

ADC 1 OR ADC2
1x sampling

Control Phase CTLWD:

MUX A & CHNL

NOP

(delay)

CTLWD:

MUX A &
CHNL

NOP

(delay)

CTLWD:

MUX A & CHN

Conversion
Phase

CNV A NOP

(delay)

CNV A

Data Phase DATA A NOP

(delay)

DATA A

ADC CS Period
(TCS)

500ns 500ns 500ns 500ns 500ns

ADC CS Period
Count

1 2 3 4 5

ADC0 1x sampling Control Phase CTLWD: CHNL CTLWD:
CHNL

CTLWD:CHNL CTLWD:CHNL CTLWD:CHNL

Conversion
Phase

CNV CNV CNV CNV

Data Phase DATA DATA DATA

Initializing the AFE

The ADCs, DACs and FOCP internal registers must be initialized in order to use AFE components. This is accom-
plished using a programming sequence through ADCC0. In addition to these internal registers, read and write ac-
cess is available for the following registers.

• AFE Registers (AFE_Regs.h) – Performs initialization and turning on additional features

• AFE Registers (AFE_Regs.h) – Status register reflecting status of FOCP

• AFE Registers (AFE_Regs.h) – Status register reflecting status of ECC of Internal registers

Internal Register Error Correction

As mentioned above, there are 10 banks of internal registers that are initialized during the initialization phase of the
AFE. Refer to AFE Initialization for details on how to initialize AFE. Single Bit Error Correction is available for
these registers, while Double Bit Errors are indicated in the AFE Registers (AFE_Regs.h) register. The
ECC check function is always turned on for these registers.

RESET for AFE

A processor hard reset and system reset are not connected to the Analog Front End including the ADCs. When these
reset signals are asserted, only their digital counterpart such as ADCCs or DACCs are reset. The USERCONFI-
GREG0 registers that are mentioned above for AFE Initialization are read from internal AFE hardware, and they
typically do not need to be reset when the digital domain is reset. However, if desired all the AFE registers maybe
reset by doing a power recycle only of the AFE domain. Consult the data sheet for information about the AFE do-
main power supplies.

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–43

AFEOK Signal

The AFE (Analog Front End that comprises of ADCs) provides a signal to the MCU indicating that it is operating
properly. Deassertion of this signal indicates that the ADC data being provided to the MCU may no longer be with-
in specification and/or the AFE the functioning of the AFE is not correct. For safety purposes, the system designer
may elect to cause deassertion of this signal to cause a processor interrupt and/or immediate hardware responses.

AFEOK is a safety signal and if it is not asserted, and the issue can be anywhere in AFE domain. Programs need to
verify all required hardware and software related to AFE operation. Since the verification is perfromed in the initiali-
zation stage, there is no need to verify the sampling part of software with ADCC registers. Typical scenarios of fail-
ure includes power supply issues with the AFE or issues with internal hardware, or internal LDOs.

The AFE_OK signal is active high, and is initially expected to be deasserted (low) at reset. The state of the AFEOK
is visible in the SYSBLK_SYSSTAT.AFE_OK register bit in both SYSBLK0 and SYSBLK1.

The AFEOK signal is provided with the following event connections. The interrupts show an inverted state.
AFE_NOTOK interrupt is asserted when the AFEOK signal is deasserted.

Interrupts

• The AFE_NOTOK interrupt to the Cortex-M4 core

• The AFE_NOTOK interrupt to the Cortex-M0 core

Trigger Masters

• The AFE_NOTOK trigger master in the Cortex-M4 TRU1 unit

Since the AFEOK is initially (default state after reset) deasserted, the program has to initialize the AFE (as given in
the programming guidelines) before initializing the ADCC for conversion or before initializing interrupts.

6x Sampling

While setting up individual event control and timing remains almost the same for the 6x sampling case, the follow-
ing bits must also be included in Control Register:

• Enable the ADCC_EVCTL[nn].SIMSAMP bit.

• Enable all MUXA, MUXB, MUXC in the ADCC_EVCTL[nn].CTLWD bit field.

• Bit [1] of the ADCC_EVCTL[nn].CTLWD bit field can optionally be set to 1 so that a shared chip select is
used between ADCs. This is only required for more precise synchronization.

• If simultaneous sampling is selected, the same channel number is used. For instance, if Channel 0 is selected for
A and B MUX, then same channel number, 0 is used for both A and B.

Precise Event Timing

This section describes the various Programming guidelines for achieving precise sampling times at the ADCs. Wher-
ever two ADCs are not mentioned, the information is applicable for all ADCs including ADC0 and the clock can be
either SCLK or SYSCLK based on the domain.

ADCC Programming Concepts

30–44 ADSP-CM41x Mixed-Signal Control Processor

1. To access two ADCs using a timer’s events, the clock division ratios of both ADCs must be equal. Various
timing parameters in the ADCC_TCA0/ADCC_TCA1/ADCC_TCB0/ADCC_TCB1 registers should also be
programmed with same values for both ADCs.

2. To access two ADCs using a timer’s events, the SYNCCK feature has to be enabled in the ADCC_TCA0/
ADCC_TCA1 registers and both ADCs should select the same trigger input for synchronizing their clocks.
Avoiding the SYNCCK feature can bring in an additional uncertain delay of up to N−1 system clock cycles
(where 1:N is clock division ratio) between the triggers to samples.

3. Each timers’ triggers should be given after mN number of system clock cycles after the synchronizing trigger
input given to ADC(s), where 1:N is the clock division ratio and m is any positive integer.

4. For a clock division ratio of 1:N, all the event times programmed in the ADCC_EVT[nn] registers must be
multiples of N. (for example 0 , kN etcetera where k is a positive integer)

5. An event is considered NON-PIPELINED if its event time EVT(n) is such that there are no previous events
with event times in the range [EVT(n) − 3 × tCSP × N, EVT(n)]. A NON-PIPELINED event has a delay of {1
× SYSCLK + 2 × ADCC_ACLK} after the event matches the SYSCLK cycle until the control chip select is sent
out. For 1:2 ratio of SYSCLK: ADCC_ACLK, this is SYSCLK periods. Here precise timing of NON-PIPE-
LINED events is possible.

6. For PIPELINED events, precise pipe-lining is possible if the difference between event times is always main-
tained to be an integer multiple of tCSP × N (1:N being the clock division ratio). If this guideline is followed,
each PIPELINED event will have a delay of:

{1 × SYSCLK + 2 × ADC clocks} after the event match SYSCLK cycle until the control chip select is sent out.
For 1:2 ratio of SYSCLK: ADC clock = 5 SYCLK periods.

7. If multiple frame’s events are getting pipelined (they do not satisfy condition 6 above), the triggers which ini-
tiate the frames must be spaced apart by multiples of tCSP × N number of system clocks. (1:N being the clock
division ratio).

8. The TIMER counts start one cycle after a trigger input. Thus the TIMER count’s relation to trigger input is:

SCLK

TRIG

0TIMER OFFTMR 1 2 3 4 5

An event programmed at EVT=0 goes out 2 SYSCLKs + 2 ADCC_ACLK after the SYSCLK period with the
trigger pulse active.

9. If the precise timing guidelines as mentioned above are followed for all events, the delay from the event match
SYSCLK cycle till the Chip select going active is fixed to be 1 SYSCLK + 2ADC clock cycles. This is explained
for the case of 1:2 clock division ratio in the figure below.

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–45

SCLK

ADCS

NTMR N+1 N+2 N+3 N+4 N+5

ADC CLK

EVENT MATCH CYCLE
EVTnn == TMR

CHIP SELECT
GOES ACTIVE

1 SCLK + 2 ADC CLK = 5 SCLK

General Programming Guidelines

The discussion in the following sections provides the general programming model of the ADCC.

• All Mask, Set or Clear registers can be modified while ADC controller is in operation.

• Status clearing (by Write-1-to-Clear) is allowed while ADCC is in operation.

• Apart from the above, the ADCC_BPTR0/ADCC_BPTR1, ADCC_EVT[nn], ADCC_FRINC0/
ADCC_FRINC1, ADCC_EVCTL[nn] and ADCC_EVTEN registers are the only ADC control registers that
may be modified after the ADC controller is enabled.

• In the circular buffering mode of operation, the ADCC_BPTR0/ADCC_BPTR1 registers can be modified after
the number of frames programmed in the ADCC_CBSIZ0/ADCC_CBSIZ1 registers are completed, provided
that the value programmed in the ADCC_NUMFRAM0/ADCC_NUMFRAM1 registers has been used to generate
the LFINT interrupt after ADCC_CBSIZ0/ADCC_CBSIZ1 frames are completed.

Write the ADCC_BPTR0/ADCC_BPTR1 registers prior to the reception of the next trigger. (The new write
can be done using an interrupt service routine initiated by LFINT if the ADCC_NUMFRAM0/
ADCC_NUMFRAM1 registers are programmed to generate the interrupt after the number of frames configured
in the ADCC_CBSIZ0/ADCC_CBSIZ1 registers).

• Do not modify the ADCC_EVCTL[nn] and ADCC_EVT[nn] registers for enabled events when the frame
(for which the events were enabled) is in progress. For other events which are not enabled in any of the current-
ly progressing frames, the ADCC_EVCTL[nn] and ADCC_EVT[nn] registers may be modified. Enable the
ADCC_EVTEN register only after the modifications are done.

• The configuration for the ADCC_EVTEN register for a particular frame should be stable when the trigger ar-
rives. Further changes in the ADCC_EVTEN register are considered only for the subsequent frame. The same
holds for the ADCC_BPTR0/ADCC_BPTR1 registers.

• Do not disable the ADC controller while a frame is in progress. Disable the ADCC only after the Frame inter-
rupt/Last Frame Interrupt for the ADCC_NUMFRAM0/ADCC_NUMFRAM1 registers is non zero. This prevents
unfinished transfers on an ADC interface and associated anomalies, if any. If stopped in the middle of a trans-
action on an ADC, the transaction may be dropped midway. Not adhering to this guideline may lead to wrong
data on re-enabling the ADC controller.

ADCC Programming Concepts

30–46 ADSP-CM41x Mixed-Signal Control Processor

• For debug purposes, the MMR status and counter values are retained when the ADCC is disabled.

• MMR registers such as counters and other status are cleared on a 0 to 1 transition on the enable bit. Error
status is not cleared with this 0 to 1 transition. Clear errors using a W1C operation.

• All MMR register changes which are required between frames should be done when the ADCC_NUMFRAM0/
ADCC_NUMFRAM1 registers =0, after the frame interrupt is generated and before software clears the frame in-
terrupt bit in AFC_AISTAT register.

• If the ADCC_NUMFRAM0/ADCC_NUMFRAM1 registers = non-zero, all MMR register changes must be done
after the LFINT (last frame interrupt) is generated (after N + 1 frames) and before software clears the interrupt.
The next trigger is accepted only after clearing the LFINTx bit.

• Disable the ADCC_CTL register before reconfiguring it. The only write allowed into an enabled ADCC_CTL
register is to disable it. Enable the ADCC only after ensuring that the ADCC_T0STAT.DPND/
ADCC_T1STAT.DPND bits are zero.

• For ADC1 and ADC2, no two consecutive samples can be taken from the same channel MUX (A / B / C). Use
Event programming to resolve this restriction. This implies that if event times of EVT(n) and EVT(n − 1) are
such that: EVT(n − 1)≤ EVT(n) ≤ EVT(n − 1) + tCSP × N

then EVT(n) and EVT(n − 1) should not have the same channel mux selected (tCSP is the chip select period in
terms of ADC clock periods and 1:N is the clock division ratio).

6x Sampling

For 6x event control and timing, the following bits must also be configured in the Event Control register.

• Enable the ADCC_EVCTL[nn].SIMSAMP bit

• Enable all MUXA, MUXB, MUXC in the ADCC_EVCTL[nn].CTLWD bit field.

• Bit [1] in the ADCC_EVCTL[nn].CTLWD bit field must be set to 1, so that the shared chip select is used
between ADCs. This is required for more precise synchronization.

Event and Sample Timing Relationships

There are several According to the relative timings of successive events, various scenarios can be seen in the ADCC
operation. Only non-simultaneous sampling scenarios are considered in this section. Various cases and their han-
dling in the ADCC’s protocol is as follows:

NOTE: tCSP is the chip select period and 1:N is the clock division ratio between SYSCLK and ADCC_ACLK.

NOTE: The examples use SYSCLK which is assigned to ADCC1 however they are applicable for SCLK0/ADCC0
as well.

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–47

Case1: Events are Spaced Apart in Time

Let EVT(n − 1) and EVT(n) be the two events shown in the figure. To have no pipelining among the two events,
the guideline to be followed is: EVT(n − 1) + 3 × tCSP × N < EVT(n)

TIME

CTL0 CTL1

DAT0 DAT1

ACQ0 CNV0 ACQ1 CNV1

no CTL sent no CTL sent no CTL sent no CTL sent

t0 t1

CS

CTL

DAT

FIRST EVENT
GENERATED

SECOND EVENT
GENERATED

Figure 30-19: Handling of Spaced Events

Case 2: Second Event Timed at the Slot for the Chip Select After the Data Chip Select of the
Previous Event.

In this case, the control transmission of EVT(n) happens only after the data reception of EVT(n − 1). However, the
timing of the control chip select is decided by the previous CS pulse, since the chip select pulse width needs to be at
least tCSP × N SYSCLK periods.

Let EVT(n − 1) and EVT(n) be the two events shown in the figure. For EVT(n) CTL to be transmitted with the
fourth CS pulse, EVT(n − 1) + 2tCSP × N < EVT(n) ≤ EVT(n − 1) + 3 × tCSP × N

TIME

CTL0 CTL1

DAT0 DAT1

ACQ0 CNV0 ACQ1 CNV1

no CTL sent no CTL sent no CTL sent no CTL sent

t0 t1

CS

CTL

DAT

FIRST EVENT
GENERATED

SECOND EVENT
GENERATED

Figure 30-20: Pipelining with Fourth Chip Select

Case 3: The Second Event Pipelined with the Data Chip Select of the Previous Event

Let EVT(n − 1) and EVT(n) be the two events shown in the figure. To pipeline EVT(n) with the data chip select of
EVT(n − 1), the guideline to be followed is EVT + tCSP × N < EVT(n) ≤ EVT(n − 1) + 2 × tCSP × N

NOTE: This is the maximum throughput condition for ADCC1 (ADC1 an ADC2).

ADCC Programming Concepts

30–48 ADSP-CM41x Mixed-Signal Control Processor

NOTE: In this case of maximum throughput, if ADC1 or ADC2 is used for sampling, then back to back sampling
on the same MUX is allowed only if no CTL word is sent for the same MUX, while its conversion is
ongoing.

TIME

CTL0 CTL1

DAT0 DAT1

ACQ0 CNV0 ACQ1 CNV1

no CTL sent no CTL sent no CTL sent

t0 t1

CS

CTL

DAT

FIRST EVENT
GENERATED

SECOND EVENT
GENERATED

Figure 30-21: Handling Overlapping Events

Case 4 : Subsequent (n+1th) Events Pipelined with the Conversion Chip Select for the Previ-
ous(nth) Event

Let EVT(n − 1) and EVT(n) be two consecutive events shown in the figure. To pipeline EVT(n) with the CNV chip
select of EVT(n − 1), the guideline to be followed is EVT(n − 1) < EVT(n) ≤ EVT(n − 1) + tCSP × N

NOTE: This approach is only allowed for ADCC0

FIRST EVENT
GENERATED

TIME

DAT0

ACQ0 CNV0 ACQ1 CNV1

SECOND EVENT
GENERATED

t0 t1

CS

CTL

DAT

ACQ2 CNV2 ACQ3 CNV3

CTL0 CTL1 CTL2 CTL3 CTL4

DAT1 DAT2

t2 t3

THIRD EVENT
GENERATED

t4

FOURTH EVENT
GENERATED

FIFTH EVENT
GENERATED

Figure 30-22: Tight Pipelining

Delay from Event firing to control transmission

The delay after the event match cycle to control transmission is captured in the ADCC_EVSTAT[nn].DLYCNT
bit field. If the guidelines in the sections above are followed, this is {1 SYSCLK period + 2 ADC clock periods}.

Delay from Control Transmission to Sampling

The delay from control transmission to event sampling is:

Max {Conversion_time,control_transmission time} + Acquisition_time

For operating at the maximum possibe ADC throughput, the control transmission needs to be less than the conver-
sion time. Thus, delay from control transmission to sampling is:

ADCC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 30–49

Conversion_time + Acquisition_time. This is equivalent to the period of Chip Select.

Programming Model
The discussion in the following sections provides the detailed programming model of the ADCC.

AFE Register Access Programming Model

There are three registers in the AFE domain that needs to be accessed via ADCC, but they are not visible in the
ADCC Memory Map. These registers (detailed in AFE_Regs.h) are listed below and are read or written via
ADCC0/ADC0

• USERCONFIGREG0

• STATUSREG0

• STATUSREG1

These registers are needed for multiple situations which include:

• AFE Initialization of its internal hardware configuration and other registers.

• Enabling diagnostic mode.

• Enabling clock fault check on FOCP.

• Verifying which Comparator has triggered FOCP interrupt.

• Selecting the DAC for programming.

NOTE: Only AFE initialization requires the ADC clock to be 1 MHz. These registers can be accessed in any fre-
quency within the maximum range specified in the datasheet.

Control Word for Register Access

Accessing AFE registers are done via ADCC0 and are issued with a special control word explained below. This is an
8-bit field and is written as LSB-aligned in the 16-bit ADCC_EVCTL[nn].CTLWD field. See references in ADCC
Initialization, FOCP and DACC chapters on how the control words are used.

Bit Position Field Entries Program as

[7] RESERVED Program as 1

[6] WNR (Select between Write and Read) = 1 for Write

= 0 for Read

[5] RESERVED Program as 0

[4-1] REGADDRESS (Register Address) Register Address

[0] RESERVED Program as 0

Programming Model

30–50 ADSP-CM41x Mixed-Signal Control Processor

NOTE: Accessing the AFE registers implies using the ADC0. User software must ensure that ADC0 is used when
it is completely idle and no event is active at that time. The second option is to turn off ADC0 by writing
to the control register before accessing these registers and re-enabling ADC0 for actual ADC sampling.
This ensures that ADC0 is used only to access the registers during that period.

AFE Registers (AFE_Regs.h)

The AFE Registers are used to enable and verify the status of various specific settings in the Analog Front End. This
includes the ADCC, FOCP, and DACC modules.

NOTE: These registers are reset after a power supply recycle, but not after a hard reset assertion of the processor.

/
*===
=================
 USER CONFIG and STATUS Registers
==
===============*/
#define REG_AFE0_USERCFG 0x00001000 /* AFE0 AFE User Configuration Register
*/
#define REG_AFE0_STATUSREG0 0x00001001 /* AFE0 AFE Status Register 0 */
#define REG_AFE0_STATUSREG1 0x00001002 /* AFE0 AFE Status Register 1 */

Table 30-16: USER CONFIG and STATUS Registers

Register_Bit Bit Description Value

#define
BITP_AFE_USERCFG_HWCFG_LOAD

22 Enables the Hardware Configuration Load 0x00400000

#define
BITP_AFE_USERCFG_HWCFG_LD_BL
K_SEL

18 Selects Blocks 0-9 for Loading the Hardware
Configuration during Initialization

0x003C0000

#define
BITP_AFE_USERCFG_DAC_EN_ILIM

16 Current Limit Enable for DAC Output Buf-
fer

0x00010000

#define BITP_AFE_USERCFG_DAC_SEL 15-14 Enables Selection of DAC.

00 = 12 Bit DAC

01 = DAC_A

10 = DAC_B

11 = Not Used

0x0000C000

#define BITP_AFE_USERCFG_DI-
AG_FOCP_EN

13 Enables Diagnostic Mode for FOCP, a Use
Config Mode Bit

0x00002000

#define BITP_AFE_USERCFG_DI-
AG_ADC_CHN_EN

12 Enable Diagnostic Mode for ADC, a User
Config Mode Bit

0x00001000

Programming Model

ADSP-CM41x Mixed-Signal Control Processor 30–51

Table 30-16: USER CONFIG and STATUS Registers (Continued)

Register_Bit Bit Description Value

#define
BITP_AFE_USERCFG_FOCP_CLK_CH
ECK_EN

11 Enable the FOCP Fault Check on
FOCP_CLK

0x00000800

#define
BITP_AFE_USERCFG_MON_AUX-
BUFF_BYPASS

10 Bypass AUx Buff for Monitor ADC, a User
Config Bit

0x00000400

#define
BITP_AFE_USERCFG_PRI1_AUX-
BUFF_BYPASS

9 Bypass Auxbuff for Primary ADC, a User
Config Mode

0x00000200

#define
BITP_AFE_USERCFG_PRI2_AUX-
BUFF_BYPASS

8 Enable Auxbuff Bypass for Pri2 ADC, a User
Config Bit

0x00000100

#define
ENUM_AFE_USERCFG_EN000_16

DAC_SEL: selects 12 bit DAC 0x00000000

#define
ENUM_AFE_USERCFG_EN001_17

DAC_SEL: selects DAC A (over voltage
DAC)

0x00004000

#define
ENUM_AFE_USERCFG_EN002_18

DAC_SEL: selects DAC B (under voltage
DAC)

0x00008000

Programming Sequence

The typical programming sequence consists of several steps which are accomplished in the following order.

1. AFE Initialization

2. Verify AFE_OK signal is asserted.

3. Timing and Configuration initialization of ADCs

4. Configuration of Events for Frame capturing, Event Control (Frame Setup)

5. Initialize ADCC DMAs

6. Configure Interrupts

7. Enable ADCC

The final setup includes initializing the ADCC itself (ADCC_CTL.EN) and then waiting for interrupts for com-
plete frame capture by DMA and process the buffer by the core.

AFE Initialization

Initialization code must be executed before the ADCs can be used. This initializes the Analog part of the entire AFE,
including the ADCs, (ADC1, ADC2 and ADC0). A single interface (ADCC0) is used to initialize all ADCs. Dur-
ing initialization, the ADC clock (ADCC_ACLK) must be set to 1 MHz. The following code sequence is mandatory

Programming Model

30–52 ADSP-CM41x Mixed-Signal Control Processor

and is typically performed in the ARM Cortex-M4 application code. Once the initialization is performed, a manda-
tory delay of 10 msec must be added before disabling the ADCC. (The ADCC must be disable at the end, in order
to reset the whole state machine for further programming for sampling and data acquisition.)

void Init_AFE(void)
{

/*Initialize clocks including Core Clock and System clock*/
Initialize_CGU();

/*Timing Control A reg, ADC_CLK should be 1MHz. We assume 100 MHz System Clock.*/
*pREG_ADCC0_TCA0 = (((99 << BITP_ADCC_TCA0_CKDIV) & BITM_ADCC_TCA0_CKDIV) |
 ((8 << BITP_ADCC_TCA0_NCK) & BITM_ADCC_TCA0_NCK));
__DSB();

/*Timing Control B reg */
*pREG_ADCC0_TCB0 = (((1 << BITP_ADCC_TCB0_TCSCK) & BITM_ADCC_TCB0_TCSCK) |
 ((0 << BITP_ADCC_TCB0_TCKCS) & BITM_ADCC_TCB0_TCKCS) |
 16 << BITP_ADCC_TCB0_TCSCS) & BITM_ADCC_TCB0_TCSCS));
__DSB();

/*Enable ADCC*/
*pREG_ADCC0_CTL = (BITM_ADCC_CTL_EN |
 BITM_ADCC_CTL_MODE|
 BITM_ADCC_CTL_DSIZE);
__DSB();

/* Following initializes 10 internal registers in the AFE. */
#define BITM_AFE_USERCFG_HWCFG_LOAD 0x00400000
#define BITP_AFE_USERCFG_HWCFG_LD_BLK_SEL 18
#define BITM_AFE_USERCFG_HWCFG_LD_BLK_SEL 0x003C0000

#define CTLWD_AFEINIT 0xC0

/*Bit[7] – RESERVED = 1 */
//Bit[6] – WNR = 1
//Bit[5] – RESERVED = 0
//Bit[4-1] – REGADDRESS = 0000
//Bit[0] – RESERVED = 0

for (int AFEregno=0; AFEregno <10; AFEregno ++)
{
 unsigned int USER_CFG0 = ((BITM_AFE_USERCFG_HWCFG_LOAD)|
 ((AFEregno << BITP_AFE_USERCFG_HWCFG_LD_BLK_SEL) &
 BITM_AFE_USERCFG_HWCFG_LD_BLK_SEL));

 /*AFE Register access Control Word */
 *pREG_ADCC0_ADCRW0 =
 (((CTLWD_AFEINIT << BITP_ADCC_ADCRW0_CTLW) & BITM_ADCC_ADCRW0_CTLW) |

Programming Model

ADSP-CM41x Mixed-Signal Control Processor 30–53

 ((USER_CFG0 << BITP_ADCC_ADCRW0_DAT) & BITM_ADCC_ADCRW0_DAT));

 /*wait until ADCC operation completed*/
 while((*pREG_ADCC0_ADCRW0 & BITM_ADCC_ADCRW0_PND))
 __NOP();
}

//wait for exactly 10 msec. Below is a dummy function.
delay_ms(10);

//disable ADCC
*pREG_ADCC0_CTL = 0x0000;
//disable ADCC
__DSB();

}

Verifying AFE_OK Signal

The SYS_AFE_NOTOK signal is asserted when the part comes out of reset and the program needs to perform the
AFE Initialization before turning on the AFE_NOTOK interrupts.

if(!(*pREG_SYSBLK1_SYSSTAT & BITM_SYSBLK_SYSSTAT_AFE_OK))
printf(”AFE is not initialized properly”);

Initializing ADC Timing and Configuration

There are general programming concepts for using the ADCC when it is present on any processor. For control, the
ADCC provides two ADC interfaces (in this example, ADC1 and ADC2), which can be independently configured
for the ADC sampling sequence timing. The ADC expects an 8-bit control word on a single control line (for exam-
ple, ADCC_ACTL0), while the controller drives the converted 16-bit data on two data lines (for example,
ADCC_AD0 and ADCC_AD1).

Timing Initialization

For each interface (ADC1 and ADC2) set up the following.

1. Clock Divisor (ADCC_TCA0.CKDIV/ADCC_TCA1.CKDIV)

2. Program all timing configuration. The programming must meet the minimum conditions explained earlier. A
snippet is given below for ADC1 and ADC2.

• Program number of clocks for Conversion Pulse (ADCC_TCA0.NCK/ADCC_TCA1.NCK).

• Timing CS to CS Delay (ADCC_TCB0.TCSCS/ADCC_TCB1.TCSCS)

• Time CK to CS Hold (ADCC_TCB0.TCKCS/ADCC_TCB1.TCKCS)

• Time CS to CK Setup (ADCC_TCB0.TCSCK/ADCC_TCB1.TCSCK)

Programming Model

30–54 ADSP-CM41x Mixed-Signal Control Processor

*pREG_ADCC1_TCA0 = (((1 << BITP_ADCC_TCA0_CKDIV) & BITM_ADCC_TCA0_CKDIV) |
 ((8 << BITP_ADCC_TCA0_NCK) & BITM_ADCC_TCA0_NCK));

*pREG_ADCC1_TCB0 = (((1 << BITP_ADCC_TCB0_TCSCK) & BITM_ADCC_TCB0_TCSCK) |
 ((0 << BITP_ADCC_TCB0_TCKCS) & BITM_ADCC_TCB0_TCKCS) |
 ((8 << BITP_ADCC_TCB0_TCSCS) & BITM_ADCC_TCB0_TCSCS));

*pREG_ADCC1_TCA1 = (((1 << BITP_ADCC_TCA1_CKDIV) & BITM_ADCC_TCA1_CKDIV) |
 ((8 << BITP_ADCC_TCA1_NCK) & BITM_ADCC_TCA1_NCK));

*pREG_ADCC1_TCB1 = (((1 << BITP_ADCC_TCB0_TCSCK) & BITM_ADCC_TCB0_TCSCK) |
 ((0 << BITP_ADCC_TCB0_TCKCS) & BITM_ADCC_TCB0_TCKCS) |
 ((8 << BITP_ADCC_TCB0_TCSCS) & BITM_ADCC_TCB0_TCSCS));

Control Register Initialization

The following is an example for setting up the ADC Control Register.

For each interface (ADC1 and ADC2 programmer to select the configuration)

1. Program the ADCC_CTL register. Several parameters are fixed, see “ADCC Control & Timing Registers” in
Programming Concepts.

2. Trigger Slave: There are up 6 timer slave triggers to select two active connections (ADCC_CTL.TRGSEL0/
ADCC_CTL.TRGSEL1).

3. Enable Timer 1 if needed (ADCC_CTL.TMR1EN).

#define ADCC1_CTL (((1 << BITP_ADCC_CTL_TRGSEL0) &
BITM_ADCC_CTL_TRGSEL0) |\
 ((2 << BITP_ADCC_CTL_TRGSEL1) &
BITM_ADCC_CTL_TRGSEL1) |\
 ((0 << BITP_ADCC_CTL_DSWP0) &
BITM_ADCC_CTL_DSWP0) |\
 ((0 << BITP_ADCC_CTL_DSWP1) &
BITM_ADCC_CTL_DSWP1) |\
 ((0 << BITP_ADCC_CTL_LSBF0) &
BITM_ADCC_CTL_LSBF0) |\
 ((0 << BITP_ADCC_CTL_LSBF1) &
BITM_ADCC_CTL_LSBF1) |\
 ((1 << BITP_ADCC_CTL_TRGPOL0) &
BITM_ADCC_CTL_TRGPOL0) |\
 ((1 << BITP_ADCC_CTL_TRGPOL1) &
BITM_ADCC_CTL_TRGPOL1) |\
 ((1 << BITP_ADCC_CTL_TMR1EN) & BITM_ADCC_CTL_TMR1EN) |\
 ((0 << BITP_ADCC_CTL_TRGOE0) &
BITM_ADCC_CTL_TRGOE0) |\
 ((0 << BITP_ADCC_CTL_TRGOE1) &
BITM_ADCC_CTL_TRGOE1) |\
 ((1 << BITP_ADCC_CTL_DSIZE) & BITM_ADCC_CTL_DSIZE) |\

Programming Model

ADSP-CM41x Mixed-Signal Control Processor 30–55

 ((0 << BITP_ADCC_CTL_CSIZE) &
BITM_ADCC_CTL_CSIZE) |\
 ((1 << BITP_ADCC_CTL_MODE) &
BITM_ADCC_CTL_MODE) |\
 ((1 << BITP_ADCC_CTL_DMAEN) & BITM_ADCC_CTL_DMAEN))

NOTE: If an application requires changing the ADC voltage reference (from the default) then this change step
must be performed prior to any other ADCC programming.

Configuring DMA

To use DMA with the ADCC, the following registers need to be configured.

/*Example Register setup for frame configuration*/

*pREG_ADCC1_BPTR0 = (unsigned int) &ADC_Data[0];
*pREG_ADCC1_FRINC0 = 32 *2; //32 events enabled, each 16 bit
*pREG_ADCC1_CBSIZ0 = 2048; //2048 is total number of frames
*pREG_ADCC1_BWMON0 = 0; //turn off bandwidth monitor
*pREG_ADCC1_NUMFRAM0 = 2048; //interrupt after 2048 frames

Configuring Interrupts

There are multiple interrupts for the ADCC. A typical setup includes setting the Last Frame Interrupt and the Error
Interrupt as follows.

*pREG_ADCC1_FIMSK &= ~(BITM_ADCC_FIMSK_SET_LFINT0) ;
*pREG_ADCC1_FIMSK |= (BITM_ADCC_FIMSK_SET_FINT0) ;
*pREG_ADCC1_ERRMSK = ~(BITM_ADCC_ERRMSK_EMIS | BITM_ADCC_ERRMSK_TRGOV1|
BITM_ADCC_ERRMSK_TRGOV0);

Frame Setup 1x Sampling

The following steps are used to program 1x sampling.

1. To program Events, use the ADCC_EVT[nn] and ADCC_EVCTL[nn] registers.

2. Enable the events in the ADCC_EVTEN_SET register.

3. To program the event timer register, be aware of the timing requirements. Consult the descriptions on various
sampling modes to understand how Chip Select timing must be programmed. The ADSP-CM41x data sheet
contains the minimum requirements for example:

*pADCC_REG_Ptr = (EVT_ID × tCSp × (2 × (tCSCS + 8+ 1)));
• EVT_ID specifies the EVT Number.

• tCSp is the Chip Select to Chip Select Gap, if it is a case of 1x at maximum throughput, it must be 2.

Programming Model

30–56 ADSP-CM41x Mixed-Signal Control Processor

• tCSCS can be programmable

• 8 implies the 8 clocks for NCK, which is for 16 bits, 2 data lines.

• 1 implies the 1 clock for tCSCK.

4. To program the event control register, select:

• ADCC_EVCTL[nn].TMRSEL is the Timer 0/1 selection

• ADCC_EVCTL[nn].EVTOFS is the Event Offset in memory placement, usually 2 bytes

• ADCC_EVCTL[nn].SIMSAMP is the If simultaneous sampling enabled

• ADCC_EVCTL[nn].ADCSEL is the ADC1/ADC2

• ADCC_EVCTL[nn].CTLWD is the Control Word

/*
- Timer0 only
- 1x sampling
- 2 bytes of data
- MUXB enabled
*/

*pREG_ADCC1_EVCTLx =
(((0 << BITP_ADCC_EVCTL_TMRSEL) & BITM_ADCC_EVCTL_TMRSEL) |
((ADC_SEL<< BITP_ADCC_EVCTL_ADCSEL) & BITM_ADCC_EVCTL_ADCSEL) |
((0 << BITP_ADCC_EVCTL_SIMSAMP) & BITM_ADCC_EVCTL_SIMSAMP) |
(((2*EVTID)<< BITP_ADCC_EVCTL_EVTOFS) & BITM_ADCC_EVCTL_EVTOFS) |
((ADC_CHNL << 5) & 0xE0) |MUXB);

Frame Capture

The following steps provide an overview of the program flow for using the ADCC for setting up frames and receiv-
ing ADC data.

1. Write configuration data (including event control data) to the ADCC memory mapped registers.

2. Configure the ADCC_CTL register.

3. Enable the ADCC (ADCC_CTL.EN =1). The ADCC waits for the trigger input.

4. A trigger input starts the ADCC timer at the time of an enabled event.

ADDITIONAL INFORMATION: When the data is ready, DMA transfers and the core can read data in parallel
from the ADCC.

The ADCC transfers control words the ADC and receives data from the ADC.

5. The ADCC generates a last frame complete interrupt request (ADCC_FISTAT.LFINT0) when the data cor-
responding to all events in all the frame are received.

Programming Model

ADSP-CM41x Mixed-Signal Control Processor 30–57

ADDITIONAL INFORMATION: The ADCC can be re-configuring; if necessary, changing the base pointer
(for example, ADCC_BPTR0).

6. Clear the frame complete interrupt (for example, ADCC_FISTAT.LFINT0 =0).

If more frames are expected, the ADCC resumes waiting for the trigger input.

If no more frames are expected, the ADCC can be disabled (ADCC_CTL.EN =0).

CM41X_M4 ADCC Register Descriptions
ADC Controller (ADCC) contains the following registers.

Table 30-17: CM41X_M4 ADCC Register List

Name Description

ADCC_ADCRW0 ADC2 Interface RW Access Register

ADCC_ADCRW1 ADC2 Interface RW Access Register

ADCC_BPTR0 Base Pointer 0 Register

ADCC_BPTR1 DMA Base Pointer 1 Register

ADCC_BWMON0 Bandwidth Monitor 0 Register

ADCC_BWMON1 Bandwidth Monitor 1 Register

ADCC_CBNUM0 Timer0 Circular Buffer DMA Wrap Number Register

ADCC_CBNUM1 Timer1 Circular Buffer DMA Wrap Number Register

ADCC_CBSIZ0 Circular Buffer Size 0 Register

ADCC_CBSIZ1 Circular Buffer Size 1 Register

ADCC_CTL Control Register

ADCC_DATOVF Data Overflow Indication Register

ADCC_ECOL Event Collision Status Register

ADCC_EIMSK Event Interrupt Mask Register

ADCC_EIMSK_CLR Event Interrupt Mask Clear Register

ADCC_EIMSK_SET Event Interrupt Mask Set Register

ADCC_EISTAT Event Interrupt Status Register

ADCC_EMISS Event Miss Status Register

ADCC_EPND Pending Events Status Register

ADCC_ERRMSK Error Mask Register

ADCC_ERRMSK_CLR Error Mask Clear Register

ADCC_ERRMSK_SET Error Mask Set Register

CM41X_M4 ADCC Register Descriptions

30–58 ADSP-CM41x Mixed-Signal Control Processor

Table 30-17: CM41X_M4 ADCC Register List (Continued)

Name Description

ADCC_ERRSTAT Error Status Register

ADCC_EVCTL[nn] Event n Control Register

ADCC_EVDAT[nn] Event n Data Register

ADCC_EVSTAT[nn] Event n Status Register

ADCC_EVTEN Event Enable Register

ADCC_EVTEN_CLR Event Enable Clear Register

ADCC_EVTEN_SET Event Enable Set Register

ADCC_EVT[nn] Event n Time Register

ADCC_FIMSK Frame Interrupt Mask Register

ADCC_FIMSK_CLR Frame Interrupt Mask Clear Register

ADCC_FIMSK_SET Frame Interrupt Mask Set Register

ADCC_FISTAT Frame Interrupt Status Register

ADCC_FRINC0 Frame Increment 0 Register

ADCC_FRINC1 Frame Increment 1 Register

ADCC_NUMFRAM0 Timer0 Frame Limit Count Register

ADCC_NUMFRAM1 Timer1 Frame Limit Count Register

ADCC_T0STAT Timer 0 Status Register

ADCC_T1STAT Timer 1 Status Register

ADCC_TCA0 Timing Control A (ADC0) Register

ADCC_TCA1 Timing Control A (ADC1) Register

ADCC_TCB0 Timing Control B (ADC0) Register

ADCC_TCB1 Timing Control B (ADC1) Register

ADCC_TMR0 Timer 0 Current Count Register

ADCC_TMR1 Timer 1 Current Count Register

ADCC_TRGCNT0 Trigger Count TIMER0 Register

ADCC_TRGCNT1 Trigger Count TIMER1 Register

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–59

ADC2 Interface RW Access Register

Read/Write access register for ADC1/ADC0 interface

Pending read/write status bitRead/Write data

Read/Write dataControl Word Sent to the ADC

PND (R)DAT[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[22:15] (R/W)CTLW (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-23: ADCC_ADCRW0 Register Diagram

Table 30-18: ADCC_ADCRW0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W)

CTLW Control Word Sent to the ADC.

23:1

(R/W)

DAT Read/Write data.

0

(R/NW)

PND Pending read/write status bit.

CM41X_M4 ADCC Register Descriptions

30–60 ADSP-CM41x Mixed-Signal Control Processor

ADC2 Interface RW Access Register

Read/Write access register for ADC2 interface.

Pending read/write status bitRead/Write data

Read/Write dataControl Word Sent to the ADC

PND (R)DAT[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[22:15] (R/W)CTLW (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-24: ADCC_ADCRW1 Register Diagram

Table 30-19: ADCC_ADCRW1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:24

(R/W)

CTLW Control Word Sent to the ADC.

23:1

(R/W)

DAT Read/Write data.

0

(R/NW)

PND Pending read/write status bit.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–61

Base Pointer 0 Register

The ADCC_BPTR0 register provides the base pointer (address) used for placing the first Timer 0 frame's event-data
into memory through DMA. The value of base address (pointer) in the ADCC_BPTR0 register at the time of the
trigger pulse (start of frame) corresponds to one of the following Timer 0 related frames:

• The first frame after ADCC is enabled

• The first frame after the ADCC_BPTR0 register is written by core (in linear DMA mode)

• The first frame after a loop back occurs in circular buffering mode

The data from the first frame's events is placed in memory, starting at the address indicated with the value of the
frame base address. Each of the event data are placed in a location (ADCC_BPTR0 +
ADCC_EVCTL[nn].EVTOFS), where ADCC_EVCTL[nn].EVTOFS is a programmable offset for each event.

The second frame's base address (pointer) is calculated as (ADCC_BPTR0 + ADCC_FRINC0).

The third frame's base address (pointer) is calculated as (ADCC_BPTR0 + (2 x ADCC_FRINC0)).

Base Pointer 0 Value

Base Pointer 0 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-25: ADCC_BPTR0 Register Diagram

Table 30-20: ADCC_BPTR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Base Pointer 0 Value.

The ADCC_BPTR0.VALUE bits hold the base pointer (address) for the first frame of
the DMA. Note that bit 0 must be written as 0 to ensure correct address alignment.

CM41X_M4 ADCC Register Descriptions

30–62 ADSP-CM41x Mixed-Signal Control Processor

DMA Base Pointer 1 Register

The ADCC_BPTR1 register provides the base pointer (address) used for placing the first Timer 1 frame's event-data
into memory through DMA. The value of base address (pointer) in the ADCC_BPTR1 register at the time of the
trigger pulse (start of frame) corresponds to one of the following Timer 1 related frames:

• The first frame after ADCC is enabled

• The first frame after the ADCC_BPTR1 register is written by core (in linear DMA mode)

• The first frame after a loop back occurs in circular buffering mode

The data from the first frame's events is placed in memory, starting at the address indicated with the value of the
frame base address. Each of the event data are placed in a location (ADCC_BPTR1 +
ADCC_EVCTL[nn].EVTOFS), where ADCC_EVCTL[nn].EVTOFS is a programmable offset for each event.

The second frame's base address (pointer) is calculated as (ADCC_BPTR1 + ADCC_FRINC0).

The third frame's base address (pointer) is calculated as (ADCC_BPTR1 + (2 x ADCC_FRINC0)).

Base Pointer 1 Value

Base Pointer 1 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-26: ADCC_BPTR1 Register Diagram

Table 30-21: ADCC_BPTR1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Base Pointer 1 Value.

The ADCC_BPTR1.VALUE bits hold the base pointer (address) for the first frame of
the DMA. Note that bit 0 must be written as 0 to ensure correct address align-
ment.The ADCC_BPTR1.VALUE bits hold the base pointer (address) for the first
frame of the DMA. Note that bit 0 must be written as 0 to ensure correct address
alignment.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–63

Bandwidth Monitor 0 Register

The ADCC_BWMON0 register monitors the Timer 0 count and can be used to signal an error if the count exceeds
the ADCC_BWMON0.CNT value in DMA mode. This checks whether the DMA transfer of all events in the frame
are completed before a certain count of the timer. To monitor for completion of all events and their DMA before n
SCLK cycles after the trigger, program the value n in the ADCC_BWMON0.CNT field. When the timer count ex-
ceeds n, the ADCC issues an error interrupt and indicates the status with the ADCC_ERRSTAT.BWERR0 bit. The
Timer stops only when all DMA transfers are complete and responses received, in DMA mode.

Bandwidth Monitor Count

Bandwidth Monitor Count

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-27: ADCC_BWMON0 Register Diagram

Table 30-22: ADCC_BWMON0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT Bandwidth Monitor Count.

The ADCC_BWMON0.CNT bits hold the maximum expected Timer 0 count for a
frame. If programmed as 0, bandwidth monitoring capability is disabled.

CM41X_M4 ADCC Register Descriptions

30–64 ADSP-CM41x Mixed-Signal Control Processor

Bandwidth Monitor 1 Register

The ADCC_BWMON1 register monitors the Timer 1 count and can be used to signal an error if the count exceeds
the ADCC_BWMON1.CNT value in DMA mode. This checks whether the DMA transfer of all events in the frame
are completed before a certain count of the timer. To monitor for completion of all events and their DMA before n
SCLK cycles after the trigger, program the value n in the ADCC_BWMON1.CNT field. When the timer count ex-
ceeds n, the ADCC issues an error interrupt request and indicates the status with the ADCC_ERRSTAT.BWERR1
bit. The Timer stops only when all DMA transfers are complete and responses received, in DMA mode.

Bandwidth Monitor Count

Bandwidth Monitor Count

CNT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-28: ADCC_BWMON1 Register Diagram

Table 30-23: ADCC_BWMON1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

CNT Bandwidth Monitor Count.

The ADCC_BWMON1.CNT bits hold the maximum expected Timer 1 count for a
frame. If programmed as 0, bandwidth monitoring capability is disabled.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–65

Timer0 Circular Buffer DMA Wrap Number Register

The ADCC_CBNUM0 register holds the number of wraps completed by TIMER0 in circular buffer DMA.

CB Value
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-29: ADCC_CBNUM0 Register Diagram

Table 30-24: ADCC_CBNUM0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE CB Value.

The ADCC_CBNUM0.VALUE bit field indicates how many wraparounds have been
completed in circular buffer DMA for the TIMER, after the ADCC was enabled.

CM41X_M4 ADCC Register Descriptions

30–66 ADSP-CM41x Mixed-Signal Control Processor

Timer1 Circular Buffer DMA Wrap Number Register

The ADCC_CBNUM1 register holds the number of wraps completed by TIMER1 in circular buffer DMA.

CB Value
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-30: ADCC_CBNUM1 Register Diagram

Table 30-25: ADCC_CBNUM1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE CB Value.

The ADCC_CBNUM1.VALUE bit field indicates how many wraparounds have been
completed in circular buffer DMA for the TIMER, after the ADCC was enabled.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–67

Circular Buffer Size 0 Register

The ADCC_CBSIZ0 register holds the circular buffer size to be used for the Timer 0 frames of DMA. If the
ADCC_CBSIZ0.VALUE bit field is programmed as 0, the ADCC performs only linear buffering is for the Timer 0
frames. For more information about ADCC linear and circular buffering, see the ADCC functional description.

Circular Buffer Size 0 Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-31: ADCC_CBSIZ0 Register Diagram

Table 30-26: ADCC_CBSIZ0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Circular Buffer Size 0 Value.

The ADCC_CBSIZ0.VALUE bits select the number of Timer 0 frames in a DMA
circular buffer (number of frames after which to wrap back); if =0, linear mode is used
instead of circular DMA mode.

CM41X_M4 ADCC Register Descriptions

30–68 ADSP-CM41x Mixed-Signal Control Processor

Circular Buffer Size 1 Register

The ADCC_CBSIZ1 register holds the circular buffer size to be used for the Timer 1 frames of DMA. If the
ADCC_CBSIZ1.VALUE bit field is programmed as 0, the ADCC performs only linear buffering is for the Timer 1
frames. For more information about ADCC linear and circular buffering, see the ADCC functional description.

Circular Buffer Size 1 Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-32: ADCC_CBSIZ1 Register Diagram

Table 30-27: ADCC_CBSIZ1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Circular Buffer Size 1 Value.

The ADCC_CBSIZ1.VALUE bits select the number of Timer 1 frames in a DMA
circular buffer (number of frames after which to wrap back); if =0, linear mode is used
instead of circular DMA mode.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–69

Control Register

The ADCC_CTL register enables ADCC operation and configures a number of ADC1/ADC2 and ADC0 interface
features.

Data SizeTrigger Output Enable 0

Control Data SizeTrigger Output Enable 1

AFE Type SelectionTrigger Select 0

DMA EnableTrigger Polarity 0

Timer 1 EnableTrigger Select 1

Enable ADCC OperationTrigger Polarity 1

Transmit Idle 0Data Swap 0

Transmit Idle 0Data Swap 1

Chip Select Polarity 1LSB First 0

Chip Select Polarity 0LSB First 1

Clock Polarity 1Trigger Input Enable 0

Clock Polarity 0Trigger Input Enable 1

DSIZE (R/W)TRGOE0 (R/W)

CSIZE (R/W)TRGOE1 (R/W)

MODE (R/W)TRGSEL0 (R/W)

DMAEN (R/W)TRGPOL0 (R/W)

TMR1EN (R/W)TRGSEL1 (R/W)

EN (R/W)TRGPOL1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TIDLE1 (R/W)DSWP0 (R/W)

TIDLE0 (R/W)DSWP1 (R/W)

CSPOL1 (R/W)LSBF0 (R/W)

CSPOL0 (R/W)LSBF1 (R/W)

CKPOL1 (R/W)TRGIE0 (R/W)

CKPOL0 (R/W)TRGIE1 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-33: ADCC_CTL Register Diagram

Table 30-28: ADCC_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

29

(R/W)

TRGIE1 Trigger Input Enable 1.

The ADCC_CTL.TRGIE1 bit enables recognition of trigger input as valid to initiate
Timer 1 frames.

0 Disable Recognition of Trigger Input

1 Enable Recognition of Trigger Input

CM41X_M4 ADCC Register Descriptions

30–70 ADSP-CM41x Mixed-Signal Control Processor

Table 30-28: ADCC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

28

(R/W)

TRGIE0 Trigger Input Enable 0.

The ADCC_CTL.TRGIE0 bit enables recognition of trigger input as valid to initiate
Timer 0 frames.

0 Disable Recognition of Trigger Input

1 Enable Recognition of Trigger Input

25

(R/W)

LSBF1 LSB First 1.

The ADCC_CTL.LSBF1 bit selects LSB or MSB first mode for ADC2 interface op-
erations. For more information about LSB/MSB first mode operations, see the ADCC
functional description.

0 MSB First Mode

1 LSB First Mode

24

(R/W)

LSBF0 LSB First 0.

The ADCC_CTL.LSBF0 bit selects LSB or MSB first mode for ADC1 or ADC0 in-
terface operations. For more information about LSB/MSB first mode operations, see
the ADCC functional description.

0 MSB First Mode

1 LSB First Mode

23

(R/W)

DSWP1 Data Swap 1.

The ADCC_CTL.DSWP1 bit enables data swap operations on ADC2 for dual-bit (2-
bit wide) control and data. For more information about data swap operations, see the
ADCC functional description.

0 Disable Data Swap

1 Enable Data Swap

22

(R/W)

DSWP0 Data Swap 0.

The ADCC_CTL.DSWP0 bit enables data swap operations on ADC1 or ADC2 for
dual-bit (2-bit wide) control and data. For more information about data swap opera-
tions, see the ADCC functional description.

0 Disable Data Swap

1 Enable Data Swap

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–71

Table 30-28: ADCC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

TIDLE1 Transmit Idle 0.

The ADCC_CTL.TIDLE1 bit selects the value to hold on the ADCC_BCTL0 pin for
ADC1 or ADC0 when idle (not transmitting a valid control register). The first chip
select after enabling the ADCC is a control chip select. The ADCC_CTL.TIDLE1
value is held on the control pins after this chip select, unless a valid control transmis-
sion takes place.

0 Hold Idle Control Pin Low

1 Hold Idle Control Pin High

20

(R/W)

TIDLE0 Transmit Idle 0.

The ADCC_CTL.TIDLE0 bit selects the value to hold on the ADCC_ACTL0 pin for
ADC1 or ADC0 when idle (not transmitting a valid control register). The first chip
select after enabling the ADCC is a control chip select. The ADCC_CTL.TIDLE0
value is held on the control pins after this chip select, unless a valid control transmis-
sion takes place.

0 Hold Idle Control Pin Low

1 Hold Idle Control Pin High

19

(R/W)

CSPOL1 Chip Select Polarity 1.

The ADCC_CTL.CSPOL1 bit selects the polarity (active high or low) for
ADCC_BCS pin (ADC2 interface).

0 Active Low CS

1 Active High CS

18

(R/W)

CSPOL0 Chip Select Polarity 0.

The ADCC_CTL.CSPOL0 bit selects the polarity (active high or low) for
ADCC_ACS pin (ADC1 or ADC0 interface).

0 Active Low CS

1 Active High CS

17

(R/W)

CKPOL1 Clock Polarity 1.

The ADCC_CTL.CKPOL1 bit selects the clock polarity for the ADC2 interface. This
selection chooses the clock edge (rising or falling) driven after the ADCC_BCS pin is
asserted for sampling the first bit of control and data.

0 Sample on Falling Edge

1 Sample on Rising Edge

CM41X_M4 ADCC Register Descriptions

30–72 ADSP-CM41x Mixed-Signal Control Processor

Table 30-28: ADCC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W)

CKPOL0 Clock Polarity 0.

The ADCC_CTL.CKPOL0 bit selects the clock polarity for the ADC1 or ADC0 in-
terface. This selection chooses the clock edge (rising or falling) driven after the
ADCC_ACS pin is asserted for sampling the first bit of control and data.

0 Sample on Falling Edge

1 Sample on Rising Edge

15

(R/W)

TRGPOL1 Trigger Polarity 1.

The ADCC_CTL.TRGPOL1 bit select the polarity for trigger associated with Timer 1.

0 Trigger on Falling Edge

1 Trigger on Rising Edge

14:12

(R/W)

TRGSEL1 Trigger Select 1.

The ADCC_CTL.TRGSEL1 bits selects the Timer 1 initiate trigger from among the
ADCC_TMR0_EVT and ADCC_TMR1_EVT triggers from =0 for trigger 0 to =n for
trigger n.

11

(R/W)

TRGPOL0 Trigger Polarity 0.

The ADCC_CTL.TRGPOL0 bit select the polarity for trigger associated with Timer 0.

0 Trigger on Falling Edge

1 Trigger on Rising Edge

10:8

(R/W)

TRGSEL0 Trigger Select 0.

The ADCC_CTL.TRGSEL0 bits selects the Timer 0 initiate trigger from among the
ADCC_TMR0_EVT and ADCC_TMR1_EVT triggers from =0 for trigger 0 to =n for
trigger n.

7

(R/W)

TRGOE1 Trigger Output Enable 1.

The ADCC_CTL.TRGOE1 bit enables the trigger output generation for Timer 1
events.

0 Disable

1 Enable

6

(R/W)

TRGOE0 Trigger Output Enable 0.

The ADCC_CTL.TRGOE0 bit enables the trigger output generation for Timer 0
events.

0 Disable

1 Enable

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–73

Table 30-28: ADCC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

DSIZE Data Size.

The ADCC_CTL.DSIZE bit selects the interface width (single- or dual-bit) for re-
ceiving sample data from the ADC.

0 1-Bit Wide Interface

1 2-Bit Wide Interface

4

(R/W)

CSIZE Control Data Size.

The ADCC_CTL.CSIZE bit selects the interface width (single- or dual-bit) for trans-
mitting control data to the ADC.

0 1-Bit Wide Interface

1 2-Bit Wide Interface

3

(R/W)

MODE AFE Type Selection.

The ADCC_CTL.MODE bit selects the processor model that the ADCC is connected
to.

0 None

1 ADSP-CM41x

2

(R/W)

DMAEN DMA Enable.

The ADCC_CTL.DMAEN bit enables ADCC DMA operation, selecting the mode for
sampled data transfer from the ADC to memory. If DMA is disabled (=0), the core
should read data from the ADCC_EVDAT[nn] registers. If DMA is enabled, the
ADCC transfers data using DMA, and th linear or circular buffer mode is chosen by
the ADCC_CBSIZ0 or ADCC_CBSIZ1 register.

0 Disable

1 Enable

1

(R/W)

TMR1EN Timer 1 Enable.

The ADCC_CTL.TMR1EN bit enables Timer 1. Note that Timer 0 is always enabled
when the ADCC is enabled.

0 Disable

1 Enable

0

(R/W)

EN Enable ADCC Operation.

The ADCC_CTL.EN bit enables ADCC operation (global enable for module).

0 Disable

1 Enable

CM41X_M4 ADCC Register Descriptions

30–74 ADSP-CM41x Mixed-Signal Control Processor

Data Overflow Indication Register

The ADCC_DATOVF register indicates the overflow status of various events

Event n data Overflow Status

Event n data Overflow Status

EVT[15:0] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[31:16] (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-34: ADCC_DATOVF Register Diagram

Table 30-29: ADCC_DATOVF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT Event n data Overflow Status.

The ADCC_DATOVF.EVT bits each correspond to an ADCC event that had data
overflow. When any bit in this register is set, the ADCC_ERRSTAT.DATOVF bit is
set, which may optionally cause the ADCC to generate output on the ADCC_ERR
pin. The function of each bit is shown in the enumerations below.

0 No Status

4294967295 Event Collision Occurred

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–75

Event Collision Status Register

The ADCC_ECOL register indicates the collision status for ADCC events. When any bit in this register is set, the
ADCC_ERRSTAT.ECOL bit is set, which may optionally cause the ADCC to generate output on the ADCC_ERR
pin.

Event n Collision Status

Event n Collision Status

EVT[15:0] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[31:16] (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-35: ADCC_ECOL Register Diagram

Table 30-30: ADCC_ECOL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT Event n Collision Status.

The ADCC_ECOL.EVT bits each correspond to an ADCC event that underwent col-
lision. When any bit in this register is set, the ADCC_ERRSTAT.ECOL bit is set,
which may optionally cause the ADCC to generate output on the ADCC_ERR pin.
The function of each bit is shown in the enumerations below.

0 No Status

4294967295 Event Collision Occurred

CM41X_M4 ADCC Register Descriptions

30–76 ADSP-CM41x Mixed-Signal Control Processor

Event Interrupt Mask Register

The ADCC_EIMSK register masks (disables) generation of ADCC_TMR0_EVT or ADCC_TMR1_EVT event inter-
rupt requests based on status in the ADCC_EISTAT register.

Event n Interrupt Mask

Event n Interrupt Mask

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-36: ADCC_EIMSK Register Diagram

Table 30-31: ADCC_EIMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

EVT[nn] Event n Interrupt Mask.

The ADCC_EIMSK.EVT[nn] bits mask (disable) each correspond to data interrupt
requests from ADCC events (n from 23 to 0). The function of each bit is shown in the
enumerations below.

0 Unmask (Enable) Event Interrupt

4294967295 Mask (Disable) Event Interrupt

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–77

Event Interrupt Mask Clear Register

The ADCC_EIMSK_CLR register can be used to selectively clear bits in the ADCC_EIMSK register without affect-
ing other bits in the register. Writing a 1 to any bit position in ADCC_EIMSK_CLR clears the corresponding bit in
ADCC_EIMSK. Reading the ADCC_EIMSK_CLR register returns the data present in the ADCC_EIMSK register.

Event n Interrupt Mask

Event n Interrupt Mask

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-37: ADCC_EIMSK_CLR Register Diagram

Table 30-32: ADCC_EIMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT[nn] Event n Interrupt Mask Clear.

The ADCC_EIMSK_CLR.EVT[nn] bits permit clearing individual bits in the
ADCC_EIMSK register without affecting other bits in the register. Write 1 to individu-
al ADCC_EIMSK_CLR.EVT[nn] bits to clear the corresponding bit in
ADCC_EIMSK.

CM41X_M4 ADCC Register Descriptions

30–78 ADSP-CM41x Mixed-Signal Control Processor

Event Interrupt Mask Set Register

The ADCC_EIMSK_SET register can be used to selectively set bits in the ADCC_EIMSK register without affecting
other bits in the register. Writing a 1 to any bit position in ADCC_EIMSK_SET sets the corresponding bit in
ADCC_EIMSK. Reading the ADCC_EIMSK_SET register returns the data present in the ADCC_EIMSK register.

Event n Interrupt Mask

Event n Interrupt Mask

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-38: ADCC_EIMSK_SET Register Diagram

Table 30-33: ADCC_EIMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1S)

EVT[nn] Event n Interrupt Mask Set.

The ADCC_EIMSK_SET.EVT[nn] bits permit setting individual bits in the
ADCC_EIMSK register without affecting other bits in the register. Write 1 to individu-
al ADCC_EIMSK_SET.EVT[nn] bits to set the corresponding bit in
ADCC_EIMSK.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–79

Event Interrupt Status Register

The ADCC_EISTAT register indicates the interrupt status bits for ADCC events. Based on the
ADCC_EVCTL[nn].TMRSEL bit selection, the ADCC generates the corresponding ADCC_TMR0_EVT or
ADCC_TMR1_EVT event interrupt requests. Each of these interrupt requests can be optionally masked (disable in-
terrupt output) using the bits in ADCC_EIMSK register.

Event n Interrupt

Event n Interrupt

EVT[nn][15:0] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-39: ADCC_EISTAT Register Diagram

Table 30-34: ADCC_EISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT[nn] Event n Interrupt.

The ADCC_EISTAT.EVT[nn] bits each correspond to data interrupts from ADCC
events (n from 23 to 0). The function of each bit is shown in the enumerations below.
Note that data interrupt requests from events are applicable only in non-DMA mode.

0 No Data Pending for Core Read

4294967295 Event Data Pending for Core Read

CM41X_M4 ADCC Register Descriptions

30–80 ADSP-CM41x Mixed-Signal Control Processor

Event Miss Status Register

The ADCC_EMISS register indicates the miss status for ADCC events. When any bit in this register is set, the
ADCC_ERRSTAT.EMIS bit is set, which may optionally cause the ADCC to generate output on the ADCC_ERR
pin.

Event n Miss Status

Event n Miss Status

EVT[nn][15:0] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-40: ADCC_EMISS Register Diagram

Table 30-35: ADCC_EMISS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT[nn] Event n Miss Status.

The ADCC_EMISS.EVT[nn] bits each correspond to an ADCC event that was
missed. When any bit in this register is set, the ADCC_ERRSTAT.EMIS bit is set,
which may optionally cause the ADCC to generate output on the ADCC_ERR
pin.The function of each bit is shown in the enumerations below.

0 No Status

4294967295 Event Miss Occurred

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–81

Pending Events Status Register

The ADCC_EPND register indicates which events within the current frames are pending (waiting for data transfer).
Each of the ADCC_EPND.EVT[nn] bits from 0 to 31 corresponds to an events from 0 to 31. When the trigger
pulse initiating a frame (corresponding to a Timer) is detected, all the status pending bits corresponding to enabled
events in that frame are set. The ADCC clears each status bit on receiving the data from ADC for the corresponding
event. If a pending event is missed, the ADCC clears the corresponding status bit.

Event n Pending Status

Event n Pending Status

EVT[nn][15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-41: ADCC_EPND Register Diagram

Table 30-36: ADCC_EPND Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

EVT[nn] Event n Pending Status.

The ADCC_EPND.EVT[nn] bits each correspond to an ADCC event (n from 31 to
0) that are pending (waiting for data transfer).

(1 << n) Event n pending

0x80000000 = (1 << 31) Event 31 pending

0x00000001 = (1 << 0) Event 0 pending

CM41X_M4 ADCC Register Descriptions

30–82 ADSP-CM41x Mixed-Signal Control Processor

Error Mask Register

The ADCC_ERRMSK register masks (disables) or unmasks (enables) reporting of ADC related errors.

Memory Response Error 0 Mask

Bandwidth Monitor Error 1 MaskMemory Response Error 1 Mask

Bandwidth Monitor Error 0 MaskEvent Collision Error Mask

Trigger Overrun 1 Error MaskEvent Miss Error Mask

Trigger Overrun 0 Error MaskEvent data Overflow Error Mask

MERR0 (R/W)

BWERR1 (R/W)MERR1 (R/W)

BWERR0 (R/W)ECOL (R/W)

TRGOV1 (R/W)EMIS (R/W)

TRGOV0 (R/W)DATOVF (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-42: ADCC_ERRMSK Register Diagram

Table 30-37: ADCC_ERRMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

DATOVF Event data Overflow Error Mask.

The ADCC_ERRMSK.DATOVF bit masks (disables) generating an error interrupt re-
quest on an event overflow error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

7

(R/W)

EMIS Event Miss Error Mask.

The ADCC_ERRMSK.EMIS bit masks (disables) generating an error interrupt request
on an event miss error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

6

(R/W)

ECOL Event Collision Error Mask.

The ADCC_ERRMSK.ECOL bit masks (disables) generating an error interrupt request
on an event collision error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–83

Table 30-37: ADCC_ERRMSK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

MERR1 Memory Response Error 1 Mask.

The ADCC_ERRMSK.MERR1 bit masks (disables) generating an error interrupt re-
quest on a memory response error related to Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

4

(R/W)

MERR0 Memory Response Error 0 Mask.

The ADCC_ERRMSK.MERR0 bit masks (disables) generating an error interrupt re-
quest on a memory response error related to Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

3

(R/W)

BWERR1 Bandwidth Monitor Error 1 Mask.

The ADCC_ERRMSK.BWERR1 bit masks (disables) generating an error interrupt re-
quest on a bandwidth monitor error related to Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

2

(R/W)

BWERR0 Bandwidth Monitor Error 0 Mask.

The ADCC_ERRMSK.BWERR0 bit masks (disables) generating an error interrupt re-
quest on a bandwidth monitor error related to Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

1

(R/W)

TRGOV1 Trigger Overrun 1 Error Mask.

The ADCC_ERRMSK.TRGOV1 bit masks (disables) generating an error interrupt re-
quest on a trigger overrun for the trigger associated with Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

0

(R/W)

TRGOV0 Trigger Overrun 0 Error Mask.

The ADCC_ERRMSK.TRGOV0 bit masks (disables) generating an error interrupt re-
quest on a trigger overrun for the trigger associated with Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

CM41X_M4 ADCC Register Descriptions

30–84 ADSP-CM41x Mixed-Signal Control Processor

Error Mask Clear Register

The ADCC_ERRMSK_CLR register can be used to selectively clear bits in the ADCC_ERRMSK register without af-
fecting other bits in the register. Writing a 1 to any bit position in ADCC_ERRMSK_CLR clears the corresponding
bit in ADCC_ERRMSK. Reading the ADCC_ERRMSK_CLR register returns the data present in the
ADCC_ERRMSK register.

Memory Response Error 0 Mask

Bandwidth Monitor Error 1 MaskMemory Response Error 1 Mask

Bandwidth Monitor Error 0 MaskEvent Collision Error Mask

Trigger Overrun 1 Error MaskEvent Miss Error Mask

Trigger Overrun 0 Error MaskEvent data Overflow Error Mask

MERR0 (R/W)

BWERR1 (R/W)MERR1 (R/W)

BWERR0 (R/W)ECOL (R/W)

TRGOV1 (R/W)EMIS (R/W)

TRGOV0 (R/W)DATOVF (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-43: ADCC_ERRMSK_CLR Register Diagram

Table 30-38: ADCC_ERRMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

DATOVF Event data OVerflow Error Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.DATOVF to clear the corresponding bit in
ADCC_ERRMSK.

7

(R/W1C)

EMIS Event Miss Error Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.EMIS to clear the corresponding bit in
ADCC_ERRMSK.

6

(R/W1C)

ECOL Event Collision Error Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.ECOL to clear the corresponding bit in
ADCC_ERRMSK.

5

(R/W1C)

MERR1 Memory Response Error 1 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.MERR1 to clear the corresponding bit in
ADCC_ERRMSK.

4

(R/W1C)

MERR0 Memory Response Error 0 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.MERR0 to clear the corresponding bit in
ADCC_ERRMSK.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–85

Table 30-38: ADCC_ERRMSK_CLR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1C)

BWERR1 Bandwidth Monitor Error 1 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.BWERR1 to clear the corresponding bit in
ADCC_ERRMSK.

2

(R/W1C)

BWERR0 Bandwidth Monitor Error 0 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.BWERR0 to clear the corresponding bit in
ADCC_ERRMSK.

1

(R/W1C)

TRGOV1 Trigger Overrun 1 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.TRGOV1 to clear the corresponding bit in
ADCC_ERRMSK.

0

(R/W1C)

TRGOV0 Trigger Overrun 0 Mask Clear.

Write 1 to ADCC_ERRMSK_CLR.TRGOV0 to clear the corresponding bit in
ADCC_ERRMSK.

CM41X_M4 ADCC Register Descriptions

30–86 ADSP-CM41x Mixed-Signal Control Processor

Error Mask Set Register

The ADCC_ERRMSK_SET register can be used to selectively set bits in the ADCC_ERRMSK register without affect-
ing other bits in the register. Writing a 1 to any bit position in ADCC_ERRMSK_SET sets the corresponding bit in
ADCC_ERRMSK. Reading the ADCC_ERRMSK_SET register returns the data present in the ADCC_ERRMSK reg-
ister.

Memory Response Error 0 Mask

Bandwidth Monitor Error 1 MaskMemory Response Error 1 Mask

Bandwidth Monitor Error 0 MaskEvent Collision Error Mask

Trigger Overrun 1 Error MaskEvent Miss Error Mask

Trigger Overrun 0 Error MaskEvent data Overflow Error Mask

MERR0 (R/W)

BWERR1 (R/W)MERR1 (R/W)

BWERR0 (R/W)ECOL (R/W)

TRGOV1 (R/W)EMIS (R/W)

TRGOV0 (R/W)DATOVF (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-44: ADCC_ERRMSK_SET Register Diagram

Table 30-39: ADCC_ERRMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1S)

DATOVF Event data Overflow Error Mask Set.

Write 1 to ADCC_ERRMSK_SET.DATOVF to set the corresponding bit in
ADCC_ERRMSK.

7

(R/W1S)

EMIS Event Miss Error Mask Set.

Write 1 to ADCC_ERRMSK_SET.EMIS to set the corresponding bit in
ADCC_ERRMSK.

6

(R/W1S)

ECOL Event Collision Error Mask Set.

Write 1 to ADCC_ERRMSK_SET.ECOL to set the corresponding bit in
ADCC_ERRMSK.

5

(R/W1S)

MERR1 Memory Response Error 1 Mask Set.

Write 1 to ADCC_ERRMSK_SET.MERR1 to set the corresponding bit in
ADCC_ERRMSK.

4

(R/W1S)

MERR0 Memory Response Error 0 Mask Set.

Write 1 to ADCC_ERRMSK_SET.MERR0 to set the corresponding bit in
ADCC_ERRMSK.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–87

Table 30-39: ADCC_ERRMSK_SET Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1S)

BWERR1 Bandwidth Monitor Error 1 Mask Set.

Write 1 to ADCC_ERRMSK_SET.BWERR1 to set the corresponding bit in
ADCC_ERRMSK.

2

(R/W1S)

BWERR0 Bandwidth Monitor Error 0 Mask Set.

Write 1 to ADCC_ERRMSK_SET.BWERR0 to set the corresponding bit in
ADCC_ERRMSK.

1

(R/W1S)

TRGOV1 Trigger Overrun 1 Mask Set.

Write 1 to ADCC_ERRMSK_SET.TRGOV1 to set the corresponding bit in
ADCC_ERRMSK.

0

(R/W1S)

TRGOV0 Trigger Overrun 0 Mask Set.

Write 1 to ADCC_ERRMSK_SET.TRGOV0 to set the corresponding bit in
ADCC_ERRMSK.

CM41X_M4 ADCC Register Descriptions

30–88 ADSP-CM41x Mixed-Signal Control Processor

Error Status Register

The ADCC_ERRSTAT register indicates status for errors relating to trigger overruns, bandwidth monitoring, mem-
ory responses, and events.

Memory Response Error 0 Status

Bandwidth Monitor Error 1 StatusMemory Response Error 1 Status

Bandwidth Monitor Error 0 StatusEvent Collision Error Status

Trigger Overrun 1 StatusEvent Miss Error Status

Trigger Overrun 0 StatusEvent data Overflow Error Status

MERR0 (R/W1C)

BWERR1 (R/W1C)MERR1 (R/W1C)

BWERR0 (R/W1C)ECOL (R)

TRGOV1 (R/W1C)EMIS (R)

TRGOV0 (R/W1C)DATOVF (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-45: ADCC_ERRSTAT Register Diagram

Table 30-40: ADCC_ERRSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/NW)

DATOVF Event data Overflow Error Status.

The ADCC_ERRSTAT.DATOVF bit indicates whether an event underwent overflow.
To identify which the events had overflow, read the value from the ADCC_ERRSTAT
register. To clear this error, clear the cause from the ADCC_ERRSTAT register.

0 No Status

1 Event Miss Error

7

(R/NW)

EMIS Event Miss Error Status.

The ADCC_ERRSTAT.EMIS bit indicates whether an event was missed. To identify
which the events were missed, read the value from the ADCC_EMISS register. For
more information about missed events, see the ADCC functional description. To clear
this error, clear the cause from the ADCC_EMISS register.

0 No Status

1 Event Miss Error

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–89

Table 30-40: ADCC_ERRSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/NW)

ECOL Event Collision Error Status.

The ADCC_ERRSTAT.ECOL bit indicates whether a collision has occurred for any
event. To identify which events underwent collision, read the value from the
ADCC_ECOL register. For more information about event collisions, see the ADCC
functional description. To clear this error, clear the cause from the ADCC_ECOL regis-
ter.

0 No Status

1 Event Collision Error

5

(R/W1C)

MERR1 Memory Response Error 1 Status.

The ADCC_ERRSTAT.MERR1 bit indicates whether a memory write error response
on data write issued for an event corresponding to Timer 1 has occurred.

0 No Status

1 Memory Response Error

4

(R/W1C)

MERR0 Memory Response Error 0 Status.

The ADCC_ERRSTAT.MERR0 bit indicates whether a memory write error response
on data write issued for an event corresponding to Timer 0 has occurred.

0 No Status

1 Memory Response Error

3

(R/W1C)

BWERR1 Bandwidth Monitor Error 1 Status.

The ADCC_ERRSTAT.BWERR1 bit indicates whether a bandwidth monitor error
(while monitoring is enabled, the timer count crossed the value written in
ADCC_BWMON1) for Timer 1 has occurred.

0 No Status

1 Bandwidth Monitor Error

2

(R/W1C)

BWERR0 Bandwidth Monitor Error 0 Status.

The ADCC_ERRSTAT.BWERR0 bit indicates whether a bandwidth monitor error
(while monitoring is enabled, the timer count crossed the value written in
ADCC_BWMON0) for Timer 0 has occurred.

0 No Status

1 Bandwidth Monitor Error

CM41X_M4 ADCC Register Descriptions

30–90 ADSP-CM41x Mixed-Signal Control Processor

Table 30-40: ADCC_ERRSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

TRGOV1 Trigger Overrun 1 Status.

The ADCC_ERRSTAT.TRGOV1 bit indicates whether a trigger overrun (a trigger in-
put detected while a frame or ADC programming is in progress) for Timer 1 has oc-
curred. The trigger input is ignored.

0 No Status

1 Trigger Overrun

0

(R/W1C)

TRGOV0 Trigger Overrun 0 Status.

The ADCC_ERRSTAT.TRGOV0 bit indicates whether a trigger overrun (a trigger in-
put detected while a frame or ADC programming is in progress) for Timer 0 has oc-
curred. The trigger input is ignored.

0 No Status

1 Trigger Overrun

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–91

Event n Control Register

The ADCC_EVCTL[nn] register controls programmable features of the corresponding event.

Control Word for ADC

Simultaneous Sampling EnableTimer Select.

ADC SelectEvent Offset

CTLWD (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SIMSAMP (R/W)TMRSEL (R/W)

ADCSEL (R/W)EVTOFS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-46: ADCC_EVCTL[nn] Register Diagram

Table 30-41: ADCC_EVCTL[nn] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:20

(R/W)

EVTOFS Event Offset.

The ADCC_EVCTL[nn].EVTOFS bits hold the memory address offset at which the
event's data is stored. This offset is added to the frame's base pointer to produce the
final memory address. ADCC_EVCTL[nn].EVTOFS's LSB must =0 for correct ad-
dress alignment.

19

(R/W)

TMRSEL Timer Select..

The ADCC_EVCTL[nn].TMRSEL bit selects whether the event corresponds to
Timer 0 or 1.

0 Event on Timer 0

1 Event on Timer 1

17

(R/W)

SIMSAMP Simultaneous Sampling Enable.

The ADCC_EVCTL[nn].SIMSAMP bit enables simultaneous sampling operation.
See "Event Miss Error Status" in the chapter for more information.

0 Disable

1 Enable

16

(R/W)

ADCSEL ADC Select.

The ADCC_EVCTL[nn].ADCSEL bit select whether the event executes on the
ADC0 interface or the ADC1 interface.

0 Event on ADC0

1 Event on ADC1

CM41X_M4 ADCC Register Descriptions

30–92 ADSP-CM41x Mixed-Signal Control Processor

Table 30-41: ADCC_EVCTL[nn] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

CTLWD Control Word for ADC.

The ADCC_EVCTL[nn].CTLWD bits hold the control word to be sent to ADC.
These same 16 bits (or lesser, depending on the corresponding value of
ADCC_TCA0.NCK or ADCC_TCA1.NCK) are sent to ADC. Program the control
word LSB aligned in this field. For more information about control word content, see
the ADCC programming guidelines.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–93

Event n Data Register

The ADCC_EVDAT[nn] register holds the data sampled from the ADC channel. The data from this register can
be read by the core or transferred through DMA. If the data sample received is less than 16 bits wide (depends on
value of corresponding ADCC_TCA0.NCK or ADCC_TCA1.NCK), the data is MSB aligned in the
ADCC_EVDAT[nn].VALUE field, and the lower bits are zero filled.

Event Data Sampled from ADC
VALUE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-47: ADCC_EVDAT[nn] Register Diagram

Table 30-42: ADCC_EVDAT[nn] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

VALUE Event Data Sampled from ADC.

The ADCC_EVDAT[nn].VALUE bits hold the data of the event sampled from the
ADC.

CM41X_M4 ADCC Register Descriptions

30–94 ADSP-CM41x Mixed-Signal Control Processor

Event n Status Register

The ADCC_EVSTAT[nn] register indicates event status for event n.

Delay Count
DLYCNT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-48: ADCC_EVSTAT[nn] Register Diagram

Table 30-43: ADCC_EVSTAT[nn] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

DLYCNT Delay Count.

The ADCC_EVSTAT[nn].DLYCNT bits indicate the number of SCLK cycles by
which the event was delayed after the event match occurred. The ADCC updates this
field when the corresponding ADCC_ACS or ADCC_BCS is asserted to transmit the
control word corresponding to the event to the ADC.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–95

Event Enable Register

The ADCC_EVTEN register enables detection of individual ADCC events. Based on the
ADCC_EVCTL[nn].TMRSEL bit selection, the ADCC generates the corresponding ADCC_TMR0_EVT or
ADCC_TMR0_EVT event interrupt requests. Note that the events corresponding to a frame must be enabled before
the trigger corresponding to the frame arrives.

Event n Enable

Event n Enable

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-49: ADCC_EVTEN Register Diagram

Table 30-44: ADCC_EVTEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

EVT[nn] Event n Enable.

The ADCC_EVTEN.EVT[nn] bits each correspond to an ADCC event (n from 23
to 0). The function of each bit is shown in the enumerations below.

0 Disable Event Detection

4294967295 Enable Event Detection

CM41X_M4 ADCC Register Descriptions

30–96 ADSP-CM41x Mixed-Signal Control Processor

Event Enable Clear Register

The ADCC_EVTEN_CLR register can be used to selectively clear bits in the ADCC_EVTEN register without affect-
ing other bits in the register. Writing a 1 to any bit position in ADCC_EVTEN_CLR clears the corresponding bit in
ADCC_EVTEN. Reading the ADCC_EVTEN_CLR register returns the data present in the ADCC_EVTEN register.

Event n Enable

Event n Enable

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-50: ADCC_EVTEN_CLR Register Diagram

Table 30-45: ADCC_EVTEN_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

EVT[nn] Event n Enable Clear.

The ADCC_EVTEN_CLR.EVT[nn] bits permit clearing individual bits in the
ADCC_EVTEN register without affecting other bits in the register. Write 1 to individu-
al ADCC_EVTEN_CLR.EVT[nn] bits to clear the corresponding bit in
ADCC_EVTEN.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–97

Event Enable Set Register

The ADCC_EVTEN_SET register can be used to selectively set bits in the ADCC_EVTEN register without affecting
other bits in the register. Writing a 1 to any bit position in ADCC_EVTEN_SET sets the corresponding bit in
ADCC_EVTEN. Reading the ADCC_EVTEN_SET register returns the data present in the ADCC_EVTEN register.

Event n Enable

Event n Enable

EVT[nn][15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EVT[nn][31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-51: ADCC_EVTEN_SET Register Diagram

Table 30-46: ADCC_EVTEN_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1S)

EVT[nn] Event n Enable Set.

The ADCC_EVTEN_SET.EVT[nn] bits permit setting individual bits in the
ADCC_EVTEN register without affecting other bits in the register. Write 1 to individu-
al ADCC_EVTEN_SET.EVT[nn] bits to set the corresponding bit in
ADCC_EVTEN.

CM41X_M4 ADCC Register Descriptions

30–98 ADSP-CM41x Mixed-Signal Control Processor

Event n Time Register

The ADCC_EVT[nn] register holds the time (in SCLK cycles) at which to sample (the event) from ADC.

Time Value

Time Value

TIME[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TIME[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-52: ADCC_EVT[nn] Register Diagram

Table 30-47: ADCC_EVT[nn] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

TIME Time Value.

The ADCC_EVT[nn].TIME bits holds the time value (in terms SCLK cycles) at
which to sample (the event) from ADC.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–99

Frame Interrupt Mask Register

The ADCC_FIMSK register masks (disables) generation of ADCC_TMR0_EVT or ADCC_TMR1_EVT event inter-
rupt requests based on status in the ADCC_FISTAT register.

Frame Interrupt 1 MaskLast Frame Interrupt 0 Mask

Frame Interrupt 0 MaskLast Frame Interrupt 1 Mask

FINT1 (R/W)LFINT0 (R/W)

FINT0 (R/W)LFINT1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-53: ADCC_FIMSK Register Diagram

Table 30-48: ADCC_FIMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

LFINT1 Last Frame Interrupt 1 Mask.

The ADCC_FIMSK.LFINT1 bits mask (disable) the ADCC_FISTAT.LFINT1
frame complete interrupt requests for data transfer related to Timer 1.

2

(R/W)

LFINT0 Last Frame Interrupt 0 Mask.

The ADCC_FIMSK.LFINT0 bits mask (disable) the ADCC_FISTAT.LFINT0
frame complete interrupt requests for data transfer related to Timer 0.

1

(R/W)

FINT1 Frame Interrupt 1 Mask.

The ADCC_FIMSK.FINT1 bits mask (disable) the ADCC_FISTAT.FINT1 frame
complete interrupt requests for data transfer related to Timer 1.

0 Unmask (Enable) Frame Interrupt

1 Mask (Disable) Frame Interrupt

0

(R/W)

FINT0 Frame Interrupt 0 Mask.

The ADCC_FIMSK.FINT0 bits mask (disable) the ADCC_FISTAT.FINT0 frame
complete interrupt requests for data transfer related to Timer 0.

0 Unmask (Enable) Frame Interrupt

1 Mask (Disable) Frame Interrupt

CM41X_M4 ADCC Register Descriptions

30–100 ADSP-CM41x Mixed-Signal Control Processor

Frame Interrupt Mask Clear Register

The ADCC_FIMSK_CLR register can be used to selectively clear bits in the ADCC_FIMSK register without affect-
ing other bits in the register. Writing a 1 to any bit position in ADCC_FIMSK_CLR clears the corresponding bit in
ADCC_FIMSK. Reading the ADCC_FIMSK_CLR register returns the data present in the ADCC_FIMSK register.

Frame Interrupt 1 MaskLast Frame Interrupt 0 Mask

Frame Interrupt 0 MaskLast Frame Interrupt 1 Mask

FINT1 (R/W)LFINT0 (R/W)

FINT0 (R/W)LFINT1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-54: ADCC_FIMSK_CLR Register Diagram

Table 30-49: ADCC_FIMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1C)

LFINT1 Last Frame Interrupt 1 Mask.

The ADCC_FIMSK_CLR.LFINT1 bits permit clearing the
ADCC_FIMSK.LFINT1 bit without affecting other bits in the register. Write 1 to
the ADCC_FIMSK_CLR.LFINT1 bit to clear the ADCC_FIMSK.LFINT1 bit.

2

(R/W1C)

LFINT0 Last Frame Interrupt 0 Mask.

The ADCC_FIMSK_CLR.LFINT0 bits permit clearing the
ADCC_FIMSK.LFINT0 bit without affecting other bits in the register. Write 1 to
the ADCC_FIMSK_CLR.LFINT0 bit to clear the ADCC_FIMSK.LFINT0 bit.

1

(R/W1C)

FINT1 Frame Interrupt 1 Mask Clear.

The ADCC_FIMSK_CLR.FINT1 bits permit clearing the ADCC_FIMSK.FINT1
bit without affecting other bits in the register. Write 1 to the
ADCC_FIMSK_CLR.FINT1 bit to clear the ADCC_FIMSK.FINT1 bit.

0

(R/W1C)

FINT0 Frame Interrupt 0 Mask Clear.

The ADCC_FIMSK_CLR.FINT0 bits permit clearing the ADCC_FIMSK.FINT0
bit without affecting other bits in the register. Write 1 to the
ADCC_FIMSK_CLR.FINT0 bit to clear the ADCC_FIMSK.FINT0 bit.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–101

Frame Interrupt Mask Set Register

The ADCC_FIMSK_SET register can be used to selectively set bits in the ADCC_FIMSK register without affecting
other bits in the register. Writing a 1 to any bit position in ADCC_FIMSK_SET sets the corresponding bit in
ADCC_FIMSK. Reading the ADCC_FIMSK_SET register returns the data present in the ADCC_FIMSK register.

Frame Interrupt 1 MaskLast Frame Interrupt 0 Mask

Frame Interrupt 0 MaskLast Frame Interrupt 1 Mask

FINT1 (R/W)LFINT0 (R/W)

FINT0 (R/W)LFINT1 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-55: ADCC_FIMSK_SET Register Diagram

Table 30-50: ADCC_FIMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1S)

LFINT1 Last Frame Interrupt 1 Mask.

The ADCC_FIMSK_SET.LFINT1 bits permit setting the
ADCC_FIMSK.LFINT1 bit without affecting other bits in the register. Write 1 to
the ADCC_FIMSK_SET.LFINT1 bit to set the ADCC_FIMSK.LFINT1 bit.

2

(R/W1S)

LFINT0 Last Frame Interrupt 0 Mask.

The ADCC_FIMSK_SET.LFINT0 bits permit setting the
ADCC_FIMSK.LFINT0 bit without affecting other bits in the register. Write 1 to
the ADCC_FIMSK_SET.LFINT0 bit to set the ADCC_FIMSK.LFINT0 bit.

1

(R/W1S)

FINT1 Frame Interrupt 1 Mask Set.

The ADCC_FIMSK_SET.FINT1 bits permit setting the ADCC_FIMSK.FINT1
bit without affecting other bits in the register. Write 1 to the
ADCC_FIMSK_SET.FINT1 bit to set the ADCC_FIMSK.FINT1 bit.

0

(R/W1S)

FINT0 Frame Interrupt 0 Mask Set.

The ADCC_FIMSK_SET.FINT0 bits permit setting the ADCC_FIMSK.FINT0
bit without affecting other bits in the register. Write 1 to the
ADCC_FIMSK_SET.FINT0 bit to set the ADCC_FIMSK.FINT0 bit.

CM41X_M4 ADCC Register Descriptions

30–102 ADSP-CM41x Mixed-Signal Control Processor

Frame Interrupt Status Register

The ADCC_FISTAT register indicates frame interrupt status. The ADCC generates interrupt requests correspond-
ing to Timer 0 on the ADCC_TMR0_EVT output and generates the interrupt requests corresponding to Timer 1 on
the ADCC_TMR1_EVT output.

Frame Interrupt 1Last Frame Interrupt 0

Frame Interrupt 0Last Frame Interrupt 1

FINT1 (R/W1C)LFINT0 (R/W1C)

FINT0 (R/W1C)LFINT1 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-56: ADCC_FISTAT Register Diagram

Table 30-51: ADCC_FISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1C)

LFINT1 Last Frame Interrupt 1.

The ADCC_FISTAT.LFINT1 bit indicates core/DMA last frame interrupt status for
a Timer 1 frame. If the register NUMFRAM1 in ADCC is non zero(N), this bit gets
set when all data corresponding to events of (N +1) frames at TIMER1 are successfully
DMAed by the ADCC(and responses received) in DMA mode. In core mode, this bits
gets set when all data of the (N+1) frames have been received by ADCC from ADC.
This bit needs to be cleared before TIMER1 can accept the next trigger.

2

(R/W1C)

LFINT0 Last Frame Interrupt 0.

The ADCC_FISTAT.LFINT0 bit indicates core/DMA last frame interrupt status for
a Timer 0 frame. If the register NUMFRAM0 in ADCC is non zero(N), this bit gets
set when all data corresponding to events of (N +1) frames at TIMER0 are successfully
DMAed by the ADCC(and responses received) in DMA mode. In core mode, this bits
gets set when all data of the (N+1) frames have been received by ADCC from ADC.
This bit needs to be cleared before TIMER0 can accept the next trigger.

1

(R/W1C)

FINT1 Frame Interrupt 1.

The ADCC_FISTAT.FINT1 bit indicates core/DMA interrupt status for a Timer 1
frame. In non-DMA mode, this bit is set when the data corresponding to all events
(which were not missed) in a frame are received by the ADCC (from the ADC). In
DMA mode, this bit is set when all data corresponding to events of a frame are suc-
cessfully DMA transferred by the ADCC (and responses received).

0 No Status

1 Frame Complete

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–103

Table 30-51: ADCC_FISTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

FINT0 Frame Interrupt 0.

The ADCC_FISTAT.FINT0 bit indicates core/DMA interrupt status for a Timer 0
frame. In non-DMA mode, this bit is set when the data corresponding to all events
(which were not missed) in a frame are received by the ADCC (from the ADC). In
DMA mode, this bit is set when all data corresponding to events of a frame are suc-
cessfully DMA transferred by the ADCC (and responses received).

0 No Status

1 Frame Complete

CM41X_M4 ADCC Register Descriptions

30–104 ADSP-CM41x Mixed-Signal Control Processor

Frame Increment 0 Register

The ADCC_FRINC0 register contains the address increment applied between the base-address of consecutive Timer
0 frames of DMA data (unless a fresh write of the ADCC_BPTR0 register occurred in between). The value is a sign-
ed, two's complement byte address increment.

Frame Increment 0 Value

Frame Increment 0 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-57: ADCC_FRINC0 Register Diagram

Table 30-52: ADCC_FRINC0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Frame Increment 0 Value.

The ADCC_FRINC0.VALUE bits hold memory offset increment applied to the base-
address of consecutive Timer 0 frames of DMA data. Note that bit 0 must be written
as 0 to ensure correct address alignment.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–105

Frame Increment 1 Register

The ADCC_FRINC1 register contains the address increment applied between the base-address of consecutive Timer
1 frames of DMA data (unless a fresh write of the ADCC_BPTR0 register occurred in between). The value is a sign-
ed, two's complement byte address increment.

Frame Increment 1 Value

Frame Increment 1 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-58: ADCC_FRINC1 Register Diagram

Table 30-53: ADCC_FRINC1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Frame Increment 1 Value.

The ADCC_FRINC1.VALUE bits hold memory offset increment applied to the base-
address of consecutive Timer 1 frames of DMA data. Note that bit 0 must be written
as 0 to ensure correct address alignment.

CM41X_M4 ADCC Register Descriptions

30–106 ADSP-CM41x Mixed-Signal Control Processor

Timer0 Frame Limit Count Register

The ADCC_NUMFRAM0 register allows programming number of TIMER0 frames before frame interrupt 0
(FINT0).

Number of TIMER frames
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-59: ADCC_NUMFRAM0 Register Diagram

Table 30-54: ADCC_NUMFRAM0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Number of TIMER frames.

The ADCC_NUMFRAM0.VALUE bit field sets the number of TIMER0 frames after
which FINT is generated.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–107

Timer1 Frame Limit Count Register

The ADCC_NUMFRAM1 register allows programming number of TIMER1 frames before frame interrupt 0
(FINT0).

Number of Timer Frames
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-60: ADCC_NUMFRAM1 Register Diagram

Table 30-55: ADCC_NUMFRAM1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Number of Timer Frames.

The ADCC_NUMFRAM1.VALUE bit field sets the number of TIMER1 frames after
which FINT is generated.

CM41X_M4 ADCC Register Descriptions

30–108 ADSP-CM41x Mixed-Signal Control Processor

Timer 0 Status Register

The ADCC_T0STAT register indicates Timer 0 related status for the ADCC operation.

Current Frame Count

DMA Pending Status

CURFR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DPND (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-61: ADCC_T0STAT Register Diagram

Table 30-56: ADCC_T0STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

DPND DMA Pending Status.

The ADCC_T0STAT.DPND bit indicates pending status for data received from the
ADC. When there are pending transfers, even if the ADCC is disabled while they are
pending, the DMA finishes these pending data transfers.

0 No Status

1 DMA Pending

15:0

(R/NW)

CURFR Current Frame Count.

The ADCC_T0STAT.CURFR bits hold the current frame number in the chronologi-
cal order after ADCC enable occurred (linear buffer mode) or hold the frame number
after the last wrap around (circular buffer mode). This field wraps over after 0xFFFF
frames.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–109

Timer 1 Status Register

The ADCC_T1STAT register indicates Timer 1 related status for the ADCC operation.

Current Frame Count

DMA Pending Status

CURFR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DPND (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-62: ADCC_T1STAT Register Diagram

Table 30-57: ADCC_T1STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/NW)

DPND DMA Pending Status.

The ADCC_T1STAT.DPND bit indicates pending status for data received from the
ADC. When there are pending transfers, even if the ADCC is disabled while they are
pending, the DMA finishes these pending data transfers.

0 No Status

1 DMA Pending

15:0

(R/NW)

CURFR Current Frame Count.

The ADCC_T1STAT.CURFR bits hold the current frame number in the chronologi-
cal order after ADCC enable occurred (linear buffer mode) or hold the frame number
after the last wrap around (circular buffer mode). This field wraps over after 0xFFFF
frames.

CM41X_M4 ADCC Register Descriptions

30–110 ADSP-CM41x Mixed-Signal Control Processor

Timing Control A (ADC0) Register

The ADCC_TCA0 register controls timing related to the unit A interface clock (ADCC_ACLK) and chip select sig-
nals.

Clock Divisor

based on trigger
Enable bit for Clock synchronizationTrigger polarity for SYNCCK feature

Number of ClocksTrigger selection for SYNCCK feature

CKDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SYNCCK (R/W)CKTRGRE (R/W)

NCK (R/W)CKTRGSEL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-63: ADCC_TCA0 Register Diagram

Table 30-58: ADCC_TCA0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26:24

(R/W)

CKTRGSEL Trigger selection for SYNCCK feature.

The ADCC_TCA0.CKTRGSEL bit selects the trigger input to be used for synchroniz-
ing ADC clock. The valid values range from 0-5.

21

(R/W)

CKTRGRE Trigger polarity for SYNCCK feature.

The ADCC_TCA0.CKTRGRE bit provides a choice for the trigger polarity to be used
for the trigger input with which the ADC clock is to be synchronized. A value of 1
indicates risedge based trigger, and a value of 0 indicates falledge based trigger identifi-
cation.

20

(R/W)

SYNCCK Enable bit for Clock synchronization based on trigger.

The ADCC_TCA0.SYNCCK bit enables the clock synchronization w.r.t a trigger in-
put to the block. A value of "1" enables this feature.

19:16

(R/W)

NCK Number of Clocks.

The ADCC_TCA0.NCK bits select the number of ADCC_ACLK ADC clock cycles for
each ADCC_ACS chip select pulse. A value of 0 implies 16 clock cycles.

The ADCC_TCA0.NCK programming should ensure that total number of data/
control bits is less than or equal to 16 bits. If either data or control are on dual bit lines
(ADCC_CTL.DSIZE =1), the maximum number of clock permitted is 8, and
NCK=0 is not permitted.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–111

Table 30-58: ADCC_TCA0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

CKDIV Clock Divisor.

The ADCC_TCA0.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks
to be sent to ADC calculated as:

ADCC_ACLK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, ADCC_TCA0.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, ADCC_TCA0.CKDIV =2 represents a ratio of 1:3, and so on.

CM41X_M4 ADCC Register Descriptions

30–112 ADSP-CM41x Mixed-Signal Control Processor

Timing Control A (ADC1) Register

The ADCC_TCA1 register controls timing related to the Unit B interface clock (ADCC_ACLK) and and chip select
signals.

Clock Divisor

based on trigger
Enable bit for Clock synchronizationTrigger polarity for SYNCCK feature

Number of ClocksTrigger selection for SYNCCK feature

CKDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SYNCCK (R/W)CKTRGRE (R/W)

NCK (R/W)CKTRGSEL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-64: ADCC_TCA1 Register Diagram

Table 30-59: ADCC_TCA1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26:24

(R/W)

CKTRGSEL Trigger selection for SYNCCK feature.

The ADCC_TCA1.CKTRGSEL bit selects the trigger input to be used for synchroniz-
ing ADC clock. The valid values range from 0-5.

21

(R/W)

CKTRGRE Trigger polarity for SYNCCK feature.

The ADCC_TCA1.CKTRGRE bit provides a choice for the trigger polarity to be used
for the trigger input with which the ADC clock is to be synchronized. A value of 1
indicates risedge based trigger, and a value of 0 indicates falledge based trigger identifi-
cation.

20

(R/W)

SYNCCK Enable bit for Clock synchronization based on trigger.

The ADCC_TCA1.SYNCCK bit enables the clock synchronization w.r.t a trigger in-
put to the block. A value of "1" enables this feature.

19:16

(R/W)

NCK Number of Clocks.

The ADCC_TCA1.NCK bits select the number of ADCC_ACLK ADC clock cycles for
each ADCC_ACS chip select pulse. A value of 0 implies 16 clock cycles.

The ADCC_TCA1.NCK programming should ensure that total number of data/
control bits is less than or equal to 16 bits. If either data or control are on dual bit lines
(ADCC_CTL.DSIZE =1), the maximum number of clock permitted is 8, and
NCK=0 is not permitted.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–113

Table 30-59: ADCC_TCA1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

CKDIV Clock Divisor.

The ADCC_TCA1.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks
to be sent to ADC calculated as:

ADCC_ACLK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, ADCC_TCA1.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, ADCC_TCA1.CKDIV =2 represents a ratio of 1:3, and so on.

CM41X_M4 ADCC Register Descriptions

30–114 ADSP-CM41x Mixed-Signal Control Processor

Timing Control B (ADC0) Register

The ADCC_TCB0 register controls parameter values for timing relationships between the ADCC_ACS and
ADCC_ACLK pin signals in the unit A interface. For a timing diagram illustrating these timing relationships, see the
ADCC functional description.

Time CS to CK SetupTime CK to CS Hold

Timing CS to CS Delay

TCSCK (R/W)TCKCS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TCSCS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-65: ADCC_TCB0 Register Diagram

Table 30-60: ADCC_TCB0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:16

(R/W)

TCSCS Timing CS to CS Delay.

The ADCC_TCB0.TCSCS value selects minimum delay time (in ADCC_ACLK cy-
cles) required between on ADCC_ACS de-asserted edge and the next ADCC_ACS as-
serted edge. A value of 0 implies 256 cycles delay.

15:8

(R/W)

TCKCS Time CK to CS Hold.

The ADCC_TCB0.TCKCS value selects the minimum hold time (in ADCC_ACLK
cycles) after (ADCC_TCB0.TCSCK + ADCC_TCA0.NCK) clock cycles have elapsed
during ADCC_ACS asserted for which the chip select should be held asserted. A value
of 0 implies 0 clock cycle delay.

7:0

(R/W)

TCSCK Time CS to CK Setup.

The ADCC_TCB0.TCSCK value selects the minimum setup time (in ADCC_ACLK
cycles) required from the ADCC_ACS asserted to the first edge of the ADCC_ACLK
clock. A value of 0 implies 256 clock cycles.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–115

Timing Control B (ADC1) Register

The ADCC_TCB1 register controls parameter values for timing relationships between the ADCC_BCS and
ADCC_BCLK pin signals in the unit B interface. For a timing diagram illustrating these timing relationships, see the
ADCC functional description.

Time CS to CK SetupTime CK to CS Hold

Timing CS to CS Delay

TCSCK (R/W)TCKCS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TCSCS (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-66: ADCC_TCB1 Register Diagram

Table 30-61: ADCC_TCB1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:16

(R/W)

TCSCS Timing CS to CS Delay.

The ADCC_TCB1.TCSCS value selects minimum delay time (in ADCC_BCLK cy-
cles) required between on ADCC_BCS de-asserted edge and the next ADCC_BCS as-
serted edge. A value of 0 implies 256 cycles delay.

15:8

(R/W)

TCKCS Time CK to CS Hold.

The ADCC_TCB1.TCKCS value selects the minimum hold time (in ADCC_BCLK
cycles) after (ADCC_TCB1.TCSCK + ADCC_TCA1.NCK) clock cycles have elapsed
during ADCC_BCS asserted for which the chip select should be held asserted. A value
of 0 implies 0 clock cycle delay.

7:0

(R/W)

TCSCK Time CS to CK Setup.

The ADCC_TCB1.TCSCK value selects the minimum setup time (in ADCC_BCLK
cycles) required from the ADCC_BCS asserted to the first edge of the ADCC_BCLK
clock. A value of 0 implies 256 clock cycles.

CM41X_M4 ADCC Register Descriptions

30–116 ADSP-CM41x Mixed-Signal Control Processor

Timer 0 Current Count Register

The ADCC_TMR0 register holds the current count of the Timer 0 while a frame is in progress. This register may be
used to determine the current timer count, which indicates approximately how much of the frame has been com-
pleted. The timer is initiated by the trigger and counts up starting from 0. The timer increments every SCLK cycle
until the frame completion. In DMA mode, the frame completion happens when event all data have been placed in
memory and responses are received. In non-DMA mode, the frame completion happens when all events' data have
been received from the ADC. If a frame is not in progress, the ADCC_TMR0.CNT field is reset.

Current Count of Timer 0

Current Count of Timer 0

CNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-67: ADCC_TMR0 Register Diagram

Table 30-62: ADCC_TMR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

CNT Current Count of Timer 0.

The ADCC_TMR0.CNT bits hold the current count of Timer 0.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–117

Timer 1 Current Count Register

The ADCC_TMR1 register holds the current count of the Timer 1 while a frame is in progress. This register may be
used to determine the current timer count, which indicates approximately how much of the frame has been com-
pleted. The timer is initiated by the trigger and counts up starting from 0. The timer increments every SCLK cycle
until the frame completion. In DMA mode, the frame completion happens when event all data have been placed in
memory and responses are received. In non-DMA mode, the frame completion happens when all events' data have
been received from the ADC. If a frame is not in progress, the ADCC_TMR1.CNT field is reset.

Current Count of Timer 1

Current Count of Timer 1

CNT[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CNT[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-68: ADCC_TMR1 Register Diagram

Table 30-63: ADCC_TMR1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

CNT Current Count of Timer 1.

The ADCC_TMR1.CNT bits hold the current count of Timer 1.

CM41X_M4 ADCC Register Descriptions

30–118 ADSP-CM41x Mixed-Signal Control Processor

Trigger Count TIMER0 Register

The ADCC_TRGCNT0 register holds the trigger number being serviced at TIMER0.

Trigger Count
TRGCNT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-69: ADCC_TRGCNT0 Register Diagram

Table 30-64: ADCC_TRGCNT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

TRGCNT Trigger Count.

The ADCC_TRGCNT0.TRGCNT bit field indicates the trigger number being serviced
by TIMER0.

CM41X_M4 ADCC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 30–119

Trigger Count TIMER1 Register

The ADCC_TRGCNT1 register holds the trigger number being serviced at TIMER1.

Trigger Count
TRGCNT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 30-70: ADCC_TRGCNT1 Register Diagram

Table 30-65: ADCC_TRGCNT1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/NW)

TRGCNT Trigger Count.

The ADCC_TRGCNT1.TRGCNT bit field indicates the trigger number being serviced
by TIMER1.

CM41X_M4 ADCC Register Descriptions

30–120 ADSP-CM41x Mixed-Signal Control Processor

31 Digital-to-Analog Converter Controller
(DACC)

The DAC controller (DACC) automates DAC data conversion and simplifies DAC accesses. The DACC provides
an interface that synchronizes the controls between the processor and a digital-to-analog converter (DAC).

NOTE: The DACC and ADCC chapters describe the control and data interface to the AFE. For information
about the analog portion (I/O pins and electrical specifications) of the AFE, see the product data sheet.

Using the DACC permits flexible scheduling of data transfer and provides precise control execution of timing and
analog output on the DACs. The DACC saves both processor MIPS and provides precise controllability for DAC
conversion or output time. The DACC is designed to interface with the on-chip internal DACs which require mini-
mal core intervention.

DACC Features
The DACC provides many architecture-based features (basic to the design) and mode-selectable features (usage is
optional or configurable).

Architecture-based features of the DACC include:

• A single DAC Interface to control multiple DACs:

• DAC0 12-bit DAC

• DAC1 - 8-bit FOCP DAC, Over Voltage

• DAC2 - 8-bit FOCP DAC, Under Voltage

• Automated DAC conversion with programmable timing

• Support of both core mode and DMA mode for updating the DAC buffer. The DMA interface width can be
programmable as a 16-bit or 32-bit interface.

• Separate four-deep FIFO for each DAC interface to queue the data for conversion, reducing the data request
rate to the core or DMA

• Serial clock, frame sync select, and data signal to control the DAC operations

Digital-to-Analog Converter Controller (DACC)

ADSP-CM41x Mixed-Signal Control Processor 31–1

• Internally-generated DAC clock from processor system clock

This clock can be gated (for example, it is active only when controlling the DAC) to provide excellent noise
immunity during the conversion process. The clock polarity (for example, the first edge after assertion of the
frame sync signal) is configurable.

• Two built-in DMA units

There is one DMA unit for each DAC. It used for transferring data for conversion. The DMA units support an
optional mechanism for circular buffering.

• Error detection capabilities, including support for detection of memory access error, DAC data underflow, and
address alignment error conditions

The DACC does not perform a data transmission in case of underflow. An underflow interrupt request can be
signaled to the processor core.

Mode-selectable features of the DACC include:

• Gated clock signal with configurable polarity.

The DAC clock given to a DAC can be a continuous clock or can be gated when the DAC data is not driven.
The clock edge polarity (that is, the driving edge of sync and data) can be configured to the rising edge or the
falling edge.

• Frame sync signal with configurable width and polarity.

The DAC frame sync signal has a programmable width in terms of the DAC clocks. The polarity of this signal
is configurable as active high or active low signal. The DAC uses this signal to start the conversion, and to
output the converted data.

• Timing for the DAC update frequency is configurable

• Data length for the DAC interface is programmable for up to 16-bit data lengths

• Data transmission to the DAC in LSB-first or MSB-bit first format

• Circular buffering for DMA data

When using DMA mode to update the DAC FIFO, the buffer submitted to DMA can be configured for circu-
lar buffering to transmit the data continuously without core intervention. Optionally, an interrupt request can
be enabled to signal the core at the end of each circular buffer.

• Status indication (status bits) and optional interrupt request generation to the core on DAC data underflow

DACC Functional Description
The following sections describe DACC functionality:

• DACC Signal Descriptions

• DACC Architectural Concepts

DACC Functional Description

31–2 ADSP-CM41x Mixed-Signal Control Processor

NOTE: Analog front end (AFE) start-up requires the loading of some initialization settings. This initialization oc-
curs automatically when the ADCC is enabled. Therefore, enable the ADCC before enabling the DACC
after power-on reset. If continued operation of the ADCC is unnecessary, it can be disabled while the
DACC continues to operate.

CM41X_M4 DACC Register List

The DAC controller (DACC) automates the DAC data conversion process and simplifies DAC management. The
DACC provides an interface that synchronizes the controls between the processor and a digital-to-analog converter
(DAC). A set of registers govern DACC operations. For more information on DACC functionality, see the DACC
register descriptions.

Table 31-1: CM41X_M4 DACC Register List

Name Description

DACC_BCST_CTL Broadcast (Write) Control Register

DACC_BPTR0 Base Pointer 0 Register

DACC_CNT0 Count 0 Register

DACC_CNTCUR0 Current Count 0 Register

DACC_CTL0 Control 0 Register

DACC_DAT0 Data FIFO 0 Register

DACC_ERRMSK Error Mask Register

DACC_ERRMSK_CLR Error Mask Clear Register

DACC_ERRMSK_SET Error Mask Set Register

DACC_ERRSTAT Error Status Register

DACC_IMSK Interrupt Mask Register

DACC_IMSK_CLR Interrupt Mask Clear Register

DACC_IMSK_SET Interrupt Mask Set Register

DACC_ISTAT Interrupt Status Register

DACC_MOD0 Modify 0 Register

DACC_STAT Status Register

DACC_TC0 Timing Control 0 Register

DACC Signal Descriptions

The DACC controls the operation of internal DACs, based on its timing register settings. Because the DACs are
internal, none of the DACC signals are available as external package pins.

NOTE: There is one instance of the DAC interface on the processor. Each offers separate clock, frame sync, and
data signals for controlling three DACs independently.

DACC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 31–3

A number of signals connect the DACC to the DACs for DAC clock, frame sync, and data. Using these signals, the
DACC regulates the DAC data transfer and data conversion. These signals appear in the DACC-to-DAC0/1 Signal
Descriptions table.

Table 31-2: DACC-to-DAC0/1 Signal Descriptions

Name I/O Description

DACC_ACLK O DACC DAC (A) clock

DACC_AFS O DACC DAC (A) frame sync

DACC_AD0 O DACC DAC (A) data 0 for writing conversion data to the DAC

The DACC also has a number of signals to send the status and error information to the processor. These signals
appear in the DACC-to-Core Signal Descriptions table.

Table 31-3: DACC-to-Core Signal Descriptions

Signal Name I/O Signal Description

DACC_DAC0 O DAC0 Event when a DAC frame is completed

DACC_DAC1 O DAC1 Event when a DAC frame is completed

DACC_ERR O DAC Error Interrupt

The following are more detailed descriptions of each DACC signal type.

DAC Clock (DACC_ACLK, DACC_BCLK)

This clock signal is given to DAC, based on which of the other two DAC signals, frame sync and data are
driven. The clock edge polarity (that is, the driving edge of CS or SYNC and data) can be configured to rising
edge or falling edge using DACC clock polarity bit setting.

The DAC clock signal is internally generated from processor SCLK and is configurable as follows:

DAC_CLK frequency = SCLK ÷ (DACC_TC.DCKDIV + 1)
The DAC clock can be given continuous free running or gated (that is, given out only when data is driven).
This clock configuration uses the DACC gated clock enable bit setting.

DAC Frame Sync (DACC_AFS, DACC_BFS)

The DAC frame sync signal is active when valid data is driven out to the DAC. The DACC uses the data
length field (for example, DACC_CTL0.DLEN) to decide the active period of the DAC frame sync.

The frequency of this signal determines the DAC update rate, which can be programmed using the DACC
frame sync idle field (for example, DACC_TC0.FSIDLE). The DACC uses the frame sync idle field to de-
cide the idle period between two DAC sync active pulses. This field is programmed in terms of the number of
DAC clocks. It is a 16-bit field and a value of zero implies 1 DAC clock cycle.

DACC Functional Description

31–4 ADSP-CM41x Mixed-Signal Control Processor

Therefore, the periodicity of DACC_FS = (DACC_TC.DFSIDLE + 1) + DACC_CTL.DLEN.

If the DACC data length is zero, periodicity of DAC_FS = (DACC_TC.DFSIDLE + 1) + 16.
The polarity of the DAC sync signal can be configured to active high or active low, using the DACC sync
polarity bit setting (for example,DACC_CTL0.SYNCPOL).

DAC Data (DACC_AD0, DACC_BD0)

The data to the DAC is serially driven out on the DACC data pin (for example, DACC_AD0).

The DACC data length field (for example, DACC_CTL0.DLEN) determines the DAC interface length. It is a
four-bit field, that allows a DAC interface length of from 1 to 16 (a value of 4’h0 implies a data length of 16
bits).

The DAC data can be transmitted in LSB first format or MSB first format by configuring the DACC LSB
first bit (for example, DACC_CTL0.LSBF).

On the processor, the DACC controls the 12-bit DACs, which support MSB first format. Configure the
DACC data length to 0xC, and the DACC LSB first bit to 0.

There can be situations where an incomplete or larger DAC frame is sent to the DAC when the data length
field is set incorrectly. In these cases, the DAC on the processor ignores frames smaller than 11-bits and dis-
cards extra bits if the frame sizes are more than 12 bits.

DACC_AFS
DACC_BFS

DACC_AD0
DACC_BD0

DACC_ACLK
DACC_BCLK

DACx DATA DRIVING EDGE (D)

DACx DATA SAMPLING EDGE (S)

D D D D D D D D

S S S S S S S S

D

S

D

S

D

S

D

S

Figure 31-1: DACC Signals

DACC Architectural Concepts

The DACC Block Diagram shows the top-level architecture of DAC interface. The interface consists of:

• A DMA and core interface. This interface permits the core to read and write DACC registers for configuration,
control, and word-by-word data transfer. The independent DMA engine of the DACC provides data transfer
without core overhead. For more information about this interface, see Core and DMA Interfaces and Data
Transfer Modes.

• DAC pending data FIFOs. Each DAC has a four-deep FIFO for pending data transfer. These FIFOs help pre-
vent data underrun. For more information, see Pending Data FIFO.

• DAC clock generation. Each DAC has an independent clock signal that the DACC generates from the system
clock (SCLK) according to the configuration in DACC registers. Optionally, this clock can be gated (only ac-
tive while data is driven). For more information, see Clock Modes.

DACC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 31–5

• Frame sync generation. Each DAC has an independent frame sync signal that controls the data transfer rate.
Data and the gated clock are only driven while the frame sync is asserted. For more information, see Frame
Sync Modes.

• Data output (shift registers). The last stage of each DAC FIFO is a serial shift register, which the DACC uses to
transfer data from the FIFO to the DAC.

• Status and error interrupts. The DACC has an error interrupt request output, and the DACs each have a status
interrupt output. These outputs go to system NVIC/SEC units for handling.

DACC Block Diagram

The DACC Block Diagram figure shows the functional blocks within the DACC.

DMA & CORE
INTERFACE

DMA CORE

DAC0
FIFO

DAC1
FIFO

BCLK DOMAIN

SC
LK

 D
O

M
A

IN

DACC_
AD0

DACC_
AFS

DACC_
ACLK

DACC_
BD0

DACC_
BFS

DACC_
BCLK

SCLK

DACC_TC1.FSIDLE

DACC_CTL1.DLEN

DACC_TC1.CKDIV

CLOCK DIVIDER

FRAME SYNC
GENERATION

DAC1 SHIFT
REGISTER

SCLK

DACC_TC0.FSIDLE

DACC_CTL0.DLEN

DACC_TC0.CKDIV

CLOCK DIVIDER

FRAME SYNC
GENERATION

DAC0 SHIFT
REGISTER

ACLK DOMAIN

DAC0 INTERFACE DAC1 INTERFACE

DACC_
ERR

DACC_
INT0

DACC_
INT1

DACC

Figure 31-2: DACC Block Diagram

For more information about the DACC signals, see DACC Signal Descriptions.

For more information about the blocks in the diagram, see DACC Architectural Concepts.

Core and DMA Interfaces

The DACC has a 32-bit core interface through which the core programs the DACC control registers and reads the
DACC status registers. The DACC also uses this interface to update the DAC FIFOs in core mode. It updates the
DAC FIFO (with data for digital-to-analog conversion) by writing data to the data register of the DAC (for exam-
ple, DACC_DAT0).

To minimize the core overhead, the DACC provides a 32-bit DMA interface for updating the DAC FIFOs. The
DMA data interface width can be programmed to 16-bit or 32-bit width (for example, using the
DACC_CTL0.DMAW bit).

DACC Architectural Concepts

31–6 ADSP-CM41x Mixed-Signal Control Processor

The DMA interface supports an optional circular buffering mode for updating the DAC FIFOs. When circular buf-
fering is enabled (for example, using the DACC_CTL0.CBUFEN bit), the DMA continuously transmits the data
without core intervention. An interrupt can be enabled (for example, using the DACC_CTL0.CINTEN bit) to sig-
nal the core at the end of each circular buffer.

Pending Data FIFO

The DACC provides a separate, 4-deep FIFO for each DAC interface. It updates the FIFOs in core or DMA modes,
according to the mode settings in the DACC control register (for example, DACC_CTL0).

The pending data FIFO helps reduce the data request rate to the core or DMA and reduces the possibility of under-
flows.

The DAC shift register (at the last FIFO stage) reads the data from the DACC FIFO and serially shifts out the data.
It shifts the data based on active edges of the DAC clock (for example, DACC_ACLK) when the DAC sync pulse
(for example, DACC_AFS) is active.

An underflow at the DAC interface occurs when the DAC frame sync is about to go active, but the FIFO of the
DAC has no new data for transmission. When this situation occurs, the DACC does not generate the frame sync
pulse. Optionally, the DACC can signal this condition to the core with an error interrupt request.

DACC Operating Modes
The operating modes of the DACC include its configurable options for data length, FIFO update rate, DAC clock
divider and polarity, frame sync idle time and polarity, and broadcast controls. For more information about these
options, see the following sections:

• Data Transfer Modes

• Data Length and Update Options

• Clock Modes

• Frame Sync Modes

• Broadcast Control Option

Data Transfer Modes

The DACC transfers data to the DACs through the corresponding FIFO. To update these FIFOs with data for
transmission to the corresponding DAC, the DACC supports:

• Core-driven single word transfers

• DMA-driven multiple words transfers

DMA transfers can be set up to transfer a configurable number of words from internal or external memory of the
processor to the DACC FIFOs automatically, without core intervention. Core-driven transfers can use DACC inter-
rupt requests to signal the processor core to perform single word transfers to the DACC FIFOs.

DACC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 31–7

Core-Driven Data Write Mode

The DACC provides a DAC data register (for example, DACC_DAT0), for accessing the top entry of the 4-deep
FIFO in core mode. The DMA enable bit (for example, DACC_CTL0.DMAEN) selects the data transfer mode of
DACC operation as either DMA mode or core mode. Typically, the core checks the FIFO status bits (for example,
DACC_STAT.FSTAT0) or relies on related interrupt status before writing into the DAC data register. This register
must be written only when there is space available in the DAC FIFO. If the core attempts a write into the data
register when the DAC FIFO is full, the DACC ignores the core write transaction.

The DACC provides a way to ease status-checking for core write operations. It uses the core-write complete status
bit (for example DACC_ISTAT.CINT0) to indicate whether the DAC FIFO has space available to accommodate
new data writes by the core. Optionally, an interrupt request for the data request condition can be unmasked (ena-
bled) in the DACC_IMSK register. Then, core writes to the DAC FIFO can be managed with a processor based
interrupt service routine.

NOTE: The DAC interface considers only the lower 16 bits of DAC data FIFO register as DAC data. It ignores
the upper 16 bits. Reads of this register return the top entry of the FIFO.

DMA-Driven Data Write Mode

The DACC provides a 32-bit DMA interface to minimize the core overhead for updating the DAC data FIFOs.
The DMA enable bit (for example, DACC_CTL0.DMAEN) selects the data transfer mode of DACC operation as
either DMA mode or core mode. The DMA data interface width bit (for example, DACC_CTL0.DMAW) selects
whether the interface is 16 bits or 32 bits wide.

NOTE: When the DAC is in DMA mode, core writes to the DAC data register do not result in the data being
written into the DACC FIFO, and these writes are ignored.

Program the DMA work-units with the following registers:

• DAC DMA base pointer register (for example, DACC_BPTR0). This register contains the memory address of
the base pointer for starting a DMA read transfer.

• DAC DMA modify register (for example, DACC_MOD0). This register contains the address-increment applied
between each DMA read from memory, starting from the base pointer.

• DAC DMA count register (for example, DACC_CNT0). This register holds the DMA count in a DMA work-
unit.

The DMA unit supports linear buffering or circular buffering operating modes. The circular buffer enable bit (for
example, DACC_CTL0.CBUFEN) selects between these modes of operation.

Linear Buffering

In linear buffering, the data transfer starts from the memory location pointed to by the base pointer register.
With each data fetch (16 bits or 32 bits), the address is incremented by the number of bytes specified in the
modifier register to calculate the next fetch address. The DMA fetches data the number of times programmed

Data Transfer Modes

31–8 ADSP-CM41x Mixed-Signal Control Processor

in the count register and transmits the data to the DAC. After all the data is transmitted, an optional interrupt
status bit is set.

Circular Buffering

In circular buffering, the data transfer starts from the memory location pointed to by the base pointer register.
With each data fetch (16 bits or 32 bits), the address is incremented by the number of bytes specified in the
modifier register to calculate the next fetch address. The DMA unit provides a looping back mechanism to the
base pointer address. After the number of data fetches pointed by the count register, the next fetch is per-
formed from the base pointer location, instead of incrementing the fetch address by the modifier.

When interrupts are disabled in circular buffer mode (for example, using the DACC_CTL0.CINTEN bit), the
data fetches of the next circular buffer are initiated. The data fetch occurs even if the previous circular buffer
has data-reads that are pending on the return from memory. If interrupts are enabled, the next circular buffer
data request is made only after the reads of the previous circular buffer return. The interrupt request is signaled
after the reads of a circular buffer return from memory.

Data Length and Update Options

The data length of the DAC interface can be configured, allowing the DACC to interface with serial DACs with 1-
bit to 16-bit data length. The DACC can send data to the DAC in either LSB-first format or MSB-first format,
based on the DACC LSB-first bit setting.

The DACC uses the DAC data length bit field (for example, DACC_CTL0.DLEN) to choose up to a 16-bit data
length for the DAC interface. This value affects the number of DAC clock cycles for each data word and affects the
rate for the DAC FIFO update.

The period of the DAC FIFO update is configured using the DAC frame sync signal (for example, DACC_AFS) for
frame sync minimum idle time (for example, DACC_TC0.FSIDLE). The DAC clock divisor ratio (for example,
DACC_TC0.CKDIV) also affects the period of the DAC FIFO update.

The following calculation describes the combination of these factors for the DAC FIFO update period (example
DAC0 sync period) in DAC clock cycles:

DAC0 sync period = (DACC_TC0.FSIDLE + 1) + (DACC_CTL0.DLEN)

Applying this formula to calculate the required frame sync idle assumes the following:

• DAC data length is 12 bits

• System clock (SCLK) frequency is 100 MHz

• DAC0 clock frequency is 50 MHz

• DAC update frequency is 50 KSPs (kilo-samples-per-second)

First, calculate the DAC clock divisor (for DAC0) as:

DACC_TC0.CKDIV = (SCLK frequency ÷ DAC0 clock frequency) – 1

DACC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 31–9

 = (100 MHz / 50 MHz) – 1 = 1

Then, calculate the needed DAC frame sync idle time (for DAC0) as:

DACC_TC0.FSIDLE = (DAC clock frequency ÷ DAC update frequency) - DACC_CTL0.DLEN – 1

 = (50 MHz / 50 KSPs) – 12 – 1 = (1000 – 12 – 1) = 987 = 0x3DB

Clock Modes

The DACC provides a clock signal to communicate with the interfaced DAC. The DAC clock also is available in
gated format to ensure excellent noise immunity during the conversion process. (For example, the clock is active
only during the time when data is driven to the DAC)

Clock Frequency Programming

The DAC clock is internally generated from system clock of processor. The DACC_TC0.CKDIV bit field
specifies the divider to generate DAC0 clock signal from SCLK.

DACC_ACLK = (SCLK) ÷ (DACC_TC0.CKDIV + 1)
Alternatively, the clock divisor value for the required DAC0 clock frequency is calculated as:

DACC_TC0.CKDIV = (SCLK ÷ DACC_ACLK) – 1

Clock Polarity and Gated Clock Programming

The active DAC clock edge (polarity) can be selected as rising edge or falling edge. The DACC sync and data
signals (for example,DACC_AFS and DACC_AD0) are driven on the active edges of DAC clock. Configure
the clock polarity bit (for example, DACC_CTL0.CKPOL) based on the clock edge the DAC samples the
DAC sync and data signals. If the DAC clock is active low (for example, DACC_CTL0.CKPOL =0), the DAC
sync and data signals are driven from the falling edge of the DAC clock (for example, DACC_ACLK).

Consider an example where the DAC sync signal is active low (for example, DACC_CTL0.SYNCPOL =0)
and the DAC clock signal driving edge polarity is selected as rising edge (for example, DACC_CTL0.CKPOL
=1). In this example, the value of DAC data length is 12 (for example, DACC_CTL0.DLEN =12), and the
value of DAC sync idle is 4 (for example, DACC_TC0.FSIDLE =4). Refer to the DAC Clock Programming
(DACC_CTLx.GCKEN =0) figure.

DACC_AFS
DACC_BFS

DACC_AD0
DACC_BD0

DACC_ACLK
DACC_BCLK

1011 9 8 7 6 5 4 3 2 1 0 1011 9

DACC_CTLx.DLEN = 12 DACC_TCx.FSIDLE = 5

Figure 31-3: DAC Clock Programming (DACC_CTLx.GCKEN =0)

The DACC also provides the DAC clock in gated format, which is active only while the frame sync signal is
asserted and valid DAC data is driven. This operation is enabled with the gated clock enable bit (for example,

DACC Operating Modes

31–10 ADSP-CM41x Mixed-Signal Control Processor

DACC_CTL0.GCKEN). The DAC Clock Programming (DACC_CTLx.GCKEN =1) figure shows the DAC
serial timing for gated clock mode.

DACC_AFS
DACC_BFS

DACC_AD0
DACC_BD0

DACC_ACLK
DACC_BCLK

1011 9 8 7 6 5 4 3 2 1 0 1011 9

DACC_CTLx.DLEN = 12 DACC_TCx.FSIDLE = 5

Figure 31-4: DAC Clock Programming (DACC_CTLx.GCKEN =1)

Frame Sync Modes

The DACC provides a frame select signal (for example, DACC_AFS) to select the DAC for communication. The
signal (optionally with its edges) indicates the start of data transmission to the DAC (and data conversion). The
frame select is asserted while data is driven to the DAC.

The frame sync signal provided to the DAC can be configured as an active-high signal or an active-low signal, based
on the protocol the interfaced ADC supports. This sensitivity is configurable using the chip select polarity bit (for
example, DACC_CTL0.SYNCPOL).

Between data write sequences to the DAC, when a valid data word is not driven to the DAC, the DAC sync lines
must be driven to an inactive level (the lines are driven to a high or a low level). This action meets the DAC require-
ment for the frame period. The value is selected with the frame sync idle bit field (for example,
DACC_TC0.FSIDLE).

For more information about frame sync idle programming, see Data Length and Update Options.

Broadcast Control Option

The DACC controls multiple DACs. To support a synchronized enable time for the DACs (if necessary), the
DACC includes a broadcast control register (DACC_BCST_CTL), which provides broadcast write access to the con-
trol registers of the DAC. A memory-mapped register write to the DACC_BCST_CTL register writes the value to
the DACs' control registers. Reading the DACC_BCST_CTL register returns 0x0000 0000.

DACC Event Control
The DACC can signal the core about its state and various error conditions that occur during its operation, by pro-
viding status and error bits through different registers. These conditions include:

• Interrupt status related to data FIFO operations in core mode and DMA mode.

• Error status related to DACC operations.

• Pending data status (which do not generate interrupt requests) related to data FIFO operations in core mode
and DMA mode.

DACC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 31–11

Interrupt Status

The DACC can generate interrupt requests to signal operation status for individual DACs or error status for the
DACC to the system event controller (SEC).

The DACC provides a data interrupt channel for each DAC FIFO (for example, DACC_DAC0). In core mode, this
interrupt indicates the request to fill the DACC FIFO. In DMA mode, this interrupt indicates the completion of a
DMA work unit. The DACC uses the conditions flagged in the interrupt status register (DACC_ISTAT) to gener-
ate these interrupts.

The DACC error interrupt request signal (DACC_ERR) indicates error conditions related to DAC controller. The
DACC uses the conditions flagged in the error status register (DACC_ERRSTAT) to generate these interrupt re-
quests.

DAC DMA Mode Interrupt

In DMA mode, this interrupt request indicates the status of DMA work-unit. When in linear DMA mode,
the DACC can generate this interrupt when a DMA work unit programmed for a DAC interface completes,
and all data has transmitted to DAC. When in circular buffer DMA mode (with the circular buffer interrupt
enabled), the DACC can generate this interrupt request when all read data in a buffer return from memory.
The status bit related to this interrupt is sticky. A W1C operation clears the bit.

DAC Core Mode Interrupt

This interrupt request indicates the status of DAC FIFO update in core mode, when the DAC data FIFO has
space to accommodate new core data writes. The status bit related to this interrupt is a read-only status bit and
is cleared when the FIFO gets full.

Error Status

The DACC signals error conditions through the error status register (DACC_ERRSTAT) for data underflow errors
and memory access errors. The DACC can use these conditions to generate an error interrupt request (DACC_ERR)
when they are unmasked (enabled) in the error mask register (DACC_ERRMSK).

Clear all of these sticky error status bits with a W1C (write-1-to-clear) operation. Even if the DACC reports an
error, normal operation of the DACC continues. Due to address alignment errors, the lower (violating) bits of the
base pointer address or modifier registers are ignored. The data at the aligned address is written into the DAC FIFO.
In the underflow error case, transmission of the DAC data is delayed until the DACC FIFO receives any data from
the selected core or DMA interface.

Data Underflow Error

When an underflow occurs in a DAC FIFO, the related underflow error bit (for example,
DACC_ERRSTAT.DUVF0) indicates the condition. For more information about underflow, see Pending Da-
ta FIFO.

DACC Event Control

31–12 ADSP-CM41x Mixed-Signal Control Processor

Memory Access Error

When an address alignment error condition occurs while DACC DMA is enabled, the related address align-
ment error bit (for example, DACC_ERRMSK_SET.AER0) indicates the condition. An address alignment er-
ror occurs when:

• The LSB bit of the base pointer address register or modifier register is non-zero in 16-bit DMA mode.

• The lower 2 bits of the base pointer address register or modifier register are non-zero in 32-bit DMA
mode.

When a read response error returns from memory for transfers to a DAC, the related memory access error bit
(for example, DACC_ERRSTAT.MER0) indicates the condition. A read response error occurs when a DAC
DMA attempts to access the reserved memory space of processor.

Pending Status

In addition to interrupt status and error status, the DACC provides bits to provide information about DAC FIFO
pending data status.

DMA Data Pending Status

The DMA pending status bit (for example,DACC_STAT.DPND0) indicates that DMA read address requests
have been made and the related read data is pending DAC interface reception. Before re-enabling the DMA of
a DAC interface, check the corresponding pending status bit (for no data still pending).

DAC Data FIFO Status

The FIFO status bit (for example, DACC_STAT.FSTAT0) indicates the number of 16-bit data in the DAC
data FIFO that await transmission to the DAC. The status increments when DMA mode transfers or core
mode writes fill the DAC FIFO. The status decrements when a data transmission starts on the DAC interface.

DACC Programming Concepts
There are general programming concepts for using the DACC when it is present on any processor.

NOTE: There can also be processor-specific guidelines for programming the DACC.

The DAC does not work if the AFE is not "OK". See the ADCC chapter for more information

Take care when disabling or enabling the DACC in DMA modes. When disabling the DAC controller (for example,
DACC_CTL0.EN =0), ensure that pending DMA transfers finish before re-enabling the DACC or re-enabling
DMA (for example, DACC_CTL0.DMAEN =1). This status can be observed from the related DMA pending bit (for
example, DACC_STAT.DPND0) of the DAC. When disabling the DACC or DMA in the control register, retain
the programming of all other DMA-related controls (for example, DACC_CTL0.CBUFEN). Change all DMA-rela-
ted programming in DACC registers only after the corresponding DMA pending status bit is cleared (DMA com-
pleted).

DACC Event Control

ADSP-CM41x Mixed-Signal Control Processor 31–13

The memory mapped register status and counter-values are retained on disabling the DACC (helpful for debug).
These registers (such as counters and other status) are cleared on a 0-to-1 transition of the enable bit. Error status is
not cleared with this transition of 0-to-1. Clear the errors using a W1C operation.

If the DAC controller is disabled while a transaction on the DAC interface is in-progress, the transaction can be
dropped midway. Disable the DACC after a DMA work unit completes in DMA mode, or disable the DACC when
all data updates are complete in non-DMA mode.

After a DMA work unit finishes (interrupt given), initiate a new work unit using the following procedure:

• Disable both the DACC enable and DMA enable bits (for example, DACC_CTL0.EN =0 and
DACC_CTL0.DMAEN =0).

• Configure the DMA count and DMA modifier (for example, DACC_CNT0 and DACC_MOD0), then enable
DMA operation (for example, DACC_CTL0.DMAEN =1).

• After the FIFO gets data from the DMA (for example, DACC_STAT.DPND0 =1), enable the DACC (for ex-
ample, DACC_CTL0.EN =1).

DACC Programming Model
The programming model for the DACC includes operation flow for core mode transfers and DMA mode transfers.
Use the following steps in these flows.

Core Mode Operation Flow

Use this procedure to configure the DACC for core mode data transfers.

1. Set up the DACC, writing to its memory-mapped registers in core mode (for example, DACC_CTL0.DMAEN
=0 and DACC_CTL0.EN =0).

2. Enable DACC operation, writing the DACC_CTL0.EN bit (=1) in core mode.

The DACC clock starts and sync counters begin. The DACC sends sync pulses only if new data is present.
With each sync pulse, the DACC updates the DAC with new data.

3. Write DAC data to the DACC FIFO, using register writes in core mode.

4. When DAC updates complete, disable DACC operation (if desired), writing to the DACC_CTL0.EN bit (=0)
in core mode.

DMA Mode Operation Flow

Use this procedure to configure the DACC for DMA mode data transfers.

1. Set up the DACC, writing to its memory-mapped registers in DMA mode (DACC_CTL0.DMAEN =1 and
DACC_CTL0.EN =0)

DAC DMA starts reading data from memory.

DACC Programming Model

31–14 ADSP-CM41x Mixed-Signal Control Processor

2. Poll the FIFO status in DAC_STAT for FIFO >0 in core mode.

3. Enable DACC operation, writing the bit (=1) and DACC_CTL0.DMAEN (=1) in DMA mode.

The DACC clock starts and sync counters begin. The DACC sends sync pulses only if new data is present.
With each sync pulse, the DACC updates the DAC with new data during the selected DMA word count.

4. When DAC updates complete, disable DACC operation (if desired), writing to the DACC_CTL0.EN and
DACC_CTL0.DMAEN bits (both =0) in core mode.

DAC Selection

Selecting the DAC is via setting up a programming sequence through AFE. For more information about this, see
AFE Register Access Programming Model.

/*
DAC_ID: 0 – 12 bit DAC
 1 – Over Voltage DAC
 2 – Under Voltage DAC

#define BITM_USER_CONFIG_REG_USERCFG_DAC_SEL 0x0000C000
Enables Selection of DAC. 00 ->12 Bit DAC, 01->DAC_A, 10 ->DAC_B, 11 -> Not Used
*/

#define CTLWD_DACSEL 0xC0 //Bit[7] – RESERVED = 1
 //Bit[6] – WNR = 1
 //Bit[5] – RESERVED = 0
 //Bit[4-1] – REGADDRESS = 0000
 //Bit[0] – RESERVED = 0

void Select_DAC(unsigned char DAC_ID)
{

/*read user register and OR the value if it is required to retain value
 other bits of register*/
*pREG_ADCC0_ADCRW0=
 (((CTLWD_DACSEL << BITP_ADCC_ADCRW0_CTLW) & BITM_ADCC_ADCRW0_CTLW) |
 (((DAC_ID << BITP_USER_CONFIG_REG_USERCFG_DAC_SEL) <<
 BITP_ADCC_ADCRW0_DAT) & BITM_ADCC_ADCRW0_DAT));

//wait for register write to be complete
while ((*pREG_ADCC0_ADCRW0 & BITM_ADCC_ADCRW0_PND));

}

CM41X_M4 DACC Register Descriptions
DAC Controller (DACC) contains the following registers.

DACC Programming Model

ADSP-CM41x Mixed-Signal Control Processor 31–15

Table 31-4: CM41X_M4 DACC Register List

Name Description

DACC_BCST_CTL Broadcast (Write) Control Register

DACC_BPTR0 Base Pointer 0 Register

DACC_CNT0 Count 0 Register

DACC_CNTCUR0 Current Count 0 Register

DACC_CTL0 Control 0 Register

DACC_DAT0 Data FIFO 0 Register

DACC_ERRMSK Error Mask Register

DACC_ERRMSK_CLR Error Mask Clear Register

DACC_ERRMSK_SET Error Mask Set Register

DACC_ERRSTAT Error Status Register

DACC_IMSK Interrupt Mask Register

DACC_IMSK_CLR Interrupt Mask Clear Register

DACC_IMSK_SET Interrupt Mask Set Register

DACC_ISTAT Interrupt Status Register

DACC_MOD0 Modify 0 Register

DACC_STAT Status Register

DACC_TC0 Timing Control 0 Register

CM41X_M4 DACC Register Descriptions

31–16 ADSP-CM41x Mixed-Signal Control Processor

Broadcast (Write) Control Register

The DACC_BCST_CTL register provides a broadcast write access to the DACC control register(s). A memory map-
ped register write to DACC_BCST_CTL writes the data to both control register. A memory mapped register read of
the DACC_BCST_CTL register returns 0x0000.

LSB-First ModeGated Clock Enable

DMA Data WidthCircular Buffer Enable

DMA EnableCircular Buffer Interrupt Enable

EnableData Length

SYNC PolarityClock Polarity

LSBF (R0/W)GCKEN (R0/W)

DMAW (R0/W)CBUFEN (R0/W)

DMAEN (R0/W)CINTEN (R0/W)

EN (R0/W)DLEN (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SYNCPOL (R0/W)CKPOL (R0/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-5: DACC_BCST_CTL Register Diagram

Table 31-5: DACC_BCST_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R0/W)

CKPOL Clock Polarity.

The DACC_BCST_CTL.CKPOL broadcast bit selects the polarity of the DAC0 and
DAC1 interface clock signals (DACC_ACLK and DACC_BCLK pins) on which to
drive the DAC0 output (DACC_AD0 pin) and/or DAC1 output (DACC_BD0 pin).

16

(R0/W)

SYNCPOL SYNC Polarity.

The DACC_BCST_CTL.SYNCPOL broadcast bit selects the polarity for the DAC0
and DAC1 interfaces' sync signals (DACC_AFS and DACC_BFS pins).

11:8

(R0/W)

DLEN Data Length.

The DACC_BCST_CTL.DLEN broadcast bits choose the data length (in bits) for the
DAC0 and DAC1 interfaces. A value =0 for this field implies a data length of 16 bits.
For data lengths less that 16 bits, use LSB-aligned data and zero fill unused bits.

7

(R0/W)

CINTEN Circular Buffer Interrupt Enable.

The DACC_BCST_CTL.CINTEN broadcast bit enables generation of the
DACC_DAC0 and/or DACC_DAC1 interrupt requests at the end of each related circu-
lar buffer. This bit is only valid if the DACC_BCST_CTL.DMAEN bit =1 and the
DACC_BCST_CTL.CBUFEN bit =1.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–17

Table 31-5: DACC_BCST_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R0/W)

CBUFEN Circular Buffer Enable.

The DACC_BCST_CTL.CBUFEN broadcast bit enables circular buffer DMA mode
for the DAC0 and DAC1 interfaces. This bit is only valid if the
DACC_BCST_CTL.DMAEN bit =1.

5

(R0/W)

GCKEN Gated Clock Enable.

The DACC_BCST_CTL.GCKEN broadcast bit enables gated clock mode for the
DAC0 and DAC1 interface clocks (DACC_ACLK and DACC_BCLK pins). When ena-
bled, the related clock toggles only when valid data is driven on the DACC_AD0 pin
and/or the DACC_BD0 pin. When disabled, the clocks are free running.

4

(R0/W)

LSBF LSB-First Mode.

The DACC_BCST_CTL.LSBF broadcast bit selects between LSB-first mode or
MSB-first mode transfers for the DAC0 and DAC1 interfaces.

3

(R0/W)

DMAW DMA Data Width.

The DACC_BCST_CTL.DMAW broadcast bit selects the DMA data width for the
DAC0 and DAC1 interfaces. This bit is only valid if the DACC_BCST_CTL.DMAEN
bit =1.

2

(R0/W)

DMAEN DMA Enable.

The DACC_BCST_CTL.DMAEN broadcast bit enables DMA transfers for the DAC0
and DAC1 interfaces.

0

(R0/W)

EN Enable.

The DACC_BCST_CTL.EN broadcast bit enables operations for the DAC0 and
DAC1 interfaces.

CM41X_M4 DACC Register Descriptions

31–18 ADSP-CM41x Mixed-Signal Control Processor

Base Pointer 0 Register

The DACC_BPTR0 register provides the base pointer (address) used by DMA read operations for the DAC0 inter-
face. The value of base address (pointer) in the DACC_BPTR0 register at the start of the DMA work unit (start of
frame) corresponds to one of the following transfers:

• The first transfer after DACC is enabled in DMA mode

• The first transfer after a wrap around occurs in circular buffering mode

The data for the first transfer is read from memory, starting at the address indicated with the value of the base ad-
dress. Further DMA data is read from memory at addresses incremented by DACC_MOD0 bytes.

Base Pointer 0 Value

Base Pointer 0 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-6: DACC_BPTR0 Register Diagram

Table 31-6: DACC_BPTR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Base Pointer 0 Value.

The DACC_BPTR0.VALUE bits hold the base pointer (address) for the first DMA
transfer.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–19

Count 0 Register

In linear DMA mode, the DACC_CNT0 register holds the transfer count of a DMA work-unit for DAC0. The
DMA fetches the indicated number of read data and generates an interrupt request after transmitting all data to the
DAC. After the data corresponding to the count is transmitted (in linear DMA mode), the DACC does not send
further syncs to the DAC.

In circular buffer mode, this register holds the count of DMA after which wrap around to the base pointer address
((DACC_BPTR0)) occurs. The DMA fetches the indicated number of read data and (optionally) generates an inter-
rupt request after receiving all data corresponding to one set of DACC_CNT0 counts (one circular buffer) from
memory.

Count 0 Value

Count 0 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-7: DACC_CNT0 Register Diagram

Table 31-7: DACC_CNT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Count 0 Value.

The DACC_CNT0.VALUE bits select the transfer count of a DMA work-unit for
DAC0.

CM41X_M4 DACC Register Descriptions

31–20 ADSP-CM41x Mixed-Signal Control Processor

Current Count 0 Register

The DACC_CNTCUR0 register holds the current count of the DMA work-unit of the DAC0 interface. This register
is loaded from the DACC_CNT0 register when either of the following occur:

• The DACC is enabled in DMA mode

• A wrap around occurs in circular buffering mode

The count decrements with each DMA read from memory.

Current Count Value

Current Count Value

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-8: DACC_CNTCUR0 Register Diagram

Table 31-8: DACC_CNTCUR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Current Count Value.

The DACC_CNTCUR0.VALUE bits hold the current transfer count of a DMA work-
unit for DAC0.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–21

Control 0 Register

The DACC_CTL0 register controls the DAC0 interface.

LSB-First ModeGated Clock Enable

DMA Data WidthCircular Buffer Enable

DMA EnableCircular Buffer Interrupt Enable

EnableData Length

SYNC PolarityClock Polarity

LSBF (R/W)GCKEN (R/W)

DMAW (R/W)CBUFEN (R/W)

DMAEN (R/W)CINTEN (R/W)

EN (R/W)DLEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SYNCPOL (R/W)CKPOL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-9: DACC_CTL0 Register Diagram

Table 31-9: DACC_CTL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

CKPOL Clock Polarity.

The DACC_CTL0.CKPOL bit selects the polarity of the DAC0 interface clock signal
(DACC_ACLK pin) on which to drive the DAC0 output (DACC_AD0 pin).

0 Drive on Clock Falling Edge

1 Drive on Clock Rising Edge

16

(R/W)

SYNCPOL SYNC Polarity.

The DACC_CTL0.SYNCPOL bit selects the polarity for the DAC0 interface sync sig-
nal (DACC_AFS pin).

0 Active Low

1 Active High

11:8

(R/W)

DLEN Data Length.

The DACC_CTL0.DLEN bits choose the data length (in bits) for the DAC0 interface.
A value =0 for this field implies a data length of 16 bits. For data lengths less that 16
bits, use LSB-aligned data and zero fill unused bits.

CM41X_M4 DACC Register Descriptions

31–22 ADSP-CM41x Mixed-Signal Control Processor

Table 31-9: DACC_CTL0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

CINTEN Circular Buffer Interrupt Enable.

The DACC_CTL0.CINTEN bit enables generation of the DACC_DAC0 interrupt re-
quest at the end of each circular buffer. This bit is only valid if the
DACC_CTL0.DMAEN bit =1 and the DACC_CTL0.CBUFEN bit =1.

0 Disable

1 Enable

6

(R/W)

CBUFEN Circular Buffer Enable.

The DACC_CTL0.CBUFEN bit enables circular buffer DMA mode for the DAC0 in-
terface. This bit is only valid if the DACC_CTL0.DMAEN bit =1.

0 Disable

1 Enable

5

(R/W)

GCKEN Gated Clock Enable.

The DACC_CTL0.GCKEN bit enables gated clock mode for the DAC0 interface
clock (DACC_ACLK pin). When enabled, the clock toggles only when valid data is
driven on the DACC_AD0 pin. When disabled, the clock is free running.

0 Disable Gated Clock Mode

1 Enable Gated Clock Mode

4

(R/W)

LSBF LSB-First Mode.

The DACC_CTL0.LSBF bit selects between LSB-first mode or MSB-first mode
transfers for the DAC0 interface.

0 MSB-First Mode

1 LSB-First Mode

3

(R/W)

DMAW DMA Data Width.

The DACC_CTL0.DMAW bit selects the DMA data width for the DAC0 interface.
This bit is only valid if the DACC_CTL0.DMAEN bit =1.

0 16-Bit DMA Data

1 32-Bit DMA Data

2

(R/W)

DMAEN DMA Enable.

The DACC_CTL0.DMAEN bit enables DMA transfers for the DAC0 interface. Please
note that this bit needs to be cleared before updating the other DMA registers
(BPTR,MOD,CNT) and then re-enabled before those changes take effect.

0 Disable

1 Enable

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–23

Table 31-9: DACC_CTL0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable.

The DACC_CTL0.EN bit enables operations for the DAC0 interface.

0 Disable

1 Enable

CM41X_M4 DACC Register Descriptions

31–24 ADSP-CM41x Mixed-Signal Control Processor

Data FIFO 0 Register

The DACC_DAT0 register provides a memory mapped register location for the DAC0 data FIFO. This location is
used in non-DMA mode, permitting the core writes to transmit data to the DAC. Only the lower 16 bits are consid-
ered as DAC data; the upper 16 bits are ignored.

The core should only write this register when no DAC DMA is in progress (DACC_ISTAT.DINT0 =1). If the
core attempts a write into this register during an active DAC DMA (DACC_ISTAT.DINT0 =0), the DACC ig-
nores the write transaction. Reads of DACC_DAT0 return the value of the top entry of the DAC0 FIFO.

Data FIFO 0 Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-10: DACC_DAT0 Register Diagram

Table 31-10: DACC_DAT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Data FIFO 0 Value.

The DACC_DAT0.VALUE bits provides a memory mapped location for the DAC0
data FIFO. Core writes to these bits (when no DMA is active) are transmitted to the
DAC. Reads of these bits return the value of the top entry of the DAC0 FIFO.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–25

Error Mask Register

The DACC_ERRMSK register masks (disables) or unmasks (enables) reporting of DAC related errors.

Address Alignment Error 0 Mask

DAC Underflow 0 MaskMemory Error 0 Mask

AER0 (R/W)

DUVF0 (R/W)MER0 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-11: DACC_ERRMSK Register Diagram

Table 31-11: DACC_ERRMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

MER0 Memory Error 0 Mask.

The DACC_ERRMSK.MER0 bit masks (disables) generating an error interrupt request
on a DAC0 memory error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

2

(R/W)

AER0 Address Alignment Error 0 Mask.

The DACC_ERRMSK.AER0 bit masks (disables) generating an error interrupt request
on a DAC0 address alignment error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

0

(R/W)

DUVF0 DAC Underflow 0 Mask.

The DACC_ERRMSK.DUVF0 bit masks (disables) generating an error interrupt re-
quest on a DAC0 underflow error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

CM41X_M4 DACC Register Descriptions

31–26 ADSP-CM41x Mixed-Signal Control Processor

Error Mask Clear Register

The DACC_ERRMSK_CLR register can be used to selectively clear bits in the DACC_ERRMSK register without af-
fecting other bits in the register. Writing a 1 to any bit position in DACC_ERRMSK_CLR clears the corresponding
bit in DACC_ERRMSK. Reading the DACC_ERRMSK_CLR register returns the data present in the
DACC_ERRMSK register.

Address Alignment Error 0 Mask Clear

DAC Underflow 0 Mask ClearMemory Error 0 Mask Clear

AER0 (R/W1C)

DUVF0 (R/W1C)MER0 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-12: DACC_ERRMSK_CLR Register Diagram

Table 31-12: DACC_ERRMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W1C)

MER0 Memory Error 0 Mask Clear.

Write 1 to DACC_ERRMSK_CLR.MER0 to clear the corresponding bit in
DACC_ERRMSK.

2

(R/W1C)

AER0 Address Alignment Error 0 Mask Clear.

Write 1 to DACC_ERRMSK_CLR.AER0 to clear the corresponding bit in
DACC_ERRMSK.

0

(R/W1C)

DUVF0 DAC Underflow 0 Mask Clear.

Write 1 to DACC_ERRMSK_CLR.DUVF0 to clear the corresponding bit in
DACC_ERRMSK.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–27

Error Mask Set Register

The DACC_ERRMSK_SET register can be used to selectively set bits in the DACC_ERRMSK register without affect-
ing other bits in the register. Writing a 1 to any bit position in DACC_ERRMSK_SET sets the corresponding bit in
DACC_ERRMSK. Reading the DACC_ERRMSK_SET register returns the data present in the DACC_ERRMSK reg-
ister.

Address Alignment Error 0 Mask Set

DAC Underflow 1 Mask SetMemory Error 0 Mask Set

DAC Underflow 0 Mask SetMemory Error 1 Mask Set

AER0 (R/W1S)

DUVF1 (R/W1S)MER0 (R/W1S)

DUVF0 (R/W1S)MER1 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-13: DACC_ERRMSK_SET Register Diagram

Table 31-13: DACC_ERRMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1S)

MER1 Memory Error 1 Mask Set.

Write 1 to DACC_ERRMSK_SET.MER1 to set the corresponding bit in
DACC_ERRMSK.

4

(R/W1S)

MER0 Memory Error 0 Mask Set.

Write 1 to DACC_ERRMSK_SET.MER0 to set the corresponding bit in
DACC_ERRMSK.

2

(R/W1S)

AER0 Address Alignment Error 0 Mask Set.

Write 1 to DACC_ERRMSK_SET.AER0 to set the corresponding bit in
DACC_ERRMSK.

1

(R/W1S)

DUVF1 DAC Underflow 1 Mask Set.

Write 1 to DACC_ERRMSK_SET.DUVF1 to set the corresponding bit in
DACC_ERRMSK.

0

(R/W1S)

DUVF0 DAC Underflow 0 Mask Set.

Write 1 to DACC_ERRMSK_SET.DUVF0 to set the corresponding bit in
DACC_ERRMSK.

CM41X_M4 DACC Register Descriptions

31–28 ADSP-CM41x Mixed-Signal Control Processor

Error Status Register

The DACC_ERRSTAT register indicates error status for DACC operations. When any bit in this register is set, the
DACC generates the DACC_ERR interrupt.

Address Alignment Error 0

DAC0 UnderflowMemory Error 0

AER0 (R/W1C)

DUVF0 (R/W1C)MER0 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-14: DACC_ERRSTAT Register Diagram

Table 31-14: DACC_ERRSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W1C)

MER0 Memory Error 0.

The DACC_ERRSTAT.MER0 bit indicates whether a memory error has occurred (er-
roneous read response received) during a DMA transfer for the DAC0 interface.

0 No Status

1 Memory Error Occurred

2

(R/W1C)

AER0 Address Alignment Error 0.

The DACC_ERRSTAT.AER0 bit indicates whether an address alignment error has
occurred during a DMA transfer for the DAC0 interface. Recommended practice is to
clear this bit (W1C) when enabling DMA with the DACC_CTL0.DMAEN bit.

0 No Status

1 Alignment Error Occurred

0

(R/W1C)

DUVF0 DAC0 Underflow.

The DACC_ERRSTAT.DUVF0 bit indicates whether a data underflow has occurred
in the FIFO for the DAC0 interface (for example, no data was present in the FIFO
when the DACC_AFS pin is about to be asserted).

0 No Status

1 Underflow Occurred

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–29

Interrupt Mask Register

The DACC_IMSK register masks (disables) generation of DACC_DAC0 or DACC_DAC1 interrupt requests based
on status in the DACC_ISTAT register.

DMA Complete Interrupt 0 Mask
0 Mask
Core Complete (Non-DMA) Interrupt

DINT0 (R/W)CINT0 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-15: DACC_IMSK Register Diagram

Table 31-15: DACC_IMSK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask.

The DACC_IMSK.CINT0 bits mask (disable) the DACC_ISTAT.CINT0 DMA
complete interrupt requests for data transfer related to DAC0.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

0

(R/W)

DINT0 DMA Complete Interrupt 0 Mask.

The DACC_IMSK.DINT0 bits mask (disable) the DACC_ISTAT.DINT0 DMA
complete interrupt requests for data transfer related to DAC0.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

CM41X_M4 DACC Register Descriptions

31–30 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Mask Clear Register

The DACC_IMSK_CLR register can be used to selectively clear bits in the DACC_IMSK register without affecting
other bits in the register. Writing a 1 to any bit position in DACC_IMSK_CLR clears the corresponding bit in
DACC_IMSK. Reading the DACC_IMSK_CLR register returns the data present in the DACC_IMSK register.

DMA Complete Interrupt 0 Mask Clear
0 Mask Clear.
Core Complete (Non-DMA) Interrupt

DINT0 (R/W1C)CINT0 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-16: DACC_IMSK_CLR Register Diagram

Table 31-16: DACC_IMSK_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask Clear..

The DACC_IMSK_CLR.CINT0 bits permit clearing the DACC_IMSK.CINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.CINT0
bit to clear the DACC_IMSK.CINT0 bit.

0

(R/W1C)

DINT0 DMA Complete Interrupt 0 Mask Clear.

The DACC_IMSK_CLR.DINT0 bits permit clearing the DACC_IMSK.DINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.DINT0
bit to clear the DACC_IMSK.DINT0 bit.

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–31

Interrupt Mask Set Register

The DACC_IMSK_SET register can be used to selectively set bits in the DACC_IMSK register without affecting
other bits in the register. Writing a 1 to any bit position in DACC_IMSK_SET sets the corresponding bit in
DACC_IMSK. Reading the DACC_IMSK_SET register returns the data present in the DACC_IMSK register.

DMA Complete Interrupt 0 Mask Set
0 Mask Set
Core Complete (Non-DMA) Interrupt

DINT0 (R/W1S)CINT0 (R/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-17: DACC_IMSK_SET Register Diagram

Table 31-17: DACC_IMSK_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1S)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask Set.

The DACC_IMSK_SET.CINT0 bits permit setting the DACC_IMSK.CINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.CINT0
bit to set the DACC_IMSK.CINT0 bit.

0

(R/W1S)

DINT0 DMA Complete Interrupt 0 Mask Set.

The DACC_IMSK_SET.DINT0 bits permit setting the DACC_IMSK.DINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.DINT0
bit to set the DACC_IMSK.DINT0 bit.

CM41X_M4 DACC Register Descriptions

31–32 ADSP-CM41x Mixed-Signal Control Processor

Interrupt Status Register

The DACC_ISTAT register indicates DAC0 and DAC1 interrupt status. The DACC generates interrupt requests
corresponding to DAC 0 on the DACC_DAC0 output and generates the interrupt requests corresponding to DAC1
on the DACC_DAC1 output.

DMA Complete Interrupt 0Core Complete (Non-DMA) Interrupt 0
DINT0 (R/W1C)CINT0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-18: DACC_ISTAT Register Diagram

Table 31-18: DACC_ISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/NW)

CINT0 Core Complete (Non-DMA) Interrupt 0.

The DACC_ISTAT.CINT0 bit indicates completion of a core write to the DAC0 in-
terface, implying the DAC data FIFO again has space to accommodate new data writes
by core. When cleared, this bit indicates the DAC FIFO is full.

0 No Status

1 Core Complete (Non-DMA)

0

(R/W1C)

DINT0 DMA Complete Interrupt 0.

The DACC_ISTAT.DINT0 bit indicates completion of the DMA work unit pro-
grammed for the DAC0 interface. When set in linear DMA mode, the DACC has
transmitted all data to the DAC. When set in circular buffer mode, all read data in a
buffer has returned from memory.

0 No Status

1 DMA Complete

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–33

Modify 0 Register

The DACC_MOD0 register contains the address increment applied between each DMA read from memory, starting
at the base-address (DACC_BPTR0). The value is a signed, two's complement byte address increment.

Modify 0 Value

Modify 0 Value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-19: DACC_MOD0 Register Diagram

Table 31-19: DACC_MOD0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Modify 0 Value.

The DACC_MOD0.VALUE bits hold memory offset increment applied between each
DMA read from memory, starting at the base address.

CM41X_M4 DACC Register Descriptions

31–34 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The DACC_STAT register indicates status for DACC operations.

Data Pending 0FIFO Status 0
DPND0 (R)FSTAT0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-20: DACC_STAT Register Diagram

Table 31-20: DACC_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:8

(R/NW)

FSTAT0 FIFO Status 0.

The DACC_STAT.FSTAT0 bits indicates the number of 16-bit data in DAC0 FIFO
remaining to be transmitted to DAC. The status increments when DMA or core fills
the DAC FIFO. The status decrements when a data transmission starts on the DAC
interface. These bits are cleared when the DACC_CTL0.DMAEN bit has a 0-1 transi-
tion.

0

(R/NW)

DPND0 Data Pending 0.

The DACC_STAT.DPND0 bit indicates whether the DAC0 interface has made a
DMA read access request and is pending (waiting) to receive the data. If DMA for the
DAC0 interface is disabled (DACC_CTL0.DMAEN =0), wait until
DACC_STAT.DPND0 =0 before enabling DMA for the DAC. This bit is cleared
when DACC_CTL0.DMAEN has a 0-1 transition.

0 No Status

1 Pending Read Data

CM41X_M4 DACC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 31–35

Timing Control 0 Register

The DACC_TC0 register controls timing related to the DAC0 interface clock and sync signals.

Clock Divisor

Frame Sync Idle

CKDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FSIDLE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 31-21: DACC_TC0 Register Diagram

Table 31-21: DACC_TC0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

FSIDLE Frame Sync Idle.

The DACC_TC0.FSIDLE value selects minimum idle time (in DACC_ACLK cycles)
required between on DACC_AFS asserted edge and the next DACC_AFS asserted
edge. A value of 0 implies 1 cycles idle.

For DACC_CTL0.DLEN not =0, the DACC_AFS asserted period can be calculated
from the DACC_TC0.FSIDLE and DACC_CTL0.DLEN values as:

DACC_AFS period = (DACC_TC0.FSIDLE+1) + DACC_CTL0.DLEN

For DACC_CTL0.DLEN =0, the DACC_AFS asserted period can be calculated as:

DACC_AFS period = (DACC_TC0.FSIDLE+1) + 16

15:0

(R/W)

CKDIV Clock Divisor.

The DACC_TC0.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks to
be sent to ADC calculated as:

ACK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, DACC_TC0.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, DACC_TC0.CKDIV =2 represents a ratio of 1:3, and so on.

CM41X_M4 DACC Register Descriptions

31–36 ADSP-CM41x Mixed-Signal Control Processor

32 Fast Over Current Protection (FOCP)

The processor supports protection from over-current on its analog channels, via dedicated comparators in the analog
front end subsystem (AFE). For complete information, see Analog-to-Digital Converter Controller (ADCC).

FOCP Features
The FOCP module has the following features

• Over limit and under limit programming available via 8-bit DACs.

• Programming of limits via DAC Controller (DACC).

• The comparators take in data from ADC analog inputs directly.

• The comparators can detect over current while the ADCs are sampling data.

• Interrupt facility as well as pin output status available upon detection.

FOCP Functional Description
The following sections provide information on the functional operation of the FOCP.

Architectural Concepts

The FOCP block is required to overcome the sampling rate requirement for certain inputs. Three comparators are
available. The input of each comparator is connected internally to inputs A0, B0, and C0. The comparators have a
common upper threshold (LIMIT_U) and lower threshold (LIMIT_L) which is set by internal 8-bit DACs.
COMP_OUT_A/B/C outputs are accessible to users. If one or more comparators are signaling LIMT (availability of
COMP_OUT_A/B/C), the AFE asserts an interrupt to the processor.

The AFE status register provides status bits indicating what event caused the assertion of the COMP_OUT_IRQ
interrupt request. Note that accessing this register incurs a significant time latency. Creating an interrupt handler
routine that performs an immediate response to the interrupt request before identifying the precise cause of the in-
terrupt request may mitigate this latency.

The COMP_OUT_IRQ signal is provided with the following event connections:

Interrupts:

Fast Over Current Protection (FOCP)

ADSP-CM41x Mixed-Signal Control Processor 32–1

• The AFE_LIMIT interrupt to the M4 core

• The AFE_LIMIT interrupt to the M0 core

Trigger Masters:

• The AFE_LIMIT trigger master in the M4 TRU1 unit

Reading the status of the AFE_LIMIT is accomplished through an AFE sequence. An example is provided in Pro-
gramming FOCP Comparators to Detect Over Current. The program reads the AFE Registers
(AFE_Regs.h) register and verifies which of the following sources have caused the Limit interrupt. Reading of
the status in software is optional, but the corresponding bits for each case in the status register are sticky if they are
asserted, and reflects recent status. These bits are cleared during read operation.

• AFE_OK_FOCP — Check Stuck at Fault for FOCP_CLK

• FOCP_LATCH_0 — FOCP COMP_OUT_A

• FOCP_LATCH_1 — FOCP COMP_OUT_B

• FOCP_LATCH_2 — FOCP COMP_OUT_C

• AFE_LIMIT interrupt — Once this interrupt is triggered, it cannot be cleared by software. However, it can be
cleared if the voltage is within the compartor limits. This is true for both COMP_OUT check as well as in a
clock fault condition. Programs may mask the interrupt once necessary operations are performed or wait until
the conditions are no longer faulty.

The AFE contains monitoring hardware to monitor the AFE_CLK signal which is necessary for proper FOCP com-
parator operation. By programming the AFE control registers, the monitor output can be arranged to generate the
COMP_OUT_IRQ interrupt in the event the monitor detects a problem with the FOCP_CLK signal.

NOTE: It is not necessary to read the status of the AFE_LIMIT. In such cases, there is no need to access the ADC0
for AFE sequence. This is also true for a case where the comparators thresholds are programmed only
once. If AFE_LIMIT status must be read or DAC thresholds must be programmed, ADC0 must be used.

If ADC0 has to be utilized, as in the above cases, ADC0 must not be sampling at that time.

FOCP Clock

The FOCP Analog Comparators require a clock called FOCP_CLK for proper operation. This clock is specified to
be nominally 10 MHz and within the range 9 to 12.5 MHz, with an approximately 50% duty cycle. This clock is
generated via the CGU in the processor. The FOCP_CLK divisor is enabled using the PADS_FOCP_DIV.EN
control bit. The phase of the FOCP_CLK can be controlled by the use of this enable bit.

PLL CLOCK DCLK FOCP CLOCK
DSEL N

Figure 32-1: FOCP Clock

FOCP Functional Description

32–2 ADSP-CM41x Mixed-Signal Control Processor

The FOCP_CLK clock is generated by the FOCP_CLK Divider mechanism, which uses the CGU DCLK output
and a divisor specified by the PADS_FOCP_DIV.DAT register bit field, according to the following formula (note
that this always produces a 50% duty cycle FOCP_CLK):

fFOCP_CLK = fDCLK / (2 × (FOCP_DIV:DAT)) (for FOCP_DIV ≠0)

fFOCP_CLK = fDCLK / (32) (for FOCP_DIV = 0)

The frequency of DCLK, fDCLK, is controlled by the CGU_DIV.DSEL, CGU_CTL.MSEL and CGU_CTL.DF bit
fields in the CGU, such that:

fDCLK = (fPLLCLK) / DSEL = [(fSYS_CLKIN / (DF+1)) × MSEL] / DSEL

To generate an appropriate 10 MHz FOCP_CLK given an fPLLCLK for the system, the programmer selects a
CGU_DIV.DSEL value in the range [1,32] and an FOCP_divisor in the range [1,16] so that:

2 × (FOCP_Divisor) × DSEL = (fPLLCLK / 10 MHz)

where if the FOCP_Divisor is in the range [1−15], then set the register PADS_FOCP_DIV.DAT = FOCP_Divisor;
else if FOCP_Divisor is 16, then set the register PADS_FOCP_DIV.DAT =0.

NOTE: • The FOCP_CLK can be observed externally using the CLKOUTMUX if desired, for example for
debug.

• When the CGU is in ACTIVE (bypass) mode, DCLK is equal to SYS_CLKIN. Care must be taken
not to violate the AFE AC specifications during this time. If the FOCP_DIV divider is not disabled,
then FOCP_CLK has a frequency of fFOCP_CLK = fSYS_CLKIN × (2 × (FOCP_DIV:DAT+1))

• When FOCP is disabled, the output is low.

• The FOCP divide value is sampled in the divider logic upon the rising edge of the enable signal. This
means to change the divider, you must disable and then re enable with the new divider.

• The FOCP clock fault check is enabled by setting the FOCP_CLK_CHECK_EN bit in the AFE
Registers (AFE_Regs.h) register. For the FOCP clock fault check to be working, ADCC1
conversion must be on-going in the background. The internal circuit requires ADC1 clocks to be ac-
tive and ADC1 to perform conversion whenever FOCP clock fault checking is done.

Diagnostic Mode

In diagnostic mode, the program can route the 12-bit DAC output to the comparators. This diagnostic feature is
enabled by setting the DIAG_FOCP_EN bit in the AFE Registers (AFE_Regs.h) register.

FOCP Block Diagram

The FOCP is a real-time Fast Over Current Protection Unit designed in the processor.

It has the following advantages:

• No processor involvement to automatically trip PWM blocks or comparator assertion signal to external world.

Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 32–3

• Saves additional BOM cost to implement over current protection.

• No additional signal conditioning to interface to processor.

• Direct access to comparator outputs.

• 2 x 8-bit programmable thresholds via internal DACs.

The DACC unit controls the AFE DAC outputs, and is used to set the levels for the Fast Over-Current Protection
comparators. Three analog channels are available as inputs to the comparators. The program can generate an
AFE_LIMIT signal as an interrupt to the processor to process the detection. Additionally, dedicated comparator
output pins (COMP_OUT_A / COMP_OUT_B / COMP_OUT_C) are provided for each comparator so that it
can be monitored externally. The program selects the correct DAC to write to so the comparators can detect the
correct limits. This is enabled by running a routine.

• Over voltage DAC – DAC1

• Under voltage DAC – DAC2

NOTE: Setting the Over voltage DAC (DAC1) to 0xFF and Under voltage DAC (DAC2) to 0x0 turns off the
FOCP comparators.

The ADC input channels for FOCP comparator detection are fixed and not configurable.

Programming the DACs are done via DACC unit, but selecting the DACs (1 or 2) has to be done by
issuing an AFE sequence that utilizes the ADC0.

Architectural Concepts

32–4 ADSP-CM41x Mixed-Signal Control Processor

ADC CHANNELS

A0

B0

C0

8-BIT DAC
DACC

COMP_OUT_C

COMP_OUT_B

COMP_OUT_A

COMPARATOR B

COMPARATOR C

COMPARATOR A

UPPER
LIMIT

LOWER LIMIT

AFE LIMIT
INTERRUPT

8-BIT DAC

AFE DIE

PWM TRIP

Figure 32-2: FOCP Block Diagram

FOCP Programming Concepts

Programming Examples

The following sections provide programming examples for the FOCP module.

Programming FOCP Comparators to Detect Over Current

To program FOCP comparators for the detection of over current:

1. Initialize CGU and all clocks. This includes DCLK clock which is source for FOCP clock.

2. Initialize the AFE. This does the device configuration.

3. Configure the Overvoltage DAC.

4. Configure the Undervoltage DAC.

5. Delay of 10 usec.

6. Configure the FOCP clock to 10 MHz via PADS_FOCP_DIV.DAT.

7. Enable the FOCP clock via PADS_FOCP_DIV.EN

FOCP Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 32–5

8. Enable the Interrupt for AFE_LIMIT, if required.

9. Inside the handler, read the AFE status register to check which COMP has triggered the fault. The LIMIT
status is ON as long as LIMIT has crossed, and therefore no control from digital side.

Re-initializing FOCP Comparators

To program the FOCP_CLK divisor without glitches in the clock:

1. Disable the Interrupt for AFE_LIMIT

2. Disable the FOCP clock.

3. Configure the Overvoltage DAC.

4. Configure the Undervoltage DAC.

5. Delay of 10 usec.

6. Enable the FOCP clock via PADS_FOCP_DIV.EN.

7. Enable the Interrupt for AFE_LIMIT, if required.

Verifying Comparator Limit

To determine which of the comparators have triggered an FOCP event, the program reads an AFE register as shown
in programming examples. This register is ready via ADCC0 through the ADC0 interface. This register read must
be initiated and completed only when ADC0 is idle. Also, ADCC0 must not have received a new trigger and must
have completed all event activities related to previous triggers.

To verify which comparator has reached the limit, the program must perform a specific AFE sequence.

ADCC0/ADC0 is used as the interface to read and write the AFE registers, including those related to the FOCP.
Refer to AFE Register Access Programming Model for more information on accessing these registers.

Accessing the AFE registers must be timed in such a way that it does not interfere with the sampling operation of
ADC0 (normal data acquisition via ADC0). Accesses must be initiated before the start of one Event frame and must
complete before another Event frame that uses ADC0.

void Enable_FOCP_ClockCheck()
{

//set focp clock to 10Mhz
*pREG_PADS1_FOCP_DIV= ((5 << BITP_PADS_FOCP_DIV_DAT) &
BITM_PADS_FOCP_DIV_DAT);
//enabling focp clock
*pREG_PADS1_FOCP_DIV | =BITM_PADS_FOCP_DIV_EN;

#define CTLWD_USERCFG 0x80 //Bit[7] – RESERVED = 1
 //Bit[6] – WNR = 0
 //Bit[5] – RESERVED = 0
 //Bit[4-1] – REGADDRESS = 0000

Programming Examples

32–6 ADSP-CM41x Mixed-Signal Control Processor

 //Bit[0] – RESERVED = 0

#define CTLWD_FOCPCLK 0xc0 //Bit[7] – RESERVED = 1
 //Bit[6] – WNR = 1
 //Bit[5] – RESERVED = 0
 //Bit[4-1] – REGADDRESS = 0000
 //Bit[0] – RESERVED = 0

//read register
*pREG_ADCC0_ADCRW0= ((CTLWD_USERCFG << BITP_ADCC_ADCRW0_CTLW) &
BITM_ADCC_ADCRW0_CTLW);

// wait till ADCC operation is pending
while((*pREG_ADCC0_ADCRW0 & BITM_ADCC_ADCRW0_PND));

//enable fault check
user_cfg1= (*pREG_ADCC0_ADCRW0 >>1);
*pREG_ADCC0_ADCRW0 = (((CTLWD_FOCPCLK << BITP_ADCC_ADCRW0_CTLW) &
BITM_ADCC_ADCRW0_CTLW) |
(((user_cfg1|(1 << BITP_AFE_USERCFG_FOCP_CLK_CHECK_EN)) <<
BITP_ADCC_ADCRW0_DAT) & BITM_ADCC_ADCRW0_DAT));

// wait till ADCC operation is pending
while((*pREG_ADCC0_ADCRW0 & BITM_ADCC_ADCRW0_PND));
}

Enabling FOCP Fault Clock Detection

void AFE_LIMIT_Handler()
{
AFE_LIMIT_Flag = 1;
AFE_LIMIT_Cnt++;

#define CTLWD_STATUSREG 0x82 //Bit[7] – RESERVED = 1
//Bit[6] – WNR = 0
//Bit[5] – RESERVED = 0
//Bit[4-1] – REGADDRESS = 0001
//Bit[0] – RESERVED = 0

//Read status reg
*pREG_ADCC0_CTL = (uint32_t) (BITM_ADCC_CTL_EN | BITM_ADCC_CTL_MODE |
BITM_ADCC_CTL_DSIZE);
*pREG_ADCC0_ADCRW0= ((CTLWD_STATUSREG <<BITP_ADCC_ADCRW0_CTLW) &
BITM_ADCC_ADCRW0_CTLW);

// wait till ADCC operation is pending
while((*pREG_ADCC0_ADCRW0 & BITM_ADCC_ADCRW0_PND));
//if 19th bit of status register is set, means focp clock fault status is set
Focp_output= ((*pREG_ADCC0_ADCRW0 >>1) & 0x80000);

Programming Examples

ADSP-CM41x Mixed-Signal Control Processor 32–7

//clear interrupt
*pREG_SYSBLK0_SISTAT10 =
((1<<BITP_SYSBLK_SISTAT10_SYS_AFE_LIMIT)&BITM_SYSBLK_SISTAT10_SYS_AFE_LIMIT);
__DSB();

}

FOCP Register Descriptions
The registers for the FOCP module are located in the System Block (SYSBLK) and PADS chapter.

FOCP Register Descriptions

32–8 ADSP-CM41x Mixed-Signal Control Processor

33 Harmonic Analysis Engine (HAE)

The harmonic analysis engine (HAE) analyzes harmonic frequencies present on the voltage and current input sam-
ples. The HAE receives input samples from two source channels whose frequencies are 45–65 Hz. The HAE then
processes the input samples and produces output results. The output results consist of power quality measurements
of the fundamental and up to 12 more harmonics.

HAE Features
The HAE features include:

• Processing of two 24-bit signed input channels, consisting of one voltage and one current. The input full scale
is limited to ~ +/-6,000,000

• Parity protection in data RAM

• Processing of fundamental frequencies between 45-65 Hz

• Processing of input samples at a nominal 8 kHz rate

• Processing of the fundamental plus 12 harmonic frequencies

• Active, reactive, apparent, IRMS, VRMS, and power factor on the fundamental frequency

• Active, reactive, apparent, IRMS, VRMS, power factor, IHD+n, and VHD+n on the 12 harmonic frequencies

• The accuracy of the measurements, relative to a full scale of +/-6,000,000:

• Fundamental active or reactive powers 0.1% down to 1/1000 of full scale

• Fundamental apparent power 0.2% down to 1/1000 of full scale

• Fundamental IRMS/VRMS 0.1% down to 1/1000 of full scale

• Fundamental power factor 0.3% based on active and apparent accuracy

• Harmonic active or reactive powers 1% down to 1/1000 of full scale

• Harmonic apparent power 2% down to 1/1000 of full scale

• Harmonic IRMS/VRMS 1% down to 1/1000 of full scale

Harmonic Analysis Engine (HAE)

ADSP-CM41x Mixed-Signal Control Processor 33–1

• Harmonic power factor 3% based on active and apparent accuracy

• Harmonic IHD+n 2% down to 1/1000 FS based on the fundamental and harmonic IRMS

• Harmonic VHD+n 2% down to 1/1000 FS based on the fundamental and harmonic VRMS

• Twelve 6-bit fields for selecting harmonics to analyze, limited by bandwidth of the input signal. The funda-
mental component always is provided.

HAE Functional Description
The following sections provide a functional description of the HAE.

Harmonic engine

The hardware block of the harmonic engine works with other HAE blocks to co-process full and partial results

Harmonic Analyzer

The harmonic analyzer block works with the harmonic engine to co-process full and partial results.

Data Transfer Module

The data transfer module transfers three channels of data to and from the HAE module.

CM41X_M4 HAE Register List

The Harmonic Analysis Engine (HAE) analyzes harmonics present on voltage and current input samples. The HAE
receives input samples from two source channels, processes the samples, and produces output results. The output
results consist of power quality measurements of the fundamental and up to twelve additional harmonic compo-
nents. A set of registers governs HAE operations. For more information on HAE functionality, see the HAE register
descriptions.

Table 33-1: CM41X_M4 HAE Register List

Name Description

HAE_CFG0 Configuration 0 Register

HAE_CFG1 Configuration 1 Register

HAE_CFG2 Configuration 2 Register

HAE_CFG3 Configuration 3 Register

HAE_CFG4 Configuration 4 Register

HAE_DIDT_COEF DIDT Coefficient Register

HAE_DIDT_GAIN DIDT Gain Register

HAE Functional Description

33–2 ADSP-CM41x Mixed-Signal Control Processor

Table 33-1: CM41X_M4 HAE Register List (Continued)

Name Description

HAE_H[nn]_INDX Harmonic n Index Register

HAE_ISAMPLE I (Current) Sample Register

HAE_IWAVEFORM I (Current) Waveform Register

HAE_RUN Run Register

HAE_STAT Status Register

HAE_VLEVEL Voltage Level Register

HAE_VSAMPLE V (Voltage) Sample Register

HAE_VWAVEFORM V (Voltage) Waveform Register

CM41X_M0 HAE Interrupt List

Table 33-2: CM41X_M0 HAE Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

6 HAE0_PERR HAE0 Parity Error Level

27 HAE0_STAT HAE0 Status Level

CM41X_M4 HAE Interrupt List

Table 33-3: CM41X_M4 HAE Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

24 HAE0_PERR HAE0 Parity Error Level

144 HAE0_STAT HAE0 Status Level

33.2.4 SPORT Trigger List

CM41X_M4 HAE DMA Channel List

Table 33-4: CM41X_M4 HAE DMA Channel List

DMA ID DMA Channel Name Description

DMA8 HAE0_RXDMA_CH0 HAE0 RX0: DMA->HAE DATAI

DMA9 HAE0_TXDMA HAE0 TX: HAE->DMA

DMA10 HAE0_RXDMA_CH1 HAE0 RX1: DMA->HAE DATAV

HAE Functional Description

ADSP-CM41x Mixed-Signal Control Processor 33–3

HAE Block Diagram

The HAE Block Diagram shows the functional blocks within the HAE.

 PERIPHERAL
BUS

DATA
TRANSFER

HARMONIC
 ANALYZER

HAE MODULE

HARMONIC
ENGINE

RESULTS
MEMORY

INTERNAL REG I/FCONFIGURATION
REGISTERS

SYSTEM
BUS

DMA
INTERFACE

Figure 33-1: HAE Block Diagram

HAE Architectural Concepts

Using the HAE features and event control to their greatest potential requires an understanding of these architectural
concepts.

• Harmonic Engine

• Harmonic Analyzer

• Data Transfer Module

• Results Memory

Harmonic Engine

The HAE Engine Block Diagram presents a synthesized diagram of the harmonic engine, its settings, and its output
registers.

HAE Functional Description

33–4 ADSP-CM41x Mixed-Signal Control Processor

INITIALIZATION AS OUTLINED IN
THE “INTIALIZATION” SECTION

HAE_Hnn_INDX REGISTERS SELECT THE
HARMONICS TO MONITOR

HAE_CFG2.UPDATE BITS SELECT
THE UPDATE RATE

HAE_CFG2.SETTLE BITS CHOOSE HOW
LONG HAE SETTLES BEFORE

PROVIDING THE FIRST RESULTS IRQ

HAE_CFG2.MODE BIT DETERMINES IF
THE SETTLE BIT FIELD IS SATISFIED OR

RESULTS IRQ IS IMMEDIATE

F_VRMS

Hnn_REACTHnn_VRMS

F_IRMS

Hnn_IRMS

F_ACT

Hnn_ACT

F_REACT F_APP

Hnn_APP

F_PF

Hnn_PF

N/A N/A

Hnn_IHDNHnn_VHDN

OUTPUT REGISTERS

HARMONIC
CALCULATIONS

Figure 33-2: HAE Engine Block Diagram

The harmonic engine hardware block works with other HAE blocks to co-process full and partial results (see Har-
monic Calculations). At the start of a new sampling period (described in Initialization), the harmonic engine cycles
through predefined locations in data RAM, which contain the analyzer processing results. See Harmonic Analyzer
for more information.

As the harmonic engine produces results in their final formats (described in HAE Result Ranges and Formats), the
results are stored in the results memory (see Results Memory).

The HAE engine computes harmonic information for line frequencies 45–66 Hz. Neutral current can also be ana-
lyzed simultaneously with the sum of phase currents. See Theory of Operation for more information.

Harmonic Analyzer

The harmonic analyzer block works with the Harmonic Engine to co-process full and partial results.

To perform harmonic analysis, the HAE contains a pair of voltage and current inputs and a set of 12 indexes to
indicate which harmonic components to extract. See Theory of Operation and Harmonic Calculations for more in-
formation.

High-Pass Filters (HPFs)

The voltage and current have the option of being high-pass filtered to remove DC offsets. The Frequency Response
for High-Pass Filters figure shows the frequency response of the high-pass filters (the -3 dB point is around 1.1 Hz).
The HPFs are enabled by default.

HAE Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 33–5

 dB

 -5

 0

 -10

 -20

 -15

 -25

 -30

 -35

 -40

 Hz

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 dB

 -2

 0

 -6

 -10

 -8

 -12

 -14

 -18

 -20

 Hz

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

 -4

 -16

Figure 33-3: Frequency Response for High-Pass Filters

Digital Integrators

For cases when the current is sensed with a di/dt sensor, such as a Rogowski coil, the HAE offers an internal digital
integrator for compensation. Ideally, it causes a perfect 90 degrees of phase shift at all the frequencies; at 50 Hz it is
close to that value (see the Digital Integrator figure). The integrator is necessary to restore the signal to its original
form before using the signal in HAE calculations. The digital integrator is disabled by default.

With digital integrator enabled for current channel, the amplitude of current will change with the frequency accord-
ing to a slope of 20 dB per decade. For frequency of 50 Hz, the amplitude of current remains same after passing
through the integrator. However, for other frequencies in the range 45-65 Hz, the amplitude of current changes with
a slope of 20 dB per decade after passing through integrator.

 50

 0

 -50

 M
A

G
N

IT
U

D
E

 (
d

B
)

 P
H

A
S

E
 (

D
E

G
R

E
E

S
)

 FREQUENCY (Hz)
 10

 -2
 10

 -1
 10

 0
 10

 1
 10

 2
 10

 3

 0

 0

 -50

 -100
500 1000 1500 2000 2500 3000 3500 4000

 FREQUENCY (Hz)

 P
H

A
S

E
 (

D
E

G
R

E
E

S
)

 30

 -15

 -25

 -30
35 40 45 50 55 60 65 70

 FREQUENCY (Hz)

 P
H

A
S

E
 (

D
E

G
R

E
E

S
)

 -89.96

 FREQUENCY (Hz)

 -20

 30 35 40 45 50 55 60 65 70

 -89.97

 -89.98

 -89.99

Figure 33-4: Digital Integrator

Phase-Locked Loop and Clock Control (PLL)

The fundamental frequency of the system is extracted from the voltage signal using the phase-locked loop and clock
control (PLL) techniques. PLL techniques are optimized for signals with frequencies used in standard power grids
around the world (50 Hz or 60 Hz). The techniques consider possible deviations of up to 5 Hz, so the final guaran-
teed operating range is from 45 Hz to 65 Hz.

HAE Architectural Concepts

33–6 ADSP-CM41x Mixed-Signal Control Processor

The initial detection time of the frequency depends on its value and can take up to several seconds. This activity
only happens at the start-up of the HAE block. Once the value of the fundamental frequency is detected, the PLL
tracks it continuously.

Settling Times

The block that extracts all of the harmonic RMS and power values is replicated 12 times in parallel for all of the
harmonic indexes plus once for the fundamental. Once an index for a particular harmonic changes, there is a settling
time of about 700 mSec (~700 / 0.125 = 5600 8K samples). This settling time achieves less than 0.1% error needed
for all the internal RMS and powers computations (see the Fundamental and Harmonic Values - Settling Times
plots).

 9000

 10000

 8000

 4000

 7000

 3000

 5000

 2000

 6000

 200

0.5 sec

 400 500 600 700 800

 1000

 0 100 300

1 sec

 9990

 10000

 9980

 9940

 9970

 9930

 9950

 9920

 9960

 9900
 400

0.5 sec

 500 550 600 700 800

 9910

 300 350 450

1 sec

 650 750

Figure 33-5: Fundamental and Harmonic Values - Settling Times

Data Transfer Module

The data transfer module transfers three channels of data to and from the HAE module.

RX I (Receive Current Sample) Channel

The RX I channel transfers HAE current (I) input samples from system memory through direct memory access
(DMA). The RX I request occurs at a nominal 8 kHz rate, depending on the HAE_CFG1.STARTDIV bit field.
The RX I samples typically come from a SINC filter through a memory buffer. For accurate harmonic results, derive
the input samples at the same rate as the HAE sample loop. Therefore, program the SINC and HAE modules to be
timing-matched. The SCLK / HAE_CFG1.STARTDIV determines the HAE sample loop, which must be pro-
grammed to be nominally 8 kHz in frequency. There is one DWORD transfer each HAE sample loop.

There is also an RX I memory-mapped location (HAE_ISAMPLE register) in peripheral space (MMR), which ena-
bles the MCU to provide the I channel samples, timed with the HAE_STAT.RXIRQ bit, if desired.

RX V (Receive Voltage Sample) Channel

The RX V channel transfers HAE voltage (V) input samples from system memory through DMA. The RX V re-
quest occurs at a nominal 8 kHz rate, depending on the HAE_CFG1.STARTDIV bit field. The RX V samples
typically come from a SINC filter through a memory buffer. For accurate harmonic results, derive the input samples
at the same rate as the HAE sample loop. Therefore, program the SINC and HAE modules to be timing-matched.

HAE Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 33–7

The SCLK / HAE_CFG1.STARTDIV, determines the HAE sample loop which must be programmed to be nomi-
nally 8 kHz in frequency. There is one DWORD transfer each HAE sample loop.

There is also an RX V memory-mapped location (HAE_VSAMPLE register) in peripheral space (MMR), which ena-
bles the MCU to provide the V channel samples, timed with the HAE_STAT.RXIRQ bit, if desired.

Example:

• The HAE_STAT.RXIRQ bit toggles prior to RX transfers:

The RX interrupt is used internally in hardware to request I and V samples. The MCU can also use the inter-
rupt when it supplies the input samples, rather than the DMA interface.

• RX transfers indicate that the RX channel is ready:

The HAE RX channels request one RX sample at an 8 kHz rate, depending on the HAE_CFG1.STARTDIV
bit field. The holding register stores the RX data, replacing the previous data. The holding register contents are
moved up to an output register and driven to the Harmonic Analyzer module for processing. This operation
amounts to a two-deep FIFO, allowing a full sample time of latency on the input sample arrival, nominally 125
uSec (8 kHz).

If the MCU supplies the input samples, rather than the DMA RX interfaces, there are two memory-mapped
locations (HAE_ISAMPLE and HAE_VSAMPLE), where the next samples are written. As previously men-
tioned, the HAE can use the HAE_STAT.RXIRQ bit to time the sample delivery.

TX (Transmit Results) Channel

The TX channel transfers HAE results from results memory to system memory through DMA. The results for the
fundamental and 12 harmonics are stored in 13 8-location fields in the results memory. Therefore, the maximum
number of DWORDs to transfer is 13 x 8 = 104. Use the HAE_CFG3.CHANEN bits to select the channels to transfer.

The HAE can request a transfer of results for each 8 kHz sample period, meaning that up to 104 DWORDs can be
transferred each 125 uSec. Use the HAE_CFG2.UPDATE bit field to set the request rate to longer intervals. The
results also are memory-mapped to peripheral address space, which enables the MCU to read the results, timed with
the HAE_STAT.TXIRQ bit, if desired.

Example:

• The HAE_CFG3.CHANEN bit field is set to 0x009 to transfer the fundamental and harmonic contained in the

HAE_H3_INDX register (programmed to 5th).

• The HAE_STAT.TXIRQ bit toggles prior to TX transfers:

The HAE uses the TX interrupt internally in hardware to start the transfer. The MCU can also use the inter-
rupt when the MCU reads the HAE results, rather than the DMA interface transferring it.

• TX transfers indicate that the HAE results data is ready:

The HAE TX channel can transfer one DWORD every other clock. The internal hardware parses through the
HAE_CFG3.CHANEN bit field, eventually traversing all 13 bits. If consecutive channels are enabled, two more

HAE Architectural Concepts

33–8 ADSP-CM41x Mixed-Signal Control Processor

IDLE clocks are inserted between the adjacent channels for a total of three IDLE clocks. When channels are
skipped, one more IDLE clock is inserted for each unselected channel. Therefore, there are 3 (inter-channel
IDLE) + 2 (skipped channels) = 5 IDLE clocks between the fundamental and HAE_H3_INDX transfers.

Results Memory

The results memory is organized by the fundamental and 12 harmonic indexes. Each of the 13 potentially analyzed
frequencies has eight locations dedicated to store various power quality measurements. Each frequency is offset from
the next by eight locations.

The HAE Results Memory figure shows the results memory contents.

 INDEX 0 1 2 3 4 5 6 7

 OFFSET

FUNDAMENTAL 0x00

 0x08

 0x10

 0x18

 0x20

 0x28

 0x30

 0x38

 0x40

 0x48

 0x50

 0x58

 0x60

H2_INDEX

H6_INDEX

H8_INDEX

H3_INDEX

H1_INDEX

GROUP

H4_INDEX

H10_INDEX

H9_INDEX

H7_INDEX

H5_INDEX

H11_INDEX

H12_INDEX

F_IRMS

H1_IRMS

H2_IRMS

H3_IRMS

H4_IRMS

H5_IRMS

H6_IRMS

H7_IRMS

H8_IRMS

H9_IRMS

H10_IRMS

H11_IRMS

H12_IRMS

F_VRMS

H1_VRMS

H2_VRMS

H3_VRMS

H4_VRMS

H5_VRMS

H6_VRMS

H7_VRMS

H8_VRMS

H9_VRMS

H10_VRMS

H11_VRMS

H12_VRMS

F_REACT

H1_REACT

H2_REACT

H3_REACT

H4_REACT

H5_REACT

H6_REACT

H7_REACT

H8_REACT

H9_REACT

H10_REACT

H11_REACT

H12_REACT

F_ACT

H1_ACT

H2_ACT

H3_ACT

H4_ACT

H5_ACT

H6_ACT

H7_ACT

H8_ACT

H9_ACT

H10_ACT

H11_ACT

H12_ACT

F_APP

H1_APP

H2_APP

H3_APP

H4_APP

H5_APP

H6_APP

H7_APP

H8_APP

H9_APP

H10_APP

H11_APP

H12_APP

F_PF

H1_PF

H2_PF

H3_PF

H4_PF

H5_PF

H6_PF

H7_PF

H8_PF

H9_PF

H10_PF

H11_PF

H12_PF

N/A

H1_VHDN

H2_VHDN

H3_VHDN

H4_VHDN

H5_VHDN

H6_VHDN

H7_VHDN

H8_VHDN

H9_VHDN

H10_VHDN

H11_VHDN

H12_VHDN

N/A

H1_IHDN

H2_IHDN

H3_IHDN

H4_IHDN

H5_IHDN

H6_IHDN

H7_IHDN

H8_IHDN

H9_IHDN

H10_IHDN

H11_IHDN

H12_IHDN

Figure 33-6: HAE Results Memory

RAM Parity Protection

The HAE implements parity protection on its data memories. An interrupt request can be generated (if enabled)
upon detection of a parity error. The software driver or application needs fully initialize the HAE SRAM before
starting the accelerator. This initializes the parity state bits and prevents spurious interrupt requests.

HAE Results Upper Byte ID

The HAE results are stored in a 24-bit wide memory as shown in Results Memory.

HAE Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 33–9

When the system bus moves the results into memory, the HAE hardware appends a unique CHANNEL:INDEX
identifier to the upper byte of each results location. The intent of the ID byte is to help in data parsing of HAE
results.

The 32-bit appended result is as follows:

CHANNEL[3:0] || INDEX[3:0] || RESULTS[23:0]

The CHANNEL in the upper byte corresponds to nn in Hnn_INDX of that particular results location. The INDX in
the upper byte corresponds to the INDX within the Hnn_INDX grouping.

For example, location H7_PF has 0x75 in the upper byte of the system bus transfer of that HAE results memory
location.

HAE Result Ranges and Formats

The HAE results, stored in the results memory, have formats appropriate for the given measurement. Measurements
accuracy is relative to the full scale value of the input samples, and the assumed full scale is +/~6,000,000. If the full
scale is above this value, overflow can occur and the results are undefined. A lower full scale limits the dynamic range
accuracy of the measurements. For example, a full scale, which is 50% lower than the assumed 6,000,000 full scale,
has the dynamic range reduced by 50%. Potentially, this result can be better or worse, as determined by the ADC
noise floor supplying the input samples.

The HAE results are as linear as the input samples, within the accuracy ranges specified earlier. The results assume a
full-scale input sample of ~=/-6,000,000 and sufficiently low ADC noise floor. Evaluate the system using your spe-
cific ADC and full scale specifications to predict the HAE range of accuracy and expected results.

The RMS values of voltage and current calculated from HAE are exactly not same as the theoretical RMS values.
The ratio between HAE calculated RMS value and the theoretical value is around 1.11. A gain factor should be
added in the software so as to match the theoretical and HAE calculated RMS values. Calibration can be done by
calculating the ratio between HAE calculated RMS value and the theoretical one for a particular amplitude of V and
I signal and line frequency.

The following list gives the HAE result formats.

• IRMS and VRMS: both fundamental and harmonic IRMS and VRMS are unsigned magnitudes with full scale of
~4,200,000

• Active and reactive power: both active and reactive powers are signed numbers with full scale of ~+/-4,200,000

• Apparent power: apparent power is an unsigned magnitude with full scale of ~4,200,000

• Power factor: each LSB of the fundamental and harmonic power factors equates to a weight of 2-23. Hence, the
maximum register value of 0x7FFFFF equates to a power factor value of 1. The minimum register value of
0x800000 corresponds to a power factor of -1. If the power factor is outside of the -1 to +1 range because of
offset and gain calibrations, the result is set at -1 or +1. The result depends on the sign of the fundamental
reactive power.

Results Memory

33–10 ADSP-CM41x Mixed-Signal Control Processor

• IHD+n/VHD+n: the harmonic distortion plus noise ratios are computed using the RMS of the fundamental and
the RMS of the harmonic under analysis. In other words, the ratio only covers the particular harmonic under
analysis versus the fundamental. The ratios are stored as 24-bit values in 3.21 signed format. The ratios are
limited to +3.9999, and all greater results are clamped to it. The HD+n ratios cannot be negative.

HAE Operating Modes
The HAE uses the DMA interface to transfer data to and from system memory. The HAE configuration registers
enable the module and calibrate its frequency (clock) divide and other parameters, as described in HAE Program-
ming Model. The HAE triggers and status signals indicate system events and errors.

HAE Data Transfer Modes

The HAE uses the RX DMA interface to transfer data from system memory. Samples for the current (I) and voltage
(V) channels of the AFE or SINC filter compose the data: two WORDS are transferred each 8 kHz sample period
into the HAE (I and V).

The HAE uses the TX DMA interface to transfer data to system memory. The fundamental and selected harmonic
results compose the data: up to 13 (fundamental + 12 harmonics) x 8 = 104 DWORDs are transferred each 8K sample
period.

See Data Transfer Module for more information.

HAE Event Control
The HAE module uses DMA to transfer samples to and data from system memory. The HAE also can use TX and
RX events to time the arrival of input samples and extract the results by the MCU:

• The MCU uses the RX event (HAE_STAT.RXIRQ) as an IRQ to time when to write the I and V samples
into the HAE.

• The MCU uses the TX event (HAE_STAT.TXIRQ) as an IRQ to time when to read the HAE results.

HAE Interrupt Signals

The interrupt signals to the HAE module include:

• The RX interrupt to time the delivery of waveform samples as inputs to the HAE.

• The TX interrupt to time when the HAE results memory is ready with new values for the current sample.

The HAE generates the RX interrupts at a rate specified by the HAE_CFG1.STARTDIV bit field and the TX in-
terrupts at a rate specified by the HAE_CFG2.UPDATE bit field. Refer to Data Transfer Module for more informa-
tion.

HAE Status and Error Signals

The trigger and status signals to the HAE module include:

HAE Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 33–11

• HAE_STAT.RDY (HAE ready status). When the bit is set, the HAE is fully accessible.

• HAE_STAT.RXIRQ (RX IRQ status). The bit mirrors the RX interrupt.

• HAE_STAT.TXIRQ (TX IRQ status). The bit mirrors the TX interrupt.

The status bit requires a 1 to clear and reenable the corresponding interrupt for the next sample period. Refer to
Data Transfer Module for more information.

HAE Programming Model
The following sections provide basic procedures for configuring various HAE operations.

Current and voltage data can be transferred from system memory to HAE. HAE results can be transferred to system
memory using core and DMA accesses. DMA transfers can be set up to transfer a configurable number of I and V
samples and HAE results between HAE and system memory automatically. Core-driven transfers use HAE inter-
rupts to signal the processor core to provide I and V data to the sample registers and read the HAE results from the
system memory.

The following sections provide recommended programming guidelines to be followed for core and DMA mode.

Configuring the HAE for DMA Transfers

• Enable HAE operations by configuring the HAE_CFG2.EN bit.

• Poll for HAE ready status from the HAE_STAT.RDY bit configuration.

• Initialize the HAE configuration registers to configure update and settle rates, HPF, integrator for di/dt sensor
and line frequency.

• Choose the harmonic channels to be monitored by configuring the HAE_H[nn]_INDX registers and enable
channels by configuring the HAE_CFG3.CHANEN bits.

• Configure the RX DMA channel 0 and the RX DMA channel 1 to receive I and V samples. Configure the TX
DMA channel 0 to transmit harmonic calculation results.

• Set the HAE clock divider using the HAE_CFG1.STARTDIV field to 8 kHz.

• Set the HAE_RUN register.

Configuring the HAE for Core Transfers

• Enable HAE operations by configuring the HAE_CFG2.EN bit.

• Poll for HAE ready status using the HAE_STAT.RDY bit.

• Initialize the HAE configuration registers to configure update and settle rates, HPF, integrator for di/dt sensor
and line frequency.

• Enable receive and transmit IRQ using the HAE_CFG0 register.

• Configure the HAE_VLEVEL register depending on input voltage magnitude requirements.

HAE Programming Model

33–12 ADSP-CM41x Mixed-Signal Control Processor

• Configure the HAE_H[nn]_INDX registers to choose the harmonic channels to monitor. Enable the channels
using the HAE_CFG3.CHANEN bits.

• Set the HAE clock divider using the HAE_CFG1.STARTDIV field to 8 kHz.

• Set the HAE_RUN register.

• At each receive IRQ (HAE_STAT.RXIRQ = 1), write I and V sample values to the HAE_ISAMPLE and the
HAE_VSAMPLE registers respectively.

• At each transmit IRQ (HAE_STAT.TXIRQ = 1), read the HAE results from the HAE result RAM memory
region based on the index.

HAE Programming Concepts

Using the HAE features to their greatest potential requires an understanding of some HAE-related concepts.

• Theory of Operation

• Initialization

• Harmonic Calculations

• Configuring Harmonic Calculations Update Rate

Theory of Operation

The HAE theory of operation can be described using the following scenario:

Consider a nonsinusoidal AC system supplied by a voltage, v(t), that consumes the current, i(t):

sin2)(
1
∑
∞

=
=

k
kVtv (kωt + φk)

()k
k

k tkIti γω += ∑
∞

=
sin2)(

1

where:

• Vk, Ik are the RMS voltage and current, respectively, of each harmonic.

• Φk, γk are the phase delays of each harmonic.

• ω is the angular velocity at the fundamental (line) frequency f.

The HAE harmonic calculations are specified for line frequencies 45–65 Hz.

The maximum number of harmonics which the HAE can accept for a particular line frequency depends upon the
bandwidth of the input waveforms supplied.

When the HAE analyzes I and V samples, the following metering quantities are computed:

• Fundamental current RMS: I1

HAE Programming Model

ADSP-CM41x Mixed-Signal Control Processor 33–13

• Fundamental voltage RMS: V1

• RMS of up to 12 harmonics of the current channel: In, n = 2, 3,…, 12

• RMS of up to 12 harmonics of the voltage channel: Vn, n = 2, 3,…, 12

• Fundamental active power: P 1 = V 1 I 1 cos(φ 1 − γ 1)

• Fundamental reactive power: Q 1 = V 1 I 1 sin(φ 1 − γ 1)

• Fundamental apparent power: S 1 = V 1 I 1

• Power factor of the fundamental:

()
1

1
11 sgn

S
PQpf ×=

Active power of up to 12 harmonics:

Pn = VnIncos(φn – γn), n = 2, 3,…, 12

• Reactive power of up to 12 harmonics:

Qn = VnInsin(φn – γn), n = 2, 3,…, 12

• Apparent power of up to 12 harmonics:

Sn = VnIn, n = 2, 3, …, 12

• Power factor of up to 12 harmonics:

()
n

n
nn S

PQpf ×= sgn
, n = 2, 3,…, 12

• Total harmonic distortion of the current channel:

()
1

2
1

2

I
II

THD I
−

=

• Total harmonic distortion of the voltage channel:

()
1

2
1

2

V
VV

THD V
−

=

• Harmonic distortion of up to 12 harmonics on the current channel:

1I
IHD n

In
=

, n = 2, 3,…, 12

• Harmonic distortion of up to 12 harmonics on the voltage channel:

HAE Programming Concepts

33–14 ADSP-CM41x Mixed-Signal Control Processor

1V
VHD n

Vn
=

, n = 2, 3,…, 12

Initialization

The HAE typically is initialized with parameters and settings for a given usage scenario. It is interrupt-driven when
new results are available.

The HAE programming depends on whether the line frequency is 50 Hz or 60 Hz. If the external sensor is a di/dt
type, there are also some differences. The HAE Initialization flowchart shows the initialization sequence.

START

SELECT
LINE FREQUENCY

50 Hz 60 Hz

CLEAR HAE_CFG0.LFREQ BIT (=0) SET HAE_CFG0.LFREQ BIT (=1)

SELECT
DIGITAL INTEGRATOR

DI/DT TYPE NOT DI/DT TYPE

SET HAE_CFG4.DIDTEN BIT (=1) TO EN

WRITE 0 TO HAE_DIDT.GAIN REG

SET HAE_DIDT.COEFF BITS (= 28’FFFF000)

SET HAE_CFG4.HPEN BIT (=1) TO EN

START CLOCK DIVISOR, WRITE TO HAE_CFG1.START_DIV REG TO SET TO 8 kHz

SET HAE_CFG2.MODE BIT (=1) FOR RESULTS FIRST MODE

SELECT TX DATA CHANNELS: WRITE 1 TO HAE_CFG3.CHANEN BITS

WRITE VOLTAGE INPUT LEVEL TO HAE_VLEVEL REG

RUN HAE:
SET HAE_RUN.RUN BIT (=1)

SET HAE_CFG2.EN BIT (=1) TO ENABLE HAE CLOCK

WRITE TO HAE_CFG2.UPDATE BITS TO CHANGE UPDATE HAE RATE

WRITE TO HAE_CFG2.SETTLE BITS TO CHANGE THE SETTLE PERIOD

SELECT HARMONICS TO ANALYZE: WRITE n INTO HAE_Hn_INDX REGISTERS

CHECK
HAE_STAT_RDY

IF HAE_STAT_RDY=0

IF HAE_STAT_RDY=1

Figure 33-7: HAE Initialization

Harmonic Calculations

HAE Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 33–15

When the harmonic engine runs, it computes information about the fundamental and up to 12 harmonics. The
HAE simultaneously monitors the indexes of the additional 12 harmonics, provided by the 8-bit registers
HAE_H[nn]_INDX. Write the index of the harmonic into the register for the harmonic to be monitored. If the
second harmonic is monitored, write 2. If harmonic 51 is desired, write 51. The HAE always monitors the funda-
mental component, independent of the values written into HAE_H[nn]_INDX. Therefore, if one of these registers
is equal to 1, the HAE monitors the fundamental components multiple times. The maximum index allowed in the
HAE_H[nn]_INDX registers is 63.

As a reference, the Harmonic Engine Outputs and Registers where Values are Stored table presents the harmonic
engine outputs and registers that store the outputs.

Table 33-5: Harmonic Engine Outputs and Registers where Values are Stored

Quantity Definition HAE Registers

RMS of the Fundamental Component V1, I1 F_VRMS, F_IRMS
RMS of a Harmonic Component Vn, In, n = 2, 3,…, 12 Hnn_VRMS, Hnn_XIRMS
Active Power of the Fundamental
Component

P1 = V1I1cos(φ1 − γ1) F_ACT

Active Power of a Harmonic Compo-
nent

Pn = VnIncos(φn – γn), n = 2, 3,…, 12 Fnn_ACT

Reactive Power of the Fundamental
Component

Q1 = V1I1sin(φ1 − γ1) F_REACT

Reactive Power of a Harmonic Com-
ponent

Qn = VnInsin(φ1 − γ1), n = 2, 3,…, 12 Hnn_REACT

Apparent Power of the Fundamental
Component

S1 = V1I1 F_APP

Apparent Power of a Harmonic Com-
ponent

Sn = VnIn, n = 2, 3, …, 12 Hnn_APP

Power Factor of the Fundamental
Component

()
1

1
11 sgn

S
PQpf ×= F_PF

Power Factor of a Harmonic Compo-
nent

()
n

n
nn S

PQpf ×= sgn , n = 2, 3,…, 12 Hnn_PF

Harmonic Distortion of a Harmonic
Component 1V

VHD n
Vn

= ,
1I

IHD n
In

= , n = 2, 3,…, 12
Hnn_VHDN, Hnn_IHDN

Configuring Harmonic Calculations Update Rate

The harmonic engine functions at an 8 kHz rate. From the moment the HAE_CFG2 register is initialized, and the
harmonic indexes are set in the HAE_H[nn]_INDX index registers, the HAE calculations take typically 750 mSec
to settle within the specification parameters.

The HAE module uses the HAE_CFG2.UPDATE bits to manage the update rate of the output registers for the
harmonic engine. It manages the update rate independent of the calculations rate of 8 kHz for the engine. The de-
fault value of 000 means that the registers are updated every 125 uSec (8 kHz rate). Other update periods are: 250

HAE Programming Concepts

33–16 ADSP-CM41x Mixed-Signal Control Processor

uSec (001), 1 mSec (010), 16 mSec (011), 128 mSec (100), 512 mSec (101), 1.024 mSec (110). If the
HAE_CFG2.UPDATE bits are 111, the harmonic calculations are disabled.

The HAE module provides two ways to manage the harmonic computations. It enables the first approach when bit
HAE_CFG2.MODE is cleared to its default value of 0. The state sets status bit HAE_STAT.TXIRQ to 1 after a
certain period and then every time the harmonic calculations are updated at HAE_CFG2.UPDATE frequency. This
functionality allows an external microcontroller to access the harmonic calculations only after they have settled. The
HAE uses the state of bits HAE_CFG2.SETTLE to determine the time period. The possible values of settling time
of the harmonic calculations are 512 mSec (00), 768 mSec(01), 1024 mSec (10), and 1280 mSec (11).

The HAE module enables the second approach when bit HAE_CFG2.MODE is set to 1. The state sets the status bit
HAE_STAT.TXIRQ to 1 every time the harmonic calculations are updated at the HAE_CFG2.UPDATE frequen-
cy, without waiting for the harmonic calculations to settle. This functionality allows an external microcontroller to
access the harmonic calculations immediately after starting. A write to the HAE_STAT register clears the status bit.
The corresponding bit (HAE_STAT.TXIRQ) is set to 1.

CM41X_M4 HAE Register Descriptions
Harmonic Analysis Engine (HAE) contains the following registers.

Table 33-6: CM41X_M4 HAE Register List

Name Description

HAE_CFG0 Configuration 0 Register

HAE_CFG1 Configuration 1 Register

HAE_CFG2 Configuration 2 Register

HAE_CFG3 Configuration 3 Register

HAE_CFG4 Configuration 4 Register

HAE_DIDT_COEF DIDT Coefficient Register

HAE_DIDT_GAIN DIDT Gain Register

HAE_H[nn]_INDX Harmonic n Index Register

HAE_ISAMPLE I (Current) Sample Register

HAE_IWAVEFORM I (Current) Waveform Register

HAE_RUN Run Register

HAE_STAT Status Register

HAE_VLEVEL Voltage Level Register

HAE_VSAMPLE V (Voltage) Sample Register

HAE_VWAVEFORM V (Voltage) Waveform Register

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–17

Configuration 0 Register

The HAE_CFG0 register configures high-level interrupts and specifies the line frequency for HAE operations.

Parity Enable

Clear Parity StatusTransmit IRQ Enable

Line Frequency SelectReceive IRQ Enable

PERR_EN (R/W)

CLR_PERR (R/W)TXIRQEN (R/W)

LFREQ (R/W)RXIRQEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-8: HAE_CFG0 Register Diagram

Table 33-7: HAE_CFG0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

RXIRQEN Receive IRQ Enable.

The HAE_CFG0.RXIRQEN bit enables an interrupt, which the HAE triggers on each
request for a new input sample on both the I and V channels.

0 Disable

1 Enable

6

(R/W)

TXIRQEN Transmit IRQ Enable.

The HAE_CFG0.TXIRQEN bit enables an interrupt, which the HAE triggers on each
result as the result is calculated and ready to transmit.

0 Disable

1 Enable

5

(R/W)

PERR_EN Parity Enable.

The HAE_CFG0.PERR_EN bit enables parity checking

4

(R/NW)

CLR_PERR Clear Parity Status.

The HAE_CFG0.CLR_PERR bit clears parity error status

1

(R/W)

LFREQ Line Frequency Select.

The HAE_CFG0.LFREQ bit specifies the line frequency for the HAE. Set the bit to
match the line frequency being analyzed.

0 50 Hz

1 60 Hz

CM41X_M4 HAE Register Descriptions

33–18 ADSP-CM41x Mixed-Signal Control Processor

Configuration 1 Register

The HAE_CFG1 register configures the HAE frequency (clock) divider.

Start (Clock) Divider
STARTDIV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-9: HAE_CFG1 Register Diagram

Table 33-8: HAE_CFG1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

14:0

(R/W)

STARTDIV Start (Clock) Divider.

The HAE_CFG1.STARTDIV bits provide the sample clock divider. Write the value
to divide the main clock down to 8 kHz. The HAE sample loop is determined by
SCLK / (HAE_CFG1.STARTDIV).

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–19

Configuration 2 Register

The HAE_CFG2 register enables and configures HAE operations as related to output results.

Settle Period SelectUpdate Rate Select

(Results) Mode SelectEnable Clock

SETTLE (R/W)UPDATE (R/W)

MODE (R/W)EN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-10: HAE_CFG2 Register Diagram

Table 33-9: HAE_CFG2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

EN Enable Clock.

The HAE_CFG2.EN bit enables the HAE the main clock, enabling HAE operation.

0 Disable

1 Enable

5:3

(R/W)

UPDATE Update Rate Select.

The HAE_CFG2.UPDATE bits determine the rate (in microseconds or milliseconds)
at which the HAE updates the output results. The HAE_CFG2.UPDATE bits can also
disable harmonic calculations.

0 125 uSec

1 250 uSec

2 1 mSec

3 16 mSec

4 128 mSec

5 512 mSec

6 1024 mSec

7 Disable

CM41X_M4 HAE Register Descriptions

33–20 ADSP-CM41x Mixed-Signal Control Processor

Table 33-9: HAE_CFG2 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2:1

(R/W)

SETTLE Settle Period Select.

The HAE_CFG2.SETTLE bits determine the time (in milliseconds) that the HAE
waits before producing results. The time is based on an 8K sample count.

0 512 mSec

1 768 mSec

2 1024 mSec

3 1280 mSec

0

(R/W)

MODE (Results) Mode Select.

The HAE_CFG2.MODE bit determines whether the HAE produces results immediate-
ly or waits per the HAE_CFG2.SETTLE bit field.

0 Results after Settle

1 Results First

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–21

Configuration 3 Register

The HAE_CFG3 register configures HAE data transfer operations by selecting the fundamental and potential of
twelve additional harmonic channels. The selected harmonics have their data (results) transferred to memory using
DMA. First, the fundamental; followed by the selected channel n, in the order from the lowest to the highest num-
bered channel. Each selected channel has its eight result words transferred.

Channel n Enable
CHANEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-11: HAE_CFG3 Register Diagram

Table 33-10: HAE_CFG3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

12:0

(R/W)

CHANEN Channel n Enable.

Each HAE_CFG3.CHANEN bit enables the fundamental and potential of twelve addi-
tional harmonic data channels. The following enumerations apply to each bit. Bit 0
denotes the fundamental channel. Bits 1-12 denote the harmonic channels 1-12, ac-
cordingly.

0 Disable channel n

8191 Enable channel n

CM41X_M4 HAE Register Descriptions

33–22 ADSP-CM41x Mixed-Signal Control Processor

Configuration 4 Register

The HAE_CFG4 register configures the internal digital integrator and high-pass filters (HPS) for HAE operations.
The digital integrator is disabled and the filters are enabled by default.

High-Pass Filter Enabledi/dt (Sensor) Enable
HPFEN (R/W)DIDTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-12: HAE_CFG4 Register Diagram

Table 33-11: HAE_CFG4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

DIDTEN di/dt (Sensor) Enable.

The HAE_CFG4.DIDTEN bit enables the internal digital integrator for a di/dt sen-
sor. Set the bit (=1) if the sensor is a di/dt type sensor.

0 Disable

1 Enable

0

(R/W)

HPFEN High-Pass Filter Enable.

The HAE_CFG4.HPFEN bit enables the high-pass filters. Set the bit (=1) unless
measuring DC levels.

0 Disable

1 Enable

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–23

DIDT Coefficient Register

The HAE_DIDT_COEF register sets the di/dt sensor’s coefficient.

di/dt Coefficient

di/dt Coefficient

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[27:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-13: HAE_DIDT_COEF Register Diagram

Table 33-12: HAE_DIDT_COEF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27:0

(R/W)

VALUE di/dt Coefficient.

The HAE_DIDT_COEF.VALUE bits provide the coefficient for a di/dt type sensor. If
the HAE_CFG4.DIDTEN bit is set (=1), set this bit field to 28'FFFF000.

CM41X_M4 HAE Register Descriptions

33–24 ADSP-CM41x Mixed-Signal Control Processor

DIDT Gain Register

The HAE_DIDT_GAIN register provides the di/dt sensor’s gain.

di/dt Sensor Gain

di/dt Sensor Gain

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[27:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-14: HAE_DIDT_GAIN Register Diagram

Table 33-13: HAE_DIDT_GAIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27:0

(R/W)

VALUE di/dt Sensor Gain.

The HAE_DIDT_GAIN.VALUE bits provide the gain for a di/dt type sensor. If the
HAE_CFG4.DIDTEN bit is set (=1), set this bit field to 0.

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–25

Harmonic n Index Register

The HAE_H[nn]_INDX registers select harmonics for HAE operations. The fundamental always is provided. The
harmonic results appear in the results RAM memory region based on the index.

Harmonic n Index
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-15: HAE_H[nn]_INDX Register Diagram

Table 33-14: HAE_H[nn]_INDX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5:0

(R/W)

VALUE Harmonic n Index.

The HAE_H[nn]_INDX.VALUE bits select the harmonic channel n to analyze.
Write the index of the harmonic into the HAE_H[nn]_INDX register for that har-
monic to be selected.

CM41X_M4 HAE Register Descriptions

33–26 ADSP-CM41x Mixed-Signal Control Processor

I (Current) Sample Register

The HAE_ISAMPLE register provides current (I) input samples for HAE calculations.

Current Input Sample

Current Input Sample

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-16: HAE_ISAMPLE Register Diagram

Table 33-15: HAE_ISAMPLE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

VALUE Current Input Sample.

The HAE_ISAMPLE.VALUE bits hold the current sample if provided by the MCU.
The sample can be timed with the HAE_STAT.RXIRQ bit.

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–27

I (Current) Waveform Register

The HAE_IWAVEFORM register holds processed current waveforms produced by the HAE. After some amplitude
and phase delay, the waveform follows a sample input.

Current Waveform

Current Waveform

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-17: HAE_IWAVEFORM Register Diagram

Table 33-16: HAE_IWAVEFORM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/NW)

VALUE Current Waveform.

The HAE_IWAVEFORM.VALUE bits hold the processed current input sample.

CM41X_M4 HAE Register Descriptions

33–28 ADSP-CM41x Mixed-Signal Control Processor

Run Register

The HAE_RUN register starts/idles HAE harmonic calculations.

Run/Stop
RUN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-18: HAE_RUN Register Diagram

Table 33-17: HAE_RUN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

RUN Run/Stop.

The HAE_RUN.RUN bit starts the HAE harmonic calculations.

0 Stop

1 Run

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–29

Status Register

The HAE_STAT register indicates status for the HAE module and its interrupts.

Receive IRQ StatusReady Status

Transmit IRQ StatusParity Error Status

RXIRQ (R/W1C)RDY (R)

TXIRQ (R/W1C)PERR_STAT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-19: HAE_STAT Register Diagram

Table 33-18: HAE_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

PERR_STAT Parity Error Status.

2

(R/NW)

RDY Ready Status.

The HAE_STAT.RDY bit indicates status for the HAE. When the bit is set (=1), the
HAE is fully accessible, following the setting of the HAE_CFG2.EN bit.

0 No Status

1 Ready

1

(R/W1C)

RXIRQ Receive IRQ Status.

The HAE_STAT.RXIRQ bit indicates status for an HAE RX interrupt. The bit mir-
rors the HAE_CFG0.RXIRQEN bit status.

0 No Status

1 Interrupt Detected

0

(R/W1C)

TXIRQ Transmit IRQ Status.

The HAE_STAT.TXIRQ bit indicates status for an HAE TX interrupt. The bit mir-
rors the HAE_CFG0.TXIRQEN bit status.

0 No Status

1 Interrupt Detected

CM41X_M4 HAE Register Descriptions

33–30 ADSP-CM41x Mixed-Signal Control Processor

Voltage Level Register

The HAE_VLEVEL register is used to scale the fixed fundamental voltage level internally. This assists the HAE in
locking onto the fundamental voltage channel.

Voltage Input Level

Voltage Input Level

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[27:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-20: HAE_VLEVEL Register Diagram

Table 33-19: HAE_VLEVEL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27:0

(R/W)

VALUE Voltage Input Level.

The HAE_VLEVEL.VALUE bits hold a value to scale the fixed fundamental voltage
level. Use this formula: VLEVEL = FS/VIN * 5033168, where VIN is the fundamental
voltage input level.

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–31

V (Voltage) Sample Register

The HAE_VSAMPLE register provides voltage (V) input samples for HAE calculations.

Voltage Input Sample

Voltage Input Sample

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-21: HAE_VSAMPLE Register Diagram

Table 33-20: HAE_VSAMPLE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/W)

VALUE Voltage Input Sample.

The HAE_VSAMPLE.VALUE bits hold the voltage sample if provided by the MCU.
The sample can be timed with the HAE_STAT.RXIRQ bit.

CM41X_M4 HAE Register Descriptions

33–32 ADSP-CM41x Mixed-Signal Control Processor

V (Voltage) Waveform Register

The HAE_VWAVEFORM register contains processed voltage waveforms produced by the HAE. After some ampli-
tude and phase delay, the waveform follows a sample input.

Voltage Waveform

Voltage Waveform

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[23:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 33-22: HAE_VWAVEFORM Register Diagram

Table 33-21: HAE_VWAVEFORM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

23:0

(R/NW)

VALUE Voltage Waveform.

The HAE_VWAVEFORM.VALUE bits hold the processed voltage input sample.

CM41X_M4 HAE Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 33–33

34 Sinus Cardinalis (SINC) Filter

The sinus cardinalis (SINC) filter module processes four independent sigma-delta bit streams by applying a pair of
SINC filters to each stream. A SINC filter converts the bit stream from a sigma-delta front-end modulator into a
digital word representing the signal level presented to the modulator.

The filter consists of a set of integration and decimation stages implemented directly in logic for efficient execution.
The SINC filter supports capture of current or voltage feedback signals from an isolating analog-to-digital converter
(ADC). Each modulator bit stream connects to two SINC filters: a primary filter for controlling feedback; a secon-
dary filter for overcurrent detection. The SINC module includes four filter channels and two modulator clock gen-
erators.

SINC Filter Features
The SINC features include:

• Four-bit stream filter channels for current or voltage feedback signal processing

• Each channel includes two SINC filter pairs:

• A primary filter for feedback signal processing

• A secondary filter for overload detection

• Up to two modulator clock sources with phase control options

• Configuration of SINC filter channels according to a modulator clock selection

• Programmable order and decimation rates

• Primary filters:

• Programmable bias and gain with output saturation

• Dedicated direct memory access (DMA) channels with data interleaving and programmable data ready
output triggers

• Secondary filters:

• Detecting a fault when signals exceed amplitude and duration values

Sinus Cardinalis (SINC) Filter

ADSP-CM41x Mixed-Signal Control Processor 34–1

• Registers preserving the eight most recent samples before a fault event

• Multiple interrupt trigger sources for overload fault and data overflow events

SINC Functional Description
The SINC filter has the following functionality:

Digital filter

The filter removes the modulator sample clock and recovers a digital value of the sampled signal.

DC gain and data resolution

The DC gain of the digital filter is a function of the order and decimation rate.

Frequency response

The frequency response of the filter depends on the order, decimation rate, and modulator clock frequency.

Output scaling

The output scaling and postprocessing functions embedded in the SINC filter blocks differ, depending on the
function.

CM41X_M4 SINC Register List

The SINC filter module processes four independent sigma-delta bit streams by applying a pair of SINC filters to
each stream. A SINC filter converts the bit stream from a sigma-delta front-end modulator into a digital word repre-
senting the signal level presented to the modulator. Each modulator bit stream connects to two SINC filters: a pri-
mary filter for controlling feedback, and a secondary filter for overcurrent detection. A set of registers governs SINC
operations. For more information on SINC functionality, see the SINC register descriptions.

Table 34-1: CM41X_M4 SINC Register List

Name Description

SINC_BIAS0 Bias for Group 0 Register

SINC_BIAS1 Bias for Group 1 Register

SINC_CLK Clock Control Register

SINC_CTL Control Register

SINC_HIS_STAT History Status Register

SINC_LEVEL0 Level Control for Group 0 Register

SINC_LEVEL1 Level Control for Group 1 Register

SINC Functional Description

34–2 ADSP-CM41x Mixed-Signal Control Processor

Table 34-1: CM41X_M4 SINC Register List (Continued)

Name Description

SINC_LIMIT0 (Amplitude) Limits for Secondary Filter 0 Register

SINC_LIMIT1 (Amplitude) Limits for Secondary Filter 1 Register

SINC_LIMIT2 (Amplitude) Limits for Secondary Filter 2 Register

SINC_LIMIT3 (Amplitude) Limits for Secondary Filter 3 Register

SINC_P0SEC_HIST[n] Pair 0 Secondary (Filter) History n Register

SINC_P1SEC_HIST[n] Pair 1 Secondary (Filter) History n Register

SINC_P2SEC_HIST[n] Pair 2 Secondary (Filter) History n Register

SINC_P3SEC_HIST[n] Pair 3 Secondary (Filter) History n Register

SINC_PHEAD0 Primary (Filters) Head for Group 0 Register

SINC_PHEAD1 Primary (Filters) Head for Group 1 Register

SINC_PPTR0 Primary (Filters) Pointer for Group 0 Register

SINC_PPTR1 Primary (Filters) Pointer for Group 1 Register

SINC_PTAIL0 Primary (Filters) Tail for Group 0 Register

SINC_PTAIL1 Primary (Filters) Tail for Group 1 Register

SINC_RATE0 Rate Control for Group 0 Register

SINC_RATE1 Rate Control for Group 1 Register

SINC_STAT Status Register

CM41X_M4 SINC Interrupt List

Table 34-2: CM41X_M4 SINC Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

153 SINC0_STAT SINC0 Status Level

CM41X_M4 SINC Trigger List

Table 34-3: CM41X_M4 SINC Trigger List Masters

Trigger ID Name Description Sensitivity

33 SINC0_P0_OVLD SINC0 Pair 0 Overload Indicator Edge

34 SINC0_P1_OVLD SINC0 Pair 1 Overload Indicator Edge

35 SINC0_P2_OVLD SINC0 Pair 2 Overload Indicator Edge

36 SINC0_P3_OVLD SINC0 Pair 3 Overload Indicator Edge

SINC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 34–3

Table 34-3: CM41X_M4 SINC Trigger List Masters (Continued)

Trigger ID Name Description Sensitivity

37 SINC0_DATA0 SINC0 Data Move 0 Edge

38 SINC0_DATA1 SINC0 Data Move 1 Edge

Table 34-4: CM41X_M4 SINC Trigger List Slaves

Trigger ID Name Description Sensitivity

34 SINC0_SYNC0 SINC0 Synchronization Input 0 Pulse

35 SINC0_SYNC1 SINC0 Synchronization Input 1 Pulse

SINC Definitions

To make the best use of the SINC, it is useful to understand the following terms.

Decimation

Decimation is the process of discarding samples from a data stream.

Decimation Rate

The decimation rate is the ratio of the filter input data rate to the filter output data rate.

Filter Order

The SINC filter order is the number of integration and decimation stages in the filter.

Modulator Order

The modulator order is the number of comparator and integrator stages in a sigma-delta modulator.

Sigma-Delta Modulator

The sigma-delta modulator is an oversampling analog-to-digital conversion circuit that generates a digital bit stream
whose pulse density is proportional to the analog voltage presented to the input.

SINC Block Diagram

The SINC Block Diagram figure shows the functional blocks within the SINC module.

SINC Functional Description

34–4 ADSP-CM41x Mixed-Signal Control Processor

FROM GPIO

FROM GPIO

FROM GPIO

FROM GPIO

SINC PAIR 0

PRIMARY FILTER

PRIMARY FILTER

PRIMARY FILTER

PRIMARY FILTER

SECONDARY FILTER

SECONDARY FILTER

SECONDARY FILTER

SECONDARY FILTER

SINC PAIR 1

SINC PAIR 2

SINC PAIR 3

CONTROL FOR GROUP 0

MODULATOR CLOCK 0

CONTROL FOR GROUP 1

MODULATOR CLOCK 1

TO GPIO

LIMIT

SINC MODULE

TO MEMORY

DMA

TO GPIO

LIMIT

LIMIT

LIMIT

Figure 34-1: SINC Block Diagram

NOTE: For the ADSP-CM41x, only one of the two MCLK outputs is available to connect using the pin mux, so
only Group 0 can be used directly. If a system needs to use Group 1, (to have a different decimation rate
than Group 0 for example), then the Group 1 MCLK1 must be configured to exactly match MCLK0,
with the same settings and the same trigger source.

The block diagram shows four SINC filter pairs (SINC0−3), two modulator clock sources, and two banks of control
registers (units). The module accepts four sigma-delta bit streams from the GPIO input pins and directs the modu-
lator clock source of GROUP 0 to the GPIO output pin. A pulse-width modulation (PWM) signal synchronizes the
modulator clocks to optimize system performance. Each SINC filter pair includes the primary filter, secondary filter,
DMA interface, and overload limit detection functions.

SINC Functional Description

ADSP-CM41x Mixed-Signal Control Processor 34–5

The primary SINC filter transmits its data to memory using DMA. The secondary SINC filter generates overload
signals, which can be routed through the trigger routing unit (TRU) to trip a PWM modulator and generate an
interrupt request.

The SINC filter pairs can be assigned to either set of control units, where multiple channels of current or voltage-
feedback share common filter parameters. The primary filters generate high-resolution signals for closing the feed-
back control loop. The secondary filters are for rapid-overload fault detection, require lower resolution, but a faster
response. The primary and secondary filters have programmable order and decimation rates. The primary filters also
have the programmable output gain stage, while the secondary filters have the programmable overload limit thresh-
olds.

To use the primary and secondary filters, set up the filter parameters once, prior to using the filters. The feedback
control algorithm reads the data from the primary filter directly from memory. A PWM interrupt request signal can
generate the algorithm timing signal, or the SINC module generates a data trigger. The data history of the secondary
filter is saved in buffer registers once an overload fault signal is detected. The data history supports fault diagnostics.

SINC Architectural Concepts

The architecture of the SINC includes the following:

• Digital Filter

• DC Gain and Data Resolution

• Frequency Response

• Output Scaling

Digital Filter

The SINC filter has a transfer function that lends itself to an implementation in digital logic, using a series of sum-
mation and decimation functions. The filter removes the modulator sample clock and recovers a digital value of the
sampled signal. The filter design matches a bipolar SD modulator. The design produces a 50% pulse density for a
0V input, over 50% for positive inputs and less than 50% for negative inputs.

Z
-1-1 -1

ZZZ

+D

M_CLK

DATA_IN

D_CLK

Z Z

DATA_OUT

+
+

+
+

+
+

+
-

+
-

+
-

Figure 34-2: SINC Digital Filter

SINC Functional Description

34–6 ADSP-CM41x Mixed-Signal Control Processor

The digital filter is a set of accumulators driven by the modulator clock (M_CLK), followed by a set of differentiators
driven by the decimation clock (D_CLK). The input accumulators convert the input bit stream into a multibyte
word, while the output differentiators derive the average 1’s density of the bit stream. The number of accumulator
and differentiator stages can be three or four, depending on the order of the filter. The DC gain and bandwidth of
the filter are functions of the filter order (O) and the decimation rate (D), which is the ratio of the modulator to the
decimation clock.

The calculation of the transfer function of the SINC filter includes the product of the transfer functions for the
accumulators and differentiators, and in the z domain. The following equation gives the calculation:

D
1H(z)=

1 - z
1 - z -D

o
 -1x

DC Gain and Data Resolution

The DC gain of the digital filter is a function of the order and decimation rate. At 100% ones density input, each
accumulator stage counts D pulses, and the gain of the filter is given as follows:

DGdc = o

The higher the decimation rate, the higher the resolution of the output data. The number of usable data bits is a
function of the SNR; the Filter Order versus Decimation table shows ENOB versus the decimation rate.

Table 34-5: ENOB versus Decimation

Decimation 4 5 6 7 8 16 32 64 128 256

O = 3 SNR (dB) 6.42 11.47 16.41 20.57 23.55 35.02 48.59 62.26 76.46 89.59

ENOB 0.8 1.6 2.4 3.1 3.6 5.5 7.8 10.0 12.4 14.6

O = 4 SNR (dB) 9.08 14.77 19.78 23.41 25.9 38.05 51.29 64.67 79.15

ENOB 1.2 2.1 3.1 3.6 4.0 6.0 8.2 10.4 12.8

Notes: ENOB versus order and decimation rate.

Test conditions are for a 1.22 kHz tone and a 10 MHz modulator.

Frequency Response

The frequency response of the filter depends on the order, decimation rate, and modulator clock frequency, fM. The

equation is obtained by substituting ej x Ts for z in the transfer function, where Ts is the period of the modulator
clock:

) × e×D
1H (e =

sin(
(

(

(

Dsin ω

2fM

2f M

fM
-j(D-1) 2 fM

o
j

 ω

 ω ω

The filter has a linear phase response with a constant group delay given by:

SINC Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 34–7

D= 1
2()−

d
O
fM

τ

The Frequency Response plots show zeros at multiples the decimation frequency, where the sin term in the numer-
ator goes to zero. This response makes it possible to remove some PWM ripple components from the motor current
waveform by matching the decimation frequency to the PWM switching frequency. There are some limitations at
lower PWM frequencies based on available decimation rates. High decimation rates limit the bandwidth of the con-
trol loop because of the phase delay, which is 3π radians at the decimation frequency.

200

FREQUENCY RESPONSE FOR 8 MHZ MODULATION

 D = 160

 0

 -100

 -200
 50 100 150 200 250

G
A

IN
 (

d
B

)

 -30

200

 0

 0

 -10

 -20

 -40
 50 100 150 200 250

P
H

A
S

E
 (

R
A

D
IA

N
C

E
)

 FREQUENCY (kHz)

 -50

 0

-150

Figure 34-5: Frequency Response

Output Scaling

The output scaling and postprocessing functions embedded in the SINC filter blocks differ, depending on the func-
tion. The primary filter used for feedback signal processing includes the output bias and scaling blocks to present a
16-bit signed integer to the control code. The scaling is required at decimation rates higher than 32 to keep the
lower 16 bits of the output word.

The secondary filter supports overload detection functions. The secondary filter can detect signals crossing maxi-
mum and minimum thresholds. It has a glitch filter that only accepts faults with a minimum number of counts (c)
within a certain count window (w). The secondary filter has no output scaling, so the minimum and maximum
values in the overload registers must be calculated from the DC gain of the secondary filter. The response time to a
step input is approximately 2 x O decimation clock cycles.

SINC Architectural Concepts

34–8 ADSP-CM41x Mixed-Signal Control Processor

PRIMARY (O, D)

ΣΔ BIT
STREAM

SECONDARY FILTER

+
+PRIMARY FILTER +2

s

SCALE (S)

OFFSET BIAS

DATA TO MEMORY

MAX

MIN

+

-

+

-

(C,W)

GLITCH
FILTER FAULT

M_CLK

SECONDARY (O, D)

Figure 34-4: Output Scaling

SINC Operating Modes
The SINC filter module has only one operating mode. The module generates the clock source for a sigma-delta
modulator analog front end and filters the output data stream for the modulator. The primary SINC filter transfers
its data to memory through DMA. The secondary SINC filter output generates an overload trigger signal that the
SINC filter module can use as a PWM trip signal. The SINC control registers enable the module and set up the
modulator clock sources, filter parameters, DMA transfers, and interrupts masks, as described in SINC Program-
ming Model.

For self-testing purposes, the SINC data inputs can be driven by bit streams transferred from the SPORT0A port
through DMA from a slave memory space (typically M4 main memory). The following programming selections are
required to enable SINC self-test mode:

• SYSBLK_SINC_TEST.EN[3:0] – set each bit to 1 for each SINC channel to be selected for test. If 1, the
SINC channel input will be driven by the SPORT, not the associated GPIO.

• Enable filters to route SPORT data to SINC unit with the write: *pREG_TESYS1_SINC_TEST = 0xf
• The SINC unit must be configured as follows.

• Timer Group 0; MCLK0

• The SPORT (A) must be configured as follows.

• External Clock

• 16 bit data recommended

• No multichannel mode

• Enable SPORT0_A in transmit mode, external clock, internal FS, and I2S Mode
*pREG_SPORT0_CTL_A = 0x021548f1

• Any data transmitted on SPORT0 Data A channel is sent to SINC block.

SINC Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 34–9

SINC Data Transfer Modes

The only mode of data transfer between the primary SINC filter and memory is through DMA (See Primary DMA
Configuration and Data Interrupts for more information. Reading the history registers for the secondary filter is the
only way to transfer data between the secondary SINC filter and memory. See Overload Detection for more infor-
mation.

SINC Signal Modes

The SINC filter has an interrupt request signal and a number of triggers and status signals to indicate system events
and errors.

• Primary data transfer trigger:

The SINC filter can generate a trigger after a user-specified number of primary output sets are transferred to
memory. There is one trigger source for each filter group. See Primary DMA Configuration and Data Inter-
rupts for more information.

• Secondary data overload trigger:

The SINC filter can generate a trigger when one of the secondary filters detects an overload condition. There is
one trigger source for each secondary filter. See Overload Detection for more information.

• SINC status bits:

The SINC status bits indicate secondary filter overload errors, primary filter saturation errors, primary filter
transfer count exceeded, and primary filter data buffer errors.

• Secondary filter overload errors:

A number of status bits indicate the type of error and the filter channel when a secondary filter detects an
overload condition. The status bits SINC_STAT.GLIM0 and SINC_STAT.GLIM1 indicate the con-
trol group of the secondary filter that detected the overload. The status bits SINC_STAT.MAX0 through
SINC_STAT.MAX3 indicate when the error a maximum limit on one of the secondary filter channels is
passed, causing the error. The status bits SINC_STAT.MIN0 through SINC_STAT.MIN3 indicate
when a minimum limit on one of the secondary filter channels is passed, causing the error.

• Primary filter data saturation errors:

A number of status bits indicate the group and filter channel when the SINC filter detects data satura-
tion . The status bits SINC_STAT.GSAT0 and SINC_STAT.GSAT1 indicate the filter control group
when the SINC filter detects data saturation. The status bits SINC_STAT.PSAT0 through
SINC_STAT.PSAT3 indicate a primary filter channel that detects data saturation.

• Primary filter transfer count exceeded:

The status bits SINC_STAT.PCNT0 and SINC_STAT.PCNT1 are set every time a specified number
of primary filter data sets for that filter group are transferred to memory. The primary filter data set for a
group is the data for all the channels in the group. The specified number of data sets is the value in the

SINC Operating Modes

34–10 ADSP-CM41x Mixed-Signal Control Processor

SINC_LEVEL0.PCNT-SINC_LEVEL1.PCNT bits. Write 1 to clear the bits before the next data
transfer to generate a trigger.

• Primary filter data buffer errors:

A number of status bits indicate data buffer errors. The status bits SINC_STAT.FOVF0 and
SINC_STAT.FOVF1 indicate the filter control group when there is a SINC data buffer overflow. This
error occurs when a third sample is presented to the buffer before the first sample transfers to memory.
The status bits SINC_STAT.PFAB0 and SINC_STAT.PFAB1 indicate the filter group when an error
occurs while writing the data to memory.

• SINC status interrupt request:

There is a single SINC filter interrupt request output that can indicate secondary filter overload errors,
primary filter data saturation, or primary filter data buffer overrun. There is one interrupt mask bit for
each of these conditions per filter group. See Interrupt Masking for more information.

SINC Event Control
The SINC provides status and error bits through different registers to signal the core about its state and various error
conditions that occur during its operation. These conditions include:

• Interrupt status related to data overload, data saturation, data FIFO fault conditions

• Error status related to SINC operations

• History status (which do not generate interrupts) related to data FIFO operations

SINC Interrupt Signals

The interrupt request and trigger signals to the SINC filter module include:

• One interrupt request signal, SINC_STAT, triggered by fault events, such as detected overload limits and data
transfer errors. Manage interrupt request generation with the masking bits in the SINC_CTL register:

• Bits SINC_CTL.ELIM0-SINC_CTL.ELIM1 can enable (unmask) interrupt request generation on
overload faults when the SINC_STAT.GLIM0-SINC_STAT.GLIM1 bit is set, respectively.

• Bits SINC_CTL.ESAT0-SINC_CTL.ESAT1 can mask interrupt request generation on data saturation
faults when the SINC_STAT.GSAT0-SINC_STAT.GSAT1 bit is set, respectively.

• Bits SINC_CTL.EFOVF0-SINC_CTL.EFOVF1 can mask interrupt request generation on data buffer
overruns when the SINC_STAT.FOVF0-SINC_STAT.FOVF1 bit is set, respectively.

The fault bits in the SINC_STAT register must be cleared to clear the interrupt request.

• Two data count triggers, one trigger per each control group. The SINC filter module regularly uses the data
count triggers to generate a software interrupt request or trigger an event. First, set the SINC_CTL.EPCNT0
or SINC_CTL.EPCNT1 masking bit to enable the data count trigger. Then, the TRU must assign the data
count master (SINC0_DATA0-1) to an interrupt request input.

SINC Event Control

ADSP-CM41x Mixed-Signal Control Processor 34–11

• Four overload triggers, one trigger per each channel. The SINC filter module can use overload triggers to trip
the appropriate PWM block in the case of a fault. The overload trigger is always enabled, and the TRU must
assign the masters (SINC0_P0_OVLD through SINC0_P4_OVLD) to the appropriate PWM trip input slave
(PWMn_TRIP_TRIGn).

SINC Status and Error Signals

The status and error signals related to SINC operations are as follows:

• SINC_STAT signals:

• The amplitude and duration limit error signals for secondary SINC filters: SINC_STAT.MAX0 through
SINC_STAT.MAX3, SINC_STAT.MIN0 through SINC_STAT.MIN3, and SINC_STAT.GLIM0-
SINC_STAT.GLIM1.

• The output saturation error signals for primary SINC filters: SINC_STAT.MAX0 through
SINC_STAT.MAX3, SINC_STAT.MIN0 through SINC_STAT.MIN3, and SINC_STAT.GLIM0-
SINC_STAT.GLIM1.

• The output FIFO overflow error signals for primary SINC filters: SINC_STAT.FOVF0 and
SINC_STAT.FOVF1.

• The output count error signals for primary SINC filters: SINC_STAT.PCNT0 and
SINC_STAT.PCNT1.

• The SCB fabric-related error signals for primary SINC filters: SINC_STAT.PFAB0-
SINC_STAT.PFAB1.

• SINC_CLK signals:

• The phase shift signals for SINC modulator clocks: SINC_CLK.MREQ0-SINC_CLK.MREQ1.

• SINC_HIS_STAT signals:

• The history saved signals for secondary SINC filters: SINC_HIS_STAT.P0HISPTR through
SINC_HIS_STAT.P3HISPTR, which indicate that the data history of the filter is saved in buffer regis-
ters due to a detected overload error signal.

SINC Programming Model
The pin multiplexer enables the device input and output pins and connects the signals to the SINC module. Decide
the filter grouping in advance. The filter parameters are defined according to the control register group.

Follow these steps to configure the filters:

1. Define the primary and secondary filter parameters by setting the appropriate bits in the control register for
each filter channel group.

SINC Event Control

34–12 ADSP-CM41x Mixed-Signal Control Processor

2. Set the upper and lower overload limits to maximum for each channel to avoid overload trips due to the filter
startup transient.

3. Define the modulator clock frequency and startup mode.

4. Enable the SINC channels and assign them to the selected group of control registers.

Set the running overload limits after the filter settles, which is (order × decimation) modulator clock cycles after
startup. When the filters are running, the module transfers its data to data RAM on the dedicated DMA channels.
Once configured, the control registers do not need accessing, but the status and some data buffer registers typically
are read after fault events.

In general, adjusting filter parameters during operation leads to unpredictable results. However, programs can write
to the trigger and interrupt mask registers, as well as to the secondary threshold level registers during operation.

The DC gain of the converter subsystem depends on the gain of the input modulator (GM), filter order (O), and

decimation rate (D). The primary filter has an output binary scalar (s) to fit data into a 16-bit range:

GM = 0.625 × (DO ÷ 2S)

SINC Programming Concepts

Using the features and event control for the SINC to their greatest potential requires an understanding of some
SINC-related concepts:

• Channel Configuration

• Trigger Masking

• Interrupt Masking

• Modulator Clock

• Filter Configuration

• Primary Filter Parameters

• Primary DMA Configuration and Data Interrupts

• Secondary Filter Parameters

• Overload Detection

Channel Configuration

The control bits, SINC_CTL.EN0 through SINC_CTL.EN3, configure SINC module channels. These control
bits enable or disable the selected SINC filter channel and assign the channel to one of the two control register
groups. The selected control register group also determines the filter clock source.

SINC Programming Model

ADSP-CM41x Mixed-Signal Control Processor 34–13

Trigger Masking

The SINC module has two data count triggers, one trigger per group. The module can use the data count triggers to
generate a software interrupt regularly or trigger an event. First, set the SINC_CTL.EPCNT0 and
SINC_CTL.EPCNT1 masking bits to enable the data count trigger. Then, the TRU must assign the data count
master (SINC_DATn) to an interrupt input.

There are also four overload triggers, one trigger per each channel. The SINC module can use overload triggers to
trip the appropriate PWM block when there is a fault. The overload trigger is always enabled, and the TRU must
assign the masters (SINC0_Pn_OVLD) to the appropriate PWM trip input slave (PWMn_TRIP_TRIGn).

Interrupt Masking

The SINC filter can generate a SINC_STAT interrupt request signal when triggered by fault events, such as detec-
ted overload limits or data transfer errors.

Enable (unmask) interrupt request generation with the SINC_CTL register bits:

• Bits SINC_CTL.ELIM0-SINC_CTL.ELIM1 can enable interrupt request generation on overload faults
when the SINC_STAT.GLIM0-SINC_STAT.GLIM1 bit is set, respectively.

• Bits SINC_CTL.ESAT0-SINC_CTL.ESAT1 can enable interrupt request generation on data saturation
faults when the SINC_STAT.GSAT0-SINC_STAT.GSAT1 bit is set, respectively.

• Bits SINC_CTL.EFOVF0-SINC_CTL.EFOVF1 can enable interrupt request generation on data buffer
overruns when the SINC_STAT.FOVF0-SINC_STAT.FOVF1 bit is set, respectively.

The fault bits in the SINC_STAT register must be cleared to clear the interrupt request.

Modulator Clock

The SINC filter has two modulator clock sources. Out of the two modulator clock sources, only the modulator
clock for GROUP 0 is available on the GPIO port. Each clock source can be set with an output frequency in the
range of 1-20 MHz. The SINC module uses bits in the SINC_CLK register to control the modulator clock output,
frequency, and phase. The modulator clocks are assigned to the SINC filter channels according to their control
group assignments. The SINC module uses the SINC_CLK.MCEN0-SINC_CLK.MCEN1 bit fields to enable the
modulator clocks and control the startup behavior of the clock. Start the clock immediately or enable the clock on
the first rising edge of an external trigger connected to the SINC0_SYNCn input of the module. This action syn-
chronizes the modulator clock with a PWM waveform source by routing a PWMn_SYNC master to a
SINC0_SYNC0 or SINC0_SYNC1 slave using the TRU.

The target frequency is in the range and derived from SYSCLK using an integer divisor in the SINC_CLK.MDIV0
or SINC_CLK.MDIV1 bits. Write to the SINC_CLK.MREQ0 or SINC_CLK.MREQ1 bit to adjust the phase of
the clock. This adjustment lengthens the next clock period by the number of SCLK periods stored in the respective
SINC_CLK.MADJ0 or SINC_CLK.MADJ1 bit field. The SINC_CLK.MREQ0 or SINC_CLK.MREQ1 bit is
cleared automatically once the adjustment is complete.

SINC Programming Concepts

34–14 ADSP-CM41x Mixed-Signal Control Processor

Filter Configuration

Configure the primary and secondary filter parameters, according to the group number, by setting the appropriate
bits in the SINC_RATE0 − SINC_RATE1, SINC_LEVEL0 − SINC_LEVEL1, and SINC_BIAS0 −
SINC_BIAS1 control registers. Configure the DMA transfers by setting the appropriate bits in the
SINC_PHEAD0 − SINC_PHEAD1 and SINC_PTAIL0 − SINC_PTAIL1 registers. Set the maximum and min-
imum levels for overload detection in the four limit registers, SINC_LIMIT0 − SINC_LIMIT3. Set the overload
filtering parameters in the SINC_LEVEL0 − SINC_LEVEL1 registers.

Primary Filter Parameters

Set the primary filter to the 3rd or 4th order by the SINC_LEVEL0.PORD or SINC_LEVEL1.PORD bit assigned
to the channel. Set the decimation rate for the primary filter using the SINC_RATE0.PDEC or
SINC_RATE1.PDEC bits assigned to the channel. Valid decimation rates are in the range 4–256. Set the phase of
the primary filter output relative to the number of modulator clocks after enabling the filter using the
SINC_RATE0.PADJ or SINC_RATE1.PADJ bits assigned to the channel. Valid PADJ values are in the range 0
to PDEC - 1.

The raw filter output is a 32-bit wide integer, has an offset added, and is scaled to a 16-bit number before transfer to
memory. Store the 32-bit two’s compliment offset value in the SINC_BIAS0 or SINC_BIAS1 register of the
channel. Set the binary scale factor by a mantissa in the range 4–32 stored in the SINC_LEVEL0.PSCALE or
SINC_LEVEL1.PSCALE bits. The output is a valid 16-bit signed number. If the number is outside of the valid
range, the output is saturated to 0x8000 or 0x7FFF, while the SINC_STAT.PSAT0 or SINC_STAT.GSAT1
fault bit (according to the channel group) is set.

Primary DMA Configuration and Data Interrupts

Transfer the primary SINC filter outputs to a circular buffer in data memory using DMA. There are separate DMA
streams for each filter channel group. The output from the primary filter is interleaved with outputs from other
primary filters in the same group. The interleaving order is from the lowest to the highest numbered filter.

The SINC module stores the circular buffer head address in the SINC_PHEAD0 or SINC_PHEAD1 register of the
channel. It stores the tail address in the SINC_PTAIL0 or SINC_PTAIL1 register of the channel. The data ad-
dress wraps around to the head address after the tail address is reached. The head and tail addresses must be 16-bit
aligned and can be set to the same address. The SINC_PPTR0 or SINC_PPTR1 register of the channel is a read-
only register that contains the address of the most recent primary SINC filter data. If there is an overflow condition
in the SINC filter output data FIFO, due to a delay DMA transfer, the SINC_STAT.FOVF0, or
SINC_STAT.FOVF1 fault bit (according to the channel group) is set.

A SINC data trigger can be generated after a user-specified number of primary filter outputs (data transfers) com-
pletes. Specify the data count value by the SINC_LEVEL0.PCNT or SINC_LEVEL1.PCNT bits assigned to the
channel, and the trigger is generated every PCNT + 1 data transfers.

SINC Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 34–15

The SINC Data Buffer Organization figure shows the SINC data buffer organization. In the figure,

SINC_OUT_X_M[n] is the data for the n th most recent sample in the M th channel in the filter group X, and n =
0 is the most recent data.

SINC_OUT_X_0 [3] SINC_PHEADX
REGISTER

BUFFER DATABUFFER ADDRESS

SINC_OUT_X_1 [3]

SINC_OUT_X_0 [0]

SINC_OUT_X_1 [0]

SINC_OUT_X_0 [1]

SINC_OUT_X_1 [1]

SINC_OUT_X_1 [2]

SINC_OUT_X_0 [2]

SINC_PPTRX
REGISTER

SINC_PTAILX
REGISTER

Figure 34-5: SINC Data Buffer Organization

Secondary Filter Parameters

Set the secondary filter to the 3rd or 4th order by the SINC_LEVEL0.SORD or SINC_LEVEL1.SORD bit as-
signed to the channel. Set the decimation rate for the secondary filter using the SINC_RATE0.SDEC or
SINC_RATE1.SDEC bits assigned to the channel. The secondary filter outputs are limited to 16-bit values. Limit
the decimation rate according to the filter order:

• Valid decimation rates are in the range 4–40 for the 3rd order filters

• Valid decimation rates are in the range of 4–16 for the 4th order filters

Set the phase of the primary filter output relative to the number of modulator clocks after using the
SINC_RATE0.PADJ or SINC_RATE1.SADJ bits to enable the filter. Valid PADJ values are in the range 0 to
SDEC - 1.

Overload Detection

The function of the secondary SINC filter is to detect AC current overload conditions and set up the upper and
lower limit detection thresholds. There are event count filters on the overload detector outputs to reject short-term
transients, if desired. Define the overload thresholds in four 32-bit registers SINC_LIMIT0-SINC_LIMIT3, ac-
cording to the channel number. Each register contains the 16-bit LMAX and LMIN overload threshold values. The
SINC filter module detects an overload condition when the secondary filter output exceeds the threshold for a mini-
mum number of counts (LCNT) within the detection window (LWIN). Set the LCNT and LWIN count values in the
SINC_LEVEL0 or SINC_LEVEL1 register assigned to the channel. When the SINC filter module detects an
overload condition, the appropriate SINC0_Px_OVLD trigger is generated, and the SINC_STAT.GLIM0 or
SINC_STAT.GLIM1 fault bit is set.

The SINC filter module saves the eight most recent data samples for the secondary filter in a local circular buffer to
support diagnostics after a fault is triggered. Since 16-bit data is saved, only four buffer registers are required per
channel. For example, SINC_P1SEC_HIST0-3 store the eight most recent 16-bit secondary filter outputs from

SINC Programming Concepts

34–16 ADSP-CM41x Mixed-Signal Control Processor

channel 1. The SINC_HIS_STAT register contains four pointers (SINC_HIS_STAT.P0HISPTR through
SINC_HIS_STAT.P3HISPTR) to the buffer location of the most recent secondary current samples, per channel.

CM41X_M4 SINC Register Descriptions
SINC (SINC) contains the following registers.

Table 34-6: CM41X_M4 SINC Register List

Name Description

SINC_BIAS0 Bias for Group 0 Register

SINC_BIAS1 Bias for Group 1 Register

SINC_CLK Clock Control Register

SINC_CTL Control Register

SINC_HIS_STAT History Status Register

SINC_LEVEL0 Level Control for Group 0 Register

SINC_LEVEL1 Level Control for Group 1 Register

SINC_LIMIT0 (Amplitude) Limits for Secondary Filter 0 Register

SINC_LIMIT1 (Amplitude) Limits for Secondary Filter 1 Register

SINC_LIMIT2 (Amplitude) Limits for Secondary Filter 2 Register

SINC_LIMIT3 (Amplitude) Limits for Secondary Filter 3 Register

SINC_P0SEC_HIST[n] Pair 0 Secondary (Filter) History n Register

SINC_P1SEC_HIST[n] Pair 1 Secondary (Filter) History n Register

SINC_P2SEC_HIST[n] Pair 2 Secondary (Filter) History n Register

SINC_P3SEC_HIST[n] Pair 3 Secondary (Filter) History n Register

SINC_PHEAD0 Primary (Filters) Head for Group 0 Register

SINC_PHEAD1 Primary (Filters) Head for Group 1 Register

SINC_PPTR0 Primary (Filters) Pointer for Group 0 Register

SINC_PPTR1 Primary (Filters) Pointer for Group 1 Register

SINC_PTAIL0 Primary (Filters) Tail for Group 0 Register

SINC_PTAIL1 Primary (Filters) Tail for Group 1 Register

SINC_RATE0 Rate Control for Group 0 Register

SINC_RATE1 Rate Control for Group 1 Register

SINC_STAT Status Register

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–17

Bias for Group 0 Register

The SINC_BIAS0 register controls an output bias added to primary SINC filters of group 0.

Bias for Group 0 Primary Filters

Bias for Group 0 Primary Filters

BIAS[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BIAS[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-6: SINC_BIAS0 Register Diagram

Table 34-7: SINC_BIAS0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

BIAS Bias for Group 0 Primary Filters.

The SINC_BIAS0.BIAS bits specify a bias for the primary SINC filters output.
The bias is added to the output prior to saturation and DMA memory transfer. The
valid value is represented in two's complement format; thus, must be programmed to
be equal to -(d ^ o) / 2, where d = SINC_RATE0.PDEC and o =
SINC_LEVEL0.PORD.

CM41X_M4 SINC Register Descriptions

34–18 ADSP-CM41x Mixed-Signal Control Processor

Bias for Group 1 Register

The SINC_BIAS1 register controls an output bias added to primary SINC filters of group 1.

Bias for Group1 Primary Filters

Bias for Group1 Primary Filters

BIAS[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BIAS[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-7: SINC_BIAS1 Register Diagram

Table 34-8: SINC_BIAS1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

BIAS Bias for Group1 Primary Filters.

The SINC_BIAS1.BIAS bits specify a bias for the primary SINC filters output.
The bias is added to the output prior to saturation and DMA memory transfer. The
valid value is represented in two's complement format; thus, must be programmed to
be equal to -(d ^ o) / 2, where where d = SINC_RATE1.PDEC and o =
SINC_LEVEL1.PORD.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–19

Clock Control Register

The SINC_CLK register generates and enables two SINC modulator clocks. The register also controls each clock’s
output, frequency, phase, and start-up behavior.

Modulator (Clock) Adjustment for Group 0
0 Status
Modulator (Clock) Request for Group

Modulator (Clock) Enable for Group 0Modulator (Clock) Divider for Group 0

Modulator (Clock) Adjustment for Group 1
1 Status
Modulator (Clock) Request for Group

Modulator (Clock) Enable for Group 1Modulator (Clock) Divider for Group 1

MADJ0 (R/W)MREQ0 (R/W1S)

MCEN0 (R/W)MDIV0 (R/W)

0
15

0
14

0
13

1
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MADJ1 (R/W)MREQ1 (R/W1S)

MCEN1 (R/W)MDIV1 (R/W)

0
31

0
30

0
29

1
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-8: SINC_CLK Register Diagram

Table 34-9: SINC_CLK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:26

(R/W)

MDIV1 Modulator (Clock) Divider for Group 1.

The SINC_CLK.MDIV1 bits provide the SCLK divider to generate the modulator
clock for group 1. The valid value is between 1 and 63.

24

(R/W1S)

MREQ1 Modulator (Clock) Request for Group 1 Status.

The SINC_CLK.MREQ1 bit indicates status for a phase shift request of the modula-
tor clock for group 1.

If the bits state is changed from clear (=0) to set (=1), the following modulator clock 1
period is lengthened by the number of SCLK periods specified by the
SINC_CLK.MADJ1 bits. Any writes to this bit while the bit is set are ignored. The
bit is cleared by hardware (and only by hardware) once a requested modulator clock
adjustment is complete.

0 Inactive

1 Active

23:18

(R/W)

MADJ1 Modulator (Clock) Adjustment for Group 1.

The SINC_CLK.MADJ1 bits provide the adjustment value for the modulator clock
of group 1. The valid value is between 1 and 63 when SINC_CLK.MREQ1 is set
(=1). A write to this bit field effects only an active modulator clock adjustment. See the
SINC_CLK.MREQ1 bit filed description.

CM41X_M4 SINC Register Descriptions

34–20 ADSP-CM41x Mixed-Signal Control Processor

Table 34-9: SINC_CLK Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17:16

(R/W)

MCEN1 Modulator (Clock) Enable for Group 1.

The SINC_CLK.MCEN1 bits enable/disable the modulator clock for group 1 and
control the clocks start-up behavior. Commence the clock immediately upon making it
enabled, or enable and commence upon the next rising edge of PWMSYNC (PWM
synchronizing output clock).

0 Disable

1 Reserved

2 Enable and Commence

3 Enable and Commence on Next Rising Edge

15:10

(R/W)

MDIV0 Modulator (Clock) Divider for Group 0.

The SINC_CLK.MDIV0 bits provide the SCLK divider to generate the modulator
clock for group 0. The valid value is between 1 and 63.

8

(R/W1S)

MREQ0 Modulator (Clock) Request for Group 0 Status.

The SINC_CLK.MREQ0 bit indicates status for a phase shift request of the modula-
tor clock for group 0.

If the bits state is changed from clear (=0) to set (=1), the following modulator clock 0
period is lengthened by the number of SCLK periods specified by the
SINC_CLK.MADJ0 bits. Any writes to this bit while the bit is set are ignored. The
bit is cleared by hardware (and only by hardware) once a requested modulator clock
adjustment is complete.

0 Inactive

1 Active

7:2

(R/W)

MADJ0 Modulator (Clock) Adjustment for Group 0.

The SINC_CLK.MADJ0 bits provide the adjustment value for the modulator clock
of group 0. The valid value is between 1 and 63 when SINC_CLK.MREQ1 is set
(=1). A write to this bit field effects only an active modulator clock adjustment. See the
SINC_CLK.MREQ1 bit filed description.

1:0

(R/W)

MCEN0 Modulator (Clock) Enable for Group 0.

The SINC_CLK.MCEN0 bits enable/disable the modulator clock for group 0 and
control the clocks start-up behavior. Commence the clock immediately upon making it
enabled, or enable and commence upon the next rising edge of PWMSYNC (PWM
synchronizing output clock).

0 Disable

1 Reserved

2 Enable and Commence

3 Enable and Commence on Next Rising Edge

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–21

Control Register

The SINC_CTL register masks (disables) and unmasks (enables) SINC high-level interrupt request output signals
triggered by fault events. The register also enables and assigns SINC filter pairs to one of two control groups.

Enable Filter Pair 3Enable FIFO Overflow for Group 0

Enable Filter Pair 2Enable Primary Count for Group 0

Enable Filter Pair 1Enable Saturation for Group 0

Enable Filter Pair 0Enable Limit for Group 0

Enable Primary Count for Group 1Enable Saturation for Group 1

Enable FIFO Overflow for Group 1Enable Limit for Group 1

EN3 (R/W)EFOVF0 (R/W)

EN2 (R/W)EPCNT0 (R/W)

EN1 (R/W)ESAT0 (R/W)

EN0 (R/W)ELIM0 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EPCNT1 (R/W)ESAT1 (R/W)

EFOVF1 (R/W)ELIM1 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-9: SINC_CTL Register Diagram

Table 34-10: SINC_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

ELIM1 Enable Limit for Group 1.

The SINC_CTL.ELIM1 bit enables (unmasks) the SINC_STAT interrupt request
on overload conditions if this bit and status bit SINC_STAT.GLIM1 are set (=1).

0 Disable

1 Enable

30

(R/W)

ESAT1 Enable Saturation for Group 1.

The SINC_CTL.ESAT1 bit enables (unmasks) the SINC_STAT interrupt request
on output saturation conditions if this bit and bit SINC_STAT.GSAT1 are set (=1).

0 Disable

1 Enable

CM41X_M4 SINC Register Descriptions

34–22 ADSP-CM41x Mixed-Signal Control Processor

Table 34-10: SINC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29

(R/W)

EPCNT1 Enable Primary Count for Group 1.

The SINC_CTL.EPCNT1 bit enables a trigger event on each SINC_DATA1 inter-
rupt request if this bit and status bit SINC_STAT.PCNT1 are set (=1).

0 Disable

1 Enable

28

(R/W)

EFOVF1 Enable FIFO Overflow for Group 1.

The SINC_CTL.EFOVF1 bit enables (unmasks) the SINC_STAT interrupt request
on data FIFO overflow conditions if this bit and status bit SINC_STAT.FOVF1 are
set (=1). The SINC_STAT.FOVF1 bit is set (=1) when the group 1 output data
FIFO overflows due to delayed SCB fabric ready response.

0 Disable

1 Enable

15

(R/W)

ELIM0 Enable Limit for Group 0.

The SINC_CTL.ELIM0 bit enables (unmasks) the SINC_STAT interrupt request
on overload conditions if this bit and status bit SINC_STAT.GLIM0 are set (=1).

0 Disable

1 Enable

14

(R/W)

ESAT0 Enable Saturation for Group 0.

The SINC_CTL.ESAT0 bit enables (unmasks) the SINC_STAT interrupt request
on output saturation conditions if this bit and status bit SINC_STAT.GSAT0 are set
(=1).

0 Disable

1 Enable

13

(R/W)

EPCNT0 Enable Primary Count for Group 0.

The SINC_CTL.EPCNT0 bit enables a trigger event on each SINC_DATA0 inter-
rupt request if this bit and status bit SINC_STAT.PCNT0 are set (=1).

0 Disable

1 Enable

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–23

Table 34-10: SINC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W)

EFOVF0 Enable FIFO Overflow for Group 0.

The SINC_CTL.EFOVF0 bit enables (unmasks) the SINC_STAT interrupt request
on data FIFO overflow conditions if this bit and status bit SINC_STAT.FOVF0 are
set (=1). The SINC_STAT.FOVF0 bit is set (=1) when the group 0 output data
FIFO overflows due to delayed SCB fabric ready response.

0 Disable

1 Enable

7:6

(R/W)

EN3 Enable Filter Pair 3.

The SINC_CTL.EN3 bits enable/disable and assign SINC filter pair 3 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Reserved

5:4

(R/W)

EN2 Enable Filter Pair 2.

The SINC_CTL.EN2 bits enable/disable and assign SINC filter pair 2 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Reserved

3:2

(R/W)

EN1 Enable Filter Pair 1.

The SINC_CTL.EN1 bits enable/disable and assign SINC filter pair 1 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Reserved

CM41X_M4 SINC Register Descriptions

34–24 ADSP-CM41x Mixed-Signal Control Processor

Table 34-10: SINC_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1:0

(R/W)

EN0 Enable Filter Pair 0.

The SINC_CTL.EN0 bits enable/disable and assign SINC filter pair 0 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Reserved

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–25

History Status Register

The SINC_HIS_STAT provides status for data histories of secondary SINC filters, in the corresponding history
buffer registers. The SINC history buffer registers save the most recent filter samples once an overload fault signal is
detected.

Pair 1 History PointerPair 2 History Pointer

Pair 0 History PointerPair 3 History Pointer

P1HISPTR (R)P2HISPTR (R)

P0HISPTR (R)P3HISPTR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-10: SINC_HIS_STAT Register Diagram

Table 34-11: SINC_HIS_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

14:12

(R/NW)

P3HISPTR Pair 3 History Pointer.

The SINC_HIS_STAT.P3HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 3 in the corresponding
SINC_P3SEC_HIST[n] register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

10:8

(R/NW)

P2HISPTR Pair 2 History Pointer.

The SINC_HIS_STAT.P2HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 2 in the corresponding
SINC_P2SEC_HIST[n] register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

CM41X_M4 SINC Register Descriptions

34–26 ADSP-CM41x Mixed-Signal Control Processor

Table 34-11: SINC_HIS_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

6:4

(R/NW)

P1HISPTR Pair 1 History Pointer.

The SINC_HIS_STAT.P1HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 1 in the corresponding
SINC_P1SEC_HIST[n] register block.

0 History Register 3, MS

1 History Register, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

2:0

(R/NW)

P0HISPTR Pair 0 History Pointer.

The SINC_HIS_STAT.P0HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 0 in the corresponding
SINC_P0SEC_HIST[n] register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–27

Level Control for Group 0 Register

The SINC_LEVEL0 register controls output scaling and count, excursion limit and window, as well as orders for
primary and secondary SINC filters assigned to group 0.

(Excursion) Limit Count

(Excursion) Limit WindowSecondary (Filter) Order Select

Primary (Filter) Scaling

Primary (Filter) CountPrimary (Filter) Order

LCNT (R/W)

LWIN (R/W)SORD (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PSCALE (R/W)

PCNT (R/W)PORD (R/W)

0
31

0
30

0
29

0
28

0
27

1
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-11: SINC_LEVEL0 Register Diagram

Table 34-12: SINC_LEVEL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

PORD Primary (Filter) Order.

The SINC_LEVEL0.PORD bit determines the order for group 1 primary filters.

0 Third Order

1 Fourth Order

CM41X_M4 SINC Register Descriptions

34–28 ADSP-CM41x Mixed-Signal Control Processor

Table 34-12: SINC_LEVEL0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

PSCALE Primary (Filter) Scaling.

The SINC_LEVEL0.PSCALE bits specify the scaling applied to the output of group
0 primary filters, prior to DMA transfer to memory. The valid value is between 4 to
32.

The SINC integrator, decimator, and bias adjustment produce an integer value up to
32 bits wide. The range of a full-scale signal of a bit stream filtered by a primary SINC
filter is approximately (BIAS +- ((0.625 * SINC_RATE0.PDEC) ^ order)). The value
requires about (ln2(SINC_RATE0.PDEC) * order) bits of precision (where 'order' is
3 or 4, as specified by the SINC_LEVEL0.PORD bit.

This bit field specifies the bit position of the intermediate value, which is transferred
on the MSB of 16-bit DMA sample. Thus, the intermediate value is right-shifted by
(SINC_LEVEL0.PSCALE - 16) bits if SINC_LEVEL0.PSCALE >= 16, or left-
shifted by (16 - SINC_LEVEL0.PSCALE) bits if SINC_LEVEL0.PSCALE < 16.
If SINC_LEVEL0.PSCALE >= 16, thus selecting a right shift, the shifted value is
rounded up (as if 0.5 * LSB is added) before truncation. Rounding is not necessary for
a left shift. If the scaled and rounded value exceeds the range of a signed 16-bit num-
ber, the sample is saturated (to 0x8000 or 0x7FFF), and the corresponding saturation
status bit (SINC_STAT.PSAT3, SINC_STAT.PSAT2, SINC_STAT.PSAT1, or
SINC_STAT.PSAT0 is set.

23:16

(R/W)

PCNT Primary (Filter) Count.

The SINC_LEVEL0.PCNT bits specify the modulo number of outputs for group 0
primary filters. The number must be one less than a desired modulo. Each time the
number of outputs specified by this bit filed is transferred, the SINC_STAT.PCNT0
status bit is set (=1). When the SINC_STAT.PCNT0 bit is set (unless masked), it
causes a TRU trigger. For example:

8'h00 written to the SINC_LEVEL0.PCNT bit field sets bit SINC_STAT.PCNT0
to 1 after every primary SINC filter output is transferred.

8'hFF written to the SINC_LEVEL0.PCNT bit field sets bit SINC_STAT.PCNT0
to 1 after every 256 primary SINC filter outputs transferred.

14

(R/W)

SORD Secondary (Filter) Order Select.

The SINC_LEVEL0.SORD bit determines the order for group 0 secondary filters.

0 Third Order

1 Fourth Order

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–29

Table 34-12: SINC_LEVEL0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13:11

(R/W)

LCNT (Excursion) Limit Count.

The SINC_LEVEL0.LCNT bits specify the number (count) of output excursions be-
yond the amplitude specified for group 0 secondary filters. The number of excursions
greater than specified by registers SINC_LIMIT3, SINC_LIMIT2,
SINC_LIMIT2, and SINC_LIMIT0 is perceived as an overload and sets (=1) a cor-
responding MAX or MIN bit in the SINC_STAT register. The valid count is between
1 to 8. If the count is greater than SINC_LEVEL0.LWIN, the bit fields behavior is as
it is equal to SINC_LEVEL0.LWIN. See SINC_LEVEL0.LWIN for details. The
valid count must be one less than a desired count:

=000 require one excursion above the amplitude limit

=111 require eight excursions above the amplitude limit.

10:8

(R/W)

LWIN (Excursion) Limit Window.

The SINC_LEVEL0.LWIN bits specify the window size for excursion checking for
group 0 secondary filters. The window size is the number of the most recent outputs
to be included in a measurement specified by the SINC_LEVEL0.LCNT bits. The
valid value must be one less than a desired count (1 to 8), meaning the valid value is 0
to 7.

CM41X_M4 SINC Register Descriptions

34–30 ADSP-CM41x Mixed-Signal Control Processor

Level Control for Group 1 Register

The SINC_LEVEL1 register controls output scaling and count, excursion limit and window, as well as orders for
primary and secondary SINC filters assigned to group 1.

(Excursion) Limit Count

(Excursion) Limit WindowSecondary (Filter) Order

Primary (Filter) Scaling

Primary (Filter) CountPrimary (Filter) Order

LCNT (R/W)

LWIN (R/W)SORD (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PSCALE (R/W)

PCNT (R/W)PORD (R/W)

0
31

0
30

0
29

0
28

0
27

1
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-12: SINC_LEVEL1 Register Diagram

Table 34-13: SINC_LEVEL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W)

PORD Primary (Filter) Order.

The SINC_LEVEL1.PORD bits determines the order for group 1 primary filters.

0 Third Order

1 Fourth Order

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–31

Table 34-13: SINC_LEVEL1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

29:24

(R/W)

PSCALE Primary (Filter) Scaling.

The SINC_LEVEL1.PSCALE bits specify the scaling applied to the output of group
1 primary filters, prior to DMA transfer to memory. The valid value is between 4 to
32.

The SINC integrator, decimator, and bias adjustment produce an integer value up to
32 bits wide. The range of a full-scale signal of a bit stream filtered by a primary SINC
filter is approximately (BIAS +- ((0.625 * SINC_RATE1.PDEC) ^ order)). The value
requires about (ln2(SINC_RATE1.PDEC) * order) bits of precision (where 'order' is
3 or 4, as specified by the SINC_LEVEL1.PORD bit.

This bit field specifies the bit position of the intermediate value, which is transferred
on the MSB of 16-bit DMA sample. Thus, the intermediate value is right-shifted by
(SINC_LEVEL1.PSCALE - 16) bits if SINC_LEVEL1.PSCALE >= 16, or left-
shifted by (16 - SINC_LEVEL1.PSCALE) bits if SINC_LEVEL1.PSCALE < 16.
If SINC_LEVEL1.PSCALE >= 16, thus selecting a right shift, the shifted value is
rounded up (as if 0.5 * LSB is added) before truncation. Rounding is not necessary for
a left shift. If the scaled and rounded value exceeds the range of a signed 16-bit num-
ber, the sample is saturated (to 0x8000 or 0x7FFF), and the corresponding saturation
status bit (SINC_STAT.PSAT3, SINC_STAT.PSAT2, SINC_STAT.PSAT1, or
SINC_STAT.PSAT0 is set.

23:16

(R/W)

PCNT Primary (Filter) Count.

The SINC_LEVEL1.PCNT bits specify the modulo number of outputs for group 1
primary filters. The number must be one less than a desired modulo. Each time the
number of outputs specified by this bit filed is transferred, the SINC_STAT.PCNT1
status bit is set (=1). When the SINC_STAT.PCNT1 bit is set (unless masked), it
causes a TRU trigger. For example:

8'h00 written to the SINC_LEVEL1.PCNT bit field sets bit SINC_STAT.PCNT1
to 1 after every primary SINC filter output is transferred.

8'hFF written to the SINC_LEVEL1.PCNT bit field sets bit SINC_STAT.PCNT1
to 1 after every 256 primary SINC filter outputs transferred.

14

(R/W)

SORD Secondary (Filter) Order.

The SINC_LEVEL1.SORD bit determines the order for group 1 secondary filters.
The SINC_LEVEL1.SORD bit determines the order for group 1 secondary filters.

0 Third Order

1 Fourth Order

CM41X_M4 SINC Register Descriptions

34–32 ADSP-CM41x Mixed-Signal Control Processor

Table 34-13: SINC_LEVEL1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

13:11

(R/W)

LCNT (Excursion) Limit Count.

The SINC_LEVEL1.LCNT bits specify the number (count) of output excursions be-
yond the amplitude specified for group 1 secondary filters. The number of excursions
greater than specified by registers SINC_LIMIT3, SINC_LIMIT2,
SINC_LIMIT2, and SINC_LIMIT0 is perceived as an overload and sets (=1) a cor-
responding MAX or MIN bit in the SINC_STAT register. The valid count is between
1 to 8. If the count is greater than SINC_LEVEL1.LWIN, the bit fields behavior is as
it is equal to SINC_LEVEL1.LWIN. See SINC_LEVEL1.LWIN for details. The
valid count must be one less than a desired count:

=000 require one excursion above the amplitude limit

=111 require eight excursions above the amplitude limit.

10:8

(R/W)

LWIN (Excursion) Limit Window.

The SINC_LEVEL1.LWIN bits specify the window size for excursion checking for
group 1 secondary filters. The window size is the number of the most recent outputs
to be included in a measurement specified by the SINC_LEVEL1.LCNT bits. The
valid value must be one less than a desired count (1 to 8), meaning the valid value is 0
to 7.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–33

(Amplitude) Limits for Secondary Filter 0 Register

The SINC_LIMIT0 register controls amplitude limits for a secondary filter of SINC pair 0.

Limit Minimum for Secondary Filter 0

Limit Maximum for Secondary Filter 0

LMIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LMAX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-13: SINC_LIMIT0 Register Diagram

Table 34-14: SINC_LIMIT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

LMAX Limit Maximum for Secondary Filter 0.

The SINC_LIMIT0.LMAX bits specify the output signal conditions for the secon-
dary SINC filter 0. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed maximum limit warning bit in register SINC_STAT.

15:0

(R/W)

LMIN Limit Minimum for Secondary Filter 0.

The SINC_LIMIT0.LMIN bits specify the output signal conditions for the secon-
dary SINC filter 0. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed minimum limit warning bit in register SINC_STAT.

CM41X_M4 SINC Register Descriptions

34–34 ADSP-CM41x Mixed-Signal Control Processor

(Amplitude) Limits for Secondary Filter 1 Register

The SINC_LIMIT1 register controls amplitude limits for a secondary filter of SINC pair 1.

Limit Minimum for Secondary Filter 1

Limit Maximum for Secondary Filter 1

LMIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LMAX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-14: SINC_LIMIT1 Register Diagram

Table 34-15: SINC_LIMIT1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

LMAX Limit Maximum for Secondary Filter 1.

The SINC_LIMIT1.LMAX bits specify the output signal conditions for the secon-
dary SINC filter 1. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed maximum limit warning bit in register SINC_STAT.

15:0

(R/W)

LMIN Limit Minimum for Secondary Filter 1.

The SINC_LIMIT1.LMIN bits specify the output signal conditions for the secon-
dary SINC filter 1. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed minimum limit warning bit in register SINC_STAT.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–35

(Amplitude) Limits for Secondary Filter 2 Register

The SINC_LIMIT2 register controls amplitude limits for a secondary filter of SINC pair 2.

Limit Minimum for Secondary Filter 2

Limit Maximum for Secondary Filter 2

LMIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LMAX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-15: SINC_LIMIT2 Register Diagram

Table 34-16: SINC_LIMIT2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

LMAX Limit Maximum for Secondary Filter 2.

The SINC_LIMIT2.LMAX bits specify the output signal conditions for the secon-
dary SINC filter 2. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed maximum limit warning bit in register SINC_STAT.

15:0

(R/W)

LMIN Limit Minimum for Secondary Filter 2.

The SINC_LIMIT2.LMIN bits specify the output signal conditions for the secon-
dary SINC filter 2. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed minimum limit warning bit in register SINC_STAT.

CM41X_M4 SINC Register Descriptions

34–36 ADSP-CM41x Mixed-Signal Control Processor

(Amplitude) Limits for Secondary Filter 3 Register

The SINC_LIMIT3 register controls amplitude limits for a secondary filter of SINC pair 3.

Limit Minimum for Secondary Filter 3

Limit Maximum for Secondary Filter 3

LMIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LMAX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-16: SINC_LIMIT3 Register Diagram

Table 34-17: SINC_LIMIT3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

LMAX Limit Maximum for Secondary Filter 3.

The SINC_LIMIT3.LMAX bits specify the output signal conditions for the secon-
dary SINC filter 3. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed maximum limit warning bit in register SINC_STAT.

15:0

(R/W)

LMIN Limit Minimum for Secondary Filter 3.

The SINC_LIMIT3.LMIN bits specify the output signal conditions for the secon-
dary SINC filter 3. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an associat-
ed minimum limit warning bit in register SINC_STAT.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–37

Pair 0 Secondary (Filter) History n Register

The SINC_P0SEC_HIST[n] read-only register provides the eight most recent samples produced by secondary
SINC filter 0. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-order
field of the first SINC_P0SEC_HIST[n] register. The stored values, one compared to the limit, count, and win-
dow settings, set the SINC_STAT.MAX0 and SINC_STAT.MIN0 bits.

Low Data Word

High Data Word

LO (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-17: SINC_P0SEC_HIST[n] Register Diagram

Table 34-18: SINC_P0SEC_HIST[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

HI High Data Word.

The SINC_P0SEC_HIST[n].HI bits provide the 16-bit sample in the most signif-
icant half of the 32- bit register.

15:0

(R/NW)

LO Low Data Word.

The SINC_P0SEC_HIST[n].LO bits provide the 16-bit sample in the least signifi-
cant half of the 32- bit register.

CM41X_M4 SINC Register Descriptions

34–38 ADSP-CM41x Mixed-Signal Control Processor

Pair 1 Secondary (Filter) History n Register

The SINC_P1SEC_HIST[n] read-only register provides the eight most recent samples produced by secondary
SINC filter 1. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-order
field of the first SINC_P1SEC_HIST[n] register. The stored values, compared to the limit, count, and window
settings, set the SINC_STAT.MAX1 and SINC_STAT.MIN1 bits.

Low Data Word

High Data Word

LO (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-18: SINC_P1SEC_HIST[n] Register Diagram

Table 34-19: SINC_P1SEC_HIST[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

HI High Data Word.

The SINC_P1SEC_HIST[n].HI bits provide the 16-bit sample in the most signif-
icant half of the 32- bit register.

15:0

(R/NW)

LO Low Data Word.

The SINC_P1SEC_HIST[n].LO bits provide the 16-bit sample in the least signifi-
cant half of the 32- bit register.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–39

Pair 2 Secondary (Filter) History n Register

The SINC_P2SEC_HIST[n] read-only register provides the eight most recent samples produced by secondary
SINC filter 2. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-order
field of the first SINC_P2SEC_HIST[n] register. The stored values, compared to the limit, count, and window
settings, set the SINC_STAT.MAX2 and SINC_STAT.MIN2 bits.

Low Data Word

High Data Word

LO (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-19: SINC_P2SEC_HIST[n] Register Diagram

Table 34-20: SINC_P2SEC_HIST[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

HI High Data Word.

The SINC_P2SEC_HIST[n].HI bits provide the 16-bit sample in the most signif-
icant half of the 32- bit register.

15:0

(R/NW)

LO Low Data Word.

The SINC_P2SEC_HIST[n].LO bits provide the 16-bit sample in the least signifi-
cant half of the 32- bit register.

CM41X_M4 SINC Register Descriptions

34–40 ADSP-CM41x Mixed-Signal Control Processor

Pair 3 Secondary (Filter) History n Register

The SINC_P3SEC_HIST[n] read-only register provides the eight most recent samples produced by secondary
SINC filter 3. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-order
field of the first SINC_P3SEC_HIST[n] register. The stored values, compared to the limit, count, and window
settings, set the SINC_STAT.MAX3 and SINC_STAT.MIN3 bits.

Low Data Word

High Data Word

LO (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HI (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-20: SINC_P3SEC_HIST[n] Register Diagram

Table 34-21: SINC_P3SEC_HIST[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

HI High Data Word.

The SINC_P3SEC_HIST[n].HI bits provide the 16-bit sample in the most signif-
icant half of the 32- bit register.

15:0

(R/NW)

LO Low Data Word.

The SINC_P3SEC_HIST[n].LO bits provide the 16-bit sample in the least signifi-
cant half of the 32- bit register.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–41

Primary (Filters) Head for Group 0 Register

The SINC_PHEAD0 register stores the head address for a circular buffer in data memory to which to transfer the
primary SINC filter outputs (according to control group 0 assignments).

Primary (Filter) Head Pointer

Primary (Filter) Head Pointer

PHEAD[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PHEAD[30:15] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-21: SINC_PHEAD0 Register Diagram

Table 34-22: SINC_PHEAD0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:1

(R/W)

PHEAD Primary (Filter) Head Pointer.

The SINC_PHEAD0.PHEAD bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD0.PHEAD after
SINC_PTAIL0.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 0). The valid address must be 16-bit aligned
(address must be even).

CM41X_M4 SINC Register Descriptions

34–42 ADSP-CM41x Mixed-Signal Control Processor

Primary (Filters) Head for Group 1 Register

The SINC_PHEAD1 register stores the head address for a circular buffer in data memory to which to transfer the
primary SINC filter outputs (according to control group 1 assignments).

Primary (Filter) Head Pointer

Primary (Filter) Head Pointer

PHEAD[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PHEAD[30:15] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-22: SINC_PHEAD1 Register Diagram

Table 34-23: SINC_PHEAD1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:1

(R/W)

PHEAD Primary (Filter) Head Pointer.

The SINC_PHEAD1.PHEAD bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD1.PHEAD after
SINC_PTAIL1.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address must be 16-bit aligned
(address must be even).

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–43

Primary (Filters) Pointer for Group 0 Register

The SINC_PPTR0 read-only register points to a circular buffer holding the most recent results of primary SINC
filters, according to control group 0 assignments.

Primary (Filter) Pointer

Primary (Filter) Pointer

PPTR[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PPTR[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-23: SINC_PPTR0 Register Diagram

Table 34-24: SINC_PPTR0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

PPTR Primary (Filter) Pointer.

The SINC_PPTR0.PPTR bits hold the address for the last memory location of the
most recent set of primary SINC filter results (group 0).

The address is incremented once all of the primary SINC filter data (assigned to group
0 and associated to a particular time stamp) is successfully presented to the system fab-
ric.

Memory locations beyond the location reported by this register may be partially updat-
ed, so the entire circular buffer is not considered valid. Note that in real-time opera-
tion, due to fabric latency, write data may be in flight on the system fabric after the
point when this bit field is updated. Thus, the write data may not be observed in
memory until it has transited the fabric.

CM41X_M4 SINC Register Descriptions

34–44 ADSP-CM41x Mixed-Signal Control Processor

Primary (Filters) Pointer for Group 1 Register

The SINC_PPTR1 read-only register points to a circular buffer holding the most recent results of primary SINC
filters, according to control group 1 assignments.

Primary (Filter) Pointer

Primary (Filter) Pointer

PPTR[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PPTR[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-24: SINC_PPTR1 Register Diagram

Table 34-25: SINC_PPTR1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

PPTR Primary (Filter) Pointer.

The SINC_PPTR1.PPTR bits hold the address for the last memory location of the
most recent set of primary SINC filter results (group 1).

The address is incremented once all of the primary SINC filter data (assigned to group
1 and associated to a particular time stamp) is successfully presented to the system fab-
ric.

Memory locations beyond the location reported by this register may be partially updat-
ed, so the entire circular buffer is not considered valid. Note that in real-time opera-
tion, due to fabric latency, write data may be in flight on the system fabric after the
point when this bit field is updated. Thus, the write data may not be observed in
memory until it has transited the fabric.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–45

Primary (Filters) Tail for Group 0 Register

The SINC_PTAIL0 register stores the tail address for a circular buffer in data memory to which to transfer the
primary SINC filter outputs (according to control group 1 assignments).

Primary (Filter) Tail Pointer

Primary (Filter) Tail Pointer

PTAIL[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PTAIL[30:15] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-25: SINC_PTAIL0 Register Diagram

Table 34-26: SINC_PTAIL0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:1

(R/W)

PTAIL Primary (Filter) Tail Pointer.

The SINC_PTAIL0.PTAIL bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD0.PHEAD after
SINC_PTAIL0.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address must be 16-bit aligned
(address must be even).

CM41X_M4 SINC Register Descriptions

34–46 ADSP-CM41x Mixed-Signal Control Processor

Primary (Filters) Tail for Group 1 Register

The SINC_PTAIL1 register stores the tail address for a circular buffer in data memory to which to transfer the
primary SINC filter outputs (according to control group 1 assignments).

Primary (Filter) Tail Pointer

Primary (Filter) Tail Pointer

PTAIL[14:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PTAIL[30:15] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-26: SINC_PTAIL1 Register Diagram

Table 34-27: SINC_PTAIL1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:1

(R/W)

PTAIL Primary (Filter) Tail Pointer.

The SINC_PTAIL1.PTAIL bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD1.PHEAD after
SINC_PTAIL1.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address must be 16-bit aligned
(address must be even).

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–47

Rate Control for Group 0 Register

The SINC_RATE0 register controls phase adjustments and decimation rates for primary and secondary SINC fil-
ters assigned to group 0.

Primary (Filter) Decimation RateSecondary (Filter) Decimation Rate

Primary (Filter) AdjustmentSecondary (Filter) Adjustment

PDEC (R/W)SDEC (R/W)

0
15

0
14

0
13

0
12

1
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

0
1

0
0

PADJ (R/W)SADJ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-27: SINC_RATE0 Register Diagram

Table 34-28: SINC_RATE0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30:25

(R/W)

SADJ Secondary (Filter) Adjustment.

The SINC_RATE0.SADJ bits provide the phase adjustment for the decimated out-
put of group 0 secondary filters. The valid adjustment is between 0 and
(SINC_RATE0.SDEC - 1), in modulator clock cycles, relative to the time the filter is
enabled in the SINC_CTL register.

The secondary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE0.SDEC * n) - SINC_RATE0.SADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

24:16

(R/W)

PADJ Primary (Filter) Adjustment.

The SINC_RATE0.PADJ bits provide the phase adjustment for the decimated out-
put of group 0 primary filters. The valid adjustment is between 0 and
(SINC_RATE0.PDEC - 1), in modulator clock cycles, relative to the time the filter is
enabled in the SINC_CTL register.

The primary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE0.PDEC * n) - SINC_RATE0.PADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

CM41X_M4 SINC Register Descriptions

34–48 ADSP-CM41x Mixed-Signal Control Processor

Table 34-28: SINC_RATE0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14:9

(R/W)

SDEC Secondary (Filter) Decimation Rate.

The SINC_RATE0.SDEC bits provide the decimation rate for group 0 secondary fil-
ters. The valid range depends on the SINC order selected.

If the third order (SINC_LEVEL0.SORD = 0), the valid range is 4 to 40.

If the forth order (SINC_LEVEL0.SORD = 1), the valid rate is 4 to 16.

8:0

(R/W)

PDEC Primary (Filter) Decimation Rate.

The SINC_RATE0.PDEC bits provide the decimation rate for group 0 primary fil-
ters. The valid rate is 256 to 4.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–49

Rate Control for Group 1 Register

The SINC_RATE1 register controls phase adjustments and decimation rates for primary and secondary SINC fil-
ters assigned to group 1.

Primary (Filter) Decimation RateSecondary (Filter) Decimation Rate

Primary (Filter) AdjustmentSecondary (Filter) Adjustment

PDEC (R/W)SDEC (R/W)

0
15

0
14

0
13

0
12

1
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

0
1

0
0

PADJ (R/W)SADJ (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-28: SINC_RATE1 Register Diagram

Table 34-29: SINC_RATE1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30:25

(R/W)

SADJ Secondary (Filter) Adjustment.

The SINC_RATE1.SADJ bits provide the phase adjustment for the decimated out-
put of group 1 secondary filters. The valid adjustment is between 0 and
(SINC_RATE1.SDEC - 1), in modulator clock cycles, relative to the time the filter is
enabled in the SINC_CTL register.

The secondary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE1.SDEC * n) - SINC_RATE1.SADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

24:16

(R/W)

PADJ Primary (Filter) Adjustment.

The SINC_RATE1.PADJ bits provide the phase adjustment for the decimated out-
put of group 1 primary filters. The valid adjustment is between 0 and
(SINC_RATE1.PDEC - 1), in modulator clock cycles, relative to the time the filter is
enabled in the SINC_CTL register.

The primary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE1.PDEC * n) - SINC_RATE1.PADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

CM41X_M4 SINC Register Descriptions

34–50 ADSP-CM41x Mixed-Signal Control Processor

Table 34-29: SINC_RATE1 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

14:9

(R/W)

SDEC Secondary (Filter) Decimation Rate.

The SINC_RATE1.SDEC bits provide the decimation rate for group 1 secondary fil-
ters. The valid range depends on the SINC order selected.

If the third order (SINC_LEVEL1.SORD = 0), the valid range is 4 to 40.

If the forth order (SINC_LEVEL1.SORD = 1), the valid rate is 4 to 16.

8:0

(R/W)

PDEC Primary (Filter) Decimation Rate.

The SINC_RATE1.PDEC bits provide the decimation rate for group 1 primary fil-
ters. The valid rate is 256 to 4.

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–51

Status Register

The SINC_STAT register indicates status for SINC output saturation, amplitude and duration limits, overload
conditions, and data transfer errors.

0 Status
Primary (Filter) Fabric Error for Group

Minimum for Secondary Filter 3 StatusFIFO Overflow for Group 0 Status

Minimum for Secondary Filter 2 StatusPrimary (Filter) Count for Group 0 Status

Minimum for Secondary Filter 1 StatusGroup 0 Saturation Status

Minimum for Secondary Filter 0 StatusGroup 0 Limit Status

Primary (Filter) 2 Saturation Status

Primary (Filter) 1 Saturation Status
Primary (Filter) 3 Saturation Status

Primary (Filter) 0 Saturation Status
1 Status
Primary (Filter) Fabric Error for Group

Maximum for Secondary Filter 3 StatusFIFO Overflow for Group 1 Status

Maximum for Secondary Filter 2 StatusPrimary (Filter) Count for Group 1 Status

Maximum for Secondary Filter 1 StatusGroup 1 Saturation Status

Maximum for Secondary Filter 0 StatusGroup 1 Limit Status

PFAB0 (R/W1C)

MIN3 (R/W1C)FOVF0 (R/W1C)

MIN2 (R/W1C)PCNT0 (R/W1C)

MIN1 (R/W1C)GSAT0 (R)

MIN0 (R/W1C)GLIM0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

PSAT2 (R/W1C)

PSAT1 (R/W1C)
PSAT3 (R/W1C)

PSAT0 (R/W1C)PFAB1 (R/W1C)

MAX3 (R/W1C)FOVF1 (R/W1C)

MAX2 (R/W1C)PCNT1 (R/W1C)

MAX1 (R/W1C)GSAT1 (R)

MAX0 (R/W1C)GLIM1 (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 34-29: SINC_STAT Register Diagram

CM41X_M4 SINC Register Descriptions

34–52 ADSP-CM41x Mixed-Signal Control Processor

Table 34-30: SINC_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/NW)

GLIM1 Group 1 Limit Status.

The SINC_STAT.GLIM1 indicates status for an amplitude and duration limit of
secondary SINC filters assigned to group 1. This bit is set (=1) if any limit specified by
registers SINC_LIMIT3, SINC_LIMIT2, SINC_LIMIT1, or SINC_LIMIT0,
within the duration count and window specified by bits SINC_LEVEL0.LCNT and
SINC_LEVEL0.LWIN are exceeded.

To identify the offending secondary SINC filter, examine the filters status bits
SINC_STAT.MAX3, SINC_STAT.MAX2, SINC_STAT.MAX1,
SINC_STAT.MAX0, SINC_STAT.MIN3, SINC_STAT.MIN2,
SINC_STAT.MIN1 and SINC_STAT.MAX0 according to the group 1 assignments
in the SINC_CTL register.

0 Not Exceeded

1 Exceeded

30

(R/NW)

GSAT1 Group 1 Saturation Status.

The SINC_STAT.GSAT1 indicates status for the output saturation bit of primary
SINC filters assigned to group 1. The bit is set (=1) if any filter of group 1 has its satu-
ration status bit set (=1).

To identify the offending SINC primary filter, examine bits SINC_STAT.PSAT3,
SINC_STAT.PSAT2, SINC_STAT.PSAT1, and SINC_STAT.PSAT0 accord-
ing to the group 1 assignments specified by the SINC_CTL.EN3, SINC_CTL.EN2,
SINC_CTL.EN1, and SINC_CTL.EN0 bits.

0 Not Set

1 Set

29

(R/W1C)

PCNT1 Primary (Filter) Count for Group 1 Status.

The SINC_STAT.PCNT1 indicates status for the output count of primary SINC fil-
ters assigned to group 1. The bit is set (=1) each time the modulo number of outputs
(specified by the SINC_LEVEL1.PCNT bits) has been transferred for each primary
SINC filter assigned to group 1. Each count in SINC_LEVEL1.PCNT corresponds
to one complete set or vector of samples from all SINC filter pairs assigned to group 1.

For example, if group 1 is assigned three SINC filters pairs 0, 1, and 3, and
SINC_LEVEL1.PCNT is set to 5, then this status bit is set after the transfer of every
5th complete sample vector, comprising 3 x 5= 15 data samples. This bit asserts when
the memory transfer on the system SCB fabric is complete, and a valid SCB write data
response is received by the SINC filter unit.

If this status bit and bit SINC_CTL.EPCNT1 are set (=1), the SINC_DATA1 trigger
is asserted. Write 1 to clear.

0 Not Reached

1 Reached

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–53

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

28

(R/W1C)

FOVF1 FIFO Overflow for Group 1 Status.

The SINC_STAT.FOVF1 indicates status for the data output FIFO bit of primary
SINC filters assigned to group 1. This bit is set (= 1) if the output FIFO for any filter
in group 1 overflows due to slow SCB fabric response. The FIFO for each primary
SINC filter contains two data sample locations. An overflow occurs if a third data sam-
ple is generated before the first sample's data is transferred into the SCB fabric write
data channel.

After any overflow signaled by this bit occurs, all further SCB transmissions generated
by group 1 are UNSPECIFIED until all SINC filters of the group are shut down and
restarted. Clearing this status bit (=0) alone is not sufficient to re-sync the DMA
stream. Write 1 to clear.

If this status bit and bit SINC_CTL.EFOVF1 are set (=1), the SINC_STAT inter-
rupt is asserted.

0 No Overflow

1 Overflow

27

(R/W1C)

PFAB1 Primary (Filter) Fabric Error for Group 1 Status.

The SINC_STAT.PFAB1 indicates error status for the output of any primary SINC
filter assigned to group 1. The bit is set (=1) if the SCB fabric provides a write error
response for a filter output transfer associated with group 1, or if an overrun occurs for
a filter in group 1. An interrupt is requested whenever this bit =1 (not maskable).

0 Disabled

1 Enabled

23

(R/W1C)

PSAT3 Primary (Filter) 3 Saturation Status.

The SINC_STAT.PSAT3 bit indicates whether the primary SINC filter 3 requires
saturation.

0 Not Saturated

1 Saturated

22

(R/W1C)

PSAT2 Primary (Filter) 2 Saturation Status.

The SINC_STAT.PSAT2 bit indicates whether the primary SINC filter 2 requires
saturation.

0 Not Saturated

1 Saturated

CM41X_M4 SINC Register Descriptions

34–54 ADSP-CM41x Mixed-Signal Control Processor

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W1C)

PSAT1 Primary (Filter) 1 Saturation Status.

The SINC_STAT.PSAT1 bit indicates whether the primary SINC filter 1 requires
saturation.

0 Not Saturated

1 Saturated

20

(R/W1C)

PSAT0 Primary (Filter) 0 Saturation Status.

The SINC_STAT.PSAT0 bit indicates whether the primary SINC filter 0 requires
saturation.

0 Not Saturated

1 Saturated

19

(R/W1C)

MAX3 Maximum for Secondary Filter 3 Status.

The SINC_STAT.MAX3 bit indicates whether the output of the secondary SINC
filter 3 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT3.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN3 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

18

(R/W1C)

MAX2 Maximum for Secondary Filter 2 Status.

The SINC_STAT.MAX2 bit indicates whether the output of the secondary SINC
filter 2 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT2.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN2 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–55

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W1C)

MAX1 Maximum for Secondary Filter 1 Status.

The SINC_STAT.MAX1 bit indicates whether the output of the secondary SINC
filter 0 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT1.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN1 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

16

(R/W1C)

MAX0 Maximum for Secondary Filter 0 Status.

The SINC_STAT.MAX0 bit indicates whether the output of the secondary SINC
filter 0 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT0.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN0 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

CM41X_M4 SINC Register Descriptions

34–56 ADSP-CM41x Mixed-Signal Control Processor

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/NW)

GLIM0 Group 0 Limit Status.

The SINC_STAT.GLIM0 indicates status for an amplitude and duration limit of
secondary SINC filters assigned to group 0. This bit is set (=1) if any limit specified by
registers SINC_LIMIT3, SINC_LIMIT2, SINC_LIMIT1, or SINC_LIMIT0,
within the duration count and window specified by bits SINC_LEVEL1.LCNT and
SINC_LEVEL1.LWIN are exceeded.

To identify the offending secondary SINC filter, examine the filters status bits
SINC_STAT.MAX3, SINC_STAT.MAX2, SINC_STAT.MAX1,
SINC_STAT.MAX0, SINC_STAT.MIN3, SINC_STAT.MIN2,
SINC_STAT.MIN1 and SINC_STAT.MAX0 according to the group 0 assignments
in the SINC_CTL register.

0 Not Exceeded

1 Exceeded

14

(R/NW)

GSAT0 Group 0 Saturation Status.

The SINC_STAT.GSAT0 indicates status for the output saturation bit of primary
SINC filters assigned to group 0. The bit is set (=1) if any filter of group 0 has its satu-
ration status bit set (=1).

To identify the offending SINC primary filter, examine bits SINC_STAT.PSAT3,
SINC_STAT.PSAT2, SINC_STAT.PSAT1, and SINC_STAT.PSAT0 accord-
ing to the group 0 assignments specified by the SINC_CTL.EN3, SINC_CTL.EN2,
SINC_CTL.EN1, and SINC_CTL.EN0 bits.

0 Not Set

1 Set

13

(R/W1C)

PCNT0 Primary (Filter) Count for Group 0 Status.

The SINC_STAT.PCNT0 indicates status for the output count of primary SINC fil-
ters assigned to group 0. The bit is set (=1) each time the modulo number of outputs
(specified by the SINC_LEVEL0.PCNT bits) has been transferred for each primary
SINC filter assigned to group 0. Each count in SINC_LEVEL0.PCNT corresponds
to one complete set or vector of samples from all SINC filter pairs assigned to group 1.

For example, if group 0 is assigned three SINC filters pairs 0, 1, and 3, and
SINC_LEVEL0.PCNT is set to 5, then this status bit is set after the transfer of every
5th complete sample vector, comprising 3 x 5= 15 data samples. This bit asserts when
the memory transfer on the system SCB fabric is complete, and a valid SCB write data
response is received by the SINC filter unit.

If this status bit and bit SINC_CTL.EPCNT0 are set (=1), the SINC_DATA0 trigger
is asserted. Write 1 to clear.

0 Not Reached

1 Reached

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–57

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

12

(R/W1C)

FOVF0 FIFO Overflow for Group 0 Status.

The SINC_STAT.FOVF0 indicates status for the data output FIFO bit of primary
SINC filters assigned to group 0. This bit is set (= 1) if the output FIFO for any filter
in group 0 overflows due to slow SCB fabric response. The FIFO for each primary
SINC filter contains two data sample locations. An overflow occurs if a third data sam-
ple is generated before the first sample's data is transferred into the SCB fabric write
data channel.

After any overflow signaled by this bit occurs, all further SCB transmissions generated
by group 1 are UNSPECIFIED until all SINC filters of the group are shut down and
restarted. Clearing this status bit (=0) alone is not sufficient to re-sync the DMA
stream. Write 1 to clear.

If this status bit and bit SINC_CTL.EFOVF0 are set (=1), the SINC_STAT inter-
rupt is asserted.

0 No Overflow

1 Overflow

11

(R/W1C)

PFAB0 Primary (Filter) Fabric Error for Group 0 Status.

The SINC_STAT.PFAB0 indicates error status for the output of any primary SINC
filter assigned to group 0. The bit is set (=1) if the SCB fabric provides a write error
response for a filter output transfer associated with group 0, or if an overrun occurs for
a filter in group 0. An interrupt is requested whenever this bit is =1 (not maskable).

0 Disabled

1 Enabled

3

(R/W1C)

MIN3 Minimum for Secondary Filter 3 Status.

The SINC_STAT.MIN3 bit indicates whether the output of the secondary SINC
filter 3 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT3.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN3 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

CM41X_M4 SINC Register Descriptions

34–58 ADSP-CM41x Mixed-Signal Control Processor

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

MIN2 Minimum for Secondary Filter 2 Status.

The SINC_STAT.MIN2 bit indicates whether the output of the secondary SINC
filter 2 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT2.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN2 bits.

For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

1

(R/W1C)

MIN1 Minimum for Secondary Filter 1 Status.

The SINC_STAT.MIN1 bit indicates whether the output of the secondary SINC
filter 1 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT1.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN1 bits.

For group 0, the limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

CM41X_M4 SINC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 34–59

Table 34-30: SINC_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

MIN0 Minimum for Secondary Filter 0 Status.

The SINC_STAT.MIN0 bit indicates whether the output of the secondary SINC
filter 0 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.

The amplitude limit is specified by the SINC_LIMIT0.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN0 bits.

For group 0, the limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.

For group 1, the limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

CM41X_M4 SINC Register Descriptions

34–60 ADSP-CM41x Mixed-Signal Control Processor

35 MATH Accelerator Unit

The MATH unit accelerates highly accurate single-precision floating-point computations of common transcenden-
tals such as trigonometric and exponential functions and their inverses. It provides faster reciprocals and square roots
than provided by the Cortex-M4. It also provides accelerated functions to convert between rectangular and polar
coordinates. Most operations by this tightly-coupled accelerator complete in a deterministic number of core clock
cycles.

The MATH unit provides an easy-to-use function calculator for general programming operations. Its operands and
results use the IEEE-754 single-precision floating-point numeric format. The functions follow the definitions in
IEEE-754-2008 Section 9, Recommended Functions, including the set of valid arguments (domain) and exceptions.
In general, results returned are accurate to within a standard relative error of 23.5 bits compared to the infinitely
precise mathematical result.

A MATH operation generally takes the following form.

1. Write one or more values to the command registers. For example, write x to MATH_SINF for sin(x).

2. Compute the correctly rounded results. Make them available in one or more result registers (for example,
MATH_RES1).

3. Signal detected exceptions (for example, DivByZero) in the MATH_ISTAT register and the MATH_FSTAT
register. Generate interrupt requests, if enabled, through the MATH_CTL interrupt enable register.

NOTE: While the calculation is in-progress, the core can proceed with other tasks without delay.

The MATH unit accelerator requires no handshaking. When the result is needed, the processor core reads the result
registers back into its own registers. The first read operation is stalled, if necessary, to allow the computation to com-
plete.

For example, consider the following function call in C:
float x, y;
y = adi_sinf(x);

The compiler translates this call to assembly instructions:
VSTR S0, [R0, #0xNNNN] // store operand x to MATH:SINF register
VLDR S1, [R0, #0xNNNN] // load result y from MATH:RES1 register

MATH Accelerator Unit

ADSP-CM41x Mixed-Signal Control Processor 35–1

It is straightforward to achieve parallelism in C code containing MATH operations, to promote acceleration of cal-
culations in parallel with any related code. The C program performs the operand store and the result load as separate
operations, with the desired parallel code in between. Since the MATH registers are declared as volatile in the pro-
cessor's header files, optimizing compilers will respect the stated order of operations while ensuring maximum per-
formance.

The MATH unit is efficient in its use of processor resources. It does not consume scarce Rx or Sx registers in the
Cortex-M4 core, so that sequences of calculations can proceed without fill or spill to the stack. Further, it is possible
to perform calculations directly to or from general-purpose registers (R0-R12), which has some performance advan-
tages in the ARM M4 architecture.

MATH Features
The MATH unit has the following features:

• Accepts and produces IEEE 754 Single-Precision Floating-Point operands and results for all functions

• Provides unique MMR addresses for all function operands

• Provides all exceptions compliant to the IEEE 754 Single-Precision Floating-Point standard, including han-
dling of infinities (INF), nans (QNAN and SNAN), signed zero, divided-by-zero, underflow, overflow, inexact,
and invalid operations

• Provides an interrupt accumulate status register (MATH_ISTAT), a function status register (MATH_FSTAT),
and a state status register (MATH_SSTAT)

• Processes denormalized numbers and returns denormalized results, when appropriate

• Performs preprocess range reduction, when necessary

• Provides save and restore

Supported MATH Functions

• Trigonometric functions and their inverses: sinf, cosf, tanf, asinf, acosf, atanf, with angles in radians

• Exponential functions expf (ex) and exp2f (2x)

• Logarithmic functions: lnf and log2f

• Square root

• Reciprocal

• Two-operand functions: atan2f(y/x) and hypotf(x,y) = √(x2 + y2)

• Rectangular and polar coordinate conversions: (x,y)=ptor(r,a), (r,a) = rtop(x,y), with angles in radians

MATH Features

35–2 ADSP-CM41x Mixed-Signal Control Processor

Summary of MATH Modes and Status

For each of the IEEE-754 standard status flags (overflow, underflow, divide by zero, invalid operation, inexact re-
sult), the MATH unit provides the following status, and modes:

• (RW) Status of most recent operation

• (RW) Sticky status, accumulated from all operations since sticky status last cleared by writing a 0 to the status
bit

• (RW) Interrupt enable (mode) for interrupt request after any operation which generates the associated status
flag

• (W1C) Interrupt pending status

MATH Functional Description
The MATH function unit provides a DSP-based system with fast single-precision floating-point functions through a
simple MMR interface in the core clock domain. The MATH function unit is an accelerator for highly accurate
single-precision floating point computation of common transcendental functions. The tightly-coupled accelerator
completes within a defined number of core clock cycles for each function, which is more competitive than the func-
tions provided by the Cortex-M4.

CM41X_M4 MATH Interrupt List

Table 35-1: CM41X_M4 MATH Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

61 MATH0_MSTAT MATH0 MATH unit Accumulate Inter-
rupt Status

Level

CM41X_M4 MATH Register List

A set of registers are used for MATH operations. For more information on MATH functionality, see the MATH
register descriptions.

Table 35-2: CM41X_M4 MATH Register List

Name Description

MATH_ACOSF arccos(x) Function Register

MATH_ASINF arcsin(x) Function Register

MATH_ATAN2F_X arctan(y/x) Function x Operand Register

MATH_ATAN2F_Y arctan(y/x) Function y Operand Register

MATH_ATANF arctan(x) Function Register

MATH Functional Description

ADSP-CM41x Mixed-Signal Control Processor 35–3

Table 35-2: CM41X_M4 MATH Register List (Continued)

Name Description

MATH_COSF cos(x) Function Register

MATH_CTL Math Unit Interrupt Enable Control

MATH_EXP2F exp2(x) Function Register

MATH_EXPF exp(x) Function Register

MATH_FSTAT Math Unit Function Status Register

MATH_GX Generic X Function Register (GX)

MATH_GY Generic Y Function Register (GY)

MATH_HYPOTF_X hypot(x,y) Function x Operand Register

MATH_HYPOTF_Y hypot(x,y) Function y Operand Register

MATH_ISTAT Math Unit Interrupt Register

MATH_LNF ln(x) Function Register

MATH_LOG2F log2(x) Function Register

MATH_PTORF_A Polar to Rectangular Function a Operand Register

MATH_PTORF_R Polar to Rectangular Function r Operand Register

MATH_RECIPF Reciprocal(x) or 1/x Function Register

MATH_RES1 Math Unit Function Result 1

MATH_RES2 Math Unit Function Result 2

MATH_RTOPF_X Rectangular to Polar Function x Operand Register

MATH_RTOPF_Y Rectangular to Polar Function y Operand Register

MATH_SINF sin(x) Function Register

MATH_SQRTF Square Root or sqrt(x) Function

MATH_SSTAT Math Unit Function State Status Register

MATH_TANF tan(x) Function Register

MATH Block Diagram

The MATH Interface Block Diagram shows the functional blocks within the MATH module.

MATH Functional Description

35–4 ADSP-CM41x Mixed-Signal Control Processor

SYSTEM BUS

PRE-PROCESSOR

CORDIC STEP UNIT

CORDIC STEP UNIT

CORDIC STEP UNIT
M

AT
H

 F
U

N
C

TI
O

N

M
A

ST
ER

 B
LO

C
K

ROM

FRACTIONAL UNIT

ASSEMBLER

POST-PROCESSOR

SYSTEM BUS

X

+

ADDRESS DATAIN

DATAOUTREADY

POLYNOMIAL
UNIT

FUNCTION
UNIT

Figure 35-1: MATH Unit Block Diagram

MATH Definitions

To make the best use of the MATH unit, it is useful to understand the following terms.

Single-Precision Floating-Point Format

Single-precision floating-point format (shown in the figure) is a computer number format that occupies 4 bytes (32
bits). It represents a wide dynamic range of values by using a floating point (for example, C datatype 'float' num-
bers). In IEEE 754–2008, the 32-bit base 2 format is officially referred to as binary32.

COMBINATION FIELD
(BIASED EXPONENT)

SIGN TRAILING SIGNIFICAND FIELD

S G T

1 BIT 8 BITS 23 BITS

(MANTISSA)

Figure 35-2: Single-Precision Binary Floating-Point Format

MATH Functional Description

ADSP-CM41x Mixed-Signal Control Processor 35–5

Normal Domain

For a given MATH unit function, this region of the input operands (for example, domain) is where the operation
completes in the nominal number of cycles. It produces a result with Relative numerical Error (RE) which is no
greater than the MATH unit Standard Relative Error (SRE).

The MATH unit functions, when used within constrained (most commonly used) regions, provides results faster
than the ARM Cortex-M4F. This region is called the normal domain for that particular function.

Full Domain

An area of input operands. For a given MATH unit function, IEEE-754 2008 Section 9 specifies that this region of
input operands (the domain) is well-defined.

Series Expansion

In mathematics, series expansion is a method for calculating a function that cannot be expressed by only elementary
operators (addition, subtraction, multiplication, and division). The resulting series often can be limited to a finite
number of terms, thus yielding an approximation of the function.

For example, the Taylor series of sinusoidal function.

sin(x) = x-x3/3!+x55/5!- ...= c1*x+c2*x3+c3×x5... = (c1+c2*x2+c3*x4...)*x

CORDIC

Coordinate Rotation Digital Computer (CORDIC) is also known as the digit-by-digit method and Volder's algo-
rithm. It is a simple and efficient algorithm used to calculate hyperbolic and trigonometric functions. The MATH
unit uses the CORDIC algorithm to compute trigonometric functions.

Range Reduction

The process of reducing the argument of x(input) into a smaller range. For example, while the Taylor series can be
used to approximate and converge to a function with a polynomial. It only converges well to a finite series when
x(input) is near to zero. Therefore, reducing the argument of x(input) into a smaller range is necessary.

MATH Architectural Concepts

The MATH unit communicates with the Cortex-M4F directly through the M4 subsystem's SYS bus crossbar. It
services MMR addresses associated with the MATH function unit and translates the addresses into specific transcen-
dental math functions. The results are read from common result registers shared by all the functions in single-preci-
sion floating-point format. The block stalls all read-accesses until the result is ready.

The MATH unit accepts and produces IEEE 754 Single-Precision Floating-Point operands and results for all func-
tions. It provides unique MMR addresses (for example, MATH_ATAN2F_X) for all function operands. A write to an
associated operand address initiates the processing of the function indicated by the address.

MATH Functional Description

35–6 ADSP-CM41x Mixed-Signal Control Processor

The MATH unit provides all exceptions compliant to the IEEE 754 Single-Precision Floating-Point standard, in-
cluding handling of infinities (INF), nans (QNAN and SNAN), signed zero, divided-by-zero, underflow, overflow,
inexact, and invalid operations.

The MATH unit provides an interrupt cumulative status register (MATH_ISTAT), a function status register
(MATH_FSTAT), and a state status register (MATH_SSTAT). The status register is organized in the same way as the
ARM M4 floating-point status register (invalid operation, overflow, underflow, divide-by- zero, and inexact). An in-
terrupt-enable register can generate an interrupt request on any of the status indications.

Supported Operand Functions

The MATH unit produces results that conform to IEEE 754–2008 section 9 (Recommended Operations). This
standard specifies the argument domain of the operation and the handling of NaNs, infinities, and invalid operands
specific to that function as well as exception signaled.

Single-Operand Functions

The single-operand functions are be initiated by a write to a single write operand register. The Single-operand Func-
tions with Single Result table shows the single-operand functions with a single result:

Table 35-3: Single-Operand Functions with Single Result

Function Command Register Expression Full Domain of Argu-
ment

Exceptions

adi_recipf RECIPF 1/x [−∞, +∞] |x|=0: divByZero

adi_sqrtf SQRTF √x [0, +∞] x<0: invalidOp

adi_expf EXPF ex [−∞, +∞] overflow; underflow

adi_exp2f EXP2F 2x [−∞, +∞] overflow; underflow

adi_logf LOGF ln(x) [0, +∞] x = 0: divByZero;

x < 0: invalidOp

adi_log2f LOG2F log2(x) [0, +∞] x = 0: divByZero;

x < 0: invalidOp

adi_sinf SINF sin(x) (−∞, +∞) | x| = ∞: invalidOp;

underflow

adi_cosf COSF cos(x) (−∞, +∞) | x| = ∞: invalidOp;

underflow

adi_tanf TANF tan(x) (−∞, +∞) | x| = ∞: invalidOp;

underflow

adi_asinf ASINF sin-1(x) [−1, +1] | x| > 1: invalidOp;

underflow

adi_acosf ACOSF cos-1(x) [−1, +1] | x| > 1: invalidOp;

underflow

MATH Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 35–7

Table 35-3: Single-Operand Functions with Single Result (Continued)

Function Command Register Expression Full Domain of Argu-
ment

Exceptions

adi_atanf ATANF tan-1(x) [−∞, +∞] underflow

Multi-Operand Functions with Single Result

The multiple operand functions are initiated by a write to two operand registers. The Multi-Operand Functions
with Single Result table shows the multiple operand functions with single result.

NOTE: Writing to the MATH_ATAN2F_X/ MATH_HYPOTF_X register initiates the operation. First, write to the
MATH_ATAN2F_Y /MATH_HYPOTF_Y register and then to the MATH_ATAN2F_X/
MATH_HYPOTF_X register.

Table 35-4: Multi-Operand Functions with Single Result

Function Command Registers Expression Full Domain of Argu-
ments

Exceptions

adi_atan2 ATAN2_X

ATAN2_Y

tan-1(y/x) x: [−∞, +∞] ×

y: [−∞, +∞]

overflow, underflow

adi_hypot HYPOT_X

HYPOT_Y

√(x2 + y2) x: [−∞, +∞] ×

y: [−∞, +∞]

overflow

Multi-Operand Functions with Multiple Results

The Multi-Operand Functions with Multiple Result table shows the multiple operand functions with multiple re-
sults.

NOTE: Writing to MATH_RTOPF_X/ MATH_PTORF_A register initiates the operation. First, write to the
MATH_RTOPF_Y/MATH_PTORF_R register and then to the MATH_RTOPF_X / MATH_PTORF_A reg-
ister.

NOTE: Reading from the MATH_RES1 register stalls the operation until the result is ready. First, read the
MATH_RES1 register and then the MATH_RES2 register.

Table 35-5: Multi-Operand Functions with Multiple Results

Function Command Registers Result Expressions Domain of Arguments Exceptions

adi_rtop RTOP_X

RTOP_Y

RES1 = tan-1 (y/x)

RES2 = √(x2 +y2)

x: [−∞, +∞] ×

y: [−∞, +∞]

overflow;

underflow

MATH Architectural Concepts

35–8 ADSP-CM41x Mixed-Signal Control Processor

Table 35-5: Multi-Operand Functions with Multiple Results (Continued)

Function Command Registers Result Expressions Domain of Arguments Exceptions

adi_ptor PTOR_A

PTOR_R

RES1 =r ·cos(a)

RES2 = r ·sin(a)

r: [−∞, +∞] ×

a: (−∞, +∞) ×

|a| = ∞: invalidOp;

overflow;

underflow

Argument Normal and Full Domains

For any of its supported operations, and for any operands, the MATH unit produces results conforming to
IEEE-754-2008 section 9 (Recommended Operations). This standard specifies the argument domain of the opera-
tion and the handling of NaNs, infinities, and invalid operands specific to that function (√x for x< 0), as well as the
exceptions signaled.

For a given MATH unit function, the normal domain is the region of the input operands (the domain) in which the
operation completes in the nominal number of cycles. The operation produces a result with relative numerical error
(RE) which is no greater than the MATH unit Standard Relative Error (SRE). For example, the MATH unit imple-
mentation of sin(x) produces a result in nominal time accurate to within the SRE for the normal domain of x ∈(-8,
+8).

For a given MATH unit function, the full domain is the region of input operands (the domain) for which IEEE-754
2008 Section 9 specifies that the function result be well-defined. For example, the standard specifies that the func-
tion sin(x) must accept a domain of x ∈ (-∞, +∞).

When an operand is outside the function's normal domain, the MATH block detects that range reduction is neces-
sary, and in those cases it performs range reduction calculations automatically and without loss of accuracy. It is nev-
er necessary for the user's application to perform range checking tests or range reduction s on MATH unit operands.

The MATH Function Domain table shows the domains for the functions supported by the MATH unit. Details of
the behavior of the function outside the normal domain are documented in the definition of the function.

Table 35-6: MATH Function Domain

Function Full Domain Normal Domain

adi_recipf (1/x) [−∞, +∞],

x ≠ 0

[−∞, +∞],

x ≠ 0

adi_sqrtf [0, +∞] [0, +∞]

adi_expf (ex) [−∞, +∞] [−∞, +∞]

adi_exp2f (2x) [−∞, +∞] [−∞, +∞]

adi_lnf [0, +∞] [0, +∞]

adi_log2f [0, +∞] [0, +∞]

adi_sinf (−∞, +∞) (-8, +8)

adi_cosf (−∞, +∞) (-8, +8)

MATH Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 35–9

Table 35-6: MATH Function Domain (Continued)

Function Full Domain Normal Domain

adi_tanf (−∞, +∞) (-8, +8)

adi_asinf [−1, +1] [−1, +1]

adi_acosf [−1, +1] [−1, +1]

adi_atanf [−∞, +∞] [−1, +1]

adi_atan2f x: [−∞, +∞]

y: [−∞, +∞]

x: [−∞, +∞]

y: [−∞, +∞]

adi_hypotf x: [−∞, +∞]

y: [−∞, +∞]

x: [−∞, +∞]

y: [−∞, +∞]

adi_rtopf x: [−∞, +∞]

y: [−∞, +∞]

x: [−∞, +∞]

y: [−∞, +∞]

adi_ptorf r:[0, +∞)

a:(−∞, +∞)

r:[0, +∞)

a:(−8, +8)

Numerical Error

The numerical error of computations performed by the MATH unit is specified in terms Standard Relative Error
(SRE). All results of computations are accurate across the entire full domain to the infinitely precise result within the
SRE, as defined below. This holds even if the function argument is well outside the normal domain, for example
cos(1234.5*pi). All IEEE-754-defined boundary conditions and exceptional states are handled as specified in the
standard.

Table 35-7: MATH Numerical Error

Item Definition Max Value Units

SRE Standard Relative Error is given by:

|R-P|/P

For results of MATH unit operations on operands within the
normal domain of the operation, where:

R= actual result

P=infintely precise result

8.429 x 10-8 (dimensionless)

SREulp Standard Relative Error, relative to the unit in the least place
(ULP) of the IEEE-754 single precision format

0.707 ULP

SREbits Standard Relative Error, expressed in bits of precision:

SRE bits = -log 2 (SRE)

Note: For denormalized numbers, the error is expressed relative

to the magnitude of the denormal numerical range, 2-126.

-23.50 bits

MATH Architectural Concepts

35–10 ADSP-CM41x Mixed-Signal Control Processor

Operand Performance (Core Clock Cycles)

The MATH Function Domain table defines the number of clock cycles for each operand supported by the MATH
unit. The first clock cycle is defined at the write data cycle. The last cycle is defined at the ready signal of the read
data or read operand status register.

NOTE: The MATH Function Domain table does not include additional latencies associated with load and store to
MATH accelerator registers.

Table 35-8: MATH Function Domain

Function Full Domain Normal Domain

adi_recipf (1/x) 9 cycles 9

adi_sqrtf 9 cycles 9

adi_expf (ex) 9 cycles 9

adi_exp2f (2x) 8 cycles 8

adi_log2f 10 cycles 11

adi_lnf 11 cycles 10

adi_sinf x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles

adi_cosf x = [−∞, +∞]: 14 cycles x = (-8,+8): 9 cycles

adi_tanf x = [−∞, +∞]: 20 cycles x = (-8,+8): 13 cycles

adi_asinf |x| ≤0.5: 11 cycles

0.5< |x| ≤0.75: 12 cycles

0.75< |x| ≤1: 15 cycles

adi_acosf |x| ≤0.5: 12 cycles

0.5< |x| ≤0.75: 13 cycles

0.75< |x| ≤1: 14 cycles (and negative x is15)

adi_atanf |x| ≤0.00325: 8 cycles

|x| >0.00325: 20 cycles

adi_atan2f x: [−∞, +∞]

y: [−∞, +∞]: 22 cycles

adi_hypotf |x| ≤0.00325: 10 cycles

|x| >0.00325: 22 cycles

adi_rtopf x: [−∞, +∞]

y: [−∞, +∞]: 33 cycles

adi_ptorf r:[0,+∞)

a:(−∞, +∞): 20 cycles

r:[0,+∞)

a:(−8, +8): 15 cycles

MATH Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 35–11

MATH Programming Model
At the most basic level, the MATH unit is operated by stores and loads of operands and results. All hardware syn-
chronization is handled automatically. The unit provides a function library that makes conversion from a standard C
library to the ADI math accelerator library nearly seamless.

For advanced programmers, inlined functions and optimized code rearrangement can dramatically improve through-
put of function-intensive applications.

MATH Programming Concepts

Using the features, operating modes, and event control for the MATH unit to their greatest potential requires an
understanding of some MATH-related concepts.

General Operations

The MATH unit functions are simple to control: store operands to operand registers, and read the results from the
result registers. The bus hardware handles all synchronization with the accelerator. It inserts stalls, as necessary.

float angle = 0.78424;
pADI_MATH0->SINF = angle; /* start a single-operand function */
float sine = pADI_MATH0->RES1; /* read the result; hardware stalls until ready
*/

float x = 1.286e+4;
float y = -0.315e+3;
float radius;
pADI_MATH0->RTOPF_Y = y; /* load the first operand (y first) */
pADI_MATH0->RTOPF_X = x; /* load the second operand and start the operation */
angle = pADI_MATH0->RES1; /* read the first result; hw stalls until ready */
radius = pADI_MATH0->RES2; /* read the second result */

Inlining Functions

Inlined functions provide an efficient and readable method of programming for the MATH unit. The method for
causing a function to be inlined can vary from compiler to compiler. In the IAR tool set, this programming can be
performed with #pragma=forced syntax.

#pragma inline=forced
float adi_sinf(float x) {
pADI_MATH0->SINF = x;
return pADI_MATH0->RES1;
 }

float angle = 0.789123;
float sine = adi_sinf(angle); /* will be converted to instructions inline
*/

MATH Programming Model

35–12 ADSP-CM41x Mixed-Signal Control Processor

Inlining Functions with Assembler

To achieve optimal performance, functions can be defined using inline assembler code. This code can guide the
compiler to generate more efficient load-multiple or store-multiple instructions. In the following example, a two-
element coordinate structure is used to pass arguments and results from an inlined function.

typedef struct { float x, y; } f_pair_t;

// inline assembler
#pragma inline=forced
f_pair_t adi_atan2f(f_pair_t xy) {
 f_pair_t ra;
 float *pxy = pADI_MATH0->ATAN2_Y;
 float *pr12 = pADI_MATH0->RES1;
 asm("VSTM.32 %[px], {%[x], %[y]}\n"
 "VLDM.32 %[pr], {%[r], %[a]}"
 : [pr]"r" (pr12),
 [r]"=t" (ra.x),
 [a]"=t" (ra.y)
 : [px]"r" (pxy),
 [x]"t" (xy.x),
 [y]"t" (xy.y)
);
 return ra;
 }

 /* do rectangular to polar coordinate conversion */
 f_pair_t rect = {1.2, 3.4};
 f_pair_t polar = adi_atan2f(rect); /* generates VSTM and VLDM instructions */

Interleaving Code for Maximum Performance

The MATH unit does not require the ARM Cortex-M4F core to remain idle while it performs calculations. To opti-
mize code for performance, it is useful to move unrelated code between the operand-store and the result-load opera-
tions. In this manner, the effective time of a function call is almost eliminated.

float *farray;
float angle;
int index, index2, offset, scale;

// Before Optimization
pADI_MATH0->SINF = angle; /* start a single-operand function */
float sine = pADI_MATH0->RES1; /* read the result; hardware stalls until ready
*/
index2 = index + (offset*scale); /* calculate address to store result */
farray[index2] = sine;

// After Optimization
pADI_MATH0->SINF = angle; /* start a single-operand function */

MATH Programming Model

ADSP-CM41x Mixed-Signal Control Processor 35–13

index2 = index + (offset*scale); /* do useful work while waiting for result
*/
float sine = pADI_MATH0->RES1; /* read the result; hardware stalls until ready
*/
farray[index2] = sine;

MATH Assembler Programming Model

Maximum performance of the MATH unit is attained when the optimal Cortex-M4 instruction sequences are used
for common operations. In normal use, macros or inlined functions can be used from C to perform functions with
the MATH block. This section documents the compiler-generated instruction sequences.

For advanced programmers, inlined functions and optimized code rearrangement can dramatically improve the
throughput of function-intensive applications. It is assumed that exceptions are handled by interrupts or by cumula-
tive (sticky) status, and are not interrogated after each specific operation.

Load and Store Efficiency

In MATH unit operations, the operands and results can be transferred either from general-purpose registers (Rx) or
from floating-point registers within the FPU (Sx).

Single loads and stores of both types can take two cycles in the M4 architecture. In some cases, the general-purpose
Rx registers load and store faster (just 1 cycle if they are pipelined with other load and store operations). The FPU
Sx registers always require at least two cycles to load and store.

Multiple-register load and store operations are faster than a series of single load and store operations, for both Rx
and Sx register types. The LDM or STM (for Rx) and VLDM or VSTM (for Sx) instructions each take 1 + N cycles
for N registers.

Single Operand Functions

Single operand functions consist of a store of the operand to the desired function register, and a load of the result
from the MATH_RES1 register. It is advantageous to keep a pointer to the base of the MATH unit register block in
a general-purpose M4 register. In the following examples, the R0 register is used for this pointer.

LDR.N R0, REG_MATH0_CTL; base address

 // Using General-Purpose registers Rx: compute R2 = sinf(R1)
 STR R1, [R0, #imm5] //Start sinf(R1). imm5 is offset to SINF register
 // Stalls inserted automatically as needed (see tables).
 // Unrelated code may be placed here for parallel operation.
 LDR R2, [R0, #imm5] //finish sinf{R1}. imm5 is offset to RES1 register

 // Using FPU registers Sx: compute S2 = sinf(S1)
 VSTR S1, [R0, #imm8] //Start sinf(S1). imm8 is offset to SINF register
 // Stalls inserted automatically as needed (see tables).
 // Unrelated code may be placed here for parallel operation.
 VLDR S2, [R0, #imm8] //finish sinf{S1}. imm8 is offset to RES1 register

MATH Programming Model

35–14 ADSP-CM41x Mixed-Signal Control Processor

Two-operand and Two-result Functions

Two-operand functions are performed by a store of the two operands to the desired function registers. The Y register
perfroms the first function and the X register performs the last function, followed by a load of the result from the
MATH_RES1 register. Reading from the MATH_RES1 and MATH_RES2 result registers in any order concludes the
two-result functions.

The operand registers for two-operand functions are arranged in the order (Y, then X) so it is possible to use an
STM store-multiple instruction to initiate the function and an LDM load-multiple instruction to retrieve the re-
sults. (These instructions access memory addresses in increasing order.) The equivalent instructions for FPU registers
are VSTM and VLDM.

Single-word loads and stores can be used to perform multi-operand and multi-result functions. These instructions
have more available address modes than LDM or STM. So, while the load and store of the operands can take longer,
the single LDR or STR instructions can permit a reduction of the overall cycle count.

//Using General-Purpose registers: {R3-R4} = rtopf({R1-R2})
LDR.N R0, REG_MATH0_RTOPF_Y // base address
STM R0, {R1-R2} // 3 cycles
//Stalls inserted automatically as needed (see tables).
//Unrelated code may be placed here for parallel operation.
LDM R0, {R3-R4} // 3 cycles

//Using FPU registers: {S3-S4} = rtopf({S1-S2})
VSTM R0, {S1-S2} // 3 cycles
// Stalls inserted automatically as needed (see tables).
// Unrelated code may be placed here for parallel operation.
VLDM R0, {S3-S4} // 3 cycles

Saving and Restoring Context

The context of the MATH unit consists of a consecutive 5-register block which includes MATH_GY, MATH_GX,
MATH_RES1, MATH_RES2 , and MATH_FSTAT. This context can be most efficiently saved and restored using
load-multiple and store-multiple instructions.
LDR.N R0, REG_MATH0_GY //base address of the 5-register context group
LDM R0, {R1-R5}
PUSH {R1-R5} // save context on the stack for later
// another set of MATH unit operations intervenes
POP {R1-R5}
STM R0, {R1-R5} // restore prior context from stack

NOTE: MATH unit can still be in YPARTIAL state after Save context, which can cause sequence errors during
another set of MATH unit operations . To clear the state, set the MATH_FSTAT.YPARTIAL bit to zero
after PUSH {R1-R5}. Or a more efficient way is to set the MATH_FSTAT register to zero after PUSH
{R1-R5}.

MATH Programming Model

ADSP-CM41x Mixed-Signal Control Processor 35–15

MATH Operation Flow
This section provides a description of the execution flow of MATH unit operations, including stalls and interrupt
requests.

Initiation of MATH Unit Operations

A MATH unit operation is initiated by writing one or two operands to the command registers, where the selection
of command register indicates the desired function.

Single-operand functions are initiated by a write to a single operand register, for example, MATH_SINF.

Multiple-operand functions are initiated by a write to two operand registers, the first to the associated Y register (for
example, MATH_ATAN2F_Y) and second to the associated X register (for example, MATH_ATAN2F_X). The write
to the first (Y) register does not start another operation and has no side effects on status, results, or interrupt re-
quests. The write to the second (X) register initiates the desired operation.

If the operands are written in the wrong order (X without a preceding Y), or to registers that do not correspond to
the same function, the SEQERR condition results and no function result is computed. To detect these errors, set the
MATH_CTL.SEQEN (SEQERR interrupt enable) bit (=1).

Once an operation has been initiated by a write to an X register, the MATH unit enters the BUSY state (as indicated
by the MATH_SSTAT.DIRTY bit), and begins the calculation of the result.

NOTE: Writing to the generic operand registers MATH_GX or MATH_GY does not initiate an operation or cause
the MATH unit to become BUSY. These registers are provided to facilitate context save-and-restore.

MATH Unit Results, Status, and Stalls

To retrieve the results of a calculation, the processor reads the result registers. When the MATH unit is in the BUSY
state, any read of any result register or the MATH_FSTAT register result register stalls the processor until the calcula-
tion of the result is complete. No polling by the processor is necessary.

Most function calculations complete within 20 or fewer core clocks, provided their arguments are in the normal
range of the function. Calculation on arguments outside the normal range of the function can cause extra stalls
while the argument range is automatically reduced to a normal range. The maximum duration of any MATH unit
calculation is bounded at 28 cycles.

Reads of the MATH_FSTAT register stall when the MATH unit is in the BUSY state (if the
MATH_SSTAT.DIRTY bit is set). Reads of the MATH_SSTAT register do not stall, and allow stall-free inspection
of the state of the MATH unit at any time. If the MATH_SSTAT.DIRTY bit is clear, then the MATH unit is in the
IDLE state, and the contents of the register are always consistent with the result registers. All the status bits in the
register indicate the status results of the most recently completed operation.

MATH Operation Flow

35–16 ADSP-CM41x Mixed-Signal Control Processor

IDLE YPARTIAL

Write X
Single

operand
Dirty bit

is set

BUSY
(Read Stall)

Write Xm or Ym dual operand

SEQERR=1

SEQERR=1

SEQERR=1

Write X or Y operand
Write GX or GY

Write RES1 or RES2

Read X or Y operand,
GX, or GY
(no stall)

Reads RES1, RES2,
or FSTAT stall (ready=0)

Function Completed
RES1, RES2, FSTAT

are available
(Dirty bit is clear)

Any Reads
or write GX
or write GY

Write Xk dual operand
Write Yi operand

or write FSTAT, YPARTIAL
LASTOP=Yi

Any Reads
Write to GX, GY,

RES1, RES2,
FSTAT

LASTOP=X

Write Xi
dual operand

Dirty bit
is set

LASTOP=Xi

NOTE: Save-and-Restore are only allowed during IDLE and YPARTIAL states.

Figure 35-3: MATH Unit Register Operation Sequence

MATH Unit States and Sequence Error

These sections describe the various states of the MATH unit and how the sequence error SEQERR is resolved. The
main states of the MATH unit are IDLE, YPARTIAL, and BUSY.

Typically, programs do not need to be concerned with these states, as long as the sequence of MATH register access-
es is followed (for example, write Y, then write X, then read results or status). The details of these states become
useful to understand if the normal sequence is not followed, or is interrupted, or if the state of the block is un-
known.

IDLE State

The MATH unit is in an IDLE state when the MATH_SSTAT.DIRTY bit is =0. In the IDLE state, if the
MATH_FSTAT.SEQERR bit =0, the contents of the MATH_FSTAT, MATH_RES1, MATH_RES2, MATH_GX,
and MATH_GY registers must all be mutually consistent. If the MATH_FSTAT.SEQERR bit =1, the contents of the
MATH_FSTAT, MATH_RES1, MATH_RES2, MATH_GX, and MATH_GY registers are not always mutually consis-
tent.

Normal status between operations is: (state = IDLE)

• MATH_FSTAT.YPARTIAL = 0

• MATH_FSTAT.LASTOP is any legal operation, whatever last finished. MATH_RES1, MATH_RES2 = results
of last operation

MATH Operation Flow

ADSP-CM41x Mixed-Signal Control Processor 35–17

• If SEQERR = 0: MATH_GX, MATH_GY= operands of the last operation. (MATH_RES1, MATH_RES2,
MATH_GX, and MATH_GY, MATH_FSTAT.LASTOP, and STATUS must be mutually consistent: the results
of a valid operation)

• If SEQERR = 1: MATH_GX, MATH_GY = operands of last operation may not be consistent with the contents
ofMATH_FSTAT, MATH_RES1, MATH_RES2 registers

• MATH_SSTAT.DIRTY =0 (not in the BUSY state)

• Status and sticky status can have any value

YPARTIAL State

The YPARTIAL state is entered when the first operand (Y) of a two-operand function is written. The YPARTIAL
state is indicated by the MATH_FSTAT.SEQERR bit =1 and the MATH_FSTAT.YPARTIAL bit =1. In this state,
the register sets contents may not be mutually consistent. This state is exited back to IDLE by writing
MATH_FSTAT.YPARTIAL to zero. (This bit is a R/W bit and can be written to 0 or 1.) There is no SEQERR as
a consequence.

The state can be restored from the IDLE state to YPARTIAL by writing MATH_FSTAT.YPARTIAL to 1 (as part
of a save-and-restore sequence).

The YPARTIAL state is normally advanced to the BUSY state by writing a function X register to start the two-oper-
and function.

The sequence error status is indicated when the MATH_FSTAT.SEQERR bit =1. The sequence error is set by hard-
ware detection of a sequence error, or a write to MATH_FSTAT.SEQERR (as part of save-and-restore). When hard-
ware sets the MATH_FSTAT.SEQERR bit, the contents of the 5-register set may not be mutually consistent. Writ-
ing zero to the MATH_FSTAT.SEQERR bit clears a sequence error. Setting the MATH_CTL.SEQEN bit enables
the SEQERR cumulative interrupt. The register cumulative interrupt status can be read in using the W1C
MATH_ISTAT.SEQERR bit.

BUSY State

The BUSY state can be detected directly by reading MATH_SSTAT.DIRTY bit value = 1. Or, this state can be
detected indirectly by reading the MATH_FSTAT, MATH_RES1, or MATH_RES2 register and getting a stall. In
practice, there is no need to poll (check for BUSY) to obtain the results of a function. Instead, the application reads
the MATH_FSTAT, MATH_RES1, or MATH_RES2 registers as needed. The core stalls for a short time as required
for the result to become available. The BUSY state automatically exits to IDLE when the function completes.

The BUSY state must not persist for longer than a short, bounded time limit defined in the specification (for exam-
ple, 20 cycles for single operands and 28 cycles for dual operands). Any write to any input or output register while in
the BUSY state sets the MATH_FSTAT.SEQERR bit. Any read of the output registers (MATH_FSTAT,
MATH_RES1, or MATH_RES2) while in the BUSY state stalls until the function is not in the BUSY state.

MATH Unit States and Sequence Error

35–18 ADSP-CM41x Mixed-Signal Control Processor

Unknown State

If the prior state of the math unit is unknown, any use of the math unit must be preceded with a read of the
MATH_FSTAT register. This forces the completion of any BUSY operations. If the prior state of the MATH unit is
valuable, for example after an interrupt, then a save of the 5-register state must be performed (MATH_FSTAT,
MATH_RES1, MATH_RES2MATH_GX, and MATH_GY).

Write the MATH_FSTAT.YPARTIAL bit with a value of 0 to clear the MATH_FSTAT.SEQERR bit.

Save-and-Restore

The MATH_FSTAT.SEQERR bit exhibits the following behavior during a save-and-restore operation:

• If the MATH_FSTAT.SEQERR bit is 0, and a save-and-restore brackets an error-free unrelated use of the
MATH unit, then SEQERR ends up 0. (read 0, write 0).

• If the MATH_FSTAT.SEQERR bit is 1, and a save-and-restore happens (regardless of whether the intervening
activity is error-free or not), then the restore of the saved MATH_FSTAT register preserves the SEQERR state
or cleared. A sequence error is a detected departure from a valid operation sequence. This departure can cause
an interrupt request if the MATH_CTL.SEQEN interrupt enable is set.

• The MATH_FSTAT.SEQERR indicates that the contents of MATH_FSTAT, MATH_RES1, MATH_RES2,
MATH_GX, and MATH_GY may not be mutually consistent.

• No new function starts upon a restore to MATH_FSTAT.

MATH Unit Context
The context of the MATH unit refers to the set of registers that fully describe the state of the unit. In the program-
ming model, successful context switching depends on properly saving and restoring the full context of the MATH
unit.

Components of the MATH Unit Context

The MATH unit contains a control register, MATH_CTL and the status registers MATH_ISTAT, MATH_FSTAT,
and MATH_SSTAT.

The status registers provide the following functions.

• The MATH_FSTAT.LASTOP bit field provides the function code for the function in-progress or the IDLE
function when the unit is paused. The MATH unit sets this bit field whenever an X or Y operand register (but
not MATH_GX and MATH_GY) is written. The bit field is cleared when the operation completes (BUSY returns
to IDLE state).

• Status (exceptions and sequence error) of the most recently completed function

• The related sticky status and interrupt accumulated status

• The MATH_FSTAT.YPARTIAL bit indicates that a Y operand has been written without the associated X op-
erand.

MATH Unit States and Sequence Error

ADSP-CM41x Mixed-Signal Control Processor 35–19

• The MATH_SSTAT.DIRTY bit indicates that some register has been modified since the last time and the
MATH unit is now in the BUSY state. The MATH_SSTAT.DIRTY bit is cleared when the unit is no longer
busy with the current function.

The MATH unit contains two result registers MATH_RES1 and MATH_RES2 and two operand registers
MATH_GX and MATH_GY.

The five registers, (MATH_GX, MATH_GY, MATH_RES1, MATH_RES2, and MATH_FSTAT) in the MATH unit
context are placed at adjacent addresses to facilitate saving and restoring of context using ARM Cortex-M4 load-
multiple (LDM) and store-multiple (STM) instructions. The sequence is ordered so that blocking reads of a
MATH_RES1 or MATH_RES2 register precede blocking reads of the MATH_FSTAT register when an LDM in-
struction is used, so that the complete context is self-consistent.

The sequence ensures that the MATH_FSTAT register is loaded last, so that any restarted operation finds all the
operand values and required control settings.

NOTE: The MATH_SSTAT register is a non-blocking read so that the MATH_SSTAT.DIRTY bit is available for
stall-free examination of the MATH block's state.

Reading Operand Register Context

Most of the operand registers are pseudo-registers. They are aliases of two internal storage elements, described as
MATH_GX and MATH_GY. Writing to any Y operand register writes to the MATH_GY storage element. Writing to
any X operand register writes to the MATH_GX storage element and initiates the associated computation.

Reads of the MATH_GX register or any of the X operand registers alias to the same value, that is the last value written
to any X operand register. Similarly, reads of the MATH_GY register or any of the Y operand registers alias to the
same value, that is the last value written to any Y operand register.

The generic operand registers MATH_GX and MATH_GY facilitate saving and restoring the MATH unit context
without unintentionally initiating new computations. Writing to these registers does not initiate a new computation.

Interrupts in MATH Unit Operations

MATH unit operations are fully interruptible and restartable. An interrupt thread which itself needs to use the
MATH unit can save the MATH context using an LDM instruction. A software system might further use an exter-
nal semaphore (for example a global variable) to signal whether the MATH block is in use as part of a chain of
calculations, so that interrupt handlers might omit save or restore operations when not needed (for a lazy save/
restore.)

• The LDM stalls, only if needed, on the read of the MATH_RES1 or MATH_RES2 registers, and provides a
self-consistent set of register values. This configuration works effectively if saving the MATH context can be
positioned after other handler initial code, to allow the operation to complete.

• When restored with STM, the result registers are reloaded with the result values expected by the interrupted
thread, with no additional latency.

MATH Unit Context

35–20 ADSP-CM41x Mixed-Signal Control Processor

The MATH_FSTAT.YPARTIAL bit indicates to an observer that the contents of the results, status, and X operand
registers are not consistent with the Y operand register. This inconsistency is because a Y operand register was writ-
ten without the accompanying X register (which would have initiated the computation). This discrepancy can be
due to an operand write sequence that was interrupted.

An interrupt handler needs write MATH_FSTAT.YPARTIAL = 0 after save-context operation. After returning
from a save-and-restore operation, the interrupted thread completes the operand-load sequence and the intended
calculation completes successfully.

A context save operation proceeds as follows.

1. The processor (for example, in an interrupt handler) starts an LDM operation to read the block of five registers
into five M4 general purpose registers (for example R0-R4), typically at a rate of one core clock per register.
The first two registers (MATH_GX, MATH_GY) do not stall, and preserve the original operand(s) of any opera-
tion that may be in progress.

2. The next register read (MATH_RES1) is a blocking read, and if an operation is running (BUSY), the MATH
block will stall the LDM until the operation is complete. (Note that the impact on interrupt latency is mini-
mal, since the processor will have taken several cycles to transfer control and save registers before the handler's
MATH context-save instructions begin executing, and in most cases any running operation will have already
completed.)

3. The last two registers then complete without stall. At this point the processor registers now contain the entire
self-consistent MATH block context, together with the completed function result. This is true even if a two-
operand function was only partially initiated after writing the Y operand (YPARTIAL state), as the
MATH_FSTAT register value indicates the YPARTIAL state and the register value preserves the first operand
value.

4. The set of five saved context values can then be stored elsewhere with an STM instruction, for example pushed
onto the stack.

NOTE: The MATH unit can still be in YPARTIAL state after Step 4, which can cause sequence errors during any
subsequent MATH unit operations. To clear the state, set MATH_FSTAT.YPARTIAL = 0 after Step 4.
Else, set the MATH_FSTAT register to zero after Step 4.

A context restore operation proceeds in reverse, as follows.

1. Before returning from the handler, the handler retrieves the five-word context from storage (for example, by an
LDM or pop from the stack), and

2. The handler then initiates a STM of the five MMR registers starting with MATH_GX. These writes all proceed
without stall, and do not initiate any new function calculations.

3. When the STM is complete, all operands, results, and function status are restored, including any YPARTAL or
SEQERR conditions, so that any interrupted code may resume.

MATH Unit Context

ADSP-CM41x Mixed-Signal Control Processor 35–21

CM41X_M4 MATH Register Descriptions
Math Unit Function (MATH) contains the following registers.

Table 35-9: CM41X_M4 MATH Register List

Name Description

MATH_ACOSF arccos(x) Function Register

MATH_ASINF arcsin(x) Function Register

MATH_ATAN2F_X arctan(y/x) Function x Operand Register

MATH_ATAN2F_Y arctan(y/x) Function y Operand Register

MATH_ATANF arctan(x) Function Register

MATH_COSF cos(x) Function Register

MATH_CTL Math Unit Interrupt Enable Control

MATH_EXP2F exp2(x) Function Register

MATH_EXPF exp(x) Function Register

MATH_FSTAT Math Unit Function Status Register

MATH_GX Generic X Function Register (GX)

MATH_GY Generic Y Function Register (GY)

MATH_HYPOTF_X hypot(x,y) Function x Operand Register

MATH_HYPOTF_Y hypot(x,y) Function y Operand Register

MATH_ISTAT Math Unit Interrupt Register

MATH_LNF ln(x) Function Register

MATH_LOG2F log2(x) Function Register

MATH_PTORF_A Polar to Rectangular Function a Operand Register

MATH_PTORF_R Polar to Rectangular Function r Operand Register

MATH_RECIPF Reciprocal(x) or 1/x Function Register

MATH_RES1 Math Unit Function Result 1

MATH_RES2 Math Unit Function Result 2

MATH_RTOPF_X Rectangular to Polar Function x Operand Register

MATH_RTOPF_Y Rectangular to Polar Function y Operand Register

MATH_SINF sin(x) Function Register

MATH_SQRTF Square Root or sqrt(x) Function

MATH_SSTAT Math Unit Function State Status Register

MATH_TANF tan(x) Function Register

CM41X_M4 MATH Register Descriptions

35–22 ADSP-CM41x Mixed-Signal Control Processor

arccos(x) Function Register

The MATH_ACOSF register, when written, initiates the arccos(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-4: MATH_ACOSF Register Diagram

Table 35-10: MATH_ACOSF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–23

arcsin(x) Function Register

The MATH_ASINF register, when written, initiates the arcsin(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-5: MATH_ASINF Register Diagram

Table 35-11: MATH_ASINF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–24 ADSP-CM41x Mixed-Signal Control Processor

arctan(y/x) Function x Operand Register

The MATH_ATAN2F_X register is the command register for the second operand (x) of the arctan(y/x) function. A
write to the register initiates the arctan(y/x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-6: MATH_ATAN2F_X Register Diagram

Table 35-12: MATH_ATAN2F_X Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–25

arctan(y/x) Function y Operand Register

The MATH_ATAN2F_Y register is the command register for the first operand (y) of the arctan(y/x) function. It
does not initiate a new operation.

Input Register Y

Input Register Y

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-7: MATH_ATAN2F_Y Register Diagram

Table 35-13: MATH_ATAN2F_Y Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register Y.

CM41X_M4 MATH Register Descriptions

35–26 ADSP-CM41x Mixed-Signal Control Processor

arctan(x) Function Register

The MATH_ATANF register, when written, initiates the arctan(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-8: MATH_ATANF Register Diagram

Table 35-14: MATH_ATANF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–27

cos(x) Function Register

The MATH_COSF register, when written, initiates the cos(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-9: MATH_COSF Register Diagram

Table 35-15: MATH_COSF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

The MATH_COSF.DATA bits hold the data for the cos (x) function.

CM41X_M4 MATH Register Descriptions

35–28 ADSP-CM41x Mixed-Signal Control Processor

Math Unit Interrupt Enable Control

The MATH_CTL register enables interrupts for invalid operations, overflow and underflow errors, divide by zero,
and sequence errors.

Interrupt Enable, OverflowInterrupt Enable, Underflow

Interrupt Enable, Divided By ZeroInterrupt Enable, Inexact Operation

Interrupt Enable, Invalid OperationInterrupt Enable, Sequence Error

OFEN (R/W)UFEN (R/W)

DZEN (R/W)IXEN (R/W)

IOEN (R/W)SEQEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-10: MATH_CTL Register Diagram

Table 35-16: MATH_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W)

SEQEN Interrupt Enable, Sequence Error.

Write 1 to enable the interrupt request.

4

(R/W)

IXEN Interrupt Enable, Inexact Operation.

Write 1 to enable the interrupt request.

3

(R/W)

UFEN Interrupt Enable, Underflow.

Write 1 to enable the interrupt request.

2

(R/W)

OFEN Interrupt Enable, Overflow.

Write 1 to enable the interrupt request.

1

(R/W)

DZEN Interrupt Enable, Divided By Zero.

Write 1 to enable the interrupt request.

0

(R/W)

IOEN Interrupt Enable, Invalid Operation.

Write 1 to enable the interrupt request.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–29

exp2(x) Function Register

The MATH_EXP2F register, when written, initiates the exp2(x) or 2x function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-11: MATH_EXP2F Register Diagram

Table 35-17: MATH_EXP2F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–30 ADSP-CM41x Mixed-Signal Control Processor

exp(x) Function Register

The MATH_EXPF register, when written, initiates the exp(x) or ex function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-12: MATH_EXPF Register Diagram

Table 35-18: MATH_EXPF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–31

Math Unit Function Status Register

The MATH_FSTAT register indicates the current or last function status.

Operand State Status, OverflowOperand State Status, Underflow

Operand State Status, Divided By ZeroOperand State Status, Inexact Operation

Operand State Status, Invalid OperationOperand State Status, Sequence Error

code
Operand State Status, Last Operand

bit
Operand State Status, YPARTIAL register

OFS (R/W)UFS (R/W)

DZS (R/W)IXS (R/W)

IOS (R/W)SEQERR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LASTOP (R/W)YPARTIAL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

1
20

1
19

1
18

1
17

1
16

Figure 35-13: MATH_FSTAT Register Diagram

Table 35-19: MATH_FSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

YPARTIAL Operand State Status, YPARTIAL register bit.

The MATH_FSTAT register can be written by hardware as well as a software access.
When executing a function x register, the MATH_FSTAT.YPARTIAL bit is set to in-
dicate that the y operand register is modified without the associated x operand. (Refer
to the MATH Unit States and Sequence Error section for more information.)

20:16

(R/W)

LASTOP Operand State Status, Last Operand code.

The MATH_FSTAT register can be written by hardware as well as a software access.
When executing a function X register, the MATH_FSTAT.LASTOP bit field is updat-
ed. (Refer to the MATH Unit States and Sequence Error section for more informa-
tion.)

0 Last operation was EXP.

1 Last operation was EXP2.

2 Last operation was RECIP.

3 Last operation was SQRT.

4 Last operation was LN.

5 Last operation was LOG2.

6 Last operation was SIN.

7 Last operation was COS.

CM41X_M4 MATH Register Descriptions

35–32 ADSP-CM41x Mixed-Signal Control Processor

Table 35-19: MATH_FSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8 Last operation was TAN.

9 Last operation was ASIN.

10 Last operation was ACOS.

11 Last operation was ATAN.

16 Last operation was ATAN2.

17 Last operation was HYPOT.

18 Last operation was RTOP.

19 Last operation was PTOR.

5

(R/W)

SEQERR Operand State Status, Sequence Error.

Read/write state register.

4

(R/W)

IXS Operand State Status, Inexact Operation.

Read/write state register.

3

(R/W)

UFS Operand State Status, Underflow.

Read/write state register.

2

(R/W)

OFS Operand State Status, Overflow.

Read/write state register.

1

(R/W)

DZS Operand State Status, Divided By Zero.

Read/write state register.

0

(R/W)

IOS Operand State Status, Invalid Operation.

Read/write state register.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–33

Generic X Function Register (GX)

The MATH_GX register is used for the generic X function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-14: MATH_GX Register Diagram

Table 35-20: MATH_GX Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–34 ADSP-CM41x Mixed-Signal Control Processor

Generic Y Function Register (GY)

The MATH_GY register is used for the generic Y function.

Input Register Y

Input Register Y

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-15: MATH_GY Register Diagram

Table 35-21: MATH_GY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register Y.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–35

hypot(x,y) Function x Operand Register

The MATH_HYPOTF_X register is the command register for the second operand (x) of the arctan(y/x) function. A

write to the register initiates the hypot(x,y) = sqrt(x2 + y2) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-16: MATH_HYPOTF_X Register Diagram

Table 35-22: MATH_HYPOTF_X Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–36 ADSP-CM41x Mixed-Signal Control Processor

hypot(x,y) Function y Operand Register

The MATH_HYPOTF_Y register is the command register for the first operand (y) of the hypot(x,y) = sqrt(x2 + y2)
function. It does not initiate a new operation.

Input Register Y

Input Register Y

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-17: MATH_HYPOTF_Y Register Diagram

Table 35-23: MATH_HYPOTF_Y Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register Y.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–37

Math Unit Interrupt Register

The MATH_ISTAT register indicates the cumulative interrupt status of the MATH unit.

Overflow
Math Unit Cumulative Interrupt Status,

Underflow
Math Unit Cumulative Interrupt Status,

Divided By Zero
Math Unit Cumulative Interrupt Status,

Inexact Operation
Math Unit Cumulative Interrupt Status,

Invalid Operation
Math Unit Cumulative Interrupt Status,

Sequence Error
Math Unit Cumulative Interrupt Status,

OFC (R/W1C)UFC (R/W1C)

DZC (R/W1C)IXC (R/W1C)

IOC (R/W1C)SEQERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-18: MATH_ISTAT Register Diagram

Table 35-24: MATH_ISTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5

(R/W1C)

SEQERR Math Unit Cumulative Interrupt Status, Sequence Error.

Write 1 to clear status.

4

(R/W1C)

IXC Math Unit Cumulative Interrupt Status, Inexact Operation.

Write 1 to clear status.

3

(R/W1C)

UFC Math Unit Cumulative Interrupt Status, Underflow.

Write 1 to clear status.

2

(R/W1C)

OFC Math Unit Cumulative Interrupt Status, Overflow.

Write 1 to clear status.

1

(R/W1C)

DZC Math Unit Cumulative Interrupt Status, Divided By Zero.

Write 1 to clear status.

0

(R/W1C)

IOC Math Unit Cumulative Interrupt Status, Invalid Operation.

Write 1 to clear status.

CM41X_M4 MATH Register Descriptions

35–38 ADSP-CM41x Mixed-Signal Control Processor

ln(x) Function Register

The MATH_LNF register, when written, initiates the ln(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-19: MATH_LNF Register Diagram

Table 35-25: MATH_LNF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–39

log2(x) Function Register

The MATH_LOG2F register, when written, initiates the log2(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-20: MATH_LOG2F Register Diagram

Table 35-26: MATH_LOG2F Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–40 ADSP-CM41x Mixed-Signal Control Processor

Polar to Rectangular Function a Operand Register

The MATH_PTORF_A register is the command register for the first operand (a, or angle in radians) of the r * sin(a)
and r * cos(a) function multifunction. (The function converts from polar to rectangular coordinates.) A write to this
register does not initiate a new operation.

Input Register A

Input Register A

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-21: MATH_PTORF_A Register Diagram

Table 35-27: MATH_PTORF_A Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register A.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–41

Polar to Rectangular Function r Operand Register

The MATH_PTORF_R register is the command register for the second operand (r, or radius) of the r * sin(a) and r *
cos(a) multifunction. (The function converts from polar to rectangular coordinates.) A write to this register initiates
the r * sin(a) and r * cos(a) multifunction.

Input Register R

Input Register R

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-22: MATH_PTORF_R Register Diagram

Table 35-28: MATH_PTORF_R Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register R.

CM41X_M4 MATH Register Descriptions

35–42 ADSP-CM41x Mixed-Signal Control Processor

Reciprocal(x) or 1/x Function Register

The MATH_RECIPF register, when written, initiates the reciprocal(x) or 1/x function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-23: MATH_RECIPF Register Diagram

Table 35-29: MATH_RECIPF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–43

Math Unit Function Result 1

The MATH_RES1 register contains the result for a single result operation or the first result of a dual result function.

Result Register

Result Register

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-24: MATH_RES1 Register Diagram

Table 35-30: MATH_RES1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Result Register.

CM41X_M4 MATH Register Descriptions

35–44 ADSP-CM41x Mixed-Signal Control Processor

Math Unit Function Result 2

The MATH_RES2 register contains the second result of a dual result function.

Result Register

Result Register

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-25: MATH_RES2 Register Diagram

Table 35-31: MATH_RES2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Result Register.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–45

Rectangular to Polar Function x Operand Register

The MATH_RTOPF_X register is the command register for the second operand (x) of the sqrt(x2 + y2) and
arctan(y/x) multifunction. (The function converts from rectangular to polar coordinates.) A write to this register

initiates the sqrt(x2 + y2) and arctan(y/x) multifunction.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-26: MATH_RTOPF_X Register Diagram

Table 35-32: MATH_RTOPF_X Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–46 ADSP-CM41x Mixed-Signal Control Processor

Rectangular to Polar Function y Operand Register

The MATH_RTOPF_Y register is the command register for the first operand (y) of the sqrt(x2 + y2) and arctan(y/x)
multifunction. (The function converts from rectangular to polar coordinates.) A write to this register does not ini-
tiate a new operation.

Input Register Y

Input Register Y

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-27: MATH_RTOPF_Y Register Diagram

Table 35-33: MATH_RTOPF_Y Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register Y.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–47

sin(x) Function Register

The MATH_SINF register, when written, initiates the sin (x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-28: MATH_SINF Register Diagram

Table 35-34: MATH_SINF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

35–48 ADSP-CM41x Mixed-Signal Control Processor

Square Root or sqrt(x) Function

The MATH_SQRTF register, when written, initiates the sqrt(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-29: MATH_SQRTF Register Diagram

Table 35-35: MATH_SQRTF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–49

Math Unit Function State Status Register

The MATH_SSTAT register indicates the status of the MATH unit.

Operand State Status
DIRTY (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-30: MATH_SSTAT Register Diagram

Table 35-36: MATH_SSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/NW)

DIRTY Operand State Status.

The MATH_SSTAT.DIRTY (sticky) bit indicates that the context of the function reg-
ister has been modified since the last context was saved, facilitating a lazy stacking of
state. The bit is also known as the busy bit.

CM41X_M4 MATH Register Descriptions

35–50 ADSP-CM41x Mixed-Signal Control Processor

tan(x) Function Register

The MATH_TANF register, when written, initiates the tan(x) function.

Input Register X

Input Register X

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 35-31: MATH_TANF Register Diagram

Table 35-37: MATH_TANF Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Input Register X.

CM41X_M4 MATH Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 35–51

36 Floating-Point Saturation Unit (FSAT)

It is often desirable to implement a 32-bit floating-point saturate. This function compares a 32-bit floating point
number to a maximum and a minimum value. The function returns the minimum value if the number is below
minimum, the function returns the maximum value if the number is above the maximum. Otherwise the function
returns the input number. There are a small set of special answers to have basic floating-point compatibility to basic
IEEE standards.

The ARM-Cortex-M4F core takes a significant number of cycles more than some competing processors to imple-
ment this function. It has no direct instruction for a max/min operation. This unit is intended to act as a very nar-
row coprocessor that implements a limited accelerated saturate function in hardware.

Functional Description
The unit can operate on the bottom 1KB of configured data memory space. If enabled, accesses to this range goes
through a simple co-process step to implement the minimum/maximum on written data. This is intended to sit off
of the system bus.

The minimum/maximum values are at the two data locations just prior to the beginning of data space. This may
allow the compiler to use small offsets and share pointer values between the minimum/maximum and the data val-
ues, maximizing code throughput. The entire 1KB region where the minimum/maximum resides aligns with the
basic ARM minimum size range.

From a programmer’s perspective, the FSAT essentially implements a faster way to perform floating-point satura-
tion, as depicted in following code samples.

● Code for floating-point saturation in C language

Float fsat(Float min, Float max, Float val)
 {
 if(val < min) return (min);
 else if (val > max) return (max);
 return (val)
 }

Floating-Point Saturation Unit (FSAT)

ADSP-CM41x Mixed-Signal Control Processor 36–1

● Code for floating-point saturation using FSAT design

float fsat(float min, float max, float var)
 {
 *pFSAT_MAX = max;
 *pFSAT_MIN = min;
 *pFSAT_VAR = var;

 return (*pFSAT_VAR);
 }

FSAT Performance

The FSAT unit is closely tied to the ARM Cortex-M4 core and the ARM Cortex-M4 SRAM memory. Additional
processor cycles (other than what is expected on typical SRAM writes and reads) are not incurred using the FSAT
unit.

Supported ARM Cortex-M4P Configuration
The following ARM Cortex-M4P SRAM configurations are supported with the FSAT unit.

Table 36-1: SRAM_CFG

SRAM_CFG Register Address Description

SRAM_CFG=1 SAT_MIN 0x2000_7FF8 Min value for sat function

SAT_MAX 0x2000_7FFC Max value for sat function

SAT_VAR 0x2000_8000

0x2000_83FC

If FSAT enabled: Min/Max function performed on aligned 32-bit
writes. Else normal memory operation.

SRAM_CFG=2 SAT_MIN 0x2000_FFF8 Min value for sat function

SAT_MAX 0x2000_FFFC Max value for sat function

SAT_VAR 0x2001_0000

0x2001_03FC

If FSAT enabled: Min/Max function performed on aligned 32-bit
writes. Else normal memory operation.

SRAM_CFG=3 SAT_MIN 0x2001_7FF8 Min value for sat function

SAT_MAX 0x2001_7FFC Max value for sat function

SAT_VAR 0x2001_8000

0x2001_83FC

If FSAT enabled: Min/Max function performed on aligned 32-bit
writes. Else normal memory operation.

SRAM_CFG=4 SAT_MIN 0x2002_FFF8 Min value for sat function

SAT_MAX 0x2002_FFFC Max value for sat function

SAT_VAR 0x2002_0000

0x2002_03FC

If FSAT enabled: Min/Max function performed on aligned 32-bit
writes. Else normal memory operation.

Supported ARM Cortex-M4P Configuration

36–2 ADSP-CM41x Mixed-Signal Control Processor

In each SRAM configuration case mentioned above, up to 1 KB of variable memory is available as variable memory
on which the saturation can be performed, while the MIN and MAX are just single 32-bit memory locations. Once
FSAT is turned ON and an SRAM Config is fixed, the typical sequence would be:

• Write to MIN location

• Write to MAX location

• Write the variable value to one of 1K locations

• Read the Saturated value from the above variable location.

If MIN and MAX are initialized and do not vary, further operations can be as simple as:

• Write the variable value to one of 1K locations

• Read the Saturated value from the above variable location.

Atomicity of Operation

There are no atomic protections on write operations on MIN, MAX values or an on-going FSAT operation on a
variable, since these are just treated as SRAM memory location accesses. If interrupted, the application must ensure
that new writes are not performed until existing writes are verified as complete. Since there are no status bits to
reflect operation status, the application may use ARM synchronization instructions. Optionally, interrupts maybe
turned off during FSAT access.

Programming Model, Enable FSAT
To enable the FSAT unit, the M4P_SRAM_CFG.SAT_COPROC bit must be enabled.

• #define BITM_M4P_SRAM_CFG_BIT_28 0x10000000
• *pREG_M4P_SRAM_CFG |= BITM_M4P_SRAM_CFG_BIT_28;

Configure the desired ARM Cortex-M4 SRAM prior to enabling or using the FSAT block.

Event Control
FSAT is a simple block which operates directly on the ARM Cortex-M4P SRAM memory. There are no event con-
trol or other registers or configurations used with this unit.

Register Descriptions

Table 36-2: SRAM_CFG=1

Register Address Description

SAT_MIN 0x2000_7FF8 Minimum value for saturate function

Programming Model, Enable FSAT

ADSP-CM41x Mixed-Signal Control Processor 36–3

Table 36-2: SRAM_CFG=1 (Continued)

Register Address Description

SAT_MAX 0x2000_7FFC Maximum value for saturate function

SAT_VAR 0x2000_8000

0x2000_83FC

0 = normal memory operation

1 = Min/max function performed on aligned
32-bit writes in flight

Table 36-3: SRAM_CFG=2

Register Address Description

SAT_MIN 0x2000_FFF8 Minimum value for saturate function

SAT_MAX 0x2000_FFFC Maximum value for saturate function

SAT_VAR 0x2001_0000

0x2001_03FC

0 = normal memory operation

1 = Min/max function performed on aligned
32-bit writes in flight

Table 36-4: SRAM_CFG=3

Register Address Description

SAT_MIN 0x2001_7FF8 Minimum value for saturate function

SAT_MAX 0x2001_7FFC Maximum value for saturate function

SAT_VAR 0x2001_8000

0x2001_83FC

0 = normal memory operation

1 = Min/max function performed on aligned
32-bit writes in flight

Register Descriptions

36–4 ADSP-CM41x Mixed-Signal Control Processor

37 Logic Block Array (LBA)

The Logic Block Array (LBA) contains a number of logic blocks which can be programmed to perform a variety of
logical or arithmetic functions. The logical or arithmetic function can be defined in either Look-up Table (LUT) or
product term mode. Each logic block generates one output as a function of up to 8 or 16 inputs depending upon
the mode chosen. The exact function is defined by programming eight 32-bit function registers which are mapped
into the processor register space.

LBA Features
The following list contains the features of the LBA module:

• Configurable per output in either LUT or PTA modes

• LUT (Look-up table) mode allows any 8-input combinational logic function

• PTA (Product Term Array) mode allows eight product terms with up to 16-inputs

• Scalable, typically up to eight independent outputs

• Combinatorial or registered output

• System inputs can be connected to system-specific signals (for example, timer outputs, TRU slaves)

• System outputs can be connected to system-specific signals (for example, TRU masters, core interrupts)

LBA Functional Description
The logic block array has eight logic block elements. The 16 logical inputs A[7:0] and B[7:0] are available to each
logic block element when the LBA is configured for PTA mode. Eight logical inputs A[7:0] are available to each
logic block element when LBA is configured for LUT mode. The logic inputs A[7:0] can be sourced from the gener-
al-purpose port pins, the on-chip system-level inputs (SYS_IN), the memory-mapped input register (LBA0_DIN),
or the system feedback outputs (SYS_OUT). GPIO pins are not available as source-to-logic inputs B[7:0]. But,
B[7:0] can be sourced from the system level inputs, the memory-mapped input register (LBA0_DIN), or the system
feedback outputs. The source for each of the 16 possible inputs A[7:0] and B[7:0] is configured through the
LBA0_CFG.B7MXSEL and LBA0_CFG.A0MXSEL bit fields. The A and B Input Sources table shows the possi-
ble sources for individual A and B inputs as determined by the these fields.

Logic Block Array (LBA)

ADSP-CM41x Mixed-Signal Control Processor 37–1

Table 37-1: A and B Input Sources

MXSEL[1:0] A[n] source B[n] source

00 Primary input GP_IN[n] System output SYS_OUT[n]

01 System output SYS_OUT[n] System output SYS_OUT[n]

10 Input register LBA0_DIN[n] Input register LBA0_DIN[n]

11 System input SYS_IN[n] System input SYS_IN[n]

The outputs Y[7:0] of the logic block array are assigned to GPIO pins by proper configuration of the system-level
master pin multiplexer. One GPIO pin is available as an output for each logic block element. A total of eight GPIO
pins are available for the logic block array. The system-level pin resources for LBA are limited. The system designer
must choose one direction for each of the eight pins. If the system requires four LBA outputs available as GPIO
pins, then only four GPIOs are available as inputs.

The logic inputs from GPIOs (GP_IN[n]) can be individually synchronized to the system clock or used asynchro-
nously, under the control of the corresponding LBA0_SYNC_CTL.SYNCIN bit. This selection applies to all LBA
blocks globally.

Clocking

The LBA module operates on internal clock which is derived from the system clock. LBA0_CLK_CTL register is
used to control the clock divider. The clock divider periodically creates a synchronous update pulse whose period is
controlled by the LBA0_CLK_CTL.DIVDAT field. This update pulse controls how often the logic block array reg-
istered outputs are updated. When enabled (LBA0_CLK_CTL.EN =1) the clock divide ratio is equal to
LBA0_CLK_CTL.DIVDAT + 1. If disabled (LBA0_CLK_CTL.EN =0) the update signal is always high and the
logic block array is updated every system clock cycle to implement a divide-by-1.

Data Input and Output

Specific data sources for the LBA module are selected using the LBA0_CFG register. The 2-bit multiplex select bit
fields (LBA0_CFG.A0MXSEL – LBA0_CFG.B7MXSEL) control individual 4:1 input multiplexers for each A or
B input.

The data input register (LBA0_DIN) provides another optional data input source. It is one of the data choices for
each A or B input as defined by the LBA0_CFG register. This LBA0_DIN register provides direct access to a given
A or B input via a memory-mapped register write. This feature can be used for:

• Providing a convenient way to select different logic functions.

• Accepting a software input into a logic function or state machine

• Accepting input from a DMA source originating in another peripheral

The LBA0_DOUT register provides real-time observability of the output states of the N logic block array registered
outputs. When reading this register, the application must take into consideration that the outputs are dynamic and
may change every system clock cycle.

LBA Functional Description

37–2 ADSP-CM41x Mixed-Signal Control Processor

The number of input and output pins for the LBA module in the system is limited. The LBA0_DIR register is used
to control output enables and input enables at the system level. If the direction is IN, the input enable is activated
for the target GPIO and the output enable is deasserted. If the direction is OUT, the output enable is activated for
the target GPIO and the input enable is deasserted.

The LBA0_BLK[n]_FN0 – LBA0_BLK[n]_FN7 registers are used to implement the input-output logic for
each logic block element. Eight block function registers are available for each logic block element. When using LUT
mode, these eight registers are used as 8 x 32-bit RAM. The A[7:0] inputs are used as address bits for this 256 bit
RAM. Depending on the address, a bit is selected as output from 256 bit RAM. In PTA mode, each
LBA0_BLK[n]_FN0 – LBA0_BLK[n]_FN7 register is used to configure a product term for 16 inputs. Finally
eight product terms are OR'ed to create the product-term-array function.

CM41X_M4 LBA Trigger List

Table 37-2: CM41X_M4 LBA Trigger List Masters

Trigger ID Name Description Sensitivity

96 LBA0_SYS_OUT1 LBA0 Registered LBA outputs available to system
1

Edge

97 LBA0_SYS_OUT2 LBA0 Registered LBA outputs available to system
2

Edge

Table 37-3: CM41X_M4 LBA Trigger List Slaves

Trigger ID Name Description Sensitivity

96 LBA0_SYS_IN3 LBA0 LBA system inputs from Trigger Slaves,
Timer Outputs etc.. 3

Pulse

97 LBA0_SYS_IN4 LBA0 LBA system inputs from Trigger Slaves,
Timer Outputs etc.. 4

Pulse

CM41X_M4 LBA Interrupt List

Table 37-4: CM41X_M4 LBA Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

157 LBA0_SYS_OUT0 LBA0 Registered LBA outputs available to
system

Edge

CM41X_M4 LBA0 Register List

The LBA0 module controls system interface signal features for a number of module interfaces.

LBA Functional Description

ADSP-CM41x Mixed-Signal Control Processor 37–3

Table 37-5: CM41X_M4 LBA0 Register List

Name Description

LBA0_BLK[n]_CTL Logic Block Control Register

LBA0_BLK[n]_FN0 Logic Block Function 0 Register

LBA0_BLK[n]_FN1 Logic Block Function 1 Register

LBA0_BLK[n]_FN2 Logic Block Function 2 Register

LBA0_BLK[n]_FN3 Logic Block Function 3 Register

LBA0_BLK[n]_FN4 Logic Block Function 4 Register

LBA0_BLK[n]_FN5 Logic Block Function 5 Register

LBA0_BLK[n]_FN6 Logic Block Function 6 Register

LBA0_BLK[n]_FN7 Logic Block Function 7 Register

LBA0_CFG Logic Block Array Configuration Register

LBA0_CLK_CTL Logic Block Array Clock Divisor Register

LBA0_DIN Logic Block Array Data Input Register

LBA0_DIR Logic Block Array Pin Direction Register

LBA0_DOUT Logic Block Array Data Output Register

LBA0_SYNC_CTL Logic Block Array GPIO Input Synchronization Control Register

LBA Block Diagram

The following figures show the LBA block in LUT (Look Up Table) mode and PTA (Combinatorial) mode.

LBA Functional Description

37–4 ADSP-CM41x Mixed-Signal Control Processor

NOTE
These settings also affect
the LBA output ()

LBA_PIN7
(see muxing table)

SYS_OUT7

LBA_DIN7

SYS_IN7

SYS_OUT7

SYS_IN7

A2
A1

A0

A3

A5
A6

A4

A7

2
0

unused
01234567

LBA0_DIR
31..8

LBA0_CFG
0123456789101112131415

00

01

10

11

B2
B1

B0

B3

B5
B6

B4

B7

2

LBA0_CFG
16171819202122232425262728293031

00

01

10

11

8

8

D Q

unused
01234567

LBA0_SYNC_CTL
31..8

0

1

unused
01234567

LBA0_DIN
31..8

8

SYSCLK

LBA_DIN7

unused

31..16

To Channel in PTA
(Combinatorial) Mode (Part 2)

To Channel in PTA
(Combinatorial) Mode (Part 2)

Figure 37-1: Channel in PTA (Combinatorial) Mode (Part 1)

LBA Functional Description

ADSP-CM41x Mixed-Signal Control Processor 37–5

0

1

2
0

1

2

3

0123456789101112131415
LBA0_BLK7_FN7

A2
A1

A0

A3

A5
A6

A4

A7

0

1

2
0

1

2

3

16171819202122232425262728293031
LBA0_BLK7_FN7

B2
B1

B0

B3

B5
B6

B4

B7

AND

FN7
FN6

FN5
FN4

FN3
FN2

FN1
FN0

OR

OUTINV
(Determines
Y level if BLK
is disabled)

Y

Channel in PTA (Combinatorial) Mode
(LBA0_BLK7_CTL.PTA = 1)

BLK7
BLK6

BLK5
BLK4

BLK3
BLK2

BLK1
BLK0

D

FB_Y

unused
01234

LBA0_BLK7_CTL
31..5

EN: Enable
PTA: PTA Mode
REGOUT
CINSEL:
Cascade Input
Select; see
input section

1

0

1

0

0

1

CINSEL

LFA Clock
(See LBA0_CLK_CTL)

unused
01234567

LBA0_DOUT (r/o)
31..8

1

0

Q

unused
01234567

LBA0_DIR
31..8

NOTE
These settings also affect
the LBA input

From Channel in
PTA (Combinatorial)
Mode (Part 1)

From Channel in
PTA (Combinatorial)
Mode (Part 1)

Figure 37-2: Channel in PTA (Combinatorial) Mode (Part 2)

LBA Functional Description

37–6 ADSP-CM41x Mixed-Signal Control Processor

8

FNn_A7 only:
Feedback input from FN(n-1)_FB_Y
See LBA0_BLKn_CTL.CINSEL
(top right in following figure)

NOTE
These settings also
affect the LBA output ()

GP_IN7
(see muxing

 table)

SYS_OUT7

LBA_DIN7

SYS_IN7

A2
A1

A0

A3

A5
A6

A4

A7

2
0

unused
01234567

LBA0_DIR
31..8

LBA0_CFG
0123456789101112131415

00

01

10

11

D Q

unused
01234567

LBA0_SYNC_CTL
31..8

0

1

unused
01234567

LBA0_DIN
31..8

SYSCLK

To Channel in LUT
(Look Up Table) Mode
(Part 2) A0 to A7

Figure 37-3: Channel in LUT (Look Up Table) Mode (Part 1)

Channel in LUT (Look Up Table) Mode
(LBA0_BLK7_CTL.PTA = 0)

BLK7

BLK6
BLK5

BLK4
BLK3

BLK2
BLK1

BLK0

000...

001...

010...

011...

100...

101...

110...

111...

...
00

00
0

...
00

00
1

...
00

01
0

...
00

01
1

...
00

10
0

...
00

10
1

...
00

11
0

...
00

11
1

...
01

00
0

...
01

00
1

...
01

01
0

...
01

01
1

...
01

10
0

...
01

10
1

...
01

11
0

...
10

00
0

...
10

00
1

...
10

01
0

...
10

01
1

...
10

10
0

...
10

10
1

...
10

11
0

...
10

11
1

...
11

00
0

...
11

00
1

...
11

01
0

...
11

01
1

...
11

10
0

...
11

10
1

...
11

11
0

...
01

11
1

...
11

11
1

LBA0_BLKn_FN0

A4...A0

A
7*

...
A

5

CINSEL
A7

OUTINV
(Determines Y level
if BLK is disabled)

Y

FB_Y

EN: Enable
PTA: PTA Mode
REGOUT
CINSEL:
Cascade Input
Select; see
input section

LFA Clock
(See LBA0_CLK_CTL)

unused

LBA0_DOUT (r/o)
31..8 LBA0_DIR

NOTE:
These settings
also affect the
LBA input

31 0

LBA0_BLKn_FN1

LBA0_BLKn_FN2

LBA0_BLKn_FN3

LBA0_BLKn_FN4

LBA0_BLKn_FN5

LBA0_BLKn_FN6

LBA0_BLKn_FN7

1234567 0 unused

31..8

1234567 0

unused

LBA0_BLK7_CTL
31..6

1234 0

1

0

1

0D Q

1

0

A1
A2
A3
A4
A5
A6
A7*

A0

1

0

From Channel in
LUT (Look Up Table)
Mode (Part 1)

Figure 37-4: Channel in LUT (Look Up Table) Mode (Part 2)

LBA Architectural Concepts

The LBA supports the various configurations described in following sections.

LBA Functional Description

ADSP-CM41x Mixed-Signal Control Processor 37–7

Registered Output

The LBA supports registering of outputs. The registered outputs are synchronous to SYSCLK. Program the
LBA0_BLK[n]_CTL.REGOUT bit to select registered outputs.

0x1C 0x2D 0x3E 0x4F 0x50

SCLK

A7:0

Y<n>

Figure 37-5: Registered Output Mode Timing

LBA Operating Modes
The LBA supports the following operating modes.

• Product Term Array Mode

• Look-up Table Mode

• Registered Output Mode

• Combinatorial Mode

Product Term Array Mode

In product term mode, each function register defines one product term. The connectivity for each of the 16 inputs
is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X. The A and B Input Sources
table describes the configurations.

Table 37-6: A and B Input Sources

2-bit Connectivity Field Input Function Description

00 0 Disable the entire product term

01 ~A Inverted

10 A Non-inverted

11 X Do-not-care

The 16 modified inputs are AND'ed to create one product term. Eight product terms are OR'ed to create the prod-
uct term array function. The polarity of function is selectable. Registered output can be bypassed, if desired.
Synchronized or asynchronous A[7:0] inputs can be selected using LBA0_SYNC_CTL.SYNCIN (synchronizer at
LBA not shown). Program LBA0_BLK[n]_CTL.PTA to 1 to select the product term array mode. Refer to the
programming concepts section for more details.

LBA Architectural Concepts

37–8 ADSP-CM41x Mixed-Signal Control Processor

2-LUT
16 x 8 AND 16 x 8

Y

PERIPHERAL BUS
MMR INTERFACE

A[7:0]

B[7:0]
OR8 D-FLIP FLOP

Figure 37-6: Product Term Array Mode Block

Look-up Table Mode

In look-up table mode, all 256 possible input combinations must be defined. Each bit of a function register
(LBA0_BLK[n]_FN0) represents the output state for a specific combination of the eight inputs. The registers are
organized similar to random access memory so that the A[7:0] inputs act like address bits to access a specific bit in
the function registers.

256 x 1 D-FLIP FLOP Y

PERIPHERAL BUS
MMR INTERFACE

A[7:0]

Figure 37-7: Look Up Table Mode Block

Registered Output Mode

In registered output mode, the output of the logic block is registered by the system clock rising edges. This feature
allows clean output edges to be presented to the GPIO pads or to be used as feedback or cascade input terms for
other logic blocks.

Combinatorial Mode

Each logic block can be individually programmed to be in either combinatorial mode or registered output mode. In
combinatorial mode, there is an asynchronous logic path from the input to the output of the logic block. This fea-
ture provides flexibility for system designs, but also comes with some caveats. The output signal can transition mul-
tiple times depending primarily upon varying input timing, input delay paths and secondarily on internal logic de-
lays.

0x1C 0x2D 0x3E 0x4F 0x50

SCLK

A7:0

Y<n>

Figure 37-8: Combinatorial Mode Timing

LBA Event Control
No interrupts or status are generated by the logic block array directly.

LBA Operating Modes

ADSP-CM41x Mixed-Signal Control Processor 37–9

The LBA0_SYS_IN[n] and LBA0_SYS_OUT[n] signals may be used by system designers to implement inter-
rupts, trigger inputs and outputs as required. The LBA0_SYS_OUT2 and LBA0_SYS_OUT1 signals are m aster
trigger signals for TRU1. A high pulse on these signals can trigger other trigger slaves as configured in TRU. The
LBA0_SYS_OUT7 and LBA0_SYS_OUT6 signals can be used as input signals for counter. The LBA’s system
output can be selected as input to the counter can be by programming the SYSBLK_ROT_UPDN_CFG register.
The LBA0_SYS_OUT0 signal can interrupt M4 core. The high level on he LBA0_SYS_OUT0 signal will result in
the recognition of interrupt by interrupt controller of M4 core.

The trigger signals generated by various trigger masters of TRU1 can be used as source of inputs to LBA by using
the the LBA0_SYS_OUT4 and the LBA0_SYS_OUT3 input signals. The TIMER_TMR3 output signal can also
be used as input to LBA by using the the LBA0_SYS_OUT3 signal.

See the Internal SYS_IN and SYS_OUT Routing Scheme table.

Table 37-7: Internal SYS_IN and SYS_OUT Routing Scheme

Port Number SYS_IN[n] Port Connection SYS_OUT[n] Port Connection

0 0 M4/SEC1 Interrupt INTR_LBA_SYS_OUT0

1 0 TRU1 Trigger Master TRGM_LBA_SYS_OUT1

2 0 TRU1 Trigger Master TRGM_LBA_SYS_OUT2

3 TRU1 Trigger slave TRGS_LBA_SYS_IN3 Reserved

4 TRU1 Trigger slave TRGS_LBA_SYS_IN4 Reserved

5 TMR1_OUT[3] output waveform Reserved

6 0 Counter CNT0’s CNT_UD/PhaseA input

7 0 Counter CNT0’s CNT_DG/PhaseB input

LBA Programming Concepts
Using the features, operating modes, and event control for the LBA to their greatest potential requires an under-
standing of some LBA related concepts.

Cascading Output Functions

The LBA supports cascading output functions of one block to the input of another block. Program the
LBA0_BLK[n]_CTL.CINSEL bit to 1 to select cascading.

When the LBA0_BLK[n]_CTL.CINSEL bit =1, the FB_Y registered output from block N-1 is made available as
input A[7] into block N. (For block 0, when the LBA0_BLK[n]_CTL.CINSEL bit =1, input A[7] is assigned a
logic 0.)

NOTE: It is not possible to cascade the combinatorial, unregistered output of one block into the next block.

LBA Programming Concepts

37–10 ADSP-CM41x Mixed-Signal Control Processor

Output Inversion

The LBA supports selectable polarity of the programmed function equation. This inversion is applied after the LUT
or AND/OR array, and before the output register and output port. It, therefore, affects the polarity of the output
regardless of the setting of the LBA0_BLK[n]_CTL.REGOUT bit, and it affects the polarity of any cascaded out-
put from the block to the next block.

If the block is not enabled (LBA0_BLK[n]_CTL.EN =0), the LBA0_BLK[n]_CTL.OUTINV bit selects the
polarity of the (dsiabled) output port: if set, it selects a logic 1; otherwise, a logic 0.

Program the LBA0_BLK[n]_CTL.OUTINV to 1 to select inversion.

Registered Output

The LBA supports registering of outputs. Program the LBA0_BLK[n]_CTL.REGOUT bit to select registered out-
puts.

LBA Programming Examples

The logic block array allows flexible logic or arithmetic functions to be created through programming of the func-
tion registers. All function registers must be programmed before the logic block array is enabled to avoid spurious
outputs during the programming. Disable each logic block before reprogramming begins. Once programmed, a log-
ic block can be enabled and the desired programmed logic function is then available.

Look-up Table Mode Example

All function registers must be programmed before the logic block is enabled. In look-up table mode, the PTA mode
LBA0_BLK[n]_CTL.PTA bit is set to 0 and the LBA0_BLK[n]_CTL.EN bit is set to 1. Programming exam-
ples are for an 8-input AND function and a 4-input OR function. The programming can be easier to understand
when considering it as a 256 x 1 table of functions even though it is programmed as eight 32-bit registers.

Programming Example for an 8-input AND

In this example, Y= A7 × A6 × A5 × A4 × A3 × A2 × A1 × A0. For this function, there is only one entry in the 256 x
1 table, which is 1. Therefore, function registers LBA0_BLK[n]_FN0 through LBA0_BLK[n]_FN6 can be
written to 0x0000_00000. Function register LBA0_BLK[n]_FN7 must be written to 0x8000_0000.

Register A[7:5] Byte3

A[4:3]=11

Byte2

A[4:3]=10

Byte1

A[4:3]=01

Byte0

A[4:3]=00

FN0 000 0000_0000 0000_0000 0000_0000 0000_0000

FN1 001 0000_0000 0000_0000 0000_0000 0000_0000

FN2 010 0000_0000 0000_0000 0000_0000 0000_0000

FN3 011 0000_0000 0000_0000 0000_0000 0000_0000

FN4 100 0000_0000 0000_0000 0000_0000 0000_0000

FN5 101 0000_0000 0000_0000 0000_0000 0000_0000

LBA Programming Concepts

ADSP-CM41x Mixed-Signal Control Processor 37–11

Register A[7:5] Byte3

A[4:3]=11

Byte2

A[4:3]=10

Byte1

A[4:3]=01

Byte0

A[4:3]=00

FN6 110 0000_0000 0000_0000 0000_0000 0000_0000

FN7 111 1000_0000 0000_0000 0000_0000 0000_0000

Look-up Table Programming for an 4-input OR function of A[3:0]

In this example, Y= A3+A2+A1+A0.

Register/Data A[7:5] Byte3

A[4:3]=11

Byte2

A[4:3]=10

Byte1

A[4:3]=01

Byte0

A[4:3]=00

FN0 000 1111_1111 1111_1110 1111_1111 1111_1110

FN1 001 1111_1111 1111_1110 1111_1111 1111_1110

FN2 010 1111_1111 1111_1110 1111_1111 1111_1110

FN3 011 1111_1111 1111_1110 1111_1111 1111_1110

FN4 100 1111_1111 1111_1110 1111_1111 1111_1110

FN5 101 1111_1111 1111_1110 1111_1111 1111_1110

FN6 110 1111_1111 1111_1110 1111_1111 1111_1110

FN7 111 1111_1111 1111_1110 1111_1111 1111_1110

Product Term Array Mode Examples

Example 1: 8-input AND Function

In this example:

• Y=A0 × A1 × A2 × A3 × A4 × A5 × A6 × A7

• All 2-bit input connectivity functions for A inputs must be programmed as 10 (non-inverted).

• All 2-bit input connectivity functions for B inputs must be programmed as 11 (do-not-care).

• Only one product term is required for this particular function.

Register Product Term # Byte3

B[7:4]

Byte2

B[3:0]

Byte1

A[7:4]

Byte0

A[3:0]

FN0 0 1111_1111 1111_1111 1010_1010 1010_1010

FN1 1 0000_0000 0000_0000 0000_0000 0000_0000

FN2 2 0000_0000 0000_0000 0000_0000 0000_0000

FN3 3 0000_0000 0000_0000 0000_0000 0000_0000

FN4 4 0000_0000 0000_0000 0000_0000 0000_0000

LBA Programming Examples

37–12 ADSP-CM41x Mixed-Signal Control Processor

Register Product Term # Byte3

B[7:4]

Byte2

B[3:0]

Byte1

A[7:4]

Byte0

A[3:0]

FN5 5 0000_0000 0000_0000 0000_0000 0000_0000

FN6 6 0000_0000 0000_0000 0000_0000 0000_0000

FN7 7 0000_0000 0000_0000 0000_0000 0000_0000

Example 2: A 4-input OR Function

In this example:

• Y= A3 + A2 + A1 + A0;

• This function can be created with 4 individual product terms(*)

• Only one A[3:0] is programmed as 10 (non-inverted) pre product term

• All other inputs for the four product terms are programmed as 11 (do-not-care).

• The other four product terms are not required.

Register Product Term # Byte3

B[7:4]

Byte2

B[3:0]

Byte1

A[7:4]

Byte0

A[3:0]

FN0 0 1111_1111 1111_1111 1111_1111 1111_1110

FN1 1 1111_1111 1111_1111 1111_1111 1111_1011

FN2 2 1111_1111 1111_1111 1111_1111 1110_1111

FN3 3 1111_1111 1111_1111 1111_1111 1011_1111

FN4 4 0000_0000 0000_0000 0000_0000 0000_0000

FN5 5 0000_0000 0000_0000 0000_0000 0000_0000

FN6 6 0000_0000 0000_0000 0000_0000 0000_0000

FN7 7 0000_0000 0000_0000 0000_0000 0000_0000

CM41X_M4 LBA0 Register Descriptions
Logic Block Array (LBA0) contains the following registers.

Table 37-8: CM41X_M4 LBA0 Register List

Name Description

LBA0_BLK[n]_CTL Logic Block Control Register

LBA0_BLK[n]_FN0 Logic Block Function 0 Register

LBA0_BLK[n]_FN1 Logic Block Function 1 Register

LBA0_BLK[n]_FN2 Logic Block Function 2 Register

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–13

Table 37-8: CM41X_M4 LBA0 Register List (Continued)

Name Description

LBA0_BLK[n]_FN3 Logic Block Function 3 Register

LBA0_BLK[n]_FN4 Logic Block Function 4 Register

LBA0_BLK[n]_FN5 Logic Block Function 5 Register

LBA0_BLK[n]_FN6 Logic Block Function 6 Register

LBA0_BLK[n]_FN7 Logic Block Function 7 Register

LBA0_CFG Logic Block Array Configuration Register

LBA0_CLK_CTL Logic Block Array Clock Divisor Register

LBA0_DIN Logic Block Array Data Input Register

LBA0_DIR Logic Block Array Pin Direction Register

LBA0_DOUT Logic Block Array Data Output Register

LBA0_SYNC_CTL Logic Block Array GPIO Input Synchronization Control Register

CM41X_M4 LBA0 Register Descriptions

37–14 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Control Register

The LBA0_BLK[n]_CTL register contains bits that configure the various LBA0 modes of operation.

Registered Output Mode Select

Product Term Array ModeCascade Input Select

EnableInvert Logic Block Output

REGOUT (R/W)

PTA (R/W)CINSEL (R/W)

EN (R/W)OUTINV (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-9: LBA0_BLK[n]_CTL Register Diagram

Table 37-9: LBA0_BLK[n]_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

OUTINV Invert Logic Block Output.

The LBA0_BLK[n]_CTL.OUTINV selects polarity of the programmed function
equation. This inversion is applied after the LUT or AND/OR array, and before the
output register and output port. It, therefore, affects the polarity of the output regard-
less of the setting of LBA0_BLK[n]_CTL.REGOUT bit, and it affects the polarity of
any cascaded output from the block to the next block.

3

(R/W)

CINSEL Cascade Input Select.

The LBA0_BLK[n]_CTL.CINSEL bit selects cascading output functions of one
block to the input of another block. When the LBA0_BLK[n]_CTL.CINSEL =1,
the FB_Y registered output from block N-1 is made available as input A[7] into block
N. (For block 0, when LBA0_BLK[n]_CTL.CINSEL =1, input A[7] is assigned a
logic 0.) Note that it is not possible to cascade the combinatorial, unregistered output
of one block into the next block.

2

(R/W)

REGOUT Registered Output Mode Select.

The LBA0_BLK[n]_CTL.REGOUT bit selects registered output mode. In this
mode, the output of the logic block is registered by the system clock rising edges. This
feature allows clean output edges to be presented to the GPIO pads or to be used as
feedback and cascade input terms for other logic blocks.

1

(R/W)

PTA Product Term Array Mode.

The LBA0_BLK[n]_CTL.PTA bit configures product term array mode. The de-
fault operating mode is look-up table mode.

0

(R/W)

EN Enable.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–15

Logic Block Function 0 Register

In look-up table mode, the LBA0_BLK[n]_FN0 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN0 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Data
Look-up Table or Product Term Function

Data
Look-up Table or Product Term Function

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-10: LBA0_BLK[n]_FN0 Register Diagram

Table 37-10: LBA0_BLK[n]_FN0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Function Data.

CM41X_M4 LBA0 Register Descriptions

37–16 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Function 1 Register

In look-up table mode, the LBA0_BLK[n]_FN1 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN1 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Data
Look-up table or Product Term Function

Data
Look-up table or Product Term Function

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-11: LBA0_BLK[n]_FN1 Register Diagram

Table 37-11: LBA0_BLK[n]_FN1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up table or Product Term Function Data.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–17

Logic Block Function 2 Register

In look-up table mode, the LBA0_BLK[n]_FN2 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN2 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Data
Look-up Table or Product Term Array

Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-12: LBA0_BLK[n]_FN2 Register Diagram

Table 37-12: LBA0_BLK[n]_FN2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Data.

CM41X_M4 LBA0 Register Descriptions

37–18 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Function 3 Register

In look-up table mode, the LBA0_BLK[n]_FN3 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN3 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Function Data
Look-up Table or Product Term Array

Function Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-13: LBA0_BLK[n]_FN3 Register Diagram

Table 37-13: LBA0_BLK[n]_FN3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Function Data.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–19

Logic Block Function 4 Register

In look-up table mode, the LBA0_BLK[n]_FN4 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN4 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Function Data
Look-up Table or Product Term Array

Function Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-14: LBA0_BLK[n]_FN4 Register Diagram

Table 37-14: LBA0_BLK[n]_FN4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Function Data.

CM41X_M4 LBA0 Register Descriptions

37–20 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Function 5 Register

In look-up table mode, the LBA0_BLK[n]_FN5 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN5 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Function Data
Look-up Table or Product Term Array

Function Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-15: LBA0_BLK[n]_FN5 Register Diagram

Table 37-15: LBA0_BLK[n]_FN5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Function Data.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–21

Logic Block Function 6 Register

In look-up table mode, the LBA0_BLK[n]_FN6 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN6 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Function Data
Look-up Table or Product Term Array

Function Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-16: LBA0_BLK[n]_FN6 Register Diagram

Table 37-16: LBA0_BLK[n]_FN6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Function Data.

CM41X_M4 LBA0 Register Descriptions

37–22 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Function 7 Register

In look-up table mode, the LBA0_BLK[n]_FN7 register represents the output state for a specific combination of
the 8 inputs. In this mode, the register is organized similar to a random access memory so that the A7:0 inputs act
like address bits to access a specific bit in this register.

In product term mode, the LBA0_BLK[n]_FN7 register defines one product term. The connectivity for each of
the 16 inputs is described through a 2-bit field. This 2-bit field can be programmed as: 0, A, ~A or X.

For more information, see the "Programming Examples" section of this chapter.

Function Data
Look-up Table or Product Term Array

Function Data
Look-up Table or Product Term Array

DAT[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DAT[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-17: LBA0_BLK[n]_FN7 Register Diagram

Table 37-17: LBA0_BLK[n]_FN7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DAT Look-up Table or Product Term Array Function Data.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–23

Logic Block Array Configuration Register

The LBA0_CFG register is used to select a particular data source. The 2-bit fields control individual 4:1 input mux-
es for each A or B input.

A3 Multiplexer SelectA4 Multiplexer Select

A2 Multiplexer SelectA5 Multiplexer Select

A1 Multiplexer SelectA6 Multiplexer Select

A0 Multiplexer SelectA7 Multiplexer Select

B3 Multiplexer SelectB4 Multiplexer Select

B2 Multiplexer SelectB5 Multiplexer Select

B1 Multiplexer SelectB6 Multiplexer Select

B0 Multiplexer SelectB7 Multiplexer Select

A3MXSEL (R/W)A4MXSEL (R/W)

A2MXSEL (R/W)A5MXSEL (R/W)

A1MXSEL (R/W)A6MXSEL (R/W)

A0MXSEL (R/W)A7MXSEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

B3MXSEL (R/W)B4MXSEL (R/W)

B2MXSEL (R/W)B5MXSEL (R/W)

B1MXSEL (R/W)B6MXSEL (R/W)

B0MXSEL (R/W)B7MXSEL (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-18: LBA0_CFG Register Diagram

Table 37-18: LBA0_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

B7MXSEL B7 Multiplexer Select.

The LBA0_CFG.B7MXSEL bit field selects the 4:1 input multiplexer for the B7 in-
put.

29:28

(R/W)

B6MXSEL B6 Multiplexer Select.

The LBA0_CFG.B6MXSEL bit field selects the 4:1 input multiplexer for the B6 in-
put.

27:26

(R/W)

B5MXSEL B5 Multiplexer Select.

The LBA0_CFG.B5MXSEL bit field selects the 4:1 input multiplexer for the B5 in-
put.

CM41X_M4 LBA0 Register Descriptions

37–24 ADSP-CM41x Mixed-Signal Control Processor

Table 37-18: LBA0_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

25:24

(R/W)

B4MXSEL B4 Multiplexer Select.

The LBA0_CFG.B4MXSEL bit field selects the 4:1 input multiplexer for the B4 in-
put.

23:22

(R/W)

B3MXSEL B3 Multiplexer Select.

The LBA0_CFG.B3MXSEL bit field selects the 4:1 input multiplexer for the B3 in-
put.

21:20

(R/W)

B2MXSEL B2 Multiplexer Select.

The LBA0_CFG.B2MXSEL bit field selects the 4:1 input multiplexer for the B2 in-
put.

19:18

(R/W)

B1MXSEL B1 Multiplexer Select.

The LBA0_CFG.B1MXSEL bit field selects the 4:1 input multiplexer for the B1 in-
put.

17:16

(R/W)

B0MXSEL B0 Multiplexer Select.

The LBA0_CFG.B0MXSEL bit field selects the 4:1 input multiplexer for the B0 in-
put.

15:14

(R/W)

A7MXSEL A7 Multiplexer Select.

The LBA0_CFG.A7MXSEL bit field selects the 4:1 input multiplexer for the A7 in-
put.

13:12

(R/W)

A6MXSEL A6 Multiplexer Select.

The LBA0_CFG.A6MXSEL bit field selects the 4:1 input multiplexer for the A6 in-
put.

11:10

(R/W)

A5MXSEL A5 Multiplexer Select.

The LBA0_CFG.A5MXSEL bit field selects the 4:1 input multiplexer for the A5 in-
put.

9:8

(R/W)

A4MXSEL A4 Multiplexer Select.

The LBA0_CFG.A4MXSEL bit field selects the 4:1 input multiplexer for the A4 in-
put.

7:6

(R/W)

A3MXSEL A3 Multiplexer Select.

The LBA0_CFG.A3MXSEL bit field selects the 4:1 input multiplexer for the A3 in-
put.

5:4

(R/W)

A2MXSEL A2 Multiplexer Select.

The LBA0_CFG.A2MXSEL bit field selects the 4:1 input multiplexer for the A2 in-
put.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–25

Table 37-18: LBA0_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3:2

(R/W)

A1MXSEL A1 Multiplexer Select.

The LBA0_CFG.A1MXSEL bit field selects the 4:1 input multiplexer for the A1 in-
put.

1:0

(R/W)

A0MXSEL A0 Multiplexer Select.

The LBA0_CFG.A0MXSEL bit field selects the 4:1 input multiplexer for the A0 in-
put.

CM41X_M4 LBA0 Register Descriptions

37–26 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Array Clock Divisor Register

The LBA0_CLK_CTL register contains bits that enable the clock divisor and configure the frequency divide ratio of
SYSCLK to the logic block array clock LFA_CLK.

NOTE: Do not change the CLK divisor while the enable is asserted.

Clock Divisor EnableDivisor for LBA_CLK Output
EN (R/W)DIVDAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-19: LBA0_CLK_CTL Register Diagram

Table 37-19: LBA0_CLK_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/W)

DIVDAT Divisor for LBA_CLK Output.

The LBA0_CLK_CTL.DIVDAT bit field divisor sets the frequency divide ratio of
SYSCLK to the logic block array clock LFA_CLK.

0

(R/W)

EN Clock Divisor Enable.

The LBA0_CLK_CTL.EN bit enables the clock divisor function.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–27

Logic Block Array Data Input Register

The LBA0_DIN register is the optional data source which can be selected by the input multiplexer.

Data Input Field
DATA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-20: LBA0_DIN Register Diagram

Table 37-20: LBA0_DIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

DATA Data Input Field.

The LBA0_DIN.DATA bit field is the optional data source which can be selected by
the input multiplexer.

CM41X_M4 LBA0 Register Descriptions

37–28 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Array Pin Direction Register

The LBA0_DIR register configures the direction for the LBA0 pin signals as LBA0 data input or the logic output.

Output Enable for PIN3Output Enable for PIN4

Output Enable for PIN2Output Enable for PIN5

Output Enable for PIN1Output Enable for PIN6

Output Enable for PIN0Output Enable for PIN7

PIN3 (R/W)PIN4 (R/W)

PIN2 (R/W)PIN5 (R/W)

PIN1 (R/W)PIN6 (R/W)

PIN0 (R/W)PIN7 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-21: LBA0_DIR Register Diagram

Table 37-21: LBA0_DIR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7

(R/W)

PIN7 Output Enable for PIN7.

The LBA0_DIR.PIN7 configures PIN7 as an output enable. Note that if output is
enabled, input is disabled.

6

(R/W)

PIN6 Output Enable for PIN6.

The LBA0_DIR.PIN6 configures PIN6 as an output enable. Note that if output is
enabled, input is disabled.

5

(R/W)

PIN5 Output Enable for PIN5.

The LBA0_DIR.PIN5 configures PIN5 as an output enable. Note that if output is
enabled, input is disabled.

4

(R/W)

PIN4 Output Enable for PIN4.

The LBA0_DIR.PIN4 configures PIN4 as an output enable. Note that if output is
enabled, input is disabled.

3

(R/W)

PIN3 Output Enable for PIN3.

The LBA0_DIR.PIN3 configures PIN3 as an output enable. Note that if output is
enabled, input is disabled.

2

(R/W)

PIN2 Output Enable for PIN2.

The LBA0_DIR.PIN2 configures PIN2 as an output enable. Note that if output is
enabled, input is disabled.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–29

Table 37-21: LBA0_DIR Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

PIN1 Output Enable for PIN1.

The LBA0_DIR.PIN1 configures PIN1 as an output enable. Note that if output is
enabled, input is disabled.

0

(R/W)

PIN0 Output Enable for PIN0.

The LBA0_DIR.PIN0 configures PIN0 as an output enable. Note that if output is
enabled, input is disabled.

CM41X_M4 LBA0 Register Descriptions

37–30 ADSP-CM41x Mixed-Signal Control Processor

Logic Block Array Data Output Register

The LBA0_DOUT register contains the output states of the N Logic Block Array registered outputs in real time.
When reading this register, the application must take into consideration that the outputs are dynamic and can
change every system clock cycle.

Registered Data Output
DATA (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-22: LBA0_DOUT Register Diagram

Table 37-22: LBA0_DOUT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

DATA Registered Data Output.

The LBA0_DOUT.DATA bit field contains the registered data outputs from each log-
ic block.

CM41X_M4 LBA0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 37–31

Logic Block Array GPIO Input Synchronization Control Register

The LBA0_SYNC_CTL register configures the GPIO logic inputs to be used asynchronously as opposed to individ-
ually synchronized to the system clock. This selection applies to all LBA0 blocks globally.

Input
Synchronizer Select for Each GPIO
SYNCIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 37-23: LBA0_SYNC_CTL Register Diagram

Table 37-23: LBA0_SYNC_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

SYNCIN Synchronizer Select for Each GPIO Input.

CM41X_M4 LBA0 Register Descriptions

37–32 ADSP-CM41x Mixed-Signal Control Processor

38 Mailbox (MBOX)

The MBOX (mailbox) is a shared system resource, which is used to establish communication between two masters.
The MBOX block has two access ports. Each access port is connected to a master block in a system, typically a
processor core.

MBOX Features
The MBOX module includes the following features.

• The MBOX contains decode logic to alternate between the two masters. The preference of the master will tog-
gle after the preferred master is granted access to the memory.

• 4 KB memory

• Access ports in the same clock domain.

• Access ports are in the same clock domain.

In the ADSP-CM41x processor the connections are:

• PORT1 is connected to the Cortex-M4.

• PORT0 is connected to the Cortex-M0.

The processor contains two register blocks

• Register block for PORT1, which contains:

• Control registers for PORT1, auto-refresh logic, and ECC test logic.

• Status registers for PORT1, and auto-refresh logic.

• Register block for PORT0, which contains:

• Control fields for PORT0.

• Status registers for PORT0.

Mailbox (MBOX)

ADSP-CM41x Mixed-Signal Control Processor 38–1

MBOX Functional Description
The following sections describe the function of the MBOX block. Port 0 connects to master 0 which is the Cortex
M0 and port 1 connects to master 1 which is the Cortex M4.

Port 0 Peripheral Bus MMR Interface

This slave interface performs register access on behalf of master 0.

Port 0 Peripheral Bus Memory Interface

This slave interface performs regular memory accesses on behalf of master 0.

Port 0 Peripheral Bus Exclusive Memory Interface

This slave interface performs exclusive memory accesses on behalf of master 0.

Port 1 Peripheral Bus MMR Interface

This slave interface performs register access on behalf of master 1.

Port 1 Peripheral Bus Memory Interface

This slave interface performs memory access on behalf of master 1.

Port 1 Peripheral Bus Exclusive Extension Interface

This interface is an extension to the peripheral bus interface that contains signals for exclusive requests and respon-
ses. These requests and responses are related to the signals defined for the ARM Cortex-M4 processor’s core bus
extensions for exclusive accesses.

CM41X_M0 MBOX_PORT0 Register List

Table 38-1: CM41X_M0 MBOX_PORT0 Register List

Name Description

MBOX_PORT0_CTL Port 0 Control Register

MBOX_PORT0_ESTAT Port 0 ECC Status Register

MBOX_PORT0_FORCEIRQ Port 0 Force IRQ Register

MBOX_PORT0_STAT Port 0 Status Register

CM41X_M4 MBOX_PORT1 Register List

MBOX Functional Description

38–2 ADSP-CM41x Mixed-Signal Control Processor

Table 38-2: CM41X_M4 MBOX_PORT1 Register List

Name Description

MBOX_PORT1_CTL Port 1 Control Register

MBOX_PORT1_ESTAT Port 1 ECC Status Register

MBOX_PORT1_FORCEIRQ Port 1 Force IRQ Register

MBOX_PORT1_RFRADDR Auto-refresh Address Register

MBOX_PORT1_RFRCNT Auto-refresh Counter Register

MBOX_PORT1_RFRPER Auto-refresh Period Register

MBOX_PORT1_STAT Port 1 Status Register

CM41X_M0 MBOX Interrupt List

Table 38-3: CM41X_M0 MBOX Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

4 MBOX0_PORT0_EERR MBOX0 Port 0 ECC error Level

5 MBOX0_PORT1_EERR MBOX0 Port 1 ECC error Level

30 MBOX0_PORT0_MSG MBOX0 Port 0 software interrupt Level

CM41X_M4 MBOX Interrupt List

Table 38-4: CM41X_M4 MBOX Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

20 MBOX0_PORT1_EERR MBOX0 Port 1 ECC error Level

21 MBOX0_PORT0_EERR MBOX0 Port 0 ECC error Level

155 MBOX0_PORT1_MSG MBOX0 Port 1 software interrupt Level

156 MBOX0_PORT0_MSG MBOX0 Port 0 software interrupt Level

CM41X_M4 MBOX Trigger List

Table 38-5: CM41X_M4 MBOX Trigger List Masters

Trigger ID Name Description Sensitivity

None

MBOX Functional Description

ADSP-CM41x Mixed-Signal Control Processor 38–3

Table 38-6: CM41X_M4 MBOX Trigger List Slaves

Trigger ID Name Description Sensitivity

52 MBOX0_TMR_TRIG MBOX0 Self refresh timer trigger input Pulse

MBOX Block Diagram

The MBOX block consists of two register blocks. The register block for port 1 includes control registers for port1,
auto-refresh logic, and ECC test logic. The register block for port 0 includes control registers for port 0, auto-refresh
logic, and ECC test logic. Each port can only access its own register block. The MBOX Block Diagram shows the
functional blocks within the MBOX.

PORT0
REGISTERS

REGISTERS

MBOX

MEMORY
INITIALIZATION
AND REFRESH

ACCESS
ALTERNATION

LOGIC

MEM

PORT0 MEMORY-MAPPED
REGISTER INTERFACE

ECC MEMORY

SRAM

PORT1

EXCLUSIVE MONITOR

ECC
LOGIC

PORT1 EXCLUSIVE
EXTENSION INTERFACE

PORT1 MEMORY INTERFACE

PORT0 MEMORY
EXCLUSIVE INTERFACE

PORT0 MEMORY INTERFACE

PORT1 MEMORY-MAPPED
REGISTER INTERFACE

Figure 38-1: MBOX Block Diagram

MBOX Architectural Concepts

The following sections describe the blocks appearing in the MBOX Block Diagram.

• Memory Initialization

• Memory Refresh

• Memory Access

• Exclusive Memory Access

• Error Correction Code (ECC)

MBOX Functional Description

38–4 ADSP-CM41x Mixed-Signal Control Processor

Memory Initialization

Memory initialization is triggered by writing 0x1 to theMBOX_PORT1_CTL.INIT bit. While memory initializa-
tion is in-progess, the MBOX_PORT1_STAT.INITPND bit is asserted until memory initialization completes. After
memory initialization completes, the MBOX_PORT1_STAT.INITPND bit is cleared, and the
MBOX_PORT1_STAT.INITDONE bit is asserted. Writing 0x1 to the MBOX_PORT1_STAT.INITDONE bit
clears it. Otherwise, the MBOX_PORT1_STAT.INITDONE bit is always asserted, even if another memory initiali-
zation has started and is in-progress.

A write operation can write only certain bytes in a memory word. A read-modify-write operation calculates the ECC
parity bits. If the read word is uninitialized, the read operation can result in an ECC error status being asserted.
Then, all memory addresses must be initialized to 0x0000 for the data bits and the correct ECC parity bits.

Triggering memory initialization while a previously triggered memory initiation is in-progress is ignored and has no
effect on the current memory initialization. Memory initialization blocks all memory accesses from both ports (port
0 and port 1).

Memory Refresh

Memory content can be corrupted for various reasons (for example, alpha or gamma particles). Performing a memo-
ry refresh corrects an ECC single bit error before it becomes an ECC multi-bit error. Memory is refreshed by se-
quentially performing a read-modify-write operation to all addresses in the memory. The data read in the read phase
is checked for a single ECC bit error. The error is corrected and then written back to the memory. If multiple ECC
bit errors are detected in the read data, the write operation is aborted, the port 1 MBOX_PORT1_ESTAT.EERR
bit is set to 0x1, and the port 1 MBOX_PORT1_ESTAT.EERRADDR bit field is updated.

To enable memory refresh, the port 1 MBOX_PORT1_CTL.RFR control field is set to 0x1, and the refresh period
MBOX_PORT1_RFRPER is set to a non-zero value.

When refresh is enabled, the following actions occur.

• The refresh logic loads the refresh period to the refresh counter register MBOX_PORT1_RFRCNT. Then, on
every tmr_trig external event, the refresh counter is decremented by one.

• Once the refresh counter reaches 0x1, and the tmr_trig external event is asserted, the refresh logic reloads
the refresh counter with the refresh period, and a refresh request is asserted. Note that the refresh request may
have already been asserted due to a previously unserviced refresh request.

• The refresh request attempts to perform a read-modify-write operation to the address contained in the
MBOX_PORT1_RFRADDR register. Read accesses caused by refresh operations have the lowest priority, and are
blocked by any other access.

• Once the read access takes place, the write access occurs in the next cycle. The value in the
MBOX_PORT1_RFRADDR register is incremented, and the refresh request is cleared.

• If the read access caused by the refresh operation did not take place because of collisions, the refresh address
does not change, even if a new refresh request occurs (refresh counter is 0x1, and tmr_trig event is asser-
ted).

MBOX Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 38–5

The refresh period MBOX_PORT1_RFRPER can be changed only when the refresh function is disabled. Changing
the refresh period at other times causes unspecified behaviour. Programs can overwrite the refresh counter
MBOX_PORT1_RFRCNT only when the refresh function is enabled. Otherwise, writes to
MBOX_PORT1_RFRCNT are ignored. The refresh address can be overwritten with the MBOX_PORT1_RFRADDR
at any time. If the refresh address reaches the top of the memory (maximum value of the address) and a refresh
request is being serviced, the refresh address wraps back to 0x0. Disabling the refresh operation clears any pending
refresh request.

Memory Access

The MBOX SRAM memory has three address ranges in the system address map that point to the same memory
array:

1. The address range for port 0 regular (non-exclusive) access

2. The address range for port 0 exclusive access

3. The address range for port 1 (regular and exclusive) access

Port 0 regular memory accesses are presented at the port 0 memory interface and port 0 exclusive memory accesses
are presented at the port 0 exclusive memory interface. Both interface transactions combine internally as one master
and therefore cannot have a valid transaction in the same cycle. Only one access can be active at a time. In cases of
contention, there is an alternating state for which one port is preferred. This state initializes to give preference to
port 0 at reset. If no access contention takes place, there is no wait state.

ECC parity bits protect every word in memory. If a write operation occurs on parts of the memory word, the whole
word must be read from the memory to calculate the new ECC parity bits. Then the updated word and the new
ECC bits must be written to the memory.

The ECC read-modify-write operation is uninterruptible (atomic).

Exclusive Memory Access

There is an exclusive monitor assigned to each exclusive master in port 0 and port 1. When any of the exclusive
masters issue an exclusive read, the exclusive read address is stored inside the corresponding exclusive monitor, and
the state of the monitor is locked.

If the state of the exclusive monitor is locked, then the exclusive monitor watches all memory write accesses (exclu-
sive and non-exclusive) that originate in all of the masters (port 0 and port 1). If any write access matches the locked
address in the monitor, the state of the monitor is unlocked.

Exclusive writes from any exclusive master check the corresponding exclusive monitor to determine:

• If the monitor is locked, and

• If the exclusive write address matches the address of the exclusive monitor

If any of these conditions fail, the exclusive write fails.

Port 0 must use an exclusive address range to perform exclusive accesses (read/write). Port 0 exclusive write accesses
report the exclusive errors in the MBOX_PORT0_STAT.EXWR status field of the port 0 register block.

MBOX Architectural Concepts

38–6 ADSP-CM41x Mixed-Signal Control Processor

Port 1 uses only one address range to access (regular or exclusive) the memory. Port 1 must assert the exclusive re-
quest pin in the peripheral bus exclusive extension interface to perform exclusive accesses. The port 1 exclusive write
error is reported only on the exclusive response pin in the peripheral bus exclusive extension interface.

Exclusive Access from the ARM Cortex-M4

A typical, simplified exclusive access from Cortex M4 would look like below set of pseudo code. Lock and un-lock
are typical operations done utilizing the exclusive memory access, but the memory location can be called flag or
variable. Exclusive operations need to be done via specific load and store operations.

1. Read the memory via __LDREX() operations.

2. Assume that the lock value of the memory = 1 and unlock = 0.

3. If return of _LDREX() = 0 it can be locked. Otherwise keep reading until it = 0

4. Write to the memory (lock) via __STREXW() operation.

5. __STREXW() returns a value = 0 if the operation is success.

6. __STREXW() returns a value = 1 if the operation is fail.

For further information on exclusive access and state, please visit ARM documentation.

Exclusive Access from the ARM Cortex-M0

The ARM Cortex-M0 does not have in-built exclusive instructions. Exclusive memory regions must be accessed
from the ARM Cortex-M0 if exclusive accesses are preferred. Typical, simplified access would look like below set of
pseudo code.

1. Read the memory via M0 exclusive memory region via normal LDR operations.

2. Assume that the lock value of the memory is 1 and unlock = 0.

3. If return of above read = 0 it can be locked. Otherwise keep reading until it = 0.

4. Write to the memory (lock) via normal write operation.

5. The MBOX_PORT0_STAT.EXWR bit returns a value = 0 if the operation is success.

6. The MBOX_PORT0_STAT.EXWR bit returns a value = 1 if the operation is fail.

Error Correction Code (ECC)

Seven parity bits protect every 32-bit word in memory. These parity bits detect single and double bit errors and can
correct single bit errors.

The ECC algorithm used by the MBOX block is the Hsaio algorithm. In the Hsiao algorithm, a unique combina-
tion of three parity bits protect every data bit. Any single bit error caused by a data bit flip results in three error
syndrome bits asserted. Any single bit error due to a parity bit flip results in one error syndrome bit asserted. The
Hsiao algorithm is used to correct single bit errors and detect double bit errors. The Hsiao algorithm has an imple-
mentation advantage over the Hamming code in detecting double bit errors (fewer xor gates are needed).

MBOX Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 38–7

The port 1 MBOX_PORT1_CTL.INIT control bit is used to start memory initialization with the right ECC parity
bits. Any read operation checks for ECC errors. In normal mode (not ECC or data map modes), the following oper-
ations occur.

• Any single ECC error bit is corrected before sending the read data to the requested master. The data inside the
SRAM array is not corrected.

• Any double ECC bit error and some multi-bit ECC errors are detected and the corresponding port
MBOX_PORT1_ESTAT.EERR is set to 0x1.

The following bit fields control error reporting:

• Port 1 MBOX_PORT1_CTL.MAP control bits are used to bypass the ECC logic to read and write the raw data
bits. ECC parity bits test the ECC detection and correction logic.

• Port 0 MBOX_PORT0_CTL.EERR control field is used to control the reporting of double and multi-bit errors
detected during port 0 accesses.

• Port 1 MBOX_PORT1_CTL.EERR control field is used to control the reporting for double and multi-bit er-
rors detected during port 1 accesses, or the memory refresh operation.

• Port 1 MBOX_PORT1_CTL.RFR control field is used to enable the refresh operation.

MBOX Event Control and Interrupts
Each MBOX master (port 0/port 1) can send a software interrupt request to the other master.

• Port 0 sends software interrupt request to port 1 by writing 0x1 to the port 0
MBOX_PORT0_FORCEIRQ.SWIRQ bit. This asserts the port 1 MBOX_PORT1_STAT.SWINT status bit.

• Port 1 sends software interrupt request to port 0 by writing 0x1 to the port 1
MBOX_PORT1_FORCEIRQ.SWIRQ bit. This asserts the port 0 MBOX_PORT0_STAT.SWINT status bit.

• The port 0/1 status bits are cleared by writing 0x1 to them.

• The port 0/1 initiate software interrupt request bits always read as zero (RAZ).

Interrupts

The following are the interrupt requests triggered by the MBOX module.

Table 38-7: MBOX_PORT0_CTL Register Fields

Interrupt Name Description/Enumeration

port0_eerr Double or multi ECC bit error was detected during port 0 memory access. The register field
MBOX_PORT1_CTL.EERR must be assert to enable this interrupt request.

port1_eerr Double or multi ECC bit bit error was detected during port 1 memory access or memory refresh oper-
ation. The register field MBOX_PORT1_CTL.EERR must be asserted to enable this interrupt re-
quest.

MBOX Event Control and Interrupts

38–8 ADSP-CM41x Mixed-Signal Control Processor

Table 38-7: MBOX_PORT0_CTL Register Fields (Continued)

Interrupt Name Description/Enumeration

port0_msg Software interrupt request to port 0 by port 1.

port1_msg Either a software interrupt request to port 1 by port 0 or end of memory initialization.

CM41X_M0 MBOX_PORT0 Register Descriptions
MBOX Port 0 register map (MBOX_PORT0) contains the following registers.

Table 38-8: CM41X_M0 MBOX_PORT0 Register List

Name Description

MBOX_PORT0_CTL Port 0 Control Register

MBOX_PORT0_ESTAT Port 0 ECC Status Register

MBOX_PORT0_FORCEIRQ Port 0 Force IRQ Register

MBOX_PORT0_STAT Port 0 Status Register

CM41X_M0 MBOX_PORT0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–9

Port 0 Control Register

The MBOX_PORT0_CTL register contains bits that control interrupt configuration and lock the module.

Enable Error Interrupt

Enable Software InterruptLock Enable

EERR (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SWINT (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-2: MBOX_PORT0_CTL Register Diagram

Table 38-9: MBOX_PORT0_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock Enable.

When both the MBOX_PORT0_CTL.LOCK bit and the global lock
SPU_CTL.GLCK bit is set to 0x1, all writes to the MBOX_PORT0_CTL register are
ignored.

16

(R/W)

SWINT Enable Software Interrupt.

The MBOX_PORT0_CTL.SWINT bit enables the software interrupt request to port
0.

0

(R/W)

EERR Enable Error Interrupt.

The MBOX_PORT0_CTL.EERR bit enables an interrupt request upon the detection
of an ECC multi-bit (> 1 bit) error for port 0 accesses.

CM41X_M0 MBOX_PORT0 Register Descriptions

38–10 ADSP-CM41x Mixed-Signal Control Processor

Port 0 ECC Status Register

The MBOX_PORT0_ESTAT register reports the status of the ECC multi-bit errors.

Multiple ECC Multi-bit Errors Detected

ECC Multi-bit ErrorEEC Error Address

EEC Error Address

MEERR (R/W1C)

EERR (R/W1C)EERRADDR[5:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EERRADDR[9:6] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-3: MBOX_PORT0_ESTAT Register Diagram

Table 38-10: MBOX_PORT0_ESTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:10

(R/NW)

EERRADDR EEC Error Address.

The MBOX_PORT0_ESTAT.EERRADDR bit field contains bits [11:2] of the address
of the 32-bit location containing the detected ECC error event.

1

(R/W1C)

MEERR Multiple ECC Multi-bit Errors Detected.

The MBOX_PORT0_ESTAT.MEERR bit indicates that multiple ECC multi-bit er-
rors are detected (> 1 bit), indicating more than one detection event due to port 0 ac-
cesses. Specifically, a detection event was observed while the
MBOX_PORT0_ESTAT.EERR bit was already set to 1.

On any detection event, the MBOX_PORT0_ESTAT.EERRADDR,
MBOX_PORT0_ESTAT.EERR, MBOX_PORT0_ESTAT.MEERR, and TYPE fields
are updated at the same time. If the MBOX_PORT0_ESTAT.EERR bit is cleared dur-
ing the same cycle as a new detection event is being recorded, the
MBOX_PORT0_ESTAT.MEERR bit is not asserted.) While the
MBOX_PORT0_ESTAT.MEERR bit =0x1, the port0_eerr level interrupt request is as-
serted.

0

(R/W1C)

EERR ECC Multi-bit Error.

The MBOX_PORT0_ESTAT.EERR bit indicates an ECC multi-bit error (> 1 bit),
indicating one detection event due to port 0 accesses. While the
MBOX_PORT0_ESTAT.EERR bit =0x1, the port0_eerr level interrupt request is as-
serted.

CM41X_M0 MBOX_PORT0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–11

Port 0 Force IRQ Register

The MBOX_PORT0_FORCEIRQ register always reads as zero.

to Port 1
Initiate Software Interrupt Request
SWIRQ (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-4: MBOX_PORT0_FORCEIRQ Register Diagram

Table 38-11: MBOX_PORT0_FORCEIRQ Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R0/W)

SWIRQ Initiate Software Interrupt Request to Port 1.

The MBOX_PORT0_FORCEIRQ.SWIRQ bit always reads as zero.

CM41X_M0 MBOX_PORT0 Register Descriptions

38–12 ADSP-CM41x Mixed-Signal Control Processor

Port 0 Status Register

The MBOX_PORT0_STAT register indicates the port 0 status.

Software Interrupt StatusPort 0 Exclusive Write Status
SWINT (R/W1C)EXWR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-5: MBOX_PORT0_STAT Register Diagram

Table 38-12: MBOX_PORT0_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/NW)

EXWR Port 0 Exclusive Write Status.

The MBOX_PORT0_STAT.EXWR bit indicates the port 0 write status.

0 Exclusive write success, memory location was updated
(equivalent to system EXOKAY status)

1 Exclusive write fail, memory location was not updated
(equivalent to system OKAY status)

1

(R/W1C)

SWINT Software Interrupt Status.

When the MBOX_PORT0_STAT.SWINT bit =0x1, the port0_msg level interrupt re-
quest is asserted.

CM41X_M4 MBOX_PORT1 Register Descriptions
MBOX Port 1 register map (MBOX_PORT1) contains the following registers.

Table 38-13: CM41X_M4 MBOX_PORT1 Register List

Name Description

MBOX_PORT1_CTL Port 1 Control Register

MBOX_PORT1_ESTAT Port 1 ECC Status Register

MBOX_PORT1_FORCEIRQ Port 1 Force IRQ Register

MBOX_PORT1_RFRADDR Auto-refresh Address Register

MBOX_PORT1_RFRCNT Auto-refresh Counter Register

MBOX_PORT1_RFRPER Auto-refresh Period Register

MBOX_PORT1_STAT Port 1 Status Register

CM41X_M0 MBOX_PORT0 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–13

Port 1 Control Register

The MBOX_PORT1_CTL register contains bits that enable interrupts and control ECC function.

Enable Auto-Refresh of ECC States

Select ECC Map Mode
Enable Memory Initialization

Enable Interrupt on ECC Error
Completion
Enable Interrupt on Memory Initialization

Enable Software Interrupt to Port 1Lock Enable

RFR (R/W)

MAP (R/W)
INIT (R0/W)

EERR (R/W)INITDONE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SWINT (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-6: MBOX_PORT1_CTL Register Diagram

Table 38-14: MBOX_PORT1_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock Enable.

While both the MBOX_PORT1_CTL.LOCK bit and the global lock
(SPU_CTL.GLCK) are set to 0x1, all writes to the CTL1 register are ignored.

16

(R/W)

SWINT Enable Software Interrupt to Port 1.

The MBOX_PORT1_CTL.SWINT bit enables the software interrupt request to port
1.

9

(R/W)

INITDONE Enable Interrupt on Memory Initialization Completion.

The MBOX_PORT1_CTL.INITDONE bit enables an interrupt request upon memo-
ry initialization completion.

8

(R0/W)

INIT Enable Memory Initialization.

The MBOX_PORT1_CTL.INIT bit starts initialization of the MBOX_PORT1
memory to all zeros and initializes the ECC states. This bit always reads as zero (RAZ).
Writing 0x1 to this field while memory initialization is in-progress does not have any
effect. Memory initialization has the highest priority, blocking port 0 and port 1 core
accesses (causing access stalls). Writing 0x1 to the MBOX_PORT1_CTL.INIT bit
clears all memory content (all data that existed in the memory before the initialization
started).

CM41X_M4 MBOX_PORT1 Register Descriptions

38–14 ADSP-CM41x Mixed-Signal Control Processor

Table 38-14: MBOX_PORT1_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

RFR Enable Auto-Refresh of ECC States.

The MBOX_PORT1_CTL.RFR bit enables an auto-refresh of the ECC states. No au-
to-refresh operation takes place while MBOX_PORT1_RFRPER.VALUE = 0x0, or the
MBOX_PORT1_CTL.MAP bit field is set to map data or to map ECC.

3:2

(R/W)

MAP Select ECC Map Mode.

The MBOX_PORT1_CTL.MAP bit field enables access to the raw data and ECC pari-
ty bits in memory.

0 Enable ECC normal mode. ECC parity generated on
writes are deposited in memory with the raw write data;
corrected data is returned on reads.

2 Enable ECC Map Data Mode. ECC generation is by-
passed; writes are stored to the 32-bit data only. Prior
stored ECC bits are not updated. The field can be used
to deposit data indicating single- or multiple-bit errors.
On reads, the ECC is disabled, and the raw 32-bits ar-
ray data is returned without correction; no errors or
warnings are generated. Note: only a 32-bit access size is
supported.

3 Enable ECC map parity mode. ECC generation is by-
passed; bits [6:0] of writes are stored to the ECC array;
the data array is not updated. The field can be used to
deposit ECC states indicating single or multiple-bit er-
rors. On reads, the ECC bits are returned on data bits
[6:0] of the read data values.

0

(R/W)

EERR Enable Interrupt on ECC Error.

The MBOX_PORT1_CTL.EERR bit enables the interrupt request on detection of
ECC multi-bit (> 1 bit) error for port 1 accesses and auto-refresh accesses.

CM41X_M4 MBOX_PORT1 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–15

Port 1 ECC Status Register

The MBOX_PORT1_ESTAT register reports information related to ECC errors and interrupts.

ECC Multi-bit Error Access Type

Multiple ECC Multi-bit Errors DetectedECC Single Bit Error Access Type

ECC Multi-bit ErrorBits [11:2] of the Address

Bits [11:2] of the Address

EERRTYPE (R)

MEERR (R/W1C)EWRNTYPE (R)

EERR (R/W1C)EERRADDR[5:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

EERRADDR[9:6] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-7: MBOX_PORT1_ESTAT Register Diagram

Table 38-15: MBOX_PORT1_ESTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:10

(R/NW)

EERRADDR Bits [11:2] of the Address.

The MBOX_PORT1_ESTAT.EERRADDR bit field is bits [11:2] of the address of the
32-bit location containing the detected ECC error event.

5

(R/NW)

EWRNTYPE ECC Single Bit Error Access Type.

The MBOX_PORT1_ESTAT.EWRNTYPE bit indicates the access type that caused
the most recent pending ECC multi-bit error detection event.

0 Port 1 access

1 Auto-refresh access

4

(R/NW)

EERRTYPE ECC Multi-bit Error Access Type.

The MBOX_PORT1_ESTAT.EERRTYPE bit indicates the access type that caused
the most recent pending ECC single bit error detection event.

0 Port 1 access

1 Auto refresh access

CM41X_M4 MBOX_PORT1 Register Descriptions

38–16 ADSP-CM41x Mixed-Signal Control Processor

Table 38-15: MBOX_PORT1_ESTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

MEERR Multiple ECC Multi-bit Errors Detected.

The MBOX_PORT1_ESTAT.MEERR bit reports that multiple ECC multi-bit errors
have been detected (> 1 bit). This bit indicates that more than one detection event oc-
curred due to either a port 1 access or an auto-refresh access.

Specifically, a detection event was observed while the MBOX_PORT1_ESTAT.EERR
bit was already set to 1. On any detection event, the
MBOX_PORT1_ESTAT.EERRADDR, MBOX_PORT1_ESTAT.EERR,
MBOX_PORT1_ESTAT.MEERR, and MBOX_PORT1_ESTAT.EERRTYPE fields
are updated at the same time. If the MBOX_PORT1_ESTAT.EERR bit is cleared at
the same cycle as a new detection event is being recorded, this bit is not asserted.
While this bit = 0x1, the port1_eerr level interrupt request is asserted.

0

(R/W1C)

EERR ECC Multi-bit Error.

The MBOX_PORT1_ESTAT.EERR bit reports an ECC multi-bit error (> 1 bit), in-
dicating one detection event due to either a port 1 access or an auto-refresh access.
While the MBOX_PORT1_ESTAT.EERR bit = 0x1, the port1_eerr level interrupt re-
quest is asserted.

CM41X_M4 MBOX_PORT1 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–17

Port 1 Force IRQ Register

The MBOX_PORT1_FORCEIRQ register reports information related to port 1 force interrupt requests.

to Port 0
Initiate Software Interrupt Request
SWIRQ (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-8: MBOX_PORT1_FORCEIRQ Register Diagram

Table 38-16: MBOX_PORT1_FORCEIRQ Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R0/W)

SWIRQ Initiate Software Interrupt Request to Port 0.

The MBOX_PORT1_FORCEIRQ.SWIRQ bit always reads as zero.

CM41X_M4 MBOX_PORT1 Register Descriptions

38–18 ADSP-CM41x Mixed-Signal Control Processor

Auto-refresh Address Register

The MBOX_PORT1_RFRADDR register indicates the offset from the base of the MBOX_PORT1 address space to
the address of the next 32-bit location to be refreshed (bits[1:0] are always 'b00). The auto-refresh address is incre-
mented by 4 after a refresh operation completes, wrapping back to offset address 0x000 after the maximum address
offset is refreshed (0xffc > 0x000).

If a refresh operation is unable to complete during the refresh period defined by MBOX_PORT1_RFRPER.VALUE
due to total saturation by the traffic on the two ports port 0 and port 1, then the
MBOX_PORT1_RFRADDR.VALUE is observed to not increment during the refresh period.

Programs can overwrite the current auto-refresh address value. If auto-refresh MBOX_PORT1_CTL.RFR is disabled
and then enabled, the initial auto-refresh address does not change, and the last value of the auto-refresh address is
used as the initial auto-refresh address.

Auto-refresh Address Value
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-9: MBOX_PORT1_RFRADDR Register Diagram

Table 38-17: MBOX_PORT1_RFRADDR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:2

(R/W)

VALUE Auto-refresh Address Value.

The MBOX_PORT1_RFRADDR.VALUE bit field indicates the offset from the base of
the MBOX_PORT1 address space to the address of the next 32-bit location to be re-
freshed.

CM41X_M4 MBOX_PORT1 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–19

Auto-refresh Counter Register

The MBOX_PORT1_RFRCNT register holds the current 32-bit ECC auto-refresh count down counter value. This
register is loaded with the MBOX_PORT1_RFRPER.VALUE value when the MBOX_PORT1_CTL.RFR bit is set
to 0x1. The MBOX_PORT1_RFRCNT.VALUE value decrements by 1 every external tick event which originates
from a system resource (for example, a timer).

When the counter reaches 0x1, on the next tick event, it is reloaded with the MBOX_PORT1_RFRPER.VALUE
value. On the cycle when the MBOX_PORT1_RFRCNT.VALUE wraps around (0x1 ->
MBOX_PORT1_RFRPER.VALUE), a refresh request is asserted. An MBOX_PORT1 refresh cycle is made on the
next idle cycle (cycle in which no port access is made by either port) starting with the cycle in which refresh request
is asserted. If the auto-refresh access fails to occur before the next auto-refresh request, the program can ignore it.

The MBOX_PORT1_RFRCNT.VALUE value stops updating the cycle after the MBOX_PORT1_CTL.RFR bit is
disabled, or the value 0x0 is written to the MBOX_PORT1_RFRPER.VALUE bit field. Programs can overwrite the
auto-refresh counter current value. If the MBOX_PORT1_CTL.RFR bit is disabled, or the value 0x0 is written to
the MBOX_PORT1_RFRPER.VALUE bit field, writes to MBOX_PORT1_RFRCNT.VALUE bit field are ignored.

If the MBOX_PORT1_CTL.RFR bit is disabled and then enabled, and the auto-refresh period is not equal to 0x0,
load the auto-refresh counter with the refresh period MBOX_PORT1_RFRPER.VALUE value.

Writing 0x0 to the auto-refresh counter is illegal. It is ignored.

Value
ECC Auto-refresh Count Down Counter

Value
ECC Auto-refresh Count Down Counter

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

1
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-10: MBOX_PORT1_RFRCNT Register Diagram

Table 38-18: MBOX_PORT1_RFRCNT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE ECC Auto-refresh Count Down Counter Value.

The MBOX_PORT1_RFRCNT bit field holds the current 32-bit ECC auto-refresh
count down counter value.

CM41X_M4 MBOX_PORT1 Register Descriptions

38–20 ADSP-CM41x Mixed-Signal Control Processor

Auto-refresh Period Register

The MBOX_PORT1_RFRPER register provides the 32-bit ECC refresh counter period. This is the number of exter-
nal pulse counts between successive requests for refresh, when the refresh enable bit (MBOX_PORT1_CTL.RFR) is
set to 1. Writing the value 0x0 in the auto-refresh period, immediately stops auto-refresh operation.

Disable the auto-refresh enable control bit field (MBOX_PORT1_CTL.RFR) before changing the auto-refresh peri-
od, then enable the MBOX_PORT1_CTL.RFR bit after the change. The behavior of changing the auto-refresh peri-
od while the MBOX_PORT1_CTL.RFR bit is enabled results in unspecified behavior.

ECC Memory Auto-refresh Period

ECC Memory Auto-refresh Period

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-11: MBOX_PORT1_RFRPER Register Diagram

Table 38-19: MBOX_PORT1_RFRPER Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE ECC Memory Auto-refresh Period.

The MBOX_PORT1_RFRPER.VALUE bit field provides the 32-bit ECC refresh
counter period.

CM41X_M4 MBOX_PORT1 Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 38–21

Port 1 Status Register

The MBOX_PORT1_STAT register provides information about the status of port 1.

Initialization Done Interrupt Status

Initialization Pending StatusSoftware Interrupt Status to Port 1

INITDONE (R/W1C)

INITPND (R)SWINT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 38-12: MBOX_PORT1_STAT Register Diagram

Table 38-20: MBOX_PORT1_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W1C)

SWINT Software Interrupt Status to Port 1.

While the MBOX_PORT1_STAT.SWINT bit = 0x1, the port1_msg level interrupt re-
quest is asserted. This status bit is cleared to 0x0 by writing 0x1 to it.

1

(R/W1C)

INITDONE Initialization Done Interrupt Status.

The MBOX_PORT1_STAT.INITDONE bit is set to 0x1 on the cycle after the last
initialization write is done. This status field is cleared to 0x0 by writing 0x1 to this bit.
If the MBOX_PORT1_CTL.INITDONE bit = 0x1 and the
MBOX_PORT1_STAT.INITDONE bit = 0x1, the port1_msg level interrupt request
is asserted.

0

(R/NW)

INITPND Initialization Pending Status.

The next cycle after writing 0x1 to the MBOX_PORT1_CTL.INIT bit, initialization
starts and the MBOX_PORT1_STAT.INITPND bit is set to 0x1. The cycle after the
last memory initialization write takes place, this bit is cleared (0x0), and the
MBOX_PORT1_STAT.INITDONE bit is set (0x1) if the
(MBOX_PORT1_CTL.INITDONE bit == 0x1).

CM41X_M4 MBOX_PORT1 Register Descriptions

38–22 ADSP-CM41x Mixed-Signal Control Processor

39 Voltage Monitoring Unit (VMU)

The Voltage Monitoring Unit (VMU) provides over-voltage and under-voltage detection by monitoring the
VDD_INT and VDD_EXT and generates asynchronous signals if the voltages exceed or drop below the programma-
ble limits. The VMU also generates a control signal for the power sequencing requirements of the embedded flash.

VMU Features
The VMU module supports the following safety features:

• Over-voltage and under-voltage detection on the VDD_INT and VDD_EXT
• Disable feature for over-voltage detection for both VDD_INT and VDD_EXT supplies

• Programmable under-voltage thresholds

• Generates flash power down signal during power event

• Programmable (1 µs to 17 µs) fault delay signal

• GPIO Pin Safe States

VMU Functional Description
The VMU module provides voltage monitoring on the the VDD_INT and VDD_EXT power rails when the process-
or is powered up. When enabled, the VMU triggers an interrupt for a power event in either the VDD_INT or
VDD_EXT power domain. The VMU (whether enabled or not) also provides a control signal to the internal flash to
facilitate the flash power-down requirements in case of an over-voltage or under-voltage power event.

The VMU provides the ability to program the Low Voltage thresholds for VDD_INT or VDD_EXT monitoring via
the REF_PRG [1:0] bits. Over-voltage threshold is a fixed value.

Refer to the ADSP-CM41x Processor Data Sheet for exact voltage threshold values.

The table shows the thresholds for VDD_EXT (external / IO power supply).

Voltage Monitoring Unit (VMU)

ADSP-CM41x Mixed-Signal Control Processor 39–1

Table 39-1: Thresholds for VDD_EXT
Threshold Description REF_PRG[1]

OVLO_E Over-Voltage threshold detection -

UVLO_E1 Under-Voltage threshold detection, Level 1 0

UVLO_E2 Under-Voltage threshold detection, Level 2 1

The table shows the thresholds for VDD_INT (internal/core).

Table 39-2: Thresholds for VDD_INT
Threshold Description REF_PRG[1]

OVLO_I Over-Voltage threshold detection -

UVLO_I1 Under-Voltage threshold detection, Level 1 0

UVLO_I2 Under-Voltage threshold detection, Level 2 1

VMU0_VDDINT_EVT is asserted when VDD_EXT is outside the threshold window. VMU0_VDDEXT_EVT is as-
serted when VDD_INT is outside the threshold window. The VMU tolerates/ignores power supply transients of
short durations (~1 us) to avoid premature tripping.

NOTE: The specified precision of VMU trip levels (threshold) are valid only when the feature is used in conjunc-
tion with the part’s internal LDO regulator. Using an external supply for VDD_INT can result in inaccu-
rate trip levels for the VMU’s comparators.

CM41X_M4 PADS Register List

The PADS module controls system interface signal features for a number of module interfaces.

Table 39-3: CM41X_M4 PADS Register List

Name Description

PADS_DBC[n]_CTL Debounce Control Register(s)

PADS_DBC_PRESCALE Debounce Prescale Register

PADS_FOCP_DIV Fast Over Current Protection Clock Divisor Register

PADS_MONOSC_CFG Monitor Oscillator Control Register

PADS_NVWR_RSTCTL Non-Volatile Write Reset Control Register

PADS_PCFG0 Peripheral Configuration0 Register

PADS_PORT[n]_DS Multi Port Drive Strength Control Register

PADS_PORT[n]_RCTL Multi Port Pull-up/Pull-down Resistor Control Register

PADS_PORT[n]_TRIPSEL Multi Port Trip Select Register

PADS_PORT[n]_TRIPST Multi Port Trip State Register

VMU Functional Description

39–2 ADSP-CM41x Mixed-Signal Control Processor

Table 39-3: CM41X_M4 PADS Register List (Continued)

Name Description

PADS_VMU_CTL Voltage Monitor Unit Control Register

PADS_VMU_TRIM Voltage Monitor Unit Trim Register

PADS_VMU_TRIPEN Voltage Monitor Unit Trip Enable Register

CM41X_M0 VMU Interrupt List

Table 39-4: CM41X_M0 VMU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

0 VMU0_VDDEXT_EVT VMU0 External voltage management
fault

Level

0 VMU0_VDDINT_EVT VMU0 Internal voltage management fault Level

CM41X_M4 VMU Interrupt List

Table 39-5: CM41X_M4 VMU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

0 VMU0_VDDINT_EVT VMU0 Internal voltage management fault Level

1 VMU0_VDDEXT_EVT VMU0 External voltage management
fault

Level

Input Supply Ramp Rate and Bypassing Requirements

Ideally, bypass caps must be connected at multiple IC pins for a safe operation in case of a pin lift or capacitor fail-
ure.

Refer to the ADSP-CM41x Processor Data Sheet for information about power down timing with VMU.

If the power down timing requirement is met, the VMU triggers a fault while device logic is still operational, and a
controlled shutdown of the embedded flash can be performed.

If the power down timing is violated, the VMU trips after logic voltages are out of specification. Controlled device
shutdown is not guaranteed and the flash may be corrupted.

Programmable Fault Delay

The VMU provides a programmable (1 µs to 17 µs) delay between the early and late fault outputs. The OSCWD
auxillary clock is used for this purpose. See the Oscillator Watchdog section for more details on this monitor clock.
This is controlled with the PADS_VMU_CTL.FAULTDLY bits [11:9].

VMU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 39–3

Table 39-6: Fault Delay Programming Values

FAULTDLY<11:8> Delay Min/Max

0 1 µs

1 2 µs / 3 µs

2 3 µs / 4 µs

3 4 µs / 5 µs

4 5 µs / 6 µs

5 6 µs / 7 µs

6 7 µs / 8 µs

7 8 µs / 9 µs

8 9 µs / 10 µs

9 10 µs / 11 µs

10 11 µs / 12 µs

11 12 µs / 13 µs

12 13 µs / 14 µs

13 14 µs / 15 µs

14 15 µs / 16 µs

15 16 µs / 17 µs

Fault Conditioning

The VMU provides a FAULT_TRIG_IN signal that allows fault input from the OCU and Oscillator Watchdog.
When enabled, this allows the VMU to shut down the flash in case of a bad clocking event. The
FAULT_TRIG_IN also triggers a system fault—SYS_FAULT. This also triggers the GPIO pin safe states to be set
to their fail safe configuration for the application.

The PADS_VMU_TRIPEN register is responsible for configuring the FAULT_TRIG_IN for faults generated by
the OCU and OSCWD. The register contains the following bits: PADS_VMU_TRIPEN.OSC0FAULT,
PADS_VMU_TRIPEN.OSC0CLK, PADS_VMU_TRIPEN.OCU0FAULT and
PADS_VMU_TRIPEN.OCU0CLK.

For more information, see the CM41X_M0 PADS Register Descriptions chapter.

The VMU supports the following faults from the OCU and OSCWD in the PADS_VMU_TRIPEN.

Table 39-7: Faults from OCU and OSCWD

Bit Name Description

OSC0FAULT System Oscillator Asynchronous Fault Trip enable

OSC0CLK System Oscillator Clock Not Good Trip Enable

VMU Functional Description

39–4 ADSP-CM41x Mixed-Signal Control Processor

Table 39-7: Faults from OCU and OSCWD (Continued)

OCU0FAULT Oscillator Comparator Unit Asynchronous Fault Trip enable

OCU0CLK Oscillator Comparator Unit Dead Good Trip Enable

Once GPIO pin safe states (and SYS_FAULT) have been triggered, a full system reset is required to restart the ap-
plication.

GPIO Safe Pin States

When configured, the VMU can set GPIO pins to a programmed safe state when the VMU detects a power event.
As an example, the feature can be used in PWM to create a safe state for the signal to set to in case of a power failure
event.

While the VMU controls the Pin Safe State, the Oscillator Comparator Unit as well as Oscillator Watchdog Unit in
CGU can indirectly utilize the Safe State up on detecting faults in clock.

Individual GPIO Pin Safe State Programming

The safe states (HIGH, LOW, THREESTATE, and HOLD) are user programmable through the
PADS_PORT[n]_TRIPST register.

Two-stage Pin Safe State timing Selection

The Pin Safe State is signaled by two events, separated by a programmable interval. The delay is generated using an
internal 1 MHz clock. The two event signals are PIN_SAFE_EARLY and PIN_SAFE_LATE. The safe timing
selection is chosen by programming the PADS_PORT[n]_TRIPSEL register.

PORTn_TRIPST.TSm[1:0] GPIO Response to FORCE_PIN_SAFE
00 No response – pass/hold previous state

01 Threestate (disable driver)

10 Force low

11 Force high

PORTn_TRIPSEL.SEL[m] GPIO Safe Timing Selection

0 Responds to FORCE_PIN_SAFE_EARLY
1 Responds to FORCE_PIN_SAFE_LATE

GPIO Pin Safe Triggers

Table 39-8: Trigger Masters

Triggers Masters Description

FRC_PIN_SAFE_SLV_S0 One of the supervisor sources to the Pin Safe State GPIO hardware

VMU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 39–5

Table 39-8: Trigger Masters (Continued)

Triggers Masters Description

FRC_PIN_SAFE_SLV_S1 One of the supervisor sources to the Pin Safe State GPIO hardware

Table 39-9: Trigger Slaves

Triggers Slaves Description

FRC_PIN_SAFE_SLV0 Force Pin Safe trigger 0

FRC_PIN_SAFE_SLV1 Force Pin Safe trigger 1

FRC_PIN_SAFE_SLV2 Force Pin Safe trigger 2

FRC_PIN_SAFE_SLV3 Force Pin Safe trigger 3

FRC_PIN_SAFE_SLV4 Force Pin Safe trigger 4

FRC_PIN_SAFE_SLV5 Force Pin Safe trigger 5

FRC_PIN_SAFE_SLV6 Force Pin Safe trigger 6

Configuring the VMU
Here is an example on how to setup and configure the VMU to monitor both the VDD_INT and VDD_EXT.

1. Reset the VMU.

2. Enable VDD_INT monitoring.

3. Set the VDD_INT reference value.

4. Enable VDD_EXT monitoring.

5. Set the VDD_EXT reference value.

6. Set the desired fault delay.

7. Enable the VMU.

Register Descriptions
The registers for the voltage monitoring unit are located in the System and PADs chapter. See System Block
(SYSBLK) and PADS.

Configuring the VMU

39–6 ADSP-CM41x Mixed-Signal Control Processor

40 FFT Accelerator Block (FFTB)

The FFT Accelerator Block (FFTB) provides background input signal spectrum analysis. It includes built-in data
conversion for various sensor input formats, spectrum averaging, square magnitude computation, and band-power
limit detection.

The FFTB signal spectrum monitor unit provides a simple, low-overhead accelerator. It monitors the spectrum of an
input sample stream to detect anomalous conditions that are best detected in the frequency domain. It can be logi-
cally connected to an input source by configuring DMA directly from a sensor peripheral. Or, it can operate on a
data buffer written by the processor or MDMA.

The FFTB module can automatically apply a windowing profile to the input data. The FFTB module collects single
or averaged spectra either continuously, or whenever triggered (for example, by a timer or a processor command).
DMA can then write the output spectrum to a memory buffer, if desired. An interrupt request is available to signal
the completion of the FFT calculation and any DMA transfer of the output. The FFTB module calculates the pow-
er spectrum (squared magnitude). It can compare the spectrum point-by-point against a power limit profile to detect
out-of-range signal conditions and generate an FFT limit event. This event can cause a processor interrupt, a TRU
event, or a system fault.

FFTB Features
The FFTB unit provides up to 512-point, 16-bit FFT on the input signal data provided by memory or DMA. It
optionally provides input format conversion, comb filtering, windowing, programmable FFT size, squared-magni-
tude computation, spectrum averaging, and spectrum limit checking.

The FFTB signal monitor unit provides the following features:

• Up to 512-point fixed-point FFT accelerator engine

• Data input to memory-mapped buffer IBUFF

• Continuous or one-time spectrum capture operation

• Input format conversion (scaling, offsetting, signed and unsigned conversion) to allow direct input DMA feed
from sensor peripherals

• Input windowing through a programmable window buffer, WINBUFF

• Programmable input comb filter for periodic noise rejection

FFT Accelerator Block (FFTB)

ADSP-CM41x Mixed-Signal Control Processor 40–1

• Twiddle factors in logical ROM, requiring no initialization from user flash memory

• Square-magnitude computation of the output spectrum

• Spectrum averaging of up to 16x spectra (programmable)

• Power spectrum limit comparison versus a power spectrum limit in the limit buffer, LBUFF

• Spectrum data output delivery using:

• A read of the appropriate buffer

• The FFTB configuration to transfer the square magnitude data from the magnitude buffer, MBUFF,
through the system master interface

• A signal spectrum monitor event. The event can be generated upon the detection of an out-of-bounds power
spectrum at any frequency point when the FFTB is programmed for power spectrum comparison.

• Support for up to four FFT channels

FFTB Functional Description
The FFTB captures the spectrum of a number of points in the input signal stream. The input signal stream can
come from different data sources or sensors. An optional format converter changes the input signal stream to a form
suitable to the FFTB. Input data can be processed before calculating the spectrum by applying a comb filter, and a
windowing function.

The processed data is stored in the input buffer (IBUFF). The FFT engine calculates the spectrum for the processed
input data. The FFT engine results are complex data which are stored in the real and imaginary working buffers
(WBUFF). After storage, the square magnitude of the spectrum is calculated and stored in the magnitude buffer
(MBUFF), where the square magnitude spectrum of multiple frames in the input stream can be averaged. The aver-
aged spectrum can then be compared to pre-defined values stored in the limit buffer (LBUFF). If the averaged spec-
trum data point is greater than the corresponding value in the limit buffer, an error status is asserted.

CM41X_M4 FFTB Register List

A set of registers govern FFTB operations. For more information on FFTB functionality, see the FFTB register de-
scriptions.

Table 40-1: CM41X_M4 FFTB Register List

Name Description

FFTB_COMB FFTB Input Comb Filter Control Register

FFTB_CTL FFTB Control Register

FFTB_DMABASE DMA Output Base Address Register

FFTB_DMAWR DMA Output Write Address Register

FFTB_FMTCTL Format Converter Control Register

FFTB Functional Description

40–2 ADSP-CM41x Mixed-Signal Control Processor

Table 40-1: CM41X_M4 FFTB Register List (Continued)

Name Description

FFTB_INOFST Input Offset Register

FFTB_LIMSTAT[n] Limit Status Registers

FFTB_MAGSEL[n] Magnitude Pin Select Registers

FFTB_MAXMAG Maximum Magnitude Register

FFTB_MINMAG Minimum Magnitude Register

FFTB_STAT FFTB Status Register

CM41X_M0 FFTB Interrupt List

Table 40-2: CM41X_M0 FFTB Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

6 FFTB0_DPERR FFTB0 Data parity error Level

6 FFTB0_SPERR FFTB0 Parity error in the limit buffer
(LBUFF), or the window buffer
(WNDBUFF). If this interrupt request is
asserted, ignore the result of this spectrum
capture sequence and rewrite both LBUFF
and WNDBUFF.

Level

22 FFTB0_DONE FFTB0 Non-continuous FFT averaging
has completed. In addition, the interrupt
request is asserted after a channel frame is
processed (FFT, PSD, Averaging, PSD
comparison) in multichannel mode.

Level

22 FFTB0_LIMERR FFTB0 One or more points in the power
spectrum output exceeded the predefined
limit in the limit buffer.

Level

CM41X_M4 FFTB Interrupt List

Table 40-3: CM41X_M4 FFTB Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

22 FFTB0_SPERR FFTB0 Parity error in the limit buffer
(LBUFF), or the window buffer
(WNDBUFF). If this interrupt request is
asserted, ignore the result of this spectrum

Level

FFTB Functional Description

ADSP-CM41x Mixed-Signal Control Processor 40–3

Table 40-3: CM41X_M4 FFTB Interrupt List (Continued)

Interrupt
ID

Name Description Sensitivity DMA
Channel

capture sequence and rewrite both LBUFF
and WNDBUFF.

23 FFTB0_DPERR FFTB0 Data parity error Level

60 FFTB0_LIMERR FFTB0 One or more points in the power
spectrum output exceeded the predefined
limit in the limit buffer.

Level

128 FFTB0_DONE FFTB0 Non-continuous FFT averaging
has completed. In addition, the interrupt
request is asserted after a channel frame is
processed (FFT, PSD, Averaging, PSD
comparison) in multichannel mode.

Level

CM41X_M4 FFTB Trigger List

Table 40-4: CM41X_M4 FFTB Trigger List Masters

Trigger ID Name Description Sensitivity

28 FFTB0_DONE FFTB0 FFT done Level

Table 40-5: CM41X_M4 FFTB Trigger List Slaves

Trigger ID Name Description Sensitivity

27 FFTB0_TRIG_IN FFTB0 Spectrum Capture Trigger Input Pulse

FFTB Definitions

To make the best use of the FFTB, it is useful to understand the following terms.

Comb Filter

A feed-forward comb filter is used to eliminate periodic noise from an observed signal. The difference equation of
the feed-forward comb filter is:

y[n] = x[n] + a * x[n-K];
Where K is the delay length (measured in samples), and a is a scaling factor applied to the delay signal. The scaling
factor a takes the values +/- 1.

Windowing

Windowing is a point-to-point multiplication of an input vector and windowing function.

FFTB Functional Description

40–4 ADSP-CM41x Mixed-Signal Control Processor

Spectrum Capture

Spectrum Capture refers to FFT engine performing FFT on the input vector and calculating magnitude spectrum.

Accumulator

Accumulator is the single MAC (multiplier and accumulator) inside the FFT Engine.

Spectrum Averaging

Spectrum averaging is used to refine a squared-magnitude spectrum by averaging several successive spectra. Only the
squared-magnitude value of the spectrum is averaged (not the real or imaginary components individually).

Spectrum Power Limit

A defined power spectrum values. If at any frequency point, the resulting power spectrum is greater than the corre-
sponding limit value, an event is asserted.

FFTB Block Diagram

The figure shows the functional blocks and data flow of the FFTB.

S
C
B

B
U
S

FORMAT
CONVERTER COMB FILTER WINDOWING

INBUFF

WNDBUFF

FFT
ENGINE

Real WBUFF

Imag WBUFF

MBUFF0

MBUFF1

MBUFF2

MBUFF3

LIMBUFF

SPECTRUM
COMPARATOR

FFTB
REGISTERS

FMCTL.EN CTL.WND COMB.EN

INBUFF WRITE PATH

Figure 40-1: FFTB Functional Block Diagram

FFTB Architectural Concepts

The FFTB is a single MAC (multiplier accumulator) spectrum monitoring block. It uses FFT radix-2 DIT (decima-
tion in time) to calculate the spectrum. The FFTB Data Widths table shows the data widths and effective format
used for FFTB operations.

FFTB Functional Description

ADSP-CM41x Mixed-Signal Control Processor 40–5

Table 40-6: FFTB Data Widths

Data Use Data width Effective format

FFT engine input 16 bits 1.15 signed fractional

FFT twiddle factor 23 bits 0.23 unsigned fractional

Windowing function 16 bits 0.16 unsigned fractional

Intermediate and complex 24 bits 1.23 signed fractional

Square magnitude 32 bits 0.32 unsigned fractional

When using the FFTB module,

• The output of the accumulator is normalized to prevent overflow and is divided by 2. However, when magni-
tude averaging is enabled, the FFT magnitude output is divided by the number of frames to be averaged, before
being passed to the accumulator.

• During any FFT operation, read accesses to any buffer return zero data and write accesses are ignored.

• After capturing the input samples and writing them in the IBUFF, write accesses to the FFT IBUFF are ignor-
ed.

Input Format Converter

The FFTB includes a standard input format converter for adapting data, without software overhead. The converter
unit performs simple numeric format conversions from diverse data sources to the standard numerical format used
for input to the FFTB unit. (The format is a signed fractional 16-bit data, or 1.15). The FFTB_FMTCTL and
FFTB_INOFST registers specify the format conversion settings.

The input converter can accommodate the following input data scenarios:

• Signed or unsigned data, sign-extended or zero-filled, as necessary, using the FFTB_FMTCTL.SGN bit

• Data of variable width, from 1 to 16 bits using the FFTB_FMTCTL.FLDSZ bit field

• Data MSB is placed in a variable position in the input word as specified by the FFTB_FMTCTL.IMSB bit
field. The processed data MSB can be placed at any position specified by the FFTB_FMTCTL.OMSB bit field.

• Data with a DC offset using the FFTB_INOFST.VALUE bit field

• Data that is packed using the FFTB_FMTCTL.UNPK bit field

• two 16-bit samples or four 8-bit samples in one 32-bit data transfer

• two 8-bit samples in one 16-bit transfer

The input converter cannot handle all situations. Examples of input streams that the input converter cannot handle
unassisted are:

• Data that is interleaved in a multiplexed data stream

• Data that is written with a stride (memory offset between samples) of other than 1, 2, or 4 bytes

FFTB Architectural Concepts

40–6 ADSP-CM41x Mixed-Signal Control Processor

The input bandwidth limitation applies if unpacking data.

Logical input data size (DSZ) is the smallest number of bytes (in power of 2) that is larger than the input data size
(in bytes). The input data size is programmed in the FFTB_FMTCTL.FLDSZ bit field. The input format converter
follows this sequence of operations:

1. If the FFTB_FMTCTL.EN bit =0x0, no format conversion takes place. Data is taken from the MSB-aligned
16 bits of the physical data transferred. If the physical data is 8-bit, then it is MSB-aligned and LSB-filled with
zeros. Otherwise If the FFTB_FMTCTL.EN bit =0x1, the FFTB unit performs the next steps (in order).

2. The size of the data transfer on the physical bus is compared to the logical data size (DSZ). If the values match,
then step 3 manages the physically transferred data. Otherwise, if the physical size is greater than DSZ:

a. If the FFTB_FMTCTL.UNPK bit =0x1, then the write data is divided into multiple (2 or 4) data sam-
ples, LSB-first. The samples are processed independently, one per FFTB clock cycle.

b. If the FFTB_FMTCTL.UNPK bit =0x0, then the data transfer size does not match the logical data size.
The mismatch is tolerated as a programming error or as an unintended widening operation performed in
the system bus fabric. So, the data of the size encoded by FFTB_FMTCTL.FLDSZ is taken from the
LSB-aligned position in the data physically written. When a 16-bit physical write in the high half of a 32-
bit word and DSZ is 8-bit data, bits [23:16] are used.

3. The MSB of the input data that is specified by the FFTB_FMTCTL.IMSB bit field is shifted to bit 15 of the
processed data. Then, the MSB of the processed data is masked to the FFTB_FMTCTL.FLDSZ bits wide val-
ue.

4. The MSB of masked data is shifted to the position configured by the FFTB_FMTCTL.OMSB bit field.

5. If the FFTB_FMTCTL.SGN bit =0x1, and the FFTB_FMTCTL.FLDSZ value is less than 16, then the data is
sign-extended from the bit identified as FFTB_FMTCTL.OMSB + 1 to bit 15. In other words, the bit (in the
masked data) at index FFTB_FMTCTL.OMSB is replicated in bits 15 down to FFTB_FMTCTL.OMSB + 1.

6. The 16-bit value in the FFTB_INOFST.VALUE bit field (regarded as 1.15 signed fractional format) is added
to the previous result. If a signed overflow occurs and the saturation control is enabled (the
FFTB_FMTCTL.SAT bit is set), the value is saturated to a positive or negative full scale.

7. The resulting 16-bit signed, fractional value is deposited in the input buffer, IBUFF, at the appropriate posi-
tion, k.

IBUFF_WO Input Buffer Write

The data stored in the IBUFF represents the result of a write to the IBUFF with:

• The format converter processing raw input data, when enabled (FFTB_FMTCTL.EN bit =0x1)

• A comb filter processing data, when enabled (FFTB_COMB.EN bit =0x1)

• A windowing function processing data, when enabled (FFTB_CTL.WND bit =0x1)

FFTB Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 40–7

To perform a spectrum capture operation, a stream of data is transferred into the FFTB input by writing raw data
into the FFTB IBUFF_WO address range, starting with address offset 0. These data writes are processed by the
format converter and comb filter, if enabled, and then the resulting formatted and filtered samples are written into
the IBUFF_RW memory in the order they were processed.

As a convenience for data transfer, the write address offset into IBUFF_WO isn’t considered significant, except for
the case of address offset 0. When the FFTB is waiting for the start of a spectrum capture, a write to IBUFF_WO[0]
is taken as the first sample of the input data, while other writes are ignored. Each subsequent write into the
IBUFF_WO range (whether to offset 0 or not) is taken as the next successive data sample. As the comb filter and
input formatter process these samples, the resulting formatted data (in standard signed fractional 1.15 notation) is
filled into the IBUFF_RW memory via internal write pointer that starts at 0. This pointer increments by 2 bytes for
each (unpacked, filtered, and formatted) 16-bit data sample.

This flexible mechanism works smoothly with all data input sources, regardless of their addressing capability. It
works, for example, to arrange to have a source peripheral handling a continuous data stream (for example audio
data) to always write to the same target address at IBUFF_WO offset 0. The FFTB then extracts the exact proper
length of data from the stream as soon as it is enabled to do so. Alternatively, a signal source with more complex
DMA capability might write using circular-buffer addressing into a buffer of length N samples based at
IBUFF_WO, so that the FFTB starts its spectrum capture window only on a sample index that is a multiple of N.

If no spectrum monitoring is triggered, all write accesses to the IBUFF FFT address range are ignored. If a spectrum
monitoring is started, input data capturing does not occur until data is written to IBUFF FFT base address. Consec-
utive writes update the IBUFF until the last data point associated with the FFT size (FFTB_CTL.SZ bit field) is
processed. Then, all write accesses are ignored until a new spectrum capture is started.

IBUFF_RW Input Buffer Read

The IBUFF_RW buffer allows inspection of the input data after all pre-processing by the input format converter,
comb filter, and/or windowing function, as enabled respectively. The data in IBUFF_RW is then processed directly
by the FFTB engine, and so should appear in the standard format (signed fractional, 1.15 – radix format).

Data samples written to a particular address in the IBUFF_WO during input data capture can appear at a different
read address in the IBUFF_RW. This action is due to unpacking and the logical data size, DSZ. See IBUFF_WO
Input Buffer Write section for the details of which data sample point, [k], is written by a given write transfer. The
processed value for point k is always a read from the byte address [(IBUFF_RW direct access base address) + 2k]. If
the IBUFF_RW is declared as an array of packed 16-bit values, then the expression IBUFF_RW[k] returns the
proper value for data sample [k].

The IBUFF_RW buffer may only be read when the FFTB is not running. During any FFT operation, the
IBUFF_RW read accesses return zero data.

Comb Filter

The feed forward comb filter is used to reject periodic noise in the input signal. The comb filter feature pre-process-
es the input signal to the FFTB to reject certain periodic content at a specific frequency. It is enabled by
FFTB_COMB.EN and controlled by the FFTB_COMB.LEN, and FFTB_COMB.SGN fields. The comb filter has
the following signal response:

FFTB Architectural Concepts

40–8 ADSP-CM41x Mixed-Signal Control Processor

output[n] = input[n] ± input[n - LEN];
The comb filter with negative sign rejects frequencies that are multiples of fsamp/LEN, as well as at f = 0 (DC). To
compute LEN from the desired comb notch frequency:

LEN = (fsamp/fnoise) - 1;
Changing the sign of a comb filter from negative to positive results in rotating the zeroes of the comb filter by [π/
LEN]. For example: if fsamp is 1 MHz, and there is periodic switching noise at multiples of fnoise = 20 kHz, then the
comb filter can be configured as follows.

ADI_FFTB_COMB.LEN = ((1000 / 20) - 1); // value is 49
ADI_FFTB_COMB.EN = 1;
This configuration removes noise at 0, 20 kHz, 40 kHz, 60 kHz, and up to 500 kHz frequencies.

NOTE: When the Comb filter is enabled, write IBUFF with (N + LEN) samples from the signal, where N is the
FFT length.

Input Data Windowing

The FFTB provides a windowing buffer (WNDBUFF) to store windowing function values. Windowing is point-to-
point multiplication of an input vector and windowing function. Extracting N points from an input data stream is
equivalent to multiplying the input data stream with a rectangular window by the width of N.

A rectangular window has the following attributes:

• A narrow mainlobe (which is an advantage)

• The largest sidelobe drop of rate 13 dB, and sidelobe drop off rate 6 dB/octave (which is a disadvantage)

To improve the output spectrum of a window function, the mainlobe must be kept narrow (a wide mainlobe smears
sinusoids together) and the sidelobe power must be smaller. (Large sidelobes obscure small sinusoids and cause side-
lobe interference).

Lowering the sidelobe power (compare to rectangular window) causes the widening of the mainlobe. Many window
functions exist that can lower the sidelobe power with acceptable mainlobe, for example Hanning and Hamming
windows. Windowing functions are symmetric, so only half of the points must be stored.

In practice, windowing functions are symmetrical (wf[k] = wf[N1k]), so the WNDBUFF is a half-sequence
wide (only the first N/2 locations are used, from index 0 to N/21.) This arrangement means that:

• Input points x[k] for k = 0 to (N/2)-1 are multiplied by WNDBUFF[k]

• Input points for k = N/2 to N-1 are multiplied by WNDBUFF[N-1-k], respectively

For the same windowing function, the values written to the WNDBUFF are specific to the FFT size. Changing the
FFT size requires that the WNDBUFF be rewritten with the appropriate values.

A write to a WNDBUFF location takes effect immediately on any following writes to either of the two matching
IBUFF locations. Writes to the WNDBUFF do not have a retroactive effect. The write operations do not apply to

FFTB Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 40–9

data values that have previously been written to IBUFF (as defined by the time of data arrival on the SCB write data
bus).

During any FFT operation, write accesses to the windowing buffer (WNDBUFF) are ignored and read accesses re-
turn 0x0.

Transform Accelerator

The FFTB transform accelerator automates the calculation of the FFT algorithm on the contents of the IBUFF,
according to the size specified by FFTB_CTL.SZ (which is a power of 2). The complex spectrum is stored to the
working buffers (WBUFF). The WBUFF contains two memory arrays (real and imaginary).

An in-place FFT is performed to save area. The WBUFF represents the working storage.

During the initial stage of radix2 FFT, the data is read from the IBUFF (in reverse bit order), and the results are
written to the WBUFF (real and imaginary buffers) in-order.

Magnitude Computation Unit

The FFTB contains a magnitude computation unit which computes the square magnitude (power spectrum density)
of complex spectrum stored in the WBUFF (real and imaginary buffers) at each frequency point. It writes the result
in the magnitude buffer (MBUFF). Because of the symmetry of the power spectrum density, the square magnitude
is calculated for half the spectrum plus one. Which means, for the number of samples N (even number), the number
of spectrum points produced is (N/2 + 1). The FFTB unit contains one MAC. So, one square magnitude calculation
completes every two cycles. The width of the square magnitude data is 32 bits (effectively, a 0.32 unsigned-fractional
format).

FFT Performance Calculation

FFT Spectrum Computation Cycles:

The FFT engine performs a nested loop, where the inner loop executes N/2 radix2 butterfly operations. The outer
loop is executed log2(N) times. The FFT engine can finish a butterfly operation every four FFTB clock cycles. So,
the time required for FFT computation is:

Cycles = 4 × (N/2) × log2(N) + C= 2N × log2(N) + C;
where:

C is depth of the butterfly pipeline and is equal to 4.

N is the FFT size

FFT Magnitude Computation Cycles:

Cycles = N + 2, where N is the FFT size.

NOTE: If FFTB_CTL.DMAOUT == 0x0, the FFTB DONE interrupt request is asserted after the computing the
last FFT data point's squared magnitude. Therefore, the total FFT Performance Cycle is the sum of both
FFT Spectrum Computation Cycles and FFT Magnitude Computation Cycles.

FFTB Architectural Concepts

40–10 ADSP-CM41x Mixed-Signal Control Processor

Spectrum Averaging

The FFTB contains spectrum averaging logic where multiple (up to 16) successive Power Spectrum Densities
(PSDs) are averaged. If (FFTB_CTL.AVG ≠ 0x0), then spectrum averaging is selected.

For example, A is the number of averaged spectra specified by the FFTB_CTL.AVG bit setting. The results of suc-
cessive spectra are divided by A, then added into the MBUFF buffer. Each time a spectrum is added, the output of
the accumulator is not normalized to have linear averaging for the spectrum. After a complete set of A spectra is
collected and one of the trigger modes initiate a new spectrum capture sequence, the contents of the magnitude
buffer (MBUFF) are discarded and a new sum is initiated. This sequence does not mean that the magnitude buffer
MBUFF is reset to 0 upon the described events. Instead, the events set a state condition (FFTB_STAT.AVGPND =
A) which directs the averaging operation to ignore (treat as zero) the prior contents of MBUFF, when processing the
next spectrum results.

When the power spectrum averaging completes, the minimum and maximum values of the resulting power spec-
trum averaging are recorded in the FFTB_MAXMAG and FFTB_MINMAG registers. For each power spectrum data
sample, there is a bit in the register array FFTB_MAGSEL[n]. The bit controls when the power spectrum data
sample is used in the calculation of the minimum and maximum power spectrum values.

Spectrum Comparator

The FFTB supports an optional point-to-point power spectrum density comparison. It compares the output power
spectrum or averaged power spectrum to the limit buffer (LBUFF) that contains a programmable power spectrum
limit value. This value is the maximum power for each frequency point in a half-spectrum. An out-of-bounds power
detected at any frequency point can be programmed to cause a signal spectrum monitor event.

To enable spectrum comparison, set the FFTB_CTL.CMP bit to 0x1.

For each power spectrum data sample, there is a bit in the FFTB_MAGSEL[n] register that controls when the limit
comparison occurs.

The result of each comparison of the power spectrum data sample has a corresponding bit in the
FFTB_LIMSTAT[n] register.

If spectrum comparison is enabled, and at least one limit comparison fails (for example, the power spectrum data
sample exceeds the power limit), the FFTB_STAT.LIMERR status bit is asserted. More FFT averaging does not
start until the FFTB_STAT.LIMERR bit is cleared. In multichannel mode, the FFT operations are stopped only
after the spectrum comparison completes for all the channels. The FFTB_LIMSTAT[n] registers for each channel
can be reviewed and the FFTB_STAT.LIMERR bit can be cleared by software for each channel before changing
the channel.

Buffer Memory Maps

The FFTB Memory Mapped Buffers List identifies the base addresses, sizes, and access types for the different buffers
in the FFTB.

FFTB Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 40–11

Table 40-7: FFTB Memory Mapped Buffers List

Buffer Name Start Address Size Access Type Notes

IBUFF_WO 0x7000 0000 1K Byte WO This address range is used only to capture input data sam-
ples used in the FFT calculation.

Used only for FFT capture operation.

IBUFF_RW 0x7000 0800 1K Byte R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

LBUFF 0x7000 1000 1025 Bytes R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

MBUFF0 0x7000 2000 1028 Bytes R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

MBUFF1 0x7000 3000 1028 Bytes R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

MBUFF2 0x7000 4000 1028 Bytes R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

MBUFF3 0x7000 5000 1028 Bytes R/W Access is ignored while any FFT operation is in-progress.

Used only for direct access.

Real WBUFF 0x7000 6000 2K Bytes R/W Access is ignored while any FFT operation is in progress.

Used only for direct access.

Imag
WBUFF

0x7000 7000 2K Bytes R/W Access is ignored while any FFT operation is in progress.

Used only for direct access.

WNDBUFF 0x7000 8000 512 Bytes R/W Access is ignored while any FFT operation is in progress.

Used only for direct access.

FFTB Spectrum Monitor Triggering Modes

The spectrum monitor starts with capturing the input data stream, and ends with the last operation needed for the
current data frame. This sequence depends on the configuration in the FFTB_CTL register. Input data capture al-
ways starts with writing location 0x0 of IBUFF. When the spectrum capture process starts, all input stream writes
prior to writing the base address of the input buffer are ignored.

The FFTB can operate in the following modes:

• Manual. In this mode, only one spectrum is captured. The spectrum capture process starts after writing 0x1 to
the FFTB_CTL.START bit. No trigger is required in this mode.

• Auto. In this mode, the FFTB continuously captures the spectrum. The first spectrum capture starts after writ-
ing 0x1 to the FFTB_CTL.START bit. No trigger is required in this mode. After the current spectrum cap-
ture completes, a new spectrum capture starts.

FFTB Architectural Concepts

40–12 ADSP-CM41x Mixed-Signal Control Processor

• Trigger One Shot. In this mode, only one spectrum average is captured. Spectrum averaging starts after writing
0x1 to the FFTB_CTL.START bit. Then, a trigger is needed on the FFTB_TRIG_IN for each frame in the
spectrum averaging. After all frames are captured, the spectrum capture process does not start, even if another
trigger is sent on the FFTB_TRIG_IN.

• Trigger Continuous. In this mode, The FFTB continuously captures spectrum. The first frame capture starts
after writing 0x1 to the FFTB_CTL.START bit. Then, a trigger is needed on the FFTB_TRIG_IN for each
frame in the spectrum averaging. After the current spectrum averaging completes, a new spectrum capture does
not start, unless another pulse is sent on the selected FFTB_TRIG_IN.

NOTE: In both Trigger One Shot and Trigger Continuous modes, any write to IBUFF is ignored before the trig-
ger.

Multichannel Operation

Up to four channels can be enabled in multichannel mode. Once enabled, the spectrum analyzer performs all the
enabled operations for an individual channel before moving to the next channel in a frame. The enabled operations
can be capture, FFT, PSD, averaging in second and subsequent frames, and optional PSD comparison in the last
frame. After all the channels in a frame are processed, the spectrum analyzer advances to the next frame. In the last
frame, if enabled, the DMA operation is initiated only after all channels are processed.

Setting the FFTB_CTL.CHEN bit field enables the multichannel operation. Setting the
FFTB_CTL.CHDONEIRQ bit triggers the DONE interrupt request after each channel is processed so that the in-
put source of the spectrum analyzer can be switched to the next channel. The FFTB_STAT.ACTCH bit field indi-
cates which channel is being processed. Hardware sets the FFTB_STAT.CHDONE bit after each channel is pro-
cessed. It indicates that the spectrum analyzer is waiting for a channel change. If the FFTB_STAT.CHDONE bit is
set, writes to the capture buffer are ignored. To resume operation, software must clear this bit after the channel is
changed.

Each channel uses its own magnitude buffer to store the averaged PSD data. All PSD data from channel 0 is trans-
ferred, followed by PSD data from channel 1 and so on. The data is transferred to consecutive destination locations.
For example, for a 32 point FFT, 17 PSD words for channel 0 are transferred first and the 18th destination location
contains the first PSD data for channel 1.

NOTE: After all the spectrum operations and optional DMA are complete, the status registers contain information
about the last channel only. Software should review status information before changing the channel.

The limit error interrupt stops the FFTB operation only after all the channels are processed.

Launching and Stopping FFT Monitor

To launch the FFT monitor, enable the module by setting the FFTB_CTL.EN bit =0x1 and the
FFTB_CTL.START bit =0x1. The FFT trigger mode is configured using the FFTB_CTL.TRIGMODE bit.

When the FFT is launched, all FFT control configurations are captured internally. The captured configurations are
used for all FFT operations. Changing the configuration after launching the FFT does not alter the FFT calculation.

The only configurations that immediately take effect are:

FFTB Spectrum Monitor Triggering Modes

ADSP-CM41x Mixed-Signal Control Processor 40–13

• Parity error test bit (FFTB_CTL.PETST)

• Interrupt control bits:

• FFTB_CTL.DONEIRQ
• FFTB_CTL.LIMIRQ
• FFTB_CTL.DPEIRQ
• FFTB_CTL.SPEIRQ

The status bits associated with these interrupt requests are always updated.

While the FFT monitor is in-progress, writing 0x1 to the FFTB_CTL.START bit has no effect. If any parity error
or limit error status is asserted, writes to the FFTB_CTL.START bit are ignored.

There are two ways to stop the FFT monitoring operation:

• Abrupt stop. Disable the FFTB unit by writing 0x0 to the FFTB_CTL.EN bit.

• Clean stop. This operation is only useful when the FFTB unit is operating in auto-mode or trigger-continuous
mode. Write 0x1 to the FFTB_CTL.STOP bit for a clean stop. This operation causes the FFTB unit to wait
until the in-progress FFT averaging function completes, then transition to idle and wait for another FFT moni-
tor launch. In multichannel mode, the FFT operation stops after the averaging operation for all the channels is
complete.

NOTE: Setting both the FFTB_CTL.START and FFTB_CTL.STOP bits to 0x1 at the same time is equivalent
to setting the FFTB_CTL.STOP bit to 0x1.

Parity Protection

Every byte in the FFTB memory is protected with one parity bit and every memory read checks for parity errors. If a
parity error is detected, the appropriate parity error status bit is asserted. If a parity error is detected while an FFT
averaging operation is in-progress, all FFT operations in single and multichannel mode are stopped immediately. No
FFT operation is launched until all asserted parity errors status bits are cleared. The done_int and limerr_int inter-
rupt requests cannot be asserted in this case. Enable the sperr_int and dperr_int interrupt requests for timely soft-
ware intervention.

If the FFTB_STAT.DPERR bit is asserted, just clearing the status bit should be enough.If FFTB_STAT.SPERR
bit is asserted, the program must refill both the windowing buffer (WNDBUFF), and the limit buffer (LIMBUFF).

The FFTB_CTL.PETST bit is used to test parity error logic. While this bit is asserted, any write operation to any
buffer results in depositing the wrong parity. Once the FFTB_CTL.PETST bit is cleared, all write operations de-
posit the correct parity.

FFTB Spectrum Monitor Triggering Modes

40–14 ADSP-CM41x Mixed-Signal Control Processor

FFTB Event Control
The FFTB can signal status events when certain conditions occur. All FFTB output events are sticky. To clear these
events, write the value 0x1 to the event status bit in the status register. The FFTB also has control event input ports
(FFTB_TRIG_IN).

FFTB Status and Error Signals

The FFTB has the following status and error signals.

Table 40-8: Interrupt Signals

Status Name Description

SPERR Parity error in the limit buffer (LBUFF) or the window buffer (WNDBUFF). If this interrupt re-
quest is asserted, the program should ignore the result of this spectrum capture sequence and rewrite
both LBUFF and WNDBUFF.

DPERR Parity error in the input buffer (IBUFF), the complex working buffer (WBUFF), or magnitude buf-
fer (MBUFF). If this interrupt request is asserted, the program should ignore the result of this spec-
trum capture sequence.

LIMERR One or more points in the power spectrum output exceeded the predefined limit in the limit buffer.

IPND Input buffer (IBUFF) filling is in-progress.

SPND FFT, PSD, averaging, or PSD comparison are in-progress.

OPND DMA output is in-progress.

DONE Non-continuous FFT averaging has completed.

CHDONE FFT, PSD, averaging, or PSD comparison completed for a channel frame.

CM41X_M4 FFTB Register Descriptions
FFTB register map. (FFTB) contains the following registers.

Table 40-9: CM41X_M4 FFTB Register List

Name Description

FFTB_COMB FFTB Input Comb Filter Control Register

FFTB_CTL FFTB Control Register

FFTB_DMABASE DMA Output Base Address Register

FFTB_DMAWR DMA Output Write Address Register

FFTB_FMTCTL Format Converter Control Register

FFTB_INOFST Input Offset Register

FFTB_LIMSTAT[n] Limit Status Registers

FFTB_MAGSEL[n] Magnitude Pin Select Registers

FFTB Event Control

ADSP-CM41x Mixed-Signal Control Processor 40–15

Table 40-9: CM41X_M4 FFTB Register List (Continued)

Name Description

FFTB_MAXMAG Maximum Magnitude Register

FFTB_MINMAG Minimum Magnitude Register

FFTB_STAT FFTB Status Register

CM41X_M4 FFTB Register Descriptions

40–16 ADSP-CM41x Mixed-Signal Control Processor

FFTB Input Comb Filter Control Register

The FFTB_COMB register controls various aspects of the Comb filter.

Comb Filter Sign

Comb Filter EnableComb Filter Length

Comb Filter LengthComb Filter Lock Enable

SGN (R/W)

EN (R/W)LEN[7:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LEN[8] (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-2: FFTB_COMB Register Diagram

Table 40-10: FFTB_COMB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Comb Filter Lock Enable.

When both the FFTB_COMB.LOCK bit and the SPU global lock
(SPU_CTL.GLCK) are set to 0x1, then all writes to the FFTB_COMB register are ig-
nored.

16:8

(R/W)

LEN Comb Filter Length.

When the FFTB_COMB.LEN bit =1, then the input sample buffer element IN-
BUF[n] receives the sum or the difference of two sample values:

INBUF[n] = x[n] +/- x[n-LEN];

Writing the value 0x0 to the comb filter length is equivalent to disable the comb filter.

4

(R/W)

SGN Comb Filter Sign.

If (FFTB_COMB.SGN =1'b0), then y[n] = x[n]+x[n-len].

If (FFTB_COMB.SGN =1'b1), then y[n] = x[n]-x[n-len].

Where x[n] is the input of the comb filter, and y[n] the output of the comb filter.

0

(R/W)

EN Comb Filter Enable.

The FFTB_COMB.EN bit enables the Comb filter on the signal input.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–17

FFTB Control Register

The FFTB_CTL register contains all the field needed to control the functionality of the FFTB block.

Trigger Select Mask

FFT StopTriggering Mode

FFT StartChannel Enables

FFT EnableAveraging Select

Channel Done Interrupt Enable

Done Interrupt EnableLimit Interrupt Enable

FFT SizeData Parity Error Interrupt Enable

DMA Output EnableSetup Parity Error Interrupt Enable

Compare enableEnable Parity Test Mode

Windowing EnableLock Enable

TRIGSEL (R/W)

STOP (R0/W)TRIGMODE (R/W)

START (R0/W)CHEN (R/W)

EN (R/W)AVG (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CHDONEIRQ (R/W)

DONEIRQ (R/W)LIMIRQ (R/W)

SZ (R/W)DPEIRQ (R/W)

DMAOUT (R/W)SPEIRQ (R/W)

CMP (R/W)PETST (R/W)

WND (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

1
22

0
21

1
20

0
19

0
18

0
17

0
16

Figure 40-3: FFTB_CTL Register Diagram

Table 40-11: FFTB_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock Enable.

When both the FFTB_CTL.LOCK bit and the global lock (SPU_CTL.GLCK) bit
are set to 0x1, all writes to the CTL register are ignored.

30

(R/W)

PETST Enable Parity Test Mode.

When the FFTB_CTL.PETST bit is set (=1) writes to SRAM deposit invalid parity
into the SRAM arrays for each byte in the targeted data location. This test mode
should be used only to initialize the arrays for testing parity error.

CM41X_M4 FFTB Register Descriptions

40–18 ADSP-CM41x Mixed-Signal Control Processor

Table 40-11: FFTB_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

28

(R/W)

SPEIRQ Setup Parity Error Interrupt Enable.

The FFTB_CTL.SPEIRQ bit enables the parity error interrupt request when detect-
ed in any of the setup buffers (windowing buffer, and limit buffer).

27

(R/W)

DPEIRQ Data Parity Error Interrupt Enable.

The FFTB_CTL.DPEIRQ bit enables the parity error interrupt request when detect-
ed in any of the data buffers (input buffer, real buffer, imaginary buffer, averaging buf-
fer, and compare buffer).

26

(R/W)

LIMIRQ Limit Interrupt Enable.

The FFTB_CTL.LIMIRQ bit enables the limit interrupt request when an output
point larger than its corresponding value in the limit buffer is detected. If
FFTB_CTL.LIMIRQ is 1, then the interrupt request is asserted whenever
FFTB_STAT.LIMERR is 1.

25

(R/W)

CHDONEIRQ Channel Done Interrupt Enable.

The FFTB_CTL.CHDONEIRQ bit enables the channel done interrupt request. It can
be used to switch the FFT input source. Set the FFTB_CTL.CHEN bit to a value >0
to enable this interrupt request.

24

(R/W)

DONEIRQ Done Interrupt Enable.

The FFTB_CTL.DONEIRQ bit enables an FFT done interrupt on the completion of
an FFT computation.

If (FFTB_CTL.DMAOUT == 0x1), the interrupt request is asserted after the DMA
output is done.

If (FFTB_CTL.DMAOUT == 0x0), the interrupt request is asserted after the computa-
tion of the last FFT data point's squared magnitude.

23:20

(R/W)

SZ FFT Size.

The FFTB_CTL.SZ bit field configures an enumerated value for the FFT input vec-
tor size. The FFT size must be power of 2. The minimum allowed input vector size is
32 points, and the maximum allowed input vector size is 512 points. If this field is
programmed with any value outside the enumerated values, it is not updated.

5 The size of the input vector is 32 points.

6 The size of the input vector is 64 points.

7 The size of the input vector is 128 points.

8 The size of the input vector is 256 points.

9 The size of the input vector is 512 points.

18

(R/W)

DMAOUT DMA Output Enable.

The FFTB_CTL.DMAOUT bit enables DMA to output the averaging results through
the DMAWRPTR to the address programmed in the FFTB_DMABASE register.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–19

Table 40-11: FFTB_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W)

CMP Compare enable.

The FFTB_CTL.CMP bit enables comparing the averaged output spectrum with the
limit spectrum in the limit buffer.

16

(R/W)

WND Windowing Enable.

The FFTB_CTL.WND bit enables windowing of the input vector. If set to 0x1, the
input vector is multiplied by the appropriate window function value in the window
buffer; otherwise the input vector is not multiplied by the windowing function.

14:12

(R/W)

AVG Averaging Select.

The FFTB_CTL.AVG bit field selects spectrum output averaging.

0 Spectrum averaging is disabled.

1 Average the spectrum of 2 input vectors.

2 Average the spectrum of 4 input vectors.

3 Average the spectrum of 8 input vectors.

4 Average the spectrum of 16 input vectors.

11:10

(R/W)

CHEN Channel Enables.

The FFTB_CTL.CHEN bit field specifies the channels enabled.

0 Channel 0 is enabled

1 Channel 0 and 1 are enabled

2 Channel 0, 1 and 2 are enabled

3 Channel 0, 1, 2 and 3 are enabled

CM41X_M4 FFTB Register Descriptions

40–20 ADSP-CM41x Mixed-Signal Control Processor

Table 40-11: FFTB_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9:8

(R/W)

TRIGMODE Triggering Mode.

The FFTB_CTL.TRIGMODE bit field configures the trigger mode.

0 Manual Triggering The capture of the current signal
buffer is initiated manually, when the
FFTB_CTL.START bit is written to 1.

1 Auto Triggering The capture of the signal buffer occurs
continuously, whenever FFTB_CTL.START =1. Signal
capture repeats continuously, re-starting as soon as the
previous spectrum processing (and DMA output, if ap-
plicable) has completed.

2 Triggered One Shot (TRIG_ONE) In this mode, if
FFTB_CTL.START is set and
FFTB_CTL.TRIGMODE = TRIG_ONE, capture of a
single input signal buffer is initiated on the next pulse
on any FFTB0_TRIG_IN signal enabled by the corre-
sponding bit mask FFTB_CTL.TRIGSEL. Only one
spectrum capture averaging is initiated. One trigger
pulse is required to capture each single frame in the in-
put signal stream.

3 Triggered Continuous (TRIG_CONT) In this mode, if
FFTB_CTL.START is set, the capture of the input sig-
nal buffers is initiated at each pulse on the
FFTB0_TRIG_IN signal enabled by the
FFTB_CTL.TRIGSEL. Signal buffers are captured
continuously. One trigger pulse is required to capture
each single frame in the input signal stream.

4

(R/W)

TRIGSEL Trigger Select Mask.

The FFTB_CTL.TRIGSEL bit selects the input trigger source on the
FFTB_TRIG_IN port to initiate spectrum capture sequence. A code of 0x0 means no
trigger input is enabled. The FFTB_CTL.TRIGSEL and FFTB_TRIG_IN are only
applicable when FFTB_CTL.TRIGMODE = TRIG_ONE or TRIG_CONT.

2

(R0/W)

STOP FFT Stop.

The FFTB_CTL.STOP bit stops any spectrum capture in-progress and prevents any
new spectrum capture from starting until the FFTB_CTL.START bit is written to 1
again.

1

(R0/W)

START FFT Start.

The FFTB_CTL.START bit starts a spectrum capture operation. If trigger mode re-
quires an external trigger, a spectrum capture does not start capturing a data sample
until an external trigger event is received.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–21

Table 40-11: FFTB_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN FFT Enable.

The FFTB_CTL.EN bit enables the FFTB block. When the FFTB_CTL.EN bit ==
0x0, the the whole FFT block is disabled and all error status bits are preserved.

0 FFTB disabled

1 FFTB enabled

CM41X_M4 FFTB Register Descriptions

40–22 ADSP-CM41x Mixed-Signal Control Processor

DMA Output Base Address Register

When the FFTB_CTL.DMAOUT bit field =0x1, the FFTB_DMABASE.ADDR bit field is used as the initial value
of the FFTB_DMAWR.ADDR bit field for DMA out.

DMA Address Lock EnableDMA output base address

DMA output base address

LOCK (R/W)ADDR[13:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[29:14] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-4: FFTB_DMABASE Register Diagram

Table 40-12: FFTB_DMABASE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:2

(R/W)

ADDR DMA output base address.

An initial address for DMA output[31:2].

0

(R/W)

LOCK DMA Address Lock Enable.

When both the FFTB_DMABASE.LOCK bit and the SPU global lock
(SPU_CTL.GLCK) bit are set to 0x1, then all writes to the FFTB_DMABASE register
are ignored.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–23

DMA Output Write Address Register

The FFTB_DMAWR register is initialized with the value in the FFTB_DMABASE.ADDR bit field.

Current Address of DMA Output

Current Address of DMA Output

ADDR[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-5: FFTB_DMAWR Register Diagram

Table 40-13: FFTB_DMAWR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

ADDR Current Address of DMA Output.

In the beginning of DMA output, this field is initialized with the value in the
FFTB_DMABASE.ADDR bit field.

CM41X_M4 FFTB Register Descriptions

40–24 ADSP-CM41x Mixed-Signal Control Processor

Format Converter Control Register

The FFTB_FMTCTL register contains control fields to guide in processing the input stream before writing it to the
input buffer.

Saturation Enable

Signed InputField Size

Unpack Input StreamInput MSB

Format Converter EnableOutput MSB

Format Converter Lock Enable

SAT (R/W)

SGN (R/W)FLDSZ (R/W)

UNPK (R/W)IMSB (R/W)

EN (R/W)OMSB (R/W)

1
15

1
14

1
13

1
12

1
11

1
10

1
9

1
8

1
7

1
6

1
5

1
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-6: FFTB_FMTCTL Register Diagram

Table 40-14: FFTB_FMTCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Format Converter Lock Enable.

When both the FFTB_FMTCTL.LOCK bit and the SPU global lock
(SPU_CTL.GLCK) bit are set to 0x1, then all writes to the FFTB_FMTCTL and
FFTB_INOFST registers are ignored.

15:12

(R/W)

OMSB Output MSB.

The legal values of the FFTB_FMTCTL.OMSB bit field are [0xF down to
FFTB_FMTCTL.FLDSZ]. If FFTB_FMTCTL.OMSB < FFTB_FMTCTL.FLDSZ,
then the FFTB_FMTCTL.OMSB bit field is overwritten with
FFTB_FMTCTL.FLDSZ.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–25

Table 40-14: FFTB_FMTCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11:8

(R/W)

IMSB Input MSB.

For (FFTB_FMTCTL.FLDSZ <= 0x7), the legal values of FFTB_FMTCTL.IMSB
are [0x7 down to FFTB_FMTCTL.FLDSZ]. For (FFTB_FMTCTL.FLDSZ > 0x7),
the legal values of FFTB_FMTCTL.IMSB are [0xF down to
FFTB_FMTCTL.FLDSZ].

If (FFTB_FMTCTL.FLDSZ <= 0x7) and (FFTB_FMTCTL.IMSB > 0x7), then the
FFTB_FMTCTL.IMSB bit field is overwritten with the value 0x7. If
(FFTB_FMTCTL.IMSB < FFTB_FMTCTL.FLDSZ), then the
FFTB_FMTCTL.IMSB bit field is overwritten with the value
FFTB_FMTCTL.FLDSZ.

7:4

(R/W)

FLDSZ Field Size.

The FFTB_FMTCTL.FLDSZ bit field specifies the field size of the input data transfer
in bits. The input field size in the input stream = FFTB_FMTCTL.FLDSZ + 1

3

(R/W)

SAT Saturation Enable.

If (FFTB_FMTCTL.SAT =0x1), saturate negative values (that are too large to repre-
sent in 16-bits 1.15 signed format) to 0x8000.

If (FFTB_FMTCTL.SAT =0x1), saturate positive values (that are too large to repre-
sent in 16-bits 1.15 signed format) to 0x7FFF.

2

(R/W)

SGN Signed Input.

If (FFTB_FMTCTL.SGN == 0x1), the input is signed and will be sign-extended, if
necessary. If (FFTB_FMTCTL.SGN == 0x0), the input is unsigned and will be zero-
filled, if necessary.

1

(R/W)

UNPK Unpack Input Stream.

Enables unpacking each data write into multiple data samples. If enabled
(FFTB_FMTCTL.UNPK == 0x1), each data write of size larger than
FFTB_FMTCTL.FLDSZ is considered to hold multiple packed data samples.

If disabled (FFTB_FMTCTL.UNPK == 0x0), each data data write (of any size) is con-
sidered to hold a single data sample.

0

(R/W)

EN Format Converter Enable.

Enables the format converter logic while writing the data to the input buffer. If
(FFTB_FMTCTL.EN == 0x0), bypass the format converter logic.

If (FFTB_FMTCTL.EN == 0x1), process the input stream before attempting to write
to the input buffer.

CM41X_M4 FFTB Register Descriptions

40–26 ADSP-CM41x Mixed-Signal Control Processor

Input Offset Register

The FFTB_INOFST register contains the offset value to be used by the format converter. If the format converter is
enabled (FFTB_FMTCTL.EN bit =1'b1), this offset value is added to the processed input value.

Input Offset
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-7: FFTB_INOFST Register Diagram

Table 40-15: FFTB_INOFST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

VALUE Input Offset.

The FFTB_INOFST.VALUE bit field contains the 16 bits signed offset that is added
to unpacked, shifted data. This offset is only added to the processed data if the
FFTB_FMTCTL.EN bit is set to 0x1.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–27

Limit Status Registers

The FFTB_LIMSTAT[n] register contains one status bit for each power spectrum density point comparison in
half the FFT spectrum.

Over Limit Status

Over Limit Status

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-8: FFTB_LIMSTAT[n] Register Diagram

Table 40-16: FFTB_LIMSTAT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Over Limit Status.

Each bit in the FFTB_LIMSTAT[n].VALUE register array is set to 0x1, if the cor-
responding power spectrum value in half the FFT spectrum exceeds the corresponding
value in the limit buffer LIMBUFF.

CM41X_M4 FFTB Register Descriptions

40–28 ADSP-CM41x Mixed-Signal Control Processor

Magnitude Pin Select Registers

The FFTB_MAGSEL[n] registers contain one control bit for each power spectrum density point, if that bit is set
the corresponding point will be used in Power Spectrum Density comparison, and finding the minimum, and maxi-
mum values.

Magnitude Select

Magnitude Select

VALUE[15:0] (R/W)

1
15

1
14

1
13

1
12

1
11

1
10

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

VALUE[31:16] (R/W)

1
31

1
30

1
29

1
28

1
27

1
26

1
25

1
24

1
23

1
22

1
21

1
20

1
19

1
18

1
17

1
16

Figure 40-9: FFTB_MAGSEL[n] Register Diagram

Table 40-17: FFTB_MAGSEL[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Magnitude Select.

Each bit in the FFTB_MAGSEL[n].VALUE register array corresponds to power
spectrum value in half the FFT spectrum. If any bit is set to 0x1 the corresponding
magnitude value is used in magnitude comparison, and finding the minimum and
maximum magnitude values.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–29

Maximum Magnitude Register

The FFTB_MAXMAG register contains the maximum value of the spectrum magnitude square (Power Spectrum
Density).

spectrum magnitude
Maximum magnitude square of the

spectrum magnitude
Maximum magnitude square of the

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-10: FFTB_MAXMAG Register Diagram

Table 40-18: FFTB_MAXMAG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Maximum magnitude square of the spectrum magnitude.

CM41X_M4 FFTB Register Descriptions

40–30 ADSP-CM41x Mixed-Signal Control Processor

Minimum Magnitude Register

The FFTB_MINMAG register contains the minimum value of the spectrum magnitude square (Power Spectrum
Density).

spectrum magnitude
Minimum magnitude square of the

spectrum magnitude
Minimum magnitude square of the

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-11: FFTB_MINMAG Register Diagram

Table 40-19: FFTB_MINMAG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE Minimum magnitude square of the spectrum magnitude.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–31

FFTB Status Register

The FFTB_STAT register contains all fields that report the status of the FFTB functionality.

DMA Output Pending

Spectrum Calculation PendingFFT done

Input Capture PendingChannel Done

Active StatusAveraging Pending

Setup Parity ErrorLimit Error

Data Parity ErrorActive Channel

OPND (R)

SPND (R)DONE (R/W1C)

IPND (R)CHDONE (R/W1C)

ACT (R)AVGPND (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SPERR (R/W1C)LIMERR (R/W1C)

DPERR (R/W1C)ACTCH (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 40-12: FFTB_STAT Register Diagram

Table 40-20: FFTB_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

21:20

(R/NW)

ACTCH Active Channel.

The FFTB_STAT.ACTCH bit indicates that the FFTB is working on this channel.

0 Channel 0 active

1 Channel 1 active

2 Channel 2 active

3 Channel 3 active

18

(R/W1C)

LIMERR Limit Error.

The FFTB_STAT.LIMERR bit indicates that one or more values in the averaging
buffer exceeded the corresponding limit in the limit buffer.

17

(R/W1C)

SPERR Setup Parity Error.

The FFTB_STAT.SPERR bit indicates that a Parity error was detected in any of the
setup buffer (windowing buffer, and limit buffer).

CM41X_M4 FFTB Register Descriptions

40–32 ADSP-CM41x Mixed-Signal Control Processor

Table 40-20: FFTB_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W1C)

DPERR Data Parity Error.

The FFTB_STAT.DPERR bit indicates that a Parity error was detected in any of the
data buffer (input buffer, real buffer, imaginary buffer, averaging buffer, and compare
buffer).

11:8

(R/NW)

AVGPND Averaging Pending.

The FFTB_STAT.AVGPND bit indicates the remaining number of input vectors
needed for averaging calculation.

5

(R/W1C)

CHDONE Channel Done.

The FFTB_STAT.CHDONE bit is asserted on the completion of an FFT computa-
tion. If (FFTB_CTL.DMAOUT =0x1), the FFT done status is asserted after the DMA
output is done writing the last transfer. If (FFTB_CTL.DMAOUT =0x0), the FFT
done status is asserted after the computation of the last FFT data point.

4

(R/W1C)

DONE FFT done.

The FFTB_STAT.DONE bit is asserted on the completion of an FFT computation. If
(FFTB_CTL.DMAOUT == 0x1), the FFT done status is asserted after the DMA out-
put is done writing the last transfer. If (FFTB_CTL.DMAOUT == 0x0), the FFT done
status is asserted after the computation of the last FFT data point.

3

(R/NW)

OPND DMA Output Pending.

The FFTB_STAT.OPND bit indicates that a DMA output is in progress.

2

(R/NW)

SPND Spectrum Calculation Pending.

The FFTB_STAT.SPND bit indicates that the FFT, magnitude, and averaging calcu-
lations are in progress.

1

(R/NW)

IPND Input Capture Pending.

The FFTB_STAT.IPND bit indicates that filling an input buffer is in progress.

0

(R/NW)

ACT Active Status.

The FFTB_STAT.ACT bit indicates that spectrum capture is activated by writing
0x1 to the FFTB_CTL.START bit, while the FFTB_CTL.EN bit is 0x1, and the
FFTB_CTL.STOP bit is 0x0. The FFTB_STAT.ACT status field is cleared at the
assertion of any error status or spectrum capture is finished and no more capture is
needed.

CM41X_M4 FFTB Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 40–33

41 Reset Control Unit (RCU)

Reset is the initial state of the processor at power-on or the run-time state of any core, as controlled by another core
in the device via the RCU or as a a result of a hardware or software triggered event. In this state, all control registers
are set to their default values and functional units are idle.

Additional information on reset and booting can be found in the Boot ROM and Booting the Processor chapter.

The Reset Control Unit (RCU) controls how all the functional units enter and exit reset. Differences in functional
requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of
the reset functions puts the system into an undefined state or causes resources to stall. This functionality is impor-
tant when only one of the cores is reset (programs must ensure that there is no pending system activity involving the
core that is being reset). While core resets and software system resets are controlled directly in the RCU, hardware
resets can come from the TRU, SEC, or CGU Oscillator Watchdog.

The following table identifies the core IDs for the processor.

Core ID Core Description

Core 0 Cortex-M4

Core 1 Cortex-M0

RCU Features
The RCU module supports the following features:

• Hardware reset through the SYS_HWRST pin

• Software system reset through the RCU control (RCU_CTL) register

• Hardware system reset through:

• TRU module

• SEC module (System Fault Unit , see System Fault Interface (SFI) and the NVIC)

• ARM core reset request from the SDCTRL_AICR register.

• A clock not good reset state (safe state of chip under reset) from the Oscillator Watchdog.

Reset Control Unit (RCU)

ADSP-CM41x Mixed-Signal Control Processor 41–1

• Core reset through RCU Core Reset Output (RCU_CRCTL) register

RCU Functional Description
This section provides information on the function of RCU module.

CM41X_M4 RCU Register List

The Reset Control Unit (RCU) controls how all the functional units in the processor enter and exit Reset. Differen-
ces in functional requirements and clocking constraints exist (units in different clock domains have to enter reset
asynchronously, but units exit reset in a deterministic way), and these differences define how reset signals are gener-
ated. Reset signals propagate through all functional units asynchronously. For more information on RCU function-
ality, see the RCU register descriptions.

Table 41-1: CM41X_M4 RCU Register List

Name Description

RCU_BCODE Boot Code Register

RCU_CRCTL Core Reset Outputs Control Register

RCU_CRSTAT Core Reset Outputs Status Register

RCU_CTL Control Register

RCU_MSG Message Register

RCU_MSG_CLR Message Clear Bits Register

RCU_MSG_SET Message Set Bits Register

RCU_SRRQSTAT System Reset Request Status Register

RCU_STAT Status Register

CM41X_M4 RCU Trigger List

Table 41-2: CM41X_M4 RCU Trigger List Masters

Trigger ID Name Description Sensitivity

None

Table 41-3: CM41X_M4 RCU Trigger List Slaves

Trigger ID Name Description Sensitivity

0 RCU0_SYSRST0 RCU0 System Reset 0 Pulse

1 RCU0_SYSRST1 RCU0 System Reset 1 Pulse

2 RCU0_SYSRST2 RCU0 System Reset 2 Pulse

RCU Functional Description

41–2 ADSP-CM41x Mixed-Signal Control Processor

RCU Definitions

To make the best use of the RCU, it is useful to understand the terms in this section.

The target or source defines the following are types of resets.

Hardware Reset (by target)

All functional units except a small subsection of debug interfaces are set to their default states. State is lost in all non-
volatile storage.

System Reset (by target)

All functional units except the RCU, flash interface, and debug are set to their default states.

Core n Only Reset (by target)

Affects Core n only. The system software must guarantee that a bus master cannot access the core in reset state.

Hardware Reset (by source)

The SYS_HWRST input signal is asserted active (pulled low).

System Reset (by source)

Software can trigger the reset by writing to the RCU_CTL register or by another functional unit such as the TRU or
any of the generic reset inputs.

RCU Architectural Concepts

To understand the architecture of the RCU, it is important to consider the reset sources and how differing resets
affect the functional units of the processor.

The RCU provides the hardware that controls how all the functional units enter and exit reset. Differences in func-
tional requirements and clocking constraints define how reset signals are generated. For example, units in different
clock domains must enter reset asynchronously but exit reset in a deterministic way.

The program must guarantee that none of the reset functions put the system in an undefined state or cause resources
to stall. This functionality is important when only one of the cores is reset. The program must guarantee that there
is no pending system activity involving Core n before it is reset. For example, there must be no pending transactions
to core 0 when the core 0 is reset and vice-versa.

Reset Sources

The following sections provide details on the various reset options and their effects on the processor.

The RCU Reset Sources figure and table define how reset sources affect the different functional units.

RCU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 41–3

HARDWARE RESET SYS_HWRST pin assertion
M4 CORE

AND SYSTEM

M4
PERIPHERALS

M0 CORE

M0 SYSTEM
AND

PERIPHERALS

CORE ONLY RESET M4 Only Core Reset via Core
Reset Output Control Register

HARDWARE SYSTEM
RESET

Cortex M4 AIRCR.SYSRSTREQ assertion
Cortex M0 AIRCR.SYSRSTREQ assertion
Reset from M4 SEC via System Fault Unit
Reset from M0 SEC via System Fault Unit
System Reset Trigger from M4’s Master triggers
System Reset Trigger from M0’s Master triggers

SOFTWARE SYSTEM
RESET

System Reset assertion via RCU Control

CORE ONLY RESET M0 Only Core Reset via Core
Reset Output Control Register

Figure 41-1: RCU Reset Sources

Table 41-4: RCU Reset Sources

Reset Type Affected Functional Units

Hardware Reset All functional units

Hardware System Reset All functional units, except:

• RCU_CRCTL.CR[n]
• RCU_STAT
• the units on the VDD_EXT power domain

Software System Reset All functional units, except:

• RCU_CRCTL.CR[n]
• RCU_STAT
• the units on the VDD_EXT power domain

Core Only Reset Core 0 or Core 1 only

Status of Reset Assertions

Following registers are available to read the status of reset assertions by various sources:

• The RCU_SRRQSTAT register reflects the status of various system resets.

• The RCU_STAT register reflects the status of various reset types in the chip.

Reset Out Pin

The SYS_RESOUT pin is asserted while a hardware rest or system reset is asserted and continues to be automatical-
ly asserted until the application deasserts the pin. Software can control the pin by programming
RCU_CTL.RSTOUTASRT and RCU_CTL.RSTOUTDSRT

RCU Architectural Concepts

41–4 ADSP-CM41x Mixed-Signal Control Processor

Hardware Reset

A hardware reset affects the entire chip, all cores and all system and peripherals and is asserted as soon as a valid
assertion is detected on the SYS_HWRST pin.

Hardware System Reset

Hardware System reset A hardware system reset can be asserted from multiple sources and it also affects all the com-
ponents in the chip

• ARM Cortex-M4 SDCTRL_AICR.SYSRESETREQ assertion: Refer to the ARM Cortex-M4 User Guide for
more details

• ARM Cortex-M0 SDCTRL_AICR.SYSRESETREQ assertion: Refer to the ARM Cortex-M0 User Guide for
more details

• Reset from ARM Cortex-M4 SEC via System Fault Unit. An interrupt request to SEC1 can trigger a reset di-
rectly, by programming the SEC_FCTL.RESET and SEC_SCTL[n].FEN bits.

• Reset from ARM Cortex-M0 SEC via System Fault Unit. An interrupt request to SEC2 can trigger a reset di-
rectly, by programming the SEC_FCTL.RESET and SEC_SCTL[n].FEN bits.

• System Reset Trigger from ARM Cortex-M4’s Master triggers. A Trigger Master can directly send a trigger
pulse to Trigger slaves through the RCU_SYSRST0 signal, initiating a system reset by trigger events.

• System Reset Trigger from ARM Cortex-M0’s Master triggers. A Trigger Master can directly send a trigger
pulse to Trigger slaves through the RCU_SYSRST0 signal, initiating a system reset by trigger events.

• The RCU_SRRQSTAT register reflects the status of various system resets.

The bits in this register are as follows.

• Bit 7 source is M4_SYSRST_REQ. This is the System Reset request initiated using the M4
SDCTRL_AICR.SYSRESETREQ control bit.

• Bit 6 source is M0_SYSRST_REQ. This is the System Reset request initiated using the M0
SDCTRL_AICR.SYSRESETREQ control bit.

• Bit 5 source is TRU0, Assignable RCU[1].SYSRST[0] trigger slave.

• Bit 4:2 source is TRU1 [2:0], Assignable RCU[0].SYSRST[2:0] trigger slave.

• Bit 1 source is SEC1_RESET_REQ. This is the SEC1 event/fault controllers reset request output.

• Bit 0 source is SEC0_RESET_REQ. This is the SEC0 event/fault controllers reset request output.

The RCU_CTL.SRSTREQEN bit controls whether System Reset sources listed above can asserted a system reset or
not. Optionally, it is also possible to assert a core only reset from the system reset sources, by programming the
RCU_CTL.CRSTREQEN bit.

RCU Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 41–5

Software System Reset

Software can also issue a system reset by writing to the RCU_CTL.SYSRST bit.

Core only System Reset

Either of the ARM Cortex cores can be separately and independently reset by writing to the RCU_CRCTL.CR[n]
bit field, where, n = 0 implies the ARM Cortex-M4 core and n = 1 implies ARM Cortex-M0 core. Note that core
only reset is a case where the intended core is put under reset and therefore it must be asserted and de-asserted by the
other Core. Once asserted, the other core can check the status by reading the RCU_CRSTAT.CR[n] bit field. The
system software must guarantee that a bus master cannot access the core in reset state.

RCU Status and Error Signals
The RCU_STAT register reflects status and error information. There are three kinds of errors that can occur in the
RCU. The reset out error is triggered when RSTOUT is both asserted and deasserted at the same time. The lock
write error occurs if an attempt is made to write a lock RCU register. The address error occurs if a read-only register
is written to or if an attempt is made to a reserved address within the RCU MMR address range.

Resetting a Core Through a System Master
The RCU allows reset of a given core n using a system master.

A core can be reset by software, either by setting any of the RCU_CRCTL.CR[n] bits. A core that resets itself
cannot guarantee that all the system transactions to or from it have completed. Although a core reset can be trig-
gered by the core itself, it is recommended that a system master trigger the reset. The core can then be reset to re-
store its proper operation when it cannot execute software. The following steps provide the suggested sequence to
reset a core.

1. Clear the RCU_CRSTAT.CR[n] bit.

2. Disable interrupts to the core.

3. Set the RCU_CRCTL.CR[n] bit to reset the core.

4. Poll the RCU_CRSTAT.CR[n] bit until the core is in reset.

5. Clear the RCU_CRCTL.CR[n] bit to take the core out of reset.

6. Poll the RCU_CRSTAT.CR[n] bit until the core is out of reset.

CM41X_M4 RCU Register Descriptions
Reset Control Unit (RCU) contains the following registers.

RCU Status and Error Signals

41–6 ADSP-CM41x Mixed-Signal Control Processor

Table 41-5: CM41X_M4 RCU Register List

Name Description

RCU_BCODE Boot Code Register

RCU_CRCTL Core Reset Outputs Control Register

RCU_CRSTAT Core Reset Outputs Status Register

RCU_CTL Control Register

RCU_MSG Message Register

RCU_MSG_CLR Message Clear Bits Register

RCU_MSG_SET Message Set Bits Register

RCU_SRRQSTAT System Reset Request Status Register

RCU_STAT Status Register

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–7

Boot Code Register

The RCU_BCODE register can be used to determine if and how core boots. This register is set to its default values by
Hard Reset.

Value

ValueLock

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[30:16] (R/W)LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-2: RCU_BCODE Register Diagram

Table 41-6: RCU_BCODE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the RCU_BCODE.LOCK
bit is set, the RCU_BCODE register is read only (locked).

0 Unlock

1 Lock

30:0

(R/W)

VALUE Value.

The RCU_BCODE.VALUE is a reserved field and may be used for boot software im-
plementations.

CM41X_M4 RCU Register Descriptions

41–8 ADSP-CM41x Mixed-Signal Control Processor

Core Reset Outputs Control Register

The RCU core reset control n registers (RCU_CRCTL) include a lock bit (RCU_CRCTL.LOCK) and a core reset bit
(RCU_CRCTL.CR[n]) for each core reset signal on the product.

Core Reset Outputs

Lock

CR[n] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

1
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-3: RCU_CRCTL Register Diagram

Table 41-7: RCU_CRCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the RCU_CRCTL.LOCK
bit is set, the RCU_CRCTL register is read only (locked).

0 Unlock

1 Lock

2:0

(R/W)

CR[n] Core Reset Outputs.

The RCU_CRCTL.CR[n] bits control CRES[1:0] core reset signals. The
RCU_CRES[n] signals can be individually controlled. They are reset to their default
value by a hard reset or a system reset. For each RCU_CRES[n], the selected
RCU0_CRMSKi[n] bit is cleared.

0 RCU_CRES[2:0] Deasserted

7 RCU_CRES[2:0] Asserted

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–9

Core Reset Outputs Status Register

The RCU core reset status register (RCU_CRSTAT) contains status bits, indicating which core reset signals have
been asserted.

Core Reset Outputs
CR[n] (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-4: RCU_CRSTAT Register Diagram

Table 41-8: RCU_CRSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W1C)

CR[n] Core Reset Outputs.

The RCU_CRSTAT.CR[n] bits indicate which cores have been reset since the last
time the bit was cleared. Bits masked by CORE_DISABLE_MASK[15:0] are perma-
nently disabled and the corresponding CR bits set. CR bits are sticky, they need to be
cleared by software.

0 RCU_CRES[1:0] deasserted. CR[n] corresponds to
RCU_CRES[n].

7 RCU_CRES[2:0] were asserted since the last time bits
were cleared. CR[n] corresponds to RCU_CRES[n].

CM41X_M4 RCU Register Descriptions

41–10 ADSP-CM41x Mixed-Signal Control Processor

Control Register

The RCU control register (RCU_CTL) provides a register lock, enables for the core and system reset requests inputs
and control for the Reset Output pin.

Reset Out DeassertSystem Reset Request Enabled

Reset Out AssertCore Reset Request Enabled

System ResetCore Reset System Reset Mask Select

Lock

RSTOUTDSRT (R0/W)SRSTREQEN (R/W)

RSTOUTASRT (R0/W)CRSTREQEN (R/W)

SYSRST (R0/W)CRSTMSKSEL (R/W)

0
15

0
14

0
13

0
12

0
11

1
10

1
9

1
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LOCK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-5: RCU_CTL Register Diagram

Table 41-9: RCU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31

(R/W)

LOCK Lock.

If the global lock bit is set (SPU_CTL.GLCK bit =1) and the RCU_CTL.LOCK bit is
set, the RCU_CTL register is read only (locked). This bit is cleared by a hard reset or
any system reset event.

0 Unlock

1 Lock

10

(R/W)

CRSTMSKSEL Core Reset System Reset Mask Select.

The RCU_CTL.CRSTMSKSEL bit selects the core reset system reset mask. This bit is
cleared by a hard reset.

9

(R/W)

CRSTREQEN Core Reset Request Enabled.

The RCU_CTL.CRSTREQEN bit controls whether the SYSCLK domain source(s) of
reset is/are enabled to reset the core(s) when asserted. This bit is cleared by hard reset
or any system reset event.

0 Disabled

1 Enabled

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–11

Table 41-9: RCU_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W)

SRSTREQEN System Reset Request Enabled.

The RCU_CTL.SRSTREQEN bit controls whether the SYSCLK domain sources of
reset are enabled to do a system reset when asserted. This bit is cleared by a hard reset.

0 Disabled

1 Enabled

2

(R0/W)

RSTOUTDSRT Reset Out Deassert.

The RCU_CTL.RSTOUTDSRT bit controls the deassertion of the system reset pin.

0 No Action

1 Deassert RSTOUT

1

(R0/W)

RSTOUTASRT Reset Out Assert.

The RCU_CTL.RSTOUTASRT bit controls assertion of the system reset pin.

0 No Action

1 Assert RSTOUT

0

(R0/W)

SYSRST System Reset.

The RCU_CTL.SYSRST bit provides reset for all system units.

0 No Action

1 System Reset

CM41X_M4 RCU Register Descriptions

41–12 ADSP-CM41x Mixed-Signal Control Processor

Message Register

The RCU_MSG is a general-purpose register. It is intended to provide flexibility for Boot ROM code and to pass
predefined variables to the debugger. Please see the Booting chapter for product-specific details.

Module DV value

Module DV value

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-6: RCU_MSG Register Diagram

Table 41-10: RCU_MSG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE Module DV value.

The RCU_MSG.VALUE is a reserved field and may be used for boot software imple-
mentations.

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–13

Message Clear Bits Register

The RCU_MSG_CLR register is used to clear bits in RCU_MSG register. Reading this register returns 0x00000000.

Clear MSG Register Bits

Clear MSG Register Bits

CLR[15:0] (R0/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CLR[31:16] (R0/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-7: RCU_MSG_CLR Register Diagram

Table 41-11: RCU_MSG_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W1C)

CLR Clear MSG Register Bits.

The RCU_MSG_CLR.CLR bit resets MSG bit n.

CM41X_M4 RCU Register Descriptions

41–14 ADSP-CM41x Mixed-Signal Control Processor

Message Set Bits Register

The RCU_MSG_SET register is used to set bits in RCU_MSG register. Reading this register returns 0x00000000.

Set Message Bits

Set Message Bits

SET[15:0] (R0/W1S)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SET[31:16] (R0/W1S)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-8: RCU_MSG_SET Register Diagram

Table 41-12: RCU_MSG_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W1S)

SET Set Message Bits.

The RCU_MSG_SET.SET bit sets MSG bit n.

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–15

System Reset Request Status Register

The RCU system reset request status register (RCU_SRRQSTAT) contains status bits, indicating which system reset
request input triggered a system reset. This register is set to its default values by a hard reset.

Reset Request [n]
System Reset Triggered by System
SRRQ (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-9: RCU_SRRQSTAT Register Diagram

Table 41-13: RCU_SRRQSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W1C)

SRRQ System Reset Triggered by System Reset Request [n].

The RCU_SRRQSTAT.SRRQ bits are set by the assertion of the corresponding sys-
tem reset request input and deasserted by writing "1" to the bit. The
RCU_SRRQSTAT register is cleared by a hard reset.

The bits in this register are described as follows.

Bit 7 source is M4_SYSRST_REQ. This is the System Reset request initiated using the
M4 AIRCR.SYSRESETREQ control bit.

Bit 6 source is M0_SYSRST_REQ. This is the System Reset request initiated using the
M0 AIRCR.SYSRESETREQ control bit.

Bit 5 source is TRU0, Assignable RCU[1].SYSRST[0] trigger slave.

Bit 4:2 source is TRU1 [2:0], Assignable RCU[0].SYSRST[2:0] trigger slave.

Bit 1 source is SEC1_RESET_REQ. This is the SEC1 event/fault controllers reset re-
quest output.

Bit 0 source is SEC0_RESET_REQ. This is the SEC0 event/fault controllers reset re-
quest output.

CM41X_M4 RCU Register Descriptions

41–16 ADSP-CM41x Mixed-Signal Control Processor

Status Register

The RCU status register (RCU_STAT) contains status bits for all RCU reset sources, reset status, and boot mode
inputs. Status bits for reset sources are sticky and can cleared by software. Error status bits are cleared by any reset
event.

Software Reset

System Source ResetReset Out Status

Hardware ResetBoot Mode

Lock Write Error

Address ErrorReset Out Error

SWRST (R/W1C)

SSRST (R/W1C)RSTOUT (R)

HWRST (R/W1C)BMODE (R)

0
15

0
14

0
13

X
12

X
11

X
10

X
9

X
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

1
0

LWERR (R/W1C)

ADDRERR (R/W1C)RSTOUTERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 41-10: RCU_STAT Register Diagram

Table 41-14: RCU_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W1C)

RSTOUTERR Reset Out Error.

The RCU_STAT.RSTOUTERR bit indicates (if set) that a write attempted to set the
RCU_CTL.RSTOUTASRT and RCU_CTL.RSTOUTDSRT simultaneously. This
condition triggers a bus error.

0 No Error

1 Error Occurred

17

(R/W1C)

LWERR Lock Write Error.

The RCU_STAT.LWERR bit indicates (when set) there was an attempted write to an
RCU register while the RCU_CTL.LOCK bit was set and the global lock bit is enabled
(SPU_CTL.GLCK bit =1). This status bit is sticky; write-1-to-clear

0 No Error

1 Error Occurred

CM41X_M4 RCU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 41–17

Table 41-14: RCU_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

16

(R/W1C)

ADDRERR Address Error.

The RCU_STAT.ADDRERR bit indicates that the RCU generated an address error.
This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

11:8

(R/NW)

BMODE Boot Mode.

The RCU_STAT.BMODE bits indicate the input on the boot mode pins.

5

(R/NW)

RSTOUT Reset Out Status.

The RCU_STAT.RSTOUT bit indicates the assertion status of the system reset pin.

0 RSTOUT Deasserted

1 RSTOUT Asserted

3

(R/W1C)

SWRST Software Reset.

The RCU_STAT.SWRST bit indicates that a system reset (which was triggered by
software) has occurred since the last time a hardware reset occurred or since the
RCU_STAT.SWRST bit was cleared by software.

0 Inactive

1 Reset Occurred

2

(R/W1C)

SSRST System Source Reset.

The RCU_STAT.SSRST bit indicates that a system reset triggered by hardware in the
system clock domain, clock A domain, or clock B domain has occurred since the last
time a hardware reset occurred or since the RCU_STAT.SSRST bit was cleared by
software.

0 Inactive

1 Reset Occurred

0

(R/W1C)

HWRST Hardware Reset.

The RCU_STAT.HWRST bit indicates that a hardware reset has occurred.

0 Inactive

1 Reset Occurred

CM41X_M4 RCU Register Descriptions

41–18 ADSP-CM41x Mixed-Signal Control Processor

42 System Design and Safety

The ADSP-CM41x family of processors provide a rich variety of interface modules for construction of real-time
signal chains.

Signal Chain Peripherals

The principal signal chain interfaces are shown in the following list

• Inputs

• ADC converters and ADCC converter controllers

• SINC filters for use with external isolated ADC converters, for example AD740x

• Digital level or edge inputs to PORTs

• Digital pulse or PWM digital inputs to Timers

• Rotary counter encoders (quadrature encoded)

• Outputs

• DAC converter and DACC controller

• ePWM and high-precision HPPWM outputs

• Quadrature encoded frequency output

• Digital levels and pulses from GPIO Ports and Timers.

System Design and Safety

ADSP-CM41x Mixed-Signal Control Processor 42–1

SCB FABRIC

ADC0

M:N
CNTDIV

ADCC0 PORTS,
TIMERS

DAC

SINC0
FILTER

CNT0

TIMERS

PORTS

ADC1
DACC1

ePWM+
HPPWM

TIMERS

PORTS

ADCC1

ADCC0M0 CORE+
SRAM

SCB

SCB

TRIGS

MMRS

IRQS

IRQS

IRQS

TRIGS

MMRS
MMRS

MMRS

MMRS

MMRS

SCB

M4 CORE+
SRAM

+
ACCELERATORS

iso - ADC

MCLK

ED DATAEXTERNAL

Hi-v
AINx

ROTARY
ENCODER

QA/QB/Z

GPIOx

GPIOx

AINx

AINx

QOA/QOB/ZO

GPIOx

TRIGS

MMRS

AOUTx

GATE
DRIVES

GPIOx

GPIOx

Figure 42-1: Signal Chain Peripherals

Built-In Modules for Functional Safety
The ADSP-CM41x provides a comprehensive set of interlocking functional safety features which support safety-crit-
ical applications. These safety features include:

• Voltage Monitoring Unit. Monitors VDD_EXT and VDD_INT.

• System Oscillator and Watchdog. Monitors SYS_CLKIN0 for dead-clock and harmonic-multiple clock faults
(wrong crystal harmonic mode faults).

• Monitor Oscillator. Optional oscillator for auxiliary frequency reference source SYS_CLKIN1.

• Oscillator Comparator Unit. Monitors SYS_CLKIN0 compared to an auxiliary frequency reference
SYS_CLKIN1 with high accuracy.

• WDOG Watchdog Timer. Enables a software watchdog function.

• Fault Management Unit. Monitors events designated as faults, and controls asserting the SYS_FAULT pin.

• PWM Trip Emergency Shutdown controls.

• ECC Error-Correcting-Code Memories and Parity-Protected memories.

• The SYSBLK0 Supervisor timeout mechanism.

• System Protection Units for peripheral Control Bus Access. Controls access by any system master (ARM Cor-
tex-M4, M0, DMA) to each peripheral block’s MMRs.

• System Memory Protection Units for AXI data bus access. Controls access by any system master (ARM Cortex-
M4, ARM Cortex-M0, DMA) to user-defined regions within the ARM Cortex-M4 main SRAM and the ARM
Cortex-M0 supervisor SRAM system Watchpoint Unit for monitoring control and data access.

• User MEMST Memory Built-In Self-Test

Built-In Modules for Functional Safety

42–2 ADSP-CM41x Mixed-Signal Control Processor

• CRC for Memory Contents Validation

Built-In Modules for Functional Safety

ADSP-CM41x Mixed-Signal Control Processor 42–3

43 System Block (SYSBLK) and PADS

The SYSBLK and PADS registers are a group of registers that are spread across various peripherals for some specific
features. This chapter is a reference for the register descriptions for each of these modules. Please consult the individ-
ual chapters for detailed functionality.

CM41X_M4 SYSBLK Register List
The SYSBLK module controls system interface signal features for a number of module interfaces.

Table 43-1: CM41X_M4 SYSBLK Register List

Name Description

SYSBLK_SCB_RESP_CFG SCB Response Configuration Register

SYSBLK_SCB_TIMEOUT_VALUE SCB Timeout Value Register

SYSBLK_CLKNG_TRIPEN Clock Not Good Trip Register

SYSBLK_DMA_MUXCTL Peripheral DMA Multiplexer Control

SYSBLK_ENG_MODE_CFG0 Engineering Mode Configuration Register 0

SYSBLK_FAULT_TRIPEN Fault Trip Register

SYSBLK_IRQ_LATENCY M0 IRQ Latency Register

SYSBLK_LROM_STAT Logic ROM Status Register

SYSBLK_M0_VTOR Vector Table Base Offset Register

SYSBLK_MEMST_CTL Memory Self-Test Control Register

SYSBLK_PWM_SYS_CFG PWM System Configuration Register

SYSBLK_ROT_UPDN_CFG Rotary Counter Up/Down Configuration Register

SYSBLK_SINC_TEST SINC Test Register

SYSBLK_SISTAT0 Shared Interrupt 0 Status Register

SYSBLK_SISTAT10 Shared Interrupt 10 Status Register

SYSBLK_SISTAT11 Shared Interrupt 11 Status Register

SYSBLK_SISTAT12 Shared Interrupt 12 Status Register

System Block (SYSBLK) and PADS

ADSP-CM41x Mixed-Signal Control Processor 43–1

Table 43-1: CM41X_M4 SYSBLK Register List (Continued)

Name Description

SYSBLK_SISTAT15 Shared Interrupt 15 Status Register

SYSBLK_SISTAT16 Shared Interrupt 16 Status Register

SYSBLK_SISTAT17 Shared Interrupt 17 Status Register

SYSBLK_SISTAT18 Shared Interrupt 18 Status Register

SYSBLK_SISTAT19 Shared Interrupt 19 Status Register

SYSBLK_SISTAT22 Shared Interrupt 22 Status Register

SYSBLK_SISTAT25 Shared Interrupt 25 Status Register

SYSBLK_SISTAT28 Shared Interrupt 28 Status Register

SYSBLK_SISTAT3 Shared Interrupt 3 Status Register

SYSBLK_SISTAT5 Shared Interrupt 5 Status Register

SYSBLK_SISTAT6 Shared Interrupt 6 Status Register

SYSBLK_SISTAT7 Shared Interrupt 7 Status Register

SYSBLK_SISTAT8 Shared Interrupt 8 Status Register

SYSBLK_SRAM0_ECC M0 SRAM ECC Register

SYSBLK_SYSSTAT System Status Register

SYSBLK_SYS_STCALIB System Register

CM41X_M0 SYSBLK Register List
The SYSBLK module controls system interface signal features for a number of module interfaces.

Table 43-2: CM41X_M0 SYSBLK Register List

Name Description

SYSBLK_SCB_RESP_CFG SCB Response Configuration Register

SYSBLK_SCB_TIMEOUT_VALUE SCB Timeout Value Register

SYSBLK_CLKNG_TRIPEN Clock Not Good Trip Register

SYSBLK_DMA_MUXCTL Peripheral DMA Multiplexer Control

SYSBLK_ENG_MODE_CFG0 Engineering Mode Configuration Register 0

SYSBLK_FAULT_TRIPEN Fault Trip Register

SYSBLK_IRQ_LATENCY M0 IRQ Latency Register

SYSBLK_LROM_STAT Logic ROM Status Register

SYSBLK_M0_VTOR Vector Table Base Offset Register

SYSBLK_MEMST_CTL Memory Self-Test Control Register

CM41X_M0 SYSBLK Register List

43–2 ADSP-CM41x Mixed-Signal Control Processor

Table 43-2: CM41X_M0 SYSBLK Register List (Continued)

Name Description

SYSBLK_PWM_SYS_CFG PWM System Configuration Register

SYSBLK_ROT_UPDN_CFG Rotary Counter Up/Down Configuration Register

SYSBLK_SINC_TEST SINC Test Register

SYSBLK_SISTAT0 Shared Interrupt 0 Status Register

SYSBLK_SISTAT10 Shared Interrupt 10 Status Register

SYSBLK_SISTAT11 Shared Interrupt 11 Status Register

SYSBLK_SISTAT12 Shared Interrupt 12 Status Register

SYSBLK_SISTAT15 Shared Interrupt 15 Status Register

SYSBLK_SISTAT16 Shared Interrupt 16 Status Register

SYSBLK_SISTAT17 Shared Interrupt 17 Status Register

SYSBLK_SISTAT18 Shared Interrupt 18 Status Register

SYSBLK_SISTAT19 Shared Interrupt 19 Status Register

SYSBLK_SISTAT22 Shared Interrupt 22 Status Register

SYSBLK_SISTAT25 Shared Interrupt 25 Status Register

SYSBLK_SISTAT28 Shared Interrupt 28 Status Register

SYSBLK_SISTAT3 Shared Interrupt 3 Status Register

SYSBLK_SISTAT5 Shared Interrupt 5 Status Register

SYSBLK_SISTAT6 Shared Interrupt 6 Status Register

SYSBLK_SISTAT7 Shared Interrupt 7 Status Register

SYSBLK_SISTAT8 Shared Interrupt 8 Status Register

SYSBLK_SRAM0_ECC M0 SRAM ECC Register

SYSBLK_SYSSTAT System Status Register

SYSBLK_SYS_STCALIB System Register

CM41X_M4 PADS Register List
The PADS module controls system interface signal features for a number of module interfaces.

Table 43-3: CM41X_M4 PADS Register List

Name Description

PADS_DBC[n]_CTL Debounce Control Register(s)

PADS_DBC_PRESCALE Debounce Prescale Register

PADS_FOCP_DIV Fast Over Current Protection Clock Divisor Register

CM41X_M4 PADS Register List

ADSP-CM41x Mixed-Signal Control Processor 43–3

Table 43-3: CM41X_M4 PADS Register List (Continued)

Name Description

PADS_MONOSC_CFG Monitor Oscillator Control Register

PADS_NVWR_RSTCTL Non-Volatile Write Reset Control Register

PADS_PCFG0 Peripheral Configuration0 Register

PADS_PORT[n]_DS Multi Port Drive Strength Control Register

PADS_PORT[n]_RCTL Multi Port Pull-up/Pull-down Resistor Control Register

PADS_PORT[n]_TRIPSEL Multi Port Trip Select Register

PADS_PORT[n]_TRIPST Multi Port Trip State Register

PADS_VMU_CTL Voltage Monitor Unit Control Register

PADS_VMU_TRIM Voltage Monitor Unit Trim Register

PADS_VMU_TRIPEN Voltage Monitor Unit Trip Enable Register

CM41X_M0 PADS Register List
The PADS module controls system interface signal features for a number of module interfaces.

Table 43-4: CM41X_M0 PADS Register List

Name Description

PADS_DBC[n]_CTL Debounce Control Register(s)

PADS_DBC_PRESCALE Debounce Prescale Register

PADS_FOCP_DIV Fast Over Current Protection Clock Divisor Register

PADS_MONOSC_CFG Monitor Oscillator Control Register

PADS_NVWR_RSTCTL Non-Volatile Write Reset Control Register

PADS_PCFG0 Peripheral Configuration0 Register

PADS_PORT[n]_DS Multi Port Drive Strength Control Register

PADS_PORT[n]_RCTL Multi Port Pull-up/Pull-down Resistor Control Register

PADS_PORT[n]_TRIPSEL Multi Port Trip Select Register

PADS_PORT[n]_TRIPST Multi Port Trip State Register

PADS_VMU_CTL Voltage Monitor Unit Control Register

PADS_VMU_TRIM Voltage Monitor Unit Trim Register

PADS_VMU_TRIPEN Voltage Monitor Unit Trip Enable Register

CM41X_M4 TESYS Interrupt List

CM41X_M0 PADS Register List

43–4 ADSP-CM41x Mixed-Signal Control Processor

Table 43-5: CM41X_M4 TESYS Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

13 C1_BUS_TIMEOUT SYSBLK1 Bus Timeout Level

28 C0_BUS_TIMEOUT SYSBLK0 Bus Timeout Level

29 SYSBLK0_POSTWR_ERR SYSBLK0 Posted Write Error Level

CM41X_M0 TESYS Interrupt List

Table 43-6: CM41X_M0 TESYS Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

3 C0_BUS_TIMEOUT SYSBLK0 Bus Timeout Level

3 SYSBLK0_POSTWR_ERR SYSBLK0 Posted Write Error Level

5 C1_BUS_TIMEOUT SYSBLK1 Bus Timeout Level

CM41X_M4 SYSBLK Register Descriptions
Pads Controller (SYSBLK) contains the following registers.

Table 43-7: CM41X_M4 SYSBLK Register List

Name Description

SYSBLK_SCB_RESP_CFG SCB Response Configuration Register

SYSBLK_SCB_TIMEOUT_VALUE SCB Timeout Value Register

SYSBLK_CLKNG_TRIPEN Clock Not Good Trip Register

SYSBLK_DMA_MUXCTL Peripheral DMA Multiplexer Control

SYSBLK_ENG_MODE_CFG0 Engineering Mode Configuration Register 0

SYSBLK_FAULT_TRIPEN Fault Trip Register

SYSBLK_IRQ_LATENCY M0 IRQ Latency Register

SYSBLK_LROM_STAT Logic ROM Status Register

SYSBLK_M0_VTOR Vector Table Base Offset Register

SYSBLK_MEMST_CTL Memory Self-Test Control Register

SYSBLK_PWM_SYS_CFG PWM System Configuration Register

SYSBLK_ROT_UPDN_CFG Rotary Counter Up/Down Configuration Register

SYSBLK_SINC_TEST SINC Test Register

CM41X_M0 TESYS Interrupt List

ADSP-CM41x Mixed-Signal Control Processor 43–5

Table 43-7: CM41X_M4 SYSBLK Register List (Continued)

Name Description

SYSBLK_SISTAT0 Shared Interrupt 0 Status Register

SYSBLK_SISTAT10 Shared Interrupt 10 Status Register

SYSBLK_SISTAT11 Shared Interrupt 11 Status Register

SYSBLK_SISTAT12 Shared Interrupt 12 Status Register

SYSBLK_SISTAT15 Shared Interrupt 15 Status Register

SYSBLK_SISTAT16 Shared Interrupt 16 Status Register

SYSBLK_SISTAT17 Shared Interrupt 17 Status Register

SYSBLK_SISTAT18 Shared Interrupt 18 Status Register

SYSBLK_SISTAT19 Shared Interrupt 19 Status Register

SYSBLK_SISTAT22 Shared Interrupt 22 Status Register

SYSBLK_SISTAT25 Shared Interrupt 25 Status Register

SYSBLK_SISTAT28 Shared Interrupt 28 Status Register

SYSBLK_SISTAT3 Shared Interrupt 3 Status Register

SYSBLK_SISTAT5 Shared Interrupt 5 Status Register

SYSBLK_SISTAT6 Shared Interrupt 6 Status Register

SYSBLK_SISTAT7 Shared Interrupt 7 Status Register

SYSBLK_SISTAT8 Shared Interrupt 8 Status Register

SYSBLK_SRAM0_ECC M0 SRAM ECC Register

SYSBLK_SYSSTAT System Status Register

SYSBLK_SYS_STCALIB System Register

CM41X_M4 SYSBLK Register Descriptions

43–6 ADSP-CM41x Mixed-Signal Control Processor

SCB Response Configuration Register

The SYSBLK_SCB_RESP_CFG register provides SCB bus monitoring capabilities from the ARM Cortex-M4 sys-
tem entering the main system scoreboard (SCB).

If the SYSBLK_SCB_RESP_CFG.TOENA bit is enabled the block checks the response time from the AHB block.
If the response time exceeds the timeout value (configured in the SYSBLK_SCB_TIMEOUT_VALUE register) this
block generates a default error response back to the ARM Cortex-M4 system and indicates an error.

Accessing the SCB from the ARM Cortex-M4 through the system scoreboard may result in a minor multi-cycle
stall. The timeout is a safety feature that ensures the ARM Cortex-M4 system has a known maximum response time
to a SCB system access. Note that system MMR accesses are handled on a separate peripheral bus chain and use
different timeout hardware to monitor those accesses.

Timeout ErrorPosted Write Error Interrupt Enable

Enable SCB Timeout InterruptPosted Write Error

TOERR (R/W1C)PWENA (R/W)

TOENA (R/W)PWERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-1: SYSBLK_SCB_RESP_CFG Register Diagram

Table 43-8: SYSBLK_SCB_RESP_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1C)

PWERR Posted Write Error.

The SYSBLK_SCB_RESP_CFG.PWERR bit indicates an error has occurred on a
previously executed Posted Write to the system fabric. Since writes were posted, this
error is not associated with the interrupted instruction.

0 No error

1 Error occurred

2

(R/W)

PWENA Posted Write Error Interrupt Enable.

The SYSBLK_SCB_RESP_CFG.PWENA bit enables read/write error indications to
the system fabric. The ARM M0 process does not wait for the read/write to complete
before executing the subsequent instructions. Any errors caused by the read/write set
the PWERR bit and cause an inexact interrupt to the ARM processor.

0 Interrupt disabled

1 Interrupt enabled

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–7

Table 43-8: SYSBLK_SCB_RESP_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

TOERR Timeout Error.

The SYSBLK_SCB_RESP_CFG.TOERR indicates that the SCB bus has timed out.

0 No error

1 Error occurred

0

(R/W)

TOENA Enable SCB Timeout Interrupt.

The SYSBLK_SCB_RESP_CFG.TOENA bit enables the the SCB timeout interrupt.
When enabled, the value in the SYSBLK_SCB_TIMEOUT_VALUE register is loaded
into a counter at the start of a each new SCB transaction. The counter decrements
once for each cycle that the SCB bus is not ready (stalled). If the counter decrements
to the value one, an error interrupt request is generated.

0 Disable interrupt

1 Enable interrupt

CM41X_M4 SYSBLK Register Descriptions

43–8 ADSP-CM41x Mixed-Signal Control Processor

SCB Timeout Value Register

The SYSBLK_SCB_TIMEOUT_VALUE register contains the timeout value. This value is loaded into a counter at
the start of each new SCB transaction. The counter decrements once for each cycle that the SCB bus is not ready
(stalled).

If the counter decrements to the value =1, an error interrupt request is produced. If DATA =0, no error produced. If
DATA =1, an error is produced for any SCB bus transaction.

The Timeout Value should be set to a value larger than the number of cycles that it takes for the slowest SCB trans-
action to complete to prevent spurious IRQs.

Timeout Value
DATA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-2: SYSBLK_SCB_TIMEOUT_VALUE Register Diagram

Table 43-9: SYSBLK_SCB_TIMEOUT_VALUE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Timeout Value.

The SYSBLK_SCB_TIMEOUT_VALUE.DATA bit field contains the timeout value.
The Timeout value should be set to a value larger than the number of cycles that it
takes for the slowest SCB transaction to complete to prevent spurious IRQs.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–9

Clock Not Good Trip Register

The SYSBLK_CLKNG_TRIPEN register (OCU) has 2 error outputs for clock monitoring. These 2 control bits
allow the OCU0 error outputs to cause the safety pin-trip feature to activate.

Trip Enable
Oscillator Compare Unit Dead Clock

Fault Trip Enable
Oscillator Compare Unit Asynchronous

OCU0CLK (R/W)OCU0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-3: SYSBLK_CLKNG_TRIPEN Register Diagram

Table 43-10: SYSBLK_CLKNG_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

CM41X_M4 SYSBLK Register Descriptions

43–10 ADSP-CM41x Mixed-Signal Control Processor

Peripheral DMA Multiplexer Control

The SYSBLK_DMA_MUXCTL register allows peripherals to share pins and the same DMA ports. This sharing is
not "in-parallel", users must configure the MDMA blocks for the desired operating peripherals. DMA channels 6-11
need to be configured to support the desired user peripheral.

Mux select for DMA8Mux select for DMA9

Mux select for DMA7Mux select for DMA10

Mux select for DMA6Mux select for DMA11

SEL8 (R/W)SEL9 (R/W)

SEL7 (R/W)SEL10 (R/W)

SEL6 (R/W)SEL11 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-4: SYSBLK_DMA_MUXCTL Register Diagram

Table 43-11: SYSBLK_DMA_MUXCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

SEL11 Mux select for DMA11.

0 Select SPORT[0] B_DMA port

1 Select UART[4] RXDMA port

5:4

(R/W)

SEL10 Mux select for DMA10.

0 Select HAE[0] RXDMA_CH1 port

1 Select SPORT[0] A_DMA port

2 Select UART[4] TXDMA port

3

(R/W)

SEL9 Mux select for DMA9.

0 Select HAE[0] TXDMA port

1 Select UART[3] RXDMA port

2

(R/W)

SEL8 Mux select for DMA8.

0 Select HAE[0] RXDMA_CH0 port

1 Select UART[3] TXDMA port

1

(R/W)

SEL7 Mux select for DMA7.

0 Select SPI[1] RXDMA port

1 Select UART[2] RXDMA port

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–11

Table 43-11: SYSBLK_DMA_MUXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

SEL6 Mux select for DMA6.

0 Select SPI[1] TXDMA port

1 Select UART[2] TXDMA port

CM41X_M4 SYSBLK Register Descriptions

43–12 ADSP-CM41x Mixed-Signal Control Processor

Engineering Mode Configuration Register 0

LBA Combinatorial mode

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LBA_COMB_MODE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-5: SYSBLK_ENG_MODE_CFG0 Register Diagram

Table 43-12: SYSBLK_ENG_MODE_CFG0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W)

LBA_COMB_MODE LBA Combinatorial mode.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–13

Fault Trip Register

The SYSBLK_FAULT_TRIPEN register controls various Trip functions of the Oscillator Comparator Unit
(OCU). See the OCU chapter for complete information.

Fault Trip Enable
Oscillator Compare Unit Asynchronous

Enable
System Oscillator Clock No Good Trip

Trip Enable
Oscillator Compare Unit Dead Clock

Trip Enable
System Oscillator Asynchronous Fault

OCU0FAULT (R/W)OSC0CLK (R/W)

OCU0CLK (R/W)OSC0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-6: SYSBLK_FAULT_TRIPEN Register Diagram

Table 43-13: SYSBLK_FAULT_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

OSC0FAULT System Oscillator Asynchronous Fault Trip Enable.

The SYSBLK_FAULT_TRIPEN.OSC0FAULT bit enables asserting the
SYS_FAULTb pin asynchronously on OSC_WDOG detection of a clock fault, as as-
serted on the OSC_WDOG's 'fault' pin.

Note that this enable is true by default at power-on. This allows detection of dead-
clock or wrong-harmonic-mode faults on SYS_CLKIN0 to be signaled on the
SYS_FAULTb pin at power-on.

3

(R/W)

OSC0CLK System Oscillator Clock No Good Trip Enable.

The SYSBLK_FAULT_TRIPEN.OSC0CLK bit enables asserting the SYS_FAULTb
pin asynchronously on assertion of the OSC_WDOG clk_not_good output signal.
clk_not_good can be asserted by the OSC_WDOG approximately 1 ms after a fault
detection.

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

The SYSBLK_FAULT_TRIPEN.OCU0FAULT bit enables asserting the
SYS_FAULTb pin asynchronously on OCU0 detection of either a clock frequency er-
ror or a dead clock (OCU port ocu_fault_async).

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

The SYSBLK_FAULT_TRIPEN.OCU0CLK bit enables asserting the SYS_FAULTb
pin asynchronously on OCU0 detection of a dead SYSCLK (OCU port
ocu_dead_clock).

CM41X_M4 SYSBLK Register Descriptions

43–14 ADSP-CM41x Mixed-Signal Control Processor

M0 IRQ Latency Register

The SYSBLK_IRQ_LATENCY register configures the wait state memory system.

IRQ LATENCY VALUE
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-7: SYSBLK_IRQ_LATENCY Register Diagram

Table 43-14: SYSBLK_IRQ_LATENCY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE IRQ LATENCY VALUE.

The SYSBLK_IRQ_LATENCY.VALUE bit field configures the wait state memory
system. For zero jitter in a zero wait state memory system, set this bus to at least a deci-
mal value of 13.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–15

Logic ROM Status Register

The SYSBLK_LROM_STAT register provides indications of various errors in logic ROM boot code.

Flash Key StatusFSEREG Security Enable

Flash Key InvalidCRC Error in RINIT Structure

Configuration ECC ErrorCRC Error in RFUNC Code Section

Configuration/Flash Key TimeoutCRC Error in Array Boot ROM

Unexpected Exception FaultBoot ROM Fault Code

FKEYSTAT (R)FSEREG (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FLT_FKEY_ERR (R/W)FLT_RINIT_ERR (R/W)

FLT_EFS_ECC (R/W)FLT_RFUNC_ERR (R/W)

FLT_FKTMO (R/W)FLT_ROM_ERR (R/W)

FLT_UEXC (R/W)FLT_BROM (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-8: SYSBLK_LROM_STAT Register Diagram

Table 43-15: SYSBLK_LROM_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27:24

(R/W)

FLT_BROM Boot ROM Fault Code.

The SYSBLK_LROM_STAT.FLT_BROM bit indicates a Boot ROM fault code.

22

(R/W)

FLT_ROM_ERR CRC Error in Array Boot ROM.

The SYSBLK_LROM_STAT.FLT_ROM_ERR bit indicates that the logic ROM code
detected a CRC error was detected in the Array Boot ROM. The Array Boot ROM
code was not executed.

21

(R/W)

FLT_RFUNC_ERR CRC Error in RFUNC Code Section.

The SYSBLK_LROM_STAT.FLT_RFUNC_ERR bit indicates a CRC error was de-
tected in the RFUNC structure described by RFUNC_PTR and RFUNC_CSIZ in
Flash Info Block 0.

20

(R/W)

FLT_RINIT_ERR CRC Error in RINIT Structure.

The SYSBLK_LROM_STAT.FLT_RINIT_ERR bit indicates a CRC error was de-
tected in the RINIT structure described by RINIT_PTR and RINIT_CSIZ in Flash
Info Block 0.

19

(R/W)

FLT_FKEY_ERR Flash Key Invalid.

The SYSBLK_LROM_STAT.FLT_FKEY_ERR bit indicates the SDBGKEY key
stored in Flash Info Block 0 is invalid.

CM41X_M4 SYSBLK Register Descriptions

43–16 ADSP-CM41x Mixed-Signal Control Processor

Table 43-15: SYSBLK_LROM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

FLT_EFS_ECC Configuration ECC Error.

The SYSBLK_LROM_STAT.FLT_EFS_ECC bit indicates an uncorrectable ECC
error was detected while reading the configuration array.

17

(R/W)

FLT_FKTMO Configuration/Flash Key Timeout.

The SYSBLK_LROM_STAT.FLT_FKTMO bit indicates a Configuration/Flash initi-
alization timeout. Either the initial configuration array read operation or the Flash
Controller flash key read operation did not complete within the specified number of
clocks after the deassertion of M4 core reset.

16

(R/W)

FLT_UEXC Unexpected Exception Fault.

The SYSBLK_LROM_STAT.FLT_UEXC bit indicates an unexpected exception or
interrupt occurred via the initial vector table at address 0x0. This results if an excep-
tion or interrupt occurs during logic boot ROM operation while VTOR = 0x0.

8

(R/NW)

FSEREG FSEREG Security Enable.

The SYSBLK_LROM_STAT.FSEREG bit indicates the security feature of the device
is enabled.

6:4

(R/NW)

FKEYSTAT Flash Key Status.

Indicates the status of the customer-programmable Flash Password. This is read by the
Flash Controller at deassertion of reset. See the Flash Interface Controller specification
for details.

0 Flash Key read process is pending This code indicates
the flash controller is in the process of reading the flash
id and key codes following the deassertion of
SYS_HWRSTb. The duration of this state is specified
in the flash controller spec document. For the CM41x
this is approximately 1400 CLKIN periods.

1 Flash key is invalid The flash key is in an invalid state.
Either: 1) the flash key or contrast code contained an
uncorrectable ECC error, 2) or the flash contrast code
did not match the required value, and was not the spe-
cial case of the key and contrast code both being all
blank (all 1s). The all-blank special case is indicated by
KEY_UNINIT.

2 Flash Key is unprogrammed but contrast code is valid
The flash key is blank, and the flash contrast code is val-
id.

3 Flash key is programmed and is valid The flash key con-
tains a valid nonblank value (not all 1s and not all 0s),
and the contrast code was valid.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–17

Table 43-15: SYSBLK_LROM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6 The flash contrast code is blank or invalid. The flash key
and contrast code are blank (all 1's). No ECC error was
detected. This is the uninitialized state of the flash
memory.

CM41X_M4 SYSBLK Register Descriptions

43–18 ADSP-CM41x Mixed-Signal Control Processor

Vector Table Base Offset Register

The SYSBLK_M0_VTOR register contains the most significant bits of the offset of the table base from the bottom
of the memory map.

Vector Table Base Offset

Vector Table Base Offset

TBLOFF[7:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TBLOFF[23:8] (R/W)

0
31

0
30

1
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

1
19

1
18

1
17

1
16

Figure 43-9: SYSBLK_M0_VTOR Register Diagram

Table 43-16: SYSBLK_M0_VTOR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:8

(R/W)

TBLOFF Vector Table Base Offset.

The SYSBLK_M0_VTOR.TBLOFF bit field contains the most significant bits of the
offset of the table base from the bottom of the memory map.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–19

Memory Self-Test Control Register

The SYSBLK_MEMST_CTL register controls various memory self-test functions.

Run ControlBusy Status

Memory Self-Test EnableTest Pass/Fail Status

RUN (R/W)BUSY (R)

EN (R/W)FAIL (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-10: SYSBLK_MEMST_CTL Register Diagram

Table 43-17: SYSBLK_MEMST_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

FAIL Test Pass/Fail Status.

The SYSBLK_MEMST_CTL.FAIL bit indicates the Memory self-test result. This bit
is not valid while SYSBLK_MEMST_CTL.BUSY is high. FAIL = 1

0 Self-test passed

1 Self-test failed

2

(R/NW)

BUSY Busy Status.

The SYSBLK_MEMST_CTL.BUSY bit indicates that Memory self-test is in progress.

1

(R/W)

RUN Run Control.

The SYSBLK_MEMST_CTL.RUN bit indicates that Memory Self-Test has started.
The SYSBLK_MEMST_CTL.EN bit must be HIGH.

0

(R/W)

EN Memory Self-Test Enable.

The SYSBLK_MEMST_CTL.EN bit enables user Memory Self-Test mode.

0 Memory Self-Test disabled

1 Memory Self-Test enabled

CM41X_M4 SYSBLK Register Descriptions

43–20 ADSP-CM41x Mixed-Signal Control Processor

PWM System Configuration Register

The SYSBLK_PWM_SYS_CFG register controls various functions for the PWM module.

Enable 1
Fast Over Current Protection PWM Trip

PWM1 Trip Multiplexer SelectAnalog Front End Not OK PWM Trip Enable 1

Analog Front End Not OK PWM Trip Enable 0PWM2 Trip Multiplexer Select

Enable 0
Fast Over Current Protection PWM Trip

Enable 2
Fast Over Current Protection PWM Trip

PWM0 Trip Multiplexer SelectAnalog Front End Not OK PWM Trip Enable 2

High Precision PWM Block2 DisablePWM0 SYNC OUT Secondary Enable

High Precision PWM Block1 DisablePWM1 SYNC OUT Secondary Enable

High Precision PWM Block0 DisablePWM2 SYNC OUT Secondary Enable

FOCPTRIPEN1 (R/W)

PWM1TRIPMX (R/W)AFEOKTRIPEN1 (R/W)

AFEOKTRIPEN0 (R/W)PWM2TRIPMX (R/W)

FOCPTRIPEN0 (R/W)FOCPTRIPEN2 (R/W)

PWM0TRIPMX (R/W)AFEOKTRIPEN2 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HPPWMDIS2 (R/W)PWM0SYNCOE (R/W)

HPPWMDIS1 (R/W)PWM1SYNCOE (R/W)

HPPWMDIS0 (R/W)PWM2SYNCOE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-11: SYSBLK_PWM_SYS_CFG Register Diagram

Table 43-18: SYSBLK_PWM_SYS_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/W)

PWM2SYNCOE PWM2 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM2SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that PWM external sync bit is set (=1). Addi-
tionally, route the PWM's sync-pulse generator to an output pin.

25

(R/W)

PWM1SYNCOE PWM1 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM1SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that PWM external sync bit is set (=1). Addi-
tionally, route the PWM's sync-pulse generator to an output pin.

24

(R/W)

PWM0SYNCOE PWM0 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM0SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that the PWM external sync bit is set (=1).
Additionally, route the PWM's sync-pulse generator to an output pin.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–21

Table 43-18: SYSBLK_PWM_SYS_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

HPPWMDIS2 High Precision PWM Block2 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS2 bit reverts high precision PWM block
2 to medium precision.

20

(R/W)

HPPWMDIS1 High Precision PWM Block1 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS1 bit reverts high precision PWM block
1 to medium precision.

19

(R/W)

HPPWMDIS0 High Precision PWM Block0 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS0 bit reverts high precision PWM block
0 to medium precision.

14

(R/W)

AFEOKTRIPEN2 Analog Front End Not OK PWM Trip Enable 2.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN2 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

13

(R/W)

FOCPTRIPEN2 Fast Over Current Protection PWM Trip Enable 2.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN2 bit controls if the AFE die output
FOCP causes a PWM unit trip.

12:10

(R/W)

PWM2TRIPMX PWM2 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM2TRIPMX bit controls if the trip2 chip input
causes a PWM unit trip.

9

(R/W)

AFEOKTRIPEN1 Analog Front End Not OK PWM Trip Enable 1.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN1 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

8

(R/W)

FOCPTRIPEN1 Fast Over Current Protection PWM Trip Enable 1.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN1 bit controls if the AFE die output
FOCP causes a PWM unit trip.

7:5

(R/W)

PWM1TRIPMX PWM1 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM1TRIPMX bit controls if the trip1 chip input
causes a PWM unit trip.

4

(R/W)

AFEOKTRIPEN0 Analog Front End Not OK PWM Trip Enable 0.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN0 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

3

(R/W)

FOCPTRIPEN0 Fast Over Current Protection PWM Trip Enable 0.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN0 bit controls if the AFE die output
FOCP causes a PWM unit trip.

CM41X_M4 SYSBLK Register Descriptions

43–22 ADSP-CM41x Mixed-Signal Control Processor

Table 43-18: SYSBLK_PWM_SYS_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W)

PWM0TRIPMX PWM0 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM0TRIPMX bit controls if the trip0 chip input
causes a PWM unit trip.

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–23

Rotary Counter Up/Down Configuration Register

The SYSBLK_ROT_UPDN_CFG register selects between rotary counter phase A or B inputs.

Select Phase ASelect Phase B
SELA (R/W)SELB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-12: SYSBLK_ROT_UPDN_CFG Register Diagram

Table 43-19: SYSBLK_ROT_UPDN_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:2

(R/W)

SELB Select Phase B.

The SYSBLK_ROT_UPDN_CFG.SELB bit field selects Rotary CNT0 Phase B in-
put.

0 Select Pad as input to Rotary Counter

1 Select Pad as input to Rotary Counter

2 Select Trigger Slave as input to Rotary Counter

3 Select LBA as input to Rotary Counter

1:0

(R/W)

SELA Select Phase A.

The SYSBLK_ROT_UPDN_CFG.SELA bit field selects Rotary CNT0 Phase A in-
put.

0 Select Pad as input to Rotary Counter

1 Select Pad as input to Rotary Counter

2 Select Trigger Slave as input to Rotary Counter

3 Select LBA as input to Rotary Counter

CM41X_M4 SYSBLK Register Descriptions

43–24 ADSP-CM41x Mixed-Signal Control Processor

SINC Test Register

The SYSBLK_SINC_TEST register configures the SINC block 4 data inputs (one per MMR bit) to come from
the single SPORT0 data A output. This allows a know data stream to be directed to SINC blocks for verification,
development, and self-test code for safety.

SINC Test Enable
EN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-13: SYSBLK_SINC_TEST Register Diagram

Table 43-20: SYSBLK_SINC_TEST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

EN SINC Test Enable.

The SYSBLK_SINC_TEST.EN bit field configures the SINC block 4 data inputs
(one per MMR bit) to come from the single SPORT0 data A output

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–25

Shared Interrupt 0 Status Register

Shared INTR_0 status bit (From OCU[0]_ERR)Shared INTR_0 status bit (From VMU[0]_VDDEXT_EVT)

Shared INTR_0 status bit (From CGU[0]_OSCW_INT)Shared INTR_0 status bit (From VMU[0]_VDDINT_EVT)

OCU0_ERR (R/W1C)VMU0_VDDEXT_EVT (R/W1C)

CGU0_OSCW_INT (R/W1C)VMU0_VDDINT_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-14: SYSBLK_SISTAT0 Register Diagram

Table 43-21: SYSBLK_SISTAT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W1C)

VMU0_VDDINT_EVT Shared INTR_0 status bit (From VMU[0]_VDDINT_EVT).

3

(R/W1C)

VMU0_VDDEXT_EVT Shared INTR_0 status bit (From VMU[0]_VDDEXT_EVT).

2

(R/W1C)

OCU0_ERR Shared INTR_0 status bit (From OCU[0]_ERR).

1

(R/W1C)

CGU0_OSCW_INT Shared INTR_0 status bit (From CGU[0]_OSCW_INT).

CM41X_M4 SYSBLK Register Descriptions

43–26 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 10 Status Register

Shared INTR_10 status bit (From SYS_AFE_LIMIT)Shared INTR_10 status bit (From SYS_AFE_NOTOK)
SYS_AFE_LIMIT (R/W1C)SYS_AFE_NOTOK (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

X
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-15: SYSBLK_SISTAT10 Register Diagram

Table 43-22: SYSBLK_SISTAT10 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SYS_AFE_NOTOK Shared INTR_10 status bit (From SYS_AFE_NOTOK).

0

(R/W1C)

SYS_AFE_LIMIT Shared INTR_10 status bit (From SYS_AFE_LIMIT).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–27

Shared Interrupt 11 Status Register

Shared INTR_11 status bit (From SWU[0]_EVT)Shared INTR_11 status bit (From SWU[1]_EVT)
SWU0_EVT (R/W1C)SWU1_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-16: SYSBLK_SISTAT11 Register Diagram

Table 43-23: SYSBLK_SISTAT11 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SWU1_EVT Shared INTR_11 status bit (From SWU[1]_EVT).

0

(R/W1C)

SWU0_EVT Shared INTR_11 status bit (From SWU[0]_EVT).

CM41X_M4 SYSBLK Register Descriptions

43–28 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 12 Status Register

Shared INTR_12 status bit (From DMA[2]_ERR)

Shared INTR_12 status bit (From DMA[1]_ERR)Shared INTR_12 status bit (From DMA[3]_ERR)

Shared INTR_12 status bit (From DMA[10]_ERR)Shared INTR_12 status bit (From DMA[8]_ERR)

Shared INTR_12 status bit (From DMA[0]_ERR)Shared INTR_12 status bit (From DMA[9]_ERR)

DMA2_ERR (R/W1C)

DMA1_ERR (R/W1C)DMA3_ERR (R/W1C)

DMA10_ERR (R/W1C)DMA8_ERR (R/W1C)

DMA0_ERR (R/W1C)DMA9_ERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-17: SYSBLK_SISTAT12 Register Diagram

Table 43-24: SYSBLK_SISTAT12 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

DMA9_ERR Shared INTR_12 status bit (From DMA[9]_ERR).

5

(R/W1C)

DMA8_ERR Shared INTR_12 status bit (From DMA[8]_ERR).

4

(R/W1C)

DMA3_ERR Shared INTR_12 status bit (From DMA[3]_ERR).

3

(R/W1C)

DMA2_ERR Shared INTR_12 status bit (From DMA[2]_ERR).

2

(R/W1C)

DMA1_ERR Shared INTR_12 status bit (From DMA[1]_ERR).

1

(R/W1C)

DMA10_ERR Shared INTR_12 status bit (From DMA[10]_ERR).

0

(R/W1C)

DMA0_ERR Shared INTR_12 status bit (From DMA[0]_ERR).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–29

Shared Interrupt 15 Status Register

Shared INTR_15 status bit (From TIMER[0]_TMR[3])

Shared INTR_15 status bit (From TIMER[0]_TMR[2])Shared INTR_15 status bit (From TIMER[0]_TMR[4])

Shared INTR_15 status bit (From TIMER[0]_TMR[1])Shared INTR_15 status bit (From TIMER[0]_TMR[5])

Shared INTR_15 status bit (From TIMER[0]_TMR[0])Shared INTR_15 status bit (From TIMER[0]_TMR[6])

Shared INTR_15 status bit (From TIMER[0]_STAT)Shared INTR_15 status bit (From TIMER[0]_TMR[7])

TIMER0_TMR3 (R/W1C)

TIMER0_TMR2 (R/W1C)TIMER0_TMR4 (R/W1C)

TIMER0_TMR1 (R/W1C)TIMER0_TMR5 (R/W1C)

TIMER0_TMR0 (R/W1C)TIMER0_TMR6 (R/W1C)

TIMER0_STAT (R/W1C)TIMER0_TMR7 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-18: SYSBLK_SISTAT15 Register Diagram

Table 43-25: SYSBLK_SISTAT15 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

TIMER0_TMR7 Shared INTR_15 status bit (From TIMER[0]_TMR[7]).

7

(R/W1C)

TIMER0_TMR6 Shared INTR_15 status bit (From TIMER[0]_TMR[6]).

6

(R/W1C)

TIMER0_TMR5 Shared INTR_15 status bit (From TIMER[0]_TMR[5]).

5

(R/W1C)

TIMER0_TMR4 Shared INTR_15 status bit (From TIMER[0]_TMR[4]).

4

(R/W1C)

TIMER0_TMR3 Shared INTR_15 status bit (From TIMER[0]_TMR[3]).

3

(R/W1C)

TIMER0_TMR2 Shared INTR_15 status bit (From TIMER[0]_TMR[2]).

2

(R/W1C)

TIMER0_TMR1 Shared INTR_15 status bit (From TIMER[0]_TMR[1]).

1

(R/W1C)

TIMER0_TMR0 Shared INTR_15 status bit (From TIMER[0]_TMR[0]).

CM41X_M4 SYSBLK Register Descriptions

43–30 ADSP-CM41x Mixed-Signal Control Processor

Table 43-25: SYSBLK_SISTAT15 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

TIMER0_STAT Shared INTR_15 status bit (From TIMER[0]_STAT).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–31

Shared Interrupt 16 Status Register

Shared INTR_16 status bit (From CPTMR[0]_CPT[1]_MEAS)

Shared INTR_16 status bit (From CPTMR[0]_CPT[0]_MEAS)Shared INTR_16 status bit (From CPTMR[0]_CPT[2]_MEAS)

CPTMR0_CPT1_MEAS (R/W1C)

CPTMR0_CPT0_MEAS (R/W1C)CPTMR0_CPT2_MEAS (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-19: SYSBLK_SISTAT16 Register Diagram

Table 43-26: SYSBLK_SISTAT16 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

CPTMR0_CPT2_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[2]_MEAS).

1

(R/W1C)

CPTMR0_CPT1_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[1]_MEAS).

0

(R/W1C)

CPTMR0_CPT0_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[0]_MEAS).

CM41X_M4 SYSBLK Register Descriptions

43–32 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 17 Status Register

Shared INTR_17 status bit (From DMA[0]_INT)Shared INTR_17 status bit (From DMA[2]_INT)
DMA0_INT (R/W1C)DMA2_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-20: SYSBLK_SISTAT17 Register Diagram

Table 43-27: SYSBLK_SISTAT17 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DMA2_INT Shared INTR_17 status bit (From DMA[2]_INT).

0

(R/W1C)

DMA0_INT Shared INTR_17 status bit (From DMA[0]_INT).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–33

Shared Interrupt 18 Status Register

Shared INTR_18 status bit (From DMA[1]_INT)Shared INTR_18 status bit (From DMA[3]_INT)
DMA1_INT (R/W1C)DMA3_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-21: SYSBLK_SISTAT18 Register Diagram

Table 43-28: SYSBLK_SISTAT18 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DMA3_INT Shared INTR_18 status bit (From DMA[3]_INT).

0

(R/W1C)

DMA1_INT Shared INTR_18 status bit (From DMA[1]_INT).

CM41X_M4 SYSBLK Register Descriptions

43–34 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 19 Status Register

Shared INTR_19 status bit (From DMA[8]_INT)

Shared INTR_19 status bit (From DMA[10]_INT)Shared INTR_19 status bit (From DMA[9]_INT)

DMA8_INT (R/W1C)

DMA10_INT (R/W1C)DMA9_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-22: SYSBLK_SISTAT19 Register Diagram

Table 43-29: SYSBLK_SISTAT19 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

DMA9_INT Shared INTR_19 status bit (From DMA[9]_INT).

1

(R/W1C)

DMA8_INT Shared INTR_19 status bit (From DMA[8]_INT).

0

(R/W1C)

DMA10_INT Shared INTR_19 status bit (From DMA[10]_INT).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–35

Shared Interrupt 22 Status Register

Shared INTR_22 status bit (From FFTB[0]_DONE)Shared INTR_22 status bit (From FFTB[0]_LIMERR)
FFTB0_DONE (R/W1C)FFTB0_LIMERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-23: SYSBLK_SISTAT22 Register Diagram

Table 43-30: SYSBLK_SISTAT22 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

FFTB0_LIMERR Shared INTR_22 status bit (From FFTB[0]_LIMERR).

0

(R/W1C)

FFTB0_DONE Shared INTR_22 status bit (From FFTB[0]_DONE).

CM41X_M4 SYSBLK Register Descriptions

43–36 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 25 Status Register

Shared INTR_25 status bit (From SPI[0]_ERR)Shared INTR_25 status bit (From SPI[0]_STAT)
SPI0_ERR (R/W1C)SPI0_STAT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-24: SYSBLK_SISTAT25 Register Diagram

Table 43-31: SYSBLK_SISTAT25 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SPI0_STAT Shared INTR_25 status bit (From SPI[0]_STAT).

0

(R/W1C)

SPI0_ERR Shared INTR_25 status bit (From SPI[0]_ERR).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–37

Shared Interrupt 28 Status Register

Shared INTR_28 status bit (From CAN[0]_STAT)

Shared INTR_28 status bit (From CAN[0]_RX)Shared INTR_28 status bit (From CAN[0]_TX)

CAN0_STAT (R/W1C)

CAN0_RX (R/W1C)CAN0_TX (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-25: SYSBLK_SISTAT28 Register Diagram

Table 43-32: SYSBLK_SISTAT28 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

CAN0_TX Shared INTR_28 status bit (From CAN[0]_TX).

1

(R/W1C)

CAN0_STAT Shared INTR_28 status bit (From CAN[0]_STAT).

0

(R/W1C)

CAN0_RX Shared INTR_28 status bit (From CAN[0]_RX).

CM41X_M4 SYSBLK Register Descriptions

43–38 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 3 Status Register

Shared INTR_3 status bit (From SYSBLK[0]_BUS_TIMEOUT)

Shared INTR_3 status bit (From SPU[0]_TIMEOUT)Shared INTR_3 status bit (From SYSBLK[0]_POSTWR_ERR)

SYSBLK0_BUS_TIMEOUT (R/W1C)

SPU0_TIMEOUT (R/W1C)SYSBLK0_POSTWR_ERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-26: SYSBLK_SISTAT3 Register Diagram

Table 43-33: SYSBLK_SISTAT3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

SYSBLK0_POSTWR_ERR Shared INTR_3 status bit (From SYSBLK[0]_POSTWR_ERR).

1

(R/W1C)

SYSBLK0_BUS_TIME-
OUT

Shared INTR_3 status bit (From SYSBLK[0]_BUS_TIMEOUT).

0

(R/W1C)

SPU0_TIMEOUT Shared INTR_3 status bit (From SPU[0]_TIMEOUT).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–39

Shared Interrupt 5 Status Register

Shared INTR_5 status bit (From M4P_LOCKUP)

Shared INTR_5 status bit (From M4P_CORE_SRAM_EERR)Shared INTR_5 status bit (From MBOX[0]_PORT1_EERR)

Shared INTR_5 status bit (From M4P_BUS_FAULT)Shared INTR_5 status bit (From SPU[1]_TIMEOUT)

Shared INTR_5 status bit (From M4PFLASH[0]_CORE_FLASH_EERR)Shared INTR_5 status bit (From SYSBLK[1]_BUS_TIMEOUT)

M4P_LOCKUP (R/W1C)

M4P_CORE_SRAM_EERR (R/W1C)MBOX0_PORT1_EERR (R/W1C)

M4P_BUS_FAULT (R/W1C)SPU1_TIMEOUT (R/W1C)

M4PFLASH0_CORE_FLASH_EERR (R/W1C)SYSBLK1_BUS_TIMEOUT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-27: SYSBLK_SISTAT5 Register Diagram

Table 43-34: SYSBLK_SISTAT5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

SYSBLK1_BUS_TIME-
OUT

Shared INTR_5 status bit (From SYSBLK[1]_BUS_TIMEOUT).

5

(R/W1C)

SPU1_TIMEOUT Shared INTR_5 status bit (From SPU[1]_TIMEOUT).

4

(R/W1C)

MBOX0_PORT1_EERR Shared INTR_5 status bit (From MBOX[0]_PORT1_EERR).

3

(R/W1C)

M4P_LOCKUP Shared INTR_5 status bit (From M4P_LOCKUP).

2

(R/W1C)

M4P_CORE_SRAM_EER
R

Shared INTR_5 status bit (From M4P_CORE_SRAM_EERR).

1

(R/W1C)

M4P_BUS_FAULT Shared INTR_5 status bit (From M4P_BUS_FAULT).

0

(R/W1C)

M4PFLASH0_CORE_FLA
SH_EERR

Shared INTR_5 status bit (From M4PFLASH[0]_CORE_FLASH_EERR).

CM41X_M4 SYSBLK Register Descriptions

43–40 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 6 Status Register

Shared INTR_6 status bit (From FFTB[0]_SPERR)

Shared INTR_6 status bit (From FFTB[0]_DPERR)Shared INTR_6 status bit (From HAE[0]_PERR)

FFTB0_SPERR (R/W1C)

FFTB0_DPERR (R/W1C)HAE0_PERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-28: SYSBLK_SISTAT6 Register Diagram

Table 43-35: SYSBLK_SISTAT6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

HAE0_PERR Shared INTR_6 status bit (From HAE[0]_PERR).

1

(R/W1C)

FFTB0_SPERR Shared INTR_6 status bit (From FFTB[0]_SPERR).

0

(R/W1C)

FFTB0_DPERR Shared INTR_6 status bit (From FFTB[0]_DPERR).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–41

Shared Interrupt 7 Status Register

Shared INTR_7 status bit (From CGU[0]_EVT)Shared INTR_7 status bit (From DPM[0]_EVT)
CGU0_EVT (R/W1C)DPM0_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-29: SYSBLK_SISTAT7 Register Diagram

Table 43-36: SYSBLK_SISTAT7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DPM0_EVT Shared INTR_7 status bit (From DPM[0]_EVT).

0

(R/W1C)

CGU0_EVT Shared INTR_7 status bit (From CGU[0]_EVT).

CM41X_M4 SYSBLK Register Descriptions

43–42 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 8 Status Register

Shared INTR_8 status bit (From SMPU[0]_ERR)

Shared INTR_8 status bit (From SEC[0]_ERR)Shared INTR_8 status bit (From SPU[0]_INT)

SMPU0_ERR (R/W1C)

SEC0_ERR (R/W1C)SPU0_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-30: SYSBLK_SISTAT8 Register Diagram

Table 43-37: SYSBLK_SISTAT8 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

SPU0_INT Shared INTR_8 status bit (From SPU[0]_INT).

1

(R/W1C)

SMPU0_ERR Shared INTR_8 status bit (From SMPU[0]_ERR).

0

(R/W1C)

SEC0_ERR Shared INTR_8 status bit (From SEC[0]_ERR).

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–43

M0 SRAM ECC Register

The SYSBLK_SRAM0_ECC register allows direct R/W access of the raw ECC/DATA bits of the memory for error
testing and debug. When SYSBLK_SRAM0_ECC.MAPMODE[31] is set, MAPMODE[30] determines whether
ECC (SYSBLK_SRAM0_ECC.MAPMODE[30] equal one) or DATA (SYSBLK_SRAM0_ECC.MAPMODE[30]
equal zero) bits are read/written. ECC generation/correction is disable in this mode and no ECC IRQs are generated
for memory transactions.

Fault Status

Interrupt EnableECC Fault Address

ECC Bypass Modes

FLTST (R/W1C)

IEN (R/W)FADDR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MAPMODE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-31: SYSBLK_SRAM0_ECC Register Diagram

Table 43-38: SYSBLK_SRAM0_ECC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

MAPMODE ECC Bypass Modes.

When SYSBLK_SRAM0_ECC.MAPMODE[31] is set,
SYSBLK_SRAM0_ECC.MAPMODE[30] determines whether ECC
(SYSBLK_SRAM0_ECC.MAPMODE[30] equal one) or DATA
(SYSBLK_SRAM0_ECC.MAPMODE[30] equal zero) bits are read/written. ECC gen-
eration/correction is disable in this mode and no ECC IRQs are generated for memory
transactions.

14:2

(R/NW)

FADDR ECC Fault Address.

1

(R/W1C)

FLTST Fault Status.

0

(R/W)

IEN Interrupt Enable.

CM41X_M4 SYSBLK Register Descriptions

43–44 ADSP-CM41x Mixed-Signal Control Processor

System Status Register

The SYSBLK_SYSSTAT register bits indicate the AFE status.

Status of AFE_OK SignalStatus of AFE_LIMIT signal
AFE_OK (R)AFE_LIMIT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-32: SYSBLK_SYSSTAT Register Diagram

Table 43-39: SYSBLK_SYSSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

AFE_LIMIT Status of AFE_LIMIT signal.

The SYSBLK_SYSSTAT.AFE_LIMIT bit indicates the status of AFE_LIMIT sig-
nal, indicating at least one of the AFE FOCP comparators has detected an over limit
condition.

0

(R/NW)

AFE_OK Status of AFE_OK Signal.

The SYSBLK_SYSSTAT.AFE_OK bit indicates the status of AFE_OK signal.

0 AFE not OK AFE not OK

1 AFE OK

CM41X_M4 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–45

System Register

It allows the programmer to define the calibration value for the ARM Processor's SysTick timer, according to the
frequency of the installed crystal and the divisor settings of the CGU and PLL. The value programmed into this
register appears in the ARM SYST_CALIB read-only register.

Tick Calibration 10s Microseconds

SCLK exact multiple of 10ms

Tick Calibration 10s MicrosecondsNo External Reference

TENMS[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SKEW (R/W)

TENMS[23:16] (R/W)NOREF (R)

0
31

0
30

0
29

0
28

0
27

0
26

1
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-33: SYSBLK_SYS_STCALIB Register Diagram

Table 43-40: SYSBLK_SYS_STCALIB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/NW)

NOREF No External Reference.

The SYSBLK_SYS_STCALIB.NOREF indicates whether an external SysTick refer-
ence clock is implemented. In the ADI M4 Platform, no SysTick external reference
clock is implemented. The processor internal reference clock is used for SYSTICK.

24

(R/W)

SKEW SCLK exact multiple of 10ms.

The SYSBLK_SYS_STCALIB.SKEW bit is set to 1 if the calibration value specified
by SYSBLK_SYS_STCALIB.TENMS does not provide an exact multiple of 10ms.
Otherwise, set this bit to 0. For example, the frequency of a 166.66 (6 repeating) MHz
core clock corresponds to a SYSBLK_SYS_STCALIB.TENMS value of
1,666,666.66, which is not an exact integer, so in that case
SYSBLK_SYS_STCALIB.SKEW is set to 1.

23:0

(R/W)

TENMS Tick Calibration 10s Microseconds.

The SYSBLK_SYS_STCALIB.TENMS bit is set to an integer 24-bit value usable to
compute a 10ms delay from the user-programmed frequency of the M4P core clock.
For example, for a 200MHz core clock, set this value to (200MHz * 10ms) =
24'd2_000_000 = 24'h1e_8480.

CM41X_M4 PADS Register Descriptions
Pads Controller (PADS) contains the following registers.

CM41X_M4 SYSBLK Register Descriptions

43–46 ADSP-CM41x Mixed-Signal Control Processor

Table 43-41: CM41X_M4 PADS Register List

Name Description

PADS_DBC[n]_CTL Debounce Control Register(s)

PADS_DBC_PRESCALE Debounce Prescale Register

PADS_FOCP_DIV Fast Over Current Protection Clock Divisor Register

PADS_MONOSC_CFG Monitor Oscillator Control Register

PADS_NVWR_RSTCTL Non-Volatile Write Reset Control Register

PADS_PCFG0 Peripheral Configuration0 Register

PADS_PORT[n]_DS Multi Port Drive Strength Control Register

PADS_PORT[n]_RCTL Multi Port Pull-up/Pull-down Resistor Control Register

PADS_PORT[n]_TRIPSEL Multi Port Trip Select Register

PADS_PORT[n]_TRIPST Multi Port Trip State Register

PADS_VMU_CTL Voltage Monitor Unit Control Register

PADS_VMU_TRIM Voltage Monitor Unit Trim Register

PADS_VMU_TRIPEN Voltage Monitor Unit Trip Enable Register

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–47

Debounce Control Register(s)

The PADS_DBC[n]_CTL register controls how the module operates.

Prescale Clock Select

Decimating Sample Mode EnableAccumulator Mode

directly to output if disabled)
Debounce Filter Enable (Input is bypassed

Threshold
Debounce Counter or Accumulator

PRECLKSEL (R/W)

DEC (R/W)ACCMODE (R/W)

EN (R/W)THRESH (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-34: PADS_DBC[n]_CTL Register Diagram

Table 43-42: PADS_DBC[n]_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

THRESH Debounce Counter or Accumulator Threshold.

The PADS_DBC[n]_CTL.THRESH bit field contain the value THRESH + 1.

3

(R/W)

ACCMODE Accumulator Mode.

The PADS_DBC[n]_CTL.ACCMODE bit configures the debounce filter to use accu-
mulator mode or counter mode.

0 Counter mode (default)

1 Accumulator mode

2

(R/W)

PRECLKSEL Prescale Clock Select.

The PADS_DBC[n]_CTL.PRECLKSEL bit configures the debounce filter to use
the prescale clock or the system clock.

0 System Clock (default)

1 Prescale clock

1

(R/W)

DEC Decimating Sample Mode Enable.

The PADS_DBC[n]_CTL.DEC bit configures the debounce filter for decimating or
continuous sample mode.

0 Continuous mode (default)

1 Sample mode

CM41X_M4 PADS Register Descriptions

43–48 ADSP-CM41x Mixed-Signal Control Processor

Table 43-42: PADS_DBC[n]_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Debounce Filter Enable (Input is bypassed directly to output if disabled).

The default of the PADS_DBC[n]_CTL.EN bit is disabled.

0 Filter disabled

1 Filter enabled

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–49

Debounce Prescale Register

The PADS_DBC_PRESCALE register contains the Debounce clock prescale divisor.

Debounce Clock Prescale Divisor
DATA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-35: PADS_DBC_PRESCALE Register Diagram

Table 43-43: PADS_DBC_PRESCALE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Debounce Clock Prescale Divisor.

The value for the PADS_DBC_PRESCALE.DATA bit field is Filter update pulse =
SYSCLK/PRESCALE + 1.

CM41X_M4 PADS Register Descriptions

43–50 ADSP-CM41x Mixed-Signal Control Processor

Fast Over Current Protection Clock Divisor Register

The PADS_FOCP_DIV register set the frequency divide ratio.

EnableDivisor for FOCP_CLK output
EN (R/W)DAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-36: PADS_FOCP_DIV Register Diagram

Table 43-44: PADS_FOCP_DIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/W)

DAT Divisor for FOCP_CLK output.

The FOCP Comparators in the AFE require a free-running clock of roughly 10 MHz.
The PADS_FOCP_DIV.DAT bit field sets the frequency divide ratio of DCLK to
FOCP_CLK as follows:

FOCP_DIV = 1 to 15: fFOCP_CLK = fDCLK / (2 * FOCP_DIV:DAT)

FOCP_DIV = 0: fFOCP_CLK = fDCLK / 32

0

(R/W)

EN Enable.

The PADS_FOCP_DIV.EN bit enables the over current protection clock divisor.

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–51

Monitor Oscillator Control Register

Monitor Oscillator Configuration DataSleep Mode Configuration Data
CFG (R/W)SMODE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-37: PADS_MONOSC_CFG Register Diagram

Table 43-45: PADS_MONOSC_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

SMODE Sleep Mode Configuration Data.

3:0

(R/W)

CFG Monitor Oscillator Configuration Data.

CM41X_M4 PADS Register Descriptions

43–52 ADSP-CM41x Mixed-Signal Control Processor

Non-Volatile Write Reset Control Register

There are 2 basic flash unit functions, read and write. Reads occur without any special requirements. Writes (pro-
gramming) of flash memory require special dedicated hardware and control. The PADS_NVWR_RSTCTL register
controls the enable for the flash0/1 write control units. Without enabling the write logic block then no program-
ming to the flash may take place, regardless of the commands written to the flash control MMR registers.

Enable for Non Volatile Write Logic
EN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-38: PADS_NVWR_RSTCTL Register Diagram

Table 43-46: PADS_NVWR_RSTCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable for Non Volatile Write Logic.

The PADS_NVWR_RSTCTL.EN bit controls the enable for the flash0/1 write control
units. Without enabling the write logic block then no programming to the flash may
take place, regardless of the commands written to the flash control MMR registers.
The default state is disabled and in reset.

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–53

Peripheral Configuration0 Register

The PADS_PCFG0 register provides several configuration options for various peripherals.

Pull-Up Enable

SDA
Drive/tolerate for TWI0 Pins SCL &Input Buffer/Pull-Up Enable

PUE (R/W)

TWI0VSEL (R/W)PWMIPE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-39: PADS_PCFG0 Register Diagram

Table 43-47: PADS_PCFG0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:13

(R/W)

PWMIPE Input Buffer/Pull-Up Enable.

Different PWM power topographies require different behavior before configuration.
The 24 pins associated with the 3 sets of PWM units have a default state different
from a generic GPIO pin.

The PADS_PCFG0.PWMIPE bits allow the 3 sets of 8 pins associated with PWM
units to be quickly programmed back to GPIO functionality for a given use case.

Bit0 = 1 restores the defaults for pwm0 pins (PB0 to 7)

Bit1 = 1 restores the defaults for pwm1 pins (PB8 to 15)

Bit2 = 1 restores the defaults for pwm2 pins (PE0 to 7)

0 All PWM units

1 PWM0 unit

2 PWM0, 1 units

3 No PWM units used (111)

12

(R/W)

PUE Pull-Up Enable.

The PADS_PCFG0.PUE bit overrides the input enable and enables the pull-up on
the AFE pads.

11:9

(R/W)

TWI0VSEL Drive/tolerate for TWI0 Pins SCL & SDA.

The PADS_PCFG0.TWI0VSEL sets the voltage requirements for the TWI_SCL and
TWI_SDA pins on TWI0.

0 VDD_EXT = 3.3 V, VBUS_TWI = 3.3 V

1 Reserved

2 Reserved

CM41X_M4 PADS Register Descriptions

43–54 ADSP-CM41x Mixed-Signal Control Processor

Table 43-47: PADS_PCFG0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3 Reserved

4 VDD_EXT = 3.3 V, VBUS_TWI = 5 V

5-7 Reserved

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–55

Multi Port Drive Strength Control Register

The PADS_PORT[n]_DS register increases the drive strength of PWM pins. See the product specific data sheet
for more information.

Port Drive Strength
GPIO_DS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-40: PADS_PORT[n]_DS Register Diagram

Table 43-48: PADS_PORT[n]_DS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

GPIO_DS Port Drive Strength.

CM41X_M4 PADS Register Descriptions

43–56 ADSP-CM41x Mixed-Signal Control Processor

Multi Port Pull-up/Pull-down Resistor Control Register

Port Resistor Enable Control
REN_CTL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-41: PADS_PORT[n]_RCTL Register Diagram

Table 43-49: PADS_PORT[n]_RCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

REN_CTL Port Resistor Enable Control.

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–57

Multi Port Trip Select Register

Trip A/B Mux Select
SEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-42: PADS_PORT[n]_TRIPSEL Register Diagram

Table 43-50: PADS_PORT[n]_TRIPSEL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

SEL Trip A/B Mux Select.

CM41X_M4 PADS Register Descriptions

43–58 ADSP-CM41x Mixed-Signal Control Processor

Multi Port Trip State Register

Port IO 3 Trip StatePort IO 4 Trip State

Port IO 2 Trip StatePort IO 5 Trip State

Port IO 1 Trip StatePort IO 6 Trip State

Port IO_0 Trip StatePort IO 7 Trip State

Port IO 11 Trip StatePort IO 12 Trip State

Port IO 10 Trip StatePort IO 13 Trip State

Port IO 9 Trip StatePort IO 14 Trip State

Port IO 8 Trip StatePort IO 15 Trip State

TS3 (R/W)TS4 (R/W)

TS2 (R/W)TS5 (R/W)

TS1 (R/W)TS6 (R/W)

TS0 (R/W)TS7 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TS11 (R/W)TS12 (R/W)

TS10 (R/W)TS13 (R/W)

TS9 (R/W)TS14 (R/W)

TS8 (R/W)TS15 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-43: PADS_PORT[n]_TRIPST Register Diagram

Table 43-51: PADS_PORT[n]_TRIPST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

TS15 Port IO 15 Trip State.

29:28

(R/W)

TS14 Port IO 14 Trip State.

27:26

(R/W)

TS13 Port IO 13 Trip State.

25:24

(R/W)

TS12 Port IO 12 Trip State.

23:22

(R/W)

TS11 Port IO 11 Trip State.

21:20

(R/W)

TS10 Port IO 10 Trip State.

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–59

Table 43-51: PADS_PORT[n]_TRIPST Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

19:18

(R/W)

TS9 Port IO 9 Trip State.

17:16

(R/W)

TS8 Port IO 8 Trip State.

15:14

(R/W)

TS7 Port IO 7 Trip State.

13:12

(R/W)

TS6 Port IO 6 Trip State.

11:10

(R/W)

TS5 Port IO 5 Trip State.

9:8

(R/W)

TS4 Port IO 4 Trip State.

7:6

(R/W)

TS3 Port IO 3 Trip State.

5:4

(R/W)

TS2 Port IO 2 Trip State.

3:2

(R/W)

TS1 Port IO 1 Trip State.

1:0

(R/W)

TS0 Port IO_0 Trip State.

CM41X_M4 PADS Register Descriptions

43–60 ADSP-CM41x Mixed-Signal Control Processor

Voltage Monitor Unit Control Register

Enable
3Volt Over/Under Voltage Compare

Comparator Reference Select

Enable
1 Volt Over/Under Voltage CompareComparator Over-voltage Disable

VMU Block EnableFault Delay Count in AUX_CLK ticks

EVDDCOMPEN (R/W)
REFPRG (R/W)

IVDDCOMPEN (R/W)OVDIS (R/W)

EN (R/W)FAULTDLY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-44: PADS_VMU_CTL Register Diagram

Table 43-52: PADS_VMU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:8

(R/W)

FAULTDLY Fault Delay Count in AUX_CLK ticks.

6

(R/W)

OVDIS Comparator Over-voltage Disable.

5:4

(R/W)

REFPRG Comparator Reference Select.

2

(R/W)

EVDDCOMPEN 3Volt Over/Under Voltage Compare Enable.

1

(R/W)

IVDDCOMPEN 1 Volt Over/Under Voltage Compare Enable.

0

(R/W)

EN VMU Block Enable.

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–61

Voltage Monitor Unit Trim Register

Voltage Monitor Unit Trim value
TRIM (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-45: PADS_VMU_TRIM Register Diagram

Table 43-53: PADS_VMU_TRIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

TRIM Voltage Monitor Unit Trim value.

CM41X_M4 PADS Register Descriptions

43–62 ADSP-CM41x Mixed-Signal Control Processor

Voltage Monitor Unit Trip Enable Register

Fault Trip Enable
Oscillator Compare Unit Asynchronous

Enable
System Oscillator Clock No Good Trip

Trip Enable
Oscillator Compare Unit Dead Clock

Trip Enable
System Oscillator Asynchronous Fault

OCU0FAULT (R/W)OSC0CLK (R/W)

OCU0CLK (R/W)OSC0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-46: PADS_VMU_TRIPEN Register Diagram

Table 43-54: PADS_VMU_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

OSC0FAULT System Oscillator Asynchronous Fault Trip Enable.

3

(R/W)

OSC0CLK System Oscillator Clock No Good Trip Enable.

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

CM41X_M0 SYSBLK Register Descriptions
Pads Controller (SYSBLK) contains the following registers.

Table 43-55: CM41X_M0 SYSBLK Register List

Name Description

SYSBLK_SCB_RESP_CFG SCB Response Configuration Register

SYSBLK_SCB_TIMEOUT_VALUE SCB Timeout Value Register

SYSBLK_CLKNG_TRIPEN Clock Not Good Trip Register

SYSBLK_DMA_MUXCTL Peripheral DMA Multiplexer Control

SYSBLK_ENG_MODE_CFG0 Engineering Mode Configuration Register 0

SYSBLK_FAULT_TRIPEN Fault Trip Register

CM41X_M4 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–63

Table 43-55: CM41X_M0 SYSBLK Register List (Continued)

Name Description

SYSBLK_IRQ_LATENCY M0 IRQ Latency Register

SYSBLK_LROM_STAT Logic ROM Status Register

SYSBLK_M0_VTOR Vector Table Base Offset Register

SYSBLK_MEMST_CTL Memory Self-Test Control Register

SYSBLK_PWM_SYS_CFG PWM System Configuration Register

SYSBLK_ROT_UPDN_CFG Rotary Counter Up/Down Configuration Register

SYSBLK_SINC_TEST SINC Test Register

SYSBLK_SISTAT0 Shared Interrupt 0 Status Register

SYSBLK_SISTAT10 Shared Interrupt 10 Status Register

SYSBLK_SISTAT11 Shared Interrupt 11 Status Register

SYSBLK_SISTAT12 Shared Interrupt 12 Status Register

SYSBLK_SISTAT15 Shared Interrupt 15 Status Register

SYSBLK_SISTAT16 Shared Interrupt 16 Status Register

SYSBLK_SISTAT17 Shared Interrupt 17 Status Register

SYSBLK_SISTAT18 Shared Interrupt 18 Status Register

SYSBLK_SISTAT19 Shared Interrupt 19 Status Register

SYSBLK_SISTAT22 Shared Interrupt 22 Status Register

SYSBLK_SISTAT25 Shared Interrupt 25 Status Register

SYSBLK_SISTAT28 Shared Interrupt 28 Status Register

SYSBLK_SISTAT3 Shared Interrupt 3 Status Register

SYSBLK_SISTAT5 Shared Interrupt 5 Status Register

SYSBLK_SISTAT6 Shared Interrupt 6 Status Register

SYSBLK_SISTAT7 Shared Interrupt 7 Status Register

SYSBLK_SISTAT8 Shared Interrupt 8 Status Register

SYSBLK_SRAM0_ECC M0 SRAM ECC Register

SYSBLK_SYSSTAT System Status Register

SYSBLK_SYS_STCALIB System Register

CM41X_M0 SYSBLK Register Descriptions

43–64 ADSP-CM41x Mixed-Signal Control Processor

SCB Response Configuration Register

The SYSBLK_SCB_RESP_CFG register provides SCB bus monitoring capabilities from the ARM Cortex-M4 sys-
tem entering the main system scoreboard (SCB).

If the SYSBLK_SCB_RESP_CFG.TOENA bit is enabled the block checks the response time from the AHB block.
If the response time exceeds the timeout value (configured in the SYSBLK_SCB_TIMEOUT_VALUE register) this
block generates a default error response back to the ARM Cortex-M4 system and indicates an error.

Accessing the SCB from the ARM Cortex-M4 through the system scoreboard may result in a minor multi-cycle
stall. The timeout is a safety feature that ensures the ARM Cortex-M4 system has a known maximum response time
to a SCB system access. Note that system MMR accesses are handled on a separate peripheral bus chain and use
different timeout hardware to monitor those accesses.

Timeout ErrorPosted Write Error Interrupt Enable

Enable SCB Timeout InterruptPosted Write Error

TOERR (R/W1C)PWENA (R/W)

TOENA (R/W)PWERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-47: SYSBLK_SCB_RESP_CFG Register Diagram

Table 43-56: SYSBLK_SCB_RESP_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W1C)

PWERR Posted Write Error.

The SYSBLK_SCB_RESP_CFG.PWERR bit indicates an error has occurred on a
previously executed Posted Write to the system fabric. Since writes were posted, this
error is not associated with the interrupted instruction.

0 No error

1 Error occurred

2

(R/W)

PWENA Posted Write Error Interrupt Enable.

The SYSBLK_SCB_RESP_CFG.PWENA bit enables read/write error indications to
the system fabric. The ARM M0 process does not wait for the read/write to complete
before executing the subsequent instructions. Any errors caused by the read/write set
the PWERR bit and cause an inexact interrupt to the ARM processor.

0 Interrupt disabled

1 Interrupt enabled

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–65

Table 43-56: SYSBLK_SCB_RESP_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

TOERR Timeout Error.

The SYSBLK_SCB_RESP_CFG.TOERR indicates that the SCB bus has timed out.

0 No error

1 Error occurred

0

(R/W)

TOENA Enable SCB Timeout Interrupt.

The SYSBLK_SCB_RESP_CFG.TOENA bit enables the the SCB timeout interrupt.
When enabled, the value in the SYSBLK_SCB_TIMEOUT_VALUE register is loaded
into a counter at the start of a each new SCB transaction. The counter decrements
once for each cycle that the SCB bus is not ready (stalled). If the counter decrements
to the value one, an error interrupt request is generated.

0 Disable interrupt

1 Enable interrupt

CM41X_M0 SYSBLK Register Descriptions

43–66 ADSP-CM41x Mixed-Signal Control Processor

SCB Timeout Value Register

The SYSBLK_SCB_TIMEOUT_VALUE register contains the timeout value. This value is loaded into a counter at
the start of each new SCB transaction. The counter decrements once for each cycle that the SCB bus is not ready
(stalled).

If the counter decrements to the value =1, an error interrupt request is produced. If DATA =0, no error produced. If
DATA =1, an error is produced for any SCB bus transaction.

The Timeout Value should be set to a value larger than the number of cycles that it takes for the slowest SCB trans-
action to complete to prevent spurious IRQs.

Timeout Value
DATA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-48: SYSBLK_SCB_TIMEOUT_VALUE Register Diagram

Table 43-57: SYSBLK_SCB_TIMEOUT_VALUE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Timeout Value.

The SYSBLK_SCB_TIMEOUT_VALUE.DATA bit field contains the timeout value.
The Timeout value should be set to a value larger than the number of cycles that it
takes for the slowest SCB transaction to complete to prevent spurious IRQs.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–67

Clock Not Good Trip Register

The SYSBLK_CLKNG_TRIPEN register (OCU) has 2 error outputs for clock monitoring. These 2 control bits
allow the OCU0 error outputs to cause the safety pin-trip feature to activate.

Trip Enable
Oscillator Compare Unit Dead Clock

Fault Trip Enable
Oscillator Compare Unit Asynchronous

OCU0CLK (R/W)OCU0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-49: SYSBLK_CLKNG_TRIPEN Register Diagram

Table 43-58: SYSBLK_CLKNG_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

CM41X_M0 SYSBLK Register Descriptions

43–68 ADSP-CM41x Mixed-Signal Control Processor

Peripheral DMA Multiplexer Control

The SYSBLK_DMA_MUXCTL register allows peripherals to share pins and the same DMA ports. This sharing is
not "in-parallel", users must configure the MDMA blocks for the desired operating peripherals. DMA channels 6-11
need to be configured to support the desired user peripheral.

Mux select for DMA8Mux select for DMA9

Mux select for DMA7Mux select for DMA10

Mux select for DMA6Mux select for DMA11

SEL8 (R/W)SEL9 (R/W)

SEL7 (R/W)SEL10 (R/W)

SEL6 (R/W)SEL11 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-50: SYSBLK_DMA_MUXCTL Register Diagram

Table 43-59: SYSBLK_DMA_MUXCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W)

SEL11 Mux select for DMA11.

0 Select SPORT[0] B_DMA port

1 Select UART[4] RXDMA port

5:4

(R/W)

SEL10 Mux select for DMA10.

0 Select HAE[0] RXDMA_CH1 port

1 Select SPORT[0] A_DMA port

2 Select UART[4] TXDMA port

3

(R/W)

SEL9 Mux select for DMA9.

0 Select HAE[0] TXDMA port

1 Select UART[3] RXDMA port

2

(R/W)

SEL8 Mux select for DMA8.

0 Select HAE[0] RXDMA_CH0 port

1 Select UART[3] TXDMA port

1

(R/W)

SEL7 Mux select for DMA7.

0 Select SPI[1] RXDMA port

1 Select UART[2] RXDMA port

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–69

Table 43-59: SYSBLK_DMA_MUXCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

SEL6 Mux select for DMA6.

0 Select SPI[1] TXDMA port

1 Select UART[2] TXDMA port

CM41X_M0 SYSBLK Register Descriptions

43–70 ADSP-CM41x Mixed-Signal Control Processor

Engineering Mode Configuration Register 0

LBA Combinatorial mode

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

LBA_COMB_MODE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-51: SYSBLK_ENG_MODE_CFG0 Register Diagram

Table 43-60: SYSBLK_ENG_MODE_CFG0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W)

LBA_COMB_MODE LBA Combinatorial mode.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–71

Fault Trip Register

The SYSBLK_FAULT_TRIPEN register controls various Trip functions of the Oscillator Comparator Unit
(OCU). See the OCU chapter for complete information.

Fault Trip Enable
Oscillator Compare Unit Asynchronous

Enable
System Oscillator Clock No Good Trip

Trip Enable
Oscillator Compare Unit Dead Clock

Trip Enable
System Oscillator Asynchronous Fault

OCU0FAULT (R/W)OSC0CLK (R/W)

OCU0CLK (R/W)OSC0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-52: SYSBLK_FAULT_TRIPEN Register Diagram

Table 43-61: SYSBLK_FAULT_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

OSC0FAULT System Oscillator Asynchronous Fault Trip Enable.

The SYSBLK_FAULT_TRIPEN.OSC0FAULT bit enables asserting the
SYS_FAULTb pin asynchronously on OSC_WDOG detection of a clock fault, as as-
serted on the OSC_WDOG's 'fault' pin.

Note that this enable is true by default at power-on. This allows detection of dead-
clock or wrong-harmonic-mode faults on SYS_CLKIN0 to be signaled on the
SYS_FAULTb pin at power-on.

3

(R/W)

OSC0CLK System Oscillator Clock No Good Trip Enable.

The SYSBLK_FAULT_TRIPEN.OSC0CLK bit enables asserting the SYS_FAULTb
pin asynchronously on assertion of the OSC_WDOG clk_not_good output signal.
clk_not_good can be asserted by the OSC_WDOG approximately 1 ms after a fault
detection.

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

The SYSBLK_FAULT_TRIPEN.OCU0FAULT bit enables asserting the
SYS_FAULTb pin asynchronously on OCU0 detection of either a clock frequency er-
ror or a dead clock (OCU port ocu_fault_async).

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

The SYSBLK_FAULT_TRIPEN.OCU0CLK bit enables asserting the SYS_FAULTb
pin asynchronously on OCU0 detection of a dead SYSCLK (OCU port
ocu_dead_clock).

CM41X_M0 SYSBLK Register Descriptions

43–72 ADSP-CM41x Mixed-Signal Control Processor

M0 IRQ Latency Register

The SYSBLK_IRQ_LATENCY register configures the wait state memory system.

IRQ LATENCY VALUE
VALUE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-53: SYSBLK_IRQ_LATENCY Register Diagram

Table 43-62: SYSBLK_IRQ_LATENCY Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

VALUE IRQ LATENCY VALUE.

The SYSBLK_IRQ_LATENCY.VALUE bit field configures the wait state memory
system. For zero jitter in a zero wait state memory system, set this bus to at least a deci-
mal value of 13.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–73

Logic ROM Status Register

The SYSBLK_LROM_STAT register provides indications of various errors in logic ROM boot code.

Flash Key StatusFSEREG Security Enable

Flash Key InvalidCRC Error in RINIT Structure

Configuration ECC ErrorCRC Error in RFUNC Code Section

Configuration/Flash Key TimeoutCRC Error in Array Boot ROM

Unexpected Exception FaultBoot ROM Fault Code

FKEYSTAT (R)FSEREG (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

FLT_FKEY_ERR (R/W)FLT_RINIT_ERR (R/W)

FLT_EFS_ECC (R/W)FLT_RFUNC_ERR (R/W)

FLT_FKTMO (R/W)FLT_ROM_ERR (R/W)

FLT_UEXC (R/W)FLT_BROM (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-54: SYSBLK_LROM_STAT Register Diagram

Table 43-63: SYSBLK_LROM_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

27:24

(R/W)

FLT_BROM Boot ROM Fault Code.

The SYSBLK_LROM_STAT.FLT_BROM bit indicates a Boot ROM fault code.

22

(R/W)

FLT_ROM_ERR CRC Error in Array Boot ROM.

The SYSBLK_LROM_STAT.FLT_ROM_ERR bit indicates that the logic ROM code
detected a CRC error was detected in the Array Boot ROM. The Array Boot ROM
code was not executed.

21

(R/W)

FLT_RFUNC_ERR CRC Error in RFUNC Code Section.

The SYSBLK_LROM_STAT.FLT_RFUNC_ERR bit indicates a CRC error was de-
tected in the RFUNC structure described by RFUNC_PTR and RFUNC_CSIZ in
Flash Info Block 0.

20

(R/W)

FLT_RINIT_ERR CRC Error in RINIT Structure.

The SYSBLK_LROM_STAT.FLT_RINIT_ERR bit indicates a CRC error was de-
tected in the RINIT structure described by RINIT_PTR and RINIT_CSIZ in Flash
Info Block 0.

19

(R/W)

FLT_FKEY_ERR Flash Key Invalid.

The SYSBLK_LROM_STAT.FLT_FKEY_ERR bit indicates the SDBGKEY key
stored in Flash Info Block 0 is invalid.

CM41X_M0 SYSBLK Register Descriptions

43–74 ADSP-CM41x Mixed-Signal Control Processor

Table 43-63: SYSBLK_LROM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

FLT_EFS_ECC Configuration ECC Error.

The SYSBLK_LROM_STAT.FLT_EFS_ECC bit indicates an uncorrectable ECC
error was detected while reading the configuration array.

17

(R/W)

FLT_FKTMO Configuration/Flash Key Timeout.

The SYSBLK_LROM_STAT.FLT_FKTMO bit indicates a Configuration/Flash initi-
alization timeout. Either the initial configuration array read operation or the Flash
Controller flash key read operation did not complete within the specified number of
clocks after the deassertion of M4 core reset.

16

(R/W)

FLT_UEXC Unexpected Exception Fault.

The SYSBLK_LROM_STAT.FLT_UEXC bit indicates an unexpected exception or
interrupt occurred via the initial vector table at address 0x0. This results if an excep-
tion or interrupt occurs during logic boot ROM operation while VTOR = 0x0.

8

(R/NW)

FSEREG FSEREG Security Enable.

The SYSBLK_LROM_STAT.FSEREG bit indicates the security feature of the device
is enabled.

6:4

(R/NW)

FKEYSTAT Flash Key Status.

Indicates the status of the customer-programmable Flash Password. This is read by the
Flash Controller at deassertion of reset. See the Flash Interface Controller specification
for details.

0 Flash Key read process is pending This code indicates
the flash controller is in the process of reading the flash
id and key codes following the deassertion of
SYS_HWRSTb. The duration of this state is specified
in the flash controller spec document. For the CM41x
this is approximately 1400 CLKIN periods.

1 Flash key is invalid The flash key is in an invalid state.
Either: 1) the flash key or contrast code contained an
uncorrectable ECC error, 2) or the flash contrast code
did not match the required value, and was not the spe-
cial case of the key and contrast code both being all
blank (all 1s). The all-blank special case is indicated by
KEY_UNINIT.

2 Flash Key is unprogrammed but contrast code is valid
The flash key is blank, and the flash contrast code is val-
id.

3 Flash key is programmed and is valid The flash key con-
tains a valid nonblank value (not all 1s and not all 0s),
and the contrast code was valid.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–75

Table 43-63: SYSBLK_LROM_STAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

6 The flash contrast code is blank or invalid. The flash key
and contrast code are blank (all 1's). No ECC error was
detected. This is the uninitialized state of the flash
memory.

CM41X_M0 SYSBLK Register Descriptions

43–76 ADSP-CM41x Mixed-Signal Control Processor

Vector Table Base Offset Register

The SYSBLK_M0_VTOR register contains the most significant bits of the offset of the table base from the bottom
of the memory map.

Vector Table Base Offset

Vector Table Base Offset

TBLOFF[7:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TBLOFF[23:8] (R/W)

0
31

0
30

1
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

1
19

1
18

1
17

1
16

Figure 43-55: SYSBLK_M0_VTOR Register Diagram

Table 43-64: SYSBLK_M0_VTOR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:8

(R/W)

TBLOFF Vector Table Base Offset.

The SYSBLK_M0_VTOR.TBLOFF bit field contains the most significant bits of the
offset of the table base from the bottom of the memory map.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–77

Memory Self-Test Control Register

The SYSBLK_MEMST_CTL register controls various memory self-test functions.

Run ControlBusy Status

Memory Self-Test EnableTest Pass/Fail Status

RUN (R/W)BUSY (R)

EN (R/W)FAIL (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-56: SYSBLK_MEMST_CTL Register Diagram

Table 43-65: SYSBLK_MEMST_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

FAIL Test Pass/Fail Status.

The SYSBLK_MEMST_CTL.FAIL bit indicates the Memory self-test result. This bit
is not valid while SYSBLK_MEMST_CTL.BUSY is high. FAIL = 1

0 Self-test passed

1 Self-test failed

2

(R/NW)

BUSY Busy Status.

The SYSBLK_MEMST_CTL.BUSY bit indicates that Memory self-test is in progress.

1

(R/W)

RUN Run Control.

The SYSBLK_MEMST_CTL.RUN bit indicates that Memory Self-Test has started.
The SYSBLK_MEMST_CTL.EN bit must be HIGH.

0

(R/W)

EN Memory Self-Test Enable.

The SYSBLK_MEMST_CTL.EN bit enables user Memory Self-Test mode.

0 Memory Self-Test disabled

1 Memory Self-Test enabled

CM41X_M0 SYSBLK Register Descriptions

43–78 ADSP-CM41x Mixed-Signal Control Processor

PWM System Configuration Register

The SYSBLK_PWM_SYS_CFG register controls various functions for the PWM module.

Enable 1
Fast Over Current Protection PWM Trip

PWM1 Trip Multiplexer SelectAnalog Front End Not OK PWM Trip Enable 1

Analog Front End Not OK PWM Trip Enable 0PWM2 Trip Multiplexer Select

Enable 0
Fast Over Current Protection PWM Trip

Enable 2
Fast Over Current Protection PWM Trip

PWM0 Trip Multiplexer SelectAnalog Front End Not OK PWM Trip Enable 2

High Precision PWM Block2 DisablePWM0 SYNC OUT Secondary Enable

High Precision PWM Block1 DisablePWM1 SYNC OUT Secondary Enable

High Precision PWM Block0 DisablePWM2 SYNC OUT Secondary Enable

FOCPTRIPEN1 (R/W)

PWM1TRIPMX (R/W)AFEOKTRIPEN1 (R/W)

AFEOKTRIPEN0 (R/W)PWM2TRIPMX (R/W)

FOCPTRIPEN0 (R/W)FOCPTRIPEN2 (R/W)

PWM0TRIPMX (R/W)AFEOKTRIPEN2 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

HPPWMDIS2 (R/W)PWM0SYNCOE (R/W)

HPPWMDIS1 (R/W)PWM1SYNCOE (R/W)

HPPWMDIS0 (R/W)PWM2SYNCOE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-57: SYSBLK_PWM_SYS_CFG Register Diagram

Table 43-66: SYSBLK_PWM_SYS_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

26

(R/W)

PWM2SYNCOE PWM2 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM2SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that PWM external sync bit is set (=1). Addi-
tionally, route the PWM's sync-pulse generator to an output pin.

25

(R/W)

PWM1SYNCOE PWM1 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM1SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that PWM external sync bit is set (=1). Addi-
tionally, route the PWM's sync-pulse generator to an output pin.

24

(R/W)

PWM0SYNCOE PWM0 SYNC OUT Secondary Enable.

The SYSBLK_PWM_SYS_CFG.PWM0SYNCOE bit is used when the PWM is being
synced by a trigger signal. This requires that the PWM external sync bit is set (=1).
Additionally, route the PWM's sync-pulse generator to an output pin.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–79

Table 43-66: SYSBLK_PWM_SYS_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

21

(R/W)

HPPWMDIS2 High Precision PWM Block2 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS2 bit reverts high precision PWM block
2 to medium precision.

20

(R/W)

HPPWMDIS1 High Precision PWM Block1 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS1 bit reverts high precision PWM block
1 to medium precision.

19

(R/W)

HPPWMDIS0 High Precision PWM Block0 Disable.

The SYSBLK_PWM_SYS_CFG.HPPWMDIS0 bit reverts high precision PWM block
0 to medium precision.

14

(R/W)

AFEOKTRIPEN2 Analog Front End Not OK PWM Trip Enable 2.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN2 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

13

(R/W)

FOCPTRIPEN2 Fast Over Current Protection PWM Trip Enable 2.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN2 bit controls if the AFE die output
FOCP causes a PWM unit trip.

12:10

(R/W)

PWM2TRIPMX PWM2 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM2TRIPMX bit controls if the trip2 chip input
causes a PWM unit trip.

9

(R/W)

AFEOKTRIPEN1 Analog Front End Not OK PWM Trip Enable 1.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN1 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

8

(R/W)

FOCPTRIPEN1 Fast Over Current Protection PWM Trip Enable 1.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN1 bit controls if the AFE die output
FOCP causes a PWM unit trip.

7:5

(R/W)

PWM1TRIPMX PWM1 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM1TRIPMX bit controls if the trip1 chip input
causes a PWM unit trip.

4

(R/W)

AFEOKTRIPEN0 Analog Front End Not OK PWM Trip Enable 0.

The SYSBLK_PWM_SYS_CFG.AFEOKTRIPEN0 bit controls if the AFE die out-
put NOT_OK causes a PWM unit trip.

3

(R/W)

FOCPTRIPEN0 Fast Over Current Protection PWM Trip Enable 0.

The SYSBLK_PWM_SYS_CFG.FOCPTRIPEN0 bit controls if the AFE die output
FOCP causes a PWM unit trip.

CM41X_M0 SYSBLK Register Descriptions

43–80 ADSP-CM41x Mixed-Signal Control Processor

Table 43-66: SYSBLK_PWM_SYS_CFG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2:0

(R/W)

PWM0TRIPMX PWM0 Trip Multiplexer Select.

The SYSBLK_PWM_SYS_CFG.PWM0TRIPMX bit controls if the trip0 chip input
causes a PWM unit trip.

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–81

Rotary Counter Up/Down Configuration Register

The SYSBLK_ROT_UPDN_CFG register selects between rotary counter phase A or B inputs.

Select Phase ASelect Phase B
SELA (R/W)SELB (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-58: SYSBLK_ROT_UPDN_CFG Register Diagram

Table 43-67: SYSBLK_ROT_UPDN_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:2

(R/W)

SELB Select Phase B.

The SYSBLK_ROT_UPDN_CFG.SELB bit field selects Rotary CNT0 Phase B in-
put.

0 Select Pad as input to Rotary Counter

1 Select Pad as input to Rotary Counter

2 Select Trigger Slave as input to Rotary Counter

3 Select LBA as input to Rotary Counter

1:0

(R/W)

SELA Select Phase A.

The SYSBLK_ROT_UPDN_CFG.SELA bit field selects Rotary CNT0 Phase A in-
put.

0 Select Pad as input to Rotary Counter

1 Select Pad as input to Rotary Counter

2 Select Trigger Slave as input to Rotary Counter

3 Select LBA as input to Rotary Counter

CM41X_M0 SYSBLK Register Descriptions

43–82 ADSP-CM41x Mixed-Signal Control Processor

SINC Test Register

The SYSBLK_SINC_TEST register configures the SINC block 4 data inputs (one per MMR bit) to come from
the single SPORT0 data A output. This allows a know data stream to be directed to SINC blocks for verification,
development, and self-test code for safety.

SINC Test Enable
EN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-59: SYSBLK_SINC_TEST Register Diagram

Table 43-68: SYSBLK_SINC_TEST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

EN SINC Test Enable.

The SYSBLK_SINC_TEST.EN bit field configures the SINC block 4 data inputs
(one per MMR bit) to come from the single SPORT0 data A output

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–83

Shared Interrupt 0 Status Register

Shared INTR_0 status bit (From OCU[0]_ERR)Shared INTR_0 status bit (From VMU[0]_VDDEXT_EVT)

Shared INTR_0 status bit (From CGU[0]_OSCW_INT)Shared INTR_0 status bit (From VMU[0]_VDDINT_EVT)

OCU0_ERR (R/W1C)VMU0_VDDEXT_EVT (R/W1C)

CGU0_OSCW_INT (R/W1C)VMU0_VDDINT_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-60: SYSBLK_SISTAT0 Register Diagram

Table 43-69: SYSBLK_SISTAT0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W1C)

VMU0_VDDINT_EVT Shared INTR_0 status bit (From VMU[0]_VDDINT_EVT).

3

(R/W1C)

VMU0_VDDEXT_EVT Shared INTR_0 status bit (From VMU[0]_VDDEXT_EVT).

2

(R/W1C)

OCU0_ERR Shared INTR_0 status bit (From OCU[0]_ERR).

1

(R/W1C)

CGU0_OSCW_INT Shared INTR_0 status bit (From CGU[0]_OSCW_INT).

CM41X_M0 SYSBLK Register Descriptions

43–84 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 10 Status Register

Shared INTR_10 status bit (From SYS_AFE_LIMIT)Shared INTR_10 status bit (From SYS_AFE_NOTOK)
SYS_AFE_LIMIT (R/W1C)SYS_AFE_NOTOK (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

X
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-61: SYSBLK_SISTAT10 Register Diagram

Table 43-70: SYSBLK_SISTAT10 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SYS_AFE_NOTOK Shared INTR_10 status bit (From SYS_AFE_NOTOK).

0

(R/W1C)

SYS_AFE_LIMIT Shared INTR_10 status bit (From SYS_AFE_LIMIT).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–85

Shared Interrupt 11 Status Register

Shared INTR_11 status bit (From SWU[0]_EVT)Shared INTR_11 status bit (From SWU[1]_EVT)
SWU0_EVT (R/W1C)SWU1_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-62: SYSBLK_SISTAT11 Register Diagram

Table 43-71: SYSBLK_SISTAT11 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SWU1_EVT Shared INTR_11 status bit (From SWU[1]_EVT).

0

(R/W1C)

SWU0_EVT Shared INTR_11 status bit (From SWU[0]_EVT).

CM41X_M0 SYSBLK Register Descriptions

43–86 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 12 Status Register

Shared INTR_12 status bit (From DMA[2]_ERR)

Shared INTR_12 status bit (From DMA[1]_ERR)Shared INTR_12 status bit (From DMA[3]_ERR)

Shared INTR_12 status bit (From DMA[10]_ERR)Shared INTR_12 status bit (From DMA[8]_ERR)

Shared INTR_12 status bit (From DMA[0]_ERR)Shared INTR_12 status bit (From DMA[9]_ERR)

DMA2_ERR (R/W1C)

DMA1_ERR (R/W1C)DMA3_ERR (R/W1C)

DMA10_ERR (R/W1C)DMA8_ERR (R/W1C)

DMA0_ERR (R/W1C)DMA9_ERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-63: SYSBLK_SISTAT12 Register Diagram

Table 43-72: SYSBLK_SISTAT12 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

DMA9_ERR Shared INTR_12 status bit (From DMA[9]_ERR).

5

(R/W1C)

DMA8_ERR Shared INTR_12 status bit (From DMA[8]_ERR).

4

(R/W1C)

DMA3_ERR Shared INTR_12 status bit (From DMA[3]_ERR).

3

(R/W1C)

DMA2_ERR Shared INTR_12 status bit (From DMA[2]_ERR).

2

(R/W1C)

DMA1_ERR Shared INTR_12 status bit (From DMA[1]_ERR).

1

(R/W1C)

DMA10_ERR Shared INTR_12 status bit (From DMA[10]_ERR).

0

(R/W1C)

DMA0_ERR Shared INTR_12 status bit (From DMA[0]_ERR).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–87

Shared Interrupt 15 Status Register

Shared INTR_15 status bit (From TIMER[0]_TMR[3])

Shared INTR_15 status bit (From TIMER[0]_TMR[2])Shared INTR_15 status bit (From TIMER[0]_TMR[4])

Shared INTR_15 status bit (From TIMER[0]_TMR[1])Shared INTR_15 status bit (From TIMER[0]_TMR[5])

Shared INTR_15 status bit (From TIMER[0]_TMR[0])Shared INTR_15 status bit (From TIMER[0]_TMR[6])

Shared INTR_15 status bit (From TIMER[0]_STAT)Shared INTR_15 status bit (From TIMER[0]_TMR[7])

TIMER0_TMR3 (R/W1C)

TIMER0_TMR2 (R/W1C)TIMER0_TMR4 (R/W1C)

TIMER0_TMR1 (R/W1C)TIMER0_TMR5 (R/W1C)

TIMER0_TMR0 (R/W1C)TIMER0_TMR6 (R/W1C)

TIMER0_STAT (R/W1C)TIMER0_TMR7 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-64: SYSBLK_SISTAT15 Register Diagram

Table 43-73: SYSBLK_SISTAT15 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

TIMER0_TMR7 Shared INTR_15 status bit (From TIMER[0]_TMR[7]).

7

(R/W1C)

TIMER0_TMR6 Shared INTR_15 status bit (From TIMER[0]_TMR[6]).

6

(R/W1C)

TIMER0_TMR5 Shared INTR_15 status bit (From TIMER[0]_TMR[5]).

5

(R/W1C)

TIMER0_TMR4 Shared INTR_15 status bit (From TIMER[0]_TMR[4]).

4

(R/W1C)

TIMER0_TMR3 Shared INTR_15 status bit (From TIMER[0]_TMR[3]).

3

(R/W1C)

TIMER0_TMR2 Shared INTR_15 status bit (From TIMER[0]_TMR[2]).

2

(R/W1C)

TIMER0_TMR1 Shared INTR_15 status bit (From TIMER[0]_TMR[1]).

1

(R/W1C)

TIMER0_TMR0 Shared INTR_15 status bit (From TIMER[0]_TMR[0]).

CM41X_M0 SYSBLK Register Descriptions

43–88 ADSP-CM41x Mixed-Signal Control Processor

Table 43-73: SYSBLK_SISTAT15 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

TIMER0_STAT Shared INTR_15 status bit (From TIMER[0]_STAT).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–89

Shared Interrupt 16 Status Register

Shared INTR_16 status bit (From CPTMR[0]_CPT[1]_MEAS)

Shared INTR_16 status bit (From CPTMR[0]_CPT[0]_MEAS)Shared INTR_16 status bit (From CPTMR[0]_CPT[2]_MEAS)

CPTMR0_CPT1_MEAS (R/W1C)

CPTMR0_CPT0_MEAS (R/W1C)CPTMR0_CPT2_MEAS (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-65: SYSBLK_SISTAT16 Register Diagram

Table 43-74: SYSBLK_SISTAT16 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

CPTMR0_CPT2_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[2]_MEAS).

1

(R/W1C)

CPTMR0_CPT1_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[1]_MEAS).

0

(R/W1C)

CPTMR0_CPT0_MEAS Shared INTR_16 status bit (From CPTMR[0]_CPT[0]_MEAS).

CM41X_M0 SYSBLK Register Descriptions

43–90 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 17 Status Register

Shared INTR_17 status bit (From DMA[0]_INT)Shared INTR_17 status bit (From DMA[2]_INT)
DMA0_INT (R/W1C)DMA2_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-66: SYSBLK_SISTAT17 Register Diagram

Table 43-75: SYSBLK_SISTAT17 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DMA2_INT Shared INTR_17 status bit (From DMA[2]_INT).

0

(R/W1C)

DMA0_INT Shared INTR_17 status bit (From DMA[0]_INT).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–91

Shared Interrupt 18 Status Register

Shared INTR_18 status bit (From DMA[1]_INT)Shared INTR_18 status bit (From DMA[3]_INT)
DMA1_INT (R/W1C)DMA3_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-67: SYSBLK_SISTAT18 Register Diagram

Table 43-76: SYSBLK_SISTAT18 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DMA3_INT Shared INTR_18 status bit (From DMA[3]_INT).

0

(R/W1C)

DMA1_INT Shared INTR_18 status bit (From DMA[1]_INT).

CM41X_M0 SYSBLK Register Descriptions

43–92 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 19 Status Register

Shared INTR_19 status bit (From DMA[8]_INT)

Shared INTR_19 status bit (From DMA[10]_INT)Shared INTR_19 status bit (From DMA[9]_INT)

DMA8_INT (R/W1C)

DMA10_INT (R/W1C)DMA9_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-68: SYSBLK_SISTAT19 Register Diagram

Table 43-77: SYSBLK_SISTAT19 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

DMA9_INT Shared INTR_19 status bit (From DMA[9]_INT).

1

(R/W1C)

DMA8_INT Shared INTR_19 status bit (From DMA[8]_INT).

0

(R/W1C)

DMA10_INT Shared INTR_19 status bit (From DMA[10]_INT).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–93

Shared Interrupt 22 Status Register

Shared INTR_22 status bit (From FFTB[0]_DONE)Shared INTR_22 status bit (From FFTB[0]_LIMERR)
FFTB0_DONE (R/W1C)FFTB0_LIMERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-69: SYSBLK_SISTAT22 Register Diagram

Table 43-78: SYSBLK_SISTAT22 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

FFTB0_LIMERR Shared INTR_22 status bit (From FFTB[0]_LIMERR).

0

(R/W1C)

FFTB0_DONE Shared INTR_22 status bit (From FFTB[0]_DONE).

CM41X_M0 SYSBLK Register Descriptions

43–94 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 25 Status Register

Shared INTR_25 status bit (From SPI[0]_ERR)Shared INTR_25 status bit (From SPI[0]_STAT)
SPI0_ERR (R/W1C)SPI0_STAT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-70: SYSBLK_SISTAT25 Register Diagram

Table 43-79: SYSBLK_SISTAT25 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

SPI0_STAT Shared INTR_25 status bit (From SPI[0]_STAT).

0

(R/W1C)

SPI0_ERR Shared INTR_25 status bit (From SPI[0]_ERR).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–95

Shared Interrupt 28 Status Register

Shared INTR_28 status bit (From CAN[0]_STAT)

Shared INTR_28 status bit (From CAN[0]_RX)Shared INTR_28 status bit (From CAN[0]_TX)

CAN0_STAT (R/W1C)

CAN0_RX (R/W1C)CAN0_TX (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-71: SYSBLK_SISTAT28 Register Diagram

Table 43-80: SYSBLK_SISTAT28 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

CAN0_TX Shared INTR_28 status bit (From CAN[0]_TX).

1

(R/W1C)

CAN0_STAT Shared INTR_28 status bit (From CAN[0]_STAT).

0

(R/W1C)

CAN0_RX Shared INTR_28 status bit (From CAN[0]_RX).

CM41X_M0 SYSBLK Register Descriptions

43–96 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 3 Status Register

Shared INTR_3 status bit (From SYSBLK[0]_BUS_TIMEOUT)

Shared INTR_3 status bit (From SPU[0]_TIMEOUT)Shared INTR_3 status bit (From SYSBLK[0]_POSTWR_ERR)

SYSBLK0_BUS_TIMEOUT (R/W1C)

SPU0_TIMEOUT (R/W1C)SYSBLK0_POSTWR_ERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-72: SYSBLK_SISTAT3 Register Diagram

Table 43-81: SYSBLK_SISTAT3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

SYSBLK0_POSTWR_ERR Shared INTR_3 status bit (From SYSBLK[0]_POSTWR_ERR).

1

(R/W1C)

SYSBLK0_BUS_TIME-
OUT

Shared INTR_3 status bit (From SYSBLK[0]_BUS_TIMEOUT).

0

(R/W1C)

SPU0_TIMEOUT Shared INTR_3 status bit (From SPU[0]_TIMEOUT).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–97

Shared Interrupt 5 Status Register

Shared INTR_5 status bit (From M4P_LOCKUP)

Shared INTR_5 status bit (From M4P_CORE_SRAM_EERR)Shared INTR_5 status bit (From MBOX[0]_PORT1_EERR)

Shared INTR_5 status bit (From M4P_BUS_FAULT)Shared INTR_5 status bit (From SPU[1]_TIMEOUT)

Shared INTR_5 status bit (From M4PFLASH[0]_CORE_FLASH_EERR)Shared INTR_5 status bit (From SYSBLK[1]_BUS_TIMEOUT)

M4P_LOCKUP (R/W1C)

M4P_CORE_SRAM_EERR (R/W1C)MBOX0_PORT1_EERR (R/W1C)

M4P_BUS_FAULT (R/W1C)SPU1_TIMEOUT (R/W1C)

M4PFLASH0_CORE_FLASH_EERR (R/W1C)SYSBLK1_BUS_TIMEOUT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-73: SYSBLK_SISTAT5 Register Diagram

Table 43-82: SYSBLK_SISTAT5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/W1C)

SYSBLK1_BUS_TIME-
OUT

Shared INTR_5 status bit (From SYSBLK[1]_BUS_TIMEOUT).

5

(R/W1C)

SPU1_TIMEOUT Shared INTR_5 status bit (From SPU[1]_TIMEOUT).

4

(R/W1C)

MBOX0_PORT1_EERR Shared INTR_5 status bit (From MBOX[0]_PORT1_EERR).

3

(R/W1C)

M4P_LOCKUP Shared INTR_5 status bit (From M4P_LOCKUP).

2

(R/W1C)

M4P_CORE_SRAM_EER
R

Shared INTR_5 status bit (From M4P_CORE_SRAM_EERR).

1

(R/W1C)

M4P_BUS_FAULT Shared INTR_5 status bit (From M4P_BUS_FAULT).

0

(R/W1C)

M4PFLASH0_CORE_FLA
SH_EERR

Shared INTR_5 status bit (From M4PFLASH[0]_CORE_FLASH_EERR).

CM41X_M0 SYSBLK Register Descriptions

43–98 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 6 Status Register

Shared INTR_6 status bit (From FFTB[0]_SPERR)

Shared INTR_6 status bit (From FFTB[0]_DPERR)Shared INTR_6 status bit (From HAE[0]_PERR)

FFTB0_SPERR (R/W1C)

FFTB0_DPERR (R/W1C)HAE0_PERR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-74: SYSBLK_SISTAT6 Register Diagram

Table 43-83: SYSBLK_SISTAT6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

HAE0_PERR Shared INTR_6 status bit (From HAE[0]_PERR).

1

(R/W1C)

FFTB0_SPERR Shared INTR_6 status bit (From FFTB[0]_SPERR).

0

(R/W1C)

FFTB0_DPERR Shared INTR_6 status bit (From FFTB[0]_DPERR).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–99

Shared Interrupt 7 Status Register

Shared INTR_7 status bit (From CGU[0]_EVT)Shared INTR_7 status bit (From DPM[0]_EVT)
CGU0_EVT (R/W1C)DPM0_EVT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-75: SYSBLK_SISTAT7 Register Diagram

Table 43-84: SYSBLK_SISTAT7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W1C)

DPM0_EVT Shared INTR_7 status bit (From DPM[0]_EVT).

0

(R/W1C)

CGU0_EVT Shared INTR_7 status bit (From CGU[0]_EVT).

CM41X_M0 SYSBLK Register Descriptions

43–100 ADSP-CM41x Mixed-Signal Control Processor

Shared Interrupt 8 Status Register

Shared INTR_8 status bit (From SMPU[0]_ERR)

Shared INTR_8 status bit (From SEC[0]_ERR)Shared INTR_8 status bit (From SPU[0]_INT)

SMPU0_ERR (R/W1C)

SEC0_ERR (R/W1C)SPU0_INT (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-76: SYSBLK_SISTAT8 Register Diagram

Table 43-85: SYSBLK_SISTAT8 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

SPU0_INT Shared INTR_8 status bit (From SPU[0]_INT).

1

(R/W1C)

SMPU0_ERR Shared INTR_8 status bit (From SMPU[0]_ERR).

0

(R/W1C)

SEC0_ERR Shared INTR_8 status bit (From SEC[0]_ERR).

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–101

M0 SRAM ECC Register

The SYSBLK_SRAM0_ECC register allows direct R/W access of the raw ECC/DATA bits of the memory for error
testing and debug. When SYSBLK_SRAM0_ECC.MAPMODE[31] is set, MAPMODE[30] determines whether
ECC (SYSBLK_SRAM0_ECC.MAPMODE[30] equal one) or DATA (SYSBLK_SRAM0_ECC.MAPMODE[30]
equal zero) bits are read/written. ECC generation/correction is disable in this mode and no ECC IRQs are generated
for memory transactions.

Fault Status

Interrupt EnableECC Fault Address

ECC Bypass Modes

FLTST (R/W1C)

IEN (R/W)FADDR (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

MAPMODE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-77: SYSBLK_SRAM0_ECC Register Diagram

Table 43-86: SYSBLK_SRAM0_ECC Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

MAPMODE ECC Bypass Modes.

When SYSBLK_SRAM0_ECC.MAPMODE[31] is set,
SYSBLK_SRAM0_ECC.MAPMODE[30] determines whether ECC
(SYSBLK_SRAM0_ECC.MAPMODE[30] equal one) or DATA
(SYSBLK_SRAM0_ECC.MAPMODE[30] equal zero) bits are read/written. ECC gen-
eration/correction is disable in this mode and no ECC IRQs are generated for memory
transactions.

14:2

(R/NW)

FADDR ECC Fault Address.

1

(R/W1C)

FLTST Fault Status.

0

(R/W)

IEN Interrupt Enable.

CM41X_M0 SYSBLK Register Descriptions

43–102 ADSP-CM41x Mixed-Signal Control Processor

System Status Register

The SYSBLK_SYSSTAT register bits indicate the AFE status.

Status of AFE_OK SignalStatus of AFE_LIMIT signal
AFE_OK (R)AFE_LIMIT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

X
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-78: SYSBLK_SYSSTAT Register Diagram

Table 43-87: SYSBLK_SYSSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

AFE_LIMIT Status of AFE_LIMIT signal.

The SYSBLK_SYSSTAT.AFE_LIMIT bit indicates the status of AFE_LIMIT sig-
nal, indicating at least one of the AFE FOCP comparators has detected an over limit
condition.

0

(R/NW)

AFE_OK Status of AFE_OK Signal.

The SYSBLK_SYSSTAT.AFE_OK bit indicates the status of AFE_OK signal.

0 AFE not OK AFE not OK

1 AFE OK

CM41X_M0 SYSBLK Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–103

System Register

It allows the programmer to define the calibration value for the ARM Processor's SysTick timer, according to the
frequency of the installed crystal and the divisor settings of the CGU and PLL. The value programmed into this
register appears in the ARM SYST_CALIB read-only register.

Tick Calibration 10s Microseconds

SCLK exact multiple of 10ms

Tick Calibration 10s MicrosecondsNo External Reference

TENMS[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

SKEW (R/W)

TENMS[23:16] (R/W)NOREF (R)

0
31

0
30

0
29

0
28

0
27

0
26

1
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-79: SYSBLK_SYS_STCALIB Register Diagram

Table 43-88: SYSBLK_SYS_STCALIB Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/NW)

NOREF No External Reference.

The SYSBLK_SYS_STCALIB.NOREF indicates whether an external SysTick refer-
ence clock is implemented. In the ADI M4 Platform, no SysTick external reference
clock is implemented. The processor internal reference clock is used for SYSTICK.

24

(R/W)

SKEW SCLK exact multiple of 10ms.

The SYSBLK_SYS_STCALIB.SKEW bit is set to 1 if the calibration value specified
by SYSBLK_SYS_STCALIB.TENMS does not provide an exact multiple of 10ms.
Otherwise, set this bit to 0. For example, the frequency of a 166.66 (6 repeating) MHz
core clock corresponds to a SYSBLK_SYS_STCALIB.TENMS value of
1,666,666.66, which is not an exact integer, so in that case
SYSBLK_SYS_STCALIB.SKEW is set to 1.

23:0

(R/W)

TENMS Tick Calibration 10s Microseconds.

The SYSBLK_SYS_STCALIB.TENMS bit is set to an integer 24-bit value usable to
compute a 10ms delay from the user-programmed frequency of the M4P core clock.
For example, for a 200MHz core clock, set this value to (200MHz * 10ms) =
24'd2_000_000 = 24'h1e_8480.

CM41X_M0 PADS Register Descriptions
Pads Controller (PADS) contains the following registers.

CM41X_M0 SYSBLK Register Descriptions

43–104 ADSP-CM41x Mixed-Signal Control Processor

Table 43-89: CM41X_M0 PADS Register List

Name Description

PADS_DBC[n]_CTL Debounce Control Register(s)

PADS_DBC_PRESCALE Debounce Prescale Register

PADS_FOCP_DIV Fast Over Current Protection Clock Divisor Register

PADS_MONOSC_CFG Monitor Oscillator Control Register

PADS_NVWR_RSTCTL Non-Volatile Write Reset Control Register

PADS_PCFG0 Peripheral Configuration0 Register

PADS_PORT[n]_DS Multi Port Drive Strength Control Register

PADS_PORT[n]_RCTL Multi Port Pull-up/Pull-down Resistor Control Register

PADS_PORT[n]_TRIPSEL Multi Port Trip Select Register

PADS_PORT[n]_TRIPST Multi Port Trip State Register

PADS_VMU_CTL Voltage Monitor Unit Control Register

PADS_VMU_TRIM Voltage Monitor Unit Trim Register

PADS_VMU_TRIPEN Voltage Monitor Unit Trip Enable Register

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–105

Debounce Control Register(s)

The PADS_DBC[n]_CTL register controls how the module operates.

Prescale Clock Select

Decimating Sample Mode EnableAccumulator Mode

directly to output if disabled)
Debounce Filter Enable (Input is bypassed

Threshold
Debounce Counter or Accumulator

PRECLKSEL (R/W)

DEC (R/W)ACCMODE (R/W)

EN (R/W)THRESH (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-80: PADS_DBC[n]_CTL Register Diagram

Table 43-90: PADS_DBC[n]_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:8

(R/W)

THRESH Debounce Counter or Accumulator Threshold.

The PADS_DBC[n]_CTL.THRESH bit field contain the value THRESH + 1.

3

(R/W)

ACCMODE Accumulator Mode.

The PADS_DBC[n]_CTL.ACCMODE bit configures the debounce filter to use accu-
mulator mode or counter mode.

0 Counter mode (default)

1 Accumulator mode

2

(R/W)

PRECLKSEL Prescale Clock Select.

The PADS_DBC[n]_CTL.PRECLKSEL bit configures the debounce filter to use
the prescale clock or the system clock.

0 System Clock (default)

1 Prescale clock

1

(R/W)

DEC Decimating Sample Mode Enable.

The PADS_DBC[n]_CTL.DEC bit configures the debounce filter for decimating or
continuous sample mode.

0 Continuous mode (default)

1 Sample mode

CM41X_M0 PADS Register Descriptions

43–106 ADSP-CM41x Mixed-Signal Control Processor

Table 43-90: PADS_DBC[n]_CTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Debounce Filter Enable (Input is bypassed directly to output if disabled).

The default of the PADS_DBC[n]_CTL.EN bit is disabled.

0 Filter disabled

1 Filter enabled

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–107

Debounce Prescale Register

The PADS_DBC_PRESCALE register contains the Debounce clock prescale divisor.

Debounce Clock Prescale Divisor
DATA (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-81: PADS_DBC_PRESCALE Register Diagram

Table 43-91: PADS_DBC_PRESCALE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

DATA Debounce Clock Prescale Divisor.

The value for the PADS_DBC_PRESCALE.DATA bit field is Filter update pulse =
SYSCLK/PRESCALE + 1.

CM41X_M0 PADS Register Descriptions

43–108 ADSP-CM41x Mixed-Signal Control Processor

Fast Over Current Protection Clock Divisor Register

The PADS_FOCP_DIV register set the frequency divide ratio.

EnableDivisor for FOCP_CLK output
EN (R/W)DAT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-82: PADS_FOCP_DIV Register Diagram

Table 43-92: PADS_FOCP_DIV Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:4

(R/W)

DAT Divisor for FOCP_CLK output.

The FOCP Comparators in the AFE require a free-running clock of roughly 10 MHz.
The PADS_FOCP_DIV.DAT bit field sets the frequency divide ratio of DCLK to
FOCP_CLK as follows:

FOCP_DIV = 1 to 15: fFOCP_CLK = fDCLK / (2 * FOCP_DIV:DAT)

FOCP_DIV = 0: fFOCP_CLK = fDCLK / 32

0

(R/W)

EN Enable.

The PADS_FOCP_DIV.EN bit enables the over current protection clock divisor.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–109

Monitor Oscillator Control Register

Monitor Oscillator Configuration DataSleep Mode Configuration Data
CFG (R/W)SMODE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-83: PADS_MONOSC_CFG Register Diagram

Table 43-93: PADS_MONOSC_CFG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

5:4

(R/W)

SMODE Sleep Mode Configuration Data.

3:0

(R/W)

CFG Monitor Oscillator Configuration Data.

CM41X_M0 PADS Register Descriptions

43–110 ADSP-CM41x Mixed-Signal Control Processor

Non-Volatile Write Reset Control Register

There are 2 basic flash unit functions, read and write. Reads occur without any special requirements. Writes (pro-
gramming) of flash memory require special dedicated hardware and control. The PADS_NVWR_RSTCTL register
controls the enable for the flash0/1 write control units. Without enabling the write logic block then no program-
ming to the flash may take place, regardless of the commands written to the flash control MMR registers.

Enable for Non Volatile Write Logic
EN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-84: PADS_NVWR_RSTCTL Register Diagram

Table 43-94: PADS_NVWR_RSTCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

EN Enable for Non Volatile Write Logic.

The PADS_NVWR_RSTCTL.EN bit controls the enable for the flash0/1 write control
units. Without enabling the write logic block then no programming to the flash may
take place, regardless of the commands written to the flash control MMR registers.
The default state is disabled and in reset.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–111

Peripheral Configuration0 Register

The PADS_PCFG0 register provides several configuration options for various peripherals.

Pull-Up Enable

SDA
Drive/tolerate for TWI0 Pins SCL &Input Buffer/Pull-Up Enable

PUE (R/W)

TWI0VSEL (R/W)PWMIPE (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-85: PADS_PCFG0 Register Diagram

Table 43-95: PADS_PCFG0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:13

(R/W)

PWMIPE Input Buffer/Pull-Up Enable.

Different PWM power topographies require different behavior before configuration.
The 24 pins associated with the 3 sets of PWM units have a default state different
from a generic GPIO pin.

The PADS_PCFG0.PWMIPE bits allow the 3 sets of 8 pins associated with PWM
units to be quickly programmed back to GPIO functionality for a given use case.

Bit0 = 1 restores the defaults for pwm0 pins (PB0 to 7)

Bit1 = 1 restores the defaults for pwm1 pins (PB8 to 15)

Bit2 = 1 restores the defaults for pwm2 pins (PE0 to 7)

0 All PWM units

1 PWM0 unit

2 PWM0, 1 units

3 No PWM units used (111)

12

(R/W)

PUE Pull-Up Enable.

The PADS_PCFG0.PUE bit overrides the input enable and enables the pull-up on
the AFE pads.

11:9

(R/W)

TWI0VSEL Drive/tolerate for TWI0 Pins SCL & SDA.

The PADS_PCFG0.TWI0VSEL sets the voltage requirements for the TWI_SCL and
TWI_SDA pins on TWI0.

0 VDD_EXT = 3.3 V, VBUS_TWI = 3.3 V

1 Reserved

2 Reserved

CM41X_M0 PADS Register Descriptions

43–112 ADSP-CM41x Mixed-Signal Control Processor

Table 43-95: PADS_PCFG0 Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

3 Reserved

4 VDD_EXT = 3.3 V, VBUS_TWI = 5 V

5-7 Reserved

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–113

Multi Port Drive Strength Control Register

The PADS_PORT[n]_DS register increases the drive strength of PWM pins. See the product specific data sheet
for more information.

Port Drive Strength
GPIO_DS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-86: PADS_PORT[n]_DS Register Diagram

Table 43-96: PADS_PORT[n]_DS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

GPIO_DS Port Drive Strength.

CM41X_M0 PADS Register Descriptions

43–114 ADSP-CM41x Mixed-Signal Control Processor

Multi Port Pull-up/Pull-down Resistor Control Register

Port Resistor Enable Control
REN_CTL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-87: PADS_PORT[n]_RCTL Register Diagram

Table 43-97: PADS_PORT[n]_RCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

REN_CTL Port Resistor Enable Control.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–115

Multi Port Trip Select Register

Trip A/B Mux Select
SEL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-88: PADS_PORT[n]_TRIPSEL Register Diagram

Table 43-98: PADS_PORT[n]_TRIPSEL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

SEL Trip A/B Mux Select.

CM41X_M0 PADS Register Descriptions

43–116 ADSP-CM41x Mixed-Signal Control Processor

Multi Port Trip State Register

Port IO 3 Trip StatePort IO 4 Trip State

Port IO 2 Trip StatePort IO 5 Trip State

Port IO 1 Trip StatePort IO 6 Trip State

Port IO_0 Trip StatePort IO 7 Trip State

Port IO 11 Trip StatePort IO 12 Trip State

Port IO 10 Trip StatePort IO 13 Trip State

Port IO 9 Trip StatePort IO 14 Trip State

Port IO 8 Trip StatePort IO 15 Trip State

TS3 (R/W)TS4 (R/W)

TS2 (R/W)TS5 (R/W)

TS1 (R/W)TS6 (R/W)

TS0 (R/W)TS7 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

TS11 (R/W)TS12 (R/W)

TS10 (R/W)TS13 (R/W)

TS9 (R/W)TS14 (R/W)

TS8 (R/W)TS15 (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-89: PADS_PORT[n]_TRIPST Register Diagram

Table 43-99: PADS_PORT[n]_TRIPST Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:30

(R/W)

TS15 Port IO 15 Trip State.

29:28

(R/W)

TS14 Port IO 14 Trip State.

27:26

(R/W)

TS13 Port IO 13 Trip State.

25:24

(R/W)

TS12 Port IO 12 Trip State.

23:22

(R/W)

TS11 Port IO 11 Trip State.

21:20

(R/W)

TS10 Port IO 10 Trip State.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–117

Table 43-99: PADS_PORT[n]_TRIPST Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

19:18

(R/W)

TS9 Port IO 9 Trip State.

17:16

(R/W)

TS8 Port IO 8 Trip State.

15:14

(R/W)

TS7 Port IO 7 Trip State.

13:12

(R/W)

TS6 Port IO 6 Trip State.

11:10

(R/W)

TS5 Port IO 5 Trip State.

9:8

(R/W)

TS4 Port IO 4 Trip State.

7:6

(R/W)

TS3 Port IO 3 Trip State.

5:4

(R/W)

TS2 Port IO 2 Trip State.

3:2

(R/W)

TS1 Port IO 1 Trip State.

1:0

(R/W)

TS0 Port IO_0 Trip State.

CM41X_M0 PADS Register Descriptions

43–118 ADSP-CM41x Mixed-Signal Control Processor

Voltage Monitor Unit Control Register

Enable
3Volt Over/Under Voltage Compare

Comparator Reference Select

Enable
1 Volt Over/Under Voltage CompareComparator Over-voltage Disable

VMU Block EnableFault Delay Count in AUX_CLK ticks

EVDDCOMPEN (R/W)
REFPRG (R/W)

IVDDCOMPEN (R/W)OVDIS (R/W)

EN (R/W)FAULTDLY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-90: PADS_VMU_CTL Register Diagram

Table 43-100: PADS_VMU_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

11:8

(R/W)

FAULTDLY Fault Delay Count in AUX_CLK ticks.

6

(R/W)

OVDIS Comparator Over-voltage Disable.

5:4

(R/W)

REFPRG Comparator Reference Select.

2

(R/W)

EVDDCOMPEN 3Volt Over/Under Voltage Compare Enable.

1

(R/W)

IVDDCOMPEN 1 Volt Over/Under Voltage Compare Enable.

0

(R/W)

EN VMU Block Enable.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–119

Voltage Monitor Unit Trim Register

Voltage Monitor Unit Trim value
TRIM (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-91: PADS_VMU_TRIM Register Diagram

Table 43-101: PADS_VMU_TRIM Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

TRIM Voltage Monitor Unit Trim value.

CM41X_M0 PADS Register Descriptions

43–120 ADSP-CM41x Mixed-Signal Control Processor

Voltage Monitor Unit Trip Enable Register

Fault Trip Enable
Oscillator Compare Unit Asynchronous

Enable
System Oscillator Clock No Good Trip

Trip Enable
Oscillator Compare Unit Dead Clock

Trip Enable
System Oscillator Asynchronous Fault

OCU0FAULT (R/W)OSC0CLK (R/W)

OCU0CLK (R/W)OSC0FAULT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 43-92: PADS_VMU_TRIPEN Register Diagram

Table 43-102: PADS_VMU_TRIPEN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

4

(R/W)

OSC0FAULT System Oscillator Asynchronous Fault Trip Enable.

3

(R/W)

OSC0CLK System Oscillator Clock No Good Trip Enable.

2

(R/W)

OCU0FAULT Oscillator Compare Unit Asynchronous Fault Trip Enable.

1

(R/W)

OCU0CLK Oscillator Compare Unit Dead Clock Trip Enable.

CM41X_M0 PADS Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 43–121

44 Boot ROM and Booting the Processor

Bootstrapping or booting is the series of events that occur when the system applies power to the processor or when
the processor enters a hardware or system reset state. This section gives an in-depth description of these events and
how to integrate an application effectively.

The ADSP-CM41x processor implements a Logic ROM and a Boot ROM that executes from within the Cortex-
M4 Platform. On reset, the control execution begins at the Logic ROM, which performs vital security functions.
The logic ROM transfers control to the Boot ROM after performing an (optional) CRC of the ROM. The 8KB on
chip ROM supports two boot modes and performs some initial device configuration. Two boot modes are suppor-
ted- one executes previously loaded code from flash (note that the ARM Cortex-M0 application must be loaded by
the user program), the other enables a flash recovery mode, enabling communication via UART in order to repro-
gram flash.

Booting an ARM Cortex-M0 Application

The ARM Cortex-M0 core does not have an in-built ROM similar to M4 for initiating a boot sequence to load an
application. It is therefore the ARM Cortex-M4 application’s responsibility to boot the M0’s application.

On power-up, the ARM Cortex-M0 is in reset while code from the ARM Cortex-M4 flash memory is copied to the
ARM Cortex-M0 RAM by the ARM Cortex-M4.When directed by the ARM Cortex-M4, the ARM Cortex-M0
leaves reset and runs its code from local ARM Cortex-M0 system RAM, which has been placed and verified under
control of the ARM Cortex-M4.

A typical set of actions include the following:

• A utility to convert the ARM Cortex-M0 application image into a data file for inclusion into the ARM Cortex-
M4 project can be found in CrossCore Utilities from Analog Devices. This utility can be used to automatically
generate a hex file containing the complete dump and memory address of the application executable.

• The hex file should be included as part of ARM Cortex-M4’s application. It can either be stored in the ARM
Cortex-M4 SRAM or can be separately flashed so that ARM Cortex-M4 SRAM space is not used.

• Put the ARM Cortex-M0 under reset if needed, though after reset ARM Cortex-M0 is in the reset state. Load
the ARM Cortex-M0 application to its memory from the Hex Image, in the example mentioned as M0_code.
Release the ARM Cortex-M0 out of reset.

Boot ROM and Booting the Processor

ADSP-CM41x Mixed-Signal Control Processor 44–1

*pREG_RCU0_CRCTL = 0x00000002;
 adi_libldr_Move(M0_code);
 *pREG_RCU0_CRCTL = 0x00000000;

Boot Features
Key Features of the boot implementation include:

• Security facilities to protect sensitive IP located in the on-chip flash

• Secure programmer for provisioning new content to the on-chip flash via the UART

• CRC-32 protected Array Boot ROM

• Initialization of all on-chip ECC protected SRAM

• Support for early initialization of MMRs for time sensitive operations

• Support for early function execution for more complex time sensitive operations

• Optional CRC-32 verification of the first 4KB of on-chip flash

Boot Process Overview
The ADSP-CM41x Boot Process Flow Diagram figure shows the booting process with both BMODE options.

Boot Features

44–2 ADSP-CM41x Mixed-Signal Control Processor

BOOT ROM

Check for valid vector
table on flash

UART RECOVERY MODE

Pre-initialization
RINIT/RFUNC

Check Boot
Mode

BOOT ROM

CRC check on
application in flash
(optionally enabled
through RCMSG field
in info block

Execute from flash

Yes

Pass

Read Commands

Erase All
Erase User
Erase Block

Erase Info Block
Debug Key
Write Data

Write Info Block
Remote Run

System Reset

Pass

Raise fault through
Fault pin

BMODE=0 BMODE=1

Command
allowed in
security
state?

Process the command

Return with NACK

No

RESET

LOGIC ROM

Security related checks
Load Security Keys

LOGIC ROM

Pre-initialization
RINIT/RFUNC

Perform CRC
check on

BOOT ROM

Jump to BOOT ROM

BOOT ROM

Pre-boot Initialization

Memory Initialization

Fault pin is high

ROM updates LROM_STAT

Go to IDLE state

Fail

Pass

Figure 44-1: ADSP-CM41x Boot Process Flow Diagram

Logic ROM
The purpose of the logic ROM is to ensure that the first few instructions following a deassertion of reset can per-
form vital security functions, even in the presence of conditions that may disrupt the ROM memory.

• The logic ROM defines basic vector handlers for any non maskable interrupts such as NMI and hard fault.

Logic ROM

ADSP-CM41x Mixed-Signal Control Processor 44–3

• Prior to passing control to the boot ROM the logic ROM performs a CRC32 check on the boot ROM to
validate the integrity of the ROM. The CRC32 check of the boot ROM image can be disabled by setting the
TAPC_RCMSG.NOCRC bit in the info block of the flash.

• The logic ROM, in the event of a failure, branches to an error routine to signal a fault on the SYS_FAULT pin.
The error routine writes an error code to the LROM_STATUS register as a means of indicating the source of
the error.

• The logic ROM supports early-initialization features which allow either a list of MMRs to be loaded with user
defined values (for example to configure the logic block or to set GPIO states), or to call a small user function
(if more complex operations are required.) This allows very low latency initialization after reset (less than 100
µs). See Pre-initialization with Logic ROM for more information.

Boot Modes
Two boot modes are supported. One executes previously loaded code from flash, the other enables a flash recovery
mode, enabling communication via UART in order to reprogram flash.

Boot Modes Table

Table 44-1: Booting Modes

BMODE[0] Boot Source Description

0 Execute from Flash The processor executes some initial start-up checks from the Logic Boot ROM
and the Array Boot ROM. If successful, reads application entry from the vector
table located at the base of the flash memory then vectors to the entry location.

1 UART Flash Programmer Allows for programming of the on-chip programmable flash via the UART pe-
ripheral

Boot ROM Pre-boot Routine for Device Initialization
The following steps are performed when execution is passed to the Boot ROM.

1. The Boot ROM performs SRAM configuration. Code and data banks are set to the default configuration of 2
code banks and the remaining data banks.

2. The Boot ROM initializes the MBOX memory and also initializes all the SRAM memory. This feature may be
disabled by the user by setting a flag in the TAPC_RCMSG field in the info block of the flash.

3. The Boot code does not release SYS_RESOUT via the RCU. It is the responsibility of the user to release
SYS_RESOUT from within their application stored in flash.

4. The boot code does not perform any Memory Built in Test operations.

5. Interrupts are not supported during the boot process therefore any interrupt that may occur and is enabled will
result in the Boot ROM entering the error handler and a fault notification signaled via the SYS_FAULT pin.

Boot Modes

44–4 ADSP-CM41x Mixed-Signal Control Processor

6. Errors detected by Boot code during the booting process are captured in theSYSBLK_LROM_STAT register as
the boot error handler is passed an error code and writes to a field in the MMR.

7. Boot code performs all device calibration. This step can be bypassed by programming the TAPC_RCMSG field
in the info block of the flash.

8. The program can halt boot by setting TAPC_RCMSG.HALTONENTRY bit. This results in execution of a WFI
instruction.

9. On completing the boot process successfully, the Boot ROM indicates the same by setting the
TAPC_RCMSG.BOOT_DONE bit. (TAPC: JTAG TAP Controller)

10. The CGU operates in the bypass mode by default, and this is not altered by the boot ROM.

11. The boot code error handler raises a fault to indicate any errors occurring during boot. The errors are also indi-
cated through the SYS_FAULT pin.

12. The Boot ROM does not enable the SYS_FAULT pin to be a fault input. Hence the processor cannot be used
to detect incoming faults until enabled by user software.

13. The boot software applies the trim values to the Oscillator Watchdog. Also the boot ROM enables the Oscilla-
tor Watchdog fault.

14. Recovering from uncorrectable ECC errors in Security Keys

If an ECC error occurs when the code located in the Logic Boot ROM reads the initial key from the flash info
block and error handler is immediately entered and a fault raised. The UART recovery mode cannot be used to
recover from this type of event as a result as execution does not continue in the Boot ROM. The only means to
recover from an uncorrectable ECC error when reading the keys from flash is to perform a mass erase of the
flash via the debug port.

Pre-initialization with Logic ROM
The Logic ROM is tightly connected to the BOOT ROM and supports early-initialization features which allow ei-
ther a list of MMRs to be loaded (for example to configure the logic block array or to set GPIO states), or to call a
small user function (if more complex operations are required.) This allows very low latency to initialization after
reset.

Table 44-2: RINIT and RFUNC in Flash Info Blocks

Flash Block 0 Address Offset

Address Base 0xC 0x8 0x4 0x0

0x1180_0FD0 Reserved reserved RCMSG RCMSG_KEY

0x1180_0FC0 Reserved RFUNC_CSIZ RFUNC_PTR RFUNC_KEY

0x1180_0FB0 RINIT_CNT RINIT_CSIZ RINIT_PTR RINIT_KEY

The functions in the RINIT and RFUNC in Flash Info Blocks table are described below.

Pre-initialization with Logic ROM

ADSP-CM41x Mixed-Signal Control Processor 44–5

RCMSG_KEY. If this location is programmed to the value RCMSG_KEY_VAL, then run-control options are taken
from bits in the RCMSG location. The TAPC_RCMSG register is described in the JTAG debug and Serial Wire
Debug Port (SWJ-DP) Chapter. The RCMSG_KEY_VAL = 0x544D 5347

RCMSG. This word contains run-control option bits which include whether to immediately halt, to initialize mem-
ories and other hardware. The function of this word is identical to the TAPC_RCMSG register (the two locations are
OR'ed together).

RINIT_KEY. If this word is set to the value RINIT_KEY_VAL, then the early register-initialization operation is
selected. This feature is explained in following sections. The RINIT_KEY_VAL = 0x3744 CA0C.

RINIT_PTR. Points to an array of address-value pairs stored anywhere in flash memory (main arrays or info block
0). The pointer must be 32-bit aligned. Access violations resulting from bad pointer or count cause a HardFault
exception, which asserts SYS_FAULT and wait forever in IDLE.

typedef struct {
 uinit32_t *mmr_ptr;
 uinit32_t mmr_val;
 } rinit_pair;

RINIT_CNT. Specifies the length of the array of rinit_pairs pointed to by RINIT_PTR. Must be nonzero.

RINIT_CSZ. Specifies whether the rinit_pair array should be CRC-checked. If 0, CRC checking is not performed.
If nonzero, then the specified number of 32-bit words starting at RINIT_PTR is CRC checked.

RFUNC_KEY. If this word is set to the value RFUNC_KEY_VAL, then the early initialization-function operation is
selected. The RFUNC_KEY_VAL = 0x3049 470D.

RFUNC_PTR. Points to a function stored anywhere in flash memory (main arrays or info block 0). The function
pointer must be 32-bit aligned. The function must restrict stack usage to a 256 byte region which is initialized by
the logic ROM. The rest of main SRAM is not initialized, and access to it may cause ECC errors. Access violations
resulting from bad pointer or by exceptions from memory accesses within the function will cause a HardFault excep-
tion, which asserts the SYS_FAULT signal and wait forever in IDLE. The function must match the following pro-
totype:

void rfunc_function(void);
The pointer value must have the bit[0] =1, as the function is executed as a jump operation to that address to con-
form to the Thumb2 requirement from ARM on executing a branch instruction.

RFUNC_CSZ: Specifies whether the rfunc_function body should be CRC-checked. If 0, CRC checking is
not performed. If nonzero, then the specified number of 32-bit words starting at RFUNC_PTR is CRC checked.

Programming Example RINIT

As an example for the use case of RINIT feature, RINIT can be used to perform SRAM configuration as required by
the application. Note that by default Boot Rom does SRAM configuration, and hence it will override the configura-
tion done by RINIT. Hence one should also set the NOL2CONFIG bit in the RCMSG field in flash. (Please refer
to section Control Flags for Booting and the section TAPC_RCMSG for more details.)

Pre-initialization with Logic ROM

44–6 ADSP-CM41x Mixed-Signal Control Processor

unsigned int RCMSG_KEY_ADDR = 0x11800FD0;
unsigned int RCMSG_KEY_VAL = 0x544D5347;
unsigned int RCMSG_ADDR = 0x11800FD4;

unsigned int RINIT_KEY_ADDR = 0x11800FB0;
unsigned int RINIT_PTR_ADDR = 0x11800FB4;
unsigned int RINIT_CSIZ_ADDR = 0x11800FB8;
unsigned int RINIT_CNT_ADDR = 0x11800FBC;

unsigned int RINIT_KEY_VAL = 0x3744CA0C;
unsigned int RINIT_PTR_VAL = BUFFER_BASE;
unsigned int RINIT_CNT_VAL = REGISTER_COUNT;
unsigned int RINIT_CSIZ_VAL = NO_CRC_CHECK;

unsigned int* pRINIT_KEY_VAL = &RINIT_KEY_VAL;
unsigned int* pRINIT_PTR_VAL = &RINIT_PTR_VAL;
unsigned int* pRINIT_CNT_VAL = &RINIT_CNT_VAL;
unsigned int* pRINIT_CSIZ_VAL = &RINIT_CSIZ_VAL;

//define the srtucture of {MMR pointer, MMR value} to be placed in the specific
location in flash
#pragma location = ".flash_reserved"
 struct FLASH_RINIT_PAIR{
 volatile uint32_t * ptr;
 int value;
 } RINT_PAIR[REGISTER_COUNT] = {
 //{MMR pointer, MMR value }
 { pREG_M4P_SRAM_CFG, SRAM_CFG_MSK}
 };

//The following function writes the RNIT structure and Key values to the
respective flash locations.
Void Func()
{
//Write to info block RCMSG field and RCMSG key to set the NOL2CONFIG bit in
RCMSG.
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RCMSG_KEY_ADDR,1, RCMSG_KEY_VAL);
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RCMSG_ADDR,1, RCMSG_VALUE_MASK);

//Write to the info block0 fields {RINIT_KEY, RINIT_PTR, RINIT_CSIZ, RINIT_CNT}
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RINIT_KEY_ADDR,1, pRINIT_KEY_VAL);
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RINIT_PTR_ADDR,1, pRINIT_PTR_VAL);
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RINIT_CSIZ_ADDR,1, pRINIT_CSIZ_VAL);
CM41xFlash_WriteBuffer(FLASH_CONTROLLER_A, RINIT_CNT_ADDR, 1,pRINIT_CNT_VAL);
}

NOTES:

Pre-initialization with Logic ROM

ADSP-CM41x Mixed-Signal Control Processor 44–7

1. CM41xFlash_WriteBuffer() is only a sample API to write to flash location. For the actual API, please
refer to the BSP (Board Support Package) for the processor.

2. SRAM_CFG_MSK is the value required to be programmed into the M4P_SRAM_CFG register.

3. RCMSG_VALUE_MASK is the value required to be programmed into the RCMSG field in flash.

Restrictions on RINIT and RFUNC early runtime Initialization

The RINIT MMR-list operations and the user-defined RFUNC function operate in a severely restricted environ-
ment, as almost no system initialization takes place when they are processed.

• The LDO and OSCWDOG have not yet been trimmed to factory tolerances. This is performed later by the
boot ROM.

• The power state of the CGU and DPU must not be changed

• The state of the Reset Control Unit (RCU) must not be changed

• The Oscillator Watchdog may not be configured or enabled

• No interrupts may be enabled in the NVIC

• The ARM Cortex-M0 supervisor may not be brought out of reset

• No system memory (main SRAM) may be accessed in a manner which might cause ECC errors. Full-width
aligned 32-bit writes may be performed, and reads from locations may be performed if they have been previ-
ously initialized. Note that for convenience, 256 bytes of stack are initialized for the use of local variables and
temporaries in RFUNC functions.

Flash Execution Mode
The Flash Execution Mode allows for application execution from the on-chip flash. Before executing from the on-
chip flash the boot process performs a validation value check and optionally perform a CRC-32 of the first 4KB of
the on-chip flash.

In order to support execution for the on-chip flash, the core compatible vector table must be located at
0x11000000. The second entry of the vector table specifies the reset vector address for the application. Prior to
branching to the applications reset vector address, a basic value check is performed to help ensure that the on-chip
flash is provisioned with a valid vector table and user application. There is also an additional CRC-32 operation that
can be enabled for increased protection. If no valid code is found, or the CRC-32 fails when enabled, the error han-
dler is entered.

Value Check

The basic value check is always performed. The requirement is that the eighth 32-bit entry in the vector table must
be programmed with the value 0xAD12 21AD. If the boot process reads the value as required, the reset vector ad-
dress is then read from the second entry in the vector table and then a branch to that address takes place.

Flash Execution Mode

44–8 ADSP-CM41x Mixed-Signal Control Processor

Error On no Valid Vector Table

If there is no valid vector table in flash, an error occurs that generates the BCODE_ERR fault. This fault also occurs
if the flash is blank or uninitialized. (Flash states are described in the Security chapter).

Optional CRC-32

An optional CRC check is performed on the first 4096 bytes of Flash memory. This feature is enabled by setting
TAPC_RCMSG.ACRC. The calculated CRC value must match the expected compare value. The application image
must be patched to ensure the expected value is calculated.

The CRC-32 feature requires the use of the stack and as such memory initialization should not be disabled during
the preboot phase. The expected CRC-32 result is always the same value, thus a 32-bit patch value must be placed
within the first 4096 bytes of memory such that the CRC-32 result of the 4096 byte block of data equals the expec-
ted value as described below.

The CRC peripheral is configured to implement bit reversing and byte mirroring when calculating the CRC and as
such this needs to be taken into account when calculating the CRC-32 patch value.

CRC-32 Polynomial loaded to CRC peripheral 0xBA0DC66B

CRC-32 Polynomial as used by host software (bit reversed byte
mirror)

0xD663B05D

CRC-32 Seed 0x00000000

CRC-32 Expected Result 0xCBECE537

IAR Electronic Workbench includes a utility for generating and patching a CRC-32 checksum into an application
image. The following command line will embed the required 32-bit patch value at location 0x1100 0FFC such that
it is compliant with the CRC functionality as implemented during the boot process.

ielftool.exe application.out application_patched.out
--fill 0x00;0x11000000-0x11000FFF
--checksum 0x11000FFC:4,crc=0xD663B05D:1mi,0x00000000;0x11000000-0x11000FFB

UART Recovery Mode
The UART Recovery Mode allows for the on-chip flash to be programmed from data sent over the UART peripher-
al from a host.

The data received is required to be in a specific format that allows data to be consumed via the UART peripheral
and processed by the flash programmer. In addition to supporting programming of the on-chip flash, the implemen-
tation also accommodates programming of content to the on-chip SRAM. This boot mode is intended to assist with
point to point firmware updates between the host and the platform without the need for connecting JTAG/SWD
debug tools.

NOTE: In order to preserve the security aspects of the processor the UART Recovery Mode is limited in some of
the functionality it can perform. In particular it does not support any operations that allow for the

UART Recovery Mode

ADSP-CM41x Mixed-Signal Control Processor 44–9

contents of the on-chip flash to be read out via the UART and a limited command set is initially suppor-
ted until the required secure key is received. There is no encryption supported on the key transfer via the
UART and thus precautions are required to ensure the security of the connection between the host and the
processor.

The UART requires an initial autobaud detection character to be sent from the host in order to establish connection
with the processor. The host may then continue to issue the supported command sequences to the device to perform
a number of erase and programming operations to load firmware onto the processor for execution. The command
set supported is determined by the security state of the product.

The recovery mode is capable of loading application code and data to both the erasable and programmable flash
memory and /or to internal SRAM. This can be leveraged to implement a secondary bootloader executed from
SRAM that can program the flash with data accessed via another peripheral other than the UART or via a user de-
fined protocol from an alternative boot source.

The UART packet transfers are all protected with CRC-32 checksums.

Hardware Configuration

Describes the UART peripheral configuration for communication.

The UART3 peripheral mode of operations is configured as follows once the initial auto-baud detection process has
completed.

• CTS/RTS handshaking disabled

• Active low CTS/RTS

• Parity disabled

• Single stop bit

• 8-bit word length

Autobaud Detection

Autobaud detection establishes initial communication and synchronizes the host with the processor for communica-
tion via the UART. In order for the UART peripheral to synchronize to the host baud rate. The host is required to
initially send a 0x40 byte ("@") over the serial communication channel.

ID Packet

In response to the autobaud character being received, a 25-byte ID packet is sent back to the host. This ID packet is
of the following form:

• 10-byte product ID code 'ADSP-CM41x'

• 2-byte line feed and carriage return

• 4-byte firmware version number 'V100'

UART Recovery Mode

44–10 ADSP-CM41x Mixed-Signal Control Processor

• 2-byte line feed and carriage return

• 6-bytes reserved for future use

• 1-byte XOR checksum of the previous 24-bytes

Data Transport Packet Format

The data transport packet describes the command, address, associated payload and the CRC-32 checksum format
required for a host to communicate with the UART recovery mode.

The data transport packet consists of the following fields:

• 2-byte Start ID field

• 2-byte Number of Bytes field

• 1 to 4101-byte Data Bytes field that can support a single byte command, 4 byte address field (optional depend-
ing on the command) and up to 4096 data bytes.

• 4-byte CRC32 field

ATTENTION: In order to meet alignment requirements of the flash programmer which supports ECC protec-
tion, data targeted for the flash should be supplied in a multiple of 8 bytes and issued on an 8-
byte aligned address. Data targeted towards SRAM has no byte or address alignment require-
ments.

Start ID Field

The start ID consist of two bytes that indicate the start of a valid data packet. These bytes are constant and must be
supplied at the beginning of every packet transfer. The start ID field is received in little endian form, with Start ID
byte 0 issued first followed by Start ID byte 1.

• Start ID byte 0 = 0x07

• Start ID byte 1 = 0x15

Number of Bytes Field

This is a two byte field specifying the number of bytes in the data packet that follows. The bytes are received in little
endian form with the lower byte sent first followed by the upper byte.

The protocol can support packet payloads up to 4101 bytes in size. This is to help optimize the performance of the
programmer by allowing for a full 4096 byte flash page to be programmed in a single operation. The 4101 byte
payload allows for the addition of a single byte command and a 4-byte address to be issued along with the data to be
programmed.

NOTE: The 4-byte CRC-32 result that is appended to the end of the Data Bytes field does not contribute the
number of bytes set in this field. Thus if a data block consists of a single byte command, 4 address bytes,
1024 data bytes and the 4-byte CRC-32 result. The number of bytes field would be set to 1029 bytes.

UART Recovery Mode

ADSP-CM41x Mixed-Signal Control Processor 44–11

Data Bytes Field

The protocol supports data byte payloads of 1 up to 4101 bytes. 4101 bytes allows for a single byte command, a 4
byte address and up to 4096 data bytes. The entire data field is protected by a CRC-32 checksum.

The minimum data byte size supported is a single byte. The first byte of the data field is the command to be pro-
cessed. The bytes that follow the command are determined by the command itself. All data bytes are received in
little endian form starting with the single byte command. Refer to Commands.

CRC-32 Checksum Field

The 4-byte CRC-32 checksum field contains the CRC-32 result of the data bytes field.

When the CRC engine and MDMA channel receive the data bytes field they are configured to generate and com-
pare the CRC of the received data. If the CRC passes then the packet data is processed. Otherwise a NACK response
is sent back to the host.

Upon receipt of a data bytes field the CRC engine and MDMA channel are configured to generate and compare the
CRC of the received data. If the CRC passes then the packet data is processed otherwise a NACK response is sent
back to the host.

The CRC peripheral is configured to implement bit reversing and byte mirroring when calculating the CRC and as
such this needs to be taken into account when calculating the CRC-32 checksum on the host.

CRC-32 Polynomial loaded to CRC peripheral 0xBA0DC66B

CRC-32 Polynomial as used by host software (bit reversed byte
mirror)

0xD663B05D

CRC-32 Seed 0x00000000

UART Response Types

The processor supports three response types that consist of a single byte to signal to the host whether the last opera-
tion requested was successful:

• 0x06 response for successful acknowledgment of a command (ACK)

• 0x07 response to indicate the command was not processed (NACK)

• 0x08 response to indicate that the command was not processed due to a security restriction (Secure NACK)

If a command is attempted without sufficient security privileges, a Secure NACK response is returned.

The responses are sent back only after the complete operation has either passed or failed and not as soon as the
processor receives the full data transport packet.

NOTE: The erase and mass erase times of the flash device are specified as 130 ms maximum. It is recommended
that any host utility use this as a basis as a minimum timeout for a response to any given data transport
packet

UART Recovery Mode

44–12 ADSP-CM41x Mixed-Signal Control Processor

All commands from the full command set when privileges are granted return either an ACK or a NACK response.

Commands

The protocol support a number of different commands to instruct the boot software to perform different operations.
The command is issued in the data field of the data transport packet. Each command has its own requirements on
the data that must follow the command.

Command Set

Table 44-3: Commands

Command Command Code Description

Erase All 0x41 ("A") Erases the entire flash device

Erase User 0x55 ("U") Erases the complete user area of the flash device while preserving the flash info
block

Erase Block 0x45 ("E") Erases the addressed flash block

Erase Info Block 0x49 ("I") Erases the addressed flash info block

Debug Key 0x44 ("D") Sends the debug key to allow for flash and SRAM programming when the device
is in a secured state

Write 0x57 ("W") Writes data to the flash user array or SRAM

Write Info Block 0x50 ("P") Writes data to the address flash info block

Remote Run 0x52 ("R") Executes a loaded application from flash or SRAM while keeping the device in the
existing boot mode.

System Reset 0x71 Executes a system reset via the RCU

Erase All

Erases the entire flash memory user array and flash info blocks.

The data block of this command consists of the single 0x41 command byte command followed by a 32-bit confir-
mation key that is received in little endian format.

The Erase All command results in a complete flash device erase operation being performed if the confirmation key
following the command is 0xAD47 3128.

The CRC-32 result for the 5 byte data block follows the confirmation key.

The following is an example data sequence issue by the host for the complete data transport packet:
0x07, 0x15, 0x05, 0x00, 0x41, 0x28, 0x31, 0x47, 0xAD, 0x1D, 0x33, 0x6F, 0x1B

Erase User Area

Erases the entire user area space of the flash memory. The info block is preserved and secure debug access remains
intact with the provisioned keys.

This is a single byte command with no further associated payload followed by the CRC-32 checksum.

UART Recovery Mode

ADSP-CM41x Mixed-Signal Control Processor 44–13

The entire user flash is erased by issuing a mass erase operation to the flash controller. The FLC_ADDR.IRFSEL
and FLC_CTL.IRFWEN bits are cleared to preserve the contents of the flash information blocks.

Erase Block

Erases the addressed block of the user area of flash. The info block cannot be erased using this command. Secure
debug access is preserved using the provisioned keys.

This is a 5 data byte command sequence consisting of the 0x45 command byte followed by 4 address bytes indicat-
ing the address of the block to erase. The 5 bytes are required to be followed by the CRC-32 checksum.

This command results in a block erase operation being issued to the flash controller.

Erase Info Block

Erases the addressed info block of the flash memory.

This is a single byte command followed by a 32-bit address that must address the info block to be erased. The ad-
dress is then followed by the CRC-32 result of the previous 5 bytes.

The info block is erased by issuing a block erase operation to the flash controller. This erase command preserves the
contents of all blocks in the main user area of the flash.

Debug Key

Issues the debug key to open up the full command set when security is enabled.

This is a single byte command followed by the 16 bytes containing the 128-bit security key. The key must be trans-
mitted least significant byte first. The key received is then compared to the key in the flash info block. A match
results in the full command set then being enabled for subsequent command sequences.

The CRC-32 result for the 17-byte data byte payload is required to follow the last byte of the security key.

Write

Writes the required data to the flash array or SRAM.

This is a single byte command followed by a 32-bit address and the data to be written at the supplied address. The
CRC-32 result is required to follow the last byte of data to be programmed.

ATTENTION: In order to meet alignment requirements of the flash programmer which supports ECC protection,
data targeted for the flash should be supplied in a multiple of 8 bytes and issued on an 8-byte aligned
address. Data targeted towards SRAM has no byte or address alignment requirements.

Write Info

Programs data to the addressed info block.

This is a single byte command followed by a 32-bit address specifying the address in the info block that the program
operation is targeted for. The data to be programmed follows the address.

Commands

44–14 ADSP-CM41x Mixed-Signal Control Processor

When processing this command, there are no restrictions to what area of the info block can be programmed or size
limitations as long as the size does not exceed the limits of the info block itself.

This command comes with unique security restrictions for two locations in the info block.

When the device is locked the command is not processed.

If the flash performed a mass erase operation, the contrast and user key are in a blank erase state. In this state the
boot software detects that the flash is uninitialized and only allows the programming of the 128-bit contrast key to
the two info blocks, attempting to program any other data to any other region is rejected. The contrast key is re-
quired to be written to both flash controller info blocks in order to be provisioned correctly.

Once the contrast keys are programmed and a system reset is performed the security state of the device changes from
uninitialized to blank. This state indicates that the contrast key is valid but the user key is blank. Writes to any
location in the info block are supported in this state allowing for provisioning of the user key.

The CRC-32 result must always follow the last byte of the data block to be programmed.

Remote Run

Instructs the boot code to vector to the user supplied address to start executing code from that location

This is a single byte command followed by a 32-bit address and the CRC-32 result. The address instructs the boot
kernel where to vector to. This command can be used to execute a second stage loader from SRAM for example.

The processor branches directly to the address provided so the host must ensure that the address supplied is compli-
ant with the core architecture in regards to instruction execution mode.

System Reset

Instructs the boot code to perform a system reset

This is a single byte command with no further payload expected followed by the CRC-32 result. Upon receiving this
command the boot software executes a system reset event by setting the RCU_CTL.SYSRST bit.

The response from the processor back to the host is issued before the system reset event is generated and a time delay
implemented between the issuing of the response and the system reset event to ensure the response is transmitted
and can be received by the host before the reset event occurs. This gives the host indication that the reset request was
received correctly.

After a system reset occurs, unless the SYS_BMODE0 pin changes state, then the UART Recovery mode is re-en-
tered. This requires the host to perform the autobaud sequence in order to re-establish communication with the
processor.

The purpose of this command is primarily for use when provisioning items such as the contrast keys where a reset is
required in order for the new security state to become active.

Security

In particular security states, commands are blocked, this section describes the security states and allowed commands
in each of those security states.

Commands

ADSP-CM41x Mixed-Signal Control Processor 44–15

In order to preserve the security of the device, certain commands are only allowed in certain security states. The
security states supported by the boot implementation are categorized as follows:

1. Uninitialized — contrast and key fields are empty.

2. Blank — contrast field is valid, key fields are empty.

3. Locked — contrast and key fields are valid and no user key has been supplied via the Debug Key command.

4. Opened — contrast and user key fields are valid and a key has been provided over the UART via the Debug
Key command matching the key in flash

NOTE: The locked and opened states listed above are not actual physical firewall states. It is how the boot rom
perceives the state to then allow for the restricted or full command set to be executed. The key that is
supplied with the Debug Key command only enables the processing of the full command set of the boot
mode. The key cannot be used to enable debug access for debug tools which are authenticated separately.

The following table describes which commands are available in the various states, X indicates the command is al-
lowed.

NOTE: The Write Info Block command supports unique functionality for provisioning of contrast and user keys.
The address supplied with the command dictates the type of operation to be performed. Refer to the docu-
mentation for the Write Info command for full details.

Command Uninitialized Blank Locked Open

Write Info Block (Con-
trast Key address)

X X X

Write Info Block (User
Key address)

X X

Write Info Block X X
Write X X
System Reset X X X X
Debug Key X X
Erase Block X X
Erase Info Block X X
Erase All X X X X
Remote Run X X

Error Codes

The boot process is capable of detecting a number of error conditions. Some error conditions may be detected dur-
ing execution of the boot software.

When an error is detected during execution of the boot software in the Array Boot ROM, an error code is written to
the SYSBLK_LROM_STAT.FLT_BROM bits. The error descriptions for this field are presented below.

UART Recovery Mode

44–16 ADSP-CM41x Mixed-Signal Control Processor

NOTE: The error code field is only applicable in the event of a boot error occurring. The default reset state of this
field is indicative of an error and is thus not applicable for successful boot operations.

Error Value Description

ROM_BOOT_FAILURE 0 General Error

RESERVED 1 Reserved

ROM_BOOT_IMG_VER_FAILURE 2 The Application Image was not able to be
verified, ensure the special code is inserted
into the vector table.

ROM_BOOT_DMA_FAILURE 3 DMA Failed

ROM_BOOT_CRC_FAILURE 4 CRC-32 on the application failed. Ensure
the image complies with the CRC-32 re-
quirements.

ROM_BOOT_MEMINIT_FAILURE 5 Memory initialization failed

ROM_BOOT_MBOXINIT_FAILURE 6 MBOX memory initialization failed

ROM_BOOT_FLASH_FAILURE 7 Flash operation failed

ROM_BOOT_FLASH_INVALID_
ADDRESS

8 An attempt to access an invalid flash address
was made

ROM_BOOT_FLASH_FAILED_WRITE 9 Failed to write to the flash memory.

ROM_BOOT_DMA_ACTIVE 10 DMA was active when attempting to per-
form a new DMA operation

ROM_BOOT_MDMA_ID_ERR 11 Invalid MDMA channel ID

ROM_BOOT_MDMA_OPERATION_ERR 12 MDMA Operation error

ROM_BOOT_MDMA_SRC_ERR 13 MDMA Source channel error

ROM_BOOT_MDMA_DST_ERR 14 MDMA Destination channel error

ROM_BOOT_CRC_CONFIG_ERR 15 CRC Peripheral Configuration error

Callable Kernel API

This section describes the kernel APIavailable at run-time.

The boot code stored in ROM exposes several functions that can be used during run-time or within Initcode or
callback routines. All functions meet the C run-time calling conventions. Addresses provided for the documented
API routines have the least significant bit set to meet the Thumb execution mode calling requirements.

adi_rom_getID()

This API can be used to read the manufacture ID of the chip. Note that this ID is fixed and does not vary processor
family products.

Callable Kernel API

ADSP-CM41x Mixed-Signal Control Processor 44–17

Name adi_rom_getID

PP Define FUNC_ROM_PREBOOT_GETID

ROM Address 0x000100A9

Prototype uint32_t adi_rom_getID (void)

Argument none

Return Value uint32_t Manufacture Id of the chip (i.e 0x65).

adi_rom_Crc32Poly()

Initializes the CRC Look-up table using the supplied CRC polynomial. The routine loads the supplied CRC poly-
nomial to the CRC peripheral and starts a LUT generation operation. The CRC peripheral is configured for Memo-
ry Scan Compute and Compare mode during the process.

Name adi_rom_Crc32Poly() -

PP Define FUNC_ROM_CRCLUT -

ROM Address 0x00010081 -

Prototype -

Argument CrcPoly CRC32 Polynomial

Argument pDma

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successful.

#ADI_ROM_BOOT_CRC_SUPPORTED_ERR If CRC is not sup-
ported by the MDMA Stream.

adi_rom_MemCompare()

This API Compares a specified region of memory against a provide 32-bit reference value. The CRC engine is
placed in Data Verify Memory Scan mode. The destination buffer is not used. In Non-Blocking mode, the applica-
tion must check the Compare Error bit of CRC to determine whether the CRC Compare Error has occured or not.

Name adi_rom_MemCompare -

PP Define FUNC_ROM_MEMCOMPARE -

ROM Address 0x00010091 -

Prototype ADI_ROM_BOOT_RESULT

adi_rom_MemCompare
(ADI_ROM_DMA_MDMA_CO
NFIG * pDmaCfg,
ADI_ROM_BOOT_MDMA_RE
GS const *const pDma)

-

Argument pDmaCfg Pointer to the user configurable structure for controlling the MDMA
operation.

Callable Kernel API

44–18 ADSP-CM41x Mixed-Signal Control Processor

Argument pDma Pointer to the MDMA Channel Registers.

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successful.

#ADI_ROM_BOOT_CRC_SUPPORTED_ERR If CRC is not sup-
ported by the MDMA Stream.

#ADI_ROM_BOOT_DMA_FAILURE If the DMA configuration error
(if done detect method is ADI_ROM_DMA_DONE_NON_BLOCK-
ING).

#ADI_ROM_BOOT_CRC_FAILURE If the CRC compare error is
raised (if done detect method is
ADI_ROM_DMA_DONE_POLL_IRQDONE). In Non-Blocking
mode the application has to check the CRC_STAT_CMPERR bit to de-
termine whether CRC compare error is raised or not.

adi_rom_MemCopy()

Name adi_rom_MemCopy -

PP Define FUNC_ROM_MEMCOPY -

ROM Address 0x00010071 -

Prototype ADI_ROM_BOOT_RESULT

adi_rom_MemCopy
(ADI_ROM_DMA_MDMA_CO
NFIG * pDmaCfg,
ADI_ROM_BOOT_MDMA_RE
GS const *const pDma)

-

Argument PDmaCfg Pointer to the user configurable structure for controlling the MDMA
operation.

Argument pDma Pointer to the MDMA Channel Registers.

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successfull.

#ADI_ROM_BOOT_DMA_FAILURE If the DMA configuration error
(if done detect method is ADI_ROM_DMA_DONE_NON_BLOCK-
ING).

ADI_ROM_BOOT_MDMA_SRC_ERR If the source MDMA config-
uration error (if done detect method is
ADI_ROM_DMA_DONE_POLL_IRQDONE).

ADI_ROM_BOOT_MDMA_SRC_ERR If the destination MDMA
configuration error.

adi_rom_MemCrc()

This API can be used to compute the CRC of the given source buffer(Note that the destination buffer is not used)
and also compare the result with the given value. This API configures the CRC engine in Memory Scan Compute/
Compare mode. The computed value is compared with the value passed in CrcCompare field of the MDMA config-
uration structure.

Callable Kernel API

ADSP-CM41x Mixed-Signal Control Processor 44–19

Name adi_rom_MemCrc -

PP Define FUNC_ROM_MEMCRC -

ROM Address 0x00010079 -

Prototype ADI_ROM_BOOT_RESULT

adi_rom_MemCrc
(ADI_ROM_DMA_MDMA_CO
NFIG * pDmaCfg,
ADI_ROM_BOOT_MDMA_RE
GS const *const pDma)

-

Argument pDmaCfg Pointer to the user configurable structure for controlling the MDMA
operation.

Argument pDma Pointer to the MDMA Channel Registers.

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successful.

#ADI_ROM_BOOT_CRC_SUPPORTED_ERR If CRC is not sup-
ported by the MDMA Stream.

#ADI_ROM_BOOT_DMA_FAILURE If the DMA configuration error
(if done detect method is ADI_ROM_DMA_DONE_NON_BLOCK-
ING).

#ADI_ROM_BOOT_CRC_FAILURE If the CRC compare error is
raised (if done detect method is
ADI_ROM_DMA_DONE_POLL_IRQDONE). In Non-Blocking
mode the application has to check the CRC_STAT_CMPERR bit to de-
termine whether CRC compare error is raised or not.

adi_rom_MemFill()

This API can be used to fill a specified region of memory with a 32-bit value provided. The buffer to be filled is
passed as the destination buffer. The source buffer is not used in this API.

Name adi_rom_MemFill -

PP Define FUNC_ROM_MEMFILL -

ROM Address 0x00010089 -

Prototype ADI_ROM_BOOT_RESULT

adi_rom_MemFill
(ADI_ROM_DMA_MDMA_CO
NFIG * pDmaCfg,
ADI_ROM_BOOT_MDMA_RE
GS const *const pDma)

-

Argument pDmaCfg Pointer to the user configurable structure for controlling the MDMA
operation.

Argument pDma Pointer to the MDMA Channel Registers.

Callable Kernel API

44–20 ADSP-CM41x Mixed-Signal Control Processor

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successfull.

#ADI_ROM_BOOT_CRC_SUPPORTED_ERR If CRC is not sup-
ported by the MDMA Stream.

#ADI_ROM_BOOT_DMA_FAILURE If the DMA configuration error

adi_rom_memoryDma()

This API can be used to perform various Memory DMA/CRC operations specified by the Operation field of the
MDMA configuration structure.

Name adi_rom_MemDma -

PP Define FUNC_ROM_MEMDMA -

ROM Address 0x00010069 -

Prototype ADI_ROM_BOOT_RESULT

adi_rom_memoryDma
(ADI_ROM_DMA_MDMA_CO
NFIG * pDmaCfg

-

Argument pDmaCfg Pointer to the user configurable structure for controlling the MDMA
operation.

Return Value ADI_ROM_BOOT_RESULT #ADI_ROM_BOOT_SUCCESS If the operation is successful.

#ADI_ROM_BOOT_CRC_SUPPORTED_ERR If CRC is not sup-
ported by the MDMA Stream.

#ADI_ROM_BOOT_DMA_FAILURE If the DMA configuration er-
ror(if done detect method is
ADI_ROM_DMA_DONE_NON_BLOCKING).

#ADI_ROM_BOOT_CRC_FAILURE If the CRC compare error is
raised(if done detect method is
ADI_ROM_DMA_DONE_POLL_IRQDONE). In Non-Blocking
mode the application has to check the CRC_STAT_CMPERR bit to de-
termine whether CRC compare error is raised or not.

ADI_ROM_BOOT_MDMA_ID_ERR If the memory DMA Id is inva-
lid.

ADI_ROM_BOOT_MDMA_OPERATION_ERR If the Memory
DMA operation is invalid

Data Structures

ADI_ROM_DMA_MDMA_OPERATION

Enumeration of different MDMA operations used by Boot ROM API's.

Callable Kernel API

ADSP-CM41x Mixed-Signal Control Processor 44–21

ADI_ROM_DMA_MEM_COPY Standard MDMA transfer from a source to a destina-
tion

ADI_ROM_DMA_MEM_CRC Performs a CRC32 MDMA read operation and com-
pares the result with an expected result

ADI_ROM_DMA_MEM_FILL Uses the CRC peripheral to perform a fill operation
with a 32-bit value

ADI_ROM_DMA_MEM_COM-
PARE

Uses the CRC peripheral to compare data with a con-
stant 32-bit value

ADI_ROM_DMA_MDMA_ID

Enumeration of different MDMA channel ID's used by Boot ROM API's.

ADI_ROM_DMA_MDMA0 Memory DMA Stream 0

ADI_ROM_DMA_MEM-
DMA_END_COUNT

Number of Memory DMA Streams

ADI_ROM_BOOT_DMA_INSTANCE

Specifies the base MMR address of the DMA channel as well as trigger and interrupt IDs

 typedef struct
 {
 volatile ADI_DMA_TypeDef *const pReg;
 DMA_CHANn_TypeDef eDmaChannelId;
 uint8_t TriggerId;
 uint8_t InterruptId;
 } ADI_ROM_BOOT_DMA_INSTANCE;

ADI_ROM_BOOT_MDMA_CRC_SUPPORT

Enumeration of whether CRC is supported by MDMA or not.

ADI_ROM_BOOT_DMA_CRC_SUPPORTED DMA CRC supported

ADI_ROM_BOOT_DMA_CRC_NOT_SUPPOR-
TED

DMA CRC not supported

ADI_ROM_DMA_DONE_DETECT_METHOD

Enumeration of different DMA detection methods used by Boot ROM API's.

ADI_ROM_DMA_DONE_NON_BLOCKING Return without waiting for the DMA to complete

ADI_ROM_DMA_DONE_POLL_IRQDONE Poll on the IRQDONE bit in the DMA Status regis-
ter

Data Structures

44–22 ADSP-CM41x Mixed-Signal Control Processor

ADI_ROM_DMA_MDMA_CONFIG

The user configurable structure for controlling the MDMA operation

 typedef struct
 {
 ADI_ROM_DMA_MDMA_OPERATION eOperation;
 ADI_ROM_DMA_MDMA_ID eId;
 const void * pSource;
 void * pDestination;
 uint32_t ByteCount;
 ADI_ROM_DMA_DONE_DETECT_METHOD eDoneDetect;
 uint32_t CrcCtl;
 uint32_t FillVal;
 uint32_t CrcPoly;
 uint32_t CrcCompare;
 } ADI_ROM_DMA_MDMA_CONFIG;

ADI_ROM_BOOT_MDMA_REGS

Contains the Source and Destination MDMA channel instances for access to the MMRs and interrupt and trigger
information. Information is also provided on the CRC support of the MDMA channel and access is provided to the
corresponding CRC peripheral.

typedef struct
 {
 ADI_ROM_BOOT_DMA_INSTANCE Src;
 ADI_ROM_BOOT_DMA_INSTANCE Dst;
 volatile ADI_CRC_TypeDef *const pCrc;
 ADI_ROM_BOOT_MDMA_CRC_SUPPORT eCrcSupport;
 } ADI_ROM_BOOT_MDMA_REGS;

Control Flags for Booting
A number of flags are provided through the TAPC_RCMSG register at location 0x11800FD4 in the on-chip flash
can be used to provide the flags by the user to control the boot process.

The 32-bit location prior to this value at location 0x11800FD0 must contain the key 0x544D5347. Only if this key
is valid will the RCMSG at location 0x11800FD4 be valid for the boot ROM. The boot ROM OR’s the value of
the RCMSG at 0x11800FD4 in the flash and the TAPC_RCMSG register to be used as the flags to control the boot
process. This allows users to enable selective processing of various preboot features depending on application re-
quirements while also allowing debug tools when connected to manipulate the preboot process.

The bit fields of the TAPC_RCMSG register are explained in the CM41X_M4 TAPC Register Descriptions section.

Control Flags for Booting

ADSP-CM41x Mixed-Signal Control Processor 44–23

45 System Watchpoint Unit (SWU)

The system watchpoint unit (SWU) is a single module used for transaction monitoring. The SWU is attached to
each system slave through the system crossbar interface and provides ports for all address channel signals for the
system crossbar. The SWU does not have ports for the read/write data channel signals or the low-power interface
signals.

Each SWU contains four match groups of registers with associated hardware. These four SWU match groups oper-
ate independently, but share common event (interrupt and trigger) outputs. Each match group can monitor either
the write or read address channel and can operate in either watchpoint mode or bandwidth mode.

SWU Features
The system watchpoint unit has the following features.

• Four independent match groups for each SWU

• Each match group can operate in either bandwidth mode or watchpoint mode

SWU Functional Description
This section describes the function of the SWU match block, interface block, and MMR block.

The ADSP-CM41x bus interconnect fabric provides the following functional safety features for the MMR access
watchdogs, provided by the SWUs or the Cortex internal DWT unit.

Table 45-1: Bus Fabric Access Watchdogs (SWUs)

To (Slave) From M4 From M0 From MDMA From Ctrlr DMAs From Spvsr DMAs

M4 ROMs DWT N/A N/A N/A N/A

M4 SRAM DWT SWU6 SWU6 SWU6 SWU6

M4 Flash DWT SWU6 SWU6 SWU6 SWU6

M4 local peripherals (MATH,
FLC, M4P)

DWT N/A N/A N/A N/A

SPU1 controls SWU2 SWU0 SWU5 N/A N/A

System Watchpoint Unit (SWU)

ADSP-CM41x Mixed-Signal Control Processor 45–1

Table 45-1: Bus Fabric Access Watchdogs (SWUs) (Continued)

To (Slave) From M4 From M0 From MDMA From Ctrlr DMAs From Spvsr DMAs

Ctrlr System MMRs SWU2 SWU0 SWU5 N/A N/A

FFTB memory SWU3 SWU3 SWU3 SWU3 SWU3

SMC external memory SWU4 SWU4 SWU4 SWU4 SWU4

MBOX Port1 and MMRs SWU2 SWU0 SWU5 N/A N/A

M0 SRAM SWU1 N/A SWU1 SWU1 SWU1

SPU0 controls SWU2 SWU0 SWU5 N/A N/A

Spvsr System MMRs SWU2 SWU0 SWU5 N/A N/A

MBOX Port 0 and MMRs N/A SWU0 N/A N/A N/A

CM41X_M4 SWU Register List

The System Watchpoint Unit (SWU) provides debug and development support through flexible transaction level
and bandwidth monitoring and associated event triggering. The SWU can generate events based on monitoring
transactions at the system slaves through watchpoint-match groups. The SWU also provides watchpoint event status
reporting, a global lock, and processor reset capability. A set of registers governs SWU operations. For more informa-
tion on SWU functionality, see the SWU register descriptions.

Table 45-2: CM41X_M4 SWU Register List

Name Description

SWU_CNT[n] Count Register n

SWU_CTL[n] Control Register n

SWU_CUR[n] Current Register n

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_HIST[n] Bandwidth History Register n

SWU_ID[n] ID Register n

SWU_LA[n] Lower Address Register n

SWU_TARG[n] Target Register n

SWU_UA[n] Upper Address Register n

CM41X_M0 SWU Interrupt List

SWU Functional Description

45–2 ADSP-CM41x Mixed-Signal Control Processor

Table 45-3: CM41X_M0 SWU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

11 SWU0_EVT SWU0 Event None

11 SWU1_EVT SWU1 Event None

CM41X_M4 SWU Interrupt List

Table 45-4: CM41X_M4 SWU Interrupt List

Interrupt
ID

Name Description Sensitivity DMA
Channel

47 SWU2_EVT SWU2 Event None

48 SWU3_EVT SWU3 Event None

49 SWU4_EVT SWU4 Event None

50 SWU5_EVT SWU5 Event None

51 SWU6_EVT SWU6 Event None

52 SWU0_EVT SWU0 Event None

53 SWU1_EVT SWU1 Event None

CM41X_M0 SWU Trigger List

Table 45-5: CM41X_M0 SWU Trigger List Masters

Trigger ID Name Description Sensitivity

23 SWU0_EVT SWU0 Event None

24 SWU1_EVT SWU1 Event None

Table 45-6: CM41X_M0 SWU Trigger List Slaves

Trigger ID Name Description Sensitivity

30 SWU0_EN SWU0 Enable Pulse

31 SWU1_EN SWU1 Enable Pulse

CM41X_M4 SWU Trigger List

Table 45-7: CM41X_M4 SWU Trigger List Masters

Trigger ID Name Description Sensitivity

61 SWU0_EVT SWU0 Event None

SWU Functional Description

ADSP-CM41x Mixed-Signal Control Processor 45–3

Table 45-7: CM41X_M4 SWU Trigger List Masters (Continued)

Trigger ID Name Description Sensitivity

62 SWU1_EVT SWU1 Event None

63 SWU2_EVT SWU2 Event None

64 SWU3_EVT SWU3 Event None

65 SWU4_EVT SWU4 Event None

66 SWU5_EVT SWU5 Event None

67 SWU6_EVT SWU6 Event None

Table 45-8: CM41X_M4 SWU Trigger List Slaves

Trigger ID Name Description Sensitivity

53 SWU2_EN SWU2 Enable Pulse

54 SWU3_EN SWU3 Enable Pulse

55 SWU4_EN SWU4 Enable Pulse

56 SWU5_EN SWU5 Enable Pulse

57 SWU6_EN SWU6 Enable Pulse

SWU Definitions

The following definitions are helpful when using the SWU module.

Watchpoint Mode

Mode in which transactions are recognized on an exact match. Actions can be configured to be taken after a speci-
fied number of matches have occurred.

Bandwidth Mode

Mode in which transactions are recognized and counted inside sampling window.

SWU Architectural Concepts

The information in this section provides basic module design concepts.

SWU-to-SCB Interface

The SWU system crossbar interface block latches all transactions on the system crossbar read and write address
channels when the SWU_GCTL.EN register enable bit is set.

SWU Block Diagram

The System Watchpoint Unit Top-Level Block Diagram figure shows the SWU block diagram.

SWU Functional Description

45–4 ADSP-CM41x Mixed-Signal Control Processor

SCB WRITE
ADDRESS CHANNEL

SCB READ
ADDRESS CHANNEL

SCB INTERFACE

MATCH (x4)

CONTROL

STATUS

MMR
INTERFACE

AND
MMR

REGISTERS

MMR ACCESS BUS

TRU GLOBAL ENABLE

TRIGGER EVENT

INTERRUPT LEVEL

Figure 45-1: System Watchpoint Unit Top-Level Block Diagram

SCB Interface Block

The SWU system crossbar (SCB) latches all transactions on the SCB read and write address channels when the
SWU_GCTL.EN bit is set.

MMR Interface Block

The SWU MMR block contains the peripheral bus interface and the SWU MMR registers. It also merges all inter-
rupt requests and events from each match block into common outputs.

SWU Operating Modes
There are two operating modes supported by the SWU: bandwidth mode and watchpoint mode.

Bandwidth Mode

In bandwidth mode, the SWU module counts transactions which match the properties specified in the
SWU_CTL[n] register during a sampling window determined by the respective SWU_CNT[n] register. At the end
of the sampling window, the SWU stores results in the SWU_HIST[n] register. If the sampled bandwidth falls
outside a programmed range, then the programmed action occurs.

Watchpoint Mode

In watchpoint mode, if the SWU_CTL[n].CNTEN bit is set, the SWU module decrements the SWU_CUR[n]
register for each match, until it equals zero, at which point any programmed actions occur. The SWU_CUR[n]
register is then reloaded from the SWU_CNT[n] register (if the SWU_CTL[n].CNTRPTEN bit is set), and the
cycle repeats. If the SWU_CTL[n].CNTRPTEN bit is not set, any programmed actions happen on every match.

Match Block

There are four match blocks for each SWU. Each SWU match block can monitor either the read or write address
channel, selected by the SWU_CTL[n].DIR bit. The SWU match block can operate in either watchpoint or band-
width mode, as selected by the SWU_CTL[n].BWEN bit.

SWU Architectural Concepts

ADSP-CM41x Mixed-Signal Control Processor 45–5

In either mode, the SWU match block can be programmed to match based on address (exact, inclusive or exclusive
range), ID (with masking), security, and lock type. All enabled matches are AND’ed together to determine a match.

SWU Event Control
The SWU can generate the following events when a match occurs and when the event is enabled by configuring the
proper bits in the control register.

1. Trace Message

2. Trigger

3. Interrupt request

SWU Interrupts

All interrupt requests and events from each match block are merged into common outputs.

SWU Status and Errors

SWU status and errors are reported in the SWU_GSTAT register. The SWU records an address error when a write or
read attempt is made to the MMR address space of the SWU and the register does not exist. This error is the only
one the SWU records. The register contains bits that perform the following functions.

• Indicate whether a particular match group sampled a transaction that is below a minimum target or above a
maximum target in bandwidth mode.

• Indicate whether a watchpoint match occurred for each match group.

• Indicate whether an interrupt request was triggered due to a match event from one of the match groups.

Triggers

The SWU can be either a trigger master or a trigger slave depending on the trigger routing unit (TRU) configura-
tion. As a trigger master, programs must set the SWU_CTL[n].TRGEN bit so that when a match condition is met,
a trigger event is generated. Each SWU in the system can also be a trigger slave when mapped as one in the TRU.

When the SWU is a slave, a trigger event activates the SWU by automatically setting the SWU_GCTL.EN bit. Since
the SWU can be automatically enabled through a trigger event, programs must pre-configure the SWU before ena-
bling the TRU. Furthermore, although a trigger event can enable the SWU as a slave, to disable the SWU, programs
must manually clear the SWU_GCTL.EN bit.

SWU Programming Model
Program the appropriate registers to use the SWU. Each control register configures aspects such as:

• The direction of monitoring (reads or writes)

• Whether SWU uses bandwidth mode or watchpoint mode

SWU Event Control

45–6 ADSP-CM41x Mixed-Signal Control Processor

• The setup of events that are triggered when a condition is met while monitoring using the SWU

Configure supplemental registers such as the lower (SWU_LA[n]) and upper (SWU_UA[n]) address boundaries
before enabling the SWU.

Once the SWU has been enabled and the monitoring conditions are met, events are generated when configured.

The global status register (SWU_GSTAT) can be read to observe the status of the units.

The SWU Logical Flow diagram shows the logical program flow of the SWU.

SWU
ENABLED?

START

if CNTRPTEN bit = 1,
copy SWU_CNT[n] to SWU_CUR[n]
Else,
 CURCNT bit field remains zero
 until SWU_CNT[n] is written

Set Status/Event Out

GROUP
ENABLED?

CTL[n].BWEN
bit set?

MATCH?

COUNT
ENABLE?

COUNT
ENABLE?

MATCH?

IF SWU_CNT[n]>0,
DECREMENT SWU_CNT[n]

DECREMENT SWU_CNT[n]

INCREMENT
SWU_CUR[n].CURBW

SWU_CNT[n]
==0?

Copy SWU_HIST[n].BWHIST0 to
SWU_HIST[n].BWHIST1
Copy SWU_CUR[n].CURBW to
SWU_HIST[n].BWHIST0
Clear CURBW
Copy SWU_CNT[n] to SWU_CUR[n].CURCNT
If BWHIST0 < SWU_TARG[n].BWMIN, Set Status
If BWHIST0 > SWU_TARG[n].BWMAX, Set Status

YES

NO

YES

NO

YES NO

YES

NO YES

NO

YES

NO

YES

NO

YES

NO

Figure 45-2: SWU Logical Flow

SWU Mode Configuration

The following sections show the steps for configuring SWU bandwidth mode and watchpoint mode.

Configuring the SWU for Bandwidth Mode

In bandwidth mode, the SWU counts transactions which match during a sampling window. At the end of the sam-
pling window, the SWU stores the results. An action can be taken if the sampled bandwidth goes above or falls
below a programmed range.

SWU Programming Model

ADSP-CM41x Mixed-Signal Control Processor 45–7

1. Configure the SWU_CTL[n].DIR bit to test the match on writes or reads.

2. Configure the SWU_CTL[n].ACMPM bits to address comparisons, exact match, matches inside a range or
matches outside a range.

3. If ID comparison is desired, set the SWU_CTL[n].IDCMPEN bit.

4. Set the SWU_CTL[n].BLENINC bit to increment by burst length or clear it to increment by 1.

5. Configure the SWU_CTL[n].MAXACT and SWU_CTL[n].MINACT bits to enable actions taken when the
bandwidth goes above the maximum, or falls below the minimum, respectively.

6. Set the SWU_CTL[n].BWEN=1 to enable bandwidth mode.

7. Program the lower address register, SWU_LA[n], and upper address register, SWU_UA[n], to define the
memory range for comparison.

8. If ID comparison is enabled, program the ID register, SWU_ID[n].

9. Program the count register, SWU_CNT[n], with the number of clock cycles for which the SWU counts the
number of matches.

10. If the SWU is set to respond when the bandwidth measurement underflows or overflows, program the min and
max values into the SWU_TARG[n] register.

11. Enable the SWU

The SWU counts the number of matches in a pre-defined number of clock cycles as programmed. As an option, it
can define lower and upper limits. If the matches fall outside the limits, an action can be taken.

Configuring the SWU for Watchpoint Mode

In watchpoint mode, the SWU can trigger a programmed action after every match or after a number of matches.
This sequence can be automatically reset.

1. Set the SWU_CTL[n].DIR bit to test the match on writes or reads.

2. Configure the SWU_CTL[n].ACMPM bits for address comparisons, exact match, matches inside a range or
matches outside a range.

3. If ID comparison is desired, set the SWU_CTL[n].IDCMPEN.

4. Set the SWU_CTL[n].CNTEN bit to enable the events to be triggered when the count decrements to zero.

5. If needed, set the SWU_CTL[n].CNTRPTEN bit to automatically reload the counter after it has decremented
to zero to start another match sequence.

6. Clear the SWU_CTL[n].BWEN = 0 to configure watchpoint mode.

7. Configure the lower address register, SWU_LA[n], and upper address register, SWU_UA[n], to define the
memory range for comparison.

SWU Mode Configuration

45–8 ADSP-CM41x Mixed-Signal Control Processor

8. If ID comparison is enabled, configure the ID register, SWU_ID[n].

9. Configure the count register, SWU_CNT[n], to determine how many matches occur before the watchpoint
group responds.

10. Enable the SWU.

The SWU detects and counts down the number of match occurrences. When the counter expires, an action is taken.

CM41X_M4 SWU Register Descriptions
System Watchpoint Unit (SWU) contains the following registers.

Table 45-9: CM41X_M4 SWU Register List

Name Description

SWU_CNT[n] Count Register n

SWU_CTL[n] Control Register n

SWU_CUR[n] Current Register n

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_HIST[n] Bandwidth History Register n

SWU_ID[n] ID Register n

SWU_LA[n] Lower Address Register n

SWU_TARG[n] Target Register n

SWU_UA[n] Upper Address Register n

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–9

Count Register n

The SWU count registers (SWU_CNT[n]) contain a 16-bit count field (SWU_CNT[n].COUNT) whose usage dif-
fers depending on the mode of the watchpoint group. In bandwidth mode, the SWU_CNT[n].COUNT field value
defines the number of clock cycles in a bandwidth period. In watchpoint mode, when the cycle count is enabled, the
SWU_CNT[n].COUNT field value determines how many matches occur before the watchpoint group takes action.

Count
COUNT (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-3: SWU_CNT[n] Register Diagram

Table 45-10: SWU_CNT[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

15:0

(R/W)

COUNT Count.

The SWU_CNT[n].COUNT field value defines the number of clock cycles in a band-
width period. In watchpoint mode, when the cycle count is enabled, the
SWU_CNT[n].COUNT field value determines how many matches occur before the
watchpoint group takes action.

CM41X_M4 SWU Register Descriptions

45–10 ADSP-CM41x Mixed-Signal Control Processor

Control Register n

The SWU control registers (SWU_CTL[n]) contain watchpoint attribute controls for all four watchpoint groups.
These controls include enabling watchpoints, selecting the transaction direction for match, selecting address com-
parison mode, enabling ID comparison, enabling security comparison, enabling locked comparison, enabling cycle
count, enabling count repeat, enabling debug events, enabling interrupts, enabling triggers, enabling trace messages,
enabling bandwidth mode, selecting the burst length increment, and enabling bandwidth underflow and overflow
detection.

ID Comparison EnableCount Enable

Address Comparison ModeCount Repeat Enable

Transaction Direction for MatchInterrupt Enable

Enable WatchpointTrigger Enable

Length
Increment Bandwidth Count by BurstAction for Bandwidth Below Minimum

Bandwidth Mode EnableAction for Bandwidth Above Maximum

IDCMPEN (R/W)CNTEN (R/W)

ACMPM (R/W)CNTRPTEN (R/W)

DIR (R/W)INTEN (R/W)

EN (R/W)TRGEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BLENINC (R/W)MINACT (R/W)

BWEN (R/W)MAXACT (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-4: SWU_CTL[n] Register Diagram

Table 45-11: SWU_CTL[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19

(R/W)

MAXACT Action for Bandwidth Above Maximum.

Each SWU_CTL[n].MAXACT bit determines whether a watchpoint group takes ac-
tion on bandwidth overflow. This feature is only valid in bandwidth mode.

0 No Action

1 Take Action

18

(R/W)

MINACT Action for Bandwidth Below Minimum.

Each SWU_CTL[n].MINACT bit determines whether a watchpoint group takes ac-
tion on bandwidth underflow. This feature is only valid in bandwidth mode.

0 No Action

1 Take Action

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–11

Table 45-11: SWU_CTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

17

(R/W)

BLENINC Increment Bandwidth Count by Burst Length.

Each SWU_CTL[n].BLENINC bit controls how a watchpoint group's bandwidth
count is incremented in the SWU_CUR[n] register's SWU_CUR[n].CURBW field. If
the SWU_CTL[n].BLENINC bit is cleared (= 0), the SWU increments the band-
width count by 1 for each matching transaction. If the SWU_CTL[n].BLENINC bit
is set (=1), the SWU increments the bandwidth count by the burst length of the trans-
action for each matching transaction. This feature is only valid for bandwidth mode
(SWU_CTL[n].BWEN bit == 1).

Note that if the address range match is enabled (SWU_CTL[n].ACMPM bits) and if
any address of a burst falls within the address range, the SWU_CUR[n].CURBW field
is incremented by the burst length even if some of the burst address fall outside of the
range.

Also, note that the burst size of the transaction is not included in the increment, only
the burst length of the transaction. This increment operation provides an approximate
(not exact) number of bus cycles consumed during the bandwidth.

0 Increment by 1

1 Burst Length Increment for Bandwidth Count

16

(R/W)

BWEN Bandwidth Mode Enable.

Each SWU_CTL[n].BWEN bit controls whether a watchpoint group operates in
watchpoint mode or bandwidth mode. In watchpoint mode, the
SWU_CTL[n].CNTEN and (optionally) SWU_CTL[n].CNTRPTEN registers con-
trol usage of the cycle count for watchpoint group operations. In bandwidth mode, the
SWU_CTL[n].BLENINC, SWU_TARG[n], and SWU_HIST[n] registers control
usage of watchpoint matches for watchpoint group operations.

0 Watchpoint Mode

1 Bandwidth Mode

14

(R/W)

TRGEN Trigger Enable.

Each SWU_CTL[n].TRGEN bit controls whether a match for a watchpoint group
generates a trigger event. This feature is valid in both bandwidth and watchpoint
modes.

0 Disable

1 Enable

13

(R/W)

INTEN Interrupt Enable.

Each SWU_CTL[n].INTEN bit controls whether a match for a watchpoint group
generates an interrupt. This feature is valid in both bandwidth and watchpoint modes.

0 Disable

1 Enable

CM41X_M4 SWU Register Descriptions

45–12 ADSP-CM41x Mixed-Signal Control Processor

Table 45-11: SWU_CTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

9

(R/W)

CNTRPTEN Count Repeat Enable.

Each SWU_CTL[n].CNTRPTEN bit controls whether the watchpoint group's cycle
count is reloaded and repeated after cycle countdown. If the SWU_CTL[n] register's
SWU_CTL[n].CNTRPTEN bit is set, the SWU_CUR[n] register's
SWU_CUR[n].CURCNT field is reloaded from SWU_CNT[n] register's
SWU_CNT[n].COUNT field, and the countdown starts again. If
SWU_CTL[n].CNTRPTEN bit is cleared, the expired count remains zero, and no
further events are signalled. (See the SWU_CTL[n].CNTEN bit description for infor-
mation regarding the countdown setup.)

0 Disable

1 Enable

8

(R/W)

CNTEN Count Enable.

Each SWU_CTL[n].CNTEN bit controls whether the cycle count in the watchpoint
group's SWU_CNT[n] register is decremented each cycle until it reaches zero. This
feature is only valid in watchpoint mode (SWU_CTL[n].BWEN bit == 0).When the
count reaches zero, any enabled watchpoint events are triggered. (See the
SWU_CTL[n].CNTRPTEN bit description for optional actions at that may occur at
the end of the countdown.)

0 Disable

1 Enable

4

(R/W)

IDCMPEN ID Comparison Enable.

Each SWU_CTL[n].IDCMPEN bit controls the ID comparison operation of an
SWU watchpoint group. The ID match is based on comparison with the value in the
SWU_ID[n] register.

3:2

(R/W)

ACMPM Address Comparison Mode.

Each set of SWU_CTL[n].ACMPM bits control the address comparison operation of
an SWU watchpoint group. The address within range for comparison is defined as
(SWU_LA[n] register <= address < SWU_UA[n] register). The address outside range
for comparison is defined as (address < SWU_LA[n]) or (SWU_UA[n] <= address).

0 No address comparison

1 Exact match on LAn

2 Match on address within range

3 Match on address outside range

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–13

Table 45-11: SWU_CTL[n] Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/W)

DIR Transaction Direction for Match.

Each SWU_CTL[n].DIR bit determines whether the SWU check reads or writes for
watchpoint matches.

0 Match on reads only

1 Match on writes only

0

(R/W)

EN Enable Watchpoint.

Each SWU_CTL[n].EN bit controls the operation of one SWU watchpoint group.
Clearing the SWU_CTL[n].EN bit halts the execution of watchpoint or bandwidth
tracking operations in the watchpoint group without resetting status or configuration
registers. Setting the SWU_CTL[n].EN bit enables the SWU watchpoint group to
begin or resume operation with the current configuration and status.

0 Disable

1 Enable

CM41X_M4 SWU Register Descriptions

45–14 ADSP-CM41x Mixed-Signal Control Processor

Current Register n

The SWU current register (SWU_CUR[n]) operation varies depending whether the watchpoint group is in band-
width mode or watchpoint mode. In both modes, the watchpoint count begins when the SWU loads the register's
SWU_CUR[n].CURCNT field from the SWU_CNT[n] register's SWU_CNT[n].COUNT field when the watch-
point count is enabled (SWU_CTL[n] register, SWU_CTL[n].CNTEN bit =1).

In bandwidth mode, the current count field (SWU_CUR[n].CURCNT) contains the cycle count remaining within
the current watchpoint period. The SWU decrements this value every cycle until the count reaches zero. At that
point, the SWU reloads the SWU_CUR[n].CURCNT field from SWU_CNT[n] register's SWU_CNT[n].COUNT
field. In bandwidth mode, the current bandwidth field (SWU_CUR[n].CURBW) contains the count of watchpoint
matches (bandwidth) accumulated in the current watchpoint period.

In watchpoint mode, the current count field (SWU_CUR[n].CURCNT) contains the watchpoint match count re-
maining within the current watchpoint period. The SWU decrements this value with every watchpoint match until
the count reaches zero. At that point, the SWU reloads the SWU_CUR[n].CURCNT field from SWU_CNT[n]
register's SWU_CNT[n].COUNT field if the SWU_CTL[n] register's SWU_CTL[n].CNTRPTEN bit is set (=1).
In watchpoint mode, the current bandwidth field (SWU_CUR[n].CURBW) is undefined.

Current Count

Current Bandwidth

CURCNT (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

CURBW (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-5: SWU_CUR[n] Register Diagram

Table 45-12: SWU_CUR[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

CURBW Current Bandwidth.

15:0

(R/NW)

CURCNT Current Count.

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–15

Global Control Register

The SWU global control register (SWU_GCTL) provides SWU reset and enable.

Global EnableGlobal Reset
EN (R/W)RST (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-6: SWU_GCTL Register Diagram

Table 45-13: SWU_GCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R0/W)

RST Global Reset.

The SWU_GCTL.RST) is write-1-action/read zero and controls the SWU operational
state. Setting SWU_GCTL.RST resets all SWU registers to their default values and
halts all SWU operations.

0 No Action

1 Reset

0

(R/W)

EN Global Enable.

The SWU_GCTL.EN controls the SWU operational state. Clearing SWU_GCTL.EN
halts the execution of all watchpoint and bandwidth tracking operations without reset-
ting status registers or associated signals. Setting SWU_GCTL.EN enables the SWU to
begin/resume operation with the current configuration and status.

0 Disable

1 Enable

CM41X_M4 SWU Register Descriptions

45–16 ADSP-CM41x Mixed-Signal Control Processor

Global Status Register

The SWU global status register (SWU_GSTAT) contains status bits for all four watchpoint groups.

Group 3 Interrupt Status

Target
Group 0 Bandwidth Below Minimum

Group 2 Interrupt Status

Target
Group 0 Bandwidth Above Maximum

Group 1 Interrupt Status

Target
Group 1 Bandwidth Below Minimum

Group 0 Interrupt Status

Target
Group 1 Bandwidth Above Maximum

Group 3 Match

Target
Group 2 Bandwidth Below Minimum

Group 2 Match

Target
Group 2 Bandwidth Above Maximum

Group 1 Match

Target
Group 3 Bandwidth Below Minimum

Group 0 Match
Target
Group 3 Bandwidth Above Maximum

Address Error Status

INT3 (R/W1C)

UNDRBW0 (R/W1C)

INT2 (R/W1C)

OVRBW0 (R/W1C)

INT1 (R/W1C)

UNDRBW1 (R/W1C)

INT0 (R/W1C)

OVRBW1 (R/W1C)

MTCH3 (R/W1C)

UNDRBW2 (R/W1C)

MTCH2 (R/W1C)

OVRBW2 (R/W1C)

MTCH1 (R/W1C)
UNDRBW3 (R/W1C)

MTCH0 (R/W1C)OVRBW3 (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDRERR (R/W1C)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-7: SWU_GSTAT Register Diagram

Table 45-14: SWU_GSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

30

(R/W1C)

ADDRERR Address Error Status.

The SWU_GSTAT.ADDRERR indicates that the SWU generated an address error.
This status bit is sticky; write-1-to-clear it.

0 Inactive

1 Active

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–17

Table 45-14: SWU_GSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

15

(R/W1C)

OVRBW3 Group 3 Bandwidth Above Maximum Target.

See SWU_GSTAT.OVRBW0 description.

0 Group 3 was not above maximum bandwidth

1 Group 3 was above maximum bandwidth

14

(R/W1C)

UNDRBW3 Group 3 Bandwidth Below Minimum Target.

See SWU_GSTAT.UNDRBW0 description.

0 Group 3 was not below minimum bandwitdth

1 Group 3 was below minimum bandwitdth

13

(R/W1C)

OVRBW2 Group 2 Bandwidth Above Maximum Target.

See SWU_GSTAT.OVRBW0 description.

0 Group 2 was not above maximum bandwidth

1 Group 2 was above maximum bandwidth

12

(R/W1C)

UNDRBW2 Group 2 Bandwidth Below Minimum Target.

See SWU_GSTAT.UNDRBW0 description.

0 Group 2 was not below minimum bandwidth

1 Group 2 was below minimum bandwidth

11

(R/W1C)

OVRBW1 Group 1 Bandwidth Above Maximum Target.

See SWU_GSTAT.OVRBW0 description.

0 Group 1 was not above maximum bandwidth

1 Group 1 was above maximum bandwidth

10

(R/W1C)

UNDRBW1 Group 1 Bandwidth Below Minimum Target.

See SWU_GSTAT.UNDRBW0 description.

0 Group 1 was not below minimum bandwidth

1 Group 1 was below minimum bandwidth

9

(R/W1C)

OVRBW0 Group 0 Bandwidth Above Maximum Target.

The SWU_GSTAT.OVRBW0 - SWU_GSTAT.OVRBW3 -- Group 0 through 3 watch-
point bandwidth over maximum target bits. Each maximum bandwidth bit indicate
(for each group)s that the measured bandwidth over the period defined by the
SWU_CNT[n] register was over the maximum target. This status bit is sticky; write-1-
to-clear it.

0 Group 0 was not above maximum bandwidth

1 Group 0 was above maximum bandwidth

CM41X_M4 SWU Register Descriptions

45–18 ADSP-CM41x Mixed-Signal Control Processor

Table 45-14: SWU_GSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

8

(R/W1C)

UNDRBW0 Group 0 Bandwidth Below Minimum Target.

The SWU_GSTAT.UNDRBW0 - SWU_GSTAT.UNDRBW3 -- Group 0 through 3
watchpoint bandwidth below minimum target bits. Each minimum bandwidth bit in-
dicates (for each group) that the measured bandwidth over the period defined by the
SWU_CNT[n] register was below the minimum target. This status bit is sticky;
write-1-to-clear it.

0 Group 0 was not below minimum bandwidth

1 Group 0 was below minimum bandwidth

7

(R/W1C)

INT3 Group 3 Interrupt Status.

See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

6

(R/W1C)

INT2 Group 2 Interrupt Status.

See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

5

(R/W1C)

INT1 Group 1 Interrupt Status.

See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

4

(R/W1C)

INT0 Group 0 Interrupt Status.

The SWU_GSTAT.INT0 - SWU_GSTAT.INT3 -- Group 0 through 3 interrupt
bits. Each interrupt bit indicates (for each group) whether a watchpoint group is con-
tributing to the SWU's interrupt output. This status bit is sticky; write-1-to-clear it.

0 No interrupt

1 Interrupt Occurred

3

(R/W1C)

MTCH3 Group 3 Match.

See SWU_GSTAT.MTCH0 description.

0 No Match

1 Group 3 Watchpoint Match

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–19

Table 45-14: SWU_GSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

2

(R/W1C)

MTCH2 Group 2 Match.

See SWU_GSTAT.MTCH0 description.

0 No match

1 Group 2 Watchpoint Match

1

(R/W1C)

MTCH1 Group 1 Match.

See SWU_GSTAT.MTCH0 description.

0 No match

1 Group 1 Watchpoint Match

0

(R/W1C)

MTCH0 Group 0 Match.

The SWU_GSTAT.MTCH0 - SWU_GSTAT.MTCH3 -- Group 0 through 3 match
bits. Each match bit indicates (for each group) whether a watchpoint match has occur-
red in a SWU watchpoint group, as controlled by the group's related watchpoint con-
trol register (SWU_CTL[n]). This status bit is sticky; write-1-to-clear it.

0 No match

1 Group 0 Watchpoint Match

CM41X_M4 SWU Register Descriptions

45–20 ADSP-CM41x Mixed-Signal Control Processor

Bandwidth History Register n

The SWU bandwidth history registers (SWU_HIST[n]) contain data copied from a watchpoint group's current
bandwidth value (SWU_CUR[n] register, SWU_CUR[n].CURBW bits) at the end of the last two watchpoint peri-
ods. At the end of each watchpoint period, the SWU copies the previous bandwidth value from the
SWU_HIST[n].BWHIST0 field to the SWU_HIST[n].BWHIST1 field and copies the new bandwidth value
from the SWU_CUR[n].CURBW field to the SWU_HIST[n].BWHIST0 field.

Bandwidth from Last Window

Bandwidth from Window Before Last

BWHIST0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BWHIST1 (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-8: SWU_HIST[n] Register Diagram

Table 45-15: SWU_HIST[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/NW)

BWHIST1 Bandwidth from Window Before Last.

15:0

(R/NW)

BWHIST0 Bandwidth from Last Window.

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–21

ID Register n

The SWU ID registers (SWU_ID[n]) contain a 16-bit ID field (SWU_ID[n].ID) and a 16-bit ID mask field
(SWU_ID[n].IDMASK) that watchpoint groups use for ID comparison. The ID on the bus is AND'ed with the
SWU_ID[n].IDMASK field, then the watchpoint group compares the result against the SWU_ID[n].ID field.

Identity

Identity Mask (for Or with ID)

ID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

IDMASK (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-9: SWU_ID[n] Register Diagram

Table 45-16: SWU_ID[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

IDMASK Identity Mask (for Or with ID).

15:0

(R/W)

ID Identity.

CM41X_M4 SWU Register Descriptions

45–22 ADSP-CM41x Mixed-Signal Control Processor

Lower Address Register n

The SWU lower address registers (SWU_LA[n]) contain each watchpoint group's lower address for address match
comparison. In exact match on SWU_LA[n] address mode (SWU_CTL[n].ACMPM bits =01), the watchpoint
group uses only this address for match comparison.

Lower Address

Lower Address

ADDR[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-10: SWU_LA[n] Register Diagram

Table 45-17: SWU_LA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Lower Address.

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–23

Target Register n

The SWU target registers (SWU_TARG[n]) contain a minimum value field (SWU_TARG[n].BWMIN) and maxi-
mum value field (SWU_TARG[n].BWMAX) of bandwidth targets used by watchpoint groups in bandwidth mode.
When the bandwidth period expires, if the current bandwidth value (SWU_CUR[n] register,
SWU_CUR[n].CURBW bits) is below the minimum target or above the maximum target, the watchpoint group
takes action as enabled by the SWU_CTL[n] register's SWU_CTL[n].MINACT or SWU_CTL[n].MAXACT
bits.

In bandwidth mode, note that the watchpoint group increments its count of either data bus transactions or address
bus transactions (bursts) as selected by the SWU_CTL[n].BLENINC bit. Keep this mode selection in mind when
programming the bandwidth target values.

Minimum Bandwidth Target

Maximum Bandwidth Target

BWMIN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

BWMAX (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-11: SWU_TARG[n] Register Diagram

Table 45-18: SWU_TARG[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:16

(R/W)

BWMAX Maximum Bandwidth Target.

15:0

(R/W)

BWMIN Minimum Bandwidth Target.

CM41X_M4 SWU Register Descriptions

45–24 ADSP-CM41x Mixed-Signal Control Processor

Upper Address Register n

The SWU upper address registers (SWU_UA[n]) contain each watchpoint group's upper address for address match
comparison. In exact match on SWU_LA[n] address mode (SWU_CTL[n].ACMPM bits =01), the SWU_UA[n]
is not used for match comparison.

Upper Address

Upper Address

ADDR[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDR[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 45-12: SWU_UA[n] Register Diagram

Table 45-19: SWU_UA[n] Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

ADDR Upper Address.

CM41X_M4 SWU Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 45–25

46 JTAG debug and Serial Wire Debug Port
(SWJ-DP)

SWJ-DP is a combined JTAG-DP and SW-DP that enables either a Serial Wire Debug (SWD) or JTAG probe to be
connected to a target. SWD signals share pins as JTAG. There is an autodetect mechanism that switches between
JTAGDP and SW-DP. Depending on which special data sequence the SWJ-DP uses, the emulator pod transmits to
the JTAG pins. The SWJ-DP behaves as a JTAG target if normal JTAG sequences are sent to it and as a single wire
target if the SW_DP sequence is transmitted.

Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM)

The processor supports both Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM).
These features both offer an optional debug component that enables logging of real-time instruction and data flow
within the CPU core. This data is stored and read through special debugger pods that have the trace feature capabili-
ty. ITM is a single-data pin feature and the ETM is a 4-data pin feature.

Debug Access
The ADSP-CM41x processor support standard debugging options, JTAG and SWD for Cortex ARM cores. There
are standard debug choices available, based on what is selected in the end user tools: Single core ARM Cortex-M4
debug, single core ARM Cortex-M0 debug and dual core M4 + M0 debug. Both the ARM Cortex-M4 and ARM
Cortex-M0 core DAPs are visible in the single JTAG chain when configured. To the external world, debug requires
just a single ARM Coresight debug interface (connector). The pin count will vary depending on the system debug
choice.

Core Debug
Both the ARM Cortex-M4 and ARM Cortex-M0 processors are configured with the maximum available internal
components. See the ARM documents for usage details.

The ARM Cortex-M0 core has hardware for four breakpoints and two watchpoints.

The ARM Cortex-M4 core has hardware for six breakpoints and four watchpoints and a full flash-patch block.

JTAG debug and Serial Wire Debug Port (SWJ-DP)

ADSP-CM41x Mixed-Signal Control Processor 46–1

Trace
The ARM Cortex-M4 processor supports both Embedded Trace Macrocell (ETM) and Instrumentation Trace Mac-
rocell (ITM). These features both offer an optional debug component that enables logging of real-time instruction
and data flow within the CPU core. This data is stored and read through special debuggers that have the trace fea-
ture capability. The ARM Cortex-M0 core does not support any trace output.

ITM is a single-data pin feature and the ETM is a 4-data pin feature. Both the ITM and ETM are byte data from
the ARM Cortex-M4 core. There are two distinct modes of trace capture. The first is the standard ARM Cortex-M4
TPIU-Lite to generate trace output data. The TPIU-Lite combines TPIU and SWO capabilities. It natively supports
ETM and ITM input channels. Second is a ram based trace capture. ITM and ETM data are funneled into a 4 KB
trace ram. Trace data can be stored and processed without need of dedicated pins allocated to trace.

The trace data and trace clock are generated internally with SYSCLK -based timing. TRACECLK is always
SYSCLK, up to 100 MHz. TRACEDATA is transferred on both edges of TRACECLK, at frequencies up to 200
MHz. To optimize signal integrity on the trace bus and pod cable, the trace header should be located physically as
close as possible to the CM41x, with high-quality PCB traces. Further, the GPIO drive strength for the Trace pads
(PC00-PC04) should be programmed to the setting corresponding to ~50Ω for good impedance match to the PCB
traces. High speed data rate can cause significant over/under shoot, simulate and add termination resistors as neces-
sary. In this system,there are a maximum of 4 GPIO pins available for trace, operation with 1 or 2 is possible but
provides less output bandwidth for real-time trace.

Coresight Cross Triggering
The ARM Cortex-M4 system has a single 4-way cross trigger unit. Of the 4 trigger sub-units, there is one dedicated
to control of the M4 core and one dedicated to control of the ARM Cortex-M0. CTI0 for ARM Cortex-M4, CTI1
for ARM Cortex-M0. CTI2 works with the ETF/TMC and TPIU to control trace output/recording. CTI3 has con-
nections to/from both the ARM Cortex-M4 and ARM Cortex-M0 system trigger units (TRU0, 1) as well as con-
trolling the two system slave halt signals.

Table 46-1: CTI0 (M4 debug connections)

Trigger Input Port Source ACK
Used?

Trigger Output Port Destination ACK
Used?

CTITRIGIN[7] M4 ETM TRIG_OUT N CTITRIGOUT[7] M4 DBGSTART N

CTITRIGIN[6] M4 ETM TRIG[2] N CTITRIGOUT[6] M4 DBGEND N

CTITRIGIN[5] M4 ETM TRIG[1] N CTITRIGOUT[5] M4 ETM EXTIN[1] N

CTITRIGIN[4] M4 ETM TRIG[0] N CTITRIGOUT[4] M4 ETM EXTIN[0] N

CTITRIGIN[3] Unused N CTITRIGOUT[3] SEC_M4_CTI0_EVT2 Y

CTITRIGIN[2] Unused N CTITRIGOUT[2] SEC_M4_CTI0_EVT1 Y

CTITRIGIN[1] Unused N CTITRIGOUT[1] SEC_M4_CTI0_EVT0 Y

CTITRIGIN[0] M4 HALTED Y CTITRIGOUT[0] M4 EDBGRQ Y

Trace

46–2 ADSP-CM41x Mixed-Signal Control Processor

Table 46-2: CTI1 (M0 debug connections)

Trigger Input Port Source ACK
Used?

Trigger Output Port Destination ACK
Used?

CTITRIGIN[7] Unused N CTITRIGOUT[7] M0 DBGSTART N

CTITRIGIN[6] Unused N CTITRIGOUT[6] M0_DBGEND N

CTITRIGIN[5] Unused N CTITRIGOUT[5] Unused N

CTITRIGIN[4] Unused N CTITRIGOUT[4] Unused N

CTITRIGIN[3] Unused N CTITRIGOUT[3] Unused N

CTITRIGIN[2] Unused N CTITRIGOUT[2] Unused N

CTITRIGIN[1] Unused N CTITRIGOUT[1] SEC_M0_CTI1_EVT0 N

CTITRIGIN[0] M0 HALTED Y CTITRIGOUT[0] M0 EDBGRQ Y

Table 46-3: CTI2 (ETF/TPIU connections)

Trigger Input Port Source ACK
Used?

Trigger Output Port Destination ACK
Used?

CTITRIGIN[7] Unused N CTITRIGOUT[7] Unused N

CTITRIGIN[6] Unused N CTITRIGOUT[6] Unused N

CTITRIGIN[5] Unused N CTITRIGOUT[5] Unused N

CTITRIGIN[4] Unused N CTITRIGOUT[4] Unused N

CTITRIGIN[3] Unused N CTITRIGOUT[3] Unused Y

CTITRIGIN[2] Unused N CTITRIGOUT[2] Unused Y

CTITRIGIN[1] ETF_FULL N CTITRIGOUT[1] ETF FLUSHIN N

CTITRIGIN[0] ACQCOMP FULL N CTITRIGOUT[0] ETF TRIGIN N

Table 46-4: CTI3 (System Trigger Unit connections)

Trigger Input Port Source ACK
Used?

Trigger Output Port Destination ACK
Used?

CTITRIGIN[7] TRGS_M0_CTI3_SLV7 N CTITRIGOUT[7] ctitrigoutack for
halt_slv[1:0]

N

CTITRIGIN[6] TRGS_M0_CTI3_SLV6 N CTITRIGOUT[6] TRGS_M0_CTI3_MST6 N

CTITRIGIN[5] TRGS_M4_CTI3_SLV5 N CTITRIGOUT[5] TRGS_M0_CTI3_MST5 N

CTITRIGIN[4] TRGS_M4_CTI3_SLV4 N CTITRIGOUT[4] TRGS_M4_CTI3_MST4 N

CTITRIGIN[3] TRGS_M4_CTI3_SLV3 N CTITRIGOUT[3] TRGS_M4_CTI3_MST3 N

CTITRIGIN[2] TRGS_M4_CTI3_SLV2 N CTITRIGOUT[2] TRGS_M4_CTI3_MST2 N

CTITRIGIN[1] TRGS_M4_CTI3_SLV1 N CTITRIGOUT[1] halt_slv[1] Y

Coresight Cross Triggering

ADSP-CM41x Mixed-Signal Control Processor 46–3

Table 46-4: CTI3 (System Trigger Unit connections) (Continued)

Trigger Input Port Source ACK
Used?

Trigger Output Port Destination ACK
Used?

CTITRIGIN[0] TRGS_M4_CTI3_SLV0 N CTITRIGOUT[0] halt_slv[0] Y

Synchronous HALT
During a debug halt it may be necessary/advantageous to halt various system components of the chip for debug of
some free-running sub-systems. There are two halt outputs of CTI3. Halt_slv[1] is dedicated to debug halt of the 3
PWM units. Halt_slv[0] halts the bus fabric masters, the timers, capture timers, and the wdog timers. These ad-
vanced features will not be natively supported by generic m4 debuggers. Additional debugger software support is
necessary for implementing halt operation.

• Halting the timers during debug allows for them to decrement like executing in real-time.

• Halting the watch-dog prevents them from asserting during debug stop.

• Halting bus fabric masters will stall DMA master requests during debug. Fabric operations “in-flight” will be
allowed to complete.

The PWM units have an independent halt_slv, stopping an actual motor/inverter/etc. at an indeterminate state for
indeterminate time for debug may be problematic for particular external components. See the PWM block docu-
mentation for details. At the system level, this works in conjunction with the pin_safe_state logic, which can be
configured to go “safe” on a debug halt. This allows for multiple PWM configuration choices while in debug halt
for different system requirements.

TAPC Controller
A debug TAP Controller sits in the Debug Controller to aid in additional options implemented for various mecha-
nisms related to Security and Boot.

The main TAP controller is the only item present in the jtag scan chain at power-up. It must be configured for the
ARM Cortex-M4/M0 chains to be visible for JTAG based debug.

Refer to the corresponding HW chapter for more details on use the registers related to TAPC.

CM41X_M4 TAPC Register Descriptions
TAPC (TAPC) contains the following registers.

Table 46-5: CM41X_M4 TAPC Register List

Name Description

TAPC_DBGCTL Debug Control Register

Synchronous HALT

46–4 ADSP-CM41x Mixed-Signal Control Processor

Table 46-5: CM41X_M4 TAPC Register List (Continued)

Name Description

TAPC_DBGSTAT Debug Status Register

TAPC_IDCODE IDCODE Register

TAPC_RCMSG Run Control Message Register

TAPC_RCMSG_CLR Run Control Message Clear Register

TAPC_RCMSG_SET Run Control Message Set Register

TAPC_RCMSG_TGL Run Control Message Toggle Register

TAPC_SCMSG System Run Control Message Register

TAPC_SCMSG_CLR System Run Control Message Clear Register

TAPC_SCMSG_SET System Run Control Message Set Register

TAPC_SCMSG_TGL System Run Control Message Toggle Register

TAPC_SDBGKEY0 Secure Debug Key 0 Register

TAPC_SDBGKEY1 Secure Debug Key 1 Register

TAPC_SDBGKEY2 Secure Debug Key 2 Register

TAPC_SDBGKEY3 Secure Debug Key 3 Register

TAPC_SDBGKEYCMP0 Secure Debug Key 0 Compare Register

TAPC_SDBGKEYCMP1 Secure Debug Key 1 Compare Register

TAPC_SDBGKEYCMP2 Secure Debug Key 2 Compare Register

TAPC_SDBGKEYCMP3 Secure Debug Key 3 Compare Register

TAPC_SDBGKEYID0 Secure Debug Key 0 Identification Register

TAPC_SDBGKEYID1 Secure Debug Key 1 Key Identification Register

TAPC_SDBGKEYID2 Secure Debug Key 2 Key Identification Register

TAPC_SDBGKEYID3 Secure Debug Key 3 Key Identification Register

TAPC_SDBGKEY_CTL Secure Debug Key Control Register

TAPC_SDBGKEY_STAT Secure Debug Key Status Register

TAPC_USERCODE USERCODE Register

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–5

Debug Control Register

The TAPC_DBGCTL register creates authentication signals to all CoreSight components in the system. This is a
read write register accessible on the JTAG APB bus (not directly accessed by TAP).

NIDEN for STMSPNIDEN for STM

DBGEN for STMSPIDEN for STM

DBGEN for Core 0DBGEN for CTISYS

SPIDEN for DAPNIDEN for CTISYS

NIDEN for trace blocks

DBGEN for trace blocksSPIDEN for ETR

NIDENSTM (R/W)SPNIDENSTM (R/W)

DBGENSTM (R/W)SPIDENSTM (R/W)

DBGENC0 (R/W)DBGENCTISYS (R/W)

SPIDENDAP (R/W)NIDENCTISYS (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

NIDENTRACE (R/W)

DBGENTRACE (R/W)SPIDENTRACE (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-1: TAPC_DBGCTL Register Diagram

Table 46-6: TAPC_DBGCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

18

(R/W)

SPIDENTRACE SPIDEN for ETR.

Secure Slave Enable Core0

17

(R/W)

NIDENTRACE NIDEN for trace blocks.

Non-Invasive Debug Enable for Trace Blocks

16

(R/W)

DBGENTRACE DBGEN for trace blocks.

DBGEN for Trace Blocks

13

(R/W)

NIDENCTISYS NIDEN for CTISYS.

NIDEN for System CTI

12

(R/W)

DBGENCTISYS DBGEN for CTISYS.

DBGEN for System CTI

11

(R/W)

SPIDENSTM SPIDEN for STM.

SPIDEN for STM

CM41X_M4 TAPC Register Descriptions

46–6 ADSP-CM41x Mixed-Signal Control Processor

Table 46-6: TAPC_DBGCTL Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

10

(R/W)

SPNIDENSTM SPNIDEN for STM.

SPINIDEN for STM

9

(R/W)

NIDENSTM NIDEN for STM.

NIDEN for STM

8

(R/W)

DBGENSTM DBGEN for STM.

DBGEN for STM

4

(R/W)

DBGENC0 DBGEN for Core 0.

DBGEN for Core0

2

(R/W)

SPIDENDAP SPIDEN for DAP.

DBGEN for DAP

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–7

Debug Status Register

The TAPC_DBGSTAT register indicates debug status.

Run Control Serial Wire Error

Run Control Message Error
Run Control Write Update Error

IDCODE Register Read Status

SWK Block Hardware ResetReset Detected

RCCSERR (R/W1C)

RCCTERR (R/W1C)
RCWRERR (R/W1C)

IDRDSTAT (R/W1C)SDKEYERR (R/W1C)

SRSTSTAT (R/W1C)TRSTDET (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-2: TAPC_DBGSTAT Register Diagram

Table 46-7: TAPC_DBGSTAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

6

(R/NW)

TRSTDET Reset Detected.

The TAPC_DBGSTAT.TRSTDET bit indicates (if set =1) TAPC has had a valid reset
applied, and is in a known state.

5

(R/W1C)

SDKEYERR .

The TAPC_DBGSTAT.SDKEYERR bit indicates (if set =1) concurrent transfers to
tCLK domain.

4

(R/W1C)

RCWRERR Run Control Write Update Error.

The TAPC_DBGSTAT.RCWRERR bit indicates (if set =1) the TAPC_RCMSG register
had multiple updates requested on same system cycle.

3

(R/W1C)

RCCSERR Run Control Serial Wire Error.

The TAPC_DBGSTAT.RCCSERR bit indicates (if set =1) the serial wire connection
had multiple active messages to system domain.

2

(R/W1C)

RCCTERR Run Control Message Error.

The TAPC_DBGSTAT.RCCTERR bit indicates (if set =1) that the JTAG connection
has multiple active messages to system domain.

1

(R/W1C)

IDRDSTAT IDCODE Register Read Status.

The TAPC_DBGSTAT.IDRDSTAT bit indicates (if set =1) that the JTAG tap con-
troller performed a capture of the TAPC_IDCODE register.

CM41X_M4 TAPC Register Descriptions

46–8 ADSP-CM41x Mixed-Signal Control Processor

Table 46-7: TAPC_DBGSTAT Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W1C)

SRSTSTAT SWK Block Hardware Reset.

The TAPC_DBGSTAT.SRSTSTAT bit indicates (if set =1) that the TAPC Serial
Register Interface block initiated a hardware reset.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–9

IDCODE Register

The TAPC_IDCODE register holds the IDCODE. The bit field is defined as follows.

IDCODE[31:28] = 0x1* – REVID

IDCODE[27:12] = 0x280B – JTAG ID

IDCODE[11:1] = 0x65 – Manufacturer ID

IDCODE[0] = 0x1

Manufacturer ID

IDCODE LSBJTAG ID

JTAG IDSilicon Revision

MNFID (R)

LSB (R)JTAGID[3:0] (R)

1
15

0
14

1
13

1
12

0
11

0
10

0
9

0
8

1
7

1
6

0
5

0
4

1
3

0
2

1
1

1
0

JTAGID[15:4] (R)REVID (R)

0
31

0
30

1
29

0
28

0
27

0
26

1
25

0
24

1
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-3: TAPC_IDCODE Register Diagram

Table 46-8: TAPC_IDCODE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:28

(R/NW)

REVID Silicon Revision.

The TAPC_IDCODE.REVID bit field holds the silicon revision. See the processor
anomaly list for details.

27:12

(R/NW)

JTAGID JTAG ID.

11:1

(R/NW)

MNFID Manufacturer ID.

0

(R/NW)

LSB IDCODE LSB.

CM41X_M4 TAPC Register Descriptions

46–10 ADSP-CM41x Mixed-Signal Control Processor

Run Control Message Register

The TAPC_RCMSG register lets the debugger control boot options through a register that uses system hardware re-
set (SYS_HWRSTb pin) rather than a system reset (via the TRU or the system fault unit in the SEC).

No Factory PrebootNo L2 Memory Configuration

No Memory InitializationHalt On Entry

No CRC ROM ImageBoot Done

Enable CRCCortex-M0 Enable

NOFACTORYPREBOOT (R/W)NOL2CONFIG (R/W)

NOMEMINIT (R/W)HALTONENTRY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

NOCRC (R/W)BOOT_DONE (R/W)

ACRC (R/W)M0EN (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-4: TAPC_RCMSG Register Diagram

Table 46-9: TAPC_RCMSG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W)

M0EN Cortex-M0 Enable.

The TAPC_RCMSG.M0EN bit (when set =1) takes the Cortex-M0 out of reset and
places it into an idle (wait for interrupt) state.

24

(R/W)

BOOT_DONE Boot Done.

The TAPC_RCMSG.BOOT_DONE bit (when set =1) indicates that initial booting and
initializations are complete.

20

(R/W)

NOCRC No CRC ROM Image.

The TAPC_RCMSG.NOCRC bit (when set =1) instructs the boot process to disable
CRC checking of ROM Image.

16

(R/W)

ACRC Enable CRC.

The TAPC_RCMSG.ACRC bit (when set =1) instructs the boot process to enable
CRC of the application (first 4K of flash).

13

(R/W)

HALTONENTRY Halt On Entry.

The TAPC_RCMSG.HALTONENTRY bit (when set =1) instructs the boot process to
enter idle, or Wait For Interrupt, on entry.

12

(R/W)

NOL2CONFIG No L2 Memory Configuration.

The TAPC_RCMSG.NOL2CONFIG bit (when set =1) instructs the boot process to
not configure the L2 memory.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–11

Table 46-9: TAPC_RCMSG Register Fields (Continued)

Bit No.

(Access)

Bit Name Description/Enumeration

11

(R/W)

NOFACTORYPREBOOT No Factory Preboot.

The TAPC_RCMSG.NOFACTORYPREBOOT bit (when set =1) instructs the boot
process to not perform the factory preboot.

4

(R/W)

NOMEMINIT No Memory Initialization.

The TAPC_RCMSG.NOMEMINIT bit (when set =1) instructs the boot process to not
initialize memory (Main M4 SRAM and MBOX memories).

CM41X_M4 TAPC Register Descriptions

46–12 ADSP-CM41x Mixed-Signal Control Processor

Run Control Message Clear Register

No Factory PrebootNo L2 Memory Configuration

No Memory InitializationHalt On Entry

No CRC ROM ImageBoot Done

Enable CRCCortex-M0 Enable

NOFACTORYPREBOOT (R/W)NOL2CONFIG (R/W)

NOMEMINIT (R/W)HALTONENTRY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

NOCRC (R/W)BOOT_DONE (R/W)

ACRC (R/W)M0EN (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-5: TAPC_RCMSG_CLR Register Diagram

Table 46-10: TAPC_RCMSG_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W1C)

M0EN Enable M0 out of reset into idle (wfi) state.

24

(R/W1C)

BOOT_DONE 1 indicates that initial Booting and initializations are complete.

20

(R/W1C)

NOCRC Disable CRC checking of ROM Image.

16

(R/W1C)

ACRC Enable CRC of the application (first 4K of flash).

13

(R/W1C)

HALTONENTRY Enter idle, or wfi, on entry.

12

(R/W1C)

NOL2CONFIG Do not configure L2.

11

(R/W1C)

NOFACTORYPREBOOT Do not perform factory preboot.

4

(R/W1C)

NOMEMINIT Do not initialize memory (Main M4 SRAM and MBOX memories).

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–13

Run Control Message Set Register

No Factory PrebootNo L2 Memory Configuration

No Memory InitializationHalt On Entry

No CRC ROM ImageBoot Done

Enable CRCCortex-M0 Enable

NOFACTORYPREBOOT (R/W)NOL2CONFIG (R/W)

NOMEMINIT (R/W)HALTONENTRY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

NOCRC (R/W)BOOT_DONE (R/W)

ACRC (R/W)M0EN (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-6: TAPC_RCMSG_SET Register Diagram

Table 46-11: TAPC_RCMSG_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W1S)

M0EN Enable M0 out of reset into idle (wfi) state.

24

(R/W1S)

BOOT_DONE 1 indicates that initial Booting and initializations are complete.

20

(R/W1S)

NOCRC Disable CRC checking of ROM Image.

16

(R/W1S)

ACRC Enable CRC of the application (first 4K of flash).

13

(R/W1S)

HALTONENTRY Enter idle, or wfi, on entry.

12

(R/W1S)

NOL2CONFIG Do not configure L2.

11

(R/W1S)

NOFACTORYPREBOOT Do not perform factory preboot.

4

(R/W1S)

NOMEMINIT Do not initialize memory (Main M4 SRAM and MBOX memories).

CM41X_M4 TAPC Register Descriptions

46–14 ADSP-CM41x Mixed-Signal Control Processor

Run Control Message Toggle Register

No Factory PrebootNo L2 Memory Configuration

No Memory InitializationHalt On Entry

No CRC ROM ImageBoot Done

Enable CRCCortex-M0 Enable

NOFACTORYPREBOOT (R/W)NOL2CONFIG (R/W)

NOMEMINIT (R/W)HALTONENTRY (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

NOCRC (R/W)BOOT_DONE (R/W)

ACRC (R/W)M0EN (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-7: TAPC_RCMSG_TGL Register Diagram

Table 46-12: TAPC_RCMSG_TGL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

25

(R/W1T)

M0EN Enable M0 out of reset into idle (wfi) state.

24

(R/W1T)

BOOT_DONE 1 indicates that initial Booting and initializations are complete.

20

(R/W1T)

NOCRC Disable CRC checking of ROM Image.

16

(R/W1T)

ACRC Enable CRC of the application (first 4K of flash).

13

(R/W1T)

HALTONENTRY Enter idle, or wfi, on entry.

12

(R/W1T)

NOL2CONFIG Do not configure L2.

11

(R/W1T)

NOFACTORYPREBOOT Do not perform factory preboot.

4

(R/W1T)

NOMEMINIT Do not initialize memory (Main M4 SRAM and MBOX memories).

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–15

System Run Control Message Register

The TAPC_SCMSG register controls boot options through a register that uses the system hardware reset rather than
a system reset.

SC Message bits

SC Message bits

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-8: TAPC_SCMSG Register Diagram

Table 46-13: TAPC_SCMSG Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SC Message bits.

CM41X_M4 TAPC Register Descriptions

46–16 ADSP-CM41x Mixed-Signal Control Processor

System Run Control Message Clear Register

SC Message bits

SC Message bits

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-9: TAPC_SCMSG_CLR Register Diagram

Table 46-14: TAPC_SCMSG_CLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1S)

VALUE SC Message bits.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–17

System Run Control Message Set Register

SC Message bits

SC Message bits

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-10: TAPC_SCMSG_SET Register Diagram

Table 46-15: TAPC_SCMSG_SET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1C)

VALUE SC Message bits.

CM41X_M4 TAPC Register Descriptions

46–18 ADSP-CM41x Mixed-Signal Control Processor

System Run Control Message Toggle Register

SC Message bits

SC Message bits

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-11: TAPC_SCMSG_TGL Register Diagram

Table 46-16: TAPC_SCMSG_TGL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W1T)

VALUE SC Message bits.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–19

Secure Debug Key 0 Register

The TAPC_SDBGKEY0 register allows a locked part to unlock debug access through the JTAG or SWD interfaces.
A debug key of 128 bits needs to be written into the Secure Debug Key registers (TAPC_SDBGKEY0,
TAPC_SDBGKEY1, TAPC_SDBGKEY2, TAPC_SDBGKEY3) in the TAPC through the peripheral bus interface.

These registers hold the value of the key against which a matching key provided by the debug user is compared to
enable a debug session. The task of writing these registers is performed (initially) by boot ROM code which copies a
customer-selected key from the Flash memory info block to these registers.

An SDBGKEY value of all 0’s is always an invalid key, a value of all 1’s match the default value of the Secure Debug
Key Compare registers and requires no entry in these registers. It is recommended programs have a significant num-
ber of 0’s and 1’s in a pseudo-random pattern throughout the 128-bit code for maximum protection.

SDBGKEY

SDBGKEY

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-12: TAPC_SDBGKEY0 Register Diagram

Table 46-17: TAPC_SDBGKEY0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEY.

The TAPC_SDBGKEY0.VALUE bit field holds the value of the key against which a
matching key provided by the debug user is compared to enable a debug session.

CM41X_M4 TAPC Register Descriptions

46–20 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 1 Register

The TAPC_SDBGKEY1 register allows a locked part to unlock debug access through the JTAG or SWD interfaces.
See the TAPC_SDBGKEY0 register description for more information.

SDBGKEY

SDBGKEY

VALUE[47:32] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[63:48] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-13: TAPC_SDBGKEY1 Register Diagram

Table 46-18: TAPC_SDBGKEY1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEY.

The TAPC_SDBGKEY1.VALUE bit field holds the value of the key against which a
matching key provided by the debug user is compared to enable a debug session.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–21

Secure Debug Key 2 Register

The TAPC_SDBGKEY2 register allows a locked part to unlock debug access through the JTAG or SWD interfaces.
See the TAPC_SDBGKEY0 register description for more information.

SDBGKEY

SDBGKEY

VALUE[79:64] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[95:80] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-14: TAPC_SDBGKEY2 Register Diagram

Table 46-19: TAPC_SDBGKEY2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEY.

The TAPC_SDBGKEY2.VALUE bit field holds the value of the key against which a
matching key provided by the debug user is compared to enable a debug session.

CM41X_M4 TAPC Register Descriptions

46–22 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 3 Register

The TAPC_SDBGKEY3 register allows a locked part to unlock debug access through the JTAG or SWD interfaces.
See the TAPC_SDBGKEY0 register description for more information.

SDBGKEY

SDBGKEY

VALUE[111:96] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[127:112] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-15: TAPC_SDBGKEY3 Register Diagram

Table 46-20: TAPC_SDBGKEY3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEY.

The TAPC_SDBGKEY3.VALUE bit field holds the value of the key against which a
matching key provided by the debug user is compared to enable a debug session.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–23

Secure Debug Key 0 Compare Register

The TAPC_SDBGKEYCMP0 register holds the secure debug comparison key word 0.

To unlock debug access to the system, a Debug key of 128 bits needs to be written into these registers
(TAPC_SDBGKEYCMP0, TAPC_SDBGKEYCMP1, TAPC_SDBGKEYCMP2, TAPC_SDBGKEYCMP3). The
Compare register access can be performed through JTAG scan or through APB MMR access to facilitate SWD de-
bug options.

For proper secure key operation, the DBGKEY value must be entered after the SDBGKEYCMP value or a sticky fail
occurs. The DBGKEY matching the default SDBGKEYCMP (all 1’s) may be entered without need to load the
SDBGKEYCMP if debugger access is to be granted without and security code requirements.

SDBGKEYCMP word 0

SDBGKEYCMP word 0

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-16: TAPC_SDBGKEYCMP0 Register Diagram

Table 46-21: TAPC_SDBGKEYCMP0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEYCMP word 0.

CM41X_M4 TAPC Register Descriptions

46–24 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 1 Compare Register

The TAPC_SDBGKEYCMP1 register holds the secure debug comparison key word 1. See the
TAPC_SDBGKEYCMP0 register description for more information.

SDBGKEYCMP word 1

SDBGKEYCMP word 1

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-17: TAPC_SDBGKEYCMP1 Register Diagram

Table 46-22: TAPC_SDBGKEYCMP1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEYCMP word 1.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–25

Secure Debug Key 2 Compare Register

The TAPC_SDBGKEYCMP2 register holds the secure debug comparison key word 2. See the
TAPC_SDBGKEYCMP0 register description for more information.

SDBGKEYCMP word 2

SDBGKEYCMP word 2

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-18: TAPC_SDBGKEYCMP2 Register Diagram

Table 46-23: TAPC_SDBGKEYCMP2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEYCMP word 2.

CM41X_M4 TAPC Register Descriptions

46–26 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 3 Compare Register

The TAPC_SDBGKEYCMP3 register holds the secure debug comparison key word 3. See the
TAPC_SDBGKEYCMP0 register description for more information.

SDBGKEYCMP word 3

SDBGKEYCMP word 3

VALUE[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-19: TAPC_SDBGKEYCMP3 Register Diagram

Table 46-24: TAPC_SDBGKEYCMP3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

VALUE SDBGKEYCMP word 3.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–27

Secure Debug Key 0 Identification Register

The TAPC_SDBGKEYID0 register allows programs to place a unique code from a non-volatile memory that a de-
bugger can use to identify an individual die. The JTAG scan register is read only. An update to this register does not
alter the TAPC value.

System writes to this register are transferred to the JTAG scan register when the APB MMR writes to the
TAPC_SDBGKEYID3 register. Due to the JTAG having a completely asynchronous clock to the system, it is possi-
ble for the system to issue a transfer request to the JTAG system that can effectively take forever to complete. A
status bit in the TAPC_DBGSTAT register indicates if an APB MMR write attempts to transfer to the JTAG scan
register before a previous transfer attempt completes.

Code
Part Specific User Key Identification

Code
Part Specific User Key Identification

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-20: TAPC_SDBGKEYID0 Register Diagram

Table 46-25: TAPC_SDBGKEYID0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Part Specific User Key Identification Code.

CM41X_M4 TAPC Register Descriptions

46–28 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 1 Key Identification Register

The TAPC_SDBGKEYID1 register allows programs to place a unique code from a non-volatile memory that a de-
bugger can use to identify an individual die. See the TAPC_SDBGKEYID0 register description for more informa-
tion.

Code
Part Specific User Key Identification

Code
Part Specific User Key Identification

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-21: TAPC_SDBGKEYID1 Register Diagram

Table 46-26: TAPC_SDBGKEYID1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Part Specific User Key Identification Code.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–29

Secure Debug Key 2 Key Identification Register

The TAPC_SDBGKEYID2 register allows programs to place a unique code from a non-volatile memory that a de-
bugger can use to identify an individual die. See the TAPC_SDBGKEYID0 register description for more informa-
tion.

Code
Part Specific User Key Identification

Code
Part Specific User Key Identification

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-22: TAPC_SDBGKEYID2 Register Diagram

Table 46-27: TAPC_SDBGKEYID2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Part Specific User Key Identification Code.

CM41X_M4 TAPC Register Descriptions

46–30 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key 3 Key Identification Register

The TAPC_SDBGKEYID3 register allows programs to place a unique code from a non-volatile memory that a de-
bugger can use to identify an individual die. See the TAPC_SDBGKEYID0 register description for more informa-
tion.

Code
Part Specific User Key Identification

Code
Part Specific User Key Identification

DATA[15:0] (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DATA[31:16] (R/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-23: TAPC_SDBGKEYID3 Register Diagram

Table 46-28: TAPC_SDBGKEYID3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/W)

DATA Part Specific User Key Identification Code.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–31

Secure Debug Key Control Register

SDBGKEY Valid bit
VALID (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-24: TAPC_SDBGKEY_CTL Register Diagram

Table 46-29: TAPC_SDBGKEY_CTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

VALID SDBGKEY Valid bit.

CM41X_M4 TAPC Register Descriptions

46–32 ADSP-CM41x Mixed-Signal Control Processor

Secure Debug Key Status Register

SDBGKEY MATCH PASSEDSDBGKEY MATCH FAILED
PASS (R)FAIL (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-25: TAPC_SDBGKEY_STAT Register Diagram

Table 46-30: TAPC_SDBGKEY_STAT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

FAIL SDBGKEY MATCH FAILED.

0

(R/NW)

PASS SDBGKEY MATCH PASSED.

CM41X_M4 TAPC Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–33

USERCODE Register

The TAPC_USERCODE register

USERCODE[31:0]

USERCODE[31:0]

VALUE[15:0] (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

VALUE[31:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-26: TAPC_USERCODE Register Diagram

Table 46-31: TAPC_USERCODE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R/NW)

VALUE USERCODE[31:0].

CM41X_M4 CTI Register Descriptions
CSCTI_Register_Definitions (CTI) contains the following registers.

Table 46-32: CM41X_M4 CTI Register List

Name Description

CTI_ASICCTL External Multiplexor Control Register

CTI_AUTHSTATUS Authentication Status

CTI_CLAIMCLR Claim Tag Clear Register

CTI_CLAIMSET Claim Tag Set Register

CTI_COMPID0 Component ID0

CTI_COMPID1 Component ID1

CTI_COMPID2 Component ID2

CTI_COMPID3 Component ID3

CTI_CTIAPPCLEAR CTI Application Trigger Clear Register

CTI_CTIAPPPULSE CTI Application Pulse Register

CTI_CTIAPPSET CTI Application Trigger Set Register

CM41X_M4 TAPC Register Descriptions

46–34 ADSP-CM41x Mixed-Signal Control Processor

Table 46-32: CM41X_M4 CTI Register List (Continued)

Name Description

CTI_CTICHINSTATUS CTI Channel In Status Register

CTI_CTICHOUTSTATUS CTI Channel Out Status Register

CTI_CTICONTROL CTI Control Register

CTI_CTIGATE Enable CTI Channel Gate Register

CTI_CTIINEN0 CTI Trigger 0 to Channel Enable Register

CTI_CTIINEN1 CTI Trigger 1 to Channel Enable Register

CTI_CTIINEN2 CTI Trigger 2 to Channel Enable Register

CTI_CTIINEN3 CTI Trigger 3 to Channel Enable Register

CTI_CTIINEN4 CTI Trigger 4 to Channel Enable Register

CTI_CTIINEN5 CTI Trigger 5 to Channel Enable Register

CTI_CTIINEN6 CTI Trigger 6 to Channel Enable Register

CTI_CTIINEN7 CTI Trigger 7 to Channel Enable Register

CTI_CTIINTACK CTI Interrupt Acknowledge Register

CTI_CTIOUTEN0 CTI Channel to Trigger 0 Enable Register

CTI_CTIOUTEN1 CTI Channel to Trigger 1 Enable Register

CTI_CTIOUTEN2 CTI Channel to Trigger 2 Enable Register

CTI_CTIOUTEN3 CTI Channel to Trigger 3 Enable Register

CTI_CTIOUTEN4 CTI Channel to Trigger 4 Enable Register

CTI_CTIOUTEN5 CTI Channel to Trigger 5 Enable Register

CTI_CTIOUTEN6 CTI Channel to Trigger 6 Enable Register

CTI_CTIOUTEN7 CTI Channel to Trigger 7 Enable Register

CTI_CTITRIGINSTATUS CTI Trigger In Status Register

CTI_CTITRIGOUTSTATUS CTI Trigger Out Status Register

CTI_DEVID Device ID

CTI_DEVTYPE Device Type

CTI_ITCHIN ITCHIN

CTI_ITCHINACK ITCHINACK

CTI_ITCHOUT ITCHOUT

CTI_ITCHOUTACK ITCHOUTACK

CTI_ITCTRL Integration Mode Control Register

CTI_ITTRIGIN ITTRIGIN

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–35

Table 46-32: CM41X_M4 CTI Register List (Continued)

Name Description

CTI_ITTRIGINACK ITTRIGINACK

CTI_ITTRIGOUT ITTRIGOUT

CTI_ITTRIGOUTACK ITTRIGOUTACK

CTI_LAR Lock Access Register

CTI_LSR Lock Status Register

CTI_PERIPHID0 Peripheral ID0

CTI_PERIPHID1 Peripheral ID1

CTI_PERIPHID2 Peripheral ID2

CTI_PERIPHID3 Peripheral ID3

CTI_PERIPHID4 Peripheral ID4

CTI_PERIPHID5 Peripheral ID5

CTI_PERIPHID6 Peripheral ID6

CTI_PERIPHID7 Peripheral ID7

CM41X_M4 CTI Register Descriptions

46–36 ADSP-CM41x Mixed-Signal Control Processor

External Multiplexor Control Register

ASIC Control
ASICCTL (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-27: CTI_ASICCTL Register Diagram

Table 46-33: CTI_ASICCTL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/W)

ASICCTL ASIC Control.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–37

Authentication Status

Invasive Debug Enable StatusNon-invasive Debug Controlled

Invasive Debug ControlledNon-invasive Debug Enabled Status

IDBG_EN (R)NDBG_CTL (R)

IDBG_CTL (R)NDBG_EN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-28: CTI_AUTHSTATUS Register Diagram

Table 46-34: CTI_AUTHSTATUS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/NW)

NDBG_EN Non-invasive Debug Enabled Status.

2

(R/NW)

NDBG_CTL Non-invasive Debug Controlled.

1

(R/NW)

IDBG_EN Invasive Debug Enable Status.

0

(R/NW)

IDBG_CTL Invasive Debug Controlled.

CM41X_M4 CTI Register Descriptions

46–38 ADSP-CM41x Mixed-Signal Control Processor

Claim Tag Clear Register

Claim Tag Clear Register Bits
CLAIMCLR (R/W1C)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-29: CTI_CLAIMCLR Register Diagram

Table 46-35: CTI_CLAIMCLR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W1C)

CLAIMCLR Claim Tag Clear Register Bits.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–39

Claim Tag Set Register

Claim Tag Set Register Bits
CLAIMSET (R1/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-30: CTI_CLAIMSET Register Diagram

Table 46-36: CTI_CLAIMSET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R1/W)

CLAIMSET Claim Tag Set Register Bits.

CM41X_M4 CTI Register Descriptions

46–40 ADSP-CM41x Mixed-Signal Control Processor

Component ID0

Component ID0 Field
ID0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-31: CTI_COMPID0 Register Diagram

Table 46-37: CTI_COMPID0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

ID0 Component ID0 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–41

Component ID1

Component ID1 Field
ID1 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

0
5

1
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-32: CTI_COMPID1 Register Diagram

Table 46-38: CTI_COMPID1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

ID1 Component ID1 Field.

CM41X_M4 CTI Register Descriptions

46–42 ADSP-CM41x Mixed-Signal Control Processor

Component ID2

Component ID2 Field
ID2 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-33: CTI_COMPID2 Register Diagram

Table 46-39: CTI_COMPID2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

ID2 Component ID2 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–43

Component ID3

Component ID3 Field
ID3 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

1
5

1
4

0
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-34: CTI_COMPID3 Register Diagram

Table 46-40: CTI_COMPID3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

ID3 Component ID3 Field.

CM41X_M4 CTI Register Descriptions

46–44 ADSP-CM41x Mixed-Signal Control Processor

CTI Application Trigger Clear Register

Channel Clear
APPCLEAR (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-35: CTI_CTIAPPCLEAR Register Diagram

Table 46-41: CTI_CTIAPPCLEAR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R0/W)

APPCLEAR Channel Clear.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–45

CTI Application Pulse Register

Channel Event Pulse
Bit_0APPULSE (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-36: CTI_CTIAPPPULSE Register Diagram

Table 46-42: CTI_CTIAPPPULSE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R0/W)

BIT_0APPULSE Channel Event Pulse.

CM41X_M4 CTI Register Descriptions

46–46 ADSP-CM41x Mixed-Signal Control Processor

CTI Application Trigger Set Register

Set Channel Event
APPSET (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-37: CTI_CTIAPPSET Register Diagram

Table 46-43: CTI_CTIAPPSET Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

APPSET Set Channel Event.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–47

CTI Channel In Status Register

Channel Input Status
CTCHINSTATUS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-38: CTI_CTICHINSTATUS Register Diagram

Table 46-44: CTI_CTICHINSTATUS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/NW)

CTCHINSTATUS Channel Input Status.

CM41X_M4 CTI Register Descriptions

46–48 ADSP-CM41x Mixed-Signal Control Processor

CTI Channel Out Status Register

Channel Out Status
CTCHOUTSTATUS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-39: CTI_CTICHOUTSTATUS Register Diagram

Table 46-45: CTI_CTICHOUTSTATUS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/NW)

CTCHOUTSTATUS Channel Out Status.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–49

CTI Control Register

Global CTI Enable
GLBEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-40: CTI_CTICONTROL Register Diagram

Table 46-46: CTI_CTICONTROL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

GLBEN Global CTI Enable.

0 Disabled

1 Enabled

CM41X_M4 CTI Register Descriptions

46–50 ADSP-CM41x Mixed-Signal Control Processor

Enable CTI Channel Gate Register

Enable CTICHOUT1Enable CTICHOUT2

Enable CTICHOUT0Enable CTICHOUT3

CTIGATEEN1 (R/W)CTIGATEEN2 (R/W)

CTIGATEEN0 (R/W)CTIGATEEN3 (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-41: CTI_CTIGATE Register Diagram

Table 46-47: CTI_CTIGATE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3

(R/W)

CTIGATEEN3 Enable CTICHOUT3.

2

(R/W)

CTIGATEEN2 Enable CTICHOUT2.

1

(R/W)

CTIGATEEN1 Enable CTICHOUT1.

0

(R/W)

CTIGATEEN0 Enable CTICHOUT0.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–51

CTI Trigger 0 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-42: CTI_CTIINEN0 Register Diagram

Table 46-48: CTI_CTIINEN0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

46–52 ADSP-CM41x Mixed-Signal Control Processor

CTI Trigger 1 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-43: CTI_CTIINEN1 Register Diagram

Table 46-49: CTI_CTIINEN1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–53

CTI Trigger 2 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-44: CTI_CTIINEN2 Register Diagram

Table 46-50: CTI_CTIINEN2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

46–54 ADSP-CM41x Mixed-Signal Control Processor

CTI Trigger 3 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-45: CTI_CTIINEN3 Register Diagram

Table 46-51: CTI_CTIINEN3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–55

CTI Trigger 4 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-46: CTI_CTIINEN4 Register Diagram

Table 46-52: CTI_CTIINEN4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

46–56 ADSP-CM41x Mixed-Signal Control Processor

CTI Trigger 5 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-47: CTI_CTIINEN5 Register Diagram

Table 46-53: CTI_CTIINEN5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–57

CTI Trigger 6 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-48: CTI_CTIINEN6 Register Diagram

Table 46-54: CTI_CTIINEN6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

46–58 ADSP-CM41x Mixed-Signal Control Processor

CTI Trigger 7 to Channel Enable Register

Channel Trigger Input Enable
TRIGINEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-49: CTI_CTIINEN7 Register Diagram

Table 46-55: CTI_CTIINEN7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGINEN Channel Trigger Input Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–59

CTI Interrupt Acknowledge Register

Interrupt Acknowledge
INTACK (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-50: CTI_CTIINTACK Register Diagram

Table 46-56: CTI_CTIINTACK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W)

INTACK Interrupt Acknowledge.

CM41X_M4 CTI Register Descriptions

46–60 ADSP-CM41x Mixed-Signal Control Processor

CTI Channel to Trigger 0 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-51: CTI_CTIOUTEN0 Register Diagram

Table 46-57: CTI_CTIOUTEN0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–61

CTI Channel to Trigger 1 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-52: CTI_CTIOUTEN1 Register Diagram

Table 46-58: CTI_CTIOUTEN1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

46–62 ADSP-CM41x Mixed-Signal Control Processor

CTI Channel to Trigger 2 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-53: CTI_CTIOUTEN2 Register Diagram

Table 46-59: CTI_CTIOUTEN2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–63

CTI Channel to Trigger 3 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-54: CTI_CTIOUTEN3 Register Diagram

Table 46-60: CTI_CTIOUTEN3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

46–64 ADSP-CM41x Mixed-Signal Control Processor

CTI Channel to Trigger 4 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-55: CTI_CTIOUTEN4 Register Diagram

Table 46-61: CTI_CTIOUTEN4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–65

CTI Channel to Trigger 5 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-56: CTI_CTIOUTEN5 Register Diagram

Table 46-62: CTI_CTIOUTEN5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

46–66 ADSP-CM41x Mixed-Signal Control Processor

CTI Channel to Trigger 6 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-57: CTI_CTIOUTEN6 Register Diagram

Table 46-63: CTI_CTIOUTEN6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–67

CTI Channel to Trigger 7 Enable Register

Channel Trigger Output Enable
TRIGOUTEN (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-58: CTI_CTIOUTEN7 Register Diagram

Table 46-64: CTI_CTIOUTEN7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/W)

TRIGOUTEN Channel Trigger Output Enable.

CM41X_M4 CTI Register Descriptions

46–68 ADSP-CM41x Mixed-Signal Control Processor

CTI Trigger In Status Register

Trigger In Status
TRIGINSTATUS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-59: CTI_CTITRIGINSTATUS Register Diagram

Table 46-65: CTI_CTITRIGINSTATUS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

TRIGINSTATUS Trigger In Status.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–69

CTI Trigger Out Status Register

Trigger Output Status
TRIGOUTSTATUS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-60: CTI_CTITRIGOUTSTATUS Register Diagram

Table 46-66: CTI_CTITRIGOUTSTATUS Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

TRIGOUTSTATUS Trigger Output Status.

CM41X_M4 CTI Register Descriptions

46–70 ADSP-CM41x Mixed-Signal Control Processor

Device ID

Device ID Field

Device ID Field

DEVID[15:0] (R)

0
15

0
14

0
13

0
12

1
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

DEVID[19:16] (R)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

1
18

0
17

0
16

Figure 46-61: CTI_DEVID Register Diagram

Table 46-67: CTI_DEVID Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

19:0

(R/NW)

DEVID Device ID Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–71

Device Type

Device Type Field
DEVTYPE (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

1
4

0
3

1
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-62: CTI_DEVTYPE Register Diagram

Table 46-68: CTI_DEVTYPE Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

DEVTYPE Device Type Field.

CM41X_M4 CTI Register Descriptions

46–72 ADSP-CM41x Mixed-Signal Control Processor

ITCHIN

Read the values of the CTCHIN inputs
CTCHIN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-63: CTI_ITCHIN Register Diagram

Table 46-69: CTI_ITCHIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/NW)

CTCHIN Read the values of the CTCHIN inputs.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–73

ITCHINACK

Set the value of the CTCHINACK outputs
CTCHINACK (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-64: CTI_ITCHINACK Register Diagram

Table 46-70: CTI_ITCHINACK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R0/W)

CTCHINACK Set the value of the CTCHINACK outputs.

CM41X_M4 CTI Register Descriptions

46–74 ADSP-CM41x Mixed-Signal Control Processor

ITCHOUT

Set the value of the CTCHOUT outputs
CTCHOUT (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-65: CTI_ITCHOUT Register Diagram

Table 46-71: CTI_ITCHOUT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R0/W)

CTCHOUT Set the value of the CTCHOUT outputs.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–75

ITCHOUTACK

inputs
Read the values of the CTCHOUTACK
CTCHOUTACK (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-66: CTI_ITCHOUTACK Register Diagram

Table 46-72: CTI_ITCHOUTACK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

3:0

(R/NW)

CTCHOUTACK Read the values of the CTCHOUTACK inputs.

CM41X_M4 CTI Register Descriptions

46–76 ADSP-CM41x Mixed-Signal Control Processor

Integration Mode Control Register

Integration Mode Enable
Integration_mode (R/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-67: CTI_ITCTRL Register Diagram

Table 46-73: CTI_ITCTRL Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

0

(R/W)

INTEGRATION_MODE Integration Mode Enable.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–77

ITTRIGIN

Read the values of the CTTRIGIN inputs
CTTRIGIN (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-68: CTI_ITTRIGIN Register Diagram

Table 46-74: CTI_ITTRIGIN Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

CTTRIGIN Read the values of the CTTRIGIN inputs.

CM41X_M4 CTI Register Descriptions

46–78 ADSP-CM41x Mixed-Signal Control Processor

ITTRIGINACK

outputs
Set the value of the CTTRIGINACK
CTTRIGINACK (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-69: CTI_ITTRIGINACK Register Diagram

Table 46-75: CTI_ITTRIGINACK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W)

CTTRIGINACK Set the value of the CTTRIGINACK outputs.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–79

ITTRIGOUT

Set the value of the CTTRIGOUT outputs
CTTRIGOUT (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-70: CTI_ITTRIGOUT Register Diagram

Table 46-76: CTI_ITTRIGOUT Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R0/W)

CTTRIGOUT Set the value of the CTTRIGOUT outputs.

CM41X_M4 CTI Register Descriptions

46–80 ADSP-CM41x Mixed-Signal Control Processor

ITTRIGOUTACK

inputs
Read the values of the CTTRIGOUTACK
CTTRIGOUTACK (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-71: CTI_ITTRIGOUTACK Register Diagram

Table 46-77: CTI_ITTRIGOUTACK Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

CTTRIGOUTACK Read the values of the CTTRIGOUTACK inputs.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–81

Lock Access Register

Write Access Code

Write Access Code

WACODE[15:0] (R0/W)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

WACODE[31:16] (R0/W)

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-72: CTI_LAR Register Diagram

Table 46-78: CTI_LAR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

31:0

(R0/W)

WACODE Write Access Code.

CM41X_M4 CTI Register Descriptions

46–82 ADSP-CM41x Mixed-Signal Control Processor

Lock Status Register

Lock Exists for DeviceAccess Blocked to Device
LOCK (R)ACCESS (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-73: CTI_LSR Register Diagram

Table 46-79: CTI_LSR Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

1

(R/NW)

ACCESS Access Blocked to Device.

0

(R/NW)

LOCK Lock Exists for Device.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–83

Peripheral ID0

Peripheral ID0 Field
PID0 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

1
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-74: CTI_PERIPHID0 Register Diagram

Table 46-80: CTI_PERIPHID0 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID0 Peripheral ID0 Field.

CM41X_M4 CTI Register Descriptions

46–84 ADSP-CM41x Mixed-Signal Control Processor

Peripheral ID1

Peripheral ID1 Field
PID1 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

1
7

0
6

1
5

1
4

1
3

0
2

0
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-75: CTI_PERIPHID1 Register Diagram

Table 46-81: CTI_PERIPHID1 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID1 Peripheral ID1 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–85

Peripheral ID2

Peripheral ID2 Field
PID2 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

1
4

1
3

0
2

1
1

1
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-76: CTI_PERIPHID2 Register Diagram

Table 46-82: CTI_PERIPHID2 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID2 Peripheral ID2 Field.

CM41X_M4 CTI Register Descriptions

46–86 ADSP-CM41x Mixed-Signal Control Processor

Peripheral ID3

Peripheral ID3 Field
PID3 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-77: CTI_PERIPHID3 Register Diagram

Table 46-83: CTI_PERIPHID3 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID3 Peripheral ID3 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–87

Peripheral ID4

Peripheral ID4 Field
PID4 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

1
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-78: CTI_PERIPHID4 Register Diagram

Table 46-84: CTI_PERIPHID4 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID4 Peripheral ID4 Field.

CM41X_M4 CTI Register Descriptions

46–88 ADSP-CM41x Mixed-Signal Control Processor

Peripheral ID5

Peripheral ID5 Field
PID5 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-79: CTI_PERIPHID5 Register Diagram

Table 46-85: CTI_PERIPHID5 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID5 Peripheral ID5 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–89

Peripheral ID6

Peripheral ID6 Field
PID6 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-80: CTI_PERIPHID6 Register Diagram

Table 46-86: CTI_PERIPHID6 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID6 Peripheral ID6 Field.

CM41X_M4 CTI Register Descriptions

46–90 ADSP-CM41x Mixed-Signal Control Processor

Peripheral ID7

Peripheral ID7 Field
PID7 (R)

0
15

0
14

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

0
31

0
30

0
29

0
28

0
27

0
26

0
25

0
24

0
23

0
22

0
21

0
20

0
19

0
18

0
17

0
16

Figure 46-81: CTI_PERIPHID7 Register Diagram

Table 46-87: CTI_PERIPHID7 Register Fields

Bit No.

(Access)

Bit Name Description/Enumeration

7:0

(R/NW)

PID7 Peripheral ID7 Field.

CM41X_M4 CTI Register Descriptions

ADSP-CM41x Mixed-Signal Control Processor 46–91

47 CM41X_M0 Register List

This appendix lists Memory-Mapped Register address and register names. The modules are presented in alphabetical
order.

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B000 ADCC0_CTL ADCC0 Control Register 0x00000000

0x4100B004 ADCC0_ERRSTAT ADCC0 Error Status Register 0x00000000

0x4100B008 ADCC0_ERRMSK ADCC0 Error Mask Register 0x00000000

0x4100B00C ADCC0_ERRMSK_SET ADCC0 Error Mask Set Register 0x00000000

0x4100B010 ADCC0_ERRMSK_CLR ADCC0 Error Mask Clear Register 0x00000000

0x4100B014 ADCC0_EISTAT ADCC0 Event Interrupt Status Register 0x00000000

0x4100B018 ADCC0_EIMSK ADCC0 Event Interrupt Mask Register 0x00000000

0x4100B01C ADCC0_EIMSK_SET ADCC0 Event Interrupt Mask Set Register 0x00000000

0x4100B020 ADCC0_EIMSK_CLR ADCC0 Event Interrupt Mask Clear Register 0x00000000

0x4100B024 ADCC0_FISTAT ADCC0 Frame Interrupt Status Register 0x00000000

0x4100B028 ADCC0_FIMSK ADCC0 Frame Interrupt Mask Register 0x00000000

0x4100B02C ADCC0_FIMSK_SET ADCC0 Frame Interrupt Mask Set Register 0x00000000

0x4100B030 ADCC0_FIMSK_CLR ADCC0 Frame Interrupt Mask Clear Register 0x00000000

0x4100B034 ADCC0_EVTEN ADCC0 Event Enable Register 0x00000000

0x4100B038 ADCC0_EVTEN_SET ADCC0 Event Enable Set Register 0x00000000

0x4100B03C ADCC0_EVTEN_CLR ADCC0 Event Enable Clear Register 0x00000000

0x4100B040 ADCC0_ECOL ADCC0 Event Collision Status Register 0x00000000

0x4100B044 ADCC0_EMISS ADCC0 Event Miss Status Register 0x00000000

0x4100B048 ADCC0_BPTR0 ADCC0 Base Pointer 0 Register 0x00000000

0x4100B04C ADCC0_FRINC0 ADCC0 Frame Increment 0 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–1

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B050 ADCC0_CBSIZ0 ADCC0 Circular Buffer Size 0 Register 0x00000000

0x4100B054 ADCC0_TCA0 ADCC0 Timing Control A (ADC0) Register 0x00000000

0x4100B058 ADCC0_TCB0 ADCC0 Timing Control B (ADC0) Register 0x00000000

0x4100B05C ADCC0_BWMON0 ADCC0 Bandwidth Monitor 0 Register 0x00000000

0x4100B064 ADCC0_BPTR1 ADCC0 DMA Base Pointer 1 Register 0x00000000

0x4100B068 ADCC0_FRINC1 ADCC0 Frame Increment 1 Register 0x00000000

0x4100B06C ADCC0_CBSIZ1 ADCC0 Circular Buffer Size 1 Register 0x00000000

0x4100B070 ADCC0_TCA1 ADCC0 Timing Control A (ADC1) Register 0x00000000

0x4100B074 ADCC0_TCB1 ADCC0 Timing Control B (ADC1) Register 0x00000000

0x4100B078 ADCC0_BWMON1 ADCC0 Bandwidth Monitor 1 Register 0x00000000

0x4100B07C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B080 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B084 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B088 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B08C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B090 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B094 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B098 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B09C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0A0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0A4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0A8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0AC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0B0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0B4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0B8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0BC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0C0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0C4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0C8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0CC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

CM41X_M0 Register List

47–2 ADSP-CM41x Mixed-Signal Control Processor

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B0D0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0D4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0D8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0DC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0E0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0E4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0E8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0EC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0F0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0F4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0F8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0FC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B100 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B104 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B108 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B10C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B110 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B114 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B118 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B11C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B120 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B124 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B128 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B12C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B130 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B134 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B138 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B13C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B140 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B144 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B148 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–3

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B14C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B150 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B154 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B158 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B15C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B160 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B164 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B168 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B16C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B170 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B174 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B178 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B17C ADCC0_NUMFRAM0 ADCC0 Timer0 Frame Limit Count Register 0x00000000

0x4100B180 ADCC0_NUMFRAM1 ADCC0 Timer1 Frame Limit Count Register 0x00000000

0x4100B184 ADCC0_DATOVF ADCC0 Data Overflow Indication Register 0x00000000

0x4100B200 ADCC0_EPND ADCC0 Pending Events Status Register 0x00000000

0x4100B204 ADCC0_T0STAT ADCC0 Timer 0 Status Register 0x00000000

0x4100B208 ADCC0_TMR0 ADCC0 Timer 0 Current Count Register 0x00000000

0x4100B20C ADCC0_T1STAT ADCC0 Timer 1 Status Register 0x00000000

0x4100B210 ADCC0_TMR1 ADCC0 Timer 1 Current Count Register 0x00000000

0x4100B214 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B218 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B21C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B220 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B224 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B228 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B22C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B230 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B234 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B238 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B23C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

CM41X_M0 Register List

47–4 ADSP-CM41x Mixed-Signal Control Processor

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B240 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B244 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B248 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B24C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B250 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B254 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B258 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B25C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B260 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B264 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B268 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B26C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B270 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B274 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B278 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B27C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B280 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B284 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B288 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B28C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B290 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B294 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B298 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B29C ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2AC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–5

Table 47-1: CM41X_M0 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B2BC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2CC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2DC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2EC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2FC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B300 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B304 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B308 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B30C ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B310 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B314 ADCC0_CBNUM0 ADCC0 Timer0 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4100B318 ADCC0_CBNUM1 ADCC0 Timer1 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4100B31C ADCC0_TRGCNT0 ADCC0 Trigger Count TIMER0 Register 0x00000000

0x4100B320 ADCC0_TRGCNT1 ADCC0 Trigger Count TIMER1 Register 0x00000000

0x4100B404 ADCC0_ADCRW0 ADCC0 ADC2 Interface RW Access Register 0x00000000

0x4100B408 ADCC0_ADCRW1 ADCC0 ADC2 Interface RW Access Register 0x00000000

CM41X_M0 Register List

47–6 ADSP-CM41x Mixed-Signal Control Processor

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A000 ADCC1_CTL ADCC1 Control Register 0x00000000

0x4004A004 ADCC1_ERRSTAT ADCC1 Error Status Register 0x00000000

0x4004A008 ADCC1_ERRMSK ADCC1 Error Mask Register 0x00000000

0x4004A00C ADCC1_ERRMSK_SET ADCC1 Error Mask Set Register 0x00000000

0x4004A010 ADCC1_ERRMSK_CLR ADCC1 Error Mask Clear Register 0x00000000

0x4004A014 ADCC1_EISTAT ADCC1 Event Interrupt Status Register 0x00000000

0x4004A018 ADCC1_EIMSK ADCC1 Event Interrupt Mask Register 0x00000000

0x4004A01C ADCC1_EIMSK_SET ADCC1 Event Interrupt Mask Set Register 0x00000000

0x4004A020 ADCC1_EIMSK_CLR ADCC1 Event Interrupt Mask Clear Register 0x00000000

0x4004A024 ADCC1_FISTAT ADCC1 Frame Interrupt Status Register 0x00000000

0x4004A028 ADCC1_FIMSK ADCC1 Frame Interrupt Mask Register 0x00000000

0x4004A02C ADCC1_FIMSK_SET ADCC1 Frame Interrupt Mask Set Register 0x00000000

0x4004A030 ADCC1_FIMSK_CLR ADCC1 Frame Interrupt Mask Clear Register 0x00000000

0x4004A034 ADCC1_EVTEN ADCC1 Event Enable Register 0x00000000

0x4004A038 ADCC1_EVTEN_SET ADCC1 Event Enable Set Register 0x00000000

0x4004A03C ADCC1_EVTEN_CLR ADCC1 Event Enable Clear Register 0x00000000

0x4004A040 ADCC1_ECOL ADCC1 Event Collision Status Register 0x00000000

0x4004A044 ADCC1_EMISS ADCC1 Event Miss Status Register 0x00000000

0x4004A048 ADCC1_BPTR0 ADCC1 Base Pointer 0 Register 0x00000000

0x4004A04C ADCC1_FRINC0 ADCC1 Frame Increment 0 Register 0x00000000

0x4004A050 ADCC1_CBSIZ0 ADCC1 Circular Buffer Size 0 Register 0x00000000

0x4004A054 ADCC1_TCA0 ADCC1 Timing Control A (ADC0) Register 0x00000000

0x4004A058 ADCC1_TCB0 ADCC1 Timing Control B (ADC0) Register 0x00000000

0x4004A05C ADCC1_BWMON0 ADCC1 Bandwidth Monitor 0 Register 0x00000000

0x4004A064 ADCC1_BPTR1 ADCC1 DMA Base Pointer 1 Register 0x00000000

0x4004A068 ADCC1_FRINC1 ADCC1 Frame Increment 1 Register 0x00000000

0x4004A06C ADCC1_CBSIZ1 ADCC1 Circular Buffer Size 1 Register 0x00000000

0x4004A070 ADCC1_TCA1 ADCC1 Timing Control A (ADC1) Register 0x00000000

0x4004A074 ADCC1_TCB1 ADCC1 Timing Control B (ADC1) Register 0x00000000

0x4004A078 ADCC1_BWMON1 ADCC1 Bandwidth Monitor 1 Register 0x00000000

0x4004A07C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–7

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A080 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A084 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A088 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A08C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A090 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A094 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A098 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A09C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0A0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0A4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0A8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0AC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0B0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0B4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0B8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0BC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0C0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0C4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0C8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0CC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0D0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0D4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0D8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0DC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0E0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0E4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0E8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0EC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0F0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0F4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0F8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

CM41X_M0 Register List

47–8 ADSP-CM41x Mixed-Signal Control Processor

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A0FC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A100 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A104 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A108 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A10C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A110 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A114 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A118 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A11C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A120 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A124 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A128 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A12C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A130 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A134 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A138 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A13C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A140 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A144 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A148 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A14C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A150 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A154 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A158 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A15C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A160 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A164 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A168 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A16C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A170 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A174 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–9

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A178 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A17C ADCC1_NUMFRAM0 ADCC1 Timer0 Frame Limit Count Register 0x00000000

0x4004A180 ADCC1_NUMFRAM1 ADCC1 Timer1 Frame Limit Count Register 0x00000000

0x4004A184 ADCC1_DATOVF ADCC1 Data Overflow Indication Register 0x00000000

0x4004A200 ADCC1_EPND ADCC1 Pending Events Status Register 0x00000000

0x4004A204 ADCC1_T0STAT ADCC1 Timer 0 Status Register 0x00000000

0x4004A208 ADCC1_TMR0 ADCC1 Timer 0 Current Count Register 0x00000000

0x4004A20C ADCC1_T1STAT ADCC1 Timer 1 Status Register 0x00000000

0x4004A210 ADCC1_TMR1 ADCC1 Timer 1 Current Count Register 0x00000000

0x4004A214 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A218 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A21C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A220 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A224 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A228 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A22C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A230 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A234 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A238 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A23C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A240 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A244 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A248 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A24C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A250 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A254 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A258 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A25C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A260 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A264 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A268 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

CM41X_M0 Register List

47–10 ADSP-CM41x Mixed-Signal Control Processor

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A26C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A270 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A274 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A278 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A27C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A280 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A284 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A288 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A28C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A290 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A294 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A298 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A29C ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2AC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2BC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2CC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2DC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2E0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2E4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–11

Table 47-2: CM41X_M0 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A2E8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2EC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2FC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A300 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A304 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A308 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A30C ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A310 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A314 ADCC1_CBNUM0 ADCC1 Timer0 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4004A318 ADCC1_CBNUM1 ADCC1 Timer1 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4004A31C ADCC1_TRGCNT0 ADCC1 Trigger Count TIMER0 Register 0x00000000

0x4004A320 ADCC1_TRGCNT1 ADCC1 Trigger Count TIMER1 Register 0x00000000

0x4004A404 ADCC1_ADCRW0 ADCC1 ADC2 Interface RW Access Register 0x00000000

0x4004A408 ADCC1_ADCRW1 ADCC1 ADC2 Interface RW Access Register 0x00000000

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41008200 CAN0_MC1 CAN0 Mailbox Configuration 1 Register 0x00000000

0x41008204 CAN0_MD1 CAN0 Mailbox Direction 1 Register 0x000000FF

0x41008208 CAN0_TRS1 CAN0 Transmission Request Set 1 Register 0x00000000

0x4100820C CAN0_TRR1 CAN0 Transmission Request Reset 1 Register 0x00000000

0x41008210 CAN0_TA1 CAN0 Transmission Acknowledge 1 Register 0x00000000

0x41008214 CAN0_AA1 CAN0 Abort Acknowledge 1 Register 0x00000000

0x41008218 CAN0_RMP1 CAN0 Receive Message Pending 1 Register 0x00000000

0x4100821C CAN0_RML1 CAN0 Receive Message Lost 1 Register 0x00000000

0x41008220 CAN0_MBTIF1 CAN0 Mailbox Transmit Interrupt Flag 1 Register 0x00000000

CM41X_M0 Register List

47–12 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008224 CAN0_MBRIF1 CAN0 Mailbox Receive Interrupt Flag 1 Register 0x00000000

0x41008228 CAN0_MBIM1 CAN0 Mailbox Interrupt Mask 1 Register 0x00000000

0x4100822C CAN0_RFH1 CAN0 Remote Frame Handling 1 Register 0x00000000

0x41008230 CAN0_OPSS1 CAN0 Overwrite Protection/Single Shot Transmission 1
Register

0x00000000

0x41008240 CAN0_MC2 CAN0 Mailbox Configuration 2 Register 0x00000000

0x41008244 CAN0_MD2 CAN0 Mailbox Direction 2 Register 0x00000000

0x41008248 CAN0_TRS2 CAN0 Transmission Request Set 2 Register 0x00000000

0x4100824C CAN0_TRR2 CAN0 Transmission Request Reset 2 Register 0x00000000

0x41008250 CAN0_TA2 CAN0 Transmission Acknowledge 2 Register 0x00000000

0x41008254 CAN0_AA2 CAN0 Abort Acknowledge 2 Register 0x00000000

0x41008258 CAN0_RMP2 CAN0 Receive Message Pending 2 Register 0x00000000

0x4100825C CAN0_RML2 CAN0 Receive Message Lost 2 Register 0x00000000

0x41008260 CAN0_MBTIF2 CAN0 Mailbox Transmit Interrupt Flag 2 Register 0x00000000

0x41008264 CAN0_MBRIF2 CAN0 Mailbox Receive Interrupt Flag 2 Register 0x00000000

0x41008268 CAN0_MBIM2 CAN0 Mailbox Interrupt Mask 2 Register 0x00000000

0x4100826C CAN0_RFH2 CAN0 Remote Frame Handling 2 Register 0x00000000

0x41008270 CAN0_OPSS2 CAN0 Overwrite Protection/Single Shot Transmission 2
Register

0x00000000

0x41008280 CAN0_CLK CAN0 Clock Register 0x00000000

0x41008284 CAN0_TIMING CAN0 Timing Register 0x00000000

0x41008288 CAN0_DBG CAN0 Debug Register 0x00000008

0x4100828C CAN0_STAT CAN0 Status Register 0x00000080

0x41008290 CAN0_CEC CAN0 Error Counter Register 0x00000000

0x41008294 CAN0_GIS CAN0 Global CAN Interrupt Status Register 0x00000000

0x41008298 CAN0_GIM CAN0 Global CAN Interrupt Mask Register 0x00000000

0x4100829C CAN0_GIF CAN0 Global CAN Interrupt Flag Register 0x00000000

0x410082A0 CAN0_CTL CAN0 CAN Master Control Register 0x00000080

0x410082A4 CAN0_INT CAN0 Interrupt Pending Register 0x00000000

0x410082AC CAN0_MBTD CAN0 Temporary Mailbox Disable Register 0x00000000

0x410082B0 CAN0_EWR CAN0 Error Counter Warning Level Register 0x00006060

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–13

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410082B4 CAN0_ESR CAN0 Error Status Register 0x00000020

0x410082C4 CAN0_UCCNT CAN0 Universal Counter Register 0x00000000

0x410082C8 CAN0_UCRC CAN0 Universal Counter Reload/Capture Register 0x00000000

0x410082CC CAN0_UCCNF CAN0 Universal Counter Configuration Mode Register 0x00000000

0x41008300 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008304 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008308 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100830C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008310 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008314 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008318 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100831C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008320 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008324 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008328 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100832C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008330 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008334 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008338 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100833C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008340 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008344 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008348 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100834C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008350 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008354 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008358 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100835C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008360 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008364 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008368 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

CM41X_M0 Register List

47–14 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100836C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008370 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008374 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008378 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100837C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008380 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008384 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008388 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100838C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008390 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008394 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008398 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100839C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083A0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083A4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083A8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083AC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083B0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083B4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083B8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083BC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083C0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083C4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083C8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083CC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083D0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083D4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083D8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083DC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083E0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083E4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–15

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410083E8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083EC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083F0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083F4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083F8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083FC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008400 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008404 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008408 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100840C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008410 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008414 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008418 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100841C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008420 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008424 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008428 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100842C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008430 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008434 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008438 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100843C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008440 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008444 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008448 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100844C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008450 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008454 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008458 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

CM41X_M0 Register List

47–16 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100845C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008460 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008464 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008468 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100846C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008470 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008474 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008478 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100847C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008480 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008484 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008488 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100848C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008490 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008494 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008498 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100849C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410084B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–17

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410084D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410084F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008500 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008504 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008508 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100850C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008510 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008514 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008518 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100851C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008520 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008524 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008528 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100852C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008530 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008534 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008538 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100853C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

CM41X_M0 Register List

47–18 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008540 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008544 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008548 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100854C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008550 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008554 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008558 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100855C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008560 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008564 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008568 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100856C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008570 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008574 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008578 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100857C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008580 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008584 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008588 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100858C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008590 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008594 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008598 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100859C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–19

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410085B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410085D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410085F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008600 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008604 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008608 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100860C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008610 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008614 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008618 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100861C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008620 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

47–20 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008624 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008628 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100862C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008630 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008634 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008638 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100863C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008640 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008644 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008648 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100864C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008650 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008654 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008658 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100865C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008660 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008664 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008668 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100866C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008670 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008674 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008678 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100867C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008680 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008684 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008688 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100868C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008690 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–21

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008694 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008698 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100869C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008700 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

47–22 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008704 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008708 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100870C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008710 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008714 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008718 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100871C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008720 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008724 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008728 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100872C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008730 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008734 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008738 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100873C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008740 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008744 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008748 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100874C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008750 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008754 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008758 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100875C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008760 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008764 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008768 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100876C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008770 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–23

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008774 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008778 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100877C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008780 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008784 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008788 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100878C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008790 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008794 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008798 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100879C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410087A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410087C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

47–24 ADSP-CM41x Mixed-Signal Control Processor

Table 47-3: CM41X_M0 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410087E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40024200 CAN1_MC1 CAN1 Mailbox Configuration 1 Register 0x00000000

0x40024204 CAN1_MD1 CAN1 Mailbox Direction 1 Register 0x000000FF

0x40024208 CAN1_TRS1 CAN1 Transmission Request Set 1 Register 0x00000000

0x4002420C CAN1_TRR1 CAN1 Transmission Request Reset 1 Register 0x00000000

0x40024210 CAN1_TA1 CAN1 Transmission Acknowledge 1 Register 0x00000000

0x40024214 CAN1_AA1 CAN1 Abort Acknowledge 1 Register 0x00000000

0x40024218 CAN1_RMP1 CAN1 Receive Message Pending 1 Register 0x00000000

0x4002421C CAN1_RML1 CAN1 Receive Message Lost 1 Register 0x00000000

0x40024220 CAN1_MBTIF1 CAN1 Mailbox Transmit Interrupt Flag 1 Register 0x00000000

0x40024224 CAN1_MBRIF1 CAN1 Mailbox Receive Interrupt Flag 1 Register 0x00000000

0x40024228 CAN1_MBIM1 CAN1 Mailbox Interrupt Mask 1 Register 0x00000000

0x4002422C CAN1_RFH1 CAN1 Remote Frame Handling 1 Register 0x00000000

0x40024230 CAN1_OPSS1 CAN1 Overwrite Protection/Single Shot Transmission 1
Register

0x00000000

0x40024240 CAN1_MC2 CAN1 Mailbox Configuration 2 Register 0x00000000

0x40024244 CAN1_MD2 CAN1 Mailbox Direction 2 Register 0x00000000

0x40024248 CAN1_TRS2 CAN1 Transmission Request Set 2 Register 0x00000000

0x4002424C CAN1_TRR2 CAN1 Transmission Request Reset 2 Register 0x00000000

0x40024250 CAN1_TA2 CAN1 Transmission Acknowledge 2 Register 0x00000000

0x40024254 CAN1_AA2 CAN1 Abort Acknowledge 2 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–25

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024258 CAN1_RMP2 CAN1 Receive Message Pending 2 Register 0x00000000

0x4002425C CAN1_RML2 CAN1 Receive Message Lost 2 Register 0x00000000

0x40024260 CAN1_MBTIF2 CAN1 Mailbox Transmit Interrupt Flag 2 Register 0x00000000

0x40024264 CAN1_MBRIF2 CAN1 Mailbox Receive Interrupt Flag 2 Register 0x00000000

0x40024268 CAN1_MBIM2 CAN1 Mailbox Interrupt Mask 2 Register 0x00000000

0x4002426C CAN1_RFH2 CAN1 Remote Frame Handling 2 Register 0x00000000

0x40024270 CAN1_OPSS2 CAN1 Overwrite Protection/Single Shot Transmission 2
Register

0x00000000

0x40024280 CAN1_CLK CAN1 Clock Register 0x00000000

0x40024284 CAN1_TIMING CAN1 Timing Register 0x00000000

0x40024288 CAN1_DBG CAN1 Debug Register 0x00000008

0x4002428C CAN1_STAT CAN1 Status Register 0x00000080

0x40024290 CAN1_CEC CAN1 Error Counter Register 0x00000000

0x40024294 CAN1_GIS CAN1 Global CAN Interrupt Status Register 0x00000000

0x40024298 CAN1_GIM CAN1 Global CAN Interrupt Mask Register 0x00000000

0x4002429C CAN1_GIF CAN1 Global CAN Interrupt Flag Register 0x00000000

0x400242A0 CAN1_CTL CAN1 CAN Master Control Register 0x00000080

0x400242A4 CAN1_INT CAN1 Interrupt Pending Register 0x00000000

0x400242AC CAN1_MBTD CAN1 Temporary Mailbox Disable Register 0x00000000

0x400242B0 CAN1_EWR CAN1 Error Counter Warning Level Register 0x00006060

0x400242B4 CAN1_ESR CAN1 Error Status Register 0x00000020

0x400242C4 CAN1_UCCNT CAN1 Universal Counter Register 0x00000000

0x400242C8 CAN1_UCRC CAN1 Universal Counter Reload/Capture Register 0x00000000

0x400242CC CAN1_UCCNF CAN1 Universal Counter Configuration Mode Register 0x00000000

0x40024300 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024304 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024308 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002430C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024310 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024314 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024318 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

CM41X_M0 Register List

47–26 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002431C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024320 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024324 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024328 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002432C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024330 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024334 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024338 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002433C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024340 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024344 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024348 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002434C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024350 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024354 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024358 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002435C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024360 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024364 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024368 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002436C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024370 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024374 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024378 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002437C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024380 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024384 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024388 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002438C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024390 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024394 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–27

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024398 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002439C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243A0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243A4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243A8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243AC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243B0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243B4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243B8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243BC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243C0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243C4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243C8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243CC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243D0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243D4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243D8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243DC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243E0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243E4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243E8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243EC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243F0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243F4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243F8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243FC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024400 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024404 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024408 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002440C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024410 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M0 Register List

47–28 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024414 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024418 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002441C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024420 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024424 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024428 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002442C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024430 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024434 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024438 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002443C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024440 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024444 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024448 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002444C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024450 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024454 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024458 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002445C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024460 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024464 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024468 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002446C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024470 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024474 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024478 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002447C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024480 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–29

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024484 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024488 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002448C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024490 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024494 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024498 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002449C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400244B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400244D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M0 Register List

47–30 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400244F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024500 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024504 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024508 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002450C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024510 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024514 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024518 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002451C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024520 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024524 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024528 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002452C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024530 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024534 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024538 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002453C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024540 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024544 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024548 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002454C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024550 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024554 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024558 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002455C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024560 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–31

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024564 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024568 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002456C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024570 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024574 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024578 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002457C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024580 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024584 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024588 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002458C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024590 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024594 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024598 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002459C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400245B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M0 Register List

47–32 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400245D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400245F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024600 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024604 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024608 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002460C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024610 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024614 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024618 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002461C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024620 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024624 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024628 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002462C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024630 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024634 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024638 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002463C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024640 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–33

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024644 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024648 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002464C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024650 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024654 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024658 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002465C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024660 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024664 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024668 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002466C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024670 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024674 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024678 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002467C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024680 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024684 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024688 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002468C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024690 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024694 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024698 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002469C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M0 Register List

47–34 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400246B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400246D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400246F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024700 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024704 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024708 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002470C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024710 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024714 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024718 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002471C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024720 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–35

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024724 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024728 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002472C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024730 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024734 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024738 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002473C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024740 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024744 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024748 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002474C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024750 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024754 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024758 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002475C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024760 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024764 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024768 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002476C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024770 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024774 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024778 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002477C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024780 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024784 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024788 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002478C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024790 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M0 Register List

47–36 ADSP-CM41x Mixed-Signal Control Processor

Table 47-4: CM41X_M0 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024794 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024798 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002479C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–37

Table 47-5: CM41X_M0 CGU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40014000 CGU0_CTL CGU0 Control Register 0x00001200

0x40014004 CGU0_PLLCTL CGU0 PLL Control Register 0x00000000

0x40014008 CGU0_STAT CGU0 Status Register 0x0000000F

0x4001400C CGU0_DIV CGU0 Clocks Divisor Register 0x168F2926

0x40014010 CGU0_CLKOUTSEL CGU0 CLKOUT Select Register 0x00000000

0x40014014 CGU0_OSCWDCTL CGU0 Oscillator Watchdog Register 0x00007600

0x40014018 CGU0_TSCTL CGU0 Time Stamp Control Register 0x00000000

0x4001401C CGU0_TSVALUE0 CGU0 Time Stamp Counter Initial 32 LSB Value Register 0x00000000

0x40014020 CGU0_TSVALUE1 CGU0 Time Stamp Counter Initial MSB Value Register 0x00000000

0x40014024 CGU0_TSCOUNT0 CGU0 Time Stamp Counter 32 LSB Register 0x00000000

0x40014028 CGU0_TSCOUNT1 CGU0 Time Stamp Counter 32 MSB Register 0x00000000

0x4001402C CGU0_CCBF_DIS CGU0 Core Clock Buffer Disable Register 0x00000000

0x40014030 CGU0_CCBF_STAT CGU0 Core Clock Buffer Status Register 0x00000000

0x40014038 CGU0_SCBF_DIS CGU0 System Clock Buffer Disable Register 0x00000000

0x4001403C CGU0_SCBF_STAT CGU0 System Clock Buffer Status Register 0x00000000

0x40014048 CGU0_REVID CGU0 Revision ID Register 0x00000020

Table 47-6: CM41X_M0 CNT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40022000 CNT0_CFG CNT0 Configuration Register 0x00000000

0x40022004 CNT0_IMSK CNT0 Interrupt Mask Register 0x00000000

0x40022008 CNT0_STAT CNT0 Status Register 0x00000000

0x4002200C CNT0_CMD CNT0 Command Register 0x00000000

0x40022010 CNT0_DEBNCE CNT0 Debounce Register 0x00000000

0x40022014 CNT0_CNTR CNT0 Counter Register 0x00000000

0x40022018 CNT0_MAX CNT0 Maximum Count Register 0x00000000

0x4002201C CNT0_MIN CNT0 Minimum Count Register 0x00000000

0x40022020 CNT0_MDIV CNT0 M Value for Divider 0x00000000

0x40022024 CNT0_NDIV CNT0 N Value for Divider 0x00000000

CM41X_M0 Register List

47–38 ADSP-CM41x Mixed-Signal Control Processor

Table 47-7: CM41X_M0 CPTMR0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40025004 CPTMR0_RUN CPTMR0 Run Register 0x00000000

0x40025008 CPTMR0_RUN_SET CPTMR0 Run Set Register 0x00000000

0x4002500C CPTMR0_RUN_CLR CPTMR0 Run Clear Register 0x00000000

0x40025010 CPTMR0_DATA_IMSK CPTMR0 Data Interrupt Mask Register 0x00000007

0x40025014 CPTMR0_DA-
TA_IMSK_SET

CPTMR0 Data Interrupt Mask Set Register 0x00000007

0x40025018 CPTMR0_DA-
TA_IMSK_CLR

CPTMR0 Data Interrupt Mask Clear Register 0x00000007

0x4002501C CPTMR0_STAT_IMSK CPTMR0 Status Interrupt Mask Register 0x00000007

0x40025020 CPTMR0_STAT_IMSK_SET CPTMR0 Status Interrupt Mask Set Register 0x00000007

0x40025024 CPTMR0_STAT_IMSK_CL
R

CPTMR0 Status Interrupt Mask Clear Register 0x00000007

0x40025028 CPTMR0_DATA_ILAT CPTMR0 Data Interrupt Latch Status Register 0x00000000

0x4002502C CPTMR0_STAT_ILAT CPTMR0 Interrupt Latch Status Register 0x00000000

0x40025800 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025804 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025808 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

0x40025880 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025884 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025888 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

0x40025900 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025904 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025908 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

Table 47-8: CM41X_M0 CRC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004C000 CRC0_CTL CRC0 Control Register 0x00000000

0x4004C004 CRC0_DCNT CRC0 Data Word Count Register 0x00000000

0x4004C008 CRC0_DCNTRLD CRC0 Data Word Count Reload Register 0x00000000

0x4004C014 CRC0_COMP CRC0 Data Compare Register 0x00000000

0x4004C018 CRC0_FILLVAL CRC0 Fill Value Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–39

Table 47-8: CM41X_M0 CRC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004C01C CRC0_DFIFO CRC0 Data FIFO Register 0x00000000

0x4004C020 CRC0_INEN CRC0 Interrupt Enable Register 0x00000000

0x4004C024 CRC0_INEN_SET CRC0 Interrupt Enable Set Register 0x00000000

0x4004C028 CRC0_INEN_CLR CRC0 Interrupt Enable Clear Register 0x00000000

0x4004C02C CRC0_POLY CRC0 Polynomial Register 0x00000000

0x4004C040 CRC0_STAT CRC0 Status Register 0x00000000

0x4004C044 CRC0_DCNTCAP CRC0 Data Count Capture Register 0x00000000

0x4004C04C CRC0_RESULT_FIN CRC0 CRC Final Result Register 0x00000000

0x4004C050 CRC0_RESULT_CUR CRC0 CRC Current Result Register 0x00000000

Table 47-9: CM41X_M0 DACC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004B000 DACC0_CTL0 DACC0 Control 0 Register 0x00000000

0x4004B008 DACC0_ERRSTAT DACC0 Error Status Register 0x00000000

0x4004B00C DACC0_ERRMSK DACC0 Error Mask Register 0x00000000

0x4004B010 DACC0_ERRMSK_SET DACC0 Error Mask Set Register 0x00000000

0x4004B014 DACC0_ERRMSK_CLR DACC0 Error Mask Clear Register 0x00000000

0x4004B018 DACC0_ISTAT DACC0 Interrupt Status Register 0x00000000

0x4004B01C DACC0_IMSK DACC0 Interrupt Mask Register 0x00000000

0x4004B020 DACC0_IMSK_SET DACC0 Interrupt Mask Set Register 0x00000000

0x4004B024 DACC0_IMSK_CLR DACC0 Interrupt Mask Clear Register 0x00000000

0x4004B028 DACC0_TC0 DACC0 Timing Control 0 Register 0x00000000

0x4004B02C DACC0_BPTR0 DACC0 Base Pointer 0 Register 0x00000000

0x4004B030 DACC0_MOD0 DACC0 Modify 0 Register 0x00000000

0x4004B034 DACC0_CNT0 DACC0 Count 0 Register 0x00000000

0x4004B038 DACC0_DAT0 DACC0 Data FIFO 0 Register 0x00000000

0x4004B050 DACC0_BCST_CTL DACC0 Broadcast (Write) Control Register 0x00000000

0x4004B100 DACC0_CNTCUR0 DACC0 Current Count 0 Register 0x00000000

0x4004B108 DACC0_STAT DACC0 Status Register 0x00000000

CM41X_M0 Register List

47–40 ADSP-CM41x Mixed-Signal Control Processor

Table 47-10: CM41X_M0 DMA0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100C000 DMA0_DSCPTR_NXT DMA0 Pointer to Next Initial Descriptor Register 0x00000000

0x4100C004 DMA0_ADDRSTART DMA0 Start Address of Current Buffer Register 0x00000000

0x4100C008 DMA0_CFG DMA0 Configuration Register 0x00000000

0x4100C00C DMA0_XCNT DMA0 Inner Loop Count Start Value Register 0x00000000

0x4100C010 DMA0_XMOD DMA0 Inner Loop Address Increment Register 0x00000000

0x4100C014 DMA0_YCNT DMA0 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100C018 DMA0_YMOD DMA0 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100C024 DMA0_DSCPTR_CUR DMA0 Current Descriptor Pointer Register 0x00000000

0x4100C028 DMA0_DSCPTR_PRV DMA0 Previous Initial Descriptor Pointer Register 0x00000000

0x4100C02C DMA0_ADDR_CUR DMA0 Current Address Register 0x00000000

0x4100C030 DMA0_STAT DMA0 Status Register 0x00006000

0x4100C034 DMA0_XCNT_CUR DMA0 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100C038 DMA0_YCNT_CUR DMA0 Current Row Count (2D only) Register 0x00000000

Table 47-11: CM41X_M0 DMA1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100D000 DMA1_DSCPTR_NXT DMA1 Pointer to Next Initial Descriptor Register 0x00000000

0x4100D004 DMA1_ADDRSTART DMA1 Start Address of Current Buffer Register 0x00000000

0x4100D008 DMA1_CFG DMA1 Configuration Register 0x00000000

0x4100D00C DMA1_XCNT DMA1 Inner Loop Count Start Value Register 0x00000000

0x4100D010 DMA1_XMOD DMA1 Inner Loop Address Increment Register 0x00000000

0x4100D014 DMA1_YCNT DMA1 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100D018 DMA1_YMOD DMA1 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100D024 DMA1_DSCPTR_CUR DMA1 Current Descriptor Pointer Register 0x00000000

0x4100D028 DMA1_DSCPTR_PRV DMA1 Previous Initial Descriptor Pointer Register 0x00000000

0x4100D02C DMA1_ADDR_CUR DMA1 Current Address Register 0x00000000

0x4100D030 DMA1_STAT DMA1 Status Register 0x00006000

0x4100D034 DMA1_XCNT_CUR DMA1 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100D038 DMA1_YCNT_CUR DMA1 Current Row Count (2D only) Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–41

Table 47-12: CM41X_M0 DMA10 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40066000 DMA10_DSCPTR_NXT DMA10 Pointer to Next Initial Descriptor Register 0x00000000

0x40066004 DMA10_ADDRSTART DMA10 Start Address of Current Buffer Register 0x00000000

0x40066008 DMA10_CFG DMA10 Configuration Register 0x00000000

0x4006600C DMA10_XCNT DMA10 Inner Loop Count Start Value Register 0x00000000

0x40066010 DMA10_XMOD DMA10 Inner Loop Address Increment Register 0x00000000

0x40066014 DMA10_YCNT DMA10 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40066018 DMA10_YMOD DMA10 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40066024 DMA10_DSCPTR_CUR DMA10 Current Descriptor Pointer Register 0x00000000

0x40066028 DMA10_DSCPTR_PRV DMA10 Previous Initial Descriptor Pointer Register 0x00000000

0x4006602C DMA10_ADDR_CUR DMA10 Current Address Register 0x00000000

0x40066030 DMA10_STAT DMA10 Status Register 0x00006000

0x40066034 DMA10_XCNT_CUR DMA10 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40066038 DMA10_YCNT_CUR DMA10 Current Row Count (2D only) Register 0x00000000

Table 47-13: CM41X_M0 DMA11 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40067000 DMA11_DSCPTR_NXT DMA11 Pointer to Next Initial Descriptor Register 0x00000000

0x40067004 DMA11_ADDRSTART DMA11 Start Address of Current Buffer Register 0x00000000

0x40067008 DMA11_CFG DMA11 Configuration Register 0x00000000

0x4006700C DMA11_XCNT DMA11 Inner Loop Count Start Value Register 0x00000000

0x40067010 DMA11_XMOD DMA11 Inner Loop Address Increment Register 0x00000000

0x40067014 DMA11_YCNT DMA11 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40067018 DMA11_YMOD DMA11 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40067024 DMA11_DSCPTR_CUR DMA11 Current Descriptor Pointer Register 0x00000000

0x40067028 DMA11_DSCPTR_PRV DMA11 Previous Initial Descriptor Pointer Register 0x00000000

0x4006702C DMA11_ADDR_CUR DMA11 Current Address Register 0x00000000

0x40067030 DMA11_STAT DMA11 Status Register 0x00006000

CM41X_M0 Register List

47–42 ADSP-CM41x Mixed-Signal Control Processor

Table 47-13: CM41X_M0 DMA11 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40067034 DMA11_XCNT_CUR DMA11 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40067038 DMA11_YCNT_CUR DMA11 Current Row Count (2D only) Register 0x00000000

Table 47-14: CM41X_M0 DMA12 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40068000 DMA12_DSCPTR_NXT DMA12 Pointer to Next Initial Descriptor Register 0x00000000

0x40068004 DMA12_ADDRSTART DMA12 Start Address of Current Buffer Register 0x00000000

0x40068008 DMA12_CFG DMA12 Configuration Register 0x00000000

0x4006800C DMA12_XCNT DMA12 Inner Loop Count Start Value Register 0x00000000

0x40068010 DMA12_XMOD DMA12 Inner Loop Address Increment Register 0x00000000

0x40068014 DMA12_YCNT DMA12 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40068018 DMA12_YMOD DMA12 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40068024 DMA12_DSCPTR_CUR DMA12 Current Descriptor Pointer Register 0x00000000

0x40068028 DMA12_DSCPTR_PRV DMA12 Previous Initial Descriptor Pointer Register 0x00000000

0x4006802C DMA12_ADDR_CUR DMA12 Current Address Register 0x00000000

0x40068030 DMA12_STAT DMA12 Status Register 0x00006000

0x40068034 DMA12_XCNT_CUR DMA12 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40068038 DMA12_YCNT_CUR DMA12 Current Row Count (2D only) Register 0x00000000

0x40068040 DMA12_BWLCNT DMA12 Bandwidth Limit Count Register 0x00000000

0x40068044 DMA12_BWLCNT_CUR DMA12 Bandwidth Limit Count Current Register 0x00000000

0x40068048 DMA12_BWMCNT DMA12 Bandwidth Monitor Count Register 0x00000000

0x4006804C DMA12_BWMCNT_CUR DMA12 Bandwidth Monitor Count Current Register 0x00000000

Table 47-15: CM41X_M0 DMA13 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40069000 DMA13_DSCPTR_NXT DMA13 Pointer to Next Initial Descriptor Register 0x00000000

0x40069004 DMA13_ADDRSTART DMA13 Start Address of Current Buffer Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–43

Table 47-15: CM41X_M0 DMA13 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40069008 DMA13_CFG DMA13 Configuration Register 0x00000000

0x4006900C DMA13_XCNT DMA13 Inner Loop Count Start Value Register 0x00000000

0x40069010 DMA13_XMOD DMA13 Inner Loop Address Increment Register 0x00000000

0x40069014 DMA13_YCNT DMA13 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40069018 DMA13_YMOD DMA13 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40069024 DMA13_DSCPTR_CUR DMA13 Current Descriptor Pointer Register 0x00000000

0x40069028 DMA13_DSCPTR_PRV DMA13 Previous Initial Descriptor Pointer Register 0x00000000

0x4006902C DMA13_ADDR_CUR DMA13 Current Address Register 0x00000000

0x40069030 DMA13_STAT DMA13 Status Register 0x00006000

0x40069034 DMA13_XCNT_CUR DMA13 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40069038 DMA13_YCNT_CUR DMA13 Current Row Count (2D only) Register 0x00000000

0x40069040 DMA13_BWLCNT DMA13 Bandwidth Limit Count Register 0x00000000

0x40069044 DMA13_BWLCNT_CUR DMA13 Bandwidth Limit Count Current Register 0x00000000

0x40069048 DMA13_BWMCNT DMA13 Bandwidth Monitor Count Register 0x00000000

0x4006904C DMA13_BWMCNT_CUR DMA13 Bandwidth Monitor Count Current Register 0x00000000

Table 47-16: CM41X_M0 DMA2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100E000 DMA2_DSCPTR_NXT DMA2 Pointer to Next Initial Descriptor Register 0x00000000

0x4100E004 DMA2_ADDRSTART DMA2 Start Address of Current Buffer Register 0x00000000

0x4100E008 DMA2_CFG DMA2 Configuration Register 0x00000000

0x4100E00C DMA2_XCNT DMA2 Inner Loop Count Start Value Register 0x00000000

0x4100E010 DMA2_XMOD DMA2 Inner Loop Address Increment Register 0x00000000

0x4100E014 DMA2_YCNT DMA2 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100E018 DMA2_YMOD DMA2 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100E024 DMA2_DSCPTR_CUR DMA2 Current Descriptor Pointer Register 0x00000000

0x4100E028 DMA2_DSCPTR_PRV DMA2 Previous Initial Descriptor Pointer Register 0x00000000

0x4100E02C DMA2_ADDR_CUR DMA2 Current Address Register 0x00000000

CM41X_M0 Register List

47–44 ADSP-CM41x Mixed-Signal Control Processor

Table 47-16: CM41X_M0 DMA2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100E030 DMA2_STAT DMA2 Status Register 0x00006000

0x4100E034 DMA2_XCNT_CUR DMA2 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100E038 DMA2_YCNT_CUR DMA2 Current Row Count (2D only) Register 0x00000000

Table 47-17: CM41X_M0 DMA3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100F000 DMA3_DSCPTR_NXT DMA3 Pointer to Next Initial Descriptor Register 0x00000000

0x4100F004 DMA3_ADDRSTART DMA3 Start Address of Current Buffer Register 0x00000000

0x4100F008 DMA3_CFG DMA3 Configuration Register 0x00000000

0x4100F00C DMA3_XCNT DMA3 Inner Loop Count Start Value Register 0x00000000

0x4100F010 DMA3_XMOD DMA3 Inner Loop Address Increment Register 0x00000000

0x4100F014 DMA3_YCNT DMA3 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100F018 DMA3_YMOD DMA3 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100F024 DMA3_DSCPTR_CUR DMA3 Current Descriptor Pointer Register 0x00000000

0x4100F028 DMA3_DSCPTR_PRV DMA3 Previous Initial Descriptor Pointer Register 0x00000000

0x4100F02C DMA3_ADDR_CUR DMA3 Current Address Register 0x00000000

0x4100F030 DMA3_STAT DMA3 Status Register 0x00006000

0x4100F034 DMA3_XCNT_CUR DMA3 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100F038 DMA3_YCNT_CUR DMA3 Current Row Count (2D only) Register 0x00000000

Table 47-18: CM41X_M0 DMA4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40060000 DMA4_DSCPTR_NXT DMA4 Pointer to Next Initial Descriptor Register 0x00000000

0x40060004 DMA4_ADDRSTART DMA4 Start Address of Current Buffer Register 0x00000000

0x40060008 DMA4_CFG DMA4 Configuration Register 0x00000000

0x4006000C DMA4_XCNT DMA4 Inner Loop Count Start Value Register 0x00000000

0x40060010 DMA4_XMOD DMA4 Inner Loop Address Increment Register 0x00000000

0x40060014 DMA4_YCNT DMA4 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40060018 DMA4_YMOD DMA4 Outer Loop Address Increment (2D only) Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–45

Table 47-18: CM41X_M0 DMA4 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40060024 DMA4_DSCPTR_CUR DMA4 Current Descriptor Pointer Register 0x00000000

0x40060028 DMA4_DSCPTR_PRV DMA4 Previous Initial Descriptor Pointer Register 0x00000000

0x4006002C DMA4_ADDR_CUR DMA4 Current Address Register 0x00000000

0x40060030 DMA4_STAT DMA4 Status Register 0x00006000

0x40060034 DMA4_XCNT_CUR DMA4 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40060038 DMA4_YCNT_CUR DMA4 Current Row Count (2D only) Register 0x00000000

Table 47-19: CM41X_M0 DMA5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40061000 DMA5_DSCPTR_NXT DMA5 Pointer to Next Initial Descriptor Register 0x00000000

0x40061004 DMA5_ADDRSTART DMA5 Start Address of Current Buffer Register 0x00000000

0x40061008 DMA5_CFG DMA5 Configuration Register 0x00000000

0x4006100C DMA5_XCNT DMA5 Inner Loop Count Start Value Register 0x00000000

0x40061010 DMA5_XMOD DMA5 Inner Loop Address Increment Register 0x00000000

0x40061014 DMA5_YCNT DMA5 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40061018 DMA5_YMOD DMA5 Outer Loop Address Increment (2D only) Register 0x00000000

0x40061024 DMA5_DSCPTR_CUR DMA5 Current Descriptor Pointer Register 0x00000000

0x40061028 DMA5_DSCPTR_PRV DMA5 Previous Initial Descriptor Pointer Register 0x00000000

0x4006102C DMA5_ADDR_CUR DMA5 Current Address Register 0x00000000

0x40061030 DMA5_STAT DMA5 Status Register 0x00006000

0x40061034 DMA5_XCNT_CUR DMA5 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40061038 DMA5_YCNT_CUR DMA5 Current Row Count (2D only) Register 0x00000000

Table 47-20: CM41X_M0 DMA6 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40062000 DMA6_DSCPTR_NXT DMA6 Pointer to Next Initial Descriptor Register 0x00000000

0x40062004 DMA6_ADDRSTART DMA6 Start Address of Current Buffer Register 0x00000000

0x40062008 DMA6_CFG DMA6 Configuration Register 0x00000000

0x4006200C DMA6_XCNT DMA6 Inner Loop Count Start Value Register 0x00000000

CM41X_M0 Register List

47–46 ADSP-CM41x Mixed-Signal Control Processor

Table 47-20: CM41X_M0 DMA6 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40062010 DMA6_XMOD DMA6 Inner Loop Address Increment Register 0x00000000

0x40062014 DMA6_YCNT DMA6 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40062018 DMA6_YMOD DMA6 Outer Loop Address Increment (2D only) Register 0x00000000

0x40062024 DMA6_DSCPTR_CUR DMA6 Current Descriptor Pointer Register 0x00000000

0x40062028 DMA6_DSCPTR_PRV DMA6 Previous Initial Descriptor Pointer Register 0x00000000

0x4006202C DMA6_ADDR_CUR DMA6 Current Address Register 0x00000000

0x40062030 DMA6_STAT DMA6 Status Register 0x00006000

0x40062034 DMA6_XCNT_CUR DMA6 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40062038 DMA6_YCNT_CUR DMA6 Current Row Count (2D only) Register 0x00000000

Table 47-21: CM41X_M0 DMA7 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40063000 DMA7_DSCPTR_NXT DMA7 Pointer to Next Initial Descriptor Register 0x00000000

0x40063004 DMA7_ADDRSTART DMA7 Start Address of Current Buffer Register 0x00000000

0x40063008 DMA7_CFG DMA7 Configuration Register 0x00000000

0x4006300C DMA7_XCNT DMA7 Inner Loop Count Start Value Register 0x00000000

0x40063010 DMA7_XMOD DMA7 Inner Loop Address Increment Register 0x00000000

0x40063014 DMA7_YCNT DMA7 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40063018 DMA7_YMOD DMA7 Outer Loop Address Increment (2D only) Register 0x00000000

0x40063024 DMA7_DSCPTR_CUR DMA7 Current Descriptor Pointer Register 0x00000000

0x40063028 DMA7_DSCPTR_PRV DMA7 Previous Initial Descriptor Pointer Register 0x00000000

0x4006302C DMA7_ADDR_CUR DMA7 Current Address Register 0x00000000

0x40063030 DMA7_STAT DMA7 Status Register 0x00006000

0x40063034 DMA7_XCNT_CUR DMA7 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40063038 DMA7_YCNT_CUR DMA7 Current Row Count (2D only) Register 0x00000000

Table 47-22: CM41X_M0 DMA8 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40064000 DMA8_DSCPTR_NXT DMA8 Pointer to Next Initial Descriptor Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–47

Table 47-22: CM41X_M0 DMA8 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40064004 DMA8_ADDRSTART DMA8 Start Address of Current Buffer Register 0x00000000

0x40064008 DMA8_CFG DMA8 Configuration Register 0x00000000

0x4006400C DMA8_XCNT DMA8 Inner Loop Count Start Value Register 0x00000000

0x40064010 DMA8_XMOD DMA8 Inner Loop Address Increment Register 0x00000000

0x40064014 DMA8_YCNT DMA8 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40064018 DMA8_YMOD DMA8 Outer Loop Address Increment (2D only) Register 0x00000000

0x40064024 DMA8_DSCPTR_CUR DMA8 Current Descriptor Pointer Register 0x00000000

0x40064028 DMA8_DSCPTR_PRV DMA8 Previous Initial Descriptor Pointer Register 0x00000000

0x4006402C DMA8_ADDR_CUR DMA8 Current Address Register 0x00000000

0x40064030 DMA8_STAT DMA8 Status Register 0x00006000

0x40064034 DMA8_XCNT_CUR DMA8 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40064038 DMA8_YCNT_CUR DMA8 Current Row Count (2D only) Register 0x00000000

Table 47-23: CM41X_M0 DMA9 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40065000 DMA9_DSCPTR_NXT DMA9 Pointer to Next Initial Descriptor Register 0x00000000

0x40065004 DMA9_ADDRSTART DMA9 Start Address of Current Buffer Register 0x00000000

0x40065008 DMA9_CFG DMA9 Configuration Register 0x00000000

0x4006500C DMA9_XCNT DMA9 Inner Loop Count Start Value Register 0x00000000

0x40065010 DMA9_XMOD DMA9 Inner Loop Address Increment Register 0x00000000

0x40065014 DMA9_YCNT DMA9 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40065018 DMA9_YMOD DMA9 Outer Loop Address Increment (2D only) Register 0x00000000

0x40065024 DMA9_DSCPTR_CUR DMA9 Current Descriptor Pointer Register 0x00000000

0x40065028 DMA9_DSCPTR_PRV DMA9 Previous Initial Descriptor Pointer Register 0x00000000

0x4006502C DMA9_ADDR_CUR DMA9 Current Address Register 0x00000000

0x40065030 DMA9_STAT DMA9 Status Register 0x00006000

0x40065034 DMA9_XCNT_CUR DMA9 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40065038 DMA9_YCNT_CUR DMA9 Current Row Count (2D only) Register 0x00000000

CM41X_M0 Register List

47–48 ADSP-CM41x Mixed-Signal Control Processor

Table 47-24: CM41X_M0 DPM0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40013000 DPM0_CTL DPM0 Control Register 0x00000000

0x40013004 DPM0_STAT DPM0 Status Register 0x00000001

0x4001301C DPM0_WAKE_EN DPM0 Wakeup Enable Register 0x00000000

0x40013020 DPM0_WAKE_POL DPM0 Wakeup Polarity Register 0x00000000

0x40013024 DPM0_WAKE_STAT DPM0 Wakeup Status Register 0x00000000

0x40013070 DPM0_PER_DIS0 DPM0 Peripherals Disable Register 0 0x00000000

0x40013084 DPM0_REVID DPM0 Revision ID 0x00000020

Table 47-25: CM41X_M0 EMUID0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40002020 EMUID0_ADIID EMUID0 Analog Devices Identification 0x00004144

0x40002024 EMUID0_CHIPID EMUID0 Chip Identification 0x00000402

Table 47-26: CM41X_M0 FFTB0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40048000 FFTB0_CTL FFTB0 FFTB Control Register 0x00500000

0x40048004 FFTB0_STAT FFTB0 FFTB Status Register 0x00000000

0x40048008 FFTB0_FMTCTL FFTB0 Format Converter Control Register 0x0000FFF0

0x4004800C FFTB0_INOFST FFTB0 Input Offset Register 0x00000000

0x40048010 FFTB0_COMB FFTB0 FFTB Input Comb Filter Control Register 0x00000000

0x40048014 FFTB0_DMABASE FFTB0 DMA Output Base Address Register 0x00000000

0x40048018 FFTB0_DMAWR FFTB0 DMA Output Write Address Register 0x00000000

0x40048020 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048024 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048028 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x4004802C FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048030 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048034 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048038 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x4004803C FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–49

Table 47-26: CM41X_M0 FFTB0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40048040 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048070 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048074 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048078 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x4004807C FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048080 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048084 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048088 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x4004808C FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048090 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x400480C0 FFTB0_MAXMAG FFTB0 Maximum Magnitude Register 0x00000000

0x400480C4 FFTB0_MINMAG FFTB0 Minimum Magnitude Register 0x00000000

Table 47-27: CM41X_M0 HAE0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400500A0 HAE0_RUN HAE0 Run Register 0x00000000

0x40050B00 HAE0_CFG0 HAE0 Configuration 0 Register 0x00000000

0x40050B04 HAE0_CFG1 HAE0 Configuration 1 Register 0x00000000

0x40050B08 HAE0_CFG2 HAE0 Configuration 2 Register 0x00000000

0x40050B0C HAE0_CFG3 HAE0 Configuration 3 Register 0x00000000

0x40050B20 HAE0_STAT HAE0 Status Register 0x00000000

0x40050B40 HAE0_ISAMPLE HAE0 I (Current) Sample Register 0x00000000

0x40050B44 HAE0_VSAMPLE HAE0 V (Voltage) Sample Register 0x00000000

0x40050B80 HAE0_IWAVEFORM HAE0 I (Current) Waveform Register 0x00000000

0x40050B84 HAE0_VWAVEFORM HAE0 V (Voltage) Waveform Register 0x00000000

0x40051E00 HAE0_CFG4 HAE0 Configuration 4 Register 0x00000000

0x40051E04 HAE0_DIDT_GAIN HAE0 DIDT Gain Register 0x00000000

0x40051E08 HAE0_DIDT_COEF HAE0 DIDT Coefficient Register 0x00000000

0x40051E10 HAE0_VLEVEL HAE0 Voltage Level Register 0x00000000

0x40051E2C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

CM41X_M0 Register List

47–50 ADSP-CM41x Mixed-Signal Control Processor

Table 47-27: CM41X_M0 HAE0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40051E30 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E34 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E38 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E3C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E40 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E44 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E48 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E4C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E50 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E54 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E58 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

Table 47-28: CM41X_M0 LBA0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F004 LBA0_CLK_CTL LBA0 Logic Block Array Clock Divisor Register 0x00000000

0x4000F008 LBA0_DIR LBA0 Logic Block Array Pin Direction Register 0x00000000

0x4000F00C LBA0_DIN LBA0 Logic Block Array Data Input Register 0x00000000

0x4000F010 LBA0_DOUT LBA0 Logic Block Array Data Output Register 0x00000000

0x4000F014 LBA0_CFG LBA0 Logic Block Array Configuration Register 0x00000000

0x4000F018 LBA0_SYNC_CTL LBA0 Logic Block Array GPIO Input Synchronization
Control Register

0x00000000

0x4000F020 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F024 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F028 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F02C LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F030 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F034 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F038 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F03C LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F100 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F104 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–51

Table 47-28: CM41X_M0 LBA0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F108 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F10C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F110 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F114 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F118 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F11C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F120 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F124 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F128 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F12C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F130 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F134 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F138 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F13C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F140 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F144 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F148 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F14C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F150 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F154 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F158 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F15C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F160 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F164 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F168 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F16C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F170 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F174 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F178 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F17C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F180 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

CM41X_M0 Register List

47–52 ADSP-CM41x Mixed-Signal Control Processor

Table 47-28: CM41X_M0 LBA0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F184 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F188 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F18C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F190 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F194 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F198 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F19C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F1A0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1A4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1A8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1AC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1B0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1B4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1B8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1BC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F1C0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1C4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1C8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1CC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1D0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1D4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1D8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1DC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F1E0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1E4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1E8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1EC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1F0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1F4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1F8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1FC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–53

Table 47-29: CM41X_M0 MBOX0_PORT1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400D1000 MBOX0_PORT1_CTL MBOX0_PORT1 Port 1 Control Register 0x00000000

0x400D1004 MBOX0_PORT1_FORCE-
IRQ

MBOX0_PORT1 Port 1 Force IRQ Register 0x00000000

0x400D1008 MBOX0_PORT1_STAT MBOX0_PORT1 Port 1 Status Register 0x00000000

0x400D100C MBOX0_PORT1_ESTAT MBOX0_PORT1 Port 1 ECC Status Register 0x00000000

0x400D1010 MBOX0_PORT1_RFRPER MBOX0_PORT1 Auto-refresh Period Register 0x00000000

0x400D1014 MBOX0_PORT1_RFRADD
R

MBOX0_PORT1 Auto-refresh Address Register 0x00000000

0x400D1018 MBOX0_PORT1_RFRCNT MBOX0_PORT1 Auto-refresh Counter Register 0x00000001

Table 47-30: CM41X_M0 OCU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40015000 OCU0_CTL OCU0 Control Register 0x00000000

0x40015004 OCU0_STAT OCU0 Status Register 0x00000000

0x40015008 OCU0_CLKCNT OCU0 Frequency Measured Count Register 0x00000000

0x4001500C OCU0_REFCNT OCU0 Reference Count Register 0x00000000

0x40015010 OCU0_MINCNT OCU0 Minimum Limit Register 0x00000000

0x40015014 OCU0_MAXCNT OCU0 Maximum Count Register 0x00000000

0x40015018 OCU0_LMONCNT OCU0 LFO Monitor Reference Count Register 0x00000000

0x4001501C OCU0_CMONCNT OCU0 CLKIN Monitor Reference Count Register 0x00000000

Table 47-31: CM41X_M0 PINT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41002000 PINT0_MSK_SET PINT0 PINT Mask Set Register 0x00000000

0x41002004 PINT0_MSK_CLR PINT0 PINT Mask Clear Register 0x00000000

0x41002008 PINT0_REQ PINT0 PINT Request Register 0x00000000

0x4100200C PINT0_ASSIGN PINT0 PINT Assign Register 0x00000101

0x41002010 PINT0_EDGE_SET PINT0 PINT Edge Set Register 0x00000000

0x41002014 PINT0_EDGE_CLR PINT0 PINT Edge Clear Register 0x00000000

0x41002018 PINT0_INV_SET PINT0 PINT Invert Set Register 0x00000000

0x4100201C PINT0_INV_CLR PINT0 PINT Invert Clear Register 0x00000000

CM41X_M0 Register List

47–54 ADSP-CM41x Mixed-Signal Control Processor

Table 47-31: CM41X_M0 PINT0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41002020 PINT0_PINSTATE PINT0 PINT Pin State Register 0x00000000

0x41002024 PINT0_LATCH PINT0 PINT Latch Register 0x00000000

Table 47-32: CM41X_M0 PINT1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40003000 PINT1_MSK_SET PINT1 PINT Mask Set Register 0x00000000

0x40003004 PINT1_MSK_CLR PINT1 PINT Mask Clear Register 0x00000000

0x40003008 PINT1_REQ PINT1 PINT Request Register 0x00000000

0x4000300C PINT1_ASSIGN PINT1 PINT Assign Register 0x00000101

0x40003010 PINT1_EDGE_SET PINT1 PINT Edge Set Register 0x00000000

0x40003014 PINT1_EDGE_CLR PINT1 PINT Edge Clear Register 0x00000000

0x40003018 PINT1_INV_SET PINT1 PINT Invert Set Register 0x00000000

0x4000301C PINT1_INV_CLR PINT1 PINT Invert Clear Register 0x00000000

0x40003020 PINT1_PINSTATE PINT1 PINT Pin State Register 0x00000000

0x40003024 PINT1_LATCH PINT1 PINT Latch Register 0x00000000

Table 47-33: CM41X_M0 PINT2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40004000 PINT2_MSK_SET PINT2 PINT Mask Set Register 0x00000000

0x40004004 PINT2_MSK_CLR PINT2 PINT Mask Clear Register 0x00000000

0x40004008 PINT2_REQ PINT2 PINT Request Register 0x00000000

0x4000400C PINT2_ASSIGN PINT2 PINT Assign Register 0x00000101

0x40004010 PINT2_EDGE_SET PINT2 PINT Edge Set Register 0x00000000

0x40004014 PINT2_EDGE_CLR PINT2 PINT Edge Clear Register 0x00000000

0x40004018 PINT2_INV_SET PINT2 PINT Invert Set Register 0x00000000

0x4000401C PINT2_INV_CLR PINT2 PINT Invert Clear Register 0x00000000

0x40004020 PINT2_PINSTATE PINT2 PINT Pin State Register 0x00000000

0x40004024 PINT2_LATCH PINT2 PINT Latch Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–55

Table 47-34: CM41X_M0 PINT3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40005000 PINT3_MSK_SET PINT3 PINT Mask Set Register 0x00000000

0x40005004 PINT3_MSK_CLR PINT3 PINT Mask Clear Register 0x00000000

0x40005008 PINT3_REQ PINT3 PINT Request Register 0x00000000

0x4000500C PINT3_ASSIGN PINT3 PINT Assign Register 0x00000101

0x40005010 PINT3_EDGE_SET PINT3 PINT Edge Set Register 0x00000000

0x40005014 PINT3_EDGE_CLR PINT3 PINT Edge Clear Register 0x00000000

0x40005018 PINT3_INV_SET PINT3 PINT Invert Set Register 0x00000000

0x4000501C PINT3_INV_CLR PINT3 PINT Invert Clear Register 0x00000000

0x40005020 PINT3_PINSTATE PINT3 PINT Pin State Register 0x00000000

0x40005024 PINT3_LATCH PINT3 PINT Latch Register 0x00000000

Table 47-35: CM41X_M0 PINT4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40006000 PINT4_MSK_SET PINT4 PINT Mask Set Register 0x00000000

0x40006004 PINT4_MSK_CLR PINT4 PINT Mask Clear Register 0x00000000

0x40006008 PINT4_REQ PINT4 PINT Request Register 0x00000000

0x4000600C PINT4_ASSIGN PINT4 PINT Assign Register 0x00000101

0x40006010 PINT4_EDGE_SET PINT4 PINT Edge Set Register 0x00000000

0x40006014 PINT4_EDGE_CLR PINT4 PINT Edge Clear Register 0x00000000

0x40006018 PINT4_INV_SET PINT4 PINT Invert Set Register 0x00000000

0x4000601C PINT4_INV_CLR PINT4 PINT Invert Clear Register 0x00000000

0x40006020 PINT4_PINSTATE PINT4 PINT Pin State Register 0x00000000

0x40006024 PINT4_LATCH PINT4 PINT Latch Register 0x00000000

Table 47-36: CM41X_M0 PINT5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40007000 PINT5_MSK_SET PINT5 PINT Mask Set Register 0x00000000

0x40007004 PINT5_MSK_CLR PINT5 PINT Mask Clear Register 0x00000000

0x40007008 PINT5_REQ PINT5 PINT Request Register 0x00000000

0x4000700C PINT5_ASSIGN PINT5 PINT Assign Register 0x00000101

CM41X_M0 Register List

47–56 ADSP-CM41x Mixed-Signal Control Processor

Table 47-36: CM41X_M0 PINT5 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40007010 PINT5_EDGE_SET PINT5 PINT Edge Set Register 0x00000000

0x40007014 PINT5_EDGE_CLR PINT5 PINT Edge Clear Register 0x00000000

0x40007018 PINT5_INV_SET PINT5 PINT Invert Set Register 0x00000000

0x4000701C PINT5_INV_CLR PINT5 PINT Invert Clear Register 0x00000000

0x40007020 PINT5_PINSTATE PINT5 PINT Pin State Register 0x00000000

0x40007024 PINT5_LATCH PINT5 PINT Latch Register 0x00000000

Table 47-37: CM41X_M0 PORTA MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41003000 PORTA_FER PORTA Port x Function Enable Register 0x00000000

0x41003004 PORTA_FER_SET PORTA Port x Function Enable Set Register 0x00000000

0x41003008 PORTA_FER_CLR PORTA Port x Function Enable Clear Register 0x00000000

0x4100300C PORTA_DATA PORTA Port x GPIO Data Register 0x00000000

0x41003010 PORTA_DATA_SET PORTA Port x GPIO Data Set Register 0x00000000

0x41003014 PORTA_DATA_CLR PORTA Port x GPIO Data Clear Register 0x00000000

0x41003018 PORTA_DIR PORTA Port x GPIO Direction Register 0x00000000

0x4100301C PORTA_DIR_SET PORTA Port x GPIO Direction Set Register 0x00000000

0x41003020 PORTA_DIR_CLR PORTA Port x GPIO Direction Clear Register 0x00000000

0x41003024 PORTA_INEN PORTA Port x GPIO Input Enable Register 0x00000000

0x41003028 PORTA_INEN_SET PORTA Port x GPIO Input Enable Set Register 0x00000000

0x4100302C PORTA_INEN_CLR PORTA Port x GPIO Input Enable Clear Register 0x00000000

0x41003030 PORTA_MUX PORTA Port x Multiplexer Control Register 0x00000000

0x41003034 PORTA_DATA_TGL PORTA Port x GPIO Output Toggle Register 0x00000000

0x41003038 PORTA_POL PORTA Port x GPIO Polarity Invert Register 0x00000000

0x4100303C PORTA_POL_SET PORTA Port x GPIO Polarity Invert Set Register 0x00000000

0x41003040 PORTA_POL_CLR PORTA Port x GPIO Polarity Invert Clear Register 0x00000000

0x41003044 PORTA_LOCK PORTA Port x GPIO Lock Register 0x00000000

0x41003048 PORTA_TRIG_TGL PORTA Port x GPIO Trigger Toggle Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–57

Table 47-38: CM41X_M0 PORTB MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40008000 PORTB_FER PORTB Port x Function Enable Register 0x00000000

0x40008004 PORTB_FER_SET PORTB Port x Function Enable Set Register 0x00000000

0x40008008 PORTB_FER_CLR PORTB Port x Function Enable Clear Register 0x00000000

0x4000800C PORTB_DATA PORTB Port x GPIO Data Register 0x00000000

0x40008010 PORTB_DATA_SET PORTB Port x GPIO Data Set Register 0x00000000

0x40008014 PORTB_DATA_CLR PORTB Port x GPIO Data Clear Register 0x00000000

0x40008018 PORTB_DIR PORTB Port x GPIO Direction Register 0x00000000

0x4000801C PORTB_DIR_SET PORTB Port x GPIO Direction Set Register 0x00000000

0x40008020 PORTB_DIR_CLR PORTB Port x GPIO Direction Clear Register 0x00000000

0x40008024 PORTB_INEN PORTB Port x GPIO Input Enable Register 0x00000000

0x40008028 PORTB_INEN_SET PORTB Port x GPIO Input Enable Set Register 0x00000000

0x4000802C PORTB_INEN_CLR PORTB Port x GPIO Input Enable Clear Register 0x00000000

0x40008030 PORTB_MUX PORTB Port x Multiplexer Control Register 0x00000000

0x40008034 PORTB_DATA_TGL PORTB Port x GPIO Output Toggle Register 0x00000000

0x40008038 PORTB_POL PORTB Port x GPIO Polarity Invert Register 0x00000000

0x4000803C PORTB_POL_SET PORTB Port x GPIO Polarity Invert Set Register 0x00000000

0x40008040 PORTB_POL_CLR PORTB Port x GPIO Polarity Invert Clear Register 0x00000000

0x40008044 PORTB_LOCK PORTB Port x GPIO Lock Register 0x00000000

0x40008048 PORTB_TRIG_TGL PORTB Port x GPIO Trigger Toggle Register 0x00000000

Table 47-39: CM41X_M0 PORTC MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40009000 PORTC_FER PORTC Port x Function Enable Register 0x00000000

0x40009004 PORTC_FER_SET PORTC Port x Function Enable Set Register 0x00000000

0x40009008 PORTC_FER_CLR PORTC Port x Function Enable Clear Register 0x00000000

0x4000900C PORTC_DATA PORTC Port x GPIO Data Register 0x00000000

0x40009010 PORTC_DATA_SET PORTC Port x GPIO Data Set Register 0x00000000

0x40009014 PORTC_DATA_CLR PORTC Port x GPIO Data Clear Register 0x00000000

0x40009018 PORTC_DIR PORTC Port x GPIO Direction Register 0x00000000

0x4000901C PORTC_DIR_SET PORTC Port x GPIO Direction Set Register 0x00000000

CM41X_M0 Register List

47–58 ADSP-CM41x Mixed-Signal Control Processor

Table 47-39: CM41X_M0 PORTC MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40009020 PORTC_DIR_CLR PORTC Port x GPIO Direction Clear Register 0x00000000

0x40009024 PORTC_INEN PORTC Port x GPIO Input Enable Register 0x00000000

0x40009028 PORTC_INEN_SET PORTC Port x GPIO Input Enable Set Register 0x00000000

0x4000902C PORTC_INEN_CLR PORTC Port x GPIO Input Enable Clear Register 0x00000000

0x40009030 PORTC_MUX PORTC Port x Multiplexer Control Register 0x00000000

0x40009034 PORTC_DATA_TGL PORTC Port x GPIO Output Toggle Register 0x00000000

0x40009038 PORTC_POL PORTC Port x GPIO Polarity Invert Register 0x00000000

0x4000903C PORTC_POL_SET PORTC Port x GPIO Polarity Invert Set Register 0x00000000

0x40009040 PORTC_POL_CLR PORTC Port x GPIO Polarity Invert Clear Register 0x00000000

0x40009044 PORTC_LOCK PORTC Port x GPIO Lock Register 0x00000000

0x40009048 PORTC_TRIG_TGL PORTC Port x GPIO Trigger Toggle Register 0x00000000

Table 47-40: CM41X_M0 PORTD MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000A000 PORTD_FER PORTD Port x Function Enable Register 0x00000000

0x4000A004 PORTD_FER_SET PORTD Port x Function Enable Set Register 0x00000000

0x4000A008 PORTD_FER_CLR PORTD Port x Function Enable Clear Register 0x00000000

0x4000A00C PORTD_DATA PORTD Port x GPIO Data Register 0x00000000

0x4000A010 PORTD_DATA_SET PORTD Port x GPIO Data Set Register 0x00000000

0x4000A014 PORTD_DATA_CLR PORTD Port x GPIO Data Clear Register 0x00000000

0x4000A018 PORTD_DIR PORTD Port x GPIO Direction Register 0x00000000

0x4000A01C PORTD_DIR_SET PORTD Port x GPIO Direction Set Register 0x00000000

0x4000A020 PORTD_DIR_CLR PORTD Port x GPIO Direction Clear Register 0x00000000

0x4000A024 PORTD_INEN PORTD Port x GPIO Input Enable Register 0x00000000

0x4000A028 PORTD_INEN_SET PORTD Port x GPIO Input Enable Set Register 0x00000000

0x4000A02C PORTD_INEN_CLR PORTD Port x GPIO Input Enable Clear Register 0x00000000

0x4000A030 PORTD_MUX PORTD Port x Multiplexer Control Register 0x00000000

0x4000A034 PORTD_DATA_TGL PORTD Port x GPIO Output Toggle Register 0x00000000

0x4000A038 PORTD_POL PORTD Port x GPIO Polarity Invert Register 0x00000000

0x4000A03C PORTD_POL_SET PORTD Port x GPIO Polarity Invert Set Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–59

Table 47-40: CM41X_M0 PORTD MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000A040 PORTD_POL_CLR PORTD Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000A044 PORTD_LOCK PORTD Port x GPIO Lock Register 0x00000000

0x4000A048 PORTD_TRIG_TGL PORTD Port x GPIO Trigger Toggle Register 0x00000000

Table 47-41: CM41X_M0 PORTE MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000B000 PORTE_FER PORTE Port x Function Enable Register 0x00000000

0x4000B004 PORTE_FER_SET PORTE Port x Function Enable Set Register 0x00000000

0x4000B008 PORTE_FER_CLR PORTE Port x Function Enable Clear Register 0x00000000

0x4000B00C PORTE_DATA PORTE Port x GPIO Data Register 0x00000000

0x4000B010 PORTE_DATA_SET PORTE Port x GPIO Data Set Register 0x00000000

0x4000B014 PORTE_DATA_CLR PORTE Port x GPIO Data Clear Register 0x00000000

0x4000B018 PORTE_DIR PORTE Port x GPIO Direction Register 0x00000000

0x4000B01C PORTE_DIR_SET PORTE Port x GPIO Direction Set Register 0x00000000

0x4000B020 PORTE_DIR_CLR PORTE Port x GPIO Direction Clear Register 0x00000000

0x4000B024 PORTE_INEN PORTE Port x GPIO Input Enable Register 0x00000000

0x4000B028 PORTE_INEN_SET PORTE Port x GPIO Input Enable Set Register 0x00000000

0x4000B02C PORTE_INEN_CLR PORTE Port x GPIO Input Enable Clear Register 0x00000000

0x4000B030 PORTE_MUX PORTE Port x Multiplexer Control Register 0x00000000

0x4000B034 PORTE_DATA_TGL PORTE Port x GPIO Output Toggle Register 0x00000000

0x4000B038 PORTE_POL PORTE Port x GPIO Polarity Invert Register 0x00000000

0x4000B03C PORTE_POL_SET PORTE Port x GPIO Polarity Invert Set Register 0x00000000

0x4000B040 PORTE_POL_CLR PORTE Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000B044 PORTE_LOCK PORTE Port x GPIO Lock Register 0x00000000

0x4000B048 PORTE_TRIG_TGL PORTE Port x GPIO Trigger Toggle Register 0x00000000

Table 47-42: CM41X_M0 PORTF MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000C000 PORTF_FER PORTF Port x Function Enable Register 0x00000000

0x4000C004 PORTF_FER_SET PORTF Port x Function Enable Set Register 0x00000000

CM41X_M0 Register List

47–60 ADSP-CM41x Mixed-Signal Control Processor

Table 47-42: CM41X_M0 PORTF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000C008 PORTF_FER_CLR PORTF Port x Function Enable Clear Register 0x00000000

0x4000C00C PORTF_DATA PORTF Port x GPIO Data Register 0x00000000

0x4000C010 PORTF_DATA_SET PORTF Port x GPIO Data Set Register 0x00000000

0x4000C014 PORTF_DATA_CLR PORTF Port x GPIO Data Clear Register 0x00000000

0x4000C018 PORTF_DIR PORTF Port x GPIO Direction Register 0x00000000

0x4000C01C PORTF_DIR_SET PORTF Port x GPIO Direction Set Register 0x00000000

0x4000C020 PORTF_DIR_CLR PORTF Port x GPIO Direction Clear Register 0x00000000

0x4000C024 PORTF_INEN PORTF Port x GPIO Input Enable Register 0x00000000

0x4000C028 PORTF_INEN_SET PORTF Port x GPIO Input Enable Set Register 0x00000000

0x4000C02C PORTF_INEN_CLR PORTF Port x GPIO Input Enable Clear Register 0x00000000

0x4000C030 PORTF_MUX PORTF Port x Multiplexer Control Register 0x00000000

0x4000C034 PORTF_DATA_TGL PORTF Port x GPIO Output Toggle Register 0x00000000

0x4000C038 PORTF_POL PORTF Port x GPIO Polarity Invert Register 0x00000000

0x4000C03C PORTF_POL_SET PORTF Port x GPIO Polarity Invert Set Register 0x00000000

0x4000C040 PORTF_POL_CLR PORTF Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000C044 PORTF_LOCK PORTF Port x GPIO Lock Register 0x00000000

0x4000C048 PORTF_TRIG_TGL PORTF Port x GPIO Trigger Toggle Register 0x00000000

Table 47-43: CM41X_M0 PWM0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40028000 PWM0_CTL PWM0 Control Register 0x00020000

0x40028004 PWM0_CHANCFG PWM0 Channel Configuration Register 0x00000000

0x40028008 PWM0_TRIPCFG PWM0 Trip Configuration Register 0x00000000

0x4002800C PWM0_STAT PWM0 Status Register 0x00000000

0x40028010 PWM0_IMSK PWM0 Interrupt Mask Register 0x00000000

0x40028014 PWM0_ILAT PWM0 Interrupt Latch Register 0x00000000

0x40028018 PWM0_CHOPCFG PWM0 Chop Configuration Register 0x00000000

0x40028020 PWM0_SYNC_WID PWM0 Sync Pulse Width Register 0x000003FF

0x40028024 PWM0_TM0 PWM0 Timer 0 Period Register 0x00000000

0x40028028 PWM0_TM1 PWM0 Timer 1 Period Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–61

Table 47-43: CM41X_M0 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002802C PWM0_TM2 PWM0 Timer 2 Period Register 0x00000000

0x40028030 PWM0_TM3 PWM0 Timer 3 Period Register 0x00000000

0x40028034 PWM0_TM4 PWM0 Timer 4 Period Register 0x00000000

0x40028038 PWM0_DLYA PWM0 Channel A Delay Register 0x00000000

0x4002803C PWM0_DLYB PWM0 Channel B Delay Register 0x00000000

0x40028040 PWM0_DLYC PWM0 Channel C Delay Register 0x00000000

0x40028044 PWM0_DLYD PWM0 Channel D Delay Register 0x00000000

0x40028048 PWM0_ACTL PWM0 Channel A Control Register 0x00000000

0x4002804C PWM0_AH0 PWM0 Channel A-High Duty-0 Register 0x00000000

0x40028050 PWM0_AH1 PWM0 Channel A-High Duty-1 Register 0x00000000

0x40028054 PWM0_AH0_HP PWM0 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x40028058 PWM0_AH1_HP PWM0 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002805C PWM0_AL0 PWM0 Channel A-Low Duty-0 Register 0x00000000

0x40028060 PWM0_AL1 PWM0 Channel A-Low Duty-1 Register 0x00000000

0x40028064 PWM0_AL0_HP PWM0 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x40028068 PWM0_AL1_HP PWM0 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002806C PWM0_BCTL PWM0 Channel B Control Register 0x00000000

0x40028070 PWM0_BH0 PWM0 Channel B-High Duty-0 Register 0x00000000

0x40028074 PWM0_BH1 PWM0 Channel B-High Duty-1 Register 0x00000000

0x40028078 PWM0_BH0_HP PWM0 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002807C PWM0_BH1_HP PWM0 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x40028080 PWM0_BL0 PWM0 Channel B-Low Duty-0 Register 0x00000000

0x40028084 PWM0_BL1 PWM0 Channel B-Low Duty-1 Register 0x00000000

0x40028088 PWM0_BL0_HP PWM0 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002808C PWM0_BL1_HP PWM0 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

CM41X_M0 Register List

47–62 ADSP-CM41x Mixed-Signal Control Processor

Table 47-43: CM41X_M0 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40028090 PWM0_CCTL PWM0 Channel C Control Register 0x00000000

0x40028094 PWM0_CH0 PWM0 Channel C-High Pulse Duty Register 0 0x00000000

0x40028098 PWM0_CH1 PWM0 Channel C-High Pulse Duty Register 1 0x00000000

0x4002809C PWM0_CH0_HP PWM0 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400280A0 PWM0_CH1_HP PWM0 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400280A4 PWM0_CL0 PWM0 Channel C-Low Pulse Duty Register 0 0x00000000

0x400280A8 PWM0_CL1 PWM0 Channel C-Low Duty-1 Register 0x00000000

0x400280AC PWM0_CL0_HP PWM0 Channel C-Low Pulse Duty Register 1 0x00000000

0x400280B0 PWM0_CL1_HP PWM0 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x400280B4 PWM0_DCTL PWM0 Channel D Control Register 0x00000000

0x400280B8 PWM0_DH0 PWM0 Channel D-High Duty-0 Register 0x00000000

0x400280BC PWM0_DH1 PWM0 Channel D-High Pulse Duty Register 1 0x00000000

0x400280C0 PWM0_DH0_HP PWM0 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400280C4 PWM0_DH1_HP PWM0 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400280C8 PWM0_DL0 PWM0 Channel D-Low Pulse Duty Register 0 0x00000000

0x400280CC PWM0_DL1 PWM0 Channel D-Low Pulse Duty Register 1 0x00000000

0x400280D0 PWM0_DL0_HP PWM0 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x400280D4 PWM0_DL1_HP PWM0 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x400280D8 PWM0_AH_DUTY0 PWM0 Channel A-High Full Duty0 Register 0x00000000

0x400280DC PWM0_AH_DUTY1 PWM0 Channel A-High Full Duty1 Register 0x00000000

0x400280E0 PWM0_AL_DUTY0 PWM0 Channel A-Low Full Duty0 Register 0x00000000

0x400280E4 PWM0_AL_DUTY1 PWM0 Channel A-Low Full Duty1 Register 0x00000000

0x400280E8 PWM0_BH_DUTY0 PWM0 Channel B-High Full Duty0 Register 0x00000000

0x400280EC PWM0_BH_DUTY1 PWM0 Channel B-High Full Duty1 Register 0x00000000

0x400280F0 PWM0_BL_DUTY0 PWM0 Channel B-Low Full Duty0 Register 0x00000000

0x400280F4 PWM0_BL_DUTY1 PWM0 Channel B-Low Full Duty1 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–63

Table 47-43: CM41X_M0 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400280F8 PWM0_CH_DUTY0 PWM0 Channel C-High Full Duty0 Register 0x00000000

0x400280FC PWM0_CH_DUTY1 PWM0 Channel C-High Full Duty1 Register 0x00000000

0x40028100 PWM0_CL_DUTY0 PWM0 Channel C-Low Full Duty0 Register 0x00000000

0x40028104 PWM0_CL_DUTY1 PWM0 Channel C-Low Full Duty1 Register 0x00000000

0x40028108 PWM0_DH_DUTY0 PWM0 Channel D-High Full Duty0 Register 0x00000000

0x4002810C PWM0_DH_DUTY1 PWM0 Channel D-High Full Duty1 Register 0x00000000

0x40028110 PWM0_DL_DUTY0 PWM0 Channel D-Low Full Duty0 Register 0x00000000

0x40028114 PWM0_DL_DUTY1 PWM0 Channel D-Low Full Duty1 Register 0x00000000

0x40028118 PWM0_CHA_DT PWM0 Channel A Dead-time Register 0x00000000

0x4002811C PWM0_CHB_DT PWM0 Channel B Dead-time Register 0x00000000

0x40028120 PWM0_CHC_DT PWM0 Channel C Dead-time Register 0x00000000

0x40028124 PWM0_CHD_DT PWM0 Channel D Dead-time Register 0x00000000

0x40028130 PWM0_SWTRIP PWM0 Software Trip Register 0x00000000

0x40028134 PWM0_TRIP_POL PWM0 Trip Polarity Register 0x00000000

Table 47-44: CM41X_M0 PWM1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40029000 PWM1_CTL PWM1 Control Register 0x00020000

0x40029004 PWM1_CHANCFG PWM1 Channel Configuration Register 0x00000000

0x40029008 PWM1_TRIPCFG PWM1 Trip Configuration Register 0x00000000

0x4002900C PWM1_STAT PWM1 Status Register 0x00000000

0x40029010 PWM1_IMSK PWM1 Interrupt Mask Register 0x00000000

0x40029014 PWM1_ILAT PWM1 Interrupt Latch Register 0x00000000

0x40029018 PWM1_CHOPCFG PWM1 Chop Configuration Register 0x00000000

0x40029020 PWM1_SYNC_WID PWM1 Sync Pulse Width Register 0x000003FF

0x40029024 PWM1_TM0 PWM1 Timer 0 Period Register 0x00000000

0x40029028 PWM1_TM1 PWM1 Timer 1 Period Register 0x00000000

0x4002902C PWM1_TM2 PWM1 Timer 2 Period Register 0x00000000

0x40029030 PWM1_TM3 PWM1 Timer 3 Period Register 0x00000000

0x40029034 PWM1_TM4 PWM1 Timer 4 Period Register 0x00000000

CM41X_M0 Register List

47–64 ADSP-CM41x Mixed-Signal Control Processor

Table 47-44: CM41X_M0 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40029038 PWM1_DLYA PWM1 Channel A Delay Register 0x00000000

0x4002903C PWM1_DLYB PWM1 Channel B Delay Register 0x00000000

0x40029040 PWM1_DLYC PWM1 Channel C Delay Register 0x00000000

0x40029044 PWM1_DLYD PWM1 Channel D Delay Register 0x00000000

0x40029048 PWM1_ACTL PWM1 Channel A Control Register 0x00000000

0x4002904C PWM1_AH0 PWM1 Channel A-High Duty-0 Register 0x00000000

0x40029050 PWM1_AH1 PWM1 Channel A-High Duty-1 Register 0x00000000

0x40029054 PWM1_AH0_HP PWM1 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x40029058 PWM1_AH1_HP PWM1 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002905C PWM1_AL0 PWM1 Channel A-Low Duty-0 Register 0x00000000

0x40029060 PWM1_AL1 PWM1 Channel A-Low Duty-1 Register 0x00000000

0x40029064 PWM1_AL0_HP PWM1 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x40029068 PWM1_AL1_HP PWM1 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002906C PWM1_BCTL PWM1 Channel B Control Register 0x00000000

0x40029070 PWM1_BH0 PWM1 Channel B-High Duty-0 Register 0x00000000

0x40029074 PWM1_BH1 PWM1 Channel B-High Duty-1 Register 0x00000000

0x40029078 PWM1_BH0_HP PWM1 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002907C PWM1_BH1_HP PWM1 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x40029080 PWM1_BL0 PWM1 Channel B-Low Duty-0 Register 0x00000000

0x40029084 PWM1_BL1 PWM1 Channel B-Low Duty-1 Register 0x00000000

0x40029088 PWM1_BL0_HP PWM1 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002908C PWM1_BL1_HP PWM1 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

0x40029090 PWM1_CCTL PWM1 Channel C Control Register 0x00000000

0x40029094 PWM1_CH0 PWM1 Channel C-High Pulse Duty Register 0 0x00000000

0x40029098 PWM1_CH1 PWM1 Channel C-High Pulse Duty Register 1 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–65

Table 47-44: CM41X_M0 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002909C PWM1_CH0_HP PWM1 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400290A0 PWM1_CH1_HP PWM1 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400290A4 PWM1_CL0 PWM1 Channel C-Low Pulse Duty Register 0 0x00000000

0x400290A8 PWM1_CL1 PWM1 Channel C-Low Duty-1 Register 0x00000000

0x400290AC PWM1_CL0_HP PWM1 Channel C-Low Pulse Duty Register 1 0x00000000

0x400290B0 PWM1_CL1_HP PWM1 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x400290B4 PWM1_DCTL PWM1 Channel D Control Register 0x00000000

0x400290B8 PWM1_DH0 PWM1 Channel D-High Duty-0 Register 0x00000000

0x400290BC PWM1_DH1 PWM1 Channel D-High Pulse Duty Register 1 0x00000000

0x400290C0 PWM1_DH0_HP PWM1 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400290C4 PWM1_DH1_HP PWM1 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400290C8 PWM1_DL0 PWM1 Channel D-Low Pulse Duty Register 0 0x00000000

0x400290CC PWM1_DL1 PWM1 Channel D-Low Pulse Duty Register 1 0x00000000

0x400290D0 PWM1_DL0_HP PWM1 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x400290D4 PWM1_DL1_HP PWM1 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x400290D8 PWM1_AH_DUTY0 PWM1 Channel A-High Full Duty0 Register 0x00000000

0x400290DC PWM1_AH_DUTY1 PWM1 Channel A-High Full Duty1 Register 0x00000000

0x400290E0 PWM1_AL_DUTY0 PWM1 Channel A-Low Full Duty0 Register 0x00000000

0x400290E4 PWM1_AL_DUTY1 PWM1 Channel A-Low Full Duty1 Register 0x00000000

0x400290E8 PWM1_BH_DUTY0 PWM1 Channel B-High Full Duty0 Register 0x00000000

0x400290EC PWM1_BH_DUTY1 PWM1 Channel B-High Full Duty1 Register 0x00000000

0x400290F0 PWM1_BL_DUTY0 PWM1 Channel B-Low Full Duty0 Register 0x00000000

0x400290F4 PWM1_BL_DUTY1 PWM1 Channel B-Low Full Duty1 Register 0x00000000

0x400290F8 PWM1_CH_DUTY0 PWM1 Channel C-High Full Duty0 Register 0x00000000

0x400290FC PWM1_CH_DUTY1 PWM1 Channel C-High Full Duty1 Register 0x00000000

0x40029100 PWM1_CL_DUTY0 PWM1 Channel C-Low Full Duty0 Register 0x00000000

CM41X_M0 Register List

47–66 ADSP-CM41x Mixed-Signal Control Processor

Table 47-44: CM41X_M0 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40029104 PWM1_CL_DUTY1 PWM1 Channel C-Low Full Duty1 Register 0x00000000

0x40029108 PWM1_DH_DUTY0 PWM1 Channel D-High Full Duty0 Register 0x00000000

0x4002910C PWM1_DH_DUTY1 PWM1 Channel D-High Full Duty1 Register 0x00000000

0x40029110 PWM1_DL_DUTY0 PWM1 Channel D-Low Full Duty0 Register 0x00000000

0x40029114 PWM1_DL_DUTY1 PWM1 Channel D-Low Full Duty1 Register 0x00000000

0x40029118 PWM1_CHA_DT PWM1 Channel A Dead-time Register 0x00000000

0x4002911C PWM1_CHB_DT PWM1 Channel B Dead-time Register 0x00000000

0x40029120 PWM1_CHC_DT PWM1 Channel C Dead-time Register 0x00000000

0x40029124 PWM1_CHD_DT PWM1 Channel D Dead-time Register 0x00000000

0x40029130 PWM1_SWTRIP PWM1 Software Trip Register 0x00000000

0x40029134 PWM1_TRIP_POL PWM1 Trip Polarity Register 0x00000000

Table 47-45: CM41X_M0 PWM2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A000 PWM2_CTL PWM2 Control Register 0x00020000

0x4002A004 PWM2_CHANCFG PWM2 Channel Configuration Register 0x00000000

0x4002A008 PWM2_TRIPCFG PWM2 Trip Configuration Register 0x00000000

0x4002A00C PWM2_STAT PWM2 Status Register 0x00000000

0x4002A010 PWM2_IMSK PWM2 Interrupt Mask Register 0x00000000

0x4002A014 PWM2_ILAT PWM2 Interrupt Latch Register 0x00000000

0x4002A018 PWM2_CHOPCFG PWM2 Chop Configuration Register 0x00000000

0x4002A020 PWM2_SYNC_WID PWM2 Sync Pulse Width Register 0x000003FF

0x4002A024 PWM2_TM0 PWM2 Timer 0 Period Register 0x00000000

0x4002A028 PWM2_TM1 PWM2 Timer 1 Period Register 0x00000000

0x4002A02C PWM2_TM2 PWM2 Timer 2 Period Register 0x00000000

0x4002A030 PWM2_TM3 PWM2 Timer 3 Period Register 0x00000000

0x4002A034 PWM2_TM4 PWM2 Timer 4 Period Register 0x00000000

0x4002A038 PWM2_DLYA PWM2 Channel A Delay Register 0x00000000

0x4002A03C PWM2_DLYB PWM2 Channel B Delay Register 0x00000000

0x4002A040 PWM2_DLYC PWM2 Channel C Delay Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–67

Table 47-45: CM41X_M0 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A044 PWM2_DLYD PWM2 Channel D Delay Register 0x00000000

0x4002A048 PWM2_ACTL PWM2 Channel A Control Register 0x00000000

0x4002A04C PWM2_AH0 PWM2 Channel A-High Duty-0 Register 0x00000000

0x4002A050 PWM2_AH1 PWM2 Channel A-High Duty-1 Register 0x00000000

0x4002A054 PWM2_AH0_HP PWM2 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x4002A058 PWM2_AH1_HP PWM2 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002A05C PWM2_AL0 PWM2 Channel A-Low Duty-0 Register 0x00000000

0x4002A060 PWM2_AL1 PWM2 Channel A-Low Duty-1 Register 0x00000000

0x4002A064 PWM2_AL0_HP PWM2 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A068 PWM2_AL1_HP PWM2 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A06C PWM2_BCTL PWM2 Channel B Control Register 0x00000000

0x4002A070 PWM2_BH0 PWM2 Channel B-High Duty-0 Register 0x00000000

0x4002A074 PWM2_BH1 PWM2 Channel B-High Duty-1 Register 0x00000000

0x4002A078 PWM2_BH0_HP PWM2 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002A07C PWM2_BH1_HP PWM2 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x4002A080 PWM2_BL0 PWM2 Channel B-Low Duty-0 Register 0x00000000

0x4002A084 PWM2_BL1 PWM2 Channel B-Low Duty-1 Register 0x00000000

0x4002A088 PWM2_BL0_HP PWM2 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A08C PWM2_BL1_HP PWM2 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A090 PWM2_CCTL PWM2 Channel C Control Register 0x00000000

0x4002A094 PWM2_CH0 PWM2 Channel C-High Pulse Duty Register 0 0x00000000

0x4002A098 PWM2_CH1 PWM2 Channel C-High Pulse Duty Register 1 0x00000000

0x4002A09C PWM2_CH0_HP PWM2 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x4002A0A0 PWM2_CH1_HP PWM2 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

CM41X_M0 Register List

47–68 ADSP-CM41x Mixed-Signal Control Processor

Table 47-45: CM41X_M0 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A0A4 PWM2_CL0 PWM2 Channel C-Low Pulse Duty Register 0 0x00000000

0x4002A0A8 PWM2_CL1 PWM2 Channel C-Low Duty-1 Register 0x00000000

0x4002A0AC PWM2_CL0_HP PWM2 Channel C-Low Pulse Duty Register 1 0x00000000

0x4002A0B0 PWM2_CL1_HP PWM2 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A0B4 PWM2_DCTL PWM2 Channel D Control Register 0x00000000

0x4002A0B8 PWM2_DH0 PWM2 Channel D-High Duty-0 Register 0x00000000

0x4002A0BC PWM2_DH1 PWM2 Channel D-High Pulse Duty Register 1 0x00000000

0x4002A0C0 PWM2_DH0_HP PWM2 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x4002A0C4 PWM2_DH1_HP PWM2 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x4002A0C8 PWM2_DL0 PWM2 Channel D-Low Pulse Duty Register 0 0x00000000

0x4002A0CC PWM2_DL1 PWM2 Channel D-Low Pulse Duty Register 1 0x00000000

0x4002A0D0 PWM2_DL0_HP PWM2 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A0D4 PWM2_DL1_HP PWM2 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A0D8 PWM2_AH_DUTY0 PWM2 Channel A-High Full Duty0 Register 0x00000000

0x4002A0DC PWM2_AH_DUTY1 PWM2 Channel A-High Full Duty1 Register 0x00000000

0x4002A0E0 PWM2_AL_DUTY0 PWM2 Channel A-Low Full Duty0 Register 0x00000000

0x4002A0E4 PWM2_AL_DUTY1 PWM2 Channel A-Low Full Duty1 Register 0x00000000

0x4002A0E8 PWM2_BH_DUTY0 PWM2 Channel B-High Full Duty0 Register 0x00000000

0x4002A0EC PWM2_BH_DUTY1 PWM2 Channel B-High Full Duty1 Register 0x00000000

0x4002A0F0 PWM2_BL_DUTY0 PWM2 Channel B-Low Full Duty0 Register 0x00000000

0x4002A0F4 PWM2_BL_DUTY1 PWM2 Channel B-Low Full Duty1 Register 0x00000000

0x4002A0F8 PWM2_CH_DUTY0 PWM2 Channel C-High Full Duty0 Register 0x00000000

0x4002A0FC PWM2_CH_DUTY1 PWM2 Channel C-High Full Duty1 Register 0x00000000

0x4002A100 PWM2_CL_DUTY0 PWM2 Channel C-Low Full Duty0 Register 0x00000000

0x4002A104 PWM2_CL_DUTY1 PWM2 Channel C-Low Full Duty1 Register 0x00000000

0x4002A108 PWM2_DH_DUTY0 PWM2 Channel D-High Full Duty0 Register 0x00000000

0x4002A10C PWM2_DH_DUTY1 PWM2 Channel D-High Full Duty1 Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–69

Table 47-45: CM41X_M0 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A110 PWM2_DL_DUTY0 PWM2 Channel D-Low Full Duty0 Register 0x00000000

0x4002A114 PWM2_DL_DUTY1 PWM2 Channel D-Low Full Duty1 Register 0x00000000

0x4002A118 PWM2_CHA_DT PWM2 Channel A Dead-time Register 0x00000000

0x4002A11C PWM2_CHB_DT PWM2 Channel B Dead-time Register 0x00000000

0x4002A120 PWM2_CHC_DT PWM2 Channel C Dead-time Register 0x00000000

0x4002A124 PWM2_CHD_DT PWM2 Channel D Dead-time Register 0x00000000

0x4002A130 PWM2_SWTRIP PWM2 Software Trip Register 0x00000000

0x4002A134 PWM2_TRIP_POL PWM2 Trip Polarity Register 0x00000000

Table 47-46: CM41X_M0 RCU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40012000 RCU0_CTL RCU0 Control Register 0x00000700

0x40012004 RCU0_STAT RCU0 Status Register 0x00000021

0x40012008 RCU0_CRCTL RCU0 Core Reset Outputs Control Register 0x00000002

0x4001200C RCU0_CRSTAT RCU0 Core Reset Outputs Status Register 0x00000007

0x40012018 RCU0_SRRQSTAT RCU0 System Reset Request Status Register 0x00000000

0x40012028 RCU0_BCODE RCU0 Boot Code Register 0x00000000

0x4001206C RCU0_MSG RCU0 Message Register 0x00000000

0x40012070 RCU0_MSG_SET RCU0 Message Set Bits Register 0x00000000

0x40012074 RCU0_MSG_CLR RCU0 Message Clear Bits Register 0x00000000

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41004000 SEC0_GCTL SEC0 Global Control Register 0x00000000

0x41004004 SEC0_GSTAT SEC0 Global Status Register 0x00000000

0x41004008 SEC0_RAISE SEC0 Global Raise Register 0x00000000

0x41004010 SEC0_FCTL SEC0 Fault Control Register 0x00000000

0x41004014 SEC0_FSTAT SEC0 Fault Status Register 0x00000000

0x41004018 SEC0_FSID SEC0 Fault Source ID Register 0x00000000

0x4100401C SEC0_FEND SEC0 Fault End Register 0x00000000

CM41X_M0 Register List

47–70 ADSP-CM41x Mixed-Signal Control Processor

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004020 SEC0_FDLY SEC0 Fault Delay Register 0x00000000

0x41004024 SEC0_FDLY_CUR SEC0 Fault Delay Current Register 0x00000000

0x41004028 SEC0_FSRDLY SEC0 Fault System Reset Delay Register 0x00000000

0x4100402C SEC0_FSRDLY_CUR SEC0 Fault System Reset Delay Current Register 0x00000000

0x41004030 SEC0_FCOPP SEC0 Fault COP Period Register 0x00000000

0x41004034 SEC0_FCOPP_CUR SEC0 Fault COP Period Current Register 0x00000000

0x41004800 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004804 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004808 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100480C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004810 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004814 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004818 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100481C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004820 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004824 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004828 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100482C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004830 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004834 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004838 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100483C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004840 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004844 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004848 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100484C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004850 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004854 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004858 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100485C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004860 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–71

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004864 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004868 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100486C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004870 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004874 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004878 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100487C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004880 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004884 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004888 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100488C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004890 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004894 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004898 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100489C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048A0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048A4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048A8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048AC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048B0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048B4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048B8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048BC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048C0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048C4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048C8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048CC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048D0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048D4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048D8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048DC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

CM41X_M0 Register List

47–72 ADSP-CM41x Mixed-Signal Control Processor

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410048E0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048E4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048E8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048EC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048F0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048F4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048F8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048FC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004900 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004904 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004908 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100490C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004910 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004914 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004918 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100491C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004920 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004924 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004928 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100492C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004930 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004934 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004938 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100493C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004940 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004944 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004948 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100494C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004950 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004954 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004958 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–73

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100495C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004960 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004964 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004968 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100496C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004970 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004974 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004978 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100497C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004980 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004984 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004988 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100498C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004990 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004994 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004998 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100499C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049A0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049A4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049A8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049AC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049B0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049B4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049B8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049BC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049C0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049C4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049C8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049CC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049D0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049D4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

CM41X_M0 Register List

47–74 ADSP-CM41x Mixed-Signal Control Processor

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410049D8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049DC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049E0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049E4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049E8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049EC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049F0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049F4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049F8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049FC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A00 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A04 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A08 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A0C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A10 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A14 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A18 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A1C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A20 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A24 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A28 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A2C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A30 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A34 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A38 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A3C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A40 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A44 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A48 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A4C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A50 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–75

Table 47-47: CM41X_M0 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004A54 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A58 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A5C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40010000 SEC1_GCTL SEC1 Global Control Register 0x00000000

0x40010004 SEC1_GSTAT SEC1 Global Status Register 0x00000000

0x40010008 SEC1_RAISE SEC1 Global Raise Register 0x00000000

0x40010010 SEC1_FCTL SEC1 Fault Control Register 0x00000000

0x40010014 SEC1_FSTAT SEC1 Fault Status Register 0x00000000

0x40010018 SEC1_FSID SEC1 Fault Source ID Register 0x00000000

0x4001001C SEC1_FEND SEC1 Fault End Register 0x00000000

0x40010020 SEC1_FDLY SEC1 Fault Delay Register 0x00000000

0x40010024 SEC1_FDLY_CUR SEC1 Fault Delay Current Register 0x00000000

0x40010028 SEC1_FSRDLY SEC1 Fault System Reset Delay Register 0x00000000

0x4001002C SEC1_FSRDLY_CUR SEC1 Fault System Reset Delay Current Register 0x00000000

0x40010030 SEC1_FCOPP SEC1 Fault COP Period Register 0x00000000

0x40010034 SEC1_FCOPP_CUR SEC1 Fault COP Period Current Register 0x00000000

0x40010800 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010804 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010808 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001080C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010810 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010814 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010818 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001081C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010820 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010824 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010828 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–76 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4001082C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010830 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010834 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010838 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001083C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010840 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010844 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010848 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001084C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010850 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010854 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010858 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001085C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010860 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010864 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010868 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001086C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010870 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010874 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010878 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001087C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010880 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010884 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010888 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001088C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010890 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010894 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010898 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001089C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108A0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108A4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–77

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400108A8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108AC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108B0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108B4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108B8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108BC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108C0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108C4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108C8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108CC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108D0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108D4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108D8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108DC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108E0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108E4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108E8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108EC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108F0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108F4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108F8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108FC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010900 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010904 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010908 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001090C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010910 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010914 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010918 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001091C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010920 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–78 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010924 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010928 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001092C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010930 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010934 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010938 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001093C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010940 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010944 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010948 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001094C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010950 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010954 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010958 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001095C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010960 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010964 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010968 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001096C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010970 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010974 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010978 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001097C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010980 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010984 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010988 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001098C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010990 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010994 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010998 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001099C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–79

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400109A0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109A4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109A8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109AC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109B0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109B4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109B8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109BC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109C0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109C4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109C8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109CC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109D0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109D4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109D8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109DC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109E0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109E4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109E8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109EC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109F0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109F4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109F8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109FC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–80 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010A1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–81

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010A98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ABC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ACC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ADC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–82 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010B14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–83

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010B90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BBC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BCC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BDC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–84 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010C0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–85

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010C88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CBC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CCC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CDC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M0 Register List

47–86 ADSP-CM41x Mixed-Signal Control Processor

Table 47-48: CM41X_M0 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010D04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

Table 47-49: CM41X_M0 SINC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40049000 SINC0_CTL SINC0 Control Register 0x00000000

0x40049004 SINC0_STAT SINC0 Status Register 0x00000000

0x40049008 SINC0_CLK SINC0 Clock Control Register 0x10001000

0x40049010 SINC0_RATE0 SINC0 Rate Control for Group 0 Register 0x00000804

0x40049014 SINC0_RATE1 SINC0 Rate Control for Group 1 Register 0x00000804

0x40049018 SINC0_LEVEL0 SINC0 Level Control for Group 0 Register 0x04000000

0x4004901C SINC0_LEVEL1 SINC0 Level Control for Group 1 Register 0x04000000

0x40049020 SINC0_LIMIT0 SINC0 (Amplitude) Limits for Secondary Filter 0 Register 0x00000000

0x40049024 SINC0_LIMIT1 SINC0 (Amplitude) Limits for Secondary Filter 1 Register 0x00000000

0x40049028 SINC0_LIMIT2 SINC0 (Amplitude) Limits for Secondary Filter 2 Register 0x00000000

0x4004902C SINC0_LIMIT3 SINC0 (Amplitude) Limits for Secondary Filter 3 Register 0x00000000

0x40049030 SINC0_BIAS0 SINC0 Bias for Group 0 Register 0x00000000

0x40049034 SINC0_BIAS1 SINC0 Bias for Group 1 Register 0x00000000

0x40049038 SINC0_PPTR0 SINC0 Primary (Filters) Pointer for Group 0 Register 0x00000000

0x4004903C SINC0_PPTR1 SINC0 Primary (Filters) Pointer for Group 1 Register 0x00000000

0x40049040 SINC0_PHEAD0 SINC0 Primary (Filters) Head for Group 0 Register 0x00000000

0x40049044 SINC0_PHEAD1 SINC0 Primary (Filters) Head for Group 1 Register 0x00000000

0x40049048 SINC0_PTAIL0 SINC0 Primary (Filters) Tail for Group 0 Register 0x00000000

0x4004904C SINC0_PTAIL1 SINC0 Primary (Filters) Tail for Group 1 Register 0x00000000

0x40049050 SINC0_HIS_STAT SINC0 History Status Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–87

Table 47-49: CM41X_M0 SINC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40049080 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049084 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049088 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x4004908C SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049090 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x40049094 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x40049098 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x4004909C SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x400490A0 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490A4 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490A8 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490AC SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490B0 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490B4 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490B8 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490BC SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

Table 47-50: CM41X_M0 SMC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002F00C SMC0_B0CTL SMC0 Bank 0 Control Register 0x01000000

0x4002F010 SMC0_B0TIM SMC0 Bank 0 Timing Register 0x01010101

0x4002F014 SMC0_B0ETIM SMC0 Bank 0 Extended Timing Register 0x00020200

0x4002F01C SMC0_B1CTL SMC0 Bank 1 Control Register 0x00000000

0x4002F020 SMC0_B1TIM SMC0 Bank 1 Timing Register 0x01010101

0x4002F024 SMC0_B1ETIM SMC0 Bank 1 Extended Timing Register 0x00020200

0x4002F02C SMC0_B2CTL SMC0 Bank 2 Control Register 0x00000000

0x4002F030 SMC0_B2TIM SMC0 Bank 2 Timing Register 0x01010101

0x4002F034 SMC0_B2ETIM SMC0 Bank 2 Extended Timing Register 0x00020200

0x4002F03C SMC0_B3CTL SMC0 Bank 3 Control Register 0x00000000

0x4002F040 SMC0_B3TIM SMC0 Bank 3 Timing Register 0x01010101

CM41X_M0 Register List

47–88 ADSP-CM41x Mixed-Signal Control Processor

Table 47-50: CM41X_M0 SMC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002F044 SMC0_B3ETIM SMC0 Bank 3 Extended Timing Register 0x00020200

Table 47-51: CM41X_M0 SMPU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410E0000 SMPU0_CTL SMPU0 SMPU Control Register 0x00000000

0x410E0004 SMPU0_STAT SMPU0 SMPU Status Register 0x00000000

0x410E0008 SMPU0_IADDR SMPU0 Interrupt Address Register 0x00000000

0x410E000C SMPU0_IDTLS SMPU0 Interrupt Details Register 0x00000000

0x410E0010 SMPU0_BADDR SMPU0 Bus Error Address Register 0x00000000

0x410E0014 SMPU0_BDTLS SMPU0 Bus Error Details Register 0x00000000

0x410E0020 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E0024 SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0028 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E002C SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0030 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E0034 SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0038 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E003C SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0040 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E0044 SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0048 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E004C SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0050 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E0054 SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0058 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E005C SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0060 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E0064 SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0068 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E006C SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–89

Table 47-51: CM41X_M0 SMPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410E0070 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E0074 SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0078 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E007C SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0220 SMPU0_REVID SMPU0 SMPU Revision ID Register 0x00000010

Table 47-52: CM41X_M0 SMPU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400E0000 SMPU1_CTL SMPU1 SMPU Control Register 0x00000000

0x400E0004 SMPU1_STAT SMPU1 SMPU Status Register 0x00000000

0x400E0008 SMPU1_IADDR SMPU1 Interrupt Address Register 0x00000000

0x400E000C SMPU1_IDTLS SMPU1 Interrupt Details Register 0x00000000

0x400E0010 SMPU1_BADDR SMPU1 Bus Error Address Register 0x00000000

0x400E0014 SMPU1_BDTLS SMPU1 Bus Error Details Register 0x00000000

0x400E0020 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E0024 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0028 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E002C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0030 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0034 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0038 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E003C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0040 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E0044 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0048 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E004C SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0050 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E0054 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0058 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E005C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

CM41X_M0 Register List

47–90 ADSP-CM41x Mixed-Signal Control Processor

Table 47-52: CM41X_M0 SMPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E0060 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0064 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0068 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E006C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0070 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E0074 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0078 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E007C SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0080 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E0084 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0088 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E008C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0090 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0094 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0098 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E009C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E00A0 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00A4 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00A8 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E00AC SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E00B0 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E00B4 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E00B8 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00BC SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00C0 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E00C4 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E00C8 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E00CC SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E00D0 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00D4 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00D8 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–91

Table 47-52: CM41X_M0 SMPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E00DC SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0220 SMPU1_REVID SMPU1 SMPU Revision ID Register 0x00000010

Table 47-53: CM41X_M0 SMPU2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400E1000 SMPU2_CTL SMPU2 SMPU Control Register 0x00000000

0x400E1004 SMPU2_STAT SMPU2 SMPU Status Register 0x00000000

0x400E1008 SMPU2_IADDR SMPU2 Interrupt Address Register 0x00000000

0x400E100C SMPU2_IDTLS SMPU2 Interrupt Details Register 0x00000000

0x400E1010 SMPU2_BADDR SMPU2 Bus Error Address Register 0x00000000

0x400E1014 SMPU2_BDTLS SMPU2 Bus Error Details Register 0x00000000

0x400E1020 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E1024 SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1028 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E102C SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1030 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E1034 SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1038 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E103C SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1040 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E1044 SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1048 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E104C SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1050 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E1054 SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1058 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E105C SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1060 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E1064 SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1068 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

CM41X_M0 Register List

47–92 ADSP-CM41x Mixed-Signal Control Processor

Table 47-53: CM41X_M0 SMPU2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E106C SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1070 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E1074 SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1078 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E107C SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1220 SMPU2_REVID SMPU2 SMPU Revision ID Register 0x00000010

Table 47-54: CM41X_M0 SPI0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41009004 SPI0_CTL SPI0 Control Register 0x00000050

0x41009008 SPI0_RXCTL SPI0 Receive Control Register 0x00000000

0x4100900C SPI0_TXCTL SPI0 Transmit Control Register 0x00000000

0x41009010 SPI0_CLK SPI0 Clock Rate Register 0x00000000

0x41009014 SPI0_DLY SPI0 Delay Register 0x00000301

0x41009018 SPI0_SLVSEL SPI0 Slave Select Register 0x0000FE00

0x4100901C SPI0_RWC SPI0 Received Word Count Register 0x00000000

0x41009020 SPI0_RWCR SPI0 Received Word Count Reload Register 0x00000000

0x41009024 SPI0_TWC SPI0 Transmitted Word Count Register 0x00000000

0x41009028 SPI0_TWCR SPI0 Transmitted Word Count Reload Register 0x00000000

0x41009030 SPI0_IMSK SPI0 Interrupt Mask Register 0x00000000

0x41009034 SPI0_IMSK_CLR SPI0 Interrupt Mask Clear Register 0x00000000

0x41009038 SPI0_IMSK_SET SPI0 Interrupt Mask Set Register 0x00000000

0x41009040 SPI0_STAT SPI0 Status Register 0x00440001

0x41009044 SPI0_ILAT SPI0 Masked Interrupt Condition Register 0x00000000

0x41009048 SPI0_ILAT_CLR SPI0 Masked Interrupt Clear Register 0x00000000

0x41009050 SPI0_RFIFO SPI0 Receive FIFO Data Register 0x00000000

0x41009058 SPI0_TFIFO SPI0 Transmit FIFO Data Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–93

Table 47-55: CM41X_M0 SPI1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40040004 SPI1_CTL SPI1 Control Register 0x00000050

0x40040008 SPI1_RXCTL SPI1 Receive Control Register 0x00000000

0x4004000C SPI1_TXCTL SPI1 Transmit Control Register 0x00000000

0x40040010 SPI1_CLK SPI1 Clock Rate Register 0x00000000

0x40040014 SPI1_DLY SPI1 Delay Register 0x00000301

0x40040018 SPI1_SLVSEL SPI1 Slave Select Register 0x0000FE00

0x4004001C SPI1_RWC SPI1 Received Word Count Register 0x00000000

0x40040020 SPI1_RWCR SPI1 Received Word Count Reload Register 0x00000000

0x40040024 SPI1_TWC SPI1 Transmitted Word Count Register 0x00000000

0x40040028 SPI1_TWCR SPI1 Transmitted Word Count Reload Register 0x00000000

0x40040030 SPI1_IMSK SPI1 Interrupt Mask Register 0x00000000

0x40040034 SPI1_IMSK_CLR SPI1 Interrupt Mask Clear Register 0x00000000

0x40040038 SPI1_IMSK_SET SPI1 Interrupt Mask Set Register 0x00000000

0x40040040 SPI1_STAT SPI1 Status Register 0x00440001

0x40040044 SPI1_ILAT SPI1 Masked Interrupt Condition Register 0x00000000

0x40040048 SPI1_ILAT_CLR SPI1 Masked Interrupt Clear Register 0x00000000

0x40040050 SPI1_RFIFO SPI1 Receive FIFO Data Register 0x00000000

0x40040058 SPI1_TFIFO SPI1 Transmit FIFO Data Register 0x00000000

Table 47-56: CM41X_M0 SPORT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40042000 SPORT0_CTL_A SPORT0 Half SPORT 'A' Control Register 0x00000000

0x40042004 SPORT0_DIV_A SPORT0 Half SPORT 'A' Divisor Register 0x00000000

0x40042008 SPORT0_MCTL_A SPORT0 Half SPORT 'A' Multichannel Control Register 0x00000000

0x4004200C SPORT0_CS0_A SPORT0 Half SPORT 'A' Multichannel 0-31 Select Reg-
ister

0x00000000

0x40042010 SPORT0_CS1_A SPORT0 Half SPORT 'A' Multichannel 32-63 Select
Register

0x00000000

0x40042014 SPORT0_CS2_A SPORT0 Half SPORT 'A' Multichannel 64-95 Select
Register

0x00000000

0x40042018 SPORT0_CS3_A SPORT0 Half SPORT 'A' Multichannel 96-127 Select
Register

0x00000000

CM41X_M0 Register List

47–94 ADSP-CM41x Mixed-Signal Control Processor

Table 47-56: CM41X_M0 SPORT0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40042020 SPORT0_ERR_A SPORT0 Half SPORT 'A' Error Register 0x00000000

0x40042024 SPORT0_MSTAT_A SPORT0 Half SPORT 'A' Multichannel Status Register 0x00000000

0x40042028 SPORT0_CTL2_A SPORT0 Half SPORT 'A' Control 2 Register 0x00000000

0x40042040 SPORT0_TXPRI_A SPORT0 Half SPORT 'A' Tx Buffer (Primary) Register 0x00000000

0x40042044 SPORT0_RXPRI_A SPORT0 Half SPORT 'A' Rx Buffer (Primary) Register 0x00000000

0x40042048 SPORT0_TXSEC_A SPORT0 Half SPORT 'A' Tx Buffer (Secondary) Register 0x00000000

0x4004204C SPORT0_RXSEC_A SPORT0 Half SPORT 'A' Rx Buffer (Secondary) Register 0x00000000

0x40042080 SPORT0_CTL_B SPORT0 Half SPORT 'B' Control Register 0x00000000

0x40042084 SPORT0_DIV_B SPORT0 Half SPORT 'B' Divisor Register 0x00000000

0x40042088 SPORT0_MCTL_B SPORT0 Half SPORT 'B' Multichannel Control Register 0x00000000

0x4004208C SPORT0_CS0_B SPORT0 Half SPORT 'B' Multichannel 0-31 Select Reg-
ister

0x00000000

0x40042090 SPORT0_CS1_B SPORT0 Half SPORT 'B' Multichannel 32-63 Select
Register

0x00000000

0x40042094 SPORT0_CS2_B SPORT0 Half SPORT 'B' Multichannel 64-95 Select
Register

0x00000000

0x40042098 SPORT0_CS3_B SPORT0 Half SPORT 'B' Multichannel 96-127 Select
Register

0x00000000

0x400420A0 SPORT0_ERR_B SPORT0 Half SPORT 'B' Error Register 0x00000000

0x400420A4 SPORT0_MSTAT_B SPORT0 Half SPORT 'B' Multichannel Status Register 0x00000000

0x400420A8 SPORT0_CTL2_B SPORT0 Half SPORT 'B' Control 2 Register 0x00000000

0x400420C0 SPORT0_TXPRI_B SPORT0 Half SPORT 'B' Tx Buffer (Primary) Register 0x00000000

0x400420C4 SPORT0_RXPRI_B SPORT0 Half SPORT 'B' Rx Buffer (Primary) Register 0x00000000

0x400420C8 SPORT0_TXSEC_B SPORT0 Half SPORT 'B' Tx Buffer (Secondary) Register 0x00000000

0x400420CC SPORT0_RXSEC_B SPORT0 Half SPORT 'B' Rx Buffer (Secondary) Register 0x00000000

Table 47-57: CM41X_M0 SPU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8000 SPU0_CTL SPU0 Control Register 0x000000AD

0x410F8004 SPU0_STAT SPU0 Status Register 0x00000000

0x410F8040 SPU0_TIMEOUT SPU0 Timeout Register 0x00000000

0x410F8400 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–95

Table 47-57: CM41X_M0 SPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8404 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8408 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F840C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8410 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8414 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8418 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F841C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8420 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8424 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8428 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F842C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8430 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8434 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8438 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F843C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8440 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8444 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8448 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F844C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8800 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8804 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8808 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F880C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8810 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8814 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8818 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F881C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8820 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8824 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8828 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F882C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

CM41X_M0 Register List

47–96 ADSP-CM41x Mixed-Signal Control Processor

Table 47-57: CM41X_M0 SPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8830 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8834 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8838 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F883C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8840 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8844 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8848 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F884C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F9080 SPU0_IDTLS SPU0 Interrupt Details Register 0x00000000

0x410F9084 SPU0_IADDR SPU0 Interrupt Address Register 0x00000000

0x410F9FC8 SPU0_DEVID SPU0 Device Configuration Register 0x00140891

Table 47-58: CM41X_M0 SPU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8000 SPU1_CTL SPU1 Control Register 0x000000AD

0x400F8004 SPU1_STAT SPU1 Status Register 0x00000000

0x400F8040 SPU1_TIMEOUT SPU1 Timeout Register 0x00000000

0x400F8400 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8404 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8408 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F840C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8410 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8414 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8418 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F841C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8420 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8424 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8428 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F842C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8430 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–97

Table 47-58: CM41X_M0 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8434 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8438 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F843C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8440 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8444 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8448 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F844C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8450 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8454 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8458 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F845C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8460 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8464 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8468 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F846C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8470 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8474 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8478 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F847C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8480 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8484 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8488 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F848C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8490 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8494 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8498 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F849C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84AC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

CM41X_M0 Register List

47–98 ADSP-CM41x Mixed-Signal Control Processor

Table 47-58: CM41X_M0 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F84B0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84B4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84B8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84BC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84CC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84DC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84EC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84FC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8500 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8504 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8800 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8804 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8808 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F880C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8810 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8814 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8818 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F881C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8820 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–99

Table 47-58: CM41X_M0 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8824 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8828 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F882C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8830 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8834 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8838 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F883C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8840 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8844 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8848 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F884C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8850 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8854 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8858 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F885C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8860 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8864 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8868 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F886C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8870 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8874 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8878 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F887C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8880 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8884 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8888 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F888C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8890 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8894 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8898 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F889C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

CM41X_M0 Register List

47–100 ADSP-CM41x Mixed-Signal Control Processor

Table 47-58: CM41X_M0 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F88A0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88A4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88A8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88AC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88BC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88CC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88DC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88EC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88FC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8900 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8904 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F9080 SPU1_IDTLS SPU1 Interrupt Details Register 0x00000000

0x400F9084 SPU1_IADDR SPU1 Interrupt Address Register 0x00000000

0x400F9FC8 SPU1_DEVID SPU1 Device Configuration Register 0x00420891

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–101

Table 47-59: CM41X_M0 SWU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F0000 SWU0_GCTL SWU0 Global Control Register 0x00000000

0x410F0004 SWU0_GSTAT SWU0 Global Status Register 0x00000000

0x410F0010 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0014 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0018 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F001C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0020 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0024 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0028 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F002C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0030 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0034 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0038 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F003C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0040 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0044 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0048 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F004C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0050 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0054 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0058 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F005C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0060 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0064 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0068 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F006C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0070 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0074 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0078 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F007C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0080 SWU0_CNT[n] SWU0 Count Register n 0x00000000

CM41X_M0 Register List

47–102 ADSP-CM41x Mixed-Signal Control Processor

Table 47-59: CM41X_M0 SWU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F0084 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0088 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F008C SWU0_CUR[n] SWU0 Current Register n 0x00000000

Table 47-60: CM41X_M0 SWU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F1000 SWU1_GCTL SWU1 Global Control Register 0x00000000

0x410F1004 SWU1_GSTAT SWU1 Global Status Register 0x00000000

0x410F1010 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1014 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1018 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F101C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1020 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1024 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1028 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F102C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1030 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1034 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1038 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F103C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1040 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1044 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1048 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F104C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1050 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1054 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1058 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F105C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1060 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1064 SWU1_TARG[n] SWU1 Target Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–103

Table 47-60: CM41X_M0 SWU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F1068 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F106C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1070 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1074 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1078 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F107C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1080 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1084 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1088 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F108C SWU1_CUR[n] SWU1 Current Register n 0x00000000

Table 47-61: CM41X_M0 SWU2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F0000 SWU2_GCTL SWU2 Global Control Register 0x00000000

0x400F0004 SWU2_GSTAT SWU2 Global Status Register 0x00000000

0x400F0010 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0014 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0018 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F001C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0020 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0024 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0028 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F002C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0030 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0034 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0038 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F003C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0040 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0044 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0048 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

CM41X_M0 Register List

47–104 ADSP-CM41x Mixed-Signal Control Processor

Table 47-61: CM41X_M0 SWU2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F004C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0050 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0054 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0058 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F005C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0060 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0064 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0068 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F006C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0070 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0074 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0078 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F007C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0080 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0084 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0088 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F008C SWU2_CUR[n] SWU2 Current Register n 0x00000000

Table 47-62: CM41X_M0 SWU3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F1000 SWU3_GCTL SWU3 Global Control Register 0x00000000

0x400F1004 SWU3_GSTAT SWU3 Global Status Register 0x00000000

0x400F1010 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1014 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1018 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F101C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1020 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1024 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1028 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F102C SWU3_CUR[n] SWU3 Current Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–105

Table 47-62: CM41X_M0 SWU3 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F1030 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1034 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1038 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F103C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1040 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1044 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1048 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F104C SWU3_CUR[n] SWU3 Current Register n 0x00000000

0x400F1050 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1054 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1058 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F105C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1060 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1064 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1068 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F106C SWU3_CUR[n] SWU3 Current Register n 0x00000000

0x400F1070 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1074 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1078 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F107C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1080 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1084 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1088 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F108C SWU3_CUR[n] SWU3 Current Register n 0x00000000

Table 47-63: CM41X_M0 SWU4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F2000 SWU4_GCTL SWU4 Global Control Register 0x00000000

0x400F2004 SWU4_GSTAT SWU4 Global Status Register 0x00000000

0x400F2010 SWU4_CTL[n] SWU4 Control Register n 0x00000000

CM41X_M0 Register List

47–106 ADSP-CM41x Mixed-Signal Control Processor

Table 47-63: CM41X_M0 SWU4 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F2014 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2018 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F201C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2020 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2024 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2028 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F202C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2030 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2034 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2038 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F203C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2040 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2044 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2048 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F204C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2050 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2054 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2058 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F205C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2060 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2064 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2068 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F206C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2070 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2074 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2078 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F207C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2080 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2084 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2088 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F208C SWU4_CUR[n] SWU4 Current Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–107

Table 47-64: CM41X_M0 SWU5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F3000 SWU5_GCTL SWU5 Global Control Register 0x00000000

0x400F3004 SWU5_GSTAT SWU5 Global Status Register 0x00000000

0x400F3010 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3014 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3018 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F301C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3020 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3024 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3028 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F302C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3030 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3034 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3038 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F303C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3040 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3044 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3048 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F304C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3050 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3054 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3058 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F305C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3060 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3064 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3068 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F306C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3070 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3074 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3078 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F307C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3080 SWU5_CNT[n] SWU5 Count Register n 0x00000000

CM41X_M0 Register List

47–108 ADSP-CM41x Mixed-Signal Control Processor

Table 47-64: CM41X_M0 SWU5 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F3084 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3088 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F308C SWU5_CUR[n] SWU5 Current Register n 0x00000000

Table 47-65: CM41X_M0 SWU6 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F4000 SWU6_GCTL SWU6 Global Control Register 0x00000000

0x400F4004 SWU6_GSTAT SWU6 Global Status Register 0x00000000

0x400F4010 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4014 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4018 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F401C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4020 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4024 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4028 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F402C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4030 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4034 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4038 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F403C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4040 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4044 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4048 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F404C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4050 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4054 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4058 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F405C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4060 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4064 SWU6_TARG[n] SWU6 Target Register n 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–109

Table 47-65: CM41X_M0 SWU6 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F4068 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F406C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4070 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4074 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4078 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F407C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4080 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4084 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4088 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F408C SWU6_CUR[n] SWU6 Current Register n 0x00000000

Table 47-66: CM41X_M0 TAPC MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40017000 TAPC_IDCODE TAPC IDCODE Register 0x2280B0CB

0x40017004 TAPC_USERCODE TAPC USERCODE Register 0x00000000

0x40017008 TAPC_SDBGKEY_CTL TAPC Secure Debug Key Control Register 0x00000000

0x4001700C TAPC_SDBGKEY_STAT TAPC Secure Debug Key Status Register 0x00000000

0x40017010 TAPC_SDBGKEY0 TAPC Secure Debug Key 0 Register 0x00000000

0x40017014 TAPC_SDBGKEY1 TAPC Secure Debug Key 1 Register 0x00000000

0x40017018 TAPC_SDBGKEY2 TAPC Secure Debug Key 2 Register 0x00000000

0x4001701C TAPC_SDBGKEY3 TAPC Secure Debug Key 3 Register 0x00000000

0x40017030 TAPC_DBGCTL TAPC Debug Control Register 0x00000000

0x40017034 TAPC_DBGSTAT TAPC Debug Status Register 0x00000000

0x40017050 TAPC_SDBGKEYCMP0 TAPC Secure Debug Key 0 Compare Register 0x00000000

0x40017054 TAPC_SDBGKEYCMP1 TAPC Secure Debug Key 1 Compare Register 0x00000000

0x40017058 TAPC_SDBGKEYCMP2 TAPC Secure Debug Key 2 Compare Register 0x00000000

0x4001705C TAPC_SDBGKEYCMP3 TAPC Secure Debug Key 3 Compare Register 0x00000000

0x40017070 TAPC_SDBGKEYID0 TAPC Secure Debug Key 0 Identification Register 0x00000000

0x40017074 TAPC_SDBGKEYID1 TAPC Secure Debug Key 1 Key Identification Register 0x00000000

0x40017078 TAPC_SDBGKEYID2 TAPC Secure Debug Key 2 Key Identification Register 0x00000000

CM41X_M0 Register List

47–110 ADSP-CM41x Mixed-Signal Control Processor

Table 47-66: CM41X_M0 TAPC MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4001707C TAPC_SDBGKEYID3 TAPC Secure Debug Key 3 Key Identification Register 0x00000000

0x400170E0 TAPC_SCMSG TAPC System Run Control Message Register 0x00000000

0x400170E4 TAPC_SCMSG_SET TAPC System Run Control Message Set Register 0x00000000

0x400170E8 TAPC_SCMSG_CLR TAPC System Run Control Message Clear Register 0x00000000

0x400170EC TAPC_SCMSG_TGL TAPC System Run Control Message Toggle Register 0x00000000

0x400170F0 TAPC_RCMSG TAPC Run Control Message Register 0x00000000

0x400170F4 TAPC_RCMSG_SET TAPC Run Control Message Set Register 0x00000000

0x400170F8 TAPC_RCMSG_CLR TAPC Run Control Message Clear Register 0x00000000

0x400170FC TAPC_RCMSG_TGL TAPC Run Control Message Toggle Register 0x00000000

Table 47-67: CM41X_M0 PADS0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41001004 PADS0_PCFG0 PADS0 Peripheral Configuration0 Register 0x00000000

0x41001100 PADS0_PORT[n]_DS PADS0 Multi Port Drive Strength Control Register 0x00000000

0x41001120 PADS0_PORT[n]_RCTL PADS0 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x41001140 PADS0_PORT[n]_TRIPST PADS0 Multi Port Trip State Register 0x00000000

0x41001160 PADS0_PORT[n]_TRIPSEL PADS0 Multi Port Trip Select Register 0x00000000

Table 47-68: CM41X_M0 PADS1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40001004 PADS1_PCFG0 PADS1 Peripheral Configuration0 Register 0x00000000

0x40001048 PADS1_FOCP_DIV PADS1 Fast Over Current Protection Clock Divisor Regis-
ter

0x00000000

0x40001070 PADS1_DBC_PRESCALE PADS1 Debounce Prescale Register 0x00000000

0x40001080 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x40001084 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x40001088 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x4000108C PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x400010A0 PADS1_VMU_CTL PADS1 Voltage Monitor Unit Control Register 0x00000000

0x400010A8 PADS1_VMU_TRIPEN PADS1 Voltage Monitor Unit Trip Enable Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–111

Table 47-68: CM41X_M0 PADS1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400010AC PADS1_NVWR_RSTCTL PADS1 Non-Volatile Write Reset Control Register 0x00000000

0x400010B0 PADS1_MONOSC_CFG PADS1 Monitor Oscillator Control Register 0x00000000

0x400010BC PADS1_VMU_TRIM PADS1 Voltage Monitor Unit Trim Register 0x00000000

0x40001100 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001104 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001108 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x4000110C PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001110 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001120 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001124 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001128 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x4000112C PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001130 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001140 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001144 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001148 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x4000114C PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001150 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001160 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001164 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001168 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x4000116C PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001170 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

Table 47-69: CM41X_M0 SYSBLK0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41000040 SYSBLK0_SYSSTAT SYSBLK0 System Status Register 0x00000000

CM41X_M0 Register List

47–112 ADSP-CM41x Mixed-Signal Control Processor

Table 47-69: CM41X_M0 SYSBLK0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41000070 SYSBLK0_SCB_RESP_CFG SYSBLK0 SCB Response Configuration Register 0x00000000

0x41000074 SYSBLK0_SCB_TIME-
OUT_VALUE

SYSBLK0 SCB Timeout Value Register 0x00000000

0x41000080 SYSBLK0_ENG_MODE_CF
G0

SYSBLK0 Engineering Mode Configuration Register 0 0x00000000

0x410000B4 SYSBLK0_M0_VTOR SYSBLK0 Vector Table Base Offset Register 0x200F0000

0x410000E0 SYSBLK0_SRAM0_ECC SYSBLK0 M0 SRAM ECC Register 0x00000000

0x410000E4 SYSBLK0_SYS_STCALIB SYSBLK0 System Register 0x02000000

0x410000E8 SYSBLK0_IRQ_LATENCY SYSBLK0 M0 IRQ Latency Register 0x0000000D

0x41000200 SYSBLK0_SISTAT0 SYSBLK0 Shared Interrupt 0 Status Register 0x00000000

0x4100020C SYSBLK0_SISTAT3 SYSBLK0 Shared Interrupt 3 Status Register 0x00000000

0x41000214 SYSBLK0_SISTAT5 SYSBLK0 Shared Interrupt 5 Status Register 0x00000000

0x41000218 SYSBLK0_SISTAT6 SYSBLK0 Shared Interrupt 6 Status Register 0x00000000

0x4100021C SYSBLK0_SISTAT7 SYSBLK0 Shared Interrupt 7 Status Register 0x00000000

0x41000220 SYSBLK0_SISTAT8 SYSBLK0 Shared Interrupt 8 Status Register 0x00000000

0x41000228 SYSBLK0_SISTAT10 SYSBLK0 Shared Interrupt 10 Status Register 0x00000000

0x4100022C SYSBLK0_SISTAT11 SYSBLK0 Shared Interrupt 11 Status Register 0x00000000

0x41000230 SYSBLK0_SISTAT12 SYSBLK0 Shared Interrupt 12 Status Register 0x00000000

0x4100023C SYSBLK0_SISTAT15 SYSBLK0 Shared Interrupt 15 Status Register 0x00000000

0x41000240 SYSBLK0_SISTAT16 SYSBLK0 Shared Interrupt 16 Status Register 0x00000000

0x41000244 SYSBLK0_SISTAT17 SYSBLK0 Shared Interrupt 17 Status Register 0x00000000

0x41000248 SYSBLK0_SISTAT18 SYSBLK0 Shared Interrupt 18 Status Register 0x00000000

0x4100024C SYSBLK0_SISTAT19 SYSBLK0 Shared Interrupt 19 Status Register 0x00000000

0x41000258 SYSBLK0_SISTAT22 SYSBLK0 Shared Interrupt 22 Status Register 0x00000000

0x41000264 SYSBLK0_SISTAT25 SYSBLK0 Shared Interrupt 25 Status Register 0x00000000

0x41000270 SYSBLK0_SISTAT28 SYSBLK0 Shared Interrupt 28 Status Register 0x00000000

Table 47-70: CM41X_M0 SYSBLK1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40000010 SYSBLK1_DMA_MUXCTL SYSBLK1 Peripheral DMA Multiplexer Control 0x00000000

0x40000014 SYSBLK1_PWM_SYS_CFG SYSBLK1 PWM System Configuration Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–113

Table 47-70: CM41X_M0 SYSBLK1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40000018 SYSBLK1_MEMST_CTL SYSBLK1 Memory Self-Test Control Register 0x00000000

0x4000001C SYSBLK1_SINC_TEST SYSBLK1 SINC Test Register 0x00000000

0x40000040 SYSBLK1_SYSSTAT SYSBLK1 System Status Register 0x00000000

0x40000050 SYSBLK1_CLKNG_TRIPEN SYSBLK1 Clock Not Good Trip Register 0x00000000

0x40000058 SYSBLK1_FAULT_TRIPEN SYSBLK1 Fault Trip Register 0x00000010

0x40000060 SYSBLK1_ROT_UPDN_CF
G

SYSBLK1 Rotary Counter Up/Down Configuration Reg-
ister

0x00000000

0x40000070 SYSBLK1_SCB_RESP_CFG SYSBLK1 SCB Response Configuration Register 0x00000000

0x40000074 SYSBLK1_SCB_TIME-
OUT_VALUE

SYSBLK1 SCB Timeout Value Register 0x00000000

0x40000080 SYSBLK1_ENG_MODE_CF
G0

SYSBLK1 Engineering Mode Configuration Register 0 0x00000000

0x40000084 SYSBLK1_LROM_STAT SYSBLK1 Logic ROM Status Register 0x00000000

Table 47-71: CM41X_M0 TIMER0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41007004 TIMER0_RUN TIMER0 Run Register 0x00000000

0x41007008 TIMER0_RUN_SET TIMER0 Run Set Register 0x00000000

0x4100700C TIMER0_RUN_CLR TIMER0 Run Clear Register 0x00000000

0x41007010 TIMER0_STOP_CFG TIMER0 Stop Configuration Register 0x00000000

0x41007014 TIMER0_STOP_CFG_SET TIMER0 Stop Configuration Set Register 0x00000000

0x41007018 TIMER0_STOP_CFG_CLR TIMER0 Stop Configuration Clear Register 0x00000000

0x4100701C TIMER0_DATA_IMSK TIMER0 Data Interrupt Mask Register 0x000000FF

0x41007020 TIMER0_STAT_IMSK TIMER0 Status Interrupt Mask Register 0x000000FF

0x41007024 TIMER0_TRG_MSK TIMER0 Trigger Master Mask Register 0x000000FF

0x41007028 TIMER0_TRG_IE TIMER0 Trigger Slave Enable Register 0x00000000

0x4100702C TIMER0_DATA_ILAT TIMER0 Data Interrupt Latch Register 0x00000000

0x41007030 TIMER0_STAT_ILAT TIMER0 Status Interrupt Latch Register 0x00000000

0x41007034 TIMER0_ERR_TYPE TIMER0 Error Type Status Register 0x00000000

0x41007038 TIMER0_BCAST_PER TIMER0 Broadcast Period Register 0x00000000

0x4100703C TIMER0_BCAST_WID TIMER0 Broadcast Width Register 0x00000000

CM41X_M0 Register List

47–114 ADSP-CM41x Mixed-Signal Control Processor

Table 47-71: CM41X_M0 TIMER0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41007040 TIMER0_BCAST_DLY TIMER0 Broadcast Delay Register 0x00000000

0x41007060 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007064 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007068 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100706C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007070 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007080 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007084 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007088 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100708C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007090 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070A0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070A4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070A8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070AC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070B0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070C0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070C4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070C8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070CC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070D0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070E0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070E4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070E8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070EC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070F0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007100 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007104 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007108 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100710C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007110 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–115

Table 47-71: CM41X_M0 TIMER0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41007120 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007124 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007128 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100712C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007130 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007140 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007144 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007148 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100714C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007150 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

Table 47-72: CM41X_M0 TIMER1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40021004 TIMER1_RUN TIMER1 Run Register 0x00000000

0x40021008 TIMER1_RUN_SET TIMER1 Run Set Register 0x00000000

0x4002100C TIMER1_RUN_CLR TIMER1 Run Clear Register 0x00000000

0x40021010 TIMER1_STOP_CFG TIMER1 Stop Configuration Register 0x00000000

0x40021014 TIMER1_STOP_CFG_SET TIMER1 Stop Configuration Set Register 0x00000000

0x40021018 TIMER1_STOP_CFG_CLR TIMER1 Stop Configuration Clear Register 0x00000000

0x4002101C TIMER1_DATA_IMSK TIMER1 Data Interrupt Mask Register 0x000000FF

0x40021020 TIMER1_STAT_IMSK TIMER1 Status Interrupt Mask Register 0x000000FF

0x40021024 TIMER1_TRG_MSK TIMER1 Trigger Master Mask Register 0x000000FF

0x40021028 TIMER1_TRG_IE TIMER1 Trigger Slave Enable Register 0x00000000

0x4002102C TIMER1_DATA_ILAT TIMER1 Data Interrupt Latch Register 0x00000000

0x40021030 TIMER1_STAT_ILAT TIMER1 Status Interrupt Latch Register 0x00000000

0x40021034 TIMER1_ERR_TYPE TIMER1 Error Type Status Register 0x00000000

0x40021038 TIMER1_BCAST_PER TIMER1 Broadcast Period Register 0x00000000

0x4002103C TIMER1_BCAST_WID TIMER1 Broadcast Width Register 0x00000000

0x40021040 TIMER1_BCAST_DLY TIMER1 Broadcast Delay Register 0x00000000

0x40021060 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

CM41X_M0 Register List

47–116 ADSP-CM41x Mixed-Signal Control Processor

Table 47-72: CM41X_M0 TIMER1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40021064 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021068 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002106C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021070 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021080 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021084 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021088 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002108C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021090 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210A0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210A4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210A8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210AC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210B0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210C0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210C4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210C8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210CC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210D0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210E0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210E4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210E8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210EC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210F0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021100 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021104 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021108 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002110C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021110 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021120 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021124 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–117

Table 47-72: CM41X_M0 TIMER1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40021128 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002112C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021130 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021140 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021144 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021148 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002114C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021150 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

Table 47-73: CM41X_M0 TRU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41006000 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006004 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006008 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100600C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006010 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006014 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006018 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100601C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006020 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006024 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006028 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100602C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006030 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006034 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006038 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100603C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006040 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006044 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006048 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

CM41X_M0 Register List

47–118 ADSP-CM41x Mixed-Signal Control Processor

Table 47-73: CM41X_M0 TRU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100604C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006050 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006054 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006058 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100605C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006060 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006064 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006068 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100606C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006070 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006074 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006078 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100607C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006080 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006084 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006088 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100608C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006090 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006094 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006098 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100609C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A0 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A4 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A8 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060AC TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060B0 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060B4 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060B8 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410067E0 TRU0_MTR TRU0 Master Trigger Register 0x00000000

0x410067E8 TRU0_ERRADDR TRU0 Error Address Register 0x00000000

0x410067EC TRU0_STAT TRU0 Status Information Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–119

Table 47-73: CM41X_M0 TRU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410067F4 TRU0_GCTL TRU0 Global Control Register 0x00000000

Table 47-74: CM41X_M0 TRU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40020000 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020004 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020008 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002000C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020010 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020014 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020018 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002001C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020020 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020024 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020028 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002002C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020030 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020034 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020038 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002003C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020040 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020044 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020048 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002004C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020050 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020054 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020058 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002005C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020060 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020064 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M0 Register List

47–120 ADSP-CM41x Mixed-Signal Control Processor

Table 47-74: CM41X_M0 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40020068 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002006C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020070 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020074 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020078 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002007C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020080 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020084 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020088 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002008C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020090 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020094 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020098 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002009C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200AC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200BC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200CC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200DC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200E0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–121

Table 47-74: CM41X_M0 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400200E4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200E8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200EC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200FC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020100 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020104 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020108 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002010C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020110 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020114 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020118 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002011C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020120 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020124 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020128 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002012C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020130 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020134 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020138 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002013C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020140 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020144 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020148 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002014C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020150 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020154 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020158 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002015C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M0 Register List

47–122 ADSP-CM41x Mixed-Signal Control Processor

Table 47-74: CM41X_M0 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40020160 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020164 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020168 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002016C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020170 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020174 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020178 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002017C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020180 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020184 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020188 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002018C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020190 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020194 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020198 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002019C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201AC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201BC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201C0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201C4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201C8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201CC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–123

Table 47-74: CM41X_M0 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400201DC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201EC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201FC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020200 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020204 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020208 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002020C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020210 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020214 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020218 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400207E0 TRU1_MTR TRU1 Master Trigger Register 0x00000000

0x400207E8 TRU1_ERRADDR TRU1 Error Address Register 0x00000000

0x400207EC TRU1_STAT TRU1 Status Information Register 0x00000000

0x400207F4 TRU1_GCTL TRU1 Global Control Register 0x00000000

Table 47-75: CM41X_M0 TTU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002C000 TTU0_CTL TTU0 TTU Control Register 0x00000000

0x4002C004 TTU0_REVID TTU0 Revision ID Register 0x00000010

0x4002C008 TTU0_STOP TTU0 Counter Stop Request Register 0x00000000

0x4002C00C TTU0_STAT TTU0 Counter Status Register 0x00000000

0x4002C010 TTU0_CHK TTU0 Counter Check Register 0x00000000

0x4002C020 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C024 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

CM41X_M0 Register List

47–124 ADSP-CM41x Mixed-Signal Control Processor

Table 47-75: CM41X_M0 TTU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002C028 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C02C TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C040 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C044 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C048 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C04C TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C080 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C084 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C088 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C08C TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C090 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C094 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C098 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C09C TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C0C0 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0C4 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0C8 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0CC TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D0 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D4 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D8 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0DC TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

Table 47-76: CM41X_M0 TWI0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40023000 TWI0_CLKDIV TWI0 SCL Clock Divider Register 0x00000000

0x40023004 TWI0_CTL TWI0 Control Register 0x00000000

0x40023008 TWI0_SLVCTL TWI0 Slave Mode Control Register 0x00000000

0x4002300C TWI0_SLVSTAT TWI0 Slave Mode Status Register 0x00000000

0x40023010 TWI0_SLVADDR TWI0 Slave Mode Address Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–125

Table 47-76: CM41X_M0 TWI0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40023014 TWI0_MSTRCTL TWI0 Master Mode Control Registers 0x00000000

0x40023018 TWI0_MSTRSTAT TWI0 Master Mode Status Register 0x00000000

0x4002301C TWI0_MSTRADDR TWI0 Master Mode Address Register 0x00000000

0x40023020 TWI0_ISTAT TWI0 Interrupt Status Register 0x00000000

0x40023024 TWI0_IMSK TWI0 Interrupt Mask Register 0x00000000

0x40023028 TWI0_FIFOCTL TWI0 FIFO Control Register 0x00000000

0x4002302C TWI0_FIFOSTAT TWI0 FIFO Status Register 0x00000000

0x40023080 TWI0_TXDATA8 TWI0 Tx Data Single-Byte Register 0x00000000

0x40023084 TWI0_TXDATA16 TWI0 Tx Data Double-Byte Register 0x00000000

0x40023088 TWI0_RXDATA8 TWI0 Rx Data Single-Byte Register 0x00000000

0x4002308C TWI0_RXDATA16 TWI0 Rx Data Double-Byte Register 0x00000000

Table 47-77: CM41X_M0 UART0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100A004 UART0_CTL UART0 Control Register 0x00000000

0x4100A008 UART0_STAT UART0 Status Register 0x000000A0

0x4100A00C UART0_SCR UART0 Scratch Register 0x00000000

0x4100A010 UART0_CLK UART0 Clock Rate Register 0x0000FFFF

0x4100A014 UART0_IMSK UART0 Interrupt Mask Register 0x00000000

0x4100A018 UART0_IMSK_SET UART0 Interrupt Mask Set Register 0x00000000

0x4100A01C UART0_IMSK_CLR UART0 Interrupt Mask Clear Register 0x00000000

0x4100A020 UART0_RBR UART0 Receive Buffer Register 0x00000000

0x4100A024 UART0_THR UART0 Transmit Hold Register 0x00000000

0x4100A028 UART0_TAIP UART0 Transmit Address/Insert Pulse Register 0x00000000

0x4100A02C UART0_TSR UART0 Transmit Shift Register 0x000007FF

0x4100A030 UART0_RSR UART0 Receive Shift Register 0x00000000

0x4100A034 UART0_TXCNT UART0 Transmit Counter Register 0x00000000

0x4100A038 UART0_RXCNT UART0 Receive Counter Register 0x00000000

CM41X_M0 Register List

47–126 ADSP-CM41x Mixed-Signal Control Processor

Table 47-78: CM41X_M0 UART1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40044004 UART1_CTL UART1 Control Register 0x00000000

0x40044008 UART1_STAT UART1 Status Register 0x000000A0

0x4004400C UART1_SCR UART1 Scratch Register 0x00000000

0x40044010 UART1_CLK UART1 Clock Rate Register 0x0000FFFF

0x40044014 UART1_IMSK UART1 Interrupt Mask Register 0x00000000

0x40044018 UART1_IMSK_SET UART1 Interrupt Mask Set Register 0x00000000

0x4004401C UART1_IMSK_CLR UART1 Interrupt Mask Clear Register 0x00000000

0x40044020 UART1_RBR UART1 Receive Buffer Register 0x00000000

0x40044024 UART1_THR UART1 Transmit Hold Register 0x00000000

0x40044028 UART1_TAIP UART1 Transmit Address/Insert Pulse Register 0x00000000

0x4004402C UART1_TSR UART1 Transmit Shift Register 0x000007FF

0x40044030 UART1_RSR UART1 Receive Shift Register 0x00000000

0x40044034 UART1_TXCNT UART1 Transmit Counter Register 0x00000000

0x40044038 UART1_RXCNT UART1 Receive Counter Register 0x00000000

Table 47-79: CM41X_M0 UART2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40045004 UART2_CTL UART2 Control Register 0x00000000

0x40045008 UART2_STAT UART2 Status Register 0x000000A0

0x4004500C UART2_SCR UART2 Scratch Register 0x00000000

0x40045010 UART2_CLK UART2 Clock Rate Register 0x0000FFFF

0x40045014 UART2_IMSK UART2 Interrupt Mask Register 0x00000000

0x40045018 UART2_IMSK_SET UART2 Interrupt Mask Set Register 0x00000000

0x4004501C UART2_IMSK_CLR UART2 Interrupt Mask Clear Register 0x00000000

0x40045020 UART2_RBR UART2 Receive Buffer Register 0x00000000

0x40045024 UART2_THR UART2 Transmit Hold Register 0x00000000

0x40045028 UART2_TAIP UART2 Transmit Address/Insert Pulse Register 0x00000000

0x4004502C UART2_TSR UART2 Transmit Shift Register 0x000007FF

0x40045030 UART2_RSR UART2 Receive Shift Register 0x00000000

0x40045034 UART2_TXCNT UART2 Transmit Counter Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–127

Table 47-79: CM41X_M0 UART2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40045038 UART2_RXCNT UART2 Receive Counter Register 0x00000000

Table 47-80: CM41X_M0 UART3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40046004 UART3_CTL UART3 Control Register 0x00000000

0x40046008 UART3_STAT UART3 Status Register 0x000000A0

0x4004600C UART3_SCR UART3 Scratch Register 0x00000000

0x40046010 UART3_CLK UART3 Clock Rate Register 0x0000FFFF

0x40046014 UART3_IMSK UART3 Interrupt Mask Register 0x00000000

0x40046018 UART3_IMSK_SET UART3 Interrupt Mask Set Register 0x00000000

0x4004601C UART3_IMSK_CLR UART3 Interrupt Mask Clear Register 0x00000000

0x40046020 UART3_RBR UART3 Receive Buffer Register 0x00000000

0x40046024 UART3_THR UART3 Transmit Hold Register 0x00000000

0x40046028 UART3_TAIP UART3 Transmit Address/Insert Pulse Register 0x00000000

0x4004602C UART3_TSR UART3 Transmit Shift Register 0x000007FF

0x40046030 UART3_RSR UART3 Receive Shift Register 0x00000000

0x40046034 UART3_TXCNT UART3 Transmit Counter Register 0x00000000

0x40046038 UART3_RXCNT UART3 Receive Counter Register 0x00000000

Table 47-81: CM41X_M0 UART4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40047004 UART4_CTL UART4 Control Register 0x00000000

0x40047008 UART4_STAT UART4 Status Register 0x000000A0

0x4004700C UART4_SCR UART4 Scratch Register 0x00000000

0x40047010 UART4_CLK UART4 Clock Rate Register 0x0000FFFF

0x40047014 UART4_IMSK UART4 Interrupt Mask Register 0x00000000

0x40047018 UART4_IMSK_SET UART4 Interrupt Mask Set Register 0x00000000

0x4004701C UART4_IMSK_CLR UART4 Interrupt Mask Clear Register 0x00000000

0x40047020 UART4_RBR UART4 Receive Buffer Register 0x00000000

0x40047024 UART4_THR UART4 Transmit Hold Register 0x00000000

CM41X_M0 Register List

47–128 ADSP-CM41x Mixed-Signal Control Processor

Table 47-81: CM41X_M0 UART4 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40047028 UART4_TAIP UART4 Transmit Address/Insert Pulse Register 0x00000000

0x4004702C UART4_TSR UART4 Transmit Shift Register 0x000007FF

0x40047030 UART4_RSR UART4 Receive Shift Register 0x00000000

0x40047034 UART4_TXCNT UART4 Transmit Counter Register 0x00000000

0x40047038 UART4_RXCNT UART4 Receive Counter Register 0x00000000

Table 47-82: CM41X_M0 WDOG0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41005000 WDOG0_CTL WDOG0 Control Register 0x00000AD0

0x41005004 WDOG0_CNT WDOG0 Count Register 0x00000000

0x41005008 WDOG0_STAT WDOG0 Watchdog Timer Status Register 0x00000000

Table 47-83: CM41X_M0 WDOG1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40011000 WDOG1_CTL WDOG1 Control Register 0x00000AD0

0x40011004 WDOG1_CNT WDOG1 Count Register 0x00000000

0x40011008 WDOG1_STAT WDOG1 Watchdog Timer Status Register 0x00000000

CM41X_M0 Register List

ADSP-CM41x Mixed-Signal Control Processor 47–129

48 CM41X_M4 Register List

This appendix lists Memory-Mapped Register address and register names. The modules are presented in alphabetical
order.

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B000 ADCC0_CTL ADCC0 Control Register 0x00000000

0x4100B004 ADCC0_ERRSTAT ADCC0 Error Status Register 0x00000000

0x4100B008 ADCC0_ERRMSK ADCC0 Error Mask Register 0x00000000

0x4100B00C ADCC0_ERRMSK_SET ADCC0 Error Mask Set Register 0x00000000

0x4100B010 ADCC0_ERRMSK_CLR ADCC0 Error Mask Clear Register 0x00000000

0x4100B014 ADCC0_EISTAT ADCC0 Event Interrupt Status Register 0x00000000

0x4100B018 ADCC0_EIMSK ADCC0 Event Interrupt Mask Register 0x00000000

0x4100B01C ADCC0_EIMSK_SET ADCC0 Event Interrupt Mask Set Register 0x00000000

0x4100B020 ADCC0_EIMSK_CLR ADCC0 Event Interrupt Mask Clear Register 0x00000000

0x4100B024 ADCC0_FISTAT ADCC0 Frame Interrupt Status Register 0x00000000

0x4100B028 ADCC0_FIMSK ADCC0 Frame Interrupt Mask Register 0x00000000

0x4100B02C ADCC0_FIMSK_SET ADCC0 Frame Interrupt Mask Set Register 0x00000000

0x4100B030 ADCC0_FIMSK_CLR ADCC0 Frame Interrupt Mask Clear Register 0x00000000

0x4100B034 ADCC0_EVTEN ADCC0 Event Enable Register 0x00000000

0x4100B038 ADCC0_EVTEN_SET ADCC0 Event Enable Set Register 0x00000000

0x4100B03C ADCC0_EVTEN_CLR ADCC0 Event Enable Clear Register 0x00000000

0x4100B040 ADCC0_ECOL ADCC0 Event Collision Status Register 0x00000000

0x4100B044 ADCC0_EMISS ADCC0 Event Miss Status Register 0x00000000

0x4100B048 ADCC0_BPTR0 ADCC0 Base Pointer 0 Register 0x00000000

0x4100B04C ADCC0_FRINC0 ADCC0 Frame Increment 0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–1

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B050 ADCC0_CBSIZ0 ADCC0 Circular Buffer Size 0 Register 0x00000000

0x4100B054 ADCC0_TCA0 ADCC0 Timing Control A (ADC0) Register 0x00000000

0x4100B058 ADCC0_TCB0 ADCC0 Timing Control B (ADC0) Register 0x00000000

0x4100B05C ADCC0_BWMON0 ADCC0 Bandwidth Monitor 0 Register 0x00000000

0x4100B064 ADCC0_BPTR1 ADCC0 DMA Base Pointer 1 Register 0x00000000

0x4100B068 ADCC0_FRINC1 ADCC0 Frame Increment 1 Register 0x00000000

0x4100B06C ADCC0_CBSIZ1 ADCC0 Circular Buffer Size 1 Register 0x00000000

0x4100B070 ADCC0_TCA1 ADCC0 Timing Control A (ADC1) Register 0x00000000

0x4100B074 ADCC0_TCB1 ADCC0 Timing Control B (ADC1) Register 0x00000000

0x4100B078 ADCC0_BWMON1 ADCC0 Bandwidth Monitor 1 Register 0x00000000

0x4100B07C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B080 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B084 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B088 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B08C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B090 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B094 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B098 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B09C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0A0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0A4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0A8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0AC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0B0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0B4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0B8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0BC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0C0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0C4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0C8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0CC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

CM41X_M4 Register List

48–2 ADSP-CM41x Mixed-Signal Control Processor

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B0D0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0D4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0D8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0DC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0E0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0E4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0E8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0EC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0F0 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0F4 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B0F8 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B0FC ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B100 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B104 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B108 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B10C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B110 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B114 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B118 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B11C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B120 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B124 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B128 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B12C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B130 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B134 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B138 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B13C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B140 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B144 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B148 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–3

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B14C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B150 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B154 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B158 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B15C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B160 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B164 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B168 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B16C ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B170 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B174 ADCC0_EVT[nn] ADCC0 Event n Time Register 0x00000000

0x4100B178 ADCC0_EVCTL[nn] ADCC0 Event n Control Register 0x00000000

0x4100B17C ADCC0_NUMFRAM0 ADCC0 Timer0 Frame Limit Count Register 0x00000000

0x4100B180 ADCC0_NUMFRAM1 ADCC0 Timer1 Frame Limit Count Register 0x00000000

0x4100B184 ADCC0_DATOVF ADCC0 Data Overflow Indication Register 0x00000000

0x4100B200 ADCC0_EPND ADCC0 Pending Events Status Register 0x00000000

0x4100B204 ADCC0_T0STAT ADCC0 Timer 0 Status Register 0x00000000

0x4100B208 ADCC0_TMR0 ADCC0 Timer 0 Current Count Register 0x00000000

0x4100B20C ADCC0_T1STAT ADCC0 Timer 1 Status Register 0x00000000

0x4100B210 ADCC0_TMR1 ADCC0 Timer 1 Current Count Register 0x00000000

0x4100B214 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B218 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B21C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B220 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B224 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B228 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B22C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B230 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B234 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B238 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B23C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

CM41X_M4 Register List

48–4 ADSP-CM41x Mixed-Signal Control Processor

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B240 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B244 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B248 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B24C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B250 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B254 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B258 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B25C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B260 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B264 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B268 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B26C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B270 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B274 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B278 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B27C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B280 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B284 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B288 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B28C ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B290 ADCC0_EVDAT[nn] ADCC0 Event n Data Register 0x00000000

0x4100B294 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B298 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B29C ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2A8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2AC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2B8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–5

Table 48-1: CM41X_M4 ADCC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100B2BC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2C8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2CC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2D8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2DC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2E8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2EC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F0 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F4 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2F8 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B2FC ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B300 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B304 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B308 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B30C ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B310 ADCC0_EVSTAT[nn] ADCC0 Event n Status Register 0x00000000

0x4100B314 ADCC0_CBNUM0 ADCC0 Timer0 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4100B318 ADCC0_CBNUM1 ADCC0 Timer1 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4100B31C ADCC0_TRGCNT0 ADCC0 Trigger Count TIMER0 Register 0x00000000

0x4100B320 ADCC0_TRGCNT1 ADCC0 Trigger Count TIMER1 Register 0x00000000

0x4100B404 ADCC0_ADCRW0 ADCC0 ADC2 Interface RW Access Register 0x00000000

0x4100B408 ADCC0_ADCRW1 ADCC0 ADC2 Interface RW Access Register 0x00000000

CM41X_M4 Register List

48–6 ADSP-CM41x Mixed-Signal Control Processor

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A000 ADCC1_CTL ADCC1 Control Register 0x00000000

0x4004A004 ADCC1_ERRSTAT ADCC1 Error Status Register 0x00000000

0x4004A008 ADCC1_ERRMSK ADCC1 Error Mask Register 0x00000000

0x4004A00C ADCC1_ERRMSK_SET ADCC1 Error Mask Set Register 0x00000000

0x4004A010 ADCC1_ERRMSK_CLR ADCC1 Error Mask Clear Register 0x00000000

0x4004A014 ADCC1_EISTAT ADCC1 Event Interrupt Status Register 0x00000000

0x4004A018 ADCC1_EIMSK ADCC1 Event Interrupt Mask Register 0x00000000

0x4004A01C ADCC1_EIMSK_SET ADCC1 Event Interrupt Mask Set Register 0x00000000

0x4004A020 ADCC1_EIMSK_CLR ADCC1 Event Interrupt Mask Clear Register 0x00000000

0x4004A024 ADCC1_FISTAT ADCC1 Frame Interrupt Status Register 0x00000000

0x4004A028 ADCC1_FIMSK ADCC1 Frame Interrupt Mask Register 0x00000000

0x4004A02C ADCC1_FIMSK_SET ADCC1 Frame Interrupt Mask Set Register 0x00000000

0x4004A030 ADCC1_FIMSK_CLR ADCC1 Frame Interrupt Mask Clear Register 0x00000000

0x4004A034 ADCC1_EVTEN ADCC1 Event Enable Register 0x00000000

0x4004A038 ADCC1_EVTEN_SET ADCC1 Event Enable Set Register 0x00000000

0x4004A03C ADCC1_EVTEN_CLR ADCC1 Event Enable Clear Register 0x00000000

0x4004A040 ADCC1_ECOL ADCC1 Event Collision Status Register 0x00000000

0x4004A044 ADCC1_EMISS ADCC1 Event Miss Status Register 0x00000000

0x4004A048 ADCC1_BPTR0 ADCC1 Base Pointer 0 Register 0x00000000

0x4004A04C ADCC1_FRINC0 ADCC1 Frame Increment 0 Register 0x00000000

0x4004A050 ADCC1_CBSIZ0 ADCC1 Circular Buffer Size 0 Register 0x00000000

0x4004A054 ADCC1_TCA0 ADCC1 Timing Control A (ADC0) Register 0x00000000

0x4004A058 ADCC1_TCB0 ADCC1 Timing Control B (ADC0) Register 0x00000000

0x4004A05C ADCC1_BWMON0 ADCC1 Bandwidth Monitor 0 Register 0x00000000

0x4004A064 ADCC1_BPTR1 ADCC1 DMA Base Pointer 1 Register 0x00000000

0x4004A068 ADCC1_FRINC1 ADCC1 Frame Increment 1 Register 0x00000000

0x4004A06C ADCC1_CBSIZ1 ADCC1 Circular Buffer Size 1 Register 0x00000000

0x4004A070 ADCC1_TCA1 ADCC1 Timing Control A (ADC1) Register 0x00000000

0x4004A074 ADCC1_TCB1 ADCC1 Timing Control B (ADC1) Register 0x00000000

0x4004A078 ADCC1_BWMON1 ADCC1 Bandwidth Monitor 1 Register 0x00000000

0x4004A07C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–7

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A080 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A084 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A088 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A08C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A090 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A094 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A098 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A09C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0A0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0A4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0A8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0AC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0B0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0B4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0B8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0BC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0C0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0C4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0C8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0CC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0D0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0D4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0D8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0DC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0E0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0E4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0E8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0EC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0F0 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A0F4 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A0F8 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

CM41X_M4 Register List

48–8 ADSP-CM41x Mixed-Signal Control Processor

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A0FC ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A100 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A104 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A108 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A10C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A110 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A114 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A118 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A11C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A120 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A124 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A128 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A12C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A130 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A134 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A138 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A13C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A140 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A144 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A148 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A14C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A150 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A154 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A158 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A15C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A160 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A164 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A168 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A16C ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

0x4004A170 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A174 ADCC1_EVT[nn] ADCC1 Event n Time Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–9

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A178 ADCC1_EVCTL[nn] ADCC1 Event n Control Register 0x00000000

0x4004A17C ADCC1_NUMFRAM0 ADCC1 Timer0 Frame Limit Count Register 0x00000000

0x4004A180 ADCC1_NUMFRAM1 ADCC1 Timer1 Frame Limit Count Register 0x00000000

0x4004A184 ADCC1_DATOVF ADCC1 Data Overflow Indication Register 0x00000000

0x4004A200 ADCC1_EPND ADCC1 Pending Events Status Register 0x00000000

0x4004A204 ADCC1_T0STAT ADCC1 Timer 0 Status Register 0x00000000

0x4004A208 ADCC1_TMR0 ADCC1 Timer 0 Current Count Register 0x00000000

0x4004A20C ADCC1_T1STAT ADCC1 Timer 1 Status Register 0x00000000

0x4004A210 ADCC1_TMR1 ADCC1 Timer 1 Current Count Register 0x00000000

0x4004A214 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A218 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A21C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A220 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A224 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A228 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A22C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A230 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A234 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A238 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A23C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A240 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A244 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A248 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A24C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A250 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A254 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A258 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A25C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A260 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A264 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A268 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

CM41X_M4 Register List

48–10 ADSP-CM41x Mixed-Signal Control Processor

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A26C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A270 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A274 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A278 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A27C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A280 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A284 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A288 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A28C ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A290 ADCC1_EVDAT[nn] ADCC1 Event n Data Register 0x00000000

0x4004A294 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A298 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A29C ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2A8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2AC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2B8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2BC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2C8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2CC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2D8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2DC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2E0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2E4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–11

Table 48-2: CM41X_M4 ADCC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004A2E8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2EC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F0 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F4 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2F8 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A2FC ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A300 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A304 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A308 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A30C ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A310 ADCC1_EVSTAT[nn] ADCC1 Event n Status Register 0x00000000

0x4004A314 ADCC1_CBNUM0 ADCC1 Timer0 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4004A318 ADCC1_CBNUM1 ADCC1 Timer1 Circular Buffer DMA Wrap Number
Register

0x00000000

0x4004A31C ADCC1_TRGCNT0 ADCC1 Trigger Count TIMER0 Register 0x00000000

0x4004A320 ADCC1_TRGCNT1 ADCC1 Trigger Count TIMER1 Register 0x00000000

0x4004A404 ADCC1_ADCRW0 ADCC1 ADC2 Interface RW Access Register 0x00000000

0x4004A408 ADCC1_ADCRW1 ADCC1 ADC2 Interface RW Access Register 0x00000000

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41008200 CAN0_MC1 CAN0 Mailbox Configuration 1 Register 0x00000000

0x41008204 CAN0_MD1 CAN0 Mailbox Direction 1 Register 0x000000FF

0x41008208 CAN0_TRS1 CAN0 Transmission Request Set 1 Register 0x00000000

0x4100820C CAN0_TRR1 CAN0 Transmission Request Reset 1 Register 0x00000000

0x41008210 CAN0_TA1 CAN0 Transmission Acknowledge 1 Register 0x00000000

0x41008214 CAN0_AA1 CAN0 Abort Acknowledge 1 Register 0x00000000

0x41008218 CAN0_RMP1 CAN0 Receive Message Pending 1 Register 0x00000000

0x4100821C CAN0_RML1 CAN0 Receive Message Lost 1 Register 0x00000000

0x41008220 CAN0_MBTIF1 CAN0 Mailbox Transmit Interrupt Flag 1 Register 0x00000000

CM41X_M4 Register List

48–12 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008224 CAN0_MBRIF1 CAN0 Mailbox Receive Interrupt Flag 1 Register 0x00000000

0x41008228 CAN0_MBIM1 CAN0 Mailbox Interrupt Mask 1 Register 0x00000000

0x4100822C CAN0_RFH1 CAN0 Remote Frame Handling 1 Register 0x00000000

0x41008230 CAN0_OPSS1 CAN0 Overwrite Protection/Single Shot Transmission 1
Register

0x00000000

0x41008240 CAN0_MC2 CAN0 Mailbox Configuration 2 Register 0x00000000

0x41008244 CAN0_MD2 CAN0 Mailbox Direction 2 Register 0x00000000

0x41008248 CAN0_TRS2 CAN0 Transmission Request Set 2 Register 0x00000000

0x4100824C CAN0_TRR2 CAN0 Transmission Request Reset 2 Register 0x00000000

0x41008250 CAN0_TA2 CAN0 Transmission Acknowledge 2 Register 0x00000000

0x41008254 CAN0_AA2 CAN0 Abort Acknowledge 2 Register 0x00000000

0x41008258 CAN0_RMP2 CAN0 Receive Message Pending 2 Register 0x00000000

0x4100825C CAN0_RML2 CAN0 Receive Message Lost 2 Register 0x00000000

0x41008260 CAN0_MBTIF2 CAN0 Mailbox Transmit Interrupt Flag 2 Register 0x00000000

0x41008264 CAN0_MBRIF2 CAN0 Mailbox Receive Interrupt Flag 2 Register 0x00000000

0x41008268 CAN0_MBIM2 CAN0 Mailbox Interrupt Mask 2 Register 0x00000000

0x4100826C CAN0_RFH2 CAN0 Remote Frame Handling 2 Register 0x00000000

0x41008270 CAN0_OPSS2 CAN0 Overwrite Protection/Single Shot Transmission 2
Register

0x00000000

0x41008280 CAN0_CLK CAN0 Clock Register 0x00000000

0x41008284 CAN0_TIMING CAN0 Timing Register 0x00000000

0x41008288 CAN0_DBG CAN0 Debug Register 0x00000008

0x4100828C CAN0_STAT CAN0 Status Register 0x00000080

0x41008290 CAN0_CEC CAN0 Error Counter Register 0x00000000

0x41008294 CAN0_GIS CAN0 Global CAN Interrupt Status Register 0x00000000

0x41008298 CAN0_GIM CAN0 Global CAN Interrupt Mask Register 0x00000000

0x4100829C CAN0_GIF CAN0 Global CAN Interrupt Flag Register 0x00000000

0x410082A0 CAN0_CTL CAN0 CAN Master Control Register 0x00000080

0x410082A4 CAN0_INT CAN0 Interrupt Pending Register 0x00000000

0x410082AC CAN0_MBTD CAN0 Temporary Mailbox Disable Register 0x00000000

0x410082B0 CAN0_EWR CAN0 Error Counter Warning Level Register 0x00006060

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–13

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410082B4 CAN0_ESR CAN0 Error Status Register 0x00000020

0x410082C4 CAN0_UCCNT CAN0 Universal Counter Register 0x00000000

0x410082C8 CAN0_UCRC CAN0 Universal Counter Reload/Capture Register 0x00000000

0x410082CC CAN0_UCCNF CAN0 Universal Counter Configuration Mode Register 0x00000000

0x41008300 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008304 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008308 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100830C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008310 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008314 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008318 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100831C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008320 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008324 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008328 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100832C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008330 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008334 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008338 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100833C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008340 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008344 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008348 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100834C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008350 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008354 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008358 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100835C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008360 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008364 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008368 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

CM41X_M4 Register List

48–14 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100836C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008370 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008374 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008378 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100837C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008380 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008384 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008388 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100838C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008390 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x41008394 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008398 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x4100839C CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083A0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083A4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083A8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083AC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083B0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083B4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083B8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083BC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083C0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083C4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083C8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083CC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083D0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083D4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083D8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083DC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083E0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083E4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–15

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410083E8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083EC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083F0 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083F4 CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x410083F8 CAN0_AM[nn]L CAN0 Acceptance Mask (L) Register 0x00000000

0x410083FC CAN0_AM[nn]H CAN0 Acceptance Mask (H) Register 0x00000000

0x41008400 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008404 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008408 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100840C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008410 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008414 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008418 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100841C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008420 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008424 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008428 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100842C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008430 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008434 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008438 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100843C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008440 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008444 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008448 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100844C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008450 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008454 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008458 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

CM41X_M4 Register List

48–16 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100845C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008460 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008464 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008468 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100846C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008470 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008474 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008478 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100847C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008480 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008484 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008488 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100848C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008490 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008494 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008498 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100849C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410084B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–17

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410084D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410084E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410084E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410084E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410084EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410084F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410084F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410084F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410084FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008500 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008504 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008508 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100850C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008510 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008514 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008518 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100851C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008520 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008524 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008528 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100852C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008530 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008534 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008538 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100853C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

CM41X_M4 Register List

48–18 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008540 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008544 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008548 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100854C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008550 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008554 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008558 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100855C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008560 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008564 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008568 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100856C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008570 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008574 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008578 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100857C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008580 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008584 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008588 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100858C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008590 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008594 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008598 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100859C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–19

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410085B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410085D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410085E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410085E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410085E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410085EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410085F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410085F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410085F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410085FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008600 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008604 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008608 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100860C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008610 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008614 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008618 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100861C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008620 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

48–20 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008624 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008628 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100862C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008630 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008634 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008638 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100863C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008640 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008644 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008648 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100864C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008650 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008654 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008658 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100865C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008660 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008664 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008668 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100866C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008670 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008674 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008678 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100867C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008680 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008684 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008688 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100868C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008690 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–21

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008694 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008698 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100869C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410086E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410086E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410086E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410086EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410086F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410086F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410086F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410086FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008700 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

48–22 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008704 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008708 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100870C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008710 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008714 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008718 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100871C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008720 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008724 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008728 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100872C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008730 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008734 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008738 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100873C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008740 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008744 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008748 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100874C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008750 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008754 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008758 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100875C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008760 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008764 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008768 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100876C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008770 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–23

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41008774 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008778 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100877C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x41008780 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x41008784 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x41008788 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x4100878C CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x41008790 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x41008794 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x41008798 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x4100879C CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087A0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410087A4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087A8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087AC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087B0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087B4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087B8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087BC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087C0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

0x410087C4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087C8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087CC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087D0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087D4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087D8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087DC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

0x410087E0 CAN0_MB[nn]_DATA0 CAN0 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

48–24 ADSP-CM41x Mixed-Signal Control Processor

Table 48-3: CM41X_M4 CAN0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410087E4 CAN0_MB[nn]_DATA1 CAN0 Mailbox Word 1 Register 0x00000000

0x410087E8 CAN0_MB[nn]_DATA2 CAN0 Mailbox Word 2 Register 0x00000000

0x410087EC CAN0_MB[nn]_DATA3 CAN0 Mailbox Word 3 Register 0x00000000

0x410087F0 CAN0_MB[nn]_LENGTH CAN0 Mailbox Length Register 0x00000000

0x410087F4 CAN0_MB[nn]_TIME-
STAMP

CAN0 Mailbox Time Stamp Register 0x00000000

0x410087F8 CAN0_MB[nn]_ID0 CAN0 Mailbox ID 0 Register 0x00000000

0x410087FC CAN0_MB[nn]_ID1 CAN0 Mailbox ID 1 Register 0x00000000

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40024200 CAN1_MC1 CAN1 Mailbox Configuration 1 Register 0x00000000

0x40024204 CAN1_MD1 CAN1 Mailbox Direction 1 Register 0x000000FF

0x40024208 CAN1_TRS1 CAN1 Transmission Request Set 1 Register 0x00000000

0x4002420C CAN1_TRR1 CAN1 Transmission Request Reset 1 Register 0x00000000

0x40024210 CAN1_TA1 CAN1 Transmission Acknowledge 1 Register 0x00000000

0x40024214 CAN1_AA1 CAN1 Abort Acknowledge 1 Register 0x00000000

0x40024218 CAN1_RMP1 CAN1 Receive Message Pending 1 Register 0x00000000

0x4002421C CAN1_RML1 CAN1 Receive Message Lost 1 Register 0x00000000

0x40024220 CAN1_MBTIF1 CAN1 Mailbox Transmit Interrupt Flag 1 Register 0x00000000

0x40024224 CAN1_MBRIF1 CAN1 Mailbox Receive Interrupt Flag 1 Register 0x00000000

0x40024228 CAN1_MBIM1 CAN1 Mailbox Interrupt Mask 1 Register 0x00000000

0x4002422C CAN1_RFH1 CAN1 Remote Frame Handling 1 Register 0x00000000

0x40024230 CAN1_OPSS1 CAN1 Overwrite Protection/Single Shot Transmission 1
Register

0x00000000

0x40024240 CAN1_MC2 CAN1 Mailbox Configuration 2 Register 0x00000000

0x40024244 CAN1_MD2 CAN1 Mailbox Direction 2 Register 0x00000000

0x40024248 CAN1_TRS2 CAN1 Transmission Request Set 2 Register 0x00000000

0x4002424C CAN1_TRR2 CAN1 Transmission Request Reset 2 Register 0x00000000

0x40024250 CAN1_TA2 CAN1 Transmission Acknowledge 2 Register 0x00000000

0x40024254 CAN1_AA2 CAN1 Abort Acknowledge 2 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–25

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024258 CAN1_RMP2 CAN1 Receive Message Pending 2 Register 0x00000000

0x4002425C CAN1_RML2 CAN1 Receive Message Lost 2 Register 0x00000000

0x40024260 CAN1_MBTIF2 CAN1 Mailbox Transmit Interrupt Flag 2 Register 0x00000000

0x40024264 CAN1_MBRIF2 CAN1 Mailbox Receive Interrupt Flag 2 Register 0x00000000

0x40024268 CAN1_MBIM2 CAN1 Mailbox Interrupt Mask 2 Register 0x00000000

0x4002426C CAN1_RFH2 CAN1 Remote Frame Handling 2 Register 0x00000000

0x40024270 CAN1_OPSS2 CAN1 Overwrite Protection/Single Shot Transmission 2
Register

0x00000000

0x40024280 CAN1_CLK CAN1 Clock Register 0x00000000

0x40024284 CAN1_TIMING CAN1 Timing Register 0x00000000

0x40024288 CAN1_DBG CAN1 Debug Register 0x00000008

0x4002428C CAN1_STAT CAN1 Status Register 0x00000080

0x40024290 CAN1_CEC CAN1 Error Counter Register 0x00000000

0x40024294 CAN1_GIS CAN1 Global CAN Interrupt Status Register 0x00000000

0x40024298 CAN1_GIM CAN1 Global CAN Interrupt Mask Register 0x00000000

0x4002429C CAN1_GIF CAN1 Global CAN Interrupt Flag Register 0x00000000

0x400242A0 CAN1_CTL CAN1 CAN Master Control Register 0x00000080

0x400242A4 CAN1_INT CAN1 Interrupt Pending Register 0x00000000

0x400242AC CAN1_MBTD CAN1 Temporary Mailbox Disable Register 0x00000000

0x400242B0 CAN1_EWR CAN1 Error Counter Warning Level Register 0x00006060

0x400242B4 CAN1_ESR CAN1 Error Status Register 0x00000020

0x400242C4 CAN1_UCCNT CAN1 Universal Counter Register 0x00000000

0x400242C8 CAN1_UCRC CAN1 Universal Counter Reload/Capture Register 0x00000000

0x400242CC CAN1_UCCNF CAN1 Universal Counter Configuration Mode Register 0x00000000

0x40024300 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024304 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024308 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002430C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024310 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024314 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024318 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

CM41X_M4 Register List

48–26 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002431C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024320 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024324 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024328 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002432C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024330 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024334 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024338 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002433C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024340 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024344 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024348 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002434C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024350 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024354 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024358 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002435C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024360 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024364 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024368 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002436C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024370 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024374 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024378 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002437C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024380 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024384 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024388 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002438C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024390 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x40024394 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–27

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024398 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x4002439C CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243A0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243A4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243A8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243AC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243B0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243B4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243B8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243BC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243C0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243C4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243C8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243CC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243D0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243D4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243D8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243DC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243E0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243E4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243E8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243EC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243F0 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243F4 CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x400243F8 CAN1_AM[nn]L CAN1 Acceptance Mask (L) Register 0x00000000

0x400243FC CAN1_AM[nn]H CAN1 Acceptance Mask (H) Register 0x00000000

0x40024400 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024404 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024408 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002440C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024410 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M4 Register List

48–28 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024414 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024418 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002441C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024420 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024424 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024428 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002442C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024430 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024434 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024438 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002443C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024440 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024444 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024448 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002444C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024450 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024454 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024458 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002445C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024460 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024464 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024468 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002446C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024470 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024474 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024478 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002447C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024480 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–29

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024484 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024488 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002448C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024490 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024494 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024498 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002449C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400244B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400244D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400244E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400244E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400244E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400244EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400244F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M4 Register List

48–30 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400244F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400244F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400244FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024500 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024504 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024508 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002450C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024510 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024514 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024518 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002451C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024520 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024524 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024528 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002452C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024530 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024534 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024538 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002453C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024540 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024544 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024548 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002454C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024550 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024554 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024558 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002455C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024560 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–31

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024564 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024568 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002456C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024570 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024574 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024578 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002457C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024580 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024584 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024588 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002458C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024590 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024594 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024598 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002459C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400245B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M4 Register List

48–32 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400245D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400245E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400245E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400245E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400245EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400245F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400245F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400245F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400245FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024600 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024604 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024608 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002460C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024610 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024614 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024618 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002461C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024620 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024624 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024628 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002462C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024630 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024634 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024638 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002463C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024640 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–33

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024644 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024648 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002464C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024650 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024654 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024658 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002465C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024660 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024664 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024668 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002466C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024670 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024674 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024678 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002467C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024680 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024684 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024688 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002468C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024690 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024694 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024698 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002469C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M4 Register List

48–34 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400246B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400246D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400246E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400246E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400246E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400246EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400246F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400246F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400246F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400246FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024700 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024704 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024708 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002470C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024710 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024714 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024718 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002471C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024720 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–35

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024724 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024728 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002472C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024730 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024734 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024738 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002473C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024740 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024744 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024748 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002474C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024750 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024754 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024758 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002475C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024760 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024764 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024768 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002476C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024770 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x40024774 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024778 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002477C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x40024780 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x40024784 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x40024788 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x4002478C CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x40024790 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

CM41X_M4 Register List

48–36 ADSP-CM41x Mixed-Signal Control Processor

Table 48-4: CM41X_M4 CAN1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40024794 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x40024798 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x4002479C CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247A0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247A4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247A8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247AC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247B0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247B4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247B8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247BC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247C0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247C4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247C8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247CC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247D0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247D4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247D8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247DC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

0x400247E0 CAN1_MB[nn]_DATA0 CAN1 Mailbox Word 0 Register 0x00000000

0x400247E4 CAN1_MB[nn]_DATA1 CAN1 Mailbox Word 1 Register 0x00000000

0x400247E8 CAN1_MB[nn]_DATA2 CAN1 Mailbox Word 2 Register 0x00000000

0x400247EC CAN1_MB[nn]_DATA3 CAN1 Mailbox Word 3 Register 0x00000000

0x400247F0 CAN1_MB[nn]_LENGTH CAN1 Mailbox Length Register 0x00000000

0x400247F4 CAN1_MB[nn]_TIME-
STAMP

CAN1 Mailbox Time Stamp Register 0x00000000

0x400247F8 CAN1_MB[nn]_ID0 CAN1 Mailbox ID 0 Register 0x00000000

0x400247FC CAN1_MB[nn]_ID1 CAN1 Mailbox ID 1 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–37

Table 48-5: CM41X_M4 CGU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40014000 CGU0_CTL CGU0 Control Register 0x00001200

0x40014004 CGU0_PLLCTL CGU0 PLL Control Register 0x00000000

0x40014008 CGU0_STAT CGU0 Status Register 0x0000000F

0x4001400C CGU0_DIV CGU0 Clocks Divisor Register 0x168F2926

0x40014010 CGU0_CLKOUTSEL CGU0 CLKOUT Select Register 0x00000000

0x40014014 CGU0_OSCWDCTL CGU0 Oscillator Watchdog Register 0x00007600

0x40014018 CGU0_TSCTL CGU0 Time Stamp Control Register 0x00000000

0x4001401C CGU0_TSVALUE0 CGU0 Time Stamp Counter Initial 32 LSB Value Register 0x00000000

0x40014020 CGU0_TSVALUE1 CGU0 Time Stamp Counter Initial MSB Value Register 0x00000000

0x40014024 CGU0_TSCOUNT0 CGU0 Time Stamp Counter 32 LSB Register 0x00000000

0x40014028 CGU0_TSCOUNT1 CGU0 Time Stamp Counter 32 MSB Register 0x00000000

0x4001402C CGU0_CCBF_DIS CGU0 Core Clock Buffer Disable Register 0x00000000

0x40014030 CGU0_CCBF_STAT CGU0 Core Clock Buffer Status Register 0x00000000

0x40014038 CGU0_SCBF_DIS CGU0 System Clock Buffer Disable Register 0x00000000

0x4001403C CGU0_SCBF_STAT CGU0 System Clock Buffer Status Register 0x00000000

0x40014048 CGU0_REVID CGU0 Revision ID Register 0x00000020

Table 48-6: CM41X_M4 CNT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40022000 CNT0_CFG CNT0 Configuration Register 0x00000000

0x40022004 CNT0_IMSK CNT0 Interrupt Mask Register 0x00000000

0x40022008 CNT0_STAT CNT0 Status Register 0x00000000

0x4002200C CNT0_CMD CNT0 Command Register 0x00000000

0x40022010 CNT0_DEBNCE CNT0 Debounce Register 0x00000000

0x40022014 CNT0_CNTR CNT0 Counter Register 0x00000000

0x40022018 CNT0_MAX CNT0 Maximum Count Register 0x00000000

0x4002201C CNT0_MIN CNT0 Minimum Count Register 0x00000000

0x40022020 CNT0_MDIV CNT0 M Value for Divider 0x00000000

0x40022024 CNT0_NDIV CNT0 N Value for Divider 0x00000000

CM41X_M4 Register List

48–38 ADSP-CM41x Mixed-Signal Control Processor

Table 48-7: CM41X_M4 CPTMR0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40025004 CPTMR0_RUN CPTMR0 Run Register 0x00000000

0x40025008 CPTMR0_RUN_SET CPTMR0 Run Set Register 0x00000000

0x4002500C CPTMR0_RUN_CLR CPTMR0 Run Clear Register 0x00000000

0x40025010 CPTMR0_DATA_IMSK CPTMR0 Data Interrupt Mask Register 0x00000007

0x40025014 CPTMR0_DA-
TA_IMSK_SET

CPTMR0 Data Interrupt Mask Set Register 0x00000007

0x40025018 CPTMR0_DA-
TA_IMSK_CLR

CPTMR0 Data Interrupt Mask Clear Register 0x00000007

0x4002501C CPTMR0_STAT_IMSK CPTMR0 Status Interrupt Mask Register 0x00000007

0x40025020 CPTMR0_STAT_IMSK_SET CPTMR0 Status Interrupt Mask Set Register 0x00000007

0x40025024 CPTMR0_STAT_IMSK_CL
R

CPTMR0 Status Interrupt Mask Clear Register 0x00000007

0x40025028 CPTMR0_DATA_ILAT CPTMR0 Data Interrupt Latch Status Register 0x00000000

0x4002502C CPTMR0_STAT_ILAT CPTMR0 Interrupt Latch Status Register 0x00000000

0x40025800 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025804 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025808 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

0x40025880 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025884 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025888 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

0x40025900 CPTMR0_CFG[n] CPTMR0 Configuration Register 0x00000000

0x40025904 CPTMR0_CNT[n] CPTMR0 Counter Register 0x00000001

0x40025908 CPTMR0_TON[n] CPTMR0 On-time Capture Register 0x00000000

Table 48-8: CM41X_M4 CRC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004C000 CRC0_CTL CRC0 Control Register 0x00000000

0x4004C004 CRC0_DCNT CRC0 Data Word Count Register 0x00000000

0x4004C008 CRC0_DCNTRLD CRC0 Data Word Count Reload Register 0x00000000

0x4004C014 CRC0_COMP CRC0 Data Compare Register 0x00000000

0x4004C018 CRC0_FILLVAL CRC0 Fill Value Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–39

Table 48-8: CM41X_M4 CRC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4004C01C CRC0_DFIFO CRC0 Data FIFO Register 0x00000000

0x4004C020 CRC0_INEN CRC0 Interrupt Enable Register 0x00000000

0x4004C024 CRC0_INEN_SET CRC0 Interrupt Enable Set Register 0x00000000

0x4004C028 CRC0_INEN_CLR CRC0 Interrupt Enable Clear Register 0x00000000

0x4004C02C CRC0_POLY CRC0 Polynomial Register 0x00000000

0x4004C040 CRC0_STAT CRC0 Status Register 0x00000000

0x4004C044 CRC0_DCNTCAP CRC0 Data Count Capture Register 0x00000000

0x4004C04C CRC0_RESULT_FIN CRC0 CRC Final Result Register 0x00000000

0x4004C050 CRC0_RESULT_CUR CRC0 CRC Current Result Register 0x00000000

Table 48-9: CM41X_M4 CTI0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE0048000 CTI0_CTICONTROL CTI0 CTI Control Register 0x00000000

0xE0048010 CTI0_CTIINTACK CTI0 CTI Interrupt Acknowledge Register 0x00000000

0xE0048014 CTI0_CTIAPPSET CTI0 CTI Application Trigger Set Register 0x00000000

0xE0048018 CTI0_CTIAPPCLEAR CTI0 CTI Application Trigger Clear Register 0x00000000

0xE004801C CTI0_CTIAPPPULSE CTI0 CTI Application Pulse Register 0x00000000

0xE0048020 CTI0_CTIINEN0 CTI0 CTI Trigger 0 to Channel Enable Register 0x00000000

0xE0048024 CTI0_CTIINEN1 CTI0 CTI Trigger 1 to Channel Enable Register 0x00000000

0xE0048028 CTI0_CTIINEN2 CTI0 CTI Trigger 2 to Channel Enable Register 0x00000000

0xE004802C CTI0_CTIINEN3 CTI0 CTI Trigger 3 to Channel Enable Register 0x00000000

0xE0048030 CTI0_CTIINEN4 CTI0 CTI Trigger 4 to Channel Enable Register 0x00000000

0xE0048034 CTI0_CTIINEN5 CTI0 CTI Trigger 5 to Channel Enable Register 0x00000000

0xE0048038 CTI0_CTIINEN6 CTI0 CTI Trigger 6 to Channel Enable Register 0x00000000

0xE004803C CTI0_CTIINEN7 CTI0 CTI Trigger 7 to Channel Enable Register 0x00000000

0xE00480A0 CTI0_CTIOUTEN0 CTI0 CTI Channel to Trigger 0 Enable Register 0x00000000

0xE00480A4 CTI0_CTIOUTEN1 CTI0 CTI Channel to Trigger 1 Enable Register 0x00000000

0xE00480A8 CTI0_CTIOUTEN2 CTI0 CTI Channel to Trigger 2 Enable Register 0x00000000

0xE00480AC CTI0_CTIOUTEN3 CTI0 CTI Channel to Trigger 3 Enable Register 0x00000000

0xE00480B0 CTI0_CTIOUTEN4 CTI0 CTI Channel to Trigger 4 Enable Register 0x00000000

CM41X_M4 Register List

48–40 ADSP-CM41x Mixed-Signal Control Processor

Table 48-9: CM41X_M4 CTI0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE00480B4 CTI0_CTIOUTEN5 CTI0 CTI Channel to Trigger 5 Enable Register 0x00000000

0xE00480B8 CTI0_CTIOUTEN6 CTI0 CTI Channel to Trigger 6 Enable Register 0x00000000

0xE00480BC CTI0_CTIOUTEN7 CTI0 CTI Channel to Trigger 7 Enable Register 0x00000000

0xE0048130 CTI0_CTITRIGINSTATUS CTI0 CTI Trigger In Status Register 0x00000000

0xE0048134 CTI0_CTITRIGOUTSTA-
TUS

CTI0 CTI Trigger Out Status Register 0x00000000

0xE0048138 CTI0_CTICHINSTATUS CTI0 CTI Channel In Status Register 0x00000000

0xE004813C CTI0_CTICHOUTSTATUS CTI0 CTI Channel Out Status Register 0x00000000

0xE0048140 CTI0_CTIGATE CTI0 Enable CTI Channel Gate Register 0x0000000F

0xE0048144 CTI0_ASICCTL CTI0 External Multiplexor Control Register 0x00000000

0xE0048EDC CTI0_ITCHINACK CTI0 ITCHINACK 0x00000000

0xE0048EE0 CTI0_ITTRIGINACK CTI0 ITTRIGINACK 0x00000000

0xE0048EE4 CTI0_ITCHOUT CTI0 ITCHOUT 0x00000000

0xE0048EE8 CTI0_ITTRIGOUT CTI0 ITTRIGOUT 0x00000000

0xE0048EEC CTI0_ITCHOUTACK CTI0 ITCHOUTACK 0x00000000

0xE0048EF0 CTI0_ITTRIGOUTACK CTI0 ITTRIGOUTACK 0x00000000

0xE0048EF4 CTI0_ITCHIN CTI0 ITCHIN 0x00000000

0xE0048EF8 CTI0_ITTRIGIN CTI0 ITTRIGIN 0x00000000

0xE0048F00 CTI0_ITCTRL CTI0 Integration Mode Control Register 0x00000000

0xE0048FA0 CTI0_CLAIMSET CTI0 Claim Tag Set Register 0x0000000F

0xE0048FA4 CTI0_CLAIMCLR CTI0 Claim Tag Clear Register 0x00000000

0xE0048FB0 CTI0_LAR CTI0 Lock Access Register 0x00000000

0xE0048FB4 CTI0_LSR CTI0 Lock Status Register 0x00000000

0xE0048FB8 CTI0_AUTHSTATUS CTI0 Authentication Status 0x00000005

0xE0048FC8 CTI0_DEVID CTI0 Device ID 0x00040800

0xE0048FCC CTI0_DEVTYPE CTI0 Device Type 0x00000014

0xE0048FD0 CTI0_PERIPHID4 CTI0 Peripheral ID4 0x00000004

0xE0048FD4 CTI0_PERIPHID5 CTI0 Peripheral ID5 0x00000000

0xE0048FD8 CTI0_PERIPHID6 CTI0 Peripheral ID6 0x00000000

0xE0048FDC CTI0_PERIPHID7 CTI0 Peripheral ID7 0x00000000

0xE0048FE0 CTI0_PERIPHID0 CTI0 Peripheral ID0 0x00000006

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–41

Table 48-9: CM41X_M4 CTI0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE0048FE4 CTI0_PERIPHID1 CTI0 Peripheral ID1 0x000000B9

0xE0048FE8 CTI0_PERIPHID2 CTI0 Peripheral ID2 0x0000003B

0xE0048FEC CTI0_PERIPHID3 CTI0 Peripheral ID3 0x00000000

0xE0048FF0 CTI0_COMPID0 CTI0 Component ID0 0x0000000D

0xE0048FF4 CTI0_COMPID1 CTI0 Component ID1 0x00000090

0xE0048FF8 CTI0_COMPID2 CTI0 Component ID2 0x00000005

0xE0048FFC CTI0_COMPID3 CTI0 Component ID3 0x000000B1

Table 48-10: CM41X_M4 CTI1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE0049000 CTI1_CTICONTROL CTI1 CTI Control Register 0x00000000

0xE0049010 CTI1_CTIINTACK CTI1 CTI Interrupt Acknowledge Register 0x00000000

0xE0049014 CTI1_CTIAPPSET CTI1 CTI Application Trigger Set Register 0x00000000

0xE0049018 CTI1_CTIAPPCLEAR CTI1 CTI Application Trigger Clear Register 0x00000000

0xE004901C CTI1_CTIAPPPULSE CTI1 CTI Application Pulse Register 0x00000000

0xE0049020 CTI1_CTIINEN0 CTI1 CTI Trigger 0 to Channel Enable Register 0x00000000

0xE0049024 CTI1_CTIINEN1 CTI1 CTI Trigger 1 to Channel Enable Register 0x00000000

0xE0049028 CTI1_CTIINEN2 CTI1 CTI Trigger 2 to Channel Enable Register 0x00000000

0xE004902C CTI1_CTIINEN3 CTI1 CTI Trigger 3 to Channel Enable Register 0x00000000

0xE0049030 CTI1_CTIINEN4 CTI1 CTI Trigger 4 to Channel Enable Register 0x00000000

0xE0049034 CTI1_CTIINEN5 CTI1 CTI Trigger 5 to Channel Enable Register 0x00000000

0xE0049038 CTI1_CTIINEN6 CTI1 CTI Trigger 6 to Channel Enable Register 0x00000000

0xE004903C CTI1_CTIINEN7 CTI1 CTI Trigger 7 to Channel Enable Register 0x00000000

0xE00490A0 CTI1_CTIOUTEN0 CTI1 CTI Channel to Trigger 0 Enable Register 0x00000000

0xE00490A4 CTI1_CTIOUTEN1 CTI1 CTI Channel to Trigger 1 Enable Register 0x00000000

0xE00490A8 CTI1_CTIOUTEN2 CTI1 CTI Channel to Trigger 2 Enable Register 0x00000000

0xE00490AC CTI1_CTIOUTEN3 CTI1 CTI Channel to Trigger 3 Enable Register 0x00000000

0xE00490B0 CTI1_CTIOUTEN4 CTI1 CTI Channel to Trigger 4 Enable Register 0x00000000

0xE00490B4 CTI1_CTIOUTEN5 CTI1 CTI Channel to Trigger 5 Enable Register 0x00000000

0xE00490B8 CTI1_CTIOUTEN6 CTI1 CTI Channel to Trigger 6 Enable Register 0x00000000

CM41X_M4 Register List

48–42 ADSP-CM41x Mixed-Signal Control Processor

Table 48-10: CM41X_M4 CTI1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE00490BC CTI1_CTIOUTEN7 CTI1 CTI Channel to Trigger 7 Enable Register 0x00000000

0xE0049130 CTI1_CTITRIGINSTATUS CTI1 CTI Trigger In Status Register 0x00000000

0xE0049134 CTI1_CTITRIGOUTSTA-
TUS

CTI1 CTI Trigger Out Status Register 0x00000000

0xE0049138 CTI1_CTICHINSTATUS CTI1 CTI Channel In Status Register 0x00000000

0xE004913C CTI1_CTICHOUTSTATUS CTI1 CTI Channel Out Status Register 0x00000000

0xE0049140 CTI1_CTIGATE CTI1 Enable CTI Channel Gate Register 0x0000000F

0xE0049144 CTI1_ASICCTL CTI1 External Multiplexor Control Register 0x00000000

0xE0049EDC CTI1_ITCHINACK CTI1 ITCHINACK 0x00000000

0xE0049EE0 CTI1_ITTRIGINACK CTI1 ITTRIGINACK 0x00000000

0xE0049EE4 CTI1_ITCHOUT CTI1 ITCHOUT 0x00000000

0xE0049EE8 CTI1_ITTRIGOUT CTI1 ITTRIGOUT 0x00000000

0xE0049EEC CTI1_ITCHOUTACK CTI1 ITCHOUTACK 0x00000000

0xE0049EF0 CTI1_ITTRIGOUTACK CTI1 ITTRIGOUTACK 0x00000000

0xE0049EF4 CTI1_ITCHIN CTI1 ITCHIN 0x00000000

0xE0049EF8 CTI1_ITTRIGIN CTI1 ITTRIGIN 0x00000000

0xE0049F00 CTI1_ITCTRL CTI1 Integration Mode Control Register 0x00000000

0xE0049FA0 CTI1_CLAIMSET CTI1 Claim Tag Set Register 0x0000000F

0xE0049FA4 CTI1_CLAIMCLR CTI1 Claim Tag Clear Register 0x00000000

0xE0049FB0 CTI1_LAR CTI1 Lock Access Register 0x00000000

0xE0049FB4 CTI1_LSR CTI1 Lock Status Register 0x00000000

0xE0049FB8 CTI1_AUTHSTATUS CTI1 Authentication Status 0x00000005

0xE0049FC8 CTI1_DEVID CTI1 Device ID 0x00040800

0xE0049FCC CTI1_DEVTYPE CTI1 Device Type 0x00000014

0xE0049FD0 CTI1_PERIPHID4 CTI1 Peripheral ID4 0x00000004

0xE0049FD4 CTI1_PERIPHID5 CTI1 Peripheral ID5 0x00000000

0xE0049FD8 CTI1_PERIPHID6 CTI1 Peripheral ID6 0x00000000

0xE0049FDC CTI1_PERIPHID7 CTI1 Peripheral ID7 0x00000000

0xE0049FE0 CTI1_PERIPHID0 CTI1 Peripheral ID0 0x00000006

0xE0049FE4 CTI1_PERIPHID1 CTI1 Peripheral ID1 0x000000B9

0xE0049FE8 CTI1_PERIPHID2 CTI1 Peripheral ID2 0x0000003B

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–43

Table 48-10: CM41X_M4 CTI1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE0049FEC CTI1_PERIPHID3 CTI1 Peripheral ID3 0x00000000

0xE0049FF0 CTI1_COMPID0 CTI1 Component ID0 0x0000000D

0xE0049FF4 CTI1_COMPID1 CTI1 Component ID1 0x00000090

0xE0049FF8 CTI1_COMPID2 CTI1 Component ID2 0x00000005

0xE0049FFC CTI1_COMPID3 CTI1 Component ID3 0x000000B1

Table 48-11: CM41X_M4 CTI2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE004A000 CTI2_CTICONTROL CTI2 CTI Control Register 0x00000000

0xE004A010 CTI2_CTIINTACK CTI2 CTI Interrupt Acknowledge Register 0x00000000

0xE004A014 CTI2_CTIAPPSET CTI2 CTI Application Trigger Set Register 0x00000000

0xE004A018 CTI2_CTIAPPCLEAR CTI2 CTI Application Trigger Clear Register 0x00000000

0xE004A01C CTI2_CTIAPPPULSE CTI2 CTI Application Pulse Register 0x00000000

0xE004A020 CTI2_CTIINEN0 CTI2 CTI Trigger 0 to Channel Enable Register 0x00000000

0xE004A024 CTI2_CTIINEN1 CTI2 CTI Trigger 1 to Channel Enable Register 0x00000000

0xE004A028 CTI2_CTIINEN2 CTI2 CTI Trigger 2 to Channel Enable Register 0x00000000

0xE004A02C CTI2_CTIINEN3 CTI2 CTI Trigger 3 to Channel Enable Register 0x00000000

0xE004A030 CTI2_CTIINEN4 CTI2 CTI Trigger 4 to Channel Enable Register 0x00000000

0xE004A034 CTI2_CTIINEN5 CTI2 CTI Trigger 5 to Channel Enable Register 0x00000000

0xE004A038 CTI2_CTIINEN6 CTI2 CTI Trigger 6 to Channel Enable Register 0x00000000

0xE004A03C CTI2_CTIINEN7 CTI2 CTI Trigger 7 to Channel Enable Register 0x00000000

0xE004A0A0 CTI2_CTIOUTEN0 CTI2 CTI Channel to Trigger 0 Enable Register 0x00000000

0xE004A0A4 CTI2_CTIOUTEN1 CTI2 CTI Channel to Trigger 1 Enable Register 0x00000000

0xE004A0A8 CTI2_CTIOUTEN2 CTI2 CTI Channel to Trigger 2 Enable Register 0x00000000

0xE004A0AC CTI2_CTIOUTEN3 CTI2 CTI Channel to Trigger 3 Enable Register 0x00000000

0xE004A0B0 CTI2_CTIOUTEN4 CTI2 CTI Channel to Trigger 4 Enable Register 0x00000000

0xE004A0B4 CTI2_CTIOUTEN5 CTI2 CTI Channel to Trigger 5 Enable Register 0x00000000

0xE004A0B8 CTI2_CTIOUTEN6 CTI2 CTI Channel to Trigger 6 Enable Register 0x00000000

0xE004A0BC CTI2_CTIOUTEN7 CTI2 CTI Channel to Trigger 7 Enable Register 0x00000000

0xE004A130 CTI2_CTITRIGINSTATUS CTI2 CTI Trigger In Status Register 0x00000000

CM41X_M4 Register List

48–44 ADSP-CM41x Mixed-Signal Control Processor

Table 48-11: CM41X_M4 CTI2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE004A134 CTI2_CTITRIGOUTSTA-
TUS

CTI2 CTI Trigger Out Status Register 0x00000000

0xE004A138 CTI2_CTICHINSTATUS CTI2 CTI Channel In Status Register 0x00000000

0xE004A13C CTI2_CTICHOUTSTATUS CTI2 CTI Channel Out Status Register 0x00000000

0xE004A140 CTI2_CTIGATE CTI2 Enable CTI Channel Gate Register 0x0000000F

0xE004A144 CTI2_ASICCTL CTI2 External Multiplexor Control Register 0x00000000

0xE004AEDC CTI2_ITCHINACK CTI2 ITCHINACK 0x00000000

0xE004AEE0 CTI2_ITTRIGINACK CTI2 ITTRIGINACK 0x00000000

0xE004AEE4 CTI2_ITCHOUT CTI2 ITCHOUT 0x00000000

0xE004AEE8 CTI2_ITTRIGOUT CTI2 ITTRIGOUT 0x00000000

0xE004AEEC CTI2_ITCHOUTACK CTI2 ITCHOUTACK 0x00000000

0xE004AEF0 CTI2_ITTRIGOUTACK CTI2 ITTRIGOUTACK 0x00000000

0xE004AEF4 CTI2_ITCHIN CTI2 ITCHIN 0x00000000

0xE004AEF8 CTI2_ITTRIGIN CTI2 ITTRIGIN 0x00000000

0xE004AF00 CTI2_ITCTRL CTI2 Integration Mode Control Register 0x00000000

0xE004AFA0 CTI2_CLAIMSET CTI2 Claim Tag Set Register 0x0000000F

0xE004AFA4 CTI2_CLAIMCLR CTI2 Claim Tag Clear Register 0x00000000

0xE004AFB0 CTI2_LAR CTI2 Lock Access Register 0x00000000

0xE004AFB4 CTI2_LSR CTI2 Lock Status Register 0x00000000

0xE004AFB8 CTI2_AUTHSTATUS CTI2 Authentication Status 0x00000005

0xE004AFC8 CTI2_DEVID CTI2 Device ID 0x00040800

0xE004AFCC CTI2_DEVTYPE CTI2 Device Type 0x00000014

0xE004AFD0 CTI2_PERIPHID4 CTI2 Peripheral ID4 0x00000004

0xE004AFD4 CTI2_PERIPHID5 CTI2 Peripheral ID5 0x00000000

0xE004AFD8 CTI2_PERIPHID6 CTI2 Peripheral ID6 0x00000000

0xE004AFDC CTI2_PERIPHID7 CTI2 Peripheral ID7 0x00000000

0xE004AFE0 CTI2_PERIPHID0 CTI2 Peripheral ID0 0x00000006

0xE004AFE4 CTI2_PERIPHID1 CTI2 Peripheral ID1 0x000000B9

0xE004AFE8 CTI2_PERIPHID2 CTI2 Peripheral ID2 0x0000003B

0xE004AFEC CTI2_PERIPHID3 CTI2 Peripheral ID3 0x00000000

0xE004AFF0 CTI2_COMPID0 CTI2 Component ID0 0x0000000D

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–45

Table 48-11: CM41X_M4 CTI2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE004AFF4 CTI2_COMPID1 CTI2 Component ID1 0x00000090

0xE004AFF8 CTI2_COMPID2 CTI2 Component ID2 0x00000005

0xE004AFFC CTI2_COMPID3 CTI2 Component ID3 0x000000B1

Table 48-12: CM41X_M4 CTI3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE004B000 CTI3_CTICONTROL CTI3 CTI Control Register 0x00000000

0xE004B010 CTI3_CTIINTACK CTI3 CTI Interrupt Acknowledge Register 0x00000000

0xE004B014 CTI3_CTIAPPSET CTI3 CTI Application Trigger Set Register 0x00000000

0xE004B018 CTI3_CTIAPPCLEAR CTI3 CTI Application Trigger Clear Register 0x00000000

0xE004B01C CTI3_CTIAPPPULSE CTI3 CTI Application Pulse Register 0x00000000

0xE004B020 CTI3_CTIINEN0 CTI3 CTI Trigger 0 to Channel Enable Register 0x00000000

0xE004B024 CTI3_CTIINEN1 CTI3 CTI Trigger 1 to Channel Enable Register 0x00000000

0xE004B028 CTI3_CTIINEN2 CTI3 CTI Trigger 2 to Channel Enable Register 0x00000000

0xE004B02C CTI3_CTIINEN3 CTI3 CTI Trigger 3 to Channel Enable Register 0x00000000

0xE004B030 CTI3_CTIINEN4 CTI3 CTI Trigger 4 to Channel Enable Register 0x00000000

0xE004B034 CTI3_CTIINEN5 CTI3 CTI Trigger 5 to Channel Enable Register 0x00000000

0xE004B038 CTI3_CTIINEN6 CTI3 CTI Trigger 6 to Channel Enable Register 0x00000000

0xE004B03C CTI3_CTIINEN7 CTI3 CTI Trigger 7 to Channel Enable Register 0x00000000

0xE004B0A0 CTI3_CTIOUTEN0 CTI3 CTI Channel to Trigger 0 Enable Register 0x00000000

0xE004B0A4 CTI3_CTIOUTEN1 CTI3 CTI Channel to Trigger 1 Enable Register 0x00000000

0xE004B0A8 CTI3_CTIOUTEN2 CTI3 CTI Channel to Trigger 2 Enable Register 0x00000000

0xE004B0AC CTI3_CTIOUTEN3 CTI3 CTI Channel to Trigger 3 Enable Register 0x00000000

0xE004B0B0 CTI3_CTIOUTEN4 CTI3 CTI Channel to Trigger 4 Enable Register 0x00000000

0xE004B0B4 CTI3_CTIOUTEN5 CTI3 CTI Channel to Trigger 5 Enable Register 0x00000000

0xE004B0B8 CTI3_CTIOUTEN6 CTI3 CTI Channel to Trigger 6 Enable Register 0x00000000

0xE004B0BC CTI3_CTIOUTEN7 CTI3 CTI Channel to Trigger 7 Enable Register 0x00000000

0xE004B130 CTI3_CTITRIGINSTATUS CTI3 CTI Trigger In Status Register 0x00000000

0xE004B134 CTI3_CTITRIGOUTSTA-
TUS

CTI3 CTI Trigger Out Status Register 0x00000000

0xE004B138 CTI3_CTICHINSTATUS CTI3 CTI Channel In Status Register 0x00000000

CM41X_M4 Register List

48–46 ADSP-CM41x Mixed-Signal Control Processor

Table 48-12: CM41X_M4 CTI3 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE004B13C CTI3_CTICHOUTSTATUS CTI3 CTI Channel Out Status Register 0x00000000

0xE004B140 CTI3_CTIGATE CTI3 Enable CTI Channel Gate Register 0x0000000F

0xE004B144 CTI3_ASICCTL CTI3 External Multiplexor Control Register 0x00000000

0xE004BEDC CTI3_ITCHINACK CTI3 ITCHINACK 0x00000000

0xE004BEE0 CTI3_ITTRIGINACK CTI3 ITTRIGINACK 0x00000000

0xE004BEE4 CTI3_ITCHOUT CTI3 ITCHOUT 0x00000000

0xE004BEE8 CTI3_ITTRIGOUT CTI3 ITTRIGOUT 0x00000000

0xE004BEEC CTI3_ITCHOUTACK CTI3 ITCHOUTACK 0x00000000

0xE004BEF0 CTI3_ITTRIGOUTACK CTI3 ITTRIGOUTACK 0x00000000

0xE004BEF4 CTI3_ITCHIN CTI3 ITCHIN 0x00000000

0xE004BEF8 CTI3_ITTRIGIN CTI3 ITTRIGIN 0x00000000

0xE004BF00 CTI3_ITCTRL CTI3 Integration Mode Control Register 0x00000000

0xE004BFA0 CTI3_CLAIMSET CTI3 Claim Tag Set Register 0x0000000F

0xE004BFA4 CTI3_CLAIMCLR CTI3 Claim Tag Clear Register 0x00000000

0xE004BFB0 CTI3_LAR CTI3 Lock Access Register 0x00000000

0xE004BFB4 CTI3_LSR CTI3 Lock Status Register 0x00000000

0xE004BFB8 CTI3_AUTHSTATUS CTI3 Authentication Status 0x00000005

0xE004BFC8 CTI3_DEVID CTI3 Device ID 0x00040800

0xE004BFCC CTI3_DEVTYPE CTI3 Device Type 0x00000014

0xE004BFD0 CTI3_PERIPHID4 CTI3 Peripheral ID4 0x00000004

0xE004BFD4 CTI3_PERIPHID5 CTI3 Peripheral ID5 0x00000000

0xE004BFD8 CTI3_PERIPHID6 CTI3 Peripheral ID6 0x00000000

0xE004BFDC CTI3_PERIPHID7 CTI3 Peripheral ID7 0x00000000

0xE004BFE0 CTI3_PERIPHID0 CTI3 Peripheral ID0 0x00000006

0xE004BFE4 CTI3_PERIPHID1 CTI3 Peripheral ID1 0x000000B9

0xE004BFE8 CTI3_PERIPHID2 CTI3 Peripheral ID2 0x0000003B

0xE004BFEC CTI3_PERIPHID3 CTI3 Peripheral ID3 0x00000000

0xE004BFF0 CTI3_COMPID0 CTI3 Component ID0 0x0000000D

0xE004BFF4 CTI3_COMPID1 CTI3 Component ID1 0x00000090

0xE004BFF8 CTI3_COMPID2 CTI3 Component ID2 0x00000005

0xE004BFFC CTI3_COMPID3 CTI3 Component ID3 0x000000B1

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–47

Table 48-13: CM41X_M4 DACC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4004B000 DACC0_CTL0 DACC0 Control 0 Register 0x00000000

0x4004B008 DACC0_ERRSTAT DACC0 Error Status Register 0x00000000

0x4004B00C DACC0_ERRMSK DACC0 Error Mask Register 0x00000000

0x4004B010 DACC0_ERRMSK_SET DACC0 Error Mask Set Register 0x00000000

0x4004B014 DACC0_ERRMSK_CLR DACC0 Error Mask Clear Register 0x00000000

0x4004B018 DACC0_ISTAT DACC0 Interrupt Status Register 0x00000000

0x4004B01C DACC0_IMSK DACC0 Interrupt Mask Register 0x00000000

0x4004B020 DACC0_IMSK_SET DACC0 Interrupt Mask Set Register 0x00000000

0x4004B024 DACC0_IMSK_CLR DACC0 Interrupt Mask Clear Register 0x00000000

0x4004B028 DACC0_TC0 DACC0 Timing Control 0 Register 0x00000000

0x4004B02C DACC0_BPTR0 DACC0 Base Pointer 0 Register 0x00000000

0x4004B030 DACC0_MOD0 DACC0 Modify 0 Register 0x00000000

0x4004B034 DACC0_CNT0 DACC0 Count 0 Register 0x00000000

0x4004B038 DACC0_DAT0 DACC0 Data FIFO 0 Register 0x00000000

0x4004B050 DACC0_BCST_CTL DACC0 Broadcast (Write) Control Register 0x00000000

0x4004B100 DACC0_CNTCUR0 DACC0 Current Count 0 Register 0x00000000

0x4004B108 DACC0_STAT DACC0 Status Register 0x00000000

Table 48-14: CM41X_M4 DMA0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100C000 DMA0_DSCPTR_NXT DMA0 Pointer to Next Initial Descriptor Register 0x00000000

0x4100C004 DMA0_ADDRSTART DMA0 Start Address of Current Buffer Register 0x00000000

0x4100C008 DMA0_CFG DMA0 Configuration Register 0x00000000

0x4100C00C DMA0_XCNT DMA0 Inner Loop Count Start Value Register 0x00000000

0x4100C010 DMA0_XMOD DMA0 Inner Loop Address Increment Register 0x00000000

0x4100C014 DMA0_YCNT DMA0 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100C018 DMA0_YMOD DMA0 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100C024 DMA0_DSCPTR_CUR DMA0 Current Descriptor Pointer Register 0x00000000

0x4100C028 DMA0_DSCPTR_PRV DMA0 Previous Initial Descriptor Pointer Register 0x00000000

0x4100C02C DMA0_ADDR_CUR DMA0 Current Address Register 0x00000000

CM41X_M4 Register List

48–48 ADSP-CM41x Mixed-Signal Control Processor

Table 48-14: CM41X_M4 DMA0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100C030 DMA0_STAT DMA0 Status Register 0x00006000

0x4100C034 DMA0_XCNT_CUR DMA0 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100C038 DMA0_YCNT_CUR DMA0 Current Row Count (2D only) Register 0x00000000

Table 48-15: CM41X_M4 DMA1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100D000 DMA1_DSCPTR_NXT DMA1 Pointer to Next Initial Descriptor Register 0x00000000

0x4100D004 DMA1_ADDRSTART DMA1 Start Address of Current Buffer Register 0x00000000

0x4100D008 DMA1_CFG DMA1 Configuration Register 0x00000000

0x4100D00C DMA1_XCNT DMA1 Inner Loop Count Start Value Register 0x00000000

0x4100D010 DMA1_XMOD DMA1 Inner Loop Address Increment Register 0x00000000

0x4100D014 DMA1_YCNT DMA1 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100D018 DMA1_YMOD DMA1 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100D024 DMA1_DSCPTR_CUR DMA1 Current Descriptor Pointer Register 0x00000000

0x4100D028 DMA1_DSCPTR_PRV DMA1 Previous Initial Descriptor Pointer Register 0x00000000

0x4100D02C DMA1_ADDR_CUR DMA1 Current Address Register 0x00000000

0x4100D030 DMA1_STAT DMA1 Status Register 0x00006000

0x4100D034 DMA1_XCNT_CUR DMA1 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100D038 DMA1_YCNT_CUR DMA1 Current Row Count (2D only) Register 0x00000000

Table 48-16: CM41X_M4 DMA10 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40066000 DMA10_DSCPTR_NXT DMA10 Pointer to Next Initial Descriptor Register 0x00000000

0x40066004 DMA10_ADDRSTART DMA10 Start Address of Current Buffer Register 0x00000000

0x40066008 DMA10_CFG DMA10 Configuration Register 0x00000000

0x4006600C DMA10_XCNT DMA10 Inner Loop Count Start Value Register 0x00000000

0x40066010 DMA10_XMOD DMA10 Inner Loop Address Increment Register 0x00000000

0x40066014 DMA10_YCNT DMA10 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–49

Table 48-16: CM41X_M4 DMA10 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40066018 DMA10_YMOD DMA10 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40066024 DMA10_DSCPTR_CUR DMA10 Current Descriptor Pointer Register 0x00000000

0x40066028 DMA10_DSCPTR_PRV DMA10 Previous Initial Descriptor Pointer Register 0x00000000

0x4006602C DMA10_ADDR_CUR DMA10 Current Address Register 0x00000000

0x40066030 DMA10_STAT DMA10 Status Register 0x00006000

0x40066034 DMA10_XCNT_CUR DMA10 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40066038 DMA10_YCNT_CUR DMA10 Current Row Count (2D only) Register 0x00000000

Table 48-17: CM41X_M4 DMA11 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40067000 DMA11_DSCPTR_NXT DMA11 Pointer to Next Initial Descriptor Register 0x00000000

0x40067004 DMA11_ADDRSTART DMA11 Start Address of Current Buffer Register 0x00000000

0x40067008 DMA11_CFG DMA11 Configuration Register 0x00000000

0x4006700C DMA11_XCNT DMA11 Inner Loop Count Start Value Register 0x00000000

0x40067010 DMA11_XMOD DMA11 Inner Loop Address Increment Register 0x00000000

0x40067014 DMA11_YCNT DMA11 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40067018 DMA11_YMOD DMA11 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40067024 DMA11_DSCPTR_CUR DMA11 Current Descriptor Pointer Register 0x00000000

0x40067028 DMA11_DSCPTR_PRV DMA11 Previous Initial Descriptor Pointer Register 0x00000000

0x4006702C DMA11_ADDR_CUR DMA11 Current Address Register 0x00000000

0x40067030 DMA11_STAT DMA11 Status Register 0x00006000

0x40067034 DMA11_XCNT_CUR DMA11 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40067038 DMA11_YCNT_CUR DMA11 Current Row Count (2D only) Register 0x00000000

Table 48-18: CM41X_M4 DMA12 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40068000 DMA12_DSCPTR_NXT DMA12 Pointer to Next Initial Descriptor Register 0x00000000

CM41X_M4 Register List

48–50 ADSP-CM41x Mixed-Signal Control Processor

Table 48-18: CM41X_M4 DMA12 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40068004 DMA12_ADDRSTART DMA12 Start Address of Current Buffer Register 0x00000000

0x40068008 DMA12_CFG DMA12 Configuration Register 0x00000000

0x4006800C DMA12_XCNT DMA12 Inner Loop Count Start Value Register 0x00000000

0x40068010 DMA12_XMOD DMA12 Inner Loop Address Increment Register 0x00000000

0x40068014 DMA12_YCNT DMA12 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40068018 DMA12_YMOD DMA12 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40068024 DMA12_DSCPTR_CUR DMA12 Current Descriptor Pointer Register 0x00000000

0x40068028 DMA12_DSCPTR_PRV DMA12 Previous Initial Descriptor Pointer Register 0x00000000

0x4006802C DMA12_ADDR_CUR DMA12 Current Address Register 0x00000000

0x40068030 DMA12_STAT DMA12 Status Register 0x00006000

0x40068034 DMA12_XCNT_CUR DMA12 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40068038 DMA12_YCNT_CUR DMA12 Current Row Count (2D only) Register 0x00000000

0x40068040 DMA12_BWLCNT DMA12 Bandwidth Limit Count Register 0x00000000

0x40068044 DMA12_BWLCNT_CUR DMA12 Bandwidth Limit Count Current Register 0x00000000

0x40068048 DMA12_BWMCNT DMA12 Bandwidth Monitor Count Register 0x00000000

0x4006804C DMA12_BWMCNT_CUR DMA12 Bandwidth Monitor Count Current Register 0x00000000

Table 48-19: CM41X_M4 DMA13 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40069000 DMA13_DSCPTR_NXT DMA13 Pointer to Next Initial Descriptor Register 0x00000000

0x40069004 DMA13_ADDRSTART DMA13 Start Address of Current Buffer Register 0x00000000

0x40069008 DMA13_CFG DMA13 Configuration Register 0x00000000

0x4006900C DMA13_XCNT DMA13 Inner Loop Count Start Value Register 0x00000000

0x40069010 DMA13_XMOD DMA13 Inner Loop Address Increment Register 0x00000000

0x40069014 DMA13_YCNT DMA13 Outer Loop Count Start Value (2D only) Regis-
ter

0x00000000

0x40069018 DMA13_YMOD DMA13 Outer Loop Address Increment (2D only) Regis-
ter

0x00000000

0x40069024 DMA13_DSCPTR_CUR DMA13 Current Descriptor Pointer Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–51

Table 48-19: CM41X_M4 DMA13 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40069028 DMA13_DSCPTR_PRV DMA13 Previous Initial Descriptor Pointer Register 0x00000000

0x4006902C DMA13_ADDR_CUR DMA13 Current Address Register 0x00000000

0x40069030 DMA13_STAT DMA13 Status Register 0x00006000

0x40069034 DMA13_XCNT_CUR DMA13 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40069038 DMA13_YCNT_CUR DMA13 Current Row Count (2D only) Register 0x00000000

0x40069040 DMA13_BWLCNT DMA13 Bandwidth Limit Count Register 0x00000000

0x40069044 DMA13_BWLCNT_CUR DMA13 Bandwidth Limit Count Current Register 0x00000000

0x40069048 DMA13_BWMCNT DMA13 Bandwidth Monitor Count Register 0x00000000

0x4006904C DMA13_BWMCNT_CUR DMA13 Bandwidth Monitor Count Current Register 0x00000000

Table 48-20: CM41X_M4 DMA2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100E000 DMA2_DSCPTR_NXT DMA2 Pointer to Next Initial Descriptor Register 0x00000000

0x4100E004 DMA2_ADDRSTART DMA2 Start Address of Current Buffer Register 0x00000000

0x4100E008 DMA2_CFG DMA2 Configuration Register 0x00000000

0x4100E00C DMA2_XCNT DMA2 Inner Loop Count Start Value Register 0x00000000

0x4100E010 DMA2_XMOD DMA2 Inner Loop Address Increment Register 0x00000000

0x4100E014 DMA2_YCNT DMA2 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100E018 DMA2_YMOD DMA2 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100E024 DMA2_DSCPTR_CUR DMA2 Current Descriptor Pointer Register 0x00000000

0x4100E028 DMA2_DSCPTR_PRV DMA2 Previous Initial Descriptor Pointer Register 0x00000000

0x4100E02C DMA2_ADDR_CUR DMA2 Current Address Register 0x00000000

0x4100E030 DMA2_STAT DMA2 Status Register 0x00006000

0x4100E034 DMA2_XCNT_CUR DMA2 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100E038 DMA2_YCNT_CUR DMA2 Current Row Count (2D only) Register 0x00000000

Table 48-21: CM41X_M4 DMA3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100F000 DMA3_DSCPTR_NXT DMA3 Pointer to Next Initial Descriptor Register 0x00000000

CM41X_M4 Register List

48–52 ADSP-CM41x Mixed-Signal Control Processor

Table 48-21: CM41X_M4 DMA3 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100F004 DMA3_ADDRSTART DMA3 Start Address of Current Buffer Register 0x00000000

0x4100F008 DMA3_CFG DMA3 Configuration Register 0x00000000

0x4100F00C DMA3_XCNT DMA3 Inner Loop Count Start Value Register 0x00000000

0x4100F010 DMA3_XMOD DMA3 Inner Loop Address Increment Register 0x00000000

0x4100F014 DMA3_YCNT DMA3 Outer Loop Count Start Value (2D only) Register 0x00000000

0x4100F018 DMA3_YMOD DMA3 Outer Loop Address Increment (2D only) Register 0x00000000

0x4100F024 DMA3_DSCPTR_CUR DMA3 Current Descriptor Pointer Register 0x00000000

0x4100F028 DMA3_DSCPTR_PRV DMA3 Previous Initial Descriptor Pointer Register 0x00000000

0x4100F02C DMA3_ADDR_CUR DMA3 Current Address Register 0x00000000

0x4100F030 DMA3_STAT DMA3 Status Register 0x00006000

0x4100F034 DMA3_XCNT_CUR DMA3 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x4100F038 DMA3_YCNT_CUR DMA3 Current Row Count (2D only) Register 0x00000000

Table 48-22: CM41X_M4 DMA4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40060000 DMA4_DSCPTR_NXT DMA4 Pointer to Next Initial Descriptor Register 0x00000000

0x40060004 DMA4_ADDRSTART DMA4 Start Address of Current Buffer Register 0x00000000

0x40060008 DMA4_CFG DMA4 Configuration Register 0x00000000

0x4006000C DMA4_XCNT DMA4 Inner Loop Count Start Value Register 0x00000000

0x40060010 DMA4_XMOD DMA4 Inner Loop Address Increment Register 0x00000000

0x40060014 DMA4_YCNT DMA4 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40060018 DMA4_YMOD DMA4 Outer Loop Address Increment (2D only) Register 0x00000000

0x40060024 DMA4_DSCPTR_CUR DMA4 Current Descriptor Pointer Register 0x00000000

0x40060028 DMA4_DSCPTR_PRV DMA4 Previous Initial Descriptor Pointer Register 0x00000000

0x4006002C DMA4_ADDR_CUR DMA4 Current Address Register 0x00000000

0x40060030 DMA4_STAT DMA4 Status Register 0x00006000

0x40060034 DMA4_XCNT_CUR DMA4 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40060038 DMA4_YCNT_CUR DMA4 Current Row Count (2D only) Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–53

Table 48-23: CM41X_M4 DMA5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40061000 DMA5_DSCPTR_NXT DMA5 Pointer to Next Initial Descriptor Register 0x00000000

0x40061004 DMA5_ADDRSTART DMA5 Start Address of Current Buffer Register 0x00000000

0x40061008 DMA5_CFG DMA5 Configuration Register 0x00000000

0x4006100C DMA5_XCNT DMA5 Inner Loop Count Start Value Register 0x00000000

0x40061010 DMA5_XMOD DMA5 Inner Loop Address Increment Register 0x00000000

0x40061014 DMA5_YCNT DMA5 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40061018 DMA5_YMOD DMA5 Outer Loop Address Increment (2D only) Register 0x00000000

0x40061024 DMA5_DSCPTR_CUR DMA5 Current Descriptor Pointer Register 0x00000000

0x40061028 DMA5_DSCPTR_PRV DMA5 Previous Initial Descriptor Pointer Register 0x00000000

0x4006102C DMA5_ADDR_CUR DMA5 Current Address Register 0x00000000

0x40061030 DMA5_STAT DMA5 Status Register 0x00006000

0x40061034 DMA5_XCNT_CUR DMA5 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40061038 DMA5_YCNT_CUR DMA5 Current Row Count (2D only) Register 0x00000000

Table 48-24: CM41X_M4 DMA6 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40062000 DMA6_DSCPTR_NXT DMA6 Pointer to Next Initial Descriptor Register 0x00000000

0x40062004 DMA6_ADDRSTART DMA6 Start Address of Current Buffer Register 0x00000000

0x40062008 DMA6_CFG DMA6 Configuration Register 0x00000000

0x4006200C DMA6_XCNT DMA6 Inner Loop Count Start Value Register 0x00000000

0x40062010 DMA6_XMOD DMA6 Inner Loop Address Increment Register 0x00000000

0x40062014 DMA6_YCNT DMA6 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40062018 DMA6_YMOD DMA6 Outer Loop Address Increment (2D only) Register 0x00000000

0x40062024 DMA6_DSCPTR_CUR DMA6 Current Descriptor Pointer Register 0x00000000

0x40062028 DMA6_DSCPTR_PRV DMA6 Previous Initial Descriptor Pointer Register 0x00000000

0x4006202C DMA6_ADDR_CUR DMA6 Current Address Register 0x00000000

0x40062030 DMA6_STAT DMA6 Status Register 0x00006000

0x40062034 DMA6_XCNT_CUR DMA6 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40062038 DMA6_YCNT_CUR DMA6 Current Row Count (2D only) Register 0x00000000

CM41X_M4 Register List

48–54 ADSP-CM41x Mixed-Signal Control Processor

Table 48-25: CM41X_M4 DMA7 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40063000 DMA7_DSCPTR_NXT DMA7 Pointer to Next Initial Descriptor Register 0x00000000

0x40063004 DMA7_ADDRSTART DMA7 Start Address of Current Buffer Register 0x00000000

0x40063008 DMA7_CFG DMA7 Configuration Register 0x00000000

0x4006300C DMA7_XCNT DMA7 Inner Loop Count Start Value Register 0x00000000

0x40063010 DMA7_XMOD DMA7 Inner Loop Address Increment Register 0x00000000

0x40063014 DMA7_YCNT DMA7 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40063018 DMA7_YMOD DMA7 Outer Loop Address Increment (2D only) Register 0x00000000

0x40063024 DMA7_DSCPTR_CUR DMA7 Current Descriptor Pointer Register 0x00000000

0x40063028 DMA7_DSCPTR_PRV DMA7 Previous Initial Descriptor Pointer Register 0x00000000

0x4006302C DMA7_ADDR_CUR DMA7 Current Address Register 0x00000000

0x40063030 DMA7_STAT DMA7 Status Register 0x00006000

0x40063034 DMA7_XCNT_CUR DMA7 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40063038 DMA7_YCNT_CUR DMA7 Current Row Count (2D only) Register 0x00000000

Table 48-26: CM41X_M4 DMA8 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40064000 DMA8_DSCPTR_NXT DMA8 Pointer to Next Initial Descriptor Register 0x00000000

0x40064004 DMA8_ADDRSTART DMA8 Start Address of Current Buffer Register 0x00000000

0x40064008 DMA8_CFG DMA8 Configuration Register 0x00000000

0x4006400C DMA8_XCNT DMA8 Inner Loop Count Start Value Register 0x00000000

0x40064010 DMA8_XMOD DMA8 Inner Loop Address Increment Register 0x00000000

0x40064014 DMA8_YCNT DMA8 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40064018 DMA8_YMOD DMA8 Outer Loop Address Increment (2D only) Register 0x00000000

0x40064024 DMA8_DSCPTR_CUR DMA8 Current Descriptor Pointer Register 0x00000000

0x40064028 DMA8_DSCPTR_PRV DMA8 Previous Initial Descriptor Pointer Register 0x00000000

0x4006402C DMA8_ADDR_CUR DMA8 Current Address Register 0x00000000

0x40064030 DMA8_STAT DMA8 Status Register 0x00006000

0x40064034 DMA8_XCNT_CUR DMA8 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40064038 DMA8_YCNT_CUR DMA8 Current Row Count (2D only) Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–55

Table 48-27: CM41X_M4 DMA9 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40065000 DMA9_DSCPTR_NXT DMA9 Pointer to Next Initial Descriptor Register 0x00000000

0x40065004 DMA9_ADDRSTART DMA9 Start Address of Current Buffer Register 0x00000000

0x40065008 DMA9_CFG DMA9 Configuration Register 0x00000000

0x4006500C DMA9_XCNT DMA9 Inner Loop Count Start Value Register 0x00000000

0x40065010 DMA9_XMOD DMA9 Inner Loop Address Increment Register 0x00000000

0x40065014 DMA9_YCNT DMA9 Outer Loop Count Start Value (2D only) Register 0x00000000

0x40065018 DMA9_YMOD DMA9 Outer Loop Address Increment (2D only) Register 0x00000000

0x40065024 DMA9_DSCPTR_CUR DMA9 Current Descriptor Pointer Register 0x00000000

0x40065028 DMA9_DSCPTR_PRV DMA9 Previous Initial Descriptor Pointer Register 0x00000000

0x4006502C DMA9_ADDR_CUR DMA9 Current Address Register 0x00000000

0x40065030 DMA9_STAT DMA9 Status Register 0x00006000

0x40065034 DMA9_XCNT_CUR DMA9 Current Count (1D) or Intra-row XCNT (2D)
Register

0x00000000

0x40065038 DMA9_YCNT_CUR DMA9 Current Row Count (2D only) Register 0x00000000

Table 48-28: CM41X_M4 DPM0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40013000 DPM0_CTL DPM0 Control Register 0x00000000

0x40013004 DPM0_STAT DPM0 Status Register 0x00000001

0x4001301C DPM0_WAKE_EN DPM0 Wakeup Enable Register 0x00000000

0x40013020 DPM0_WAKE_POL DPM0 Wakeup Polarity Register 0x00000000

0x40013024 DPM0_WAKE_STAT DPM0 Wakeup Status Register 0x00000000

0x40013070 DPM0_PER_DIS0 DPM0 Peripherals Disable Register 0 0x00000000

0x40013084 DPM0_REVID DPM0 Revision ID 0x00000020

Table 48-29: CM41X_M4 EMUID0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40002020 EMUID0_ADIID EMUID0 Analog Devices Identification 0x00004144

0x40002024 EMUID0_CHIPID EMUID0 Chip Identification 0x00000402

CM41X_M4 Register List

48–56 ADSP-CM41x Mixed-Signal Control Processor

Table 48-30: CM41X_M4 FFTB0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40048000 FFTB0_CTL FFTB0 FFTB Control Register 0x00500000

0x40048004 FFTB0_STAT FFTB0 FFTB Status Register 0x00000000

0x40048008 FFTB0_FMTCTL FFTB0 Format Converter Control Register 0x0000FFF0

0x4004800C FFTB0_INOFST FFTB0 Input Offset Register 0x00000000

0x40048010 FFTB0_COMB FFTB0 FFTB Input Comb Filter Control Register 0x00000000

0x40048014 FFTB0_DMABASE FFTB0 DMA Output Base Address Register 0x00000000

0x40048018 FFTB0_DMAWR FFTB0 DMA Output Write Address Register 0x00000000

0x40048020 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048024 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048028 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x4004802C FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048030 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048034 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048038 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x4004803C FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048040 FFTB0_MAGSEL[n] FFTB0 Magnitude Pin Select Registers 0xFFFFFFFF

0x40048070 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048074 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048078 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x4004807C FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048080 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048084 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048088 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x4004808C FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x40048090 FFTB0_LIMSTAT[n] FFTB0 Limit Status Registers 0x00000000

0x400480C0 FFTB0_MAXMAG FFTB0 Maximum Magnitude Register 0x00000000

0x400480C4 FFTB0_MINMAG FFTB0 Minimum Magnitude Register 0x00000000

Table 48-31: CM41X_M4 FLC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

FLC0_CTL FLC0 Control Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–57

Table 48-31: CM41X_M4 FLC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xF8010000

0xF8010004 FLC0_CMD FLC0 Command Register 0x00000000

0xF8010008 FLC0_IMSK FLC0 Interrupt Enable Register 0x00000000

0xF801000C FLC0_ADDR FLC0 Command Address Register 0x00000000

0xF8010010 FLC0_DATA0 FLC0 Command Data Register 0 0x00000000

0xF8010014 FLC0_DATA1 FLC0 Command Data Register 1 0x00000000

0xF8010018 FLC0_ECC FLC0 Command ECC Register 0x00000000

0xF801001C FLC0_STAT FLC0 Status Register 0x00000000

0xF8010020 FLC0_CMD_KEY FLC0 Command Key Register 0x00000000

0xF8010024 FLC0_SBERR_THR FLC0 ECC Single Bit Error Threshold Register 0x00000000

0xF8010030 FLC0_TIM_PWR FLC0 Power Timing Register 0x000147D0

0xF8010040 FLC0_PRFCTL FLC0 Prefetch Control Register 0x0000000D

0xF8010044 FLC0_FILL_CNT FLC0 Pre-fetcher Fill Count Register 0x00000000

0xF8010048 FLC0_MISS_CNT FLC0 Pre-fetcher Miss Count Register 0x00000000

0xF801004C FLC0_REF_CNT FLC0 Pre-fetcher Reference Count Register 0x00000000

0xF8010054 FLC0_REVID FLC0 Revision ID Register 0x00000000

Table 48-32: CM41X_M4 FLC1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xF8011000 FLC1_CTL FLC1 Control Register 0x00000000

0xF8011004 FLC1_CMD FLC1 Command Register 0x00000000

0xF8011008 FLC1_IMSK FLC1 Interrupt Enable Register 0x00000000

0xF801100C FLC1_ADDR FLC1 Command Address Register 0x00000000

0xF8011010 FLC1_DATA0 FLC1 Command Data Register 0 0x00000000

0xF8011014 FLC1_DATA1 FLC1 Command Data Register 1 0x00000000

0xF8011018 FLC1_ECC FLC1 Command ECC Register 0x00000000

0xF801101C FLC1_STAT FLC1 Status Register 0x00000000

0xF8011020 FLC1_CMD_KEY FLC1 Command Key Register 0x00000000

0xF8011024 FLC1_SBERR_THR FLC1 ECC Single Bit Error Threshold Register 0x00000000

0xF8011030 FLC1_TIM_PWR FLC1 Power Timing Register 0x000147D0

CM41X_M4 Register List

48–58 ADSP-CM41x Mixed-Signal Control Processor

Table 48-32: CM41X_M4 FLC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xF8011040 FLC1_PRFCTL FLC1 Prefetch Control Register 0x0000000D

0xF8011044 FLC1_FILL_CNT FLC1 Pre-fetcher Fill Count Register 0x00000000

0xF8011048 FLC1_MISS_CNT FLC1 Pre-fetcher Miss Count Register 0x00000000

0xF801104C FLC1_REF_CNT FLC1 Pre-fetcher Reference Count Register 0x00000000

0xF8011054 FLC1_REVID FLC1 Revision ID Register 0x00000000

Table 48-33: CM41X_M4 HAE0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400500A0 HAE0_RUN HAE0 Run Register 0x00000000

0x40050B00 HAE0_CFG0 HAE0 Configuration 0 Register 0x00000000

0x40050B04 HAE0_CFG1 HAE0 Configuration 1 Register 0x00000000

0x40050B08 HAE0_CFG2 HAE0 Configuration 2 Register 0x00000000

0x40050B0C HAE0_CFG3 HAE0 Configuration 3 Register 0x00000000

0x40050B20 HAE0_STAT HAE0 Status Register 0x00000000

0x40050B40 HAE0_ISAMPLE HAE0 I (Current) Sample Register 0x00000000

0x40050B44 HAE0_VSAMPLE HAE0 V (Voltage) Sample Register 0x00000000

0x40050B80 HAE0_IWAVEFORM HAE0 I (Current) Waveform Register 0x00000000

0x40050B84 HAE0_VWAVEFORM HAE0 V (Voltage) Waveform Register 0x00000000

0x40051E00 HAE0_CFG4 HAE0 Configuration 4 Register 0x00000000

0x40051E04 HAE0_DIDT_GAIN HAE0 DIDT Gain Register 0x00000000

0x40051E08 HAE0_DIDT_COEF HAE0 DIDT Coefficient Register 0x00000000

0x40051E10 HAE0_VLEVEL HAE0 Voltage Level Register 0x00000000

0x40051E2C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E30 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E34 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E38 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E3C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E40 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E44 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E48 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–59

Table 48-33: CM41X_M4 HAE0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40051E4C HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E50 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E54 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

0x40051E58 HAE0_H[nn]_INDX HAE0 Harmonic n Index Register 0x00000000

Table 48-34: CM41X_M4 LBA0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F004 LBA0_CLK_CTL LBA0 Logic Block Array Clock Divisor Register 0x00000000

0x4000F008 LBA0_DIR LBA0 Logic Block Array Pin Direction Register 0x00000000

0x4000F00C LBA0_DIN LBA0 Logic Block Array Data Input Register 0x00000000

0x4000F010 LBA0_DOUT LBA0 Logic Block Array Data Output Register 0x00000000

0x4000F014 LBA0_CFG LBA0 Logic Block Array Configuration Register 0x00000000

0x4000F018 LBA0_SYNC_CTL LBA0 Logic Block Array GPIO Input Synchronization
Control Register

0x00000000

0x4000F020 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F024 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F028 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F02C LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F030 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F034 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F038 LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F03C LBA0_BLK[n]_CTL LBA0 Logic Block Control Register 0x00000000

0x4000F100 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F104 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F108 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F10C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F110 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F114 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F118 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F11C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F120 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

CM41X_M4 Register List

48–60 ADSP-CM41x Mixed-Signal Control Processor

Table 48-34: CM41X_M4 LBA0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F124 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F128 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F12C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F130 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F134 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F138 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F13C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F140 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F144 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F148 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F14C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F150 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F154 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F158 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F15C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F160 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F164 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F168 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F16C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F170 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F174 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F178 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F17C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F180 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F184 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F188 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F18C LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F190 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F194 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F198 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F19C LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–61

Table 48-34: CM41X_M4 LBA0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000F1A0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1A4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1A8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1AC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1B0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1B4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1B8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1BC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F1C0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1C4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1C8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1CC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1D0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1D4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1D8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1DC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

0x4000F1E0 LBA0_BLK[n]_FN0 LBA0 Logic Block Function 0 Register 0x00000000

0x4000F1E4 LBA0_BLK[n]_FN1 LBA0 Logic Block Function 1 Register 0x00000000

0x4000F1E8 LBA0_BLK[n]_FN2 LBA0 Logic Block Function 2 Register 0x00000000

0x4000F1EC LBA0_BLK[n]_FN3 LBA0 Logic Block Function 3 Register 0x00000000

0x4000F1F0 LBA0_BLK[n]_FN4 LBA0 Logic Block Function 4 Register 0x00000000

0x4000F1F4 LBA0_BLK[n]_FN5 LBA0 Logic Block Function 5 Register 0x00000000

0x4000F1F8 LBA0_BLK[n]_FN6 LBA0 Logic Block Function 6 Register 0x00000000

0x4000F1FC LBA0_BLK[n]_FN7 LBA0 Logic Block Function 7 Register 0x00000000

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE000E004 SCS0_ICTR SCS0 Interrupt Control Type Register 0x00000000

0xE000E008 SCS0_ACTLR SCS0 Auxiliary Control Register 0x00000000

0xE000E010 SCS0_STCSR SCS0 SysTick Control and Status Register 0x00000000

CM41X_M4 Register List

48–62 ADSP-CM41x Mixed-Signal Control Processor

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE000E014 SCS0_STRVR SCS0 SysTick Reload Value Register 0x00000000

0xE000E018 SCS0_STCVR SCS0 SysTick Current Value Register 0x00000000

0xE000E01C SCS0_STCR SCS0 SysTick Calibration Value Register 0x00000000

0xE000E100 SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E104 SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E108 SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E10C SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E110 SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E114 SCS0_NVIC_ISER[n] SCS0 Irq Set Enable Register n 0x00000000

0xE000E180 SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E184 SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E188 SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E18C SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E190 SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E194 SCS0_NVIC_ICER[n] SCS0 Irq Clear Enable Register n 0x00000000

0xE000E200 SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E204 SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E208 SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E20C SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E210 SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E214 SCS0_NVIC_ISPR[n] SCS0 Irq Set Pending Register n 0x00000000

0xE000E280 SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E284 SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E288 SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E28C SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E290 SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E294 SCS0_NVIC_ICPR[n] SCS0 Irq Clear Pending Register n 0x00000000

0xE000E300 SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

0xE000E304 SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

0xE000E308 SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

0xE000E30C SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–63

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE000E310 SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

0xE000E314 SCS0_NVIC_IABR[n] SCS0 Irq Active Bit Register n 0x00000000

0xE000E400 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E404 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E408 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E40C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E410 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E414 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E418 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E41C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E420 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E424 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E428 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E42C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E430 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E434 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E438 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E43C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E440 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E444 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E448 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E44C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E450 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E454 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E458 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E45C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E460 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E464 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E468 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E46C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E470 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

CM41X_M4 Register List

48–64 ADSP-CM41x Mixed-Signal Control Processor

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE000E474 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E478 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E47C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E480 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E484 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E488 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E48C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E490 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E494 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E498 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E49C SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000E4A0 SCS0_NVIC_IPR[nn] SCS0 Irq Priority Register nn 0x00000000

0xE000ED00 SCS0_CPUID SCS0 CPUID Base Register 0x410FC241

0xE000ED04 SCS0_ICSR SCS0 Interrupt Control State Register 0x00000000

0xE000ED08 SCS0_VTOR SCS0 Vector Table Offset Register 0x00000000

0xE000ED0C SCS0_AIRCR SCS0 Application Interrupt/Reset Control Register 0xFA050000

0xE000ED10 SCS0_SCR SCS0 System Control Register 0x00000000

0xE000ED14 SCS0_CCR SCS0 Configuration Control Register 0x00000200

0xE000ED18 SCS0_SHPR1 SCS0 System Handlers 4-7 Priority Register 0x00000000

0xE000ED1C SCS0_SHPR2 SCS0 System Handlers 8-11 Priority Register 0x00000000

0xE000ED20 SCS0_SHPR3 SCS0 System Handlers 12-15 Priority Register 0x00000000

0xE000ED24 SCS0_SHCSR SCS0 System Handler Control and State Register 0x00000000

0xE000ED28 SCS0_CFSR SCS0 Configurable Fault Status Registers 0x00000000

0xE000ED2C SCS0_HFSR SCS0 Hard Fault Status Register 0x00000000

0xE000ED30 SCS0_DFSR SCS0 Debug Fault Status Register 0x00000000

0xE000ED34 SCS0_MMFAR SCS0 Mem Manage Fault Address Register 0x00000000

0xE000ED38 SCS0_BFAR SCS0 Bus Fault Address Register 0x00000000

0xE000ED3C SCS0_AFSR SCS0 Auxiliary Fault Status Register 0x00000000

0xE000ED40 SCS0_ID_PFR0 SCS0 Processor Feature register0 0x00000030

0xE000ED44 SCS0_ID_PFR1 SCS0 Processor Feature register1 0x00000200

0xE000ED48 SCS0_ID_DFR0 SCS0 Debug Feature register0 0x00100000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–65

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE000ED4C SCS0_ID_AFR0 SCS0 Auxiliary Feature register0 0x00000000

0xE000ED50 SCS0_ID_MMFR0 SCS0 Memory Model Feature register0 0x00100030

0xE000ED54 SCS0_ID_MMFR1 SCS0 Memory Model Feature register1 0x00000000

0xE000ED58 SCS0_ID_MMFR2 SCS0 Memory Model Feature register2 0x00000000

0xE000ED5C SCS0_ID_MMFR3 SCS0 Memory Model Feature register3 0x00000000

0xE000ED60 SCS0_ISAR0 SCS0 ISA Feature register0 0x01141110

0xE000ED64 SCS0_ID_ISAR1 SCS0 ISA Feature register1 0x02112000

0xE000ED68 SCS0_ID_ISAR2 SCS0 ISA Feature register2 0x20232231

0xE000ED6C SCS0_ID_ISAR3 SCS0 ISA Feature register3 0x01111131

0xE000ED70 SCS0_ID_ISAR4 SCS0 ISA Feature register4 0x01310102

0xE000ED88 SCS0_CPACR SCS0 Coprocessor Access Control Register 0x00000000

0xE000ED90 SCS0_MPU_TYPE SCS0 MPU Type Register 0x00000800

0xE000ED94 SCS0_MPU_CTRL SCS0 MPU Control Register 0x00000000

0xE000ED98 SCS0_MPU_RNR SCS0 MPU Region Number Register 0x00000000

0xE000ED9C SCS0_MPU_RBAR SCS0 MPU Region Base Address Register 0x00000000

0xE000EDA0 SCS0_MPU_RASR SCS0 MPU Region Attribute and Size Register 0x00000000

0xE000EDA4 SCS0_MPU_RBAR_A1 SCS0 MPU Alias 1 Region Base Address register 0x00000000

0xE000EDA8 SCS0_MPU_RASR_A1 SCS0 MPU Alias 1 Region Attribute and Size register 0x00000000

0xE000EDAC SCS0_MPU_RBAR_A2 SCS0 MPU Alias 2 Region Base Address register 0x00000000

0xE000EDB0 SCS0_MPU_RASR_A2 SCS0 MPU Alias 2 Region Attribute and Size register 0x00000000

0xE000EDB4 SCS0_MPU_RBAR_A3 SCS0 MPU Alias 3 Region Base Address register 0x00000000

0xE000EDB8 SCS0_MPU_RASR_A3 SCS0 MPU Alias 3 Region Attribute and Size register 0x00000000

0xE000EDF0 SCS0_DHCSR SCS0 Debug Halting Control and Status Register 0x00000000

0xE000EDF4 SCS0_DCRSR SCS0 Deubg Core Register Selector Register 0x00000000

0xE000EDF8 SCS0_DCRDR SCS0 Debug Core Register Data Register 0x00000000

0xE000EDFC SCS0_DEMCR SCS0 Debug Exception and Monitor Control Register 0x00000000

0xE000EF00 SCS0_STIR SCS0 Software Trigger Interrupt Register 0x00000000

0xE000EF34 SCS0_FPCCR SCS0 Floating Point Context Control Register 0xC0000000

0xE000EF38 SCS0_FPCAR SCS0 Floating-Point Context Address Register 0x00000000

0xE000EF3C SCS0_FPDSCR SCS0 Floating Point Default Status Control Register 0x00000000

0xE000EF40 SCS0_MVFR0 SCS0 Media and FP Feature Register 0 (MVFR0) 0x10110021

CM41X_M4 Register List

48–66 ADSP-CM41x Mixed-Signal Control Processor

Table 48-35: CM41X_M4 SCS0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE000EF44 SCS0_MVFR1 SCS0 Media and FP Feature Register 1 (MVFR1) 0x11000011

0xE000EFD0 SCS0_PID4 SCS0 Peripheral identification register (PID4) 0x00000000

0xE000EFD4 SCS0_PID5 SCS0 Peripheral identification register (PID5) 0x00000000

0xE000EFD8 SCS0_PID6 SCS0 Peripheral identification register (PID6) 0x00000000

0xE000EFDC SCS0_PID7 SCS0 Peripheral identification register (PID7) 0x00000000

0xE000EFE0 SCS0_PID0 SCS0 Peripheral identification register Bits 7:0 (PID0) 0x00000000

0xE000EFE4 SCS0_PID1 SCS0 Peripheral identification register Bits 15:8 (PID1) 0x00000000

0xE000EFE8 SCS0_PID2 SCS0 Peripheral identification register Bits 23:16 (PID2) 0x00000000

0xE000EFEC SCS0_PID3 SCS0 Peripheral identification register Bits 31:24 (PID3) 0x00000000

0xE000EFF0 SCS0_CID0 SCS0 Component identification register Bits 7:0 (CID0) 0x00000000

0xE000EFF4 SCS0_CID1 SCS0 Component identification register Bits 15:8 (CID1) 0x00000000

0xE000EFF8 SCS0_CID2 SCS0 Component identification register Bits 23:16
(CID2)

0x00000000

0xE000EFFC SCS0_CID3 SCS0 Component identification register Bits 31:24
(CID3)

0x00000000

Table 48-36: CM41X_M4 M4P MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xF8008020 M4P_SRAM_CFG M4P SRAM Configuration Register 0x08000002

0xF800802C M4P_BUSFLT M4P Bus Fault Error Information Register 0x00000000

0xF8008030 M4P_STCALIB M4P SysTick Calibration Register 0x801E8480

0xF800805C M4P_SRAM_INITDONE M4P SRAM Initialization Done Status Register 0x00000000

0xF8008060 M4P_SRAM_EEADDR_CO
RE

M4P SRAM ECC Error Address (Core) Register 0x00000000

0xF8008064 M4P_SRAM_EEADDR_DM
A

M4P SRAM ECC Error Address (DMA) Register 0x00000000

0xF8008068 M4P_SRAM_RFRPER M4P SRAM Refresh Period Register 0x00000000

0xF800806C M4P_SRAM_RFRADDR M4P SRAM Refresh Address 0x00000000

0xF8008070 M4P_BROMERR M4P Boot ROM Error Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–67

Table 48-37: CM41X_M4 MATH0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xF8009000 MATH0_CTL MATH0 Math Unit Interrupt Enable Control 0x00000000

0xF8009004 MATH0_EXPF MATH0 exp(x) Function Register 0x00000000

0xF800900C MATH0_EXP2F MATH0 exp2(x) Function Register 0x00000000

0xF8009014 MATH0_RECIPF MATH0 Reciprocal(x) or 1/x Function Register 0x00000000

0xF800901C MATH0_SQRTF MATH0 Square Root or sqrt(x) Function 0x00000000

0xF8009024 MATH0_LNF MATH0 ln(x) Function Register 0x00000000

0xF800902C MATH0_LOG2F MATH0 log2(x) Function Register 0x00000000

0xF8009034 MATH0_SINF MATH0 sin(x) Function Register 0x00000000

0xF800903C MATH0_COSF MATH0 cos(x) Function Register 0x00000000

0xF8009044 MATH0_TANF MATH0 tan(x) Function Register 0x00000000

0xF800904C MATH0_ASINF MATH0 arcsin(x) Function Register 0x00000000

0xF8009054 MATH0_ACOSF MATH0 arccos(x) Function Register 0x00000000

0xF800905C MATH0_ATANF MATH0 arctan(x) Function Register 0x00000000

0xF8009080 MATH0_ATAN2F_Y MATH0 arctan(y/x) Function y Operand Register 0x00000000

0xF8009084 MATH0_ATAN2F_X MATH0 arctan(y/x) Function x Operand Register 0x00000000

0xF8009088 MATH0_HYPOTF_Y MATH0 hypot(x,y) Function y Operand Register 0x00000000

0xF800908C MATH0_HYPOTF_X MATH0 hypot(x,y) Function x Operand Register 0x00000000

0xF8009090 MATH0_RTOPF_Y MATH0 Rectangular to Polar Function y Operand Regis-
ter

0x00000000

0xF8009094 MATH0_RTOPF_X MATH0 Rectangular to Polar Function x Operand Regis-
ter

0x00000000

0xF8009098 MATH0_PTORF_R MATH0 Polar to Rectangular Function r Operand Regis-
ter

0x00000000

0xF800909C MATH0_PTORF_A MATH0 Polar to Rectangular Function a Operand Regis-
ter

0x00000000

0xF8009200 MATH0_GY MATH0 Generic Y Function Register (GY) 0x00000000

0xF8009204 MATH0_GX MATH0 Generic X Function Register (GX) 0x00000000

0xF8009208 MATH0_RES1 MATH0 Math Unit Function Result 1 0x00000000

0xF800920C MATH0_RES2 MATH0 Math Unit Function Result 2 0x00000000

0xF8009210 MATH0_FSTAT MATH0 Math Unit Function Status Register 0x001F0000

0xF8009214 MATH0_ISTAT MATH0 Math Unit Interrupt Register 0x00000000

0xF8009218 MATH0_SSTAT MATH0 Math Unit Function State Status Register 0x00000000

CM41X_M4 Register List

48–68 ADSP-CM41x Mixed-Signal Control Processor

Table 48-38: CM41X_M4 MBOX0_PORT1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400D1000 MBOX0_PORT1_CTL MBOX0_PORT1 Port 1 Control Register 0x00000000

0x400D1004 MBOX0_PORT1_FORCE-
IRQ

MBOX0_PORT1 Port 1 Force IRQ Register 0x00000000

0x400D1008 MBOX0_PORT1_STAT MBOX0_PORT1 Port 1 Status Register 0x00000000

0x400D100C MBOX0_PORT1_ESTAT MBOX0_PORT1 Port 1 ECC Status Register 0x00000000

0x400D1010 MBOX0_PORT1_RFRPER MBOX0_PORT1 Auto-refresh Period Register 0x00000000

0x400D1014 MBOX0_PORT1_RFRADD
R

MBOX0_PORT1 Auto-refresh Address Register 0x00000000

0x400D1018 MBOX0_PORT1_RFRCNT MBOX0_PORT1 Auto-refresh Counter Register 0x00000001

Table 48-39: CM41X_M4 OCU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40015000 OCU0_CTL OCU0 Control Register 0x00000000

0x40015004 OCU0_STAT OCU0 Status Register 0x00000000

0x40015008 OCU0_CLKCNT OCU0 Frequency Measured Count Register 0x00000000

0x4001500C OCU0_REFCNT OCU0 Reference Count Register 0x00000000

0x40015010 OCU0_MINCNT OCU0 Minimum Limit Register 0x00000000

0x40015014 OCU0_MAXCNT OCU0 Maximum Count Register 0x00000000

0x40015018 OCU0_LMONCNT OCU0 LFO Monitor Reference Count Register 0x00000000

0x4001501C OCU0_CMONCNT OCU0 CLKIN Monitor Reference Count Register 0x00000000

Table 48-40: CM41X_M4 PINT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41002000 PINT0_MSK_SET PINT0 PINT Mask Set Register 0x00000000

0x41002004 PINT0_MSK_CLR PINT0 PINT Mask Clear Register 0x00000000

0x41002008 PINT0_REQ PINT0 PINT Request Register 0x00000000

0x4100200C PINT0_ASSIGN PINT0 PINT Assign Register 0x00000101

0x41002010 PINT0_EDGE_SET PINT0 PINT Edge Set Register 0x00000000

0x41002014 PINT0_EDGE_CLR PINT0 PINT Edge Clear Register 0x00000000

0x41002018 PINT0_INV_SET PINT0 PINT Invert Set Register 0x00000000

0x4100201C PINT0_INV_CLR PINT0 PINT Invert Clear Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–69

Table 48-40: CM41X_M4 PINT0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41002020 PINT0_PINSTATE PINT0 PINT Pin State Register 0x00000000

0x41002024 PINT0_LATCH PINT0 PINT Latch Register 0x00000000

Table 48-41: CM41X_M4 PINT1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40003000 PINT1_MSK_SET PINT1 PINT Mask Set Register 0x00000000

0x40003004 PINT1_MSK_CLR PINT1 PINT Mask Clear Register 0x00000000

0x40003008 PINT1_REQ PINT1 PINT Request Register 0x00000000

0x4000300C PINT1_ASSIGN PINT1 PINT Assign Register 0x00000101

0x40003010 PINT1_EDGE_SET PINT1 PINT Edge Set Register 0x00000000

0x40003014 PINT1_EDGE_CLR PINT1 PINT Edge Clear Register 0x00000000

0x40003018 PINT1_INV_SET PINT1 PINT Invert Set Register 0x00000000

0x4000301C PINT1_INV_CLR PINT1 PINT Invert Clear Register 0x00000000

0x40003020 PINT1_PINSTATE PINT1 PINT Pin State Register 0x00000000

0x40003024 PINT1_LATCH PINT1 PINT Latch Register 0x00000000

Table 48-42: CM41X_M4 PINT2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40004000 PINT2_MSK_SET PINT2 PINT Mask Set Register 0x00000000

0x40004004 PINT2_MSK_CLR PINT2 PINT Mask Clear Register 0x00000000

0x40004008 PINT2_REQ PINT2 PINT Request Register 0x00000000

0x4000400C PINT2_ASSIGN PINT2 PINT Assign Register 0x00000101

0x40004010 PINT2_EDGE_SET PINT2 PINT Edge Set Register 0x00000000

0x40004014 PINT2_EDGE_CLR PINT2 PINT Edge Clear Register 0x00000000

0x40004018 PINT2_INV_SET PINT2 PINT Invert Set Register 0x00000000

0x4000401C PINT2_INV_CLR PINT2 PINT Invert Clear Register 0x00000000

0x40004020 PINT2_PINSTATE PINT2 PINT Pin State Register 0x00000000

0x40004024 PINT2_LATCH PINT2 PINT Latch Register 0x00000000

CM41X_M4 Register List

48–70 ADSP-CM41x Mixed-Signal Control Processor

Table 48-43: CM41X_M4 PINT3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40005000 PINT3_MSK_SET PINT3 PINT Mask Set Register 0x00000000

0x40005004 PINT3_MSK_CLR PINT3 PINT Mask Clear Register 0x00000000

0x40005008 PINT3_REQ PINT3 PINT Request Register 0x00000000

0x4000500C PINT3_ASSIGN PINT3 PINT Assign Register 0x00000101

0x40005010 PINT3_EDGE_SET PINT3 PINT Edge Set Register 0x00000000

0x40005014 PINT3_EDGE_CLR PINT3 PINT Edge Clear Register 0x00000000

0x40005018 PINT3_INV_SET PINT3 PINT Invert Set Register 0x00000000

0x4000501C PINT3_INV_CLR PINT3 PINT Invert Clear Register 0x00000000

0x40005020 PINT3_PINSTATE PINT3 PINT Pin State Register 0x00000000

0x40005024 PINT3_LATCH PINT3 PINT Latch Register 0x00000000

Table 48-44: CM41X_M4 PINT4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40006000 PINT4_MSK_SET PINT4 PINT Mask Set Register 0x00000000

0x40006004 PINT4_MSK_CLR PINT4 PINT Mask Clear Register 0x00000000

0x40006008 PINT4_REQ PINT4 PINT Request Register 0x00000000

0x4000600C PINT4_ASSIGN PINT4 PINT Assign Register 0x00000101

0x40006010 PINT4_EDGE_SET PINT4 PINT Edge Set Register 0x00000000

0x40006014 PINT4_EDGE_CLR PINT4 PINT Edge Clear Register 0x00000000

0x40006018 PINT4_INV_SET PINT4 PINT Invert Set Register 0x00000000

0x4000601C PINT4_INV_CLR PINT4 PINT Invert Clear Register 0x00000000

0x40006020 PINT4_PINSTATE PINT4 PINT Pin State Register 0x00000000

0x40006024 PINT4_LATCH PINT4 PINT Latch Register 0x00000000

Table 48-45: CM41X_M4 PINT5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40007000 PINT5_MSK_SET PINT5 PINT Mask Set Register 0x00000000

0x40007004 PINT5_MSK_CLR PINT5 PINT Mask Clear Register 0x00000000

0x40007008 PINT5_REQ PINT5 PINT Request Register 0x00000000

0x4000700C PINT5_ASSIGN PINT5 PINT Assign Register 0x00000101

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–71

Table 48-45: CM41X_M4 PINT5 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40007010 PINT5_EDGE_SET PINT5 PINT Edge Set Register 0x00000000

0x40007014 PINT5_EDGE_CLR PINT5 PINT Edge Clear Register 0x00000000

0x40007018 PINT5_INV_SET PINT5 PINT Invert Set Register 0x00000000

0x4000701C PINT5_INV_CLR PINT5 PINT Invert Clear Register 0x00000000

0x40007020 PINT5_PINSTATE PINT5 PINT Pin State Register 0x00000000

0x40007024 PINT5_LATCH PINT5 PINT Latch Register 0x00000000

Table 48-46: CM41X_M4 PORTA MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41003000 PORTA_FER PORTA Port x Function Enable Register 0x00000000

0x41003004 PORTA_FER_SET PORTA Port x Function Enable Set Register 0x00000000

0x41003008 PORTA_FER_CLR PORTA Port x Function Enable Clear Register 0x00000000

0x4100300C PORTA_DATA PORTA Port x GPIO Data Register 0x00000000

0x41003010 PORTA_DATA_SET PORTA Port x GPIO Data Set Register 0x00000000

0x41003014 PORTA_DATA_CLR PORTA Port x GPIO Data Clear Register 0x00000000

0x41003018 PORTA_DIR PORTA Port x GPIO Direction Register 0x00000000

0x4100301C PORTA_DIR_SET PORTA Port x GPIO Direction Set Register 0x00000000

0x41003020 PORTA_DIR_CLR PORTA Port x GPIO Direction Clear Register 0x00000000

0x41003024 PORTA_INEN PORTA Port x GPIO Input Enable Register 0x00000000

0x41003028 PORTA_INEN_SET PORTA Port x GPIO Input Enable Set Register 0x00000000

0x4100302C PORTA_INEN_CLR PORTA Port x GPIO Input Enable Clear Register 0x00000000

0x41003030 PORTA_MUX PORTA Port x Multiplexer Control Register 0x00000000

0x41003034 PORTA_DATA_TGL PORTA Port x GPIO Output Toggle Register 0x00000000

0x41003038 PORTA_POL PORTA Port x GPIO Polarity Invert Register 0x00000000

0x4100303C PORTA_POL_SET PORTA Port x GPIO Polarity Invert Set Register 0x00000000

0x41003040 PORTA_POL_CLR PORTA Port x GPIO Polarity Invert Clear Register 0x00000000

0x41003044 PORTA_LOCK PORTA Port x GPIO Lock Register 0x00000000

0x41003048 PORTA_TRIG_TGL PORTA Port x GPIO Trigger Toggle Register 0x00000000

CM41X_M4 Register List

48–72 ADSP-CM41x Mixed-Signal Control Processor

Table 48-47: CM41X_M4 PORTB MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40008000 PORTB_FER PORTB Port x Function Enable Register 0x00000000

0x40008004 PORTB_FER_SET PORTB Port x Function Enable Set Register 0x00000000

0x40008008 PORTB_FER_CLR PORTB Port x Function Enable Clear Register 0x00000000

0x4000800C PORTB_DATA PORTB Port x GPIO Data Register 0x00000000

0x40008010 PORTB_DATA_SET PORTB Port x GPIO Data Set Register 0x00000000

0x40008014 PORTB_DATA_CLR PORTB Port x GPIO Data Clear Register 0x00000000

0x40008018 PORTB_DIR PORTB Port x GPIO Direction Register 0x00000000

0x4000801C PORTB_DIR_SET PORTB Port x GPIO Direction Set Register 0x00000000

0x40008020 PORTB_DIR_CLR PORTB Port x GPIO Direction Clear Register 0x00000000

0x40008024 PORTB_INEN PORTB Port x GPIO Input Enable Register 0x00000000

0x40008028 PORTB_INEN_SET PORTB Port x GPIO Input Enable Set Register 0x00000000

0x4000802C PORTB_INEN_CLR PORTB Port x GPIO Input Enable Clear Register 0x00000000

0x40008030 PORTB_MUX PORTB Port x Multiplexer Control Register 0x00000000

0x40008034 PORTB_DATA_TGL PORTB Port x GPIO Output Toggle Register 0x00000000

0x40008038 PORTB_POL PORTB Port x GPIO Polarity Invert Register 0x00000000

0x4000803C PORTB_POL_SET PORTB Port x GPIO Polarity Invert Set Register 0x00000000

0x40008040 PORTB_POL_CLR PORTB Port x GPIO Polarity Invert Clear Register 0x00000000

0x40008044 PORTB_LOCK PORTB Port x GPIO Lock Register 0x00000000

0x40008048 PORTB_TRIG_TGL PORTB Port x GPIO Trigger Toggle Register 0x00000000

Table 48-48: CM41X_M4 PORTC MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40009000 PORTC_FER PORTC Port x Function Enable Register 0x00000000

0x40009004 PORTC_FER_SET PORTC Port x Function Enable Set Register 0x00000000

0x40009008 PORTC_FER_CLR PORTC Port x Function Enable Clear Register 0x00000000

0x4000900C PORTC_DATA PORTC Port x GPIO Data Register 0x00000000

0x40009010 PORTC_DATA_SET PORTC Port x GPIO Data Set Register 0x00000000

0x40009014 PORTC_DATA_CLR PORTC Port x GPIO Data Clear Register 0x00000000

0x40009018 PORTC_DIR PORTC Port x GPIO Direction Register 0x00000000

0x4000901C PORTC_DIR_SET PORTC Port x GPIO Direction Set Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–73

Table 48-48: CM41X_M4 PORTC MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40009020 PORTC_DIR_CLR PORTC Port x GPIO Direction Clear Register 0x00000000

0x40009024 PORTC_INEN PORTC Port x GPIO Input Enable Register 0x00000000

0x40009028 PORTC_INEN_SET PORTC Port x GPIO Input Enable Set Register 0x00000000

0x4000902C PORTC_INEN_CLR PORTC Port x GPIO Input Enable Clear Register 0x00000000

0x40009030 PORTC_MUX PORTC Port x Multiplexer Control Register 0x00000000

0x40009034 PORTC_DATA_TGL PORTC Port x GPIO Output Toggle Register 0x00000000

0x40009038 PORTC_POL PORTC Port x GPIO Polarity Invert Register 0x00000000

0x4000903C PORTC_POL_SET PORTC Port x GPIO Polarity Invert Set Register 0x00000000

0x40009040 PORTC_POL_CLR PORTC Port x GPIO Polarity Invert Clear Register 0x00000000

0x40009044 PORTC_LOCK PORTC Port x GPIO Lock Register 0x00000000

0x40009048 PORTC_TRIG_TGL PORTC Port x GPIO Trigger Toggle Register 0x00000000

Table 48-49: CM41X_M4 PORTD MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000A000 PORTD_FER PORTD Port x Function Enable Register 0x00000000

0x4000A004 PORTD_FER_SET PORTD Port x Function Enable Set Register 0x00000000

0x4000A008 PORTD_FER_CLR PORTD Port x Function Enable Clear Register 0x00000000

0x4000A00C PORTD_DATA PORTD Port x GPIO Data Register 0x00000000

0x4000A010 PORTD_DATA_SET PORTD Port x GPIO Data Set Register 0x00000000

0x4000A014 PORTD_DATA_CLR PORTD Port x GPIO Data Clear Register 0x00000000

0x4000A018 PORTD_DIR PORTD Port x GPIO Direction Register 0x00000000

0x4000A01C PORTD_DIR_SET PORTD Port x GPIO Direction Set Register 0x00000000

0x4000A020 PORTD_DIR_CLR PORTD Port x GPIO Direction Clear Register 0x00000000

0x4000A024 PORTD_INEN PORTD Port x GPIO Input Enable Register 0x00000000

0x4000A028 PORTD_INEN_SET PORTD Port x GPIO Input Enable Set Register 0x00000000

0x4000A02C PORTD_INEN_CLR PORTD Port x GPIO Input Enable Clear Register 0x00000000

0x4000A030 PORTD_MUX PORTD Port x Multiplexer Control Register 0x00000000

0x4000A034 PORTD_DATA_TGL PORTD Port x GPIO Output Toggle Register 0x00000000

0x4000A038 PORTD_POL PORTD Port x GPIO Polarity Invert Register 0x00000000

0x4000A03C PORTD_POL_SET PORTD Port x GPIO Polarity Invert Set Register 0x00000000

CM41X_M4 Register List

48–74 ADSP-CM41x Mixed-Signal Control Processor

Table 48-49: CM41X_M4 PORTD MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000A040 PORTD_POL_CLR PORTD Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000A044 PORTD_LOCK PORTD Port x GPIO Lock Register 0x00000000

0x4000A048 PORTD_TRIG_TGL PORTD Port x GPIO Trigger Toggle Register 0x00000000

Table 48-50: CM41X_M4 PORTE MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000B000 PORTE_FER PORTE Port x Function Enable Register 0x00000000

0x4000B004 PORTE_FER_SET PORTE Port x Function Enable Set Register 0x00000000

0x4000B008 PORTE_FER_CLR PORTE Port x Function Enable Clear Register 0x00000000

0x4000B00C PORTE_DATA PORTE Port x GPIO Data Register 0x00000000

0x4000B010 PORTE_DATA_SET PORTE Port x GPIO Data Set Register 0x00000000

0x4000B014 PORTE_DATA_CLR PORTE Port x GPIO Data Clear Register 0x00000000

0x4000B018 PORTE_DIR PORTE Port x GPIO Direction Register 0x00000000

0x4000B01C PORTE_DIR_SET PORTE Port x GPIO Direction Set Register 0x00000000

0x4000B020 PORTE_DIR_CLR PORTE Port x GPIO Direction Clear Register 0x00000000

0x4000B024 PORTE_INEN PORTE Port x GPIO Input Enable Register 0x00000000

0x4000B028 PORTE_INEN_SET PORTE Port x GPIO Input Enable Set Register 0x00000000

0x4000B02C PORTE_INEN_CLR PORTE Port x GPIO Input Enable Clear Register 0x00000000

0x4000B030 PORTE_MUX PORTE Port x Multiplexer Control Register 0x00000000

0x4000B034 PORTE_DATA_TGL PORTE Port x GPIO Output Toggle Register 0x00000000

0x4000B038 PORTE_POL PORTE Port x GPIO Polarity Invert Register 0x00000000

0x4000B03C PORTE_POL_SET PORTE Port x GPIO Polarity Invert Set Register 0x00000000

0x4000B040 PORTE_POL_CLR PORTE Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000B044 PORTE_LOCK PORTE Port x GPIO Lock Register 0x00000000

0x4000B048 PORTE_TRIG_TGL PORTE Port x GPIO Trigger Toggle Register 0x00000000

Table 48-51: CM41X_M4 PORTF MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4000C000 PORTF_FER PORTF Port x Function Enable Register 0x00000000

0x4000C004 PORTF_FER_SET PORTF Port x Function Enable Set Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–75

Table 48-51: CM41X_M4 PORTF MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4000C008 PORTF_FER_CLR PORTF Port x Function Enable Clear Register 0x00000000

0x4000C00C PORTF_DATA PORTF Port x GPIO Data Register 0x00000000

0x4000C010 PORTF_DATA_SET PORTF Port x GPIO Data Set Register 0x00000000

0x4000C014 PORTF_DATA_CLR PORTF Port x GPIO Data Clear Register 0x00000000

0x4000C018 PORTF_DIR PORTF Port x GPIO Direction Register 0x00000000

0x4000C01C PORTF_DIR_SET PORTF Port x GPIO Direction Set Register 0x00000000

0x4000C020 PORTF_DIR_CLR PORTF Port x GPIO Direction Clear Register 0x00000000

0x4000C024 PORTF_INEN PORTF Port x GPIO Input Enable Register 0x00000000

0x4000C028 PORTF_INEN_SET PORTF Port x GPIO Input Enable Set Register 0x00000000

0x4000C02C PORTF_INEN_CLR PORTF Port x GPIO Input Enable Clear Register 0x00000000

0x4000C030 PORTF_MUX PORTF Port x Multiplexer Control Register 0x00000000

0x4000C034 PORTF_DATA_TGL PORTF Port x GPIO Output Toggle Register 0x00000000

0x4000C038 PORTF_POL PORTF Port x GPIO Polarity Invert Register 0x00000000

0x4000C03C PORTF_POL_SET PORTF Port x GPIO Polarity Invert Set Register 0x00000000

0x4000C040 PORTF_POL_CLR PORTF Port x GPIO Polarity Invert Clear Register 0x00000000

0x4000C044 PORTF_LOCK PORTF Port x GPIO Lock Register 0x00000000

0x4000C048 PORTF_TRIG_TGL PORTF Port x GPIO Trigger Toggle Register 0x00000000

Table 48-52: CM41X_M4 PWM0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40028000 PWM0_CTL PWM0 Control Register 0x00020000

0x40028004 PWM0_CHANCFG PWM0 Channel Configuration Register 0x00000000

0x40028008 PWM0_TRIPCFG PWM0 Trip Configuration Register 0x00000000

0x4002800C PWM0_STAT PWM0 Status Register 0x00000000

0x40028010 PWM0_IMSK PWM0 Interrupt Mask Register 0x00000000

0x40028014 PWM0_ILAT PWM0 Interrupt Latch Register 0x00000000

0x40028018 PWM0_CHOPCFG PWM0 Chop Configuration Register 0x00000000

0x40028020 PWM0_SYNC_WID PWM0 Sync Pulse Width Register 0x000003FF

0x40028024 PWM0_TM0 PWM0 Timer 0 Period Register 0x00000000

0x40028028 PWM0_TM1 PWM0 Timer 1 Period Register 0x00000000

CM41X_M4 Register List

48–76 ADSP-CM41x Mixed-Signal Control Processor

Table 48-52: CM41X_M4 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002802C PWM0_TM2 PWM0 Timer 2 Period Register 0x00000000

0x40028030 PWM0_TM3 PWM0 Timer 3 Period Register 0x00000000

0x40028034 PWM0_TM4 PWM0 Timer 4 Period Register 0x00000000

0x40028038 PWM0_DLYA PWM0 Channel A Delay Register 0x00000000

0x4002803C PWM0_DLYB PWM0 Channel B Delay Register 0x00000000

0x40028040 PWM0_DLYC PWM0 Channel C Delay Register 0x00000000

0x40028044 PWM0_DLYD PWM0 Channel D Delay Register 0x00000000

0x40028048 PWM0_ACTL PWM0 Channel A Control Register 0x00000000

0x4002804C PWM0_AH0 PWM0 Channel A-High Duty-0 Register 0x00000000

0x40028050 PWM0_AH1 PWM0 Channel A-High Duty-1 Register 0x00000000

0x40028054 PWM0_AH0_HP PWM0 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x40028058 PWM0_AH1_HP PWM0 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002805C PWM0_AL0 PWM0 Channel A-Low Duty-0 Register 0x00000000

0x40028060 PWM0_AL1 PWM0 Channel A-Low Duty-1 Register 0x00000000

0x40028064 PWM0_AL0_HP PWM0 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x40028068 PWM0_AL1_HP PWM0 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002806C PWM0_BCTL PWM0 Channel B Control Register 0x00000000

0x40028070 PWM0_BH0 PWM0 Channel B-High Duty-0 Register 0x00000000

0x40028074 PWM0_BH1 PWM0 Channel B-High Duty-1 Register 0x00000000

0x40028078 PWM0_BH0_HP PWM0 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002807C PWM0_BH1_HP PWM0 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x40028080 PWM0_BL0 PWM0 Channel B-Low Duty-0 Register 0x00000000

0x40028084 PWM0_BL1 PWM0 Channel B-Low Duty-1 Register 0x00000000

0x40028088 PWM0_BL0_HP PWM0 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002808C PWM0_BL1_HP PWM0 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–77

Table 48-52: CM41X_M4 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40028090 PWM0_CCTL PWM0 Channel C Control Register 0x00000000

0x40028094 PWM0_CH0 PWM0 Channel C-High Pulse Duty Register 0 0x00000000

0x40028098 PWM0_CH1 PWM0 Channel C-High Pulse Duty Register 1 0x00000000

0x4002809C PWM0_CH0_HP PWM0 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400280A0 PWM0_CH1_HP PWM0 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400280A4 PWM0_CL0 PWM0 Channel C-Low Pulse Duty Register 0 0x00000000

0x400280A8 PWM0_CL1 PWM0 Channel C-Low Duty-1 Register 0x00000000

0x400280AC PWM0_CL0_HP PWM0 Channel C-Low Pulse Duty Register 1 0x00000000

0x400280B0 PWM0_CL1_HP PWM0 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x400280B4 PWM0_DCTL PWM0 Channel D Control Register 0x00000000

0x400280B8 PWM0_DH0 PWM0 Channel D-High Duty-0 Register 0x00000000

0x400280BC PWM0_DH1 PWM0 Channel D-High Pulse Duty Register 1 0x00000000

0x400280C0 PWM0_DH0_HP PWM0 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400280C4 PWM0_DH1_HP PWM0 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400280C8 PWM0_DL0 PWM0 Channel D-Low Pulse Duty Register 0 0x00000000

0x400280CC PWM0_DL1 PWM0 Channel D-Low Pulse Duty Register 1 0x00000000

0x400280D0 PWM0_DL0_HP PWM0 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x400280D4 PWM0_DL1_HP PWM0 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x400280D8 PWM0_AH_DUTY0 PWM0 Channel A-High Full Duty0 Register 0x00000000

0x400280DC PWM0_AH_DUTY1 PWM0 Channel A-High Full Duty1 Register 0x00000000

0x400280E0 PWM0_AL_DUTY0 PWM0 Channel A-Low Full Duty0 Register 0x00000000

0x400280E4 PWM0_AL_DUTY1 PWM0 Channel A-Low Full Duty1 Register 0x00000000

0x400280E8 PWM0_BH_DUTY0 PWM0 Channel B-High Full Duty0 Register 0x00000000

0x400280EC PWM0_BH_DUTY1 PWM0 Channel B-High Full Duty1 Register 0x00000000

0x400280F0 PWM0_BL_DUTY0 PWM0 Channel B-Low Full Duty0 Register 0x00000000

0x400280F4 PWM0_BL_DUTY1 PWM0 Channel B-Low Full Duty1 Register 0x00000000

CM41X_M4 Register List

48–78 ADSP-CM41x Mixed-Signal Control Processor

Table 48-52: CM41X_M4 PWM0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400280F8 PWM0_CH_DUTY0 PWM0 Channel C-High Full Duty0 Register 0x00000000

0x400280FC PWM0_CH_DUTY1 PWM0 Channel C-High Full Duty1 Register 0x00000000

0x40028100 PWM0_CL_DUTY0 PWM0 Channel C-Low Full Duty0 Register 0x00000000

0x40028104 PWM0_CL_DUTY1 PWM0 Channel C-Low Full Duty1 Register 0x00000000

0x40028108 PWM0_DH_DUTY0 PWM0 Channel D-High Full Duty0 Register 0x00000000

0x4002810C PWM0_DH_DUTY1 PWM0 Channel D-High Full Duty1 Register 0x00000000

0x40028110 PWM0_DL_DUTY0 PWM0 Channel D-Low Full Duty0 Register 0x00000000

0x40028114 PWM0_DL_DUTY1 PWM0 Channel D-Low Full Duty1 Register 0x00000000

0x40028118 PWM0_CHA_DT PWM0 Channel A Dead-time Register 0x00000000

0x4002811C PWM0_CHB_DT PWM0 Channel B Dead-time Register 0x00000000

0x40028120 PWM0_CHC_DT PWM0 Channel C Dead-time Register 0x00000000

0x40028124 PWM0_CHD_DT PWM0 Channel D Dead-time Register 0x00000000

0x40028130 PWM0_SWTRIP PWM0 Software Trip Register 0x00000000

0x40028134 PWM0_TRIP_POL PWM0 Trip Polarity Register 0x00000000

Table 48-53: CM41X_M4 PWM1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40029000 PWM1_CTL PWM1 Control Register 0x00020000

0x40029004 PWM1_CHANCFG PWM1 Channel Configuration Register 0x00000000

0x40029008 PWM1_TRIPCFG PWM1 Trip Configuration Register 0x00000000

0x4002900C PWM1_STAT PWM1 Status Register 0x00000000

0x40029010 PWM1_IMSK PWM1 Interrupt Mask Register 0x00000000

0x40029014 PWM1_ILAT PWM1 Interrupt Latch Register 0x00000000

0x40029018 PWM1_CHOPCFG PWM1 Chop Configuration Register 0x00000000

0x40029020 PWM1_SYNC_WID PWM1 Sync Pulse Width Register 0x000003FF

0x40029024 PWM1_TM0 PWM1 Timer 0 Period Register 0x00000000

0x40029028 PWM1_TM1 PWM1 Timer 1 Period Register 0x00000000

0x4002902C PWM1_TM2 PWM1 Timer 2 Period Register 0x00000000

0x40029030 PWM1_TM3 PWM1 Timer 3 Period Register 0x00000000

0x40029034 PWM1_TM4 PWM1 Timer 4 Period Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–79

Table 48-53: CM41X_M4 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40029038 PWM1_DLYA PWM1 Channel A Delay Register 0x00000000

0x4002903C PWM1_DLYB PWM1 Channel B Delay Register 0x00000000

0x40029040 PWM1_DLYC PWM1 Channel C Delay Register 0x00000000

0x40029044 PWM1_DLYD PWM1 Channel D Delay Register 0x00000000

0x40029048 PWM1_ACTL PWM1 Channel A Control Register 0x00000000

0x4002904C PWM1_AH0 PWM1 Channel A-High Duty-0 Register 0x00000000

0x40029050 PWM1_AH1 PWM1 Channel A-High Duty-1 Register 0x00000000

0x40029054 PWM1_AH0_HP PWM1 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x40029058 PWM1_AH1_HP PWM1 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002905C PWM1_AL0 PWM1 Channel A-Low Duty-0 Register 0x00000000

0x40029060 PWM1_AL1 PWM1 Channel A-Low Duty-1 Register 0x00000000

0x40029064 PWM1_AL0_HP PWM1 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x40029068 PWM1_AL1_HP PWM1 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002906C PWM1_BCTL PWM1 Channel B Control Register 0x00000000

0x40029070 PWM1_BH0 PWM1 Channel B-High Duty-0 Register 0x00000000

0x40029074 PWM1_BH1 PWM1 Channel B-High Duty-1 Register 0x00000000

0x40029078 PWM1_BH0_HP PWM1 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002907C PWM1_BH1_HP PWM1 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x40029080 PWM1_BL0 PWM1 Channel B-Low Duty-0 Register 0x00000000

0x40029084 PWM1_BL1 PWM1 Channel B-Low Duty-1 Register 0x00000000

0x40029088 PWM1_BL0_HP PWM1 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002908C PWM1_BL1_HP PWM1 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

0x40029090 PWM1_CCTL PWM1 Channel C Control Register 0x00000000

0x40029094 PWM1_CH0 PWM1 Channel C-High Pulse Duty Register 0 0x00000000

0x40029098 PWM1_CH1 PWM1 Channel C-High Pulse Duty Register 1 0x00000000

CM41X_M4 Register List

48–80 ADSP-CM41x Mixed-Signal Control Processor

Table 48-53: CM41X_M4 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002909C PWM1_CH0_HP PWM1 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400290A0 PWM1_CH1_HP PWM1 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400290A4 PWM1_CL0 PWM1 Channel C-Low Pulse Duty Register 0 0x00000000

0x400290A8 PWM1_CL1 PWM1 Channel C-Low Duty-1 Register 0x00000000

0x400290AC PWM1_CL0_HP PWM1 Channel C-Low Pulse Duty Register 1 0x00000000

0x400290B0 PWM1_CL1_HP PWM1 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x400290B4 PWM1_DCTL PWM1 Channel D Control Register 0x00000000

0x400290B8 PWM1_DH0 PWM1 Channel D-High Duty-0 Register 0x00000000

0x400290BC PWM1_DH1 PWM1 Channel D-High Pulse Duty Register 1 0x00000000

0x400290C0 PWM1_DH0_HP PWM1 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x400290C4 PWM1_DH1_HP PWM1 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x400290C8 PWM1_DL0 PWM1 Channel D-Low Pulse Duty Register 0 0x00000000

0x400290CC PWM1_DL1 PWM1 Channel D-Low Pulse Duty Register 1 0x00000000

0x400290D0 PWM1_DL0_HP PWM1 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x400290D4 PWM1_DL1_HP PWM1 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x400290D8 PWM1_AH_DUTY0 PWM1 Channel A-High Full Duty0 Register 0x00000000

0x400290DC PWM1_AH_DUTY1 PWM1 Channel A-High Full Duty1 Register 0x00000000

0x400290E0 PWM1_AL_DUTY0 PWM1 Channel A-Low Full Duty0 Register 0x00000000

0x400290E4 PWM1_AL_DUTY1 PWM1 Channel A-Low Full Duty1 Register 0x00000000

0x400290E8 PWM1_BH_DUTY0 PWM1 Channel B-High Full Duty0 Register 0x00000000

0x400290EC PWM1_BH_DUTY1 PWM1 Channel B-High Full Duty1 Register 0x00000000

0x400290F0 PWM1_BL_DUTY0 PWM1 Channel B-Low Full Duty0 Register 0x00000000

0x400290F4 PWM1_BL_DUTY1 PWM1 Channel B-Low Full Duty1 Register 0x00000000

0x400290F8 PWM1_CH_DUTY0 PWM1 Channel C-High Full Duty0 Register 0x00000000

0x400290FC PWM1_CH_DUTY1 PWM1 Channel C-High Full Duty1 Register 0x00000000

0x40029100 PWM1_CL_DUTY0 PWM1 Channel C-Low Full Duty0 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–81

Table 48-53: CM41X_M4 PWM1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40029104 PWM1_CL_DUTY1 PWM1 Channel C-Low Full Duty1 Register 0x00000000

0x40029108 PWM1_DH_DUTY0 PWM1 Channel D-High Full Duty0 Register 0x00000000

0x4002910C PWM1_DH_DUTY1 PWM1 Channel D-High Full Duty1 Register 0x00000000

0x40029110 PWM1_DL_DUTY0 PWM1 Channel D-Low Full Duty0 Register 0x00000000

0x40029114 PWM1_DL_DUTY1 PWM1 Channel D-Low Full Duty1 Register 0x00000000

0x40029118 PWM1_CHA_DT PWM1 Channel A Dead-time Register 0x00000000

0x4002911C PWM1_CHB_DT PWM1 Channel B Dead-time Register 0x00000000

0x40029120 PWM1_CHC_DT PWM1 Channel C Dead-time Register 0x00000000

0x40029124 PWM1_CHD_DT PWM1 Channel D Dead-time Register 0x00000000

0x40029130 PWM1_SWTRIP PWM1 Software Trip Register 0x00000000

0x40029134 PWM1_TRIP_POL PWM1 Trip Polarity Register 0x00000000

Table 48-54: CM41X_M4 PWM2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A000 PWM2_CTL PWM2 Control Register 0x00020000

0x4002A004 PWM2_CHANCFG PWM2 Channel Configuration Register 0x00000000

0x4002A008 PWM2_TRIPCFG PWM2 Trip Configuration Register 0x00000000

0x4002A00C PWM2_STAT PWM2 Status Register 0x00000000

0x4002A010 PWM2_IMSK PWM2 Interrupt Mask Register 0x00000000

0x4002A014 PWM2_ILAT PWM2 Interrupt Latch Register 0x00000000

0x4002A018 PWM2_CHOPCFG PWM2 Chop Configuration Register 0x00000000

0x4002A020 PWM2_SYNC_WID PWM2 Sync Pulse Width Register 0x000003FF

0x4002A024 PWM2_TM0 PWM2 Timer 0 Period Register 0x00000000

0x4002A028 PWM2_TM1 PWM2 Timer 1 Period Register 0x00000000

0x4002A02C PWM2_TM2 PWM2 Timer 2 Period Register 0x00000000

0x4002A030 PWM2_TM3 PWM2 Timer 3 Period Register 0x00000000

0x4002A034 PWM2_TM4 PWM2 Timer 4 Period Register 0x00000000

0x4002A038 PWM2_DLYA PWM2 Channel A Delay Register 0x00000000

0x4002A03C PWM2_DLYB PWM2 Channel B Delay Register 0x00000000

0x4002A040 PWM2_DLYC PWM2 Channel C Delay Register 0x00000000

CM41X_M4 Register List

48–82 ADSP-CM41x Mixed-Signal Control Processor

Table 48-54: CM41X_M4 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A044 PWM2_DLYD PWM2 Channel D Delay Register 0x00000000

0x4002A048 PWM2_ACTL PWM2 Channel A Control Register 0x00000000

0x4002A04C PWM2_AH0 PWM2 Channel A-High Duty-0 Register 0x00000000

0x4002A050 PWM2_AH1 PWM2 Channel A-High Duty-1 Register 0x00000000

0x4002A054 PWM2_AH0_HP PWM2 Channel A-High Heightened-Precision Duty-0
Register

0x00000000

0x4002A058 PWM2_AH1_HP PWM2 Channel A-High Heightened-Precision Duty-1
Register

0x00000000

0x4002A05C PWM2_AL0 PWM2 Channel A-Low Duty-0 Register 0x00000000

0x4002A060 PWM2_AL1 PWM2 Channel A-Low Duty-1 Register 0x00000000

0x4002A064 PWM2_AL0_HP PWM2 Channel A-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A068 PWM2_AL1_HP PWM2 Channel A-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A06C PWM2_BCTL PWM2 Channel B Control Register 0x00000000

0x4002A070 PWM2_BH0 PWM2 Channel B-High Duty-0 Register 0x00000000

0x4002A074 PWM2_BH1 PWM2 Channel B-High Duty-1 Register 0x00000000

0x4002A078 PWM2_BH0_HP PWM2 Channel B-High Heightened-Precision Duty-0
Register

0x00000000

0x4002A07C PWM2_BH1_HP PWM2 Channel B-High Heightened-Precision Duty-1
Register

0x00000000

0x4002A080 PWM2_BL0 PWM2 Channel B-Low Duty-0 Register 0x00000000

0x4002A084 PWM2_BL1 PWM2 Channel B-Low Duty-1 Register 0x00000000

0x4002A088 PWM2_BL0_HP PWM2 Channel B-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A08C PWM2_BL1_HP PWM2 Channel B-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A090 PWM2_CCTL PWM2 Channel C Control Register 0x00000000

0x4002A094 PWM2_CH0 PWM2 Channel C-High Pulse Duty Register 0 0x00000000

0x4002A098 PWM2_CH1 PWM2 Channel C-High Pulse Duty Register 1 0x00000000

0x4002A09C PWM2_CH0_HP PWM2 Channel C-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x4002A0A0 PWM2_CH1_HP PWM2 Channel C-High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–83

Table 48-54: CM41X_M4 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A0A4 PWM2_CL0 PWM2 Channel C-Low Pulse Duty Register 0 0x00000000

0x4002A0A8 PWM2_CL1 PWM2 Channel C-Low Duty-1 Register 0x00000000

0x4002A0AC PWM2_CL0_HP PWM2 Channel C-Low Pulse Duty Register 1 0x00000000

0x4002A0B0 PWM2_CL1_HP PWM2 Channel C-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A0B4 PWM2_DCTL PWM2 Channel D Control Register 0x00000000

0x4002A0B8 PWM2_DH0 PWM2 Channel D-High Duty-0 Register 0x00000000

0x4002A0BC PWM2_DH1 PWM2 Channel D-High Pulse Duty Register 1 0x00000000

0x4002A0C0 PWM2_DH0_HP PWM2 Channel D-High Pulse Heightened-Precision Du-
ty Register 0

0x00000000

0x4002A0C4 PWM2_DH1_HP PWM2 Channel D High Pulse Heightened-Precision Du-
ty Register 1

0x00000000

0x4002A0C8 PWM2_DL0 PWM2 Channel D-Low Pulse Duty Register 0 0x00000000

0x4002A0CC PWM2_DL1 PWM2 Channel D-Low Pulse Duty Register 1 0x00000000

0x4002A0D0 PWM2_DL0_HP PWM2 Channel D-Low Heightened-Precision Duty-0
Register

0x00000000

0x4002A0D4 PWM2_DL1_HP PWM2 Channel D-Low Heightened-Precision Duty-1
Register

0x00000000

0x4002A0D8 PWM2_AH_DUTY0 PWM2 Channel A-High Full Duty0 Register 0x00000000

0x4002A0DC PWM2_AH_DUTY1 PWM2 Channel A-High Full Duty1 Register 0x00000000

0x4002A0E0 PWM2_AL_DUTY0 PWM2 Channel A-Low Full Duty0 Register 0x00000000

0x4002A0E4 PWM2_AL_DUTY1 PWM2 Channel A-Low Full Duty1 Register 0x00000000

0x4002A0E8 PWM2_BH_DUTY0 PWM2 Channel B-High Full Duty0 Register 0x00000000

0x4002A0EC PWM2_BH_DUTY1 PWM2 Channel B-High Full Duty1 Register 0x00000000

0x4002A0F0 PWM2_BL_DUTY0 PWM2 Channel B-Low Full Duty0 Register 0x00000000

0x4002A0F4 PWM2_BL_DUTY1 PWM2 Channel B-Low Full Duty1 Register 0x00000000

0x4002A0F8 PWM2_CH_DUTY0 PWM2 Channel C-High Full Duty0 Register 0x00000000

0x4002A0FC PWM2_CH_DUTY1 PWM2 Channel C-High Full Duty1 Register 0x00000000

0x4002A100 PWM2_CL_DUTY0 PWM2 Channel C-Low Full Duty0 Register 0x00000000

0x4002A104 PWM2_CL_DUTY1 PWM2 Channel C-Low Full Duty1 Register 0x00000000

0x4002A108 PWM2_DH_DUTY0 PWM2 Channel D-High Full Duty0 Register 0x00000000

0x4002A10C PWM2_DH_DUTY1 PWM2 Channel D-High Full Duty1 Register 0x00000000

CM41X_M4 Register List

48–84 ADSP-CM41x Mixed-Signal Control Processor

Table 48-54: CM41X_M4 PWM2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002A110 PWM2_DL_DUTY0 PWM2 Channel D-Low Full Duty0 Register 0x00000000

0x4002A114 PWM2_DL_DUTY1 PWM2 Channel D-Low Full Duty1 Register 0x00000000

0x4002A118 PWM2_CHA_DT PWM2 Channel A Dead-time Register 0x00000000

0x4002A11C PWM2_CHB_DT PWM2 Channel B Dead-time Register 0x00000000

0x4002A120 PWM2_CHC_DT PWM2 Channel C Dead-time Register 0x00000000

0x4002A124 PWM2_CHD_DT PWM2 Channel D Dead-time Register 0x00000000

0x4002A130 PWM2_SWTRIP PWM2 Software Trip Register 0x00000000

0x4002A134 PWM2_TRIP_POL PWM2 Trip Polarity Register 0x00000000

Table 48-55: CM41X_M4 RCU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40012000 RCU0_CTL RCU0 Control Register 0x00000700

0x40012004 RCU0_STAT RCU0 Status Register 0x00000021

0x40012008 RCU0_CRCTL RCU0 Core Reset Outputs Control Register 0x00000002

0x4001200C RCU0_CRSTAT RCU0 Core Reset Outputs Status Register 0x00000007

0x40012018 RCU0_SRRQSTAT RCU0 System Reset Request Status Register 0x00000000

0x40012028 RCU0_BCODE RCU0 Boot Code Register 0x00000000

0x4001206C RCU0_MSG RCU0 Message Register 0x00000000

0x40012070 RCU0_MSG_SET RCU0 Message Set Bits Register 0x00000000

0x40012074 RCU0_MSG_CLR RCU0 Message Clear Bits Register 0x00000000

Table 48-56: CM41X_M4 SCB0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4F042100 SCB0_DMA0_RQOS SCB0 DMA0 Read Quality of Service Register 0x00000001

0x4F042104 SCB0_DMA0_WQOS SCB0 DMA0 Write Quality of Service Register 0x00000001

0x4F043100 SCB0_DMA1_RQOS SCB0 DMA1 Read Quality of Service Register 0x00000001

0x4F043104 SCB0_DMA1_WQOS SCB0 DMA1 Write Quality of Service Register 0x00000001

0x4F044100 SCB0_DMA2_RQOS SCB0 DMA2 Read Quality of Service Register 0x00000001

0x4F044104 SCB0_DMA2_WQOS SCB0 DMA2 Write Quality of Service Register 0x00000001

0x4F045100 SCB0_DMA3_RQOS SCB0 DMA3 Read Quality of Service Register 0x00000001

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–85

Table 48-56: CM41X_M4 SCB0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4F045104 SCB0_DMA3_WQOS SCB0 DMA3 Write Quality of Service Register 0x00000001

0x4F046100 SCB0_DMA4_RQOS SCB0 DMA4 Read Quality of Service Register 0x00000001

0x4F046104 SCB0_DMA4_WQOS SCB0 DMA4 Write Quality of Service Register 0x00000001

0x4F047100 SCB0_DMA5_RQOS SCB0 DMA5 Read Quality of Service Register 0x00000001

0x4F047104 SCB0_DMA5_WQOS SCB0 DMA5 Write Quality of Service Register 0x00000001

0x4F048100 SCB0_DMA6_RQOS SCB0 DMA6 Read Quality of Service Register 0x00000001

0x4F048104 SCB0_DMA6_WQOS SCB0 DMA6 Write Quality of Service Register 0x00000001

0x4F049100 SCB0_DMA7_RQOS SCB0 DMA7 Read Quality of Service Register 0x00000001

0x4F049104 SCB0_DMA7_WQOS SCB0 DMA7 Write Quality of Service Register 0x00000001

0x4F04A100 SCB0_DMA8_RQOS SCB0 DMA8 Read Quality of Service Register 0x00000000

0x4F04A104 SCB0_DMA8_WQOS SCB0 DMA8 Write Quality of Service Register 0x00000000

0x4F04B100 SCB0_DMA9_RQOS SCB0 DMA9 Read Quality of Service Register 0x00000000

0x4F04B104 SCB0_DMA9_WQOS SCB0 DMA9 Write Quality of Service Register 0x00000000

0x4F04C100 SCB0_AFE0_RQOS SCB0 AFE0 Read Quality of Service Register 0x00000001

0x4F04C104 SCB0_AFE0_WQOS SCB0 AFE0 Write Quality of Service Register 0x00000001

0x4F04D100 SCB0_FFT0_RQOS SCB0 FFT0 Read Quality of Service Register 0x00000001

0x4F04D104 SCB0_FFT0_WQOS SCB0 FFT0 Write Quality of Service Register 0x00000001

0x4F04E100 SCB0_M4_RQOS SCB0 M4 Core Read Quality of Service Register 0x00000002

0x4F04E104 SCB0_M4_WQOS SCB0 M4 Core Write Quality of Service Register 0x00000002

0x4F04F100 SCB0_M0_RQOS SCB0 M0 Core Read Quality of Service Register 0x00000003

0x4F04F104 SCB0_M0_WQOS SCB0 M0 Core Write Quality of Service Register 0x00000003

0x4F051100 SCB0_SINC0_RQOS SCB0 SINC0 Read Quality of Service Register 0x00000001

0x4F051104 SCB0_SINC0_WQOS SCB0 SINC0 Write Quality of Service Register 0x00000001

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41004000 SEC0_GCTL SEC0 Global Control Register 0x00000000

0x41004004 SEC0_GSTAT SEC0 Global Status Register 0x00000000

0x41004008 SEC0_RAISE SEC0 Global Raise Register 0x00000000

0x41004010 SEC0_FCTL SEC0 Fault Control Register 0x00000000

CM41X_M4 Register List

48–86 ADSP-CM41x Mixed-Signal Control Processor

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004014 SEC0_FSTAT SEC0 Fault Status Register 0x00000000

0x41004018 SEC0_FSID SEC0 Fault Source ID Register 0x00000000

0x4100401C SEC0_FEND SEC0 Fault End Register 0x00000000

0x41004020 SEC0_FDLY SEC0 Fault Delay Register 0x00000000

0x41004024 SEC0_FDLY_CUR SEC0 Fault Delay Current Register 0x00000000

0x41004028 SEC0_FSRDLY SEC0 Fault System Reset Delay Register 0x00000000

0x4100402C SEC0_FSRDLY_CUR SEC0 Fault System Reset Delay Current Register 0x00000000

0x41004030 SEC0_FCOPP SEC0 Fault COP Period Register 0x00000000

0x41004034 SEC0_FCOPP_CUR SEC0 Fault COP Period Current Register 0x00000000

0x41004800 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004804 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004808 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100480C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004810 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004814 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004818 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100481C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004820 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004824 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004828 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100482C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004830 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004834 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004838 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100483C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004840 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004844 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004848 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100484C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004850 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004854 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–87

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004858 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100485C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004860 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004864 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004868 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100486C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004870 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004874 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004878 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100487C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004880 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004884 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004888 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100488C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004890 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004894 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004898 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100489C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048A0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048A4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048A8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048AC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048B0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048B4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048B8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048BC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048C0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048C4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048C8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048CC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048D0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

CM41X_M4 Register List

48–88 ADSP-CM41x Mixed-Signal Control Processor

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410048D4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048D8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048DC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048E0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048E4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048E8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048EC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048F0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048F4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410048F8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410048FC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004900 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004904 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004908 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100490C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004910 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004914 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004918 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100491C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004920 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004924 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004928 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100492C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004930 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004934 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004938 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100493C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004940 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004944 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004948 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100494C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–89

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004950 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004954 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004958 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100495C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004960 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004964 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004968 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100496C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004970 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004974 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004978 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100497C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004980 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004984 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004988 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100498C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004990 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004994 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004998 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x4100499C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049A0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049A4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049A8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049AC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049B0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049B4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049B8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049BC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049C0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049C4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049C8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

CM41X_M4 Register List

48–90 ADSP-CM41x Mixed-Signal Control Processor

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410049CC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049D0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049D4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049D8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049DC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049E0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049E4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049E8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049EC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049F0 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049F4 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x410049F8 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x410049FC SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A00 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A04 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A08 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A0C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A10 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A14 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A18 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A1C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A20 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A24 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A28 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A2C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A30 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A34 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A38 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A3C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A40 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A44 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–91

Table 48-57: CM41X_M4 SEC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41004A48 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A4C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A50 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A54 SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

0x41004A58 SEC0_SCTL[n] SEC0 Source Control Register n 0x00000000

0x41004A5C SEC0_SSTAT[n] SEC0 Source Status Register n 0x00000000

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40010000 SEC1_GCTL SEC1 Global Control Register 0x00000000

0x40010004 SEC1_GSTAT SEC1 Global Status Register 0x00000000

0x40010008 SEC1_RAISE SEC1 Global Raise Register 0x00000000

0x40010010 SEC1_FCTL SEC1 Fault Control Register 0x00000000

0x40010014 SEC1_FSTAT SEC1 Fault Status Register 0x00000000

0x40010018 SEC1_FSID SEC1 Fault Source ID Register 0x00000000

0x4001001C SEC1_FEND SEC1 Fault End Register 0x00000000

0x40010020 SEC1_FDLY SEC1 Fault Delay Register 0x00000000

0x40010024 SEC1_FDLY_CUR SEC1 Fault Delay Current Register 0x00000000

0x40010028 SEC1_FSRDLY SEC1 Fault System Reset Delay Register 0x00000000

0x4001002C SEC1_FSRDLY_CUR SEC1 Fault System Reset Delay Current Register 0x00000000

0x40010030 SEC1_FCOPP SEC1 Fault COP Period Register 0x00000000

0x40010034 SEC1_FCOPP_CUR SEC1 Fault COP Period Current Register 0x00000000

0x40010800 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010804 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010808 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001080C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010810 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010814 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010818 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001081C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–92 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010820 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010824 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010828 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001082C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010830 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010834 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010838 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001083C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010840 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010844 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010848 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001084C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010850 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010854 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010858 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001085C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010860 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010864 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010868 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001086C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010870 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010874 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010878 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001087C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010880 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010884 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010888 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001088C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010890 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010894 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010898 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–93

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4001089C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108A0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108A4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108A8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108AC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108B0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108B4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108B8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108BC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108C0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108C4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108C8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108CC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108D0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108D4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108D8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108DC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108E0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108E4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108E8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108EC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108F0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108F4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400108F8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400108FC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010900 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010904 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010908 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001090C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010910 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010914 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–94 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010918 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001091C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010920 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010924 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010928 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001092C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010930 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010934 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010938 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001093C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010940 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010944 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010948 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001094C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010950 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010954 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010958 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001095C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010960 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010964 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010968 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001096C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010970 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010974 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010978 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001097C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010980 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010984 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010988 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001098C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010990 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–95

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010994 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010998 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x4001099C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109A0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109A4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109A8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109AC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109B0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109B4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109B8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109BC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109C0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109C4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109C8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109CC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109D0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109D4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109D8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109DC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109E0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109E4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109E8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109EC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109F0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109F4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x400109F8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x400109FC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–96 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010A10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–97

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010A8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010A98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010A9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ABC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ACC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010ADC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010AF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010AFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–98 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010B08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–99

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010B84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010B98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010B9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BBC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BCC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BDC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010BF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010BFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–100 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010C00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C20 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C24 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C28 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C2C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C30 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C34 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C38 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C3C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C40 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C44 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C48 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C4C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C50 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C54 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C58 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C5C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C60 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C64 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C68 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C6C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C70 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C74 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C78 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–101

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010C7C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C80 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C84 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C88 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C8C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C90 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C94 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010C98 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010C9C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CA0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CA4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CA8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CAC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CB0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CB4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CB8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CBC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CC0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CC4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CC8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CCC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CD0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CD4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CD8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CDC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CE0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CE4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CE8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CEC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010CF0 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CF4 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

CM41X_M4 Register List

48–102 ADSP-CM41x Mixed-Signal Control Processor

Table 48-58: CM41X_M4 SEC1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40010CF8 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010CFC SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D00 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D04 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D08 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D0C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D10 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D14 SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

0x40010D18 SEC1_SCTL[n] SEC1 Source Control Register n 0x00000000

0x40010D1C SEC1_SSTAT[n] SEC1 Source Status Register n 0x00000000

Table 48-59: CM41X_M4 SINC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40049000 SINC0_CTL SINC0 Control Register 0x00000000

0x40049004 SINC0_STAT SINC0 Status Register 0x00000000

0x40049008 SINC0_CLK SINC0 Clock Control Register 0x10001000

0x40049010 SINC0_RATE0 SINC0 Rate Control for Group 0 Register 0x00000804

0x40049014 SINC0_RATE1 SINC0 Rate Control for Group 1 Register 0x00000804

0x40049018 SINC0_LEVEL0 SINC0 Level Control for Group 0 Register 0x04000000

0x4004901C SINC0_LEVEL1 SINC0 Level Control for Group 1 Register 0x04000000

0x40049020 SINC0_LIMIT0 SINC0 (Amplitude) Limits for Secondary Filter 0 Register 0x00000000

0x40049024 SINC0_LIMIT1 SINC0 (Amplitude) Limits for Secondary Filter 1 Register 0x00000000

0x40049028 SINC0_LIMIT2 SINC0 (Amplitude) Limits for Secondary Filter 2 Register 0x00000000

0x4004902C SINC0_LIMIT3 SINC0 (Amplitude) Limits for Secondary Filter 3 Register 0x00000000

0x40049030 SINC0_BIAS0 SINC0 Bias for Group 0 Register 0x00000000

0x40049034 SINC0_BIAS1 SINC0 Bias for Group 1 Register 0x00000000

0x40049038 SINC0_PPTR0 SINC0 Primary (Filters) Pointer for Group 0 Register 0x00000000

0x4004903C SINC0_PPTR1 SINC0 Primary (Filters) Pointer for Group 1 Register 0x00000000

0x40049040 SINC0_PHEAD0 SINC0 Primary (Filters) Head for Group 0 Register 0x00000000

0x40049044 SINC0_PHEAD1 SINC0 Primary (Filters) Head for Group 1 Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–103

Table 48-59: CM41X_M4 SINC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40049048 SINC0_PTAIL0 SINC0 Primary (Filters) Tail for Group 0 Register 0x00000000

0x4004904C SINC0_PTAIL1 SINC0 Primary (Filters) Tail for Group 1 Register 0x00000000

0x40049050 SINC0_HIS_STAT SINC0 History Status Register 0x00000000

0x40049080 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049084 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049088 SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x4004908C SINC0_P0SEC_HIST[n] SINC0 Pair 0 Secondary (Filter) History n Register 0x00000000

0x40049090 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x40049094 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x40049098 SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x4004909C SINC0_P1SEC_HIST[n] SINC0 Pair 1 Secondary (Filter) History n Register 0x00000000

0x400490A0 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490A4 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490A8 SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490AC SINC0_P2SEC_HIST[n] SINC0 Pair 2 Secondary (Filter) History n Register 0x00000000

0x400490B0 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490B4 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490B8 SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

0x400490BC SINC0_P3SEC_HIST[n] SINC0 Pair 3 Secondary (Filter) History n Register 0x00000000

Table 48-60: CM41X_M4 SMC0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002F00C SMC0_B0CTL SMC0 Bank 0 Control Register 0x01000000

0x4002F010 SMC0_B0TIM SMC0 Bank 0 Timing Register 0x01010101

0x4002F014 SMC0_B0ETIM SMC0 Bank 0 Extended Timing Register 0x00020200

0x4002F01C SMC0_B1CTL SMC0 Bank 1 Control Register 0x00000000

0x4002F020 SMC0_B1TIM SMC0 Bank 1 Timing Register 0x01010101

0x4002F024 SMC0_B1ETIM SMC0 Bank 1 Extended Timing Register 0x00020200

0x4002F02C SMC0_B2CTL SMC0 Bank 2 Control Register 0x00000000

0x4002F030 SMC0_B2TIM SMC0 Bank 2 Timing Register 0x01010101

CM41X_M4 Register List

48–104 ADSP-CM41x Mixed-Signal Control Processor

Table 48-60: CM41X_M4 SMC0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002F034 SMC0_B2ETIM SMC0 Bank 2 Extended Timing Register 0x00020200

0x4002F03C SMC0_B3CTL SMC0 Bank 3 Control Register 0x00000000

0x4002F040 SMC0_B3TIM SMC0 Bank 3 Timing Register 0x01010101

0x4002F044 SMC0_B3ETIM SMC0 Bank 3 Extended Timing Register 0x00020200

Table 48-61: CM41X_M4 SMPU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410E0000 SMPU0_CTL SMPU0 SMPU Control Register 0x00000000

0x410E0004 SMPU0_STAT SMPU0 SMPU Status Register 0x00000000

0x410E0008 SMPU0_IADDR SMPU0 Interrupt Address Register 0x00000000

0x410E000C SMPU0_IDTLS SMPU0 Interrupt Details Register 0x00000000

0x410E0010 SMPU0_BADDR SMPU0 Bus Error Address Register 0x00000000

0x410E0014 SMPU0_BDTLS SMPU0 Bus Error Details Register 0x00000000

0x410E0020 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E0024 SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0028 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E002C SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0030 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E0034 SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0038 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E003C SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0040 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E0044 SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0048 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E004C SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0050 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E0054 SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0058 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E005C SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0060 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–105

Table 48-61: CM41X_M4 SMPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410E0064 SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0068 SMPU0_RCTL[n] SMPU0 Region n Control Register 0x00000000

0x410E006C SMPU0_RADDR[n] SMPU0 Region n Address Register 0x00000000

0x410E0070 SMPU0_RIDA[n] SMPU0 Region n ID A Register 0x00000000

0x410E0074 SMPU0_RIDMSKA[n] SMPU0 Region n ID Mask A Register 0x00000000

0x410E0078 SMPU0_RIDB[n] SMPU0 Region n ID B Register 0x00000000

0x410E007C SMPU0_RIDMSKB[n] SMPU0 Region n ID Mask B Register 0x00000000

0x410E0220 SMPU0_REVID SMPU0 SMPU Revision ID Register 0x00000010

Table 48-62: CM41X_M4 SMPU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400E0000 SMPU1_CTL SMPU1 SMPU Control Register 0x00000000

0x400E0004 SMPU1_STAT SMPU1 SMPU Status Register 0x00000000

0x400E0008 SMPU1_IADDR SMPU1 Interrupt Address Register 0x00000000

0x400E000C SMPU1_IDTLS SMPU1 Interrupt Details Register 0x00000000

0x400E0010 SMPU1_BADDR SMPU1 Bus Error Address Register 0x00000000

0x400E0014 SMPU1_BDTLS SMPU1 Bus Error Details Register 0x00000000

0x400E0020 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E0024 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0028 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E002C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0030 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0034 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0038 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E003C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0040 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E0044 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0048 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E004C SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0050 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

CM41X_M4 Register List

48–106 ADSP-CM41x Mixed-Signal Control Processor

Table 48-62: CM41X_M4 SMPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E0054 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0058 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E005C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0060 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0064 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0068 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E006C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0070 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E0074 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0078 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E007C SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0080 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E0084 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E0088 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E008C SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E0090 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E0094 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0098 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E009C SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E00A0 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00A4 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00A8 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E00AC SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E00B0 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E00B4 SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

0x400E00B8 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00BC SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00C0 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E00C4 SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E00C8 SMPU1_RCTL[n] SMPU1 Region n Control Register 0x00000000

0x400E00CC SMPU1_RADDR[n] SMPU1 Region n Address Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–107

Table 48-62: CM41X_M4 SMPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E00D0 SMPU1_RIDA[n] SMPU1 Region n ID A Register 0x00000000

0x400E00D4 SMPU1_RIDMSKA[n] SMPU1 Region n ID Mask A Register 0x00000000

0x400E00D8 SMPU1_RIDB[n] SMPU1 Region n ID B Register 0x00000000

0x400E00DC SMPU1_RIDMSKB[n] SMPU1 Region n ID Mask B Register 0x00000000

0x400E0220 SMPU1_REVID SMPU1 SMPU Revision ID Register 0x00000010

Table 48-63: CM41X_M4 SMPU2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400E1000 SMPU2_CTL SMPU2 SMPU Control Register 0x00000000

0x400E1004 SMPU2_STAT SMPU2 SMPU Status Register 0x00000000

0x400E1008 SMPU2_IADDR SMPU2 Interrupt Address Register 0x00000000

0x400E100C SMPU2_IDTLS SMPU2 Interrupt Details Register 0x00000000

0x400E1010 SMPU2_BADDR SMPU2 Bus Error Address Register 0x00000000

0x400E1014 SMPU2_BDTLS SMPU2 Bus Error Details Register 0x00000000

0x400E1020 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E1024 SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1028 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E102C SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1030 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E1034 SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1038 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E103C SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1040 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E1044 SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1048 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E104C SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1050 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E1054 SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1058 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E105C SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

CM41X_M4 Register List

48–108 ADSP-CM41x Mixed-Signal Control Processor

Table 48-63: CM41X_M4 SMPU2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400E1060 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E1064 SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1068 SMPU2_RCTL[n] SMPU2 Region n Control Register 0x00000000

0x400E106C SMPU2_RADDR[n] SMPU2 Region n Address Register 0x00000000

0x400E1070 SMPU2_RIDA[n] SMPU2 Region n ID A Register 0x00000000

0x400E1074 SMPU2_RIDMSKA[n] SMPU2 Region n ID Mask A Register 0x00000000

0x400E1078 SMPU2_RIDB[n] SMPU2 Region n ID B Register 0x00000000

0x400E107C SMPU2_RIDMSKB[n] SMPU2 Region n ID Mask B Register 0x00000000

0x400E1220 SMPU2_REVID SMPU2 SMPU Revision ID Register 0x00000010

Table 48-64: CM41X_M4 SPI0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41009004 SPI0_CTL SPI0 Control Register 0x00000050

0x41009008 SPI0_RXCTL SPI0 Receive Control Register 0x00000000

0x4100900C SPI0_TXCTL SPI0 Transmit Control Register 0x00000000

0x41009010 SPI0_CLK SPI0 Clock Rate Register 0x00000000

0x41009014 SPI0_DLY SPI0 Delay Register 0x00000301

0x41009018 SPI0_SLVSEL SPI0 Slave Select Register 0x0000FE00

0x4100901C SPI0_RWC SPI0 Received Word Count Register 0x00000000

0x41009020 SPI0_RWCR SPI0 Received Word Count Reload Register 0x00000000

0x41009024 SPI0_TWC SPI0 Transmitted Word Count Register 0x00000000

0x41009028 SPI0_TWCR SPI0 Transmitted Word Count Reload Register 0x00000000

0x41009030 SPI0_IMSK SPI0 Interrupt Mask Register 0x00000000

0x41009034 SPI0_IMSK_CLR SPI0 Interrupt Mask Clear Register 0x00000000

0x41009038 SPI0_IMSK_SET SPI0 Interrupt Mask Set Register 0x00000000

0x41009040 SPI0_STAT SPI0 Status Register 0x00440001

0x41009044 SPI0_ILAT SPI0 Masked Interrupt Condition Register 0x00000000

0x41009048 SPI0_ILAT_CLR SPI0 Masked Interrupt Clear Register 0x00000000

0x41009050 SPI0_RFIFO SPI0 Receive FIFO Data Register 0x00000000

0x41009058 SPI0_TFIFO SPI0 Transmit FIFO Data Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–109

Table 48-65: CM41X_M4 SPI1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40040004 SPI1_CTL SPI1 Control Register 0x00000050

0x40040008 SPI1_RXCTL SPI1 Receive Control Register 0x00000000

0x4004000C SPI1_TXCTL SPI1 Transmit Control Register 0x00000000

0x40040010 SPI1_CLK SPI1 Clock Rate Register 0x00000000

0x40040014 SPI1_DLY SPI1 Delay Register 0x00000301

0x40040018 SPI1_SLVSEL SPI1 Slave Select Register 0x0000FE00

0x4004001C SPI1_RWC SPI1 Received Word Count Register 0x00000000

0x40040020 SPI1_RWCR SPI1 Received Word Count Reload Register 0x00000000

0x40040024 SPI1_TWC SPI1 Transmitted Word Count Register 0x00000000

0x40040028 SPI1_TWCR SPI1 Transmitted Word Count Reload Register 0x00000000

0x40040030 SPI1_IMSK SPI1 Interrupt Mask Register 0x00000000

0x40040034 SPI1_IMSK_CLR SPI1 Interrupt Mask Clear Register 0x00000000

0x40040038 SPI1_IMSK_SET SPI1 Interrupt Mask Set Register 0x00000000

0x40040040 SPI1_STAT SPI1 Status Register 0x00440001

0x40040044 SPI1_ILAT SPI1 Masked Interrupt Condition Register 0x00000000

0x40040048 SPI1_ILAT_CLR SPI1 Masked Interrupt Clear Register 0x00000000

0x40040050 SPI1_RFIFO SPI1 Receive FIFO Data Register 0x00000000

0x40040058 SPI1_TFIFO SPI1 Transmit FIFO Data Register 0x00000000

Table 48-66: CM41X_M4 SPORT0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40042000 SPORT0_CTL_A SPORT0 Half SPORT 'A' Control Register 0x00000000

0x40042004 SPORT0_DIV_A SPORT0 Half SPORT 'A' Divisor Register 0x00000000

0x40042008 SPORT0_MCTL_A SPORT0 Half SPORT 'A' Multichannel Control Register 0x00000000

0x4004200C SPORT0_CS0_A SPORT0 Half SPORT 'A' Multichannel 0-31 Select Reg-
ister

0x00000000

0x40042010 SPORT0_CS1_A SPORT0 Half SPORT 'A' Multichannel 32-63 Select
Register

0x00000000

0x40042014 SPORT0_CS2_A SPORT0 Half SPORT 'A' Multichannel 64-95 Select
Register

0x00000000

0x40042018 SPORT0_CS3_A SPORT0 Half SPORT 'A' Multichannel 96-127 Select
Register

0x00000000

CM41X_M4 Register List

48–110 ADSP-CM41x Mixed-Signal Control Processor

Table 48-66: CM41X_M4 SPORT0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40042020 SPORT0_ERR_A SPORT0 Half SPORT 'A' Error Register 0x00000000

0x40042024 SPORT0_MSTAT_A SPORT0 Half SPORT 'A' Multichannel Status Register 0x00000000

0x40042028 SPORT0_CTL2_A SPORT0 Half SPORT 'A' Control 2 Register 0x00000000

0x40042040 SPORT0_TXPRI_A SPORT0 Half SPORT 'A' Tx Buffer (Primary) Register 0x00000000

0x40042044 SPORT0_RXPRI_A SPORT0 Half SPORT 'A' Rx Buffer (Primary) Register 0x00000000

0x40042048 SPORT0_TXSEC_A SPORT0 Half SPORT 'A' Tx Buffer (Secondary) Register 0x00000000

0x4004204C SPORT0_RXSEC_A SPORT0 Half SPORT 'A' Rx Buffer (Secondary) Register 0x00000000

0x40042080 SPORT0_CTL_B SPORT0 Half SPORT 'B' Control Register 0x00000000

0x40042084 SPORT0_DIV_B SPORT0 Half SPORT 'B' Divisor Register 0x00000000

0x40042088 SPORT0_MCTL_B SPORT0 Half SPORT 'B' Multichannel Control Register 0x00000000

0x4004208C SPORT0_CS0_B SPORT0 Half SPORT 'B' Multichannel 0-31 Select Reg-
ister

0x00000000

0x40042090 SPORT0_CS1_B SPORT0 Half SPORT 'B' Multichannel 32-63 Select
Register

0x00000000

0x40042094 SPORT0_CS2_B SPORT0 Half SPORT 'B' Multichannel 64-95 Select
Register

0x00000000

0x40042098 SPORT0_CS3_B SPORT0 Half SPORT 'B' Multichannel 96-127 Select
Register

0x00000000

0x400420A0 SPORT0_ERR_B SPORT0 Half SPORT 'B' Error Register 0x00000000

0x400420A4 SPORT0_MSTAT_B SPORT0 Half SPORT 'B' Multichannel Status Register 0x00000000

0x400420A8 SPORT0_CTL2_B SPORT0 Half SPORT 'B' Control 2 Register 0x00000000

0x400420C0 SPORT0_TXPRI_B SPORT0 Half SPORT 'B' Tx Buffer (Primary) Register 0x00000000

0x400420C4 SPORT0_RXPRI_B SPORT0 Half SPORT 'B' Rx Buffer (Primary) Register 0x00000000

0x400420C8 SPORT0_TXSEC_B SPORT0 Half SPORT 'B' Tx Buffer (Secondary) Register 0x00000000

0x400420CC SPORT0_RXSEC_B SPORT0 Half SPORT 'B' Rx Buffer (Secondary) Register 0x00000000

Table 48-67: CM41X_M4 SPU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8000 SPU0_CTL SPU0 Control Register 0x000000AD

0x410F8004 SPU0_STAT SPU0 Status Register 0x00000000

0x410F8040 SPU0_TIMEOUT SPU0 Timeout Register 0x00000000

0x410F8400 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–111

Table 48-67: CM41X_M4 SPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8404 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8408 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F840C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8410 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8414 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8418 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F841C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8420 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8424 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8428 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F842C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8430 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8434 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8438 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F843C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8440 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8444 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8448 SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F844C SPU0_WP[n] SPU0 Write Protect Register n 0x00000000

0x410F8800 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8804 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8808 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F880C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8810 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8814 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8818 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F881C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8820 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8824 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8828 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F882C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

CM41X_M4 Register List

48–112 ADSP-CM41x Mixed-Signal Control Processor

Table 48-67: CM41X_M4 SPU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F8830 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8834 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8838 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F883C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8840 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8844 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F8848 SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F884C SPU0_AP[n] SPU0 Access Protect Register n 0x00000000

0x410F9080 SPU0_IDTLS SPU0 Interrupt Details Register 0x00000000

0x410F9084 SPU0_IADDR SPU0 Interrupt Address Register 0x00000000

0x410F9FC8 SPU0_DEVID SPU0 Device Configuration Register 0x00140891

Table 48-68: CM41X_M4 SPU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8000 SPU1_CTL SPU1 Control Register 0x000000AD

0x400F8004 SPU1_STAT SPU1 Status Register 0x00000000

0x400F8040 SPU1_TIMEOUT SPU1 Timeout Register 0x00000000

0x400F8400 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8404 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8408 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F840C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8410 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8414 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8418 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F841C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8420 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8424 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8428 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F842C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8430 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–113

Table 48-68: CM41X_M4 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8434 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8438 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F843C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8440 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8444 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8448 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F844C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8450 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8454 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8458 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F845C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8460 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8464 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8468 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F846C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8470 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8474 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8478 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F847C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8480 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8484 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8488 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F848C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8490 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8494 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8498 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F849C SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84A8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84AC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

CM41X_M4 Register List

48–114 ADSP-CM41x Mixed-Signal Control Processor

Table 48-68: CM41X_M4 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F84B0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84B4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84B8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84BC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84C8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84CC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84D8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84DC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84E8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84EC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F0 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F4 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84F8 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F84FC SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8500 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8504 SPU1_WP[n] SPU1 Write Protect Register n 0x00000000

0x400F8800 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8804 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8808 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F880C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8810 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8814 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8818 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F881C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8820 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–115

Table 48-68: CM41X_M4 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F8824 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8828 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F882C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8830 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8834 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8838 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F883C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8840 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8844 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8848 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F884C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8850 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8854 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8858 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F885C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8860 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8864 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8868 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F886C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8870 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8874 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8878 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F887C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8880 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8884 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8888 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F888C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8890 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8894 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8898 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F889C SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

CM41X_M4 Register List

48–116 ADSP-CM41x Mixed-Signal Control Processor

Table 48-68: CM41X_M4 SPU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F88A0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88A4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88A8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88AC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88B8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88BC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88C8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88CC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88D8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88DC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88E8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88EC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F0 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F4 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88F8 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F88FC SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8900 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F8904 SPU1_AP[n] SPU1 Access Protect Register n 0x00000000

0x400F9080 SPU1_IDTLS SPU1 Interrupt Details Register 0x00000000

0x400F9084 SPU1_IADDR SPU1 Interrupt Address Register 0x00000000

0x400F9FC8 SPU1_DEVID SPU1 Device Configuration Register 0x00420891

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–117

Table 48-69: CM41X_M4 SWU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F0000 SWU0_GCTL SWU0 Global Control Register 0x00000000

0x410F0004 SWU0_GSTAT SWU0 Global Status Register 0x00000000

0x410F0010 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0014 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0018 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F001C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0020 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0024 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0028 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F002C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0030 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0034 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0038 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F003C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0040 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0044 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0048 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F004C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0050 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0054 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0058 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F005C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0060 SWU0_CNT[n] SWU0 Count Register n 0x00000000

0x410F0064 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0068 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F006C SWU0_CUR[n] SWU0 Current Register n 0x00000000

0x410F0070 SWU0_CTL[n] SWU0 Control Register n 0x00000000

0x410F0074 SWU0_LA[n] SWU0 Lower Address Register n 0x00000000

0x410F0078 SWU0_UA[n] SWU0 Upper Address Register n 0x00000000

0x410F007C SWU0_ID[n] SWU0 ID Register n 0x00000000

0x410F0080 SWU0_CNT[n] SWU0 Count Register n 0x00000000

CM41X_M4 Register List

48–118 ADSP-CM41x Mixed-Signal Control Processor

Table 48-69: CM41X_M4 SWU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F0084 SWU0_TARG[n] SWU0 Target Register n 0x00000000

0x410F0088 SWU0_HIST[n] SWU0 Bandwidth History Register n 0x00000000

0x410F008C SWU0_CUR[n] SWU0 Current Register n 0x00000000

Table 48-70: CM41X_M4 SWU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x410F1000 SWU1_GCTL SWU1 Global Control Register 0x00000000

0x410F1004 SWU1_GSTAT SWU1 Global Status Register 0x00000000

0x410F1010 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1014 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1018 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F101C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1020 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1024 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1028 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F102C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1030 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1034 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1038 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F103C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1040 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1044 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1048 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F104C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1050 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1054 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1058 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F105C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1060 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1064 SWU1_TARG[n] SWU1 Target Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–119

Table 48-70: CM41X_M4 SWU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410F1068 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F106C SWU1_CUR[n] SWU1 Current Register n 0x00000000

0x410F1070 SWU1_CTL[n] SWU1 Control Register n 0x00000000

0x410F1074 SWU1_LA[n] SWU1 Lower Address Register n 0x00000000

0x410F1078 SWU1_UA[n] SWU1 Upper Address Register n 0x00000000

0x410F107C SWU1_ID[n] SWU1 ID Register n 0x00000000

0x410F1080 SWU1_CNT[n] SWU1 Count Register n 0x00000000

0x410F1084 SWU1_TARG[n] SWU1 Target Register n 0x00000000

0x410F1088 SWU1_HIST[n] SWU1 Bandwidth History Register n 0x00000000

0x410F108C SWU1_CUR[n] SWU1 Current Register n 0x00000000

Table 48-71: CM41X_M4 SWU2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F0000 SWU2_GCTL SWU2 Global Control Register 0x00000000

0x400F0004 SWU2_GSTAT SWU2 Global Status Register 0x00000000

0x400F0010 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0014 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0018 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F001C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0020 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0024 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0028 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F002C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0030 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0034 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0038 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F003C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0040 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0044 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0048 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

CM41X_M4 Register List

48–120 ADSP-CM41x Mixed-Signal Control Processor

Table 48-71: CM41X_M4 SWU2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F004C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0050 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0054 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0058 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F005C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0060 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0064 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0068 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F006C SWU2_CUR[n] SWU2 Current Register n 0x00000000

0x400F0070 SWU2_CTL[n] SWU2 Control Register n 0x00000000

0x400F0074 SWU2_LA[n] SWU2 Lower Address Register n 0x00000000

0x400F0078 SWU2_UA[n] SWU2 Upper Address Register n 0x00000000

0x400F007C SWU2_ID[n] SWU2 ID Register n 0x00000000

0x400F0080 SWU2_CNT[n] SWU2 Count Register n 0x00000000

0x400F0084 SWU2_TARG[n] SWU2 Target Register n 0x00000000

0x400F0088 SWU2_HIST[n] SWU2 Bandwidth History Register n 0x00000000

0x400F008C SWU2_CUR[n] SWU2 Current Register n 0x00000000

Table 48-72: CM41X_M4 SWU3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F1000 SWU3_GCTL SWU3 Global Control Register 0x00000000

0x400F1004 SWU3_GSTAT SWU3 Global Status Register 0x00000000

0x400F1010 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1014 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1018 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F101C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1020 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1024 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1028 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F102C SWU3_CUR[n] SWU3 Current Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–121

Table 48-72: CM41X_M4 SWU3 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F1030 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1034 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1038 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F103C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1040 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1044 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1048 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F104C SWU3_CUR[n] SWU3 Current Register n 0x00000000

0x400F1050 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1054 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1058 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F105C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1060 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1064 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1068 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F106C SWU3_CUR[n] SWU3 Current Register n 0x00000000

0x400F1070 SWU3_CTL[n] SWU3 Control Register n 0x00000000

0x400F1074 SWU3_LA[n] SWU3 Lower Address Register n 0x00000000

0x400F1078 SWU3_UA[n] SWU3 Upper Address Register n 0x00000000

0x400F107C SWU3_ID[n] SWU3 ID Register n 0x00000000

0x400F1080 SWU3_CNT[n] SWU3 Count Register n 0x00000000

0x400F1084 SWU3_TARG[n] SWU3 Target Register n 0x00000000

0x400F1088 SWU3_HIST[n] SWU3 Bandwidth History Register n 0x00000000

0x400F108C SWU3_CUR[n] SWU3 Current Register n 0x00000000

Table 48-73: CM41X_M4 SWU4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F2000 SWU4_GCTL SWU4 Global Control Register 0x00000000

0x400F2004 SWU4_GSTAT SWU4 Global Status Register 0x00000000

0x400F2010 SWU4_CTL[n] SWU4 Control Register n 0x00000000

CM41X_M4 Register List

48–122 ADSP-CM41x Mixed-Signal Control Processor

Table 48-73: CM41X_M4 SWU4 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F2014 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2018 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F201C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2020 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2024 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2028 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F202C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2030 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2034 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2038 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F203C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2040 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2044 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2048 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F204C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2050 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2054 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2058 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F205C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2060 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2064 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2068 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F206C SWU4_CUR[n] SWU4 Current Register n 0x00000000

0x400F2070 SWU4_CTL[n] SWU4 Control Register n 0x00000000

0x400F2074 SWU4_LA[n] SWU4 Lower Address Register n 0x00000000

0x400F2078 SWU4_UA[n] SWU4 Upper Address Register n 0x00000000

0x400F207C SWU4_ID[n] SWU4 ID Register n 0x00000000

0x400F2080 SWU4_CNT[n] SWU4 Count Register n 0x00000000

0x400F2084 SWU4_TARG[n] SWU4 Target Register n 0x00000000

0x400F2088 SWU4_HIST[n] SWU4 Bandwidth History Register n 0x00000000

0x400F208C SWU4_CUR[n] SWU4 Current Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–123

Table 48-74: CM41X_M4 SWU5 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F3000 SWU5_GCTL SWU5 Global Control Register 0x00000000

0x400F3004 SWU5_GSTAT SWU5 Global Status Register 0x00000000

0x400F3010 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3014 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3018 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F301C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3020 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3024 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3028 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F302C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3030 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3034 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3038 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F303C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3040 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3044 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3048 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F304C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3050 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3054 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3058 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F305C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3060 SWU5_CNT[n] SWU5 Count Register n 0x00000000

0x400F3064 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3068 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F306C SWU5_CUR[n] SWU5 Current Register n 0x00000000

0x400F3070 SWU5_CTL[n] SWU5 Control Register n 0x00000000

0x400F3074 SWU5_LA[n] SWU5 Lower Address Register n 0x00000000

0x400F3078 SWU5_UA[n] SWU5 Upper Address Register n 0x00000000

0x400F307C SWU5_ID[n] SWU5 ID Register n 0x00000000

0x400F3080 SWU5_CNT[n] SWU5 Count Register n 0x00000000

CM41X_M4 Register List

48–124 ADSP-CM41x Mixed-Signal Control Processor

Table 48-74: CM41X_M4 SWU5 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F3084 SWU5_TARG[n] SWU5 Target Register n 0x00000000

0x400F3088 SWU5_HIST[n] SWU5 Bandwidth History Register n 0x00000000

0x400F308C SWU5_CUR[n] SWU5 Current Register n 0x00000000

Table 48-75: CM41X_M4 SWU6 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x400F4000 SWU6_GCTL SWU6 Global Control Register 0x00000000

0x400F4004 SWU6_GSTAT SWU6 Global Status Register 0x00000000

0x400F4010 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4014 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4018 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F401C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4020 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4024 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4028 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F402C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4030 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4034 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4038 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F403C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4040 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4044 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4048 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F404C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4050 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4054 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4058 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F405C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4060 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4064 SWU6_TARG[n] SWU6 Target Register n 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–125

Table 48-75: CM41X_M4 SWU6 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400F4068 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F406C SWU6_CUR[n] SWU6 Current Register n 0x00000000

0x400F4070 SWU6_CTL[n] SWU6 Control Register n 0x00000000

0x400F4074 SWU6_LA[n] SWU6 Lower Address Register n 0x00000000

0x400F4078 SWU6_UA[n] SWU6 Upper Address Register n 0x00000000

0x400F407C SWU6_ID[n] SWU6 ID Register n 0x00000000

0x400F4080 SWU6_CNT[n] SWU6 Count Register n 0x00000000

0x400F4084 SWU6_TARG[n] SWU6 Target Register n 0x00000000

0x400F4088 SWU6_HIST[n] SWU6 Bandwidth History Register n 0x00000000

0x400F408C SWU6_CUR[n] SWU6 Current Register n 0x00000000

Table 48-76: CM41X_M4 TAPC MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40017000 TAPC_IDCODE TAPC IDCODE Register 0x2280B0CB

0x40017004 TAPC_USERCODE TAPC USERCODE Register 0x00000000

0x40017008 TAPC_SDBGKEY_CTL TAPC Secure Debug Key Control Register 0x00000000

0x4001700C TAPC_SDBGKEY_STAT TAPC Secure Debug Key Status Register 0x00000000

0x40017010 TAPC_SDBGKEY0 TAPC Secure Debug Key 0 Register 0x00000000

0x40017014 TAPC_SDBGKEY1 TAPC Secure Debug Key 1 Register 0x00000000

0x40017018 TAPC_SDBGKEY2 TAPC Secure Debug Key 2 Register 0x00000000

0x4001701C TAPC_SDBGKEY3 TAPC Secure Debug Key 3 Register 0x00000000

0x40017030 TAPC_DBGCTL TAPC Debug Control Register 0x00000000

0x40017034 TAPC_DBGSTAT TAPC Debug Status Register 0x00000000

0x40017050 TAPC_SDBGKEYCMP0 TAPC Secure Debug Key 0 Compare Register 0x00000000

0x40017054 TAPC_SDBGKEYCMP1 TAPC Secure Debug Key 1 Compare Register 0x00000000

0x40017058 TAPC_SDBGKEYCMP2 TAPC Secure Debug Key 2 Compare Register 0x00000000

0x4001705C TAPC_SDBGKEYCMP3 TAPC Secure Debug Key 3 Compare Register 0x00000000

0x40017070 TAPC_SDBGKEYID0 TAPC Secure Debug Key 0 Identification Register 0x00000000

0x40017074 TAPC_SDBGKEYID1 TAPC Secure Debug Key 1 Key Identification Register 0x00000000

0x40017078 TAPC_SDBGKEYID2 TAPC Secure Debug Key 2 Key Identification Register 0x00000000

CM41X_M4 Register List

48–126 ADSP-CM41x Mixed-Signal Control Processor

Table 48-76: CM41X_M4 TAPC MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4001707C TAPC_SDBGKEYID3 TAPC Secure Debug Key 3 Key Identification Register 0x00000000

0x400170E0 TAPC_SCMSG TAPC System Run Control Message Register 0x00000000

0x400170E4 TAPC_SCMSG_SET TAPC System Run Control Message Set Register 0x00000000

0x400170E8 TAPC_SCMSG_CLR TAPC System Run Control Message Clear Register 0x00000000

0x400170EC TAPC_SCMSG_TGL TAPC System Run Control Message Toggle Register 0x00000000

0x400170F0 TAPC_RCMSG TAPC Run Control Message Register 0x00000000

0x400170F4 TAPC_RCMSG_SET TAPC Run Control Message Set Register 0x00000000

0x400170F8 TAPC_RCMSG_CLR TAPC Run Control Message Clear Register 0x00000000

0x400170FC TAPC_RCMSG_TGL TAPC Run Control Message Toggle Register 0x00000000

Table 48-77: CM41X_M4 PADS0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41001004 PADS0_PCFG0 PADS0 Peripheral Configuration0 Register 0x00000000

0x41001100 PADS0_PORT[n]_DS PADS0 Multi Port Drive Strength Control Register 0x00000000

0x41001120 PADS0_PORT[n]_RCTL PADS0 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x41001140 PADS0_PORT[n]_TRIPST PADS0 Multi Port Trip State Register 0x00000000

0x41001160 PADS0_PORT[n]_TRIPSEL PADS0 Multi Port Trip Select Register 0x00000000

Table 48-78: CM41X_M4 PADS1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40001004 PADS1_PCFG0 PADS1 Peripheral Configuration0 Register 0x00000000

0x40001048 PADS1_FOCP_DIV PADS1 Fast Over Current Protection Clock Divisor Regis-
ter

0x00000000

0x40001070 PADS1_DBC_PRESCALE PADS1 Debounce Prescale Register 0x00000000

0x40001080 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x40001084 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x40001088 PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x4000108C PADS1_DBC[n]_CTL PADS1 Debounce Control Register(s) 0x00000000

0x400010A0 PADS1_VMU_CTL PADS1 Voltage Monitor Unit Control Register 0x00000000

0x400010A8 PADS1_VMU_TRIPEN PADS1 Voltage Monitor Unit Trip Enable Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–127

Table 48-78: CM41X_M4 PADS1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400010AC PADS1_NVWR_RSTCTL PADS1 Non-Volatile Write Reset Control Register 0x00000000

0x400010B0 PADS1_MONOSC_CFG PADS1 Monitor Oscillator Control Register 0x00000000

0x400010BC PADS1_VMU_TRIM PADS1 Voltage Monitor Unit Trim Register 0x00000000

0x40001100 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001104 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001108 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x4000110C PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001110 PADS1_PORT[n]_DS PADS1 Multi Port Drive Strength Control Register 0x00000000

0x40001120 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001124 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001128 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x4000112C PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001130 PADS1_PORT[n]_RCTL PADS1 Multi Port Pull-up/Pull-down Resistor Control
Register

0x00000000

0x40001140 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001144 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001148 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x4000114C PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001150 PADS1_PORT[n]_TRIPST PADS1 Multi Port Trip State Register 0x00000000

0x40001160 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001164 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001168 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x4000116C PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

0x40001170 PADS1_PORT[n]_TRIPSEL PADS1 Multi Port Trip Select Register 0x00000000

Table 48-79: CM41X_M4 SYSBLK0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41000040 SYSBLK0_SYSSTAT SYSBLK0 System Status Register 0x00000000

CM41X_M4 Register List

48–128 ADSP-CM41x Mixed-Signal Control Processor

Table 48-79: CM41X_M4 SYSBLK0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41000070 SYSBLK0_SCB_RESP_CFG SYSBLK0 SCB Response Configuration Register 0x00000000

0x41000074 SYSBLK0_SCB_TIME-
OUT_VALUE

SYSBLK0 SCB Timeout Value Register 0x00000000

0x41000080 SYSBLK0_ENG_MODE_CF
G0

SYSBLK0 Engineering Mode Configuration Register 0 0x00000000

0x410000B4 SYSBLK0_M0_VTOR SYSBLK0 Vector Table Base Offset Register 0x200F0000

0x410000E0 SYSBLK0_SRAM0_ECC SYSBLK0 M0 SRAM ECC Register 0x00000000

0x410000E4 SYSBLK0_SYS_STCALIB SYSBLK0 System Register 0x02000000

0x410000E8 SYSBLK0_IRQ_LATENCY SYSBLK0 M0 IRQ Latency Register 0x0000000D

0x41000200 SYSBLK0_SISTAT0 SYSBLK0 Shared Interrupt 0 Status Register 0x00000000

0x4100020C SYSBLK0_SISTAT3 SYSBLK0 Shared Interrupt 3 Status Register 0x00000000

0x41000214 SYSBLK0_SISTAT5 SYSBLK0 Shared Interrupt 5 Status Register 0x00000000

0x41000218 SYSBLK0_SISTAT6 SYSBLK0 Shared Interrupt 6 Status Register 0x00000000

0x4100021C SYSBLK0_SISTAT7 SYSBLK0 Shared Interrupt 7 Status Register 0x00000000

0x41000220 SYSBLK0_SISTAT8 SYSBLK0 Shared Interrupt 8 Status Register 0x00000000

0x41000228 SYSBLK0_SISTAT10 SYSBLK0 Shared Interrupt 10 Status Register 0x00000000

0x4100022C SYSBLK0_SISTAT11 SYSBLK0 Shared Interrupt 11 Status Register 0x00000000

0x41000230 SYSBLK0_SISTAT12 SYSBLK0 Shared Interrupt 12 Status Register 0x00000000

0x4100023C SYSBLK0_SISTAT15 SYSBLK0 Shared Interrupt 15 Status Register 0x00000000

0x41000240 SYSBLK0_SISTAT16 SYSBLK0 Shared Interrupt 16 Status Register 0x00000000

0x41000244 SYSBLK0_SISTAT17 SYSBLK0 Shared Interrupt 17 Status Register 0x00000000

0x41000248 SYSBLK0_SISTAT18 SYSBLK0 Shared Interrupt 18 Status Register 0x00000000

0x4100024C SYSBLK0_SISTAT19 SYSBLK0 Shared Interrupt 19 Status Register 0x00000000

0x41000258 SYSBLK0_SISTAT22 SYSBLK0 Shared Interrupt 22 Status Register 0x00000000

0x41000264 SYSBLK0_SISTAT25 SYSBLK0 Shared Interrupt 25 Status Register 0x00000000

0x41000270 SYSBLK0_SISTAT28 SYSBLK0 Shared Interrupt 28 Status Register 0x00000000

Table 48-80: CM41X_M4 SYSBLK1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40000010 SYSBLK1_DMA_MUXCTL SYSBLK1 Peripheral DMA Multiplexer Control 0x00000000

0x40000014 SYSBLK1_PWM_SYS_CFG SYSBLK1 PWM System Configuration Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–129

Table 48-80: CM41X_M4 SYSBLK1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40000018 SYSBLK1_MEMST_CTL SYSBLK1 Memory Self-Test Control Register 0x00000000

0x4000001C SYSBLK1_SINC_TEST SYSBLK1 SINC Test Register 0x00000000

0x40000040 SYSBLK1_SYSSTAT SYSBLK1 System Status Register 0x00000000

0x40000050 SYSBLK1_CLKNG_TRIPEN SYSBLK1 Clock Not Good Trip Register 0x00000000

0x40000058 SYSBLK1_FAULT_TRIPEN SYSBLK1 Fault Trip Register 0x00000010

0x40000060 SYSBLK1_ROT_UPDN_CF
G

SYSBLK1 Rotary Counter Up/Down Configuration Reg-
ister

0x00000000

0x40000070 SYSBLK1_SCB_RESP_CFG SYSBLK1 SCB Response Configuration Register 0x00000000

0x40000074 SYSBLK1_SCB_TIME-
OUT_VALUE

SYSBLK1 SCB Timeout Value Register 0x00000000

0x40000080 SYSBLK1_ENG_MODE_CF
G0

SYSBLK1 Engineering Mode Configuration Register 0 0x00000000

0x40000084 SYSBLK1_LROM_STAT SYSBLK1 Logic ROM Status Register 0x00000000

Table 48-81: CM41X_M4 TIMER0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41007004 TIMER0_RUN TIMER0 Run Register 0x00000000

0x41007008 TIMER0_RUN_SET TIMER0 Run Set Register 0x00000000

0x4100700C TIMER0_RUN_CLR TIMER0 Run Clear Register 0x00000000

0x41007010 TIMER0_STOP_CFG TIMER0 Stop Configuration Register 0x00000000

0x41007014 TIMER0_STOP_CFG_SET TIMER0 Stop Configuration Set Register 0x00000000

0x41007018 TIMER0_STOP_CFG_CLR TIMER0 Stop Configuration Clear Register 0x00000000

0x4100701C TIMER0_DATA_IMSK TIMER0 Data Interrupt Mask Register 0x000000FF

0x41007020 TIMER0_STAT_IMSK TIMER0 Status Interrupt Mask Register 0x000000FF

0x41007024 TIMER0_TRG_MSK TIMER0 Trigger Master Mask Register 0x000000FF

0x41007028 TIMER0_TRG_IE TIMER0 Trigger Slave Enable Register 0x00000000

0x4100702C TIMER0_DATA_ILAT TIMER0 Data Interrupt Latch Register 0x00000000

0x41007030 TIMER0_STAT_ILAT TIMER0 Status Interrupt Latch Register 0x00000000

0x41007034 TIMER0_ERR_TYPE TIMER0 Error Type Status Register 0x00000000

0x41007038 TIMER0_BCAST_PER TIMER0 Broadcast Period Register 0x00000000

0x4100703C TIMER0_BCAST_WID TIMER0 Broadcast Width Register 0x00000000

CM41X_M4 Register List

48–130 ADSP-CM41x Mixed-Signal Control Processor

Table 48-81: CM41X_M4 TIMER0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41007040 TIMER0_BCAST_DLY TIMER0 Broadcast Delay Register 0x00000000

0x41007060 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007064 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007068 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100706C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007070 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007080 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007084 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007088 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100708C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007090 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070A0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070A4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070A8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070AC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070B0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070C0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070C4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070C8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070CC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070D0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x410070E0 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x410070E4 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x410070E8 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x410070EC TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x410070F0 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007100 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007104 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007108 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100710C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007110 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–131

Table 48-81: CM41X_M4 TIMER0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41007120 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007124 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007128 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100712C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007130 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

0x41007140 TIMER0_TMR[n]_CFG TIMER0 Timer n Configuration Register 0x00000000

0x41007144 TIMER0_TMR[n]_CNT TIMER0 Timer n Counter Register 0x00000001

0x41007148 TIMER0_TMR[n]_PER TIMER0 Timer n Period Register 0x00000000

0x4100714C TIMER0_TMR[n]_WID TIMER0 Timer n Width Register 0x00000000

0x41007150 TIMER0_TMR[n]_DLY TIMER0 Timer n Delay Register 0x00000000

Table 48-82: CM41X_M4 TIMER1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40021004 TIMER1_RUN TIMER1 Run Register 0x00000000

0x40021008 TIMER1_RUN_SET TIMER1 Run Set Register 0x00000000

0x4002100C TIMER1_RUN_CLR TIMER1 Run Clear Register 0x00000000

0x40021010 TIMER1_STOP_CFG TIMER1 Stop Configuration Register 0x00000000

0x40021014 TIMER1_STOP_CFG_SET TIMER1 Stop Configuration Set Register 0x00000000

0x40021018 TIMER1_STOP_CFG_CLR TIMER1 Stop Configuration Clear Register 0x00000000

0x4002101C TIMER1_DATA_IMSK TIMER1 Data Interrupt Mask Register 0x000000FF

0x40021020 TIMER1_STAT_IMSK TIMER1 Status Interrupt Mask Register 0x000000FF

0x40021024 TIMER1_TRG_MSK TIMER1 Trigger Master Mask Register 0x000000FF

0x40021028 TIMER1_TRG_IE TIMER1 Trigger Slave Enable Register 0x00000000

0x4002102C TIMER1_DATA_ILAT TIMER1 Data Interrupt Latch Register 0x00000000

0x40021030 TIMER1_STAT_ILAT TIMER1 Status Interrupt Latch Register 0x00000000

0x40021034 TIMER1_ERR_TYPE TIMER1 Error Type Status Register 0x00000000

0x40021038 TIMER1_BCAST_PER TIMER1 Broadcast Period Register 0x00000000

0x4002103C TIMER1_BCAST_WID TIMER1 Broadcast Width Register 0x00000000

0x40021040 TIMER1_BCAST_DLY TIMER1 Broadcast Delay Register 0x00000000

0x40021060 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

CM41X_M4 Register List

48–132 ADSP-CM41x Mixed-Signal Control Processor

Table 48-82: CM41X_M4 TIMER1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40021064 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021068 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002106C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021070 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021080 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021084 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021088 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002108C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021090 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210A0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210A4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210A8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210AC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210B0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210C0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210C4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210C8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210CC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210D0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x400210E0 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x400210E4 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x400210E8 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x400210EC TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x400210F0 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021100 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021104 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021108 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002110C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021110 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021120 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021124 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–133

Table 48-82: CM41X_M4 TIMER1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40021128 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002112C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021130 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

0x40021140 TIMER1_TMR[n]_CFG TIMER1 Timer n Configuration Register 0x00000000

0x40021144 TIMER1_TMR[n]_CNT TIMER1 Timer n Counter Register 0x00000001

0x40021148 TIMER1_TMR[n]_PER TIMER1 Timer n Period Register 0x00000000

0x4002114C TIMER1_TMR[n]_WID TIMER1 Timer n Width Register 0x00000000

0x40021150 TIMER1_TMR[n]_DLY TIMER1 Timer n Delay Register 0x00000000

Table 48-83: CM41X_M4 TRACE0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0xE0040000 TRACE0_SSPSR TRACE0 Supported Sync Port Sizes Register. 0x00000000

0xE0040004 TRACE0_CSPSR TRACE0 Current Sync Port Size Register. 0x00000001

0xE0040010 TRACE0_ACPR TRACE0 Async Clock Prescaler Register. 0x00000000

0xE00400F0 TRACE0_SPPR TRACE0 Selected Pin Protocol Register. 0x00000001

0xE0040300 TRACE0_FFSR TRACE0 Formatter and Flush Status Register. 0x00000008

0xE0040304 TRACE0_FFCR TRACE0 Formatter and Flush Control Register. 0x00000102

0xE0040308 TRACE0_FSCR TRACE0 Formatter Synchronization Counter Register. 0x00000000

0xE0040EE8 TRACE0_TRIGGER TRACE0 Integration Register: TRIGGER. 0x00000000

0xE0040EEC TRACE0_FIFO_DATA_0 TRACE0 Integration register: FIFO data 0. 0x00000000

0xE0040EF0 TRACE0_ITATBCTR2 TRACE0 Integration Register: ITATBCTR2. 0x00000000

0xE0040EF8 TRACE0_ITATBCTR0 TRACE0 Integration Register: ITATBCTR0. 0x00000000

0xE0040EFC TRACE0_FIFO_DATA_1 TRACE0 Integration register: FIFO data 1. 0x00000000

0xE0040F00 TRACE0_ITCTRL TRACE0 Integration Mode Control Register. 0x00000000

0xE0040FA0 TRACE0_CLAIMSET TRACE0 Claim tag set register. 0x0000000F

0xE0040FA4 TRACE0_CLAIMCLR TRACE0 Claim tag clear register. 0x00000000

0xE0040FC8 TRACE0_DEVID TRACE0 Device ID register. 0x00000CA1

0xE0040FD0 TRACE0_PID4 TRACE0 Peripheral identification register (PID4). 0x00000004

0xE0040FD4 TRACE0_PID5 TRACE0 Peripheral identification register (PID5). 0x00000000

0xE0040FD8 TRACE0_PID6 TRACE0 Peripheral identification register (PID6). 0x00000000

CM41X_M4 Register List

48–134 ADSP-CM41x Mixed-Signal Control Processor

Table 48-83: CM41X_M4 TRACE0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0xE0040FDC TRACE0_PID7 TRACE0 Peripheral identification register (PID7). 0x00000000

0xE0040FE0 TRACE0_PID0 TRACE0 Peripheral identification register Bits 7:0
(PID0).

0x00000023

0xE0040FE4 TRACE0_PID1 TRACE0 Peripheral identification register Bits 15:8
(PID1).

0x000000B9

0xE0040FE8 TRACE0_PID2 TRACE0 Peripheral identification register Bits 23:16
(PID2).

0x0000003B

0xE0040FEC TRACE0_PID3 TRACE0 Peripheral identification register Bits 31:24
(PID3).

0x00000000

0xE0040FF0 TRACE0_CID0 TRACE0 Component identification register Bits 7:0
(CID0).

0x0000000D

0xE0040FF4 TRACE0_CID1 TRACE0 Component identification register Bits 15:8
(CID1).

0x00000090

0xE0040FF8 TRACE0_CID2 TRACE0 Component identification register Bits 23:16
(CID2).

0x00000005

0xE0040FFC TRACE0_CID3 TRACE0 Component identification register Bits 31:24
(CID3).

0x000000B1

Table 48-84: CM41X_M4 TRU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41006000 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006004 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006008 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100600C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006010 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006014 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006018 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100601C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006020 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006024 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006028 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100602C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006030 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–135

Table 48-84: CM41X_M4 TRU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x41006034 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006038 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100603C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006040 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006044 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006048 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100604C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006050 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006054 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006058 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100605C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006060 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006064 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006068 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100606C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006070 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006074 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006078 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100607C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006080 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006084 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006088 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100608C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006090 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006094 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x41006098 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x4100609C TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A0 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A4 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060A8 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060AC TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

CM41X_M4 Register List

48–136 ADSP-CM41x Mixed-Signal Control Processor

Table 48-84: CM41X_M4 TRU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x410060B0 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060B4 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410060B8 TRU0_SSR[n] TRU0 Slave Select Register 0x00000000

0x410067E0 TRU0_MTR TRU0 Master Trigger Register 0x00000000

0x410067E8 TRU0_ERRADDR TRU0 Error Address Register 0x00000000

0x410067EC TRU0_STAT TRU0 Status Information Register 0x00000000

0x410067F4 TRU0_GCTL TRU0 Global Control Register 0x00000000

Table 48-85: CM41X_M4 TRU1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40020000 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020004 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020008 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002000C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020010 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020014 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020018 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002001C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020020 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020024 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020028 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002002C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020030 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020034 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020038 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002003C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020040 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020044 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020048 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002004C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–137

Table 48-85: CM41X_M4 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40020050 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020054 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020058 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002005C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020060 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020064 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020068 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002006C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020070 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020074 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020078 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002007C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020080 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020084 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020088 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002008C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020090 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020094 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020098 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002009C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200A8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200AC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200B8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200BC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200C8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M4 Register List

48–138 ADSP-CM41x Mixed-Signal Control Processor

Table 48-85: CM41X_M4 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400200CC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200D8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200DC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200E0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200E4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200E8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200EC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200F8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400200FC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020100 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020104 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020108 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002010C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020110 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020114 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020118 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002011C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020120 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020124 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020128 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002012C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020130 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020134 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020138 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002013C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020140 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020144 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–139

Table 48-85: CM41X_M4 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40020148 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002014C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020150 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020154 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020158 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002015C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020160 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020164 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020168 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002016C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020170 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020174 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020178 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002017C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020180 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020184 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020188 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002018C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020190 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020194 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020198 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002019C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201A8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201AC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201B8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201BC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201C0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

CM41X_M4 Register List

48–140 ADSP-CM41x Mixed-Signal Control Processor

Table 48-85: CM41X_M4 TRU1 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x400201C4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201C8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201CC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201D8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201DC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201E8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201EC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F0 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F4 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201F8 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400201FC TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020200 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020204 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020208 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x4002020C TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020210 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020214 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x40020218 TRU1_SSR[n] TRU1 Slave Select Register 0x00000000

0x400207E0 TRU1_MTR TRU1 Master Trigger Register 0x00000000

0x400207E8 TRU1_ERRADDR TRU1 Error Address Register 0x00000000

0x400207EC TRU1_STAT TRU1 Status Information Register 0x00000000

0x400207F4 TRU1_GCTL TRU1 Global Control Register 0x00000000

Table 48-86: CM41X_M4 TTU0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4002C000 TTU0_CTL TTU0 TTU Control Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–141

Table 48-86: CM41X_M4 TTU0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4002C004 TTU0_REVID TTU0 Revision ID Register 0x00000010

0x4002C008 TTU0_STOP TTU0 Counter Stop Request Register 0x00000000

0x4002C00C TTU0_STAT TTU0 Counter Status Register 0x00000000

0x4002C010 TTU0_CHK TTU0 Counter Check Register 0x00000000

0x4002C020 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C024 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C028 TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C02C TTU0_CNT[n] TTU0 Counter Current Value 0x00000000

0x4002C040 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C044 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C048 TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C04C TTU0_PER[n] TTU0 Counter Period Register 0x00000000

0x4002C080 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C084 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C088 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C08C TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C090 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C094 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C098 TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C09C TTU0_DLY[m] TTU0 Trigger Output Delay Register 0x00000000

0x4002C0C0 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0C4 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0C8 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0CC TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D0 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D4 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0D8 TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

0x4002C0DC TTU0_DGRP[m] TTU0 Trigger Output Counter Assignment 0x00000000

CM41X_M4 Register List

48–142 ADSP-CM41x Mixed-Signal Control Processor

Table 48-87: CM41X_M4 TWI0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40023000 TWI0_CLKDIV TWI0 SCL Clock Divider Register 0x00000000

0x40023004 TWI0_CTL TWI0 Control Register 0x00000000

0x40023008 TWI0_SLVCTL TWI0 Slave Mode Control Register 0x00000000

0x4002300C TWI0_SLVSTAT TWI0 Slave Mode Status Register 0x00000000

0x40023010 TWI0_SLVADDR TWI0 Slave Mode Address Register 0x00000000

0x40023014 TWI0_MSTRCTL TWI0 Master Mode Control Registers 0x00000000

0x40023018 TWI0_MSTRSTAT TWI0 Master Mode Status Register 0x00000000

0x4002301C TWI0_MSTRADDR TWI0 Master Mode Address Register 0x00000000

0x40023020 TWI0_ISTAT TWI0 Interrupt Status Register 0x00000000

0x40023024 TWI0_IMSK TWI0 Interrupt Mask Register 0x00000000

0x40023028 TWI0_FIFOCTL TWI0 FIFO Control Register 0x00000000

0x4002302C TWI0_FIFOSTAT TWI0 FIFO Status Register 0x00000000

0x40023080 TWI0_TXDATA8 TWI0 Tx Data Single-Byte Register 0x00000000

0x40023084 TWI0_TXDATA16 TWI0 Tx Data Double-Byte Register 0x00000000

0x40023088 TWI0_RXDATA8 TWI0 Rx Data Single-Byte Register 0x00000000

0x4002308C TWI0_RXDATA16 TWI0 Rx Data Double-Byte Register 0x00000000

Table 48-88: CM41X_M4 UART0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x4100A004 UART0_CTL UART0 Control Register 0x00000000

0x4100A008 UART0_STAT UART0 Status Register 0x000000A0

0x4100A00C UART0_SCR UART0 Scratch Register 0x00000000

0x4100A010 UART0_CLK UART0 Clock Rate Register 0x0000FFFF

0x4100A014 UART0_IMSK UART0 Interrupt Mask Register 0x00000000

0x4100A018 UART0_IMSK_SET UART0 Interrupt Mask Set Register 0x00000000

0x4100A01C UART0_IMSK_CLR UART0 Interrupt Mask Clear Register 0x00000000

0x4100A020 UART0_RBR UART0 Receive Buffer Register 0x00000000

0x4100A024 UART0_THR UART0 Transmit Hold Register 0x00000000

0x4100A028 UART0_TAIP UART0 Transmit Address/Insert Pulse Register 0x00000000

0x4100A02C UART0_TSR UART0 Transmit Shift Register 0x000007FF

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–143

Table 48-88: CM41X_M4 UART0 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x4100A030 UART0_RSR UART0 Receive Shift Register 0x00000000

0x4100A034 UART0_TXCNT UART0 Transmit Counter Register 0x00000000

0x4100A038 UART0_RXCNT UART0 Receive Counter Register 0x00000000

Table 48-89: CM41X_M4 UART1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40044004 UART1_CTL UART1 Control Register 0x00000000

0x40044008 UART1_STAT UART1 Status Register 0x000000A0

0x4004400C UART1_SCR UART1 Scratch Register 0x00000000

0x40044010 UART1_CLK UART1 Clock Rate Register 0x0000FFFF

0x40044014 UART1_IMSK UART1 Interrupt Mask Register 0x00000000

0x40044018 UART1_IMSK_SET UART1 Interrupt Mask Set Register 0x00000000

0x4004401C UART1_IMSK_CLR UART1 Interrupt Mask Clear Register 0x00000000

0x40044020 UART1_RBR UART1 Receive Buffer Register 0x00000000

0x40044024 UART1_THR UART1 Transmit Hold Register 0x00000000

0x40044028 UART1_TAIP UART1 Transmit Address/Insert Pulse Register 0x00000000

0x4004402C UART1_TSR UART1 Transmit Shift Register 0x000007FF

0x40044030 UART1_RSR UART1 Receive Shift Register 0x00000000

0x40044034 UART1_TXCNT UART1 Transmit Counter Register 0x00000000

0x40044038 UART1_RXCNT UART1 Receive Counter Register 0x00000000

Table 48-90: CM41X_M4 UART2 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40045004 UART2_CTL UART2 Control Register 0x00000000

0x40045008 UART2_STAT UART2 Status Register 0x000000A0

0x4004500C UART2_SCR UART2 Scratch Register 0x00000000

0x40045010 UART2_CLK UART2 Clock Rate Register 0x0000FFFF

0x40045014 UART2_IMSK UART2 Interrupt Mask Register 0x00000000

0x40045018 UART2_IMSK_SET UART2 Interrupt Mask Set Register 0x00000000

0x4004501C UART2_IMSK_CLR UART2 Interrupt Mask Clear Register 0x00000000

CM41X_M4 Register List

48–144 ADSP-CM41x Mixed-Signal Control Processor

Table 48-90: CM41X_M4 UART2 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40045020 UART2_RBR UART2 Receive Buffer Register 0x00000000

0x40045024 UART2_THR UART2 Transmit Hold Register 0x00000000

0x40045028 UART2_TAIP UART2 Transmit Address/Insert Pulse Register 0x00000000

0x4004502C UART2_TSR UART2 Transmit Shift Register 0x000007FF

0x40045030 UART2_RSR UART2 Receive Shift Register 0x00000000

0x40045034 UART2_TXCNT UART2 Transmit Counter Register 0x00000000

0x40045038 UART2_RXCNT UART2 Receive Counter Register 0x00000000

Table 48-91: CM41X_M4 UART3 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40046004 UART3_CTL UART3 Control Register 0x00000000

0x40046008 UART3_STAT UART3 Status Register 0x000000A0

0x4004600C UART3_SCR UART3 Scratch Register 0x00000000

0x40046010 UART3_CLK UART3 Clock Rate Register 0x0000FFFF

0x40046014 UART3_IMSK UART3 Interrupt Mask Register 0x00000000

0x40046018 UART3_IMSK_SET UART3 Interrupt Mask Set Register 0x00000000

0x4004601C UART3_IMSK_CLR UART3 Interrupt Mask Clear Register 0x00000000

0x40046020 UART3_RBR UART3 Receive Buffer Register 0x00000000

0x40046024 UART3_THR UART3 Transmit Hold Register 0x00000000

0x40046028 UART3_TAIP UART3 Transmit Address/Insert Pulse Register 0x00000000

0x4004602C UART3_TSR UART3 Transmit Shift Register 0x000007FF

0x40046030 UART3_RSR UART3 Receive Shift Register 0x00000000

0x40046034 UART3_TXCNT UART3 Transmit Counter Register 0x00000000

0x40046038 UART3_RXCNT UART3 Receive Counter Register 0x00000000

Table 48-92: CM41X_M4 UART4 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40047004 UART4_CTL UART4 Control Register 0x00000000

0x40047008 UART4_STAT UART4 Status Register 0x000000A0

0x4004700C UART4_SCR UART4 Scratch Register 0x00000000

CM41X_M4 Register List

ADSP-CM41x Mixed-Signal Control Processor 48–145

Table 48-92: CM41X_M4 UART4 MMR Register Addresses (Continued)

Memory Map-
ped Address

Register Name Description Reset Value

0x40047010 UART4_CLK UART4 Clock Rate Register 0x0000FFFF

0x40047014 UART4_IMSK UART4 Interrupt Mask Register 0x00000000

0x40047018 UART4_IMSK_SET UART4 Interrupt Mask Set Register 0x00000000

0x4004701C UART4_IMSK_CLR UART4 Interrupt Mask Clear Register 0x00000000

0x40047020 UART4_RBR UART4 Receive Buffer Register 0x00000000

0x40047024 UART4_THR UART4 Transmit Hold Register 0x00000000

0x40047028 UART4_TAIP UART4 Transmit Address/Insert Pulse Register 0x00000000

0x4004702C UART4_TSR UART4 Transmit Shift Register 0x000007FF

0x40047030 UART4_RSR UART4 Receive Shift Register 0x00000000

0x40047034 UART4_TXCNT UART4 Transmit Counter Register 0x00000000

0x40047038 UART4_RXCNT UART4 Receive Counter Register 0x00000000

Table 48-93: CM41X_M4 WDOG0 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x41005000 WDOG0_CTL WDOG0 Control Register 0x00000AD0

0x41005004 WDOG0_CNT WDOG0 Count Register 0x00000000

0x41005008 WDOG0_STAT WDOG0 Watchdog Timer Status Register 0x00000000

Table 48-94: CM41X_M4 WDOG1 MMR Register Addresses

Memory Map-
ped Address

Register Name Description Reset Value

0x40011000 WDOG1_CTL WDOG1 Control Register 0x00000AD0

0x40011004 WDOG1_CNT WDOG1 Count Register 0x00000000

0x40011008 WDOG1_STAT WDOG1 Watchdog Timer Status Register 0x00000000

CM41X_M4 Register List

48–146 ADSP-CM41x Mixed-Signal Control Processor

	Notices
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	What's New in This Manual
	Technical or Customer Support
	Product Information
	Analog Devices Web Site
	EngineerZone
	Supported Processors

	Notation Conventions
	Register Documentation Conventions

	Introduction
	Power and Clock Management
	System Interrupts and Triggers (SEC/TRU/TTU/CPTMR/GP Timer)
	System Memory (SMC/SMPU/FLC)
	Direct Memory Access (DMA/MDMA/CRC)
	Peripherals
	General-Purpose I/O (GPIO) Peripherals
	Dedicated Pin Peripherals

	System Accelerators (FFTB/HAE/SINC/MATH)
	Security and Protection (SPU/MBOX)
	Safety (WDOG/VMU)
	JTAG Debug and Serial Wire Debug Port
	ADCC and DACC
	System Block (SYSBLK) and Pads

	ARM Cortex-M0 Core 1 Memory Sub-System
	Peripherals and Infrastructure in M0 Subsystem Domain
	Cortex-M0 Memory Features
	Cortex-M0 Memory Functional Description
	CM41X_M0 M0P Interrupt List
	CM41X_M0 M0P Trigger List
	ARM Cortex-M0 Bus Interconnect

	Cortex-M0 Code and Data SRAM
	SRAM Features
	SRAM Bank Organization on the ARM Cortex-M0 Subsystem
	ECC Error Handling

	Memory and MMR Access Latencies
	Boot Sequence
	Cortex-M0 Registers

	ARM Cortex-M4 Core 0 Memory Sub-System
	Peripherals and Infrastructure on the ARM Cortex-M4 Sub-system Domain
	Cortex-M4 Memory Features
	Cortex-M4 Memory Functional Description
	CM41X_M4 M4P Interrupt List
	CM41X_M4 M4P Register List

	Cortex-M4 Code and Data SRAM
	SRAM Features
	SRAM Bank Organization
	SRAM Partitioning Using Config Banks
	SRAM Posted System Writes (NormSysWrite versus PostSysWrite)
	Memory Initialization
	Refresh Function, Background Memory Scrubber
	ECC Error Signaling
	ECC Error Interrupt Handlers
	Memory Built-In Self Test (MEMST)

	Memory and MMR Access Latencies
	CM41X_M4 M4P Register Descriptions
	Boot ROM Error Register
	Bus Fault Error Information Register
	SRAM Configuration Register
	SRAM ECC Error Address (Core) Register
	SRAM ECC Error Address (DMA) Register
	SRAM Initialization Done Status Register
	SRAM Refresh Address
	SRAM Refresh Period Register
	SysTick Calibration Register

	Security
	Security Features
	Security Functional Description
	Security States
	Architectural Concepts

	System Crossbars (SCB)
	SCB Features
	SCB Functional Description
	CM41X_M4 SCB Register List
	SCB Architectural Concepts
	SCB Block Diagram
	ADSP-CM41x Block Diagram

	SCB Bus Master IDs
	System Crossbars
	ADSP-CM41x SCB Arbitration
	Clock Domain Synchronization

	ADSP-CM41x SCB Programming Model
	CM41X_M4 SCB Register Descriptions
	AFE0 Read Quality of Service Register
	AFE0 Write Quality of Service Register
	M4 Core Read Quality of Service Register
	M4 Core Write Quality of Service Register
	DMA0 Read Quality of Service Register
	DMA0 Write Quality of Service Register
	DMA1 Read Quality of Service Register
	DMA1 Write Quality of Service Register
	DMA2 Read Quality of Service Register
	DMA2 Write Quality of Service Register
	DMA3 Read Quality of Service Register
	DMA3 Write Quality of Service Register
	DMA4 Read Quality of Service Register
	DMA4 Write Quality of Service Register
	DMA5 Read Quality of Service Register
	DMA5 Write Quality of Service Register
	DMA6 Read Quality of Service Register
	DMA6 Write Quality of Service Register
	DMA7 Read Quality of Service Register
	DMA7 Write Quality of Service Register
	DMA8 Read Quality of Service Register
	DMA8 Write Quality of Service Register
	DMA9 Read Quality of Service Register
	DMA9 Write Quality of Service Register
	FFT0 Read Quality of Service Register
	FFT0 Write Quality of Service Register
	SINC0 Read Quality of Service Register
	SINC0 Write Quality of Service Register
	M0 Core Read Quality of Service Register
	M0 Core Write Quality of Service Register

	Clock Generation Unit (CGU)
	CGU Features
	CGU Functional Description
	CM41X_M4 CGU Register List
	CM41X_M0 CGU Interrupt List
	CM41X_M4 CGU Interrupt List
	CM41X_M0 CGU Trigger List
	CM41X_M4 CGU Trigger List
	CGU Definitions
	CGU PLL Block Diagram

	CGU Operating Modes
	CGU Power-up Sequence
	CGU Event Control
	Oscillator Watchdog
	GPIO Pin Safe State

	CGU Programming Model
	Configuring CGU Modes
	Changing Clock Frequencies
	Changing the PLL Clock Frequency
	Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency
	Changing the OCLK Frequency
	Aligning All Clocks
	Valid Clock Multiplier Settings

	CM41X_M4 CGU Register Descriptions
	Core Clock Buffer Disable Register
	Core Clock Buffer Status Register
	CLKOUT Select Register
	Control Register
	Clocks Divisor Register
	Oscillator Watchdog Register
	PLL Control Register
	Revision ID Register
	System Clock Buffer Disable Register
	System Clock Buffer Status Register
	Status Register
	Time Stamp Counter 32 LSB Register
	Time Stamp Counter 32 MSB Register
	Time Stamp Control Register
	Time Stamp Counter Initial 32 LSB Value Register
	Time Stamp Counter Initial MSB Value Register

	Oscillator Comparator Unit (OCU)
	OCU Features
	OCU Functional Description
	CM41X_M4 OCU Register List
	Additional OCU Registers
	CM41X_M4 OCU Interrupt List
	OCU Block Diagram
	Input Clock Frequency Measurement
	Performing a Frequency Measurement
	Comparing Measured Frequency Against Limits
	Automatic Frequency Monitoring
	Dead Clock Monitoring
	Control and Status
	Reset Behavior
	MMR Interface
	Outputs
	Clock Domains and Synchronization
	Critical Startup and Shutdown
	OCU Architectural Concepts
	Clock Frequency Measurement
	Clock Frequency Measurement Example
	Dead Clock Detection
	Calibration
	Clock Jitter

	OCU Operating Modes
	OCU Event Control
	OCU Interrupt Signals

	OCU Programming Model
	CM41X_M4 OCU Register Descriptions
	Frequency Measured Count Register
	CLKIN Monitor Reference Count Register
	Control Register
	LFO Monitor Reference Count Register
	Maximum Count Register
	Minimum Limit Register
	Reference Count Register
	Status Register

	System Protection Unit (SPU)
	SPU Features
	SPU Functional Description
	CM41X_M4 SPU Register List
	CM41X_M0 SPU Interrupt List
	CM41X_M4 SPU Interrupt List
	Peripheral Register Write Protection
	Peripheral Register Access Protection

	SPU Block Diagram
	SPU Architectural Concepts
	SPU Event Control
	SPU Programming Model
	SPU Mode Configuration
	Locking Write-Protect Registers
	Protecting a Peripheral
	Access Protecting a Peripheral

	CM41X_M4 SPU Register Descriptions
	Access Protect Register n
	Control Register
	Device Configuration Register
	Interrupt Address Register
	Interrupt Details Register
	Status Register
	Timeout Register
	Write Protect Register n

	ADSP-CM41x Write-Protect and Secure Peripheral Registers

	Dynamic Power Management (DPM)
	DPM Features
	DPM Functional Description
	CM41X_M4 DPM Register List
	DPM Definitions

	DPM Operating Modes
	Reset State
	Full-on Mode
	Deep Sleep Mode

	DPM Event Control
	DPM Programming Model
	Configuring Deep Sleep Mode

	CM41X_M4 DPM Register Descriptions
	Control Register
	Peripherals Disable Register 0
	Revision ID
	Status Register
	Wakeup Enable Register
	Wakeup Polarity Register
	Wakeup Status Register

	System Event Controller (SEC)
	SEC Features
	SEC Functional Description
	CM41X_M4 SEC Register List
	CM41X_M4 SEC Interrupt List
	CM41X_M4 Interrupt List
	CM41X_M0 Interrupt List
	CM41X_M4 SEC Trigger List
	SEC Definitions
	SEC Block Diagram
	SEC Fault Interface (SFI)

	SEC Architectural Concepts
	System Interrupt Acknowledge
	Nested Vectored Interrupt Controller (NVIC)
	Interrupt Request Processing Using the SEC and NVIC
	System Fault Interface (SFI) and the NVIC
	Fault Input Options
	Faults from System Interrupt Sources
	Managing Faults

	SEC Error

	NVIC
	Programming Concepts
	Programming Examples
	Configuring the WDOG Expiry Event to Issue a System Reset
	Configuring a System Interrupt with NVIC
	Configuring FMU as Fault Pin
	Managing Faults Inside a Triggered ISR
	Configuring and Managing Faults (that are also interrupts)

	SEC Programming Restrictions

	CM41X_M4 SEC Register Descriptions
	Fault COP Period Register
	Fault COP Period Current Register
	Fault Control Register
	Fault Delay Register
	Fault Delay Current Register
	Fault End Register
	Fault Source ID Register
	Fault System Reset Delay Register
	Fault System Reset Delay Current Register
	Fault Status Register
	Global Control Register
	Global Status Register
	Global Raise Register
	Source Control Register n
	Source Status Register n

	Trigger Routing Unit (TRU)
	TRU Features
	TRU Functional Description
	CM41X_M4 TRU Register List
	CM41X_M0 TRU Interrupt List
	CM41X_M4 TRU Interrupt List
	CM41X_M0 TRU Trigger List
	CM41X_M0 Trigger List
	CM41X_M4 TRU Trigger List
	TRU Definitions
	TRU Block Diagram
	Inter Core Trigger Communication

	TRU Architectural Concepts
	TRU Programming Model
	Programming Concepts
	Programming Examples
	Configuring a Simple Trigger Sequence
	Toggle a GPIO on Timer Expiry Event

	TRU Event Control
	TRU Status and Error Signals

	Trigger Latencies
	CM41X_M4 TRU Register Descriptions
	Error Address Register
	Global Control Register
	Master Trigger Register
	Slave Select Register
	Status Information Register

	Trigger Timing Unit (TTU)
	TTU Features
	TTU Functional Description
	CM41X_M4 TTU Register List
	CM41X_M4 TTU Trigger List
	TTU Definitions
	TTU Block Diagram
	TTU Architectural Concepts

	TTU Operating Modes
	Single-Shot Mode
	Periodic Mode

	TTU Programming Model
	Programming Concepts

	TTU Programming Examples
	Enabling a Trigger Delay Group
	Gracefully Stopping a Periodic Trigger Delay Group
	Abruptly Disabling a Trigger Delay Group
	Additional Programming Examples

	CM41X_M4 TTU Register Descriptions
	Counter Current Value
	TTU Control Register
	Trigger Output Counter Assignment
	Trigger Output Delay Register
	Counter Period Register
	Revision ID Register
	Counter Status Register
	Counter Stop Request Register
	Counter Check Register

	Static Memory Controller (SMC)
	SMC Features
	SMC Definitions
	SMC Functional Description
	CM41X_M4 SMC Register List
	SMC Architectural Concepts
	Avoiding Bus Contention
	ARDY Input Control

	SMC Operating Modes
	Asynchronous Flash Mode
	Asynchronous Page Mode

	SMC Event Control
	SMC Programmable Timing Characteristics
	Asynchronous SRAM Reads and Writes
	Asynchronous SRAM Reads with IDLE Transition Cycles Inserted
	High-Speed Asynchronous SRAM Read Burst
	High-Speed Asynchronous SRAM Writes
	Asynchronous SRAM Reads with ARDY
	Asynchronous Flash Reads
	Asynchronous Flash Writes
	Asynchronous Flash Page Mode Reads
	Asynchronous FIFO Reads and Writes

	SMC Programming Model
	CM41X_M4 SMC Register Descriptions
	Bank 0 Control Register
	Bank 0 Extended Timing Register
	Bank 0 Timing Register
	Bank 1 Control Register
	Bank 1 Extended Timing Register
	Bank 1 Timing Register
	Bank 2 Control Register
	Bank 2 Extended Timing Register
	Bank 2 Timing Register
	Bank 3 Control Register
	Bank 3 Extended Timing Register
	Bank 3 Timing Register

	Flash Controller (FLC)
	FLC Features
	FLC Functional Description
	CM41X_M4 FLC Register List
	FLC Block Diagram
	FLC Architectural Concepts
	Flash Memory Organization
	Flash Prefetcher
	Information Memory
	ECC Protection
	Non-Volatile Write Control
	Flash Performance Modes

	Flash Operations
	Page Erase (PER)
	Mass Erase (MER)
	Flash Program
	Flash Read
	Flash Sleep Mode and Wake from Sleep (SLPC and WKSL)
	Abort Operation (ABORT)

	FLC Operating Requirements
	FLC Event Control
	Interrupts

	CM41X_M4 FLC Register Descriptions
	Command Address Register
	Command Register
	Command Key Register
	Control Register
	Command Data Register 0
	Command Data Register 1
	Command ECC Register
	Pre-fetcher Fill Count Register
	Interrupt Enable Register
	Pre-fetcher Miss Count Register
	Prefetch Control Register
	Pre-fetcher Reference Count Register
	Revision ID Register
	ECC Single Bit Error Threshold Register
	Status Register
	Power Timing Register

	System Memory Protection Unit (SMPU)
	SMPU Features
	SMPU Functional Description
	CM41X_M4 SMPU Register List
	CM41X_M0 SMPU Interrupt List
	Memory Writes
	Memory Reads
	ID Comparison
	Memory Region
	SMPU Definitions
	SMPU Block Diagram
	SMPU Architectural Concepts

	SMPU Operating Modes
	SMPU Interrupt Signals
	SMPU Status and Error Signals
	SMPU Programming Example
	CM41X_M4 SMPU Register Descriptions
	Bus Error Address Register
	Bus Error Details Register
	SMPU Control Register
	Interrupt Address Register
	Interrupt Details Register
	Region n Address Register
	Region n Control Register
	SMPU Revision ID Register
	Region n ID A Register
	Region n ID B Register
	Region n ID Mask A Register
	Region n ID Mask B Register
	SMPU Status Register

	Cyclic Redundancy Check (CRC)
	CRC Features
	CRC Functional Description
	CM41X_M4 CRC Register List
	CM41X_M4 CRC Interrupt List
	CRC Definitions

	CRC Block Diagram
	Peripheral DMA Bus
	MMR Access Bus
	Mirror Block
	Data FIFO
	DMA Request Generator
	CRC Engine
	Compare Logic

	CRC Architectural Concepts
	Look-up Table
	Data Mirroring
	FIFO Status and Data Requests

	CRC Operating Modes
	Data Transfer Modes
	Memory Scan Compute-and-Compare Mode
	Memory Scan Data Verify
	Memory Transfer Compute-and-Compare Mode
	Memory Transfer Data Fill Mode

	CRC Event Control
	Interrupt Signals

	CRC Programming Model
	CRC Mode Configuration
	Look-up Table Generation
	Core Driven Memory Scan Compute-and-Compare Mode
	DMA Driven Memory Scan Compute-and-Compare Mode
	Core Driven Memory Scan Data Verify Mode
	DMA Driven Memory Scan Data Verify Mode
	Core Driven Memory Transfer Compute-and-Compare Mode
	DMA Driven Memory Transfer Compute-and-Compare Mode
	DMA Driven Memory Transfer Data Fill Mode

	CM41X_M4 CRC Register Descriptions
	Data Compare Register
	Control Register
	Data Word Count Register
	Data Count Capture Register
	Data Word Count Reload Register
	Data FIFO Register
	Fill Value Register
	Interrupt Enable Register
	Interrupt Enable Clear Register
	Interrupt Enable Set Register
	Polynomial Register
	CRC Current Result Register
	CRC Final Result Register
	Status Register

	Direct Memory Access (DMA)
	DMA Channel Features
	DMA Channel Functional Description
	CM41X_M4 DMA Register List
	CM41X_M4 DMA Channel List
	DMA Definitions
	Block Diagram
	Architectural Concepts
	DMA Controller Multiplexing
	DMA Channel SCB Interface
	SCB Interface Signals
	Data Address Alignment
	Descriptor Set Address Alignment

	DMA Channel Peripheral DMA Bus
	Peripheral Control Commands
	Peripheral-Control Command Restrictions

	Memory DMA and Triggering
	DMA Channel MMR Access Bus
	DMA Channel Operation Flow
	Startup Flow
	Refresh Flow
	Work Unit Transition Flow
	Transfer Termination and Shutdown Flow

	DMA Channel Errors
	Status and Debug Errors
	DMA Configuration Register Errors
	Illegal Register Write During Run
	Address Alignment Error
	Memory Access Error
	Trigger Overrun Error
	Bandwidth-Monitor Error
	Control Interface Error

	DMA Operating Modes
	Register-Based Flow Modes
	Stop Mode
	Autobuffer Mode

	Descriptor-Based Flow Modes
	Descriptor-Array Mode
	Descriptor-List Mode
	Descriptor-On-Demand Modes

	Data Transfer Modes
	Two-Dimensional DMA

	DMA Channel Event Control
	Event Signals
	Work Unit State Events
	Peripheral Interrupt Request Events
	Peripheral Data Request Events
	DMA Channel Triggers
	Issuing Triggers
	Waiting For Triggers

	DMA Channel Programming Model
	Mode Configuration
	Register-Based Linear-Buffer Stop Flow Mode
	Register-Based Autobuffer Flow Mode
	Descriptor-Array Flow Mode
	Descriptor-List Flow Mode
	Register-Based Memory-to-Memory Transfer in Stop Flow Mode

	Programming Concepts
	Synchronization of Software and DMA
	Interrupt and Trigger Event-Based Synchronization
	Register Polling Based Synchronization

	Descriptor Queues
	Queues Using Event Generation for Every Descriptor Set
	Queues Using Minimal Events

	CM41X_M4 DMA Register Descriptions
	Start Address of Current Buffer Register
	Current Address Register
	Bandwidth Limit Count Register
	Bandwidth Limit Count Current Register
	Bandwidth Monitor Count Register
	Bandwidth Monitor Count Current Register
	Configuration Register
	Current Descriptor Pointer Register
	Pointer to Next Initial Descriptor Register
	Previous Initial Descriptor Pointer Register
	Status Register
	Inner Loop Count Start Value Register
	Current Count (1D) or Intra-row XCNT (2D) Register
	Inner Loop Address Increment Register
	Outer Loop Count Start Value (2D only) Register
	Current Row Count (2D only) Register
	Outer Loop Address Increment (2D only) Register

	General-Purpose Ports (PORT)
	PORT Features
	PORT Functional Description
	CM41X_M4 PORT Register List
	CM41X_M4 PORT Trigger List
	CM41X_M4 PINT Register List
	CM41X_M4 PINT Interrupt List
	CM41X_M0 PINT Interrupt List
	CM41X_M4 PINT Trigger List
	CM41X_M0 PINT Trigger List
	PORT Architectural Concepts
	Internal Interfaces
	External Interfaces
	GPIO Pin Function
	Input Mode
	Output Mode
	Trigger Toggle Mode
	Open-Drain Mode

	Port Multiplexing Control

	PORT Event Control
	PORT Interrupt Signals
	GPIO Pin Safe State

	PORT Programming Model
	CM41X_M4 PORT Register Descriptions
	Port x GPIO Data Register
	Port x GPIO Data Clear Register
	Port x GPIO Data Set Register
	Port x GPIO Output Toggle Register
	Port x GPIO Direction Register
	Port x GPIO Direction Clear Register
	Port x GPIO Direction Set Register
	Port x Function Enable Register
	Port x Function Enable Clear Register
	Port x Function Enable Set Register
	Port x GPIO Input Enable Register
	Port x GPIO Input Enable Clear Register
	Port x GPIO Input Enable Set Register
	Port x GPIO Lock Register
	Port x Multiplexer Control Register
	Port x GPIO Polarity Invert Register
	Port x GPIO Polarity Invert Clear Register
	Port x GPIO Polarity Invert Set Register
	Port x GPIO Trigger Toggle Register

	CM41X_M4 PINT Register Descriptions
	PINT Assign Register
	PINT Edge Clear Register
	PINT Edge Set Register
	PINT Invert Clear Register
	PINT Invert Set Register
	PINT Latch Register
	PINT Mask Clear Register
	PINT Mask Set Register
	PINT Pin State Register
	PINT Request Register

	General-Purpose Timer (TIMER)
	GP Timer Features
	CM41X_M4 TIMER Register List
	CM41X_M0 TIMER Interrupt List
	CM41X_M4 TIMER Interrupt List
	CM41X_M0 TIMER Trigger List
	CM41X_M4 TIMER Trigger List
	Internal Interface
	External Interface

	GP Timer Operating Modes
	General Operation
	Period, Width and Delay Register Interaction

	Single-Pulse PWMOUT Mode
	Continuous PWMOUT Mode
	Width Capture (WIDCAP) Mode
	Width Capture Mode Overflow

	Windowed Watchdog (WATCHDOG) Modes
	Windowed Watchdog Width Mode
	Windowed Watchdog Period Mode

	Pin Interrupt (PININT) Mode
	External Clock (EXTCLK) Mode

	GP Timer Programming Concepts
	Setting Up Constantly Changing Timer Conditions
	Configuring, Enabling, and Disabling One or More Timers
	Configuring Timer Data and Status Interrupts
	Configuring the Timer as a Trigger Slave
	Using the Timer Broadcast Feature

	Timer Illegal States
	Continuous PWMOUT Mode
	Single Pulse PWMOUT Mode
	WIDCAP Mode
	EXTCLK Mode
	WATCHDOG Events

	CM41X_M4 TIMER Register Descriptions
	Broadcast Delay Register
	Broadcast Period Register
	Broadcast Width Register
	Data Interrupt Latch Register
	Data Interrupt Mask Register
	Error Type Status Register
	Run Register
	Run Clear Register
	Run Set Register
	Status Interrupt Latch Register
	Status Interrupt Mask Register
	Stop Configuration Register
	Stop Configuration Clear Register
	Stop Configuration Set Register
	Timer n Configuration Register
	Timer n Counter Register
	Timer n Delay Register
	Timer n Period Register
	Timer n Width Register
	Trigger Slave Enable Register
	Trigger Master Mask Register

	Capture Timer (CPTMR)
	CPTMR Functional Description
	CPTMR Block Diagram
	CM41X_M4 CPTMR Register List
	CM41X_M4 CPTMR Trigger List
	CM41X_M0 CPTMR Interrupt List
	CM41X_M4 CPTMR Interrupt List

	CPTMR Operation
	CPTMR Interrupt Signals
	CM41X_M4 CPTMR Register Descriptions
	Configuration Register
	Counter Register
	Data Interrupt Latch Status Register
	Data Interrupt Mask Register
	Data Interrupt Mask Clear Register
	Data Interrupt Mask Set Register
	Run Register
	Run Clear Register
	Run Set Register
	Interrupt Latch Status Register
	Status Interrupt Mask Register
	Status Interrupt Mask Clear Register
	Status Interrupt Mask Set Register
	On-time Capture Register

	Watchdog Timer (WDOG)
	WDOG Features
	WDOG Functional Description
	CM41X_M4 WDOG Register List
	CM41X_M4 WDOG Interrupt List
	CM41X_M0 WDOG Interrupt List
	WDOG Block Diagram
	Internal Interface
	External Interface

	CM41X_M4 WDOG Register Descriptions
	Count Register
	Control Register
	Watchdog Timer Status Register

	General-Purpose Counter (CNT)
	GP Counter Features
	GP Counter Functional Description
	CM41X_M4 CNT Register List
	CM41X_M4 CNT Interrupt List
	CM41X_M4 CNT Trigger List

	GP Counter Operating Modes
	Quadrature Encoder Mode
	Binary Encoder Mode
	Up/Down Counter Mode
	Direction Counter Mode
	Timed Direction Mode
	M/N Scaling
	M/N Stop Detection
	M/N Error Condition
	M/N Restrictions

	GP Counter Programming Model
	GP Counter General Programming Flow
	M/N Scaling Programming Guidelines
	GP Counter Mode Configuration
	Configuring GP Counter Push-Button Operation
	Configuring Zero-Marker-Zeros-Counter Mode
	Configuring Zero-Marker-Error Mode
	Configuring Zero-Once Mode
	Configuring Boundary Auto-Extend Mode
	Configuring Boundary Capture Mode
	Configuring Boundary Compare and Boundary Zero Modes
	Configuring GP Counter Push-Button Operation

	GP Counter Programming Concepts
	CNT Input Noise Filtering
	Capturing Counter Interval and CNT_CNTR Read Timing
	Capturing Time Interval Between Successive Counter Events

	GP Counter Event Control
	Illegal Gray and Binary Code Events
	Up/Down Count Events
	Zero-Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	CM41X_M4 CNT Register Descriptions
	Configuration Register
	Command Register
	Counter Register
	Debounce Register
	Interrupt Mask Register
	Maximum Count Register
	M Value for Divider
	Minimum Count Register
	N Value for Divider
	Status Register

	Debounce Filter (DBC)
	DBC Features
	DBC Functional Description
	Block Diagram
	DBC Architectural Concepts

	DBC Operating Modes
	Bypass Mode (Disabled)
	Counter Filter Mode
	Accumulator Filter Mode
	Input Prescaling Modes

	Programming Model
	Register Descriptions

	Pulse-Width Modulator (PWM)
	PWM Features
	Functional Description
	CM41X_M4 PWM Register List
	Additional PWM Registers
	CM41X_M4 PWM Interrupt List
	CM41X_M4 PWM Trigger List
	PWM Definitions
	Architectural Concepts
	Block Diagram
	Timer Units
	PWM Timer Period (PWM_TM) Registers
	Timer Unit Operation
	Phase Offset Control

	Channel Timing Control Unit
	Channel Control
	Pulse Positioning and Duty Cycle Registers
	Duty Cycle and Pulse Positioning Control
	Channel Low Side Output Dependent Operation Mode and Dead Time
	Channel High Side and Low Side Outputs, Independent Operation Mode
	Switched Reluctance Motors Application
	Switching Dead Time (PWM_DT) Register
	Duty Cycle with Dead Time Control: Calculations for PULSEMODE 00
	Special Consideration for PWM Operation in Over-Modulation

	Gate Drive Unit

	Output Control Feature Precedence

	Operating Modes
	Sync Operation Modes
	Synchronizing Other Devices
	Internal PWM Sync Generation

	External (Triggered) PWM Sync Generation

	Output Disable and Cross-Over Modes
	Brushless DC Motor (Electronically Commutated Motor) Control

	Heightened-Precision Edge Placement
	Sample Waveforms for High- and Low-Side with Precision Placement

	Emulation Mode

	Event Control
	Trip Control Unit
	Trip Mechanisms
	Output Pin Safe State

	Programming Model
	Programming Model for Three-Phase AC Motor Control
	PWM Initialization for Motor Control
	PWM Enable for Motor Control
	PWM Response to Sync Interrupt for Motor Control
	PWM Disable (and Stop the Motor) for Motor Control

	CM41X_M4 PWM Register Descriptions
	Channel A Control Register
	Channel A-High Duty-0 Register
	Channel A-High Heightened-Precision Duty-0 Register
	Channel A-High Duty-1 Register
	Channel A-High Heightened-Precision Duty-1 Register
	Channel A-High Full Duty0 Register
	Channel A-High Full Duty1 Register
	Channel A-Low Duty-0 Register
	Channel A-Low Heightened-Precision Duty-0 Register
	Channel A-Low Duty-1 Register
	Channel A-Low Heightened-Precision Duty-1 Register
	Channel A-Low Full Duty0 Register
	Channel A-Low Full Duty1 Register
	Channel B Control Register
	Channel B-High Duty-0 Register
	Channel B-High Heightened-Precision Duty-0 Register
	Channel B-High Duty-1 Register
	Channel B-High Heightened-Precision Duty-1 Register
	Channel B-High Full Duty0 Register
	Channel B-High Full Duty1 Register
	Channel B-Low Duty-0 Register
	Channel B-Low Heightened-Precision Duty-0 Register
	Channel B-Low Duty-1 Register
	Channel B-Low Heightened-Precision Duty-1 Register
	Channel B-Low Full Duty0 Register
	Channel B-Low Full Duty1 Register
	Channel C Control Register
	Channel C-High Pulse Duty Register 0
	Channel C-High Pulse Heightened-Precision Duty Register 0
	Channel C-High Pulse Duty Register 1
	Channel C-High Pulse Heightened-Precision Duty Register 1
	Channel Configuration Register
	Channel A Dead-time Register
	Channel B Dead-time Register
	Channel C Dead-time Register
	Channel D Dead-time Register
	Chop Configuration Register
	Channel C-High Full Duty0 Register
	Channel C-High Full Duty1 Register
	Channel C-Low Pulse Duty Register 0
	Channel C-Low Pulse Duty Register 1
	Channel C-Low Duty-1 Register
	Channel C-Low Heightened-Precision Duty-1 Register
	Channel C-Low Full Duty0 Register
	Channel C-Low Full Duty1 Register
	Control Register
	Channel D Control Register
	Channel D-High Duty-0 Register
	Channel D-High Pulse Heightened-Precision Duty Register 0
	Channel D-High Pulse Duty Register 1
	Channel D High Pulse Heightened-Precision Duty Register 1
	Channel D-High Full Duty0 Register
	Channel D-High Full Duty1 Register
	Channel D-Low Pulse Duty Register 0
	Channel D-Low Heightened-Precision Duty-0 Register
	Channel D-Low Pulse Duty Register 1
	Channel D-Low Heightened-Precision Duty-1 Register
	Channel A Delay Register
	Channel B Delay Register
	Channel C Delay Register
	Channel D Delay Register
	Channel D-Low Full Duty0 Register
	Channel D-Low Full Duty1 Register
	Interrupt Latch Register
	Interrupt Mask Register
	Status Register
	Software Trip Register
	Sync Pulse Width Register
	Timer 0 Period Register
	Timer 1 Period Register
	Timer 2 Period Register
	Timer 3 Period Register
	Timer 4 Period Register
	Trip Configuration Register
	Trip Polarity Register

	Universal Asynchronous Receiver/Transmitter (UART)
	UART Features
	UART Functional Description
	CM41X_M4 UART Register List
	CM41X_M4 UART Interrupt List
	CM41X_M0 UART Interrupt List
	Trigger List
	CM41X_M4 UART DMA Channel List
	UART Block Diagram
	UART Architectural Concepts
	Internal Interface
	External Interface
	Hardware Flow Control
	Bit Rate Generation
	Autobaud Detection
	UART Debug Features

	UART Operating Modes
	UART Mode
	IrDA SIR Mode
	Multi-Drop Bus Mode
	UART Data Transfer Modes
	UART Mode Transmit Operation (Core)
	UART Mode LIN Break Command
	UART Mode Receive Operation (Core)
	IrDA Transmit Operation
	IrDA Receive Operation
	MDB Transmit Operation
	MDB Receive Operation
	DMA Mode
	Mixing DMA and Core Modes
	Setting Up Hardware Flow Control

	UART Event Control
	Interrupt Masks
	Interrupt Servicing
	Transmit Interrupts
	Receive Interrupts
	Status Interrupts
	Multi-Drop Bus Events

	UART Programming Model
	Detecting Autobaud
	Using Common Initialization Steps
	Using Core Transfers
	Using DMA Transfers
	Using Interrupts
	Setting Up Hardware Flow Control

	CM41X_M4 UART Register Descriptions
	Clock Rate Register
	Control Register
	Interrupt Mask Register
	Interrupt Mask Clear Register
	Interrupt Mask Set Register
	Receive Buffer Register
	Receive Shift Register
	Receive Counter Register
	Scratch Register
	Status Register
	Transmit Address/Insert Pulse Register
	Transmit Hold Register
	Transmit Shift Register
	Transmit Counter Register

	Two-Wire Interface (TWI)
	TWI Features
	TWI Functional Description
	CM41X_M4 TWI Register List
	CM41X_M4 TWI Interrupt List
	CM41X_M0 TWI Interrupt List
	TWI Block Diagram
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)

	Internal Interface

	TWI Architectural Concepts
	TWI Protocol
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI Operating Modes
	Repeated Start
	Transmit Receive Repeated Start
	Receive Transmit Repeated Start
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start

	TWI Programming Model
	General Setup
	Slave Mode
	Master Mode Program Flow
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive

	CM41X_M4 TWI Register Descriptions
	SCL Clock Divider Register
	Control Register
	FIFO Control Register
	FIFO Status Register
	Interrupt Mask Register
	Interrupt Status Register
	Master Mode Address Register
	Master Mode Control Registers
	Master Mode Status Register
	Rx Data Double-Byte Register
	Rx Data Single-Byte Register
	Slave Mode Address Register
	Slave Mode Control Register
	Slave Mode Status Register
	Tx Data Double-Byte Register
	Tx Data Single-Byte Register

	Controller Area Network (CAN)
	CAN Features
	CAN Functional Description
	CM41X_M4 CAN Register List
	CM41X_M4 CAN Interrupt List
	CM41X_M0 CAN Interrupt List
	CM41X_M0 CAN Trigger List
	CM41X_M4 CAN Trigger List
	External Interface
	Architectural Concepts
	Block Diagram
	Mailbox Control
	Protocol Fundamentals

	CAN Operating Modes
	Data Transfer Modes
	Transmit Operations
	Retransmission
	Single-Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filtering

	Watchdog Mode
	Time Stamps
	Remote Frame Handling
	Temporarily Disabling CAN Mailbox

	Bit Timing
	CAN Low Power Features
	Built-In Suspend Mode
	Built-In Sleep Mode
	Soft Reset

	CAN Event Control
	CAN Interrupt Signals
	Mailbox Interrupts
	Global Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	Error Handling
	Error Frames
	Error Levels

	CAN Debug and Test Modes

	CM41X_M4 CAN Register Descriptions
	Abort Acknowledge 1 Register
	Abort Acknowledge 2 Register
	Acceptance Mask (H) Register
	Acceptance Mask (L) Register
	Error Counter Register
	Clock Register
	CAN Master Control Register
	Debug Register
	Error Status Register
	Error Counter Warning Level Register
	Global CAN Interrupt Flag Register
	Global CAN Interrupt Mask Register
	Global CAN Interrupt Status Register
	Interrupt Pending Register
	Mailbox Interrupt Mask 1 Register
	Mailbox Interrupt Mask 2 Register
	Mailbox Receive Interrupt Flag 1 Register
	Mailbox Receive Interrupt Flag 2 Register
	Temporary Mailbox Disable Register
	Mailbox Transmit Interrupt Flag 1 Register
	Mailbox Transmit Interrupt Flag 2 Register
	Mailbox Word 0 Register
	Mailbox Word 1 Register
	Mailbox Word 2 Register
	Mailbox Word 3 Register
	Mailbox ID 0 Register
	Mailbox ID 1 Register
	Mailbox Length Register
	Mailbox Time Stamp Register
	Mailbox Configuration 1 Register
	Mailbox Configuration 2 Register
	Mailbox Direction 1 Register
	Mailbox Direction 2 Register
	Overwrite Protection/Single Shot Transmission 1 Register
	Overwrite Protection/Single Shot Transmission 2 Register
	Remote Frame Handling 1 Register
	Remote Frame Handling 2 Register
	Receive Message Lost 1 Register
	Receive Message Lost 2 Register
	Receive Message Pending 1 Register
	Receive Message Pending 2 Register
	Status Register
	Transmission Acknowledge 1 Register
	Transmission Acknowledge 2 Register
	Timing Register
	Transmission Request Reset 1 Register
	Transmission Request Reset 2 Register
	Transmission Request Set 1 Register
	Transmission Request Set 2 Register
	Universal Counter Configuration Mode Register
	Universal Counter Register
	Universal Counter Reload/Capture Register

	Serial Peripheral Interface (SPI)
	SPI Features
	SPI Functional Description
	CM41X_M4 SPI Register List
	CM41X_M0 SPI Interrupt List
	CM41X_M4 SPI Interrupt List
	SPI ITrigger List
	CM41X_M4 SPI DMA Channel List
	SPI Block Diagram
	Transfer Protocol
	Clock Considerations
	Controlling Delay Between Frames
	Flow Control
	Slave Select Operation
	Beginning and Ending a Non-DMA SPI Transfer
	Transmit Operation in Non-DMA Mode
	Receive Operation in Non-DMA Mode
	DMA and Interrupt Multiplexing
	Dual I/O Mode
	Quad I/O Mode (SPI2 only)
	Fast Mode

	SPI Interrupt Signals
	Data Interrupts
	Status Interrupts
	Error Conditions

	SPI Programming Concepts
	Master Operation in Non-DMA Modes
	Slave Operation in Non-DMA Modes
	Configuring DMA Master Mode
	Configuring DMA Slave Mode Operation

	CM41X_M4 SPI Register Descriptions
	Clock Rate Register
	Control Register
	Delay Register
	Masked Interrupt Condition Register
	Masked Interrupt Clear Register
	Interrupt Mask Register
	Interrupt Mask Clear Register
	Interrupt Mask Set Register
	Receive FIFO Data Register
	Received Word Count Register
	Received Word Count Reload Register
	Receive Control Register
	Slave Select Register
	Status Register
	Transmit FIFO Data Register
	Transmitted Word Count Register
	Transmitted Word Count Reload Register
	Transmit Control Register

	Serial Port (SPORT)
	Features
	Signal Descriptions
	Functional Description
	CM41X_M4 SPORT Register List
	CM41X_M4 SPORT Interrupt List
	SPORT Trigger List
	CM41X_M4 SPORT DMA Channel List
	Block Diagram
	Architectural Concepts
	Multiplexer Logic

	Data Types and Companding
	Companding as a Function

	Transmit Path
	Receive Path

	Operating Modes and Options
	Serial Word Length
	Clock Sample and Drive Edges
	Frame Sync Options
	Data-Dependent versus Data-Independent Frame Syncs
	Support for Edge-Detected and Level-Sensitive Frame Syncs
	Early versus Late Frame Syncs
	Framed versus Unframed Frame Syncs
	Frame Sync Polarity
	Premature Frame Sync Error Detection

	Mode Selection
	Standard DSP Serial Mode
	Stereo Modes
	I2S Mode
	Left-Justified Mode
	Right-Justified Mode

	Multichannel (TDM) Mode
	Packed I2S Mode
	Gated Clock Mode

	Data Transfers and Interrupts
	Data Buffers
	Data Buffer Status

	Single-Word (Core) Transfers
	DMA Transfers
	Data Transfer Interrupt
	Error Detection (Status) Interrupt

	SPORT Programming Model
	Initializing Core-Driven (Non-MCM) Transfers
	Initializing Multichannel Transfers
	Using DMA for SPORT Transfers
	Using Companding as a Function

	CM41X_M4 SPORT Register Descriptions
	Half SPORT 'A' Multichannel 0-31 Select Register
	Half SPORT 'B' Multichannel 0-31 Select Register
	Half SPORT 'A' Multichannel 32-63 Select Register
	Half SPORT 'B' Multichannel 32-63 Select Register
	Half SPORT 'A' Multichannel 64-95 Select Register
	Half SPORT 'B' Multichannel 64-95 Select Register
	Half SPORT 'A' Multichannel 96-127 Select Register
	Half SPORT 'B' Multichannel 96-127 Select Register
	Half SPORT 'A' Control 2 Register
	Half SPORT 'B' Control 2 Register
	Half SPORT 'A' Control Register
	Half SPORT 'B' Control Register
	Half SPORT 'A' Divisor Register
	Half SPORT 'B' Divisor Register
	Half SPORT 'A' Error Register
	Half SPORT 'B' Error Register
	Half SPORT 'A' Multichannel Control Register
	Half SPORT 'B' Multichannel Control Register
	Half SPORT 'A' Multichannel Status Register
	Half SPORT 'B' Multichannel Status Register
	Half SPORT 'A' Rx Buffer (Primary) Register
	Half SPORT 'B' Rx Buffer (Primary) Register
	Half SPORT 'A' Rx Buffer (Secondary) Register
	Half SPORT 'B' Rx Buffer (Secondary) Register
	Half SPORT 'A' Tx Buffer (Primary) Register
	Half SPORT 'B' Tx Buffer (Primary) Register
	Half SPORT 'A' Tx Buffer (Secondary) Register
	Half SPORT 'B' Tx Buffer (Secondary) Register

	Analog-to-Digital Converter Controller (ADCC)
	ADCC Features
	ADCC Functional Description
	CM41X_M4 ADCC Register List
	CM41X_M0 ADCC Interrupt List
	CM41X_M4 ADCC Interrupt List
	CM41X_M0 ADCC Trigger List
	CM41X_M4 ADCC Trigger List
	ADC to ADCC Interface
	ADC Multiplexed Input Scheme
	ADCC Block Diagram
	ADCC Signal Descriptions
	ADC1 and ADC2 Timing Calculation
	ADC0 Timing Calculation
	Timing and Control Unit
	General Operation
	Introduction to Events
	Event Examples
	ADCC Operation Example - Event Overlapped
	ADCC Operation Example - Event Tightly Pipelined

	ADCC Architectural Concepts
	Core and DMA Interfaces
	Trigger Inputs
	Timers
	Event Register Banks
	Event Comparators
	Pending Event FIFO

	ADCC Operating Modes
	Data Transfer Modes
	Core-Driven Data Read Mode
	DMA-Driven Data Read Mode
	DMA Bandwidth Monitoring

	Simultaneous Sampling Mode
	Diagnostic Mode

	ADCC Event Control (SEC and TRU Related)
	Interrupt Status
	Error Status
	Pending, Frame, and Delay Status
	Event Handling Latency

	ADCC Programming Concepts
	ADCC Control and Timing Registers
	Control Word Format
	ADCC Continuous Sampling Sequence
	Initializing the AFE
	AFEOK Signal
	6x Sampling
	Precise Event Timing
	General Programming Guidelines
	Event and Sample Timing Relationships

	Programming Model
	AFE Register Access Programming Model
	Control Word for Register Access
	AFE Registers (AFE_Regs.h)
	Programming Sequence
	AFE Initialization
	Verifying AFE_OK Signal
	Initializing ADC Timing and Configuration
	Frame Setup 1x Sampling
	Frame Capture

	CM41X_M4 ADCC Register Descriptions
	ADC2 Interface RW Access Register
	ADC2 Interface RW Access Register
	Base Pointer 0 Register
	DMA Base Pointer 1 Register
	Bandwidth Monitor 0 Register
	Bandwidth Monitor 1 Register
	Timer0 Circular Buffer DMA Wrap Number Register
	Timer1 Circular Buffer DMA Wrap Number Register
	Circular Buffer Size 0 Register
	Circular Buffer Size 1 Register
	Control Register
	Data Overflow Indication Register
	Event Collision Status Register
	Event Interrupt Mask Register
	Event Interrupt Mask Clear Register
	Event Interrupt Mask Set Register
	Event Interrupt Status Register
	Event Miss Status Register
	Pending Events Status Register
	Error Mask Register
	Error Mask Clear Register
	Error Mask Set Register
	Error Status Register
	Event n Control Register
	Event n Data Register
	Event n Status Register
	Event Enable Register
	Event Enable Clear Register
	Event Enable Set Register
	Event n Time Register
	Frame Interrupt Mask Register
	Frame Interrupt Mask Clear Register
	Frame Interrupt Mask Set Register
	Frame Interrupt Status Register
	Frame Increment 0 Register
	Frame Increment 1 Register
	Timer0 Frame Limit Count Register
	Timer1 Frame Limit Count Register
	Timer 0 Status Register
	Timer 1 Status Register
	Timing Control A (ADC0) Register
	Timing Control A (ADC1) Register
	Timing Control B (ADC0) Register
	Timing Control B (ADC1) Register
	Timer 0 Current Count Register
	Timer 1 Current Count Register
	Trigger Count TIMER0 Register
	Trigger Count TIMER1 Register

	Digital-to-Analog Converter Controller (DACC)
	DACC Features
	DACC Functional Description
	CM41X_M4 DACC Register List
	DACC Signal Descriptions
	DACC Architectural Concepts
	DACC Block Diagram
	Core and DMA Interfaces
	Pending Data FIFO

	DACC Operating Modes
	Data Transfer Modes
	Core-Driven Data Write Mode
	DMA-Driven Data Write Mode

	Data Length and Update Options
	Clock Modes
	Frame Sync Modes
	Broadcast Control Option

	DACC Event Control
	Interrupt Status
	Error Status
	Pending Status

	DACC Programming Concepts
	DACC Programming Model
	Core Mode Operation Flow
	DMA Mode Operation Flow
	DAC Selection

	CM41X_M4 DACC Register Descriptions
	Broadcast (Write) Control Register
	Base Pointer 0 Register
	Count 0 Register
	Current Count 0 Register
	Control 0 Register
	Data FIFO 0 Register
	Error Mask Register
	Error Mask Clear Register
	Error Mask Set Register
	Error Status Register
	Interrupt Mask Register
	Interrupt Mask Clear Register
	Interrupt Mask Set Register
	Interrupt Status Register
	Modify 0 Register
	Status Register
	Timing Control 0 Register

	Fast Over Current Protection (FOCP)
	FOCP Features
	FOCP Functional Description
	Architectural Concepts
	FOCP Block Diagram

	FOCP Programming Concepts
	Programming Examples
	Programming FOCP Comparators to Detect Over Current
	Re-initializing FOCP Comparators
	Verifying Comparator Limit
	Enabling FOCP Fault Clock Detection

	FOCP Register Descriptions

	Harmonic Analysis Engine (HAE)
	HAE Features
	HAE Functional Description
	CM41X_M4 HAE Register List
	CM41X_M0 HAE Interrupt List
	CM41X_M4 HAE Interrupt List
	SPORT Trigger List
	CM41X_M4 HAE DMA Channel List
	HAE Block Diagram
	HAE Architectural Concepts
	Harmonic Engine
	Harmonic Analyzer
	Data Transfer Module
	Results Memory
	HAE Results Upper Byte ID
	HAE Result Ranges and Formats

	HAE Operating Modes
	HAE Data Transfer Modes

	HAE Event Control
	HAE Interrupt Signals
	HAE Status and Error Signals

	HAE Programming Model
	HAE Programming Concepts
	Theory of Operation
	Initialization
	Harmonic Calculations
	Configuring Harmonic Calculations Update Rate

	CM41X_M4 HAE Register Descriptions
	Configuration 0 Register
	Configuration 1 Register
	Configuration 2 Register
	Configuration 3 Register
	Configuration 4 Register
	DIDT Coefficient Register
	DIDT Gain Register
	Harmonic n Index Register
	I (Current) Sample Register
	I (Current) Waveform Register
	Run Register
	Status Register
	Voltage Level Register
	V (Voltage) Sample Register
	V (Voltage) Waveform Register

	Sinus Cardinalis (SINC) Filter
	SINC Filter Features
	SINC Functional Description
	CM41X_M4 SINC Register List
	CM41X_M4 SINC Interrupt List
	CM41X_M4 SINC Trigger List
	SINC Definitions
	SINC Block Diagram
	SINC Architectural Concepts
	Digital Filter
	DC Gain and Data Resolution
	Frequency Response
	Output Scaling

	SINC Operating Modes
	SINC Data Transfer Modes
	SINC Signal Modes

	SINC Event Control
	SINC Interrupt Signals
	SINC Status and Error Signals

	SINC Programming Model
	SINC Programming Concepts
	Channel Configuration
	Trigger Masking
	Interrupt Masking
	Modulator Clock
	Filter Configuration
	Primary Filter Parameters
	Primary DMA Configuration and Data Interrupts
	Secondary Filter Parameters
	Overload Detection

	CM41X_M4 SINC Register Descriptions
	Bias for Group 0 Register
	Bias for Group 1 Register
	Clock Control Register
	Control Register
	History Status Register
	Level Control for Group 0 Register
	Level Control for Group 1 Register
	(Amplitude) Limits for Secondary Filter 0 Register
	(Amplitude) Limits for Secondary Filter 1 Register
	(Amplitude) Limits for Secondary Filter 2 Register
	(Amplitude) Limits for Secondary Filter 3 Register
	Pair 0 Secondary (Filter) History n Register
	Pair 1 Secondary (Filter) History n Register
	Pair 2 Secondary (Filter) History n Register
	Pair 3 Secondary (Filter) History n Register
	Primary (Filters) Head for Group 0 Register
	Primary (Filters) Head for Group 1 Register
	Primary (Filters) Pointer for Group 0 Register
	Primary (Filters) Pointer for Group 1 Register
	Primary (Filters) Tail for Group 0 Register
	Primary (Filters) Tail for Group 1 Register
	Rate Control for Group 0 Register
	Rate Control for Group 1 Register
	Status Register

	MATH Accelerator Unit
	MATH Features
	MATH Functional Description
	CM41X_M4 MATH Interrupt List
	CM41X_M4 MATH Register List
	MATH Block Diagram
	MATH Definitions
	MATH Architectural Concepts
	Supported Operand Functions
	Argument Normal and Full Domains
	Numerical Error

	MATH Programming Model
	MATH Programming Concepts
	MATH Assembler Programming Model

	MATH Operation Flow
	Initiation of MATH Unit Operations
	MATH Unit Results, Status, and Stalls
	MATH Unit States and Sequence Error
	IDLE State
	YPARTIAL State
	BUSY State
	Unknown State

	MATH Unit Context
	Components of the MATH Unit Context
	Reading Operand Register Context
	Interrupts in MATH Unit Operations

	CM41X_M4 MATH Register Descriptions
	arccos(x) Function Register
	arcsin(x) Function Register
	arctan(y/x) Function x Operand Register
	arctan(y/x) Function y Operand Register
	arctan(x) Function Register
	cos(x) Function Register
	Math Unit Interrupt Enable Control
	exp2(x) Function Register
	exp(x) Function Register
	Math Unit Function Status Register
	Generic X Function Register (GX)
	Generic Y Function Register (GY)
	hypot(x,y) Function x Operand Register
	hypot(x,y) Function y Operand Register
	Math Unit Interrupt Register
	ln(x) Function Register
	log2(x) Function Register
	Polar to Rectangular Function a Operand Register
	Polar to Rectangular Function r Operand Register
	Reciprocal(x) or 1/x Function Register
	Math Unit Function Result 1
	Math Unit Function Result 2
	Rectangular to Polar Function x Operand Register
	Rectangular to Polar Function y Operand Register
	sin(x) Function Register
	Square Root or sqrt(x) Function
	Math Unit Function State Status Register
	tan(x) Function Register

	Floating-Point Saturation Unit (FSAT)
	Functional Description
	Supported ARM Cortex-M4P Configuration
	Programming Model, Enable FSAT
	Event Control
	Register Descriptions

	Logic Block Array (LBA)
	LBA Features
	LBA Functional Description
	CM41X_M4 LBA Trigger List
	CM41X_M4 LBA Interrupt List
	CM41X_M4 LBA0 Register List
	LBA Block Diagram
	LBA Architectural Concepts
	Registered Output

	LBA Operating Modes
	Product Term Array Mode
	Look-up Table Mode
	Registered Output Mode
	Combinatorial Mode

	LBA Event Control
	LBA Programming Concepts
	LBA Programming Examples
	Look-up Table Mode Example
	Product Term Array Mode Examples

	CM41X_M4 LBA0 Register Descriptions
	Logic Block Control Register
	Logic Block Function 0 Register
	Logic Block Function 1 Register
	Logic Block Function 2 Register
	Logic Block Function 3 Register
	Logic Block Function 4 Register
	Logic Block Function 5 Register
	Logic Block Function 6 Register
	Logic Block Function 7 Register
	Logic Block Array Configuration Register
	Logic Block Array Clock Divisor Register
	Logic Block Array Data Input Register
	Logic Block Array Pin Direction Register
	Logic Block Array Data Output Register
	Logic Block Array GPIO Input Synchronization Control Register

	Mailbox (MBOX)
	MBOX Features
	MBOX Functional Description
	CM41X_M0 MBOX_PORT0 Register List
	CM41X_M4 MBOX_PORT1 Register List
	CM41X_M0 MBOX Interrupt List
	CM41X_M4 MBOX Interrupt List
	CM41X_M4 MBOX Trigger List
	MBOX Block Diagram
	MBOX Architectural Concepts
	Memory Initialization
	Memory Refresh
	Memory Access
	Exclusive Memory Access
	Exclusive Access from the ARM Cortex-M4
	Exclusive Access from the ARM Cortex-M0
	Error Correction Code (ECC)

	MBOX Event Control and Interrupts
	CM41X_M0 MBOX_PORT0 Register Descriptions
	Port 0 Control Register
	Port 0 ECC Status Register
	Port 0 Force IRQ Register
	Port 0 Status Register

	CM41X_M4 MBOX_PORT1 Register Descriptions
	Port 1 Control Register
	Port 1 ECC Status Register
	Port 1 Force IRQ Register
	Auto-refresh Address Register
	Auto-refresh Counter Register
	Auto-refresh Period Register
	Port 1 Status Register

	Voltage Monitoring Unit (VMU)
	VMU Features
	VMU Functional Description
	CM41X_M4 PADS Register List
	CM41X_M0 VMU Interrupt List
	CM41X_M4 VMU Interrupt List
	Input Supply Ramp Rate and Bypassing Requirements
	Programmable Fault Delay
	Fault Conditioning
	GPIO Safe Pin States

	Configuring the VMU
	Register Descriptions

	FFT Accelerator Block (FFTB)
	FFTB Features
	FFTB Functional Description
	CM41X_M4 FFTB Register List
	CM41X_M0 FFTB Interrupt List
	CM41X_M4 FFTB Interrupt List
	CM41X_M4 FFTB Trigger List
	FFTB Definitions
	FFTB Block Diagram
	FFTB Architectural Concepts
	Input Format Converter
	IBUFF_WO Input Buffer Write
	IBUFF_RW Input Buffer Read
	Comb Filter
	Input Data Windowing
	Transform Accelerator
	Magnitude Computation Unit
	FFT Performance Calculation
	Spectrum Averaging
	Spectrum Comparator
	Buffer Memory Maps
	FFTB Spectrum Monitor Triggering Modes
	Multichannel Operation
	Launching and Stopping FFT Monitor
	Parity Protection

	FFTB Event Control
	FFTB Status and Error Signals

	CM41X_M4 FFTB Register Descriptions
	FFTB Input Comb Filter Control Register
	FFTB Control Register
	DMA Output Base Address Register
	DMA Output Write Address Register
	Format Converter Control Register
	Input Offset Register
	Limit Status Registers
	Magnitude Pin Select Registers
	Maximum Magnitude Register
	Minimum Magnitude Register
	FFTB Status Register

	Reset Control Unit (RCU)
	RCU Features
	RCU Functional Description
	CM41X_M4 RCU Register List
	CM41X_M4 RCU Trigger List
	RCU Definitions
	RCU Architectural Concepts
	Reset Sources

	RCU Status and Error Signals
	Resetting a Core Through a System Master
	CM41X_M4 RCU Register Descriptions
	Boot Code Register
	Core Reset Outputs Control Register
	Core Reset Outputs Status Register
	Control Register
	Message Register
	Message Clear Bits Register
	Message Set Bits Register
	System Reset Request Status Register
	Status Register

	System Design and Safety
	Built-In Modules for Functional Safety

	System Block (SYSBLK) and PADS
	CM41X_M4 SYSBLK Register List
	CM41X_M0 SYSBLK Register List
	CM41X_M4 PADS Register List
	CM41X_M0 PADS Register List
	CM41X_M4 TESYS Interrupt List
	CM41X_M0 TESYS Interrupt List
	CM41X_M4 SYSBLK Register Descriptions
	SCB Response Configuration Register
	SCB Timeout Value Register
	Clock Not Good Trip Register
	Peripheral DMA Multiplexer Control
	Engineering Mode Configuration Register 0
	Fault Trip Register
	M0 IRQ Latency Register
	Logic ROM Status Register
	Vector Table Base Offset Register
	Memory Self-Test Control Register
	PWM System Configuration Register
	Rotary Counter Up/Down Configuration Register
	SINC Test Register
	Shared Interrupt 0 Status Register
	Shared Interrupt 10 Status Register
	Shared Interrupt 11 Status Register
	Shared Interrupt 12 Status Register
	Shared Interrupt 15 Status Register
	Shared Interrupt 16 Status Register
	Shared Interrupt 17 Status Register
	Shared Interrupt 18 Status Register
	Shared Interrupt 19 Status Register
	Shared Interrupt 22 Status Register
	Shared Interrupt 25 Status Register
	Shared Interrupt 28 Status Register
	Shared Interrupt 3 Status Register
	Shared Interrupt 5 Status Register
	Shared Interrupt 6 Status Register
	Shared Interrupt 7 Status Register
	Shared Interrupt 8 Status Register
	M0 SRAM ECC Register
	System Status Register
	System Register

	CM41X_M4 PADS Register Descriptions
	Debounce Control Register(s)
	Debounce Prescale Register
	Fast Over Current Protection Clock Divisor Register
	Monitor Oscillator Control Register
	Non-Volatile Write Reset Control Register
	Peripheral Configuration0 Register
	Multi Port Drive Strength Control Register
	Multi Port Pull-up/Pull-down Resistor Control Register
	Multi Port Trip Select Register
	Multi Port Trip State Register
	Voltage Monitor Unit Control Register
	Voltage Monitor Unit Trim Register
	Voltage Monitor Unit Trip Enable Register

	CM41X_M0 SYSBLK Register Descriptions
	SCB Response Configuration Register
	SCB Timeout Value Register
	Clock Not Good Trip Register
	Peripheral DMA Multiplexer Control
	Engineering Mode Configuration Register 0
	Fault Trip Register
	M0 IRQ Latency Register
	Logic ROM Status Register
	Vector Table Base Offset Register
	Memory Self-Test Control Register
	PWM System Configuration Register
	Rotary Counter Up/Down Configuration Register
	SINC Test Register
	Shared Interrupt 0 Status Register
	Shared Interrupt 10 Status Register
	Shared Interrupt 11 Status Register
	Shared Interrupt 12 Status Register
	Shared Interrupt 15 Status Register
	Shared Interrupt 16 Status Register
	Shared Interrupt 17 Status Register
	Shared Interrupt 18 Status Register
	Shared Interrupt 19 Status Register
	Shared Interrupt 22 Status Register
	Shared Interrupt 25 Status Register
	Shared Interrupt 28 Status Register
	Shared Interrupt 3 Status Register
	Shared Interrupt 5 Status Register
	Shared Interrupt 6 Status Register
	Shared Interrupt 7 Status Register
	Shared Interrupt 8 Status Register
	M0 SRAM ECC Register
	System Status Register
	System Register

	CM41X_M0 PADS Register Descriptions
	Debounce Control Register(s)
	Debounce Prescale Register
	Fast Over Current Protection Clock Divisor Register
	Monitor Oscillator Control Register
	Non-Volatile Write Reset Control Register
	Peripheral Configuration0 Register
	Multi Port Drive Strength Control Register
	Multi Port Pull-up/Pull-down Resistor Control Register
	Multi Port Trip Select Register
	Multi Port Trip State Register
	Voltage Monitor Unit Control Register
	Voltage Monitor Unit Trim Register
	Voltage Monitor Unit Trip Enable Register

	Boot ROM and Booting the Processor
	Boot Features
	Boot Process Overview
	Logic ROM
	Boot Modes
	Boot ROM Pre-boot Routine for Device Initialization
	Pre-initialization with Logic ROM
	Flash Execution Mode
	UART Recovery Mode
	Hardware Configuration
	Autobaud Detection
	ID Packet
	Data Transport Packet Format
	UART Response Types
	Commands
	Command Set
	Erase All
	Erase User Area
	Erase Block
	Erase Info Block
	Debug Key
	Write
	Write Info
	Remote Run
	System Reset
	Security

	Error Codes

	Callable Kernel API
	adi_rom_getID()
	adi_rom_Crc32Poly()
	adi_rom_MemCompare()
	adi_rom_MemCopy()
	adi_rom_MemCrc()
	adi_rom_MemFill()
	adi_rom_memoryDma()

	Data Structures
	Control Flags for Booting

	System Watchpoint Unit (SWU)
	SWU Features
	SWU Functional Description
	CM41X_M4 SWU Register List
	CM41X_M0 SWU Interrupt List
	CM41X_M4 SWU Interrupt List
	CM41X_M0 SWU Trigger List
	CM41X_M4 SWU Trigger List
	SWU Definitions
	SWU Architectural Concepts
	SWU-to-SCB Interface
	SWU Block Diagram
	SCB Interface Block
	MMR Interface Block

	SWU Operating Modes
	Bandwidth Mode
	Watchpoint Mode
	Match Block

	SWU Event Control
	SWU Interrupts
	SWU Status and Errors
	Triggers

	SWU Programming Model
	SWU Mode Configuration
	Configuring the SWU for Bandwidth Mode
	Configuring the SWU for Watchpoint Mode

	CM41X_M4 SWU Register Descriptions
	Count Register n
	Control Register n
	Current Register n
	Global Control Register
	Global Status Register
	Bandwidth History Register n
	ID Register n
	Lower Address Register n
	Target Register n
	Upper Address Register n

	JTAG debug and Serial Wire Debug Port (SWJ-DP)
	Debug Access
	Core Debug
	Trace
	Coresight Cross Triggering
	Synchronous HALT
	TAPC Controller
	CM41X_M4 TAPC Register Descriptions
	Debug Control Register
	Debug Status Register
	IDCODE Register
	Run Control Message Register
	Run Control Message Clear Register
	Run Control Message Set Register
	Run Control Message Toggle Register
	System Run Control Message Register
	System Run Control Message Clear Register
	System Run Control Message Set Register
	System Run Control Message Toggle Register
	Secure Debug Key 0 Register
	Secure Debug Key 1 Register
	Secure Debug Key 2 Register
	Secure Debug Key 3 Register
	Secure Debug Key 0 Compare Register
	Secure Debug Key 1 Compare Register
	Secure Debug Key 2 Compare Register
	Secure Debug Key 3 Compare Register
	Secure Debug Key 0 Identification Register
	Secure Debug Key 1 Key Identification Register
	Secure Debug Key 2 Key Identification Register
	Secure Debug Key 3 Key Identification Register
	Secure Debug Key Control Register
	Secure Debug Key Status Register
	USERCODE Register

	CM41X_M4 CTI Register Descriptions
	External Multiplexor Control Register
	Authentication Status
	Claim Tag Clear Register
	Claim Tag Set Register
	Component ID0
	Component ID1
	Component ID2
	Component ID3
	CTI Application Trigger Clear Register
	CTI Application Pulse Register
	CTI Application Trigger Set Register
	CTI Channel In Status Register
	CTI Channel Out Status Register
	CTI Control Register
	Enable CTI Channel Gate Register
	CTI Trigger 0 to Channel Enable Register
	CTI Trigger 1 to Channel Enable Register
	CTI Trigger 2 to Channel Enable Register
	CTI Trigger 3 to Channel Enable Register
	CTI Trigger 4 to Channel Enable Register
	CTI Trigger 5 to Channel Enable Register
	CTI Trigger 6 to Channel Enable Register
	CTI Trigger 7 to Channel Enable Register
	CTI Interrupt Acknowledge Register
	CTI Channel to Trigger 0 Enable Register
	CTI Channel to Trigger 1 Enable Register
	CTI Channel to Trigger 2 Enable Register
	CTI Channel to Trigger 3 Enable Register
	CTI Channel to Trigger 4 Enable Register
	CTI Channel to Trigger 5 Enable Register
	CTI Channel to Trigger 6 Enable Register
	CTI Channel to Trigger 7 Enable Register
	CTI Trigger In Status Register
	CTI Trigger Out Status Register
	Device ID
	Device Type
	ITCHIN
	ITCHINACK
	ITCHOUT
	ITCHOUTACK
	Integration Mode Control Register
	ITTRIGIN
	ITTRIGINACK
	ITTRIGOUT
	ITTRIGOUTACK
	Lock Access Register
	Lock Status Register
	Peripheral ID0
	Peripheral ID1
	Peripheral ID2
	Peripheral ID3
	Peripheral ID4
	Peripheral ID5
	Peripheral ID6
	Peripheral ID7

	CM41X_M0 Register List
	CM41X_M4 Register List

