
a

ADSP-BF537 Blackfin® Processor
Hardware Reference

(Includes ADSP-BF534 and ADSP-BF536 Blackfin Processors)

Revision 3.4, February 2013

Part Number
82-000555-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-KIT
Lite, and VisualDSP++ are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF537 Blackfin Processor Hardware Reference iii

CONTENTS

PREFACE

Purpose of This Manual ... xlv

Intended Audience ... xlv

Manual Contents .. xlvi

What’s New in This Manual .. xlix

Technical Support ... l

Supported Processors .. li

Product Information .. li

Analog Devices Web Site ... lii

EngineerZone .. lii

Notation Conventions .. liii

Register Diagram Conventions ... liv

INTRODUCTION

Peripherals .. 1-2

Memory Architecture .. 1-4

Internal Memory ... 1-6

External Memory .. 1-6

I/O Memory Space .. 1-6

DMA Support ... 1-7

Contents

iv ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit ... 1-8

PC133 SDRAM Controller ... 1-9

Asynchronous Controller .. 1-9

Ports .. 1-9

General-Purpose I/O (GPIO) .. 1-10

Two-Wire Interface ... 1-11

Controller Area Network .. 1-12

Ethernet MAC .. 1-13

Parallel Peripheral Interface ... 1-14

SPORT Controllers .. 1-16

Serial Peripheral Interface (SPI) Port ... 1-17

Timers ... 1-18

UART Ports ... 1-19

Real-Time Clock .. 1-20

Watchdog Timer ... 1-21

Clock Signals .. 1-22

Dynamic Power Management ... 1-22

Full-On Mode (Maximum Performance) 1-23

Active Mode (Moderate Power Savings) 1-23

Sleep Mode (High Power Savings) ... 1-23

Deep Sleep Mode (Maximum Power Savings) 1-24

Hibernate State .. 1-24

Voltage Regulation .. 1-24

Boot Modes .. 1-25

ADSP-BF537 Blackfin Processor Hardware Reference v

Contents

Instruction Set Description ... 1-27

Development Tools ... 1-28

CHIP BUS HIERARCHY

Chip Bus Hierarchy Overview ... 2-1

Interface Overview .. 2-2

Internal Clocks .. 2-3

Core Bus Overview .. 2-4

Peripheral Access Bus (PAB) ... 2-6

PAB Arbitration .. 2-6

PAB Agents (Masters, Slaves) ... 2-6

PAB Performance .. 2-7

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB) .. 2-8

DAB Arbitration ... 2-8

DAB Bus Agents (Masters) .. 2-9

DAB, DCB, and DEB Performance 2-10

External Access Bus (EAB) ... 2-11

Arbitration of the External Bus .. 2-11

DEB/EAB Performance ... 2-11

MEMORY

Memory Architecture .. 3-1

L1 Instruction SRAM ... 3-5

L1 Data SRAM ... 3-7

L1 Data Cache .. 3-8

Contents

vi ADSP-BF537 Blackfin Processor Hardware Reference

Boot ROM ... 3-8

External Memory .. 3-8

Processor-Specific MMRs .. 3-9

DMEM_CONTROL Register ... 3-9

DTEST_COMMAND Register .. 3-11

SYSTEM INTERRUPTS

Overview .. 4-1

Features .. 4-2

Interfaces .. 4-2

Description of Operation .. 4-3

Events and Sequencing .. 4-4

System Peripheral Interrupts .. 4-8

Programming Model ... 4-15

System Interrupt Initialization ... 4-15

System Interrupt Processing Summary 4-15

System Interrupt Controller Registers .. 4-18

SIC_IARx Registers .. 4-19

SIC_IMASK Register .. 4-21

SIC_ISR Register .. 4-22

SIC_IWR Register .. 4-23

DIRECT MEMORY ACCESS

Overview and Features .. 5-2

ADSP-BF537 Blackfin Processor Hardware Reference vii

Contents

DMA Controller Overview .. 5-5

External Interfaces ... 5-6

Internal Interfaces ... 5-6

Peripheral DMA .. 5-7

Memory DMA .. 5-9

Handshaked Memory DMA Mode 5-11

Modes of Operation .. 5-12

Register-Based DMA Operation ... 5-12

Stop Mode .. 5-13

Autobuffer Mode .. 5-14

Two-Dimensional DMA Operation .. 5-14

Examples of Two-Dimensional DMA 5-15

Descriptor-Based DMA Operation ... 5-16

Descriptor List Mode .. 5-17

Descriptor Array Mode ... 5-18

Variable Descriptor Size .. 5-18

Mixing Flow Modes .. 5-19

Functional Description ... 5-20

DMA Operation Flow ... 5-20

DMA Startup .. 5-20

DMA Refresh ... 5-25

Contents

viii ADSP-BF537 Blackfin Processor Hardware Reference

Work Unit Transitions .. 5-27

DMA Transmit and MDMA Source 5-28

DMA Receive ... 5-30

Stopping DMA Transfers .. 5-31

DMA Errors (Aborts) .. 5-32

DMA Control Commands .. 5-34

Restrictions .. 5-38

Transmit Restart or Finish ... 5-38

Receive Restart or Finish ... 5-38

Handshaked Memory DMA Operation 5-39

Pipelining DMA Requests ... 5-41

HMDMA Interrupts ... 5-43

DMA Performance .. 5-44

DMA Throughput .. 5-45

Memory DMA Timing Details .. 5-48

Static Channel Prioritization .. 5-48

Temporary DMA Urgency .. 5-49

Memory DMA Priority and Scheduling 5-51

Traffic Control ... 5-53

Programming Model .. 5-55

Synchronization of Software and DMA 5-55

Single-Buffer DMA Transfers .. 5-58

Continuous Transfers Using Autobuffering 5-58

Descriptor Structures .. 5-60

Descriptor Queue Management .. 5-61

ADSP-BF537 Blackfin Processor Hardware Reference ix

Contents

Descriptor Queue Using Interrupts on Every
Descriptor .. 5-62

Descriptor Queue Using Minimal Interrupts 5-63

Software Triggered Descriptor Fetches 5-65

DMA Registers ... 5-67

DMA Channel Registers .. 5-68

DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP
Registers .. 5-71

DMAx_CONFIG/MDMA_yy_CONFIG Registers 5-74

DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS
Registers .. 5-78

DMAx_START_ADDR/MDMA_yy_START_ADDR
Registers .. 5-82

DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR
Registers .. 5-83

DMAx_X_COUNT/MDMA_yy_X_COUNT Registers 5-85

DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT
Registers .. 5-86

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Registers .. 5-88

DMAx_Y_COUNT/MDMA_yy_Y_COUNT Registers 5-90

DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT
Registers .. 5-91

DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Registers ... 5-93

DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR
Registers .. 5-94

DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR
Registers .. 5-96

Contents

x ADSP-BF537 Blackfin Processor Hardware Reference

HMDMA Registers ... 5-99

HMDMAx_CONTROL Registers 5-100

HMDMAx_BCINIT Registers .. 5-101

HMDMAx_BCOUNT Registers 5-102

HMDMAx_ECOUNT Registers 5-103

HMDMAx_ECINIT Registers .. 5-104

HMDMAx_ECURGENT Registers 5-105

HMDMAx_ECOVERFLOW Registers 5-105

DMA Traffic Control Registers .. 5-106

DMA_TC_PER Register .. 5-106

DMA_TC_CNT Register ... 5-107

Programming Examples .. 5-108

Register-Based 2D Memory DMA 5-108

Initializing Descriptors in Memory 5-112

Software-Triggered Descriptor Fetch Example 5-115

Handshaked Memory DMA Example 5-117

EXTERNAL BUS INTERFACE UNIT

EBIU Overview .. 6-2

Block Diagram .. 6-4

Internal Memory Interfaces ... 6-5

Registers ... 6-6

Shared Pins ... 6-6

System Clock .. 6-7

Error Detection ... 6-7

ADSP-BF537 Blackfin Processor Hardware Reference xi

Contents

Bus Request and Grant .. 6-8

Operation ... 6-8

AMC Overview and Features ... 6-9

Features ... 6-9

Asynchronous Memory Interface .. 6-9

Asynchronous Memory Address Decode 6-10

AMC Pin Description ... 6-10

AMC Description of Operation ... 6-11

Avoiding Bus Contention .. 6-11

External Access Extension .. 6-12

AMC Functional Description .. 6-12

Programmable Timing Characteristics 6-12

Asynchronous Reads ... 6-13

Asynchronous Writes ... 6-14

Adding External Access Extension 6-16

Partial Write .. 6-17

Instruction Fetch ... 6-18

Cache Line Fill .. 6-18

AMC Programming Model .. 6-19

AMC Configuration .. 6-19

AMC Register Definition .. 6-19

EBIU_AMGCTL Register ... 6-20

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers 6-21

AMC Programming Examples ... 6-25

Contents

xii ADSP-BF537 Blackfin Processor Hardware Reference

SDC Overview and Features ... 6-27

Features .. 6-27

SDRAM Configurations Supported 6-29

SDRAM External Bank Size .. 6-29

SDC Address Mapping .. 6-30

Internal SDRAM Bank Select .. 6-31

Parallel Connection of SDRAMs ... 6-31

Instruction Fetch .. 6-32

Cache Line Fill ... 6-32

SDC Interface Overview ... 6-32

SDC Pin Description .. 6-32

SDRAM Performance ... 6-33

SDC Description of Operation ... 6-35

Definition of SDRAM Architecture Terms 6-35

Refresh ... 6-35

Row Activation ... 6-35

Column Read/Write ... 6-35

Row Precharge .. 6-35

Internal Bank ... 6-36

External Bank ... 6-36

Memory Size .. 6-36

Burst Length .. 6-36

Burst Type .. 6-36

CAS Latency .. 6-37

ADSP-BF537 Blackfin Processor Hardware Reference xiii

Contents

Data I/O Mask Function ... 6-37

SDRAM Commands ... 6-37

Mode Register Set (MRS) Command 6-37

Extended Mode Register Set (EMRS) Command 6-37

Bank Activate Command ... 6-37

Read/Write Command .. 6-38

Precharge/Precharge All Command 6-38

Auto-Refresh Command .. 6-38

Enter Self-Refresh Mode ... 6-38

Exit Self-Refresh Mode .. 6-38

SDC Timing Specs .. 6-39

tMRD .. 6-39

tRAS .. 6-39

CL .. 6-40

tRCD ... 6-40

tRRD ... 6-40

tWR .. 6-40

tRP .. 6-41

tRC ... 6-41

tRFC ... 6-41

tXSR .. 6-41

tREF .. 6-42

tREFI ... 6-42

Contents

xiv ADSP-BF537 Blackfin Processor Hardware Reference

SDC Functional Description ... 6-42

SDC Operation ... 6-42

SDC Address Muxing ... 6-45

Multibank Operation .. 6-46

Core and DMA Arbitration .. 6-47

Changing System Clock During Runtime 6-47

Changing Power Management During Runtime 6-49

Deep Sleep Mode .. 6-49

Hibernate State ... 6-49

Shared SDRAM .. 6-49

SDC Commands ... 6-50

Mode Register Set Command .. 6-52

Extended Mode Register Set Command (Mobile
SDRAM) ... 6-53

Bank Activation Command ... 6-53

Read/Write Command .. 6-54

Partial Write ... 6-54

Single Precharge Command .. 6-55

Precharge All Command ... 6-55

Auto-Refresh Command ... 6-56

Self-Refresh Mode .. 6-56

Self-Refresh Entry Command 6-56

Self-Refresh Exit Command 6-57

No Operation Command .. 6-58

ADSP-BF537 Blackfin Processor Hardware Reference xv

Contents

SDC SA10 Pin .. 6-59

SDC Programming Model ... 6-59

SDC Configuration ... 6-59

Example SDRAM System Block Diagrams 6-61

SDC Registers ... 6-64

EBIU_SDRRC Register ... 6-64

EBIU_SDBCTL Register ... 6-66

Using SDRAMs With Systems Smaller Than 16M Byte 6-69

EBIU_SDGCTL Register .. 6-70

EBIU_SDSTAT Register .. 6-81

SDC Programming Examples .. 6-82

PARALLEL PERIPHERAL INTERFACE

Overview .. 7-2

Features .. 7-2

Interface Overview .. 7-3

Description of Operation .. 7-6

Functional Description ... 7-7

ITU-R 656 Modes ... 7-7

ITU-R 656 Background .. 7-7

ITU-R 656 Input Modes ... 7-10

Entire Field ... 7-10

Active Video Only ... 7-11

Vertical Blanking Interval (VBI) Only 7-12

Contents

xvi ADSP-BF537 Blackfin Processor Hardware Reference

ITU-R 656 Output Mode ... 7-12

Frame Synchronization in ITU-R 656 Modes 7-13

General-Purpose PPI Modes .. 7-13

Data Input (RX) Modes .. 7-16

No Frame Syncs .. 7-16

1, 2, or 3 External Frame Syncs 7-17

2 or 3 Internal Frame Syncs .. 7-17

Data Output (TX) Modes ... 7-18

No Frame Syncs .. 7-18

1 or 2 External Frame Syncs .. 7-19

1, 2, or 3 Internal Frame Syncs 7-20

Frame Synchronization in GP Modes 7-21

Modes With Internal Frame Syncs 7-21

Modes With External Frame Syncs 7-22

Programming Model ... 7-24

DMA Operation ... 7-24

PPI Registers .. 7-27

PPI_CONTROL Register ... 7-27

PPI_STATUS Register .. 7-31

PPI_DELAY Register .. 7-34

PPI_COUNT Register .. 7-34

PPI_FRAME Register ... 7-35

Programming Examples .. 7-36

Data Transfer Scenarios ... 7-39

ADSP-BF537 Blackfin Processor Hardware Reference xvii

Contents

ETHERNET MAC

Overview .. 8-1

Features ... 8-2

Interface Overview .. 8-2

External Interface .. 8-4

Clocking ... 8-4

Pins .. 8-5

Internal Interface ... 8-7

Power Management ... 8-7

Description of Operation .. 8-8

Protocol .. 8-8

MII Management Interface .. 8-8

Operation ... 8-10

MII Management Interface Operation 8-10

Receive DMA Operation ... 8-11

Frame Reception and Filtering 8-13

RX Automatic Pad Stripping ... 8-18

RX DMA Data Alignment ... 8-18

RX DMA Buffer Structure ... 8-18

RX Frame Status Buffer ... 8-19

RX Frame Status Classification 8-20

RX IP Frame Checksum Calculation 8-21

RX DMA Direction Errors .. 8-23

Contents

xviii ADSP-BF537 Blackfin Processor Hardware Reference

Transmit DMA Operation .. 8-24

Flexible Descriptor Structure ... 8-27

TX DMA Data Alignment .. 8-27

Late Collisions .. 8-28

TX Frame Status Classification 8-29

TX DMA Direction Errors .. 8-30

Power Management .. 8-31

Ethernet Operation in the Sleep State 8-32

Magic Packet Detection .. 8-34

Remote Wake-up Filters .. 8-35

Ethernet Event Interrupts ... 8-38

RX/TX Frame Status Interrupt Operation 8-42

RX Frame Status Register Operation at Startup and
Shutdown .. 8-43

TX Frame Status Register Operation at Startup and
Shutdown .. 8-43

MAC Management Counters .. 8-43

Programming Model ... 8-46

Configure MAC Pins .. 8-46

Multiplexing Scheme .. 8-47

CLKBUF ... 8-47

Configure Interrupts .. 8-47

Configure MAC Registers ... 8-48

MAC Address ... 8-48

MII Station Management .. 8-48

ADSP-BF537 Blackfin Processor Hardware Reference xix

Contents

Configure PHY ... 8-50

Receive and Transmit Data .. 8-50

Receiving Data .. 8-51

Transmitting Data ... 8-51

Ethernet MAC Register Definitions ... 8-51

Control-Status Register Group ... 8-64

EMAC_OPMODE Register .. 8-64

EMAC_ADDRLO Register ... 8-71

EMAC_ADDRHI Register .. 8-71

EMAC_HASHLO Register ... 8-72

EMAC_HASHHI Register .. 8-75

EMAC_STAADD Register .. 8-76

EMAC_STADAT Register ... 8-77

EMAC_FLC Register .. 8-78

EMAC_VLAN1 Register ... 8-80

EMAC_VLAN2 Register ... 8-81

EMAC_WKUP_CTL Register .. 8-81

EMAC_WKUP_FFMSKx Registers 8-84

EMAC_WKUP_FFCMD Register 8-89

EMAC_WKUP_FFOFF Register 8-91

EMAC_WKUP_FFCRC0 and EMAC_WKUP_FFCRC1
Registers .. 8-91

System Interface Register Group .. 8-92

EMAC_SYSCTL Register .. 8-92

EMAC_SYSTAT Register .. 8-94

Contents

xx ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC Frame Status Registers 8-97

EMAC_RX_STAT Register ... 8-97

EMAC_RX_STKY Register .. 8-103

EMAC_RX_IRQE Register ... 8-107

EMAC_TX_STAT Register ... 8-107

EMAC_TX_STKY Register .. 8-112

EMAC_TX_IRQE Register .. 8-115

EMAC_MMC_RIRQS Register 8-115

EMAC_MMC_RIRQE Register 8-117

EMAC_MMC_TIRQS Register 8-119

EMAC_MMC_TIRQE Register 8-121

MAC Management Counter Registers 8-123

EMAC_MMC_CTL Register .. 8-123

Programming Examples .. 8-125

Ethernet Structures ... 8-126

MAC Address Setup .. 8-128

PHY Control Routines .. 8-129

CAN MODULE

Overview .. 9-1

Interface Overview ... 9-2

CAN Mailbox Area ... 9-4

CAN Mailbox Control .. 9-6

CAN Protocol Basics ... 9-7

ADSP-BF537 Blackfin Processor Hardware Reference xxi

Contents

CAN Operation .. 9-9

Bit Timing .. 9-10

Transmit Operation ... 9-13

Retransmission .. 9-14

Single Shot Transmission ... 9-16

Auto-Transmission .. 9-16

Receive Operation ... 9-17

Data Acceptance Filter .. 9-20

Remote Frame Handling ... 9-21

Watchdog Mode ... 9-21

Time Stamps ... 9-22

Temporarily Disabling Mailboxes ... 9-23

Functional Operation .. 9-24

CAN Interrupts ... 9-25

Mailbox Interrupts .. 9-25

Global CAN Status Interrupt .. 9-26

Event Counter .. 9-29

CAN Warnings and Errors ... 9-30

Programmable Warning Limits .. 9-30

CAN Error Handling .. 9-30

Error Frames ... 9-32

Error Levels .. 9-34

Debug and Test Modes .. 9-36

Contents

xxii ADSP-BF537 Blackfin Processor Hardware Reference

Low Power Features ... 9-40

CAN Built-In Suspend Mode .. 9-40

CAN Built-In Sleep Mode .. 9-41

CAN Wakeup From Hibernate State 9-41

CAN Register Definitions ... 9-42

Global CAN Registers ... 9-46

CAN_CONTROL Register .. 9-46

CAN_STATUS Register ... 9-47

CAN_DEBUG Register .. 9-48

CAN_CLOCK Register .. 9-48

CAN_TIMING Register ... 9-49

CAN_INTR Register .. 9-49

CAN_GIM Register ... 9-50

CAN_GIS Register ... 9-50

CAN_GIF Register ... 9-51

Mailbox/Mask Registers .. 9-51

CAN_AMxx Registers ... 9-51

CAN_MBxx_ID1 Registers .. 9-55

CAN_MBxx_ID0 Registers .. 9-57

CAN_MBxx_TIMESTAMP Registers 9-59

CAN_MBxx_LENGTH Registers 9-61

CAN_MBxx_DATAx Registers ... 9-62

ADSP-BF537 Blackfin Processor Hardware Reference xxiii

Contents

Mailbox Control Registers ... 9-70

CAN_MCx Registers .. 9-70

CAN_MDx Registers .. 9-71

CAN_RMPx Register .. 9-72

CAN_RMLx Register .. 9-73

CAN_OPSSx Register ... 9-74

CAN_TRSx Registers .. 9-75

CAN_TRRx Registers ... 9-76

CAN_AAx Register ... 9-77

CAN_TAx Register ... 9-78

CAN_MBTD Register .. 9-79

CAN_RFHx Registers ... 9-79

CAN_MBIMx Registers .. 9-80

CAN_MBTIFx Registers ... 9-81

CAN_MBRIFx Registers ... 9-82

Universal Counter Registers ... 9-84

CAN_UCCNF Register .. 9-84

CAN_UCCNT Register .. 9-85

CAN_UCRC Register ... 9-85

Error Registers ... 9-86

CAN_CEC Register .. 9-86

CAN_ESR Register ... 9-86

CAN_EWR Register ... 9-86

Contents

xxiv ADSP-BF537 Blackfin Processor Hardware Reference

Programming Examples .. 9-87

CAN Setup Code .. 9-87

Initializing and Enabling CAN Mailboxes 9-88

Initiating CAN Transfers and Processing Interrupts 9-90

SPI COMPATIBLE PORT CONTROLLERS

Overview .. 10-1

Features .. 10-2

Interface Overview ... 10-3

External Interface .. 10-4

Serial Peripheral Interface Clock Signal (SCK) 10-5

Master Out Slave In (MOSI) .. 10-5

Master In Slave Out (MISO) .. 10-6

Serial Peripheral Interface Slave Select Input Signal 10-7

Serial Peripheral Interface Slave Select Enable Output
Signals ... 10-8

Slave Select Inputs .. 10-10

Use of FLS Bits in SPI_FLG for Multiple Slave SPI
Systems ... 10-11

Internal Interfaces ... 10-13

DMA Functionality .. 10-13

SPI Transmit Data Buffer .. 10-14

SPI Receive Data Buffer .. 10-14

ADSP-BF537 Blackfin Processor Hardware Reference xxv

Contents

Description of Operation .. 10-15

SPI Transfer Protocols ... 10-15

SPI General Operation .. 10-18

SPI Control ... 10-19

Clock Signals .. 10-20

SPI Baud Rate ... 10-21

Error Signals and Flags .. 10-21

Mode Fault Error (MODF) ... 10-22

Transmission Error (TXE) ... 10-23

Reception Error (RBSY) .. 10-23

Transmit Collision Error (TXCOL) 10-23

Interrupt Output ... 10-24

Functional Description ... 10-24

Master Mode Operation .. 10-25

Transfer Initiation From Master (Transfer Modes) 10-26

Slave Mode Operation ... 10-27

Slave Ready for a Transfer .. 10-28

Programming Model ... 10-29

Starting and Ending an SPI Transfer 10-29

Master Mode DMA Operation ... 10-31

Slave Mode DMA Operation ... 10-34

Contents

xxvi ADSP-BF537 Blackfin Processor Hardware Reference

SPI Registers .. 10-41

SPI_BAUD Register .. 10-42

SPI_CTL Register ... 10-43

SPI_FLG Register ... 10-44

SPI_STAT Register ... 10-46

SPI_TDBR Register .. 10-46

SPI_RDBR Register .. 10-47

SPI_SHADOW Register ... 10-47

Programming Examples .. 10-48

Core Generated Transfer ... 10-48

Initialization Sequence .. 10-48

Starting a Transfer .. 10-49

Post Transfer and Next Transfer 10-50

Stopping .. 10-51

DMA Transfer .. 10-51

DMA Initialization Sequence .. 10-52

SPI Initialization Sequence ... 10-53

Starting a Transfer .. 10-54

Stopping a Transfer ... 10-54

TWO-WIRE INTERFACE CONTROLLER

Overview .. 11-2

ADSP-BF537 Blackfin Processor Hardware Reference xxvii

Contents

Interface Overview .. 11-3

External Interface .. 11-4

Serial Clock Signal (SCL) .. 11-4

Serial Data Signal (SDA) ... 11-4

TWI Pins .. 11-5

Internal Interfaces ... 11-5

Description of Operation .. 11-6

TWI Transfer Protocols ... 11-6

Clock Generation and Synchronization 11-7

Bus Arbitration ... 11-8

Start and Stop Conditions ... 11-8

General Call Support .. 11-9

Fast Mode ... 11-10

TWI General Operation .. 11-11

TWI Control .. 11-11

Clock Signal .. 11-12

Functional Description ... 11-12

General Setup .. 11-13

Slave Mode .. 11-13

Master Mode Clock Setup ... 11-14

Master Mode Transmit .. 11-15

Master Mode Receive ... 11-16

Repeated Start Condition .. 11-17

Transmit/Receive Repeated Start Sequence 11-17

Receive/Transmit Repeated Start Sequence 11-19

Contents

xxviii ADSP-BF537 Blackfin Processor Hardware Reference

Clock Stretching ... 11-20

Clock Stretching During FIFO Underflow 11-20

Clock Stretching During FIFO Overflow 11-21

Clock Stretching During Repeated Start Condition 11-23

Programming Model ... 11-25

TWI Register Descriptions ... 11-27

TWI_CONTROL Register ... 11-27

TWI_CLKDIV Register .. 11-27

TWI_SLAVE_CTL Register .. 11-28

TWI_SLAVE_ADDR Register .. 11-30

TWI_SLAVE_STAT Register .. 11-30

TWI_MASTER_CTL Register .. 11-32

TWI_MASTER_ADDR Register .. 11-36

TWI_MASTER_STAT Register .. 11-37

TWI_FIFO_CTL Register .. 11-40

TWI_FIFO_STAT Register ... 11-43

TWI_INT_STAT Register .. 11-45

TWI_XMT_DATA8 Register .. 11-46

TWI_XMT_DATA16 Register .. 11-49

TWI_RCV_DATA8 Register ... 11-50

TWI_RCV_DATA16 Register ... 11-50

Programming Examples .. 11-51

Master Mode Setup ... 11-52

Slave Mode Setup .. 11-57

ADSP-BF537 Blackfin Processor Hardware Reference xxix

Contents

Electrical Specifications ... 11-63

SPORT CONTROLLERS

Overview .. 12-2

Features ... 12-2

Interface Overview .. 12-4

SPORT Pin/Line Terminations .. 12-10

Description of Operation .. 12-11

SPORT Operation ... 12-11

SPORT Disable ... 12-11

Setting SPORT Modes .. 12-12

Stereo Serial Operation .. 12-13

Multichannel Operation .. 12-16

Multichannel Enable ... 12-19

Frame Syncs in Multichannel Mode 12-20

Multichannel Frame .. 12-22

Multichannel Frame Delay .. 12-23

Window Size ... 12-23

Window Offset ... 12-24

Other Multichannel Fields in SPORTx_MCMC2 12-24

Channel Selection Register .. 12-24

Multichannel DMA Data Packing 12-26

Support for H.100 Standard Protocol 12-27

2X Clock Recovery Control ... 12-27

Contents

xxx ADSP-BF537 Blackfin Processor Hardware Reference

Functional Description ... 12-28

Clock and Frame Sync Frequencies 12-28

Maximum Clock Rate Restrictions 12-29

Word Length .. 12-29

Bit Order .. 12-30

Data Type ... 12-30

Companding ... 12-31

Clock Signal Options .. 12-31

Frame Sync Options .. 12-33

Framed Versus Unframed .. 12-33

Internal Versus External Frame Syncs 12-35

Active Low Versus Active High Frame Syncs 12-35

Sampling Edge for Data and Frame Syncs 12-36

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing) .. 12-38

Data Independent Transmit Frame Sync 12-39

Moving Data Between SPORTs and Memory 12-40

SPORT RX, TX, and Error Interrupts 12-41

PAB Errors .. 12-41

Timing Examples .. 12-42

SPORT Registers .. 12-47

Register Writes and Effective Latency 12-48

SPORTx_TCR1 and SPORTx_TCR2 Registers 12-49

SPORTx_RCR1 and SPORTx_RCR2 Registers 12-54

Data Word Formats ... 12-58

ADSP-BF537 Blackfin Processor Hardware Reference xxxi

Contents

SPORTx_TX Register ... 12-59

SPORTx_RX Register ... 12-61

SPORTx_STAT Register .. 12-64

SPORTx_TCLKDIV Register .. 12-65

SPORTx_RCLKDIV Register .. 12-65

SPORTx_TFSDIV Register ... 12-66

SPORTx_RFSDIV Register ... 12-66

SPORTx_MCMCn Registers ... 12-67

SPORTx_CHNL Register .. 12-68

SPORTx_MRCSn Registers ... 12-69

SPORTx_MTCSn Registers ... 12-71

Programming Examples ... 12-72

SPORT Initialization Sequence .. 12-73

DMA Initialization Sequence ... 12-75

Interrupt Servicing .. 12-77

Starting a Transfer ... 12-78

UART PORT CONTROLLERS

Overview .. 13-1

Features .. 13-2

Interface Overview .. 13-3

External Interface .. 13-3

Internal Interface ... 13-4

Contents

xxxii ADSP-BF537 Blackfin Processor Hardware Reference

Description of Operation .. 13-5

UART Transfer Protocol .. 13-5

UART Transmit Operation .. 13-6

UART Receive Operation .. 13-7

IrDA Transmit Operation .. 13-8

IrDA Receive Operation .. 13-9

Interrupt Processing .. 13-11

Bit Rate Generation .. 13-13

Autobaud Detection .. 13-14

Programming Model ... 13-16

Non-DMA Mode .. 13-16

DMA Mode .. 13-18

Mixing Modes ... 13-19

UART Registers .. 13-20

UARTx_LCR Registers ... 13-22

UARTx_MCR Registers .. 13-24

UARTx_LSR Registers .. 13-25

UARTx_THR Registers .. 13-26

UARTx_RBR Registers ... 13-27

UARTx_IER Registers .. 13-27

UARTx_IIR Registers ... 13-29

UARTx_DLL Registers ... 13-30

UARTx_DLH Registers .. 13-31

ADSP-BF537 Blackfin Processor Hardware Reference xxxiii

Contents

UARTx_SCR Registers .. 13-32

UARTx_GCTL Registers ... 13-32

Programming Examples ... 13-33

GENERAL-PURPOSE PORTS

Overview .. 14-1

Features .. 14-2

Interface Overview .. 14-4

External Interface .. 14-4

Port F Structure .. 14-4

Port G Structure ... 14-6

Port H Structure ... 14-7

Port J Structure ... 14-8

Internal Interfaces ... 14-9

Performance/Throughput .. 14-9

Description of Operation .. 14-10

Operation ... 14-10

General-Purpose I/O Modules ... 14-10

GPIO Interrupt Processing .. 14-14

Programming Model ... 14-20

Memory-Mapped GPIO Registers ... 14-22

PORT_MUX Control Register .. 14-22

PORTx_FER Registers .. 14-23

PORTxIO_DIR Registers .. 14-23

PORTxIO_INEN Registers ... 14-24

Contents

xxxiv ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO Registers .. 14-24

PORTxIO_SET Registers .. 14-25

PORTxIO_CLEAR Registers .. 14-25

PORTxIO_TOGGLE Registers ... 14-26

PORTxIO_POLAR Registers .. 14-26

PORTxIO_EDGE Registers .. 14-27

PORTxIO_BOTH Registers ... 14-27

PORTxIO_MASKA Registers .. 14-28

PORTxIO_MASKB Registers .. 14-28

PORTxIO_MASKA_SET Registers 14-29

PORTxIO_MASKB_SET Registers 14-30

PORTxIO_MASKA_CLEAR Registers 14-31

PORTxIO_MASKB_CLEAR Registers 14-32

PORTxIO_MASKA_TOGGLE Registers 14-33

PORTxIO_MASKB_TOGGLE Registers 14-34

Programming Examples .. 14-35

GENERAL-PURPOSE TIMERS

Overview and Features .. 15-1

Features .. 15-2

Interface Overview ... 15-3

External Interface .. 15-5

Internal Interface .. 15-6

ADSP-BF537 Blackfin Processor Hardware Reference xxxv

Contents

Description of Operation .. 15-7

Interrupt Processing .. 15-8

Illegal States .. 15-11

Modes of Operation .. 15-14

Pulse Width Modulation (PWM_OUT) Mode 15-14

Output Pad Disable .. 15-16

Single Pulse Generation ... 15-16

Pulse Width Modulation Waveform Generation 15-17

PULSE_HI Toggle Mode .. 15-19

Externally Clocked PWM_OUT 15-23

Using PWM_OUT Mode With the PPI 15-24

Stopping the Timer in PWM_OUT Mode 15-24

Pulse Width Count and Capture (WDTH_CAP) Mode 15-27

Autobaud Mode .. 15-35

External Event (EXT_CLK) Mode 15-36

Programming Model ... 15-37

Timer Registers ... 15-38

TIMER_ENABLE Register .. 15-39

TIMER_DISABLE Register ... 15-40

TIMER_STATUS Register .. 15-42

TIMERx_CONFIG Registers .. 15-44

TIMERx_COUNTER Registers .. 15-45

TIMERx_PERIOD Registers ... 15-47

Contents

xxxvi ADSP-BF537 Blackfin Processor Hardware Reference

TIMERx_WIDTH Registers ... 15-50

Summary .. 15-51

Programming Examples .. 15-54

CORE TIMER

Overview and Features .. 16-1

Timer Overview ... 16-2

External Interfaces .. 16-2

Internal Interfaces ... 16-2

Description of Operation .. 16-3

Interrupt Processing .. 16-3

Core Timer Registers .. 16-4

TCNTL Register ... 16-4

TCOUNT Register ... 16-5

TPERIOD Register ... 16-6

TSCALE Register .. 16-7

Programming Examples .. 16-7

WATCHDOG TIMER

Overview and Features .. 17-1

Interface Overview ... 17-3

External Interface .. 17-3

Internal Interface .. 17-3

Description of Operation .. 17-4

ADSP-BF537 Blackfin Processor Hardware Reference xxxvii

Contents

 Watchdog Timer Register Definitions ... 17-5

WDOG_CNT Register ... 17-6

WDOG_STAT Register ... 17-7

WDOG_CTL Register .. 17-8

Programming Examples ... 17-9

REAL-TIME CLOCK

Overview .. 18-1

Interface Overview .. 18-3

Description of Operation .. 18-5

RTC Clock Requirements .. 18-5

Prescaler Enable ... 18-5

RTC Programming Model ... 18-7

Register Writes .. 18-8

Write Latency .. 18-9

Register Reads ... 18-10

Deep Sleep .. 18-10

Event Flags .. 18-11

Setting Time of Day .. 18-13

Using the Stopwatch .. 18-14

Interrupts .. 18-15

State Transitions Summary ... 18-18

RTC Register Definitions .. 18-20

RTC_STAT Register .. 18-21

RTC_ICTL Register .. 18-21

Contents

xxxviii ADSP-BF537 Blackfin Processor Hardware Reference

RTC_ISTAT Register .. 18-22

RTC_SWCNT Register .. 18-22

RTC_ALARM Register ... 18-23

RTC_PREN Register .. 18-23

Programming Examples .. 18-24

Enable RTC Prescaler .. 18-24

RTC Stopwatch For Exiting Deep Sleep Mode 18-25

RTC Alarm to Come Out of Hibernate State 18-27

SYSTEM RESET AND BOOTING

Overview .. 19-1

Reset and Powerup .. 19-3

Hardware Reset ... 19-4

System Reset Configuration Register (SYSCR) 19-5

Software Resets and Watchdog Timer 19-6

Software Reset Register (SWRST) ... 19-6

Core-Only Software Reset ... 19-8

Core and System Reset .. 19-8

Reset Vector .. 19-9

Servicing Reset Interrupts .. 19-10

Booting Process .. 19-12

Header Information .. 19-14

Host Wait Feedback Strobe (HWAIT) 19-19

Final Initialization .. 19-21

Initialization Code .. 19-22

ADSP-BF537 Blackfin Processor Hardware Reference xxxix

Contents

Multi-Application (Multi-DXE) Management 19-26

User-Callable Boot ROM Functions 19-27

Booting a Different Application 19-27

Determining Boot Stream Start Addresses 19-29

Specific Blackfin Boot Modes .. 19-33

Bypass (No-Boot) Mode (BMODE = 000) 19-34

8-Bit Flash/PROM Boot (BMODE = 001) 19-35

16-Bit Flash/PROM Boot (BMODE = 001) 19-39

SPI Master Mode Boot from SPI Memory
(BMODE = 011) .. 19-42

SPI Memory Detection Routine 19-43

SPI Slave Mode Boot From SPI Host (BMODE = 100) 19-47

TWI Master Boot Mode (BMODE = 101) 19-52

TWI Slave Boot Mode (BMODE = 110) 19-54

UART Slave Mode Boot via Master Host
(BMODE = 111) .. 19-55

Blackfin Loader File Viewer ... 19-58

DYNAMIC POWER MANAGEMENT

Phase Locked Loop and Clock Control .. 20-1

PLL Overview ... 20-2

PLL Clock Multiplier Ratios .. 20-3

Core Clock/System Clock Ratio Control 20-5

Contents

xl ADSP-BF537 Blackfin Processor Hardware Reference

Dynamic Power Management Controller 20-7

Operating Modes .. 20-8

Dynamic Power Management Controller States 20-8

Full-On Mode ... 20-8

Active Mode .. 20-9

Sleep Mode ... 20-9

Deep Sleep Mode .. 20-10

Hibernate State .. 20-11

Operating Mode Transitions .. 20-11

Programming Operating Mode Transitions 20-14

PLL Programming Sequence 20-15

PLL Programming Sequence Continues 20-17

Dynamic Supply Voltage Control .. 20-18

Power Supply Management ... 20-19

Controlling the Voltage Regulator 20-20

Changing Voltage ... 20-21

Powering Down the Core (Hibernate State) 20-23

PLL Registers ... 20-25

PLL_DIV Register .. 20-27

PLL_CTL Register .. 20-27

PLL_STAT Register .. 20-28

PLL_LOCKCNT Register ... 20-28

VR_CTL Register ... 20-29

ADSP-BF537 Blackfin Processor Hardware Reference xli

Contents

Programming Examples ... 20-30

Active Mode to Full-On Mode ... 20-31

Full-On Mode to Active Mode ... 20-33

In the Full On Mode, Change CLKIN to VCO Multiplier
From 31x to 2x ... 20-34

Setting Wakeups and Entering Hibernate State 20-35

Changing Internal Voltage Levels ... 20-36

SYSTEM DESIGN

Pin Descriptions ... 21-2

Managing Clocks .. 21-2

Managing Core and System Clocks .. 21-2

Configuring and Servicing Interrupts ... 21-2

Semaphores ... 21-3

Example Code for Query Semaphore 21-4

Data Delays, Latencies and Throughput 21-5

Bus Priorities .. 21-5

External Memory Design Issues ... 21-5

Example Asynchronous Memory Interfaces 21-5

Avoiding Bus Contention ... 21-7

High-Frequency Design Considerations 21-8

Signal Integrity .. 21-8

Decoupling Capacitors and Ground Planes 21-10

5 Volt Tolerance .. 21-11

Resetting the Processor .. 21-12

Contents

xlii ADSP-BF537 Blackfin Processor Hardware Reference

Recommendations for Unused Pins 21-12

Programmable Outputs ... 21-12

Test Point Access ... 21-12

Oscilloscope Probes ... 21-13

Recommended Reading ... 21-13

SYSTEM MMR ASSIGNMENTS

Dynamic Power Management Registers ... A-3

System Reset and Interrupt Control Registers A-3

Watchdog Timer Registers .. A-4

Real-Time Clock Registers .. A-5

UART0 Controller Registers ... A-5

SPI Controller Registers .. A-6

Timer Registers .. A-7

Ports Registers .. A-9

SPORT0 Controller Registers ... A-12

SPORT1 Controller Registers ... A-14

External Bus Interface Unit Registers .. A-16

DMA/Memory DMA Control Registers A-17

PPI Registers .. A-19

TWI Registers .. A-20

UART1 Controller Registers ... A-21

CAN Registers .. A-22

Ethernet MAC Registers ... A-29

Handshake MDMA Control Registers ... A-35

ADSP-BF537 Blackfin Processor Hardware Reference xliii

Contents

Core Timer Registers .. A-36

Processor-Specific Memory Registers .. A-37

TEST FEATURES

JTAG Standard .. B-1

Boundary-Scan Architecture ... B-2

Instruction Register .. B-4

Public Instructions ... B-6

EXTEST – Binary Code 00000 .. B-6

SAMPLE/PRELOAD – Binary Code 10000 B-6

BYPASS – Binary Code 11111 ... B-6

Boundary-Scan Register .. B-7

GLOSSARY

INDEX

Contents

xliv ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference xlv

PREFACE

Thank you for purchasing and developing systems using Blackfin® proces-
sors from Analog Devices, Inc.

Purpose of This Manual
ADSP-BF537 Blackfin Processor Hardware Reference provides architectural
information about the ADSP-BF534, ADSP-BF536, and ADSP-BF537
processors. The architectural descriptions cover functional blocks, buses,
and ports, including all features and processes that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see ADSP-BF534
Embedded Processor Data Sheet or ADSP-BF536/ADSP-BF537 Embedded
Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

Manual Contents

xlvi ADSP-BF537 Blackfin Processor Hardware Reference

Manual Contents
This manual contains:

• Chapter 1, “Introduction”
Provides a high level overview of the processor, including peripher-
als, power management, and development tools.

• Chapter 2, “Chip Bus Hierarchy”
Describes on-chip buses, including how data moves through the
system.

• Chapter 3, “Memory”
Describes processor-specific memory topics, including L1memories
and processor-specific memory MMRs.

• Chapter 4, “System Interrupts”
Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Chapter 5, “Direct Memory Access”
Describes the peripheral DMA and Memory DMA controllers.
Includes performance, software management of DMA, and DMA
errors.

• Chapter 6, “External Bus Interface Unit”
Describes the External Bus Interface Unit of the processor. The
chapter also discusses the asynchronous memory interface, the
SDRAM controller (SDC), related registers, and SDC configura-
tion and commands.

• Chapter 7, “Parallel Peripheral Interface”
Describes the Parallel Peripheral Interface (PPI) of the processor.
The PPI is a half-duplex, bidirectional port accommodating up to
16 bits of data and is used for digital video and data converter
applications.

ADSP-BF537 Blackfin Processor Hardware Reference xlvii

Preface

• Chapter 8, “Ethernet MAC”
Describes the Ethernet Media Access Controller (MAC) peripheral
that is available on ADSP-BF536 and ADSP-BF537 processors.
The Ethernet MAC provides a 10/100Mbit/s Ethernet interface,
compliant to IEEE Std. 802.3-2002, between an MII (Media Inde-
pendent Interface) and the Blackfin peripheral subsystem.

• Chapter 9, “CAN Module”
Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

• Chapter 10, “SPI Compatible Port Controllers”
Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Chapter 11, “Two-Wire Interface Controller”
Describes the Two-Wire Interface (TWI) controller, which allows
a device to interface to an Inter IC bus as specified by the Philips
I2C Bus Specification version 2.1 dated January 2000.

• Chapter 12, “SPORT Controllers”
Describes the two independent, synchronous Serial Port Control-
lers (SPORT0 and SPORT1) that provide an I/O interface to a
variety of serial peripheral devices.

• Chapter 13, “UART Port Controllers”
Describes the two Universal Asynchronous Receiver/Transmitter
ports (UART0 and UART1) that convert data between serial and
parallel formats. The UARTs support the half-duplex IrDA® SIR
protocol as a mode-enabled feature.

• Chapter 14, “General-Purpose Ports”
Describes the general-purpose I/O ports, including the structure of
each port, multiplexing, configuring the pins, and generating
interrupts.

Manual Contents

xlviii ADSP-BF537 Blackfin Processor Hardware Reference

• Chapter 15, “General-Purpose Timers”
Describes the eight general-purpose timers.

• Chapter 16, “Core Timer”
Describes the core timer.

• Chapter 17, “Watchdog Timer”
Describes the watchdog timer.

• Chapter 18, “Real-Time Clock”
Describes a set of digital watch features of the processor, including
time of day, alarm, and stopwatch countdown.

• Chapter 19, “System Reset and Booting”
Describes the booting methods, booting process and specific boot
modes for the processor.

• Chapter 20, “Dynamic Power Management”
Describes the clocking, including the PLL, and the dynamic power
management controller.

• Chapter 21, “System Design”
Describes how to use the processor as part of an overall system. It
includes information about bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused pins.

• Appendix A, “System MMR Assignments”
Lists the memory-mapped registers included in this manual, their
addresses, and cross-references to text.

• Appendix B, “Test Features”
Describes test features for the processor, discusses the JTAG stan-
dard, boundary-scan architecture, instruction and boundary
registers, and public instructions.

• “Glossary”
Contains definitions of terms used in this book, including
acronyms.

ADSP-BF537 Blackfin Processor Hardware Reference xlix

Preface

What’s New in This Manual
This is Revision 3.4 of ADSP-BF537 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
issues:

• Core priority over DMA when accessing L1 SRAM in Chapter 2,
“Chip Bus Hierarchy”

• Note on timing dependencies for the TRP and TRAS settings in the
EBIU_SDGCTL register in Chapter 6, “External Bus Interface Unit”

• Multiplexing of PPI pins on port G in Chapter 7, “Parallel Periph-
eral Interface”

• Note on CAN_GIS and CAN_GIF programming in Chapter 9, “CAN
Module”

• Termination of SPI TX DMA operations and comments on
SPI_CTL register functionality in Chapter 10, “SPI Compatible
Port Controllers”

• Descriptions of the TWI_XMT_DATA8 register bit and RCVSERV, the
Receive FIFO service, coverage of previously undocumented clock
stretching behavior, and miscellaneous changes across Chapter 11,
“Two-Wire Interface Controller”

• Description of multichannel mode operation, behavior on startup
when using an external clock, and receiver and transmitter enable
bit names standardized on RSPEN and TSPEN in Chapter 12,
“SPORT Controllers”

Technical Support

l ADSP-BF537 Blackfin Processor Hardware Reference

• Core Double Fault Reset Enable bit (DOUBLE_FAULT) set in the
SWRST register and MOSI pin latching information in Chapter 19,
“System Reset and Booting”

• Note on programming the STOPCK bit, CLKBUF behavior during
hibernate, and input and output delays in PLL_CTL diagram in
Chapter 20, “Dynamic Power Management”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

http://ez.analog.com/community/dsp
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

ADSP-BF537 Blackfin Processor Hardware Reference li

Preface

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

http://www.analog.com/adi-sales

Product Information

lii ADSP-BF537 Blackfin Processor Hardware Reference

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://ez.analog.com

ADSP-BF537 Blackfin Processor Hardware Reference liii

Preface

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Register Diagram Conventions

liv ADSP-BF537 Blackfin Processor Hardware Reference

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

ADSP-BF537 Blackfin Processor Hardware Reference lv

Preface

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

Register Diagram Conventions

lvi ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors are new
members of the Blackfin processor family that offer significant high per-
formance and low power while retaining their ease-of-use benefits. The
ADSP-BF536 and ADSP-BF537 processors are completely pin compati-
ble, differing only in their performance and on-chip memory, mitigating
many risks associated with new product development but allowing the
possibility to scale up or down based on specific application demands. The
ADSP-BF534 processor is pin-compatible with the ADSP-BF536 and
ADSP-BF537 processors, but it does not include the embedded Ethernet
controller like the ADSP-BF536 and ADSP-BF537 devices.

This chapter provides an overview of:

• “Peripherals” on page 1-2

• “Memory Architecture” on page 1-4

• “DMA Support” on page 1-7

• “External Bus Interface Unit” on page 1-8

• “Ports” on page 1-9

• “Two-Wire Interface” on page 1-11

• “Controller Area Network” on page 1-12

• “Ethernet MAC” on page 1-13

• “Parallel Peripheral Interface” on page 1-14

Peripherals

1-2 ADSP-BF537 Blackfin Processor Hardware Reference

• “SPORT Controllers” on page 1-16

• “Serial Peripheral Interface (SPI) Port” on page 1-17

• “Timers” on page 1-18

• “UART Ports” on page 1-19

• “Real-Time Clock” on page 1-20

• “Watchdog Timer” on page 1-21

• “Clock Signals” on page 1-22

• “Dynamic Power Management” on page 1-22

• “Voltage Regulation” on page 1-24

• “Boot Modes” on page 1-25

• “Instruction Set Description” on page 1-27

• “Development Tools” on page 1-28

Peripherals
The processor system peripherals include:

• IEEE 802.3-compliant 10/100 Ethernet MAC (Not included on
the ADSP-BF534)

• Controller Area Network (CAN) 2.0B interface

• Parallel Peripheral Interface (PPI), supporting ITU-R 656 video
data formats

• Two dual-channel, full-duplex synchronous Serial Ports
(SPORTs), supporting eight stereo I2S channels

ADSP-BF537 Blackfin Processor Hardware Reference 1-3

Introduction

• 12 peripheral DMAs (2 mastered by the Ethernet MAC on
ADSP-BF536 and ADSP-BF537 processors)

• Two memory-to-memory DMAs with handshake DMA

• Event handler with 32 interrupt inputs

• Serial Peripheral Interface (SPI)-compatible

• Two UARTs with IrDA® support

• Two-Wire Interface (TWI) controller

• Eight 32-bit timer/counters with PWM support

• Real-Time Clock (RTC) and watchdog timer

• 32-bit core timer

• 48 General-Purpose I/Os (GPIOs), 8 with high current drivers

• On-chip PLL capable of 1x to 63x frequency multiplication

• Debug/JTAG interface

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

All of the peripherals, except for general-purpose I/O, CAN, TWI, RTC,
and timers, are supported by a flexible DMA structure. There are also two
separate memory DMA channels dedicated to data transfers between the
processor’s memory spaces, which include external SDRAM and asynchro-
nous memory. Multiple on-chip buses provide enough bandwidth to keep
the processor core running even when there is also activity on all of the
on-chip and external peripherals.

Memory Architecture

1-4 ADSP-BF537 Blackfin Processor Hardware Reference

Memory Architecture
The Blackfin processor architecture structures memory as a single, unified
4G byte address space using 32-bit addresses. All resources, including
internal memory, external memory, and I/O control registers, occupy sep-
arate sections of this common address space. The memory portions of this
address space are arranged in a hierarchical structure to provide a good
cost/performance balance of some very fast, low latency on-chip memory
as cache or SRAM, and larger, lower cost and lower performance off-chip
memory systems.

Figure 1-1. ADSP-BF53x Processor Block Diagram

ETHERNET MAC
(ADSP-BF536/

ADSP-BF537 ONLY)

TIMERS 0-7

UART 0-1

PPI

SPORT1

SPI

WATCHDOG TIMER

RTC

TWI

CAN

SPORT0

GPIO
PORT

F

GPIO
PORT

H

GPIO
PORT

G

PORT
J

EXTERNAL PORT
FLASH, SDRAM CONTROL

BOOT ROM

JTAG TEST AND EMULATIONVOLTAGE REGULATOR

DMA
CONTROLLER

L1
INSTRUCTION

MEMORY

L1
DATA

MEMORY

B INTERRUPT
CONTROLLER

PERIPHERAL ACCESS BUS

D
M

A
A

C
C

E
S

S
B

U
SEXTERNAL

ACCESS
BUS DMA CORE BUS D

M
A

E
X

T
E

R
N

A
L

B
U

S

P
E

R
IP

H
E

R
A

L
A

C
C

E
S

S
B

U
S

16

ADSP-BF537 Blackfin Processor Hardware Reference 1-5

Introduction

Table 1-1 shows the memory comparison for the ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors.

The L1 memory system is the primary highest performance memory avail-
able to the core. The off-chip memory system, accessed through the
External Bus Interface Unit (EBIU), provides expansion with SDRAM,
flash memory, and SRAM, optionally accessing up to 132M bytes of phys-
ical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal memory and the external memory spaces.

Table 1-1. Memory Configurations

Type of Memory ADSP-BF534 ADSP-BF536 ADSP-BF537

Instruction SRAM/cache, lockable by
way or line

16K byte 16K byte 16K byte

Instruction SRAM 48K byte 48K byte 48K byte

Data SRAM/cache 32K byte 16K byte 32K byte

Data SRAM 32K byte 16K byte 32K byte

Data scratchpad SRAM 4K byte 4K byte 4K byte

Total 132K byte 100K byte 132K byte

Memory Architecture

1-6 ADSP-BF537 Blackfin Processor Hardware Reference

Internal Memory
The processor has three blocks of on-chip memory that provide high
bandwidth access to the core:

• L1 instruction memory, consisting of SRAM and a 4-way set-asso-
ciative cache. This memory is accessed at full processor speed.

• L1 data memory, consisting of SRAM and/or a 2-way set-associa-
tive cache. This memory block is accessed at full processor speed.

• L1 scratchpad RAM, which runs at the same speed as the L1 mem-
ories but is only accessible as data SRAM and cannot be configured
as cache memory.

External Memory
External (off-chip) memory is accessed via the External Bus Interface Unit
(EBIU). This 16-bit interface provides a glueless connection to a bank of
synchronous DRAM (SDRAM) and as many as four banks of asynchro-
nous memory devices including flash memory, EPROM, ROM, SRAM,
and memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face to up to 128M bytes of SDRAM.

The asynchronous memory controller can be programmed to control up
to four banks of devices. Each bank occupies a 1M byte segment regardless
of the size of the devices used, so that these banks are only contiguous if
each is fully populated with 1M byte of memory.

I/O Memory Space
Blackfin processors do not define a separate I/O space. All resources are
mapped through the flat 32-bit address space. Control registers for
on-chip I/O devices are mapped into memory-mapped registers (MMRs)

ADSP-BF537 Blackfin Processor Hardware Reference 1-7

Introduction

at addresses near the top of the 4G byte address space. These are separated
into two smaller blocks: one contains the control MMRs for all core func-
tions and the other contains the registers needed for setup and control of
the on-chip peripherals outside of the core. The MMRs are accessible only
in supervisor mode. They appear as reserved space to on-chip peripherals.

DMA Support
The processor has multiple, independent DMA controllers that support
automated data transfers with minimal overhead for the core. DMA trans-
fers can occur between the internal memories and any of its DMA-capable
peripherals. Additionally, DMA transfers can be accomplished between
any of the DMA-capable peripherals and external devices connected to the
external memory interfaces, including the SDRAM controller and the
asynchronous memory controller. DMA-capable peripherals include the
SPORTs, SPI ports, UARTs, and PPI. For the ADSP-BF536 and
ADSP-BF537 processors, Ethernet is also a DMA-capable peripheral.
Each individual DMA-capable peripheral has at least one dedicated DMA
channel.

The DMA controller supports both one-dimensional (1D) and
two-dimensional (2D) DMA transfers. DMA transfer initialization can be
implemented from registers or from sets of parameters called descriptor
blocks.

The 2D DMA capability supports arbitrary row and column sizes up to
64K elements by 64K elements, and arbitrary row and column step sizes
up to +/– 32K elements. Furthermore, the column step size can be less
than the row step size, allowing implementation of interleaved data-
streams. This feature is especially useful in video applications where data
can be de-interleaved on the fly.

External Bus Interface Unit

1-8 ADSP-BF537 Blackfin Processor Hardware Reference

Examples of DMA types supported include:

• A single, linear buffer that stops upon completion

• A circular, auto-refreshing buffer that interrupts on each full or
fractionally full buffer

• 1D or 2D DMA using a linked list of descriptors

• 2D DMA using an array of descriptors specifying only the base
DMA address within a common page

In addition to the dedicated peripheral DMA channels, there is a separate
memory DMA channel provided for transfers between the various memo-
ries of the system. This enables transfers of blocks of data between any of
the memories—including external SDRAM, ROM, SRAM, and flash
memory—with minimal processor intervention. Memory DMA transfers
can be controlled by a very flexible descriptor-based methodology or by a
standard register-based autobuffer mechanism.

The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors also
include a handshake DMA capability via dual external DMA request pins
when used in conjunction with the External Bus Interface Unit (EBIU).
This functionality can be used when a high speed interface is required for
external FIFOs and high bandwidth communications peripherals such as
USB 2.0. It allows control of the number of data transfers for MDMA.
The number of transfers per edge is programmable. This feature can be
programmed to allow MDMA to have an increased priority on the exter-
nal bus relative to the core.

External Bus Interface Unit
The External Bus Interface Unit (EBIU) on the processor interfaces with a
wide variety of industry-standard memory devices. The controller consists
of an SDRAM controller and an asynchronous memory controller.

ADSP-BF537 Blackfin Processor Hardware Reference 1-9

Introduction

PC133 SDRAM Controller
The SDRAM controller provides an interface to a single bank of indus-
try-standard SDRAM devices or DIMMs. Fully compliant with the
PC133 SDRAM standard, the bank can be configured to contain between
16M and 128M bytes of memory.

A set of programmable timing parameters is available to configure the
SDRAM bank to support slower memory devices. The memory bank is
16 bits wide for minimum device count and lower system cost.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 1M byte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks are 16 bits wide, for
interfacing to a range of memories and I/O devices.

Ports
Because of the rich set of peripherals, the ADSP-BF534, ADSP-BF536,
and ADSP-BF537 processor groups the many peripheral signals to four
ports—port F, port G, port H, and port J. Most of the associated pins are
shared by multiple signals. The ports function as multiplexer controls.
Eight of the pins (port F7–0) offer high source/high sink current
capabilities.

Ports

1-10 ADSP-BF537 Blackfin Processor Hardware Reference

General-Purpose I/O (GPIO)
The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors have 48
bidirectional, general-purpose I/O (GPIO) pins allocated across three sep-
arate GPIO modules—PORTFIO, PORTGIO, and PORTHIO,
associated with port F, port G, and port H, respectively. Port J does not
provide GPIO functionality. Each GPIO-capable pin shares functionality
with other ADSP-BF534, ADSP-BF536, and ADSP-BF537 processor
peripherals via a multiplexing scheme; however, the GPIO functionality is
the default state of the device upon powerup. Neither GPIO output or
input drivers are active by default. Each general-purpose port pin can be
individually controlled by manipulation of the port control, status, and
interrupt registers:

• GPIO direction control register – Specifies the direction of each
individual GPIO pin as input or output.

• GPIO control and status registers – The ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors employ a “write one
to modify” mechanism that allows any combination of individual
GPIO pins to be modified in a single instruction, without affecting
the level of any other GPIO pins. Four control registers are pro-
vided. One register is written in order to set pin values, one register
is written in order to clear pin values, one register is written in
order to toggle pin values, and one register is written in order to
specify a pin value. Reading the GPIO status register allows soft-
ware to interrogate the sense of the pins.

• GPIO interrupt mask registers – The two GPIO interrupt mask
registers allow each individual GPIO pin to function as an inter-
rupt to the processor. Similar to the two GPIO control registers
that are used to set and clear individual pin values, one GPIO
interrupt mask register sets bits to enable interrupt function, and
the other GPIO interrupt mask register clears bits to disable

ADSP-BF537 Blackfin Processor Hardware Reference 1-11

Introduction

interrupt function. GPIO pins defined as inputs can be configured
to generate hardware interrupts, while output pins can be triggered
by software interrupts.

• GPIO interrupt sensitivity registers – The two GPIO interrupt sen-
sitivity registers specify whether individual pins are level- or
edge-sensitive and specify—if edge-sensitive—whether just the ris-
ing edge or both the rising and falling edges of the signal are
significant. One register selects the type of sensitivity, and one reg-
ister selects which edges are significant for edge-sensitivity.

Two-Wire Interface
The Two-Wire Interface (TWI) is fully compatible with the widely used

I2C bus standard. It was designed with a high level of functionality and is
compatible with multi-master, multi-slave bus configurations. To preserve
processor bandwidth, the TWI controller can be set up and a transfer ini-
tiated with interrupts only to service FIFO buffer data reads and writes.
Protocol related interrupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The Philips I2C Bus Specification version 2.1 covers

many variants of I2C. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master data arbitration

• 7-bit addressing

• 100 kbits/second and 400 kbits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

Controller Area Network

1-12 ADSP-BF537 Blackfin Processor Hardware Reference

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1

Controller Area Network
The Controller Area Network (CAN) module is a low bit rate serial inter-
face intended for use in applications where bit rates are typically up to 1
Mbit/second. The CAN protocol incorporates a data CRC check, message
error tracking, and fault node confinement as means to improve network
reliability to the level required for control applications.

The interface to the CAN bus is a simple two-wire line. See Figure 9-1 on
page 9-2 for a symbolic representation of the CAN transceiver intercon-
nection. The Blackfin processor’s CANTX output and CANRX input pins are
connected to an external CAN transceiver’s TX and RX pins, respectively.

Key features of the CAN module are:

• Conforms to the CAN 2.0B (active) standard

• Supports both standard (11-bit) and extended (29-bit) identifiers

• Supports data rates of up to 1 Mbit/second

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

ADSP-BF537 Blackfin Processor Hardware Reference 1-13

Introduction

• Data filtering (first 2 bytes) can be used for acceptance filtering
(Device Net mode)

• Error status and warning registers

• Transmit priority by identifier

• Universal counter module

• Readable receive and transmit pin values

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

Ethernet MAC
The Ethernet Media Access Controller (MAC) peripheral for the
ADSP-BF536 and ADSP-BF537 processors provides a 10/100 Mbit/sec-
ond Ethernet interface, compliant with IEEE Std. 802.3-2002, between a
Media Independent Interface (MII) and the Blackfin peripheral subsys-
tem. The MAC operates in both half-duplex and full-duplex modes. It
provides programmable enhanced features designed to minimize bus utili-
zation and pre- or post-message processing. The connection to the
external physical layer device (PHY) is achieved via the MII or a Reduced
Media Independent Interface (RMII). The RMII provides data buses half
as wide (2 bit vs. 4 bit) as those of an MII, operating at double the
frequency.

The MAC is clocked internally from the CLKIN pin on the processor. A
buffered version of this clock can also be used to drive the external PHY
via the CLKBUF pin. A 25 MHz source should be used with an MII PHY.
A 50 MHz clock source is required to drive an RMII PHY.

Parallel Peripheral Interface

1-14 ADSP-BF537 Blackfin Processor Hardware Reference

Parallel Peripheral Interface
The processor provides a Parallel Peripheral Interface (PPI) that can con-
nect directly to parallel A/D and D/A converters, ITU-R 601/656 video
encoders and decoders, and other general-purpose peripherals. The PPI
consists of a dedicated input clock pin and three multiplexed frame sync
pins. The input clock supports parallel data rates up to half the system
clock rate.

In ITU-R 656 modes, the PPI receives and parses a data stream of 8-bit or
10-bit data elements. On-chip decode of embedded preamble control and
synchronization information is supported.

Three distinct ITU-R 656 modes are supported:

• Active video only – The PPI does not read in any data between the
End of Active Video (EAV) and Start of Active Video (SAV) pre-
amble symbols, or any data present during the vertical blanking
intervals. In this mode, the control byte sequences are not stored to
memory; they are filtered by the PPI.

• Vertical blanking only – The PPI only transfers Vertical Blanking
Interval (VBI) data, as well as horizontal blanking information and
control byte sequences on VBI lines.

• Entire field – The entire incoming bitstream is read in through the
PPI. This includes active video, control preamble sequences, and
ancillary data that may be embedded in horizontal and vertical
blanking intervals.

Though not explicitly supported, ITU-R 656 output functionality can be
achieved by setting up the entire frame structure (including active video,
blanking, and control information) in memory and streaming the data out
the PPI in a frame sync-less mode. The processor’s 2D DMA features

ADSP-BF537 Blackfin Processor Hardware Reference 1-15

Introduction

facilitate this transfer by allowing the static frame buffer (blanking and
control codes) to be placed in memory once, and simply updating the
active video information on a per-frame basis.

The general-purpose modes of the PPI are intended to suit a wide variety
of data capture and transmission applications. The modes are divided into
four main categories, each allowing up to 16 bits of data transfer per
PPI_CLK cycle:

• Data receive with internally generated frame syncs

• Data receive with externally generated frame syncs

• Data transmit with internally generated frame syncs

• Data transmit with externally generated frame syncs

These modes support ADC/DAC connections, as well as video communi-
cation with hardware signalling. Many of the modes support more than
one level of frame synchronization. If desired, a programmable delay can
be inserted between assertion of a frame sync and reception/transmission
of data.

SPORT Controllers

1-16 ADSP-BF537 Blackfin Processor Hardware Reference

SPORT Controllers
The processor incorporates two dual-channel synchronous serial ports
(SPORT0 and SPORT1) for serial and multiprocessor communications.
The SPORTs support these features:

• Bidirectional, I2S capable operation

Each SPORT has two sets of independent transmit and receive
pins, which enable eight channels of I2S stereo audio.

• Buffered (eight-deep) transmit and receive ports

Each port has a data register for transferring data words to and
from other processor components and shift registers for shifting
data in and out of the data registers.

• Clocking

Each transmit and receive port can either use an external serial
clock or can generate its own in a wide range of frequencies.

• Word length

Each SPORT supports serial data words from 3 to 32 bits in
length, transferred in most significant bit first or least significant
bit first format.

• Framing

Each transmit and receive port can run with or without frame sync
signals for each data word. Frame sync signals can be generated
internally or externally, active high or low, and with either of two
pulse widths and early or late frame sync.

ADSP-BF537 Blackfin Processor Hardware Reference 1-17

Introduction

• Companding in hardware

Each SPORT can perform A-law or µ-law companding according
to ITU recommendation G.711. Companding can be selected on
the transmit and/or receive channel of the SPORT without addi-
tional latencies.

• DMA operations with single cycle overhead

Each SPORT can automatically receive and transmit multiple buf-
fers of memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.

• Interrupts

Each transmit and receive port generates an interrupt upon com-
pleting the transfer of a data word or after transferring an entire
data buffer or buffers through DMA.

• Multichannel capability

Each SPORT supports 128 channels out of a 1024-channel win-
dow and is compatible with the H.100, H.110, MVIP-90, and
HMVIP standards.

Serial Peripheral Interface (SPI) Port
The processor has an SPI-compatible port that enables the processor to
communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. An SPI chip select input pin lets other SPI devices select the
processor, and seven SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured general-purpose

Timers

1-18 ADSP-BF537 Blackfin Processor Hardware Reference

I/O pins. Using these pins, the SPI port provides a full-duplex,
synchronous serial interface, which supports both master and slave modes
and multimaster environments.

The SPI port’s baud rate and clock phase/polarities are programmable,
and it has an integrated DMA controller, configurable to support either
transmit or receive datastreams. The SPI’s DMA controller can only ser-
vice unidirectional accesses at any given time.

During transfers, the SPI port simultaneously transmits and receives by
serially shifting data in and out of its two serial data lines. The serial clock
line synchronizes the shifting and sampling of data on the two serial data
lines.

Timers
There are nine general-purpose programmable timer units in the proces-
sor. Eight timers have an external pin that can be configured either as a
Pulse Width Modulator (PWM) or timer output, as an input to clock the
timer, or as a mechanism for measuring pulse widths of external events.
These timer units can be synchronized to an external clock input con-
nected to the PF1 pin, an external clock input to the PPI_CLK pin, or to the
internal SCLK.

The timer units can be used in conjunction with the UARTs to measure
the width of the pulses in the datastream to provide an autobaud detect
function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

ADSP-BF537 Blackfin Processor Hardware Reference 1-19

Introduction

In addition to the eight general-purpose programmable timers, a 9th timer
is also provided. This extra timer is clocked by the internal processor clock
and is typically used as a system tick clock for generation of operating sys-
tem periodic interrupts.

UART Ports
The processor provides two full-duplex Universal Asynchronous
Receiver/Transmitter (UART) ports, which are fully compatible with
PC-standard UARTs. The UART ports provide a simplified UART inter-
face to other peripherals or hosts, providing full-duplex, DMA-supported,
asynchronous transfers of serial data. The UART ports include support for
5 to 8 data bits; 1 or 2 stop bits; and none, even, or odd parity.

The UART ports support two modes of operation:

• Programmed I/O

The processor sends or receives data by writing or reading
I/O-mapped UART registers. The data is double buffered on both
transmit and receive.

• Direct Memory Access (DMA)

The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each of the two UARTs have two
dedicated DMA channels, one for transmit and one for receive.
These DMA channels have lower priority than most DMA chan-
nels because of their relatively low service rates.

Real-Time Clock

1-20 ADSP-BF537 Blackfin Processor Hardware Reference

The UARTs’ baud rate, serial data format, error code generation and sta-
tus, and interrupts can be programmed to support:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

In conjunction with the general-purpose timer functions, autobaud detec-
tion is supported.

The capabilities of the UART ports are further extended with support for

the Infrared Data Association (IrDA®) Serial Infrared Physical Layer Link
Specification (SIR) protocol.

Real-Time Clock
The processor’s Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the processor. The RTC
peripheral has dedicated power supply pins, so that it can remain powered
up and clocked even when the rest of the processor is in a low power state.
The RTC provides several programmable interrupt options, including
interrupt per second, minute, hour, or day clock ticks, interrupt on pro-
grammable stopwatch countdown, or interrupt at a programmed alarm
time.

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 60 second counter, a 60 minute counter, a 24 hours counter, and a
32768 day counter.

ADSP-BF537 Blackfin Processor Hardware Reference 1-21

Introduction

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.
There are two alarms. The first alarm is for a time of day. The second
alarm is for a day and time of that day.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, an interrupt is generated.

Like the other peripherals, the RTC can wake up the processor from sleep
mode or deep sleep mode upon generation of any RTC wakeup event. An
RTC wakeup event can also wake up the on-chip internal voltage regula-
tor from a powered down state.

Watchdog Timer
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
availability by forcing the processor to a known state through generation
of a hardware reset, nonmaskable interrupt (NMI), or general-purpose
interrupt, if the timer expires before being reset by software. The pro-
grammer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the
counter before it counts to zero from the programmed value. This protects
the system from remaining in an unknown state where software that
would normally reset the timer has stopped running due to an external
noise condition or software error.

If configured to generate a hardware reset, the watchdog timer resets both
the CPU and the peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the watchdog control register.

The timer is clocked by the system clock (SCLK), at a maximum frequency
of fSCLK.

Clock Signals

1-22 ADSP-BF537 Blackfin Processor Hardware Reference

Clock Signals
The processor can be clocked by an external crystal, a sine wave input, or a
buffered, shaped clock derived from an external clock oscillator.

This external clock connects to the processor’s CLKIN pin. The CLKIN input
cannot be halted, changed, or operated below the specified frequency
during normal operation. This clock signal should be a TTL-compatible
signal.

The core clock (CCLK) and system peripheral clock (SCLK) are derived from
the input clock (CLKIN) signal. An on-chip Phase Locked Loop (PLL) is
capable of multiplying the CLKIN signal by a user-programmable (1x to
63x) multiplication factor (bounded by specified minimum and maximum
VCO frequencies). The default multiplier is 10x, but it can be modified by a
software instruction sequence. On-the-fly frequency changes can be made
by simply writing to the PLL_DIV register.

All on-chip peripherals are clocked by the system clock (SCLK). The system
clock frequency is programmable by means of the SSEL[3:0] bits of the
PLL_DIV register.

Dynamic Power Management
The processor provides four operating modes, each with a different perfor-
mance/power profile. In addition, dynamic power management provides
the control functions to dynamically alter the processor core supply volt-
age to further reduce power dissipation. Control of clocking to each of the
peripherals also reduces power consumption.

ADSP-BF537 Blackfin Processor Hardware Reference 1-23

Introduction

Full-On Mode (Maximum Performance)
In the full-on mode, the PLL is enabled, not bypassed, providing the max-
imum operational frequency. This is the normal execution state in which
maximum performance can be achieved. The processor core and all
enabled peripherals run at full speed.

Active Mode (Moderate Power Savings)
In the active mode, the PLL is enabled, but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. In this mode, the CLKIN to VCO multi-
plier ratio can be changed, although the changes are not realized until the
full on mode is entered. DMA access is available to appropriately config-
ured L1 memories.

In the active mode, it is possible to disable the PLL through the PLL con-
trol register (PLL_CTL). If disabled, the PLL must be re-enabled before
transitioning to the full on or sleep modes.

Sleep Mode (High Power Savings)
The sleep mode reduces power dissipation by disabling the clock to the
processor core (CCLK). The PLL and system clock (SCLK), however, con-
tinue to operate in this mode. Typically an external event or RTC activity
will wake up the processor. When in the sleep mode, assertion of any
interrupt causes the processor to sense the value of the bypass bit (BYPASS)
in the PLL control register (PLL_CTL). If bypass is disabled, the processor
transitions to the full on mode. If bypass is enabled, the processor transi-
tions to the active mode.

When in the sleep mode, system DMA access to L1 memory is not
supported.

Voltage Regulation

1-24 ADSP-BF537 Blackfin Processor Hardware Reference

Deep Sleep Mode (Maximum Power Savings)
The deep sleep mode maximizes power savings by disabling the processor
core and synchronous system clocks (CCLK and SCLK). Asynchronous sys-
tems, such as the RTC, may still be running, but cannot access internal
resources or external memory. This powered-down mode can only be
exited by assertion of the reset interrupt or by an asynchronous interrupt
generated by the RTC. When in deep sleep mode, an RTC asynchronous
interrupt causes the processor to transition to the active mode. Assertion
of RESET while in deep sleep mode causes the processor to transition to the
full on mode.

Hibernate State
For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such.

Voltage Regulation
The processor provides an on-chip voltage regulator that can generate
internal voltage levels (0.8 V to 1.2 V) from an external 2.25 V to 3.6 V
supply. Figure 1-2 shows the typical external components required to
complete the power management system. The regulator controls the inter-
nal logic voltage levels and is programmable with the voltage regulator
control register (VR_CTL) in increments of 50 mV. To reduce standby
power consumption, the internal voltage regulator can be programmed to
remove power to the processor core while keeping I/O power supplied.
While in this state, VDDEXT can still be applied, eliminating the need for
external buffers. The regulator can also be disabled and bypassed at the
user’s discretion.

ADSP-BF537 Blackfin Processor Hardware Reference 1-25

Introduction

Boot Modes
The processor has six mechanisms for automatically loading internal L1
instruction memory after a reset. A seventh mode is provided to execute
from external memory, bypassing the boot sequence:

• Execute from 16-bit external memory – Execution starts from
address 0x2000 0000 with 16-bit packing. The boot ROM is
bypassed in this mode. All configuration settings are set for the
slowest device possible (3-cycle hold time; 15-cycle R/W access
times; 4-cycle setup).

• Boot from 8-bit and 16-bit external flash memory – The 8-bit or
16-bit flash boot routine located in boot ROM memory space is set
up using asynchronous memory bank 0. All configuration settings
are set for the slowest device possible (3-cycle hold time; 15-cycle
R/W access times; 4-cycle setup). The boot ROM evaluates the
first byte of the boot stream at address 0x2000 0000. If it is 0x40,
8-bit boot is performed. A 0x60 byte is required for 16-bit boot.

• Boot from serial SPI memory (EEPROM or flash). Eight-, 16-, or
24-bit addressable devices are supported as well as AT45DB041,
AT45DB081, and AT45DB161 data flash devices from Atmel.
The SPI uses the PF10 output pin to select a single SPI

Figure 1-2. Voltage Regulator Circuit

VDDEXT

VDDINT

EXTERNAL COMPONENTS

VROUT[1-0]

Boot Modes

1-26 ADSP-BF537 Blackfin Processor Hardware Reference

EEPROM/flash device, submits a read command and successive
address bytes (0x00) until a valid 8-, 16-, or 24-bit, or Atmel
addressable device is detected, and begins clocking data into the
processor.

• Boot from SPI host device – The Blackfin processor operates in SPI
slave mode and is configured to receive the bytes of the .ldr file
from an SPI host (master) agent. To hold off the host device from
transmitting while the boot ROM is busy, the Blackfin processor
asserts a flag pin to signal the host device not to send any more
bytes until the flag is deasserted. The flag is chosen by the user and
this information is transferred to the Blackfin processor via bits 8:5
of the FLAG header.

• Boot from UART – Using an autobaud handshake sequence, a
boot-stream-formatted program is downloaded by the host. The
host agent selects a baud rate within the UART’s clocking capabili-
ties. When performing the autobaud, the UART expects a “@”
(boot stream) character (eight bits data, one start bit, one stop bit,
no parity bit) on the RXD pin to determine the bit rate. It then
replies with an acknowledgement which is composed of 4 bytes:
0xBF, the value of UART_DLL, the value of UART_DLH, 0x00. The host
can then download the boot stream. When the processor needs to
hold off the host, it deasserts CTS. Therefore, the host must moni-
tor this signal.

• Boot from serial TWI memory (EEPROM/flash) – The Blackfin
processor operates in master mode and selects the TWI slave with
the unique id 0xA0. It submits successive read commands to the
memory device starting at two byte internal address 0x0000 and
begins clocking data into the processor. The TWI memory device
should comply with Philips I2C Bus Specification version 2.1 and
have the capability to auto-increment its internal address counter
such that the contents of the memory device can be read
sequentially.

ADSP-BF537 Blackfin Processor Hardware Reference 1-27

Introduction

• Boot from TWI host – The TWI host agent selects the slave with
the unique id 0x5F. The processor replies with an acknowledge-
ment and the host can then download the boot stream. The TWI
host agent should comply with Philips I2C Bus Specification version
2.1. An I2C multiplexer can be used to select one processor at a
time when booting multiple processors from a single TWI.

For each of the boot modes, a 10-byte header is first read from an external
memory device. The header specifies the number of bytes to be transferred
and the memory destination address. Multiple memory blocks may be
loaded by any boot sequence. Once all blocks are loaded, program execu-
tion commences from the start of L1 instruction SRAM.

In addition, bit 4 of the reset configuration register can be set by applica-
tion code to bypass the normal boot sequence during a software reset. For
this case, the processor jumps directly to the beginning of L1 instruction
memory.

Instruction Set Description
The ADSP-BF53x processor family assembly language instruction set
employs an algebraic syntax designed for ease of coding and readability.
Refer to Blackfin Processor Programming Reference for detailed information.
The instructions have been specifically tuned to provide a flexible, densely
encoded instruction set that compiles to a very small final memory size.
The instruction set also provides fully featured multifunction instructions
that allow the programmer to use many of the processor core resources in
a single instruction. Coupled with many features more often seen on
microcontrollers, this instruction set is very efficient when compiling C
and C++ source code. In addition, the architecture supports both user
(algorithm/application code) and supervisor (O/S kernel, device drivers,
debuggers, ISRs) modes of operation, allowing multiple levels of access to
core resources.

Development Tools

1-28 ADSP-BF537 Blackfin Processor Hardware Reference

The assembly language, which takes advantage of the processor’s unique
architecture, offers these advantages:

• Embedded 16/32-bit microcontroller features, such as arbitrary bit
and bit field manipulation, insertion, and extraction; integer opera-
tions on 8-, 16-, and 32-bit data types; and separate user and
supervisor stack pointers

• Seamlessly integrated DSP/CPU features optimized for both 8-bit
and 16-bit operations

• A multi-issue load/store modified Harvard architecture, which sup-
ports two 16-bit MAC or four 8-bit ALU + two load/store + two
pointer updates per cycle

• All registers, I/O, and memory mapped into a unified 4G byte
memory space, providing a simplified programming model

Code density enhancements include intermixing of 16- and 32-bit
instructions with no mode switching or code segregation. Frequently used
instructions are encoded in 16 bits.

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

ADSP-BF537 Blackfin Processor Hardware Reference 1-29

Introduction

The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-30 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 2-1

2 CHIP BUS HIERARCHY

This chapter discusses on-chip buses, how data moves through the system,
and other factors that determine the system organization. Following an
overview and a list of key features is a block diagram of the chip bus hier-
archy and a description of its operation. The chapter concludes with
details about the system interconnects and associated system buses.

This chapter provides

• “Chip Bus Hierarchy Overview” on page 2-1

• “Interface Overview” on page 2-2

Chip Bus Hierarchy Overview
The ADSP-BF534, ADSP-BF536, and ADSP-BF537 Blackfin processors
feature a powerful chip bus hierarchy on which all data movement
between the processor core, internal memory, external memory, and its
rich set of peripherals occurs. The chip bus hierarchy includes the control-
lers for system interrupts, test/emulation, and clock and power
management. Synchronous clock domain conversion is provided to sup-
port clock domain transactions between the core and the system.

The processor system includes:

• The peripheral set (timers, real-time clock, CAN, TWI, Ethernet
MAC (ADSP-BF536 and ADSP-BF537), GPIOs, UARTs,
SPORTs, PPI, watchdog timer, and SPI)

• The External Bus Interface Unit (EBIU)

Interface Overview

2-2 ADSP-BF537 Blackfin Processor Hardware Reference

• The Direct Memory Access (DMA) controller

• The interfaces between these, the system, and the optional external
(off-chip) resources

The following sections describe the on-chip interfaces between the system
and the peripherals via the:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• DMA Core Bus (DCB)

• DMA External Bus (DEB)

• External Access Bus (EAB)

The External Bus Interface Unit (EBIU) is the primary chip pin bus and is
discussed in Chapter 6, “External Bus Interface Unit”.

Interface Overview
Figure 2-1 shows the core processor and system boundaries as well as the
interfaces between them.

ADSP-BF537 Blackfin Processor Hardware Reference 2-3

Chip Bus Hierarchy

Internal Clocks
The core processor clock (CCLK) rate is highly programmable with respect
to CLKIN. The CCLK rate is divided down from the Phase Locked Loop
(PLL) output rate. This divider ratio is set using the CSEL parameter of the
PLL divide register.

Figure 2-1. Processor Bus Hierarchy

C
A

N

G
P

IO
S

S
P

O
R

T
S

S
P

I

EBIU
P

P
I

U
A

R
T

S

T
IM

E
R

S

R
T

C

DMA
CONTROLLER

L1 MEMORYCORE
PROCESSOR

INSTRUCTION

LOAD DATA

LOAD DATA

EXTERNAL
MEMORY
DEVICES

64

32

32

16

32

STORE DATA

SYSTEM CLOCK
(SCLK) DOMAIN

CORE CLOCK
(CCLK) DOMAIN

DMA ACCESS BUS
(DAB)

EXTERNAL
PORT
BUS (EPB)

EXTERNAL
ACCESS
BUS (EAB)

DMA
EXTERNAL
BUS (DEB)

DMA
CORE
BUS (DCB)

W
A

TC
H

D
O

G
TI

M
E

R

TW
I

E
TH

E
R

N
E

T
M

A
C

PERIPHERAL
ACCESS
BUS (PAB)

16

16

16
16
16

2K
 R

O
M 16

P
LL

V
O

LT
A

G
E

C
O

N
TR

O
L

U
N

IT

Interface Overview

2-4 ADSP-BF537 Blackfin Processor Hardware Reference

The PAB, the DAB, the EAB, the DCB, the DEB, the EPB, and the EBIU
run at system clock frequency (SCLK domain). This divider ratio is set
using the SSEL parameter of the PLL divide register and must be set so that
these buses run as specified in the processor data sheet, and slower than or
equal to the core clock frequency.

These buses can also be cycled at a programmable frequency to reduce
power consumption, or to allow the core processor to run at an optimal
frequency. Note all synchronous peripherals derive their timing from the
SCLK. For example, the UART clock rate is determined by further divid-
ing this clock frequency.

Core Bus Overview
For the purposes of this discussion, level 1 memories (L1) are included in
the description of the core; they have full bandwidth access from the pro-
cessor core with a 64-bit instruction bus and two 32-bit data buses.

Figure 2-2 shows the core processor and its interfaces to the peripherals
and external memory resources.

ADSP-BF537 Blackfin Processor Hardware Reference 2-5

Chip Bus Hierarchy

The core can generate up to three simultaneous off-core accesses per cycle.

The core bus structure between the processor and L1 memory runs at the
full core frequency and has data paths up to 64 bits.

When the instruction request is filled, the 64-bit read can contain a single
64-bit instruction or any combination of 16-, 32-, or 64-bit (partial)
instructions.

Figure 2-2. Core Block Diagram

INT

RESET
VECTOR

ACK

CORE TIMER

CORE
EVENT

CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNIT
L1 DATA L1 INSTRUCTION

L
D

0

L
D

1

S
D

D
A

0

D
A

1

IA
B

ID
B

CORE

EAB

PROCESSOR

DMA CORE BUS
(DCB)

PAB

32 32 32 32 32 32 64

Interface Overview

2-6 ADSP-BF537 Blackfin Processor Hardware Reference

When cache is enabled, four 64-bit read requests are issued to support
32-byte line fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle.

Peripheral Access Bus (PAB)
The processor has a dedicated low latency peripheral bus that keeps core
stalls to a minimum and allows for manageable interrupt latencies to
time-critical peripherals. All peripheral resources accessed through the
PAB are mapped into the system MMR space of the processor memory
map. The core accesses system MMR space through the PAB bus.

The core processor has byte addressability, but the programming model is
restricted to only 32-bit (aligned) access to the system MMRs. Byte
accesses to this region are not supported.

PAB Arbitration

The core is the only master on this bus. No arbitration is necessary.

PAB Agents (Masters, Slaves)

The processor core can master bus operations on the PAB. All peripherals
have a peripheral bus slave interface which allows the core to access con-
trol and status state. These registers are mapped into the system MMR
space of the memory map. Appendix B lists system MMR addresses.

The slaves on the PAB bus are:

• System event controller

• Clock and power management controller

• Watchdog timer

• Real-time clock (RTC)

ADSP-BF537 Blackfin Processor Hardware Reference 2-7

Chip Bus Hierarchy

• Timer 0–7

• SPORT0–1

• SPI

• Ports

• UART0–1

• PPI

• TWI

• CAN

• Ethernet MAC

• Asynchronous memory controller (AMC)

• SDRAM controller (SDC)

• DMA controller

PAB Performance

For the PAB, the primary performance criteria is latency, not throughput.
Transfer latencies for both read and write transfers on the PAB are two
SCLK cycles.

For example, the core can transfer up to 32 bits per access to the PAB
slaves. With the core clock running at 2x the frequency of the system
clock, the first and subsequent system MMR read or write accesses take
four core clocks (CCLK) of latency.

The PAB has a maximum frequency of SCLK.

Interface Overview

2-8 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Access Bus (DAB), DMA Core Bus (DCB), DMA
External Bus (DEB)

The DAB, DCB, and DEB buses provide a means for DMA-capable
peripherals to gain access to on-chip and off-chip memory with little or no
degradation in core bandwidth to memory.

DAB Arbitration

Sixteen DMA channels and bus masters support the DMA-capable periph-
erals in the processor system. The twelve peripheral DMA channel
controllers can transfer data between peripherals and internal or external
memory. Both the read and write channels of the dual-stream memory
DMA controller access their descriptor lists through the DAB.

The DCB has priority over the core processor on arbitration into L1 con-
figured as data SRAM, whereas the core processor has priority over the
DCB on arbitration into L1 instruction SRAM. For off-chip memory, the
core (by default) has priority over the DEB for accesses to the EPB. The
processor has a programmable priority arbitration policy on the DAB.
Table 2-1 shows the default arbitration priority. In addition, by setting
the CDPRIO bit in the EBIU_AMGCTL register, all DEB transactions to the
EPB have priority over core accesses to external memory. Use of this bit is
application-dependent. For example, if you are polling a peripheral
mapped to asynchronous memory with long access times, by default the
core will “win” over DMA requests. By setting the CDPRIO bit, the core
would be held off until DMA requests were serviced.

ADSP-BF537 Blackfin Processor Hardware Reference 2-9

Chip Bus Hierarchy

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in Table 2-1. A single arbiter supports a programmable priority
arbitration policy for access to the DAB.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

Table 2-1. DAB, DCB, and DEB Arbitration Priority

DAB, DCB, DEB Master Default Arbitration Priority

PPI receive/transmit 0 - highest

Ethernet receive 1

Ethernet transmit 2

SPORT0 receive 3

SPORT0 transmit 4

SPORT1 receive 5

SPORT1 transmit 6

SPI receive/transmit 7

UART0 receive 8

UART0 transmit 9

UART1 receive 10

UART1 transmit 11

MDMA stream 0 destination 12

MDMA stream 0 source 13

MDMA stream 1 destination 14

MDMA stream 1 source 15 - lowest

Interface Overview

2-10 ADSP-BF537 Blackfin Processor Hardware Reference

DAB, DCB, and DEB Performance

The processor DAB supports data transfers of 16 bits or 32 bits. The data
bus has a 16-bit width with a maximum frequency as specified in the pro-
cessor data sheet.

The DAB has a dedicated port into L1 memory. No stalls occur as long as
the core access and the DMA access are not to the same memory bank (4K
byte size for L1). If there is a conflict when accessing data memory, DMA
is the highest priority requester, followed by the core. If the conflict
occurs when accessing instruction memory, the core is the highest priority
requester, followed by DMA.

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L1 memory can only be stalled by an access already in
progress from another DMA channel. Latencies caused by these stalls are
in addition to any arbitration latencies.

 The core processor and the DAB must arbitrate for access to exter-
nal memory through the EBIU. This additional arbitration latency
added to the latency required to read off-chip memory devices can
significantly degrade DAB throughput, potentially causing periph-
eral data buffers to underflow or overflow. If you use DMA
peripherals other than the memory DMA controller, and you target
external memory for DMA accesses, you need to carefully analyze
your specific traffic patterns. Make sure that isochronous peripher-
als targeting internal memory have enough allocated bandwidth
and the appropriate maximum arbitration latencies.

ADSP-BF537 Blackfin Processor Hardware Reference 2-11

Chip Bus Hierarchy

External Access Bus (EAB)
The EAB provides a way for the processor core to directly access off-chip
memory.

Arbitration of the External Bus
Arbitration for use of external port bus interface resources is required
because of possible contention between the potential masters of this bus. A
fixed-priority arbitration scheme is used. That is, core accesses via the
EAB will be of higher priority than those from the DMA external bus
(DEB).

DEB/EAB Performance
The DEB and the EAB support single word accesses of either 8-bit or
16-bit data types. The DEB and the EAB operate at the same frequency as
the PAB and the DAB, up to the maximum SCLK frequency specified in
the processor data sheet.

Memory DMA transfers can result in repeated accesses to the same mem-
ory location. Because the memory DMA controller has the potential of
simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses.

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 2-2 shows many types of 16-bit memory DMA transfers. In the
table, it is assumed that no other DMA activity is conflicting with ongoing
operations. The numbers in the table are theoretical values. These values

Interface Overview

2-12 ADSP-BF537 Blackfin Processor Hardware Reference

may be higher when they are measured on actual hardware due to a variety
of reasons relating to the device that is connected to the EBIU.

For non-DMA accesses (for example, a core access via the EAB), a 32-bit
access to SDRAM (of the form R0 = [P0]; where P0 points to an address
in SDRAM) is always more efficient than executing two 16-bit accesses
(of the form R0 = W[P0++]; where P0 points to an address in SDRAM). In
this example, a 32-bit SDRAM read takes 10 SCLK cycles while two 16-bit
reads take 9 SCLK cycles each.

Table 2-2. Performance of DMA Access to External Memory

Source Destination Approximate SCLKs For n Words
(from start of DMA to interrupt at
end)

16-bit SDRAM L1 data memory n + 14

L1 data memory 16-bit SDRAM n + 11

16-bit async memory L1 data memory xn + 12, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory 16-bit async memory xn + 9, where x is the number of wait
states + setup/hold SCLK cycles (min-
imum x = 2)

16-bit SDRAM 16-bit SDRAM 10 + (17n/7)

16-bit async memory 16-bit async memory 10 + 2xn, where x is the number of
wait states + setup/hold SCLK cycles
(minimum x = 2)

L1 data memory L1 data memory 2n + 12

ADSP-BF537 Blackfin Processor Hardware Reference 3-1

3 MEMORY

This chapter discusses memory population specific to the ADSP-BF534,
ADSP-BF536, and ADSP-BF537 processors. Functional memory archi-
tecture is described in the Blackfin Processor Programming Reference.

This chapter describes

• “Memory Architecture” on page 3-1

• “L1 Instruction SRAM” on page 3-5

• “L1 Data SRAM” on page 3-7

• “L1 Data Cache” on page 3-8

• “Boot ROM” on page 3-8

• “External Memory” on page 3-8

• “Processor-Specific MMRs” on page 3-9

Memory Architecture
Figure 3-1 provides an overview of the ADSP-BF534 processor system
memory map. Figure 3-2 shows this information for the ADSP-BF536
processor, and Figure 3-3 for the ADSP-BF537 processor. For a detailed
discussion of how to use them, see Blackfin Processor Programming Refer-
ence. Note the architecture does not define a separate I/O space. All
resources are mapped through the flat 32-bit address space. The memory
is byte-addressable.

Memory Architecture

3-2 ADSP-BF537 Blackfin Processor Hardware Reference

As shown in Table 3-1, the ADSP-BF534, ADSP-BF536, and
ADSP-BF537 processors offer a variety of instruction and data memory
configurations.

The upper portion of internal memory space is allocated to the core and
system MMRs. Accesses to this area are allowed only when the processor is
in supervisor or emulation mode (see the Operating Modes and States
chapter in Blackfin Processor Programming Reference).

Within the external memory map, four banks of asynchronous memory
space and one bank of SDRAM memory are available. Each of the asyn-
chronous banks is 1M byte and the SDRAM bank is up to 128M byte.

Table 3-1. Memory Configurations

Type of Memory ADSP-BF534 ADSP-BF536 ADSP-BF537

Instruction SRAM/Cache, lockable
by Way or line

16K byte 16K byte 16K byte

Instruction SRAM 48K byte 48K byte 48K byte

Data SRAM/Cache 32K byte 16K byte 32K byte

Data SRAM 32K byte 16K byte 32K byte

Data Scratchpad SRAM 4K byte 4K byte 4K byte

Total 132K byte 100K byte 132K byte

ADSP-BF537 Blackfin Processor Hardware Reference 3-3

Memory

Figure 3-1. ADSP-BF534 Memory Map

CORE MMR REGISTERS (2M BYTE)

0xFFC0 0000

SCRATCHPAD SRAM (4K BYTE)

0xFF90 0000

0xFF80 8000

SDRAM MEMORY (16M BYTE - 128M BYTE)

ADSP-BF534 MEMORY MAP

0xEF00 0800

RESERVED

0xFF90 4000

0xFFA0 0000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

INSTRUCTION BANK A SRAM (32K BYTE)

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR REGISTERS (2M BYTE)

0xFFB0 1000

INSTRUCTION SRAM/CACHE (16K BYTE)

DATA BANK A SRAM (16K BYTE)

0x2030 0000

0x2010 0000

0x2020 0000

0x0000 0000

0x2040 0000

0xEF00 0000

0x2000 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

BOOT ROM (2K BYTE)

RESERVED

ASYNC MEMORY BANK 3 (1M BYTE)

ASYNC MEMORY BANK 2 (1M BYTE)

ASYNC MEMORY BANK 1 (1M BYTE)

ASYNC MEMORY BANK 0 (1M BYTE)

0xFF80 0000

0xFF90 8000

DATA BANK B SRAM (16K BYTE)

RESERVED

DATA BANK A SRAM/CACHE (16K BYTE)

DATA BANK B SRAM/CACHE (16K BYTE)

RESERVED

INSTRUCTION BANK B SRAM (16K BYTE)

RESERVED

0xFFFF FFFF

Memory Architecture

3-4 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 3-2. ADSP-BF536 Memory Map

CORE MMR REGISTERS (2M BYTE)

0xFFC0 0000

SCRATCHPAD SRAM (4K BYTE)

0xFF90 0000

0xFF80 8000

SDRAM MEMORY (16M BYTE - 128M BYTE)

ADSP-BF536 MEMORY MAP

0xEF00 0800

RESERVED

0xFF90 4000

0xFFA 00000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

INSTRUCTION BANK A SRAM (32K BYTE)

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR REGISTERS (2M BYTE)

0xFFB0 1000

INSTRUCTION SRAM/CACHE (16K BYTE)

RESERVED

0x2030 0000

0x2010 0000

0x2020 0000

0x0000 0000

0x2040 0000

0xEF00 0000

0x2000 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

BOOT ROM (2K BYTE)

RESERVED

ASYNC MEMORY BANK 3 (1M BYTE)

ASYNC MEMORY BANK 2 (1M BYTE)

ASYNC MEMORY BANK 1 (1M BYTE)

ASYNC MEMORY BANK 0 (1M BYTE)

0xFF80 0000

0xFF90 8000

RESERVED

RESERVED

DATA BANK A SRAM/CACHE (16K BYTE)

DATA BANK B SRAM/CACHE (16K BYTE)

RESERVED

INSTRUCTION BANK B SRAM (16K BYTE)

RESERVED

0xFFFF FFFF

ADSP-BF537 Blackfin Processor Hardware Reference 3-5

Memory

L1 Instruction SRAM
The processor core reads the instruction memory through the 64-bit wide
instruction fetch bus. All addresses from this bus are 64-bit aligned. Each
instruction fetch can return any combination of 16-, 32- or 64-bit instruc-
tions (for example, four 16-bit instructions, two 16-bit instructions and
one 32-bit instruction, or one 64-bit instruction).

Figure 3-3. ADSP-BF537 Memory Map

CORE MMR REGISTERS (2M BYTE)

0xFFC0 0000

SCRATCHPAD SRAM (4K BYTE)

0xFF90 0000

0xFF80 8000

SDRAM MEMORY (16M BYTE - 128M BYTE)

ADSP-BF537 MEMORY MAP

0xEF00 0800

RESERVED

0xFF90 4000

0xFFA 00000

0xFFA0 8000

0xFFA0 C000

0xFFA1 0000

0xFFB0 0000

INSTRUCTION BANK A SRAM (32K BYTE)

RESERVED

RESERVED

0xFFA1 4000

0xFF80 4000

0xFFE0 0000
SYSTEM MMR REGISTERS (2M BYTE)

0xFFB0 1000

INSTRUCTION SRAM/CACHE (16K BYTE)

DATA BANK A SRAM (16K BYTE)

0x2030 0000

0x2010 0000

0x2020 0000

0x0000 0000

0x2040 0000

0xEF00 0000

0x2000 0000

INTERNAL
MEMORY

EXTERNAL
MEMORY

BOOT ROM (2K BYTE)

RESERVED

ASYNC MEMORY BANK 3 (1M BYTE)

ASYNC MEMORY BANK 2 (1M BYTE)

ASYNC MEMORY BANK 1 (1M BYTE)

ASYNC MEMORY BANK 0 (1M BYTE)

0xFF80 0000

0xFF90 8000

DATA BANK B SRAM (16K BYTE)

RESERVED

DATA BANK A SRAM/CACHE (16K BYTE)

DATA BANK B SRAM/CACHE (16K BYTE)

RESERVED

INSTRUCTION BANK B SRAM (16K BYTE)

RESERVED

0xFFFF FFFF

L1 Instruction SRAM

3-6 ADSP-BF537 Blackfin Processor Hardware Reference

Table 3-2 lists the memory start locations of the L1 instruction memory
subbanks.

Table 3-2. L1 Instruction Memory Subbanks

Memory Subbank Memory Start Location for
ADSP-BF534, ADSP-BF536, ADSP-BF537 Processors

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

4 0xFFA0 4000

5 0xFFA0 5000

6 0xFFA0 6000

7 0xFFA0 7000

8 0xFFA0 8000

9 0xFFA0 9000

10 0xFFA0 A000

11 0xFFA0 B000

12 0xFFA1 0000

13 0xFFA1 1000

14 0xFFA1 2000

15 0xFFA1 3000

ADSP-BF537 Blackfin Processor Hardware Reference 3-7

Memory

L1 Data SRAM
Table 3-3 shows how the subbank organization is mapped into memory.

Table 3-3. L1 Data Memory SRAM Subbank Start Addresses

Memory Bank and Subbank ADSP-BF534 and
ADSP-BF537 Processors

ADSP-BF536 Processors

Data Bank A, Subbank 0 0xFF80 0000 -

Data Bank A, Subbank 1 0xFF80 1000 -

Data Bank A, Subbank 2 0xFF80 2000 -

Data Bank A, Subbank 3 0xFF80 3000 -

Data Bank A, Subbank 4 0xFF80 4000 0xFF80 4000

Data Bank A, Subbank 5 0xFF80 5000 0xFF80 5000

Data Bank A, Subbank 6 0xFF80 6000 0xFF80 6000

Data Bank A, Subbank 7 0xFF80 7000 0xFF80 7000

Data Bank B, Subbank 0 0xFF90 0000 -

Data Bank B, Subbank 1 0xFF90 1000 -

Data Bank B, Subbank 2 0xFF90 2000 -

Data Bank B, Subbank 3 0xFF90 3000 -

Data Bank B, Subbank 4 0xFF90 4000 0xFF90 4000

Data Bank B, Subbank 5 0xFF90 5000 0xFF90 5000

Data Bank B, Subbank 6 0xFF90 6000 0xFF90 6000

Data Bank B, Subbank 7 0xFF90 7000 0xFF90 7000

L1 Data Cache

3-8 ADSP-BF537 Blackfin Processor Hardware Reference

L1 Data Cache
When data cache is enabled (controlled by bits DMC[1:0] in the
DMEM_CONTROL register), either 16K byte of data bank A or 16K byte of
both data bank A and data bank B can be set to serve as cache. For the
ADSP-BF534 and ADSP-BF537 processors, the upper 16K byte is used.

Boot ROM
The lowest 2K byte of internal memory space is occupied by the boot
ROM starting from address 0xEF00 0000. This 16-bit boot ROM is not
part of the L1 memory module. Read accesses take one SCLK cycle and no
wait states are required. The read-only memory can be read by the core as
well as by DMA. It can be cached and protected by CPLB blocks like
external memory. The boot ROM not only contains boot-strap loader
code, it also provides some subfunctions that are user-callable at runtime.
For more information, see Chapter 19, “System Reset and Booting”.

External Memory
The external memory space is shown in Figure 3-1 on page 3-3. One of
the memory regions is dedicated to SDRAM support. The size of the
SDRAM bank is programmable and can range in size from 16M byte to
128M byte. The start address of the bank is 0x0000 0000.

Each of the next four banks contains 1M byte and is dedicated to support
asynchronous memories. The start address of the asynchronous memory
bank is 0x2000 0000.

ADSP-BF537 Blackfin Processor Hardware Reference 3-9

Memory

Processor-Specific MMRs
The complete set of memory-related MMRs is described in the Blackfin
Processor Programming Reference. Several MMRs have bit definitions spe-
cific to the processors described in this manual. These registers are
described in the following sections.

DMEM_CONTROL Register
The data memory control register (DMEM_CONTROL), shown in Figure 3-4,
contains control bits for the L1 data memory.

Processor-Specific MMRs

3-10 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 3-4. L1 Data Memory Control Register

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

Data Memory Control Register (DMEM_CONTROL)

Reset = 0x0000 1001

ENDCPLB (Data Cacheability
Protection Lookaside Buffer
Enable)
0 - CPLBs disabled. Minimal

address checking only
1 - CPLBs enabled
DMC[1:0] (L1 Data Memory
Configure)

DCBS (L1 Data Cache Bank Select)

PORT_PREF1 (DAG1 Port
Preference)
0 - DAG1 non-cacheable fetches

use port A
1 - DAG1 non-cacheable fetches

use port B

PORT_PREF0 (DAG0 Port
Preference)
0 - DAG0 non-cacheable fetches

use port A
1 - DAG0 non-cacheable fetches

use port B

Valid only when DMC[1:0] = 11. Determines
whether Address bit A[14] or A[23] is used to
select the L1 data cache bank.
0 - Address bit 14 is used to select Bank A or B

for cache access. If bit 14 of address is 1,
select L1 Data Memory Data Bank A; if bit 14
of address is 0, select L1 Data Memory Data
Bank B.

1 - Address bit 23 is used to select Bank A or B for
cache access. If bit 23 of address is 1, select
L1 Data Memory Data Bank A; if bit 23 of
address is 0, select L1 Data Memory Data
Bank B.

0xFFE0 0004

For ADSP-BF534 and ADSP-BF537:
00 - Both data banks are

SRAM, also invalidates all
cache lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is lower

16K byte SRAM, upper
16K byte cache
Data Bank B is SRAM

11 - Both data banks are
lower 16K byte SRAM,
upper 16K byte cache

For ADSP-BF536:
00 - Data Bank A is SRAM,

also invalidates all cache
lines if previously
configured as cache

01 - Reserved
10 - Data Bank A is cache
11 - Both data banks are

lower 16K byte SRAM,
upper 16K byte cache

ADSP-BF537 Blackfin Processor Hardware Reference 3-11

Memory

DTEST_COMMAND Register
When the data test command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed, and the data is transferred
through the data test data registers (DTEST DATA[1:0]). This register is
shown in Figure 3-5.

 The data/instruction access bit allows direct access via the
DTEST_COMMAND MMR to L1 instruction SRAM.

Figure 3-5. Data Test Command Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access subbank 0
01 - Access subbank 1
10 - Access subbank 2
11 - Access subbank 3

Subbank Access[1:0]
(SRAM ADDR[13:12])

Reset = Undefined

Read/Write Access

Access Way/Instruction
Address Bit 11
0 - Access Way0/Instruction bit 11 = 0
1 - Access Way1/Instruction bit 11 = 1

Data/Instruction Access
0 - Access Data
1 - Access Instruction

0 - Read access
1 - Write access
Array Access
0 - Access tag array
1 - Access data array

Double Word Index[1:0]
Selects one of four 64-bit
double words in a 256-bit line

Set Index[5:0]
Selects one of 64 sets

Data Bank Access

Data Cache Select/
Address Bit 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

0xFFE0 0300

0 - Reserved/Instruction bit 14 = 0
1 - Select Data Cache Bank/Instruction bit 14 = 1

0 - Access Data Bank A/Instr Memory 0xFFA0 0000
1 - Access Data Bank B/Instr Memory 0xFFA0 8000

Processor-Specific MMRs

3-12 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 4-1

4 SYSTEM INTERRUPTS

This chapter discusses the System Interrupt Controller (SIC), which is
specific to the ADSP-BF534, ADSP-BF536, ADSP-BF537 derivatives.
While this chapter does refer to features of the Core Event Controller
(CEC), it does not cover all aspects of it. Refer to Blackfin Processor Pro-
gramming Reference for more information on the CEC.

This chapter describes:

• “Overview” on page 4-1

• “Interfaces” on page 4-2

• “Description of Operation” on page 4-3

• “Programming Model” on page 4-15

• “System Interrupt Controller Registers” on page 4-18

Overview
The processor system has numerous peripherals, which therefore require
many supporting interrupts.

Interfaces

4-2 ADSP-BF537 Blackfin Processor Hardware Reference

Features
The Blackfin architecture provides a two-level interrupt processing
scheme:

• The Core Event Controller (CEC) runs in the CCLK clock domain.
It interacts closely with the program sequencer and manages the
Event Vector Table (EVT). The CEC processes not only
core-related interrupts such as exceptions, core errors, and emula-
tion events; it also supports software interrupts.

• The System Interrupt Controller (SIC) runs in the SCLK clock
domain. It masks, groups, and prioritizes interrupt requests sig-
nalled by on-chip or off-chip peripherals and forwards them to the
CEC.

Interfaces
Figure 4-1 provides an overview of how the individual peripheral inter-
rupt request lines connect to the SIC. It also shows how the four interrupt
assignment registers (SIC_IARx) control the assignment to the nine avail-
able peripheral request inputs of the CEC.

 The memory-mapped ILAT, IMASK, and IPEND registers are part of
the CEC controller. The interrupt requests sourced by the Ethernet
MAC (MAC) shown in Figure 4-1 are not available on
ADSP-BF534 parts.

ADSP-BF537 Blackfin Processor Hardware Reference 4-3

System Interrupts

Description of Operation
The following sections describe the operation of the system interrupts.

Figure 4-1. Interrupt Routing Overview

0

DMA3 (SPORT0 RX)
DMA4 (SPORT0 TX)
DMA5 (SPORT1 RX)

DMA6 (SPORT1 RX)

DMA7 (SPI)
DMA8 (UART0 RX)
DMA9 (UART0 TX)

DMA10 (UART1 RX)
DMA11 (UART1 TX)

1
2
3
4
5
6
7

PLL WAKEUP

RTC
DMA0 (PPI)

W
A

K
E

U
P

C
O

R
E

TI
M

ER
H

A
R

D
W

A
R

E
ER

R
O

R
EX

C
EP

TI
O

N
S

N
M

I

SI
C

_I
A

R
3

SI
C

_I
A

R
2

SI
C

_I
A

R
1

SI
C

_I
A

R
0

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

SI
C

_I
SR

SI
C

_I
W

R

SI
C

_I
M

A
SK

R
ES

ET
EM

U
LA

TI
O

N

IMASK

IPEND

ILAT

IV
G

15
IV

G
14

IV
G

13

IV
G

12

IV
G

11
IV

G
10

IV
G

9
IV

G
8

IV
G

7

IV
G

6
IV

G
5

IV
G

3
IV

G
2

IV
G

1
IV

G
0

TWI

CAN RX

CAN TX

TIMER0
TIMER1
TIMER2
TIMER3
TIMER4

TIMER5
TIMER6
TIMER7

PORTG IRQ B
MDMA0
MDMA1

PORTF IRQ A
PORTG IRQ A

WATCHDOG
PORTF IRQ B

DMA1 (MAC RX)
PORTH IRQ A

DMA2 (MAC TX)
PORTH IRQ B

CAN STATUS
MAC STATUS

SPORT0 ERROR
SPORT1 ERROR

PPI ERROR
SPI ERROR

UART0 STATUS
UART1 STATUS

DMA ERROR
DMAR0 BLOCK DONE
DMAR1 BLOCK DONE

DMAR0 OVERFLOW
DMAR1 OVERFLOW

Description of Operation

4-4 ADSP-BF537 Blackfin Processor Hardware Reference

Events and Sequencing
The processor employs a two-level event control mechanism. The proces-
sor SIC works with the CEC to prioritize and control all system
interrupts. The SIC provides mapping between the many peripheral inter-
rupt sources and the prioritized general-purpose interrupt inputs of the
core. This mapping is programmable, and individual interrupt sources can
be masked in the SIC.

The CEC of the processor manages five types of activities or events:

• Emulation

• Reset

• Nonmaskable interrupts (NMI)

• Exceptions

• Interrupts

 Note the word event describes all five types of activities. The CEC
manages fifteen different events in all: emulation, reset, NMI,
exception, and eleven interrupts.

An interrupt is an event that changes the normal processor instruction
flow and is asynchronous to program flow. In contrast, an exception is a
software initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event may be pre-
empted by one of higher priority.

The CEC supports nine general-purpose interrupts (IVG7 – IVG15) in
addition to the dedicated interrupt and exception events that are described
in Table 4-1. It is common for applications to reserve the lowest or the

ADSP-BF537 Blackfin Processor Hardware Reference 4-5

System Interrupts

two lowest priority interrupts (IVG14 and IVG15) for software interrupts,
leaving eight or seven prioritized interrupt inputs (IVG7 – IVG13) for
peripheral purposes. Refer to Table 4-1.

Table 4-1. System and Core Event Mapping

Event Source Core Event Name

Core events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware error IVHW

Core timer IVTMR

Description of Operation

4-6 ADSP-BF537 Blackfin Processor Hardware Reference

System interrupts PLL wakeup interrupt
DMA error (generic)
DMAR0 block done
DMAR1 block done
DMAR0 overflow
DMAR1 overflow
CAN error interrupt
MAC error interrupt
PPI error interrupt
SPORT0 error interrupt
SPORT1 error interrupt
SPI error interrupt
UART0 error interrupt
UART1 error interrupt

IVG7

Real-Time clock interrupts
DMA0 interrupt (PPI)

IVG8

DMA3 interrupt (SPORT0 RX)
DMA4 interrupt (SPORT0 TX)
DMA5 interrupt (SPORT1 RX)
DMA6 interrupt (SPORT1 TX)

IVG9

Table 4-1. System and Core Event Mapping (Cont’d)

Event Source Core Event Name

ADSP-BF537 Blackfin Processor Hardware Reference 4-7

System Interrupts

 Note the system interrupt to core event mappings shown are the
default values at reset and can be changed by software.

System interrupts, continued DMA9 interrupt (UART0 TX)
TWI interrupt
DMA7 interrupt (SPI)
DMA8 interrupt (UART0 RX)
DMA10 interrupt (UART1 RX)
DMA11 interrupt (UART1 TX)

IVG10

Port H interrupt A
CAN RX interrupt
CAN TX interrupt
DMA1 interrupt (MAC RX)
DMA2 interrupt (MAC TX)
Port H interrupt B

IVG11

Timer 0 interrupt
Timer 1 interrupt
Timer 2 interrupt
Timer 3 interrupt
Timer 4 interrupt
Timer 5 interrupt
Timer 6 interrupt
Timer 7 interrupt
Port F interrupt A
Port G interrupt A
Port G interrupt B

IVG12

MDMA0 interrupt
MDMA1 interrupt
Software watchdog timer
Port F interrupt B

IVG13

Software interrupt 1 IVG14

Software interrupt 2 (lowest priority) IVG15

Table 4-1. System and Core Event Mapping (Cont’d)

Event Source Core Event Name

Description of Operation

4-8 ADSP-BF537 Blackfin Processor Hardware Reference

System Peripheral Interrupts
To service the rich set of peripherals, the SIC has 32 interrupt request
inputs and 9 interrupt request outputs which go to the CEC. The primary
function of the SIC is to mask, group, and prioritize interrupt requests
and to forward them to the 9 general-purpose interrupt inputs of the CEC
(IVG7–IVG15). Additionally, the SIC controller can enable individual
peripheral interrupts to wake up the processor from Idle or power-down
state.

The nine general-purpose interrupt inputs (IVG7–IVG15) of the core event
controller have fixed priority. The IVG0 channel has the highest and IVG15
has the lowest priority. Therefore, the interrupt assignment in the
SIC_IARx registers not only groups peripheral interrupts it also programs
their priority by assigning them to individual IVG channels. However, the
relative priority of peripheral interrupts can be set by mapping the periph-
eral interrupt to the appropriate general-purpose interrupt level in the
core. The mapping is controlled by the system interrupt assignment regis-
ter (SIC_IARx) settings, as detailed in Figure 4-4 on page 4-19, Figure 4-5
on page 4-19, Figure 4-6 on page 4-20, and Figure 4-7 on page 4-20. If
more than one interrupt source is mapped to the same interrupt, they are
logically OR’ed, with no hardware prioritization. Software can prioritize
the interrupt processing as required for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

The core timer has a dedicated input to the CEC controller. Its interrupts
are not routed through the SIC controller at all and always have higher
priority than requests from all other peripherals.

The system interrupt mask register (SIC_IMASK, shown in Figure 4-8 on
page 4-21) allows software to mask any peripheral interrupt source at the
system interrupt controller (SIC) level. This functionality is independent

ADSP-BF537 Blackfin Processor Hardware Reference 4-9

System Interrupts

of whether the particular interrupt is enabled at the peripheral itself. At
reset, the contents of SIC_IMASK are all 0s to mask off all peripheral inter-
rupts. Turning off a system interrupt mask and enabling the particular
interrupt is performed by writing a 1 to a bit location in SIC_IMASK.

The SIC includes a read-only system interrupt status register (SIC_ISR)
with individual bits which correspond to one of the peripheral interrupt
sources. See Figure 4-9 on page 4-22. When the SIC detects the interrupt,
the bit is asserted. When the SIC detects that the peripheral interrupt
input has been deasserted, the respective bit in the system interrupt status
register is cleared. Note for some peripherals, such as programmable flag
asynchronous input interrupts, many cycles of latency may pass from the
time an interrupt service routine initiates the clearing of the interrupt
(usually by writing a system MMR) to the time the SIC senses that the
interrupt has been deasserted.

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

Description of Operation

4-10 ADSP-BF537 Blackfin Processor Hardware Reference

The SIC_ISR register is not affected by the state of the system interrupt
mask register (SIC_IMASK) and can be read at any time. Writes to the
SIC_ISR register have no effect on its contents.

Peripheral DMA channels are mapped in a fixed manner to the peripheral
interrupt IDs. However, the assignment between peripherals and DMA
channels is freely programmable with the DMAx_PERIPHERAL_MAP registers.
Table 4-2 and Figure 4-2 show the default DMA assignment. For more
information on DMA, see Chapter 5, “Direct Memory Access”. Once a
peripheral has been assigned to any other DMA channel it uses the new
DMA channel’s interrupt ID regardless of whether DMA is enabled or
not. Therefore, clean DMAx_PERIPHERAL_MAP management is required even
if the DMA is not used. The default setup should be the best choice for all
non-DMA applications.

The ADSP-BF534 processor does not include the MAC requests shown in
Figure 4-2. However, for code compatibility, all default assignments are
the same as on the ADSP-BF536 and ADSP-BF537 processors.

For dynamic power management, any of the peripherals can be configured
to wake up the core from its idled state to process the interrupt, simply by
enabling the appropriate bit in the system interrupt wakeup-enable regis-
ter (SIC_IWR, refer to Figure 4-10 on page 4-23). If a peripheral interrupt
source is enabled in SIC_IWR and the core is idled, the interrupt causes the
DPMC to initiate the core wakeup sequence in order to process the inter-
rupt. Note this mode of operation may add latency to interrupt
processing, depending on the power control state. For further discussion
of power modes and the idled state of the core, see Chapter 20, “Dynamic
Power Management”.

The SIC_IWR register has no effect unless the core is idled. By default, all
interrupts generate a wakeup request to the core. However, for some
applications it may be desirable to disable this function for some peripher-
als, such as for a SPORTx transmit interrupt. The SIC_IWR register can be

ADSP-BF537 Blackfin Processor Hardware Reference 4-11

System Interrupts

read from or written to at any time. To prevent spurious or lost interrupt
activity, this register should be written to only when all peripheral inter-
rupts are disabled.

 The wakeup function is independent of the interrupt mask func-
tion. If an interrupt source is enabled in SIC_IWR but masked off in
SIC_IMASK, the core wakes up if it is idled, but it does not generate
an interrupt.

Figure 4-2. Default Peripheral-to-DMA Mapping

DMA0 IRQDMA0_PERIPHERAL_MAP

DMA1 IRQ

DMA2 IRQ

DMA3 IRQ

DMA4 IRQ

DMA5 IRQ

DMA6 IRQ

DMA7 IRQ

DMA8 IRQ

DMA9 IRQ

DMA10 IRQ

DMA11 IRQ

DMA1_PERIPHERAL_MAP

DMA2_PERIPHERAL_MAP

DMA3_PERIPHERAL_MAP

DMA4_PERIPHERAL_MAP

DMA5_PERIPHERAL_MAP

DMA6_PERIPHERAL_MAP

DMA7_PERIPHERAL_MAP

DMA8_PERIPHERAL_MAP

DMA9_PERIPHERAL_MAP

DMA10_PERIPHERAL_MAP

DMA11_PERIPHERAL_MAP

P
P

I

M
A

C
 R

X

M
A

C
 T

X

S
P

O
R

T
0

R
X

S
P

O
R

T
0

T
X

S
P

O
R

T
1

R
X

S
P

O
R

T
1

T
X

S
P

I

U
A

R
T

0
R

X

U
A

R
T

0
R

X

U
A

R
T

1
R

X

U
A

R
T

1
T

X

Description of Operation

4-12 ADSP-BF537 Blackfin Processor Hardware Reference

Table 4-2 shows the peripheral interrupt events, the default mapping of
each event, the peripheral interrupt ID used in the system interrupt
assignment registers (SIC_IARx), and the core interrupt ID. See
“SIC_IARx Registers” on page 4-19.

Table 4-2. System Interrupt Controller (SIC)

Peripheral Interrupt
Event

Default DMA Source
Mapping

Peripheral
Interrupt ID

Default
Mapping

Default Core
Interrupt ID

PLL wakeup 0 IVG7 0

DMA error (generic) 1 IVG7 0

DMAR0 block interrupt 1 IVG7 0

DMAR1 block interrupt 1 IVG7 0

DMAR0 overflow error 1 IVG7 0

DMAR1 overflow error 1 IVG7 0

CAN error 2 IVG7 0

MAC error1 2 IVG7 0

SPORT 0 error 2 IVG7 0

SPORT 1 error 2 IVG7 0

PPI error 2 IVG7 0

SPI error 2 IVG7 0

UART0 error 2 IVG7 0

UART1 error 2 IVG7 0

RTC 3 IVG8 1

DMA channel 0 PPI 4 IVG8 1

DMA channel 3 SPORT 0 RX 5 IVG9 2

DMA channel 4 SPORT 0 TX 6 IVG9 2

DMA channel 5 SPORT 1 RX 7 IVG9 2

ADSP-BF537 Blackfin Processor Hardware Reference 4-13

System Interrupts

DMA channel 6 SPORT 1 TX 8 IVG9 2

TWI IVG10 9 IVG10 3

DMA channel 7 SPI 10 IVG10 3

DMA channel 8 UART0 RX 11 IVG10 3

DMA channel 9 UART0 TX 12 IVG10 3

DMA channel 10 UART1 RX 13 IVG10 3

DMA channel 11 UART1 TX 14 IVG10 3

CAN RX 15 IVG11 4

CAN TX 16 IVG11 4

DMA channel 11 MAC RX 17 IVG11 4

Port H interrupt A 17 IVG11 4

DMA channel 21 MAC TX 18 IVG11 4

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt
Event

Default DMA Source
Mapping

Peripheral
Interrupt ID

Default
Mapping

Default Core
Interrupt ID

Description of Operation

4-14 ADSP-BF537 Blackfin Processor Hardware Reference

The peripheral interrupt structure of the processor is flexible. Upon reset,
multiple peripheral interrupts share a single, general-purpose interrupt in
the core by default, as shown in Table 4-2.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system memory mapped registers (MMRs) to
determine which peripheral generated the interrupt.

Port H interrupt B 18 IVG11 4

Timer 0 19 IVG12 5

Timer 1 20 IVG12 5

Timer 2 21 IVG12 5

Timer 3 22 IVG12 5

Timer 4 23 IVG12 5

Timer 5 24 IVG12 5

Timer 6 25 IVG12 5

Timer 7 26 IVG12 5

Port F, G interrupt A 27 IVG12 5

Port G interrupt B 28 IVG12 5

Memory DMA stream 0 29 IVG13 6

Memory DMA stream 1 30 IVG13 6

Software watchdog timer 31 IVG13 6

Port F interrupt B 31 IVG13 6

1 MAC error and DMA requests are not available on the ADSP-BF534. However, the DMA chan-
nels 1 and 2 can be assigned to other peripherals by reprogramming the
DMA1_PERIPHERAL_MAP and DMA2_PERIPHERAL_MAP registers to values different than
the default values.

Table 4-2. System Interrupt Controller (SIC) (Cont’d)

Peripheral Interrupt
Event

Default DMA Source
Mapping

Peripheral
Interrupt ID

Default
Mapping

Default Core
Interrupt ID

ADSP-BF537 Blackfin Processor Hardware Reference 4-15

System Interrupts

Programming Model
The programming model for the system interrupts is described in the fol-
lowing sections.

System Interrupt Initialization
If the default assignments shown in Table 4-2 are acceptable, then inter-
rupt initialization involves only:

• Initialization of the core Event Vector Table (EVT) vector address
entries

• Initialization of the IMASK register

• Unmasking the specific peripheral interrupts in SIC_IMASK that the
system requires

System Interrupt Processing Summary
Referring to Figure 4-3, note when an interrupt (interrupt A) is generated
by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the core from an idled
state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If interrupt A is not masked, the request proceeds to
Step 4.

Programming Model

4-16 ADSP-BF537 Blackfin Processor Hardware Reference

4. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7 – IVG15),
determine the core priority of interrupt A.

5. ILAT adds interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to interrupt A is not masked, the process
proceeds to Step 7.

7. The event vector table (EVT) is accessed to look up the appropriate
vector for interrupt A’s interrupt service routine (ISR).

8. When the event vector for interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

9. When the interrupt service routine (ISR) for interrupt A has been
executed, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the inter-
rupt service routine (ISR) must identify the peripheral that generated the
interrupt. The ISR may then need to interrogate the peripheral to deter-
mine the appropriate action to take.

ADSP-BF537 Blackfin Processor Hardware Reference 4-17

System Interrupts

Figure 4-3. Interrupt Processing Block Diagram

"INTERRUPT
A"

SYSTEM
INTERRUPT

MASK
(SIC_IMASK)

ASSIGN
SYSTEM

PRIORITY
(SIC_IAR0..3)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

NOTE: NAMES IN PARENTHESES ARE MEMORY-MAPPED REGISTERS.

EMU
RESET
NMI
EVX
IVTMR
IVHW

PERIPHERAL
INTERRUPT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
PENDING
(IPEND)

CORE
STATUS

(ILAT)

CORE
INTERRUPT

MASK
(IMASK)

SYSTEM
WAKEUP
(SIC_IWR)

SYSTEM
STATUS

(SIC_ISR)

TO DYNAMIC POWER
MANAGEMENT
CONTROLLER

System Interrupt Controller Registers

4-18 ADSP-BF537 Blackfin Processor Hardware Reference

System Interrupt Controller Registers
The SIC registers are described in the following sections.

These registers can be read from or written to at any time in supervisor
mode. It is advisable, however, to configure them in the reset interrupt
service routine before enabling interrupts. To prevent spurious or lost
interrupt activity, these registers should be written to only when all
peripheral interrupts are disabled.

Table 4-3 defines the value to be written in SIC_IARx to configure a
peripheral for a particular IVG priority.

Table 4-3. IVG Select Definitions

General-Purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

ADSP-BF537 Blackfin Processor Hardware Reference 4-19

System Interrupts

SIC_IARx Registers

Figure 4-4. System Interrupt Assignment Register 0

Figure 4-5. System Interrupt Assignment Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

PLL Wakeup InterruptRTC Interrupt

CAN Error, Ethernet
(ADSP-BF536 and
ADSP-BF537 only)
Error, SPORT0 Error,
SPORT1 Error, PPI
Error, SPI Error, UART0
Error, and UART1 Error
Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 1 0 0 0 1 0 0 0 1 0 0 0 0

DMA Channel 5
(SPORT1 RX) Interrupt

DMA Channel 4
(SPORT0 TX) Interrupt

Reset = 0x2221 1000

DMA Channel 0 (PPI)
Interrupt

DMA Channel 3 (SPORT0
RX) Interrupt

DMA Error (generic), DMAR0
Block, DMAR1 Block, DMAR0
Overflow Error, and DMAR1
Overflow Error Interrupt

0xFFC0 0110

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 0 1 1 0 0 1 1 0 0 1

DMA Channel 6 (SPORT1 TX)
Interrupt

TWI Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 0 0 0 0 1 1 0 0 1 1 0 0 1

DMA Channel 9 (UART0 TX)
Interrupt

DMA Channel 10 (UART1 RX)
Interrupt

CAN RX Interrupt

DMA Channel 8
(UART0 RX) Interrupt

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x4333 33320xFFC0 0114

DMA Channel 11
(UART1 TX) Interrupt

DM A Channel 7 (SPI) Interrupt

System Interrupt Controller Registers

4-20 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 4-6. System Interrupt Assignment Register 2

Figure 4-7. System Interrupt Assignment Register 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 0 1 0 1 0 0 0 1 0 0 0 1 0

Timer 0 Interrupt

DMA Channel 2 (Ethernet
TX on ADSP-BF536 and
ADSP-BF537) Interrupt
and Port H Interrupt B

Timer 1 Interrupt

Reset = 0x5555 5444

CAN TX Interrupt

DMA Channel 1 (Ethernet
RX on ADSP-BF536 and
ADSP-BF537) Interrupt
and Port H Interrupt A

Timer 2 Interrupt

Timer 4 Interrupt

0xFFC0 0118

Timer 3 Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 1 0 0 1 1 0 0 1 1 0 0 1 0

System Interrupt Assignment Register 3 (SIC_IAR3)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Port F, G Interrupt A

Timer 7 Interrupt

Port G Interrupt B

Reset = 0x6665 5555

Timer 5 Interrupt

Timer 6 Interrupt

DMA Channels 12 and 13
(Memory DMA Stream 0)
Interrupt

Software Watchdog Timer
and Port F Interrupt B

0xFFC0 011C

DMA Channels 14 and 15
(Memory DMA Stream 1)
Interrupt

ADSP-BF537 Blackfin Processor Hardware Reference 4-21

System Interrupts

SIC_IMASK Register

Figure 4-8. System Interrupt Mask Register

System Interrupt Mask Register (SIC_IMASK)
For all bits, 0 - Interrupt masked, 1 - Interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 00000xFFC0 010C

PLL Interrupt

CAN Error, MAC Error,
SPORTx Error, PPI Error,
SPI Error, UARTx Error
Interrupt

CAN RX Interrupt

TWI Interrupt

RTC Interrupt

DMA11 Interrupt
(UART1 TX)
DMA10 Interrupt
(UART1 RX)

DMA7 Interrupt (SPI)

DMA6 Interrupt (SPORT1 TX)

DMA5 Interrupt (SPORT1 RX)
DMA4 Interrupt (SPORT0 TX)

DMA3 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

DMA Error (generic),
DMARx Block Interrupt,
DMARx Overflow Error
Interrupt

DMA9 Interrupt
(UART0 TX)
DMA8 Interrupt
(UART0 RX)

Timer 2 Interrupt

Port G Interrupt B Interrupt

Port F, G Interrupt A Interrupt

MDMA1 Interrupt

Software Watchdog
Timer, Port F Inter-
rupt B Interrupt

CAN TX Interrupt

MDMA0 Interrupt

Timer 1 Interrupt

Timer 0 Interrupt

DMA1 (MAC RX), Port H
Interrupt A Interrupt
DMA2 (MAC TX), Port H
Interrupt B Interrupt

Timer 5 Interrupt
Timer 4 Interrupt

Timer 3 InterruptTimer 6 Interrupt
Timer 7 Interrupt

System Interrupt Controller Registers

4-22 ADSP-BF537 Blackfin Processor Hardware Reference

SIC_ISR Register

Figure 4-9. System Interrupt Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register (SIC_ISR)

Reset = 0x0000 0000

For all bits, 0 - Deasserted, 1 - Asserted

0xFFC0 0120

PLL Interrupt

CAN Error, MAC Error,
SPORTx Error, PPI Error,
SPI Error, UARTx Error
Interrupt

CAN RX Interrupt

TWI Interrupt

RTC Interrupt

DMA11 Interrupt
(UART1 TX)
DMA10 Interrupt
(UART1 RX)

DMA7 Interrupt (SPI)

DMA6 Interrupt (SPORT1 TX)

DMA5 Interrupt (SPORT1 RX)
DMA4 Interrupt (SPORT0 TX)

DMA3 Interrupt (SPORT0 RX)

DMA0 Interrupt (PPI)

DMA Error (generic),
DMARx Block Interrupt,
DMARx Overflow Error
Interrupt

DMA9 Interrupt
(UART0 TX)
DMA8 Interrupt
(UART0 RX)

Timer 2 Interrupt

Port G Interrupt B Interrupt

Port F, G Interrupt A Interrupt

MDMA1 Interrupt

Software Watchdog
Timer, Port F Inter-
rupt B Interrupt

CAN TX Interrupt

MDMA0 Interrupt

Timer 1 Interrupt

Timer 0 Interrupt

DMA1 (MAC RX), Port H
Interrupt A Interrupt
DMA2 (MAC TX), Port H
Interrupt B Interrupt

Timer 5 Interrupt
Timer 4 Interrupt

Timer 3 InterruptTimer 6 Interrupt
Timer 7 Interrupt

ADSP-BF537 Blackfin Processor Hardware Reference 4-23

System Interrupts

SIC_IWR Register

Figure 4-10. System Interrupt Wakeup-enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wakeup-enable Register (SIC_IWR)

Reset = 0xFFFF FFFF

Timer 2 Wakeup

For all bits, 0 - Wakeup function not enabled, 1 - Wakeup function enabled

Port G Interrupt B Wakeup

Port F, G Interrupt A Wakeup

MDMA1 Wakeup

Software Watchdog
Timer, Port F Inter-
rupt B Wakeup

PLL Wakeup

CAN Error, MAC Error,
SPORTx Error, PPI Error,
SPI Error, UARTx Error
Wakeup

CAN TX Wakeup

CAN RX Wakeup

TWI Wakeup

RTC Wakeup

DMA11 Wakeup
(UART1 TX)
DMA10 Wakeup
(UART1 RX)

DMA7 Wakeup (SPI)

DMA6 Wakeup (SPORT1 TX)

DMA5 Wakeup (SPORT1 RX)
DMA4 Wakeup (SPORT0 TX)

DMA3 Wakeup (SPORT0 RX)

DMA0 Wakeup (PPI)

MDMA0 Wakeup

Timer 1 Wakeup

Timer 0 Wakeup

DMA Error (generic),
DMARx Block Interrupt,
DMARx Overflow Error
Wakeup

0xFFC0 0124

DMA9 Wakeup
(UART0 TX)
DMA8 Wakeup
(UART0 RX)

DMA1 (MAC RX), Port H
Interrupt A Wakeup
DMA2 (MAC TX), Port H
Interrupt B Wakeup

Timer 5 Wakeup
Timer 4 Wakeup

Timer 3 WakeupTimer 6 Wakeup
Timer 7 Wakeup

System Interrupt Controller Registers

4-24 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 5-1

5 DIRECT MEMORY ACCESS

This chapter describes the Direct Memory Access (DMA) controller. Fol-
lowing an overview and list of key features is a description of operation
and functional modes of operation. The chapter concludes with a pro-
gramming model, consolidated register definitions, and programming
examples.

This chapter describes the features common to all the DMA channels, as
well as how DMA operations are set up. For specific peripheral features,
see the appropriate peripheral chapter for additional information. Perfor-
mance and bus arbitration for DMA operations can be found in “DAB,
DCB, and DEB Performance” on page 2-10.

This chapter contains:

• “Overview and Features” on page 5-2

• “DMA Controller Overview” on page 5-5

• “Modes of Operation” on page 5-12

• “Functional Description” on page 5-20

• “Programming Model” on page 5-55

• “DMA Registers” on page 5-67

• “Programming Examples” on page 5-108

Overview and Features

5-2 ADSP-BF537 Blackfin Processor Hardware Reference

Overview and Features
The processor uses DMA to transfer data between memory spaces or
between a memory space and a peripheral. The processor can specify data
transfer operations and return to normal processing while the fully inte-
grated DMA controller carries out the data transfers independent of
processor activity.

The DMA controller can perform several types of data transfers:

• Peripheral DMA transfers data between memory and on-chip
peripherals. The processor has 12 peripheral DMA channels that
support 7 peripherals.

• Ethernet MAC (dedicated DMA channel for transmit and
receive. The Ethernet MAC is not available on
ADSP-BF534 processors)

• SPORT0 and SPORT1 (dedicated DMA channel for trans-
mit and receive)

• UART0 and UART1 (dedicated DMA channel for transmit
and receive)

• PPI (transmit and receive share one DMA channel)

• SPI (transmit and receive share one DMA channel)

• Memory DMA (MDMA) transfers data between memory and
memory. The processor has two MDMA modules, each consisting
of independent memory read and memory write channels.

• Handshaking Memory DMA (HMDMA) transfers data between
off-chip peripherals and memory. This enhancement of the
MDMA channels enables external hardware to control the timing
of individual data transfers or block transfers.

ADSP-BF537 Blackfin Processor Hardware Reference 5-3

Direct Memory Access

All DMAs can transport data to and from on-chip and off-chip memories,
including L1, boot ROM, and SDRAM. The L1 scratchpad memory can-
not be accessed by DMA.

DMA transfers on the processor can be descriptor-based or register-based.
Register-based DMA allows the processor to directly program DMA con-
trol registers to initiate a DMA transfer. On completion, the control
registers may be automatically updated with their original setup values for
continuous transfer, if needed. Descriptor-based DMA transfers require a
set of parameters stored within memory to initiate a DMA sequence. This
sort of transfer allows the chaining together of multiple DMA sequences.
In descriptor-based DMA operations, a DMA channel can be pro-
grammed to automatically set up and start another DMA transfer after the
current sequence completes.

Examples of DMA styles supported by flex descriptors include:

• A single linear buffer that stops on completion (FLOW = stop mode)

• A linear buffer with strides equal 1 or greater, zero or negative
(DMAx_X_MODIFY register)

• A circular, auto-refreshing buffer that interrupts on each full buffer

• A similar buffer that interrupts on fractional buffers (for example,
1/2, 1/4) (2D DMA)

• 1D DMA, using a set of identical ping-pong buffers defined by a
linked ring of 3-word descriptors, each containing { link pointer,
32-bit address }

• 1D DMA, using a linked list of 5-word descriptors containing
{ link pointer, 32-bit address, length, config } (ADSP-2191 proces-
sor style)

Overview and Features

5-4 ADSP-BF537 Blackfin Processor Hardware Reference

• 2D DMA, using an array of 1-word descriptors, specifying only the
base DMA address within a common data page

• 2D DMA, using a linked list of 9-word descriptors, specifying
everything

The following 16 functions can be served by DMA channels:

• PPI receive/transmit

• Ethernet receive (not present on ADSP-BF534 processors)

• Ethernet transmit (not present on ADSP-BF534 processors)

• SPORT0 receive

• SPORT0 transmit

• SPORT1 receive

• SPORT1 transmit

• SPI receive/transmit

• UART0 receive

• UART0 transmit

• UART1 receive

• UART1 transmit

• MDMA0 destination

• MDMA0 source

• MDMA1 destination

• MDMA1 source

ADSP-BF537 Blackfin Processor Hardware Reference 5-5

Direct Memory Access

DMA Controller Overview
Figure 5-1 provides a block diagram of the DMA controller.

Figure 5-1. DMA Controller Block Diagram

DMA 0 CONTROLPMAPFIFO

DMA 1 CONTROLPMAPFIFO

DMA 2 CONTROLPMAPFIFO

DMA 3 CONTROLPMAPFIFO

DMA 4 CONTROLPMAPFIFO

DMA 5 CONTROLPMAPFIFO

DMA 6 CONTROLPMAPFIFO

DMA 7 CONTROLPMAPFIFO

DMA 8 CONTROLPMAPFIFO

DMA 9 CONTROLPMAPFIFO

DMA 10 CONTROLPMAPFIFO

DMA 11 CONTROLPMAPFIFO

MDMA 1 DESTINATION CONTROLHMDMA 1

FIFO
MDMA 1 SOURCE CONTROL

MDMA 0 DESTINATION CONTROLHMDMA 0

FIFO
MDMA 0 SOURCE CONTROL

DMA TRAFFIC CONTROL

DMAR0 DMAR1

IRQ 4

IRQ 17

IRQ 18

IRQ 5

IRQ 6

IRQ 7

IRQ 8

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 14

IRQ 30

IRQ 29

IRQ 1

CCLK SCLK

DCB DEB DAB DGT DRQ PAB

16 16 16 12 3 x 12 16

DMA Controller Overview

5-6 ADSP-BF537 Blackfin Processor Hardware Reference

External Interfaces
The DMA does not connect external memories and devices directly.
Rather, data is passed through the EBIU port. Any kind of device that is
supported by the EBIU can also be accessed by peripheral DMA or mem-
ory DMA operation. This is typically flash memory, SRAM, SDRAM,
FIFOs, or memory-mapped peripheral devices.

Handshaking MDMA operation is supported by two MDMA request
input pins, DMAR0 and DMAR1. The DMAR0 pin controls transfer timing on
the MDMA0 destination channel. The DMAR1 pin controls the destination
channel of MDMA1. With these pins, external FIFO devices, ADC or
DAC converters, or other streaming or block-processing devices can use
the MDMA channels to exchange their data or data buffers with the
Blackfin processor memory.

Both DMARx pins reside on port F and compete with UART0 signals. To
enable their function, set the PFDE bit in the PORT_MUX register and the PF0
and/or PF1 bits in the PORTF_FER register. The REP bit in the respective
HMDMAx_CONTROL register controls whether the DMARx inputs trigger on fall-
ing or rising edges of the connect strobe.

Internal Interfaces
Figure 2-1 on page 2-3 of the “Chip Bus Hierarchy” chapter shows the
dedicated DMA buses used by the DMA controller to interconnect L1
memory, the on-chip peripherals, and the EBIU port.

The 16-bit DMA Core Bus (DCB) connects the DMA controller to a ded-
icated port of L1 memory. L1 memory has dedicated DMA ports featuring
special DMA buffers to decouple DMA operation. See Blackfin Processor
Programming Reference for a description of the L1 memory architecture.
The DCB bus operates at core clock (CCLK) frequency. It is the DMA con-
troller’s responsibility to translate DCB transfers to the system clock
(SCLK) domain.

ADSP-BF537 Blackfin Processor Hardware Reference 5-7

Direct Memory Access

The 16-bit DMA Access Bus (DAB) connects the DMA controller to the
on-chip peripherals, PPI, SPI, Ethernet MAC, the SPORTs, and the
UARTs. It operates at SCLK frequency.

The 16-bit DMA External Bus (DEB) connects the DMA controller to
the EBIU port. This path is used for all peripheral and memory DMA
transfers to and from external memories and devices. It operates at SCLK
frequency.

Transferred data can be 8, 16, or 32 bits wide. The DMA controller, how-
ever, connects only to 16-bit buses.

Memory DMA can pass data every SCLK cycle between L1 memory and the
EBIU. Transfers from L1 memory to L1 memory requires 2 cycles, as the
DCB bus is used for both source and destination transfer. Similarly, trans-
fers between two off-chip devices require EBIU and DEB resources twice.
Peripheral DMA transfers can be performed every other SCLK cycle.

For more details on DMA performance see “DMA Performance” on
page 5-44.

Peripheral DMA
As can be seen in Figure 5-1, the DMA controller features 12 channels
that perform transfers between peripherals and on-chip or off-chip memo-
ries. The user has full control over the mapping of DMA channels and
peripherals. The default configuration shown in Table 5-1 can be changed
by altering the 4-bit PMAP field in the DMAx_PERIPHERAL_MAP registers for
the peripheral DMA channels.

DMA Controller Overview

5-8 ADSP-BF537 Blackfin Processor Hardware Reference

The default configuration works in most cases, but there are some cases
where remapping the assignment can be helpful, because of the DMA
channel priorities. When competing for any of the system buses, DMA0
has higher priority than DMA1, and so on. DMA 11 has the lowest prior-
ity of the peripheral DMA channels.

Although ADSP-BF534 processors do not feature the Ethernet MAC
module, DMA 1 and DMA 2 channels are still present and can be used for
other purposes. Attention is required as their default PMAP setting is
invalid on ADSP-BF534 devices.

 Note a 1:1 mapping should exist between DMA channels and
peripherals. The user is responsible for ensuring that multiple
DMA channels are not mapped to the same peripheral and that
multiple peripherals are not mapped to the same DMA port. If
multiple channels are mapped to the same peripheral, only one
channel is connected (the lowest priority channel). If a nonexistent

Table 5-1. Default Mapping of Peripheral to DMA

DMA Channel PMAP Default Value Peripheral Mapped by Default

DMA 0 0x0 PPI receive or transmit

DMA 1 0x1 Ethernet MAC receive

DMA 2 0x2 Ethernet MAC transmit

DMA 3 0x3 SPORT0 receive

DMA 4 0x4 SPORT0 transmit

DMA 5 0x5 SPORT1 receive

DMA 6 0x6 SPORT1 transmit

DMA 7 0x7 SPI

DMA 8 0x8 UART0 receive

DMA 9 0x9 UART0 transmit

DMA 10 0xA UART1 receive

DMA 11 0xB UART1 transmit

ADSP-BF537 Blackfin Processor Hardware Reference 5-9

Direct Memory Access

peripheral (for example, 0xF in the PMAP field) is mapped to a
channel, that channel is disabled—DMA requests are ignored, and
no DMA grants are issued. The DMA requests are also not for-
warded from the peripheral to the interrupt controller.

The twelve peripheral DMA channels work completely independently
from each other. The transfer timing is controlled by the mapped
peripheral.

Every DMA channel features its own 4-depth FIFO that decouples DAB
activity from DCB and DEB availability. DMA interrupt and descriptor
fetch timing is aligned with the memory-side (DCB/DEB side) of the
FIFO. The user does, however, have an option to align interrupts with the
peripheral side (DAB side) of the FIFO for transmit operations. Refer to
the SYNC bit in the DMAx_CONFIG register for details.

Memory DMA
This section describes the two MDMA controllers, which provide mem-
ory-to-memory DMA transfers among the various memory spaces. These
include L1 memory and external synchronous/asynchronous memories.

Each MDMA controller contains a DMA FIFO, an 8-word by 16-bit
FIFO block used to transfer data to and from either L1 or the DCB and
DEB buses. Typically, it is used to transfer data between external memory
and internal memory. It will also support DMA from boot ROM on the
DEB bus. The FIFO can be used to hold DMA data transferred between
two L1 memory locations or between two external memory locations.

Each MDMA controller provides two DMA channels:

• A source channel (for reading from memory)

• A destination channel (for writing to memory)

DMA Controller Overview

5-10 ADSP-BF537 Blackfin Processor Hardware Reference

A memory-to-memory transfer always requires the source and the destina-
tion channel to be enabled. Each source/destination channel pair forms a
“stream,” and these two streams are hardwired for DMA priorities 12
through 15.

• Priority 12: MDMA0 destination

• Priority 13: MDMA0 source

• Priority 14: MDMA1 destination

• Priority 15: MDMA1 source

MDMA0 takes precedence over MDMA1, unless round robin scheduling
is used or priorities become urgent as programmed by the DRQ bit field in
the HMDMA_CONTROL register. Note it is illegal to program a source channel
for memory write or a destination channel for memory read.

The channels support 8-, 16-, and 32-bit memory DMA transfers, but
both ends of the MDMA connect to 16-bit buses. Source and destination
channel must be programmed to the same word size. In other words, the
MDMA transfer does not perform packing or unpacking of data; each
read results in one write. Both ends of the MDMA FIFO for a given
stream are granted priority at the same time. Each pair shares an
8-word-deep 16-bit FIFO. The source DMA engine fills the FIFO, while
the destination DMA engine empties it. The FIFO depth allows the burst
transfers of the External Access Bus (EAB) and DMA Access Bus (DAB) to
overlap, significantly improving throughput on block transfers between
internal and external memory. Two separate descriptor blocks are required
to supply the operating parameters for each MDMA pair, one for the
source channel and one for the destination channel.

Because the source and destination DMA engines share a single FIFO buf-
fer, the descriptor blocks must be configured to have the same data size. It
is possible to have a different mix of descriptors on both ends as long as
the total transfer count is the same.

ADSP-BF537 Blackfin Processor Hardware Reference 5-11

Direct Memory Access

To start an MDMA transfer operation, the MMRs for the source and des-
tination channels are written, each in a manner similar to peripheral
DMA.

 Note the DMAx_CONFIG register for the source channel must be writ-
ten before the DMAx_CONFIG register for the destination channel.

Handshaked Memory DMA Mode

Handshaked operation applies only to memory DMA channels.

Normally, memory DMA transfers are performed at maximum speed.
Once started, data is transferred in a continuous manner until either the
data count expires or the MDMA is stopped. In handshake mode, the
MDMA does not transfer data automatically when enabled; it waits for an
external trigger on the MDMA request input signals. The DMAR0 input
is associated with MDMA0 and the DMAR1 input with MDMA1. Once
a trigger event is detected, a programmable portion of data is transferred
and then the MDMA stalls again and waits for the next trigger.

Handshake operation is not only useful to control the timing of mem-
ory-to-memory transfers, it also enables the MDMA to operate with
asynchronous FIFO-style devices connected to the EBIU port. The Black-
fin processor acknowledges a DMA request by a proper number of read or
write operations. It is up to the device connected to any of the MSx strobes
to deassert or pulse the request signal and to decrement the number of
pending requests accordingly.

Depending on HMDMA operating mode, an external DMA request may
trigger individual data word transfers or block transfers. A block can con-
sist of up to 65535 data words. For best throughput, DMA requests can
be pipelined. The HMDMA controllers feature a request counter to
decouple request timing from the data transfers.

See “Handshaked Memory DMA Operation” on page 5-39 for a func-
tional description.

Modes of Operation

5-12 ADSP-BF537 Blackfin Processor Hardware Reference

Modes of Operation
The following sections describe the DMA operation.

Register-Based DMA Operation
Register-based DMA is the traditional kind of DMA operation. Software
writes source or destination address and length of the data to be trans-
ferred into memory-mapped registers and then starts DMA operation.

For basic operation, the software performs these steps:

• Write the source or destination address to the 32-bit
DMAx_START_ADDR register.

• Write the number of data words to be transferred to the 16-bit
DMAx_X_COUNT register.

• Write the address modifier to the 16-bit DMAx_X_MODIFY register.
This is the two’s-complement value added to the address pointer
after every transfer. This value must always be initialized as there is
no default value. Typically, this register is set to 0x0004 for 32-bit
DMA transfers, to 0x0002 for 16-bit transfers, and to 0x0001 for
byte transfers.

• Write the operation mode to the DMAx_CONFIG register. These bits
in particular need to be changed as needed:

• The DMAEN bit enables the DMA channel.

• The WNR bit controls the DMA direction. DMAs that read
from memory keep this bit cleared, for example, transmit-
ting peripheral DMAs and the source channel of memory
DMAs. Receiving DMAs and the destination for memory
DMAs set this bit, because they write to memory.

ADSP-BF537 Blackfin Processor Hardware Reference 5-13

Direct Memory Access

• The WDSIZE bit controls the data word width for the trans-
fer. It can be 8, 16, or 32 bits wide.

• The DI_EN bit enables an interrupt when the DMA opera-
tion has finished.

• Set the FLOW field to 0x0 for stop mode or 0x1 for autobuffer
mode.

Once the DMAEN bit is set, the DMA channel starts its operation. While
running the DMAx_CURR_ADDR and the DMAx_CURR_X_COUNT registers can be
monitored to determine the current progress of the DMA operation.

The DMAx_IRQ_STATUS register signals whether the DMA has finished
(DMA_DONE bit), whether a DMA error has occurred (DMA_ERR bit), and
whether the DMA is currently running (DMA_RUN bit). The DMA_DONE and
the DMA_ERR bits also function as interrupt latch bits. They must be cleared
by write-one-to-clear (W1C) operations by the interrupt service routine.

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the
DMA channel transfers the desired number of data words and stops itself
again when finished. If the DMA channel is no longer used, software
should clear the DMAEN enable bit to disable a paused channel. Stop mode
is entered if the FLOW bit field in the DMA channel’s DMAx_CONFIG register
is 0. The NDSIZE field must always be 0 in this mode.

For receive (memory write) operation, the DMA_RUN bit functions almost
the same as the inverted DMA_DONE bit. For transmit (memory read) opera-
tion, however, the two bits have different timing. Refer to the description
of the SYNC bit for details.

Modes of Operation

5-14 ADSP-BF537 Blackfin Processor Hardware Reference

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If
all data words have been transferred, the address pointer DMAx_CURR_ADDR
is reloaded automatically by the DMAx_START_ADDR value. An interrupt may
also be generated.

Autobuffer mode is entered if the FLOW field in the DMAx_CONFIG register
is 1. The NDSIZE bit must be 0 in autobuffer mode.

Two-Dimensional DMA Operation
Register-based and descriptor-based DMA can operate in one-dimensional
mode or two-dimensional mode.

In two-dimensional (2D) mode the DMAx_X_COUNT register is accompanied
by the DMAx_Y_COUNT register, supporting arbitrary row and column sizes
up to 64 K x 64 K elements, as well as arbitrary DMAx_X_MODIFY and
DMAx_Y_MODIFY values up to ±32 K bytes. Furthermore, DMAx_Y_MODIFY
can be negative, allowing implementation of interleaved datastreams. The
DMAx_X_COUNT and DMAx_Y_COUNT values specify the row and column
sizes, where DMAx_X_COUNT must be 2 or greater.

The start address and modify values are in bytes, and they must be aligned
to a multiple of the DMA transfer word size (WDSIZE[1:0] in
DMAx_CONFIG). Misalignment causes a DMA error.

The DMAx_X_MODIFY value is the byte-address increment that is applied
after each transfer that decrements the DMAx_CURR_X_COUNT register. The
DMAx_X_MODIFY value is not applied when the inner loop count is ended by
decrementing DMAx_CURR_X_COUNT from 1 to 0, except that it is applied on
the final transfer when DMAx_CURR_Y_COUNT is 1 and DMAx_CURR_X_COUNT
decrements from 1 to 0.

ADSP-BF537 Blackfin Processor Hardware Reference 5-15

Direct Memory Access

The DMAx_Y_MODIFY value is the byte-address increment that is applied
after each decrement of DMAx_CURR_Y_COUNT. However, the
DMAx_Y_MODIFY value is not applied to the last item in the array on
which the outer loop count (DMAx_CURR_Y_COUNT) also expires by decre-
menting from 1 to 0.

After the last transfer completes, DMAx_CURR_Y_COUNT = 1,
DMAx_CURR_X_COUNT = 0, and DMAx_CURR_ADDR is equal to the last item’s
address plus DMAx_X_MODIFY. Note if the DMA channel is programmed
to refresh automatically (autobuffer mode), then these registers will be
loaded from DMAx_X_COUNT, DMAx_Y_COUNT, and DMAx_START_ADDR
upon the first data transfer.

The DI_SEL configuration bit enables DMA interrupt requests every time
the inner loop rolls over. If DI_SEL is cleared, but DI_EN is still set, only
one interrupt is generated after the outer loop completes.

Examples of Two-Dimensional DMA

Example 1: Retrieve a 16 8 block of bytes from a video frame buffer of
size (N M) pixels:

DMAx_X_MODIFY = 1

DMAx_X_COUNT = 16
DMAx_Y_MODIFY = N–15 (offset from the end of one row to the
start of another)

DMAx_Y_COUNT = 8

This produces the following address offsets from the start address:

0,1,2,...15,

N,N + 1, ... N + 15,

2N, 2N + 1,... 2N + 15, ...

7N, 7N + 1,... 7N + 15,

Modes of Operation

5-16 ADSP-BF537 Blackfin Processor Hardware Reference

Example 2: Receive a video datastream of bytes,
(R,G,B pixels) (N M image size):

DMAx_X_MODIFY = (N * M)

DMAx_X_COUNT = 3
DMAx_Y_MODIFY = 1 – 2(N * M) (negative)

DMAx_Y_COUNT = (N * M)

This produces the following address offsets from the start address:

0, (N * M), 2(N * M),

1, (N * M) + 1, 2(N * M) + 1,

2, (N * M) + 2, 2(N * M) + 2,

...

(N * M) – 1, 2(N * M) – 1, 3(N * M) – 1,

Descriptor-Based DMA Operation
In descriptor-based DMA operation, software does not set up DMA
sequences by writing directly into DMA controller registers. Rather, soft-
ware keeps DMA configurations, called descriptors, in memory. On
demand, the DMA controller loads the descriptor from memory and over-
writes the affected DMA registers by its own control. Descriptors can be
fetched from L1 memory using the DCB bus or from external memory
using the DEB bus.

A descriptor describes what kind of operation should be performed next
by the DMA channel. This includes the DMA configuration word as well
as data source/destination address, transfer count, and address modify val-
ues. A DMA sequence controlled by one descriptor is called a work unit.

Optionally, an interrupt can be requested at the end of any work unit by
setting the DI_EN bit in the configuration word of the respective
descriptor.

ADSP-BF537 Blackfin Processor Hardware Reference 5-17

Direct Memory Access

A DMA channel is started in descriptor-based mode by first writing the
32-bit address of the first descriptor into the DMAx_NEXT_DESC_PTR register
(or the DMAx_CURR_DESC_PTR in case of descriptor array mode) and then
performing a write to the configuration register DMAx_CONFIG that sets the
FLOW field to either 0x04, 0x6, or 0x7 and enables the DMAEN bit. This causes
the DMA controller to immediately fetch the descriptor from the address
pointed to by the DMAx_NEXT_DESC_PTR register. The fetch overwrites the
DMAx_CONFIG register again. If the DMAEN bit is still set, the channel starts
DMA processing.

The DFETCH bit in the DMAx_IRQ_STATUS register tells whether a descriptor
fetch is ongoing on the respective DMA channel, whereas the
DMAx_CURR_DESC_PTR points to the descriptor value that is to be fetched
next.

Descriptor List Mode

Descriptor list mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to either 0x6 (small descriptor mode) or
0x7 (large descriptor mode). In this mode multiple descriptors form a
chained list. Every descriptor contains a pointer to the next descriptor.
When the descriptor is fetched, this pointer value is loaded into the
DMAx_NEXT_DESC_PTR register of the DMA channel. In large descriptor
mode this pointer is 32 bits wide. Therefore, the next descriptor may
reside in any address space accessible through the DCB and DEB buses. In
small descriptor mode this pointer is just 16 bits wide. For this reason, the
next descriptor must reside in the same 64 KB address space as the first
one, because the upper 16 bits of the DMAx_NEXT_DESC_PTR register are not
updated.

Descriptor list modes are started by writing first to the
DMAx_NEXT_DESC_PTR register and then to the DMAx_CONFIG register.

Modes of Operation

5-18 ADSP-BF537 Blackfin Processor Hardware Reference

Descriptor Array Mode

Descriptor array mode is selected by setting the FLOW bit field in the DMA
channel’s DMAx_CONFIG register to 0x4. In this mode, the descriptors do
not contain further descriptor pointers. The initial DMAx_CURR_DESC_PTR
value is written by software. It points to an array of descriptors. The indi-
vidual descriptors are assumed to reside next to each other and, therefore,
their address is known.

Variable Descriptor Size

In any descriptor-based mode the NDSIZE field in the configuration word
specifies how many 16-bit words of the next descriptor need to be loaded
on the next fetch. In descriptor-based operation, NDSIZE must be
non-zero. The descriptor size can be any value from 1 entry (the lower 16
bits of DMAx_START_ADDR only) to 9 entries (all the DMA parameters).
Table 5-2 illustrates how a descriptor must be structured in memory. The
values have the same order as the corresponding MMR addresses.

If, for example, a descriptor is fetched in array mode with NDSIZE = 0x5,
the DMA controller fetches the 32-bit start address, the DMA configura-
tion word and the XCNT and XMOD values. However, it does not load YCNT
and YMOD. This might be the case if the DMA operates in one-dimensional
mode or if the DMA is in two-dimensional mode, but the YCNT and YMOD
values do not need to change.

All the other registers not loaded from the descriptor retain their prior val-
ues, although the DMAx_CURR_ADDR, DMAx_CURR_X_COUNT, and
DMAx_CURR_Y_COUNT registers are reloaded between the descriptor fetch and
the start of DMA operation.

ADSP-BF537 Blackfin Processor Hardware Reference 5-19

Direct Memory Access

Table 5-2 shows the offsets for descriptor elements in the three modes
described above. Note the names in the table describe the descriptor ele-
ments in memory, not the actual MMRs into which they are eventually
loaded. For more information regarding descriptor element acronyms, see
Table 5-6 on page 5-68.

Note that every descriptor fetch steals bandwidth from either the DCB
bus or DEB bus and the external memory interface, so it is best to keep
the size of descriptors as small as possible.

Mixing Flow Modes

The FLOW mode is not a global setting. If the DMA configuration word is
reloaded with a descriptor fetch, the FLOW and NDSIZE bit fields can also be
altered. A small descriptor might be used to loop back to the first descrip-
tor if a descriptor array is used in an endless manner. If the descriptor
chain is not endless and the DMA is required to stop after a certain
descriptor has been processed, the last descriptor is typically processed in
stop mode, that is, FLOW and NDSIZE fields are 0 but the DMAEN bit is set.

Table 5-2. Parameter Registers and Descriptor Offsets

Descriptor
Offset

Descriptor Array
Mode

Small Descriptor List
Mode

Large Descriptor List
Mode

0x0 SAL NDPL NDPL

0x2 SAH SAL NDPH

0x4 DMACFG SAH SAL

0x6 XCNT DMACFG SAH

0x8 XMOD XCNT DMACFG

0xA YCNT XMOD XCNT

0xC YMOD YCNT XMOD

0xE YMOD YCNT

0x10 YMOD

Functional Description

5-20 ADSP-BF537 Blackfin Processor Hardware Reference

Functional Description
The following sections provide a functional description of DMA.

DMA Operation Flow
Figure 5-2 and Figure 5-3 describe the DMA flow.

DMA Startup

This section discusses starting DMA “from scratch.” This is similar to
starting it after it has been paused by FLOW = 0 mode.

 Before initiating DMA for the first time on a given channel, be
sure to initialize all parameter registers. Be especially careful to ini-
tialize the upper 16 bits of the DMAx_NEXT_DESC_PTR and
DMAx_START_ADDR registers, because they might not otherwise be
accessed, depending on the chosen FLOW mode of operation. Also
note that the DMAx_X_MODIFY and DMAx_Y_MODIFY are not preset to a
default value at reset.

To start DMA operation on a given channel, some or all of the DMA
parameter registers must first be written directly. At a minimum, the
DMAx_NEXT_DESC_PTR register (or DMAx_CURR_DESC_PTR register in FLOW = 4
mode) must be written at this stage, but the user may wish to write other
DMA registers that might be static throughout the course of DMA activ-
ity (for example, DMAx_X_MODIFY, DMAx_Y_MODIFY). The contents of NDSIZE
and FLOW in DMAx_CONFIG indicate which registers, if any, are fetched from
descriptor elements in memory. After the descriptor fetch, if any, is com-
pleted, DMA operation begins, initiated by writing DMAx_CONFIG with
DMAEN = 1.

ADSP-BF537 Blackfin Processor Hardware Reference 5-21

Direct Memory Access

Figure 5-2. DMA Flow, From DMA Controller’s Point of View (1 of 2)

COPY FLOW, NDSIZE FROM DMA_CONFIG
INTO TEMPORARY DESCRIPTOR FETCH COUNTERS

B

COPY NEXT DESCRIPTOR POINTER
TO CURRENT DESCRIPTOR POINTER

USER WRITES SOME OR ALL DMA PARAMETER
REGISTERS, AND THEN WRITES DMA_CONFIG

SET DFETCH IN IRQ_STATUS

SET DMA_RUN IN IRQ_STATUS

BAD DMA_CONFIG?

TEST DMAEN

TEST FLOW

TEST FLOW

Y

N

DMA ERROR

DMAEN = 1

DMAEN = 0

FLOW = 4, 6, OR 7

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS

FLOW = 0 OR 1
A

C

DI_EN = 0 OR
(DI_EN = 1 AND
DMA_DONE_IRQ = 1)

FLOW = 4

FLOW = 6 OR 7

D

Functional Description

5-22 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 5-3. DMA Flow, From DMA Controller’s Point of View (2 of 2)

B

A

C

TEST NDSIZE
DMA

ABORT
OCCURS

READ NDSIZE ELEMENTS
OF DESCRIPTOR INTO

PARAMETER REGISTERS
VIA CURRENT

DESCRIPTOR POINTER
FLOW = 0 OR 1

FLOW = 1

CLEAR DFETCH IN
IRQ_STATUS

DMA TRANSFER
BEGINS AND

CONTINUES UNTIL
COUNTS EXPIRE

TEST DI_EN

TEST FLOW

TEST SYNC, WNR

DMA STOPPED.
CLEAR DMA_RUN IN

IRQ_STATUS.

MEMORY WRITE (DESTINATION)

SYNC = 0 &
MEMORY READ

FLOW = 0

DI_EN = 0

DI_EN = 1 SIGNAL AN
INTERRUPT

TO THE CORE

SET DMA_DONE
IN IRQ_STATUS

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

*MAX SIZE DEPENDS ON FLOW
 IF FLOW = 4, MAX_SIZE = 7
 IF FLOW = 6, MAX_SIZE = 8
 IF FLOW = 7, MAX_SIZE = 9

NDSIZE = 0 OR
NDSIZE > MAX_SIZE*

NDSIZE > 0 AND
NDSIZE <= MAX_SIZE*

TEST SYNC, WNR

TRANSFER
DATA FROM

FIFO TO
PERIPHERAL
UNTIL EMPTY

SYNC = 1 &
MEMORY READ

SYNC = 0 OR
MEMORY WRITE

D
FLOW = 4, 6, 7

SYNC = 1 OR
MEMORY WRITE

ADSP-BF537 Blackfin Processor Hardware Reference 5-23

Direct Memory Access

When DMAx_CONFIG is written directly by software, the DMA controller
recognizes this as the special startup condition that occurs when starting
DMA for the first time on this channel or after the engine has been
stopped (FLOW = 0).

When the descriptor fetch is complete and DMAEN = 1, the DMACFG descrip-
tor element that was read into DMAx_CONFIG assumes control. Before this
point, the direct write to DMAx_CONFIG had control. In other words, the
WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMACFG value in the descriptor read from memory, while these field values
initially written to the DMAx_CONFIG register are ignored.

As Figure 5-2 and Figure 5-3 show, at startup the FLOW and NDSIZE bits in
DMAx_CONFIG determine the course of the DMA setup process. The FLOW
value determines whether to load more current registers from descriptor
elements in memory, while the NDSIZE bits detail how many descriptor
elements to fetch before starting DMA. DMA registers not included in the
descriptor are not modified from their prior values.

If the FLOW value specifies small or large descriptor list modes, the
DMAx_NEXT_DESC_PTR is copied into DMAx_CURR_DESC_PTR. Then, fetches of
new descriptor elements from memory are performed, indexed by
DMAx_CURR_DESC_PTR, which is incremented after each fetch. If NDPL
and/or NDPH is part of the descriptor, then these values are loaded into
DMAx_NEXT_DESC_PTR, but the fetch of the current descriptor continues
using DMAx_CURR_DESC_PTR. After completion of the descriptor fetch,
DMAx_CURR_DESC_PTR points to the next 16-bit word in memory past the
end of the descriptor.

If neither NDPH nor NDPL are part of the descriptor (that is, in descriptor
array mode, FLOW = 4), then the transfer from NDPH/NDPL into
DMAx_CURR_DESC_PTR does not occur. Instead, descriptor fetch indexing
begins with the value in DMAx_CURR_DESC_PTR.

Functional Description

5-24 ADSP-BF537 Blackfin Processor Hardware Reference

If DMACFG is not part of the descriptor, the previous DMAx_CONFIG settings
(as written by MMR access at startup) control the work unit operation. If
DMACFG is part of the descriptor, then the DMAx_CONFIG value programmed
by the MMR access controls only the loading of the first descriptor from
memory. The subsequent DMA work operation is controlled by the low
byte of the descriptor’s DMACFG and by the parameter registers loaded from
the descriptor. The bits DI_EN, DI_SEL, DMA2D, WDSIZE, and WNR in the value
programmed by the MMR access are disregarded.

The DMA_RUN and DFETCH status bits in the DMAx_IRQ_STATUS register indi-
cate the state of the DMA channel. After a write to DMAx_CONFIG, the
DMA_RUN and DFETCH bits can be automatically set to 1. No data interrupts
are signaled as a result of loading the first descriptor from memory.

After the above steps, DMA data transfer operation begins. The DMA
channel immediately attempts to fill its FIFO, subject to channel prior-
ity—a memory write (RX) DMA channel begins accepting data from its
peripheral, and a memory read (TX) DMA channel begins memory reads,
provided the channel wins the grant for bus access.

When the DMA channel performs its first data memory access, its address
and count computations take their input operands from the start registers
(DMAx_START_ADDR, DMAx_X_COUNT, DMAx_Y_COUNT), and write results back
to the current registers (DMAx_CURR_ADDR, DMAx_CURR_X_COUNT,
DMAx_CURR_Y_COUNT). Note also that the current registers are not valid
until the first memory access is performed, which may be some time after
the channel is started by the write to the DMA_CONFIG register. The current
registers are loaded automatically from the appropriate descriptor ele-
ments, overwriting their previous contents, as follows.

• DMAx_START_ADDR is copied to DMAx_CURR_ADDR

• DMAx_X_COUNT is copied to DMAx_CURR_X_COUNT

• DMAx_Y_COUNT is copied to DMAx_CURR_Y_COUNT

Then DMA data transfer operation begins, as shown in Figure 5-3.

ADSP-BF537 Blackfin Processor Hardware Reference 5-25

Direct Memory Access

DMA Refresh

On completion of a work unit, the DMA controller:

• Completes the transfer of all data between memory and the DMA
unit.

• If SYNC = 1 and WNR = 0 (memory read), selects a synchronized
transition. Transfers all data to the peripheral before continuing.

• If enabled by DI_EN, signals an interrupt to the core and sets the
DMA_DONE bit in the channel’s DMAx_IRQ_STATUS register.

• If FLOW = 0 (stop) only:

Stops operation by clearing the DMA_RUN bit in DMAx_IRQ_STATUS
after any data in the channel’s DMA FIFO has been transferred to
the peripheral.

• During the fetch in FLOW modes 4, 6, and 7, the DMA controller
sets the DFETCH bit in DMAx_IRQ_STATUS to 1. At this point, the
DMA operation depends on whether FLOW = 4, 6, or 7, as follows:

If FLOW = 4 (descriptor array):

Loads a new descriptor from memory into DMA registers via the
contents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The descriptor size comes from the NDSIZE
field of the DMAx_CONFIG value prior to the beginning of the fetch.

If FLOW = 6 (descriptor list small):

Copies the 32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR.
Next, fetches a descriptor from memory into DMA registers via the
new contents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
16-bit value for the lower 16 bits of DMAx_NEXT_DESC_PTR, followed

Functional Description

5-26 ADSP-BF537 Blackfin Processor Hardware Reference

by the rest of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR will retain their former value. This supports a
shorter, more efficient descriptor than the descriptor list large
model, suitable whenever the application can place the channel’s
descriptors in the same 64K byte range of memory.

If FLOW = 7 (descriptor list large):

Copies the 32-bit DMAx_NEXT_DESC_PTR into DMAx_CURR_DESC_PTR.
Next, fetches a descriptor from memory into DMA registers via the
new contents of DMAx_CURR_DESC_PTR, while incrementing
DMAx_CURR_DESC_PTR. The first descriptor element loaded is a new
32-bit value for the full DMAx_NEXT_DESC_PTR, followed by the rest
of the descriptor elements. The high 16 bits of
DMAx_NEXT_DESC_PTR may differ from their former value. This sup-
ports a fully flexible descriptor list which can be located anywhere
in internal memory or external memory.

• Note if it is necessary to link from a descriptor chain whose
descriptors are in one 64K byte area to another chain whose
descriptors are outside that area, only one descriptor needs to use
FLOW = 7—just the descriptor which contains the link leaving the
64K byte range. All the other descriptors located together in the
same 64K byte areas may use FLOW = 6.

• If FLOW = 4, 6, or 7 (descriptor array, descriptor list small, or
descriptor list large, respectively) the DMA controller clears the
DFETCH bit in the DMAx_IRQ_STATUS register.

ADSP-BF537 Blackfin Processor Hardware Reference 5-27

Direct Memory Access

• If FLOW = any value but 0 (Stop), the DMA controller begins the
next work unit, contending with other channels for priority on the
memory buses. On the first memory transfer of the new work unit,
the DMA controller updates the current registers from the start
registers:

DMAx_CURR_ADDR loaded from DMAx_START_ADDR
DMAx_CURR_X_COUNT loaded from DMAx_X_COUNT
DMAx_CURR_Y_COUNT loaded from DMAx_Y_COUNT

The DFETCH bit in DMAx_IRQ_STATUS is then cleared, after which the
DMA transfer begins again, as shown in Figure 5-3.

Work Unit Transitions

Transitions from one work unit to the next are controlled by the SYNC bit
in the DMAx_CONFIG register of the work units. In general, continuous tran-
sitions have lower latency at the cost of restrictions on changes of data
format or addressed memory space in the two work units. These latency
gains and data restrictions arise from the way the DMA FIFO pipeline is
handled while the next descriptor is fetched. In continuous transitions
(SYNC = 0), the DMA FIFO pipeline continues to transfer data to and from
the peripheral or destination memory during the descriptor fetch and/or
when the DMA channel is paused between descriptor chains.

Synchronized transitions (SYNC = 1), on the other hand, provide better
real-time synchronization of interrupts with peripheral state and greater
flexibility in the data formats and memory spaces of the two work units, at
the cost of higher latency in the transition. In synchronized transitions,
the DMA FIFO pipeline is drained to the destination or flushed (RX data
discarded) between work units.

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be

Functional Description

5-28 ADSP-BF537 Blackfin Processor Hardware Reference

0. In transmit (memory read) channels, the SYNC bit of the last
descriptor prior to the transition controls the transition behavior.
In contrast, in receive channels, the SYNC bit of the first descriptor
of the next descriptor chain controls the transition.

DMA Transmit and MDMA Source

In DMA transmit (memory read) and MDMA source channels, the SYNC
bit controls the interrupt timing at the end of the work unit and the han-
dling of the DMA FIFO between the current and next work unit.

If SYNC = 0, a continuous transition is selected. In a continuous transition,
just after the last data item is read from memory, these four operations all
start in parallel:

• The interrupt (if any) is signalled.

• The DMA_DONE bit in the DMAx_IRQ_STATUS register is set.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the des-
tination memory or peripheral.

This allows the DMA to provide data from the FIFO to the peripheral
“continuously” during the descriptor fetch latency period.

When SYNC = 0, the final interrupt (if enabled) occurs when the last data is
read from memory. This interrupt is at the earliest time that the output
memory buffer may safely be modified without affecting the previous data
transmission. Up to four data items may still be in the DMA FIFO,
however, and not yet at the peripheral, so the DMA interrupt should not
be used as the sole means of synchronizing the shutdown or reconfigura-
tion of the peripheral following a transmission.

ADSP-BF537 Blackfin Processor Hardware Reference 5-29

Direct Memory Access

 If SYNC = 0 (continuous transition) on a transmit (memory read)
descriptor, the next descriptor is required to have the same data
word size, read/write direction, and source memory (internal vs.
external) as the current descriptor.

If SYNC = 0 selects continuous transition on a work unit in FLOW = STOP
mode with interrupt enabled, the interrupt service routine may already
run while the final data is still draining from the FIFO to the peripheral.
This is indicated by the DMA_RUN bit in the DMAx_IRQ_STATUS register; if it
is 1, the FIFO is not empty yet. Do not start a new work unit with differ-
ent word size or direction while DMA_RUN = 1. Further, if the channel is
disabled (by writing DMAEN = 0), the data in the FIFO is lost.

If SYNC = 1, a synchronized transition is selected, in which the DMA FIFO
is first drained to the destination memory or peripheral before any inter-
rupt is signalled and before any subsequent descriptor or data is fetched.
This incurs greater latency, but provides direct synchronization between
the DMA interrupt and the state of the data at the peripheral.

For example, if SYNC = 1 and DI_EN = 1 on the last descriptor in a work
unit, the interrupt occurs when the final data has been transferred to the
peripheral, allowing the service routine to properly switch to non-DMA
transmit operation. When the interrupt service routine is invoked, the
DMA_DONE bit is set and the DMA_RUN bit is cleared.

A synchronized transition also allows greater flexibility in the format of
the DMA descriptor chain. If SYNC = 1, the next descriptor may have any
word size or read/write direction supported by the peripheral and may
come from either memory space (internal vs. external). This can be useful
in managing MDMA work unit queues, since it is no longer necessary to
interrupt the queue between dissimilar work units.

Functional Description

5-30 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Receive

In DMA receive (memory write) channels, the SYNC bit controls the han-
dling of the DMA FIFO between descriptor chains (not individual
descriptors), when the DMA channel is paused. The DMA channel pauses
after descriptors with FLOW = STOP mode, and may be restarted (for exam-
ple, after an interrupt) by writing the channel’s DMAx_CONFIG register with
DMAEN = 1.

If the SYNC bit is 0 in the new work unit’s DMAx_CONFIG value, a continuous
transition is selected. In this mode, any data items received into the DMA
FIFO while the channel was paused are retained, and they are the first
items written to memory in the new work unit. This mode of operation
provides lower latency at work unit transitions and ensures that no data
items are dropped during a DMA pause, at the cost of certain restrictions
on the DMA descriptors.

 If the SYNC bit is 0 on the first descriptor of a descriptor chain after
a DMA pause, the DMA word size of the new chain must not
change from the word size of the previous descriptor chain active
before the pause, unless the DMA channel is reset between chains
by writing the DMAEN bit to 0 and then 1.

If the SYNC bit is 1 in the new work unit’s DMAx_CONFIG value, a synchro-
nized transition is selected. In this mode, only the data received from the
peripheral by the DMA channel after the write to the DMAx_CONFIG register
are delivered to memory. Any prior data items transferred from the
peripheral to the DMA FIFO before this register write are discarded. This
provides direct synchronization between the data stream received from the
peripheral and the timing of the channel restart (when the DMAx_CONFIG
register is written).

For receive DMAs, the SYNC bit has no effect in transitions between work
units in the same descriptor chain (that is, when the previous descriptor’s
FLOW mode was not STOP, so that DMA channel did not pause.)

ADSP-BF537 Blackfin Processor Hardware Reference 5-31

Direct Memory Access

If a descriptor chain begins with a SYNC bit of 1, there is no restriction on
DMA word size of the new chain in comparison to the previous chain.

 The DMA word size must not change between one descriptor and
the next in any DMA receive (memory write) channel within a sin-
gle descriptor chain, regardless of the SYNC bit setting. In other
words, if a descriptor has WNR = 1 and FLOW = 4, 6, or 7, then the
next descriptor must have the same word size. For any DMA
receive (memory write) channel, there is no restriction on changes
of memory space (internal vs. external) between descriptors or
descriptor chains. DMA transmit (memory read) channels may
have such restrictions (see “DMA Transmit and MDMA Source”
on page 5-28).

Stopping DMA Transfers

In FLOW = 0 mode, DMA stops automatically after the work unit is
complete.

If a list or array of descriptors is used to control DMA, and if every
descriptor contains a DMACFG element, then the final DMACFG element
should have a FLOW = 0 setting to gracefully stop the channel.

In autobuffer (FLOW = 1) mode, or if a list or array of descriptors without
DMACFG elements is used, then the DMA transfer process must be termi-
nated by an MMR write to the DMAx_CONFIG register with a value whose
DMAEN bit is 0. A write of 0 to the entire register will always terminate
DMA gracefully (without DMA abort).

 If a channel has been stopped abruptly by writing DMAx_CONFIG to 0
(or any value with DMAEN = 0), the user must ensure that any mem-
ory read or write accesses in the pipelines have completed before
enabling the channel again. If the channel is enabled again before
an “orphan” access from a previous work unit completes, the state
of the DMA interrupt and FIFO is unspecified. This can generally
be handled by ensuring that the core allocates several idle cycles in

Functional Description

5-32 ADSP-BF537 Blackfin Processor Hardware Reference

a row in its usage of the relevant memory space to allow up to three
pending DMA accesses to issue, plus allowing enough memory
access time for the accesses themselves to complete.

DMA Errors (Aborts)
The DMA controller flags conditions that cause the DMA process to end
abnormally (that is, abort). This functionality is provided as a tool for sys-
tem development and debug, as a way to detect DMA-related
programming errors. DMA errors (aborts) are detected by the DMA
channel module in the cases listed below. When a DMA error occurs, the
channel is immediately stopped (DMA_RUN goes to 0) and any prefetched
data is discarded. In addition, a DMA_ERROR interrupt is asserted.

There is only one DMA_ERROR interrupt for the whole DMA controller,
which is asserted whenever any of the channels has detected an error
condition.

The DMA_ERROR interrupt handler must do these things for each channel:

• Read each channel’s DMAx_IRQ_STATUS register to look for a channel
with the DMA_ERR bit set (bit 1).

• Clear the problem with that channel (for example, fix register
values).

• Clear the DMA_ERR bit (write DMAx_IRQ_STATUS with bit 1 = 1).

The following error conditions are detected by the DMA hardware and
result in a DMA Abort interrupt.

• The configuration register contains invalid values:

• - Incorrect WDSIZE value (WDSIZE = b#11)
- Bit 15 not set to 0
- Incorrect FLOW value (FLOW = 2, 3, or 5)
- NDSIZE value does not agree with FLOW. See Table 5-3.

ADSP-BF537 Blackfin Processor Hardware Reference 5-33

Direct Memory Access

• A disallowed register write occurred while the channel was run-
ning. Only the DMAx_CONFIG and DMAx_IRQ_STATUS registers can be
written when DMA_RUN = 1.

• An address alignment error occurred during any memory access.
For example, DMAx_CONFIG register WDSIZE = 1 (16 bit) but the
least significant bit (LSB) of the address is not equal to 0, or
WDSIZE = 2 (32 bit) but the two LSBs of the address are not equal
to 00.

• A memory space transition was attempted (internal-to-external or
vice versa).

• A memory access error occurred. Either an access attempt was
made to an internal address not populated or defined as cache, or
an external access caused an error (signaled by the external memory
interface).

Some prohibited situations are not detected by the DMA hardware. No
DMA abort is signaled for these situations:

• DMAx_CONFIG direction bit (WNR) does not agree with the direction
of the mapped peripheral.

• DMAx_CONFIG direction bit does not agree with the direction of the
MDMA channel.

• DMAx_CONFIG word size (WDSIZE) is not supported by the mapped
peripheral.

• DMAx_CONFIG word size in source and destination of the MDMA
stream are not equal.

Functional Description

5-34 ADSP-BF537 Blackfin Processor Hardware Reference

• Descriptor chain indicates data buffers that are not in the same
internal/external memory space.

• In 2D DMA, X_COUNT = 1.

DMA Control Commands
Advanced peripherals, such as the ADSP-BF536/ADSP-BF537 processor’s
Ethernet MAC module, are capable of managing some of their own DMA
operations, thus dramatically improving real-time performance and reliev-
ing control and interrupt demands on the Blackfin processor core. These
peripherals may communicate to the DMA controller using DMA control
commands, which are transmitted from the peripheral to the associated
DMA channel over internal DMA request buses. These request buses con-
sist of three wires per DMA-management-capable peripheral. The DMA
control commands extend the set of operations available to the peripheral
beyond the simple “request data” command used by peripherals in
general.

Note that while these DMA control commands are not visible to or con-
trollable by the user, their use by a peripheral has implications for the
structure of the DMA transfers which that peripheral can support. It is
important that application software be written to comply with certain

Table 5-3. Legal NDSIZE Values

FLOW NDSIZE Note

0 0

1 0

4 0 < NDSIZE <= 7 Descriptor array, no descriptor pointer fetched

6 0 < NDSIZE <= 8 Descriptor list, small descriptor pointer fetched

7 0 < NDSIZE <= 9 Descriptor list, large descriptor pointer fetched

ADSP-BF537 Blackfin Processor Hardware Reference 5-35

Direct Memory Access

restrictions regarding work units and descriptor chains (described later in
this section) so that the peripheral operates properly whenever it issues
DMA control commands.

The ADSP-BF536/ADSP-BF537 processors have just one DMA-manage-
ment-capable peripheral, the Ethernet MAC. Refer to Chapter 8,
“Ethernet MAC”, for a description of how receive and transmit channels
of this peripheral use DMA control commands. The ADSP-BF534 proces-
sors are not equipped with DMA-management-capable peripherals.
MDMA channels do not service peripherals and therefore do not support
DMA control commands.

The DMA control commands are shown in Table 5-4.

Table 5-4. DMA Control Commands

Code Name Description

000 NOP No operation

001 Restart Restarts the current work unit
from the beginning

010 Finish Finishes the current work unit
and starts the next

011 - Reserved

100 Req Data Typical DMA data request

101 Req Data Urgent Urgent DMA data request

110 - Reserved

111 - Reserved

Functional Description

5-36 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the control commands includes:

• Restart

The restart control command causes the current work unit to inter-
rupt processing and start over, using the addresses and counts from
DMAx_START_ADDR, DMAx_X_COUNT, and DMAx_Y_COUNT. No interrupt
is signalled.

If a channel programmed for transmit (memory read) receives a
restart control command, the channel momentarily pauses while
any pending memory reads initiated prior to the restart command
are completed.

During this period of time, the channel does not grant DMA
requests. Once all pending reads have been flushed from the chan-
nel’s pipelines, the channel resets its counters and FIFO, and starts
prefetch reads from memory. DMA data requests from the
peripheral are granted as soon as new prefetched data is available in
the DMA FIFO. The peripheral can thus use the restart command
to re-attempt a failed transmission of a work unit.

If a channel programmed for receive (memory write) receives a
restart control command, the channel stops writing to memory,
discards any data held in its DMA FIFO, and resets its counters
and FIFO. As soon as this initialization is complete, the channel
again grants DMA write requests from the peripheral. The periph-
eral can thus use the restart command to abort transfer of received
data into a work unit, and re-use the memory buffer for a later data
transfer.

• Finish

The finish control command causes the current work unit to termi-
nate processing of the current work unit and move on to the next.
An interrupt is signalled as usual, if selected by the DI_EN bit. The
peripheral can thus use the finish command to partition the DMA

ADSP-BF537 Blackfin Processor Hardware Reference 5-37

Direct Memory Access

stream into work units on its own, perhaps as a result of parsing the
data currently passing though its supported communication chan-
nel, without direct real-time control by the processor.

If a channel programmed for transmit (memory read) receives a
finish control command, the channel momentarily pauses while
any pending memory reads initiated prior to the finish command
are completed. During this period of time, the channel does not
grant DMA requests. Once all pending reads have been flushed
from the channel’s pipelines, the channel signals an interrupt (if
enabled), and begins fetching the next descriptor (if any). DMA
data requests from the peripheral are granted as soon as new
prefetched data is available in the DMA FIFO.

If a channel programmed for receive (memory write) receives a fin-
ish control command, the channel stops granting new DMA
requests while it drains its FIFO. Any DMA data received by the
DMA Controller prior to the finish command is written to mem-
ory. When the FIFO reaches an empty state, the channel signals an
interrupt (if enabled) and begins fetching the next descriptor (if
any). Once the next descriptor has been fetched, the channel ini-
tializes its FIFO, and then resumes granting DMA requests from
the peripheral.

• Request Data

The request data control command is identical to the DMA request
operation of peripherals which are not DMA-management-capable.

• Request Data Urgent

The request data urgent control command behaves identically to
the DMA request control command, except that while it is asserted
the DMA channel performs its memory accesses with urgent prior-
ity. This includes both data and descriptor-fetch memory accesses.

Functional Description

5-38 ADSP-BF537 Blackfin Processor Hardware Reference

A DMA-management-capable peripheral might use this control
command if an internal FIFO is approaching a critical condition,
for example.

Restrictions

The proper operation of the 4-location DMA channel FIFO leads to cer-
tain restrictions in the sequence of DMA control commands.

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory read unless both (a) the peripheral has
already performed at least one DMA transfer in the current work unit, and
(b) the current work unit has more than four items remaining in
DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT (thus not yet read from mem-
ory.) Otherwise, the current work unit may already have completed
memory operations and can no longer be restarted or finished properly.

If the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT of the current work unit is
sufficiently large that it is always at least 5 more than the maximum data
count prior to any restart or finish command, the above restriction is satis-
fied. This implies that any work unit which might be managed by restart
or finish commands must have DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT
values representing at least 5 data items.

Note in particular that if the DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNT reg-
isters are programmed to 0 (representing 65,536 transfers, the maximum
value) the channel will operate properly for 1D work units up to 65,531
data items or 2D work units up to 4,294,967,291 data items.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a
channel configured for memory write unless either (a) the peripheral has
already performed at least five DMA transfers in the current work unit, or

ADSP-BF537 Blackfin Processor Hardware Reference 5-39

Direct Memory Access

(b) the previous work unit was terminated by a finish control command
and the peripheral has performed at least one DMA transfer in the current
work unit. If five data transfers have been performed, then at least one
data item has been written to memory in the current work unit, which
implies that the current work unit’s descriptor fetch completed before the
data grant of the fifth item. Otherwise, if less than five data items have
been transferred, it is possible that all of them are still in the DMA FIFO
and that the previous work unit is still in the process of completion and
transition between work units.

Similarly, if a finish command ended the previous work unit and at least
one subsequent DMA data transfer has occurred, then the fact that the
DMA channel issued the grant guarantees that the previous work unit has
already completed the process of draining its data to memory and transi-
tioning to the new work unit.

Note that if a peripheral terminates all work units with the finish opcode
(effectively assuming responsibility for all work unit boundaries for the
DMA channel), then the peripheral need only ensure that it performs a
single transfer in each work unit before any restart or finish. This requires,
however, that the user programs the descriptors for all work units man-
aged by the channel with DMAx_CURR_X_COUNT/ DMAx_CURR_Y_COUNTs
representing more data items than the maximum work unit size that the
peripheral will encounter. For example, DMAx_CURR_X_COUNT/
DMAx_CURR_Y_COUNTs of 0 allow the channel to operate properly on 1D
work units up to 65,535 data items and 2D work units up to
4,294,967,295 data items.

Handshaked Memory DMA Operation
Both DMARx inputs have their own set of control and status registers.
Handshake operation for MDMA0 is enabled by the HMDMAEN bit in the
HMDMA0_CONTROL register. Similarly, the HMDMAEN bit in the HMDMA1_CONTROL
register enables handshake mode for MDMA1.

Functional Description

5-40 ADSP-BF537 Blackfin Processor Hardware Reference

It is important to understand that the handshake hardware works com-
pletely independent from the descriptor and autobuffer capabilities of the
MDMA, allowing most flexible combinations of logical data organization
vs. data portioning as required by FIFO deeps, for example. If, however,
the connected device requires certain behavior of the address lines, these
must be controlled by traditional DMA setup.

 The HMDMA unit controls only the destination (memory write)
channel of the memory DMA. The source channel (memory-read
side) fills the 8-depth DMA buffers immediately after the receive
being enabled issues 8 read commands.

The HMDMAx_BCINIT registers control how many data transfers are per-
formed upon every DMA request. If set to one, the peripheral can time
every individual data transfer. If greater than one, the peripheral must fea-
ture sufficient buffer size to provide or consume the number of words
programmed. Once the transfer has been requested, no further handshake
can hold off the DMA from transferring the entire block, except by stall-
ing the EBIU accesses by the ARDY signal or a complete bus request and
grant cycle through the BR and BG pins. Nevertheless, the peripheral may
request a block transfer before the entire buffer is available, by simply tak-
ing the minimum transfer time based on wait-state settings into
consideration.

 The block count defines how many data transfers are performed by
the MDMA engine. A single DMA transfer can cause two read or
write operations on the EBIU port if the transfer word size is set to
32 bit in the MDMA_yy_CONFIG register (WDSIZE = b#10).

Since the block count registers are 16 bits wide, blocks can group up to
65535 transfers.

Once a block transfer has been started, the HMDMAx_BCOUNT registers return
the remaining number of transfers to complete the current block. When
the complete block has been processed, the HMDMAx_BCOUNT regis-
ter returns zero. Software can force a reload of the HMDMAx_BCOUNT

ADSP-BF537 Blackfin Processor Hardware Reference 5-41

Direct Memory Access

from the HMDMAx_BCINIT register even during normal operation by
writing a 1 to the RBC bit in the HMDMAx_CONTROL register. Set RBC only
when the HMDMA module is already active, but the MDMA is not
enabled.

Pipelining DMA Requests

The device mastering the DMA request lines is allowed to request addi-
tional transfers even before the former transfer has completed. As long as
the device can provide or consume sufficient data it is permitted to pulse
the DMARx inputs multiple times.

The HMDMAx_ECOUNT registers are incremented every time a significant edge
is detected on the respective DMARx input and are decremented when the
MDMA completes the block transfer. These read-only registers use a
16-bit two’s-complement data representation: if they return zero, all
requested block transfers have been performed. A positive value signals up
to 32767 requests that haven’t been served yet and indicates that the
MDMA is currently processing. Negative values indicate the number of
DMA requests that will be ignored by the engine. This feature restrains
initial pulses on the DMARx inputs at startup.

The HMDMAx_ECINIT registers reload the HMDMAx_ECOUNT registers every time
the handshake mode is enabled, that is, when the HMDMAEN bit changes
from 0 to 1. If the initial edge count value is 0, the handshake operation
starts with a settled request budget. If positive, the engine starts immedi-
ately transferring the programmed number (up to 32767) of blocks once
enabled, even without detecting any activity on the DMARx pins. If nega-
tive, the engine will disregard the programmed number (up to 32768)
significant edges on the DMARx inputs before starting normal operation.

Figure 5-4 illustrates how an asynchronous FIFO could be connected. In
such a scenario the REP bit was cleared to let the DMARx request pin listen to
falling edges. The Blackfin processor does not evaluate the full flag such
FIFOs usually provide, because asynchronous polling of that signal would
reduce the system throughput drastically. Moreover, the processor first

Functional Description

5-42 ADSP-BF537 Blackfin Processor Hardware Reference

fills the FIFO by initializing the HMDMAx_ECINIT register by the value 1024
which equals the depth of the FIFO. Once enabled, the MDMA automat-
ically transmits 1024 data words. Afterward it continues to transmit only
if the FIFO is emptied by its read strobe again. Most likely, the
HMDMAx_BCINIT register is programmed to be 1 in this case.

In the receive example shown in Figure 5-5, the Blackfin processor again
does not use the FIFO’s internal control mechanism. Rather than testing
the empty flag, the processor counts the number of data words available in
the FIFO by its own HMDMAx_ECOUNT register. Theoretically, the MDMA
could immediately process data as soon as it is written into the FIFO by
the write strobe, but the fast MDMA engine would read out the FIFO
quickly and stall soon if the FIFO was not filled with new data promptly.
Streaming applications can balance the FIFO so that the producer is never
held off by a full FIFO and the consumer is never held by an empty FIFO.
This is accomplished by filling the FIFO half way and then letting both
consumer and producer run at the same speed. In this case the
HMDMAx_ECINIT register can be written with a negative value, which corre-
sponds to half the FIFO depth. Then, the MDMA does not start
consuming data as long as the FIFO is not half filled.

Figure 5-4. Transmit DMA Example Connection

WR
AMSx

1024K x 16 FIFOBLACKFIN

FF

D0 .. D15

DMARx

RD

I0 .. I15 O0 .. O15

AWE

ADSP-BF537 Blackfin Processor Hardware Reference 5-43

Direct Memory Access

On internal system buses, memory DMA channels have lower priority
than other DMAs. In busy systems it might happen that the memory
DMAs tend to starve. As this is not acceptable when transferring data
through high-speed FIFOs, the handshake mode provides a high-water
functionality to increase the MDMA’s priority. With the UTE bit in the
HMDMAx_CONTROL register set, the MDMA gets higher priority as soon as a
(positive) value in the HMDMAx_ECOUNT register becomes higher than the
threshold held by the HMDMAx_ECURGENT register.

HMDMA Interrupts

In addition to the normal MDMA interrupt channels, the handshake
hardware provides two new interrupt sources for each DMARx input. All
interrupt sources are routed to the global DMA error interrupt channel.
The HMDMAx_CONTROL registers provide interrupt enable and status bits.
The interrupt status bits require a write-1-to-clear operation to cancel the
interrupt request.

The block done interrupt signals that a complete MDMA block as defined
by the HMDMAx_BCINIT register has been transferred, that is, when the
HMDMAx_BCOUNT register decrements to zero. While the BDIE bit enables this
interrupt, the MBDI bit can gate it until the edge count also becomes zero,
meaning that all requested MDMA transfers have been completed.

Figure 5-5. Receive DMA Example Connection

RD
AMSx

1024K x 16 FIFOBLACKFIN

EF

D0 .. D15

DMARx

WR

O0 .. O15 I0 .. I15

ARE

Functional Description

5-44 ADSP-BF537 Blackfin Processor Hardware Reference

The overflow interrupt is generated when the HMDMA_ECOUNT register over-
flows. Since it can count up to 32767, which is much more than most of
peripheral devices can support, the Blackfin processor features another
threshold register called HMDMA_ECOVERFLOW. It resets to 0xFFFF and should
be written with any positive value by the user before enabling the function
by the OIE bit. Then, the overflow interrupt is issued when the value of the
HMDMA_ECOUNT register exceeds the threshold in the HMDMA_ECOVERFLOW
register.

DMA Performance
The DMA system is designed to provide maximum throughput per chan-
nel and maximum utilization of the internal buses, while accommodating
the inherent latencies of memory accesses.

The Blackfin architecture features several mechanisms to customize system
behavior for best performance. This includes DMA channel prioritization,
traffic control, and priority treatment of bursted transfers. Nevertheless,
the resulting performance of a DMA transfer often depends on applica-
tion-level circumstances.

For best performance consider these questions architecting the system
software:

• What is the required DMA bandwidth?

• Which DMA transfers have real-time requirements and which do
not?

• How heavily is the DMA controller competing with the core for
on-chip and off-chip resources?

• How often do competing DMA channels require the bus systems to
alter direction?

ADSP-BF537 Blackfin Processor Hardware Reference 5-45

Direct Memory Access

• How often do competing DMA or core accesses cause the SDRAM
to open different pages?

• Is there a way to distribute DMA requests nicely over time?

A key feature of the DMA architecture is the separation of the activity on
the peripheral DMA bus (the DMA Access Bus (DAB)) from the activity
on the buses between the DMA and memory (the DMA Core Bus (DCB)
and the DMA External Bus (DEB)). Chapter 2, “Chip Bus Hierarchy”
explains the bus architecture.

Each peripheral DMA channel has its own data FIFO which lies between
the DAB bus and the memory buses. These FIFOs automatically prefetch
data from memory for transmission and buffer received data for later
memory writes. This allows the peripheral to be granted a DMA transfer
with very low latency compared to the total latency of a pipelined memory
access, permitting the repeat rate (bandwidth) of each DMA channel to be
as fast as possible.

DMA Throughput

Peripheral DMA channels have a maximum transfer rate of one 16-bit
word per two system clocks, per channel, in either direction. As the DAB
and DEB buses do, the DMA controller resides in the SCLK domain. The
controller synchronizes accesses to and from the DCB bus which is run-
ning at CCLK rate.

Memory DMA channels have a maximum transfer rate of one 16-bit word
per one system clock (SCLK), per channel.

Functional Description

5-46 ADSP-BF537 Blackfin Processor Hardware Reference

When all DMA channels’ traffic is taken in the aggregate:

• Transfers between the peripherals and the DMA unit have a maxi-
mum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and internal memory (L1) have a
maximum rate of one 16-bit transfer per system clock.

• Transfers between the DMA unit and external memory have a
maximum rate of one 16-bit transfer per system clock.

Some considerations which limit the actual performance include:

• Accesses to internal or external memory which conflict with core
accesses to the same memory. This can cause delays, for example,
for accessing the same L1 bank, for opening/closing SDRAM
pages, or while filling cache lines.

• Each direction change from RX to TX on the DAB bus imposes a
one SCLK cycle delay.

• Direction changes on the DCB bus (for example, write followed by
read) to the same bank of internal memory can impose delays.

• Direction changes (for example, read followed by write) on the
DEB bus to external memory can each impose a several-cycle delay.

• MMR accesses to DMA registers other than DMAx_CONFIG,
DMAx_IRQ_STATUS, or DMAx_PERIPHERAL_MAP stalls all DMA activity
for one cycle per 16-bit word transferred. In contrast, MMR
accesses to the control/status registers do not cause stalls or wait
states.

• Reads from DMA registers other than control/status registers use
one PAB bus wait state, delaying the core for several core clocks.

ADSP-BF537 Blackfin Processor Hardware Reference 5-47

Direct Memory Access

• Descriptor fetches consume one DMA memory cycle per 16-bit
word read from memory, but do not delay transfers on the DAB
bus.

• Initialization of a DMA channel stalls DMA activity for one cycle.
This occurs when DMAEN changes from 0 to 1 or when the SYNC bit
is set to 1 in the DMAx_CONFIG register.

Several of these factors may be minimized by proper design of the applica-
tion software. It is often possible to structure the software to avoid
internal and external memory conflicts by careful allocation of data buffers
within banks and pages, and by planning for low cache activity during
critical DMA operations. Furthermore, unnecessary MMR accesses can be
minimized, especially by using descriptors or autobuffering.

Efficiency loss caused by excessive direction changes (thrashing) can be
minimized by the processor’s traffic control features, described in the next
section.

The MDMA controllers are clocked by SCLK. If source and destination are
in different memory spaces (one internal and one external), the internal
and external memory transfers are typically simultaneous and continuous,
maintaining 100% bus utilization of the internal and external memory
interfaces. This performance is affected by core-to-system clock frequency
ratios. At ratios below about 2.5:1, synchronization and pipeline latencies
result in lower bus utilization in the system clock domain. At a clock ratio
of 2:1, for example, DMA typically runs at 2/3 of the system clock rate. At
higher clock ratios, full bandwidth is maintained.

If source and destination are in the same memory space (both internal or
both external), the MDMA stream typically prefetches a burst of source
data into the FIFO, and then automatically turns around and delivers all
available data from the FIFO to the destination buffer. The burst length is
dependent on traffic, and is equal to 3 plus the memory latency at the
DMA in SCLKs (which is typically 7 for internal transfers and 6 for exter-
nal transfers).

Functional Description

5-48 ADSP-BF537 Blackfin Processor Hardware Reference

Memory DMA Timing Details

When the destination DMAx_CONFIG register is written, MDMA operation
starts, after a latency of 3 SCLK cycles.

First, if either MDMA channel has been selected to use descriptors, the
descriptors are fetched from memory. The destination channel descriptors
are fetched first. Then, after a latency of 4 SCLK cycles after the last
descriptor word is returned from memory (or typically 8 SCLK cycles after
the fetch of the last descriptor word, due to memory pipelining), the
source MDMA channel begins fetching data from the source buffer. The
resulting data is deposited in the MDMA channel’s 8-location FIFO, and
then after a latency of 2 SCLK cycles, the destination MDMA channel
begins writing data to the destination memory buffer.

Static Channel Prioritization

DMA channels are ordinarily granted service strictly according to their
priority. The priority of a channel is simply its channel number, where
lower priority numbers are granted first. Thus, peripherals with high data
rates or low latency requirements should be assigned to lower numbered
(higher priority) channels using the PMAP field in the
DMAx_PERIPHERAL_MAP registers. The memory DMA streams are always
lower static priority than the peripherals, but as they request service con-
tinuously, they ensure that any time slots unused by peripheral DMA are
applied to MDMA transfers.

Table 5-5. Priority and Default Mapping of Peripheral to DMA

Priority DMA Channel PMAP Default
Value

Peripheral Mapped by Default

Highest DMA 0 0x0 PPI receive or transmit

DMA 1 0x1 Ethernet MAC receive

DMA 2 0x2 Ethernet MAC transmit

DMA 3 0x3 SPORT0 receive

ADSP-BF537 Blackfin Processor Hardware Reference 5-49

Direct Memory Access

As the Ethernet MAC module is not present on the ADSP-BF534 proces-
sors, the PMAP field should not be set to 0x1 or 0x2 on used DMA
channels. Attention is required as DMA 1 and DMA 2 channels default to
these invalid values.

Temporary DMA Urgency

Typically, DMA transfers for a given peripheral occur at regular intervals.
Generally, the shorter the interval, the higher the priority that should be
assigned to the peripheral. If the average bandwidth of all the peripherals
is not too large a fraction of the total, then all peripherals’ requests should
be granted as required.

Occasionally, instantaneous DMA traffic might exceed the available band-
width, causing congestion. This may occur if L1 or external memory is
temporarily stalled, perhaps for an SDRAM page swap or a cache line fill.

DMA 4 0x4 SPORT0 transmit

DMA 5 0x5 SPORT1 receive

DMA 6 0x6 SPORT1 transmit

DMA 7 0x7 SPI

DMA 8 0x8 UART0 receive

DMA 9 0x9 UART0 transmit

DMA 10 0xA UART1 receive

DMA 11 0xB UART1 transmit

MDMA D0 N/A N/A

MDMA S0 N/A N/A

MDMA D1 N/A N/A

Lowest MDMA S1 N/A N/A

Table 5-5. Priority and Default Mapping of Peripheral to DMA (Cont’d)

Priority DMA Channel PMAP Default
Value

Peripheral Mapped by Default

Functional Description

5-50 ADSP-BF537 Blackfin Processor Hardware Reference

Congestion might also occur if one or more DMA channels initiates a
flurry of requests, perhaps for descriptor fetches or to fill a FIFO in the
DMA or in the peripheral.

If congestion persists, lower priority DMA peripherals may become
starved for data. Even though the peripheral’s priority is low, if the neces-
sary data transfer does not take place before the end of the peripheral’s
regular interval, system failure may result. To minimize this possibility,
the DMA unit detects peripherals whose need for data has become urgent,
and preferentially grants them service at the highest priority.

A DMA channel’s request for memory service is defined as “urgent” if
both:

• The channel’s FIFO is not ready for a DAB bus transfer (that is, a
transmit FIFO is empty or a receive FIFO is full), and

• The peripheral is asserting its DMA request line.

Descriptor fetches may be urgent, if they are necessary to initiate or con-
tinue a DMA work unit chain for a starving peripheral.

DMA requests from an MDMA channel become urgent when handshaked
operation is enabled and the DMARx edge count exceeds the value stored
in the HMDMAx_ECURGENT register. If handshaked operation is disabled, soft-
ware can control urgency of requests directly by altering the DRQ bit field
in the HMDMAx_CONTROL register.

ADSP-BF537 Blackfin Processor Hardware Reference 5-51

Direct Memory Access

When one or more DMA channels express an urgent memory request, two
events occur:

• All non-urgent memory requests are decreased in priority by 32,
guaranteeing that only an urgent request will be granted. The
urgent requests compete with each other, if there is more than one,
and directional preference among urgent requests is observed.

• The resulting memory transfer is marked for expedited processing
in the targeted memory system (L1 or external), and so are all prior
incomplete memory transfers ahead of it in that memory system.
This may cause a series of external memory core accesses to be
delayed for a few cycles so that a peripheral’s urgent request may be
accommodated.

The preferential handling of urgent DMA transfers is completely auto-
matic. No user controls are required for this function to operate.

Memory DMA Priority and Scheduling

All MDMA operations have lower precedence than any peripheral DMA
operations. MDMA thus makes effective use of any memory bandwidth
unused by peripheral DMA traffic.

By default, when more than one MDMA stream is enabled and ready,
only the highest priority MDMA stream is granted. If it is desirable for the
MDMA streams to share the available bandwidth, however, the
MDMA_ROUND_ROBIN_PERIOD may be programmed to select each stream in
turn for a fixed number of transfers.

If two MDMA streams are used (S0-D0 and S1-D1), the user may choose
to allocate bandwidth either by fixed stream priority or by a round robin
scheme. This is selected by programming the MDMA_ROUND_ROBIN_PERIOD
field in the DMA_TC_PER register (see “Static Channel Prioritization” on
page 5-48).

Functional Description

5-52 ADSP-BF537 Blackfin Processor Hardware Reference

If this field is set to 0, then MDMA is scheduled by fixed priority.
MDMA stream 0 takes precedence over MDMA stream 1 whenever
stream 0 is ready to perform transfers. Since an MDMA stream is typically
capable of transferring data on every available cycle, this could cause
MDMA stream 1 traffic to be delayed for an indefinite time until any and
all MDMA stream 0 operations are complete. This scheme could be
appropriate in systems where low duration but latency sensitive data buf-
fers need to be moved immediately, interrupting long duration, low
priority background transfers.

If the MDMA_ROUND_ROBIN_PERIOD field is set to some nonzero value in the
range 1 <= P <= 31, then a round robin scheduling method is used. The
two MDMA streams are granted bus access in alternation in bursts of up
to P data transfers. This could be used in systems where two transfer pro-
cesses need to coexist, each with a guaranteed fraction of the available
bandwidth. For example, one stream might be programmed for inter-
nal-to-external moves while the other is programmed for
external-to-internal moves, and each would be allocated approximately
equal data bandwidth.

In round robin operation, the MDMA stream selection at any time is
either “free” or “locked.” Initially, the selection is free. On any free cycle
available to MDMA (when no peripheral DMA accesses take precedence),
if either or both MDMA streams request access, the higher precedence
stream will be granted (stream 0 in case of conflict), and that stream’s
selection is then “locked.” The MDMA_ROUND_ROBIN_COUNT counter field in
the DMA_TC_CNT register is loaded with the period P from
MDMA_ROUND_ROBIN_PERIOD, and MDMA transfers begin. The counter is
decremented on every data transfer (as each data word is written to
memory). After the transfer corresponding to a count of 1, the MDMA
stream selection is passed automatically to the other stream with zero over-
head, and the MDMA_ROUND_ROBIN_COUNT counter is reloaded with the
period value P from MDMA_ROUND_ROBIN_PERIOD. In this cycle, if the other
MDMA stream is ready to perform a transfer, the stream selection is

ADSP-BF537 Blackfin Processor Hardware Reference 5-53

Direct Memory Access

locked on the new MDMA stream. If the other MDMA stream is not
ready to perform a transfer, then no transfer is performed, and on the next
cycle the stream selection unlocks and becomes free again.

If round robin operation is used when only one MDMA stream is active,
one idle cycle will occur for each P MDMA data cycles, slightly lowering
bandwidth by a factor of 1/(P+1). If both MDMA streams are used, how-
ever, memory DMA can operate continuously with zero additional
overhead for alternation of streams (other than overhead cycles normally
associated with reversal of read/write direction to memory, for example).
By selection of various round robin period values P which limit how often
the MDMA streams alternate, maximal transfer efficiency can be
maintained.

Traffic Control

In the Blackfin DMA architecture, there are two completely separate but
simultaneous prioritization processes—the DAB bus prioritization and the
memory bus (DCB and DEB) prioritization. Peripherals that are request-
ing DMA via the DAB bus, and whose data FIFOs are ready to handle the
transfer, compete with each other for DAB bus cycles. Similarly but sepa-
rately, channels whose FIFOs need memory service (prefetch or
post-write) compete together for access to the memory buses. MDMA
streams compete for memory access as a unit, and source and destination
may be granted together if their memory transfers do not conflict. In this
way, internal-to-external or external-to-internal memory transfers may
occur at the full system clock rate (SCLK). Examples of memory conflict
include simultaneous access to the same memory space and simultaneous
attempts to fetch descriptors. Special processing may occur if a peripheral
is requesting DMA but its FIFO is not ready (for example, an empty
transmit FIFO or full receive FIFO). For more information, see “Tempo-
rary DMA Urgency” on page 5-49.

Traffic control is an important consideration in optimizing use of DMA
resources. Traffic control is a way to influence how often the transfer
direction on the data buses may change, by automatically grouping same

Functional Description

5-54 ADSP-BF537 Blackfin Processor Hardware Reference

direction transfers together. The DMA block provides a traffic control
mechanism controlled by the DMA_TC_PER and DMA_TC_CNT registers. This
mechanism performs the optimization without real-time processor inter-
vention, and without the need to program transfer bursts into the DMA
work unit streams. Traffic can be independently controlled for each of the
three buses (DAB, DCB, and DEB) with simple counters. In addition,
alternation of transfers among MDMA streams can be controlled with the
MDMA_ROUND_ROBIN_COUNT field of the DMA_TC_CNT register. See “Memory
DMA Priority and Scheduling” on page 5-51.

Using the traffic control features, the DMA system preferentially grants
data transfers on the DAB or memory buses which are going in the same
read/write direction as the previous transfer, until either the traffic control
counter times out, or until traffic stops or changes direction on its own.
When the traffic counter reaches zero, the preference is changed to the
opposite flow direction. These directional preferences work as if the prior-
ity of the opposite direction channels were decreased by 16.

For example, if channels 3 and 5 were requesting DAB access, but lower
priority channel 5 is going “with traffic” and higher priority channel 3 is
going “against traffic,” then channel 3’s effective priority becomes 19, and
channel 5 would be granted instead. If, on the next cycle, only channels 3
and 6 were requesting DAB transfers, and these transfer requests were
both “against traffic,” then their effective priorities would become 19 and
22, respectively. One of the channels (channel 3) is granted, even though
its direction is opposite to the current flow. No bus cycles are wasted,
other than any necessary delay required by the bus turnaround.

This type of traffic control represents a trade-off of latency to improve uti-
lization (efficiency). Higher traffic timeouts might increase the length of
time each request waits for its grant, but it often dramatically improves the
maximum attainable bandwidth in congested systems, often to above
90%.

To disable preferential DMA prioritization, program the DMA_TC_PER reg-
ister to 0x0000.

ADSP-BF537 Blackfin Processor Hardware Reference 5-55

Direct Memory Access

Programming Model
Several synchronization and control methods are available for use in devel-
opment of software tasks which manage peripheral DMA and memory
DMA (see also “Memory DMA” on page 5-9). Such software needs to be
able to accept requests for new DMA transfers from other software tasks,
integrate these transfers into existing transfer queues, and reliably notify
other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory
DMA stream to be managed by a separate task or to be managed together
with any other stream. Each DMA channel has independent, orthogonal
control registers, resources, and interrupts, so that the selection of the
control scheme for one channel does not affect the choice of control
scheme on other channels. For example, one peripheral can use a
linked-descriptor-list, interrupt-driven scheme while another peripheral
can simultaneously use a demand-driven, buffer-at-a-time scheme syn-
chronized by polling of the DMAx_IRQ_STATUS register.

Synchronization of Software and DMA
A critical element of software DMA management is synchronization of
DMA buffer completion with the software. This can best be done using
interrupts, polling of DMAx_IRQ_STATUS, or a combination of both. Polling
for address or count can only provide synchronization within loose toler-
ances comparable to pipeline lengths.

Interrupt-based synchronization methods must avoid interrupt overrun,
or the failure to invoke a DMA channel’s interrupt handler for every inter-
rupt event due to excessive latency in processing of interrupts. Generally,
the system design must either ensure that only one interrupt per channel is
scheduled (for example, at the end of a descriptor list), or that interrupts
are spaced sufficiently far apart in time that system processing budgets can

Programming Model

5-56 ADSP-BF537 Blackfin Processor Hardware Reference

guarantee every interrupt is serviced. Note, since every interrupt channel
has its own distinct interrupt, interaction among the interrupts of differ-
ent peripherals is much simpler to manage.

Polling of the DMAx_CURR_ADDR, DMAx_CURR_DESC_PTR, or
DMAx_CURR_X_COUNT/DMAx_CURR_Y_COUNT registers is not recom-
mended as a method of precisely synchronizing DMA with data
processing, due to DMA FIFOs and DMA/memory pipelining. The cur-
rent address, pointer, and count registers change several cycles in advance
of the completion of the corresponding memory operation, as measured
by the time at which the results of the operation would first be visible to
the core by memory read or write instructions. For example, in a DMA
memory write operation to external memory, assume a DMA write by
channel A is initiated that causes the SDRAM to perform a page open
operation which will take many system clock cycles. The DMA engine
may then move on to another DMA operation by channel B which does
not in itself incur latency, but will be stalled behind the slow operation by
channel A. Software monitoring channel B could not safely conclude
whether the memory location pointed to by channel B’s DMAx_CURR_ADDR
has or has not been written, based on examination of the DMAx_CURR_ADDR
register contents.

Polling of the current address, pointer, and count registers can permit
loose synchronization of DMA with software, however, if allowances are
made for the lengths of the DMA/memory pipeline. The length of the
DMA FIFO for a peripheral DMA channel is four locations (either four 8-
or 16-bit data elements, or two 32-bit data elements) and for an MDMA
FIFO is eight locations (four 32-bit data elements). The DMA will not
advance current address/pointer/count registers if these FIFOs are filled
with incomplete work (including reads that have been started but not yet
finished).

ADSP-BF537 Blackfin Processor Hardware Reference 5-57

Direct Memory Access

Additionally, the length of the combined DMA and L1 pipelines to inter-
nal memory is approximately six 8- or 16-bit data elements. The length of
the DMA and External Bus Interface Unit (EBIU) pipelines is approxi-
mately three data elements, when measured from the point where a DMA
register update is visible to an MMR read to the point where DMA and
core accesses to memory become strictly ordered. If the DMA FIFO
length and the DMA/memory pipeline length are added, an estimate can
be made of the maximum number of incomplete memory operations in
progress at one time. (Note this is a maximum, as the DMA/memory
pipeline may include traffic from other DMA channels.)

For example, assume a peripheral DMA channel is transferring a work
unit of 100 data elements into internal memory and its
DMAx_CURR_X_COUNT register reads a value of 60 remaining elements, so
that processing of the first 40 elements has at least been started. The total
pipeline length is no greater than the sum of 4 (for the peripheral DMA
FIFO) plus 6 (for the DMA/memory pipeline), or 10 data elements, so it
is safe to conclude that the DMA transfer of the first 40-10 = 30 data ele-
ments is complete.

For precise synchronization, software should either wait for an interrupt
or consult the channel’s DMAx_IRQ_STATUS register to confirm completion
of DMA, rather than polling current address/pointer/count registers.
When the DMA system issues an interrupt or changes an
DMAx_IRQ_STATUS bit, it guarantees that the last memory operation of the
work unit has been completed and will definitely be visible to DSP code.
For memory read DMA, the final memory read data will have been safely
received in the DMA’s FIFO; for memory write DMA, the DMA unit will
have received an acknowledge from L1 memory or the EBIU that the data
has been written.

The following examples show methods of synchronizing software with
several different styles of DMA.

Programming Model

5-58 ADSP-BF537 Blackfin Processor Hardware Reference

Single-Buffer DMA Transfers

Synchronization is simple if a peripheral’s DMA activity consists of iso-
lated transfers of single buffers. DMA activity is initiated by software
writes to the channel’s control registers. The user may choose to use a sin-
gle descriptor in memory, in which case the software only needs to write
the DMAx_CONFIG and the DMAx_NEXT_DESC_PTR registers. Alternatively, the
user may choose to write all the MMR registers directly from software,
ending with the write to the DMAx_CONFIG register.

The simplest way to signal completion of DMA is by an interrupt. This is
selected by the DI_EN bit in the DMAx_CONFIG register, and by the necessary
setup of the system interrupt controller. If it is desirable not to use an
interrupt, the software can poll for completion by reading the
DMAx_IRQ_STATUS register and testing the DMA_RUN bit. If this bit is zero,
the buffer transfer has completed.

Continuous Transfers Using Autobuffering

If a peripheral’s DMA data consists of a steady, periodic stream of signal
data, DMA autobuffering (FLOW = 1) may be an effective option. Here,
DMA is transferred from or to a memory buffer with a circular addressing
scheme, using either one- or two-dimensional indexing with zero proces-
sor and DMA overhead for looping. Synchronization options include:

• 1D, interrupt-driven—software is interrupted at the conclusion of
each buffer. The critical design consideration is that the software
must deal with the first items in the buffer before the next DMA
transfer, which might overwrite or re-read the first buffer location
before it is processed by software. This scheme may be workable if
the system design guarantees that the data repeat period is longer
than the interrupt latency under all circumstances.

• 2D, interrupt-driven (double buffering)—the DMA buffer is parti-
tioned into two or more sub-buffers, and interrupts are selected
(set DI_SEL = 1 in DMAx_CONFIG) to be signaled at the completion of

ADSP-BF537 Blackfin Processor Hardware Reference 5-59

Direct Memory Access

each DMA inner loop. In this way, a traditional double buffer or
“ping-pong” scheme could be implemented.

For example, two 512-word sub-buffers inside a 1K word buffer
could be used to receive 16-bit peripheral data with these settings:

• DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x10D7 (FLOW = 1, DI_EN = 1, DI_SEL = 1,
DMA2D = 1, WDSIZE = 01, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 512

DMAx_X_MODIFY = 2 for 16-bit data
DMAx_Y_COUNT = 2 for two sub-buffers
DMAx_Y_MODIFY = 2, same as DMAx_X_MODIFY for contiguous
sub-buffers

• 2D, polled—if interrupt overhead is unacceptable but the loose
synchronization of address/count register polling is acceptable, a
2D multibuffer synchronization scheme may be used. For example,
assume receive data needs to be processed in packets of sixteen
32-bit elements. A four-part 2D DMA buffer can be allocated
where each of the four sub-buffers can hold one packet with these
settings:

• DMAx_START_ADDR = buffer base address
DMAx_CONFIG = 0x101B (FLOW = 1, DI_EN = 0, DMA2D = 1,
WDSIZE = 10, WNR = 1, DMAEN = 1)
DMAx_X_COUNT = 16

DMAx_X_MODIFY = 4 for 32-bit data
DMAx_Y_COUNT = 4 for four sub-buffers
DMAx_Y_MODIFY = 4, same as DMAx_X_MODIFY for contiguous
sub-buffers

• The synchronization core might read DMAx_Y_COUNT to determine
which sub-buffer is currently being transferred, and then allow one
full sub-buffer to account for pipelining. For example, if a read of
DMAx_Y_COUNT shows a value of 3, then the software should assume

Programming Model

5-60 ADSP-BF537 Blackfin Processor Hardware Reference

that sub-buffer 3 is being transferred, but some portion of sub-buf-
fer 2 may not yet be received. The software could, however, safely
proceed with processing sub-buffers 1 or 0.

• 1D unsynchronized FIFO—if a system’s design guarantees that
the processing of a peripheral’s data and the DMA rate of the data
will remain correlated in the steady state, but that short-term
latency variations must be tolerated, it may be appropriate to build
a simple FIFO. Here, the DMA channel may be programmed using
1D Autobuffer mode addressing without any interrupts or polling.

Descriptor Structures

DMA descriptors may be used to transfer data to or from memory data
structures that are not simple 1D or 2D arrays. For example, if a packet
of data is to be transmitted from several different locations in memory (a
header from one location, a payload from a list of several blocks of mem-
ory managed by a memory pool allocator, and a small trailer containing a
checksum), a separate DMA descriptor can be prepared for each memory
area, and the descriptors can be grouped in either an array or list as desired
by selecting the appropriate FLOW setting in DMAx_CONFIG.

The software can synchronize with the progress of the structure’s transfer
by selecting interrupt notification for one or more of the descriptors. For
example, the software might select interrupt notification for the header’s
descriptor and for the trailer’s descriptor, but not for the payload blocks’
descriptors.

ADSP-BF537 Blackfin Processor Hardware Reference 5-61

Direct Memory Access

It is important to remember the meaning of the various fields in the
DMAx_CONFIG descriptor elements when building a list or array of DMA
descriptors. In particular:

• The lower byte of DMAx_CONFIG specifies the DMA transfer to be
performed by the current descriptor (for example, interrupt-enable,
2D mode)

• The upper byte of DMAx_CONFIG specifies the format of the next
descriptor in the chain. The NDSIZE and FLOW fields in a given
descriptor do not correspond to the format of the descriptor itself;
they specify the link to the next descriptor, if any.

On the other hand, when the DMA unit is being restarted, both bytes of
the DMAx_CONFIG value written to the DMA channel’s DMAx_CONFIG register
should correspond to the current descriptor. At a minimum, the FLOW,
NDSIZE, WNR, and DMAEN fields must all agree with the current descriptor;
the WDSIZE, DI_EN, DI_SEL, SYNC, and DMA2D fields will be taken from the
DMAx_CONFIG value in the descriptor read from memory (and the field
values initially written to the register are ignored). See “Initializing
Descriptors in Memory” on page 5-112 in the “Programming Examples”
section for information on how descriptors can be set up.

Descriptor Queue Management

A system designer might want to write a DMA manager facility which
accepts DMA requests from other software. The DMA manager software
does not know in advance when new work requests will be received or
what these requests might contain. The software could manage these
transfers using a circular linked list of DMA descriptors, where each
descriptor’s NDPH and NDPL members point to the next descriptor, and the
last descriptor points to the first.

The code that writes into this descriptor list could use the processor’s cir-
cular addressing modes (I, L, M, and B registers), so that it does not need to
use comparison and conditional instructions to manage the circular

Programming Model

5-62 ADSP-BF537 Blackfin Processor Hardware Reference

structure. In this case, the NDPH and NDPL members of each descriptor
could even be written once at startup, and skipped over as each descrip-
tor’s new contents are written.

The recommended method for synchronization of a descriptor queue is
through the use of an interrupt. The descriptor queue is structured so that
at least the final valid descriptor is always programmed to generate an
interrupt.

There are two general methods for managing a descriptor queue using
interrupts:

• Interrupt on every descriptor

• Interrupt minimally - only on the last descriptor

Descriptor Queue Using Interrupts on Every Descriptor

In this system, the DMA manager software synchronizes with the DMA
unit by enabling an interrupt on every descriptor. This method should
only be used if system design can guarantee that each interrupt event will
be serviced separately (no interrupt overrun).

To maintain synchronization of the descriptor queue, the non-interrupt
software maintains a count of descriptors added to the queue, while the
interrupt handler maintains a count of completed descriptors removed
from the queue. The counts are equal only when the DMA channel is
paused after having processed all the descriptors.

When each new work request is received, the DMA manager software ini-
tializes a new descriptor, taking care to write a DMAx_CONFIG value with a
FLOW value of 0. Next, the software compares the descriptor counts to
determine if the DMA channel is running or not. If the DMA channel is
paused (counts equal), the software increments its count and then starts
the DMA unit by writing the new descriptor’s DMAx_CONFIG value to the
DMA channel’s DMAx_CONFIG register.

ADSP-BF537 Blackfin Processor Hardware Reference 5-63

Direct Memory Access

If the counts are unequal, the software instead modifies the next-to-last
descriptor’s DMAx_CONFIG value so that its upper half (FLOW and NDSIZE)
now describes the newly queued descriptor. This operation does not dis-
rupt the DMA channel, provided the rest of the descriptor data structure
is initialized in advance. It is necessary, however, to synchronize the soft-
ware to the DMA to correctly determine whether the new or the old
DMAx_CONFIG value was read by the DMA channel.

This synchronization operation should be performed in the interrupt
handler. First, upon interrupt, the handler should read the channel’s
DMAx_IRQ_STATUS register. If the DMA_RUN status bit is set, then the channel
has moved on to processing another descriptor, and the interrupt handler
may increment its count and exit. If the DMA_RUN status bit is not set, how-
ever, then the channel has paused, either because there are no more
descriptors to process, or because the last descriptor was queued too late
(that is, the modification of the next-to-last descriptor’s DMAx_CONFIG ele-
ment occurred after that element was read into the DMA unit.) In this
case, the interrupt handler should write the DMAx_CONFIG value appropriate
for the last descriptor to the DMA channel’s DMAx_CONFIG register, incre-
ment the completed descriptor count, and exit.

Again, this system can fail if the system’s interrupt latencies are large
enough to cause any of the channel’s DMA interrupts to be dropped. An
interrupt handler capable of safely synchronizing multiple descriptors’
interrupts would need to be complex, performing several MMR accesses to
ensure robust operation. In such a system environment, a minimal inter-
rupt synchronization method is preferred.

Descriptor Queue Using Minimal Interrupts

In this system, only one DMA interrupt event is possible in the queue at
any time. The DMA interrupt handler for this system can also be
extremely short. Here, the descriptor queue is organized into an “active”
and a “waiting” portion, where interrupts are enabled only on the last
descriptor in each portion.

Programming Model

5-64 ADSP-BF537 Blackfin Processor Hardware Reference

When each new DMA request is processed, the software’s non-interrupt
code fills in a new descriptor’s contents and adds it to the waiting portion
of the queue. The descriptor’s DMAx_CONFIG word should have a FLOW value
of zero. If more than one request is received before the DMA queue com-
pletion interrupt occurs, the non-interrupt code should queue later
descriptors, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA unit. In
other words, all but the last active descriptors contain FLOW values >= 4
and have no interrupt enable set, while the last active descriptor contains a
FLOW of 0 and an interrupt enable bit DI_EN set to 1. Also, all but the last
waiting descriptors contain FLOW values >= 4 and no interrupt enables set,
while the last waiting descriptor contains a FLOW of 0 and an interrupt
enable bit set to 1. This ensures that the DMA unit can automatically
process the whole active queue and then issue one interrupt. Also, this
arrangement makes it easy to start the waiting queue within the interrupt
handler by a single DMAx_CONFIG register write.

After queuing a new waiting descriptor, the non-interrupt software should
leave a message for its interrupt handler in a memory mailbox location
containing the desired DMAx_CONFIG value to use to start the first waiting
descriptor in the waiting queue (or 0 to indicate no descriptors are
waiting.)

It is critical that the software not modify the contents of the active
descriptor queue directly, once its processing by the DMA unit has been
started, unless careful synchronization measures are taken. In the most
straightforward implementation of a descriptor queue, the DMA manager
software would never modify descriptors on the active queue; instead, the
DMA manager waits until the DMA queue completion interrupt indicates
the processing of the entire active queue is complete.

When a DMA queue completion interrupt is received, the interrupt han-
dler reads the mailbox from the non-interrupt software and writes the
value in it to the DMA channel’s DMAx_CONFIG register. This single register
write restarts the queue, effectively transforming the waiting queue to an

ADSP-BF537 Blackfin Processor Hardware Reference 5-65

Direct Memory Access

active queue. The interrupt handler should then pass a message back to
the non-interrupt software indicating the location of the last descriptor
accepted into the active queue. If, on the other hand, the interrupt han-
dler reads its mailbox and finds a DMAx_CONFIG value of zero, indicating
there is no more work to perform, then it should pass an appropriate mes-
sage (for example, zero) back to the non-interrupt software indicating that
the queue has stopped. This simple handler should be able to be coded in
a very small number of instructions.

The non-interrupt software which accepts new DMA work requests needs
to synchronize the activation of new work with the interrupt handler. If
the queue has stopped (that is, if the mailbox from the interrupt software
is zero), the non-interrupt software is responsible for starting the queue
(writing the first descriptor’s DMAx_CONFIG value to the channel’s
DMAx_CONFIG register). If the queue is not stopped, however, the non-inter-
rupt software must not write the DMAx_CONFIG register (which would cause
a DMA error), but instead it should queue the descriptor onto the waiting
queue and update its mailbox directed to the interrupt handler.

Software Triggered Descriptor Fetches

If a DMA has been stopped in FLOW = 0 mode, the DMA_RUN bit in the
DMAx_IRQ_STATUS register remains set until the content of the internal
DMA FIFOs has been completely processed. Once the DMA_RUN bit clears,
it is safe to restart the DMA by simply writing again to the DMAx_CONFIG
register. The DMA sequence is repeated with the previous settings.

Similarly, a descriptor-based DMA sequence that has been stopped tem-
porarily with a FLOW = 0 descriptor can be continued with a new write to
the configuration register. When the DMA controller detects the FLOW = 0
condition by loading the DMACFG field from memory, it has already
updated the next descriptor pointer, regardless of whether operating in
descriptor array mode or descriptor list mode.

Programming Model

5-66 ADSP-BF537 Blackfin Processor Hardware Reference

The next descriptor pointer remains valid, if the DMA halts and is
restarted. As soon as the DMA_RUN bit clears, software can restart the DMA
and force the DMA controller to fetch the next descriptor. To accomplish
this, the software writes a value with the DMAEN bit set and with proper val-
ues in the FLOW and NDSIZE fields into the configuration register. The next
descriptor is fetched if FLOW equals 0x4, 0x6, or 0x7. In this mode of opera-
tion, the NDSIZE field should at least span up to the DMACFG field to
overwrite the configuration register immediately.

One possible procedure is:

1. Write to DMAx_NEXT_DESC_PTR.

2. Write to DMAx_CONFIG with

• FLOW = 0x8
 NDSIZE >= 0xA
 DI_EN = 0
 DMAEN = 1.

3. Automatically fetched DMACFG has

• FLOW = 0x0
 NDSIZE = 0x0
 SYNC = 1 (for transmitting DMAs only)
 DI_EN = 1
 DMAEN = 1.

4. In the interrupt routine, repeat step 2. The DMAx_NEXT_DESC_PTR is
updated by the descriptor fetch.

 To avoid polling of the DMA_RUN bit, set the SYNC bit in case of
memory read DMAs (DMA transmit or MDMA source).

ADSP-BF537 Blackfin Processor Hardware Reference 5-67

Direct Memory Access

If all DMACFG fields in a descriptor chain have the FLOW and NDSIZE fields set
to zero, the individual DMA sequences do not start until triggered by soft-
ware. This is useful when the DMAs need to be synchronized with other
events in the system, and it is typically performed by interrupt service rou-
tines. A single MMR write is required to trigger the next DMA sequence.

Especially when applied to MDMA channels, such scenarios play an
important role. Usually, the timing of MDMAs cannot be controlled (See
“Handshaked Memory DMA Operation” on page 5-39). By halting
descriptor chains or rings this way, the whole DMA transaction can be
broken into pieces that are individually triggered by software.

 Source and destination channels of a MDMA may differ in descrip-
tor structure. However, the total work count must match when the
DMA stops. Whenever a MDMA is stopped, destination and
source channels should both provide the same FLOW = 0 mode after
exactly the same number of words. Accordingly, both channels
need to be started afterward.

Software triggered descriptor fetches are illustrated in Listing 5-7 on
page 5-115. MDMA channels can be paused by software at any time by
writing a 0 to the DRQ bit field in the HMDMAx_CONTROL register. This simply
disables the self-generated DMA requests, regardless whether HMDMA is
enabled or not.

DMA Registers
DMA registers fall into three categories:

• DMA channel registers (starting on page 5-68)

• Handshaked MDMA registers (starting on page 5-99)

• Global DMA traffic control registers (starting on page 5-106)

DMA Registers

5-68 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Channel Registers
The processor features twelve peripheral DMA channels and two channel
pairs for memory DMA. All channels have an identical set of registers
summarized in Table 5-6.

Table 5-6 lists the generic names of the DMA registers. For each register,
the table also shows the MMR offset, a brief description of the register,
the register category.

Table 5-6. Generic Names of the DMA Memory-Mapped
Registers

MMR
Offset

Generic MMR Name MMR Description Register
Category

Name of
Corresponding
Descriptor
Element in
Memory

0x00 NEXT_DESC_PTR Link pointer to next descrip-
tor

Parameter NDPH (upper
16 bits), NDPL
(lower 16 bits)

0x04 START_ADDR Start address of current buffer Parameter SAH (upper 16
bits),
SAL (lower 16
bits)

0x08 CONFIG DMA Configuration register,
including enable bit

Parameter DMACFG

0x0C Reserved Reserved

0x10 X_COUNT Inner loop count Parameter XCNT

0x14 X_MODIFY Inner loop address increment,
in bytes

Parameter XMOD

0x18 Y_COUNT Outer loop count (2D only) Parameter YCNT

0x1C Y_MODIFY Outer loop address incre-
ment, in bytes

Parameter YMOD

0x20 CURR_DESC_PTR Current Descriptor Pointer Current N/A

0x24 CURR_ADDR Current DMA Address Current N/A

ADSP-BF537 Blackfin Processor Hardware Reference 5-69

Direct Memory Access

Channel-specific register names are composed of a prefix and the generic
MMR name shown in Table 5-6. For peripheral DMA channels, the pre-
fix “DMAx_” is used where “x” stands for a channel number between 0
and 11. For memory DMA channels, the prefix is “MDMA_yy_”, where
“yy” stands for either “D0”, “S0”, “D1”, or “S1” to indicate destination
and source channel registers of MDMA0 and MDMA1. For example, the
configuration register of peripheral DMA channel 6 is called DMA6_CONFIG.
The one for MDMA1 source channel is called MDMA_S1_CONFIG.

0x28 IRQ_STATUS Interrupt Status register:
Contains Completion and
DMA Error Interrupt status
and channel state
(Run/Fetch/Paused)

Control/
Status

N/A

0x2C PERIPHERAL_MAP Peripheral to DMA Channel
Mapping:
Contains a 4-bit value speci-
fying the peripheral to associ-
ate with this DMA channel
(Read-only for MDMA chan-
nels)

Control/
Status

N/A

0x30 CURR_X_COUNT Current count (1D) or
intra-row X count (2D);
counts down from X_COUNT

Current N/A

0x34 Reserved Reserved

0x38 CURR_Y_COUNT Current row count (2D only);
counts down from Y_COUNT

Current N/A

0x3C Reserved Reserved

Table 5-6. Generic Names of the DMA Memory-Mapped
Registers (Cont’d)

MMR
Offset

Generic MMR Name MMR Description Register
Category

Name of
Corresponding
Descriptor
Element in
Memory

DMA Registers

5-70 ADSP-BF537 Blackfin Processor Hardware Reference

 The generic MMR names shown in Table 5-6 are not actually
mapped to resources in the processor.

For convenience, discussions in this chapter use generic
(non-peripheral specific) DMA and memory DMA register names.

DMA channel registers fall into three categories:

• Parameter registers, such as DMAx_CONFIG and DMAx_X_COUNT that
can be loaded directly from descriptor elements; descriptor ele-
ments are listed in Table 5-6.

• Current registers, such as DMAx_CURR_ADDR and DMAx_CURR_X_COUNT

• Control/status registers, such as DMAx_IRQ_STATUS and
DMAx_PERIPHERAL_MAP

All DMA registers can be accessed as 16-bit entities. However, the follow-
ing registers may also be accessed as 32-bit registers:

• DMAx_NEXT_DESC_PTR

• DMAx_START_ADDR

• DMAx_CURR_DESC_PTR

• DMAx_CURR_ADDR

 When these four registers are accessed as 16-bit entities, only the
lower 16 bits can be accessed.

Because confusion might arise between descriptor element names and
generic DMA register names, this chapter uses different naming conven-
tions for physical registers and their corresponding elements in descriptors
that reside in memory. Table 5-6 shows the relation.

ADSP-BF537 Blackfin Processor Hardware Reference 5-71

Direct Memory Access

DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP
Registers

Each DMA channel’s peripheral map register
(DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP, shown in Figure 5-6)
contains bits that:

• Map the channel to a specific peripheral.

• Identify whether the channel is a peripheral DMA channel or a
memory DMA channel.

Figure 5-6. Peripheral Map Registers

X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

0x0 - PPI
0x1 - Ethernet MAC Receive, reserved on ADSP-BF534
0x2 - Ethernet MAC Transmit, reserved on ADSP-BF534
0x3 - SPORT0 Receive
0x4 - SPORT0 Transmit
0x5 - SPORT1 Receive
0x6 - SPORT1 Transmit
0x7 - SPI
0x8 - UART0 Receive
0x9 - UART0 Transmit
0xA - UART1 Receive
0xB - UART1 Transmit

Peripheral Map Registers (DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP)

PMAP[3:0] (Peripheral
Mapped to This
Channel)

CTYPE (DMA Channel Type)
- RO
0 - Peripheral DMA
1 - Memory DMA

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 5-7.

Reset: See Table 5-8.

DMA Registers

5-72 ADSP-BF537 Blackfin Processor Hardware Reference

Follow these steps to swap the DMA channel priorities of two channels.
Assume that channels 6 and 7 are involved.

1. Make sure DMA is disabled on channels 6 and 7.

2. Write DMA6_PERIPHERAL_MAP with 0x7000 and
DMA7_PERIPHERAL_MAP with 0x6000.

3. Enable DMA on channels 6 and/or 7.

Table 5-7. Peripheral Map Register Memory-Mapped Addresses

Register Name Memory-mapped Address

DMA0_PERIPHERAL_MAP 0xFFC0 0C2C

DMA1_PERIPHERAL_MAP 0xFFC0 0C6C

DMA2_PERIPHERAL_MAP 0xFFC0 0CAC

DMA3_PERIPHERAL_MAP 0xFFC0 0CEC

DMA4_PERIPHERAL_MAP 0xFFC0 0D2C

DMA5_PERIPHERAL_MAP 0xFFC0 0D6C

DMA6_PERIPHERAL_MAP 0xFFC0 0DAC

DMA7_PERIPHERAL_MAP 0xFFC0 0DEC

DMA8_PERIPHERAL_MAP 0xFFC0 0E2C

DMA9_PERIPHERAL_MAP 0xFFC0 0E6C

DMA10_PERIPHERAL_MAP 0xFFC0 0EAC

DMA11_PERIPHERAL_MAP 0xFFC0 0EEC

MDMA_D0_PERIPHERAL_MAP 0xFFC0 0F2C

MDMA_S0_PERIPHERAL_MAP 0xFFC0 0F6C

MDMA_D1_PERIPHERAL_MAP 0xFFC0 0FAC

MDMA_S1_PERIPHERAL_MAP 0xFFC0 0FEC

ADSP-BF537 Blackfin Processor Hardware Reference 5-73

Direct Memory Access

Table 5-8 lists the binary peripheral map settings for each DMA-capable
peripheral.

Table 5-8. Peripheral Mapping

DMA
Channel

Default Peripheral
Mapping

Default PERIPHERAL_MAP
Setting (Binary)

Comments

DMA0 (high-
est
priority)

PPI receive/transmit b#0000 0000 0000 0000

DMA1 Ethernet receive b#0001 0000 0000 0000 Invalid PMAP
default setting on
ADSP-BF534

DMA2 Ethernet transmit b#0010 0000 0000 0000 Invalid PMAP
default setting on
ADSP-BF534

DMA3 SPORT0 receive b#0011 0000 0000 0000

DMA4 SPORT0 transmit b#0100 0000 0000 0000

DMA5 SPORT1 receive b#0101 0000 0000 0000

DMA6 SPORT1 transmit b#0110 0000 0000 0000

DMA7 SPI receive/transmit b#0111 0000 0000 0000

DMA8 UART0 receive b#1000 0000 0000 0000

DMA9 UART0 transmit b#1001 0000 0000 0000

DMA10 UART1 receive b#1010 0000 0000 0000

DMA11 UART1 transmit b#1011 0000 0000 0000

MDMA_D0 MDMA0 destination b#0000 0000 0100 0000 Not reassignable

MDMA_S0 MDMA0 source b#0000 0000 0100 0000 Not reassignable

MDMA_D1 MDMA1 destination b#0000 0000 0100 0000 Not reassignable

MDMA_S1
(lowest
priority)

MDMA1 source b#0000 0000 0100 0000 Not reassignable

DMA Registers

5-74 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_CONFIG/MDMA_yy_CONFIG Registers

The DMA configuration register (DMAx_CONFIG/MDMA_yy_CONFIG), shown
in Figure 5-7, is used to set up DMA parameters and operating modes.

Note that writing the DMAx_CONFIG register while DMA is already running
will cause a DMA error unless writing with the DMAEN bit set to 0.

Figure 5-7. Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

DI_EN (Data Interrupt Enable)
0 - Do not allow completion of

work unit to generate an
interrupt

1 - Allow completion of work unit
to generate a data interrupt

0x0 - Stop
0x1 - Autobuffer mode
0x4 - Descriptor array
0x6 - Descriptor list (small model)
0x7 - Descriptor list (large model)

Configuration Registers (DMAx_CONFIG/MDMA_yy_CONFIG)

NDSIZE[3:0] (Flex Descriptor Size)
Size of next descriptor
0000 - Required if in Stop or Autobuffer mode
0001 - 1001 - Descriptor size
1010 - 1111 - Reserved

FLOW[2:0] (Next
Operation)

DMAEN (DMA
Channel Enable)
0 - Disable DMA channel
1 - Enable DMA channel
WNR (DMA Direction)
0 - DMA is a memory read

(source) operation
1 - DMA is a memory write

(destination) operation

WDSIZE[1:0] (Transfer
Word Size)
00 - 8-bit transfers
01 - 16-bit transfers
10 - 32-bit transfers
11 - Reserved
DMA2D (DMA Mode)
0 - Linear (One-dimensional)
1 - Two-dimensional (2D)

Reset = 0x0000

DI_SEL (Data Interrupt Timing Select)
Applies only when DMA2D = 1
0 - Interrupt after completing

whole buffer (outer loop)
1 - Interrupt after completing

each row (inner loop)

R/W prior to enabling channel; RO after enabling channel

SYNC (Work Unit
Transitions)

0 - Continuous transition
1 - Synchronized transition

For memory-
mapped
addresses,
see Table 5-9.

ADSP-BF537 Blackfin Processor Hardware Reference 5-75

Direct Memory Access

The fields of the DMAx_CONFIG register are used to set up DMA parameters
and operating modes.

• FLOW[2:0] (next operation). This field specifies the type of DMA
transfer to follow the present one. The flow options are:

• 0x0 - stop. When the current work unit completes, the DMA chan-
nel stops automatically, after signaling an interrupt (if selected).
The DMA_RUN status bit in the DMAx_IRQ_STATUS register changes
from 1 to 0, while the DMAEN bit in the DMAx_CONFIG register is
unchanged. In this state, the channel is paused. Peripheral
interrupts are still filtered out by the DMA unit. The channel may

Table 5-9. Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CONFIG 0xFFC0 0C08

DMA1_CONFIG 0xFFC0 0C48

DMA2_CONFIG 0xFFC0 0C88

DMA3_CONFIG 0xFFC0 0CC8

DMA4_CONFIG 0xFFC0 0D08

DMA5_CONFIG 0xFFC0 0D48

DMA6_CONFIG 0xFFC0 0D88

DMA7_CONFIG 0xFFC0 0DC8

DMA8_CONFIG 0xFFC0 0E08

DMA9_CONFIG 0xFFC0 0E48

DMA10_CONFIG 0xFFC0 0E88

DMA11_CONFIG 0xFFC0 0EC8

MDMA_D0_CONFIG 0xFFC0 0F08

MDMA_S0_CONFIG 0xFFC0 0F48

MDMA_D1_CONFIG 0xFFC0 0F88

MDMA_S1_CONFIG 0xFFC0 0FC8

DMA Registers

5-76 ADSP-BF537 Blackfin Processor Hardware Reference

be restarted simply by another write to the DMAx_CONFIG register
specifying the next work unit, in which the DMAEN bit is set to 1.

0x1 - autobuffer mode. In this mode, no descriptors in memory are
used. Instead, DMA is performed in a continuous circular buffer
fashion based on user-programmed DMAx MMR settings. Upon
completion of the work unit, the parameter registers are reloaded
into the current registers, and DMA resumes immediately with
zero overhead. Autobuffer mode is stopped by a user write of 0 to
the DMAEN bit in the DMAx_CONFIG register.

0x4 - descriptor array mode. This mode fetches a descriptor from
memory that does not include the NDPH or NDPL elements. Because
the descriptor does not contain a next descriptor pointer entry, the
DMA engine defaults to using the DMAx_CURR_DESC_PTR register to
step through descriptors, thus allowing a group of descriptors to
follow one another in memory like an array.

0x6 - descriptor list (small model) mode. This mode fetches a
descriptor from memory that includes NDPL, but not NDPH. There-
fore, the high 16 bits of the next descriptor pointer field are taken
from the upper 16 bits of the DMAx_NEXT_DESC_PTR register, thus
confining all descriptors to a specific 64K page in memory.

0x7 - descriptor list (large model) mode. This mode fetches a
descriptor from memory that includes NDPH and NDPL, thus allowing
maximum flexibility in locating descriptors in memory.

• NDSIZE[3:0] (flex descriptor size). This field specifies the number
of descriptor elements in memory to load. This field must be 0 if in
stop or autobuffer mode. If NDSIZE and FLOW specify a descriptor
that extends beyond YMOD, a DMA error results.

• DI_EN (data interrupt enable). This bit specifies whether to allow
completion of a work unit to generate a data interrupt.

ADSP-BF537 Blackfin Processor Hardware Reference 5-77

Direct Memory Access

• DI_SEL (data interrupt timing select). This bit specifies the timing
of a data interrupt—after completing the whole buffer or after
completing each row of the inner loop. This bit is used only in 2D
DMA operation.

• SYNC (work unit transitions). This bit specifies whether the DMA
channel performs a continuous transition (SYNC = 0) or a synchro-
nized transition (SYNC = 1) between work units. For more
information, see “Work Unit Transitions” on page 5-27.

In DMA transmit (memory read) and MDMA source channels, the
SYNC bit controls the interrupt timing at the end of the work unit
and the handling of the DMA FIFO between the current and next
work unit.

 Work unit transitions for MDMA streams are controlled by the
SYNC bit of the MDMA source channel’s DMAx_CONFIG register. The
SYNC bit of the MDMA destination channel is reserved and must be
0.

• DMA2D (DMA mode). This bit specifies whether DMA mode
involves only DMAx_X_COUNT and DMAx_X_MODIFY (one-dimen-
sional DMA) or also involves DMAx_Y_COUNT and
DMAx_Y_MODIFY (two-dimensional DMA).

• WDSIZE[1:0] (transfer word size). The DMA engine supports trans-
fers of 8-, 16-, or 32-bit items. Each request/grant results in a
single memory access (although two cycles are required to transfer
32-bit data through a 16-bit memory port or through the 16-bit
DMA access bus). The DMA address pointer registers’ increment
sizes (strides) must be a multiple of the transfer unit size—1 for
8-bit, 2 for 16-bit, 4 for 32-bit.

DMA Registers

5-78 ADSP-BF537 Blackfin Processor Hardware Reference

• WNR (DMA direction). This bit specifies DMA direction—memory
read (0) or memory write (1).

• DMAEN (DMA channel enable). This bit specifies whether to enable
a given DMA channel.

 When a peripheral DMA channel is enabled, interrupts from the
peripheral denote DMA requests. When a channel is disabled, the
DMA unit ignores the peripheral interrupt and passes it directly to
the interrupt controller. To avoid unexpected results, take care to
enable the DMA channel before enabling the peripheral, and to
disable the peripheral before disabling the DMA channel.

DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Registers

The interrupt status register (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS),
shown in Figure 5-8, contains bits that record whether the DMA channel:

• Is enabled and operating, enabled but stopped, or disabled.

• Is fetching data or a DMA descriptor.

• Has detected that a global DMA interrupt or a channel interrupt is
being asserted.

• Has logged occurrence of a DMA error.

Note the DMA_DONE interrupt is asserted when the last memory access (read
or write) has completed.

 For a memory transfer to a peripheral, there may be up to four data
words in the channel’s DMA FIFO when the interrupt occurs. At
this point, it is normal to immediately start the next work unit. If,
however, the application needs to know when the final data item is
actually transferred to the peripheral, the application can test or
poll the DMA_RUN bit. As long as there is undelivered transmit data
in the FIFO, the DMA_RUN bit is 1.

ADSP-BF537 Blackfin Processor Hardware Reference 5-79

Direct Memory Access

 For a memory write DMA channel, the state of the DMA_RUN bit has
no meaning after the last DMA_DONE event has been signaled. It does
not indicate the status of the DMA FIFO.

For MDMA transfers where it is not desired to use an interrupt to
notify when the DMA operation has ended, software should poll
the DMA_DONE bit, and not the DMA_RUN bit, to determine when the
transaction has completed.

Figure 5-8. Interrupt Status Registers

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
0 - This DMA channel is disabled, or it

is enabled but paused (FLOW
mode 0)

1 - This DMA channel is enabled and
operating, either transferring data
or fetching a DMA descriptor

Interrupt Status Registers (DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS)

DFETCH (DMA Descriptor
 Fetch) - RO

DMA_RUN (DMA Channel
Running) - RO

DMA_DONE (DMA Comple-
tion Interrupt Status) - W1C
0 - No interrupt is being

asserted for this channel
1 - DMA work unit has

completed, and this DMA
channel’s interrupt is being
asserted

DMA_ERR (DMA Error Inter-
rupt Status) - W1C
0 - No DMA error has

occurred
1 - A DMA error has occurred,

and the global DMA Error
interrupt is being asserted.
After this error occurs,
the contents of the DMA
Current registers are
unspecified. Control/
Status and Parameter
registers are unchanged.

Reset = 0x0000

This bit is set to 1 automatically when
the DMAx_CONFIG register is written
with FLOW modes 4–7
0 - This DMA channel is disabled, or it

is enabled but stopped (FLOW
mode 0)

1 - This DMA channel is enabled and
presently fetching a DMA descriptor

For memory-
mapped
addresses, see
Table 5-10.

DMA Registers

5-80 ADSP-BF537 Blackfin Processor Hardware Reference

The processor supports a flexible interrupt control structure with three
interrupt sources:

• Data driven interrupts (see Table 5-11)

• Peripheral error interrupts

• DMA error interrupts (for example, bad descriptor or bus error)

Separate interrupt request (IRQ) levels are allocated for data and periph-
eral error interrupts, and DMA error interrupts.

Table 5-10. Interrupt Status Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_IRQ_STATUS 0xFFC0 0C28

DMA1_IRQ_STATUS 0xFFC0 0C68

DMA2_IRQ_STATUS 0xFFC0 0CA8

DMA3_IRQ_STATUS 0xFFC0 0CE8

DMA4_IRQ_STATUS 0xFFC0 0D28

DMA5_IRQ_STATUS 0xFFC0 0D68

DMA6_IRQ_STATUS 0xFFC0 0DA8

DMA7_IRQ_STATUS 0xFFC0 0DE8

DMA8_IRQ_STATUS 0xFFC0 0E28

DMA9_IRQ_STATUS 0xFFC0 0E68

DMA10_IRQ_STATUS 0xFFC0 0EA8

DMA11_IRQ_STATUS 0xFFC0 0EE8

MDMA_D0_IRQ_STATUS 0xFFC0 0F28

MDMA_S0_IRQ_STATUS 0xFFC0 0F68

MDMA_D1_IRQ_STATUS 0xFFC0 0FA8

MDMA_S1_IRQ_STATUS 0xFFC0 0FE8

ADSP-BF537 Blackfin Processor Hardware Reference 5-81

Direct Memory Access

The DMA error conditions for all DMA channels are OR’ed together into
one system-level DMA error interrupt. The individual IRQ_STATUS words
of each channel can be read to identify the channel that caused the DMA
error interrupt.

 Note the DMA_DONE and DMA_ERR interrupt indicators are
write-one-to-clear (W1C).

 When switching a peripheral from DMA to non-DMA mode, the
peripheral’s interrupts should be disabled during the mode switch
(via the appropriate peripheral registers or SIC_IMASK) so that no
unintended interrupt is generated on the shared DMA/interrupt
request line.

Table 5-11. Data Driven Interrupts

Interrupt Name Description

No Interrupt Interrupts can be disabled for a given work unit.

Peripheral Interrupt These are peripheral (non-DMA) interrupts.

Row Completion DMA Interrupts can occur on the completion of a row
(CURR_X_COUNT expiration).

Buffer Completion DMA Interrupts can occur on the completion of an entire buf-
fer (when CURR_X_COUNT and CURR_Y_COUNT expire).

DMA Registers

5-82 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_START_ADDR/MDMA_yy_START_ADDR Registers

The start address register (DMAx_START_ADDR/MDMA_yy_START_ADDR), shown
in Figure 5-9, contains the start address of the data buffer currently tar-
geted for DMA.

Figure 5-9. Start Address Registers

Table 5-12. Start Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_START_ADDR 0xFFC0 0C04

DMA1_START_ADDR 0xFFC0 0C44

DMA2_START_ADDR 0xFFC0 0C84

DMA3_START_ADDR 0xFFC0 0CC4

DMA4_START_ADDR 0xFFC0 0D04

DMA5_START_ADDR 0xFFC0 0D44

DMA6_START_ADDR 0xFFC0 0D84

DMA7_START_ADDR 0xFFC0 0DC4

DMA8_START_ADDR 0xFFC0 0E04

DMA9_START_ADDR 0xFFC0 0E44

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

DMA Start
Address[31:16]

X X X X X X X X X X X X X X X

Start Address Registers (DMAx_START_ADDR/ MDMA_yy_START_ADDR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

DMA Start
Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

R/W prior to enabling channel; RO after enabling channel

For memory-
mapped
addresses, see
Table 5-12.

ADSP-BF537 Blackfin Processor Hardware Reference 5-83

Direct Memory Access

DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR Registers

The current address register (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR),
shown in Figure 5-10, contains the present DMA transfer address for a
given DMA session.

DMA10_START_ADDR 0xFFC0 0E84

DMA11_START_ADDR 0xFFC0 0EC4

MDMA_D0_START_ADDR 0xFFC0 0F04

MDMA_S0_START_ADDR 0xFFC0 0F44

MDMA_D1_START_ADDR 0xFFC0 0F84

MDMA_S1_START_ADDR 0xFFC0 0FC4

Figure 5-10. Current Address Registers

Table 5-12. Start Address Register Memory-Mapped Addresses (Cont’d)

Register Name Memory-Mapped Address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Address[31:16]

X X X X X X X X X X X X X X X

Current Address Registers (DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Current Address[15:0]

X X X X X X X X X X X X X X X

Reset = Undefined

Upper 16 bits of present
DMA transfer address for
a given DMA session

Lower 16 bits of present
DMA transfer address for
a given DMA session

For memory-
mapped
addresses, see
Table 5-13.

DMA Registers

5-84 ADSP-BF537 Blackfin Processor Hardware Reference

 On the first memory transfer of a DMA work unit, the DMAx_CURR_ADDR
register is loaded from the DMAx_START_ADDR register, and it is incremented
as each transfer occurs. The current address register contains 32 bits.

Table 5-13. Current Address Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

DMA0_CURR_ADDR 0xFFC0 0C24

DMA1_CURR_ADDR 0xFFC0 0C64

DMA2_CURR_ADDR 0xFFC0 0CA4

DMA3_CURR_ADDR 0xFFC0 0CE4

DMA4_CURR_ADDR 0xFFC0 0D24

DMA5_CURR_ADDR 0xFFC0 0D64

DMA6_CURR_ADDR 0xFFC0 0DA4

DMA7_CURR_ADDR 0xFFC0 0DE4

DMA8_CURR_ADDR 0xFFC0 0E24

DMA9_CURR_ADDR 0xFFC0 0E64

DMA10_CURR_ADDR 0xFFC0 0EA4

DMA11_CURR_ADDR 0xFFC0 0EE4

MDMA_D0_CURR_ADDR 0xFFC0 0F24

MDMA_S0_CURR_ADDR 0xFFC0 0F64

MDMA_D1_CURR_ADDR 0xFFC0 0FA4

MDMA_S1_CURR_ADDR 0xFFC0 0FE4

ADSP-BF537 Blackfin Processor Hardware Reference 5-85

Direct Memory Access

DMAx_X_COUNT/MDMA_yy_X_COUNT Registers

For 2D DMA, the inner loop count register
(DMAx_X_COUNT/MDMA_yy_X_COUNT), shown in Figure 5-11, contains the
inner loop count. For 1D DMA, it specifies the number of elements to
read in. For details, see “Two-Dimensional DMA Operation” on
page 5-14. A value of 0 in DMAx_X_COUNT corresponds to 65,536 elements.

Figure 5-11. Inner Loop Count Registers

Table 5-14. Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_COUNT 0xFFC0 0C10

DMA1_X_COUNT 0xFFC0 0C50

DMA2_X_COUNT 0xFFC0 0C90

DMA3_X_COUNT 0xFFC0 0CD0

DMA4_X_COUNT 0xFFC0 0D10

DMA5_X_COUNT 0xFFC0 0D50

DMA6_X_COUNT 0xFFC0 0D90

DMA7_X_COUNT 0xFFC0 0DD0

DMA8_X_COUNT 0xFFC0 0E10

DMA9_X_COUNT 0xFFC0 0E50

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_COUNT[15:0] (Inner
Loop Count)

X X X X X X X X X X X X X X X

Inner Loop Count Registers (DMAx_X_COUNT/MDMA_yy_X_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of elements to
read in (1D); the number of
rows in the inner loop (2D)

For memory-
mapped
addresses, see
Table 5-14.

DMA Registers

5-86 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT Registers

The current inner loop count register
(DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT), shown in Figure 5-12,
holds the number of transfers remaining in the current DMA row (inner
loop).

DMA10_X_COUNT 0xFFC0 0E90

DMA11_X_COUNT 0xFFC0 0ED0

MDMA_D0_X_COUNT 0xFFC0 0F10

MDMA_S0_X_COUNT 0xFFC0 0F50

MDMA_D1_X_COUNT 0xFFC0 0F90

MDMA_S1_X_COUNT 0xFFC0 0FD0

Figure 5-12. Current Inner Loop Count Registers

Table 5-14. Inner Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_X_COUNT[15:0]
(Current Inner Loop
Count)

X X X X X X X X X X X X X X X

Current Inner Loop Count Registers (DMAx_CURR_X_COUNT/

R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by X_COUNT
at the beginning of each
DMA session (1D DMA),
or at the beginning of
each row (2D DMA)

For memory-
mapped
addresses, see
Table 5-15.

ADSP-BF537 Blackfin Processor Hardware Reference 5-87

Direct Memory Access

On the first memory transfer of each DMA work unit, it is loaded with
the value in the DMAx_X_COUNT register and then decremented. For 2D
DMA, on the last memory transfer in each row except the last row, it is
reloaded with the value in the DMAx_X_COUNT register; this occurs at
the same time that the value in the DMAx_CURR_Y_COUNT register is decre-
mented. Otherwise it is decremented each time an element is transferred.
Expiration of the count in this register signifies that DMA is complete. In
2D DMA, the DMAx_CURR_X_COUNT register value is 0 only when the entire
transfer is complete. Between rows it is equal to the value of the
DMAx_X_COUNT register.

Table 5-15. Current Inner Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_X_COUNT 0xFFC0 0C30

DMA1_CURR_X_COUNT 0xFFC0 0C70

DMA2_CURR_X_COUNT 0xFFC0 0CB0

DMA3_CURR_X_COUNT 0xFFC0 0CF0

DMA4_CURR_X_COUNT 0xFFC0 0D30

DMA5_CURR_X_COUNT 0xFFC0 0D70

DMA6_CURR_X_COUNT 0xFFC0 0DB0

DMA7_CURR_X_COUNT 0xFFC0 0DF0

DMA8_CURR_X_COUNT 0xFFC0 0E30

DMA9_CURR_X_COUNT 0xFFC0 0E70

DMA10_CURR_X_COUNT 0xFFC0 0EB0

DMA11_CURR_X_COUNT 0xFFC0 0EF0

MDMA_D0_CURR_X_COUNT 0xFFC0 0F30

MDMA_S0_CURR_X_COUNT 0xFFC0 0F70

MDMA_D1_CURR_X_COUNT 0xFFC0 0FB0

MDMA_S1_CURR_X_COUNT 0xFFC0 0FF0

DMA Registers

5-88 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_X_MODIFY/MDMA_yy_X_MODIFY Registers

The inner loop address increment register
(DMAx_X_MODIFY/MDMA_yy_X_MODIFY), shown in Figure 5-13, contains a
signed, two’s-complement byte-address increment. In 1D DMA, this
increment is the stride that is applied after transferring each element.

 Note DMAx_X_MODIFY is specified in bytes, regardless of the DMA
transfer size.

In 2D DMA, this increment is applied after transferring each element in
the inner loop, up to but not including the last element in each inner
loop. After the last element in each inner loop, the DMAx_Y_MODIFY regis-
ter is applied instead, except on the very last transfer of each work unit.
The DMAx_X_MODIFY register is always applied on the last transfer of a
work unit.

The DMAx_X_MODIFY field may be set to 0. In this case, DMA is performed
repeatedly to or from the same address. This is useful, for example, in
transferring data between a data register and an external memory-mapped
peripheral.

Figure 5-13. Inner Loop Address Increment Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

X_MODIFY[15:0] (Inner
Loop Address Increment)

X X X X X X X X X X X X X X X

Inner Loop Address Increment Registers (DMAx_X_MODIFY/MDMA_yy_X_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride (in bytes) to take after
each decrement of
CURR_X_COUNT

For memory-
mapped
addresses, see
Table 5-16.

ADSP-BF537 Blackfin Processor Hardware Reference 5-89

Direct Memory Access

Table 5-16. Inner Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_X_MODIFY 0xFFC0 0C14

DMA1_X_MODIFY 0xFFC0 0C54

DMA2_X_MODIFY 0xFFC0 0C94

DMA3_X_MODIFY 0xFFC0 0CD4

DMA4_X_MODIFY 0xFFC0 0D14

DMA5_X_MODIFY 0xFFC0 0D54

DMA6_X_MODIFY 0xFFC0 0D94

DMA7_X_MODIFY 0xFFC0 0DD4

DMA8_X_MODIFY 0xFFC0 0E14

DMA9_X_MODIFY 0xFFC0 0E54

DMA10_X_MODIFY 0xFFC0 0E94

DMA11_X_MODIFY 0xFFC0 0ED4

MDMA_D0_X_MODIFY 0xFFC0 0F14

MDMA_S0_X_MODIFY 0xFFC0 0F54

MDMA_D1_X_MODIFY 0xFFC0 0F94

MDMA_S1_X_MODIFY 0xFFC0 0FD4

DMA Registers

5-90 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_Y_COUNT/MDMA_yy_Y_COUNT Registers

For 2D DMA, the outer loop count register
(DMAx_Y_COUNT/MDMA_yy_Y_COUNT), shown in Figure 5-14, contains the
outer loop count. It is not used in 1D DMA mode.

This register contains the number of rows in the outer loop of a 2D DMA
sequence. For details, see “Two-Dimensional DMA Operation” on
page 5-14.

Figure 5-14. Outer Loop Count Registers

Table 5-17. Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_COUNT 0xFFC0 0C18

DMA1_Y_COUNT 0xFFC0 0C58

DMA2_Y_COUNT 0xFFC0 0C98

DMA3_Y_COUNT 0xFFC0 0CD8

DMA4_Y_COUNT 0xFFC0 0D18

DMA5_Y_COUNT 0xFFC0 0D58

DMA6_Y_COUNT 0xFFC0 0D98

DMA7_Y_COUNT 0xFFC0 0DD8

DMA8_Y_COUNT 0xFFC0 0E18

DMA9_Y_COUNT 0xFFC0 0E58

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_COUNT[15:0]
(Outer Loop Count)

X X X X X X X X X X X X X X X

Outer Loop Count Registers (DMAx_Y_COUNT/MDMA_yy_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

The number of rows in
the outer loop of a 2D
DMA sequence

For memory-
mapped
addresses, see
Table 5-17.

ADSP-BF537 Blackfin Processor Hardware Reference 5-91

Direct Memory Access

DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT Registers

The current outer loop count register
(DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT), used only in 2D mode,
holds the number of full or partial rows (outer loops) remaining in the
current work unit. See Figure 5-15. On the first memory transfer of each
DMA work unit, it is loaded with the value of the DMAx_Y_COUNT regis-
ter. The register is decremented each time the DMAx_CURR_X_COUNT
register expires during 2D DMA operation (1 to DMAx_X_COUNT or 1 to 0
transition), signifying completion of an entire row transfer. After a 2D
DMA session is complete, DMAx_CURR_Y_COUNT = 1 and
DMAx_CURR_X_COUNT = 0.

DMA10_Y_COUNT 0xFFC0 0E98

DMA11_Y_COUNT 0xFFC0 0ED8

MDMA_D0_Y_COUNT 0xFFC0 0F18

MDMA_S0_Y_COUNT 0xFFC0 0F58

MDMA_D1_Y_COUNT 0xFFC0 0F98

MDMA_S1_Y_COUNT 0xFFC0 0FD8

Table 5-17. Outer Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

DMA Registers

5-92 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 5-15. Current Outer Loop Count Registers

Table 5-18. Current Outer Loop Count Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_Y_COUNT 0xFFC0 0C38

DMA1_CURR_Y_COUNT 0xFFC0 0C78

DMA2_CURR_Y_COUNT 0xFFC0 0CB8

DMA3_CURR_Y_COUNT 0xFFC0 0CF8

DMA4_CURR_Y_COUNT 0xFFC0 0D38

DMA5_CURR_Y_COUNT 0xFFC0 0D78

DMA6_CURR_Y_COUNT 0xFFC0 0DB8

DMA7_CURR_Y_COUNT 0xFFC0 0DF8

DMA8_CURR_Y_COUNT 0xFFC0 0E38

DMA9_CURR_Y_COUNT 0xFFC0 0E78

DMA10_CURR_Y_COUNT 0xFFC0 0EB8

DMA11_CURR_Y_COUNT 0xFFC0 0EF8

MDMA_D0_CURR_Y_COUNT 0xFFC0 0F38

MDMA_S0_CURR_Y_COUNT 0xFFC0 0F78

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

CURR_Y_COUNT[15:0]
(Current Outer Loop
Count)

X X X X X X X X X X X X X X X

Current Outer Loop Count Registers (DMAx_CURR_Y_COUNT/
MDMA_yy_CURR_Y_COUNT)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Loaded by Y_COUNT
at the beginning of each
2D DMA session; not
used for 1D DMA

For memory-
mapped
addresses, see
Table 5-18.

ADSP-BF537 Blackfin Processor Hardware Reference 5-93

Direct Memory Access

DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Registers

The outer loop address increment register
(DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY) contains a signed, two’s-complement
value. See Figure 5-16.

This byte-address increment is applied after each decrement of the
DMAx_CURR_Y_COUNT register except for the last item in the 2D array where
the DMAx_CURR_Y_COUNT also expires. The value is the offset between the
last word of one “row” and the first word of the next “row.” For details,
see “Two-Dimensional DMA Operation” on page 5-14.

 Note DMAx_Y_MODIFY is specified in bytes, regardless of the DMA
transfer size.

MDMA_D1_CURR_Y_COUNT 0xFFC0 0FB8

MDMA_S1_CURR_Y_COUNT 0xFFC0 0FF8

Figure 5-16. Outer Loop Address Increment Registers

Table 5-18. Current Outer Loop Count Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Y_MODIFY[15:0]
(Outer Loop Address
Increment)

X X X X X X X X X X X X X X X

Outer Loop Address Increment Registers (DMAx_Y_MODIFY/ MDMA_yy_Y_MODIFY)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Stride to take after each
decrement of
CURR_Y_COUNT

For memory-
mapped
addresses, see
Table 5-19.

DMA Registers

5-94 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR Registers

The next descriptor pointer register
(DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR), shown in Figure 5-17,
specifies where to look for the start of the next descriptor block when the
DMA activity specified by the current descriptor block finishes.

Table 5-19. Outer Loop Address Increment Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_Y_MODIFY 0xFFC0 0C1C

DMA1_Y_MODIFY 0xFFC0 0C5C

DMA2_Y_MODIFY 0xFFC0 0C9C

DMA3_Y_MODIFY 0xFFC0 0CDC

DMA4_Y_MODIFY 0xFFC0 0D1C

DMA5_Y_MODIFY 0xFFC0 0D5C

DMA6_Y_MODIFY 0xFFC0 0D9C

DMA7_Y_MODIFY 0xFFC0 0DDC

DMA8_Y_MODIFY 0xFFC0 0E1C

DMA9_Y_MODIFY 0xFFC0 0E5C

DMA10_Y_MODIFY 0xFFC0 0E9C

DMA11_Y_MODIFY 0xFFC0 0EDC

MDMA_D0_Y_MODIFY 0xFFC0 0F1C

MDMA_S0_Y_MODIFY 0xFFC0 0F5C

MDMA_D1_Y_MODIFY 0xFFC0 0F9C

MDMA_S1_Y_MODIFY 0xFFC0 0FDC

ADSP-BF537 Blackfin Processor Hardware Reference 5-95

Direct Memory Access

This register is used in small and large descriptor list modes. At the start of
a descriptor fetch in either of these modes, the 32-bit DMAx_NEXT_DESC_PTR
register is copied into the DMAx_CURR_DESC_PTR register. Then, during the
descriptor fetch, the DMAx_CURR_DESC_PTR register increments after each
element of the descriptor is read in.

 In small and large descriptor list modes, the DMAx_NEXT_DESC_PTR
register, and not the DMAx_CURR_DESC_PTR register, must be pro-
grammed directly via MMR access before starting DMA operation.

In descriptor array mode, the next descriptor pointer register is disre-
garded, and fetching is controlled only by the DMAx_CURR_DESC_PTR
register.

Figure 5-17. Next Descriptor Pointer Registers

Table 5-20. Next Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_NEXT_DESC_PTR 0xFFC0 0C00

DMA1_NEXT_DESC_PTR 0xFFC0 0C40

DMA2_NEXT_DESC_PTR 0xFFC0 0C80

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Next Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

Next Descriptor Pointer Registers (DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X

Next Descriptor
Pointer[15:0]

X X X X X X X X X X X X X X X

For memory-
mapped
addresses, see
Table 5-20.

Reset = Undefined

DMA Registers

5-96 ADSP-BF537 Blackfin Processor Hardware Reference

DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR Registers

The current descriptor pointer register
(DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR), shown in Figure 5-18,
contains the memory address for the next descriptor element to be loaded.

DMA3_NEXT_DESC_PTR 0xFFC0 0CC0

DMA4_NEXT_DESC_PTR 0xFFC0 0D00

DMA5_NEXT_DESC_PTR 0xFFC0 0D40

DMA6_NEXT_DESC_PTR 0xFFC0 0D80

DMA7_NEXT_DESC_PTR 0xFFC0 0DC0

DMA8_NEXT_DESC_PTR 0xFFC0 0E00

DMA9_NEXT_DESC_PTR 0xFFC0 0E40

DMA10_NEXT_DESC_PTR 0xFFC0 0E80

DMA11_NEXT_DESC_PTR 0xFFC0 0EC0

MDMA_D0_NEXT_DESC_PTR 0xFFC0 0F00

MDMA_S0_NEXT_DESC_PTR 0xFFC0 0F40

MDMA_D1_NEXT_DESC_PTR 0xFFC0 0F80

MDMA_S1_NEXT_DESC_PTR 0xFFC0 0FC0

Table 5-20. Next Descriptor Pointer Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF537 Blackfin Processor Hardware Reference 5-97

Direct Memory Access

For FLOW mode settings that involve descriptors (FLOW = 4, 6, or 7), this
register is used to read descriptor elements into appropriate MMRs before
a DMA work block begins. For descriptor list modes (FLOW = 6 or 7), this
register is initialized from the DMAx_NEXT_DESC_PTR register before loading
each descriptor. Then, the address in the DMAx_CURR_DESC_PTR register
increments as each descriptor element is read in.

When the entire descriptor has been read, the DMAx_CURR_DESC_PTR regis-
ter contains this value:

Descriptor Start Address + (2 x Descriptor Size) (# of elements)

Figure 5-18. Current Descriptor Pointer Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X

Current Descriptor
Pointer[31:16]

X X X X X X X X X X X X X X X

Current Descriptor Pointer Registers (DMAx_CURR_DESC_PTR/
MDMA_yy_CURR_DESC_PTR)
R/W prior to enabling channel; RO after enabling channel

Reset = Undefined

Upper 16 bits of
memory address of
the next descriptor
element15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Current Descriptor
Pointer[15:0]

Lower 16 bits of
memory address of
the next descriptor
element

For memory-
mapped
addresses, see
Table 5-21.

DMA Registers

5-98 ADSP-BF537 Blackfin Processor Hardware Reference

 For descriptor array mode (FLOW = 4), this register, and not the
DMAx_NEXT_DESC_PTR register, must be programmed by MMR
access before starting DMA operation.

Table 5-21. Current Descriptor Pointer Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

DMA0_CURR_DESC_PTR 0xFFC0 0C20

DMA1_CURR_DESC_PTR 0xFFC0 0C60

DMA2_CURR_DESC_PTR 0xFFC0 0CA0

DMA3_CURR_DESC_PTR 0xFFC0 0CE0

DMA4_CURR_DESC_PTR 0xFFC0 0D20

DMA5_CURR_DESC_PTR 0xFFC0 0D60

DMA6_CURR_DESC_PTR 0xFFC0 0DA0

DMA7_CURR_DESC_PTR 0xFFC0 0DE0

DMA8_CURR_DESC_PTR 0xFFC0 0E20

DMA9_CURR_DESC_PTR 0xFFC0 0E60

DMA10_CURR_DESC_PTR 0xFFC0 0EA0

DMA11_CURR_DESC_PTR 0xFFC0 0EE0

MDMA_D0_CURR_DESC_PTR 0xFFC0 0F20

MDMA_S0_CURR_DESC_PTR 0xFFC0 0F60

MDMA_D1_CURR_DESC_PTR 0xFFC0 0FA0

MDMA_S1_CURR_DESC_PTR 0xFFC0 0FE0

ADSP-BF537 Blackfin Processor Hardware Reference 5-99

Direct Memory Access

HMDMA Registers
The processor features two HMDMA blocks. HMDMA0 is associated
with MDMA0, and HMDMA1 is associated with MDMA1. Table 5-22
lists the naming conventions for these registers.

Table 5-22. Naming Conventions for Handshake MDMA Registers

Handshake MDMA MMR Name
(x = 0 or 1)

HMDMAx_CONTROL

HMDMAx_BCINIT

HMDMAx_BCOUNT

HMDMAx_ECOUNT

HMDMAx_ECINIT

HMDMAx_ECURGENT

HMDMAx_ECOVERFLOW

DMA Registers

5-100 ADSP-BF537 Blackfin Processor Hardware Reference

HMDMAx_CONTROL Registers

The handshake MDMA control register (HMDMAx_CONTROL), shown in
Figure 5-19, is used to set up HMDMA parameters and operating modes.

Figure 5-19. Handshake MDMA Control Registers

00 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 0 0 0 0

PS (Pin Status) - RO
0 - Request pin is 0
1 - Request pin is 1

0 - Block done interrupt
not generated

1 - Block done interrupt
generated

Handshake MDMA Control Registers (HMDMAx_CONTROL)

DRQ[1:0] (Default MDMA Request
When Handshake DMA is Disabled
EN=0)
00 - No request
01 - Request single transfer from MDMA channel
10 - Request multiple transfers from MDMA channel (default)
11 - Request urgent multiple transfers from MDMA channel

BDI (Block Done
Interrupt Generated)
- W1C

HMDMAEN (Handshake MDMA
Enable)
0 - Disable handshake

Operation
1 - Enable handshake

Operation
REP (HMDMA Request Polarity)
0 - Increment ECOUNT on

falling edges of DMARx
input

1 - Increment ECOUNT on
rising edges of DMARx
input

UTE (Urgency Threshold
Enable)
0 - Disable urgency threshold
1 - Enable urgency threshold
OIE (Overflow Interrupt
Enable)
0 - Disable overflow interrupt
1 - Enable overflow interrupt

Reset = 0x0200

BDIE (Block Done Interrupt
Enable)
0 - Disable block done interrupt
1 - Enable block done interrupt

HMDMA0:
0xFFC0 3300

HMDMA1:
0xFFC0 3340

MBDI (Mask Block Done
Interrupt)
BDIE must = 1
0 - Interrupt generated when

BCOUNT decrements to 0
1 - Interrupt generated when

BCOUNT decrements to 0
and ECOUNT = 0

0 - Overflow interrupt
not generated

1 - Overflow interrupt
generated

OI (Overflow Interrupt
Generated) - W1C

RBC (Force Reload of
BCOUNT) - WO
0 - Reload not active
1 - Force reload of BCOUNT with BCINIT.
Write 1 to activate

ADSP-BF537 Blackfin Processor Hardware Reference 5-101

Direct Memory Access

The DRQ[1:0] field is used to control the priority of the MDMA channel
when the HMDMA is disabled, that is, when handshake control is not
being used (see Table 5-23).

The RBC bit forces the BCOUNT register to be reloaded with the BCINIT value
while the module is already active. Do not set this bit in the same write
that sets the HMDMAEN bit to active.

HMDMAx_BCINIT Registers

The handshake MDMA initial block count register (HMDMAx_BCINIT),
shown in Figure 5-20, holds the number of transfers to do per edge of the
DMARx control signal.

Table 5-23. DRQ[1:0] Values

DRQ[1:0] Priority Description

00 Disabled The MDMA request is disabled.

01 Enabled/S Normal MDMA channel priority. The channel in this
mode is limited to single memory transfers separated by
one idle system clock. Request single transfer from
MDMA channel.

10 Enabled/M Normal MDMA channel functionality and priority.
Request multiple transfers from MDMA channel
(default).

11 Urgent The MDMA channel priority is elevated to urgent. In this
state, it has higher priority for memory access than
non-urgent channels. If two channels are both urgent, the
lower-numbered channel has priority.

DMA Registers

5-102 ADSP-BF537 Blackfin Processor Hardware Reference

HMDMAx_BCOUNT Registers

The handshake MDMA current block count register (HMDMAx_BCOUNT),
shown in Figure 5-21, holds the number of transfers remaining for the
current edge. MDMA requests are generated if this count is greater than 0.

Examples:

• 0000 = 0 transfers remaining

• FFFF = 65535 transfers remaining

The BCOUNT field is loaded with BCINIT when ECOUNT is greater than 0 and
BCOUNT is expired (0). Also, if the RBC bit in the HMDMAx_CONTROL register is
written to a 1, BCOUNT is loaded with BCINIT. The BCOUNT field is decre-
mented with each MDMA grant. It is cleared when HMDMA is disabled.

A block done interrupt is generated when BCOUNT decrements to 0. If the
MBDI bit in the HMDMAx_CONTROL register is set, the interrupt is suppressed
until ECOUNT is 0. Note if BCINIT is 0, no block done interrupt is gener-
ated, since no DMA requests were generated or grants received.

Figure 5-20. Handshake MDMA Initial Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Block Count Registers (HMDMAx_BCINIT)

BCINIT[15:0] (Initial Block
Count)

Reset = 0x0000HMDMA0:
0xFFC0 3308

HMDMA1:
0xFFC0 3348

ADSP-BF537 Blackfin Processor Hardware Reference 5-103

Direct Memory Access

HMDMAx_ECOUNT Registers

The handshake MDMA current edge count register (HMDMAx_ECOUNT),
shown in Figure 5-22, holds a signed number of edges remaining to be
serviced. This number is in a signed two’s complement representation. An
edge is detected on the respective DMARx input. Requests occur if this count
is greater than or equal to 0, and BCOUNT is greater than 0.

When the handshake mode is enabled, ECOUNT is loaded and the resulting
number of requests is:

Number of edges + N,

where N is the number loaded from ECINIT. The number N is a positively
or negatively signed number. Examples:

• 7FFF = 32767 edges remaining

• 0000 = 0 edges remaining

• 8000 = –32768: ignore the next 32768 edges

Each time that BCOUNT expires, ECOUNT is decremented and BCOUNT is
reloaded from BCINIT. When a handshake request edge is detected, ECOUNT
is incremented. The ECOUNT field is cleared when HMDMA is disabled.

Figure 5-21. Handshake MDMA Current Block Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Block Count Register (HMDMAx_BCOUNT)

BCOUNT[15:0] (Transfers
Remaining for Current Edge)

Reset = 0x0000HMDMA0:
0xFFC0 3318

HMDMA1:
0xFFC0 3358

DMA Registers

5-104 ADSP-BF537 Blackfin Processor Hardware Reference

HMDMAx_ECINIT Registers

The handshake MDMA initial edge count register (HMDMAx_ECINIT),
shown in Figure 5-23, holds a signed number that is loaded into current
edge count (HMDMAx_ECOUNT) when handshake DMA is enabled. This num-
ber is in a signed two’s complement representation.

Figure 5-22. Handshake MDMA Current Edge Count Registers

Figure 5-23. Handshake MDMA Initial Edge Count Registers

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Current Edge Count Register (HMDMAx_ECOUNT)

ECOUNT[15:0] (Edges
Remaining to be Serviced)

Reset = 0x0000HMDMA0:
0xFFC0 3314

HMDMA1:
0xFFC0 3354

00 0 00 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Handshake MDMA Initial Edge Count Registers (HMDMAx_ECINIT)

ECINIT[15:0] (Initial Edge
Count)

Reset = 0x0000HMDMA0:
0xFFC0 3304

HMDMA1:
0xFFC0 3344

ADSP-BF537 Blackfin Processor Hardware Reference 5-105

Direct Memory Access

HMDMAx_ECURGENT Registers

The handshake MDMA edge count urgent register (HMDMAx_ECURGENT),
shown in Figure 5-24, holds the urgent threshold. If the ECOUNT field in
the handshake MDMA edge count register is greater than this threshold,
the MDMA request is urgent and might get higher priority.

HMDMAx_ECOVERFLOW Registers

The handshake MDMA edge count overflow interrupt register
(HMDMAx_ECOVERFLOW), shown in Figure 5-25, holds the interrupt thresh-
old. If the ECOUNT field in the handshake MDMA edge count register is
greater than this threshold, an overflow interrupt is generated.

Figure 5-24. Handshake MDMA Edge Count Urgent Registers

Figure 5-25. Handshake MDMA Edge Count Overflow Interrupt
Registers

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Urgent Registers (HMDMAx_ECURGENT)

UTHE[15:0] (Urgent
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 330C

HMDMA1:
0xFFC0 334C

11 1 11 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1

Handshake MDMA Edge Count Overflow Interrupt Registers (HMDMAx_ECOVERFLOW)

ITHR[15:0] (Interrupt
Threshold)

Reset = 0xFFFFHMDMA0:
0xFFC0 3310

HMDMA1:
0xFFC0 3350

DMA Registers

5-106 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Traffic Control Registers
The DMA_TC_PER register (see Figure 5-26) and the DMA_TC_CNT register (see
Figure 5-27) work with other DMA registers to define traffic control.

DMA_TC_PER Register

Figure 5-26. DMA Traffic Control Counter Period Register

Maximum length of MDMA round
robin bursts. If not zero, any MDMA
stream which receives a grant is
allowed up to that number of DMA
transfers, to the exclusion of the other
MDMA streams.

DMA Traffic Control Counter Period Register (DMA_TC_PER)

DAB_TRAFFIC_PERIOD[2:0]

000 - No DAB bus transfer grouping performed
Other - Preferred length of unidirectional bursts
on the DAB bus between the DMA and the
peripherals

MDMA_ROUND_ROBIN_
PERIOD[4:0]

DCB_TRAFFIC_PERIOD[3:0]

DEB_TRAFFIC_PERIOD[3:0]

Reset = 0x0000

000 - No DCB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DCB
bus between the DMA and
internal L1 memory

000 - No DEB bus transfer
grouping performed
Other - Preferred length of uni-
directional bursts on the DEB
bus between the DMA and
external memory

0xFFC0 0B0C 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF537 Blackfin Processor Hardware Reference 5-107

Direct Memory Access

DMA_TC_CNT Register

The MDMA_ROUND_ROBIN_COUNT field (Figure 5-27)shows the current trans-
fer count remaining in the MDMA round robin period. It initializes to
MDMA_ROUND_ROBIN_PERIOD whenever DMA_TC_PER is written, whenever a
different MDMA stream is granted, or whenever every MDMA stream is
idle. It then counts down to 0 with each MDMA transfer. When this
count decrements from 1 to 0, the next available MDMA stream is
selected.

The DAB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DAB traffic period. It initializes to DAB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DAB bus changes direction or
becomes idle. It then counts down from DAB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DAB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DAB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DAB bus access occurs, the count is reloaded from
DAB_TRAFFIC_PERIOD to begin a new burst.

Figure 5-27. DMA Traffic Control Counter Register

RO

Current transfer count remaining in
the MDMA round robin period

DMA Traffic Control Counter Register (DMA_TC_CNT)

DAB_TRAFFIC_COUNT[2:0]

Current cycle count remaining in the
DAB traffic period

MDMA_ROUND_ROBIN_
COUNT[4:0]

DCB_TRAFFIC_COUNT[3:0]

DEB_TRAFFIC_COUNT[3:0]

Reset = 0x0000

Current cycle count remaining
in the DCB traffic period

Current cycle count remaining
in the DEB traffic period

0xFFC0 0B10 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Programming Examples

5-108 ADSP-BF537 Blackfin Processor Hardware Reference

The DEB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DEB traffic period. It initializes to DEB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DEB bus changes direction or
becomes idle. It then counts down from DEB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DEB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DEB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DEB bus access occurs, the count is reloaded from
DEB_TRAFFIC_PERIOD to begin a new burst.

The DCB_TRAFFIC_COUNT field shows the current cycle count remaining in
the DCB traffic period. It initializes to DCB_TRAFFIC_PERIOD whenever
DMA_TC_PER is written, or whenever the DCB bus changes direction or
becomes idle. It then counts down from DCB_TRAFFIC_PERIOD to 0 on each
system clock (except for DMA stalls). While this count is nonzero, same
direction DCB accesses are treated preferentially. When this count decre-
ments from 1 to 0, the opposite direction DCB access is treated
preferentially, which may result in a direction change. When this count is
0 and a DCB bus access occurs, the count is reloaded from
DCB_TRAFFIC_PERIOD to begin a new burst.

Programming Examples
The following examples illustrate memory DMA and handshaked memory
DMA basics. Examples for peripheral DMAs can be found in the respec-
tive peripheral chapters.

Register-Based 2D Memory DMA
Listing 5-1 shows a register-based, two-dimensional MDMA. While the
source channel processes linearly, the destination channel resorts elements
by mirroring the two-dimensional data array. See Figure 5-28.

ADSP-BF537 Blackfin Processor Hardware Reference 5-109

Direct Memory Access

The two arrays reside in two different L1 data memory blocks. However,
the arrays could reside in any internal or external memory, including L1
instruction memory and SDRAM. For the case where the destination
array resided in SDRAM, it is a good idea to let the source channel re-sort
elements and to let the destination buffer store linearly.

Listing 5-1. Register-Based 2D Memory DMA

#include <defBF537.h>

#define X 5

#define Y 6

.section L1_data_a;

.byte2 aSource[X*Y] =

1, 7, 13, 19, 25,

2, 8, 14, 20, 26,

3, 9, 15, 21, 27,

4, 10, 16, 22, 28,

5, 11, 17, 23, 29,

6, 12, 18, 24, 30;

.section L1_data_b;

.byte2 aDestination[X*Y];

.section L1_code;

.global _main;

Figure 5-28. DMA Example, 2D Array

1

2

3

4

5

6

8

7

9

10

11

12

19

18

17

16

15

14

13

20

21

22

23

24

26

27

28

29

25

30

1 2 3 4 5 6

87 9 10 11 12

19

181716151413

20 21 22 23 24

26 27 28 2925 30

Programming Examples

5-110 ADSP-BF537 Blackfin Processor Hardware Reference

_main:

p0.l = lo(MDMA_S0_CONFIG);

p0.h = hi(MDMA_S0_CONFIG);

call memdma_setup;

call memdma_wait;

_main.forever:

jump _main.forever;

_main.end:

The setup routine shown in Listing 5-2 initializes either MDMA0 or
MDMA1 depending on whether the MMR address of MDMA_S0_CONFIG or
MDMA_S1_CONFIG is passed in the P0 register. Note that the source channel
is enabled before the destination channel. Also, it is common to synchro-
nize interrupts with the destination channel, because only those interrupts
indicate completion of both DMA read and write operations.

Listing 5-2. Two-Dimensional Memory DMA Setup Example

memdma_setup:

[--sp] = r7;

/* setup 1D source DMA for 16-bit transfers */

r7.l = lo(aSource);

r7.h = hi(aSource);

[p0 + MDMA_S0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2;

w[p0 + MDMA_S0_X_MODIFY - MDMA_S0_CONFIG] = r7;

 r7.l = X * Y;

w[p0 + MDMA_S0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = WDSIZE_16 | DMAEN;

w[p0] = r7;

/* setup 2D destination DMA for 16-bit transfers */

r7.l = lo(aDestination);

r7.h = hi(aDestination);

[p0 + MDMA_D0_START_ADDR - MDMA_S0_CONFIG] = r7;

r7.l = 2*Y;

ADSP-BF537 Blackfin Processor Hardware Reference 5-111

Direct Memory Access

w[p0 + MDMA_D0_X_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = Y;

w[p0 + MDMA_D0_Y_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = X;

w[p0 + MDMA_D0_X_COUNT - MDMA_S0_CONFIG] = r7;

r7.l = -2 * (Y * (X-1) - 1);

w[p0 + MDMA_D0_Y_MODIFY - MDMA_S0_CONFIG] = r7;

r7.l = DMA2D | DI_EN | WDSIZE_16 | WNR | DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_setup.end:

For simplicity the example shown in Listing 5-3 polls the DMA status
rather than using interrupts, which was the normal case in a real
application.

Listing 5-3. Polling DMA Status

memdma_wait:

[--sp] = r7;

memdma_wait.test:

r7 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r7, bitpos(DMA_DONE));

if !CC jump memdma_wait.test;

r7 = DMA_DONE (z);

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r7;

r7 = [sp++];

rts;

memdma_wait.end:

Programming Examples

5-112 ADSP-BF537 Blackfin Processor Hardware Reference

Initializing Descriptors in Memory
Descriptor-based DMAs expect the descriptor data to be available in
memory by the time the DMA is enabled. Often, the descriptors are pro-
grammed by software at run-time. Many times, however, the
descriptors—or at least large portions of them—can be static and there-
fore initialized at boot time. How to set up descriptors in global memory
depends heavily on the programming language and the tool set used. The
following examples show how this is best performed in assembly language.

Listing 5-4 uses multiple variables of either 16-bit or 32-bit size to
describe DMA descriptors. This example has two descriptors in small list
flow mode that point to each other mutually. At the end of the second
work unit an interrupt is generated without discontinuing the DMA pro-
cessing. The trailing “.end” label is required to let the linker know that a
descriptor forms a logical unit. It prevents the linker from removing vari-
ables when optimizing.

Listing 5-4. Two Descriptors in Small List Flow Mode

.section sdram;

.byte2 arrBlock1[0x400];

.byte2 arrBlock2[0x800];

.section L1_data_a;

.byte2 descBlock1 = lo(descBlock2);

.var descBlock1.addr = arrBlock1;

.byte2 descBlock1.cfg = FLOW_SMALL|NDSIZE_5|WDSIZE_16|DMAEN;

.byte2 descBlock1.len = length(arrBlock1);

descBlock1.end:

.byte2 descBlock2 = lo(descBlock1);

.var descBlock2.addr = arrBlock2;

.byte2 descBlock2.cfg =

FLOW_SMALL|NDSIZE_5|DI_EN|WDSIZE_16|DMAEN;

ADSP-BF537 Blackfin Processor Hardware Reference 5-113

Direct Memory Access

.byte2 descBlock2.len = length(arrBlock2);

descBlock2.end:

Another method featured by the CCES or VisualDSP++ tools takes advan-
tage of C-style structures in global header files. The header file
descriptor.h could look like Listing 5-5.

Listing 5-5. Header File to Define Descriptor Structures

#ifndef __INCLUDE_DESCRIPTORS__

#define __INCLUDE_DESCRIPTORS__

#ifdef _LANGUAGE_C

typedef struct {

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_arr;

typedef struct {

void *pNext;

void *pStart;

short dConfig;

short dXCount;

short dXModify;

short dYCount;

short dYModify;

} dma_desc_list;

#endif // _LANGUAGE_C

#endif // __INCLUDE_DESCRIPTORS__

Programming Examples

5-114 ADSP-BF537 Blackfin Processor Hardware Reference

Note that near pointers are not natively supported by the C language and,
thus, pointers are always 32 bits wide. Therefore, the scheme above cannot
be used directly for small list mode without giving up pointer syntax. The
variable definition file is required to import the C-style header file and can
finally take advantage of the structures. See Listing 5-6.

Listing 5-6. Using Descriptor Structures

#include "descriptors.h"

.import "descriptors.h";

.section L1_data_a;

.align 4;

.var arrBlock3[N];

.var arrBlock4[N];

.struct dma_desc_list descBlock3 = {

descBlock4, arrBlock3,

FLOW_LARGE | NDSIZE_7 | WDSIZE_32 | DMAEN,

length(arrBlock3), 4,

0, 0 /* unused values */

};

.struct dma_desc_list descBlock4 = {

descBlock3, arrBlock4,

FLOW_LARGE | NDSIZE_7 | DI_EN | WDSIZE_32 | DMAEN,

length(arrBlock4), 4,

0, 0 /* unused values */

};

ADSP-BF537 Blackfin Processor Hardware Reference 5-115

Direct Memory Access

Software-Triggered Descriptor Fetch Example
Listing 5-7 demonstrates a large list of descriptors that provide flow stop
mode configuration. Consequently, the DMA stops by itself as soon as the
work unit has finished. Software triggers the next work unit by simply
writing the proper value into the DMA configuration registers. Since these
values instruct the DMA controller to fetch descriptors in large list mode,
after being started the DMA immediately fetches the descriptor and, thus,
overwrites the configuration value again with the new settings.

Note the requirement that source and destination channels stop after the
same number of transfers. In between stops the two channels can have
completely individual structure.

Listing 5-7. Software-Triggered Descriptor Fetch

.import “descriptor.h”;

#define N 4

.section L1_data_a;

.byte2 arrSource1[N] = { 0x1001, 0x1002, 0x1003, 0x1004 };

.byte2 arrSource2[N] = { 0x2001, 0x2002, 0x2003, 0x2004 };

.byte2 arrSource3[N] = { 0x3001, 0x3002, 0x3003, 0x3004 };

.byte2 arrDest1[N];

.byte2 arrDest2[2*N];

.struct dma_desc_list descSource1 = {

descSource2, arrSource1,

WDSIZE_16 | DMAEN,

length(arrSource1), 2,

0, 0 /* unused values */

};

Programming Examples

5-116 ADSP-BF537 Blackfin Processor Hardware Reference

.struct dma_desc_list descSource2 = {

descSource3, arrSource2,

FLOW_LARGE | NDSIZE_7 | WDSIZE_16 | DMAEN,

length(arrSource2), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descSource3 = {

descSource1, arrSource3,

WDSIZE_16 | DMAEN,

length(arrSource3), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descDest1 = {

descDest2, arrDest1,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest1), 2,

0, 0 /* unused values */

};

.struct dma_desc_list descDest2 = {

descDest1, arrDest2,

DI_EN | WDSIZE_16 | WNR | DMAEN,

length(arrDest2), 2,

0, 0 /* unused values */

};

.section L1_code;

_main:

/* write descriptor address to next descriptor pointer */

p0.h = hi(MDMA_S0_CONFIG);

p0.l = lo(MDMA_S0_CONFIG);

r0.h = hi(descDest1);

r0.l = lo(descDest1);

[p0 + MDMA_D0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

r0.h = hi(descSource1);

ADSP-BF537 Blackfin Processor Hardware Reference 5-117

Direct Memory Access

r0.l = lo(descSource1);

[p0 + MDMA_S0_NEXT_DESC_PTR - MDMA_S0_CONFIG] = r0;

/* start first work unit */

r6.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|DMAEN;

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

r7.l = FLOW_LARGE|NDSIZE_7|WDSIZE_16|WNR|DMAEN;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

/* wait until destination channel has finished and W1C latch */

_main.wait:

r0 = w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] (z);

CC = bittst (r0, bitpos(DMA_DONE));

if !CC jump _main.wait;

r0.l = DMA_DONE;

w[p0 + MDMA_D0_IRQ_STATUS - MDMA_S0_CONFIG] = r0;

/* wait for any software or hardware event here */

/* start next work unit */

w[p0 + MDMA_S0_CONFIG - MDMA_S0_CONFIG] = r6;

w[p0 + MDMA_D0_CONFIG - MDMA_S0_CONFIG] = r7;

jump _main.wait;

_main.end:

Handshaked Memory DMA Example
The functional block for the handshaked MDMA operation can be seen
completely separately from the MDMA channels themselves. Therefore
the following HMDMA setup routine can be combined with any of the
MDMA examples discussed above. Be sure that the HMDMA module is
enabled before the MDMA channels.

Listing 5-8 enables the HMDMA1 block which is controlled by the DMAR1
pin and is associated with the MDMA1 channel pair.

Programming Examples

5-118 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 5-8. HMDMA1 Block Enable

/* optionally, enable all four bank select strobes */

p1.l = lo(EBIU_AMGCTL);

p1.h = hi(EBIU_AMGCTL);

r0.l = 0x0009;

w[p1] = r0;

/* function enable for DMAR1 */

p1.l = lo(PORTF_FER);

r0.l = PF1;

w[p1] = r0;

p1.l = lo(PORT_MUX);

r0.l = PFDE;

w[p1] = r0;

/* every single transfer requires one DMAR1 event */

p1.l = lo(HMDMA1_BCINIT);

r0.l = 1;

w[p1] = r0;

/* start with balanced request counter */

p1.l = lo(HMDMA1_ECINIT);

r0.l = 0;

w[p1] = r0;

/* enable for rising edges */

p1.l = lo(HMDMA1_CONTROL);

r2.l = REP | HMDMAEN;

w[p1] = r2;

If the HMDMA is intended to copy from internal memory to external
devices the above setup is sufficient. If, however, the data flow is from out-
side the processor to internal memory, then this small issue must be
considered—the HMDMA only controls the destination channel of the

ADSP-BF537 Blackfin Processor Hardware Reference 5-119

Direct Memory Access

memory DMA. It does not gate requests to the source channel at all.
Thus, as soon as the source channel is enabled it starts filling the DMA
FIFO immediately. In 16-bit DMA mode this results in eight read strobes
on the EBIU even before the first DMAR1 event has been detected. In
other words, the transferred data and the DMAR1 strobes are eight posi-
tions off. The example in Listing 5-9 delays processing until eight
DMAR1 requests have been received. Note that doing so the transmitter is
required to add eight trailing dummy writes after all data words have been
sent. This is because the transmit channel still has to drain the DMA
FIFO.

Listing 5-9. HMDMA With Delayed Processing

/* wait for eight requests */

p1.l = lo(HMDMA1_ECOUNT);

r0 = 7 (z);

initial_requests:

r1 = w[p1] (z);

CC = r1 < r0;

if CC jump initial_requests;

/* disable and reenable to clear edge count */

p1.l = lo(HMDMA1_CONTROL);

r0.l = 0;

w[p1] = r0;

w[p1] = r2;

If the polling operation as shown in Listing 5-9 is too expensive, an inter-
rupt version of it can be implemented by using the HMDMA overflow
feature. Set the HMDMAx_OVERFLOW register to eight temporarily.

Programming Examples

5-120 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 6-1

6 EXTERNAL BUS INTERFACE
UNIT

The External Bus Interface Unit (EBIU) provides glueless interfaces to
external memories. The processor supports Synchronous DRAM
(SDRAM) including mobile SDRAM, and is compliant with the PC100
and PC133 SDRAM standards. The EBIU also supports asynchronous
interfaces such as SRAM, ROM, FIFOs, flash memory, and ASIC/FPGA
designs.

This chapter describes:

• “EBIU Overview” on page 6-2

• “AMC Overview and Features” on page 6-9

• “AMC Pin Description” on page 6-10

• “AMC Description of Operation” on page 6-11

• “AMC Functional Description” on page 6-12

• “AMC Programming Model” on page 6-19

• “AMC Register Definition” on page 6-19

• “AMC Programming Examples” on page 6-25

• “SDC Overview and Features” on page 6-27

• “SDC Interface Overview” on page 6-32

• “SDC Description of Operation” on page 6-35

• “SDC Functional Description” on page 6-42

EBIU Overview

6-2 ADSP-BF537 Blackfin Processor Hardware Reference

• “SDC Programming Model” on page 6-59

• “SDC Registers” on page 6-64

• “SDC Programming Examples” on page 6-82

EBIU Overview
The EBIU services requests for external memory from the core or from a
DMA channel. The priority of the requests is determined by the external
bus controller. The address of the request determines whether the request
is serviced by the EBIU SDRAM controller or the EBIU asynchronous
memory controller.

The DMA controller provides high-bandwidth data movement capability.
The Memory DMA (MDMA) channels can perform block transfers of
code or data between the internal memory and the external memory
spaces. The MDMA channels also feature a Handshake Operation mode
(HMDMA) via dual external DMA request pins. When used in conjunc-
tion with the EBIU, this functionality can be used to interface high-speed
external devices, such as FIFOs and USB 2.0 controllers, in an automatic
manner. For more information on HMDMA and the external DMA
request pins, refer to Chapter 5, “Direct Memory Access”.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the processor operate at the SCLK frequency. The ratio
between core frequency and SCLK frequency is programmable using a
Phase Locked Loop (PLL) system Memory-Mapped Register (MMR). For
more information, see “Core Clock/System Clock Ratio Control” on
page 20-5.

The external memory space is shown in Figure 6-1. One memory region is
dedicated to SDRAM support. SDRAM interface timing and the size of
the SDRAM region are programmable. The SDRAM memory space can
range in size from 16M byte to 128M byte.

ADSP-BF537 Blackfin Processor Hardware Reference 6-3

External Bus Interface Unit

Figure 6-1. External Memory Map

0x0000 0000

ASYNC MEMORY BANK 0 (1 MByte)

ASYNC MEMORY BANK 1 (1 MByte)

SDRAM MEMORY
(16 MByte–128 MByte)

0x2000 0000

0x2010 0000

EXTERNAL MEMORY MAP

0x2040 0000

ASYNC MEMORY BANK 2 (1 MByte)
0x2020 0000

0x2030 0000

0xEEFF FFFF

NOTE: RESERVED OFF-CHIP MEMORY AREAS ARE LABELED IN THE DIAGRAM
ABOVE. ALL OTHER OFF-CHIP SYSTEM RESOURCES ARE ADDRESSABLE BY
BOTH THE CORE AND THE SYSTEM.

ASYNC MEMORY BANK 3 (1 MByte)

RESERVED

RESERVED

EBIU Overview

6-4 ADSP-BF537 Blackfin Processor Hardware Reference

The start address of the SDRAM memory space is 0x0000 0000. The area
from the end of the SDRAM memory space up to address 0x2000 0000 is
reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory select output pin from the EBIU.

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from a
DMA channel.

Block Diagram
Figure 6-2 is a conceptual block diagram of the EBIU and its interfaces.
Signal names shown with an overbar are active low signals.

Figure 6-2. External Bus Interface Unit (EBIU)

ABE [1:0]/SDQM [1:0]

EBIU

ASYNCHRONOUS
MEMORY

CONTROLLER
(AMC)

SDRAM
CONTROLLER

(SDC)

E
X

T
E

R
N

A
L

 B
U

S
 C

O
N

T
R

O
L

L
E

R
(E

B
C

)

EAB

PAB

D
E

V
IC

E
P

A
D

S

DATA [15:0]
ADDR [19:1]

AMS [3:0]
ARDY

CLKOUT
SCKE
SA10

BGH

DEB

BG
BR

AOE
ARE
AWE
SMS

SWE

SRAS
SCAS

ADSP-BF537 Blackfin Processor Hardware Reference 6-5

External Bus Interface Unit

Since only one external memory device can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin
resources.

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the processor:

• External Access Bus (EAB), mastered by the core memory manage-
ment unit on behalf of external bus requests from the core

• DMA External Bus (DEB), mastered by the DMA controller on
behalf of external bus requests from any DMA channel

• Peripheral Access Bus (PAB), mastered by the core on behalf of sys-
tem MMR requests from the core

These are synchronous interfaces, clocked by SCLK, as are the EBIU and
pads registers. The EAB provides access to both asynchronous external
memory and synchronous DRAM external memory. The external access is
controlled by either the AMC or the SDC, depending on the internal
address used to access the EBIU. Since the AMC and SDC share the same
interface to the external pins, access is sequential and must be arbitrated
based on requests from the EAB.

The third bus (PAB) is used only to access the memory-mapped control
and status registers of the EBIU. The PAB connects separately to the
AMC and SDC; it does not need to arbitrate with or take access cycles
from the EAB bus.

The External Bus Controller (EBC) logic must arbitrate access requests for
external memory coming from the EAB and DEB buses. The EBC logic
routes read and write requests to the appropriate memory controller based
on the bus selects. The AMC and SDC compete for access to the shared

EBIU Overview

6-6 ADSP-BF537 Blackfin Processor Hardware Reference

resources. This competition is resolved in a pipelined fashion, in the order
dictated by the EBC arbiter. Transactions from the core have priority over
DMA accesses in most circumstances. However, if the DMA controller
detects an excessive backup of transactions, it can request its priority to be
temporarily raised above the core.

Registers
There are six control registers and one status register in the EBIU. They
are:

• Asynchronous memory global control register (EBIU_AMGCTL)

• Asynchronous memory bank control 0 register (EBIU_AMBCTL0)

• Asynchronous memory bank control 1 register (EBIU_AMBCTL1)

• SDRAM memory global control register (EBIU_SDGCTL)

• SDRAM memory bank control register (EBIU_SDBCTL)

• SDRAM refresh rate control register (EBIU_SDRRC)

• SDRAM control status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections
later in this chapter.

Shared Pins
Both the AMC and the SDC share the external interface address and data
pins, as well as some of the control signals. These pins are shared:

• ADDR[19:1], address bus

• DATA[15:0], data bus

• ABE[1:0]/SDQM[1:0], AMC byte enables/SDC data masks

ADSP-BF537 Blackfin Processor Hardware Reference 6-7

External Bus Interface Unit

• BR, BG, BGH, external bus access control signals

• CLKOUT, system clock for SDC and AMC

No other signals are multiplexed between the two controllers.

System Clock
The CLKOUT pin is shared by both the SDC and AMC. Two different regis-
ters are used to control this:

• EBIU_SDGCTL register, SCTLE bit for SDC clock

• EBIU_AMGCTL register, AMCKEN bit for AMC clock

The CLKOUT pin has independent control of both peripherals.

Error Detection
The EBIU responds to any bus operation which addresses the range of
0x0000 0000 – 0xEEFF FFFF, even if that bus operation addresses
reserved or disabled memory or functions. It responds by completing the
bus operation (asserting the appropriate number of acknowledges as speci-
fied by the bus master) and by asserting the bus error signal for these error
conditions:

• Any access to a disabled external memory bank

• Any access to reserved memory space

• Any access to uninitialized SDRAM space

If the core requested the faulting bus operation, the bus error response
from the EBIU is gated into the hardware error interrupt (IVHW) internal
to the core (this interrupt can be masked off in the core). If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core.

EBIU Overview

6-8 ADSP-BF537 Blackfin Processor Hardware Reference

Bus Request and Grant
The processor can relinquish control of the data and address buses to an
external device. The processor three-states its memory interface to allow
an external controller to access either external asynchronous or synchro-
nous memory parts.

Operation
When the external device requires access to the bus, it asserts the bus
request (BR) signal. The BR signal is arbitrated with EAB requests. If no
internal request is pending, the external bus request will be granted. The
processor initiates a bus grant by:

• Three-stating the data and address buses and the asynchronous
memory control signals. The synchronous memory control signals
can optionally be three-stated.

• Asserting the bus grant (BG) signal.

The processor may halt program execution if the bus is granted to an
external device and an instruction fetch or data read/write request is made
to external memory. When the external device releases BR, the processor
deasserts BG and continues execution from the point at which it stopped.

The processor asserts the BGH pin when it is ready to start another external
port access, but is held off because the bus was previously granted.

When the bus has been granted, the BGSTAT bit in the SDSTAT register is
set. This bit can be used by the processor to check the bus status to avoid
initiating a transaction that would be delayed by the external bus grant.

 If the system is using SDRAM, be sure to place the SDRAM into
self-refresh mode before bus mastership is granted. If this is not
done, the SDRAM’s data is lost.

ADSP-BF537 Blackfin Processor Hardware Reference 6-9

External Bus Interface Unit

AMC Overview and Features
The following sections describe the features of the Asynchronous Memory
Controller (AMC).

Features
The EBIU AMC features include:

• I/O width 16-bit, I/O supply 2.5 or 3.3 V

• Maximum throughput of 133 M bytes/second

• Supports up to 4M byte of SRAM in four external banks

• AMC supports 8-bit data masking writes

• AMC has control of the EBIU while auto-refresh is performed to
SDRAM

• AMC supports asynchronous access extension (ARDY pin)

• Supports instruction fetch

• Allows booting from bank 0 (AMS0)

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory select associated with it,
shown in Table 6-1.

AMC Pin Description

6-10 ADSP-BF537 Blackfin Processor Hardware Reference

Asynchronous Memory Address Decode

The address range allocated to each asynchronous memory bank is fixed at
1M byte; however, not all of an enabled memory bank need be populated.

 Note accesses to unpopulated memory of partially populated AMC
banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 6-2. The timing of
these pins is programmable to allow a flexible interface to devices of differ-
ent speeds. For example interfaces, see Chapter 21, “System Design”.

AMC Pin Description
The following table describes the signals associated with each interface.

Table 6-1. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 0x2030 0000 0x203F FFFF

AMS[2] 0x2020 0000 0x202F FFFF

AMS[1] 0x2010 0000 0x201F FFFF

AMS[0] 0x2000 0000 0x200F FFFF

Table 6-2. Asynchronous Memory Interface Signals

Pad Pin Type 1 Description

DATA[15:0] I/O External data bus

CLKOUT O Switches at system clock frequency. Connect to the
peripheral if required.

ADDR[19:1] O External address bus

AMS[3:0] O Asynchronous memory selects

ADSP-BF537 Blackfin Processor Hardware Reference 6-11

External Bus Interface Unit

AMC Description of Operation
The following sections describe the operation of the AMC.

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different

AWE O Asynchronous memory write enable

ARE O Asynchronous memory read enable

AOE O Asynchronous memory output enable
In most cases, the AOE pin should be connected to the OE
pin of an external memory-mapped asynchronous device.
Refer to the product data sheet for specific timing infor-
mation between the AOE and ARE signals to determine
which interface signal should be used in your system.

ARDY I Asynchronous memory ready response

ABE[1:0]/SDQM[1:0] O Byte enables

1 Pin Types: I = Input, O = Output

Table 6-2. Asynchronous Memory Interface Signals (Cont’d)

Pad Pin Type 1 Description

AMC Functional Description

6-12 ADSP-BF537 Blackfin Processor Hardware Reference

memory spaces. In this case, the two memory devices addressed by the two
reads could potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the EBIU provides
one cycle for the transition to occur.

External Access Extension

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding External Access Extension” on page 6-16.

AMC Functional Description
The following sections provide a functional description of the AMC.

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC,
whether initiation is from the core or from memory DMA, and the
sequence of transactions (read followed by read, read followed by write,
and so on).

ADSP-BF537 Blackfin Processor Hardware Reference 6-13

External Bus Interface Unit

Asynchronous Reads

Figure 6-3 shows an asynchronous read bus cycle with timing pro-
grammed as setup = 2 cycles, read access = 2 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x] and AOE assert. The address
bus becomes valid. The ABE[1:0] signals are low during the read.

2. At the beginning of the read access period and after the 2 setup
cycles, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

AMC Functional Description

6-14 ADSP-BF537 Blackfin Processor Hardware Reference

Asynchronous Writes

Figure 6-4 shows an asynchronous write bus cycle followed by an asyn-
chronous read cycle to the same bank, with timing programmed as setup =
2 cycles, write access = 2 cycles, read access = 3 cycles, hold = 1 cycle, and
transition time = 1 cycle.

Figure 6-3. Asynchronous Read Bus Cycles

CLKOUT

ADDR[19:1]

DATA[15:0]

SETUP

2 CYCLES

READ ACCESS

2 CYCLES

HOLD
TRANSITION
TIME

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[3:0]

[1:0]ABE

AMS

ADSP-BF537 Blackfin Processor Hardware Reference 6-15

External Bus Interface Unit

Asynchronous write bus cycles proceed as follows.

1. At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[1:0] become valid. See “Partial Write” on page 6-17 for
more information.

2. At the beginning of the write access period, AWE asserts.

3. At the beginning of the hold period, AWE deasserts.

Figure 6-4. Asynchronous Write and Read Bus Cycles

SETUP

2 CYCLES

WRITE ACCESS

2 CYCLES

HOLD

1 CYCLE

SETUP

2 CYCLES

READ ACCESS

3 CYCLES

HOLD

CLKOUT

ADDR[19:1]

DATA[15:0]

TRANSITION
TIME

D2

BE1

A1 A2

D1

DATA LATCHED

1 CYCLE 1 CYCLE

AOE

ARE

AWE

[X]AMS

[1:0]ABE

AMC Functional Description

6-16 ADSP-BF537 Blackfin Processor Hardware Reference

Asynchronous read bus cycles proceed as follows.

1. At the start of the setup period, AMS[x] and AOE assert. The address
bus becomes valid. The ABE[1:0] signals are low during the read.

2. At the beginning of the read access period, ARE asserts.

3. At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE signal deasserts after this
rising edge.

4. At the end of the hold period, AOE deasserts unless this bus cycle is
followed by another asynchronous read to the same memory space.
Also, AMS[x] deasserts unless the next cycle is to the same memory
bank.

5. Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Adding External Access Extension

The ARDY pin can be used to insert additional wait states driven by external
peripherals. The AMC starts sampling ARDY on 1/2 clock cycles before the
end of the programmed strobe period. If ARDY is sampled as deasserted, the
access period is extended. The ARDY pin is then sampled on each subse-
quent clock edge. Read data is latched on 3/2 clock cycles after ARDY is
sampled as asserted. The read- or write-enable remains asserted for one
clock cycle after ARDY is sampled as asserted. An example of this behavior is
shown in Figure 6-5, where setup = 2 cycles, read access = 4 cycles, and
hold = 1 cycle.

 The read access period must be programmed to a minimum of two
cycles to make use of the ARDY pin. In contrast to the
ADSP-BF533/32/31, the ARDY pin of the ADSP-BF537/34/36 can
be asserted asynchronously to the system clock. This causes a tim-
ing shift of 1/2 clock cycle for setup and hold time.

ADSP-BF537 Blackfin Processor Hardware Reference 6-17

External Bus Interface Unit

Partial Write
In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to asynchronous spaces, the ABE[1:0] pins are used
to mask writes to bytes that are not accessed. Table 6-3 shows the
ABE[1:0] encodings based on the internal transfer address bit IA[0] and
the transfer size.

Figure 6-5. Inserting Wait States Using ARDY

CLKOUT

AMSx

ABE1–0
BE, ADDRESS

READDATA15–0

AOE

ACCESS EXTENDED
3 CYCLES

HOLD
1 CYCLE

ARE

ARDY

ADDR19–1

SETUP
2 CYCLES

PROGRAMMED READ ACCESS
4 CYCLES

AMC Functional Description

6-18 ADSP-BF537 Blackfin Processor Hardware Reference

However, during read transfers to asynchronous bank spaces, reads are
always done of all bytes in the bank regardless of the transfer size. This
means for 16-bit SRAM banks, ABE[1:0] are all zeros (0s).

 The AMC provides byte enable pins ABE[1:0] to allow the proces-
sor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

Instruction Fetch
The AMC supports external code execution by fetching multiple bursts of
64 bits. Since the I/O is 16 bits, each instruction fetch is organized in
4 x 16-bit burst cycles. Instruction fetch is supported on all four asynchro-
nous banks AMS[3:0].

During no boot configuration, the sequencer jumps automatically to the
AMS[0] bank to start code execution after reset of the chip is deasserted.

Cache Line Fill
Cache line fills are bursts of 256 bits. Since the I/O is 16 bits, each cache
line fill is organized in 16 x 16-bit burst cycles.

Table 6-3. Byte Enables 8-Bit Write Accesses

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes

0 ABE[1] = 1
ABE[0] = 0

ABE[1] = 0
ABE[0] = 0

1 ABE[1] = 0
ABE[0] = 1

ABE[1] = 0
ABE[0] = 0

ADSP-BF537 Blackfin Processor Hardware Reference 6-19

External Bus Interface Unit

AMC Programming Model
The following section provides programming model information for the
AMC.

AMC Configuration
After a processor’s hardware or software reset, the AMC clocks are
enabled; however, the AMC must be configured and initialized in the fol-
lowing order:

1. Write to the EBIU bank control registers (EBIU_AMBCTL0,
EBIU_AMBCTL1).

2. Write to the EBIU global control register (EBIU_AMGCTL).

The asynchronous memory bank control registers (EBIU_AMBCTL0,
EBIU_AMBCTL1) are used to configure bits for timing counters for setup,
strobe, hold and transition times and bits to configure the use of ARDY.

Furthermore, the asynchronous global control register (EBIU_AMGCTL) is
used to determine bank memory size, bits to configure access priority, and
clock control.

These registers should not be programmed while the AMC is in use.

AMC Register Definition
The following sections describe the AMC registers.

AMC Register Definition

6-20 ADSP-BF537 Blackfin Processor Hardware Reference

EBIU_AMGCTL Register
Figure 6-6 shows the asynchronous memory global control register
(EBIU_AMGCTL).

• Asynchronous memory clock enable (AMCKEN). For external devices
that need a clock, CLKOUT can be enabled by setting the AMCKEN bit
in the EBIU_AMGCTL register. In systems that do not use CLKOUT, set
the AMCKEN bit to 0.

• Asynchronous memory bank enable (AMBEN). If a bus operation
accesses a disabled asynchronous memory bank, the EBIU responds
by acknowledging the transfer and asserting the error signal on the
requesting bus. The error signal propagates back to the requesting
bus master. This generates a hardware exception to the core, if it is
the requester. For DMA-mastered requests, the error is captured in
the respective status register. If a bank is not fully populated with
memory, then the memory likely aliases into multiple address
regions within the bank. This aliasing condition is not detected by
the EBIU, and no error response is asserted.

• Core/DMA priority (CDPRIO). This bit configures the EBIU to
control the priority over requests that occur simultaneously to the
EBIU from either processor core or the DMA controller. When
this bit is set to 0, a request from the core has priority over a
request from the DMA controller to the EBIU, unless the DMA is
urgent. When the CDPRIO bit is set, all requests from the DMA
controller, including the memory DMAs, have priority over core
accesses. For the purposes of this discussion, core accesses include
both data fetches and instruction fetches.

 The CDPRIO bit applies to the EBIU’s AMC and SDC.

ADSP-BF537 Blackfin Processor Hardware Reference 6-21

External Bus Interface Unit

EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers
Figure 6-7 and Figure 6-8 show the asynchronous memory bank control
registers (EBIU_AMBCTL0 and EBIU_AMBCTL1).

The timing characteristics of the AMC can be programmed using five
parameters:

• Setup time

• Read access time

• Write access time

• Hold time

• Transition time

Figure 6-6. Asynchronous Memory Global Control Register

00 0

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[2:0]

AMCKEN

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 1 1 1 0 1

0 - Disable CLKOUT for
asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Enable asynchronous memory
banks
000 - All banks disabled
001 - Bank0 enabled
010 - Bank0 and Bank1 enabled
011 - Bank0, Bank1, and Bank2

enabled
1xx - All banks (Bank0, Bank1,

Bank2, Bank3) enabled

Reset = 0x00F20xFFC0 0A00

CDPRIO
0 - Core has priority over DMA

for external accesses
1 - DMA has priority over core

for external accesses
For more information, see
Chapter 2, “Chip Bus Hierarchy”.

AMC Register Definition

6-22 ADSP-BF537 Blackfin Processor Hardware Reference

The following asynchronous memory timing parameters, as shown in
Table 6-4, are used by the AMC. To program the AMC interface, refer to
the asynchronous memory’s specific data sheet information.

 Any absolute timing parameter must be normalized to the system
clock which allows the AMC to adapt to the timing parameter of
the device.

Table 6-4. AMC Interface Timing Parameters

Parameter Description

Setup Time Time between the beginning of a memory cycle (AMS[x] low) and the
read-enable assertion (ARE low) or write-enable assertion (AWE low). Setup
min Š 1 cycle.

Read Access Time Time between read-enable assertion (ARE low) and deassertion (ARE high).
Read access min Š 1 cycle.

Write Access Time Time between write-enable assertion (AWE low) and deassertion (AWE high).
Write access min Š 1 cycle.

Hold Time Time between read-enable deassertion (ARE high) or write-enable deasser-
tion (AWE high) and the end of the memory cycle (AMS[x] high). Hold min
Š 0 cycle.

Transition Time Time between a read access (AMS[x] high) followed by a write access
(AMS[x] low) to same bank or time between a read access (AMS[x] high)
followed by a write access (AMS[x] low) to another bank. Transition min Š 1
cycle.

ADSP-BF537 Blackfin Processor Hardware Reference 6-23

External Bus Interface Unit

Figure 6-7. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE or
ARE deasserted, and AMS1 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AMS1
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE or
ARE deasserted, and AMS0 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AMS0
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A04

Bank 1 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transaction completes if
 ARDY sampled high

B1TT[1:0]

Bank 0 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transaction completes if
 ARDY sampled high

B0TT[1:0]

AMC Register Definition

6-24 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 6-8. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 3 hold time (number of cycles between AWE or
ARE deasserted, and AMS3 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 setup time (number of cycles after AMS3
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 3 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 3 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 2 hold time (number of cycles between AWE or
ARE deasserted, and AMS2 deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 setup time (number of cycles after AMS2
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 2 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 2 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 0A08

Bank 3 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transaction completes if
 ARDY sampled high

Bank 2 ARDY polarity
0 - Transaction completes if

ARDY sampled low
1 - Transaction completes if
 ARDY sampled high

ADSP-BF537 Blackfin Processor Hardware Reference 6-25

External Bus Interface Unit

AMC Programming Examples
Listing 6-1, Listing 6-2, and Listing 6-3 provide examples for working
with the AMC.

Listing 6-1. AMC Init

***/

.SECTION L1_code;

/* Asynchronous Memory Bank Control 0 Register */

 P0.H = hi(EBIU_AMBCTL0);

 P0.L = lo(EBIU_AMBCTL0);

 R0.H = hi(B1WAT_7 | /* B1 Write Access Time = 7 cycles */

 B1RAT_11 | /* B1 Read Access Time = 11 cycles */

 B1HT_2 | /* B1 Hold Time from Read/Write deas-

serted to AOE deasserted = 2 cycles */

 B1ST_3) ; /* B1 Setup Time from AOE asserted to

Read/Write asserted=3 cycles */

 R0.L = B0WAT_7 | /* B0 Write Access Time = 7 cycles */

B0RAT_11 | /* B0 Read Access Time = 11 cycles */

B0HT_2 | /* B0 Hold Time from Read/Write deas-

serted to AOE deasserted = 2 cycles */

B0ST_3 ; /* B0 Setup Time from AOE asserted to

Read/Write asserted=3 cycles */

 [P0] = R0;

/* Asynchronous Memory Bank Control 1 Register */

 P0.H = hi(EBIU_AMBCTL1);

 P0.L = lo(EBIU_AMBCTL1);

 R0.H = hi(B3WAT_7 | /* B3 Write Access Time = 7 cycles */

B3RAT_11 | /* B3 Read Access Time = 11 cycles */

B3HT_2 | /* B3 Hold Time from Read/Write deas-

serted to AOE deasserted = 2 cycles */

AMC Programming Examples

6-26 ADSP-BF537 Blackfin Processor Hardware Reference

B3ST_3) ; /* B3 Setup Time from AOE asserted to

Read/Write asserted=3 cycles */

 R0.L = B2WAT_7 | /* B2 Write Access Time = 7 cycles */

B2RAT_11 | /* B2 Read Access Time = 11 cycles */

B2HT_2 | /* B2 Hold Time from Read/Write deas-

serted to AOE deasserted = 2 cycles */

B2ST_3 ;

 [P0] = R0;

/* Asynchronous Memory Global Control Register */

 P0.H = hi(EBIU_AMGCTL);

 P0.L = lo(EBIU_AMGCTL);

 R0 = AMBEN_ALL | /* 4MB Asynchronous Memory */

 AMCKEN (z) ; /* Enable CLKOUT */

 w[P0] = R0;

***/

Listing 6-2. 16-Bit Core Transfers to SRAM

.section L1_data_b;

.byte2 source[N] = 0x1122, 0x3344, 0x5566, 0x7788;

.section SRAM_bank_0;

.byte2 dest[N];

.section L1_code;

I0.L = lo(source);

I0.H = hi(source);

I1.L = lo(dest);

I1.H = hi(dest);

R0.L = w[I0++];

P5=N-1;

lsetup(lp, lp) LC0=P5;

lp: R0.L = w[I0++] || w[I1++] = R0.L;

w[I1++] = R0.L;

ADSP-BF537 Blackfin Processor Hardware Reference 6-27

External Bus Interface Unit

Listing 6-3. 8-Bit Core Transfers to SRAM Using Byte Mask ABE[1:0]
Pins

.section L1_data_b;

.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;

.section SRAM_bank_0;

.byte dest[N];

p0.L = lo(source);

p0.H = hi(source);

p1.L = lo(dest);

p1.H = hi(dest);

p5=N;

lsetup(start, end) LC0=P5;

start: R0 = b[p0++](z);

end: b[p1++] = R0; /* byte data masking */

SDC Overview and Features
The SDRAM Controller (SDC) enables the processor to transfer data to
and from Synchronous DRAM (SDRAM) with a maximum frequency
specified in the product data sheet. The processor supports a glueless
interface with one external bank of standard SDRAMs of 64 Mbit to
512 Mbit, with configurations x4, x8, and x16, up to a maximum total
capacity of 128M bytes of SDRAM.

Features
The EBIU SDC provides a glueless interface with standard SDRAMs. Fea-
tures include:

• I/O width 16-bit, I/O supply 2.5 or 3.3 V

• Maximum throughput of 266 M bytes/second

SDC Overview and Features

6-28 ADSP-BF537 Blackfin Processor Hardware Reference

• Supports up to 128M byte of SDRAM in external bank

• Types of 64, 128, 256, and 512M bit with I/O of x4, x8, and x16

• Supports SDRAM page sizes of 512 byte, 1K, 2K, and 4K byte

• Supports multibank operation within the SDRAM

• Supports mobile SDRAMs

• SDC uses no-burst mode (BL = 1) with sequential burst type

• SDC supports 8-bit data masking writes

• SDC uses open page policy—any open page is closed only if a new
access in another page of the same bank occurs

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate

• Provides multiple timing options to support additional buffers
between the processor and SDRAM

• Allows independent auto-refresh while the asynchronous memory
controller has control of the EBIU port

• Supports self-refresh mode for power savings

• During hibernate state, self-refresh mode is supported

• Supports instruction fetch

ADSP-BF537 Blackfin Processor Hardware Reference 6-29

External Bus Interface Unit

SDRAM Configurations Supported
Table 6-5 shows all possible bank sizes, and SDRAM discrete component
configurations that can be gluelessly interfaced to the SDC. The bank
width for all cases is 16 bits.

SDRAM External Bank Size
The total amount of external SDRAM memory addressed by the processor
is controlled by the EBSZ bits of the EBIU_SDBCTL register (see Table 6-6).
Accesses above the range shown for a specialized EBSZ value results in an
internal bus error and the access does not occur. For more information,
see “Error Detection” on page 6-7.

Table 6-5. SDRAM Discrete Component Configurations Supported

System Size
(M byte)

System Size
(M bit)

SDRAM
Configuration

Number of
Chips

8 4M x 16 4M x 4 4

8 4M x 16 4M x 16 1

16 8M x 16 8M x 8 2

16 8M x 16 8M x 16 1

32 16M x 16 16M x 4 4

32 16M x 16 16M x 8 2

32 16M x 16 16M x 16 1

64 32M x 16 32M x 4 4

64 32M x 16 32M x 8 2

64 32M x 16 32M x 16 1

128 64M x 16 64M x 4 4

128 64M x 16 64M x 8 2

128 64M x 16 64M x 16 1

SDC Overview and Features

6-30 ADSP-BF537 Blackfin Processor Hardware Reference

SDC Address Mapping
The address mapping scheme describes how the SDC maps the address
into SDRAM. To access SDRAM, the SDC uses the bank interleaving
map scheme, which fills each internal SDRAM bank before switching to
the next internal bank. Since the SDRAMs have four internal banks, the
entire SDRAM address space is therefore divided into four sub-address
regions containing the addresses of each internal bank. (See Figure 6-10
on page 6-43.) It starts with address 0x0 for internal bank A and ends with
the last valid address (specified with EBSZ and EBCAW parameters) contain-
ing the internal bank D.

The internal 29-bit non-multiplexed address (See Figure 6-9) is multi-
plexed into:

• Byte data mask (IA[0])

• SDRAM column address

• SDRAM row address

• Internal SDRAM bank address

 A good understanding of the SDC’s address map scheme in con-
junction with the multibank operation is required to obtain
optimized system performance.

Figure 6-9. Multiplexed SDRAM Addressing Scheme

Internal 32-bit Address

31 28 0

Bank
Address

Column
Address

Row
Address

Byte
Mask

ADSP-BF537 Blackfin Processor Hardware Reference 6-31

External Bus Interface Unit

Internal SDRAM Bank Select
The internal SDRAM banks are driven by the ADSP-BF537’s
ADDR[19:18] which are part of the row and column address and connected
to the SDRAM’s BA[1:0].

 Do not flip up both internal bank select connections, if using the
mobile SDRAM’s PASR feature. If this is done, the system will not
work properly because the selected internal banks are not refreshed
during partial array self-refresh.

Parallel Connection of SDRAMs
To specify an SDRAM system, multiple possibilities are given based on
the different architectures. (See Table 6-14 on page 6-68.) For the
ADSP-BF537 processors, I/O capabilities of 1 x 16-bit, 2 x 8-bit or 4 x
4-bit are given. The reason to use a system of 4 x 4-bit vs. 2 x 8-bit or 1 x
16-bit is determined by the SDRAM’s page size. All 3 systems have the
same external bank size, but different page sizes. On one hand, the higher
the page size, the higher the performance. On the other hand, the higher
the page size, the higher the hardware layout requirements.

 Even if connecting SDRAMs in parallel, the SDC always considers
the entire system as one external SDRAM bank (SMS pin) because
all address and control lines feed the parallel parts.

Table 6-6. External Bank Size Encodings

EBSZ Bank Size
(Mbyte)

Valid SDRAM Addresses

b#00 16 0x0000 0000 – 0x00FF FFFF

b#01 32 0x0000 0000 – 0x01FF FFFF

b#10 64 0x0000 0000 – 0x03FF FFFF

b#11 128 0x0000 0000 – 0x07FF FFFF

SDC Interface Overview

6-32 ADSP-BF537 Blackfin Processor Hardware Reference

However, access to a single cluster part is achieved using the mask feature
(SDQM[1:0] pins). This allows masked 8-bit I/O writes to dedicated chips
whereby the other 8-bit I/O is masked at its input buffer of the other
chips. See Listing 6-6 on page 6-85.

Instruction Fetch
The SDC supports external code execution by fetching multiple bursts of
64 bits. Since the I/O is 16 bits, each instruction fetch is organized in
4 x 16-bit burst cycles.

Cache Line Fill
Cache line fills are bursts of 256 bits. Since the I/O is 16 bits, each cache
line fill is organized in 16 x 16-bit burst cycles.

SDC Interface Overview
The following sections describe the SDC interface.

SDC Pin Description
The SDRAM interface signals are shown in Table 6-7.

Table 6-7. SDRAM Interface Signals

Pad Pin Type1 Description

DATA[15:0] I/O External data bus

ADDR[19:18],
ADDR[16:12],
ADDR[10:1],

O External address bus
Connect to SDRAM address pins. Bank address is out-
put on ADDR[19:18] and should be connected to
SDRAM BA[1:0] pins.

SRAS O SDRAM row address strobe pin
Connect to SDRAM’s RAS pin.

ADSP-BF537 Blackfin Processor Hardware Reference 6-33

External Bus Interface Unit

SDRAM Performance
On-page sequential or non-sequential accesses are from internal data
memory to SDRAM. Table 6-8 summarizes SDRAM performance for
these on-page accesses.

SCAS O SDRAM column address strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM write enable pin
Connect to SDRAM’s WE pin.

ABE[1:0]/
SDQM[1:0]

O SDRAM data mask pins
Connect to SDRAM’s DQM pins.

SMS O Memory select pin of external memory bank config-
ured for SDRAM
Connect to SDRAM’s CS (Chip Select) pin. Active low.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to be able to do
refreshes while the AMC is using the bus. Connect to
SDRAM’s A[10] pin.

SCKE O SDRAM clock enable pin
Connect to SDRAM’s CKE pin.

CLKOUT O SDRAM clock output pin
Switches at system clock frequency. Connect to the
SDRAM’s CLK pin.

1 Pin Types: I = Input, O = Output

Table 6-7. SDRAM Interface Signals (Cont’d)

Pad Pin Type1 Description

SDC Interface Overview

6-34 ADSP-BF537 Blackfin Processor Hardware Reference

On-page sequential instruction fetches from SDRAM are summarized in
Table 6-9.

Off-page accesses are summarized in Table 6-10.

Table 6-8. Performance Between Internal Data Memory and SDRAM1

Type of Access Performance

DAG access, write 1 SCLK cycle per 16-bit word

DAG access, read 8 SCLK cycles per 16-bit word

MemDMA access, write 1 SCLK cycle per 16-bit word

MemDMA access, read ª1.1 SCLK cycles per 16-bit word

1 Valid for core/system clock > 2:1

Table 6-9. SDRAM Performance For On-Page Instruction Fetches

Type of Access Performance

Ifetch from SDRAM ª1.1 SCLK cycles per 16-bit word

I/Dcache line fill from SDRAM ª1.1 SCLK cycles per 16-bit word

Table 6-10. SDRAM Stall Cycles For Off-Page Accesses

Type of Access Stall Cycles

Write tWR + tRP + tRCD

Read tRP + tRCD + CL

ADSP-BF537 Blackfin Processor Hardware Reference 6-35

External Bus Interface Unit

SDC Description of Operation
The following sections describe the operation of the SDC.

Definition of SDRAM Architecture Terms
The following are definitions of SDRAM architecture terms used in the
remainder of this chapter.

Refresh

Because the information is stored in a small capacitance suffering on leak-
age effects, the SDRAM cell needs to be refreshed periodically with the
refresh command.

Row Activation

SDRAM accesses are multiplexed, which means any first access will open a
row/page before the column access is performed. It stores the row in a
“row cache” called row activation.

Column Read/Write

The row’s columns represent a page, which can be accessed with successive
read or write commands without needing to activate another row. This is
called column access and performs transfers from the “row cache.”

Row Precharge

If the next access is in a different row, the current row is closed before
another is opened. The current “row cache” is written back to the row.
This is called row precharge.

SDC Description of Operation

6-36 ADSP-BF537 Blackfin Processor Hardware Reference

Internal Bank

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

External Bank

This is the address region where the SDC address the SDRAM.

 Do not confuse the internal banks, which are internal to the
SDRAM and are selected with the BA[1:0] pins with the external
bank that is enabled by the CS pin.

Memory Size

Since the 2D memory is based on rows and columns, the size is:

mem size =

(# rows) x (# columns) x (# internal banks) x I/O (Mbit)

Burst Length

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

Burst Type

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

ADSP-BF537 Blackfin Processor Hardware Reference 6-37

External Bus Interface Unit

CAS Latency

The CAS latency or read latency specifies the time between latching a read
address and driving the data off chip. This spec is normalized to the sys-
tem clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM’s mode register
during the SDRAM powerup sequence.

Data I/O Mask Function

SDRAMs allow a data byte-masking capability on writes. The mask pins
DQM[1:0] are used to block the data input buffer of the SDRAM during
write operations.

SDRAM Commands

SDRAM commands are not based on typical read or write strobes. The
pulsed CS, RAS, CAS, and WE lines determine the command on the rising
clock edge by a truth table.

Mode Register Set (MRS) Command

SDRAM devices contain an internal extended configuration register
which allows specification of the mobile SDRAM device’s functionality.

Extended Mode Register Set (EMRS) Command

Mobile SDRAM devices contain an internal extended configuration regis-
ter which allows specification of the mobile SDRAM device’s
functionality.

Bank Activate Command

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued, it opens a new row address in

SDC Description of Operation

6-38 ADSP-BF537 Blackfin Processor Hardware Reference

the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

Read/Write Command

For the read command, the SDRAM latches the column address. The start
address is set according to the column address. For the write command,
SDRAM latches the column address. Data is also asserted in the same
cycle. The start address is set according to the column address.

Precharge/Precharge All Command

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

Auto-Refresh Command

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an auto-refresh command to them. This
causes the SDRAM to generate an internal auto-refresh cycle. When the
internal refresh completes, all four internal SDRAM banks are precharged.

Enter Self-Refresh Mode

When the SDRAM enters self-refresh mode, the SDRAM’s internal timer
initiates refresh cycles periodically, without external control input.

Exit Self-Refresh Mode

When the SDRAM exits self-refresh mode, the SDRAM’s internal timer
stops refresh cycles and relinquishes control to external SDC.

ADSP-BF537 Blackfin Processor Hardware Reference 6-39

External Bus Interface Unit

SDC Timing Specs
The following SDRAM timing specs are discussed because they are used
by the SDC and SDRAM. To program the SDRAM interface, you need
the SDRAM’s specific datasheet information

 Any absolute timing parameter must be normalized to the system
clock which allows the SDC to adapt to the timing parameter of
the device.

tMRD

This is the required delay between issuing a mode register set and an acti-
vate command during powerup.

Dependency: system clock frequency
SDC setting: 3 system clock cycles
SDC usage: MRS command

tRAS

This is the required delay between issuing a bank A activate command and
issuing a bank A precharge command.

Dependency: system clock frequency
SDC setting: 1–15 normalized system clock cycles
SDC usage: single column read/write, auto-refresh, self-refresh

 command

SDC Description of Operation

6-40 ADSP-BF537 Blackfin Processor Hardware Reference

CL

The CAS latency or read latency is the delay between when the SDRAM
detects the read command and when it provides the data off-chip. This
spec does not apply to writes.

Dependency: system clock frequency and speed grade
SDC setting: 2–3 normalized system clock cycles
SDC usage: first read command

tRCD

This is the required delay between a bank A activate command and the
first bank A read or write command.

Dependency: system clock frequency
SDC setting: 1–7 normalized system clock cycles
SDC usage: first read/write command

tRRD

This is the required delay between a bank A activate command and a bank
B activate command. This spec is used for multibank operation.

Dependency: system clock frequency
SDC setting: tRCD + 1 normalized system clock cycles
SDC usage: multiple bank activation

tWR

This is the required delay between a bank A write command and a bank A
precharge command. This spec does not apply to reads.

Dependency: system clock frequency
SDC setting: 1–3 normalized system clock cycles
SDC usage: during off-page write command

ADSP-BF537 Blackfin Processor Hardware Reference 6-41

External Bus Interface Unit

tRP

This is the required delay between a bank A precharge command and a
bank A activation command.

Dependency: system clock frequency
SDC setting: 1–7 normalized system clock cycles
SDC usage: off-page read/write, auto-refresh, self-refresh command

tRC

This is the required delay between issuing successive bank activate
commands.

Dependency: system clock frequency
SDC setting: tRAS + tRP normalized system clock cycles
SDC usage: single column read/write command

tRFC

This is the required delay between issuing successive auto-refresh com-
mands (all banks).

Dependency: system clock frequency
SDC setting: tRAS + tRP normalized system clock cycles
SDC usage: auto-refresh, exit self-refresh command

tXSR

This is the required delay between exiting self-refresh mode and the
auto-refresh command.

Dependency: system clock frequency
SDC setting: tRAS + tRP normalized system clock cycles
SDC usage: exit self-refresh command

SDC Functional Description

6-42 ADSP-BF537 Blackfin Processor Hardware Reference

tREF

This is the row refresh period, and typically takes 64 ms.

Dependency: system clock frequency
SDC setting: used for tREFI spec
SDC usage: auto-refresh command

tREFI

This is the row refresh interval and typically takes 15.6 s for < 8k rows
and 7.8 s for >= 8k rows. This spec is available by dividing tREF/number
of rows. This number is used by the SDC refresh counter.

Dependency: system clock frequency
SDC setting: tREFI normalized system clock cycles (RDIV register)
SDC usage: auto-refresh command

SDC Functional Description
The functional description of the SDC is provided in the following
sections.

SDC Operation
The AMC normally generates an external memory address, which then
asserts the corresponding CS select, along with RD and WR strobes. However
these control signals are not used by the SDC. The internal strobes are
used to generate pulsed commands (SMS, SCKE, SRAS, SCAS, SWE) within a
truth table (see Table 6-12 on page 6-51). The memory access to SDRAM
is based by mapping ADDR[28:0] causing an internal memory select to
SDRAM space (see Figure 6-10).

ADSP-BF537 Blackfin Processor Hardware Reference 6-43

External Bus Interface Unit

The configuration is programmed in the SDBCTL register. The SDRAM
controller can hold off the processor core or DMA controller with an
internally connected acknowledge signal, as controlled by refresh, or page
miss latency overhead.

A programmable refresh counter is provided which generates background
auto-refresh cycles at the required refresh rate based on the clock fre-
quency used. The refresh counter period is specified with the RDIV field in
the SDRAM refresh rate control register.

To allow auto-refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided.

Figure 6-10. Simplified SDC Architecture

A[28:0]

DATA
LATCH/
DRIVE

BUSY

CKE

ADSP-BF537

BA0

BA1

A10

A[0:9], A[11:12]

CLK

DQ15:0D[15:0]

DQMx

WE

CAS

RAS

CS

SDRAM
COMMAND LOGIC

ADDRESS
MULTIPLEXER

A[11]

A[0]/SDQM[1:0]

A[18]

A[19]

A[1:10], A[12:13]

SCKE

SA10

CLKOUT

SWE

SCAS

SRAS

SMS

INT RD

INT ACK

INT RESET

INT WR

SMS

ADDRESS
BUFFER

CORE
DMA

REFRESH
COUNTER

SDC Functional Description

6-44 ADSP-BF537 Blackfin Processor Hardware Reference

The internal 32-bit non-multiplexed address is multiplexed into:

• Data mask for bytes

• SDRAM column address

• SDRAM row address

• Internal SDRAM bank address

Bit A[0] is used for 8-bit wide SDRAMs to generate the data masks. The
next lowest bits are mapped into the column address, next bits are mapped
into the row address, and the final two bits are mapped into the internal
bank address. This mapping is based on the EBCAW and EBSZ values pro-
grammed into the SDRAM memory bank control register.

The SDC uses no burst mode (BL = 1) for read and write operations. This
requires the SDC to post every read or write address on the bus as for
non-sequential reads or writes, but does not cause any performance degra-
dation. For read commands, there is a latency from the start of the read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for any single read transfer. Subse-
quent reads do not have latency.

Whenever a page miss to the same bank occurs, the SDC executes a pre-
charge command followed by a bank activate command before executing
the read or write command. If there is a page hit, the read or write com-
mand can be given immediately without requiring the precharge
command.

ADSP-BF537 Blackfin Processor Hardware Reference 6-45

External Bus Interface Unit

SDC Address Muxing

Table 6-11 shows the connection of the address pins with the SDRAM
device pins.

Table 6-11. SDRAM Address Connections for 16-Bit Banks

External Address Pin SDRAM Address Pin

ADDR[19] BA[1]

ADDR[18] BA[0]

ADDR[16] A[15]

ADDR[15] A[14]

ADDR[14] A[13]

ADDR[13] A[12]

ADDR[12] A[11]

ADDR[11] Not used

SA[10] A[10]

ADDR[10] A[9]

ADDR[9] A[8]

ADDR[8] A[7]

ADDR[7] A[6]

ADDR[6] A[5]

ADDR[5] A[4]

ADDR[4] A[3]

ADDR[3] A[2]

ADDR[2] A[1]

ADDR[1] A[0]

SDC Functional Description

6-46 ADSP-BF537 Blackfin Processor Hardware Reference

Multibank Operation

Since an SDRAM contains 4 independent internal banks (A-D), the SDC
is capable of supporting multibank operation thus taking advantage of the
architecture.

Any first access to SDRAM bank (A) will force an activate command
before a read or write command. However, if any new access falls into the
address space of the other banks (B, C, D) the SDC leaves bank (A) open
and activates any of the other banks (B, C, D). Bank (A) to bank (B)
active time is controlled by tRRD = tRCD + 1. This scenario is repeated
until all 4 banks (A-D) are opened and results in an effective page size up
to 4 pages because no latency causes switching between these open pages
(compared to 1 page in only one bank at the time). Any access to any
closed page in any opened bank (A-D) forces a precharge command only
to that bank. If, for example, 2 MemDMA channels are pointing to the
same internal SDRAM bank, this always forces precharge and activation
cycles to switch between the different pages. However, if the 2 MemDMA
channels are pointing to different internal SDRAM banks, it does not
cause additional overhead. See Figure 6-11.

Figure 6-11. SDRAM Bank Operation Types

BANK D

BANK C

BANK B

BANK A

SINGLE BANK
OPERATION

BANK D

BANK C

BANK B

BANK A

MULTIBANK
OPERATION

ACCESS TO PAGE X

ACCESS TO PAGE Y

ACCESS TO PAGE X

ACCESS TO PAGE Y

ACCESS TO PAGE X

ACCESS TO PAGE Y

ADSP-BF537 Blackfin Processor Hardware Reference 6-47

External Bus Interface Unit

 The benefit of multibank operation reduces precharge and activa-
tion cycles by mapping opcode/data among different internal
SDRAM banks driven by the A[19:18] pins.

Core and DMA Arbitration

The CDPRIO bit configures the SDC to control the priority over requests
that occur simultaneously to the EBIU from either the processor core or
the DMA controller. When this bit is set to 0, a request from the core has
priority over a request from the DMA controller to the SDC, unless the
DMA is urgent. When it is set to 1, all requests from the DMA controller,
including the memory DMAs, have priority over core accesses. For the
purposes of this discussion, core accesses include both data fetches and
instruction fetches. See CDPRIO bit in “EBIU_AMGCTL Register” on
page 6-20.

Changing System Clock During Runtime

All timing specs are normalized to the system clock. Since most of them
are minimum specs, except tREF, which is a maximum spec, a variation of
system clock will on one hand violate a specific spec and on the other
hand cause a performance degradation for the other specs.

The reduction of system clock will violate the minimum specs, while
increasing system clock will violate the maximum tREF spec. Therefore,
careful software control is required to adapt these changes.

 For most applications, the SDRAM powerup sequence and writing
of the mode register needs to be done only once. Once the pow-
erup sequence has completed, the PSSE bit should not be set again
unless a change to the mode register is desired.

SDC Functional Description

6-48 ADSP-BF537 Blackfin Processor Hardware Reference

The recommended procedure for changing the PLL VCO frequency is:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired PLL programming sequence. (For details, refer
to Chapter 20, “Dynamic Power Management”.)

4. After the wakeup occurs that signifies the PLL has settled to the
new VCO frequency, reprogram the SDRAM registers (EBIU_SDRRC,
EBIU_SDGCTL) with values appropriate to the new SCLK fre-
quency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL and access to SDRAM space.

Changing the SCLK frequency using the SSEL bits in PLL_DIV, as opposed
to actually changing the VCO frequency, should be done using these steps:

1. Issue an SSYNC instruction to ensure all pending memory opera-
tions have completed.

2. Set the SDRAM to self-refresh mode by writing a 1 to the SRFS bit
of EBIU_SDGCTL.

3. Execute the desired write to the SSEL bits.

4. Reprogram the SDRAM registers with values appropriate to the
new SCLK frequency, and assure that the PSSE bit is set.

5. Bring the SDRAM out of self-refresh mode by clearing the SRFS bit
of EBIU_SDGCTL and access to SDRAM space.

ADSP-BF537 Blackfin Processor Hardware Reference 6-49

External Bus Interface Unit

Changing Power Management During Runtime

Deep sleep mode and hibernate state are available during runtime.

Deep Sleep Mode

During deep sleep mode, the core and system clock will halt. Therefore,
careful software control is required to place the SDRAM in self-refresh
before the device enters deep sleep mode.

Hibernate State

In hibernate state, only the I/O voltage is applied, and the core voltage is 0
(core reset). In order to save the SDRAM’s volatile data, the ADSP-BF537
processor supports a low level on the SCKE pin during core reset. Setting
the SCKELOW bit of VR_CTL keeps the SCKE signal low, thus ensuring
self-refresh mode. For details, refer to Chapter 20, “Dynamic Power
Management”.

Shared SDRAM

Bus mastership can be requested using the BR and BG pins. To grant bus
mastership to an external SDC, use the CDDBG bit of EBIU_SDGCTL. This
occurs asynchronously during self-refresh mode because both auto-refresh
time bases are fully independent and will be synchronized during the tXSR
timing spec by each bus master, leaving the self-refresh mode to get access
to shared SDRAM. The system requires additional logic for a common
control of the SDRAM’s CKE pin. The following steps illustrate the recom-
mended procedure.

1. Boot stream of the ADSP-BF537 processor must set the CDDBG bit
of EBIU_SDGCTL to allow bus mastership to a host.

2. SDRAM dummy access will perform the powerup sequence.

3. Host enters self-refresh mode.

SDC Functional Description

6-50 ADSP-BF537 Blackfin Processor Hardware Reference

4. Programmable flag PFx driven from host will trigger an ISR which
sets the SFRS bit to cause the ADSP-BF537 processor to enter
self-refresh mode.

5. Host deasserts BR pin which is granted with BG pin.

6. Host SDC asserts CKE pin to exit self-refresh mode indicating
SDRAM access.

7. Host SDC deasserts CKE pin to finish SDRAM access and re-enters
self-refresh mode.

8. Host deasserts BR pin, answered with deassertion of BG pin.

9. Programmable flag PFx driven from host will trigger an ISR which
clears the SRFS bit of EBIU_SDGCTL and performs a dummy access to
exit self-refresh mode.

SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are initiated
automatically upon a memory read or memory write. A summary of the
various commands used by the on-chip controller for the SDRAM inter-
face is as follows.

• Mode register set

• Extended mode register set

• Bank activation

• Read and write

• Single precharge

• Precharge all

• Auto-refresh

ADSP-BF537 Blackfin Processor Hardware Reference 6-51

External Bus Interface Unit

• Self-refresh

• NOP

Table 6-12 shows the SDRAM pin state during SDC commands.

Table 6-12. Pin State During SDC Commands

Command SCKE
(n - 1)

SCKE
(n)

SMS SRAS SCAS SWE SA10 Addresses

(E)/Mode
Register Set

High High Low Low Low Low Op-code Op-code

Activate High High Low Low High High Valid
address
bit

Valid

Read High High Low High Low High Low
(CMD)

Valid

Single
Precharge

High High Low Low High Low Low Valid

Precharge all High High Low Low High Low High Don’t care

Write High High Low High Low Low Low
(CMD)

Valid

Auto-Refresh High High Low Low Low High Don’t care Don’t care

Self-Refresh
Entry

High Low Low Low Low High Don’t care Don’t care

Self-Refresh Low Low Don’t
care

Don’t
care

Don’t
care

Don’t
care

Don’t care Don’t care

Self-Refresh
Exit

Low High High Don’t
care

Don’t
care

Don’t
care

Don’t care Don’t care

NOP High High Low High High High Don’t care Don’t care

Inhibit High High High Don’t
care

Don’t
Care

Don’t
care

Don’t care Don’t care

SDC Functional Description

6-52 ADSP-BF537 Blackfin Processor Hardware Reference

Mode Register Set Command

The Mode Register Set (MRS) command initializes SDRAM operation
parameters. This command is a part of the SDRAM power-up sequence.
The MRS command uses the address bus of the SDRAM as data input.
The power-up sequence is initiated by writing 1 to the PSSE bit in the
SDRAM memory global control register (EBIU_SDGCTL) and then writing
or reading from any enabled address within the SDRAM address space to
trigger the power-up sequence. The exact order of the power-up sequence
is determined by the PSM bit of the EBIU_SDGCTL register.

The MRS command initializes these parameters:

• Burst length = 1, bits A[2–0], always 0

• Burst type = sequential, bit A[3], always 0

• CAS latency, bits A[6–4], programmable in the EBIU_SDGCTL
register

• Bits A[12–7], always 0

After power-up and before executing a read or write to the SDRAM mem-
ory space, the application must trigger the SDC to write the SDRAM’s
mode register. The write of the SDRAM’s mode register is triggered by
writing a 1 to the PSSE bit in the SDRAM memory global control register
(EBIU_SDGCTL) and then issuing a read or write transfer to the SDRAM
address space. The initial read or write triggers the SDRAM power-up
sequence to be run, which programs the SDRAM’s mode register with
burst length, burst type, and CAS latency from the EBIU_SDGCTL register
and optionally the content to the extended mode register. This initial read
or write to SDRAM takes many cycles to complete.

While executing an MRS command, the unused address pins are set to 0.
During the two clock cycles following the MRS command (tMRD), the
SDC issues only NOP commands.

ADSP-BF537 Blackfin Processor Hardware Reference 6-53

External Bus Interface Unit

Extended Mode Register Set Command (Mobile SDRAM)

The extended mode register is a subset of the mode register. The EBIU
enables programming of the extended mode register during power-up via
the EMREN bit in the EBIU_SDGCTL register.

The extended mode register is initialized with these parameters:

• Partial array self-refresh, bits A[2–0], bit A[2] always 0, bits A[1–0]
programmable in EBIU_SDGCTL

• Temperature compensated self-refresh, bits A[4–3], bit A[3] always
1, bit A[4] programmable in EBIU_SDGCTL

• Drive strength control, bits A[6–5], always 0

• Bits A[12–7], always 0, and bit A[13] always 1

 Not programming the extended mode register upon initialization
results in default settings for the low-power features. The extended
mode defaults with the temperature sensor enabled, full drive
strength, and full array refresh.

Bank Activation Command

The bank activation command is required for first access to any internal
bank in SDRAM. Any subsequent access to the same internal bank but
different row will be preceded by a precharge and activation command to
that bank.

However, if an access to another bank occurs, the SDC leaves the current
page open and issues a bank activate command before executing the read
or write command to that bank. With this method, called multibank oper-
ation, one page per bank can be open at a time, which results in a
maximum of 4 pages.

SDC Functional Description

6-54 ADSP-BF537 Blackfin Processor Hardware Reference

Read/Write Command

A read/write command is executed if the next read/write access is in the
present active page. During the read command, the SDRAM latches the
column address. The delay between activate and read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after
the CAS latency has been met.

In the write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between activate and
write commands is determined by the tRCD parameter.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a read or write command.

Partial Write

In general, there are two different ways to modify a single byte within the
16-bit interface. First, it can be done by a read/modify/write sequence.
However, this is not very efficient because multiple accesses are required.

During partial writes to SDRAM, the SDQM[1:0] pins are used to mask
writes to bytes that are not accessed. Table 6-13 shows the SDQM[1:0]
encodings based on the internal transfer address bit IA[0] and the transfer
size.

However, during read transfers to SDRAM banks, reads are always done
of all bytes in the bank regardless of the transfer size. This means for
16-bit SDRAM banks, SDQM[1:0] are all zeros (0s).

 The SDC provides byte enable pins SDQM[1:0] to allow the pro-
cessor to perform efficient byte-wide arithmetic and byte-wide
processing in external memory.

ADSP-BF537 Blackfin Processor Hardware Reference 6-55

External Bus Interface Unit

 For 16-bit SDRAMs, connect SDQM[0] to DQML, and connect
SDQM[1] to DQMH.

Single Precharge Command

For a page miss during reads or writes in a specific internal SDRAM bank,
the SDC uses the single precharge command to that bank.

 The SDC does not use the auto-precharge read or write command
of SDRAMs, which is enabled by asserting SA10 high during a read
or write command.

Precharge All Command

The precharge all command is given to precharge all internal banks at the
same time before executing an auto-refresh. All open banks will be auto-
matically closed. This is possible since the SDC uses a separate SA10 pin
which is asserted high during this command. This command is preceding
the auto-refresh command.

Table 6-13. SDQM[1:0] Encodings During Writes

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes

0 SDQM[1] = 1
SDQM[0] = 0

SDQM[1] = 0
SDQM[0] = 0

1 SDQM[1] = 0
SDQM[0] = 1

SDQM[1] = 0
SDQM[0] = 0

SDC Functional Description

6-56 ADSP-BF537 Blackfin Processor Hardware Reference

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
an auto-refresh to occur internally for that address when the auto-refresh
command is given. The SDC generates an auto-refresh command after the
SDC refresh counter times out. The RDIV value in the SDRAM refresh
rate control register must be set so that all addresses are refreshed within
the tREF period specified in the SDRAM timing specifications. This com-
mand is issued to the external bank whether or not it is enabled (EBE in the
SDRAM memory global control register). Before executing the
auto-refresh command, the SDC executes a precharge all command to the
external bank. The next activate command is not given until the tRFC
specification (tRFC = tRAS + tRP) is met.

Auto-refresh commands are also issued by the SDC as part of the powerup
sequence and also after exiting self-refresh mode.

Self-Refresh Mode

The self-refresh mode is controlled by the self-refresh entry and
self-refresh exit commands. The SDC must issue a series of commands
including the self-refresh entry command to put the SDRAM into this low
power operation, and it must issue another series of commands including
the self-refresh exit command to re-access the SDRAM.

Self-Refresh Entry Command

The self-refresh entry command causes refresh operations to be performed
internally by the SDRAM, without any external control. This means that
the SDC does not generate any auto-refresh commands while the SDRAM
is in self-refresh mode. Before executing the self-refresh entry command,
all internal banks are precharged. The self-refresh entry command is
started by writing a 1 to the SRFS bit of the SDRAM memory global con-
trol register (EBIU_SDGCTL). As soon as current SDRAM access has
finished, SCKE is deasserted.

ADSP-BF537 Blackfin Processor Hardware Reference 6-57

External Bus Interface Unit

 Only the SCKE pin keeps control during self-refresh, all other
SDRAM pins are allowed to be disabled. However the SDC still
drives the SCLK during self-refresh mode. However, software may
disable the clock by clearing the SCTLE bit in EBIU_SDGCTL.

Self-Refresh Exit Command

Leaving self-refresh mode is performed with the self-refresh exit com-
mand, whereby the SDC asserts SCKE. Any internal core/DMA access
causes the SDC to perform an exit self-refresh command. The SDC waits
to meet the tXSR specification (tXSR = tRAS + tRP) and then issues an
auto-refresh command. After the auto-refresh command, the SDC waits
for the tRFC specification (tRFC = tRAS + tRP) to be met before execut-
ing the activate command for the transfer that caused the SDRAM to exit
self-refresh mode. Therefore, the latency from when a transfer is received
by the SDC while in self-refresh mode, until the activate command occurs
for that transfer, is:

Time to exit self-refresh: 2 x (tRAS + tRP)

 The minimum time between a subsequent self-refresh entry and
the self-refresh exit command is at least tRAS cycles. If a self-refresh
entry command is issued during any MemDMA transfer, the SDC
satisfies this core request with the minimum self-refresh period
(tRAS).

The application software should ensure that all applicable clock timing
specifications are met before the transfer to SDRAM address space which
causes the controller to exit self-refresh mode. If a transfer occurs to
SDRAM address space when the SCTLE bit is cleared, an internal bus error
is generated, and the access does not occur externally, leaving the SDRAM
in self-refresh mode. For more information, see “Error Detection” on
page 6-7.

SDC Functional Description

6-58 ADSP-BF537 Blackfin Processor Hardware Reference

The SDC supports two different modes to release self-refresh mode: tem-
porary auto-refresh and auto-refresh. In temporary auto-refresh mode, if
the SDRS bit is still cleared before performing a single SDRAM access, the
SDC releases the self-refresh mode only for this access, afterwards it
re-enters back to self-refresh. In auto-refresh mode, if the SDRS bit is set
before performing a single DMA access, the SDC releases the self-refresh
mode and enters auto-refresh mode.

 The minimum time between a subsequent self-refresh entry and
the self-refresh exit command is at least tRAS cycles. If a self-refresh
entry command is issued during any MemDMA transfer, the SDC
sataisfies this core request with the minimum self-refresh period
(tRAS).

The application software should ensure that all applicable clock
timing specifications are met before the transfer to SDRAM
address space which causes the controller to exit self-refresh mode.
If a transfer occurs to SDRAM address space when the SCTLE bit is
cleared, an internal bus error is generated, and the access does not
occur externally, leaving the SDRAM in self-refresh mode. For
more information, see “Error Detection” on page 6-7.

No Operation Command

The No Operation (NOP) command to the SDRAM has no effect on
operations currently in progress. The command inhibit command is the
same as a NOP command; however, the SDRAM is not chip-selected.
When the SDC is actively accessing the SDRAM to insert additional wait
states, the NOP command is given. When the SDC is not accessing the
SDRAM, the command inhibit command is given (SMS = 1).

ADSP-BF537 Blackfin Processor Hardware Reference 6-59

External Bus Interface Unit

SDC SA10 Pin
The SDRAM’s A[10] pin follows the truth table below:

• During the precharge command, it is used to indicate a precharge
all

• During a bank activate command, it outputs the row address bit

• During read and write commands, it is used to disable
auto-precharge

Therefore, the SDC uses a separate SA10 pin with these rules.

 Connect the SA10 pin with the SDRAM’s A[10] pin. Because the
ADSP-BF537 processor uses byte addressing, it starts with A[1].
The A[11] pin is left unconnected for SDRAM accesses and it is
replaced by the SA10 pin.

SDC Programming Model
The following sections provide programming model information for the
SDC.

SDC Configuration
After a processor’s hardware or software reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the powerup sequence, these steps are
required:

1. Ensure the clock to the SDRAM is stable after the power has stabi-
lized for the proper amount of time (typically 100 ms).

2. Write to the SDRAM refresh rate control register (EBIU_SDRRC).

SDC Programming Model

6-60 ADSP-BF537 Blackfin Processor Hardware Reference

3. Write to the SDRAM memory bank control register
(EBIU_SDBCTL).

4. Write to the SDRAM memory global control register
(EBIU_SDGCTL) and issue an SSYNC instruction.

5. Perform SDRAM access.

The SDRS bit of the SDRAM control status register can be checked to
determine the current state of the SDC. If this bit is set, the SDRAM
powerup sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes and
SDRAM memory configuration used (EBSZ and EBCAW) and to enable the
external bank (EBE). Note until the SDRAM powerup sequence has been
started, any access to SDRAM address space, regardless of the state of the
EBE bit, generates an internal bus error, and the access does not occur
externally. For more information, see “Error Detection” on page 6-7.

The powerup latency can be estimated as:

tRP + (8 tRFC) + tMRD + tRCD

 After the SDRAM powerup sequence has completed, if the external bank
is disabled, any transfer to it results in a hardware error interrupt, and the
SDRAM transfer does not occur.

ADSP-BF537 Blackfin Processor Hardware Reference 6-61

External Bus Interface Unit

The EBIU_SDGCTL register is written:

• To set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

• To enable the SDRAM clock (SCTLE)

• To select and enable the start of the SDRAM powerup sequence
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 6-7.

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer
occurs to enabled SDRAM address space, the SDC initiates the SDRAM
powerup sequence. The exact sequence is determined by the PSM bit in the
EBIU_SDGCTL register. The transfer used to trigger the SDRAM powerup
sequence can be either a read or a write. This transfer occurs when the
SDRAM powerup sequence has completed. This initial transfer takes
many cycles to complete since the SDRAM powerup sequence must take
place.

Example SDRAM System Block Diagrams
Figure 6-12 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC connected to 2 x (8M x 8) = 8M x 16 to form one external
bank of 128Mbit / 16Mbyte of memory. The system’s page size is 1024
bytes. The same address and control bus feeds both SDRAM devices.

SDC Programming Model

6-62 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 6-13 shows a block diagram of an SDRAM interface. In this exam-
ple, the SDC connected to 4 x (16M x 4) = 16M x 16 to form one external
bank of 256Mbit / 32Mbyte of memory. The system’s page size is 2048
bytes. The same address and control bus pass a registered buffer before
they feed all 4 SDRAM devices.

Figure 6-12. SDRAM System Block Diagram, Example 1

SCKE

ADSP-BF537

A[18]
A[19]
SA10

ADDR[12,10:1]

SDRAM 2
8Mx8

BA0

A[10]

CLKOUT

SDQM[0]

DATA[15:0]

BA1

A[11,9:0]

CKE
CLK

DQM

DQ[7:0]

SDRAM 1
8Mx8

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

DQM

DQ[7:0]

DATA[7:0]

DATA[15:8]

SDQM[1]

SWE
SCAS

SRAS
SMS

WE
CAS
RAS
CS

WE

CAS

RAS

CS

ADSP-BF537 Blackfin Processor Hardware Reference 6-63

External Bus Interface Unit

Furthermore, the EBUFE bit should be used to enable or disable external
buffer timing. When buffered SDRAM modules or discrete register-buf-
fers are used to drive the SDRAM control inputs, EBUFE should be set to 1.
Using this setting adds a cycle of data buffering to read and write accesses.

Figure 6-13. SDRAM System Block Diagram, Example 2

SCKE

ADSP-BF537

A[18]
A[19]
SA10

ADDR[12,10:1]

SDRAM 3
16Mx4

CLKOUT

SDQM[0]

DATA[15:0]

DQ[3:0]

SDRAM 1
16Mx4

DQM

DQ[3:0]
D[3:0]

D[11:8]

SDQM[1]

SWE
SCAS

SRAS
SMS

SDRAM 4
16Mx4

DQ[3:0]

SDRAM 2
16Mx4

DQ[3:0]
D[7:4]

D[15:12]

REGISTERED
BUFFER

CLKOUT

DQM

DQM

DQM

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

BA0

A[10]
BA1

A[11,9:0]

CKE
CLK

WE
CAS
RAS
CS

SDC Registers

6-64 ADSP-BF537 Blackfin Processor Hardware Reference

SDC Registers
The following sections describe the SDC registers.

EBIU_SDRRC Register
The SDRAM refresh rate control register (EBIU_SDRRC, shown in
Figure 6-14) provides a flexible mechanism for specifying the auto-refresh
timing. Since the clock supplied to the SDRAM can vary, the SDC pro-
vides a programmable refresh counter, which has a period based on the
value programmed into the RDIV field of this register. This counter coordi-
nates the supplied clock rate with the SDRAM device’s required refresh
rate.

The desired delay (in number of SDRAM clock cycles) between consecu-
tive refresh counter time-outs must be written to the RDIV field. A refresh
counter time-out triggers an auto-refresh command to all external
SDRAM devices. Write the RDIV value to the EBIU_SDRRC register before
the SDRAM powerup sequence is triggered. Change this value only when
the SDC is idle.

To calculate the value that should be written to the EBIU_SDRRC register,
use the following equation:

RDIV = ((fSCLK ¥ tREF) / NRA) – (tRAS + tRP)

= (fSCLK tREFI) - (tRAS + tRP)

Figure 6-14. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV[11:0]

Reset = 0x081A0xFFC0 0A18

ADSP-BF537 Blackfin Processor Hardware Reference 6-65

External Bus Interface Unit

where:

• fSCLK = SDRAM clock frequency (system clock frequency)

• tREF = SDRAM row refresh period

• tREFI = SDRAM row refresh interval

• NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

• tRAS = Active to precharge time (TRAS in the SDRAM memory
global control register) in number of clock cycles

• tRP = RAS to precharge time (TRP in the SDRAM memory global
control register) in number of clock cycles

This equation calculates the number of clock cycles between required
refreshes and subtracts the required delay between bank activate com-
mands to the same internal bank (tRC = tRAS + tRP). The tRC value is
subtracted, so that in the case where a refresh time-out occurs while an
SDRAM cycle is active, the SDRAM refresh rate specification is guaran-
teed to be met. The result from the equation should always be rounded
down to an integer.

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 8192 row addresses

• tRAS = 6

• tRP = 3

SDC Registers

6-66 ADSP-BF537 Blackfin Processor Hardware Reference

The equation for RDIV yields:

• RDIV = ((133 x 106 x 64 x 10-3) / 8192) – (6 + 3) = 1030 clock
cycles

This means RDIV is 0x406 (hex) and the SDRAM refresh rate control reg-
ister should be written with 0x406.

Note RDIV must be programmed to a nonzero value if the SDRAM con-
troller is enabled. When RDIV = 0, operation of the SDRAM controller is
not supported and can produce undesirable behavior. Values for RDIV can
range from 0x001 to 0xFFF.

EBIU_SDBCTL Register
The SDRAM memory bank control register (EBIU_SDBCTL), shown in
Figure 6-15, includes external bank-specific programmable parameters. It
allows software to control some parameters of the SDRAM. The external
bank can be configured for a different size of SDRAM. It uses the access
timing parameters defined in the SDRAM memory global control register
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before
powerup and should be changed only when the SDC is idle.

• External bank enable (EBE)

The EBE bit is used to enable or disable the external SDRAM bank.
If the SDRAM is disabled, any access to the SDRAM address space
generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 6-7.

ADSP-BF537 Blackfin Processor Hardware Reference 6-67

External Bus Interface Unit

• External bank size (EBSZ)

The EBSZ encoding stores the configuration information for the
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit,
256 Mbit, and 512 Mbit SDRAM devices with x4, x8, and x16
configurations. Table 6-14 maps SDRAM density and I/O width.
See “SDRAM External Bank Size” on page 6-29 for more informa-
tion on bank starting address decodes.

• External bank column address width (EBCAW)

The SDC determines the internal SDRAM page size from the
EBCAW parameters. Page sizes of 512 B, 1K byte, 2K byte, and 4K
byte are supported. Table 6-14 shows the page size and breakdown
of the internal address (IA[31:0], as seen from the core or DMA)
into the row, bank, column, and byte address. The bank width in
all cases is 16 bits. The column address and the byte address
together make up the address inside the page.

Figure 6-15. SDRAM Memory Bank Control Register

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EBSZ[1:0]

EBCAW[1:0] EBE
SDRAM external bank enable
0 - Disabled
1 - Enabled

SDRAM external bank size
00 - 16M byte
01 - 32M byte
10 - 64M byte
11 - 128M byte

SDRAM external bank column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x00000xFFC0 0A14
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDC Registers

6-68 ADSP-BF537 Blackfin Processor Hardware Reference

The page size can be calculated for 16-bit SDRAM banks with this
formula:

• page size = 2(CAW + 1)

where CAW is the column address width of the SDRAM, plus 1 because the
SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

Table 6-14. Internal Address Mapping

B
an

k
Si

ze
(M

by
te

)
E

B
SZ

 b
it

s

C
ol

. A
dd

r.
W

id
th

 (
C

AW
)

E
B

C
AW

 b
it

s

Pa
ge

 S
iz

e
(K

 B
yt

e)

B
an

k
A

dd
re

ss

R
ow

A
dd

re
ss

Page

C
ol

um
n

A
dd

re
ss

B
yt

e
A

dd
re

ss

128 11 4 IA[26:25] IA[24:12] IA[11:1] IA[0]

128 10 2 IA[26:25] IA[24:11] IA[10:1] IA[0]

128 9 1 1A[26:25] IA[24:10] IA[9:1] IA[0]

128 8 .5 IA[26:25] IA[24:9] IA[8:1] IA[0]

64 11 4 IA[25:24] IA[23:12] IA[11:1] IA[0]

64 10 2 IA[25:24] IA[23:11] IA[0]IA[10:1]

64 9 1 IA[25:24] IA[23:10] IA[9:1] IA[0]

64 8 .5 IA[25:24] IA[23:9] IA[8:1] IA[0]

32 11 4 IA[24:23] IA[22:12] IA[11:1] IA[0]

32 10 2 IA[24:23] IA[22:11] IA[0]IA[10:1]

32 9 1 IA[24:23] IA[22:10] IA[9:1] IA[0]

32 8 .5 IA[24:23] IA[22:9] IA[8:1] IA[0]

16 11 4 IA[23:22] IA[21:12] IA[11:1] IA[0]

16 10 2 IA[23:22] IA[21:11] IA[10:1] IA[0]

16 9 1 IA[23:22] IA[21:10] IA[9:1] IA[0]

16 8 .5 IA[23:22] IA[21:9] IA[8:1] IA[0]

ADSP-BF537 Blackfin Processor Hardware Reference 6-69

External Bus Interface Unit

Using SDRAMs With Systems Smaller Than 16M Byte

It is possible to use SDRAMs smaller than 16M byte on the
ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors as long as it is
understood how the resulting memory map is altered. Figure 6-16 shows
an example where a 2M byte SDRAM (512K x 16 bits x 2 banks) is
mapped to the external memory interface. In this example, there are 11
row addresses and 8 column addresses per bank. Referring to Table 6-5 on
page 6-29, the lowest available bank size (16M byte) for a device with 8
column addresses has 2 bank address lines (IA[23:22]) and 13 row address
lines (IA[21:9]). Therefore, 1 processor bank address line and 2 row
address lines are unused when hooking up to the SDRAM in the example.
This causes aliasing in the processor’s external memory map, which results
in the SDRAM being mapped into noncontiguous regions of the proces-
sor’s memory space.

Referring to the table in Figure 6-16, note that each line in the table cor-

responds to 219 bytes, or 512K byte. Thus, the mapping of the 2M byte
SDRAM is noncontiguous in Blackfin memory, as shown by the memory
mapping in the left side of the figure.

SDC Registers

6-70 ADSP-BF537 Blackfin Processor Hardware Reference

EBIU_SDGCTL Register
The SDRAM memory global control register (EBIU_SDGCTL) includes all
programmable parameters associated with the SDRAM access timing and
configuration. Figure 6-17 shows the EBIU_SDGCTL register bit definitions.

 When using the hibernate state with the intent of preserving
SDRAM contents during power-down, an application may issue an
immediate read from SDRAM after enabling the controller. If this
is the case, the write to this register should be followed by an SSYNC
instruction to prevent the subsequent read from happening before
the controller is properly initialized.

Figure 6-16. Using Small SDRAMs

BANK
ADDRESS

ROW ADDRESS

IA22IA23 IA21 IA20 IA19

0

1

1

UNAVAILABLE COMBINATIONS ARE SHADED

1

X XX

1

X

1

IA
23

 =
 0

0 111 0

0 011 1

0 011 0

0 101 1

0 101 0

0

0

01

1 01

0

0

1

0 010 0

0 100 1

0 100 0

0 000 1

0 000 0

0 001 1

0 001 0

0 110 1

1M BYTE

1M BYTE

BLACKFIN MEMORY MAP

0x0000 0000

IA
23

 =
 1

EXAMPLE: 2M BYTE SDRAM WITH
512K x 16 x 2 BANKS,
11 ROW ADDRESSES AND
8 COLUMN ADDRESSES PER BANK

ADSP-BF537 Blackfin Processor Hardware Reference 6-71

External Bus Interface Unit

Figure 6-17. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]
CDDBG

EBUFE

SRFS

Control disable during bus grant
0 - Continue driving SDRAM

controls during bus grant
1 - Three-state SDRAM controls

during bus grant

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh enable
0 - Disable self-refresh
1 - Enable self-refresh during inactivity

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM powerup sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM powerup sequence
start enable. Always reads 0
0 - No effect
1 - Enables SDRAM powerup

sequence on next SDRAM
access

Reset = 0xE008 8849

CL[1:0]

PASR[1:0]

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD[0]
SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable CLKOUT, SRAS,
SCAS, SWE, SDQM[1:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

SDRAM CAS latency
00–01 - Reserved
10 - 2 cycles
11 - 3 cycles

Partial array self-refresh in
extended mode register
00 - All 4 banks refreshed
01 - Int banks 0, 1 refreshed
10 - Int bank 0 only refreshed
11 - Reserved

FBBRW
Fast back-to-back read to write
0 - Disabled
1 - Enabled

EMREN
Extended mode register enable
0 - Disabled
1 - Enabled

TCSR
Temperature compensated self-refresh
value in extended mode register
0 - 45 degrees C
1 - 85 degrees C

PUPSD
Powerup start delay
0 - No extra delay added

before first Precharge
command

1 - Fifteen SCLK cycles of
delay before first
Precharge command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 1 0 0 0 0 1 0 0 1 0 0

0xFFC0 0A10

SDC Registers

6-72 ADSP-BF537 Blackfin Processor Hardware Reference

• SDRAM clock enable (SCTLE)

The SCTLE bit is used to enable or disable the SDC. If SCTLE is dis-
abled, any access to SDRAM address space generates an internal
bus error, and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 6-7. When SCTLE is
disabled, all SDC control pins are in their inactive states and the
SDRAM clock is not running. The SCTLE bit must be enabled for
SDC operation and is enabled by default at reset.

The CAS latency (CL), SDRAM tRAS timing (TRAS), SDRAM tRP
timing (TRP), SDRAM tRCD timing (TRCD), and SDRAM tWR tim-
ing (TWR) bits should be programmed based on the system clock
frequency and the timing specifications of the SDRAM used.

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

The SCTLE bit allows software to disable all SDRAM control pins.
These pins are SDQM[3:0], SCAS, SRAS, SWE, SCKE, and CLKOUT.

• SCTLE = 0
Disable all SDRAM control pins (control pins negated,
CLKOUT low).

• SCTLE = 1
Enable all SDRAM control pins (CLKOUT toggles).

Note the CLKOUT function is also shared with the AMC. Even if
SCTLE is disabled, CLKOUT can be enabled independently by the
CLKOUT enable in the AMC (AMCKEN in the EBIU_AMGCTL register).

If the system does not use SDRAM, SCTLE should be set to 0.

If an access occurs to the SDRAM address space while SCTLE is 0,
the access generates an internal bus error and the access does not
occur externally. For more information, see “Error Detection” on
page 6-7.

ADSP-BF537 Blackfin Processor Hardware Reference 6-73

External Bus Interface Unit

 With careful software control, the SCTLE bit can be used in con-
junction with the SRFS bit to further lower power consumption by
freezing the CLKOUT pin. However, SCTLE must remain enabled at
all times when the SDC is needed to generate auto-refresh com-
mands to SDRAM.

• CAS latency (CL)

The CL bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the CAS latency value:

• CL = 00
Reserved

• CL = 01
Reserved

• CL = 10
2 clock cycles

• CL = 11
3 clock cycles

• Partial array self refresh (PASR)

The PASR bits determine how many internal SDRAM banks are
refreshed during self-refresh.

• PASR = 00
All 4 banks

• PASR = 01
Internal banks 0 and 1 refreshed

• PASR = 10
Only internal bank 0 refreshed

• PASR = 11
reserved

SDC Registers

6-74 ADSP-BF537 Blackfin Processor Hardware Reference

Internal banks are decoded with the A[19:18] pins.

 The PASR feature requires careful software control with regard to
the internal bank used.

• Bank activate command delay (TRAS)

The TRAS bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15
clock cycles can be selected. For example:

• TRAS = 0000
No effect

• TRAS = 0001
1 clock cycle

• TRAS = 0010
2 clock cycles

• TRAS = 1111
15 clock cycles

• Bank precharge delay (TRP)

The TRP bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7
clock cycles may be selected. For example:

• TRP = 000
No effect

• TRP = 001
1 clock cycle

ADSP-BF537 Blackfin Processor Hardware Reference 6-75

External Bus Interface Unit

• TRP = 010
2 clock cycles

• TRP = 111
7 clock cycles

• RAS to CAS delay (TRCD)

The TRCD bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tRCD value Any value between 1 and 7
clock cycles may be selected. For example:

• TRCD = 000
 Reserved, no effect

• TRCD = 001
1 clock cycle

• TRCD = 010
2 clock cycles

• TRCD = 111
7 clock cycles

• Write to precharge delay (TWR)

The TWR bits in the SDRAM memory global control register
(EBIU_SDGCTL) select the tWR value. Any value between 1 and 3
clock cycles may be selected. For example:

• TWR = 00
Reserved

• TWR = 01
1 clock cycle

SDC Registers

6-76 ADSP-BF537 Blackfin Processor Hardware Reference

• TWR = 10
2 clock cycles

• TWR = 11
3 clock cycles

• Power-up start delay (PUPSD)

The power-up start delay bit (PUPSD) optionally delays the
power-up start sequence for 15 SCLK cycles. This is useful for multi-
processor systems sharing an external SDRAM. If the bus has been
previously granted to the other processor before power-up and
self-refresh mode is used when switching bus ownership, then the
PUPSD bit can be used to guarantee a sufficient period of inactivity
from self-refresh to the first Precharge command in the power-up
sequence in order to meet the exit self-refresh time (tXSR) of the
SDRAM.

• Power-up sequence mode (PSM)

If the PSM bit is set to 1, the SDC command sequence is:

1. Precharge all

2. Mode register set

3. 8 auto-refresh cycles

If the PSM bit is set to 0, the SDC command sequence is:

1. Precharge all

2. 8 auto-refresh cycles

3. Mode register set

ADSP-BF537 Blackfin Processor Hardware Reference 6-77

External Bus Interface Unit

• Power-up sequence start enable (PSSE)

The PSM and PSSE bits work together to specify and trigger an
SDRAM power-up (initialization) sequence. Two events must
occur before the SDC does the SDRAM power-up sequence:

• The PSSE bit must be set to 1 to enable the SDRAM
power-up sequence.

• A read or write access must be done to enabled SDRAM
address space in order to have the external bus granted to
the SDC so that the SDRAM power-up sequence may
occur.

The SDRAM power-up sequence occurs and is followed immedi-
ately by the read or write transfer to SDRAM that was used to
trigger the SDRAM power-up sequence. Note there is a latency for
this first access to SDRAM because the SDRAM power-up
sequence takes many cycles to complete.

 Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

• Self-refresh setting (SRFS)

The SRFS and SCTLE bits work together in EBIU_SDGCTL for
self-refresh control:

• SRFS = 0
Disable self-refresh mode

• SRFS = 1
Enter self-refresh mode

When SRFS is set to 1, self-refresh mode is triggered. Once the
SDC completes any active transfers, the SDC executes a sequence
of commands to put the SDRAM into self-refresh mode.

SDC Registers

6-78 ADSP-BF537 Blackfin Processor Hardware Reference

When the device comes out of reset, the SCKE pin is driven high. If
it is necessary to enter self-refresh mode after reset, program
SRFS = 1.

Enter Self-Refresh Mode

When SRFS is set to 1, once the SDC enters an idle state it issues a
precharge all command and then issues a self-refresh entry com-
mand. If an internal access is pending, the SDC delays issuing the
self-refresh entry command until it completes the pending
SDRAM access and any subsequent pending access requests.

Once the SDRAM device enters into self-refresh mode, the
SDRAM controller asserts the SDSRA bit in the SDRAM control
status register (EBIU_SDSTAT).

Note once the SRFS bit is set to 1, the SDC enters self-refresh mode
when it finishes pending accesses. There is no way to cancel the
entry into self-refresh mode.

Before disabling the CLKOUT pin with the SCTLE bit, be sure to place
the SDC in self-refresh mode (SRFS bit). If this is not done, the
SDRAM is unclocked and will not work properly.

Exit Self-Refresh Mode

The SDRAM device exits self-refresh mode only when the SDC
receives core or DMA requests. In conjunction with the SRFS bit, 2
possibilities are given to exit self-refresh mode:

1. If the SRFS bit keeps set before the core/DMA request, the SDC
exits self-refresh mode temporarily for a single request and returns
back to self-refresh mode until a new request is latched.

2. If the SRFS bit is cleared before the core/DMA request, the SDC
exits self-refresh mode and returns to auto-refresh mode.

ADSP-BF537 Blackfin Processor Hardware Reference 6-79

External Bus Interface Unit

Before exiting self-refresh mode with the SRFS bit, be sure to enable
the CLKOUT pin (SCTLE bit). If this is not done, the SDRAM is
unclocked and will not work properly.

• External buffering enabled (EBUFE)

With the total I/O width of 16 bits, a maximum of 4x4 bits can be
connected in parallel in order to increase the system’s overall page
size.

To meet overall system timing requirements, systems that employ
several SDRAM devices connected in parallel may require buffer-
ing between the processor and multiple SDRAM devices. This
buffering generally consists of a register and driver.

To meet such timing requirements and to allow intermediary regis-
tration, the SDC supports pipelining of SDRAM address and
control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

• EBUFE = 0
Disable external buffering timing

• EBUFE = 1
Enable external buffering timing

When EBUFE = 1, the SDRAM controller delays the data in write
accesses by one cycle, enabling external buffer registers to latch the
address and controls. In read accesses, the SDRAM controller sam-
ples data one cycle later to account for the one-cycle delay added by
the external buffer registers. When external buffering timing is
enabled, the latency of all accesses is increased by one cycle.

 Connection of 4 x 4 bits rather than 1 x 16 bits increases the page
size by a factor of 4, thus resulting in fewer off page penalties.

SDC Registers

6-80 ADSP-BF537 Blackfin Processor Hardware Reference

• Fast back to back read to write (FBBRW)

The FBBRW bit enables an SDRAM read followed by write to occur
on consecutive cycles. In many systems, this is not possible because
the turn-off time of the SDRAM data pins is too long, leading to
bus contention with the succeeding write from the processor.
When this bit is 0, a clock cycle is inserted between read accesses
followed immediately by write accesses.

• Extended mode register enabled (EMREN)

The EMREN bit enables programming of the extended mode register
during startup. The extended mode register is used to control
SDRAM power consumption in certain mobile low power
SDRAMs. If the EMREN bit is enabled, then the TCSR and PASR[1:0]
bits control the value written to the extended mode register.

• Temperature compensated self-refresh (TCSR)

The TCSR bit signals to the SDRAM the worst case temperature
range for the system, and thus how often the SDRAM internal
banks need to be refreshed during self-refresh.

• Control disable during bus grant (CDDBG)

The CDDBG bit is used to enable or disable the SDRAM control sig-
nals when the external memory interface is granted to an external
controller. If this bit is set to a 1, then the control signals are
three-stated when bus grant is active. Otherwise, these signals con-
tinue to be driven during grant. If the bit is set and the external bus
is granted, all SDRAM internal banks are assumed to have been
changed by the external controller. This means a precharge is
required on each bank prior to use after control of the external bus
is re-established. The control signals affected by this pin are SRAS,
SCAS, SWE, SMS, SA10, SCKE, and CLKOUT.

Note all reserved bits in this register must always be written with 0s.

ADSP-BF537 Blackfin Processor Hardware Reference 6-81

External Bus Interface Unit

EBIU_SDSTAT Register
The SDRAM control status register (EBIU_SDSTAT), shown in Figure 6-18,
provides information on the state of the SDC. This information can be
used to determine when it is safe to alter SDC control parameters or it can
be used as a debug aid.

• SDC idle (SDCI)

If the SDCI bit is 0, the SDC is performing a user access or
auto-refresh. If the SDCI bit is 1, no commands are issued and the
SDC is in idle state.

• SDC self-refresh active (SDSRA)

If the SDSRA bit is 0, the SDC is performing auto-refresh (SCKE pin
= 0). If the SDSRA bit is 1, the SDC performs self-refresh mode
(SCKE pin = 1).

Figure 6-18. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C
SDRAM EAB sticky error status. Write 1
to this bit to clear it.
0 - No error detected
1 - EAB access generated an error

0 - Will not power up on next SDRAM
access (SDRAM already powered up)

1 - Will power up on next SDRAM
access if SDRAM enabled

SDRAM controller idle
0 - SDC is busy performing

an access or an Auto-
Refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh

mode

SDRAM powerup active
0 - SDC not in powerup

sequence
1 - SDC in powerup

sequence

Reset = 0x0008

BGSTAT
Bus grant status
0 - Bus not granted
1 - Bus granted

0xFFC0 0A1C

SDC Programming Examples

6-82 ADSP-BF537 Blackfin Processor Hardware Reference

• SDC powerup active (SDPUA)

If the SDPUA bit is 0, the SDC is not in powerup sequence. If the
SDPUA bit is 1, the SDC performs the powerup sequence.

• SDC powerup delay (SDRS)

If the SDRS bit is 0, the SDC has already powered up. If the SDRS bit
is 1, the SDC will still perform the powerup sequence.

• SDC EAB sticky error status (SDEASE)

If the SDEASE bit is 0, there were no errors detected on the EAB
core bus. If the SDEASE bit is 1, there were errors detected on the
EAB core bus. The SDEASE bit is sticky. Once it has been set, soft-
ware must explicitly write a 1 to the bit to clear it. Writes have no
effect on the other status bits, which are updated by the SDC only.

• Bus grant status (BGSTAT).

If the BGSTAT bit is 0, the bus is not granted. If the BGSTAT bit is 1,
the bus is granted.

SDC Programming Examples
Listing 6-4 through Listing 6-7 provide examples for working with the
SDC.

Listing 6-4. SDRAM Init

//SDRAM Refresh Rate Setting

P0.H = hi(EBIU_SDRRC);

P0.L = lo(EBIU_SDRRC);

R0 = 0x406 (z);

w[P0] = R0;

ADSP-BF537 Blackfin Processor Hardware Reference 6-83

External Bus Interface Unit

//SDRAM Memory Bank Control Register

P0.H = hi(EBIU_SDBCTL);

P0.L = lo(EBIU_SDBCTL);

R0 = EBCAW_9 | //Page size 512

EBSZ_64 | //64 MB of SDRAM

EBE; //SDRAM enable

w[P0] = R0;

//SDRAM Memory Global Control Register

P0.H = hi(EBIU_SDGCTL);

P0.L = lo(EBIU_SDGCTL);

R0.H = hi(~CDDBG & // Control disable during bus grant off

~FBBRW & // Fast back to back read to write off

~EBUFE & // External buffering enabled off

~SRFS & // Self-refresh setting off

~PSM & // Powerup sequence mode (PSM) first

~PUPSD & // Powerup start delay (PUPSD) off

TCSR | // Temperature compensated self-refresh at 85

EMREN | // Extended mode register enabled on

PSS | // Powerup sequence start enable (PSSE) on

TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)

TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)

TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)

TRAS_6 | // Bank activate command delay TRAS = 4

PASR_B0 | // Partial array self refresh Only SDRAM Bank0

CL_3 | // CAS latency

SCTLE) ; // SDRAM clock enable

R0.L = lo(~CDDBG & // Control disable during bus grant off

~FBBRW & // Fast back to back read to write off

~EBUFE & // External buffering enabled off

~SRFS & // Self-refresh setting off

~PSM & // Powerup sequence mode (PSM) first

SDC Programming Examples

6-84 ADSP-BF537 Blackfin Processor Hardware Reference

 ~PUPSD & // Powerup start delay (PUPSD) off

TCSR | // Temperature compensated self-refresh at 85

EMREN | // Extended mode register enabled on

PSS | // Powerup sequence start enable (PSSE) on

TWR_2 | // Write to precharge delay TWR = 2 (14-15 ns)

TRCD_3 | // RAS to CAS delay TRCD =3 (15-20ns)

TRP_3 | // Bank precharge delay TRP = 2 (15-20ns)

TRAS_6 | // Bank activate command delay TRAS = 4

PASR_B0 | // Partial array self refresh Only SDRAM Bank0

CL_3 | // CAS latency

SCTLE) ; // SDRAM clock enable

[P0] = R0;

SSYNC;

Listing 6-5. 16-Bit Core Transfers to SDRAM

.section L1_data_b;

.byte2 source[N] = 0x1122, 0x3344, 0x5566, 0x7788;

.section SDRAM;

.byte2 dest[N];

.section L1_code;

I0.L = lo(source);

I0.H = hi(source);

I1.L = lo(dest);

I1.H = hi(dest);

R0.L = w[I0++];

p5=N-1;

lsetup(lp, lp) lc0=p5;

lp:R0.L = w[I0++] || w[I1++] = R0.L;

w[I1++] = R0.L;

ADSP-BF537 Blackfin Processor Hardware Reference 6-85

External Bus Interface Unit

Listing 6-6. 8-Bit Core Transfers to SDRAM Using Byte Mask
SDQM[1:0] Pins

.section L1_data_b;

.byte source[N] = 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88;

.section SDRAM;

.byte dest[N];

p0.L = lo(source);

p0.H = hi(source);

p1.L = lo(dest);

p1.H = hi(dest);

p5=N;

lsetup(start, end) lc0=p5;

start: R0 = b[p0++](z);

end: b[p1++] = R0; /* byte data masking */

Listing 6-7. Self-Refresh Mode Power Savings With Disabled CLKOUT

R0.L = w[I1++]; /* last SDRAM access */

/*--*/

ssync; /* force last SDRAM access to finish */

P0.L = lo(EBIU_SDGCTL);

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitset(R1, bitpos(SRFS)); /* enter self-refresh mode */

[P0] = R1;

ssync;

/*---*/

P0.L = lo(EBIU_SDSTAT);

P0.H = hi(EBIU_SDSTAT);

SelfRefreshStatus:

R0 = [P0];

SDC Programming Examples

6-86 ADSP-BF537 Blackfin Processor Hardware Reference

ssync;

cc = bittst(R0, bitpos(SDSRA)); /* poll self-refresh status */

if !cc jump SelfRefreshStatus;

/*---*/

P0.L = lo(EBIU_SDGCTL);

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitclr(R1, bitpos(SCTLE)); /* disable CLKOUT */

[P0] = R1;

ssync;

**

/* SDRAM in self-refresh mode */

**

P0.L = lo(EBIU_SDGCTL); /* release CLKOUT from self-refresh */

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitset(R1, bitpos(SCTLE)); /* enable CLKOUT */

[P0] = R1

ssync;

/*---*/

P0.L = lo(EBIU_SDGCTL); /* release SDRAM from self-refresh */

P0.H = hi(EBIU_SDGCTL);

R1 = [P0];

bitclr(R1, bitpos(SRFS)); /* clear SRFS bit */

[P0] = R1

ssync;

/*---*/

 R0.L = w[I1++]; /* perform next SDRAM access */

ADSP-BF537 Blackfin Processor Hardware Reference 7-1

7 PARALLEL PERIPHERAL
INTERFACE

This chapter describes the Parallel Peripheral Interface (PPI). Following
an overview and a list of key features are a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

This chapter contains:

• “Overview” on page 7-2

• “Features” on page 7-2

• “Interface Overview” on page 7-3

• “Description of Operation” on page 7-6

• “Functional Description” on page 7-7

• “Programming Model” on page 7-24

• “PPI Registers” on page 7-27

• “Programming Examples” on page 7-36

Overview

7-2 ADSP-BF537 Blackfin Processor Hardware Reference

Overview
The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins. The highest system throughput is achieved with 8-bit data, since two
8-bit data samples can be packed as a single 16-bit word. In such a case,
the earlier sample is placed in the 8 least significant bits (LSBs).

Features
The PPI includes these features:

• Half duplex, bidirectional parallel port

• Supports up to 16 bits of data

• Programmable clock and frame sync polarities

• ITU-R 656 support

• Interrupt generation on overflow and underrun

Typical peripheral devices that can be interfaced to the PPI port:

• A/D converters

• D/A converters

• LCD panels

• CMOS sensors

• Video encoders

• Video decoders

ADSP-BF537 Blackfin Processor Hardware Reference 7-3

Parallel Peripheral Interface

Interface Overview
Figure 7-1 shows a block diagram of the PPI.

The PPI_CLK pin accepts an external clock input. It cannot source a clock
internally.

 When the PPI_CLK is not free-running, there may be additional
latency cycles before data gets received or transmitted. In RX and
TX modes, there may be at least 2 cycles latency before valid data is
received or transmitted.

Table 7-1 shows the pin interface for the PPI. Enabling a particular pin
involves writing to the appropriate PORTx_FER register and, if applicable,
the PORT_MUX register. To configure for particular PPI pin usage, program
the PORT_MUX, PORTF_FER, and PORTG_FER MMRs as shown in Table 7-1.

Figure 7-1. PPI Block Diagram

DATA BUS

PPI_CLK

16 BITS
*

16-DEEP
FIFO

FS1

PPI_CONTROL

PACK/
UNPACK

PPI_COUNT

PPI_STATUS

PPI_DELAY

PPI_FRAME

GATE SYNC
FS2

FS3

DMA
CONTROLLER

PAB

DAB

Interface Overview

7-4 ADSP-BF537 Blackfin Processor Hardware Reference

The 16 PPI data pins are found on port G. The upper data lines are multi-
plexed with SPORT1 signals. While 8-bit PPI operation still enables full
SPORT1 functionality, 10-bit PPI configuration disables the secondary
data signals of SPORT1. If 13 or fewer data lines are required for PPI
operation, the transmit channel of SPORT1 remains fully functional. The
three control bits PGSE, PGRE, and PGTE in the PORT_MUX register control
this granularity of signal multiplexing.

The PPI clock and the three PPI frame sync signals are found on port F.
The PPI_CLK not only supplies the PPI module itself, it also can clock all
of the eight timers to work synchronously with the PPI. Depending on
PPI operation mode, the PPI_CLK can either equal or invert the TMRCLK
input.

The three frame sync signals are multiplexed with the three timer signals
TMR0, TMR1, and TMR2. Timer 0 and timer 1 are internally looped back to
the PPI module and can therefore be used for internal frame sync genera-
tion. If FS1 and FS2 are applied externally, timer 0 and timer 1 must
disable their outputs by setting the OUT_DIS bit in the TIMER0_CONFIG and
TIMER1_CONFIG registers, when working in PWM_OUT mode. Only the third
frame sync input FS3, if used, must be explicitly enabled in the PORT_MUX
register by setting the PFFE bit.

All pins of port F and port G function as GPIOs by default and must be
individually enabled for either PPI or any other peripheral operation by
setting the appropriate bits in the function enable registers PORTF_FER and
PORTG_FER. For more information, refer to Chapter 14, “General-Purpose
Ports”. Since TMR0 and TMR1 are connected to the PPI module internally,
the respective pins can be used in GPIO mode, if no external device is lis-
tening to the frame syncs.

ADSP-BF537 Blackfin Processor Hardware Reference 7-5

Parallel Peripheral Interface

Table 7-1. PPI Pins

Pin Name (Function) PORT_MUX PORTF_FER PORTG_FER

PPI D0 (PPI data 0) Set bit 0 (PG0)

PPI D1 (PPI data 1) Set bit 1 (PG1)

PPI D2 (PPI data 2) Set bit 2 (PG2)

PPI D3 (PPI data 3) Set bit 3 (PG3)

PPI D4 (PPI data 4) Set bit 4 (PG4)

PPI D5 (PPI data 5) Set bit 5 (PG5)

PPI D6 (PPI data 6) Set bit 6 (PG6)

PPI D7 (PPI data 7) Set bit 7 (PG7)

PPI D8 (PPI data 8) Clear bit 9 (PGSE) Set bit 8 (PG8)

PPI D9 (PPI data 9) Clear bit 9 (PGSE) Set bit 9 (PG9)

PPI D10 (PPI data 10) Clear bit 10 (PGRE) Set bit 10 (PG10)

PPI D11 (PPI data 11) Clear bit 10 (PGRE) Set bit 11 (PG11)

PPI D12 (PPI data 12) Clear bit 10 (PGRE) Set bit 12 (PG12)

PPI D13 (PPI data 13) Clear bit 11 (PGTE) Set bit 13 (PG13)

PPI D14 (PPI data 14) Clear bit 11 (PGTE) Set bit 14 (PG14)

PPI D15 (PPI data 15) Clear bit 11 (PGTE) Set bit 15 (PG15)

PPI_CLK (PPI clock) Set bit 15 (PF15)

PPI_FS1 (PPI frame sync 1) Set bit 9 (PF9)

PPI_FS2 (PPI frame sync 2) Set bit 8 (PF8)

PPI_FS3 (PPI frame sync 3) Set bit 8 (PFFE) Set bit 7 (PF7)

Description of Operation

7-6 ADSP-BF537 Blackfin Processor Hardware Reference

Description of Operation
Table 7-2 shows all the possible modes of operation for the PPI.

Table 7-2. PPI Possible Operating Modes

PPI Mode # of
Syncs

PORT_
DIR

PORT_
CFG

XFR_T
YPE

POLC POLS FLD_
SEL

RX mode, 0 frame syncs,
external trigger

0 0 11 11 0 or 1 0 or 1 0

RX mode, 0 frame syncs,
internal trigger

0 0 11 11 0 or 1 0 or 1 1

RX mode, 1 external frame
sync

1 0 00 11 0 or 1 0 or 1 0

RX mode, 2 or 3 external
frame syncs

3 0 10 11 0 or 1 0 or 1 0

RX mode, 2 or 3 internal
frame syncs

3 0 01 11 0 or 1 0 or 1 0

RX mode, ITU-R 656,
active field only

embed-
ded

0 00 00 0 or 1 0 0 or 1

RX mode, ITU-R 656, ver-
tical blanking only

embed-
ded

0 00 10 0 or 1 0 0

RX mode, ITU-R 656,
entire field

embed-
ded

0 00 01 0 or 1 0 0

TX mode, 0 frame syncs 0 1 00 00 0 or 1 0 or 1 0

TX mode, 1 internal or
external frame sync

1 1 00 11 0 or 1 0 or 1 0

TX mode, 2 external frame
syncs

2 1 01 11 0 or 1 0 or 1 0

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed to
FS1 assertion

3 1 01 11 0 or 1 0 or 1 0

TX mode, 2 or 3 internal
frame syncs, FS3 sync’ed to
FS2 assertion

3 1 11 11 0 or 1 0 or 1 0

ADSP-BF537 Blackfin Processor Hardware Reference 7-7

Parallel Peripheral Interface

Functional Description
The following sections describe the function of the PPI.

ITU-R 656 Modes
The PPI supports three input modes for ITU-R 656-framed data. These
modes are described in this section. Although the PPI does not explicitly
support an ITU-R 656 output mode, recommendations for using the PPI
for this situation are provided as well.

ITU-R 656 Background

According to the ITU-R 656 recommendation (formerly known as
CCIR-656), a digital video stream has the characteristics shown in
Figure 7-2, and Figure 7-3 for 525/60 (NTSC) and 625/50 (PAL) sys-
tems. The processor supports only the bit-parallel mode of ITU-R 656.
Both 8- and 10-bit video element widths are supported.

In this mode, the Horizontal (H), Vertical (V), and Field (F) signals are
sent as an embedded part of the video datastream in a series of bytes that
form a control word. The Start of Active Video (SAV) and End of Active
Video (EAV) signals indicate the beginning and end of data elements to
read in on each line. SAV occurs on a 1-to-0 transition of H, and EAV
begins on a 0-to-1 transition of H. An entire field of video is comprised of
active video + horizontal blanking (the space between an EAV and SAV
code) and vertical blanking (the space where V = 1). A field of video com-
mences on a transition of the F bit. The “odd field” is denoted by a value
of F = 0, whereas F = 1 denotes an even field. Progressive video makes no
distinction between field 1 and field 2, whereas interlaced video requires
each field to be handled uniquely, because alternate rows of each field
combine to create the actual video image.

Functional Description

7-8 ADSP-BF537 Blackfin Processor Hardware Reference

The SAV and EAV codes are shown in more detail in Table 7-3. Note
there is a defined preamble of three bytes (0xFF, 0x00, 0x00), followed by
the XY status word, which, aside from the F (field), V (vertical blanking)
and H (horizontal blanking) bits, contains four protection bits for sin-
gle-bit error detection and correction. Note F and V are only allowed to
change as part of EAV sequences (that is, transition from H = 0 to H = 1).
The bit definitions are as follows:

• F = 0 for field 1

• F = 1 for field 2

• V = 1 during vertical blanking

• V = 0 when not in vertical blanking

• H = 0 at SAV

• H = 1 at EAV

• P3 = V XOR H

• P2 = F XOR H

Figure 7-2. ITU-R 656 8-Bit Parallel Data Stream for NTSC (PAL)
Systems

4 268 (280 FOR PAL) 4 1440

F
F

0
0

0
0

X
Y

8
0

1
0

8
0

1
0

8
0

1
0

F
F

0
0

0
0

X
Y

C
B

Y C
R

Y C
B

Y C
R

Y C
R

Y F
F

DIGITAL
VIDEO
STREAM

START OF
NEXT LINE

EAV
CODE
(H = 1)

SAV
CODE
(H = 0)

HORIZONTAL
BLANKING

END OF ACTIVE VIDEO START OF ACTIVE VIDEO

1716 (1728 FOR PAL)

ADSP-BF537 Blackfin Processor Hardware Reference 7-9

Parallel Peripheral Interface

• P1 = F XOR V

• P0 = F XOR V XOR H

In many applications, video streams other than the standard NTSC/PAL
formats (for example, CIF, QCIF) can be employed. Because of this, the
processor interface is flexible enough to accommodate different row and
field lengths. In general, as long as the incoming video has the proper
EAV/SAV codes, the PPI can read it in. In other words, a CIF image
could be formatted to be “656-compliant,” where EAV and SAV values
define the range of the image for each line, and the V and F codes can be
used to delimit fields and frames.

Figure 7-3. Typical Video Frame Partitioning for NTSC/PAL Systems for
ITU-R BT.656-4

LINE 4

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1

FIELD 2

LINE 266

LINE 313

LINE 625

LINE 3

LINE 1

EAV SAV

EAV SAV

1

20

264

283

525

1

23

311

336

624

625

LINE
NUMBER

LINE
NUMBER

F H
(SAV)

H
(EAV)

H
(SAV)

H
(EAV)

F

V

V

1-3,
266-282

4-19,
264-265

20-263

283-525

1-22,
311-312

23-310

313-335,
624-625

336-623

1

1 1

1

1

1

1

1

0

0 0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

0

0

1

1

0

0

LINE #

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

VERTICAL
BLANKING

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

H
O

R
IZ

O
N

T
A

L
B

L
A

N
K

IN
G

FIELD 1

FIELD 2

Functional Description

7-10 ADSP-BF537 Blackfin Processor Hardware Reference

ITU-R 656 Input Modes

Figure 7-4 shows a general illustration of data movement in the ITU-R
656 input modes. In the figure, the clock CLK is either provided by the
video source or supplied externally by the system.

There are three submodes supported for ITU-R 656 inputs: entire field,
active video only, and vertical blanking interval only. Figure 7-5 shows
these three submodes.

Entire Field

In this mode, the entire incoming bitstream is read in through the PPI.
This includes active video as well as control byte sequences and ancillary
data that may be embedded in horizontal and vertical blanking intervals.

Table 7-3. Control Byte Sequences for 8-Bit and 10-Bit ITU-R 656
Video

8-Bit Data 10-Bit Data

D9
(MSB)

D8 D7 D6 D5 D4 D3 D2 D1 D0

Preamble 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Control Byte 1 F V H P3 P2 P1 P0 0 0

Figure 7-4. ITU-R 656 Input Modes

PPIx

PPI_CLK

PPI

CLK

'656
COMPATIBLE

VIDEOSOURCE

ITU-R 656 INPUT MODE

8- OR 10-BIT DATA WITH
EMBEDDED CONTROL

ADSP-BF537 Blackfin Processor Hardware Reference 7-11

Parallel Peripheral Interface

Data transfer starts immediately after synchronization to field 1 occurs,
but does not include the first EAV code that contains the F = 0
assignment.

 Note the first line transferred in after enabling the PPI will be miss-
ing its first 4-byte preamble. However, subsequent lines and frames
should have all control codes intact.

One side benefit of this mode is that it enables a “loopback” feature
through which a frame or two of data can be read in through the PPI and
subsequently output to a compatible video display device. Of course, this
requires multiplexing on the PPI pins, but it enables a convenient way to
verify that 656 data can be read into and written out from the PPI.

Active Video Only

This mode is used when only the active video portion of a field is of inter-
est, and not any of the blanking intervals. The PPI ignores (does not read
in) all data between EAV and SAV, as well as all data present when V = 1.
In this mode, the control byte sequences are not stored to memory; they
are filtered out by the PPI. After synchronizing to the start of Field 1, the
PPI ignores incoming samples until it sees an SAV.

 In this mode, the user specifies the number of total (active plus ver-
tical blanking) lines per frame in the PPI_FRAME MMR.

Figure 7-5. ITU-R 656 Input Submodes

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

BLANKING BLANKING BLANKING

FIELD 1
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 2
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

FIELD 1
ACTIVE VIDEO

ENTIRE FIELD SENT BLANKING ONLY SENTACTIVE VIDEO ONLY SENT

Functional Description

7-12 ADSP-BF537 Blackfin Processor Hardware Reference

Vertical Blanking Interval (VBI) Only

In this mode, data transfer is only active while V = 1 is in the control byte
sequence. This indicates that the video source is in the midst of the Verti-
cal Blanking Interval (VBI), which is sometimes used for ancillary data
transmission. The ITU-R 656 recommendation specifies the format for
these ancillary data packets, but the PPI is not equipped to decode the
packets themselves. This task must be handled in software. Horizontal
blanking data is logged where it coincides with the rows of the VBI.
Control byte sequence information is always logged. The user specifies the
number of total lines (active plus vertical blanking) per frame in the
PPI_FRAME MMR.

Note the VBI is split into two regions within each field. From the PPI’s
standpoint, it considers these two separate regions as one contiguous
space. However, keep in mind that frame synchronization begins at the
start of field 1, which doesn’t necessarily correspond to the start of vertical
blanking. For instance, in 525/60 systems, the start of field 1 (F = 0) cor-
responds to line 4 of the VBI.

ITU-R 656 Output Mode

The PPI does not explicitly provide functionality for framing an ITU-R
656 output stream with proper preambles and blanking intervals. How-
ever, with the TX mode with 0 frame syncs, this process can be supported
manually. Essentially, this mode provides a streaming operation from
memory out through the PPI. Data and control codes can be set up in
memory prior to sending out the video stream. With the 2D DMA
engine, this could be performed in a number of ways. For instance, one
line of blanking (H + V) could be stored in a buffer and sent out N times
by the DMA controller when appropriate, before proceeding to DMA
active video. Alternatively, one entire field (with control codes and blank-
ing) can be set up statically in a buffer while the DMA engine transfers
only the active video region into the buffer, on a frame-by-frame basis.

ADSP-BF537 Blackfin Processor Hardware Reference 7-13

Parallel Peripheral Interface

Frame Synchronization in ITU-R 656 Modes

Synchronization in ITU-R 656 modes always occurs at the falling edge of
F, the field indicator. This corresponds to the start of field 1. Conse-
quently, up to two fields might be ignored (for example, if field 1 just
started before the PPI-to-camera channel was established) before data is
received into the PPI.

Because all H and V signalling is embedded in the datastream in ITU-R
656 modes, the PPI_COUNT register is not necessary. However, the
PPI_FRAME register is used in order to check for synchronization errors.
The user programs this MMR for the number of lines expected in each
frame of video, and the PPI keeps track of the number of EAV-to-SAV
transitions that occur from the start of a frame until it decodes the
end-of-frame condition (transition from F = 1 to F = 0). At this time, the
actual number of lines processed is compared against the value in
PPI_FRAME. If there is a mismatch, the FT_ERR bit in the PPI_STATUS regis-
ter is asserted. For instance, if an SAV transition is missed, the current
field will only have NUM_ROWS – 1 rows, but resynchronization will reoccur
at the start of the next frame.

Upon completing reception of an entire field, the field status bit is toggled
in the PPI_STATUS register. This way, an interrupt service routine (ISR)
can discern which field was just read in.

General-Purpose PPI Modes
The general-purpose PPI modes are intended to suit a wide variety of data
capture and transmission applications. Table 7-4 summarizes these modes.
If a particular mode shows a given PPI_FSx frame sync not being used, this
implies that the pin is available for its alternate, multiplexed functions.

Functional Description

7-14 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 7-6 illustrates the general flow of the GP modes. The top of the
diagram shows an example of RX mode with 1 external frame sync. After
the PPI receives the hardware frame sync pulse (PPI_FS1), it delays for the
duration of the PPI_CLK cycles programmed into PPI_DELAY. The DMA
controller then transfers in the number of samples specified by PPI_COUNT.
Every sample that arrives after this, but before the next PPI_FS1 frame
sync arrives, is ignored and not transferred onto the DMA bus.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been read in, the sample counter reinitial-
izes to 0 and starts to count up to PPI_COUNT again. This situation
can cause the DMA channel configuration to lose synchronization
with the PPI transfer process.

Table 7-4. General-Purpose PPI Modes

GP PPI Mode PPI_FS1
Direction

PPI_FS2
Direction

PPI_FS3
Direction

Data
Direction

RX mode, 0 frame syncs, external
trigger

Input Not used Not used Input

RX mode, 0 frame syncs, internal
trigger

Not used Not used Not used Input

RX mode, 1 external frame sync Input Not used Not used Input

RX mode, 2 or 3 external frame syncs Input Input Input (if
used)

Input

RX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Input

TX mode, 0 frame syncs Not used Not used Not used Output

TX mode, 1 external frame sync Input Not used Not used Output

TX mode, 2 external frame syncs Input Input Not used Output

TX mode, 1 internal frame sync Output Not used Not used Output

TX mode, 2 or 3 internal frame syncs Output Output Output (if
used)

Output

ADSP-BF537 Blackfin Processor Hardware Reference 7-15

Parallel Peripheral Interface

The bottom of Figure 7-6 shows an example of TX mode, 1 internal frame
sync. After PPI_FS1 is asserted, there is a latency of 1 PPI_CLK cycle, and
then there is a delay for the number of PPI_CLK cycles programmed into
PPI_DELAY. Next, the DMA controller transfers out the number of samples
specified by PPI_COUNT. No further DMA takes place until the next
PPI_FS1 sync and programmed delay occur.

 If the next PPI_FS1 frame sync arrives before the specified
PPI_COUNT samples have been transferred out, the sync has priority
and starts a new line transfer sequence. This situation can cause the
DMA channel configuration to lose synchronization with the PPI
transfer process.

Figure 7-6. General Flow for GP Modes (Assumes Positive Assertion of
PPI_FS1)

INPUT

OUTPUT

PPI_COUNT

PPI_COUNT1 CYCLE
DELAY

PROG
DELAY

(PPI_DELAY)

PROG
DELAY

(PPI_DELAY)

FRAME
SYNC

(PPI_FS1)

FRAME
SYNC

(PPI_FS1)

SAMPLES
IGNORED

Functional Description

7-16 ADSP-BF537 Blackfin Processor Hardware Reference

Data Input (RX) Modes

The PPI supports several modes for data input. These modes differ chiefly
by the way the data is framed. Refer to Table 7-2 on page 7-6 for informa-
tion on how to configure the PPI for each mode.

No Frame Syncs

These modes cover the set of applications where periodic frame syncs are
not generated to frame the incoming data. There are two options for start-
ing the data transfer, both configured by the PPI_CONTROL register.

• External trigger: An external source sends a single frame sync (tied
to PPI_FS1) at the start of the transaction, when FLD_SEL = 0 and
PORT_CFG = b#11.

• Internal trigger: Software initiates the process by setting
PORT_EN = 1 with FLD_SEL = 1 and PORT_CFG = b#11.

All subsequent data manipulation is handled via DMA. For example, an
arrangement could be set up between alternating 1K memory buffers.
When one fills up, DMA continues with the second buffer, at the same
time that another DMA operation is clearing the first memory buffer for
reuse.

 Due to clock domain synchronization in RX modes with no frame
syncs, there may be a delay of at least 2 PPI_CLK cycles between
when the mode is enabled and when valid data is received. There-
fore, detection of the start of valid data should be managed by
software.

ADSP-BF537 Blackfin Processor Hardware Reference 7-17

Parallel Peripheral Interface

1, 2, or 3 External Frame Syncs

The frame syncs are level-sensitive signals. The 1-sync mode is intended
for Analog-to-Digital Converter (ADC) applications. The top part of
Figure 7-7 shows a typical illustration of the system setup for this mode.

The 3-sync mode shown at the bottom of Figure 7-7 supports video appli-
cations that use hardware signalling (HSYNC, VSYNC, FIELD) in accordance
with the ITU-R 601 recommendation. The mapping for the frame syncs
in this mode is PPI_FS1 = HSYNC, PPI_FS2 = VSYNC, PPI_FS3 = FIELD.
Refer to “Frame Synchronization in GP Modes” on page 7-21 for more
information about frame syncs in this mode.

A 2-sync mode is supported by not enabling the third frame sync pin in
the PORT_MUX and PORTF_FER registers.

2 or 3 Internal Frame Syncs

This mode can be useful for interfacing to video sources that can be slaved
to a master processor. In other words, the processor controls when to read
from the video source by asserting PPI_FS1 and PPI_FS2, and then reading
data into the PPI. The PPI_FS3 frame sync provides an indication of

Figure 7-7. RX Mode, External Frame Syncs

PPI
VIDEO

SOURCE

A/D
CONVERTER

PPIx

PPIx

PPI_CLK

PPI_CLKCLK

CLK

PPI_FS1

PPI_FS2

PPI_FS3

PPI_FS1

HSYNC

VSYNC

FIELD

FRAMESYNC

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

Functional Description

7-18 ADSP-BF537 Blackfin Processor Hardware Reference

which field is currently being transferred, but since it is an output, it can
simply be left floating if not used. Figure 7-8 shows a sample application
for this mode.

Data Output (TX) Modes

The PPI supports several modes for data output. These modes differ
chiefly by the way the data is framed. Refer to Table 7-2 on page 7-6 for
information on how to configure the PPI for each mode.

No Frame Syncs

In this mode, data blocks specified by the DMA controller are sent out
through the PPI with no framing. That is, once the DMA channel is con-
figured and enabled, and the PPI is configured and enabled, data transfers
will take place immediately, synchronized to PPI_CLK. See Figure 7-9 for
an illustration of this mode.

 In this mode, there is a delay of up to 16 SCLK cycles (for > 8-bit
data) or 32 SCLK cycles (for 8-bit data) between enabling the PPI
and transmission of valid data. Furthermore, DMA must be config-
ured to transmit at least 16 samples (for > 8-bit data) or 32 samples
(for 8-bit data).

Figure 7-8. RX Mode, Internal Frame Syncs

PPI
IMAGE

SOURCE

PPIx

CLKPPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA DATA

ADSP-BF537 Blackfin Processor Hardware Reference 7-19

Parallel Peripheral Interface

1 or 2 External Frame Syncs

In these modes, an external receiver can frame data sent from the PPI.
Both 1-sync and 2-sync modes are supported. The top diagram in
Figure 7-10 shows the 1-sync case, while the bottom diagram illustrates
the 2-sync mode.

 There is a mandatory delay of 1.5 PPI_CLK cycles, plus the value
programmed in PPI_DELAY, between assertion of the external frame
sync(s) and the transfer of valid data out through the PPI.

Figure 7-9. TX Mode, 0 Frame Syncs

Figure 7-10. TX Mode, 1 or 2 External Frame Syncs

CLK

PPIx

PPI_CLK

RECEIVER8- TO 16-BIT DATA

DATA
RECEIVER

DATA
RECEIVER

PPIx

CLK

CLK

PPI_CLK

PPI_FS1

PPI_FS2

8–16 BITS DATA

8–16 BITS DATA

DATA

DATA

PPI

PPI

PPI_CLK

PPIx

PPI_FS1FRAMESYNC

FRAMESYNC1

FRAMESYNC2

Functional Description

7-20 ADSP-BF537 Blackfin Processor Hardware Reference

1, 2, or 3 Internal Frame Syncs

The 1-sync mode is intended for interfacing to Digital-to-Analog Con-
verters (DACs) with a single frame sync. The top part of Figure 7-11
shows an example of this type of connection.

The 3-sync mode is useful for connecting to video and graphics displays,
as shown in the bottom part of Figure 7-11. A 2-sync mode is implicitly
supported by leaving PPI_FS3 unconnected in this case.

Figure 7-11. PPI GP Output

PPI VIDEO DISPLAY

PPIx CLK

PPI_CLK

PPI_CLK

PPI_FS1

PPI_FS2

HSYNC

VSYNC

8–16 BITS DATA

8–16 BITS DATA

D/A
CONVERTER

PPI_FS3

PPIx

PPI_FS1

CLK

FIELD

FRAMESYNC

1 FRAME
SYNC

3 FRAME
SYNCS

PPI

DATA

ADSP-BF537 Blackfin Processor Hardware Reference 7-21

Parallel Peripheral Interface

Frame Synchronization in GP Modes

Frame synchronization in GP modes operates differently in modes with
internal frame syncs than in modes with external frame syncs.

Modes With Internal Frame Syncs

In modes with internal frame syncs, PPI_FS1 and PPI_FS2 link directly to
the Pulsewidth Modulation (PWM) circuits of timer 0 and timer 1,
respectively. This allows for arbitrary pulse widths and periods to be pro-
grammed for these signals using the existing TIMERx registers. This
capability accommodates a wide range of timing needs. Note these PWM
circuits are clocked by PPI_CLK, not by SCLK (as during conventional timer
PWM operation). If PPI_FS2 is not used in the configured PPI mode,
timer 1 operates as it normally would, unrestricted in functionality. The
state of PPI_FS3 depends completely on the state of PPI_FS1 and/or
PPI_FS2, so PPI_FS3 has no inherent programmability.

 To program PPI_FS1 and/or PPI_FS2 for operation in an internal
frame sync mode:

1. Configure and enable DMA for the PPI. See “DMA Operation” on
page 7-24.

2. Configure the width and period for each frame sync signal via
TIMER0_WIDTH and TIMER0_PERIOD (for PPI_FS1), or TIMER1_WIDTH
and TIMER1_PERIOD (for PPI_FS2).

3. Set up TIMER0_CONFIG for PWM_OUT mode (for PPI_FS1). If used,
configure TIMER1_CONFIG for PWM_OUT mode (for PPI_FS2). This
includes setting CLK_SEL = 1 and TIN_SEL = 1 for each timer.

Functional Description

7-22 ADSP-BF537 Blackfin Processor Hardware Reference

4. Write to PPI_CONTROL to configure and enable the PPI.

5. Write to TIMER_ENABLE to enable timer 0 and/or timer 1.

 It is important to guarantee proper frame sync polarity between the
PPI and timer peripherals. To do this, make sure that if
PPI_CONTROL[15:14] = b#10 or b#11, the PULSE_HI bit is cleared in
TIMER0_CONFIG and TIMER1_CONFIG. Likewise, if
PPI_CONTROL[15:14] = b#00 or b#01, the PULSE_HI bit should be
set in TIMER0_CONFIG and TIMER1_CONFIG.

To switch to another PPI mode not involving internal frame syncs:

1. Disable the PPI (using PPI_CONTROL).

2. Disable the timers (using TIMER_DISABLE).

Modes With External Frame Syncs

In RX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins
become edge-sensitive inputs. In such a mode, timers 1 and 2 can be used
for a purpose not involving the TMR0 and TMR1 pins. However, timer access
to a TMRx pin is disabled when the PPI is using that pin for a PPI_FSx
frame sync input function. For modes that do not require PPI_FS2, timer
1 is not restricted in functionality and can be operated as if the PPI were
not being used (that is, the TMR1 pin becomes available for timer use as
well). For more information on configuring and using the timers, refer to
Chapter 15, “General-Purpose Timers”.

 In RX mode with 3 external frame syncs, the start of frame detec-
tion occurs where a PPI_FS2 assertion is followed by an assertion of
PPI_FS1 while PPI_FS3 is low. This happens at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

ADSP-BF537 Blackfin Processor Hardware Reference 7-23

Parallel Peripheral Interface

In TX modes with external frame syncs, the PPI_FS1 and PPI_FS2 pins are
treated as edge-sensitive inputs. In this mode, it is not necessary to config-
ure the timer(s) associated with the frame sync(s) as input(s), or to enable
them via the TIMER_ENABLE register. Additionally, the actual timers them-
selves are available for use, even though the timer pin(s) are taken over by
the PPI. In this case, there is no requirement that the timebase (configured
by TIN_SEL in TIMERx_CONFIG) be PPI_CLK.

However, if using a timer whose pin is connected to an external frame
sync, be sure to disable the pin via the OUT_DIS bit in TIMERx_CONFIG.
Then the timer itself can be configured and enabled for non-PPI use with-
out affecting PPI operation in this mode. For more information, see
Chapter 15, “General-Purpose Timers”.

Programming Model

7-24 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Model
The following sections describe the PPI programming model.

DMA Operation
The PPI must be used with the processor’s DMA engine. This section dis-
cusses how the two interact. For additional information about the DMA
engine, including explanations of DMA registers and DMA operations,
refer to Chapter 5, “Direct Memory Access”.

The PPI DMA channel can be configured for either transmit or receive
operation, and it has a maximum throughput of (PPI_CLK) x

(16 bits/transfer). In modes where data lengths are greater than 8 bits,
only one element can be clocked in per PPI_CLK cycle, and this results in
reduced bandwidth (since no packing is possible). The highest throughput
is achieved with 8-bit data and PACK_EN = 1 (packing mode enabled).
Note for 16-bit packing mode, there must be an even number of data
elements.

Configuring the PPI’s DMA channel is a necessary step toward using the
PPI interface. It is the DMA engine that generates interrupts upon com-
pletion of a row, frame, or partial-frame transfer. It is also the DMA
engine that coordinates the origination or destination point for the data
that is transferred through the PPI.

The processor’s 2D DMA capability allows the processor to be interrupted
at the end of a line or after a frame of video has been transferred, as well as
if a DMA error occurs. In fact, the specification of the DMAx_XCOUNT and
DMAx_YCOUNT MMRs allows for flexible data interrupt points. For example,
assume the DMA registers XMODIFY = YMODIFY = 1. Then, if a data frame
contains 320 x 240 bytes (240 rows of 320 bytes each), these conditions
hold:

ADSP-BF537 Blackfin Processor Hardware Reference 7-25

Parallel Peripheral Interface

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 1 (the DI_SEL
bit is located in DMAx_CONFIG) interrupts on every row transferred,
for the entire frame.

• Setting XCOUNT = 320, YCOUNT = 240, and DI_SEL = 0 interrupts
only on the completion of the frame (when 240 rows of 320 bytes
have been transferred).

• Setting XCOUNT = 38,400 (320 x 120), YCOUNT = 2, and DI_SEL = 1
causes an interrupt when half of the frame has been transferred,
and again when the whole frame has been transferred.

Following is the general procedure for setting up DMA operation with the
PPI. For details regarding configuration of DMA, refer to Chapter 5,
“Direct Memory Access”.

1. Configure DMA registers as appropriate for desired DMA operat-
ing mode.

2. Enable the DMA channel for operation.

3. Configure appropriate PPI registers.

4. Enable the PPI by writing a 1 to bit 0 in PPI_CONTROL.

5. If internally generated frame syncs are used, write to the
TIMER_ENABLE register to enable the timers linked to the PPI frame
syncs.

Figure 7-12 shows a flow diagram detailing the steps on how to configure
the PPI for the various modes of operation.

Programming Model

7-26 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 7-12. PPI Flow Diagram

2D DMA?

3 FS?

Y

N

PROGRAM
Y_COUNT AND

Y_MODIFY

N

START

WRITE PORTF_FER AND PORTG_FER

GP?
Y

N

Y
WRITE

PORT_MUX

PROGRAM
PPI_FRAME

FS?

N

PROGRAM
PPI_DELAY

EXTERNAL
TRIGGER?

N

Y

PROGRAM
PPI_COUNT

INTERNAL FS?

N

Y PROGRAM TIMER(S)
LINKED WITH FS

Y

WRITE DMAx_CONFIG TO ENABLE DMA

WRITE PPI_CONTROL TO ENABLE PPI

INTERNAL FS?

N

Y
WRITE TIMER_ENABLE TO ENABLE TIMERS

END

ADSP-BF537 Blackfin Processor Hardware Reference 7-27

Parallel Peripheral Interface

PPI Registers
The PPI has five memory-mapped registers (MMRs) that regulate its oper-
ation. These registers are the PPI control register (PPI_CONTROL), the PPI
status register (PPI_STATUS), the delay count register (PPI_DELAY), the
transfer count register (PPI_COUNT), and the lines per frame register
(PPI_FRAME).

Descriptions and bit diagrams for each of these MMRs are provided in the
following sections.

PPI_CONTROL Register
The PPI_CONTROL register configures the PPI for operating mode, control
signal polarities, and data width of the port. See Figure 7-13 for a bit dia-
gram of this MMR.

The POLC and POLS bits allow for selective signal inversion of the PPI_CLK
and PPI_FS1/PPI_FS2 signals, respectively. This provides a mechanism to
connect to data sources and receivers with a wide array of control signal
polarities. Often, the remote data source/receiver also offers configurable
signal polarities, so the POLC and POLS bits simply add increased flexibility.

The DLEN[2:0] field is programmed to specify the width of the PPI port in
any mode. Note any width from 8 to 16 bits is supported, with the excep-
tion of a 9-bit port width. Any pins unused by the PPI as a result of the
DLEN setting are free for use in their other functions, as detailed in
Chapter 14, “General-Purpose Ports”.

 In ITU-R 656 modes, the DLEN field should not be configured for
anything greater than a 10-bit port width. If it is, the PPI will
reserve extra pins, making them unusable by other peripherals.

The SKIP_EN bit, when set, enables the selective skipping of data elements
being read in through the PPI. By ignoring data elements, the PPI is able
to conserve DMA bandwidth.

PPI Registers

7-28 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 7-13. PPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Control Register (PPI_CONTROL)

0 - PPI disabled
1 - PPI enabled

FLD_SEL (Active Field Select)

PORT_DIR (Direction)

XFR_TYPE[1:0] (Transfer
Type)

PORT_CFG[1:0] (Port
Configuration)

PORT_EN (Enable)

DLEN[2:0] (Data Length)
000 - 8 bits
001 - 10 bits
010 - 11 bits
011 - 12 bits
100 - 13 bits
101 - 14 bits
110 - 15 bits
111 - 16 bits

POLS

0 - PPI in Receive mode (input)
1 - PPI in Transmit mode

(output)

In Input mode:
00 - ITU-R 656, Active Field Only
01 - ITU-R 656, Entire Field
10 - ITU-R 656, Vertical Blanking

Only
11 - Non-ITU-R 656 mode
In Output mode:
00, 01, 10 - Sync-less Output

mode
11 - Output mode with 1, 2, or

3 frame syncs

Reset = 0x0000

In ITU-R 656 modes, when XFR_TYPE = 00:
0 - Field 1
1 - Fields 1 and 2
In RX mode with external frame sync, when PORT_CFG = 11:
0 - External trigger
1 - Internal trigger

0 - PPI_FS1 and
PPI_FS2 are treated
as rising edge
asserted

1 - PPI_FS1 and
PPI_FS2 are treated
as falling edge
asserted

SKIP_EN (Skip Enable)

SKIP_EO (Skip Even Odd)
In ITU-R 656 and GP Input modes:
0 - Skip odd-numbered elements
1 - Skip even-numbered elements

In ITU-R 656 and GP Input modes:
0 - Skipping disabled
1 - Skipping enabled
PACK_EN (Packing Mode Enable)
0 - Disabled
1 - Output mode, unpacking enabled;

Input mode, packing enabled

In non-ITU-R 656 Input modes
(PORT_DIR = 0, XFR_TYPE = 11):
00 - 1 external frame sync
01 - 2 or 3 internal frame syncs
10 - 2 or 3 external frame syncs
11 - 0 frame syncs, triggered
In Output modes with frame syncs
(PORT_DIR = 1, XFR_TYPE = 11):
00 - 1 frame sync
01 - 2 or 3 frame syncs
10 - Reserved
11 - Sync PPI_FS3 to assertion of

PPI_FS2 rather than of
PPI_FS1.

0xFFC0 1000

POLC
0 - PPI samples data on rising

edge and drives data on
falling edge of PPI_CLK

1 - PPI samples data on falling
edge and drives data on
rising edge of PPI_CLK

ADSP-BF537 Blackfin Processor Hardware Reference 7-29

Parallel Peripheral Interface

When the SKIP_EN bit is set, the SKIP_EO bit allows the PPI to ignore
either the odd or the even elements in an input datastream. This is useful,
for instance, when reading in a color video signal in YCbCr format (Cb,
Y, Cr, Y, Cb, Y, Cr, Y...). Skipping every other element allows the PPI to
only read in the luma (Y) or chroma (Cr or Cb) values. This could also be
useful when synchronizing two processors to the same incoming video
stream. One processor could handle luma processing and the other (whose
SKIP_EO bit is set differently from the first processor’s) could handle
chroma processing. This skipping feature is valid in ITU-R 656 modes
and RX modes with external frame syncs.

The PACK_EN bit only has meaning when the PPI port width (selected by
DLEN[2:0]) is 8 bits. Every PPI_CLK-initiated event on the DMA bus (that
is, an input or output operation) handles 16-bit entities. In other words,
an input port width of 10 bits still results in a 16-bit input word for every
PPI_CLK; the upper 6 bits are 0s. Likewise, a port width of 8 bits also
results in a 16-bit input word, with the upper 8 bits all 0s. In the case of
8-bit data, it is usually more efficient to pack this information so that
there are two bytes of data for every 16-bit word. This is the function of
the PACK_EN bit. When set, it enables packing for all RX modes.

Consider this data transported into the PPI via DMA: 0xCE, 0xFA, 0xFE,
0xCA....

• With PACK_EN set:

This is read into the PPI, configured for an 8-bit port width: 0xCE,
0xFA, 0xFE, 0xCA...

This is transferred onto the DMA bus: 0xFACE, 0xCAFE, ...

• With PACK_EN cleared:

This is read into the PPI: 0xCE, 0xFA, 0xFE, 0xCA, ...

This is transferred onto the DMA bus: 0x00CE, 0x00FA, 0x00FE,
0x00CA, ...

PPI Registers

7-30 ADSP-BF537 Blackfin Processor Hardware Reference

For TX modes, setting PACK_EN enables unpacking of bytes. Consider this
data in memory, to be transported out through the PPI via DMA: 0xFACE
CAFE....(0xFA and 0xCA are the two Most Significant Bits (MSBs) of
their respective 16-bit words)

• With PACK_EN set:

This is DMAed to the PPI: 0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width (note LSBs are transferred first): 0xCE, 0xFA, 0xFE,
0xCA, ...

• With PACK_EN cleared:

This is DMAed to the PPI: 0xFACE, 0xCAFE, ...

This is transferred out through the PPI, configured for an 8-bit
port width: 0xCE, 0xFE, ...

The FLD_SEL bit is used primarily in the active field only ITU-R 656
mode. The FLD_SEL bit determines whether to transfer in only field 1 of
each video frame, or both fields 1 and 2. Thus, it allows a savings in DMA
bandwidth by transferring only every other field of active video.

The PORT_CFG[1:0] field is used to configure the operating mode of the
PPI. It operates in conjunction with the PORT_DIR bit, which sets the
direction of data transfer for the port. The XFR_TYPE[1:0] field is also
used to configure operating mode. See Table 7-2 on page 7-6 for the pos-
sible operating modes for the PPI.

Also note in Table 7-2 how XFR_TYPE[1:0] interacts with other bits in
PPI_CONTROL to determine the PPI operating mode.

ADSP-BF537 Blackfin Processor Hardware Reference 7-31

Parallel Peripheral Interface

The PORT_EN bit, when set, enables the PPI for operation.

 Note that, when configured as an input port, the PPI does not start
data transfer after being enabled until the appropriate synchroniza-
tion signals are received. If configured as an output port, transfer
(including the appropriate synchronization signals) begins as soon
as the frame syncs (timer units) are enabled, so all frame syncs must
be configured before this happens. Refer to the section “Frame
Synchronization in GP Modes” on page 7-21 for more
information.

PPI_STATUS Register
The PPI_STATUS register, shown in Figure 7-14, contains bits that provide
information about the current operating state of the PPI.

The ERR_DET bit is a sticky bit that denotes whether or not an error was
detected in the ITU-R 656 control word preamble. The bit is valid only in
ITU-R 656 modes. If ERR_DET = 1, an error was detected in the preamble.
If ERR_DET = 0, no error was detected in the preamble.

The ERR_NCOR bit is sticky and is relevant only in ITU-R 656 modes. If
ERR_NCOR = 0 and ERR_DET = 1, all preamble errors that have occurred
have been corrected. If ERR_NCOR = 1, an error in the preamble was
detected but not corrected. This situation generates a PPI error interrupt,
unless this condition is masked off in the SIC_IMASK register.

The FT_ERR bit is sticky and indicates, when set, that a frame track error
has occurred. In this condition, the programmed number of lines per
frame in PPI_FRAME does not match up with the “frame start detect”
condition (see the information note on page 7-36). A frame track error
generates a PPI error interrupt, unless this condition is masked off in the
SIC_IMASK register.

PPI Registers

7-32 ADSP-BF537 Blackfin Processor Hardware Reference

The FLD bit is set or cleared at the same time as the change in state of F (in
ITU-R 656 modes) or PPI_FS3 (in other RX modes). It is valid for input
modes only. The state of FLD reflects the current state of the F or PPI_FS3
signals. In other words, the FLD bit always reflects the current video field
being processed by the PPI.

Figure 7-14. PPI Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI Status Register (PPI_STATUS)

0 - Field 1
1 - Field 2

FT_ERR (Frame Track Error)
- W1C

OVR (FIFO Overflow) - W1C

FLD (Field Indicator)

ERR_DET (Error
Detected) - W1C

Used only in ITU-R 656
modes
0 - No preamble error
detected
1 - Preamble error
detected

ERR_NCOR (Error
Not Corrected)
- W1C

0 - No interrupt
1 - Frame Track Error

interrupt occurred

Reset = 0x0000

Used only in ITU-R 656
modes
0 - No uncorrected

preamble error
has occurred

1 - Preamble error
detected but not
corrected

0 - No interrupt
1 - FIFO Overflow Error

interrupt occurred

UNDR (FIFO Underrun)
- W1C
0 - No interrupt
1 - FIFO Underrun Error

interrupt occurred

0xFFC0 1004

0 - No horizontal tracking
underflow error

1 - PPI_FS1 (or SAV code)
received before
PPI_COUNT expired for
that line

LT_ERR_OVR (Horizontal
Tracking Overflow Error) -
W1C

LT_ERR_UNDR (Horizontal
Tracking Underflow Error) -
W1C

Used only in ITU-R 656
modes
0 - No horizontal tracking

overflow error
1 - PPI_COUNT expired before

receiving SAV code

ADSP-BF537 Blackfin Processor Hardware Reference 7-33

Parallel Peripheral Interface

The OVR bit is sticky and indicates, when set, that the PPI FIFO has over-
flowed and can accept no more data. A FIFO overflow error generates a
PPI error interrupt, unless this condition is masked off in the SIC_IMASK
register.

 The PPI FIFO is 16 bits wide and has 16 entries.

The UNDR bit is sticky and indicates, when set, that the PPI FIFO has
underrun and is data-starved. A FIFO underrun error generates a PPI
error interrupt, unless this condition is masked off in the SIC_IMASK
register.

The LT_ERR_OVR and LT_ERR_UNDR bits are sticky and indicate, when set,
that a line track error has occurred. These bits are valid for RX modes with
recurring frame syncs only. If one of these bits is set, the programmed
number of samples in PPI_COUNT did not match up with the actual number
of samples counted between assertions of PPI_FS1 (for general-purpose
modes) or “Start of Active Video (SAV)” codes (for ITU-R 656 modes). If
the PPI error interrupt is enabled in the SIC_IMASK register, an interrupt
request is generated when one of these bits is set.

The LT_ERR_OVR flag signifies that a horizontal tracking overflow has
occurred, where the value in PPI_COUNT was reached before a new SAV
code was received. This flag does not apply for non-ITU-R 656 modes; in
this case, once the value in PPI_COUNT is reached, the PPI simply stops
counting until receiving the next PPI_FS1 frame sync.

The LT_ERR_UNDR flag signifies that a horizontal tracking underflow has
occurred, where a new SAV code or PPI_FS1 assertion occurred before the
value in PPI_COUNT was reached.

PPI Registers

7-34 ADSP-BF537 Blackfin Processor Hardware Reference

PPI_DELAY Register
The PPI_DELAY register, shown in Figure 7-15, can be used in all configu-
rations except ITU-R 656 modes and GP modes with 0 frame syncs. It
contains a count of how many PPI_CLK cycles to delay after assertion of
PPI_FS1 before starting to read in or write out data.

 Note in TX modes using at least one frame sync, there is a
one-cycle delay beyond what is specified in the PPI_DELAY register.

PPI_COUNT Register
The PPI_COUNT register, shown in Figure 7-16, is used in all modes except
“RX mode with 0 frame syncs, external trigger” and “TX mode with 0
frame syncs.” For RX modes, this register holds the number of samples to
read into the PPI per line, minus one. For TX modes, it holds the number
of samples to write out through the PPI per line, minus one. The register
itself does not actually decrement with each transfer. Thus, at the begin-
ning of a new line of data, there is no need to rewrite the value of this
register. For example, to receive or transmit 100 samples through the PPI,
set PPI_COUNT to 99.

 Take care to ensure that the number of samples programmed into
PPI_COUNT is in keeping with the number of samples expected dur-
ing the “horizontal” interval specified by PPI_FS1.

Figure 7-15. Delay Count Register

Delay Count Register (PPI_DELAY)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_DELAY[15:0]

Reset = 0x0000

Number of PPI_CLK cycles to
delay after assertion of
PPI_FS1 before latching in or
sending out data

0xFFC0 100C

ADSP-BF537 Blackfin Processor Hardware Reference 7-35

Parallel Peripheral Interface

PPI_FRAME Register
The PPI_FRAME register, shown in Figure 7-17, is used in all TX and RX
modes with 2 or 3 frame syncs. For ITU-R 656 modes, this register holds
the number of lines expected per frame of data, where a frame is defined as
field 1 and field 2 combined, designated by the F indicator in the ITU-R
stream. Here, a line is defined as a complete ITU-R 656 SAV-EAV cycle.

For non-ITU-R 656 modes with external frame syncs, a frame is defined
as the data bounded between PPI_FS2 assertions, regardless of the state of
PPI_FS3. A line is defined as a complete PPI_FS1 cycle. In these modes,

Figure 7-16. Transfer Count Register

Figure 7-17. Lines Per Frame Register

Transfer Count Register (PPI_COUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_COUNT[15:0]

Reset = 0x0000

In RX modes, holds one less
than the number of samples to
read in to the PPI per line. In
TX modes, holds one less
than the number of samples to
write out through the PPI per
line.

0xFFC0 1008

Lines Per Frame Register (PPI_FRAME)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PPI_FRAME[15:0]

Reset = 0x0000

Holds the number of lines
expected per frame of data

0xFFC0 1010

Programming Examples

7-36 ADSP-BF537 Blackfin Processor Hardware Reference

PPI_FS3 is used only to determine the original “frame start” each time the
PPI is enabled. It is ignored on every subsequent field and frame, and its
state (high or low) is not important except during the original frame start.

If the start of a new frame (or field, for ITU-R 656 mode) is detected
before the number of lines specified by PPI_FRAME have been transferred, a
frame track error results, and the FT_ERR bit in PPI_STATUS is set. How-
ever, the PPI still automatically reinitializes to count to the value
programmed in PPI_FRAME, and data transfer continues.

 In ITU-R 656 modes, a frame start detect happens on the falling
edge of F, the field indicator. This occurs at the start of field 1.

In RX mode with 3 external frame syncs, a frame start detect refers
to a condition where a PPI_FS2 assertion is followed by an assertion
of PPI_FS1 while PPI_FS3 is low. This occurs at the start of field 1.
Note that PPI_FS3 only needs to be low when PPI_FS1 is asserted,
not when PPI_FS2 asserts. Also, PPI_FS3 is only used to synchro-
nize to the start of the very first frame after the PPI is enabled. It is
subsequently ignored.

When using RX mode with 3 external frame syncs, and only 2
syncs are needed, configure the PPI for three-frame-sync operation
and provide an external pull-down to GND for the PPI_FS3 pin.

Programming Examples
As shown in the data transfer scenario in Figure 7-18 on page 7-40, the
PPI can be configured to receive data from a video source in several RX
modes. The following programming examples (Listing 7-1 through
Listing 7-5) describe the ITU-R 656 entire field input mode.

ADSP-BF537 Blackfin Processor Hardware Reference 7-37

Parallel Peripheral Interface

Listing 7-1. Configure DMA Registers

config_dma:

/* DMA0_START_ADDR */

R0.L = rx_buffer;

R0.H = rx_buffer;

P0.L = lo(DMA0_START_ADDR);

P0.H = hi(DMA0_START_ADDR);

[P0] = R0;

/* DMA0_CONFIG */

R0.L = DI_EN | WNR;

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

W[P0] = R0.L;

/* DMA0_X_COUNT */

R0.L = 256;

P0.L = lo(DMA0_X_COUNT);

P0.H = hi(DMA0_X_COUNT);

W[P0] = R0.L;

/* DMA0_X_MODIFY */

R0.L = 0x0001;

P0.L = lo(DMA0_X_MODIFY);

P0.H = hi(DMA0_X_MODIFY);

W[P0] = R0.L;

ssync;

config_dma.END: RTS;

Programming Examples

7-38 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 7-2. Configure PPI Registers

config_ppi:

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = 0x0004;

W[P0] = R0.L;

ssync;

config_ppi.END: RTS;

Listing 7-3. Enable DMA

/* DMA0_CONFIG */

P0.L = lo(DMA0_CONFIG);

P0.H = hi(DMA0_CONFIG);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;

Listing 7-4. Enable PPI

/* PPI_CONTROL */

P0.L = lo(PPI_CONTROL);

P0.H = hi(PPI_CONTROL);

R0.L = W[P0];

bitset(R0,0);

W[P0] = R0.L;

ssync;

ADSP-BF537 Blackfin Processor Hardware Reference 7-39

Parallel Peripheral Interface

Listing 7-5. Clear DMA Completion Interrupt

/* DMA0_IRQ_STATUS */

P2.L = lo(DMA0_IRQ_STATUS);

P2.H = hi(DMA0_IRQ_STATUS);

R2.L = W[P2];

BITSET(R2,0);

W[P2] = R2.L;

ssync;

Data Transfer Scenarios
Figure 7-18 shows two possible ways to use the PPI to transfer in video.
These diagrams are very generalized, and bandwidth calculations must be
made only after factoring in the exact PPI mode and settings (for example,
transfer field 1 only, transfer odd and even elements).

The top part of the diagram shows a situation appropriate for, as an exam-
ple, JPEG compression. The first N rows of video are DMAed into L1
memory via the PPI. Once in L1, the compression algorithm operates on
the data and sends the compressed result out from the processor via the
SPORT. Note that no SDRAM access was necessary in this approach.

The bottom part of the diagram takes into account a more formidable
compression algorithm, such as MPEG-2 or MPEG-4. Here, the raw
video is transferred directly into SDRAM. Independently, a memory
DMA channel transfers data blocks between SDRAM and L1 memory for
intermediate processing stages. Finally, the compressed video exits the
processor via the SPORT.

Programming Examples

7-40 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 7-18. PPI Possible Data Transfer Scenarios

PPI SDRAM L1
MEMORY

L1
MEMORY

SPORT

DMA

DMA DMA

DMA DMA

PPIVIDEO
SOURCE

VIDEO
SOURCE

SPORT

COMPRESSED
VIDEO

VIDEO
DATA AND
CONTROL

ADSP-BF537 Blackfin Processor Hardware Reference 8-1

8 ETHERNET MAC

This chapter describes the Ethernet Media Access Controller (MAC)
peripheral for the ADSP-BF536 and ADSP-BF537 processors. Following
an overview and list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

This chapter contains:

• “Overview” on page 8-1

• “Interface Overview” on page 8-2

• “Description of Operation” on page 8-8

• “Programming Model” on page 8-47

• “Ethernet MAC Register Definitions” on page 8-52

• “Programming Examples” on page 8-126

Overview
The Ethernet MAC provides a 10/100 Mbit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

Interface Overview

8-2 ADSP-BF537 Blackfin Processor Hardware Reference

Features
The Ethernet MAC includes these features:

• Independent DMA-driven RX and TX channels

• MII/RMII interface

• 10 Mbit/s and 100 Mbit/s operation (full or half duplex)

• VLAN support (full or half duplex)

• Automatic network monitoring statistics

• Flexible address filtering

• Flexible event detection for interrupt handling

• Validation of IP and TCP (payload) checksum

• Remote-wakeup Ethernet frames

• Network-aware system power management

The MAC is fully compliant to IEEE Std. 802.3-2002.

Interface Overview
Figure 8-1 illustrates the overall architecture of the Ethernet controller.
The central MAC block implements the Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) protocol for both half-duplex and
full-duplex modes.

ADSP-BF537 Blackfin Processor Hardware Reference 8-3

Ethernet MAC

The System Interface (SIF) block contains FIFOs for RX and TX data and
handles the synchronization of data between the MAC RX and TX data
streams and the Blackfin DMA controller.

The System Interface Registers (SIF_REG) block is an interface from the
Blackfin Peripheral Access Bus (PAB) to the internal registers in the MAC.
This block also generates the Ethernet event interrupt, and supports the
PHYINT pin by which the PHY can notify the Blackfin processor when the
PHY detects changes to the link status, such as auto-negotiation or duplex
mode change.

Figure 8-1. Ethernet MAC Block Diagram

EXTERNAL PHY

DMA

PAB

RX FIFO

DAB

MII/RMII PADSMII MANAGEMENT
(MIM)

POWER MANAGEMENT
BLOCK (PMT)

ADDRESS CHECK
BLOCK (ACH)

MAC MANAGEMENT
COUNTERS (MMC)

REGISTERS BLOCK
(SIF_REG)

B

SYSTEM INTERFACE
BLOCK (SIF)

MAC BLOCK

TX FIFO

MDC
MDIO

FLOW CONTROL

PHYINT

CORE

Interface Overview

8-4 ADSP-BF537 Blackfin Processor Hardware Reference

The MAC Management Counters (MMC) block is an extended set of reg-
isters that collect various statistics compliant with IEEE 802.3 definitions
regarding the operation of the interface. They are updated for each new
transmitted or received frame.

The Power Management (PMT) block adds support for wakeup frames
and magic packet technology that allows waking up the processor from
low power operating modes. Further details regarding these low-power
operating modes and voltage regulator wakeup functionality can be found
in the “Operating Modes and States” chapter in Blackfin Processor Pro-
gramming Reference.

The Address Check (ACH) block checks the destination address field of
all incoming packets. Based on the type of address filtering selected, this
indicates the result of the address checking to the MAC block.

The MII Management (MIM) block handles all transactions to the control
and status registers on the external PHY.

External Interface
The following sections describe the external interface of the Ethernet
MAC.

Clocking

The Ethernet MAC is clocked internally from SCLK on the processor. A
buffered version of CLKIN may be used to drive the external PHY via the
CLKBUF pin. See Figure 8-2.

The CLKBUF signal is not generated by a PLL and supports jitter and stabil-
ity functions comparable to XTAL. The CLKBUF pin is enabled by the
PHYCLKOE bit in the VR_CTL register. See Chapter 20, “Dynamic Power
Management” for more information.

ADSP-BF537 Blackfin Processor Hardware Reference 8-5

Ethernet MAC

A 25 MHz clock (whether driven with the CLKBUF pin or an external crys-
tal) should be used with an MII PHY. A 50 MHz clock source is required
to drive an RMII PHY.

Pins

MII and RMII peripherals are multiplexed into the general-purpose ports,
with port H and port J supporting this functionality. To use MII and
RMII operations, set the PORTH_FER register accordingly. See Chapter 14,
“General-Purpose Ports” for more information. The two MII and RMII
signals (MDIO/MDC) in port J are not multiplexed, and are directly con-
nected to pins PJ0 and PJ1.

Figure 8-2. Clock Function Diagram

PLL

CORE

PORT J

PORT H

MII / RMII

ETHERNET MAC

B

BUFFER

XTAL

CLKIN

CLKBUF

SCLK

PHY

RXCLK

TXCLK

10/100

Interface Overview

8-6 ADSP-BF537 Blackfin Processor Hardware Reference

Table 8-1 shows the pins for the MAC.

Table 8-1. Ethernet MAC Pins

Pin Name MII
Multiplexed
Name

MII
Input/
Output

RMII
Multiplexed
Name

RMII
Input/
Output

Description

PH0 MII TXD0 O RMII TXD0 O Ethernet MII or RMII transmit
D0

PH1 MII TXD1 O RMII TXD1 O Ethernet MII or RMII transmit
D1

PH2 MII TXD2 O Ethernet MII transmit D2

PH3 MII TXD3 O Ethernet MII transmit D3

PH4 MII TXEN O RMII TXEN O Ethernet MII or RMII transmit
enable

PH5 MII TXCLK I RMII
REFCLK

I Ethernet MII transmit
clock/RMII reference clock

PH6 MII
PHYINT

I RMII MDINT I Ethernet MII PHY inter-
rupt/RMII management data
interrupt

PH7 MII COL I Ethernet collision

PH8 MII RXD0 I RMII RXD0 I Ethernet MII or RMII receive
D0

PH9 MII RXD1 I RMII RXD1 I Ethernet MII or RMII receive
D1

PH10 MII RXD2 I Ethernet MII receive D2

PH11 MII RXD3 I Ethernet MII receive D3

PH12 MII RXDV I Ethernet MII receive data valid

PH13 MII RXCLK I Ethernet MII receive clock

PH14 MII RXER I RMII RXER I Ethernet MII or RMII receive
error

PH15 MII CRS I RMII
CRS_DV

I Ethernet MII carrier sense/RMII
carrier sense and receive data
valid

ADSP-BF537 Blackfin Processor Hardware Reference 8-7

Ethernet MAC

 IEEE802.3-2002, section two, clause 22.2.1.6, characterizes the
MII TX_ER pin as an option for certain applications (for example,
repeater applications). Therefore, the TX_ER pin is not present in
this design.

Internal Interface
Communication between the MAC and the Blackfin processor peripheral
subsystem takes place over the Peripheral Access Bus (PAB) and the DMA
Access Bus (DAB). The PAB is used by the Blackfin processor core to con-
figure and monitor the peripheral’s control and status registers. All data
transfers to and from the peripheral are handled by the Blackfin DMA
controller and take place via the DAB.

Power Management

The ADSP-BF536/ADSP-BF537 processors provides power management
states which allow programming the MAC to wake the processor upon
reception of specific Ethernet frames and/or upon selected events detected
by the PHY. The MAC itself requires no additional power management
intervention; its internal clocks power down automatically when not
required. The MAC clocks run in any of these conditions (provided the
ADSP-BF536/ADSP-BF537 processors is in the sleep, active, or full on
state):

PJ0 MDC O MDC O Ethernet management channel
clock

PJ1 MDIO I/O MDIO I/O Ethernet management channel
serial data

Table 8-1. Ethernet MAC Pins (Cont’d)

Pin Name MII
Multiplexed
Name

MII
Input/
Output

RMII
Multiplexed
Name

RMII
Input/
Output

Description

Description of Operation

8-8 ADSP-BF537 Blackfin Processor Hardware Reference

1. Either the receiver or transmitter is enabled (RE or TE = 1)

2. During an MII Management transfer (on MDC/MDIO)

3. During a core access to an MAC control/status register

4. While PHY interrupts are enabled in the MAC (PHYIE in the
EMAC_SYSCTL register is set)

Description of Operation
The following sections describe the operation of the MAC.

Protocol
The Ethernet MAC complies with IEEE Std. 802.3-2002. The MII man-
agement interface is described below.

MII Management Interface

The IEEE 802.3 MII management interface, also known as the MDIO
station management interface, allows the Blackfin processor to monitor
and control one or more external Ethernet physical-layer transceivers
(PHYs). The MII management interface physically consists of a 2-wire
serial connection composed of the MDC (management data clock) output
signal and the MDIO (management data input/output) bidirectional data
signal. See Figure 8-3 and Figure 8-4.

ADSP-BF537 Blackfin Processor Hardware Reference 8-9

Ethernet MAC

The MII management logical interface specifies:

• A set of 16-bit device control/status registers within PHYs, includ-
ing both required registers with standardized bit definitions as well
as optional vendor-specified registers

• A 5-bit device addressing scheme which allows the MAC to select
one of up to 32 externally-connected PHY devices

• A 5-bit register addressing scheme for selecting the target register
within the addressed device

• A transfer frame protocol for 16-bit read and write accesses to PHY
registers via the MDC and MDIO signals under control of the MAC
(PHY devices may not directly initiate MDIO transfers.)

Standard PHY control and status registers provide device capability status
bits (for example, auto-negotiation, duplex modes, 10/100 speeds and
protocols), device status bits (for example, auto-negotiation complete, link
status, remote fault), and device control bits (for example, reset, speed
selection, loopback, and auto-negotiation start).

The transfer frame protocol defines a MDC clock at a nominal period of
400ns, and an MDIO frame up to 64 bits in length. The MDIO frame
consists of an optional 32-bit preamble driven by the MAC, 14 control
bits driven by the MAC including the opcode and addresses, a 2-bit turn-
around sequence, and a 16-bit data transfer driven either by the MAC or
the PHY. Note that various PHYs support optional features such as
reduced preamble or increased clock rate.

The features supported by the PHY may be determined at powerup by a
MDIO read access (at default rates) of device capabilities in PHY status
registers.

Description of Operation

8-10 ADSP-BF537 Blackfin Processor Hardware Reference

Operation
The following sections describe the detailed operation of the Ethernet
MAC peripheral.

Figure 8-3. Station Management Read

Figure 8-4. Station Management Write

IDLE

MDC

TAREGADIDLE ST PHYAD DATAPREAMBLE OP

MDIO

DRIVER MAC PHY

D D D D D D D D D D D D D D D D

15 0

Z

A A A A A R R R R R

4 3 2 1 0 4 3 2 1 0

IDLE

MDC

TAREGADIDLE ST PHYAD DATAPREAMBLE OP

MDIO

DRIVER MAC

D D D D D D D D D D D D D D D D

15 0

A A A A A R R R R R

4 3 2 1 0 4 3 2 1 0

1

ADSP-BF537 Blackfin Processor Hardware Reference 8-11

Ethernet MAC

MII Management Interface Operation

The MAC peripheral performs MDIO-protocol transfers in response to
register read/write commands issued by the Blackfin processor. Three reg-
isters are provided to support MII management transfers:

• The EMAC_SYSCTL register contains the MDCDIV field which specifies
the frequency of the MDC clock output in a ratio to the SCLK fre-
quency, and must be initialized before any transfers.

• The EMAC_STADAT register holds the 16-bit data for read or write
transfers.

• The EMAC_STAADD register supports several functions.

• It commands the access—writes to it may initiate station
management transfers, provided the STABUSY bit is set and
provided that the interface is not already busy.

• It selects the addressed device, register, and direction of the
access.

• It provides mode controls for MDIO preamble generation
and station management transfer done interrupt.

• It provides the STABUSY status bit indicating whether the
interface is still busy performing a prior transfer.

As these serial accesses may require significant time (25.6us, or several
thousand processor clock cycles at default rates), the Blackfin MAC pro-
vides an end-of-transfer interrupt to allow the processor to perform other
functions while station management transfers are in progress. Alterna-
tively, the processor may determine the status of the transfer in progress
by reading the STABUSY bit in the EMAC_STAADD register.

Description of Operation

8-12 ADSP-BF537 Blackfin Processor Hardware Reference

Receive DMA Operation

Data flow between the MAC and the Blackfin peripheral subsystem takes
place via bidirectional descriptor based DMA. The element size for any
DMA transfer to and from the Ethernet MAC is restricted to 32 bits. In
the receive case, a queue or ring of DMA descriptor pairs are used, as illus-
trated in Figure 8-5. In the figure, data descriptors are labeled with an “A”
and status descriptors are labeled with a “B.”

ADSP-BF537 Blackfin Processor Hardware Reference 8-13

Ethernet MAC

Receive DMA works with a queue or ring of DMA descriptor pairs struc-
tured as data and status.

• Data – The first descriptor in each pair points to a data buffer that
is at least 1556 (0x614) bytes long and is 32-bit aligned. The
descriptor XCOUNT field should be set to 0, because the MAC con-
trols the actual buffer length.

• Status – The second descriptor points to a status buffer of either 4
or 8 bytes. The descriptor XCOUNT field should be set to 0, because
the MAC controls the actual buffer length. After receiving and
accepting any RX frame, the MAC writes a status word and
optionally two IP checksum words to this status buffer. The RXCKS
bit in the EMAC_SYSCTL register controls the generation of the two
checksum words.

Status words written by the MAC after frame reception have the
same format as the current RX frame status register, and always
have the receive complete bit set to 1. If the driver software initial-
izes the length/status words to 0, it can reliably interrogate (poll)
an RX frame’s length/status word to determine if the DMA transfer

Figure 8-5. Ethernet MAC Receive DMA Operation

XXXX

Active DMA Descriptor ActiveQueueEnd

DONE NOT DONE

1A

DATA

DESCRIPTORS:

ActiveQueueHead

1B 2A 2B 3A 3B
END

0000 0000

NOT DONE

DATA DATA

STATUS BUFFERS:

DATA BUFFERS:

Description of Operation

8-14 ADSP-BF537 Blackfin Processor Hardware Reference

of the data buffer is complete. Alternatively, status descriptors may
be individually enabled to signal an interrupt when frame reception
is complete.

The MAC and DMA operate on the active queue in this manner:

• Start – The queue is activated by initializing the DMA next
descriptor pointer and then writing the DMA_CONFIG register. Mean-
while, the MAC listens to the MII, looking for a frame that passes
its address filter.

• Data – When a matching frame is seen, the MAC transfers the
frame data into the data buffer. The MAC does not initiate the
DMA transfer until either the destination address filtering is com-
plete, or the frame ends (if a runt frame).

• End of frame – At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor.

• Status – The MAC then transfers the frame status into the status
buffer. The frame status structure contains the length of the frame
data. The MAC then issues another finish command to complete
the status DMA buffer.

• Interrupt – Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Frame Reception and Filtering

Frame data written to memory normally includes the Ethernet header
(destination MAC address, source MAC address, and length/type field),
the Ethernet payload, and the Frame Check Sequence (FCS) checksum,
but not the preamble. If the RXDWA bit in EMAC_SYSCTL is 1, then the first
16-bit word is all-zero to pad the frame. The data written includes all
complete bytes for which the received data valid (ERxDV) pin on the MII

ADSP-BF537 Blackfin Processor Hardware Reference 8-15

Ethernet MAC

interface was asserted after but not including the start of frame delimiter
(SFD) nibble (1011).The preamble and any other nibbles prior to the
SFD are also not included.

The MAC applies two filtering mechanisms to received frames: the
address filter and the frame filter. The address filter considers only the
destination MAC address and provides control over the reception of uni-
cast, multicast, and broadcast addresses. The frame filter considers the
entire frame and provides control over reception of frames with errors and
of MAC control frames.

The address filter is evaluated in the following sequence. Note that this
sequence is in the same order as the related bits in the operating mode reg-
ister, from LSB to MSB: HU, HM, PAM, PR, IFE, and DBF. The first few filter
decisions are additive, while the last two are subtractive.

1. Initially, the address filter is true if the frame’s MAC destination
address (DA) is either the broadcast address (all 1s) or exactly
matches the 48-bit station MAC address in the EMAC_ADDRHI and
EMAC_ADDRLO registers.

2. HU (hash unicast) – If the HU bit is 1 and the DA is a unicast
address which matches the hash table, the address filter is set to
true.

3. HM (hash multicast) – If the HM bit is 1 and if the DA is a multi-
cast address which matches the hash table, the address filter is set to
true.

4. PAM (pass all multicast) – If the PAM bit is 1 and the DA is any
multicast address, the address filter is set to true.

5. PR (promiscuous) – If the PR bit is 1, the address filter is set to true
regardless of the frame DA.

Description of Operation

8-16 ADSP-BF537 Blackfin Processor Hardware Reference

6. FLCE (flow control enable) – If the FLCE bit in the flow control
register is 1, and if the DA is an exact match to either the global
multicast pause address or to the station MAC address, the address
filter is set to true.

7. IFE (inverse filter) – If the IFE bit is 1 and the DA exactly matches
the 48-bit station MAC address, the address filter is set to false.

8. DBF (disable broadcast frames) – If the DBF bit is 1 and the DA is
the broadcast address, the address filter is set to false.

The hash table address filtering is configured with the EMAC_HASHLO and
EMAC_HASHHI registers described on page 8-74.

The frame filter is evaluated in the following sequence. Note that the
frame filter is updated as each byte of data is received. The frame filter can
change from true to false during a frame, for example, upon DMA over-
run, but can never change from false back to true.

1. Initially, the frame filter is set to true if the address filter is true,
otherwise the frame filter is set to false.

2. PCF (pass control frames) – If the PCF bit is 0 and the frame is any
valid supported MAC control frame (destination address is either
the MAC address or the global multicast pause address; and the
length/type field = 88-08, opcode = 0001, length = 64 bytes, and
receiveOK = 1), then the frame filter is set to false.

3. PBF (pass bad frames) – If the PBF bit is 0 and the frame has any
type of error except a frame fragment error, the frame filter is set to
false. This rejects any frame for which any of these status bits are
set: frame too long, alignment error, frame-CRC error, length
error, or unsupported control frame. The frame filter does not
reject frames on the basis of the out of range length field status bit.
Note that this step may reject MAC control frames passed by PCF.

ADSP-BF537 Blackfin Processor Hardware Reference 8-17

Ethernet MAC

4. PSF (pass short frames) – If the PSF bit is 0 and the frame has a
frame fragment error (frame contains less than 64 bytes), the frame
filter is set to false. This step may reject frames which were passed
by PCF or PBF.

5. DMA RX overrun – If the RX DMA FIFO overflows, the frame
filter is set to false. If the FIFO overflows at a point where it con-
tains parts of two frames, that is, the last data and status of frame A
and the beginning data of frame B, then frame B is rejected by the
frame filter and the MAC continues to try to deliver frame A’s data
and status.

Discarded Frames

Frames that fail the address filter are discarded immediately after the desti-
nation address is received, and neither their data nor their status values are
written to memory via DMA. Frames that pass the address filter but fail
the frame filter before 32 bytes are received are also discarded immedi-
ately. Once at least 32 bytes of a frame have been received, and if the
address and frame filters both pass, the MAC begins to write the frame to
memory via DMA RX.

Aborted Frames

Frames that fail the frame filter after 32 bytes have been received are
aborted. The MAC issues a restart DMA control command, causing the
current RX data DMA descriptor to be reinitialized with its starting
address and counts. The aborted frame’s status is not written to memory.
Instead, the current DMA data and status buffers are recycled for the next
RX frame. For all frames that pass both the address and frame filters, both
data and status are written to memory via DMA.

Description of Operation

8-18 ADSP-BF537 Blackfin Processor Hardware Reference

Control Frames

If the FLCE (flow control enable) bit is set, MAC control frames (with the
control type 88-08) whose DAs match either the station MAC address
(with inverse filtering disabled) or the global pause multicast address will
pass the address filter, and thus may also have status of receiveOK. If the
frame also is a supported pause control frame (with length = 64 bytes, and
opcode = pause = 00-01, and in full-duplex mode), then the frame filter
condition is determined by the PCF (pass control frames) bit. If the frame
is not also a supported pause control frame, then it is in error, and its
frame filter condition depends on the PBF (pass bad frames) bit.

Examples

• To perform standard IEEE-802.3 filtering, clear the operating
mode register bits HU, PR, IFE, DBF, PBF, and PSF. With these selec-
tions, the Ethernet MAC accepts error-free broadcast frames and
only those error-free unicast frames that exactly match the station
MAC address. Set PAM to accept all multicast addresses, or set HM
and program the multicast hash table registers to accept only a sub-
set of multicast addresses.

• To accept all addresses, set PR and clear IFE and DBF in the operat-
ing mode register.

• To accept a set of several unicast addresses, set the HU bit and set
the multicast hash table register bits which correspond to the
desired addresses. Note that there is one set of hash table registers
that apply to both unicast and multicast addresses, as selected by
the HU or HM bits.

• To reject all addresses, set IFE and DBF, and clear HU, HM, PAM, and
PR in the operating mode register.

ADSP-BF537 Blackfin Processor Hardware Reference 8-19

Ethernet MAC

RX Automatic Pad Stripping

If the ASTP bit in the MAC operating mode register is set, the pad bytes
and FCS are stripped from any IEEE-type frame which was lengthened
(padded) to reach the minimum Ethernet frame length of 64 bytes. This
applies to frames where the Ethernet length/type field is less than 46 bytes,
since the Ethernet header and FCS add 18 bytes. When pad stripping
occurs, only the first Length/Type + 14 bytes are written to memory via
DMA, and the frame length reported in the RX status register and in the
RX status DMA buffer will be Length/Type + 14 rather than the actual
number of received bytes.

Pad bytes are never stripped from typed Ethernet frames. Typed Ethernet
frames are frames with a length/type field that takes the type interpreta-
tion because it is greater than or equal to 0x600 (1536).

RX DMA Data Alignment

If the RXDWA bit in the MAC system control register is clear, the MAC
delivers the frame data via DMA to a 32-bit-aligned buffer in memory,
including the Ethernet header and FCS. Because the Ethernet header is an
odd number of 16-bit words long, this results in the frame payload being
odd-aligned, which may be inconvenient for later processing.

If the RXDWA bit is set, however, the MAC prefixes one 16-bit pad word to
the frame data with value 0x0000, resulting in a frame payload aligned on
an even 16-bit boundary. See Figure 8-6.

RX DMA Buffer Structure

The length of each RX DMA buffer must be at least 1556 (0x614) bytes.
This is the maximum number of bytes that the MAC can deliver by DMA
on any receive frame. Frames longer than the 1556-byte hardware limit
are truncated by the MAC. The 1556-byte hardware limit accommodates
the longest legal Ethernet frames (1518 bytes for untagged frames, or
1522 bytes for tagged 802.1Q frames) plus a small margin to accommo-
date future standards extensions.

Description of Operation

8-20 ADSP-BF537 Blackfin Processor Hardware Reference

The MAC does not support RX DMA data buffers composed of more
than one descriptor.

RX Frame Status Buffer

The RX frame status buffer is always an integer multiple of 32-bit words
in length (either 1 or 2) and must always be aligned on a 32-bit boundary.
The RX frame status buffer always contains a frame status word, and may
also contain two 16-bit IP checksum words if the RXCKS bit in the MAC
system control register is set.

To synchronize RX DMA and software, the RX_COMP semaphore bit may
be used in the RX frame status word. This word is always the last word
written via DMA in both status buffer formats, so a transition from 0 to 1
as seen by the processor always means that both the RX data and the status
buffers are entirely valid.

Figure 8-6. RX DMA Data Alignment

1 0

DATA BYTE D

EVEN WORD ALIGNMENT, RXDWA = 0

DATA BYTE C DATA BYTE B DATA BYTE A

3 2

DATA BYTE H DATA BYTE G DATA BYTE F DATA BYTE E

5 4

DATA BYTE L DATA BYTE K DATA BYTE J DATA BYTE I

1 0

DATA BYTE B

ODD WORD ALIGNMENT, RXDWA = 1

DATA BYTE A PAD BYTE PAD BYTE

3 2

DATA BYTE F DATA BYTE E DATA BYTE D DATA BYTE C

5 4

DATA BYTE J DATA BYTE I DATA BYTE H DATA BYTE G

ADSP-BF537 Blackfin Processor Hardware Reference 8-21

Ethernet MAC

Table 8-2 and Table 8-3 describe each of the status buffer formats.

RX Frame Status Classification

The RX frame status buffer and the RX current frame status register pro-
vide a convenient classification of each received frame, representing the
IEEE-802.3 “receive status” code. The bit layout in the RX frame status
buffer is identical to that in the RX current frame status register, and is
arranged so that exactly one status bit is asserted for each of the possible
receive status codes defined in IEEE-802.3 section 4.3.2. Note in the case
of a frame that does not pass the frame filter, neither the frame data nor
the status are delivered by DMA into the RX frame status buffer.

The priority order for determination of the receive status code is shown in
Table 8-4.

Table 8-2. Receive Status DMA Buffer Format (Without IP Checksum)

Offset Size Description

0 32 RX frame status (Same format as the current RX frame
status register)

Table 8-3. Receive Status DMA Buffer Format (With IP
Checksum)

Offset Size Description

0 16 IP header checksum

2 16 IP payload checksum

4 32 RX frame status (Same format as the current RX frame
status register)

Description of Operation

8-22 ADSP-BF537 Blackfin Processor Hardware Reference

RX IP Frame Checksum Calculation

The MAC calculates TCP/IP-style “raw” checksums of two useful seg-
ments of the frame data. Checksum calculation is enabled when the RXCKS
bit is set to 1 in the MAC system control register.

The two checksum segments correspond to the typical position of the IP
header and of the IP payload (see Table 8-5). The checksums are com-
puted as a 16-bit one’s-complement sum of the selected big-endian data
words. In each summand, the most significant byte is stored in byte[1]

Table 8-4. RX Receive Status Priority

Priority Bit Bit Name IEEE receive
status

Condition

1 20 DMA over-
run

Undefined The frame was not completely delivered
by DMA

2 18 Frame frag-
ment

Not received The frame was less than the minimum 64
bytes and was discarded without reporting
any other error

3 19 Address
filter failed

Not received The frame did not pass the address filter

4 14 Frame too
long

Frame too long The frame size was more than the maxi-
mum allowable frame size (1518, 1522,
or 1538 bytes for normal, VLAN1, or
VLAN2 frames)

5 15 Alignment
error

Alignment error The frame did not contain an integer
number of bytes, and also failed the CRC
check

6 16 Frame CRC
error

Frame check error The frame failed CRC validation, and/or
RX_ER was asserted during reception of
the frame

7 17 Length
error

Length error The frame’s length/type field was < 0x600
but did not match the actual length of the
data received

8 13 Receive OK receiveOK The frame had none of the above condi-
tions

ADSP-BF537 Blackfin Processor Hardware Reference 8-23

Ethernet MAC

and the least significant byte is stored in byte[2], counting bytes starting at
1. If an odd number of data bytes is to be summed, the final value is stored
in the most significant byte and zero is stored in the least significant byte.
One’s complement addition can be done in ordinary unsigned integer
arithmetic by adding the two numbers, followed by adding the carry-out
bit value in at the least significant bit. This gives one’s-complement
addition the property of being endian invariant, which makes it possible
for software running on Blackfin’s little-endian architecture to adjust the
sums without explicit byte swapping. See also RFC 1624 and its
references.

The checksum calculation hardware provides an enormous boost to
TCP/IP throughput and bandwidth, but requires checksum corrections in
software to properly adapt to the details of each packet protocol. For
example, TCP packets require the payload checksum to include a TCP
pseudo-header made up of certain fields of the IP header. These fields
should be added to the “raw” hardware-generated checksum. Similarly,
the Ethernet FCS at the end of the frame should be deducted. These
adjustments must be made before the IP checksum can be validated.

Table 8-5. IP Checksum Byte Ranges

Byte
Number

Description Included in IP
Header
Checksum?

Included in IP
Payload
Checksum?

1–14 Standard Ethernet header: dest address, src
address, length/type

No No

15–34 Typical IP header, without IP header options Yes No

35–N IP payload, including Ethernet FCS No Yes

Description of Operation

8-24 ADSP-BF537 Blackfin Processor Hardware Reference

RX DMA Direction Errors

The RX DMA channel halts immediately after any transfer that sets the
RXDMAERR bit in the EMAC_SYSTAT register. This bit is set if an RX data or
RX status DMA request is granted by the RX DMA channel, but the
DMA channel is programmed to transfer in the wrong (memory-read)
direction. This could indicate a software problem in managing the RX
DMA descriptor queue.

In order to facilitate software debugging, the RX DMA channel guarantees
that the last transfer to occur is the one with the direction error. On an
error, usually the current frame is corrupted. All later frames are ignored
until the error is cleared. Since the MAC may have lost synchronization
with the DMA descriptor queue, the RX channel must be disabled in
order to clear the error condition.

To clear the error and resume operation, perform these steps:

1. Disable the MAC RX channel (clear the RE bit in the EMAC_OPCODE
register).

2. Disable the DMA channel.

3. Clear the RXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from
scratch.

5. Re-enable the DMA channel.

6. Re-enable the MAC RX channel.

ADSP-BF537 Blackfin Processor Hardware Reference 8-25

Ethernet MAC

Transmit DMA Operation

Figure 8-7 shows the transmit DMA operation.

Transmit DMA normally works with a queue or ring of DMA descriptor
pairs.

• Data – The first descriptor in each pair points to a memory-read
data buffer aligned on a 32-bit boundary. The first 16-bit word
contains the length in bytes of the frame data, not including the
length word or FCS. The descriptor XCOUNT field should be set to 0.

• Status – The second descriptor points to a 4-byte status buffer
which is written via DMA at the end of the frame. The descriptor
XCOUNT field should be set to 0, because the MAC controls the ter-
mination of the status buffer DMA. The driver software should
initialize the status words to zero in advance.

Status words written by the MAC after frame reception have the
same format as the current TX frame status register and always
have the transmit complete bit set to 1. Software can therefore
interrogate (poll) a TX frame’s status word to determine if the
transmission of its frame data is complete. Alternatively, status
descriptors can be individually enabled to signal an interrupt when
frame transmission is complete.

The MAC and DMA operate on the active queue in this manner:

• Start – The queue is activated by initializing the DMA
NEXT_DESC_PTR register and then writing the DMA_CONFIG register.

• Data – The MAC transfers the frame length word and the first
bytes of frame data into its TX data FIFO via DMA. When 32
bytes of data are present in the FIFO, and if the medium is unoc-
cupied, the MAC begins transmission on the MII.

Description of Operation

8-26 ADSP-BF537 Blackfin Processor Hardware Reference

• Collisions – The MAC transfers data from memory via DMA into
its FIFO, and then from the FIFO over the MII to the PHY. Colli-
sions (in half-duplex mode) can occur at any time in the first 64
bytes of MII transmission, however, the MAC does not discard any
of the data in its 96-byte TX FIFO until the first 64 bytes have
been successfully transmitted. If a collision occurs during this colli-
sion window, and if retry is enabled (DRTY = 0), the MAC rewinds
its FIFO pointer back to the start of the frame data and begins
transmission again. No redundant DMA transfers are performed in
such collisions. The MAC makes up to 16 attempts to transmit the
frame in response to collisions (if not disabled by DRTY), each time
backing off and waiting. After the 16th attempt, the frame is
aborted—the MAC terminates data transmission by sending a fin-
ish command to the DMA controller, then sending frame status,
and then proceeding to the next frame data.

• Late collisions – After the collision window is passed, the MAC
allows DMA into the FIFO to resume and to overwrite older data.
If a collision occurs after the 96th byte has been transferred into
the FIFO by DMA (that is, after the FIFO has “wrapped around”),

Figure 8-7. Ethernet MAC Transmit DMA Operation

XXXX

Active DMA Descriptor ActiveQueueEnd

DONE NOT DONE

1A

DATA

DESCRIPTORS:

ActiveQueueHead

1B 2A 2B 3A 3B
END

0000 0000

NOT DONE

DATA DATA

STATUS BUFFERS:

DATA BUFFERS: LENGTHLENGTH LENGTH

ADSP-BF537 Blackfin Processor Hardware Reference 8-27

Ethernet MAC

then the MAC issues a restart command to the DMA controller to
repeat the DMA of the current descriptor’s data buffer (if enabled
by the LCTRE bit).

• End of frame – At the end of the frame, the MAC issues a finish
command to the DMA controller, causing it to advance to the next
(status) descriptor. If the TX frame exceeds the maximum length
limit (1560 bytes, or 0x618), the frame’s DMA transfer is trun-
cated. Only 1543 (0x607) are transmitted on the MII.

• Status – The MAC transfers the frame status into the status buffer.

• Interrupt – Upon completion, the DMA may issue an interrupt, if
the descriptor was programmed to do so. The DMA then advances
to the next (data) descriptor, if any.

Figure 8-8 shows an alternative descriptor structure. The frame length
value and Ethernet MAC header are separated from the data payload in
each frame.

Figure 8-8. Alternative Descriptor Structure

STATUS

FRAME 1 FRAME 2

ETHERNET
HEADER

DESCRIPTORS:

DATA

BUFFERS: LENGTH
STATUS

ETHERNET
HEADER

DATA

LENGTH

XCOUNT
 = 4

XCOUNT
 = 4

XCOUNT
 = 0

XCOUNT
 = 0

XCOUNT
 = 0

XCOUNT
 = 0

16 BYTES 16 BYTES

Description of Operation

8-28 ADSP-BF537 Blackfin Processor Hardware Reference

Flexible Descriptor Structure

The Blackfin processor’s DMA structure allows flexibility in the arrange-
ment of TX frame data in memory. The frame data can be partitioned into
segments, each with a separate DMA descriptor, which allows any of the
first 88 bytes of DMA data (86 bytes of frame data) to reside in a separate
data segment from the remainder of the frame. This permits the frame
length word, the Ethernet MAC header, and even some higher level stack
headers to be in one area of memory, while the payload data might be in
another. The header and payload may even be in different memory spaces
(some internal, some external). Each data buffer segment must be 32-bit
aligned. In each frame, the XCOUNT field of all but the last data descriptor
should be set to the actual length of the data buffers that they reference.
As usual, the XCOUNT field of the last data descriptor should be set to 0 and
the XCOUNT field of the status descriptor should be set to 0. The data after
the first 88 bytes must all be contained in the data buffer of the last
descriptor in the packet.

Multi-descriptor data formatting is not supported if retry is enabled upon
late collisions (LCRTE = 1 in the MAC operating mode register). The LCRTE
bit must be 0 in order to use multiple DMA descriptors for transmit.

TX DMA Data Alignment

The MAC receives TX frame data via DMA from a 32-bit-aligned buffer
in memory. If the TXDWA bit in the MAC system control register is clear,
the first word of the MAC frame destination address should immediately
follow the TX DMA length word. The MAC frame header starts at an odd
word address and the MAC frame payload starts at an even word address.

If the TXDWA bit is set, the 16-bit TX DMA length word should be fol-
lowed by a 16-bit pad word that the MAC ignores. The pad word is
transferred over DMA but is not transmitted by the MAC to the PHY.
The first word of the MAC frame destination address should immediately
follow the pad word. The MAC frame header starts at an even word
address and the MAC frame payload starts at an odd word address.

ADSP-BF537 Blackfin Processor Hardware Reference 8-29

Ethernet MAC

In all cases, the TX DMA length word specifies the number of bytes to be
transferred via DMA, excluding the TX DMA length word itself. Specifi-
cally, when TXDWA is set, the TX DMA length word includes the length of
the two pad bytes. See Figure 8-9.

Late Collisions

If a frame’s transmission is interrupted (for example, by a late collision)
after the transmission of the first 64 bytes, the MAC can be programmed
to either automatically retry the frame or to discard the frame. If the LCRTE
bit in the MAC operating mode register is set, the MAC issues a restart
command to the TX DMA channel and resets the DMA current address
pointer to the start of the current DMA descriptor. This requires the
frame data to be entirely contained in a single DMA descriptor.

Figure 8-9. TX DMA Data Alignment

1 0

PAD BYTE

EVEN WORD ALIGNMENT, TXDWA = 1

PAD BYTE DMA-LENGTH WORD

3 2

DATA BYTE D DATA BYTE C DATA BYTE B DATA BYTE A

5 4

DATA BYTE H DATA BYTE G DATA BYTE F DATA BYTE E

1 0

DATA BYTE B

ODD WORD ALIGNMENT, TXDWA = 0

DATA BYTE A DMA-LENGTH WORD

3 2

DATA BYTE F DATA BYTE E DATA BYTE D DATA BYTE C

5 4

DATA BYTE J DATA BYTE I DATA BYTE H DATA BYTE G

Description of Operation

8-30 ADSP-BF537 Blackfin Processor Hardware Reference

If the LCRTE bit is clear and a late collision is detected, the MAC issues a
finish command to the TX DMA controller, advancing the DMA channel
to the status descriptor. The MAC then transfers the TX frame status to
memory and advances to the next frame descriptor for data.

TX Frame Status Classification

The TX frame status buffer and the TX current frame status register pro-
vide a convenient classification of each received frame, representing the
IEEE-802.3 “transmit status” code. The bit layout in the TX frame status
buffer is identical to that in the TX current frame status register, and is
arranged so that exactly one status bit is asserted for each of the possible
transmit status codes defined in IEEE-802.3 section 4.3.2.

The priority order for determination of the transmit status code is shown
in Table 8-6.

Table 8-6. TX Transmit Status Priority

Priority Bit Bit Name IEEE transmit
status

Condition

1 4 DMA
underrun

Undefined The frame was not completely delivered
by DMA.

2 2 Excessive
collision

Excessive
collision error

The frame was aborted because of too
many (16) collisions, or because of exces-
sive deferral.

3 3 Late
collision
error

Late collision
error status

The frame was aborted because of a late
collision.

4 14, 13 Loss of
carrier, no
carrier

Carrier sense was deasserted during some
or all of the frame transmission
(half-duplex only, MII mode only).

5 1 Transmit
OK

Transmit OK The frame had none of the above condi-
tions.

ADSP-BF537 Blackfin Processor Hardware Reference 8-31

Ethernet MAC

TX DMA Direction Errors

The TX DMA channel halts immediately after any transfer that sets the
TXDMAERR bit in the EMAC_SYSTAT register. This bit is set if a TX data or sta-
tus DMA request is granted by the DMA channel, but the DMA channel
is programmed to transfer in the wrong direction. Data DMA should be
memory-read; status DMA should be memory-write. TX DMA errors
could indicate a software problem in managing the TX DMA descriptor
queue.

In order to facilitate software debugging, the TX DMA channel guaran-
tees that the last transfer to occur is the one with the direction error. On
an error, usually the current frame is corrupted. Any later frames in the
descriptor queue are not sent until the error is cleared. Since the MAC
may have lost synchronization with the DMA descriptor queue, the TX
channel must be disabled in order to clear the error condition.

To clear the error and resume operation, perform these steps:

1. Disable the MAC TX channel (clear the TE bit in the EMAC_OPCODE
register).

2. Disable the DMA channel.

3. Clear the TXDMAERR bit in the EMAC_SYSSTAT register by writing 1 to
it.

4. Reconfigure the MAC and the DMA engine as if starting from
scratch.

5. Re-enable the DMA channel.

6. Re-enable the MAC TX channel.

Description of Operation

8-32 ADSP-BF537 Blackfin Processor Hardware Reference

Power Management

The Blackfin MAC can be programmed to trigger the following two types
of power state transitions:

1. Wake from hibernate

When the processor is in hibernate state (VDDINT powered off) or
any higher state, a low level on the PHYINT pin can wake the proces-
sor to the full on state (via RESET). This transition is enabled by
setting the PHYWE bit to 1 in the VR_CTL register prior to powerdown
(See “Dynamic Supply Voltage Control” in Chapter 20, Dynamic
Power Management.)

This pin may be connected to an INT output of the external PHY,
if applicable. Many PHY devices provide such a pin (sometimes
called MDINT or INTR). PHYs with interrupt capability may be pro-
grammed in advance via the MII management interface
(MDC/MDIO) to assert the INT pin asynchronously upon detect-
ing various conditions. Examples of INT conditions include link up,
remote fault, link status change, auto-negotiation complete, and
duplex and speed status change.

Note that the PHYINT pin is general-purpose, and may be driven by
any external device or left unused (pulled up to VDDIO). It is not
limited to use with external PHYs.

When the ADSP-BF536/ADSP-BF537 processor is in either the
hibernate or deep sleep state, the MAC is powered down. It is not
possible to receive or transmit Ethernet frames in these states.

ADSP-BF537 Blackfin Processor Hardware Reference 8-33

Ethernet MAC

2. Wake from sleep

When the processor is in the sleep state (or any higher state), the
Ethernet MAC can remain powered up and can wake the processor
to the active or full on states upon signalling an Ethernet event
interrupt. The Ethernet event interrupts most useful for power
management include:

• Remote wakeup frame received, matching one of four pro-
grammable frame filters (see “Remote Wake-up Filters” on
page 8-36).

• Magic Packet™ detected (see “Magic Packet Detection” on
page 8-35).

• Any of the RX or TX frame status interrupts. Examples of
these interrupts include: frame received (any frame), Broad-
cast frame received, VLAN1 frame received, and good frame
received (which includes passing the address filters.).

For example, the MAC could be programmed to wake the system
upon receiving a frame with a particular group destination address,
by setting the multicast frame received interrupt enable bit in the
EMAC_RX_IRQE register and by selecting the appropriate address hash
bins in the EMAC_HASHLO/HI multicast hash bin address filter
registers.

Ethernet Operation in the Sleep State

When the ADSP-BF536/ADSP-BF537 processor is in the sleep state, the
Ethernet MAC supports several levels of operation.

• The MAC may be powered down, by clearing RE and TE in the
operating modes register. In this lowest-power state, the MAC’s
internal clocks do not run, and the MAC neither transmits nor
responds to received frames. Note that the MAC will not receive a
PAUSE control frame in this state.

Description of Operation

8-34 ADSP-BF537 Blackfin Processor Hardware Reference

• The MAC receiver may be partially powered up in a
“wake-detect-only” state, but without enabling either the MAC
transmitter or MAC DMA. This state is selected by:

1. Setting RE and clearing TE in the operating modes register.

2. Setting either the MPKE (magic packet wake enable) or RWKE (remote
wakeup frame enable) bits in the MAC wakeup frame control and
status register (EMAC_WKUP_CTL).

3. Clearing the capture wakeup frame (CAPWKFRM) bit in
EMAC_WKUP_CTL.

When in the wake-detect-only state, the MAC receiver disables its
DMA interface, and does not request any DMA transfers (whether
data or status). Instead, the MAC receiver processes good incoming
frames through its remote wake-up and/or Magic Packet filters.
When a match is detected, the MAC signals a WAKEDET interrupt
(setting the WAKEDET status bit in the EMAC_SYSSTAT register). DMA
transfers do not resume until the CAPWKFRM bit is cleared.

• The MAC receiver may be fully powered up to both receive
and/or transmit frames, provided that only external memory (for
example, SDRAM) is used. Both the DMA data buffers and
descriptor structures must be in external memory, since internal L1
is unavailable when core clocks are stopped.

This state is intended to be used with very restricted
receive-frame filters, so that only certain specific frames are
stored via DMA—perhaps only the frame(s) which caused the
wakeup event itself. The transmit functionality permits the proces-
sor to enqueue a list of final frame transmissions before going to
sleep.

The MAC can only transmit frames contained in DMA buffers set
up by the processor prior to entering the sleep state. Once the last
transmit frame has been sent, the transmitter and DMA channel

ADSP-BF537 Blackfin Processor Hardware Reference 8-35

Ethernet MAC

pauses. Note that if the last TX DMA descriptor was programmed
to signal an interrupt, the ADSP-BF536/ADSP-BF537 processor
wakes from sleep at the conclusion of that transmission.

Similarly, the MAC can only receive as many frames as can be
contained in the DMA buffers and descriptors allocated by the
processor prior to entering the sleep state. Once the last receive
frame has been filled, the DMA channel pauses, and if any further
frames are received (beyond the capacity of the MAC RX FIFO), a
DMA overrun occurs. Note that if the last RX DMA descriptor was
programmed to signal an interrupt, the ADSP-BF536/
ADSP-BF537 processor wakes from sleep after that frame was
received.

Magic Packet Detection

The MAC can be programmed to detect a Magic Packet as a wakeup
event. This is enabled by setting the MPKE bit (Magic Packet enable) bit in
the EMAC_WKUP_CTL register. When the MAC receives the Magic Packet, it
sets the MPKS (Magic Packet status) bit in the EMAC_WKUP_CTL register,
which causes the Ethernet event interrupt to be asserted. The associated
ISR should clear the interrupt by writing a 1 to the MPKS bit; writing a 0
has no effect.

A Magic Packet is any valid Ethernet frame which contains a specific
102-byte pattern derived from the MAC’s 48-bit MAC address anywhere
within the frame after the 12th byte (after the destination and source
address fields). This byte pattern consists of 6 consecutive bytes of 0xFFs
followed by sixteen consecutive repeats of the MAC address of the MAC
which is targeted for wakeup. See Figure 8-10.

Good Magic Packet frames exclude frame-too-short error, frame-too-long
error, FCS error, Alignment error, and PHY error conditions.

Description of Operation

8-36 ADSP-BF537 Blackfin Processor Hardware Reference

Remote Wake-up Filters

The Blackfin Ethernet MAC provides four independent remote wakeup
frame filters for use while in powerdown. See Figure 8-11. These filters are
enabled by setting the RWKE (remote wakeup enable) bit in the
EMAC_WKUP_CTL register. Each filter works in parallel, simultaneously
examining each incoming frame for a specific byte pattern. Each pattern is
described by a byte offset to the start of the pattern within the frame, a
32-bit byte mask selecting bytes at that offset to include in the pattern,
and a CRC-16 hash value of the selected bytes which identifies the
pattern.

Each of the four filters sets a separate status bit (RWKS0–RWKS3) in the
EMAC_WKUP_CTL register upon detection of their programmed frame pat-
tern. The Ethernet event interrupt is asserted when any of these four status
bits is set to 1; the WAKEDET bit in the EMAC_SYSSTAT register indicates the
logical OR of all four of these bits and the MPKS (Magic Packet status) bit.

The remote wakeup interrupt is cleared by writing a 1 to the appropriate
RWKS0–RWKS3 status bit(s). The WAKEDET bit is read-only and does not need
to be explicitly cleared.

Figure 8-10. Magic Packet Structure

DESTINATION ADDRESS

TARGET MAC ADDRESS (1)

MAGIC PACKET STRUCTURE

TARGET MAC ADDRESS (16)

FF FF FF FF FF FF

SOURCE ADDRESS

...

(6 BYTES)

(6 BYTES)

TARGET MAC ADDRESS (2)

VALID FCS

(6 BYTES)

(6 BYTES)

(6 BYTES) - 2ND OCCURRENCE

(6 BYTES) - 16TH OCCURRENCE

(4 BYTES)

ADSP-BF537 Blackfin Processor Hardware Reference 8-37

Ethernet MAC

To program each remote wakeup filter:

1. The RWKE bit in the EMAC_WKUP_CTL register must be set to 1
(enables all four filters.).

2. The enable wakeup filter N bit in the EMAC_WKUP_FFCMD register
must be set to 1 to enable filter N.

3. The wakeup filter N address type bit in the EMAC_WKUP_FFCMD
register selects whether the target frame is unicast (if 0) or multi-
cast (if 1).

4. The 8-bit pattern offset N field in the wakeup frame filter offsets
register (EMAC_WKUP_FFOFF) selects the starting byte offset for the
target data pattern, counting from 0 for the first byte of the MAC
frame. The preamble and SFD bytes are not included.

5. The 32-bit wakeup frame byte mask register (EMAC_WKUP_FFMSKn)
selects which of the 32 bytes starting at the selected offset into the
frame will be considered in the pattern match. If the
EMAC_WKUP_FFOFF register field contains the value K, then bit J of
the EMAC_WKUP_FFMSKn register controls whether byte (J+K) of the
frame will be compared, counting from 0. A value of 1 in the mask
bit enables comparison.

6. The 16-bit wakeup filter N pattern CRC field in the
EMAC_WKUP_FFCRC0/1 register specifies the 16-bit CRC hash value
expected for the wake-up pattern.

Each filter has a separate 16-bit CRC state register which is independently
updated as the frame is received. The CRC state for filter N is only
updated when an enabled byte is received; the CRC state remains
unchanged if the current byte is not enabled by the filter's byte offset and
mask registers.

Description of Operation

8-38 ADSP-BF537 Blackfin Processor Hardware Reference

Good frames whose CRC-16 value matches the specified value at the
end of the selected pattern window will cause a wake-up event at the end
of the frame. Good wake-up frames exclude frame-too-short error,
frame-too-long error, alignment error, FCS error, PHY error, and length
error conditions.

The CRC-16 hash value for a sequence of bytes may be calculated serially,
with each byte processed LSB-first. The initial value of the CRC state is
0xFFFF (all 1s). For each input bit, the LFSR is shifted left one position,
and the bit shifted out is XOR’ed with the new input bit. The resulting
feedback bit is then XOR’ed into the LFSR at bit positions 15, 2, and 1.
Thus the generator polynomial for this CRC is:

G(x) = x16 + x15 + x2 + 1

Figure 8-11. Remote Wakeup Filters

SELECTED BYTES

(SELECT IF 1)

CRC-16

 0

EMAC_WKUP_FFOFF
OFFSET REGISTER

INTERRUPT EQUAL?

TARGET

A B - C D E - - - - F G H - - I J K

FRAME A B x C D E x x x x F G H x x I J K

EMAC_WKUP_FFMSKx
MASK REGISTER

CRC HASHCODE
CALCULATION

EMAC_WKUP_FFCRCx
REGISTER

WAKEUP BYTE PATTERN

WAKE UP ETHERNET EVENT

[RWKSx BIT]
EMAC_WKUP_CTL
REGISTER

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

ADSP-BF537 Blackfin Processor Hardware Reference 8-39

Ethernet MAC

For example, if the wakeup pattern specified the single byte 0x12, or
0100_1000 (LSB first), the calculation of the wakeup CRC_16 is per-
formed as shown in Table 8-7:

 G polynomial = 1000 0000 0000 0101

Ethernet Event Interrupts

The Ethernet event interrupt is signalled to indicate that any or all of the
conditions listed below are pending. Figure 8-12 shows the Ethernet event
interrupts. In the ADSP-BF533 and ADSP-BF531 processors, the
Ethernet event interrupt is signaled on peripheral interrupt ID 2 in the
System Interrupt Controller (SIC), together with error conditions from a
number of other peripherals. By default, peripheral interrupt ID 2 is
mapped to IVG7.

Table 8-7. CRC-16 Hash Value Calculation

Bit In XOR MSB Bit Feedback
Bit

CRC State

 1111 1111 1111 1111, Initial = 0xFFFF

0 1 1 0111 1111 1111 1011

1 0 1 0111 1111 1111 0011

0 0 0 1111 1111 1110 0110

0 1 1 0111 1111 1100 1001

1 0 1 0111 1111 1001 0111

0 0 0 1111 1111 0010 1110

0 1 1 0111 1110 0101 1001

0 0 0 1111 1100 1011 0010, Final = 0xFCB2

Description of Operation

8-40 ADSP-BF537 Blackfin Processor Hardware Reference

The handler for peripheral interrupt ID 2 should interrogate each of the
peripherals assigned to peripheral interrupt ID 2 to determine which
peripheral or peripherals are asserting an interrupt. To interrogate the
Ethernet MAC, the handler should read the Ethernet MAC system status
register, as all of the MAC Ethernet event interrupt condition types are
represented in that register.

Figure 8-12. Ethernet MAC Event Interrupt

0

DMA3 (SPORT0 RX)
DMA4 (SPORT0 TX)
DMA5 (SPORT1 RX)

DMA6 (SPORT1 RX)

DMA7 (SPI)
DMA8 (UART0 RX)
DMA9 (UART0 TX)

DMA10 (UART1 RX)
DMA11 (UART1 TX)

1
2
3
4
5
6
7

PLL WAKEUP

RTC
DMA0 (PPI)

W
A

K
E

 U

8

9
10
11
12
13
14
15

16

17
18
19
20
21
22
23

24

25
26
27
28
29
30
31

S
IC

_I
S

R

S
IC

_I
W

R

S
IC

_I
M

A
S

K

TWI

CAN RX

CAN TX

TIMER0
TIMER1
TIMER2
TIMER3
TIMER4

TIMER5
TIMER6
TIMER7

PORTF IRQ B
MDMA0
MDMA1

PORTF IRQ A
PORTG IRQ A

WATCHDOG
PORTG IRQ B

DMA1 (MAC RX)
PORTH IRQ A

DMA2 (MAC TX)
PORTH IRQ B

CAN ERROR
MAC EVENT

SPORT0 ERROR
SPORT1 ERROR

PPI ERROR
SPI ERROR

UART0 ERROR
UART1 ERROR

DMA ERROR
DMAR0 BLOCK DONE
DMAR1 BLOCK DONE

DMAR0 OVERFLOW
DMAR1 OVERFLOWPHY INT

MAC MGMT COUNTER (MMC)

STATION MGMT TRANSFER DONE

RX FRAME STATUS
TX FRAME STATUS

WAKEUP FRAME
TX DMA DIRECTION ERROR

E
M

A
C

_S
Y

S
T

A
T

0

1
2
3
4
5
6
7

MII

ETHERNET MAC

PHYINT

PIN
PH6

RX DMA DIRECTION ERROR

ADSP-BF537 Blackfin Processor Hardware Reference 8-41

Ethernet MAC

These conditions result in an Ethernet event interrupt:

• PHYINT interrupt – Whenever the asynchronous PHYINT pin is
asserted low, the PHYINT sticky bit in the MAC system status regis-
ter is set to 1. The PHYINT interrupt condition is asserted whenever
the logical AND of the PHYINT bit and the PHYIE enable bit in the
Ethernet MAC system control register is 1. This condition is
cleared by writing a 1 to the PHYINT bit.

• MAC management counter (MMC) interrupt – When any MMC
counter reaches half of its maximum value (that is, transitions from
0x7FFF FFFF to 0x8000 0000), the corresponding bit in the
MMC RX interrupt status register is set. An MMC interrupt is
asserted whenever either:

• the logical AND of the MMC RX interrupt status register
and the MMC RX interrupt enable register is nonzero, or

• the logical AND of the MMC TX interrupt status register
and the MMC TX interrupt enable register is nonzero.

The MMC interrupt condition is cleared by writing 1s to all of the
MMC RX and/or TX interrupt status register bits which are
enabled in the MMC RX/TX interrupt enable register.

• RX frame status interrupt – The RX frame status interrupt condi-
tion is signalled whenever the logical AND of the RX sticky frame
status register and the RX frame status interrupt enable register is
nonzero. This condition is cleared by writing 1s to all of the RX
sticky frame status register bits that are enabled in the RX frame
status interrupt enable register.

• TX frame status interrupt – The TX frame status interrupt condi-
tion is signalled whenever the logical AND of the TX sticky frame
status register and the TX frame status interrupt enable register is

Description of Operation

8-42 ADSP-BF537 Blackfin Processor Hardware Reference

nonzero. This condition is cleared by writing 1s to all of the TX
sticky frame status register bits that are enabled in the TX frame
status interrupt enable register.

• Wakeup frame detected – This bit is set when a wakeup event is
detected by the MAC core (either a magic packet or a remote
wakeup packet is accepted by the wakeup filters). This condition is
cleared by writing a 1 to the MPKS and/or RWKS status bits in the
wakeup control status register.

• RX DMA direction error detected – This bit is set if an RX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong (memory-read) direction.
This could indicate a software problem in managing the RX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the RXDMAERR bit in the MAC system status register.

• TX DMA direction error detected – This bit is set if a TX data or
status DMA request is granted by the DMA channel, but the DMA
is programmed to transfer in the wrong direction. Data DMA
should be memory-read, status DMA should be memory-write.
This could indicate a software problem in managing the TX DMA
descriptor queue. This interrupt is non-maskable in the MAC and
must always be handled. This condition is cleared by writing a 1 to
the TXDMAERR bit in the MAC system status register.

• Station management transfer done – This bit is set when a station
management transfer (on MDC/MDIO) has completed, provided
the STAIE interrupt enable control bit is set in the station manage-
ment address register.

ADSP-BF537 Blackfin Processor Hardware Reference 8-43

Ethernet MAC

 When the MAC DMA engine is disabled, all the MAC peripheral
requests are routed directly into the interrupt controller. This can
manifest itself at startup as spurious interrupts. The solution is to
configure the system in such a way that the DMA controller is
always enabled before the MAC peripheral.

RX/TX Frame Status Interrupt Operation

The contents of the RX current frame status register indicate the result of
the most recent frame receive operation. The register contents are updated
just after the end of the frame is received on the MII and synchronized
into the system clock domain.

The contents of the RX sticky frame status register are updated at the
same time. Each applicable bit in the RX sticky frame status register is set
if the corresponding bit in the RX current frame status register is set, oth-
erwise the bit in the RX sticky frame status register keeps its prior value.

The RX frame status interrupt enable register is continuously bitwise
ANDed with the contents of the RX sticky frame status register, and then
all of the resulting bits are OR’ed together to produce the RX frame status
interrupt condition. The state of the RX frame status interrupt condition
is readable in the RXFSINT bit of the MAC system status register. This
interrupt condition is cleared by writing 1s to all the bits in the RX sticky
frame status register for which corresponding bits are set in the RX frame
status interrupt enable register. Do not attempt to clear this interrupt con-
dition by writing a 1 to the read only RXFSINT bit; such a write has no
effect.

The three TX frame status registers (TX current frame status register, TX
sticky frame status register, and TX frame status interrupt enable register)
operate in a similar manner.

Description of Operation

8-44 ADSP-BF537 Blackfin Processor Hardware Reference

RX Frame Status Register Operation at Startup and Shutdown

After the RE bit in the EMAC_OPMODE register is cleared, the RX current
frame status register, the RX sticky frame status register, and the RX frame
status interrupt enable register hold their last state. Of course, the two
writable registers can still be written.

In order to not confuse status from old and new frames, the RX current
frame status register and the RX sticky frame status register are automati-
cally cleared at a 0-to-1 transition of the RE bit. The RX frame status
interrupt enable register is not cleared when the RE bit transitions from 0
to 1. It changes state only when written.

All three of these registers are cleared at system reset.

TX Frame Status Register Operation at Startup and Shutdown

After the TE bit in the EMAC_OPMODE register is cleared, the TX current
frame status register, the TX sticky frame status register, and the TX frame
status interrupt enable register hold their last state. Of course, the two
writable registers can still be written.

In order to not confuse status from old and new frames, the TX current
frame status register and the TX sticky frame status register are automati-
cally cleared at a 0-to-1 transition of the TE bit. The TX frame status
interrupt enable register is not cleared when the TE bit transitions from 0
to 1. It changes state only when written.

All three of these registers are cleared at system reset.

MAC Management Counters

The Blackfin Ethernet MAC provides a comprehensive set of 32-bit
read-only MAC management counters, 24 for receive and 23 for transmit,
in accordance with the “Layer Management for DTEs” specification in
IEEE 802.3 Sec. 30.3. When enabled by setting the MMCE bit in the
EMAC_MMC_CTL register, the counters are updated automatically at the

ADSP-BF537 Blackfin Processor Hardware Reference 8-45

Ethernet MAC

conclusion of each frame. The counters may be read at any time, but may
not be written. The counters can be reset to zero all at once by writing the
RSTC bit to 1.

The counters can be configured to be cleared individually after each read
access if the CCOR bit is set to 1. This mode guarantees that no counts are
dropped between the value returned by the read and the value remaining
in the register.

 Although this read operation has a side effect, the speculative read
operation of the Blackfin core pipeline is properly handled by the
MAC. During the time between the speculative read stage and the
commit stage of the read instruction, the MMC block freezes the
addressed counter so that intervening updates are deferred until the
MMR read instruction is resolved.

For best results, to minimize the amount of time that any given
MMC counter is frozen, it is suggested not to intentionally place
MMC counter read instructions in positions that result in frequent
speculative reads which are not ultimately executed. For example,
MMC counter reads should not be placed in the shadow of fre-
quently-mispredicted flow-of-control operations.

 Continuous polling of any MMC register is not recommended.
The MMC update process requires at least one SCLK cycle between
successive reads to the same register, which may not occur if the
register read is placed in a tight code loop. If the polling operation
excludes the MMC update process, loss of information results.

The overflow behavior of the counters is configurable using the CROLL bit.
The counters may be configured either to saturate at maximum value
(CROLL = 0) or to roll over to zero and continue counting (CROLL = 1).

The range of the counters can be extended into software-managed coun-
ters (for example, 64-bit counters) by use of selectable MMC interrupts.
The EMAC_MMC_RIRQE and EMAC_MMC_TIRQE MMC interrupt enable registers

Description of Operation

8-46 ADSP-BF537 Blackfin Processor Hardware Reference

allow the programmer to select which counters should signal an MMC
interrupt on the Ethernet event interrupt line when they pass half of the
maximum counter value. Even if interrupt latency is large, this mechanism
makes it unlikely that any counter data is lost to overrun.

A recommended structure for the ISR for the MMC interrupt would be as
follows. In this example, the CCOR (clear counter on read) bit is set to 1,
and the CROLL (counter rollover) bit may also be set to 1.

1. In the ISR, read the SIC to determine which peripheral ID caused
the interrupt.

2. If an Ethernet MAC event interrupt is pending, then read the
EMAC_SYSTAT register. If any of the interrupt bits are set, then an
Ethernet event interrupt is pending.

3. If the MMCINT bit is set, then read the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS interrupt status registers. Then, for each bit that is
set, read the corresponding MMC counter using CCOR (clear coun-
ter on read) mode, and add the result to the software-maintained
counter.

As an option, if the CROLL bit is set to 1, the ISR can check the
count value to see if it is less than 0x8000 0000. This would indi-
cate that the counter has somehow incremented beyond the
maximum value (0xFFFF FFFF) and wrapped around to zero while
the interrupt awaited servicing. In this case, the software could add
an additional 232 to its extended counter to repair the count
deficit.

4. Write the interrupt-status values previously read from
EMAC_MMC_RIRQS and EMAC_MMC_TIRQS back to those same registers,
so that the bits which were 1 cause the corresponding interrupt sta-
tus bits to be cleared in a write-1-to-clear operation. This
guarantees that all the counter interrupts that are cleared are those
that correspond to counters that have been read by the interrupt
handler. If other counter(s) cross the half-maximum interrupt

ADSP-BF537 Blackfin Processor Hardware Reference 8-47

Ethernet MAC

threshold after the “snapshot” of the EMAC_MMC_RIRQS and
EMAC_MMC_TIRQS was taken, then those interrupts are still correctly
pending at the RTI; the interrupt handler is then re-entered and
the remaining counter interrupts are handled in a second pass.

Programming Model
The following sections describe the Ethernet MAC programming model
for a typical system. The initialization sequence can be summarized as
follows.

1. Configure MAC MII pins.

• Multiplexing scheme

• CLKBUF

2. Configure interrupts.

3. Configure MAC registers.

• MAC address

• MII station management

4. Configure PHY.

5. Receive and transmit data through the DMA engine.

Configure MAC Pins
The first step is to configure the hardware interface between the MAC and
the external PHY device.

Programming Model

8-48 ADSP-BF537 Blackfin Processor Hardware Reference

Multiplexing Scheme

The MII interface pins are multiplexed with GPIO pins on port H. To
configure a pin on port H for Ethernet MAC functionality, the PORTH_FER
bit corresponding to that pin must be set to 1.

The MII management pins (MDC and MDIO) are available on port J. Note
that these two pins are not multiplexed.

CLKBUF

The external PHY chip can be clocked with the buffered clock (CLKBUF)
output from the Blackfin processor. In order to enable this clock output,
the PHYCLKOE bit in the VR_CTL register must be set. Note that writes to
VR_CTL take effect only after the execution of a PLL programming
sequence.

Configure Interrupts
Next, the MAC interrupts and MAC DMA interrupts need to be config-
ured to properly. Interrupt service routines should be installed to handle
all applicable events. Refer to Figure 8-12 on page 8-40 for a graphical
representation of how event signals are propagated through the interrupt
controller. The status of the MAC interrupts can be sensed with the
EMAC_SYSTAT register. However, the process of enabling these interrupts is
achieved through a number of different registers.

• The PHYINT interrupt is enabled by setting the PHYIE bit in the
EMAC_SYSCTL register.

• The MAC management counter (MMC) interrupt can be enabled
through the EMAC_MMC_RIRQE and EMAC_MMC_TIRQE registers.

• The RX frame status and TX frame status interrupts can be enabled
through the EMAC_RX_IRQE and EMAC_TX_IRQE registers, respectively.

ADSP-BF537 Blackfin Processor Hardware Reference 8-49

Ethernet MAC

• The wakeup frame events are controlled through the
EMAC_WKUP_CTL register.

• The TX DMA direction error detected and RX DMA direction
error detected interrupts are non-maskable. Therefore, an interrupt
service routine to handle them should always be installed.

• The station management transfer done interrupt is enabled
through the STAIE bit of the EMAC_STAADD register.

The DMA MAC receive and DMA MAC transmit functions are initial-
ized to the DMA1 and DMA2 channels by default. The interrupts for the
channels corresponding to the Ethernet MAC transfers should be
unmasked and a corresponding ISR should be installed if a polling tech-
nique is not used.

Configure MAC Registers
After the interrupts are set up correctly, the MAC address registers and the
MII protocol must be initialized.

MAC Address

Set the MAC address by writing to the EMAC_ADDRHI and EMAC_ADDRLO reg-
isters. Since the MAC address is a unique number, it is usually stored in a
non-volatile memory like a flash device. In this way, every system using
the Blackfin MAC peripheral can be easily programmed with a different
MAC address during mass production.

MII Station Management

The following procedure should be used to set up the MII communica-
tions protocol with the external PHY device.

Programming Model

8-50 ADSP-BF537 Blackfin Processor Hardware Reference

To perform a station management write transfer:

1. Initialize MDCDIV in the EMAC_SYSCTL register. The frequency of the
MDC clock is SCLK / [2 * (MDCDIV + 1)]. Thus
MDCDIV = (SCLK_Freq / MDC_Freq)/2 - 1. For typical 400ns
(2.5MHz) MDC rate at SCLK = 125MHz, set MDCDIV to
(125MHz / 2.5MHz) / 2 -1 = 50/2-1 = 24.

2. Write the data into EMAC_STADAT.

3. Write EMAC_STAADD with the PHY address, register address,
STAOP = 1, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

4. Do not initiate another read or write access until STABUSY reads 0
or until the station management done interrupt (if enabled) has
been received. Accesses attempted while STABUSY = 1 are discarded.

To perform a station management read transfer:

1. Initialize MDCDIV.

2. Write EMAC_STAADD with the PHY address, register address,
STAOP = 0, STABUSY = 1, and desired selections for preamble enable
and interrupt enable.

3. Wait either while polling STABUSY or until the station management
done interrupt (if enabled) has been received. Note that subsequent
accesses attempted while STABUSY=1 are discarded. Proceed when
STABUSY reads 0.

4. Read the data from EMAC_STADAT.

ADSP-BF537 Blackfin Processor Hardware Reference 8-51

Ethernet MAC

Configure PHY
After the MII interface is configured, the PHY can be programmed with
the EMAC_STAADD and EMAC_STADAT registers. Before configuration, the
PHY is usually issued a soft reset. Depending of the capabilities of the spe-
cific PHY device, the configurable options might include
auto-negotiation, link speed, and whether the transfers are full-duplex or
half-duplex. The PHY device may also be set up to assert an interrupt on
certain conditions, such as a change of the link status.

Receive and Transmit Data
Data transferred over the MAC DMA must be handled with a descrip-
tor-based DMA queue. Refer to Figure 8-5 on page 8-13 and Figure 8-7
on page 8-26 for a graphical representation of a receive queue and trans-
mit queue, respectively.

An Ethernet frame header is placed in front of the payload of each data
buffer. The data buffer structure is described in Table 8-8.

Table 8-8. Frame Header

Field Size in Bytes

Frame size (Tx only) 2

Destination MAC address 6

Source MAC address 6

Length/type 2

Data Payload Determined by the
length/type field

Ethernet MAC Register Definitions

8-52 ADSP-BF537 Blackfin Processor Hardware Reference

Receiving Data

In order to receive data, memory buffers must be allocated to construct a
queue of DMA data and status descriptors. If the RXDWA bit in EMAC_SYSCTL
is 0, then the first item in the receive frame header is the destination MAC
address. If the RXDWA bit in EMAC_SYSCTL is 1, then the first 16-bit word is
all-zero to pad the frame, and the second item is the destination MAC
address. The DMA engine is then configured through the DMA_CONFIG reg-
ister. After the DMA is set up, the MAC receive functionality is enabled
by setting the RE bit in EMAC_OPMODE. Completion can be signaled by inter-
rupts or by polling the DMA status registers.

Transmitting Data

To transmit data, memory buffers must be allocated to construct a queue
of DMA data and status descriptors. The first 16-bit word of the data buf-
fers is written to signify the number of bytes in the frame. The DMA
engine is then configured through the DMA_CONFIG register. After the DMA
is set up, the MAC transmit functionality is enabled by setting the TE bit
in EMAC_OPMODE. Completion can be signaled by interrupts or by polling
the DMA status registers.

Ethernet MAC Register Definitions
The MAC register set is broken up into three groups corresponding to the
peripheral’s major system blocks:

• Control-status register group (MAC block) (starting on page 8-65)

• System interface register group (SIF block) (starting on page 8-93)

• MAC management counter register group (MMC block) (starting
on page 8-124)

Ethernet MAC also provides frame status registers (starting on page 8-98).

ADSP-BF537 Blackfin Processor Hardware Reference 8-53

Ethernet MAC

Most registers require 32-bit accesses, but certain registers have only 16 or
fewer functional bits and can be accessed with either 16-bit or 32-bit
MMR accesses.

Table 8-9 shows the functions of the MAC registers. MMC counter regis-
ters are found in Table 8-10 on page 8-55.

Table 8-9. MAC Register Mapping

Register Name Function Notes

Control-Status Register Group

EMAC_OPMODE MAC operating mode Enables the Ethernet MAC transmit-
ter.

EMAC_ADDRLO MAC address low Used with EMAC_ADDRHI to set
the MAC address.

EMAC_ADDRHI MAC address high Used with EMAC_ADDRLO to set
the MAC address.

EMAC_HASHLO MAC multicast hash table
low

Used with EMAC_HASHHI to hold
the multicast hash table.

EMAC_HASHHI MAC multicast hash table
high

Used with EMAC_HASHLO to hold
the multicast hash table.

EMAC_STAADD MAC station management
address

EMAC_STADAT MAC station management
data

EMAC_FLC MAC flow control

EMAC_VLAN1 MAC VLAN1 tag

EMAC_VLAN2 MAC VLAN2 tag

EMAC_WKUP_CTL MAC wakeup frame control
and status

EMAC_WKUP_FFMSK0 MAC wakeup frame 0 byte
mask

Ethernet MAC Register Definitions

8-54 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_WKUP_FFMSK1 MAC wakeup frame 1 byte
mask

EMAC_WKUP_FFMSK2 MAC wakeup frame 2 byte
mask

EMAC_WKUP_FFMSK3 MAC wakeup frame 3 byte
mask

EMAC_WKUP_FFCMD MAC wakeup frame filter
commands

EMAC_WKUP_FFOFF MAC wakeup frame filter
offsets

EMAC_WKUP_FFCRC0 MAC wakeup frame filter
CRC0/1

EMAC_WKUP_FFCRC1 MAC wakeup frame filter
CRC2/3

System Interface Register Group

EMAC_SYSCTL MAC system control

EMAC_SYSTAT MAC system status

EMAC_RX_STAT Ethernet MAC RX current
frame status

EMAC_RX_STKY Ethernet MAC RX sticky
frame status

EMAC_RX_IRQE Ethernet MAC RX frame
status interrupt enable

EMAC_TX_STAT Ethernet MAC TX current
frame status

EMAC_TX_STKY Ethernet MAC TX sticky
frame status

EMAC_TX_IRQE Ethernet MAC TX frame
status interrupt enable

Table 8-9. MAC Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF537 Blackfin Processor Hardware Reference 8-55

Ethernet MAC

EMAC_MMC_RIRQS Ethernet MAC MMC RX
interrupt status

EMAC_MMC_RIRQE Ethernet MAC MMC RX
interrupt enable

EMAC_MMC_TIRQS Ethernet MAC MMC TX
interrupt status

EMAC_MMC_TIRQE Ethernet MAC MMC TX
interrupt enable

MAC Management Counter Register Group

EMAC_MMC_CTL MAC management coun-
ters control

For a list of the MMC counter regis-
ters, see Table 8-10.

Table 8-10. MAC Management Counter Registers

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

0xFFC0 3100 EMAC_RXC_OK
(FramesReceivedOK)
30.3.1.1.5

Holds a count of frames that are suc-
cessfully received. This does not include
frames received with frame-too-long,
FCS, length or alignment errors, or
frames lost due to internal MAC sub-
layer (DMA/FIFO) errors. This also
excludes frames with frame-too-short
errors, or frames that do not pass the
address filter as indicated by the receive
frame accepted status bit. Such frames
are not considered to be received by the
station, and are not considered errors.

Table 8-9. MAC Register Mapping (Cont’d)

Register Name Function Notes

Ethernet MAC Register Definitions

8-56 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3104 EMAC_RXC_FCS
(FrameCheckSequenceErrors)
30.3.1.1.6

Holds a count of receive frames that are
an integral number of octets in length
and do not pass the FCS check. This
does not include frames received with
frame-too-long or frame-too-short
(frame fragment) errors. This also
excludes frames with frame-too-short
errors, or which do not pass the address
filter.

0xFFC0 3108 EMAC_RXC_ALIGN
(AlignmentErrors)
30.3.1.1.7

Holds a count of frames that are not an
integral number of octets in length and
do not pass the FCS check. This coun-
ter is incremented when the receive sta-
tus is reported as alignment error. This
also excludes frames with
frame-too-short errors, or which do not
pass the address filter.

0xFFC0 310C EMAC_RXC_OCTET
(OctetsReceivedOK)
30.3.1.1.14

Holds a count of data and padding
octets in frames that are successfully
received. This does not include octets in
frames received with frame-too-long,
FCS, length or alignment errors, or
frames lost due to internal MAC sub-
layer errors. This also excludes frames
with frame-too-short errors, or which
do not pass the address filter.

0xFFC0 3110 EMAC_RXC_DMAOVF
(FramesLostDueToIntMAC
RcvError)
30.3.1.1.15

Holds a count of frames that would
otherwise be received by the station, but
could not be accepted due to an inter-
nal MAC sublayer receive error. If this
counter is incremented, then none of
the other receive counters are incre-
mented. This counts frames truncated
during DMA transfer to memory, as
indicated by the DMA overrun status
bit.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

ADSP-BF537 Blackfin Processor Hardware Reference 8-57

Ethernet MAC

0xFFC0 3114 EMAC_RXC_UNICST
(UnicastFramesReceivedOK)
No IEEE reference

Holds a count of frames counted by the
EMAC_RXC_OK register that are not
counted by the EMAC_RXC_MULTI or the
EMAC_RXC_BROAD register.

0xFFC0 3118 EMAC_RXC_MULTI
(MulticastFramesReceivedOK)
30.3.1.1.21

Holds a count of frames that are suc-
cessfully received and are directed to an
active non-broadcast group address.
This does not include frames received
with frame-too-long, FCS, length or
alignment errors, or frames lost due to
internal MAC sublayer error. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

0xFFC0 311C EMAC_RXC_BROAD
(BroadcastFramesReceivedOK)
30.3.1.1.22

Holds a count of frames that are suc-
cessfully received and are directed to the
broadcast group address. This does not
include frames received with
frame-too-long, FCS, length or align-
ment errors, or frames lost due to inter-
nal MAC sublayer error. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

Ethernet MAC Register Definitions

8-58 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3120 EMAC_RXC_LNERRI
(InRangeLengthErrors)
30.3.1.1.23

Holds a count of frames with a
length/type field value between the
minimum unpadded MAC client data
size and the maximum allowed MAC
client data size, inclusive, that does not
match the number of MAC client data
octets received. The counter also incre-
ments when a frame has a length/type
field value less than the minimum
allowed unpadded MAC client data size
and the number of MAC client data
octets received is greater than the mini-
mum unpadded MAC client data size.
This also excludes frames with
frame-too-short errors (less than the
minimum unpadded MAC client data
size), or that do not pass the address fil-
ter.

0xFFC0 3124 EMAC_RXC_LNERRO
(OutOfRangeLengthField)
30.3.1.1.24

Holds a count of frames with a Length
field value greater than the maximum
allowed LLC data size. This also
excludes frames with frame-too-short
errors, or that do not pass the address
filter.

0xFFC0 3128 EMAC_RXC_LONG
(FrameTooLongErrors)
30.3.1.1.25

Holds a count of frames received that
exceed the maximum permitted frame
size. This counter is incremented when
the status of a frame reception is “frame
too long.” This also excludes frames
with frame-too-short errors, or that do
not pass the address filter.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

ADSP-BF537 Blackfin Processor Hardware Reference 8-59

Ethernet MAC

0xFFC0 312C EMAC_RXC_MACCTL
(MACControlFramesReceived)
30.3.3.4

Holds a count of MAC control frames
passed by the MAC sublayer to the
MAC control sublayer. This counter is
incremented upon receiving a valid
frame with a Length/Type field value
equal to 88-08. While the control frame
may be received by the Ethernet MAC
and yet not be delivered to the MAC
client by DMA, depending on the state
of the PCF bit, the control frame is still
counted by this counter.

0xFFC0 3130 EMAC_RXC_OPCODE
(UnsupportedOpcodesReceived)
30.3.3.5

Holds a count of MAC control frames
received that contain an opcode that is
not supported by the device. This coun-
ter is incremented when a receive frame
function call returns a valid frame with
a length/type field value equal to the
reserved type, and with an opcode for a
function that is not supported by the
device. Only opcode 00-01(pause) is
supported by the Ethernet MAC.

0xFFC0 3134 EMAC_RXC_PAUSE
(PAUSEMACCtrlFramesReceived)
30.3.4.3

Holds a count of MAC control frames
passed by the MAC sublayer to the
MAC control sublayer. This counter is
incremented when a receive frame func-
tion call returns a valid frame with both
a length/type field value equal to 88-08
and an opcode indicating the pause
operation (00-01). This counter does
not include or exclude frames on the
basis of address, even though pause
frames are required to contain the MAC
control pause multicast address.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

Ethernet MAC Register Definitions

8-60 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3138 EMAC_RXC_ALLFRM
(FramesReceivedAll)
No IEEE reference

Holds a count of all frames or frame
fragments detected by the Ethernet
MAC, regardless of errors and regardless
of address, except for DMA overrun
frames.

0xFFC0 313C EMAC_RXC_ALLOCT
(OctetsReceivedAll)
No IEEE reference

Holds a count of all octets in frames or
frame fragments detected by the Ether-
net MAC, regardless of errors and
regardless of address, except for DMA
overrun frames.

0xFFC0 3140 EMAC_RXC_TYPED
(TypedFramesReceived)
No IEEE reference

Holds a count of all frames received
with a length/type field greater than or
equal to 0x600. This does not include
frames received with frame-too-long,
frame-too-short, FCS, length or align-
ment errors, frames lost due to internal
MAC sublayer error, or that do not pass
the address filter.

0xFFC0 3144 EMAC_RXC_SHORT
(FramesLenLt64Received)
No IEEE reference

Holds a count of all frame fragments
detected with frame-too-short errors
(length < 64 bytes), regardless of
address filtering or of any other errors
in the frame.

0xFFC0 3148 EMAC_RXC_EQ64
(FramesLenEq64Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length of
exactly 64 bytes.

0xFFC0 314C EMAC_RXC_LT128
(FramesLen65_127Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 65 and 127 bytes, inclusive.

0xFFC0 3150 EMAC_RXC_LT256
(FramesLen128_255Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 128 and 255 bytes, inclusive.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

ADSP-BF537 Blackfin Processor Hardware Reference 8-61

Ethernet MAC

0xFFC0 3154 EMAC_RXC_LT512
(FramesLen256_511Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 256 and 511 bytes, inclusive.

0xFFC0 3158 EMAC_RXC_LT1024
(FramesLen512_1023Received)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
between 512 and 1023 bytes, inclusive.

0xFFC0 315C EMAC_RXC_GE1024
(FramesLen1024_MaxReceived)
No IEEE reference

Holds a count of all good frames (with
status receiveOK) that have a length
greater than or equal to 1024 bytes.
This does not include frames with a
frame-too-long error.

0xFFC0 3180 EMAC_TXC_OK
(FramesTransmittedOK)
30.3.1.1.2

Holds a count of frames that are suc-
cessfully transmitted. This counter is
incremented when the transmit status is
reported as transmit OK.

0xFFC0 3184 EMAC_TXC_1COL
(SingleCollisionFrames)
30.3.1.1.3

Holds a count of frames that are
involved in a single collision and are
subsequently transmitted successfully.
This counter is incremented when the
result of a transmission is reported as
transmit OK and the attempt value is 2.

0xFFC0 3188 EMAC_TXC_GT1COL
(MultipleCollisionFrames)
30.3.1.1.4

Holds a count of frames that are
involved in more than one collision and
are subsequently transmitted success-
fully. This counter is incremented when
the transmit status is reported as trans-
mit OK and the value of the attempts
variable is greater than 2 and less then
or equal to 16.

0xFFC0 318C EMAC_TXC_OCTET
(OctetsTransmittedOK)
30.3.1.1.8

Holds a count of data and padding
octets in frames that are successfully
transmitted. This counter is incre-
mented when the transmit status is
reported as transmit OK.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

Ethernet MAC Register Definitions

8-62 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3190 EMAC_TXC_DEFER
(FramesWithDeferredXmissions)
30.3.1.1.9

Holds a count of frames whose trans-
mission was delayed on its first attempt
because the medium was busy (that is,
at the start of frame, CRS is asserted, or
was previously asserted within the mini-
mum interframe gap). Frames involved
in any collisions are not counted.

0xFFC0 3194 EMAC_TXC_LATECL
(LateCollisions)
30.3.1.1.10

Holds a count of times that a collision
has been detected later than one slot
time from the start of the frame trans-
mission. A late collision is counted
twice, both as a collision and as a late
collision. This counter is incremented
when the number of late collisions
detected in transmission of any one
frame is nonzero.

0xFFC0 3198 EMAC_TXC_XS_COL
(FramesAbortedDueToXSColls)
30.3.1.1.11

Holds a count of frames that are not
transmitted successfully due to excessive
collisions. This counter is incremented
when the number of attempts equals 16
during a transmission. Note this does
not include frames that are successfully
transmitted on the last possible
attempt.

0xFFC0 319C EMAC_TXC_DMAUND
(FramesLostDueToIntMACXmit
Error)
30.3.1.1.12

Holds a count of frames that would
otherwise be transmitted by the station,
but could not be sent due to an internal
MAC sublayer transmit error. If this
counter is incremented, then none of
the other transmit counters are incre-
mented. This counts frames whose
transmission is interrupted by incom-
plete DMA transfer from memory, as
indicated by the DMA underrun status
bit.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

ADSP-BF537 Blackfin Processor Hardware Reference 8-63

Ethernet MAC

0xFFC0 31A0 EMAC_TXC_CRSERR
(CarrierSenseErrors)
30.3.1.1.13

Holds a count of the number of times
that carrier sense was not asserted or
was deasserted during the transmission
of a frame without collision.

0xFFC0 31A4 EMAC_TXC_UNICST
(UnicastFramesXmittedOK)
No IEEE reference

Holds a count of frames counted by the
EMAC_TXC_OK register that are not
counted by the EMAC_TXC_MULTI or the
EMAC_TXC_BROAD register.

0xFFC0 31A8 EMAC_TXC_MULTI
(MulticastFramesXmittedOK)
30.3.1.1.18

Holds a count of frames that are suc-
cessfully transmitted to a group destina-
tion address other than broadcast.

0xFFC0 31AC EMAC_TXC_BROAD
(BroadcastFramesXmittedOK)
30.3.1.1.19

Holds a count of frames that are suc-
cessfully transmitted to the broadcast
address as indicated by the transmit sta-
tus of OK.

0xFFC0 31B0 EMAC_TXC_XS_DFR
(FramesWithExcessiveDeferral)
30.3.1.1.20

Holds a count of frames that deferred
for an excessive period of time. This
counter can only be incremented once
per LLC transmission.

0xFFC0 31B4 EMAC_TXC_MACCTL
(MACControlFramesTransmitted)
30.3.3.3

Holds a count of MAC control frames
passed to the MAC sublayer for trans-
mission. Note this counter is incre-
mented only when a MAC pause frame
is generated by writing to the EMAC_FLC
register. The counter is not incremented
for frames transmitted via the normal
DMA mechanism which happen to
contain valid MAC pause data.

0xFFC0 31B8 EMAC_TXC_ALLFRM
(FramesTransmittedAll)
No IEEE reference

Holds a count of all frames whose trans-
mission has been attempted, regardless
of success. Each frame is counted only
once, regardless of the number of retry
attempts.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

Ethernet MAC Register Definitions

8-64 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 31BC EMAC_TXC_ALLOCT
(OctetsTransmittedAll)
No IEEE reference

Holds a count of all octets in all frames
whose transmission has been attempted,
regardless of success. Each frame’s
length is counted only once, regardless
of the number of retry attempts.

0xFFC0 31C0 EMAC_TXC_EQ64
(FramesLenEq64Transmitted)
No IEEE reference

Holds a count of all frames with status
transmit OK that have a length of
exactly 64 bytes.

0xFFC0 31C4 EMAC_TXC_LT128
(FramesLen65_127Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 65 and 127 bytes, inclu-
sive.

0xFFC0 31C8 EMAC_TXC_LT256
(FramesLen128_255Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 128 and 225 bytes,
inclusive.

0xFFC0 31CC EMAC_TXC_LT512
(FramesLen256_511Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 256 and 511 bytes,
inclusive.

0xFFC0 31D0 EMAC_TXC_LT1024
(FramesLen512_1023Transmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length between 512 and 1023 bytes,
inclusive.

0xFFC0 31D4 EMAC_TXC_GE1024
(FramesLen1024_MaxTransmitted)
No IEEE reference

Holds a count of all frames transmitted
with status transmit OK that have a
length greater than or equal to 1024
bytes but not greater than the maxi-
mum frame size.

0xFFC0 31D8 EMAC_TXC_ABORT
(TxAbortedFrames)
No IEEE reference

Holds a count of all frames attempted
that were not successfully transmitted
with status of transmit OK.

Table 8-10. MAC Management Counter Registers (Cont’d)

MMR Address Register Name
(IEEE Name)
IEEE 802.3 Reference

Description

ADSP-BF537 Blackfin Processor Hardware Reference 8-65

Ethernet MAC

Control-Status Register Group
This set of registers is used by the application software to configure and
monitor the functionality of the MAC block.

EMAC_OPMODE Register

The EMAC_OPMODE register, shown in Figure 8-13, controls the address fil-
tering and collision response characteristics of the Ethernet controller in
both the RX and TX modes.

Figure 8-13. MAC Operating Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Operating Mode Register (EMAC_OPMODE)

RE (Receiver Enable)

Reset = 0x0000 0000

ASTP (Enable Automatic Pad
Stripping)
HU (Hash Filter Unicast
Addresses)

PAM (Pass All Multicast
Mode)

PSF (Pass Short Frames)

PBF (Pass Bad Frames)
DBF (Disable Broadcast
Frame Reception)
IFE (Inverse Filtering)
PR (Promiscuous Mode)

DC (Deferred Check)

BOLMT[1:0] (TX Back-Off
Limit)

LCTRE (Enable TX Retry
on Late Collision)

RMII

RMII_10
FDMODE (Full Duplex Mode)

LB (Internal Loopback
Enable)

DRO (Disable Receive
Own Frames)

DRTY (Disable TX Retry
on Collision)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DTXPAD (Disable Auto-
matic TX Padding)
DTXCRC (Disable Auto-
matic TX CRC Generation)

TE (Transmitter Enable)

0xFFC0 3000

RAF (Receive All
Frames)

HM (Hash Filter Multicast
Addresses)

Ethernet MAC Register Definitions

8-66 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the EMAC_OPMODE register bits includes:

• Disable receive own frames (DRO)

When set in half-duplex mode, this bit blocks all frames transmit-
ted by the MAC from being read into the receive path. This bit
should be reset when the MAC is operating in full-duplex mode.
MII mode only.

[1] Receive own frames disabled.

[0] Receive own frames enabled.

• Internal loopback enable (LB)

When internal loopback is enabled, the frames transmitted by the
MAC are internally redirected to the receive MAC port. Loopback
operation is supported in MII mode; loopback is not supported in
RMII mode. During loopback, the external MII port is inactive.
The RX pins are ignored and the TX pins are set to TXEN = 0,
TXD = 1111. Loopback in not supported in RMII mode.

[1] Internal loopback enabled.

[0] Internal loopback not enabled.

• Full duplex mode (FDMODE)

[1] Full duplex mode selected.

[0] Half duplex mode selected.

ADSP-BF537 Blackfin Processor Hardware Reference 8-67

Ethernet MAC

• RMII port speed selector (RMII_10)

When the interface is configured for RMII operation, software
must query the PHY after any automatic negotiation to determine
the link speed, and set the RMII port speed selector accordingly.
This is because in RMII mode, the REFCLK input is always a
constant speed regardless of link speed. In MII mode, by contrast,
the PHY decreases the speed of the RXCLK and TXCLK to 2.5 MHz
when the link speed is 10 M bits.

[1] Speed for RMII port is 10 M bits.

[0] Speed for RMII port is 100 M bits.

• RMII mode (RMII)

This bit is used to select which interface, RMII or MII, is used by
the MAC to transfer data to and from the external PHY. Note that
MII and RMII modes use slightly different sets of package pins.
Program different values into the PORTH_FER register accordingly.

[1] RMII mode.

[0] MII mode.

• Enable TX retry on late collision (LCTRE)

[1] TX retry on late collision enabled.

[0] TX retry on late collision not enabled.

• Disable TX retry on collision (DRTY)

[1] TX retry on collision disabled.

[0] TX retry on collision not disabled.

Ethernet MAC Register Definitions

8-68 ADSP-BF537 Blackfin Processor Hardware Reference

• TX back-off limit (BOLMT[1:0])

This field sets an upper bound on the random back-off interval
time before the MAC resends a packet in the event of a collision.
The bound can be set to 1, 15, 255, or 1023 slot times (1 slot
time = 128 MII clock cycles). Thus, varying levels of aggressiveness
with regard to packet re-transmission can be selected.

[00] The number of bits is 10 and the maximum back-off time is
1023 slots (relaxed, standard-compliant behavior).

[01] The number of bits is 8 and the maximum back-off time is
255 slots.

[10] The number of bits is 4 and the maximum back-off time is 15
slots.

[11] The number of bits is 1 and the maximum back-off time is 1
slot (aggressive)

• Deferral check (DC)

In half-duplex operation, a frame whose transmission defers to
incoming traffic for longer than two maximum-length frame times
is considered to have been excessively deferred. This time is
(2 x 1518 x 2) = 6072 MII clocks. See IEEE 802.3 section 5.2.4.1
for more information.

[1] Enables the MAC to abort transmission of frames that encoun-
ter excessive deferral.

[0] The MAC cannot abort transmission of frames due to excessive
deferral.

ADSP-BF537 Blackfin Processor Hardware Reference 8-69

Ethernet MAC

• Disable automatic TX CRC generation (DTXCRC)

[1] Automatic TX CRC generation is disabled.

[0] Automatic TX CRC generation is enabled. Four CRC bytes are
appended to the frame data.

• Disable automatic TX padding (DTXPAD)

[1] Automatic TX padding of frames shorter than 64 bytes is dis-
abled.

[0] Automatic TX padding is enabled. Pad bytes with value 0 are
appended to the data, followed by the CRC, so that the minimum
frame size is 64 bytes.

• Transmitter enable (TE)

The MAC transmitter is reset when TE is 0. A rising (0 to 1) transi-
tion on TE causes the TX current frame status register and the TX
sticky frame status register to be reset. TE and RE may be enabled
either individually or together in either MII or RMII mode.

• Receive all frames (RAF)

[1] Overrides the address and frame filters and causes all frames or
frame fragments to be transferred to memory by DMA.

[0] Does not override filters.

• Pass short frame (PSF)

[1] Short frames are not rejected by the frame filter.

[0] The frame filter rejects frames with frame-too-short errors (runt
frames, or frames with total length less than 64 bytes not including
preamble).

Ethernet MAC Register Definitions

8-70 ADSP-BF537 Blackfin Processor Hardware Reference

• Pass bad frames (PBF)

[1] Pass bad frames enabled.

[0] The frame filter rejects frames with FCS errors, alignment
errors, length errors, frame-too-long errors, and DMA overrun
errors.

• Disable broadcast frame reception (DBF)

[1] Removes the broadcast address (all 1s) from the set of addresses
passed by the address filter, overriding promiscuous mode.

[0] Broadcast frame reception not disabled.

• Inverse filtering (IFE)

[1] Removes the MAC address programmed in the EMAC_ADDRHI
and EMAC_ADDRLO registers from the set of addresses passed by the
address filter, overriding PR (promiscuous) and HU (hash unicast)
modes. The effect is to block reception of a specific destination
address.

[0] Inverse filtering not enabled.

• Promiscuous mode (PR)

[1] Promiscuous mode enabled, the address filter accepts all
addresses.

[0] Promiscuous mode not enabled.

• Pass all multicast mode (PAM)

[1] All multicast frames are added to the set of addresses passed by
the address filter.

[0] Do not pass all multicast frames.

ADSP-BF537 Blackfin Processor Hardware Reference 8-71

Ethernet MAC

• Hash filter multicast addresses (HM)

[1] Adds multicast addresses that match the hash table to the set of
addresses passed by the address filter.

[0] Does not add multicast addresses that match the hash table to
the set of addresses passed by the address filter.

• Hash filter unicast addresses (HU)

[1] Adds unicast addresses that match the hash table to the set of
addresses passed by the address filter.

[0] Does not add unicast addresses that match the hash table to the
set of addresses passed by the address filter.

• Automatic pad stripping enable (ASTP)

A received frame contains pad bytes if it is in IEEE format (the
length/type field contains a length value < 0x600) and if the length
value is less than 46 (corresponding to a frame whose total length
including header and FCS is less than 64 bytes). If ASTP = 1, both
the pad and the FCS bytes are removed from the received data.

[1] Automatic pad stripping is enabled.

[0] Automatic pad stripping is not enabled.

• Receiver enable (RE)

The MAC transmitter is reset when RE is 0. A rising (0 to 1) transi-
tion on RE causes the RX current frame status register and the RX
sticky frame status register to be reset. RE and TE may be enabled
either individually or together in either MII or RMII mode.

Ethernet MAC Register Definitions

8-72 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_ADDRLO Register

The EMAC_ADDRLO register, shown in Figure 8-14, holds the low part of the
unique 48-bit station address of the MAC hardware. Writes to this register
must be performed while the MAC receive and transmit paths are both
disabled. The byte order of address transfer is lowest significant byte first
and lowest significant bit first on the MII. Thus EMAC_ADDRLO[3:0] is the
first nibble transferred and EMAC_ADDRHI[15:12] is the last nibble.

For example, the address 00:12:34:56:78:9A (where 00 is transferred first
and 9A is transferred last) would be programmed as:

EMAC_ADDRLO = 0x56341200

EMAC_ADDRHI = 0x00009A78

EMAC_ADDRHI Register

The EMAC_ADDRHI register, shown in Figure 8-15, holds the high part of
the unique 48-bit station address of the MAC hardware. Writes to this
register must be performed while the MAC receive and transmit paths are
both disabled.

Figure 8-14. MAC Address Low Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MAC Address Low Register (EMAC_ADDRLO)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

Reset = 0xFFFF FFFF

MAC Address Low[31:16]

0xFFC0 3004

MAC Address Low[15:0]

ADSP-BF537 Blackfin Processor Hardware Reference 8-73

Ethernet MAC

EMAC_HASHLO Register

The EMAC_HASHLO register holds the values for bins 31–0 of the multicast
hash table (Figure 8-16).

 The EMAC_HASHHI register holds the values for bins 63–32 of the
multicast hash table (see “EMAC_HASHHI Register” on
page 8-76).

The 64-bit multicast table is used for multicast frame address filtering. A
cyclic redundancy check (CRC) based hash table scheme is used. After the
destination address (6th byte) of the frame is received, the state of the
CRC-32 checksum unit is sampled. This CRC-32 unit implements the
IEEE 802.3 CRC algorithm used in validating the FCS field of the frame.
The 6 most significant bits from this state identify one of 64 hash bins
representing the frame’s destination address. These 6 bits are then used to
index into the two hash table registers and extract the corresponding hash
bin enable bit. The most significant bit of this value determines the regis-
ter to be used (high/low) while the other five bits determine the bit
position within the register. A CRC value of 000000 selects bit 0 of the
MAC multicast hash table low register and a CRC value of 111111 selects
bit 31 of the MAC multicast hash table high register.

Figure 8-15. MAC Address High Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Address High Register (EMAC_ADDRHI)
R/W, except cannot be written if RX or TX is enabled in the EMAC_OPMODE register.

Reset = 0x0000 FFFF0xFFC0 3008

MAC Address High[15:0]

Ethernet MAC Register Definitions

8-74 ADSP-BF537 Blackfin Processor Hardware Reference

If the corresponding bit in the hash table register is set, the multicast
frame is accepted. Otherwise, it is rejected. If the PM bit in the
EMAC_OPMODE register is set, all multicast frames are accepted regardless of
the hash values.

For example, consider the calculation of the hash bin for the MAC address
01.23.45.67.89.AB. The CRC algorithm uses an LFSR with the prime
generator polynomial specified in IEEE 802.3 Sec 3.2.8:

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2
+ x + 1

Figure 8-16. MAC Multicast Hash Table Low Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Multicast Hash Table Low Register (EMAC_HASHLO)

Reset = 0x0000 00000xFFC0 300C

Bin 16

Bin 28

Bin 29

Bin 30

Bin 31

Bin 17

Bin 18

Bin 19

Bin 20

Bin 21

Bin 22

Bin 23

Bin 27

Bin 26

Bin 25

Bin 24

Bin 0

Bin 12

Bin 13

Bin 14

Bin 15

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 11

Bin 10

Bin 9

Bin 8

ADSP-BF537 Blackfin Processor Hardware Reference 8-75

Ethernet MAC

The bits of the MAC address are fed in leftmost byte first, least significant
bit first, in this sequence (left to right):

1000 0000 1100 0100 1010 0010 1110 0110 1001 0001 1101 0101

The 32-bit CRC register is initialized to all 1s. Then each input bit is pro-
cessed as follows: first, the register is shifted left one place, shifting in a
zero and shifting out the former MSB. The bit just shifted out is XOR’ed
with the current input bit, yielding the feedback bit. If this feedback bit is
a 1, then the shift register contents are XOR’ed with the generator polyno-
mial value:

0x04C1 1DB7 = 0000 0100 1100 0001 0001 1101 1011 0111

Following this procedure, the CRC-32 for the MAC address is calculated.
See Table 8-11.

Table 8-11. CRC-32 Calculation

Bit
Number

Input Bit MSB Bit Feedback
Bit

Next CRC Shift Register

Start 1111 1111 1111 1111 1111 1111 1111 1111

0 1 1 0 1111 1111 1111 1111 1111 1111 1111 1110

1 0 1 1 1111 1011 0011 1110 1110 0010 0100 1011

2 0 1 1 1111 0010 1011 1100 1101 1001 0010 0001

3 0 1 1 1110 0001 1011 1000 1010 1111 1111 0101

4 0 1 1 1100 0111 1011 0000 0100 0010 0101 1101

5 0 1 1 1000 1011 1010 0001 1001 1001 0000 1101

6 0 1 1 0001 0011 1000 0010 0010 1111 1010 1101

7 0 0 0 0010 0111 0000 0100 0101 1111 0101 1010

...

46 0 1 1 1101 0011 1001 0111 1111 0100 0100 1001

47 1 1 0 1010 0111 0010 1111 1110 1000 1001 0010

Ethernet MAC Register Definitions

8-76 ADSP-BF537 Blackfin Processor Hardware Reference

The resulting six MSBs are 101001 = 0x29 = 41 decimal. The hash bin
enable bit for this address is then bit 41 – 32 = 9 of the EMAC_HASHHI
register.

EMAC_HASHHI Register

The EMAC_HASHHI register holds the values for bins 63–32 of the multicast
hash table. The EMAC_HASHLO register holds the values for bins 31–0 of the
multicast hash table. (See “EMAC_HASHLO Register” on page 8-73 on
the use of the multicast hash table for multicast frame address filtering.)

Figure 8-17. MAC Multicast Hash Table High Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Multicast Hash Table High Register (EMAC_HASHHI)

Reset = 0x0000 00000xFFC0 3010

Bin 48

Bin 60

Bin 61

Bin 62

Bin 63

Bin 49

Bin 50

Bin 51

Bin 52

Bin 53

Bin 54

Bin 55

Bin 59

Bin 58

Bin 57

Bin 56

Bin 32

Bin 44

Bin 45

Bin 46

Bin 47

Bin 33

Bin 34

Bin 35

Bin 36

Bin 37

Bin 38

Bin 39

Bin 43

Bin 42

Bin 41

Bin 40

ADSP-BF537 Blackfin Processor Hardware Reference 8-77

Ethernet MAC

EMAC_STAADD Register

The EMAC_STAADD register, shown in Figure 8-18, controls the transactions
between the MII management (MIM) block and the registers on the exter-
nal PHY. These transactions are used to appropriately configure the PHY
and monitor its performance.

Additional information for the EMAC_STAADD register bits includes:

• Station management transfer done interrupt enable (STAIE)

[1] Enables an Ethernet event interrupt at the completion of a sta-
tion management register access (when STABUSY changes from 1 to
0).

[0] Interrupt not enabled.

• Disable preamble generation (STADISPRE)

[1] Preamble generation (32 ones) for station management trans-
fers disabled.

[0] Preamble generation for station management transfers not
disabled.

Figure 8-18. MAC Station Management Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Station Management Address Register (EMAC_STAADD)

STABUSY (STA Busy
Status) - RO

Reset = 0x0000 0000

STAOP (Station Manage-
ment Operation Code)
STADISPRE (Disable
Preamble Generation)

PHYAD[4:0] (PHY
Device Address)
REGAD[4:0] (STA Register Address)
STAIE (Station Management
Transfer Done Interrupt Enable)

0xFFC0 3014
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC Register Definitions

8-78 ADSP-BF537 Blackfin Processor Hardware Reference

• Station management operation code (STAOP)

[1] Write.

[0] Read.

• STA busy status (STABUSY)

This bit should be set by the application software in order to initi-
ate a station management register access. This bit is automatically
cleared when the access is complete. The MAC ignores new trans-
fer requests made while the serial interface is busy. Writes to the
STA address or data registers are discarded if STABUSY is 1.

[1] Initiate a station management register access across
MDC/MDIO.

[0] No operation.

EMAC_STADAT Register

The EMAC_STADAT register, shown in Figure 8-19, contains either the data
to be written to the PHY register specified in the MAC station manage-
ment address register, or the data read from the PHY register whose
address is specified in the MAC station management address register.

Figure 8-19. MAC Station Management Data Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Station Management Data Register (EMAC_STADAT)

Reset = 0x0000 00000xFFC0 3018

STADATA[15:0] (Station
Management Data)

ADSP-BF537 Blackfin Processor Hardware Reference 8-79

Ethernet MAC

EMAC_FLC Register

The EMAC_FLC register, shown in Figure 8-20, controls the generation and
reception of control frames by the MAC.

The control frame fields are selected as specified in the IEEE 802.3 speci-
fication. When flow control is enabled, the MAC acts upon MAC control
pause frames received without errors. When an error-free MAC control
pause frame is received (with length/type = MacControl = 88-08 and with
opcode = pause = 00-01), the transmitter defers starting new frames for
the number of slot times specified by the pause time field in the control
frame.

The MAC can also generate and transmit a MAC control pause frame
when the EMAC_FLC register is written with FLCBUSY = 1 and FLCPAUSE
equal to the number of slot times of deferral being requested.

Additional information for the EMAC_FLC register bits includes:

• Pause time (FLCPAUSE)

The number of slot times for which the transmission of new frames
is deferred.

Figure 8-20. MAC Flow Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Flow Control Register (EMAC_FLC)

FLCBUSY (Flow Control
Busy Status)

Reset = 0x0000 0000

FLCE (Flow Control Enable)
PCF (Pass Control Frames)

FLCPAUSE[15:0] (Pause Time)

0xFFC0 301C

BKPRSEN (Enable
Backpressure)

Ethernet MAC Register Definitions

8-80 ADSP-BF537 Blackfin Processor Hardware Reference

• Enable back pressure (BKPRSEN)

Available only in half-duplex mode, this bit can be used as a form
of flow control.

[1] Prevents frame reception by colliding with (continuously trans-
mitting a jam pattern during) every incoming frame.

[0] Transmit and receive function is normal.

• Pass control frames (PCF)

When cleared, the PCF bit causes the frame filter to reject all con-
trol frames (frames with length/type field equal to 88-08). When
cleared, error-free pause control frames are still interpreted (if
enabled by FLCE) but are not delivered via DMA.

[1] Pass control frames.

[0] Do not pass control frames.

• Flow control enable (FLCE)

When set, this bit enables interpretation of MAC control pause
frames that are received without errors.

[1] Flow control enabled.

[0] Flow control not enabled.

ADSP-BF537 Blackfin Processor Hardware Reference 8-81

Ethernet MAC

• FLC busy status (FLCBUSY)

Setting this bit triggers the MAC to send a control frame. The
MAC automatically clears the FLCBUSY bit once the control frame
has been transferred onto the physical medium. Writes to the flow
control register are discarded if FLCBUSY is 1.

[1] Initiate sending flow control frame.

[0] No operation.

EMAC_VLAN1 Register

The EMAC_VLAN1 register, shown in Figure 8-21, contains the tag fields
used to identify VLAN frames.

The MAC compares the 13th and 14th bytes of the incoming frame field
to the values contained in these registers, so that the 13th frame byte is
compared to the most significant byte of the registers and the 14th frame
byte is compared to the least significant byte of the registers. If a match is
found, the appropriate bit is set in the RX status register. In the case of a
VLAN1 match, the legal length of the frame is then increased from 1518
bytes to 1522 bytes.

Figure 8-21. MAC VLAN1 Tag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC VLAN1 Tag Register (EMAC_VLAN1)

Reset = 0x0000 FFFF0xFFC0 3020

VLAN1TAG[15:0]
(Length/Type Tag)

Ethernet MAC Register Definitions

8-82 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_VLAN2 Register

The EMAC_VLAN2 register, shown in Figure 8-22, contains the tag fields
used to identify VLAN frames. The MAC compares the 13th and 14th
bytes of the incoming frame field to the values contained in these registers,
so that the 13th frame byte is compared to the most significant byte of the
registers and the 14th frame byte is compared to the least significant byte
of the registers. If a match is found, the appropriate bit is set in the RX
status register. In the case of a VLAN2 match, the legal length of the
frame is then increased from 1518 bytes to 1538 bytes.

EMAC_WKUP_CTL Register

The EMAC_WKUP_CTL register, shown in Figure 8-23, contains data pertain-
ing to the MAC’s remote wakeup status and capabilities. A write to the
EMAC_WKUP_CTL register causes an update into the receive clock
domain of all the wakeup filter registers. Changes to these other registers
do not affect the operation of the MAC until the EMAC_WKUP_CTL
register is written. For this reason, it is recommended that the wakeup fil-
ters be programmed by writing all of the other registers first, and writing
the EMAC_WKUP_CTL register last.

Figure 8-22. MAC VLAN2 Tag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC VLAN2 Tag Register (EMAC_VLAN2)

Reset = 0x0000 FFFF0xFFC0 3024

VLAN2TAG[15:0]
(Length/Type Tag)

ADSP-BF537 Blackfin Processor Hardware Reference 8-83

Ethernet MAC

Additional information for the EMAC_WKUP_CTL register bits includes:

• Wakeup frame received status (RWKS)

These four frame status bits flag the receipt of wakeup frames cor-
responding to the respective wakeup frame filters.

• Magic packet received status (MPKS)

This bit is set by the MAC when it receives the magic packet
received wakeup call. The MAC then resumes operation in the nor-
mal powered-up mode.

[1] Magic packet received.

[0] Magic packet not received.

Figure 8-23. MAC Wakeup Frame Control and Status Register

MAC Wakeup Frame Control and Status Register (EMAC_WKUP_CTL)

CAPWKFRM (Capture
Wakeup Frames)

Reset = 0x0000 0000

MPKE (Magic Packet Wakeup
Enable)
RWKE (Remote Wakeup
Frame Enable)
GUWKE (Global Uni-
cast Wakeup Enable)

RWKS[3:0] (Wakeup Frame
Received Status) - W1C
MPKS (Magic Packet Received
Status) - W1C

0xFFC0 302C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC Register Definitions

8-84 ADSP-BF537 Blackfin Processor Hardware Reference

• Global unicast wake enable (GUWKE)

When set, configures the MAC to wake up from the power-down
mode on receipt of a global unicast frame. Such a frame has the
MAC address [1:0] bits cleared.

[1] Global unicast wake enabled.

[0] Global unicast wake not enabled.

• Remote wakeup frame enable (RWKE)

When set, this bit enables the remote wakeup frame power-down
mode.

[1] Remote wakeup frame enabled.

[0] Remote wakeup frame not enabled.

• Magic packet wakeup enable (MPKE)

When set, this bit enables the magic packet wakeup power-down
mode.

[1] Magic packet wakeup enabled.

[0] Magic packet wakeup not enabled.

• Capture wakeup frames (CAPWKFRM)

[1] RX frames are delivered via DMA while in power-down mode
(when either MPKE or RWKE is set).

[0] The RX DMA pathway is disabled when MPKE or RWKE is set.

ADSP-BF537 Blackfin Processor Hardware Reference 8-85

Ethernet MAC

EMAC_WKUP_FFMSKx Registers

The EMAC_WKUP_FFMSK0, EMAC_WKUP_FFMSK1, EMAC_WKUP_FFMSK2, and
EMAC_WKUP_FFMSK3 registers (see Figure 8-24 through Figure 8-27) are a
part of the mechanism used to select which bytes in a received frame are
used for CRC computation.

Each bit in these registers functions as a byte enable. If a bit i is set, then
the byte (offset + i) is used for CRC computation, where offset is con-
tained in the EMAC_WKUP_FFOFF register.

For example, to identify a wakeup packet containing the byte sequence
(0x80, 0x81, 0x82) in bytes 14, 15, and 17, the filter offset register should
be set to 14 and the byte mask should be set to 0x000B. This byte mask
has bits 0, 1, and 3 set, so that bytes 14+0, 14+1, and 14+3 are selected.

Ethernet MAC Register Definitions

8-86 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 8-24. MAC Wakeup Frame0 Byte Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame0 Byte Mask Register (EMAC_WKUP_FFMSK0)

Reset = 0x0000 00000xFFC0 3030

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8

ADSP-BF537 Blackfin Processor Hardware Reference 8-87

Ethernet MAC

Figure 8-25. MAC Wakeup Frame1 Byte Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame1 Byte Mask Register (EMAC_WKUP_FFMSK1)

Reset = 0x0000 00000xFFC0 3034

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8

Ethernet MAC Register Definitions

8-88 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 8-26. MAC Wakeup Frame2 Byte Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame2 Byte Mask Register (EMAC_WKUP_FFMSK2)

Reset = 0x0000 00000xFFC0 3038

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8

ADSP-BF537 Blackfin Processor Hardware Reference 8-89

Ethernet MAC

Figure 8-27. MAC Wakeup Frame3 Byte Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame3 Byte Mask Register (EMAC_WKUP_FFMSK3)

Reset = 0x0000 00000xFFC0 303C

Byte Enable 16

Byte Enable 28

Byte Enable 29

Byte Enable 30

Byte Enable 31

Byte Enable 17

Byte Enable 18

Byte Enable 19

Byte Enable 20

Byte Enable 21

Byte Enable 22

Byte Enable 23

Byte Enable 27

Byte Enable 26

Byte Enable 25

Byte Enable 24

Byte Enable 0

Byte Enable 12

Byte Enable 13

Byte Enable 14

Byte Enable 15

Byte Enable 1

Byte Enable 2

Byte Enable 3

Byte Enable 4

Byte Enable 5

Byte Enable 6

Byte Enable 7

Byte Enable 11

Byte Enable 10

Byte Enable 9

Byte Enable 8

Ethernet MAC Register Definitions

8-90 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_WKUP_FFCMD Register

The EMAC_WKUP_FFCMD register, shown in Figure 8-28, regulates which of
the four frame filter registers are enabled and if so, whether they are con-
figured for unicast or multicast address filtering.

Additional information for the EMAC_WKUP_FFCMD register bits includes:

• Wakeup filter 3 address type

[1] Multicast

[0] Unicast

• Enable wakeup filter 3

[1] Wakeup filter 3 enabled.

[0] Wakeup filter 3 not enabled.

Figure 8-28. MAC Wakeup Frame Filter Commands Register

MAC Wakeup Frame Filter Commands Register (EMAC_WKUP_FFCMD)

Enable Wakeup Filter 0

Reset = 0x0000 0000

Wakeup Filter 0 Address
Type

Wakeup Filter 1 Address
Type
Enable Wakeup Filter 1

0xFFC0 3040

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Wakeup Filter 2
Wakeup Filter 2 Address
Type

Wakeup Filter 3 Address
Type
Enable Wakeup Filter 3

ADSP-BF537 Blackfin Processor Hardware Reference 8-91

Ethernet MAC

• Wakeup filter 2 address type

[1] Multicast

[0] Unicast

• Enable wakeup filter 2

[1] Wakeup filter 2 enabled.

[0] Wakeup filter 2 not enabled.

• Wakeup filter 1 address type

[1] Multicast

[0] Unicast

• Enable wakeup filter 1

[1] Wakeup filter 1 enabled.

[0] Wakeup filter 1 not enabled.

• Wakeup filter 0 address type

[1] Multicast

[0] Unicast

• Enable wakeup filter 0

[1] Wakeup filter 0 enabled.

[0] Wakeup filter 0 not enabled.

Ethernet MAC Register Definitions

8-92 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_WKUP_FFOFF Register

The EMAC_WKUP_FFOFF register, shown in Figure 8-29, contains the byte
offsets for CRC computation to be performed on potential wakeup
frames.

EMAC_WKUP_FFCRC0 and EMAC_WKUP_FFCRC1 Registers

The EMAC_WKUP_FFCRC0 register, shown in Figure 8-30, and the
EMAC_WKUP_FFCRC1 register, shown in Figure 8-31, should be loaded with
the results of the CRC computations for the relevant wakeup frame bytes.
See “Remote Wake-up Filters” on page 8-36.

Figure 8-29. Ethernet MAC Wakeup Frame Filter Offsets Register

Figure 8-30. MAC Wakeup Frame Filter CRC0/1 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC Wakeup Frame Filter Offsets Register (EMAC_WKUP_FFOFF)

Wakeup Filter 0
Pattern Offset[7:0]

Reset = 0x0000 0000

Wakeup Filter 1
Pattern Offset[7:0]

0xFFC0 3044

Wakeup Filter 2
Pattern Offset[7:0]

Wakeup Filter 3
Pattern Offset[7:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame Filter CRC0/1 Register (EMAC_WKUP_FFCRC0)

Wakeup Filter 0
Pattern CRC[15:0]

Reset = 0x0000 00000xFFC0 3048

Wakeup Filter 1
Pattern CRC[15:0]

ADSP-BF537 Blackfin Processor Hardware Reference 8-93

Ethernet MAC

System Interface Register Group
The SIF block registers control and monitor the MAC’s interactions with
the Blackfin processor peripheral subsystem and the external PHY. The
SIF block has several frame status registers whose bit descriptions can be
found in “Ethernet MAC Frame Status Registers” on page 8-98.

EMAC_SYSCTL Register

The EMAC_SYSCTL register, shown in Figure 8-32, is used to set up MAC
controls.

Figure 8-31. MAC Wakeup Frame Filter CRC2/3 Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC Wakeup Frame Filter CRC2/3 Register (EMAC_WKUP_FFCRC1)

Wakeup Filter 2
Pattern CRC[15:0]

Reset = 0x0000 00000xFFC0 304C

Wakeup Filter 3
Pattern CRC[15:0]

Ethernet MAC Register Definitions

8-94 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the EMAC_SYSCTL register bits includes:

• SCLK:MDC clock divisor (MDCDIV[5:0])

This field contains the clock divisor that determines the ratio
between the Blackfin system clock (SCLK) and the MAC data clock
(MDC). The 6-bit ratio N determines the MDC rate as:

MDC = SCLK/(2 x (N + 1)).

• Transmit frame DMA word alignment (TXDWA)

This bit determines whether outgoing frame data is aligned on odd
or even 16-bit boundaries in memory.

[1] Even word alignment.

[0] Odd word alignment.

Figure 8-32. MAC System Control Register

MAC System Control Register (EMAC_SYSCTL)

PHYIE (PHYINT Interrupt
Enable)

Reset = 0x0000 3F00

RXDWA (Receive Frame DMA
Word Alignment)

MDCDIV[5:0] (SCLK:MDC
Clock Divisor)
TXDWA (Transmit Frame DMA Word
Alignment)

0xFFC0 3060
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RXCKS (Enable Receive Frame TCP/UDP
Checksum Computation)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 1 1 1 1 0 0 0 0 0 0 0

ADSP-BF537 Blackfin Processor Hardware Reference 8-95

Ethernet MAC

• Enable receive frame TCP/UDP checksum computation (RXCKS)

[1] TCP/UDP checksum computation on received frames enabled.

[0] Receive frame TCP/UDP checksum computation not enabled.

• Receive frame DMA word alignment (RXDWA)

This bit determines whether incoming frames are aligned on odd or
even 16-bit boundaries in memory.

[1] Odd word alignment.

[0] Even word alignment.

• PHYINT interrupt enable (PHYIE)

[1] PHYINT interrupt enabled.

[0] PHYINT interrupt not enabled.

EMAC_SYSTAT Register

The EMAC_SYSTAT register, shown in Figure 8-33, contains a range of inter-
rupt status bits that signal the occurrence of significant Ethernet events to
the application. Detailed descriptions of the functionality can be found in
the section entitled “Ethernet Event Interrupts” on page 8-39.

Ethernet MAC Register Definitions

8-96 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the EMAC_SYSTAT register bits includes:

• Station management transfer done interrupt status (STMDONE)

This bit is set when a station management transfer on
MDC/MDIO has completed, provided the STAIE interrupt enable
control bit is set in the EMAC_STAADD register.

• TX DMA direction error status (TXDMAERR)

This bit is set if a TX data or status DMA request is granted by the
DMA channel with transfer in the wrong direction. Data should be
memory-read, status should be memory-write. This interrupt is
non-maskable in the Ethernet MAC.

• RX DMA direction error status (RXDMAERR)

This bit it set if an RX data or status DMA request is granted by
the DMA channel with transfer in the wrong (memory-read) direc-
tion. This interrupt is non-maskable in the Ethernet MAC.

Figure 8-33. MAC System Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MAC System Status Register (EMAC_SYSTAT)

PHYINT (PHYINT Interrupt
Status) - W1C

Reset = 0x0000 0000

MMCINT (MMC Counter
Interrupt Status) - RO

STMDONE (Station Management
Transfer Done Interrupt Status) -
W1C
TXDMAERR (TX DMA Direction
Error Status) - W1C

0xFFC0 3064
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RXFSINT (RX Frame-Status
Interrupt Status) - RO
TXFSINT (TX Frame-Status
Interrupt Status) - RO

RXDMAERR (RX DMA Direc-
tion Error Status) - W1C
WAKEDET (Wake-up
Detected Status) - RO

ADSP-BF537 Blackfin Processor Hardware Reference 8-97

Ethernet MAC

• Wakeup detected status (WAKEDET)

To clear this bit, write 1 to the wakeup control/status register.

[1] Wakeup detected.

[0] Wakeup not detected.

• TX frame-status interrupt status (TXFSINT)

To clear this bit, write 1s to the EMAC_RX_STKY register bits.

[1] TX frame-status interrupt has occurred.

[0] TX frame-status interrupt has not occurred.

• RX frame-status interrupt status (RXFSINT)

To clear this bit, write 1s to the EMAC_RX_STKY register bits.

[1] RX frame-status interrupt has occurred.

[0] RX frame-status interrupt has not occurred.

• MMC counter interrupt status (MMCINT)

To clear this bit, write 1 to the EMAC_MMC_RIRQS or EMAC_MMC_TIRQS
register.

[1] MMC counter interrupt has occurred.

[0] MMC counter interrupt has not occurred.

• PHYINT interrupt status (PHYINT)

[1] PHYINT interrupt has occurred.

[0] PHYINT interrupt has not occurred.

Ethernet MAC Register Definitions

8-98 ADSP-BF537 Blackfin Processor Hardware Reference

Ethernet MAC Frame Status Registers
The Ethernet MAC frame status registers keep track of the status of each
frame received or transmitted, as well as the status of MMC interrupts.

EMAC_RX_STAT Register

The EMAC_RX_STAT register, shown in Figure 8-34, tells the status of the
most recently completed receive frame, including type of error for cases
where an error occurs. When the receive complete bit is set, exactly one of
bits 13 through 20 is 1. Bits 13 through 20 indicate the receive status as
defined in IEEE 802.3, section 4.3.2. In case of multiple errors, errors are
prioritized in the order listed in Table 8-4 on page 8-22. Bits 18 and 19
identify frames which are not considered received by the station and also
are not considered errors. (See section 4.1.2.1.2 and section 4.2.4.2.2 of
IEEE 802.3.) Bit 20 identifies frames damaged within the MAC sublayer.

Note if the PB (pass bad frames) bit is 0, then delivery via DMA of frames
with status bits 14 through 18 or 20 is cancelled. The DMA buffer is
reused for the next frame. If the PR (promiscuous) bit is 0, then frames
with bit 19 set are not delivered (the DMA is never initiated).

ADSP-BF537 Blackfin Processor Hardware Reference 8-99

Ethernet MAC

Additional information for the EMAC_RX_STAT register bits includes:

• Receive frame accepted (RX_ACCEPT)

[1] The receive frame was accepted, based on the address filter
result and the frame filtering modes in the EMAC_OPMODE register.
Note that this does not imply a status of receiveOK. If the RA
(receive all) control bit is 0, then the only frames delivered by
DMA are the frames whose receive frame accepted status bit is 1.

[0] Receive frame not accepted.

Figure 8-34. Ethernet MAC RX Current Frame Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Current Frame Status Register (EMAC_RX_STAT)
All bits in this register are RO.

RX_FRLEN[10:0]
(Frame Length)

Reset = 0x0000 0000

RX_COMP (Receive
Complete)

RX_ALIGN
(Alignment Error)

RX_LONG (Frame
Too Long)
RX_OK (Receive OK)

0xFFC0 3068

RX_CRC (Frame CRC
Error)

RX_TYPE (Frame Type)

RX_VLAN1 (VLAN1
Frame)

RX_VLAN2 (VLAN2
Frame)

RX_ACCEPT
(Receive Frame
Accepted) RX_LEN (Length Error)

RX_FRAG (Frame
Fragment)
RX_ADDR (Address
Filter Failed)
RX_DMAO (DMA
Overrun)
RX_PHY (PHY Error)

RX_LATE (Late
Collision Seen)
RX_RANGE (Out of
Range Length Field)

RX_UCTL (Unsupported
Control Frame)
RX_CTL (Control Frame)
RX_BROAD, RX_MULTI (RX
Broadcast, RX Multicast)

Ethernet MAC Register Definitions

8-100 ADSP-BF537 Blackfin Processor Hardware Reference

• VLAN2 frame (RX_VLAN2)

[1] The frame is a valid tagged frame with a length/type field
matching the VLAN2 tag register, and with status of receiveOK.

[0] The frame does not meet those conditions.

• VLAN1 frame (RX_VLAN1)

[1] The frame is a valid tagged frame with a length/type field
matching the VLAN1 tag register, and with status of receiveOK.

[0] The frame does not meet those conditions.

• Frame type (RX_TYPE)

[1] The frame is a valid typed frame, with status of receiveOK and
with a length/type field greater than or equal to 0x600.

[0] The frame is not of that type.

• Unsupported control frame (RX_UCTL)

[1] The frame is a valid MAC control frame (with status of
receiveOK and with a length/type field equal to
802.3_MAC_Control, 88-08), but does not contain the pause
opcode, or is not 64 bits in length, or is received in half-duplex
mode.

[0] The frame does not meet those conditions.

ADSP-BF537 Blackfin Processor Hardware Reference 8-101

Ethernet MAC

• Control frame (RX_CTL)

[1] The frame is a valid MAC control frame in full duplex mode
with status of receiveOK, with a length/type field equal to
MAC_Control, 88-08, with length of 64 bytes, and with a MAC
control opcode field equal to the pause opcode (00-01).

[0] The frame does not meet those conditions.

• RX broadcast, RX multicast (RX_BROAD, RX_MULTI)

[1 1] Illegal
[1 0] Broadcast address
[0 1] Group address
[0 0] Unicast address

• Out of range length field (RX_RANGE)

[1] The frame’s length/type field was consistent with the length
interpretation (<1536 = 0x600) but was greater than the maximum
allowable frame size in bytes, as indicated by the frame too long
bit).

[0] The frame’s length was not out of range.

• Late collision seen (RX_LATE)

[1] A collision was detected after the first 64 bytes of the packet.

[0] Late collision not detected.

• PHY error (RX_PHY)

[1] RX_ER was asserted at some time during the frame. This condi-
tion always causes the FCS check to fail.

[0] No PHY error.

Ethernet MAC Register Definitions

8-102 ADSP-BF537 Blackfin Processor Hardware Reference

• DMA overrun (RX_DMAO)

[1] The received frame was truncated due to failure of the
FIFO/DMA channel to continuously store data during DMA
transfer to memory.

[0] No DMA overrun.

• Address filter failed (RX_ADDR)

[1] The destination address did not pass the address filters specified
by the station MAC address, the multicast hash registers, and the
filter modes in the operating modes register.

[0] Address did not fail.

• Frame fragment (RX_FRAG)

[1] Frame length was less than the minimum frame size (64 bytes).

[0] Frame length was at least 64 bytes.

• Length error (RX_LEN)

[1] The frame’s length/type field does not match the length of
received data and is consistent with the length interpretation
(< 0x600), although the frame had no “frame too long” errors and
had a valid FCS.

[0] No frame length error.

• Frame CRC error (RX_CRC)

[1] The frame failed FCS validation, but had neither a “frame too
long” error nor a partial number of octets. Note if RX_ER is asserted
by the PHY during frame reception, the FCS validation will fail.

[0] No frame CRC error.

ADSP-BF537 Blackfin Processor Hardware Reference 8-103

Ethernet MAC

• Alignment error (RX_ALIGN)

[1] The frame ended with a partial octet and failed RCS validation,
but had no frame too long error.

[0] No alignment error.

• Frame too long (RX_LONG)

[1] The number of octets received is greater than the maximum
Ethernet frame size. Maximum frame size is 1522 bytes for a frame
whose length/type field matches the VLAN1 tag register, 1538
bytes for a frame whose length/type field matches the VLAN2 tag
register, or 1518 for all other frames. The frame data delivered by
DMA is truncated to 1556 (0x614) bytes in all cases.

[0] Frame is not too long.

• Receive OK (RX_OK)

[1] There was no receive error.

[0] A receive error occurred.

• Receive complete (RX_COMP)

This bit is cleared on reset and when the MAC RX is enabled
(RE changes from 0 to 1). Frames that fail the address filter or the
frame filter are not delivered by DMA, unless overridden by the
RA (receive all) control bit. Note that in the RX frame status buffer
written to memory by DMA, the receive complete bit is always 1.
This bit acts as a semaphore, indicating that DMA of the frame has
completed.

Ethernet MAC Register Definitions

8-104 ADSP-BF537 Blackfin Processor Hardware Reference

[1] The first RX frame is complete.

[0] The first RX frame is not yet complete.

• Frame length (RX_FRLEN)

The number of bytes in the frame. If the ASTP bit is set, the pad
and FCS are not included in the length.

EMAC_RX_STKY Register

The EMAC_RX_STKY register, shown in Figure 8-35, accumulates state across
multiple frames, unless software clears it after every frame.

Additional information for the EMAC_RX_STKY register bits includes:

• Receive frames passed frame filter (RX_ACCEPT)

[1] At least one receive frame passed the frame filter.

[0] No receive frames passed the frame filter.

• VLAN2 frames detected (RX_VLAN2)

[1] At least one VLAN2 frame was detected.

[0] No VLAN2 frames were detected.

• VLAN1 frames detected (RX_VLAN1)

[1] At least one VLAN1 frame was detected.

[0] No VLAN1 frames were detected.

• Typed frames detected (RX_TYPE)

[1] At least one typed frame was detected.

[0] No typed frames were detected.

ADSP-BF537 Blackfin Processor Hardware Reference 8-105

Ethernet MAC

• Unsupported control frames detected (RX_UCTL)

[1] At least one unsupported control frame was detected.

[0] No unsupported control frames were detected.

• Control frames detected (RX_CTL)

[1] At least one control frame was detected.

[0] No control frames were detected.

Figure 8-35. Ethernet MAC RX Sticky Frame Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Sticky Frame Status Register (EMAC_RX_STKY)
All bits in this register are W1C.

Reset = 0x0000 0000

RX_COMP (Frames
Received)RX_ALIGN

(Alignment Errors
Detected)
RX_LONG (Frame Too
Long Errors Detected)

RX_OK (Frames
Received OK)

0xFFC0 306C

RX_CRC (Frame CRC Errors
Detected)

RX_TYPE (Typed Frames
Detected)

RX_VLAN1 (VLAN1
Frames Detected)

RX_VLAN2 (VLAN2
Frames Detected)

RX_ACCEPT
(Receive Frames
Passed Frame
Filter) RX_LEN (Length Errors

Detected)
RX_FRAG (Frame Frag-
ments Detected)
RX_ADDR (Address Filter
Failures Detected)
RX_DMAO (DMA Overruns
Detected)
RX_PHY (PHY Errors
Detected)
RX_LATE (Late Collisions
Detected)

RX_UCTL (Unsupported
Control Frames Detected)
RX_CTL (Control Frames
Detected)
RX_BROAD (Broadcast Frames
Detected)
RX_MULTI (Multicast Frames
Detected)

RX_RANGE (Out of Range
Length Fields Detected)

Ethernet MAC Register Definitions

8-106 ADSP-BF537 Blackfin Processor Hardware Reference

• Broadcast frames detected (RX_BROAD)

[1] At least one broadcast frame was detected.

[0] No broadcast frames were detected.

• Multicast frames detected (RX_MULTI)

[1] At least one multicast frame was detected.

[0] No multicast frames were detected.

• Out of range length fields detected (RX_RANGE)

[1] At least one out of range length field was detected.

[0] No out of range length fields were detected.

• Late collisions detected (RX_LATE)

[1] At least one collision was detected after the first 64 bytes of the
packet.

[0] No late collisions were detected.

• PHY errors detected (RX_PHY)

[1] At least one PHY error was detected.

[0] No PHY errors were detected.

• DMA overruns detected (RX_DMAO)

[1] At least one DMA overrun was detected.

[0] No DMA overruns were detected.

ADSP-BF537 Blackfin Processor Hardware Reference 8-107

Ethernet MAC

• Address filter failures detected (RX_ADDR)

[1] At least one address filter failure was detected.

[0] No address filter failures were detected.

• Frame fragments detected (RX_FRAG)

[1] At least one frame fragment was detected.

[0] No frame fragments were detected.

• Length errors detected (RX_LEN)

[1] At least one length error was detected.

[0] No length errors were detected.

• Frame CRC errors detected (RX_CRC)

[1] At least one CRC error was detected.

[0] No frame CRC errors were detected.

• Alignment errors detected (RX_ALIGN)

[1] At least one alignment error was detected.

[0] No alignment errors were detected.

• Frame too long errors detected (RX_LONG)

[1] At least one frame too long error was detected.

[0] No frame too long errors were detected.

Ethernet MAC Register Definitions

8-108 ADSP-BF537 Blackfin Processor Hardware Reference

• Frames received OK (RX_OK)

This bit can be used to generate an interrupt on the next RX frame.

[1] At least one frame has been received OK.

[0] No good frames have been received.

• Frames received (RX_COMP)

[1] At least one frame (good or bad) was received.

[0] No frames were received.

EMAC_RX_IRQE Register

The EMAC_RX_IRQE register, shown in Figure 8-36, enables the frame status
interrupts.

EMAC_TX_STAT Register

The EMAC_TX_STAT register, shown in Figure 8-37, tells the status of the
most recently completed transmit frame, including type of error for cases
where an error occurred. When the transmit complete bit is set, exactly
one of bits 2, 3, 4, 13, or 14 is 1. Bits 1 through 3 indicate the transmit
status as defined in IEEE 802.3, section 4.3.2.

• TX frame length (TX_FRLEN)

This field contains the length of the transmit frame in bytes.

• Late collision observed (TX_RETRY)

[1] A late collision occurred, but the frame transmission was suc-
cessful after retry.

[0] No late collision occurred.

ADSP-BF537 Blackfin Processor Hardware Reference 8-109

Ethernet MAC

• Loss of carrier (TX_LOSS)

[1] The carrier sense transitioned from asserted to deasserted at
some time during the frame transmission. Half-duplex only. MII
mode only.

[0] No loss of carrier occurred.

Figure 8-36. Ethernet MAC RX Frame Status Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC RX Frame Status Interrupt Enable Register (EMAC_RX_IRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

RX_COMP (Received
Frame Interrupt Enable)

RX_ALIGN (Align-
ment Error Interrupt
Enable)
RX_LONG (Frame Too
Long Error Interrupt
Enable)

RX_OK (Good Received
Frame Interrupt Enable)

0xFFC0 3070

RX_CRC (Frame CRC Error
Interrupt Enable)

RX_TYPE (Typed Frame
Interrupt Enable)

RX_VLAN1 (VLAN1 Frame
Interrupt Enable)

RX_VLAN2 (VLAN2
Frame Interrupt
Enable)

RX_ACCEPT
(Received Filtered
Frame Interrupt
Enable)

RX_LEN (Length Error
Interrupt Enable)

RX_FRAG (Frame Fragment
Interrupt Enable)
RX_ADDR (Address Filter
Failure Interrupt Enable)

RX_DMAO (DMA Overrun
Interrupt Enable)

RX_PHY (PHY Error Interrupt
Enable)

RX_LATE (Late Collision
Interrupt Enable)

RX_UCTL (Unsupported
Control Frame Interrupt Enable)
RX_CTL (Control Frame
Interrupt Enable)
RX_BROAD (Broadcast Frame
Interrupt Enable)
RX_MULTI (Multicast Frame
Interrupt Enable)

RX_RANGE (Out of Range
Length Field Interrupt
Enable)

Ethernet MAC Register Definitions

8-110 ADSP-BF537 Blackfin Processor Hardware Reference

• No carrier (TX_CRS)

[1] Carrier sense (CRS) was not asserted at any time during frame
transmission. Half-duplex only. MII mode only.

[0] CRS was asserted.

• Deferred (TX_DEFER)

[1] The transmission was deferred in half-duplex mode because the
medium was initially occupied (CRS was asserted) at the time the
frame was ready to transmit (after the initial frame data was trans-
ferred by DMA to the MAC). Note the deferred status bit should
be expected to be 1 on frames that have been retried after early col-
lisions, since the MAC can restart the frame immediately after a

Figure 8-37. Ethernet MAC TX Current Frame Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Current Frame Status Register (EMAC_TX_STAT)
All bits in this register are RO.

Reset = 0x0000 0000

TX_DEFER
(Deferred)

TX_RETRY (Late
Collision
Observed)
TX_LOSS (Loss of
Carrier)

TX_CRS (No
Carrier)

0xFFC0 3074

TX_FRLEN[10:0] (Frame
Length)

TX_COMP (Transmit
Complete)

TX_OK (Transmit OK)

TX_ECOLL (Excessive
Collision Error)
TX_LATE (Late Collision
Error)

TX_DMAU (DMA
Underrun)
TX_EDEFER (Excessive
Deferral)
TX_MULTI, TX_BROAD
(TX Multicast, TX
Broadcast)

TX_CCNT[3:0] (Collision
Count)

ADSP-BF537 Blackfin Processor Hardware Reference 8-111

Ethernet MAC

collision using data available in its local FIFO. Since the MAC does
not need to wait for DMA, the frame data is typically ready for
retransmission before TXEN and CRS have deasserted from the prior
attempt. Half-duplex only.

[0] Transmission not deferred.

• Collision count (TX_CCNT)

This field contains the number of collisions that occurred during
frame transmission.

• TX broadcast, TX multicast (TX_BROAD, TX_MULTI)

[1 1] Illegal
[1 0] Group address
[0 1] Broadcast address
[0 0] Unicast address

• Excessive deferral (TX_EDEFER)

[1] The frame transmission was deferred for more than 24,288 bit
times or 6072 TX clocks:

MaxDeferTime = 2 x (MaxUntaggedFrameSize x 8) bits

If the deferral check (DC) bit in the EMAC_OPMODE register is 1, frame
transmission is aborted upon excessive deferral, and both the exces-
sive deferral and excessive collision error status bits are set.

[0] Excessive deferral did not occur.

Ethernet MAC Register Definitions

8-112 ADSP-BF537 Blackfin Processor Hardware Reference

• DMA underrun (TX_DMAU)

[1] The frame transmission was interrupted by a failure of the
FIFO/DMA channel to continuously supply frame data after the
start of transmission on the MII/RMII.

[0] No DMA underrun.

• Late collision error (TX_LATE)

[1] Frame transmission failed because a collision occurred after the
end of the collision window (512 bit times) and the LCRTE bit was
clear, disabling frame transmission retry.

[0] No late collision error.

• Excessive collision error (TX_ECOLL)

[1] Frame transmission failed because too many (16) attempts were
interrupted by collisions, or because the frame was deferred for
more than the maximum deferral time while the deferral check (DC)
control bit was set.

[0] No excessive collision error.

• Transmit OK (TX_OK)

[1] There was no transmit error.

[0] A transmit error occurred.

ADSP-BF537 Blackfin Processor Hardware Reference 8-113

Ethernet MAC

• Transmit complete (TX_COMP)

This bit is cleared on reset and when the MAC TX is enabled (TE
changes from 0 to 1). In the TX DMA status buffer, this bit is
always set to 1 on every status word written via DMA. This bit thus
acts as a semaphore, indicating to software that processing of this
descriptor pair has been completed.

[1] The first TX frame is complete.

[0] The first TX frame is not yet complete.

Additional information for the EMAC_TX_STAT register bits includes:

EMAC_TX_STKY Register

The EMAC_TX_STKY register, shown in Figure 8-38, accumulates state across
multiple frames, unless software clears it after every frame.

Figure 8-38. Ethernet MAC TX Sticky Frame Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Sticky Frame Status Register (EMAC_TX_STKY)
All bits in this register are W1C.

Reset = 0x0000 0000

TX_DEFER (Frame Deferrals
Detected)

TX_RETRY (Late
Collisions
Detected)
TX_LOSS (Losses of
Carrier Detected)
TX_CRS (No Carrier
Detected)

0xFFC0 3078

TX_COMP (Frame Trans-
missions Complete)
TX_OK (Frames
Transmitted OK)

TX_ECOLL (Exces-
sive Collision Errors
Detected)
TX_LATE (Late Collision
Errors Detected)
TX_MACE (Internal MAC
Errors Detected)
TX_EDEFER (Excessive
Deferrals Detected)

TX_BROAD (TX Broadcast Frames Detected)
TX_MULTI (Multicast Frames Detected)

Ethernet MAC Register Definitions

8-114 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the EMAC_TX_STKY register bits includes:

• Late collisions detected (TX_RETRY)

[1] At least one late collision was detected on frames successfully
transmitted after retry.

[0] No late collisions were detected.

• Losses of carrier detected (TX_LOSS)

[1] At least one loss of carrier was detected.

[0] No losses of carrier were detected.

• No carrier detected (TX_CRS)

[1] At least one occasion of no carrier was detected.

[0] No instances of no carrier were detected.

• Frame deferrals detected (TX_DEFER)

[1] At least one frame deferral was detected.

[0] No frame deferrals were detected.

• TX multicast frames detected (TX_MULTI)

[1] At least one multicast frame was detected.

[0] No multicast frames were detected.

• TX broadcast frames detected (TX_BROAD)

[1] At least one broadcast frame was detected.

[0] No broadcast frames were detected.

ADSP-BF537 Blackfin Processor Hardware Reference 8-115

Ethernet MAC

• Excessive deferrals detected (TX_EDEFER)

[1] At least one excessive deferral was detected.

[0] No excessive deferrals were detected.

• Internal MAC errors detected (TX_MACE)

[1] At least one internal MAC error was detected.

[0] No internal MAC errors were detected.

• Late collision errors detected (TX_LATE)

[1] At least one late collision error was detected.

[0] No late collision errors were detected.

• Excessive collision errors detected (TX_ECOLL)

[1] At least one excessive collision error detected.

[0] No excessive collision errors were detected.

• Frames transmitted OK (TX_OK)

This bit can be used to generate an interrupt at the completion of
each TX frame.

[1] At least one frame has been transmitted OK.

[0] No good frames have been transmitted.

• Frame transmissions complete (TX_COMP)

[1] At least one frame was transmitted.

[0] No frames have been transmitted.

Ethernet MAC Register Definitions

8-116 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_TX_IRQE Register

The EMAC_TX_IRQE register, shown in Figure 8-39, is used to enable TX
frame status interrupts.

EMAC_MMC_RIRQS Register

The EMAC_MMC_RIRQS register, shown in Figure 8-40, indicates which of
the receive MAC management counters have incremented past one-half of
maximum range. Each bit is set from 0 to 1 when the corresponding coun-
ter increments from a value less than 0x8000 0000 to a value greater than
or equal to 0x8000 0000 (regardless of the state of the EMAC_MMC_RIRQE
interrupt enable register). Bits in this register are cleared by writing a 1;
writing zero has no effect. For more information, see “MAC Management
Counters” on page 8-44.

Figure 8-39. Ethernet MAC TX Frame Status Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC TX Frame Status Interrupt Enable Register (EMAC_TX_IRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 0000

TX_DEFER (Frame Deferral
Interrupt Enable)

TX_RETRY (Late
Collision Interrupt
Enable)
TX_LOSS (Loss of
Carrier Interrupt
Enable)
TX_CRS (No Carrier
Interrupt Enable)

0xFFC0 307C

TX_COMP (Frame Transmit
Complete Interrupt Enable)
TX_OK (Frame Transmit OK
Interrupt Enable)
TX_ECOLL (Excessive
Collision Error Interrupt
Enable)
TX_LATE (Late Collision
Error Interrupt Enable)
TX_MACE (Internal MAC
Error Interrupt Enable)
TX_EDEFER (Excessive
Deferral Interrupt Enable)

TX_BROAD (TX Broadcast Frame
Interrupt Enable)

TX_MULTI (TX Multicast Frame
Interrupt Enable)

ADSP-BF537 Blackfin Processor Hardware Reference 8-117

Ethernet MAC

Figure 8-40. Ethernet MAC MMC RX Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC RX Interrupt Status Register (EMAC_MMC_RIRQS)
All bits are W1C. For all bits, 1 = Interrupt occurred, 0 = Interrupt did not occur.

Reset = 0x0000 00000xFFC0 3084

RX_TYPED_CNT (Typed
Frames Received Counter
Interrupt)

RX_LT256_CNT (Frames Length 128-255
Received Counter Interrupt)

RX_LT512_CNT (Frames Length 256-511
Received Counter Interrupt)

RX_LT1024_CNT (Frames Length
512-1023 Received Counter Interrupt)

RX_GE1024_CNT (Frames Length
1024-Max Received Counter Interrupt)

RX_SHORT_CNT (Frames
Length Less Than 64
Received Counter
Interrupt)

RX_EQ64_CNT (Frames
Length Equal to 64
Received Counter
Interrupt)
RX_LT128_CNT (Frames
Length 65-127 Received
Counter Interrupt)

RX_OK_CNT (Frames
Received OK Counter
Interrupt)
RX_FCS_CNT (Frame Check
Sequence Errors Counter
Interrupt)
RX_ALIGN_CNT (Align-
ment Errors Counter
Interrupt)
RX_OCTET_CNT
(Octets Received OK
Counter Interrupt)
RX_LOST_CNT
(Frames Lost Due to Int
MAC Receive Error
Counter Interrupt)
RX_UNI_CNT (Unicast
Frames Received OK
Counter Interrupt)
RX_MULTI_CNT (Multicast
Frames Received OK
Counter Interrupt)
RX_BROAD_CNT (Broad-
cast Frames Received OK
Counter Interrupt)

RX_ALLO_CNT
(Octets Received
All Counter
Interrupt)
RX_ALLF_CNT
(Frames Received All
Counter Interrupt)
RX_PAUSE_CNT (PAUSE
MAC Control Frames
Received Counter
Interrupt)
RX_OPCODE_CNT (Unsup-
ported Opcodes Received
Counter Interrupt)
RX_ALIGN_CNT (MAC Control
Frames Received Counter
Interrupt)
RX_LONG_CNT (Frame Too Long
Errors Counter Interrupt)

RX_ORL_CNT (Out-of-Range Length
Field Counter Interrupt)

RX_IRL_CNT (In-Range Length Errors
Counter Interrupt)

Ethernet MAC Register Definitions

8-118 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_MMC_RIRQE Register

The EMAC_MMC_RIRQE register, shown in Figure 8-41, indicates which of
the receive MAC management counters are enabled to signal an MMCINT
interrupt when they increment past one-half of maximum range.

If a given counter’s interrupt is not enabled, and that counter passes
0x8000 0000, then the counter’s interrupt status bit is set to 1 but this
does not cause the MMCINT interrupt to be signalled. If the corresponding
interrupt enable bit is later written to 1, the MMCINT Ethernet event inter-
rupt is signalled immediately.

ADSP-BF537 Blackfin Processor Hardware Reference 8-119

Ethernet MAC

Figure 8-41. Ethernet MAC MMC RX Interrupt Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC RX Interrupt Enable Register (EMAC_MMC_RIRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 00000xFFC0 3088

RX_TYPED_CNT (Typed
Frames Received Counter
Interrupt Enable)

RX_LT256_CNT (Frames Length 128-255
Received Counter Interrupt Enable)

RX_LT512_CNT (Frames Length 256-511
Received Counter Interrupt Enable)

RX_LT1024_CNT (Frames Length 512-1023
Received Counter Interrupt Enable)

RX_GE1024_CNT (Frames Length 1024-Max
Received Counter Interrupt Enable)

RX_SHORT_CNT (Frames
Length Less Than 64
Received Counter
Interrupt Enable)
RX_EQ64_CNT (Frames
Length Equal to 64
Received Counter
Interrupt Enable)
RX_LT128_CNT (Frames
Length 65-127 Received
Counter Interrupt Enable)

RX_OK_CNT (Frames
Received OK Counter
Interrupt Enable)
RX_FCS_CNT (Frame
Check Sequence Errors
Counter Interrupt Enable)
RX_ALIGN_CNT (Alignment
Errors Counter Interrupt
Enable)
RX_OCTET_CNT (Octets
Received OK Counter
Interrupt Enable)
RX_LOST_CNT (Frames
Lost Due to Int MAC Receive
Error Counter Interrupt
Enable)
RX_UNI_CNT (Unicast
Frames Received OK Coun-
ter Interrupt Enable)
RX_MULTI_CNT (Multicast
Frames Received OK Coun-
ter Interrupt Enable)
RX_BROAD_CNT (Broad-
cast Frames Received OK
Counter Interrupt Enable)

RX_ALLO_CNT
(Octets Received All
Counter Interrupt
Enable)
RX_ALLF_CNT (Frames
Received All Counter
Interrupt Enable)
RX_PAUSE_CNT (PAUSE
MAC Control Frames
Received Counter Inter-
rupt Enable)

RX_OPCODE_CNT
(Unsupported Opcodes
Received Counter Inter-
rupt Enable)
RX_MACCTL_CNT (MAC Control
Frames Received Counter Inter-
rupt Enable)
RX_LONG_CNT (Frame Too Long
Errors Counter Interrupt Enable)
RX_ORL_CNT (Out-of-Range Length
Field Counter Interrupt Enable)
RX_IRL_CNT (In-Range Length Errors
Counter Interrupt Enable)

Ethernet MAC Register Definitions

8-120 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_MMC_TIRQS Register

The EMAC_MMC_TIRQS register (Figure 8-42) indicates which of the transmit
MAC management counters have incremented past one-half of maximum
range.

Each bit is set from 0 to 1 when the corresponding counter increments
from a value less than 0x8000 0000 to a value greater than or equal to
0x8000 0000 (regardless of the state of the EMAC_MMC_TIRQE interrupt
enable register). Bits in this register are cleared by writing a 1; writing zero
has no effect. For more information, see “MAC Management Counters”
on page 8-44.

ADSP-BF537 Blackfin Processor Hardware Reference 8-121

Ethernet MAC

Figure 8-42. Ethernet MAC MMC TX Interrupt Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC TX Interrupt Status Register (EMAC_MMC_TIRQS)
All bits are W1C. For all bits, 1 = Interrupt occurred, 0 = Interrupt did not occur.

Reset = 0x0000 00000xFFC0 308C

TX_LT256_CNT (Frames
Length 128-255 Transmit-
ted Counter Interrupt)TX_LT512_CNT (Frames Length 256-511

Transmitted Counter Interrupt)

TX_LT1024_CNT (Frames Length 512-1023
Transmitted Counter Interrupt)

TX_GE1024_CNT (Frames Length 1024-Max
Transmitted Counter Interrupt)

TX_EQ64_CNT (Frames
Length Equal to 64 Trans-
mitted Counter Interrupt)
TX_LT128_CNT (Frames
Length 65-127 Transmitted
Counter Interrupt)

TX_OK_CNT (Frames
Transmitted OK Counter
Interrupt)
TX_SCOLL_CNT (Single
Collision Frames Counter
Interrupt)
TX_MCOLL_CNT (Multi-
ple Collision Frames
Counter Interrupt)
TX_OCTET_CNT
(Octets Transmitted OK
Counter Interrupt)
TX_DEFER_CNT (Frames
With Deferred Transmis-
sion Counter Interrupt
TX_LATE_CNT (Late Colli-
sions Counter Interrupt)

TX_ABORTC_CNT (Frames
Aborted Due to Excess
Collisions Counter
Interrupt)
TX_LOST_CNT (Frames
Lost Due to Internal MAC
Transmit Error Counter
Interrupt)

TX_ALLO_CNT
(Octets Transmitted
All Counter
Interrupt)
TX_ALLF_CNT (Frames
Transmitted All Coun-
ter Interrupt)
TX_MACCTL_CNT
(MAC Control Frames
Transmitted Counter
Interrupt)
TX_EXDEF_CNT (Frames With
Excessive Deferral Counter
Interrupt)

TX_BROAD_CNT (Broadcast
Frames Transmitted OK Counter
Interrupt)
TX_MULTI_CNT (Multicast Frames
Transmitted OK Counter Interrupt)

TX_UNI_CNT (Unicast Frames Transmit-
ted OK Counter Interrupt)

TX_CRS_CNT (Carrier Sense Errors Coun-
ter Interrupt)

TX_ABORT_CNT (Transmission Aborted
Frames Counter Interrupt)

Ethernet MAC Register Definitions

8-122 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_MMC_TIRQE Register

The EMAC_MMC_TIRQE register, shown in Figure 8-43, indicates which of
the transmit MAC management counters are enabled to signal an MMCINT
interrupt when they increment past one-half of maximum range.

If a given counter’s interrupt is not enabled, and that counter passes
0x8000 0000, then the counter’s interrupt status bit is set to 1 but this
does not cause the MMCINT interrupt to be signalled. If the corresponding
interrupt enable bit is later written to 1, the MMCINT Ethernet event inter-
rupt is signalled immediately.

ADSP-BF537 Blackfin Processor Hardware Reference 8-123

Ethernet MAC

Figure 8-43. Ethernet MAC MMC TX Interrupt Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ethernet MAC MMC TX Interrupt Enable Register (EMAC_MMC_TIRQE)
For all bits, 1 = Interrupt enabled, 0 = Interrupt not enabled.

Reset = 0x0000 00000xFFC0 3090

TX_LT256_CNT (Frames
Length 128-255 Transmit-
ted Counter Interrupt
Enable)

TX_LT512_CNT (Frames Length 256-511
Transmitted Counter Interrupt Enable)

TX_LT1024_CNT (Frames Length 512-1023
Transmitted Counter Interrupt Enable)

TX_GE1024_CNT (Frames Length 1024-Max
Transmitted Counter Interrupt Enable)

TX_EQ64_CNT (Frames
Length Equal to 64 Trans-
mitted Counter Interrupt
Enable)
TX_LT128_CNT (Frames
Length 65-127 Transmitted
Counter Interrupt Enable)

TX_ABORT_CNT (Transmission Aborted Frames
Counter Interrupt Enable)

TX_OK_CNT (Frames
Transmitted OK Counter
Interrupt Enable)
TX_SCOLL_CNT (Single
Collision Frames Counter
Interrupt Enable)
TX_MCOLL_CNT (Multi-
ple Collision Frames
Counter Interrupt Enable)
TX_OCTET_CNT (Octets
Transmitted OK Counter
Interrupt Enable)
TX_DEFER_CNT (Frames
With Deferred Transmis-
sion Counter Interrupt
Enable)
TX_LATE_CNT (Late Colli-
sions Counter Interrupt
Enable)
TX_ABORTC_CNT (Frames
Aborted Due to Excess
Collisions Counter Inter-
rupt Enable)
TX_LOST_CNT (Frames
Lost Due to Internal MAC
Transmit Error Counter
Interrupt Enable)

TX_ALLO_CNT
(Octets Transmitted
All Counter Inter-
rupt Enable)
TX_ALLF_CNT (Frames
Transmitted All Coun-
ter Interrupt Enable)

TX_MACCTL_CNT (MAC
Control Frames Transmit-
ted Counter Interrupt
Enable)
TX_EXDEF_CNT (Frames With
Excessive Deferral Counter
Interrupt Enable)
TX_BROAD_CNT (Broadcast
Frames Transmitted OK Counter
Interrupt Enable)
TX_MULTI_CNT (Multicast Frames
Transmitted OK Counter Interrupt
Enable)

TX_UNI_CNT (Unicast Frames Transmit-
ted OK Counter Interrupt Enable)

TX_CRS_CNT (Carrier Sense Errors
Counter Interrupt Enable)

Ethernet MAC Register Definitions

8-124 ADSP-BF537 Blackfin Processor Hardware Reference

MAC Management Counter Registers
The MAC Management Counter (MMC) block register group consists of
a number of 32-bit unsigned counter registers that gather statistical data
regarding the operation of the MAC. The MAC management counter reg-
isters update automatically at the completion of frame transmit and
receive, whenever the MMCE bit in the MMC control register is set. Coun-
ters contain a 32-bit unsigned value, and may be configured to saturate at
0xFFFF FFFF (CROLL = 0) or to wrap around to zero (CROLL = 1). Counters
cannot be written directly, but can be collectively reset to zero by writing
1 to the RSTC bit, or they can be programmed for clear-on-read behavior
by setting CCOR to 1. The reset value for all MMC registers is 0x0000 0000.
See Table 8-10 on page 8-55 for more information.

Each of these counters can be set up to generate interrupts when they
reach half of the maximum unsigned 32-bit value. This functionality is
described in detail in the section entitled “Ethernet Event Interrupts” on
page 8-39.

EMAC_MMC_CTL Register

The EMAC_MMC_CTL register, shown in Figure 8-44, is used to globally con-
figure all MMC counter registers.

Additional information for the EMAC_MMC_CTL register bits includes:

• MMC counter enable (MMCE)

Setting this bit turns on all the MMC counters, which update on
every frame transmission or reception.

[1] MMC counters are enabled.

[0] MMC counters are not enabled. Counters retain their values
but are not updated.

ADSP-BF537 Blackfin Processor Hardware Reference 8-125

Ethernet MAC

• Counter clear-on-read mode (CCOR)

[1] Counters are in clear-on-read mode. The contents of each
counter is reset each time it is read by the application.

[0] Counters are not in clear-on-read mode. Reads do not affect
counter contents.

• Counter rollover enable (CROLL)

[1] Counter rollover is enabled. This causes all MMC counters to
wrap around to zero when the count exceeds the maximum 32-bit
value of 0xFFFF FFFF.

[0] Counter rollover is not enabled. All MMC registers saturate
upon reaching 0xFFFF FFFF.

Figure 8-44. MAC Management Counters Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 1

MAC Management Counters Control Register (EMAC_MMC_CTL)

Reset = 0x0000 000A

MMCE (MMC
Counter Enable)
CCOR (Counter
Clear-On-Read Mode)

0xFFC0 3080

RSTC (Reset All Counters) -
WO
CROLL (Counter Roll-
over Enable)

Programming Examples

8-126 ADSP-BF537 Blackfin Processor Hardware Reference

• Reset all counters (RSTC)

Writing a 1 to this bit at any time globally resets all MMC
counters.

[1] Globally clear all MMC counters.

[0] Do not reset all counters.

Programming Examples
This section gives a general overview of the functionality of an Ethernet
MAC driver. All necessary steps for reproducing and understanding the
interface are explained with code listings and accompanying text. These
code listings are similar to the driver model supported by CrossCore
Embedded Studio or VisualDSP++ and are written mainly in C. Data
transfers over the MAC with DMA are explained in Figure 8-5 on
page 8-13 and Figure 8-7 on page 8-26, which show receive and transmit
DMA operations. Examine these figures carefully—the code listings
reproduce this kind of “linked list” in the form of C structures. Also pro-
vided are code listings that describe accessing an external PHY via the
station management (MIM) block. All macros which are not explained in
this section can be found in the cdefBF537.h and defBF537.h header files
in the CCES or VisualDSP++ installation.

The code examples in this section (Listing 8-1 through Listing 8-9) show
basic functions and structures. The management counter register and the
interrupt settings are advanced functions and are not covered here. There
are many counter registers which are accessible by polling of the appropri-
ate register or using interrupt service routines. The EMAC_SYSCTL and
EMAC_SYSTAT register should be used to configure the Ethernet MAC inter-
rupts capabilities. See Figure 8-12 on page 8-40 for a detailed description
of the MAC interrupts.

ADSP-BF537 Blackfin Processor Hardware Reference 8-127

Ethernet MAC

Ethernet Structures

Listing 8-1. Type Definition

// type definitions

typedef unsigned long int u32;

typedef unsigned short int u16;

typedef unsigned char u8;

typedef volatile u32 reg32;

typedef volatile u16 reg16;

The type definitions are placed here to help with reading of the following
code.

Listing 8-2. DMA Configuration

typedef struct ADI_DMA_CONFIG_REG {

u16 b_DMAEN:1; /* 0 Enabled */

u16 b_WNR:1; /* 1 Direction */

u16 b_WDSIZE:2; /* 2:3 Transfer word size */

u16 b_DMA2D:1; /* 4 DMA mode */

u16 b_SYNC:1; /* 5 Retain FIFO */

u16 b_DI_SEL:1; /* 6 Data interrupt timing select */

u16 b_DI_EN:1; /* 7 Data interrupt enabled */

u16 b_NDSIZE:4; /* 8:11 Flex descriptor size */

u16 b_FLOW:3; /* 12:14 Flow */

} ADI_DMA_CONFIG_REG;

A convenient way to handle the DMA properties in a “linked list” is to use
structures, because each set should be assigned to the appropriate DMA
descriptor. Listing 8-3 shows a structure used to manage DMA descrip-
tors. Before jumping to the next descriptor, like 1A-1B-2A-2B-1C in
Figure 8-5 on page 8-13 and Figure 8-7 on page 8-26, the structure
ADI_DMA_CONFIG_REG immediately loads to the DMA register before start-
ing its DMA transfer.

Programming Examples

8-128 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 8-3. DMA Descriptor

typedef struct dma_descriptor {

struct dma_descriptor* NEXT_DESC_PTR;

u32 START_ADDR;

ADI_DMA_CONFIG_REG CONFIG;

} DMA_DESCRIPTOR;

The structure shown in Listing 8-3 shows how it is possible to create a
“linked list” of DMAs. The START_ADDR points to the data and the
ADI_DMA_CONFIG_REG structure (shown in Listing 8-2) holds all the neces-
sary settings.

Structures like these are convenient for handling Ethernet streams,
because they allow the programmer to simply call members of the struc-
ture instead of extracting meaningful items through array offsets. This
structure, shown in Listing 8-4, is mirrored in the Ethernet MAC header
with additional NoBytes.

Listing 8-4. Ethernet Frame Buffer

typedef struct adi_ether_frame_buffer {

u16 NoBytes; /* the no. of following bytes */

u8 Dest[6]; /* destination MAC address */

u8 Srce[6]; /* source MAC address */

u16 LTfield; /* length/type field */

u8 Data[0]; /* payload bytes */

} ADI_ETHER_FRAME_BUFFER;

The ADI_ETHER_BUFFER structure in Listing 8-5, Top Level Structure, cov-
ers all the above structures and shows the general framework as described
in Figure 8-5 on page 8-13 and Figure 8-7 on page 8-26. The two Dma[2]
structures are needed for descriptors 1A,1B and 2A,2B. The pointer
*frmData represents the payload of the frame, which has a specific number
of bytes (as dictated by the NoBytes structure member). This is relevant

ADSP-BF537 Blackfin Processor Hardware Reference 8-129

Ethernet MAC

only in transmit mode—in receive mode the driver will not touch this
NoBytes variable. To ease programming by keeping the transmit and
receive structures the same, the MAC can pad the first 16-bit word (that
is, the data corresponding to the NoBytes structure member) with zeros if
the RXDWA bit in EMAC_SYSCTL is 1. The *pNext and *pPrev pointers are
necessary for creating a “linked list.” The IPHdrChksum and IPPayloadChk-
sum are available in case the Ethernet MAC is set to calculate this. See the
RXCKS bit in the EMAC_SYSCTL register (shown in Figure 8-32 on
page 8-94). These two variables are relevant only in receive mode of the
Ethernet MAC. The StatusWord variable holds the EMAC_RX_STAT register
value in receive mode and holds the EMAC_TX_STAT register value in trans-
mit mode.

Listing 8-5. Top Level Structure

typedef struct adi_ether_buffer {

DMA_DESCRIPTOR Dma[2]; /* first for the frame, second for the

status */

ADI_ETHER_FRAME_BUFFER *FrmData; /* pointer to data */

struct adi_ether_buffer *pNext; /* next buffer */

struct adi_ether_buffer *pPrev; /* prev buffer */

u16 IPHdrChksum; /* the IP header checksum */

u16 IPPayloadChksum; /* the IP header and payload checksum */

u32 StatusWord; /* the frame status word */

} ADI_ETHER_BUFFER;

MAC Address Setup
Write EMAC_ADDRLO and EMAC_ADDRHI in the initialization routine of the
Ethernet MAC, as shown in Listing 8-6. The Ethernet MAC address is a
unique number and may not be used twice. See the IEEE Std. 802.3-2002
specification for further information.

Programming Examples

8-130 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 8-6. MAC Address Setup

// MAC address

u8 SrcAddr[6] = {0x5A,0xD4,0x9A,0x48,0xDE,0xAC};

// function

void SetupMacAddr(u8 *MACaddr)

{

*pEMAC_ADDRLO = *(u32 *)&MACaddr[0];

*pEMAC_ADDRHI = *(u16 *)&MACaddr[4];

}

// function call

SetupMacAddr(SrcAddr);

PHY Control Routines
The EMAC_STAAD register provides the option of either polling the STABUSY
bit or getting an interrupt during each MIM block access. The function in
Listing 8-7 polls the STABUSY bit and should be placed after each read or
write command to the PHY register.

Listing 8-7. Poll MIM Block

//

/* Wait until the previous MDC/MDIO transaction has completed */

//

void PollMdcDone(void)

{

/* poll the STABUSY bit */

while(*pEMAC_STAADD & STABUSY)

}

ADSP-BF537 Blackfin Processor Hardware Reference 8-131

Ethernet MAC

Shown in Listing 8-8, the SET_PHYAD and SET_REGAD macros shift the PHY-
Addr and RegAddr values to the appropriate field within the EMAC_STAADD
register. The other macros STAOP, STAIE, and STABUSY, also set bits in the
STAADD register. Use of the STAOP macro controls the read and write trans-
fer of the MIM block.

Listing 8-8. Write Access to the PHY

//

/* Write an off-chip register in a PHY through the MDC/MDIO port

*/

//

void WrPHYReg(u16 PHYAddr, u16 RegAddr, u16 Data)

{

PollMdcDone();

*pEMAC_STADAT = Data;

*pEMAC_STAADD = SET_PHYAD(PHYAddr) |\

SET_REGAD(RegAddr) |\

STAOP | STABUSY;

}

The data in the STADAT register is immediately shifted out after a write to
the STAADD register. See Figure 8-4 on page 8-10.

The function in Listing 8-9 shows how PHY data is read over the MIM
function block of the MAC. First, the STABUSY bit of the EMAC_STAADD will
be polled until no other function is using the MIM block. The PHY
address and register address is sent over the MIM block. Then, the STA-
BUSY bit is polled again, before the data is finally read through the
EMAC_STADAT register.

Programming Examples

8-132 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 8-9. Read Access to the PHY

//

/* Read an off-chip register in a PHY through the MDC/MDIO port

*/

//

u16 RdPHYReg(u16 PHYAddr, u16 RegAddr)

{

u16 Data;

PollMdcDone();

*pEMAC_STAADD = SET_PHYAD(PHYAddr) |\

SET_REGAD(RegAddr) |\

STABUSY;

PollMdcDone();

Data = (u16)*pEMAC_STADAT;

return Data;

}

A complete PHY initialization also requires the initialization of the station
management clock, which is described in detail in the section “MII Sta-
tion Management” on page 8-49. The three PHY functions included in
this section (write, read, and poll) and the initialization routine of the sta-
tion management clock are the minimum requirements for setup and
control of any PHYs.

ADSP-BF537 Blackfin Processor Hardware Reference 9-1

9 CAN MODULE

This chapter describes the Controller Area Network (CAN) module. Fol-
lowing an overview and a list of key features is a description of operation.
The chapter concludes with a programming model, consolidated register
definitions, and programming examples. Familiarity with the CAN stan-
dard is assumed. Refer to Version 2.0 of CAN Specification from Robert
Bosch GmbH.

This chapter contains:

• “Overview” on page 9-1

• “Interface Overview” on page 9-2

• “CAN Operation” on page 9-9

• “Functional Operation” on page 9-24

• “CAN Register Definitions” on page 9-42

• “Programming Examples” on page 9-87

Overview
Key features of the CAN module are:

• Conforms to the CAN 2.0B (active) standard

• Supports both standard (11-bit) and extended (29-bit) identifiers

• Supports data rates of up to 1 Mbit/s

Interface Overview

9-2 ADSP-BF537 Blackfin Processor Hardware Reference

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Dedicated acceptance mask for each mailbox

• Data filtering (first 2 bytes) can be used for acceptance filtering
(DeviceNet™ mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

The CAN module is a low bit rate serial interface intended for use in
applications where bit rates are typically up to 1 Mbit/s. The CAN proto-
col incorporates a data CRC check, message error tracking and fault node
confinement as means to improve network reliability to the level required
for control applications.

Interface Overview
The interface to the CAN bus is a simple two-wire line. See Figure 9-1 for
a symbolic representation of the CAN transceiver interconnection, and
Figure 9-2 for a block diagram. The Blackfin processor’s CANTX output and
CANRX input pins are connected to an external CAN transceiver’s TX and
RX pins (respectively). The CANTX and CANRX pins operate with TTL levels
and are appropriate for operation with CAN bus transceivers according to
ISO/DIS 11898.

Figure 9-1. Representation of CAN Transceiver Interconnection

BLACKFIN

CANRX

CAN
TRANSCEIVER

RX

CANTX TX

CANL

CANH
FIELD BUS

ADSP-BF537 Blackfin Processor Hardware Reference 9-3

CAN Module

Figure 9-2. CAN Block Diagram

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 2

MAILBOX INTERRUPT TRANSMIT 2

MAILBOX INTERRUPT MASK 2

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 2

OVERWRITE PROTECTION/SINGLE SHOT 2

AILBOX INTERRUPT RECEIVE 2

TRANSMIT REQUEST RESET 2

RECEIVE MESSAGE PENDING 2

MAILBOX DIRECTION 1

2TRANSMIT ACKNOWLEDGE 2
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 2

DATA

TIMESTAMP

DATA LENGTH

M
A

IL
B

O
X

 31

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 18

M
A

IL
B

O
X

 17

M
A

IL
B

O
X

 16

M
A

IL
B

O
X

 15

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

M
A

IL
B

O
X

 2

M
A

IL
B

O
X

 1

M
A

IL
B

O
X

 C
O

N
T

R
O

L
 1

TRANSMIT

MAILBOX INTERRUPT TRANSMIT 1

MAILBOX INTERRUPT MASK 1

RECEIVE MESSAGE LOST 1
REMOTE FRAME HANDLING 1

OVERWRITE PROTECTION/SINGLE SHOT 1

MAILBOX INTERRUPT RECEIVE 1

TRANSMIT REQUEST RESET 1

RECEIVE MESSAGE PENDING 1

MAILBOX DIRECTION 1

TRANSMIT ACKNOWLEDGE 1
ABORT ACKNOWLEDGE 1

TRANSMIT REQUEST SET 1

MAILBOX ENABLE 1

IN
T

E
R

R
U

P
T

S

GLOBAL INTERRUPT MASK

GLOBAL INTERRUPT FLAG

GLOBAL INTERRUPT STATUS

E
R

R
O

R
 H

A
N

D
L

E
R

ERROR STATUS

ERROR COUNTERS

ERROR WARNING

C
O

U
N

T
E

R

MODE

COUNTER

RELOAD/CAPTURE

G
L

O
B

A
L

 C
O

N
T

R
O

L

GLOBAL STATUS

GLOBAL CONTROL

DEBUG

T
IM

IN
GBIT TIMING

CLOCK DIVIDEM
A

IL
B

O
X

 0

DATA

TIMESTAMP

ACCEPTANCE MASK

MESSAGE IDENTIFICATION

DATA LENGTH

RECEIVE

ACCEPTANCE
FILTER

...

...

...

...

INTERRUPT

SIC CONTROLLER

P
O

R
T

 J

T
R

A
N

S
C

E
IV

E
R

P
A

B

16

CANx

BLACKFIN

Interface Overview

9-4 ADSP-BF537 Blackfin Processor Hardware Reference

The CANRX and CANTX signals are multiplexed with the secondary data sig-
nals of SPORT0. To enable CAN functionality on the PJ4 and PJ5 pins,
the PJCE bit field in the PORT_MUX register must be set to 01. CAN data is
defined to be either dominant (logic 0) or recessive (logic 1). The default
state of the CANTX output is recessive. Because the CANTX pin is multiplexed
with a SPORT transmit signal pin, the output state may be low if the
SPORT is selected instead of the CAN, as is the default case after reset.

CAN Mailbox Area
The full-CAN controller features 32 message buffers, which are called
mailboxes. Eight mailboxes are dedicated for message transmission, eight
are for reception, and 16 are programmable in direction. Accordingly, the
CAN module architecture is based around a 32-entry mailbox RAM. The
mailbox is accessed sequentially by the CAN serial interface or the Black-
fin core. Each mailbox consists of eight 16-bit control and data registers
and two optional 16-bit acceptance mask registers, all of which must be
configured before the mailbox itself is enabled. Since the mailbox area is
implemented as RAM, the reset values of these registers are undefined.
The data is divided into fields, which includes a message identifier, a time
stamp, a byte count, up to 8 bytes of data, and several control bits. See
Figure 9-3.

The CAN mailbox identification (CAN_MBxx_ID0/1) register pair includes:

• The 29 bit identifier (base part BASEID plus extended part
EXTID_LO/HI)

• The acceptance mask enable bit (AME)

• The remote transmission request bit (RTR)

• The identifier extension bit (IDE)

ADSP-BF537 Blackfin Processor Hardware Reference 9-5

CAN Module

 Do not write to the identifier of a message object while the mailbox
is enabled for the CAN module (the corresponding bit in CAN_MCx
is set).

The other mailbox area registers are:

• The data length code (DLC) in CAN_MBxx_LENGTH. The upper 12 bits
of CAN_MBxx_LENGTH of each mailbox are marked as reserved. These
12 bits should always be set to 0. If DLC is programmed to a value
greater than eight, the internal logic will set it to eight.

• Up to eight bytes for the data field, sent MSB first from the
CAN_MBxx_DATA3/2/1/0 registers, respectively, based on the number
of bytes defined in the DLC. For example, if only one byte is trans-
mitted or received (DLC = 1), then it is stored in the most significant
byte of the CAN_MBxx_DATA3 register.

• Two bytes for the time stamp value (TSV) in the
CAN_MBxx_TIMESTAMP register

Figure 9-3. CAN Mailbox Area

FDF

EXTID_HI / DFC

AME

EXTID_HI / DFC

TSV

DLC

BASEIDAMIDEFMD

BYTE 6

CAN_AM00H

CAN_AM00L

CAN_MB00_ID1

CAN_MB00_ID0

CAN_MB00_TIMESTAMP

CAN_MB00_LENGTH

CAN_MB00_DATA3

CAN_MB00_DATA2

CAN_MB00_DATA1

CAN_MB00_DATA0BYTE 7

BYTE 4 BYTE 5

BYTE 2 BYTE 3

BYTE 0 BYTE 1

EXTID_LO

BASEIDIDERTR EXTID_LO

WORD9

WORD8

WORD7

WORD6

WORD5

WORD4

WORD3

WORD2

WORD1

WORD0

Interface Overview

9-6 ADSP-BF537 Blackfin Processor Hardware Reference

The final registers in the mailbox area are the acceptance mask registers
(CAN_AMxxH and CAN_AMxxL). The acceptance mask is enabled when the AME
bit is set in the CAN_MBxx_ID1 register. If the “filtering on data field”
option is enabled (DNM = 1 in the CAN_CONTROL register and FDF = 1 in the
corresponding acceptance mask), the EXTID_HI[15:0] bits of
CAN_MBxx_ID0 are reused as acceptance code (DFC) for the data field filter-
ing. For more details, see “Receive Operation” on page 9-17 of this
chapter.

CAN Mailbox Control
Mailbox control MMRs function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox.
Since CAN MMRs are all 16 bits wide, pairs of registers are required to
manage certain functionality for all 32 individual mailboxes. Mailboxes
0-15 are configured/monitored in registers with a suffix of 1. Similarly,
mailboxes 16-31 use the same named register with a suffix of 2. For exam-
ple, the CAN mailbox direction registers (CAN_MDx) would control
mailboxes as shown in Figure 9-4.

The mailbox control register area consists of these register pairs:

• CAN_MC1 and CAN_MC2 (mailbox enable registers)

• CAN_MD1 and CAN_MD2 (mailbox direction registers)

Figure 9-4. CAN Register Pairs

MD15

15

CAN_MD1

0

MD14 MD13 MD12 MD11 MD10 MD9 MD8 MD7 MD6 MD5 MD4 MD3 MD2 MD1 MD0

MD31

15

CAN_MD2

0

MD30 MD29 MD28 MD27 MD26 MD25 MD24 MD23 MD22 MD21 MD20 MD19 MD18 MD17 MD16

ADSP-BF537 Blackfin Processor Hardware Reference 9-7

CAN Module

• CAN_TA1 and CAN_TA2 (transmit acknowledge registers)

• CAN_AA1 and CAN_AA2 (abort acknowledge registers)

• CAN_TRS1 and CAN_TRS2 (transmit request set registers)

• CAN_TRR1 and CAN_TRR2 (transmit request reset registers)

• CAN_RMP1 and CAN_RMP2 (receive message pending registers)

• CAN_RML1 and CAN_RML2 (receive message lost registers)

• CAN_RFH1 and CAN_RFH2 (remote frame handling registers)

• CAN_OPSS1 and CAN_OPSS2 (overwrite protection/single shot
transmission registers)

• CAN_MBIM1 and CAN_MBIM2 (mailbox interrupt mask registers)

• CAN_MBTIF1 and CAN_MBTIF2 (mailbox transmit interrupt flag
registers)

• CAN_MBRIF1 and CAN_MBRIF2 (mailbox receive interrupt flag
registers)

Since mailboxes 24–31 support transmit operation only and mailboxes
0–7 are receive-only mailboxes, the lower eight bits in the “1” registers
and the upper eight bits in the “2” registers are sometimes reserved or are
restricted in their usage.

CAN Protocol Basics
Although the CANRX and CANTX pins are TTL-compliant signals, the CAN
signals beyond the transceiver (see Figure 9-1) have asymmetric drivers. A
low state on the CANTX pin activates strong drivers while a high state is
driven weakly. Consequently, active low is called the “dominant” state and

Interface Overview

9-8 ADSP-BF537 Blackfin Processor Hardware Reference

active high is called “recessive.” If the CAN module is passive, the CANTX
pin is always high. If two CAN nodes transmit at the same time, dominant
bits overwrite recessive bits.

The CAN protocol defines that all nodes trying to send a message on the
CAN bus attempt to send a frame once the CAN bus becomes available.
The start of frame indicator (SOF) signals the beginning of a new frame.
Each CAN node then begins transmitting its message starting with the
message ID. While transmitting, the CAN controller samples the CANRX
pin to verify that the logic level being driven is the value it just placed on
the CANTX pin. This is where the names for the logic levels apply. If a trans-
mitting node places a recessive ‘1’ on CANTX and detects a dominant ‘0’ on
the CANRX pin, it knows that another node has placed a dominant bit on
the bus, which means another node has higher priority. So, if the value
sensed on CANRX is the value driven on CANTX, transmission continues, oth-
erwise the CAN controller senses that it has lost arbitration and
configuration determines what the next course of action is once arbitra-
tion is lost. See Figure 9-5 for more details regarding CAN frame
structure.

Figure 9-5. Standard CAN Frame

SOF IDENTIFIER RTR

1 11 1

ARBITRATION PHASE

CRCIDE ACK0...8 BYTESr0 DLC

1 41 0 ... 64 16 2 7 3

EOF IFS

SOF
RTR

CRC

IDE

ACK

r0
DLC

EOF
IFS

- START OF FRAME (SINGLE BIT = 0)
- REMOTE TRANSMISSION REQUEST (REMOTE FRAME = 1)
- IDENTIFIER EXTENSION (EXTENDED ID FRAME = 1)
- RESERVED FOR FUTURE EXPANSION
- DATA LENGTH CONTROL (NUMBER OF DATA BYTES IN FRAME)
- CYCLIC REDUNDANCY CHECK (ERROR BITS IN FRAME)
- ACKNOWLEDGE (RECEIVER DRIVES ONE DOMINANT BIT TO ACK)
- END OF FRAME (SERIES OF 7 RECESSIVE BITS = b#1111111)
- INTERFRAME SPACE (3 RECESSIVE BITS = b#111)

ADSP-BF537 Blackfin Processor Hardware Reference 9-9

CAN Module

Figure 9-5 is a basic 11-bit identifier frame. After the SOF and identifier is
the RTR bit, which indicates whether the frame contains data (data frame)
or is a request for data associated with the message identifier in the frame
being sent (remote frame).

 Due to the inherent nature of the CAN protocol, a dominant bit in
the RTR field wins arbitration against a remote frame request
(RTR=1) for the same message ID, thereby defining a remote request
to be lower priority than a data frame.

The next field of interest is the IDE. When set, it indicates that the mes-
sage is an extended frame with a 29-bit identifier instead of an 11-bit
identifier. In an extended frame, the first part of the message resembles
Figure 9-6.

As could be concluded with regards to the RTR field, a dominant bit in the
IDE field wins arbitration against an extended frame with the same lower
11-bits, therefore, standard frames are higher priority than extended
frames. The substitute remote request bit (SRR, always sent as recessive),
the reserved bits r0 and r1 (always sent as dominant), and the checksum
(CRC) are generated automatically by the internal logic.

CAN Operation
The CAN controller is in configuration mode when coming out of proces-
sor reset or hibernate. It is only when the CAN is in configuration mode
that hardware behavior can be altered. Before initializing the mailboxes
themselves, the CAN bit timing must be set up to work on the CAN bus
that the controller is expected to connect to.

Figure 9-6. Extended CAN Frame

SOF IDENTIFIER SRR

1 11 1 1 18 1 1 4

RTRIDE r1

1

IDENTIFIER r0 DLC

CAN Operation

9-10 ADSP-BF537 Blackfin Processor Hardware Reference

Bit Timing
The CAN controller does not have a dedicated clock. Instead, the CAN
clock is derived from the system clock (SCLK) based on a configurable
number of time quanta. The Time Quantum (TQ) is derived from the
formula TQ = (BRP+1)/SCLK, where BRP is the 10-bit BRP field in the
CAN_CLOCK register. Although the BRP field can be set to any value, it is rec-
ommended that the value be greater than or equal to 4, as restrictions
apply to the bit timing configuration when BRP is less than 4.

The CAN_CLOCK register defines the TQ value, and multiple time quanta
make up the duration of a CAN bit on the bus. The CAN_TIMING register
controls the nominal bit time and the sample point of the individual bits
in the CAN protocol. Figure 9-7 shows the three phases of a CAN bit—
the synchronization segment, the segment before the sample point, and
the segment after the sample point.

The synchronization segment is fixed to one TQ. It is required to syn-
chronize the nodes on the bus. All signal edges are expected to occur
within this segment.

The TSEG1 and TSEG2 fields of CAN_TIMING control how many TQs the
CAN bits consist of, resulting in the CAN bit rate. The nominal bit time
is given by the formula tBIT = TQ x (1 + (1 + TSEG1) + (1 + TSEG2)). For safe
receive operation on given physical networks, the sample point is pro-
grammable by the TSEG1 field. The TSEG2 field holds the number of TQs

Figure 9-7. Three Phases of a CAN Bit

TQTQ

NOMINAL BIT TIME

TQ x (TSEG2 + 1)

TQ TQTQ TQ TQTQ TQTQ
t

TQTQTQ

SYNC
TQ x (TSEG1 + 1)

SAMPLE POINTTRANSMIT POINT

TQ TQ

ADSP-BF537 Blackfin Processor Hardware Reference 9-11

CAN Module

needed to complete the bit time. Often, best sample reliability is achieved
with sample points in the high 80% range of the bit time. Never use sam-
ple points lower than 50%. Thus, TSEG1 should always be greater than or
equal to TSEG2.

The Blackfin CAN module does not distinguish between the propagation
segment and the phase segment 1 as defined by the standard. The TSEG1
value is intended to cover both of them. The TSEG2 value represents the
phase segment 2.

If the CAN module detects a recessive-to-dominant edge outside the syn-
chronization segment, it can automatically move the sampling point such
that the CAN bit is still handled properly. The synchronization jump
width (SJW) field specifies the maximum number of TQs, ranging from 1
to 4 (SJW + 1), allowed for such a re-synchronization attempt. The SJW
value should not exceed TSEG2 or TSEG1. Therefore, the fundamental rule
for writing CAN_TIMING is:

SJW <= TSEG2 <= TSEG1

In addition to this fundamental rule, phase segment 2 must also be greater
than or equal to the Information Processing Time (IPT). This is the time
required by the logic to sample CANRX input. On the Blackfin CAN mod-
ule, this is 3 SCLK cycles. Because of this, restrictions apply to the minimal
value of TSEG2 if the clock prescaler BRP is lower than 2. If BRP is set to 0,
the TSEG2 field must be greater than or equal to 2. If the prescaler is set to
1, the minimum TSEG2 is 1.

 All nodes on a CAN bus should use the same nominal bit rate.

CAN Operation

9-12 ADSP-BF537 Blackfin Processor Hardware Reference

With all the timing parameters set, the final consideration is how sam-
pling is performed. The default behavior of the CAN controller is to
sample the CAN bit once at the sampling point described by the
CAN_TIMING register, controlled by the SAM bit. If the SAM bit is set, how-
ever, the input signal is oversampled three times at the SCLK rate. The
resulting value is generated by a majority decision of the three sample val-
ues. Always keep the SAM bit cleared if the BRP value is less than 4.

Do not modify the CAN_CLOCK or CAN_TIMING registers during normal oper-
ation. Always enter configuration mode first. Writes to these registers have
no effect if not in configuration or debug mode. If not coming out of
processor reset or hibernate, enter configuration mode by setting the CCR
bit in the master control (CAN_CONTROL) register and poll the global CAN
status (CAN_STATUS) register until the CCA bit is set.

 If the TSEG1 field of the CAN_TIMING register is programmed to ‘0,’
the module doesn’t leave the configuration mode.

During configuration mode, the module is not active on the CAN bus
line. The CANTX output pin remains recessive and the module does not
receive/transmit messages or error frames. After leaving the configuration
mode, all CAN core internal registers and the CAN error counters are set
to their initial values.

A software reset does not change the values of CAN_CLOCK and CAN_TIMING.
Thus, an ongoing transfer via the CAN bus cannot be corrupted by chang-
ing the bit timing parameter or initiating the software reset (SRS = 1 in
CAN_CONTROL).

ADSP-BF537 Blackfin Processor Hardware Reference 9-13

CAN Module

Transmit Operation
Figure 9-8 shows the CAN transmit operation. Mailboxes 24-31 are dedi-
cated transmitters. Mailboxes 8-23 can be configured as transmitters by
writing 0 to the corresponding bit in the CAN_MDx register. After writing
the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (MCn = 1 in CAN_MCx) and, subsequently, the corre-
sponding transmit request bit is set (TRSn = 1 in CAN_TRSx).

When a transmission completes, the corresponding bits in the transmit
request set register and in the transmit request reset register (TRRn in
CAN_TRRx) are cleared. If transmission was successful, the corresponding
bit in the transmit acknowledge register (TAn in CAN_TAx) is set. If the
transmission was aborted due to lost arbitration or a CAN error, the corre-
sponding bit in the abort acknowledge register (AAn in CAN_AAx) is set. A
requested transmission can also be manually aborted by setting the corre-
sponding TRRn bit in CAN_TRRx.

Multiple CAN_TRSx bits can be set simultaneously by software, and these
bits are reset after either a successful or an aborted transmission. The TRSn
bits can also be set by the CAN hardware when using the auto-transmit
mode of the universal counter, when a message loses arbitration and the
single-shot bit is not set (OPSSn = 0 in CAN_OPSSx), or in the event of a
remote frame request. The latter is only possible for receive/transmit mail-
boxes if the automatic remote frame handling feature is enabled (RFHn = 1
in CAN_RFHx).

Special care should be given to mailbox area management when a TRSn bit
is set. Write access to the mailbox is permissible with TRSn set, but chang-
ing data in such a mailbox may lead to unexpected data during
transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Set-
ting the TRSn bit associated with a disabled mailbox may result in
erroneous behavior. Similarly, disabling a mailbox before the associated
TRSn bit is reset by the internal logic can cause unpredictable results.

CAN Operation

9-14 ADSP-BF537 Blackfin Processor Hardware Reference

Retransmission

Normally, the current message object is sent again after arbitration is lost
or an error frame is detected on the CAN bus line. If there is more than
one transmit message object pending, the message object with the highest
mailbox is sent first (see Figure 9-8). The currently aborted transmission is
restarted after any messages with higher priority are sent.

Figure 9-8. CAN Transmit Operation Flow Chart

AT LEAST 1 BIT SET IN CAN_TRSx REGISTERS

STARTING WITH
MAILBOX 31,

FIND HIGHEST SET
TRSn BIT

MESSAGE
ABORTED?

YES NO

CLEAR TRSn
AND REPORT
ABORT ERROR

PLACE MESSAGE
n IN TEMPORARY

TRANSMIT BUFFER

EXIT EXIT

CLEAR TRSn
AND REPORT

TRANSMIT
SUCCESSFUL

ADSP-BF537 Blackfin Processor Hardware Reference 9-15

CAN Module

CAN Operation

9-16 ADSP-BF537 Blackfin Processor Hardware Reference

A message which is currently under preparation is not replaced by another
message which is written into the mailbox. The message under preparation
is one that is copied into the temporary transmit buffer when the internal
transmit request for the CAN core module is set. The message in the buf-
fer is not replaced until it is sent successfully, the arbitration on the CAN
bus line is lost, or there is an error frame on the CAN bus line.

Single Shot Transmission

If the single shot transmission feature is used (OPSSn = 1 in CAN_OPSSx), the
corresponding TRSn bit is cleared after the message is successfully sent or if
the transmission is aborted due to a lost arbitration or an error frame on
the CAN bus line. Thus, there is no further attempt to transmit the mes-
sage again if the initial try failed, and the abort error is reported (AAn = 1
in CAN_AAx)

Auto-Transmission

In auto-transmit mode, the message in mailbox 11 can be sent periodically
using the universal counter. This mode is often used to broadcast heart-
beats to all CAN nodes. Accordingly, messages sent this way usually have
high priority.

The period value is written to the CAN_UCRC register. When enabled in this
mode (set UCCNF[3:0] = 0x3 in CAN_UCCNF), the counter (CAN_UCCNT) is
loaded with the value in the CAN_UCRC register. The counter decrements at
the CAN bit clock rate down to 0 and is then reloaded from CAN_UCRC.
Each time the counter reaches a value of 0, the TRS11 bit is automatically
set by internal logic, and the corresponding message from mailbox 11 is
sent.

For proper auto-transmit operation, mailbox 11 must be configured as a
transmit mailbox and must contain valid data (identifier, control bits, and
data) before the counter first expires after this mode is enabled.

ADSP-BF537 Blackfin Processor Hardware Reference 9-17

CAN Module

Receive Operation
The CAN hardware autonomously receives messages and discards invalid
messages. Once a valid message has been successfully received, the receive
logic interrogates all enabled receive mailboxes sequentially, from mailbox
23 down to mailbox 0, whether the message is of interest to the local node
or not.

Each incoming data frame is compared to all identifiers stored in active
receive mailboxes (MDn = 1 and MCn = 1) and to all active transmit mail-
boxes with the remote frame handling feature enabled (RFHn = 1 in
CAN_RFHx).

The message identifier of the received message, along with the identifier
extension (IDE) and remote transmission request (RTR) bits, are compared
against each mailbox’s register settings. If the AME bit is not set, a match is
signalled only if IDE, RTR, and all identifier bits are exact. If, however, AME
is set, the acceptance mask registers determine which of the identifier, IDE,
and RTR bits need to match. The logic applies Received Message XNOR
CAN_IDx or AME AND CAN_AMx. A one at the respective bit position in the
CAN_AMxx mask registers means that the bit does not need to match when
AME = 1. This way, a mailbox can accept a group of messages.

Table 9-1. Mailbox Used for Acceptance Mask Filtering

Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 x x Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling disabled

CAN Operation

9-18 ADSP-BF537 Blackfin Processor Hardware Reference

If the acceptance filter finds a matching identifier, the content of the
received data frame is stored in that mailbox. A received message is stored
only once, even if multiple receive mailboxes match its identifier. If the
current identifier does not match any mailbox, the message is not stored.

Figure 9-9 illustrates the decision tree of the receive logic when processing
the individual mailboxes.

1 0 1 Used Mailbox n enabled
Mailbox n configured for transmit
Remote frame handling enabled

1 1 x Used Mailbox n enabled
Mailbox n configured for receive

Table 9-1. Mailbox Used for Acceptance Mask Filtering (Cont’d)

Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

ADSP-BF537 Blackfin Processor Hardware Reference 9-19

CAN Module

If a message is received for a mailbox and that mailbox still contains
unread data (RMPn = 1), the user has to decide whether the old message
should be overwritten or not. If OPSSn = 0, the receive message lost bit
(RMLn in CAN_RMLx) is set and the stored message is overwritten. This
results in the receive message lost interrupt being raised in the global CAN

Figure 9-9. CAN Receive Operation Flow Chart

MAILBOX
ENABLED?

AME?

Y

FROM MESSAGE RECEIVER/PREVIOUS MAILBOX

0COMPARE ALL
BITS

MATCH?

Y

N

EXIT

NEXT MAILBOX
N

1 COMPARE
UNMASKED
BITS ONLY

NEXT MAILBOX

MAILBOX
DIRECTION?

RECEIVE

MAILBOX
READY?

TRANSMIT

REMOTE
 MAILBOX?

N
NEXT MAILBOX

Y
OVERWRITE

PROTECTION?

N

N

Y

REPORT
OVERFLOW

ERROR

SAVE MESSAGE
TO MAILBOX

TRANSMIT
REMOTE

MESSAGE

Y
NEXT MAILBOX

EXIT EXIT

CAN Operation

9-20 ADSP-BF537 Blackfin Processor Hardware Reference

interrupt status register (RMLIS = 1 in CAN_GIS). If OPSSn = 1, the next mail-
boxes are checked for another matching identifier. If no match is found,
the message is discarded and the next message is checked.

 If a receive mailbox is disabled, an ongoing receive message for that
mailbox is lost even if a second mailbox is configured to receive the
same identifier.

Data Acceptance Filter

If DeviceNet mode is enabled (DNM = 1 in CAN_CONTROL) and the mailbox is
set up for filtering on data field, the filtering is done on the standard ID of
the message and data fields. The data field filtering can be programmed
for either the first byte only or the first two bytes, as shown in Table 9-2.

If the FDF bit is set in the corresponding CAN_AMxxH register, the CAN_AMxxL
register holds the data field mask (DFM[15:0]). If the FDF bit is cleared in
the corresponding CAN_AMxxH register, the CAN_AMxxL register holds the
extended identifier mask (EXTID_HI[15:0]).

Table 9-2. Data Field Filtering

FDF
Filter On Data Field

FMD
Full Mask Data Field

Description

0 0 Do not allow filtering on the data
field

0 1 Not allowed. FMD must be 0 if FDF
is 0.

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

ADSP-BF537 Blackfin Processor Hardware Reference 9-21

CAN Module

Remote Frame Handling

Automatic handling of remote frames can be enabled/disabled by setting/
clearing the corresponding bit in the remote frame handling registers
(CAN_RFHx) of a transmit mailbox.

Remote frames are data frames with no data field and the RTR bit set. The
data length code of the responding data frame is overruled by the DLC of
the requesting remote frame. A data length code can be programmed with
values in the range of 0 to 15, but data length code values greater than 8
are considered as 8. A remote frame contains:

• the identifier bits

• the control field DLC

• the remote transmission request (RTR) bit

Only configurable mailboxes 8–23 can process remote frames, but all
mailboxes can receive and transmit remote frame requests. When setup for
automatic remote frame handling, the CAN_OPSSx register has no effect. All
content of a mailbox is always overwritten by an incoming message.

 If a remote frame is received, the DLC of the corresponding mailbox
is overwritten with the received value.

Erroneous behavior may result when the remote frame handling bit (RFHn)
is changed and the corresponding mailbox is currently processed. See
“Temporarily Disabling Mailboxes” on page 9-23 for safe mailbox
handling.

Watchdog Mode

Watchdog mode is used to make sure messages are received periodically. It
is often used to observe whether or not a certain node on the network is
alive and functioning properly, and, if not, to detect and manage its fail-
ure case accordingly.

CAN Operation

9-22 ADSP-BF537 Blackfin Processor Hardware Reference

Upon programming the universal counter to watchdog mode (set
UCCNF[3:0] = 0x2 in CAN_UCCNF), the counter in the CAN_UCCNT register is
loaded with the predefined value contained in the CAN universal counter
reload/capture register (CAN_UCRC). This counter then decrements at the
CAN bit rate. If the UCCT and UCRC bits in the CAN_UCCNF register are set
and a message is received in mailbox 4 before the counter counts down to
0, the counter is reloaded with the CAN_UCRC contents. If the counter has
counted down to 0 without receiving a message in mailbox 4, the UCEIS
bit in the global CAN interrupt status (CAN_GIS) register is set, and the
counter is automatically reloaded with the contents of the CAN_UCRC regis-
ter. If an interrupt is desired, the UCEIM bit in the CAN_GIM register must
also be set. With the mask bit set, when a watchdog interrupt occurs, the
UCEIF bit in the CAN_GIF register is also set.

The counter can be reloaded with the contents of CAN_UCRC or disabled by
writing to the CAN_UCCNF register.

The time period it takes for the watchdog interrupt to occur is controlled
by the value written into the CAN_UCRC register by the user.

Time Stamps
To get an indication of the time of reception or the time of transmission
for each message, program the CAN universal counter to time stamp
mode (set UCCNF[3:0] = 0x1 in CAN_UCCNF). The value of the 16-bit
free-running counter (CAN_UCCNT) is then written into the
CAN_MBxx_TIMESTAMP register of the corresponding mailbox when a
received message has been stored or a message has been transmitted.

The time stamp value is captured at the sample point of the start of frame
(SOF) bit of each incoming or outgoing message. Afterwards, this time
stamp value is copied to the CAN_MBxx_TIMESTAMP register of the corre-
sponding mailbox.

ADSP-BF537 Blackfin Processor Hardware Reference 9-23

CAN Module

If the mailbox is configured for automatic remote frame handling, the
time stamp value is written for transmission of a data frame (mailbox
configured as transmit) or the reception of the requested data frame (mail-
box configured as receive).

The counter can be cleared (set UCRC bit to 1) or disabled (set UCE bit to 0)
by writing to the CAN_UCCNF register. The counter can also be loaded with
a value by writing to the counter register itself (CAN_UCCNT).

It is also possible to clear the counter (CAN_UCCNT) by reception of a mes-
sage in mailbox number 4 (synchronization of all time stamp counters in
the system). This is accomplished by setting the UCCT bit in the CAN_UCCNF
register.

An overflow of the counter sets a bit in the global CAN interrupt status
register (UCEIS in the CAN_GIS register). A global CAN interrupt can
optionally occur by unmasking the bit in the global CAN interrupt mask
register (UCEIM in the CAN_GIM register). If the interrupt source is
unmasked, a bit in the global CAN interrupt flag register is also set (UCEIF
in the CAN_GIF register).

Temporarily Disabling Mailboxes
If this mailbox is used for automatic remote frame handling, the data field
must be updated without losing an incoming remote request frame and
without sending inconsistent data. Therefore, the CAN controller allows
for temporary mailbox disabling, which can be enabled by programming
the mailbox temporary disable register (CAN_MBTD).

The pointer to the requested mailbox must be written to the TDPTR[4:0]
bits of the CAN_MBTD register and the mailbox temporary disable request bit
(TDR) must be set. The corresponding mailbox temporary disable flag (TDA)
is subsequently set by the internal logic.

Functional Operation

9-24 ADSP-BF537 Blackfin Processor Hardware Reference

If a mailbox is configured as “transmit” (MDn = 0) and TDA is set, the con-
tent of the data field of that mailbox can be updated. If there is an
incoming remote request frame while the mailbox is temporarily disabled,
the corresponding transmit request set bit (TRSn) is set by the internal
logic and the data length code of the incoming message is written to the
corresponding mailbox. However, the message being requested is not sent
until the temporary disable request is cleared (TDR = 0). Similarly, all trans-
mit requests for temporarily disabled mailboxes are ignored until TDR is
cleared. Additionally, transmission of a message is immediately aborted if
the mailbox is temporarily disabled and the corresponding TRRn bit for
this mailbox is set.

If a mailbox is configured as “receive” (MDn = 1), the temporary disable flag
is set and the mailbox is not processed. If there is an incoming message for
the mailbox n being temporarily disabled, the internal logic waits until the
reception is complete or there is an error on the CAN bus to set TDA. Once
TDA is set, the mailbox can then be completely disabled (MCn = 0) without
the risk of losing an incoming frame. The temporary disable request (TDR)
bit must then be reset as soon as possible.

When TDA is set for a given mailbox, only the data field of that mailbox
can be updated. Accesses to the control bits and the identifier are denied.

Functional Operation
The following sections describe the functional operation of the CAN
module, including interrupts, the event counter, warnings and errors,
debug features, and low power features.

ADSP-BF537 Blackfin Processor Hardware Reference 9-25

CAN Module

CAN Interrupts
The CAN module provides three independent interrupts: two mailbox
interrupts (mailbox receive interrupt MBRIRQ and mailbox transmit inter-
rupt MBTIRQ) and the global CAN interrupt GIRQ. The values of these three
interrupts can also be read back in the interrupt status registers.

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or
transmit interrupt, depending on the mailbox configuration. To enable a
mailbox to generate an interrupt, set the corresponding MBIMn bit in
CAN_MBIMx.

If a mailbox is configured as a receive mailbox, the corresponding receive
interrupt flag is set (MBRIFn = 1 in CAN_MBRIFx) after a received message is
stored in mailbox n (RMPn = 1 in CAN_RMPx). If the automatic remote frame
handling feature is used, the receive interrupt flag is set after the requested
data frame is stored in the mailbox. If any MBRIFn bits are set in
CAN_MBRIFx, the MBRIRQ interrupt output is raised in CAN_INTR. In order to
clear the MBRIRQ interrupt request, all of the set MBRIFn bits must be
cleared by software by writing a 1 to those set bit locations in CAN_MBRIFx.

If a mailbox is configured as a transmit mailbox, the corresponding trans-
mit interrupt flag is set (MBTIFn = 1 in CAN_MBTIFx) after the message in
mailbox n is sent correctly (TAn = 1 in CAN_TAx). The TAn bits maintain
state even after the corresponding mailbox n is disabled (MCn = 0). If the
automatic remote frame handling feature is used, the transmit interrupt
flag is set after the requested data frame is sent from the mailbox. If any
MBTIFn bits are set in CAN_MBTIFx, the MBTIRQ interrupt output is raised in
CAN_INTR. In order to clear the MBTIRQ interrupt request, all of the set
MBTIFn bits must be cleared by software by writing a 1 to those set bit loca-
tions in CAN_MBTIFx.

Functional Operation

9-26 ADSP-BF537 Blackfin Processor Hardware Reference

Global CAN Status Interrupt

The global CAN status interrupt logic is implemented with three regis-
ters—the global CAN interrupt mask register (CAN_GIM), where each
interrupt source can be enabled or disabled separately; the global CAN
interrupt status register (CAN_GIS); and the global CAN interrupt flag reg-
ister (CAN_GIF). The interrupt mask bits only affect the content of the
global CAN interrupt flag register (CAN_GIF). If the mask bit is not set, the
corresponding flag bit is not set when the event occurs. The interrupt
status bits in the global CAN interrupt status register, however, are always
set if the corresponding interrupt event occurs, independent of the mask
bits. Thus, the interrupt status bits can be used for polling of interrupt
events.

The global CAN status interrupt output (GIRQ) bit in the global CAN
interrupt status register is only asserted if a bit in the CAN_GIF register is
set. The GIRQ bit remains set as long as at least one bit in the interrupt flag
register CAN_GIF is set. All bits in the interrupt status and in the interrupt
flag registers remain set until cleared by software or a software reset has
occurred.

 In the ISR, the interrupt latch should be cleared by a W1C opera-
tion to the corresponding bit of the CAN_GIS register. This clears
the related bits of both the CAN_GIS and CAN_GIF registers.

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (ADIM, ADIS, ADIF)

At least one access to the mailbox RAM occurred during a data
update by internal logic.

• External trigger output interrupt (EXTIM, EXTIS, EXTIF)

The external trigger event occurred.

ADSP-BF537 Blackfin Processor Hardware Reference 9-27

CAN Module

• Universal counter exceeded interrupt (UCEIM, UCEIS, UCEIF)

There was an overflow of the universal counter (in time stamp
mode or event counter mode) or the counter has reached the value
0x0000 (in watchdog mode).

• Receive message lost interrupt (RMLIM, RMLIS, RMLIF)

A message has been received for a mailbox that currently contains
unread data. At least one bit in the receive message lost register
(CAN_RMLx) is set. If the bit in CAN_GIS (and CAN_GIF) is reset and
there is at least one bit in CAN_RMLx still set, the bit in CAN_GIS (and
CAN_GIF) is not set again. The internal interrupt source signal is
only active if a new bit in CAN_RMLx is set.

• Abort acknowledge interrupt (AAIM, AAIS, AAIF)

At least one AAn bit in the abort acknowledge registers CAN_AAx is
set. If the bit in CAN_GIS (and CAN_GIF) is reset and there is at least
one bit in CAN_AAx still set, the bit in CAN_GIS (and CAN_GIF) is not
set again. The internal interrupt source signal is only active if a new
bit in CAN_AAx is set. The AAn bits maintain state even after the cor-
responding mailbox n is disabled (MCn = 0).

• Access to unimplemented address interrupt (UIAIM, UIAIS, UIAIF)

There was a CPU access to an address which is not implemented in
the controller module.

• Wakeup interrupt (WUIM, WUIS, WUIF)

The CAN module has left the sleep mode because of detected activ-
ity on the CAN bus line.

Functional Operation

9-28 ADSP-BF537 Blackfin Processor Hardware Reference

• Bus-Off interrupt (BOIM, BOIS, BOIF)

The CAN module has entered the bus-off state. This interrupt
source is active if the status of the CAN core changes from normal
operation mode to the bus-off mode. If the bit in CAN_GIS (and
CAN_GIF) is reset and the bus-off mode is still active, this bit is not
set again. If the module leaves the bus-off mode, the bit in CAN_GIS
(and CAN_GIF) remains set.

• Error-Passive interrupt (EPIM, EPIS, EPIF)

The CAN module has entered the error-passive state. This inter-
rupt source is active if the status of the CAN module changes from
the error-active mode to the error-passive mode. If the bit in
CAN_GIS (and CAN_GIF) is reset and the error-passive mode is still
active, this bit is not set again. If the module leaves the error-pas-
sive mode, the bit in CAN_GIS (and CAN_GIF) remains set.

• Error warning receive interrupt (EWRIM, EWRIS, EWRIF)

The CAN receive error counter (RXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

• Error warning transmit interrupt (EWTIM, EWTIS, EWTIF)

The CAN transmit error counter (TXECNT) has reached the warning
limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error
warning mode is still active, this bit is not set again. If the module
leaves the error warning mode, the bit in CAN_GIS (and CAN_GIF)
remains set.

ADSP-BF537 Blackfin Processor Hardware Reference 9-29

CAN Module

Event Counter
For diagnostic functions, it is possible to use the universal counter as an
event counter. The counter can be programmed in the 4-bit UCCNF[3:0]
field of CAN_UCCNF to increment on one of these conditions:

• UCCNF[3:0] = 0x6 – CAN error frame. Counter is incremented if
there is an error frame on the CAN bus line.

• UCCNF[3:0] = 0x7 – CAN overload frame. Counter is incremented
if there is an overload frame on the CAN bus line.

• UCCNF[3:0] = 0x8 – Lost arbitration. Counter is incremented every
time arbitration on the CAN line is lost during transmission.

• UCCNF[3:0] = 0x9 – Transmission aborted. Counter is incre-
mented every time arbitration is lost or a transmit request is
cancelled (AAn is set).

• UCCNF[3:0] = 0xA – Transmission succeeded. Counter is incre-
mented every time a message sends without detected errors (TAn is
set).

• UCCNF[3:0] = 0xB – Receive message rejected. Counter is incre-
mented every time a message is received without detected errors
but not stored in a mailbox because there is no matching identifier
found.

• UCCNF[3:0] = 0xC – Receive message lost. Counter is incremented
every time a message is received without detected errors but not
stored in a mailbox because the mailbox contains unread data (RMLn
is set).

• UCCNF[3:0] = 0xD – Message received. Counter is incremented
every time a message is received without detected errors, whether
the received message is rejected or stored in a mailbox.

Functional Operation

9-30 ADSP-BF537 Blackfin Processor Hardware Reference

• UCCNF[3:0] = 0xE – Message stored. Counter is incremented every
time a message is received without detected errors, has an identifier
that matches an enabled receive mailbox, and is stored in the
receive mailbox (RMPn is set).

• UCCNF[3:0] = 0xF – Valid message. Counter is incremented every
time a valid transmit or receive message is detected on the CAN
bus line.

CAN Warnings and Errors
CAN warnings and errors are controlled using the CAN_CEC register, the
CAN_ESR register, and the CAN_EWR register.

Programmable Warning Limits

It is possible to program the warning level for EWTIS (error warning trans-
mit interrupt status) and EWRIS (error warning receive interrupt status)
separately by writing to the error warning level error count fields for
receive (EWLREC) and transmit (EWLTEC) in the CAN error counter warning
level (CAN_EWR) register. After powerup reset, the CAN_EWR register is set to
the default warning level of 96 for both error counters. After software
reset, the content of this register remains unchanged.

CAN Error Handling

Error management is an integral part of the CAN standard. Five different
kinds of bus errors may occur during transmissions:

• Bit error

A bit error can be detected by the transmitting node only. When-
ever a node is transmitting, it continuously monitors its receive pin
(CANRX) and compares the received data with the transmitted data.
During the arbitration phase, the node simply postpones the trans-
mission if the received and transmitted data do not match.

ADSP-BF537 Blackfin Processor Hardware Reference 9-31

CAN Module

However, after the arbitration phase (that is, once the RTR bit has
been sent successfully), a bit error is signaled any time the value on
CANRX does not equal what is being transmitted on CANTX.

• Form error

A form error occurs any time a fixed-form bit position in the CAN
frame contains one or more illegal bits, that is, when a dominant
bit is detected at a delimiter or end-of-frame bit position.

• Acknowledge error

An acknowledge error occurs whenever a message has been sent and
no receivers drive an acknowledge bit.

• CRC error

A CRC error occurs whenever a receiver calculates the CRC on the
data it received and finds it different than the CRC that was trans-
mitted on the bus itself.

• Stuff error

The CAN specification requires the transmitter to insert an extra
stuff bit of opposite value after 5 bits have been transmitted with
the same value. The receiver disregards the value of these stuff bits.
However, it takes advantage of the signal edge to resynchronize
itself. A stuff error occurs on receiving nodes whenever the 6th
consecutive bit value is the same as the previous five bits.

Once the CAN module detects any of the above errors, it updates the
error status register CAN_ESR as well as the error counter register CAN_CEC.
In addition to the standard errors, the CAN_ESR register features a flag that
signals when the CANRX pin sticks at dominant level, indicating that
shorted wires are likely.

Functional Operation

9-32 ADSP-BF537 Blackfin Processor Hardware Reference

Error Frames

It is of central importance that all nodes on the CAN bus ignore data
frames that one single node failed to receive. To accomplish this, every
node sends an error frame as soon as it has detected an error. See
Figure 9-10.

Once a device has detected an error, it still completes the ongoing bit and
initiates an error frame by sending six dominant and eight recessive bits to
the bus. This is a violation to the bit stuffing rule and informs all nodes
that the ongoing frame needs to be discarded.

All receivers that did not detect the transmission error in the first instance
now detect a stuff bit error. The transmitter may detect a normal bit error
sooner. It aborts the transmission of the ongoing frame and tries sending
it again later.

Finally, all nodes on the bus have detected an error. Consequently, all of
them send 6 dominant and 8 recessive bits to the bus as well. The result-
ing error frame consists of two different fields. The first field is given by
the superposition of error flags contributed from the different stations,
which is a sequence of 6 to 12 dominant bits. The second field is the error
delimiter and consists of 8 recessive bits indicating the end of frame.

ADSP-BF537 Blackfin Processor Hardware Reference 9-33

CAN Module

For CRC errors, the error frame is initiated at the end of the frame, rather
than immediately after the failing bit.

After having received 8 recessive bits, every node knows that the error con-
dition has been resolved and starts transmission if messages are pending.
The former transmitter that had to abort its operation must win the new
arbitration again, otherwise its message is delayed as determined by
priority.

Because the transmission of an error frame destroys the frame under trans-
mission, a faulty node erroneously detecting an error can block the bus.
Because of this, there are two node states which determine a node’s right
to signal an error—error active and error passive. Error active nodes are
those which have an error detection rate below a certain limit. These
nodes drive an ‘active error flag’ of 6 dominant bits.

Figure 9-10. CAN Error Scenario Example

8 BITS

6 BITS

NODE 2 TX

NODE 1 TX

NODE 2 DETECTS
ANY ERROR AND
INITIATES ERROR
FRAME

NODE 1 DETECTS
A BIT EROR AND
SIGNALS THE
ERROR ALSO

NODE 1
WAS
TRANS-
MITTING
DATA

NEW START
BIT

NODE 3 TX

ERROR FRAME

RESULTING BUS

6 BITS

6 BITS

NODE 3 DETECTS
A STUFF BIT ERROR
AND SIGNALS THE
ERROR ALSO

Functional Operation

9-34 ADSP-BF537 Blackfin Processor Hardware Reference

Nodes with a higher error detection rate are suspected of having a local
problem and, therefore, have a limited right to signal errors. These error
passive nodes drive a ‘passive error flag’ consisting of 6 recessive bits.
Thus, an error passive transmitting node is still able to inform the other
nodes about the abortion of a self-transmitted frame, but it is no longer
able to destroy correctly received frames of other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one
of three levels. See Table 9-3. This prevents nodes with high error rates
from blocking the entire network, as the errors might be caused by local
hardware. The Blackfin CAN module provides an error counter for trans-
mit (TEC) and an error counter for receive (REC). The CAN error count
register CAN_CEC houses each of these 8-bit counters.

After initialization, both the TEC and the REC counters are 0. Each time a
bus error occurs, one of the counters is incremented by either 1 or 8,
depending on the error situation (documented in Version 2.0 of CAN
Specification). Successful transmit and receive operations decrement the
respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into a
passive state and the CAN error passive mode (EP) bit in CAN_STATUS is set.
Then, it is not allowed to send any more active error frames. However, it
is still allowed to transmit messages and to signal passive error frames in
case the transmission fails because of a bit error.

If one of the counters exceeds 255 (that is, when the 8-bit counters over-
flow), the CAN module is disconnected from the bus. It goes into bus off
mode and the CAN error bus off mode (EBO) bit is set in CAN_STATUS. Soft-
ware intervention is required to recover from this state.

ADSP-BF537 Blackfin Processor Hardware Reference 9-35

CAN Module

In addition to these levels, the CAN module also provides a warning
mechanism, which is an enhancement to the CAN specification. There are
separate warnings for transmit and receive. By default, when one of the
error counters exceeds 96, a warning is signaled and is represented in the
CAN_STATUS register by either the CAN receive warning flag (WR) or CAN
transmit warning flag (WT) bits. The error warning level can be pro-
grammed using the error warning register, CAN_EWR. More information is
available on page 9-86.

Additionally, interrupts can occur for all of these levels by unmasking
them in the global CAN interrupt mask register (CAN_GIM) shown
on page 9-50. The interrupts include the bus off interrupt (BOIM), the
error-passive interrupt (EPIM), the error warning receive interrupt (EWRIM),
and the error warning transmit interrupt (EWTIM).

During the bus off recovery sequence, the configuration mode request bit
in the CAN_CONTROL register is set by the internal logic (CCR = 1), thus the
CAN core module does not automatically come out of the bus off mode.
The CCR bit cannot be reset until the bus off recovery sequence is finished.

 This behavior can be over-ridden by setting the auto-bus on (ABO)
bit in the CAN_CONTROL register. After exiting the bus off or configu-
ration modes, the CAN error counters are reset.

Table 9-3. CAN Error Level Description

Level Condition Description

Error Active Transmit and receive error

counters 128

This is the initial condition level. As
long as errors stay below 128, the
node will drive active error flags dur-
ing error frames.

Error Passive Transmit or receive error

counters 128, but 256

Errors have accumulated to a level
which requires the node to drive pas-
sive error flags during error frames.

Bus Off Transmit or receive error

counters 256

CAN module goes into bus off mode

Functional Operation

9-36 ADSP-BF537 Blackfin Processor Hardware Reference

Debug and Test Modes
The CAN module contains test mode features that aid in the debugging of
the CAN software and system. Listing 9-1 provides an example of
enabling CAN debug features.

 When these features are used, the CAN module may not be com-
pliant to the CAN specification. All test modes should be enabled
or disabled only when the module is in configuration mode (CCA =
1 in the CAN_STATUS register) or in suspend mode (CSA = 1 in
CAN_STATUS).

The CDE bit is used to gain access to all of the debug features. This bit
must be set to enable the test mode, and must be written first before sub-
sequent writes to the CAN_DEBUG register. When the CDE bit is cleared, all
debug features are disabled.

Listing 9-1. Enabling CAN Debug Features in C

#include <cdefBF537.h>

/* Enable debug mode, CDE must be set before other flags can be

changed in register */

*pCAN_DEBUG |= CDE ;

/* Set debug flags */

*pCAN_DEBUG &= ~DTO ;

*pCAN_DEBUG |= MRB | MAA | DIL ;

/* Run test code */

/* Disable debug mode */

*pCAN_DEBUG &= ~CDE ;

ADSP-BF537 Blackfin Processor Hardware Reference 9-37

CAN Module

When the CDE bit is set, it enables writes to the other bits of the CAN_DEBUG
register. It also enables these features, which are not compliant with the
CAN standard:

• Bit timing registers can be changed anytime, not only during con-
figuration mode. This includes the CAN_CLOCK and CAN_TIMING
registers.

• Allows write access to the read-only transmit/receive error counter
register CAN_CEC.

The mode read back bit (MRB) is used to enable the read back mode. In this
mode, a message transmitted on the CAN bus (or via an internal loop
back mode) is received back directly to the internal receive buffer. After a
correct transmission, the internal logic treats this as a normal receive mes-
sage. This feature allows the user to test most of the CAN features without
an external device.

The mode auto acknowledge bit (MAA) allows the CAN module to generate
its own acknowledge during the ACK slot of the CAN frame. No external
devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal
receive buffer. In auto acknowledge mode, the module itself transmits the
acknowledge. This acknowledge can be programmed to appear on the
CANTX pin if DIL=1 and DTO=0. If the acknowledge is only going to be used
internally, then these test mode bits should be set to DIL=0 and DTO=1.

The disable internal loop bit (DIL) is used to internally enable the transmit
output to be routed back to the receive input.

The disable transmit output bit (DTO) is used to disable the CANTX output
pin. When this bit is set, the CANTX pin continuously drives recessive bits.

The disable receive input bit (DRI) is used to disable the CANRX input.
When set, the internal logic receives recessive bits or receives the internally
generated transmit value in the case of the internal loop enabled (DIL=0).
In either case, the value on the CANRX input pin is ignored.

Functional Operation

9-38 ADSP-BF537 Blackfin Processor Hardware Reference

The disable error counters bit (DEC) is used to disable the transmit and
receive error counters in the CAN_CEC register. When this bit is set, the
CAN_CEC holds its current contents and is not allowed to increment or dec-
rement the error counters. This mode does not conform to the CAN
specification.

 Writes to the error counters should be in debug mode only. Write
access during reception may lead to undefined values. The maxi-
mum value which can be written into the error counters is 255.
Thus, the error counter value of 256 which forces the module into
the bus off state can not be written into the error counters.

Table 9-4 shows several common combinations of test mode bits.

Table 9-4. CAN Test Modes

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode.

0 X X X X X No read back of transmit message.

1 0 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
External acknowledge from external
device required.

1 1 1 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input is enabled.

ADSP-BF537 Blackfin Processor Hardware Reference 9-39

CAN Module

1 1 0 0 0 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input and internal loop are
enabled (internal OR of TX and RX).

1 1 0 0 1 1 Normal transmission on CAN bus
line.
Read back.
No external acknowledge required.
Transmit message and acknowledge
are transmitted on CAN bus line.
CANRX input is ignored.
Internal loop is enabled

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Neither transmit message nor
acknowledge are transmitted on
CANTX.
CANRX input is ignored.
Internal loop is enabled.

Table 9-4. CAN Test Modes (Cont’d)

MRB MAA DIL DTO DRI CDE Functional Description

Functional Operation

9-40 ADSP-BF537 Blackfin Processor Hardware Reference

Low Power Features
The Blackfin processor provides a low power hibernate state, and the
CAN module includes built-in sleep and suspend modes to save power.
The behavior of the CAN module in these three modes is described in the
following sections.

CAN Built-In Suspend Mode

The most modest of power savings modes is the suspend mode. This mode
is entered by setting the suspend mode request (CSR) bit in the
CAN_CONTROL register. The module enters the suspend mode after the cur-
rent operation of the CAN bus is finished, at which point the internal
logic sets the suspend mode acknowledge (CSA) bit in CAN_STATUS.

 If the suspend mode is requested during the bus off recovery
sequence, the module stops after the bus-off recovery sequence has
completed. The module does not enter the suspend mode and the
CSA bit is not set. Software must manually clear the CSR bit to
restart the module.

Once this mode is entered, the module is no longer active on the CAN bus
line, slightly reducing power consumption. When the CAN module is in
suspend mode, the CANTX output pin remains recessive and the module
does not receive/transmit messages or error frames. The content of the
CAN error counters remains unchanged.

The suspend mode can subsequently be exited by clearing the CSR bit in
CAN_CONTROL. The only differences between suspend mode and configura-
tion mode are that writes to the CAN_CLOCK and CAN_TIMING registers are
still locked in suspend mode and the CAN control and status registers are
not reset when exiting suspend mode.

ADSP-BF537 Blackfin Processor Hardware Reference 9-41

CAN Module

CAN Built-In Sleep Mode

The next level of power savings can be realized by using the CAN mod-
ule’s built-in sleep mode. This mode is entered by setting the sleep mode
request (SMR) bit in the CAN_CONTROL register. The module enters the sleep
mode after the current operation of the CAN bus is finished. Once this
mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the sleep mode acknowledge (SMACK)
bit is set in CAN_INTR. When the CAN module is in sleep mode, all register
reads return the contents of CAN_INTR instead of the usual contents. All
register writes, except to CAN_INTR, are ignored in sleep mode.

A small part of the module is clocked continuously to allow for wakeup
out of sleep mode. A write to the CAN_INTR register ends sleep mode. If the
WBA bit in the CAN_CONTROL register is set before entering sleep mode, a
dominant bit on the CANRX pin also ends sleep mode.

CAN Wakeup From Hibernate State

For greatest power savings, the Blackfin processor provides a hibernate
state, where the internal voltage regulator shuts off the internal power sup-
ply to the chip, turning off the core and system clocks in the process. In
this mode, the only power drawn (roughly 50A) is that used by the
regulator circuitry awaiting any of the possible hibernate wakeup events.
One such event is a wakeup due to CAN bus activity. After hibernation,
the CAN module must be re-initialized.

For low power designs, the external CAN bus transceiver is typically put
into standby mode via one of the Blackfin processor’s general purpose I/O
pins. While in standby mode, the CAN transceiver continually drives the
recessive logic ‘1’ level onto the CANRX pin. If the transceiver then senses
CAN bus activity, it will, in turn, drive the CANRX pin to the dominant
logic ‘0’ level. This signals to the Blackfin processor that CAN bus activity
has been detected. If the internal voltage regulator is programmed to

CAN Register Definitions

9-42 ADSP-BF537 Blackfin Processor Hardware Reference

recognize CAN bus activity as an event to exit hibernate state, the part
responds appropriately. Otherwise, the activity on the CANRX pin has no
effect on the processor state.

To enable this functionality, the voltage control register (VR_CTL) must be
programmed with the CAN wakeup enable bit set. The typical sequence
of events to use the CAN wakeup feature is:

1. Use a general-purpose I/O pin to put the external transceiver into
standby mode.

2. Program VR_CTL with the CAN wakeup enable bit (CANWE) set and
the FREQ field set to 00.

CAN Register Definitions
The following sections describe the CAN register definitions.

• “Global CAN Registers” on page 9-46

• “Mailbox/Mask Registers” on page 9-51

• “Mailbox Control Registers” on page 9-70

• “Universal Counter Registers” on page 9-84

• “Error Registers” on page 9-86

Table 9-5 through Table 9-9 show the functions of the CAN registers.

ADSP-BF537 Blackfin Processor Hardware Reference 9-43

CAN Module

Table 9-5. Global CAN Register Mapping

Register Name Function Notes

CAN_CONTROL Master control register Reserved bits 15:8 and 3 must always be
written as ‘0’

CAN_STATUS Global CAN status register Write accesses have no effect

CAN_DEBUG CAN debug register Use of these modes is not CAN-compliant

CAN_CLOCK CAN clock register Accessible only in configuration mode

CAN_TIMING CAN timing register Accessible only in configuration mode

CAN_INTR CAN interrupt register Reserved bits 15:8 and 5:4 must always be
written as ‘0’

CAN_GIM Global CAN interrupt mask
register

Bits 15:11 are reserved

CAN_GIS Global CAN interrupt sta-
tus register

Bits 15:11 are reserved

CAN_GIF Global CAN interrupt flag
register

Bits 15:11 are reserved

Table 9-6. CAN Mailbox/Mask Register Mapping

Register Name Function Notes

CAN_AMxxH/L Acceptance mask
registers

Change only when mailbox MBxx is dis-
abled

CAN_MBxx_ID1/0 Mailbox word 7/6
register

Do not write when MBxx is enabled

CAN_MBxx_TIMESTAMP Mailbox word 5
register

Holds timestamp information when time-
stamp mode is active

CAN_MBxx_LENGTH Mailbox word 4
register

Values greater than 8 are treated as 8

CAN_MBxx_DATA3/2/1/0 Mailbox word
3/2/1/0 register

Software controls reading correct data based
on DLC

CAN Register Definitions

9-44 ADSP-BF537 Blackfin Processor Hardware Reference

Table 9-7. CAN Mailbox Control Register Mapping

Register Name Function Notes

CAN_MCx Mailbox configura-
tion registers

Always disable before modifying mailbox area
or direction

CAN_MDx Mailbox direction
registers

Never change MDn direction when mailbox n
is enabled. MD[31:24] and MD[7:0] are read
only

CAN_RMPx Receive message
pending registers

Clearing RMPn bits also clears corresponding
RMLn bits

CAN_RMLx Receive message lost
registers

Write accesses have no effect

CAN_OPSSx Overwrite protec-
tion or single-shot
transmission regis-
ter

Function depends on mailbox direction. Has no
effect when RFHn = 1. Do not modify OPSSn
bit if mailbox n is enabled

CAN_TRSx Transmission
request set registers

May by set by internal logic under certain cir-
cumstances. TRS[7:0] are read-only

CAN_TRRx Transmission
request reset regis-
ters

TRRn bits must not be set if mailbox n is dis-
abled or TRSn = 0

CAN_AAx Abort acknowledge
registers

AAn bit is reset if TRSn bit is set manually, but
not when TRSn is set by internal logic

CAN_TAx Transmission
acknowledge regis-
ters

TAn bit is reset if TRSn bit is set manually, but
not when TRSn is set by internal logic

CAN_MBTD Temporary mailbox
disable feature reg-
ister

Allows safe access to data field of an enabled
mailbox

CAN_RFHx Remote frame han-
dling registers

Available only to configurable mailboxes 23:8.
RFH[31:24] and RFH[7:0] are read-only

CAN_MBIMx Mailbox interrupt
mask registers

Mailbox interrupts are raised only if these bits
are set

ADSP-BF537 Blackfin Processor Hardware Reference 9-45

CAN Module

CAN_MBTIFx Mailbox transmit
interrupt flag regis-
ters

Can be cleared if mailbox or mailbox interrupt
is disabled. Changing direction while MBTIFn
= 1 results in MBRIFn = 1 and MBTIFn = 0

CAN_MBRIFx Mailbox receive
interrupt flag regis-
ters

Can be cleared if mailbox or mailbox interrupt
is disabled. Changing direction while MBRIFn
= 1 results in MBTIFn = 1 and MBRIFn = 0

Table 9-8. CAN Universal Counter Register Mapping

Register Name Function Notes

CAN_UCCNF Universal counter
mode register

Bits 15:8 and bit 4 are reserved

CAN_UCCNT Universal counter
register

Counts up or down based on universal counter
mode

CAN_UCRC Universal counter
reload/capture reg-
ister

In timestamp mode, holds time of last success-
ful transmit or receive

Table 9-9. CAN Error Register Mapping

Register Name Function Notes

CAN_CEC CAN error counter
register

Undefined while in bus off mode, not affected
by software reset

CAN_ESR Error status register Only the first error is stored. SA0 flag is cleared
by recessive bit on CAN bus

CAN_EWR CAN error counter
warning level regis-
ter

Default is 96 for each counter

Table 9-7. CAN Mailbox Control Register Mapping (Cont’d)

Register Name Function Notes

CAN Register Definitions

9-46 ADSP-BF537 Blackfin Processor Hardware Reference

Global CAN Registers
Figure 9-11 through Figure 9-19 show the global CAN registers.

CAN_CONTROL Register

Figure 9-11. Master Control Register

Master Control Register (CAN_CONTROL)

SRS (Software Reset)
0 - No effect
1 - Reset

Reset = 0x00800xFFC0 2AA0

DNM (DeviceNet Mode)
0 - Disable
1 - Enable
ABO (Auto Bus On)

CCR (CAN Configuration
Mode Request)
0 - Cancelled
1 - Requested
CSR (CAN Suspend Mode
Request)
0 - Cancelled
1 - Requested
SMR (Sleep Mode Request)
0 - Not requested
1 - Enters Sleep mode
WBA (Wake Up on CAN Bus
Activity)
0 - Stays in Sleep mode
1 - Can leave Sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 - Enter Configuration mode
after bus-off recovery
1 - Enter Bus Active mode after
bus-off recovery

ADSP-BF537 Blackfin Processor Hardware Reference 9-47

CAN Module

CAN_STATUS Register

• Mail box pointer (MBPTR[4:0])

Represents the mailbox number of the current transmit message.
After a successful transmission, these bits remain unchanged.

[11111] The message of mailbox 31 is currently being processed.

…

…

…

[00000] The message of mailbox 0 is currently being processed.

Figure 9-12. Global CAN Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Status Register (CAN_STATUS)
RO

WT (CAN Transmit Warning
Flag)
0 - TXECNT below limit
1 - TXECNT at limit

Reset = 0x00000xFFC0 2A8C

WR (CAN Receive Warning
Flag)
0 - RXECNT below limit
1 - RXECNT at limit
EP (CAN Error Passive
Mode)
0 - Both TXECNT and
RXECNT < 128
1 - TXECNT or RXECNT >
error passive level

EBO (CAN Error Bus Off
Mode)
0 - TXECNT < 256
1 - TXECNT > bus off limit

REC (Receive
Mode)
0 - Not in receive mode
1 - In receive mode
TRM (Transmit
Mode)
0 - Not in transmit mode
1 - In transmit mode
MBPTR[4:0] (Mailbox Pointer)
See description below
CCA (CAN Configuration
Mode Acknowledge)
0 - Not in Configuration mode
1 - In Configuration mode
CSA (CAN Suspend Mode
Acknowledge)
0 - Not in Suspend mode
1 - In Suspend mode

CAN Register Definitions

9-48 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_DEBUG Register

CAN_CLOCK Register

Figure 9-13. CAN Debug Register

Figure 9-14. CAN Clock Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

CAN Debug Register (CAN_DEBUG)

Reset = 0x00080xFFC0 2A88

DEC (Disable Transmit and
Receive Error Counters)
0 - Enable CAN_CEC transmit
and receive error counters
1 - Disable CAN_CEC transmit
and receive error counters
DRI (Disable Receive Input
Pin, CANRX)
0 - Enable CANRX input pin
1 - Disable CANRX input pin -
drive recessive internally
DTO (Disable Transmit Out-
put Pin, CANTX)
0 - Enable CANTX output pin
1 - Disable CANTX output pin -
drive recessive

CDE (CAN Debug
Mode Enable)
0 - Debug mode disabled
1 - Debug mode enabled
MRB (Mode Read Back)
0 - Read back mode disabled
1 - Read back mode enabled
MAA (Mode Auto
Acknowledge)
0 - Auto acknowledge mode
disabled
1 - Auto acknowledge mode
enabled
DIL (Disable Internal Loop)
0 - Enable internal loop
1 - Disable internal loop

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Clock Register (CAN_CLOCK)

BRP[9:0] (Bit Rate Prescaler
Register) W/R

Reset = 0x00000xFFC0 2A80

ADSP-BF537 Blackfin Processor Hardware Reference 9-49

CAN Module

CAN_TIMING Register

CAN_INTR Register

Figure 9-15. CAN Timing Register

Figure 9-16. CAN Interrupt Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Timing Register (CAN_TIMING)

TSEG1[3:0] (Time Segment 1)

Reset = 0x00000xFFC0 2A84

TSEG2[2:0] (Time Segment 2)
SJW[1:0] (Synchronization Jump Width)
SAM (Sampling)

CAN Interrupt Register (CAN_INTR)
RO

MBRIRQ (Mailbox Receive
Interrupt Output)
0 - No receive flags set
1 - One or more receive flags
set

Reset = 0x00X0 (X =
dependent on pin values)

0xFFC0 2AA4

MBTIRQ (Mailbox Transmit
Interrupt Output)
0 - No transmit flags set
1 - One or more transmit flags
set
GIRQ (Global CAN Interrupt
Output)
0 - No global CAN flags set
1 - One or more global CAN flags
set

CANRX (Serial Input From Transceiver) - RO

Serial input from CAN bus line from
transceiver
0 - Value is dominant
1 - Value is recessive
CANTX (Serial Input To Transceiver) - RO

Serial input from CAN bus line
to transceiver
0 - Value is dominant
1 - Value is recessive
SMACK (Sleep Mode
Acknowledge)
0 - Not in sleep mode
1 - Full-CAN module in sleep mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 X X 0 0 0 0 0

CAN Register Definitions

9-50 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_GIM Register

CAN_GIS Register

Figure 9-17. Global CAN Interrupt Mask Register

Figure 9-18. Global CAN Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Mask Register (CAN_GIM)

EWTIM (Error Warning Transmit
Interrupt Mask)

Reset = 0x00800xFFC0 2A98

EWRIM (Error Warning Receive
Interrupt Mask)
EPIM (Error Passive Interrupt
Mask)
BOIM (Bus Off Interrupt Mask)

ADIM (Access Denied Interrupt Mask)
EXTIM (External Trigger Interrupt Mask)
UCEIM (Universal Counter Exceeded
Interrupt Mask)
RMLIM (Receive Message Lost Interrupt Mask)
AAIM (Abort Acknowledge Interrupt Mask)

WUIM (Wakeup Interrupt Mask)
UIAIM (Unimplemented Address
Interrupt Mask)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Status Register (CAN_GIS)
All bits are W1C

EWTIS (Error Warning
Transmit Interrupt Status)

Reset = 0x00000xFFC0 2A94

EWRIS (Error Warning
Receive Interrupt Status)
EPIS (Error Passive Interrupt
Status)
BOIS (Bus Off Interrupt Status)

ADIS (Access Denied
Interrupt Status)
EXTIS (External Trigger Interrupt
Status)
UCEIS (Universal Counter Exceeded
Interrupt Status)
RMLIS (Receive Message Lost Interrupt Status)
AAIS (Abort Acknowledge Interrupt Status) WUIS (Wakeup Interrupt Status)

UIAIS (Unimplemented
Address Interrupt Status)

ADSP-BF537 Blackfin Processor Hardware Reference 9-51

CAN Module

CAN_GIF Register

Mailbox/Mask Registers
Figure 9-20 through Figure 9-29 show the CAN mailbox and mask
registers.

CAN_AMxx Registers

Figure 9-19. Global CAN Interrupt Flag Register

Figure 9-20. Acceptance Mask Register (H)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Global CAN Interrupt Flag Register (CAN_GIF)

EWTIF (Error Warning
Transmit Interrupt Flag)

Reset = 0x00000xFFC0 2A9C

EWRIF (Error Warning
Receive Interrupt Flag)
EPIF (Error Passive Interrupt
Flag)
BOIF (Bus Off Interrupt Flag)

ADIF (Access Denied Interrupt Flag)
EXTIF (External Trigger Interrupt Flag)
UCEIF (Universal Counter Exceeded
Interrupt Flag)
RMLIF (Receive Message Lost Interrupt Flag)
AAIF (Abort Acknowledge Interrupt Flag)

WUIF (Wakeup Interrupt Flag)
UIAIF (Unimplemented
Address Interrupt Flag)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxH)

EXTID[17:16] (Extended
Identifier)

Reset = 0xXXXX

BASEID[10:0] (Base Identifier)
AMIDE (Acceptance Mask
Identifier Extension)
FMD (Full Mask Data)
FDF (Filter on Data Field)

For memory-
mapped
addresses, see
Table 9-10.

CAN Register Definitions

9-52 ADSP-BF537 Blackfin Processor Hardware Reference

The value of the acceptance mask register does not care when the AME bit is
zero. If AME is set, only those bits are compared that have the correspond-
ing mask bit cleared. A bit position that is one in the mask register does
not need to match.

Table 9-10. Acceptance Mask Register (H) Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_AM00H 0xFFC0 2B04

CAN_AM01H 0xFFC0 2B0C

CAN_AM02H 0xFFC0 2B14

CAN_AM03H 0xFFC0 2B1C

CAN_AM04H 0xFFC0 2B24

CAN_AM05H 0xFFC0 2B2C

CAN_AM06H 0xFFC0 2B34

CAN_AM07H 0xFFC0 2B3C

CAN_AM08H 0xFFC0 2B44

CAN_AM09H 0xFFC0 2B4C

CAN_AM10H 0xFFC0 2B54

CAN_AM11H 0xFFC0 2B5C

CAN_AM12H 0xFFC0 2B64

CAN_AM13H 0xFFC0 2B6C

CAN_AM14H 0xFFC0 2B74

CAN_AM15H 0xFFC0 2B7C

CAN_AM16H 0xFFC0 2B84

CAN_AM17H 0xFFC0 2B8C

CAN_AM18H 0xFFC0 2B94

CAN_AM19H 0xFFC0 2B9C

CAN_AM20H 0xFFC0 2BA4

ADSP-BF537 Blackfin Processor Hardware Reference 9-53

CAN Module

CAN_AM21H 0xFFC0 2BAC

CAN_AM22H 0xFFC0 2BB4

CAN_AM23H 0xFFC0 2BBC

CAN_AM24H 0xFFC0 2BC4

CAN_AM25H 0xFFC0 2BCC

CAN_AM26H 0xFFC0 2BD4

CAN_AM27H 0xFFC0 2BDC

CAN_AM28H 0xFFC0 2BE4

CAN_AM29H 0xFFC0 2BEC

CAN_AM30H 0xFFC0 2BF4

CAN_AM31H 0xFFC0 2BFC

Figure 9-21. Acceptance Mask Register (L)

Table 9-11. Acceptance Mask Register (L) Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_AM00L 0xFFC0 2B00

CAN_AM01L 0xFFC0 2B08

CAN_AM02L 0xFFC0 2B10

Table 9-10. Acceptance Mask Register (H) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Acceptance Mask Register (CAN_AMxxL)

EXTID[15:0]/DFM[15:0]
(Extended Identifier/Data Field
Mask)

Reset = 0xXXXXFor memory-
mapped
addresses, see
Table 9-11.

CAN Register Definitions

9-54 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_AM03L 0xFFC0 2B18

CAN_AM04L 0xFFC0 2B20

CAN_AM05L 0xFFC0 2B28

CAN_AM06L 0xFFC0 2B30

CAN_AM07L 0xFFC0 2B38

CAN_AM08L 0xFFC0 2B40

CAN_AM09L 0xFFC0 2B48

CAN_AM10L 0xFFC0 2B50

CAN_AM11L 0xFFC0 2B58

CAN_AM12L 0xFFC0 2B60

CAN_AM13L 0xFFC0 2B68

CAN_AM14L 0xFFC0 2B70

CAN_AM15L 0xFFC0 2B78

CAN_AM16L 0xFFC0 2B80

CAN_AM17L 0xFFC0 2B88

CAN_AM18L 0xFFC0 2B90

CAN_AM19L 0xFFC0 2B98

CAN_AM20L 0xFFC0 2BA0

CAN_AM21L 0xFFC0 2BA8

CAN_AM22L 0xFFC0 2BB0

CAN_AM23L 0xFFC0 2BB8

CAN_AM24L 0xFFC0 2BC0

CAN_AM25L 0xFFC0 2BC8

CAN_AM26L 0xFFC0 2BD0

CAN_AM27L 0xFFC0 2BD8

Table 9-11. Acceptance Mask Register (L) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF537 Blackfin Processor Hardware Reference 9-55

CAN Module

CAN_MBxx_ID1 Registers

CAN_AM28L 0xFFC0 2BE0

CAN_AM29L 0xFFC0 2BE8

CAN_AM30L 0xFFC0 2BF0

CAN_AM31L 0xFFC0 2BF8

Figure 9-22. Mailbox Word 7 Register

Table 9-12. Mailbox Word 7 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_ID1 0xFFC0 2C1C

CAN_MB01_ID1 0xFFC0 2C3C

CAN_MB02_ID1 0xFFC0 2C5C

CAN_MB03_ID1 0xFFC0 2C7C

CAN_MB04_ID1 0xFFC0 2C9C

CAN_MB05_ID1 0xFFC0 2CBC

CAN_MB06_ID1 0xFFC0 2CDC

Table 9-11. Acceptance Mask Register (L) Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 7 Register (CAN_MBxx_ID1)

EXTID[17:16] (Extended
Identifier)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-12.

BASEID[10:0] (Base Identifier)
IDE (Identifier Extension)
RTR (Remote Transmission
Request)
AME (Acceptance Mask Enable)

CAN Register Definitions

9-56 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MB07_ID1 0xFFC0 2CFC

CAN_MB08_ID1 0xFFC0 2D1C

CAN_MB09_ID1 0xFFC0 2D3C

CAN_MB10_ID1 0xFFC0 2D5C

CAN_MB11_ID1 0xFFC0 2D7C

CAN_MB12_ID1 0xFFC0 2D9C

CAN_MB13_ID1 0xFFC0 2DBC

CAN_MB14_ID1 0xFFC0 2DDC

CAN_MB15_ID1 0xFFC0 2DFC

CAN_MB16_ID1 0xFFC0 2E1C

CAN_MB17_ID1 0xFFC0 2E3C

CAN_MB18_ID1 0xFFC0 2E5C

CAN_MB19_ID1 0xFFC0 2E7C

CAN_MB20_ID1 0xFFC0 2E9C

CAN_MB21_ID1 0xFFC0 2EBC

CAN_MB22_ID1 0xFFC0 2EDC

CAN_MB23_ID1 0xFFC0 2EFC

CAN_MB24_ID1 0xFFC0 2F1C

CAN_MB25_ID1 0xFFC0 2F3C

CAN_MB26_ID1 0xFFC0 2F5C

CAN_MB27_ID1 0xFFC0 2F7C

CAN_MB28_ID1 0xFFC0 2F9C

CAN_MB29_ID1 0xFFC0 2FBC

CAN_MB30_ID1 0xFFC0 2FDC

CAN_MB31_ID1 0xFFC0 2FFC

Table 9-12. Mailbox Word 7 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF537 Blackfin Processor Hardware Reference 9-57

CAN Module

CAN_MBxx_ID0 Registers

Figure 9-23. Mailbox Word 6 Register

Table 9-13. Mailbox Word 6 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_ID0 0xFFC0 2C18

CAN_MB01_ID0 0xFFC0 2C38

CAN_MB02_ID0 0xFFC0 2C58

CAN_MB03_ID0 0xFFC0 2C78

CAN_MB04_ID0 0xFFC0 2C98

CAN_MB05_ID0 0xFFC0 2CB8

CAN_MB06_ID0 0xFFC0 2CD8

CAN_MB07_ID0 0xFFC0 2CF8

CAN_MB08_ID0 0xFFC0 2D18

CAN_MB09_ID0 0xFFC0 2D38

CAN_MB10_ID0 0xFFC0 2D58

CAN_MB11_ID0 0xFFC0 2D78

CAN_MB12_ID0 0xFFC0 2D98

CAN_MB13_ID0 0xFFC0 2DB8

CAN_MB14_ID0 0xFFC0 2DD8

CAN_MB15_ID0 0xFFC0 2DF8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 6 Register (CAN_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-13.

CAN Register Definitions

9-58 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MB16_ID0 0xFFC0 2E18

CAN_MB17_ID0 0xFFC0 2E38

CAN_MB18_ID0 0xFFC0 2E58

CAN_MB19_ID0 0xFFC0 2E78

CAN_MB20_ID0 0xFFC0 2E98

CAN_MB21_ID0 0xFFC0 2EB8

CAN_MB22_ID0 0xFFC0 2ED8

CAN_MB23_ID0 0xFFC0 2EF8

CAN_MB24_ID0 0xFFC0 2F18

CAN_MB25_ID0 0xFFC0 2F38

CAN_MB26_ID0 0xFFC0 2F58

CAN_MB27_ID0 0xFFC0 2F78

CAN_MB28_ID0 0xFFC0 2F98

CAN_MB29_ID0 0xFFC0 2FB8

CAN_MB30_ID0 0xFFC0 2FD8

CAN_MB31_ID0 0xFFC0 2FF8

Table 9-13. Mailbox Word 6 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF537 Blackfin Processor Hardware Reference 9-59

CAN Module

CAN_MBxx_TIMESTAMP Registers

Figure 9-24. Mailbox Word 5 Register

Table 9-14. Mailbox Word 5 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_TIMESTAMP 0xFFC0 2C14

CAN_MB01_TIMESTAMP 0xFFC0 2C34

CAN_MB02_TIMESTAMP 0xFFC0 2C54

CAN_MB03_TIMESTAMP 0xFFC0 2C74

CAN_MB04_TIMESTAMP 0xFFC0 2C94

CAN_MB05_TIMESTAMP 0xFFC0 2CB4

CAN_MB06_TIMESTAMP 0xFFC0 2CD4

CAN_MB07_TIMESTAMP 0xFFC0 2CF4

CAN_MB08_TIMESTAMP 0xFFC0 2D14

CAN_MB09_TIMESTAMP 0xFFC0 2D34

CAN_MB10_TIMESTAMP 0xFFC0 2D54

CAN_MB11_TIMESTAMP 0xFFC0 2D74

CAN_MB12_TIMESTAMP 0xFFC0 2D94

CAN_MB13_TIMESTAMP 0xFFC0 2DB4

CAN_MB14_TIMESTAMP 0xFFC0 2DD4

CAN_MB15_TIMESTAMP 0xFFC0 2DF4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 6 Register (CAN_MBxx_ID0)

EXTID[15:0]/DFC[15:0]
(Extended Identifier/Data Field
Acceptance Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-13.

CAN Register Definitions

9-60 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MB16_TIMESTAMP 0xFFC0 2E14

CAN_MB17_TIMESTAMP 0xFFC0 2E34

CAN_MB18_TIMESTAMP 0xFFC0 2E54

CAN_MB19_TIMESTAMP 0xFFC0 2E74

CAN_MB20_TIMESTAMP 0xFFC0 2E94

CAN_MB21_TIMESTAMP 0xFFC0 2EB4

CAN_MB22_TIMESTAMP 0xFFC0 2ED4

CAN_MB23_TIMESTAMP 0xFFC0 2EF4

CAN_MB24_TIMESTAMP 0xFFC0 2F14

CAN_MB25_TIMESTAMP 0xFFC0 2F34

CAN_MB26_TIMESTAMP 0xFFC0 2F54

CAN_MB27_TIMESTAMP 0xFFC0 2F74

CAN_MB28_TIMESTAMP 0xFFC0 2F94

CAN_MB29_TIMESTAMP 0xFFC0 2FB4

CAN_MB30_TIMESTAMP 0xFFC0 2FD4

CAN_MB31_TIMESTAMP 0xFFC0 2FF4

Table 9-14. Mailbox Word 5 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF537 Blackfin Processor Hardware Reference 9-61

CAN Module

CAN_MBxx_LENGTH Registers

Figure 9-25. Mailbox Word 4 Register

Table 9-15. Mailbox Word 4 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_LENGTH 0xFFC0 2C10

CAN_MB01_LENGTH 0xFFC0 2C30

CAN_MB02_LENGTH 0xFFC0 2C50

CAN_MB03_LENGTH 0xFFC0 2C70

CAN_MB04_LENGTH 0xFFC0 2C90

CAN_MB05_LENGTH 0xFFC0 2CB0

CAN_MB06_LENGTH 0xFFC0 2CD0

CAN_MB07_LENGTH 0xFFC0 2CF0

CAN_MB08_LENGTH 0xFFC0 2D10

CAN_MB09_LENGTH 0xFFC0 2D30

CAN_MB10_LENGTH 0xFFC0 2D50

CAN_MB11_LENGTH 0xFFC0 2D70

CAN_MB12_LENGTH 0xFFC0 2D90

CAN_MB13_LENGTH 0xFFC0 2DB0

CAN_MB14_LENGTH 0xFFC0 2DD0

CAN_MB15_LENGTH 0xFFC0 2DF0

CAN_MB16_LENGTH 0xFFC0 2E10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 4 Register (CAN_MBxx_LENGTH)

DLC[3:0] (Data Length Code)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-25.

CAN Register Definitions

9-62 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MBxx_DATAx Registers

CAN_MB17_LENGTH 0xFFC0 2E30

CAN_MB18_LENGTH 0xFFC0 2E50

CAN_MB19_LENGTH 0xFFC0 2E70

CAN_MB20_LENGTH 0xFFC0 2E90

CAN_MB21_LENGTH 0xFFC0 2EB0

CAN_MB22_LENGTH 0xFFC0 2ED0

CAN_MB23_LENGTH 0xFFC0 2EF0

CAN_MB24_LENGTH 0xFFC0 2F10

CAN_MB25_LENGTH 0xFFC0 2F30

CAN_MB26_LENGTH 0xFFC0 2F50

CAN_MB27_LENGTH 0xFFC0 2F70

CAN_MB28_LENGTH 0xFFC0 2F90

CAN_MB29_LENGTH 0xFFC0 2FB0

CAN_MB30_LENGTH 0xFFC0 2FD0

CAN_MB31_LENGTH 0xFFC0 2FF0

Figure 9-26. Mailbox Word 3 Register

Table 9-15. Mailbox Word 4 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 3 Register (CAN_MBxx_DATA3)

Data Field Byte 1[7:0]

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-16.

Data Field Byte 0[7:0]

ADSP-BF537 Blackfin Processor Hardware Reference 9-63

CAN Module

Table 9-16. Mailbox Word 3 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA3 0xFFC0 2C0C

CAN_MB01_DATA3 0xFFC0 2C2C

CAN_MB02_DATA3 0xFFC0 2C4C

CAN_MB03_DATA3 0xFFC0 2C6C

CAN_MB04_DATA3 0xFFC0 2C8C

CAN_MB05_DATA3 0xFFC0 2CAC

CAN_MB06_DATA3 0xFFC0 2CCC

CAN_MB07_DATA3 0xFFC0 2CEC

CAN_MB08_DATA3 0xFFC0 2D0C

CAN_MB09_DATA3 0xFFC0 2D2C

CAN_MB10_DATA3 0xFFC0 2D4C

CAN_MB11_DATA3 0xFFC0 2D6C

CAN_MB12_DATA3 0xFFC0 2D8C

CAN_MB13_DATA3 0xFFC0 2DAC

CAN_MB14_DATA3 0xFFC0 2DCC

CAN_MB15_DATA3 0xFFC0 2DEC

CAN_MB16_DATA3 0xFFC0 2E0C

CAN_MB17_DATA3 0xFFC0 2E2C

CAN_MB18_DATA3 0xFFC0 2E4C

CAN_MB19_DATA3 0xFFC0 2E6C

CAN_MB20_DATA3 0xFFC0 2E8C

CAN_MB21_DATA3 0xFFC0 2EAC

CAN_MB22_DATA3 0xFFC0 2ECC

CAN_MB23_DATA3 0xFFC0 2EEC

CAN_MB24_DATA3 0xFFC0 2F0C

CAN Register Definitions

9-64 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MB25_DATA3 0xFFC0 2F2C

CAN_MB26_DATA3 0xFFC0 2F4C

CAN_MB27_DATA3 0xFFC0 2F6C

CAN_MB28_DATA3 0xFFC0 2F8C

CAN_MB29_DATA3 0xFFC0 2FAC

CAN_MB30_DATA3 0xFFC0 2FCC

CAN_MB31_DATA3 0xFFC0 2FEC

Figure 9-27. Mailbox Word 2 Register

Table 9-17. Mailbox Word 2 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA2 0xFFC0 2C08

CAN_MB01_DATA2 0xFFC0 2C28

CAN_MB02_DATA2 0xFFC0 2C48

CAN_MB03_DATA2 0xFFC0 2C68

CAN_MB04_DATA2 0xFFC0 2C88

CAN_MB05_DATA2 0xFFC0 2CA8

CAN_MB06_DATA2 0xFFC0 2CC8

Table 9-16. Mailbox Word 3 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 2 Register (CAN_MBxx_DATA2)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-17.

Data Field Byte 3[7:0]Data Field Byte 2[7:0]

ADSP-BF537 Blackfin Processor Hardware Reference 9-65

CAN Module

CAN_MB07_DATA2 0xFFC0 2CE8

CAN_MB08_DATA2 0xFFC0 2D08

CAN_MB09_DATA2 0xFFC0 2D28

CAN_MB10_DATA2 0xFFC0 2D48

CAN_MB11_DATA2 0xFFC0 2D68

CAN_MB12_DATA2 0xFFC0 2D88

CAN_MB13_DATA2 0xFFC0 2DA8

CAN_MB14_DATA2 0xFFC0 2DC8

CAN_MB15_DATA2 0xFFC0 2DE8

CAN_MB16_DATA2 0xFFC0 2E08

CAN_MB17_DATA2 0xFFC0 2E28

CAN_MB18_DATA2 0xFFC0 2E48

CAN_MB19_DATA2 0xFFC0 2E68

CAN_MB20_DATA2 0xFFC0 2E88

CAN_MB21_DATA2 0xFFC0 2EA8

CAN_MB22_DATA2 0xFFC0 2EC8

CAN_MB23_DATA2 0xFFC0 2EE8

CAN_MB24_DATA2 0xFFC0 2F08

CAN_MB25_DATA2 0xFFC0 2F28

CAN_MB26_DATA2 0xFFC0 2F48

CAN_MB27_DATA2 0xFFC0 2F68

CAN_MB28_DATA2 0xFFC0 2F88

CAN_MB29_DATA2 0xFFC0 2FA8

CAN_MB30_DATA2 0xFFC0 2FC8

CAN_MB31_DATA2 0xFFC0 2FE8

Table 9-17. Mailbox Word 2 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

9-66 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 9-28. Mailbox Word 1 Register

Table 9-18. Mailbox Word 1 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA1 0xFFC0 2C04

CAN_MB01_DATA1 0xFFC0 2C24

CAN_MB02_DATA1 0xFFC0 2C44

CAN_MB03_DATA1 0xFFC0 2C64

CAN_MB04_DATA1 0xFFC0 2C84

CAN_MB05_DATA1 0xFFC0 2CA4

CAN_MB06_DATA1 0xFFC0 2CC4

CAN_MB07_DATA1 0xFFC0 2CE4

CAN_MB08_DATA1 0xFFC0 2D04

CAN_MB09_DATA1 0xFFC0 2D24

CAN_MB10_DATA1 0xFFC0 2D44

CAN_MB11_DATA1 0xFFC0 2D64

CAN_MB12_DATA1 0xFFC0 2D84

CAN_MB13_DATA1 0xFFC0 2DA4

CAN_MB14_DATA1 0xFFC0 2DC4

CAN_MB15_DATA1 0xFFC0 2DE4

CAN_MB16_DATA1 0xFFC0 2E04

CAN_MB17_DATA1 0xFFC0 2E24

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 1 Register (CAN_MBxx_DATA1)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-18.

Data Field Byte 5[7:0]Data Field Byte 4[7:0]

ADSP-BF537 Blackfin Processor Hardware Reference 9-67

CAN Module

CAN_MB18_DATA1 0xFFC0 2E44

CAN_MB19_DATA1 0xFFC0 2E64

CAN_MB20_DATA1 0xFFC0 2E84

CAN_MB21_DATA1 0xFFC0 2EA4

CAN_MB22_DATA1 0xFFC0 2EC4

CAN_MB23_DATA1 0xFFC0 2EE4

CAN_MB24_DATA1 0xFFC0 2F04

CAN_MB25_DATA1 0xFFC0 2F24

CAN_MB26_DATA1 0xFFC0 2F44

CAN_MB27_DATA1 0xFFC0 2F64

CAN_MB28_DATA1 0xFFC0 2F84

CAN_MB29_DATA1 0xFFC0 2FA4

CAN_MB30_DATA1 0xFFC0 2FC4

CAN_MB31_DATA1 0xFFC0 2FE4

Figure 9-29. Mailbox Word 0 Register

Table 9-18. Mailbox Word 1 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Mailbox Word 0 Register (CAN_MBxx_DATA0)

Reset = 0xXXXX
For memory-
mapped
addresses, see
Table 9-19.

Data Field Byte 7[7:0]Data Field Byte 6[7:0]

CAN Register Definitions

9-68 ADSP-BF537 Blackfin Processor Hardware Reference

Table 9-19. Mailbox Word 0 Register Memory-Mapped
Addresses

Register Name Memory-Mapped Address

CAN_MB00_DATA0 0xFFC0 2C00

CAN_MB01_DATA0 0xFFC0 2C20

CAN_MB02_DATA0 0xFFC0 2C40

CAN_MB03_DATA0 0xFFC0 2C60

CAN_MB04_DATA0 0xFFC0 2C80

CAN_MB05_DATA0 0xFFC0 2CA0

CAN_MB06_DATA0 0xFFC0 2CC0

CAN_MB07_DATA0 0xFFC0 2CE0

CAN_MB08_DATA0 0xFFC0 2D00

CAN_MB09_DATA0 0xFFC0 2D20

CAN_MB10_DATA0 0xFFC0 2D40

CAN_MB11_DATA0 0xFFC0 2D60

CAN_MB12_DATA0 0xFFC0 2D80

CAN_MB13_DATA0 0xFFC0 2DA0

CAN_MB14_DATA0 0xFFC0 2DC0

CAN_MB15_DATA0 0xFFC0 2DE0

CAN_MB16_DATA0 0xFFC0 2E00

CAN_MB17_DATA0 0xFFC0 2E20

CAN_MB18_DATA0 0xFFC0 2E40

CAN_MB19_DATA0 0xFFC0 2E60

CAN_MB20_DATA0 0xFFC0 2E80

CAN_MB21_DATA0 0xFFC0 2EA0

CAN_MB22_DATA0 0xFFC0 2EC0

CAN_MB23_DATA0 0xFFC0 2EE0

CAN_MB24_DATA0 0xFFC0 2F00

ADSP-BF537 Blackfin Processor Hardware Reference 9-69

CAN Module

CAN_MB25_DATA0 0xFFC0 2F20

CAN_MB26_DATA0 0xFFC0 2F40

CAN_MB27_DATA0 0xFFC0 2F60

CAN_MB28_DATA0 0xFFC0 2F80

CAN_MB29_DATA0 0xFFC0 2FA0

CAN_MB30_DATA0 0xFFC0 2FC0

CAN_MB31_DATA0 0xFFC0 2FE0

Table 9-19. Mailbox Word 0 Register Memory-Mapped
Addresses (Cont’d)

Register Name Memory-Mapped Address

CAN Register Definitions

9-70 ADSP-BF537 Blackfin Processor Hardware Reference

Mailbox Control Registers
Figure 9-30 through Figure 9-56 show the mailbox control registers.

CAN_MCx Registers

Figure 9-30. Mailbox Configuration Register 1

Figure 9-31. Mailbox Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 1 (CAN_MC1)

MC0

MC12

MC13

MC14

MC15

MC1

MC2

MC3

MC4

MC5

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC6

MC7

MC11

MC10

MC9

MC8

Reset = 0x00000xFFC0 2A00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Configuration Register 2 (CAN_MC2)

MC16

MC28

MC29

MC30

MC31

MC17

MC18

MC19

MC20

MC21

For all bits, 0 - Mailbox disabled, 1 - Mailbox enabled

MC22

MC23

MC27

MC26

MC25

MC24

Reset = 0x00000xFFC0 2A40

ADSP-BF537 Blackfin Processor Hardware Reference 9-71

CAN Module

CAN_MDx Registers

Figure 9-32. Mailbox Direction Register 1

Figure 9-33. Mailbox Direction Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Mailbox Direction Register 1 (CAN_MD1)

MD0 - RO

MD12

MD13

MD14

MD15

MD1 - RO

MD2 - RO

MD3 - RO

MD4 - RO

MD5 - RO

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD6 - RO

MD7 - RO

MD11

MD10

MD9

MD8

Reset = 0x00FF0xFFC0 2A04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Direction Register 2 (CAN_MD2)

MD16

MD28 - RO

MD29 - RO

MD30 - RO

MD31 - RO

MD17

MD18

MD19

MD20

MD21

For all bits, 0 - Mailbox configured as transmit mode, 1 - Mailbox configured as receive mode

MD22

MD23

MD27 - RO

MD26 - RO

MD25 - RO

MD24 - RO

Reset = 0x00000xFFC0 2A44

CAN Register Definitions

9-72 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_RMPx Register

Figure 9-34. Receive Message Pending Register 1

Figure 9-35. Receive Message Pending Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 1 (CAN_RMP1)

RMP0

RMP12

RMP13

RMP14

RMP15

RMP1

RMP2

RMP3

RMP4

RMP5

All bits are W1C

RMP6

RMP7

RMP11

RMP10

RMP9

RMP8

Reset = 0x00000xFFC0 2A18

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Pending Register 2 (CAN_RMP2)

RMP16

RMP28 - RO

RMP29 - RO

RMP30 - RO

RMP31 - RO

RMP17

RMP18

RMP19

RMP20

RMP21

All bits are W1C

RMP22

RMP23

RMP27 - RO

RMP26 - RO

RMP25 - RO

RMP24 - RO

Reset = 0x00000xFFC0 2A58

ADSP-BF537 Blackfin Processor Hardware Reference 9-73

CAN Module

CAN_RMLx Register

Figure 9-36. Receive Message Lost Register 1

Figure 9-37. Receive Message Lost Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 1 (CAN_RML1)

RML0

RML12

RML13

RML14

RML15

RML1

RML2

RML3

RML4

RML5

RO

RML6

RML7

RML11

RML10

RML9

RML8

Reset = 0x00000xFFC0 2A1C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Message Lost Register 2 (CAN_RML2)

RML16

RML28

RML29

RML30

RML31

RML17

RML18

RML19

RML20

RML21

RO

RML22

RML23

RML27

RML26

RML25

RML24

Reset = 0x00000xFFC0 2A5C

CAN Register Definitions

9-74 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_OPSSx Register

Figure 9-38. Overwrite Protection/Single Shot Transmission Register 1

Figure 9-39. Overwrite Protection/Single Shot Transmission Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 1 (CAN_OPSS1)

OPSS0

OPSS12

OPSS13

OPSS14

OPSS15

OPSS1

OPSS2

OPSS3

OPSS4

OPSS5

OPSS6

OPSS7

OPSS11

OPSS10

OPSS9

OPSS8

Reset = 0x00000xFFC0 2A30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Overwrite Protection/Single Shot Transmission Register 2 (CAN_OPSS2)

OPSS16

OPSS28

OPSS29

OPSS30

OPSS31

OPSS17

OPSS18

OPSS19

OPSS20

OPSS21

OPSS22

OPSS23

OPSS27

OPSS26

OPSS25

OPSS24

Reset = 0x00000xFFC0 2A70

ADSP-BF537 Blackfin Processor Hardware Reference 9-75

CAN Module

CAN_TRSx Registers

Figure 9-40. Transmission Request Set Register 1

Figure 9-41. Transmission Request Set Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 1 (CAN_TRS1)

TRS0 - RO

TRS12

TRS13

TRS14

TRS15

TRS1 - RO

TRS2 - RO

TRS3 - RO

TRS4 - RO

TRS5 - RO

TRS6 - RO

TRS7 - RO

TRS11

TRS10

TRS9

TRS8

Reset = 0x00000xFFC0 2A08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Set Register 2 (CAN_TRS2)

TRS16

TRS28

TRS29

TRS30

TRS31

TRS17

TRS18

TRS19

TRS20

TRS21

TRS22

TRS23

TRS27

TRS26

TRS25

TRS24

Reset = 0x00000xFFC0 2A48

CAN Register Definitions

9-76 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_TRRx Registers

Figure 9-42. Transmission Request Reset Register 1

Figure 9-43. Transmission Request Reset Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 1 (CAN_TRR1)

TRR0 - RO

TRR12

TRR13

TRR14

TRR15

TRR1 - RO

TRR2 - RO

TRR3 - RO

TRR4 - RO

TRR5 - RO

TRR6 - RO

TRR7 - RO

TRR11

TRR10

TRR9

TRR8

Reset = 0x00000xFFC0 2A0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Request Reset Register 2 (CAN_TRR2)

TRR16

TRR28

TRR29

TRR30

TRR31

TRR17

TRR18

TRR19

TRR20

TRR21

TRR22

TRR23

TRR27

TRR26

TRR25

TRR24

Reset = 0x00000xFFC0 2A4C

ADSP-BF537 Blackfin Processor Hardware Reference 9-77

CAN Module

CAN_AAx Register

Figure 9-44. Abort Acknowledge Register 1

Figure 9-45. Abort Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 1 (CAN_AA1)

AA0 - RO

AA12

AA13

AA14

AA15

AA1 - RO

AA2 - RO

AA3 - RO

AA4 - RO

AA5 - RO

All bits are W1C

AA6 - RO

AA7 - RO

AA11

AA10

AA9

AA8

Reset = 0x00000xFFC0 2A14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Abort Acknowledge Register 2 (CAN_AA2)

AA16

AA28

AA29

AA30

AA31

AA17

AA18

AA19

AA20

AA21

All bits are W1C

AA22

AA23

AA27

AA26

AA25

AA24

Reset = 0x00000xFFC0 2A54

CAN Register Definitions

9-78 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_TAx Register

Figure 9-46. Transmission Acknowledge Register 1

Figure 9-47. Transmission Acknowledge Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 1 (CAN_TA1)

TA0 - RO

TA12

TA13

TA14

TA15

TA1 - RO

TA2 - RO

TA3 - RO

TA4 - RO

TA5 - RO

All bits are W1C

TA6 - RO

TA7 - RO

TA11

TA10

TA9

TA8

Reset = 0x00000xFFC0 2A10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmission Acknowledge Register 2 (CAN_TA2)

TA16

TA28

TA29

TA30

TA31

TA17

TA18

TA19

TA20

TA21

All bits are W1C

TA22

TA23

TA27

TA26

TA25

TA24

Reset = 0x00000xFFC0 2A50

ADSP-BF537 Blackfin Processor Hardware Reference 9-79

CAN Module

CAN_MBTD Register

CAN_RFHx Registers

Figure 9-48. Temporary Mailbox Disable Register

Figure 9-49. Remote Frame Handling Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Temporary Mailbox Disable Feature Register (CAN_MBTD)

TDPTR[4:0] (Temporary
Disable Pointer)

Reset = 0x00000xFFC0 2AAC

TDA (Temporary Disable
Acknowledge)
TDR (Temporary Disable
Request)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 1 (CAN_RFH1)

RFH0 - RO

RFH12

RFH13

RFH14

RFH15

RFH1 - RO

RFH2 - RO

RFH3 - RO

RFH4 - RO

RFH5 - RO

RFH6 - RO

RFH7 - RO

RFH11

RFH10

RFH9

RFH8

Reset = 0x00000xFFC0 2A2C

CAN Register Definitions

9-80 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MBIMx Registers

Figure 9-50. Remote Frame Handling Register 2

Figure 9-51. Mailbox Interrupt Mask Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Remote Frame Handling Register 2 (CAN_RFH2)

RFH16

RFH28 - RO

RFH29 - RO

RFH30 - RO

RFH31 - RO

RFH17

RFH18

RFH19

RFH20

RFH21

RFH22

RFH23

RFH27 - RO

RFH26 - RO

RFH25 - RO

RFH24 - RO

Reset = 0x00000xFFC0 2A6C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 1 (CAN_MBIM1)

MBIM0

MBIM12

MBIM13

MBIM14

MBIM15

MBIM1

MBIM2

MBIM3

MBIM4

MBIM5

MBIM6

MBIM7

MBIM11

MBIM10

MBIM9

MBIM8

Reset = 0x00000xFFC0 2A28

ADSP-BF537 Blackfin Processor Hardware Reference 9-81

CAN Module

CAN_MBTIFx Registers

Figure 9-52. Mailbox Interrupt Mask Register 2

Figure 9-53. Mailbox Transmit Interrupt Flag Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Interrupt Mask Register 2 (CAN_MBIM2)

MBIM16

MBIM28

MBIM29

MBIM30

MBIM31

MBIM17

MBIM18

MBIM19

MBIM20

MBIM21

MBIM22

MBIM23

MBIM27

MBIM26

MBIM25

MBIM24

Reset = 0x00000xFFC0 2A68

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 1 (CAN_MBTIF1)

MBTIF0 - RO

MBTIF12

MBTIF13

MBTIF14

MBTIF15

MBTIF1 - RO

MBTIF2 - RO

MBTIF3 - RO

MBTIF4 - RO

MBTIF5 - RO

All bits are W1C

MBTIF6 - RO

MBTIF7 - RO

MBTIF11

MBTIF10

MBTIF9

MBTIF8

Reset = 0x00000xFFC0 2A20

CAN Register Definitions

9-82 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_MBRIFx Registers

Figure 9-54. Mailbox Transmit Interrupt Flag Register 2

Figure 9-55. Mailbox Receive Interrupt Flag Register 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Transmit Interrupt Flag Register 2 (CAN_MBTIF2)

MBTIF16

MBTIF28

MBTIF29

MBTIF30

MBTIF31

MBTIF17

MBTIF18

MBTIF19

MBTIF20

MBTIF21

All bits are W1C

MBTIF22

MBTIF23

MBTIF27

MBTIF26

MBTIF25

MBTIF24

Reset = 0x00000xFFC0 2A60

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 1 (CAN_MBRIF1)

MBRIF0

MBRIF12

MBRIF13

MBRIF14

MBRIF15

MBRIF1

MBRIF2

MBRIF3

MBRIF4

MBRIF5

All bits are W1C

MBRIF6

MBRIF7

MBRIF11

MBRIF10

MBRIF9

MBRIF8

Reset = 0x00000xFFC0 2A24

ADSP-BF537 Blackfin Processor Hardware Reference 9-83

CAN Module

Figure 9-56. Mailbox Receive Interrupt Flag Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mailbox Receive Interrupt Flag Register 2 (CAN_MBRIF2)

MBRIF16

MBRIF28 - RO

MBRIF29 - RO

MBRIF30 - RO

MBRIF31 - RO

MBRIF17

MBRIF18

MBRIF19

MBRIF20

MBRIF21

All bits are W1C

MBRIF22

MBRIF23

MBRIF27 - RO

MBRIF26 - RO

MBRIF25 - RO

MBRIF24 - RO

Reset = 0x00000xFFC0 2A64

CAN Register Definitions

9-84 ADSP-BF537 Blackfin Processor Hardware Reference

Universal Counter Registers
Figure 9-57 through Figure 9-59 show the universal counter registers.

CAN_UCCNF Register

Figure 9-57. Universal Counter Configuration Mode Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Configuration Mode Register (CAN_UCCNF)

UCCNF[3:0] (Universal Coun-
ter Configuration)

Reset = 0x00000xFFC0 2ACC

UCRC (Universal Counter
Reload/Clear) - WO

UCCT (Universal Counter
CAN Trigger)

UCE (Universal Counter
Enable)

0 - No action
1 - write 1 to reload counter in

watchdog mode
write 1 to clear counter in
all other modes

0 - No trigger
1 - mailbox 4 reception reloads

counter in watchdog mode
 mailbox 4 reception clears

counter in time stamp mode
 no effect in other modes

0 - Counter disabled
1 - Counter enabled

0x0 - Reserved
0x1 - Time stamp mode
0x2 - Watchdog mode
0x3 - Auto-transmit mode
0x4 - Reserved
0x5 - Reserved
0x6 - Count error frames
0x7 - Count overload frames
0x8 - Count arbitration lost
0x9 - Count aborted

transmissions
0xA - Count successful

transmissions
0xB - Count rejected receive

messages
0xC - Count receive message

lost
0xD - Count successful

receptions
0xE - Count stored receptions
0xF - Count valid messages

ADSP-BF537 Blackfin Processor Hardware Reference 9-85

CAN Module

CAN_UCCNT Register

CAN_UCRC Register

Figure 9-58. Universal Counter Register

Figure 9-59. Universal Counter Reload/Capture Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Register (CAN_UCCNT)

UCCNT[15:0]

Reset = 0x00000xFFC0 2AC4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal Counter Reload/Capture Register (CAN_UCRC)

UCVAL[15:0]

Reset = 0x00000xFFC0 2AC8

CAN Register Definitions

9-86 ADSP-BF537 Blackfin Processor Hardware Reference

Error Registers
Figure 9-60 through Figure 9-62 show the CAN error registers.

CAN_CEC Register

CAN_ESR Register

CAN_EWR Register

Figure 9-60. CAN Error Counter Register

Figure 9-61. Error Status Register

Figure 9-62. CAN Error Counter Warning Level Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAN Error Counter Register (CAN_CEC)

RXECNT[7:0] (Receive Error
Counter)

Reset = 0x00000xFFC0 2A90

TXECNT[7:0] (Transmit Error
Counter)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Error Status Register (CAN_ESR)
All bits are W1C

ACKE (Acknowledge Error)

Reset = 0x00200xFFC0 2AB4

SER (Stuff Bit Error)
CRCE (CRC Error)

FER (Form Error)
BEF (Bit Error Flag)
SA0 (Stuck at Dominant)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 0 0 0 0 0 0 1 1 0 0 0 0

CAN Error Counter Warning Level Register (CAN_EWR)

EWLREC[7:0] (Receive Error
Warning Limit)

Reset = 0x60600xFFC0 2AB0

EWLTEC[7:0] (Transmit Error
Warning Limit)

ADSP-BF537 Blackfin Processor Hardware Reference 9-87

CAN Module

Programming Examples
The following CAN code examples (Listing 9-2 through Listing 9-4) show
how to program the CAN hardware and timing, initialize mailboxes, per-
form transfers, and service interrupts. Each of these code examples
assumes that the appropriate header file is included in the source code
(that is, #include <defBF537.h> for ADSP-BF537 projects).

CAN Setup Code
The following code initializes the port pins to connect to the CAN con-
troller and configures the CAN timing parameters.

Listing 9-2. Initializing CAN

Initialize_CAN:

P0.H = HI(PORT_MUX); /* CAN pins muxed on Port J */

P0.L = LO(PORT_MUX);

R0 = PJCE_CAN(Z); /* Enable CAN TX/RX pins */
W[P0] = R0;
SSYNC;

/* ===
** Set CAN Bit Timing
**
** CAN_TIMING - SJW, TSEG2, and TSEG1 governed by:
** SJW <= TSEG2 <= TSEG1
**
** ===
*/

P0.H = HI(CAN_TIMING);

P0.L = LO(CAN_TIMING);

Programming Examples

9-88 ADSP-BF537 Blackfin Processor Hardware Reference

R0 = 0x0334(Z); /* SJW = 3, TSEG2 = 3, TSEG1 = 4 */

W[P0] = R0;
SSYNC;

/* ===
** CAN_CLOCK - Calculate Prescaler (BRP)
**
** Assume a 500kbps CAN rate is desired, which means
** the duration of the bit on the CAN bus (tBIT) is
** 2us. Using the tBIT formula from the HRM, solve for
** TQ:
**
** tBIT = TQ x (1 + (TSEG1 + 1) + (TSEG2 + 1))
** 2us = TQ x (1 + (4 + 1) + (3 + 1))
** 2e-6 = TQ x (1 + 5 + 4)
** TQ = 2e-6 / 10
** TQ = 2e-7
**
** Once time quantum (TQ) is known, BRP can be derived
** from the TQ formula in the HRM. Assume the default
** PLL settings are used for the ADSP-BF537 EZ-KIT,
** which implies that System Clock (SCLK) is 50MHz:
**
** TQ = (BRP+1) / SCLK
** 2e-7 = (BRP+1) / 50e6
** (BRP+1) = 10
** BRP = 9
*/
P0.L = LO(CAN_CLOCK);
R0 = 9(Z);
W[P0] = R0;
SSYNC;

RTS;

Initializing and Enabling CAN Mailboxes
Before the CAN can transfer data, the mailbox area must be properly set
up and the controller must be initialized properly.

ADSP-BF537 Blackfin Processor Hardware Reference 9-89

CAN Module

Listing 9-3. Initializing and Enabling Mailboxes

CAN_Initialize_Mailboxes:

P0.H = HI(CAN_MD1); /* Configure Mailbox Direction */
P0.L = LO(CAN_MD1);
R0 = W[P0](Z);
BITCLR(R0, BITPOS(MD8)); /* Set MB08 for Transmit */
BITSET(R0, BITPOS(MD9)); /* Set MB09 for Receive */
W[P0] = R0;
SSYNC;

/* ===
** Populate CAN Mailbox Area
**
** Mailbox 8 transmits ID 0x411 with 4 bytes of data
** Bytes 0 and 1 are a data pattern 0xAABB. Bytes 2
** and 3 will be a count value for the number of times
** that message is properly sent.
**
** Mailbox 9 will receive message ID 0x007
**
** ===
*/

/* Initialize Mailbox 8 For Transmit */
R0 = 0x411 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN_MB_ID1(8)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;

P0.L = LO(CAN_MB_ID0(8));
W[P0] = R0; /* Zero Out Lower ID Register */

R0 = 4;
P0.L = LO(CAN_MB_LENGTH(8));
W[P0] = R0; /* Set DLC to 4 Bytes */

Programming Examples

9-90 ADSP-BF537 Blackfin Processor Hardware Reference

R0 = 0xAABB(Z);
P0.L = LO(CAN_MB_DATA3(8));
W[P0] = R0; /* Byte0 = 0xAA, Byte1 = 0xBB */

R0 = 1;
P0.L = LO(CAN_MB_DATA2(8));
W[P0] = R0; /* Initialize Count to 1 */

/* Initialize Mailbox 9 For Receive */
R0 = 0x007 << 2; /* Put Message ID in correct slot */
P0.L = LO(CAN_MB_ID1(9)); /* Access MB08 ID1 Register */
W[P0] = R0; /* Remote frame disabled, 11 bit ID */

R0 = 0;
P0.L = LO(CAN_MB_ID0(9));
W[P0] = R0; /* Zero Out Lower ID Register */
SSYNC;

/* Enable the Configured Mailboxes */
P0.L = LO(CAN_MC1);
R0 = W[P0](Z);
BITSET(R0, BITPOS(MC8)); /* Enable MB08 */
BITSET(R0, BITPOS(MC9)); /* Enable MB09 */
W[P0] = R0;
SSYNC;
RTS;

Initiating CAN Transfers and Processing Interrupts
After the mailboxes are properly set up, transfers can be requested in the
CAN controller. This code example initializes the CAN-level interrupts,
takes the CAN controller out of configuration mode, requests a transfer,
and then waits for and processes CAN TX and RX interrupts. This
example assumes that the CAN_RX_HANDLER and CAN_TX_HANDLER have been
properly registered in the system interrupt controller and that the inter-
rupts are enabled properly in the SIC_IMASK register.

ADSP-BF537 Blackfin Processor Hardware Reference 9-91

CAN Module

Listing 9-4. CAN Transfers and Interrupts

CAN_SetupIRQs_and_Transfer:

P0.H = HI(CAN_MBIM1);
P0.L = LO(CAN_MBIM1);
R0 = 0;
BITSET(R0, BITPOS(MBIM8)); /* Enable Mailbox Interrupts */
BITSET(R0, BITPOS(MBIM9)); /* for Mailboxes 8 and 9 */
W[P0] = R0;
SSYNC;

/* Leave CAN Configuration Mode (Clear CCR) */
P0.L = LO(CAN_CONTROL);
R0 = W[P0](Z);
BITCLR(R0, BITPOS(CCR));
W[P0] = R0;

P0.L = LO(CAN_STATUS);

/* Wait for CAN Configuration Acknowledge (CCA) */

WAIT_FOR_CCA_TO_CLEAR:

R1 = W[P0](Z);

CC = BITTST (R1, BITPOS(CCA));

IF CC JUMP WAIT_FOR_CCA_TO_CLEAR;

P0.L = LO(CAN_TRS1);
R0 = TRS8; /* Transmit Request MB08 */
W[P0] = R0; /* Issue Transmit Request */
SSYNC;

Wait_Here_For_IRQs:
NOP;
NOP;
NOP;
JUMP Wait_Here_For_IRQs;

/* ===
** CAN_TX_HANDLER
**
** ISR clears the interrupt request from MB8, writes
** new data to be sent, and requests to send again

Programming Examples

9-92 ADSP-BF537 Blackfin Processor Hardware Reference

**
** ===
*/

CAN_TX_HANDLER:
[--SP] = (R7:6, P5:5); /* Save Clobbered Registers */
[--SP] = ASTAT;

P5.H = HI(CAN_MBTIF1);
P5.L = LO(CAN_MBTIF1);
R7 = MBTIF8;
W[P5] = R7; /* Clear Interrupt Request Bit for MB08 */

P5.L = LO(CAN_MB_DATA2(8));
R7 = W[P5](Z); /* Retrieve Previously Sent Data */

R6 = 0xFF; /* Mask Upper Byte to Check Lower */
R6 = R6 & R7; /* Byte for Wrap */
R5 = 0xFF; /* Check Wrap Condition */

CC = R6 == R5; /* Check if Lower Byte Wraps */

IF CC JUMP HANDLE_COUNT_WRAP;
R7 += 1; /* If no wrap, Increment Count */
JUMP PREPARE_TO_SEND;

HANDLE_COUNT_WRAP:
R6 = 0xFF00(Z); /* Mask Off Lower Byte */
R7 = R7 & R6; /* Sets Lower Byte to 0 */
R6 = 0x0100(Z); /* Increment Value for Upper Byte */
R7 = R7 + R6; /* Increment Upper Byte */

PREPARE_TO_SEND:
W[P5] = R7; /* Set New TX Data */

P5.L = LO(CAN_TRS1);
R7 = TRS8;
W[P5] = R7; /* Issue New Transmit Request */

ASTAT = [SP++]; /* Restore Clobbered Registers */
(R7:6, P5:5) = [SP++];
SSYNC;
RTI;

ADSP-BF537 Blackfin Processor Hardware Reference 9-93

CAN Module

/* ===

** CAN_RX_HANDLER
**
** ISR clears the interrupt request from MB9, writes
** new data to be sent, and requests to send again
**
** ===
*/

CAN_RX_HANDLER:

[--SP] = (R7:7, P5:4); /* Save Clobbered Registers */
[--SP] = ASTAT;

P4.H = CAN_RX_WORD; /* Set Pointer to Storage Element */
P4.L = CAN_RX_WORD;

P5.H = HI(CAN_MBRIF1);
P5.L = LO(CAN_MBRIF1);
R7 = MBRIF9;
W[P5] = R7; /* Clear Interrupt Request Bit for MB09 */

P5.L = LO(CAN_MB_DATA3(9));
R7 = W[P5](Z); /* Read data from mailbox */
W[P4] = R7; /* Store data to SDRAM */

ASTAT = [SP++]; /* Restore Clobbered Registers */
(R7:7, P5:4) = [SP++];
SSYNC;
RTI;

Programming Examples

9-94 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 10-1

10 SPI COMPATIBLE PORT
CONTROLLERS

This chapter describes the Serial Peripheral Interface (SPI) port. Follow-
ing an overview and a list of key features is a description of operation and
functional modes of operation. The chapter concludes with a program-
ming model, consolidated register definitions, and programming
examples.

This chapter contains:

• “Overview” on page 10-1

• “Features” on page 10-2

• “Interface Overview” on page 10-3

• “Description of Operation” on page 10-15

• “Functional Description” on page 10-24

• “Programming Model” on page 10-29

• “SPI Registers” on page 10-41

• “Programming Examples” on page 10-48

Overview
The processor has an SPI port that provides an I/O interface to a wide
variety of SPI compatible peripheral devices.

Features

10-2 ADSP-BF537 Blackfin Processor Hardware Reference

With a range of configurable options, the SPI port provides a glueless
hardware interface with other SPI compatible devices. SPI is a four-wire
interface consisting of two data signals, a device select signal, and a clock
signal. SPI is a full-duplex synchronous serial interface, supporting master
modes, slave modes, and multimaster environments. The SPI compatible
peripheral implementation also supports programmable bit rate and clock
phase/polarities. The SPI features the use of open drain drivers to support
the multimaster scenario and to avoid data contention.

Features
The SPI includes these features:

• Full duplex, synchronous serial interface

• Supports 8- or 16-bit word sizes

• Programmable baud rate, clock phase, and polarity

• Supports multimaster environments

• Integrated DMA controller

• Double-buffered transmitter and receiver

• 7 SPI chip select outputs, 1 SPI device select input

• Programmable shift direction of MSB or LSB first

• Interrupt generation on mode fault, overflow, and underflow

• Shadow register to aid debugging

ADSP-BF537 Blackfin Processor Hardware Reference 10-3

SPI Compatible Port Controllers

Typical SPI compatible peripheral devices that can be used to interface to
the SPI compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation

Interface Overview
Figure 10-1 provides a block diagram of the SPI. The interface is essen-
tially a shift register that serially transmits and receives data bits, one bit at
a time at the SCK rate, to and from other SPI devices. SPI data is transmit-
ted and received at the same time through the use of a shift register. When
an SPI transfer occurs, data is simultaneously transmitted (shifted serially
out of the shift register) as new data is received (shifted serially into the
other end of the same shift register). The SCK synchronizes the shifting and
sampling of the data on the two serial data pins.

Interface Overview

10-4 ADSP-BF537 Blackfin Processor Hardware Reference

External Interface
Most of the SPI signals are accessible through Port F. The five most
important signals (SCK, MISO, MOSI, SPISS, and SPISSEL1) are not multi-
plexed with other peripherals. However, by default they function as
GPIOs and are individually enabled by the respective bits in the
PORTF_FER register.

Port F features three additional slave select signals that are multiplexed
with the timer signals. They can be enabled on an individual basis using
the PFS4E, PFS5E, and PFS6E bits in the PORT_MUX register. See Figure 14-1
on page 14-5 for details.

Figure 10-1. SPI Block Diagram

MOSI MISO SCK

SPI INTERFACE LOGIC

SHIFT REGISTER

SPI_RDBR
RECEIVE

REGISTER

SPI_TDBR
TRANSMIT
REGISTER

SPI IRQ
OR DMA
REQUEST

SPI
INTERNAL

CLOCK
GENERATOR

SPI_CTL
SPI_ST

16

16

PAB

DAB

FOUR-DEEP FIFO

M S S M

SPISS

ADSP-BF537 Blackfin Processor Hardware Reference 10-5

SPI Compatible Port Controllers

Port J also provides three slave select signals. These signals cannot func-
tion as normal GPIOs and therefore do not need to be enabled by any
function enable bits. However, these outputs are multiplexed with CAN
and SPORT0 signals and require PJSE = 1, or PJCE = 10.

Serial Peripheral Interface Clock Signal (SCK)

The SCK signal is the serial clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of bit rates. The SCK signal cycles once for each
bit transmitted. It is an output signal if the device is configured as a mas-
ter, and an input signal if the device is configured as a slave.

The SCK is a gated clock that is active during data transfers only for the
length of the transferred word. The number of active clock edges is equal
to the number of bits driven on the data lines. Slave devices ignore the
serial clock if the SPISS input is driven inactive (high).

The SCK is used to shift out and shift in the data driven on the MISO and
MOSI lines. Clock polarity and clock phase relative to data are programma-
ble in the SPI_CTL register and define the transfer format (see “SPI
Transfer Protocols” on page 10-15).

The SCK signal can connect to the PF13 pin, which functions as a GPIO by
default. To enable this pin for use as the SPI clock signal, be sure to con-
figure the PORTF_FER register to enable the PF13 pin for peripheral use (see
“Function Enable Registers” on page 14-23).

Master Out Slave In (MOSI)

The MOSI signal is the master out slave in pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MOSI pin becomes
a data transmit (output) pin. If the processor is configured as a slave, the
MOSI pin becomes a data receive (input) pin, receiving input data. In an
SPI interconnection, the data is shifted out from the MOSI output pin of
the master and shifted into the MOSI input(s) of the slave(s).

Interface Overview

10-6 ADSP-BF537 Blackfin Processor Hardware Reference

The SPI MOSI signal can connect to the PF11 pin, which functions as a
GPIO by default. To enable this pin for use as the SPI MOSI signal, be sure
to configure the PORTF_FER register to enable the PF11 pin for peripheral
use (see “Function Enable Registers” on page 14-23).

Master In Slave Out (MISO)

The MISO signal is the master in slave out pin, one of the bidirectional I/O
data pins. If the processor is configured as a master, the MISO pin becomes
a data receive (input) pin, receiving input data. If the processor is config-
ured as a slave, the MISO pin becomes a data transmit (output) pin,
transmitting output data. In an SPI interconnection, the data is shifted
out from the MISO output pin of the slave and shifted into the MISO input
pin of the master.

The SPI MISO signal can connect to the PF12 pin, which functions as a
GPIO by default. To enable this pin for use as the SPI MISO signal, be sure
to configure the PORTF_FER register to enable the PF12 pin for peripheral
use (see “Function Enable Registers” on page 14-23).

 Only one slave is allowed to transmit data at any given time.

The SPI configuration example in Figure 10-2 illustrates how the proces-
sor can be used as the slave SPI device. The 8-bit host microcontroller is
the SPI master.

 The processor can be booted via its SPI interface to allow user
application code and data to be downloaded before runtime.

ADSP-BF537 Blackfin Processor Hardware Reference 10-7

SPI Compatible Port Controllers

Serial Peripheral Interface Slave Select Input Signal

The SPISS signal is the SPI serial peripheral slave select input signal. This
is an active-low signal used to enable a processor when it is configured as a
slave device. This input-only pin behaves like a chip select and is provided
by the master device for the slave devices. For a master device, it can act as
an error signal input in case of the multimaster environment. In
multimaster mode, if the SPISS input signal of a master is asserted (driven
low), and the PSSE bit in the SPI_CTL register is enabled, an error has
occurred. This means that another device is also trying to be the master
device.

The SPISS signal can connect to the PF14 pin, which functions as a GPIO
by default. To enable this pin for use as the SPI slave-select input signal,
be sure to configure the PORTF_FER register to enable the PF14 pin for
peripheral use (see “Function Enable Registers” on page 14-23).

The enable lead time (T1), the enable lag time (T2), and the sequential
transfer delay time (T3) each must always be greater than or equal to
one-half the SCK period. See Figure 10-3. The minimum time between
successive word transfers (T4) is two SCK periods. This is measured from
the last active edge of SCK of one word to the first active edge of SCK of the
next word. This is independent of the configuration of the SPI (CPHA,
MSTR, and so on).

Figure 10-2. ADSP-BF537 as Slave SPI Device

8-BIT HOST
MICROCONTROLLER

BLACKFIN PROCESSOR
SLAVE SPI DEVICE

SCLK

MOSI

MISO MISO

SCK

MOSI

SPISSS_SEL

Interface Overview

10-8 ADSP-BF537 Blackfin Processor Hardware Reference

For a master device with CPHA = 0, the slave select output is inactive
(high) for at least one-half the SCK period. In this case, T1 and T2 will
each always be equal to one-half the SCK period.

Serial Peripheral Interface Slave Select Enable Output Signals

When operating in master mode, Blackfin processors may use any GPIO
pin to enable individual SPI slave devices by software. In addition, the SPI
module provides hardware support to generate up to seven slave select
enable signals automatically. See “SPI Flag Register” on page 10-44 for
details.

These signals are always active low in the SPI protocol. Since the respec-
tive pins are not driven during reset, it is recommended to pull them up
by a resistor.

Table 10-1 summarizes how to setup the port control logic in order to
enable the individual slave select enable outputs.

Figure 10-3. SPI Timing

T1 T2

SPISS
(TO SLAVE)

SCK
(CPOL =1)

T4
T3

ADSP-BF537 Blackfin Processor Hardware Reference 10-9

SPI Compatible Port Controllers

If enabled as a master, the SPI uses the SPI_FLG register to enable up to
seven general-purpose port pins to be used as individual slave select lines.
Before manipulating this register, the PFx and PJx port pins that are to be
used as SPI slave-select outputs must first be configured as such. To work
as SPI output pins, the PFx and PJx pins must be enabled for use by SPI in
the PORT_MUX register (see “Port Multiplexer Control Register” on
page 14-22). For PFx pins only, the PORTF_FER register (see “Function
Enable Registers” on page 14-23) must also be modified to enable those
PFx pins for peripheral use. Refer to Table 10-2 for more details regarding
which port pins must be configured prior to being modified via the
SPI_FLG register.

In slave mode, the SPI_FLG bits have no effect, and each SPI uses the
SPISS input as a slave select. Just as in the master mode case, the PF14 pin
must be configured as a peripheral pin in the PORTF_FER register.
Figure 10-14 on page 10-44 shows the SPI_FLG register diagram.

Table 10-1. SPI Slave Select Enable Setup

Signal Name Pin Name Port Control
To Enable Signal

SPISSEL1 PF10 Set bit 10 in PORTF_FER = 1

SPISSEL2 PJ11 Set PJSE in PORT_MUX = 1

SPISSEL3 PJ10 Set PJSE in PORT_MUX = 1

SPISSEL4 PF6 Set bit 6 in PORTF_FER = 1 and
Set PFS4E in PORT_MUX = 1

SPISSEL5 PF5 Set bit 5 in PORTF_FER = 1 and
Set PFS5E in PORT_MUX = 1

SPISSEL6 PF4 Set bit 4 in PORTF_FER = 1 and
Set PFS6E in PORT_MUX = 1

SPISSEL7 PJ5 Set PJCE in PORT_MUX = 10

Interface Overview

10-10 ADSP-BF537 Blackfin Processor Hardware Reference

Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPI_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master mode error input.
Otherwise, SPISS is ignored.

Table 10-2. SPI_FLG Bit Mapping to Port Pins

Bit Name Function Port Pin Default

0 Reserved 0

1 FLS1 SPISSEL1 Enable PF10 0

2 FLS2 SPISSEL2 Enable PJ11 0

3 FLS3 SPISSEL3 Enable PJ10 0

4 FLS4 SPISSEL4 Enable PF6 0

5 FLS5 SPISSEL5 Enable PF5 0

6 FLS6 SPISSEL6 Enable PF4 0

7 FLS7 SPISSEL7 Enable PJ5 0

8 Reserved 1

9 FLG1 SPISSEL1 Value PF10 1

10 FLG2 SPISSEL2 Value PJ11 1

11 FLG3 SPISSEL3 Value PJ10 1

12 FLG4 SPISSEL4 Value PF6 1

13 FLG5 SPISSEL5 Value PF5 1

14 FLG6 SPISSEL6 Value PF4 1

15 FLG7 SPISSEL7 Value PJ5 1

ADSP-BF537 Blackfin Processor Hardware Reference 10-11

SPI Compatible Port Controllers

Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

The FLSx bits in the SPI_FLG register are used in a multiple slave SPI envi-
ronment. For example, if there are eight SPI devices in the system
including a processor master, the master processor can support the SPI
mode transactions across the other seven devices. This configuration
requires only one master processor in this multislave environment. For
example, assume that the SPI is the master. The seven port pins that can
be configured as SPI master mode slave-select output pins can be con-
nected to each of the slave SPI device’s SPISS pins. In this configuration,
the FLSx bits in SPI_FLG can be used in three cases.

In cases 1 and 2, the processor is the master and the seven microcon-
trollers/peripherals with SPI interfaces are slaves. The processor can:

1. Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

2. Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be other
processors.

3. If all the slaves are also processors, then the requester can receive
data from only one processor (enabled by clearing the EMISO bit in
the six other slave processors) at a time and transmit broadcast data
to all seven at the same time. This EMISO feature may be available in
some other microcontrollers. Therefore, it is possible to use the
EMISO feature with any other SPI device that includes this
functionality.

Figure 10-4 shows one processor as a master with three processors (or
other SPI compatible devices) as slaves.

Interface Overview

10-12 ADSP-BF537 Blackfin Processor Hardware Reference

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

 The SPIF bit is set when the SPI port is disabled.

Upon entering DMA mode, the transmit buffer and the receive
buffer become empty. That is, the TXS bit and the RXS bit are ini-
tially cleared upon entering DMA mode.

When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for 2 successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently gets set, the
last word has been transferred.

Figure 10-4. Single-Master, Multiple-Slave Configuration

MOSIMISO

SLAVE DEVICE

SCK MOSIMISO SCK MOSIMISO SCK

MOSIMISO SCK

MASTER
DEVICE

SLAVE DEVICE SLAVE DEVICE

PG/PJPG/PJ

PG/PJ

VDD

SPISS

SPISS

SPISS SPISS

ADSP-BF537 Blackfin Processor Hardware Reference 10-13

SPI Compatible Port Controllers

Internal Interfaces
The SPI has dedicated connections to the processor’s PAB and DAB.

The low-latency PAB bus is used to map the SPI resources into the system
MMR space through the PAB bus. For the PAB accesses to SPI MMRs,
the primary performance criteria is latency, not throughput. Transfer
latencies for both read and write transfers on the PAB are 2 SCLK cycles.

The DAB bus provides a means for DMA SPI transfers to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory. The SPI peripheral, as a DMA master, is capable of
sourcing DMA accesses. A single arbiter supports a programmable priority
arbitration policy for access to the DAB. Table 2-1 on page 2-9 shows the
default arbitration priority.

DMA Functionality

The SPI has a single DMA engine which can be configured to support
either an SPI transmit channel or a receive channel, but not both simulta-
neously. Therefore, when configured as a transmit channel, the received
data will essentially be ignored.

When configured as a receive channel, what is transmitted is irrelevant. A
16-bit by four-word FIFO (without burst capability) is included to
improve throughput on the DAB.

 When using DMA for SPI transmit, the DMA_DONE interrupt signi-
fies that the DMA FIFO is empty. However, at this point there
may still be data in the SPI DMA FIFO waiting to be transmitted.
Therefore, software needs to poll TXS in the SPI_STAT register until
it goes low for two successive reads, at which point the SPI DMA
FIFO will be empty. When the SPIF bit subsequently goes high,
the last word has been transferred.

The four-word FIFO is cleared when the SPI port is disabled.

Interface Overview

10-14 ADSP-BF537 Blackfin Processor Hardware Reference

SPI Transmit Data Buffer
The SPI_TDBR register is a 16-bit read-write register. Data is loaded into
this register before being transmitted. Just prior to the beginning of a data
transfer, the data in SPI_TDBR is loaded into the SFDR register. A read of
SPI_TDBR can occur at any time and does not interfere with or initiate SPI
transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPI_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of SPI_TDBR
are repeatedly transmitted. A write to SPI_TDBR is permitted in this mode,
and this data is transmitted.

If the SZ control bit in the SPI_CTL register is set, SPI_TDBR may be reset to
0 under certain circumstances.

If multiple writes to SPI_TDBR occur while a transfer is already in progress,
only the last data written is transmitted. None of the intermediate values
written to SPI_TDBR are transmitted. Multiple writes to SPI_TDBR are pos-
sible, but not recommended.

SPI Receive Data Buffer
The SPI_RDBR register is a 16-bit read-only register. At the end of a data
transfer, the data in the shift register is loaded into SPI_RDBR. During a
DMA receive operation, the data in SPI_RDBR is automatically read by the
DMA. When SPI_RDBR is read via software, the RXS bit is cleared and an
SPI transfer may be initiated (if TIMOD = 00).

The SPI_SHADOW register has been provided for use in debugging software.
This register is at a different address than the receive data buffer,
SPI_RDBR, but its contents are identical to that of SPI_RDBR. When a

ADSP-BF537 Blackfin Processor Hardware Reference 10-15

SPI Compatible Port Controllers

software read of SPI_RDBR occurs, the RXS bit in SPI_STAT is cleared and an
SPI transfer may be initiated (if TIMOD = 00 in SPI_CTL). No such hard-
ware action occurs when the SPI_SHADOW register is read. The SPI_SHADOW
register is read-only.

Description of Operation
The following sections describe the operation of the SPI.

SPI Transfer Protocols
The SPI protocol supports four different combinations of serial clock
phase and polarity (SPI modes 0-3). These combinations are selected
using the CPOL and CPHA bits in SPI_CTL, as shown in Figure 10-5.

Figure 10-5. SPI Modes of Operation

C
P

O
L

 =
 0

C
P

O
L

 =
 1

C
L

O
C

K
 P

O
L

A
R

IT
Y

 (
C

P
O

L
)

CLOCK PHASE (CPHA)

CPHA = 0 CPHA = 1

MODE 0

SAMPLE
EDGE

DRIVE
EDGE

MODE 1

SAMPLE
EDGE

DRIVE
EDGE

MODE 2

SAMPLE
EDGE

DRIVE
EDGE

MODE 3

SAMPLE
EDGE

DRIVE
EDGE

Description of Operation

10-16 ADSP-BF537 Blackfin Processor Hardware Reference

The figures “SPI Transfer Protocol for CPHA = 0” on page 10-17 and
“SPI Transfer Protocol for CPHA = 1” on page 10-17 demonstrate the
two basic transfer formats as defined by the CPHA bit. Two waveforms are
shown for SCK—one for CPOL = 0 and the other for CPOL = 1. The dia-
grams may be interpreted as master or slave timing diagrams since the SCK,
MISO, and MOSI pins are directly connected between the master and the
slave. The MISO signal is the output from the slave (slave transmission),
and the MOSI signal is the output from the master (master transmission).
The SCK signal is generated by the master, and the SPISS signal is the slave
device select input to the slave from the master. The diagrams represent an
8-bit transfer (SIZE = 0) with the Most Significant Bit (MSB) first
(LSBF = 0). Any combination of the SIZE and LSBF bits of SPI_CTL is
allowed. For example, a 16-bit transfer with the Least Significant Bit
(LSB) first is another possible configuration.

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software via manipulation of SPI_FLG.

Figure 10-6 shows the SPI transfer protocol for CPHA = 0. Note SCK starts
toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-7 shows the SPI transfer protocol for CPHA = 1. Note SCK starts
toggling at the beginning of the data transfer, SIZE = 0, and LSBF = 0.

ADSP-BF537 Blackfin Processor Hardware Reference 10-17

SPI Compatible Port Controllers

Figure 10-6. SPI Transfer Protocol for CPHA = 0

Figure 10-7. SPI Transfer Protocol for CPHA = 1

6MSB

SPISS
(TO SLAVE)

SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

CLOCK CYCLE
NUMBER

 * *

 *

(* = UNDEFINED)

6MSB

1 2 3 4 85 6 7

5 4 3 2 1 LSB

6MSB 5 4 3 2 1 LSB

 * *

(* = UNDEFINED)

 *

 SCK
(CPOL = 0)

SCK
(CPOL = 1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

CLOCK CYCLE
NUMBER

SPISS
(TO SLAVE)

Description of Operation

10-18 ADSP-BF537 Blackfin Processor Hardware Reference

SPI General Operation
The SPI can be used in a single master as well as multimaster environ-
ment. The MOSI, MISO, and the SCK signals are all tied together in both
configurations. SPI transmission and reception are always enabled simul-
taneously, unless the broadcast mode has been selected. In broadcast
mode, several slaves can be enabled to receive, but only one of the slaves
must be in transmit mode driving the MISO line. If the transmit or receive
is not needed, it can simply be ignored. This section describes the clock
signals, SPI operation as a master and as a slave, and error generation.

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected. An exception to this is when an SPI communication link con-
sists of a single master and a single slave, CPHA = 1, and the slave select
input of the slave is always tied low. In this case, the slave is always
selected and data corruption can be avoided by enabling the slave only
after both the master and slave devices are configured.

In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is
selected.

The WOM bit controls this option. When WOM is set and the SPI is config-
ured as a master, the MOSI pin is three-stated when the data driven out on
MOSI is a logic high. The MOSI pin is not three-stated when the driven data
is a logic low. Similarly, when WOM is set and the SPI is configured as a
slave, the MISO pin is three-stated if the data driven out on MISO is a logic
high.

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as

ADSP-BF537 Blackfin Processor Hardware Reference 10-19

SPI Compatible Port Controllers

the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple processors can take turns being the master device,
as can other microcontrollers or microprocessors. One master device can
also simultaneously shift data into multiple slaves (known as broadcast
mode). However, only one slave may drive its output to write data back to
the master at any given time. This must be enforced in broadcast mode,
where several slaves can be selected to receive data from the master, but
only one slave at a time can be enabled to send data back to the master.

In a multimaster or multidevice environment where multiple processors
are connected via their SPI ports, all MOSI pins are connected together, all
MISO pins are connected together, and all SCK pins are connected together.

For a multislave environment, the processor can make use of seven pro-
grammable flags that are dedicated SPI slave select signals for the SPI slave
devices. See Table 10-2 on page 10-10.

 At reset, the SPI is disabled and configured as a slave.

SPI Control
The SPI_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

The term “word” refers to a single data transfer of either 8 bits or 16 bits,
depending on the word length (SIZE) bit in SPI_CTL. There are two special
bits which can also be modified by the hardware: SPE and MSTR.

The TIMOD field is used to specify the action that initiates transfers to/from
the receive/transmit buffers. When set to 00, a SPI port transaction is
begun when the receive buffer is read. Data from the first read will need to
be discarded since the read is needed to initiate the first SPI port transac-
tion. When set to 01, the transaction is initiated when the transmit buffer
is written. A value of 10 selects DMA receive mode and the first

Description of Operation

10-20 ADSP-BF537 Blackfin Processor Hardware Reference

transaction is initiated by enabling the SPI for DMA receive mode. Subse-
quent individual transactions are initiated by a DMA read of the
SPI_RDBR. A value of 11 selects DMA transmit mode and the transaction is
initiated by a DMA write of the SPI_TDBR.

The PSSE bit is used to enable the SPISS input for master. When not used,
SPISS can be disabled, freeing up a chip pin as general-purpose I/O.

The EMISO bit enables the MISO pin as an output. This is needed in an
environment where the master wishes to transmit to various slaves at one
time (broadcast). Only one slave is allowed to transmit data back to the
master. Except for the slave from whom the master wishes to receive, all
other slaves should have this bit cleared.

The SPE and MSTR bits can be modified by hardware when the MODF bit of
the SPI_STAT register is set. See “Mode Fault Error (MODF)” on
page 10-22.

Figure 10-13 on page 10-43 provides the bit descriptions for SPI_CTL.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPI_BAUD. For slave devices, the value in
SPI_BAUD is ignored. When the SPI device is a master, SCK is an output sig-
nal. When the SPI is a slave, SCK is an input signal. Slave devices ignore
the serial clock if the slave select input is driven inactive (high).

The SCK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock and sampled on the opposite edge of the clock. Clock polarity and
clock phase relative to data are programmable into SPI_CTL and define the
transfer format (Figure 10-5 on page 10-15).

ADSP-BF537 Blackfin Processor Hardware Reference 10-21

SPI Compatible Port Controllers

SPI Baud Rate
The SPI_BAUD register is used to set the bit transfer rate for a master
device. When configured as a slave, the value written to this register is
ignored. The serial clock frequency is determined by this formula:

SCK Frequency = (Peripheral clock frequency SCLK)/(2 x SPI_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

Table 10-3 lists several possible baud rate values for SPI_BAUD.

Error Signals and Flags
The SPI_STAT register is used to detect when an SPI transfer is complete or
if transmission/reception errors occur. The SPI_STAT register can be read
at any time.

Some of the bits in SPI_STAT are read-only and other bits are sticky. Bits
that provide information only about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit

Table 10-3. SPI Master Baud Rate Example

SPI_BAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

Description of Operation

10-22 ADSP-BF537 Blackfin Processor Hardware Reference

position of SPI_STAT. For example, if the TXE bit is set, the user must write
a 1 to bit 2 of SPI_STAT to clear the TXE error condition. This allows the
user to read SPI_STAT without changing its value.

 Sticky bits are cleared on a reset, but are not cleared on an SPI
disable.

See Figure 10-15 on page 10-46 for more information.

Mode Fault Error (MODF)

The MODF bit is set in SPI_STAT when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPI_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPI_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPI_CTL is cleared, disabling the SPI system

• The MODF status bit in SPI_STAT is set

• An SPI error interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs.

ADSP-BF537 Blackfin Processor Hardware Reference 10-23

SPI Compatible Port Controllers

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the general-purpose I/O port registers. This could lead
to contention on the slave select lines if these lines are still driven by the
processor. To ensure that the slave select output drivers are disabled once
an MODF error occurs, the program must configure the general-purpose I/O
port registers appropriately.

When enabling the MODF feature, the program must configure as inputs all
of the port pins that will be used as slave selects. Programs can do this by
configuring the direction of the port pins prior to configuring the SPI.
This ensures that, once the MODF error occurs and the slave selects are auto-
matically reconfigured as port pins, the slave select output drivers are
disabled.

Transmission Error (TXE)

The TXE bit is set in SPI_STAT when all the conditions of transmission are
met, and there is no new data in SPI_TDBR (SPI_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPI_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)

The RBSY flag is set in the SPI_STAT register when a new transfer is com-
pleted, but before the previous data can be read from SPI_RDBR. The state
of the GM bit in the SPI_CTL register determines whether SPI_RDBR is
updated with the newly received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)

The TXCOL flag is set in SPI_STAT when a write to SPI_TDBR coincides with
the load of the shift register. The write to SPI_TDBR can be via software or
the DMA. The TXCOL bit indicates that corrupt data may have been loaded

Functional Description

10-24 ADSP-BF537 Blackfin Processor Hardware Reference

into the shift register and transmitted. In this case, the data in SPI_TDBR
may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCOL bit is sticky (W1C).

Interrupt Output
The SPI has two interrupt output signals: a data interrupt and an error
interrupt.

The behavior of the SPI data interrupt signal depends on the TIMOD field
in the SPI_CTL register. In DMA mode (TIMOD = 1X), the data interrupt
acts as a DMA request and is generated when the DMA FIFO is ready to
be written to (TIMOD = 11) or read from (TIMOD = 10). In non-DMA
mode (TIMOD = 0X), a data interrupt is generated when the SPI_TDBR is
ready to be written to (TIMOD = 01) or when the SPI_RDBR is ready to be
read from (TIMOD = 00).

An SPI error interrupt is generated in a master when a mode fault error
occurs, in both DMA and non-DMA modes. An error interrupt can also
be generated in DMA mode when there is an underflow (TXE when
TIMOD = 11) or an overflow (RBSY when TIMOD = 10) error condition. In
non-DMA mode, the underflow and overflow conditions set the TXE and
RBSY bits in the SPI_STAT register, respectively, but do not generate an
error interrupt.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPI Control” on page 10-19.

Functional Description
The following sections describe the functional operation of the SPI.

ADSP-BF537 Blackfin Processor Hardware Reference 10-25

SPI Compatible Port Controllers

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

1. The core writes to the PORTF_FER and/or PORT_MUX registers to
properly configure the required PFx and/or PJx pins for SPI use as
slave-select outputs and, if necessary, multimaster detection input
(SPISS).

2. The core writes to SPI_FLG, setting one or more of the SPI Flag
Select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

3. The core writes to the SPI_BAUD and SPI_CTL registers, enabling the
device as a master and configuring the SPI system by specifying the
appropriate word length, transfer format, baud rate, and other nec-
essary information.

4. If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPI_FLG.

5. The TIMOD bits in SPI_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPI_TDBR) or a data read of
the receive data buffer (SPI_RDBR).

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPI_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into SPI_RDBR.

7. With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

See Figure 10-8 on page 10-37 for additional information.

Functional Description

10-26 ADSP-BF537 Blackfin Processor Hardware Reference

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL.

If SZ = 1 and the transmit buffer is empty, the device repeatedly transmits
0s on the MOSI pin. One word is transmitted for each new transfer initiate
command. If SZ = 0 and the transmit buffer is empty, the device repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty.

If GM = 1 and the receive buffer is full, the device continues to receive new
data from the MISO pin, overwriting the older data in the SPI_RDBR buffer.
If GM = 0 and the receive buffer is full, the incoming data is discarded, and
SPI_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPI_CTL. Based on those two bits and the status of
the interface, a new transfer is started upon either a read of SPI_RDBR or a
write to SPI_TDBR. This is summarized in Table 10-4.

 If the SPI port is enabled with TIMOD = 01 or TIMOD = 11, the hard-
ware immediately issues a first interrupt or DMA request.

Table 10-4. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and
Receive

Initiate new single word trans-
fer upon read of SPI_RDBR
and previous transfer com-
pleted.

Interrupt active when receive
buffer is full.

Read of SPI_RDBR clears
interrupt.

01 Transmit and
Receive

Initiate new single word trans-
fer upon write to SPI_TDBR
and previous transfer com-
pleted.

Interrupt active when transmit
buffer is empty.

Writing to SPI_TDBR clears
interrupt.

ADSP-BF537 Blackfin Processor Hardware Reference 10-27

SPI Compatible Port Controllers

Slave Mode Operation
When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low), or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

These steps illustrate SPI operation in the slave mode:

1. The core writes to the PORTF_FER register to properly configure the
PF14 pin as the SPISS input signal.

2. The core writes to SPI_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

3. To prepare for the data transfer, the core writes data to be trans-
mitted into SPI_TDBR.

4. Once the SPISS falling edge is detected, the slave starts shifting
data out on MISO and in from MOSI on SCK edges, depending on the
states of CPHA and CPOL.

10 Receive with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA read of
SPI_RDBR, and last transfer
completed.

Request DMA reads as long as
SPI DMA FIFO is not empty.

11 Transmit with
DMA

Initiate new multiword trans-
fer upon enabling SPI for DMA
mode. Individual word trans-
fers begin with a DMA write to
SPI_TDBR, and last transfer
completed.

Request DMA writes as long as
SPI DMA FIFO is not full.

Table 10-4. Transfer Initiation (Cont’d)

TIMOD Function Transfer Initiated Upon Action, Interrupt

Functional Description

10-28 ADSP-BF537 Blackfin Processor Hardware Reference

5. Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

6. The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or SCK clock edge.

See Figure 10-8 on page 10-37 for additional information.

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPI_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeatedly
transmits the last word it transmitted before the transmit buffer became
empty. If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in
SPI_RDBR. If GM = 0 and the receive buffer is full, the incoming data is dis-
carded, and SPI_RDBR is not updated.

Slave Ready for a Transfer
When a device is enabled as a slave, the actions shown in Table 10-5 are
necessary to prepare the device for a new transfer.

Table 10-5. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and
Receive

Interrupt active when receive buffer is full.
Read of SPI_RDBR clears interrupt.

01 Transmit and
Receive

Interrupt active when transmit buffer is empty.
Writing to SPI_TDBR clears interrupt.

10 Receive with
DMA

Request DMA reads as long as SPI DMA FIFO is not empty.

11 Transmit with
DMA

Request DMA writes as long as SPI DMA FIFO is not full.

ADSP-BF537 Blackfin Processor Hardware Reference 10-29

SPI Compatible Port Controllers

Programming Model
The following sections describe the SPI programming model.

Starting and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, whether the CPHA mode is selected, and
whether the transfer initiation mode (TIMOD) is selected. For a master SPI
with CPHA = 0, a transfer starts when either SPI_TDBR is written to or
SPI_RDBR is read, depending on TIMOD. At the start of the transfer, the
enabled slave select outputs are driven active (low). However, the SCK sig-
nal remains inactive for the first half of the first cycle of SCK. For a slave
with CPHA = 0, the transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit defines when the receive buffer can be read. The TXS bit
defines when the transmit buffer can be filled. The end of a single word
transfer occurs when the RXS bit is set, indicating that a new word has just
been received and latched into the receive buffer, SPI_RDBR. For a master
SPI, RXS is set shortly after the last sampling edge of SCK. For a slave SPI,
RXS is set shortly after the last SCK edge, regardless of CPHA or CPOL. The
latency is typically a few SCLK cycles and is independent of TIMOD and the
baud rate. If configured to generate an interrupt when SPI_RDBR is full
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF

Programming Model

10-30 ADSP-BF537 Blackfin Processor Hardware Reference

is cleared shortly after the start of a transfer (SPISS going low for
CPHA = 0, first active edge of SCK on CPHA = 1), and is set at the same time
as RXS. For a master device, SPIF is cleared shortly after the start of a
transfer (either by writing the SPI_TDBR or reading the SPI_RDBR, depend-
ing on TIMOD), and is set one-half SCK period after the last SCK edge,
regardless of CPHA or CPOL.

The time at which SPIF is set depends on the baud rate. In general, SPIF is
set after RXS, but at the lowest baud rate settings (SPI_BAUD < 4). The
SPIF bit is set before RXS is set, and consequently before new data is
latched into SPI_RDBR, because of the latency. Therefore, for
SPI_BAUD = 2 or SPI_BAUD = 3, RXS must be set before SPIF to read
SPI_RDBR. For larger SPI_BAUD settings, RXS is guaranteed to be set before
SPIF is set.

If the SPI port is used to transmit and receive at the same time, or to
switch between receive and transmit operation frequently, then the
TIMOD = 00 mode may be the best operation option. In this mode, software
performs a dummy read from the SPI_RDBR register to initiate the first
transfer. If the first transfer is used for data transmission, software should
write the value to be transmitted into the SPI_TDBR register before per-
forming the dummy read. If the transmitted value is arbitrary, it is good
practice to set the SZ bit to ensure zero data is transmitted rather than ran-
dom values. When receiving the last word of an SPI stream, software
should ensure that the read from the SPI_RDBR register does not initiate
another transfer. It is recommended to disable the SPI port before the
final SPI_RDBR read access. Reading the SPI_SHADOW register is not suffi-
cient as it does not clear the interrupt request.

In master mode with the CPHA bit set, software should manually assert the
required slave select signal before starting the transaction. After all data
has been transferred, software typically releases the slave select again. If the
SPI slave device requires the slave select line to be asserted for the
complete transfer, this can be done in the SPI interrupt service routine

ADSP-BF537 Blackfin Processor Hardware Reference 10-31

SPI Compatible Port Controllers

only when operating in TIMOD = 00 or TIMOD = 10 mode. With TIMOD = 01
or TIMOD = 11, the interrupt is requested while the transfer is still in
progress.

Master Mode DMA Operation
When enabled as a master with the DMA engine configured to transmit or
receive data, the SPI interface operates as follows.

1. The core writes to the PORTF_FER and/or PORT_MUX registers to
properly configure the required PFx and/or PJx pins for SPI use as
slave-select outputs and, if necessary, multimaster detection input
(SPISS).

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and to configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see Chapter 5, “Direct Memory Access”.

3. The processor core writes to the SPI_FLG register, setting one or
more of the SPI flag select bits (FLSx).

4. The processor core writes to the SPI_BAUD and SPI_CTL registers,
enabling the device as a master and configuring the SPI system by
specifying the appropriate word length, transfer format, baud rate,
and so on. The TIMOD field should be configured to select either
“receive with DMA” (TIMOD = 10) or “transmit with DMA”
(TIMOD = 11) mode.

Programming Model

10-32 ADSP-BF537 Blackfin Processor Hardware Reference

5. If configured for receive, a receive transfer is initiated upon
enabling of the SPI. Subsequent transfers are initiated as the SPI
reads data from the SPI_RDBR register and writes to the SPI DMA
FIFO. The SPI then requests a DMA write to memory. Upon a
DMA grant, the DMA engine reads a word from the SPI DMA
FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. As the SPI writes data
from the SPI DMA FIFO into the SPI_TDBR register, it initiates a
transfer on the SPI link.

6. The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
For receive transfers, the value in the shift register is loaded into
the SPI_RDBR register at the end of the transfer. For transmit trans-
fers, the value in the SPI_TDBR register is loaded into the shift
register at the start of the transfer.

7. In receive mode, as long as there is data in the SPI DMA FIFO (the
FIFO is not empty), the SPI continues to request a DMA write to
memory. The DMA engine continues to read a word from the SPI
DMA FIFO and writes to memory until the SPI DMA word count
register transitions from 1 to 0. The SPI continues receiving words
until SPI DMA mode is disabled.

In transmit mode, as long as there is room in the SPI DMA FIFO
(the FIFO is not full), the SPI continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI continues transmit-
ting words until the SPI DMA FIFO is empty.

See Figure 10-9 on page 10-38 for additional information.

ADSP-BF537 Blackfin Processor Hardware Reference 10-33

SPI Compatible Port Controllers

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MISO pin, overwriting the older data in the
SPI_RDBR register. If GM = 0, and the DMA FIFO is full, the incoming
data is discarded, and the SPI_RDBR register is not updated. While per-
forming receive DMA, the transmit buffer is assumed to be empty (and
TXE is set). If SZ = 1, the device repeatedly transmits 0s on the MOSI pin. If
SZ = 0, it repeatedly transmits the contents of the SPI_TDBR register. The
TXE underrun condition cannot generate an error interrupt in this mode.

For transmit DMA operations, the master SPI initiates a word transfer
only when there is data in the DMA FIFO. If the DMA FIFO is empty,
the SPI waits for the DMA engine to write to the DMA FIFO before start-
ing the transfer. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode. The TXE
underrun condition cannot happen in this mode (master DMA TX mode),
because the master SPI will not initiate a transfer if there is no data in the
DMA FIFO.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10).

A master SPI DMA sequence may involve back-to-back transmission
and/or reception of multiple DMA work units. The SPI controller sup-
ports such a sequence with minimal core interaction.

Programming Model

10-34 ADSP-BF537 Blackfin Processor Hardware Reference

Slave Mode DMA Operation
When enabled as a slave with the DMA engine configured to transmit or
receive data, the start of a transfer is triggered by a transition of the SPISS
signal to the active-low state or by the first active edge of SCK, depending
on the state of CPHA.

The following steps illustrate the SPI receive or transmit DMA sequence
in an SPI slave (in response to a master command).

1. The core writes to the PORTF_FER register to properly configure the
PF14 pin as the SPISS input signal.

2. The processor core writes to the appropriate DMA registers to
enable the SPI DMA channel and configure the necessary work
units, access direction, word count, and so on. For more informa-
tion, see Chapter 5, “Direct Memory Access”.

3. The processor core writes to the SPI_CTL register to define the
mode of the serial link to be the same as the mode setup in the SPI
master. The TIMOD field will be configured to select either “receive
with DMA” (TIMOD = 10) or “transmit with DMA” (TIMOD = 11)
mode.

4. If configured for receive, once the slave select input is active, the
slave starts receiving and transmitting data on SCK edges. The value
in the shift register is loaded into the SPI_RDBR register at the end
of the transfer. As the SPI reads data from the SPI_RDBR register
and writes to the SPI DMA FIFO, it requests a DMA write to
memory. Upon a DMA grant, the DMA engine reads a word from
the SPI DMA FIFO and writes to memory.

If configured for transmit, the SPI requests a DMA read from
memory. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the SPI DMA FIFO. The SPI then reads
data from the SPI DMA FIFO and writes to the SPI_TDBR register,

ADSP-BF537 Blackfin Processor Hardware Reference 10-35

SPI Compatible Port Controllers

awaiting the start of the next transfer. Once the slave select input is
active, the slave starts receiving and transmitting data on SCK edges.
The value in the SPI_TDBR register is loaded into the shift register at
the start of the transfer.

5. In receive mode, as long as there is data in the SPI DMA FIFO
(FIFO not empty), the SPI slave continues to request a DMA write
to memory. The DMA engine continues to read a word from the
SPI DMA FIFO and writes to memory until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
receiving words on SCK edges as long as the slave select input is
active.

In transmit mode, as long as there is room in the SPI DMA FIFO
(FIFO not full), the SPI slave continues to request a DMA read
from memory. The DMA engine continues to read a word from
memory and write to the SPI DMA FIFO until the SPI DMA word
count register transitions from 1 to 0. The SPI slave continues
transmitting words on SCK edges as long as the slave select input is
active.

For receive DMA operations, if the DMA engine is unable to keep up with
the receive datastream, the receive buffer operates according to the state of
the GM bit. If GM = 1 and the DMA FIFO is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in the
SPI_RDBR register. If GM = 0 and the DMA FIFO is full, the incoming data
is discarded, and the SPI_RDBR register is not updated. While performing
receive DMA, the transmit buffer is assumed to be empty and TXE is set. If
SZ = 1, the device repeatedly transmits 0s on the MISO pin. If SZ = 0, it
repeatedly transmits the contents of the SPI_TDBR register. The TXE under-
run condition cannot generate an error interrupt in this mode.

For transmit DMA operations, if the DMA engine is unable to keep up
with the transmit stream, the transmit port operates according to the state
of the SZ bit. If SZ = 1 and the DMA FIFO is empty, the device repeat-
edly transmits 0s on the MISO pin. If SZ = 0 and the DMA FIFO is empty,

Programming Model

10-36 ADSP-BF537 Blackfin Processor Hardware Reference

it repeatedly transmits the last word it transmitted before the DMA buffer
became empty. All aspects of SPI receive operation should be ignored
when configured in transmit DMA mode, including the data in the
SPI_RDBR register, and the status of the RXS and RBSY bits. The RBSY over-
run conditions cannot generate an error interrupt in this mode.

Writes to the SPI_TDBR register during an active SPI transmit DMA opera-
tion should not occur because the DMA data will be overwritten. Writes
to the SPI_TDBR register during an active SPI receive DMA operation are
allowed. Reads from the SPI_RDBR register are allowed at any time.

DMA requests are generated when the DMA FIFO is not empty (when
TIMOD = 10), or when the DMA FIFO is not full (when TIMOD = 11).

Error interrupts are generated when there is an RBSY overflow error condi-
tion (when TIMOD = 10), or when there is a TXE underflow error condition
(when TIMOD = 11).

See Figure 10-9 for additional information.

ADSP-BF537 Blackfin Processor Hardware Reference 10-37

SPI Compatible Port Controllers

Figure 10-8. Core-Driven SPI Flow Chart

WRITE PORTF_FER TO ENABLE SPI SIGNALS

MASTER OR SLAVE?

CPHA = 1
AND

MSTR = 1

TIMOD = 00

MASTER

SLAVE, MSTR = 0N

WRITE PORT_MUX
TO ENABLE PORT J

SLAVES AND/OR
MORE PORT F SLAVES

MULTISLAVE
SUPPORT?

Y

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI HARDWARE AND ENABLE SPI PORT

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI_TBDR WITH DATA TO SEND OVER SPI

Y

N

READ SPI_RDBR
TO START
TRANSFER

WAIT FOR TRANSFER COMPLETE

LAST TRANSFER?
Y

N

TIMOD = 01
Y

N

READ NEW DATA
FROM SPI_RDBR

CPHA = 1
AND

MSTR = 1

N

Y
WRITE SPI_FLG
TO DESELECT
SLAVE(S) VIA

FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

Programming Model

10-38 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 10-9. SPI DMA Flow Chart (Part 1 of 3)

WRITE PORTF_FER TO ENABLE SPI SIGNALS

USE
DEFAULT DMA7

FOR SPI?

DMA7_CONFIG
FLOW = ?

N

Y

WRITE DESIRED DMA CHANNEL'S
DMAx_PERIPHERAL_MAP WITH 0x7000 TO SET AS SPI.

(REPLACE ALL MENTION OF DMA7 REGISTER NAMES
IN THIS FLOW CHART WITH CHOSEN DMAx PREFIX.)

WRITE DMA7_CONFIG TO CONFIGURE DMA ENGINE

0x4 ARRAY
0x6 SMALL LIST
0x7 LARGE LIST

0x0 STOP
0x1 AUTOBUFFER

POPULATE
DESCRIPTORS

IN MEMORY

WRITE DMA REGISTERS:
DMA7_START_ADDR

DMA7_X_COUNT
DMA7_X_MODIFY

DMA7_CONFIG'S NDSIZE FIELD DETERMINES
WHICH DMA REGISTERS TO INITIALIZE STATICALLY

DMA7_CONFIG
FLOW = ?

0x6 SMALL LIST
0x7 LARGE LIST

0x4 ARRAY

SET
DMA7_CURR_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

SET
DMA7_NEXT_DESC_PTR

TO ADDRESS OF
FIRST DESCRIPTOR

A

ADSP-BF537 Blackfin Processor Hardware Reference 10-39

SPI Compatible Port Controllers

Figure 10-10. SPI DMA Flow Chart (Part 2 of 3)

2D DMA?

IS SPI MASTER
OR SLAVE?

Y

N

WRITE DMA REGISTERS:
DMA7_Y_COUNT
DMA7_Y_MODIFY

MASTER

MULTI-SLAVE
SUPPORT?

N

A

SLAVE,
MSTR = 0

Y
WRITE PORT_MUX

TO ENABLE PORT J
SLAVES AND/OR

MORE PORT F SLAVES

WRITE SPI_FLG TO SET APPROPRIATE FLSx BITS

WRITE SPI_BAUD TO SET DESIRED SPI BIT RATE

MSTR = 1

WRITE SPI_CTL TO CONFIGURE SPI PORT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG
TO SELECT SLAVE(S)

VIA FLGx BITS

WRITE DMA7_CONFIG TO ENABLE DMA

WRITE SPI_CTL TO ENABLE SPI

B

Programming Model

10-40 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 10-11. SPI DMA Flow Chart (Part 3 of 3)

INTERRUPT
REQUESTED?

TERMINATE DMA?

Y

N

CLEAR INTERRUPT BY
WRITING THE DMA_DONE
BIT IN DMA7_IRQ_STATUS

N

TX OR RX DMA?

TX

B

Y

N

WRITE DMA7_CONFIG
TO ENABLE DMA

AGAIN

WAIT FOR DMA_RUN = 0 IN DMA7_IRQ_STATUS

WAIT FOR TWO STRAIGHT READS
OF TXS = 0 IN SPI_STAT

WAIT FOR SPIF = 1 IN SPI_STAT

CPHA = 1
AND

MSTR = 1

Y

N

WRITE SPI_FLG TO
DESELECT SLAVE(S)

VIA FLGx BITS

WRITE SPI_CTL TO DISABLE SPI PORT

WRITE DMA7_CONFIG TO DISABLE DMA

FLOW = STOP

Y

RX

ADSP-BF537 Blackfin Processor Hardware Reference 10-41

SPI Compatible Port Controllers

SPI Registers
The SPI peripheral includes a number of user-accessible registers. Some of
these registers are also accessible through the DMA bus. Four registers
contain control and status information: SPI_BAUD, SPI_CTL, SPI_FLG, and
SPI_STAT. Two registers are used for buffering receive and transmit data:
SPI_RDBR and SPI_TDBR. For information about DMA-related registers, see
Chapter 5, “Direct Memory Access”. The shift register, SFDR, is internal to
the SPI module and is not directly accessible.

See “Error Signals and Flags” on page 10-21 for more information about
how the bits in these registers are used to signal errors and other
conditions.

Table 10-6 shows the functions of the SPI registers. Figure 10-12 through
Figure 10-18 provide details.

Table 10-6. SPI Register Mapping

Register Name Function Notes

SPI_BAUD SPI port baud
control

Value of 0 or 1 disables the serial clock

SPI_CTL SPI port control SPE and MSTR bits can also be modified by
hardware (when MODF is set)

SPI_FLG SPI port flag Bits 0 and 8 are reserved

SPI_STAT SPI port status SPIF bit can be set by clearing SPE in SPI_CTL

SPI_TDBR SPI port transmit
data buffer

Register contents can also be modified by hard-
ware (by DMA and/or when SZ = 1 in
SPI_CTL)

SPI_RDBR SPI port receive
data buffer

When register is read, hardware events can be
triggered

SPI_SHADOW SPI port data Register has the same contents as SPI_RDBR,
but no action is taken when it is read

SPI Registers

10-42 ADSP-BF537 Blackfin Processor Hardware Reference

SPI_BAUD Register

Figure 10-12. SPI Baud Rate Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate[15:0]
SCLK / (2 �SPI_BAUD)

Reset = 0x0000

SPI Baud Rate Register (SPI_BAUD)

0xFFC0 0514

ADSP-BF537 Blackfin Processor Hardware Reference 10-43

SPI Compatible Port Controllers

SPI_CTL Register

Figure 10-13. SPI Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD[1:0] (Transfer Initiation
Mode)
00 - Start transfer with read of

SPI_RDBR, interrupt when
SPI_RDBR is full

01 - Start transfer with write of
SPI_TDBR, interrupt when
SPI_TDBR is empty

10 - Start transfer with DMA read
of SPI_RDBR, request further
DMA reads as long as SPI DMA
FIFO is not empty

11 - Start transfer with DMA write
of SPI_TDBR, request further
DMA writes as long as SPI DMA
FIFO is not full

SZ (Send Zero)
Send zero or last word when
SPI_TDBR is empty
0 - Send last word
1 - Send zeros

GM (Get More Data)
When SPI_RDBR is full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite

previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disabled
1 - Enabled

WOM (Write Open Drain
Master)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format and
operation mode
0 - SCK toggles from middle

of the first data bit, slave select
pins controlled by hardware

1 - SCK toggles from beginning
of first data bit, slave select
pins controlled by software

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPI Control Register (SPI_CTL)

0xFFC0 0500

SPI Registers

10-44 ADSP-BF537 Blackfin Processor Hardware Reference

SPI_FLG Register

The SPI_FLG register consists of two sets of bits that function as follows.

• Slave select enable (FLSx) bits

Each FLSx bit corresponds to a general purpose port (PFx/PJx) pin.
When an FLSx bit is set, the corresponding port pin is driven as a
slave select. For example, if FLS1 is set in SPI_FLG, PF10 is driven as
a slave select (SPISSEL1). Table 10-2 on page 10-10 shows the asso-
ciation of the FLSx bits and the corresponding port pins.

Figure 10-14. SPI Flag Register

Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPISSEL1 disabled
1 - SPISSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPISSEL2 disabled
1 - SPISSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPISSEL3 disabled
1 - SPISSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPISSEL4 disabled
1 - SPISSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPISSEL5 disabled
1 - SPISSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPISSEL6 disabled
1 - SPISSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPISSEL7 disabled
1 - SPISSEL7 enabled

FLG7 (Slave
Select Value 7)
SPISSEL7 value

FLG6 (Slave Select
Value 6)
SPISSEL6 value

FLG5 (Slave Select
Value 5)
SPISSEL5 value

FLG4 (Slave Select
 Value 4)
SPISSEL4 value

FLG3 (Slave Select Value 3)
SPISSEL3 value

FLG2 (Slave Select Value 2)
SPISSEL2 value

FLG1 (Slave Select Value 1)
SPISSEL1 value

SPI Flag Register (SPI_FLG)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 00xFFC0 0504

ADSP-BF537 Blackfin Processor Hardware Reference 10-45

SPI Compatible Port Controllers

If the FLSx bit is not set, the general-purpose port registers
(PORTFIO_DIR and others) configure and control the corresponding
port pins.

• Slave select value (FLGx) bits

• When a PFx pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPI_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits.

For example, to drive PJ10 as a slave select, FLS3 in SPI_FLG must
be set. Clearing FLG3 in SPI_FLG drives PJ10 low; setting FLG3
drives PJ10 high. The PJ10 pin can be cycled high and low between
transfers by setting and clearing FLG3. Otherwise, PJ10 remains
active (low) between transfers.

If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PJ10 as a slave select
pin, it is only necessary to set the FLS3 bit in SPI_FLG. It is not nec-
essary to write to the FLG3 bit, because the SPI hardware
automatically drives the PJ10 pin.

SPI Registers

10-46 ADSP-BF537 Blackfin Processor Hardware Reference

SPI_STAT Register

SPI_TDBR Register

Figure 10-15. SPI Status Register

Figure 10-16. SPI Transmit Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) -
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) -
W1C
Set when transmission
occurred with no new data in
SPI_TDBR

SPI Status Register (SPI_STAT)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

RXS (RX Data Buffer Status) - RO
0 - Empty
1 - Full

RBSY (Receive Error) - W1C
Set when data is received with
receive buffer full

TXS (SPI_TDBR Data Buffer Status) - RO
0 - Empty
1 - Full

0xFFC0 0508

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer[15:0]

SPI Transmit Data Buffer Register (SPI_TDBR)

0xFFC0 050C

ADSP-BF537 Blackfin Processor Hardware Reference 10-47

SPI Compatible Port Controllers

SPI_RDBR Register

SPI_SHADOW Register

Figure 10-17. SPI Receive Data Buffer Register

Figure 10-18. SPI RDBR Shadow Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer[15:0]

SPI Receive Data Buffer Register (SPI_RDBR) -- RO

0xFFC0 0510

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPI_RDBR Shadow[15:0]

SPI RDBR Shadow Register (SPI_SHADOW)
RO

0xFFC0 0518

Programming Examples

10-48 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Examples
This section includes examples (Listing 10-1 through Listing 10-8) for
core generated transfer and for use with DMA. Each code example
assumes that the appropriate defBF53x header file is included.

Core Generated Transfer
The following core-driven master-mode SPI example shows how to initial-
ize the hardware, signal the start of a transfer, handle the interrupt and
issue the next transfer, and generate a stop condition.

Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 10-1. SPI Register Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P0.H = hi(SPI_BAUD);

P0.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8 kHz

*/

ADSP-BF537 Blackfin Processor Hardware Reference 10-49

SPI Compatible Port Controllers

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 00 : Transfer On RDBR read.

 * SZ [2] = 0 : Send last word when TDBR0 is empty

 * GM [3] = 1 : Overwrite previous data if RDBR0 is full

 * PSSE [4] = 0 : Disables slave-select as input (master)

 * EMISO [5] = 0 : MISO disabled for output (master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16-bit word length select

 * LSBF [9] = 0 : Transmit MSB first

 * CPHA [10] = 0 : Hardware controls slave-select outputs

 * CPOL [11] = 1 : Active low serial clock

 * MSTR [12] = 1 : Device is master

 * WOM [13] = 0 : Normal MOSI/MISO data output (no open

drain)

 * SPE [14] = 1 : SPI module is enabled

 * [15] = 0 : RESERVED

 ***/

P0.H = hi(SPI_CTL) ;

P0.L = lo(SPI_CTL) ;

R0 = 0x5908;

W[P0] = R0.L; ssync; /* Enable SPI as MASTER */

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following a dummy read of SPI_RDBR. Typically, known data which
is desired to be transmitted to the slave is preloaded into the SPI_TDBR. In
the following code, P1 is assumed to point to the start of the 16-bit trans-
mit data buffer and P2 is assumed to point to the start of the 16-bit receive
data buffer. In addition, the user must ensure appropriate interrupts are
enabled for SPI operation.

Programming Examples

10-50 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 10-2. Initiate Transfer

Initiate_Transfer:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITCLR (R0,0xF); /* FLG7 */

W[P0] = R0; /* Drive 0 on enabled slave-select pin */

P0.H = hi(SPI_TDBR); /* SPI transmit register */

P0.L = lo(SPI_TDBR);

R0 = W[P1++] (z); /* Get first data to be transmitted

And Increment Pointer */

W[P0] = R0; /* Write to SPI_TDBR */

P0.H = hi(SPI_RDBR);

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Dummy read of SPI_RDBR kicks off transfer */

Post Transfer and Next Transfer

Following the transfer of data, the SPI generates an interrupt, which is ser-
viced if the interrupt is enabled during initialization. In the interrupt
routine, software must write the next value to be transmitted prior to
reading the byte received. This is because a read of the SPI_RDBR initiates
the next transfer.

Listing 10-3. SPI Interrupt Handler

SPI_Interrupt_Handler:

Process_SPI_Sample:

P0.H = hi(SPI_TDBR); /* SPI transmit register */

P0.L = lo(SPI_TDBR);

ADSP-BF537 Blackfin Processor Hardware Reference 10-51

SPI Compatible Port Controllers

R0 = W[P1++](z); /* Get next data to be transmitted */

W[P0] = R0.l; /* Write that data to SPI_TDBR */

Kick_Off_Next:

P0.H = hi(SPI_RDBR); /* SPI receive register */

P0.L = lo(SPI_RDBR);

R0 = W[P0] (z); /* Read SPI receive register (also kicks off

next transfer) */

W[P2++] = R0; /* Store received data to memory */

RTI; /* Exit interrupt handler */

Stopping

In order for a data transfer to end after the user has transferred all data,
the following code can be used to stop the SPI. Note that this is typically
done in the interrupt handler to ensure the final data has been sent in its
entirety.

Listing 10-4. Stopping SPI

Stopping_SPI:

P0.H = hi(SPI_CTL);

P0.L = lo(SPI_CTL);

R0 = W[P0];

BITCLR(R0, 14); /* Clear SPI enable bit */

W[P0] = R0.L; ssync; /* Disable SPI */

DMA Transfer
The following DMA-driven master-mode SPI autobuffer example shows
how to initialize DMA, initialize SPI, signal the start of a transfer, and
generate a stop condition.

Programming Examples

10-52 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Initialization Sequence

The following code initializes the DMA to perform a 16-bit memory read
DMA operation in autobuffer mode, and generates an interrupt request
when the buffer has been sent. This code assumes that P1 points to the
start of the data buffer to be transmitted and that NUM_SAMPLES is a defined
macro indicating the number of elements being sent.

Listing 10-5. DMA Initialization

Initialize_DMA: /* DMA7 = default channel for SPI DMA */

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);

R0 = 0x1084(z); /* Autobuffer mode, IRQ on complete, linear

16-bit, mem read */

w[P0] = R0;

P0.H = hi(DMA7_START_ADDR);

P0.L = lo(DMA7_START_ADDR);

[p0] = p1; /* Start address of TX buffer */

P0.H = hi(DMA7_X_COUNT);

P0.L = lo(DMA7_X_COUNT);

R0 = NUM_SAMPLES;

w[p0] = R0; /* Number of samples to transfer */

R0 = 2;

P0.H = hi(DMA7_X_MODIFY);

P0.L = lo(DMA7_X_MODIFY);

w[p0] = R0; /* 2 byte stride for 16-bit words */

R0 = 1; /* single dimension DMA means 1 row */

P0.H = hi(DMA7_Y_COUNT);

P0.L = lo(DMA7_Y_COUNT);

w[p0] = R0;

ADSP-BF537 Blackfin Processor Hardware Reference 10-53

SPI Compatible Port Controllers

SPI Initialization Sequence

Before the SPI can transfer data, the registers must be configured as
follows.

Listing 10-6. SPI Initialization

SPI_Register_Initialization:

P0.H = hi(SPI_FLG);

P0.L = lo(SPI_FLG);

R0 = W[P0] (Z);

BITSET (R0,0x7); /* FLS7 */

W[P0] = R0; /* Enable slave-select output pin */

P1.H = hi(SPI_BAUD);

P1.L = lo(SPI_BAUD);

R0.L = 0x208E; /* Write to SPI baud rate register */

W[P0] = R0.L; ssync; /* If SCLK = 133 MHz, SPI clock ~= 8kHz */

/* Setup SPI Control Register */

/***

 * TIMOD [1:0] = 11 : Transfer on DMA TDBR write

 * SZ [2] = 0 : Send last word when TDBR0 is empty

 * GM [3] = 1 : Overwrite previous data if RDBR0 is full

 * PSSE [4] = 0 : Disables slave-select as input (master)

 * EMISO [5] = 0 : MISO disabled for output (master)

 * [7] and [6] = 0 : RESERVED

 * SIZE [8] = 1 : 16-bit word length select

 * LSBF [9] = 0 : Transmit MSB first

 * CPHA [10] = 0 : Hardware controls slave-select outputs

 * CPOL [11] = 1 : Active LOW serial clock

 * MSTR [12] = 1 : Device is master

 * WOM [13] = 0 : Normal MOSI/MISO data output (no open

drain)

 * SPE [14] = 0 : SPI module is disabled

Programming Examples

10-54 ADSP-BF537 Blackfin Processor Hardware Reference

 * [15] = 0 : RESERVED

 ***/

/* Configure SPI as MASTER */

R1 = 0x190B(z); /* Leave disabled until DMA is enabled */

P1.L = lo(SPI_CTL);

W[P1] = R1; ssync;

Starting a Transfer

After the initialization procedure in the given master mode, a transfer
begins following enabling of SPI. However, the DMA must be enabled
before enabling the SPI.

Listing 10-7. Starting a Transfer

Initiate_Transfer:

P0.H = hi(DMA7_CONFIG);

P0.L = lo(DMA7_CONFIG);

R2 = w[P0](z);

BITSET (R2, 0); /*Set DMA enable bit */

w[p0] = R2.L; /* Enable TX DMA */

P4.H = hi(SPI_CTL);

P4.L = lo(SPI_CTL);

R2=w[p4](z);

BITSET (R2, 14); /* Set SPI enable bit */

w[p4] = R2; /* Enable SPI */

Stopping a Transfer

In order for a data transfer to end after the DMA has transferred all
required data, the following code is executed in the SPI DMA interrupt
handler. The example code below clears the DMA interrupt, then waits
for the DMA engine to stop running. When the DMA engine has
completed, SPI_STAT is polled to determine when the transmit buffer is

ADSP-BF537 Blackfin Processor Hardware Reference 10-55

SPI Compatible Port Controllers

empty. If there is data in the SPI Transmit FIFO, it is loaded as soon as
the TXS bit clears. A second consecutive read with the TXS bit clear indi-
cates the FIFO is empty and the last word is in the shift register. Finally,
polling for the SPIF bit determines when the last bit of the last word has
been shifted out. At that point, it is safe to shut down the SPI port and the
DMA engine.

Listing 10-8. Stopping a Transfer

SPI_DMA_INTERRUPT_HANDLER:

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = 1 ;

W[P0] = R0 ; /* Clear DMA interrupt */

/* Wait for DMA to complete */

P0.L = lo(DMA7_IRQ_STATUS);

P0.H = hi(DMA7_IRQ_STATUS);

R0 = DMA_RUN; /* 0x08 */

CHECK_DMA_COMPLETE: /* Poll for DMA_RUN bit to clear */

R3 = W[P0] (Z);

R1 = R3 & R0;

CC = R1 == 0;

IF !CC JUMP CHECK_DMA_COMPLETE;

/* Wait for TXS to clear */

P0.L = lo(SPI_STAT);

P0.H = hi(SPI_STAT);

R1 = TXS; /* 0x08 */

Check_TXS: /* Poll for TXS = 0 */

R2 = W[P0] (Z);

R2 = R2 & R1;

Programming Examples

10-56 ADSP-BF537 Blackfin Processor Hardware Reference

CC = R0 == 0;

IF !CC JUMP Check_TXS;

R2 = W[P0] (Z); /* Check if TXS stays clear for 2 reads */

R2 = R2 & R1;

CC = R0 == 0;

IF !CC JUMP Check_TXS;

/* Wait for final word to transmit from SPI */

Final_Word:

R0 = W[P0](Z);

R2 = SPIF; /* 0x01 */

R0 = R0 & R2;

CC = R0 == 0;

IF CC JUMP Final_Word;

Disable_SPI:

P0.L = lo(SPI_CTL);

P0.H = hi(SPI_CTL);

R0 = W[P0] (Z);

BITCLR (R0,0xe); /* Clear SPI enable bit */

W[P0] = R0; /* Disable SPI */

Disable_DMA:

P0.L = lo(DMA7_CONFIG);

P0.H = hi(DMA7_CONFIG);

R0 = W[P0](Z);

BITCLR (R0,0x0); /* Clear DMA enable bit */

W[P0] = R0; /* Disable DMA */

RTI; /* Exit Handler */

ADSP-BF537 Blackfin Processor Hardware Reference 11-1

11 TWO-WIRE INTERFACE
CONTROLLER

This chapter describes the Two-Wire Interface (TWI) port. Following an
overview and a list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

This chapter contains:

• “Overview” on page 11-2

• “Interface Overview” on page 11-3

• “Description of Operation” on page 11-6

• “TWI General Operation” on page 11-11

• “Functional Description” on page 11-12

• “Programming Model” on page 11-25

• “TWI Register Descriptions” on page 11-27

• “Programming Examples” on page 11-51

• “Electrical Specifications” on page 11-63

Overview

11-2 ADSP-BF537 Blackfin Processor Hardware Reference

Overview
The TWI controller allows a device to interface to an inter-IC bus as spec-

ified by the Philips I2C Bus Specification version 2.1 dated January 2000.
This feature applies to the ADSP-BF534, ADSP-BF536, and
ADSP-BF537 processors.

The TWI is fully compatible with the widely used I2C bus standard. It
was designed with a high level of functionality and is compatible with
multi-master, multi-slave bus configurations. To preserve processor band-
width the TWI controller can be set up with transfer initiated interrupts
only to service FIFO buffer data reads and writes. Protocol related inter-
rupts are optional.

The TWI externally moves 8-bit data while maintaining compliance with

the I2C bus protocol. The TWI controller includes these features:

• Simultaneous master and slave operation on multiple device
systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100 kbits/second and 400 kbits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of
bus lock-up

ADSP-BF537 Blackfin Processor Hardware Reference 11-3

Two-Wire Interface Controller

• Input filter for spike suppression

• Serial camera control bus support as specified in OmniVision Serial
Camera Control Bus (SCCB) Functional Specification version 2.1.

Interface Overview
Figure 11-1 provides a block diagram of the TWI controller. The interface
is essentially a shift register that serially transmits and receives data bits,
one bit at a time at the SCL rate, to and from other TWI devices. The SCL
synchronizes the shifting and sampling of the data on the serial data pin.

Figure 11-1. TWI Block Diagram

PAB16

TWI INTERFACE LOGIC

CLOCK
GENERATION

Tx REG

2-DEEP FIFO 2-DEEP FIFO

Rx REG

Tx SHIFT REG Rx SHIFT REG

ARBITRATIONPRESCALERADDRESS
COMPARE

SCLSDA

Interface Overview

11-4 ADSP-BF537 Blackfin Processor Hardware Reference

External Interface
The TWI signals are dedicated to this interface, that is, they are not multi-
plexed with any other signals. These signals, SDA (serial data) and SCL
(serial clock) are open drain and as such require pull-up resistors.

Serial Clock Signal (SCL)

In slave mode this signal is an input and an external master is responsible
for providing the clock.

In master mode the TWI controller must set this signal to the desired fre-
quency. The TWI controller supports the standard mode of operation (up
to 100 KHz) or fast mode (up to 400 KHz).

The TWI control register (TWI_CONTROL) is used to set the PRESCALE value
which gives the relationship between the system clock (SCLK) and the TWI
controller’s internally timed events. The internal time reference is derived
from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

The PRESCALE value is the number of system clock (SCLK) periods used in
the generation of one internal time reference. The value of PRESCALE must
be set to create an internal time reference with a period of 10 MHz. It is
represented as a 7-bit binary value.

 It is not always possible to achieve 10 MHz accuracy. In such cases,
it is safe to round up the PRESCALE value to the next highest integer.
For example, if SCLK is 133 MHz, the PRESCALE value is calculated
as 133 MHz/10 MHz = 13.3. In this case, a PRESCALE value of 14
ensures that all timing requirements are met.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received
depending on the direction of the transfer.

ADSP-BF537 Blackfin Processor Hardware Reference 11-5

Two-Wire Interface Controller

TWI Pins

Table 11-1 shows the pins for the TWI. Two bidirectional pins externally

interface the TWI controller to the I2C bus. The interface is simple and
no other external connections or logic are required.

Internal Interfaces
The peripheral bus interface supports the transfer of 16-bit wide data and
is used by the processor in the support of register and FIFO buffer reads
and writes.

The register block contains all control and status bits and reflects what can
be written or read as outlined by the programmer’s model. Status bits can
be updated by their respective functional blocks.

The FIFO buffer is configured as a1-byte-wide 2-deep transmit FIFO buf-
fer and a 1-byte-wide 2-deep receive FIFO buffer.

The transmit shift register serially shifts its data out externally off chip.
The output can be controlled for generation of acknowledgements or it
can be manually overwritten.

The receive shift register receives its data serially from off chip. The
receive shift register is 1 byte wide and data received can either be trans-
ferred to the FIFO buffer or used in an address comparison.

The address compare block supports address comparison in the event the
TWI controller module is accessed as a slave.

Table 11-1. TWI Pins

Pin Description

SDA In/Out TWI serial data, high impedance reset value.

SCL In/Out TWI serial clock, high impedance reset value.

Description of Operation

11-6 ADSP-BF537 Blackfin Processor Hardware Reference

The prescaler block must be programmed to generate a 10 MHz time ref-
erence relative to the system clock. This time base is used for filtering of
data and timing events specified by the electrical data sheet (See the Phil-
ips Specification), as well as for SCL clock generation.

The clock generation module is used to generate an external SCL clock
when in master mode. It includes the logic necessary for synchronization
in a multi-master clock configuration and clock stretching when config-
ured in slave mode.

Description of Operation
The following sections describe the operation of the TWI interface.

TWI Transfer Protocols

The TWI controller follows the transfer protocol of the Philips I2C Bus
Specification version 2.1 dated January 2000. A simple complete transfer is
diagrammed in Figure 11-2.

To better understand the mapping of TWI controller register contents to
a basic transfer, Figure 11-3 details the same transfer as above noting the
corresponding TWI controller bit names. In this illustration, the TWI
controller successfully transmits one byte of data. The slave has acknowl-
edged both address and data.

Figure 11-2. Basic Data Transfer

ACKR/W

ACK = ACKNOWLEDGE

S P8-BIT DATA ACK7-BIT ADDRESS

P = STOP
S = START

ADSP-BF537 Blackfin Processor Hardware Reference 11-7

Two-Wire Interface Controller

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master
mode operation and only at the time a transfer has been initiated. If arbi-
tration for the bus is lost, the serial clock output immediately three-states.
If multiple clocks attempt to drive the serial clock line, the TWI controller
synchronizes its clock with the other remaining clocks. This is shown in
Figure 11-4.

The TWI controller’s serial clock (SCL) output follows these rules:

• Once the clock high (CLKHI) count is complete, the serial clock out-
put is driven low and the clock low (CLKLOW) count begins.

• Once the clock low count is complete, the serial clock line is
three-stated and the clock synchronization logic enters into a delay
mode (shaded area) until the SCL line is detected at a logic 1 level.
At this time the clock high count begins.

Figure 11-3. Data Transfer With Bit Illustration

Figure 11-4. TWI Clock Synchronization

ACKMDIR

ACK = ACKNOWLEDGE

S PXMITDATA8[7:0] ACKMADDR[6:0]

P = STOP
S = START

HIGH
COUNT

LOW
COUNT

TWI CONTROLLER
CLOCK

SECOND MASTER
CLOCK

SCL
RESULT

Description of Operation

11-8 ADSP-BF537 Blackfin Processor Hardware Reference

Bus Arbitration

The TWI controller initiates a master mode transmission (MEN) only when
the bus is idle. If the bus is idle and two masters initiate a transfer, arbitra-
tion for the bus begins. This is shown in Figure 11-5.

The TWI controller monitors the serial data bus (SDA) while SCL is high
and if SDA is determined to be an active logic 0 level while the TWI con-
troller’s data is a logic 1 level, the TWI controller has lost arbitration and
ends generation of clock and data. Note arbitration is not performed only
at serial clock edges, but also during the entire time SCL is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial
clock is a logic 1 level. The TWI controller generates and recognizes these
transitions. Typically start and stop conditions occur at the beginning and
at the conclusion of a transmission with the exception repeated start
“combined” transfers, as shown in Figure 11-6.

Figure 11-5. TWI Bus Arbitration

START

SCL (BUS)

TWI CONTROLLER
DATA

SECOND MASTER
DATA

SDA (BUS)
ARBITRATION
LOST

ADSP-BF537 Blackfin Processor Hardware Reference 11-9

Two-Wire Interface Controller

The TWI controller’s special case start and stop conditions include:

• TWI controller addressed as a slave-receiver

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP).

• TWI controller addressed as a slave-transmitter

If the master asserts a stop condition during the data phase of a
transfer, the TWI controller concludes the transfer (SCOMP) and
indicates a slave transfer error (SERR).

• TWI controller as a master-transmitter or master-receiver

If the stop bit is set during an active master transfer, the TWI con-
troller issues a stop condition as soon as possible avoiding any error
conditions (as if data transfer count had been reached).

General Call Support

The TWI controller always decodes and acknowledges a general call
address if it is enabled as a slave (SEN) and if general call is enabled (GEN).
general call addressing (0x00) is indicated by the GCALL bit being set and
by nature of the transfer the TWI controller is a slave-receiver. If the data
associated with the transfer is to be NAK’ed, the NAK bit can be set.

Figure 11-6. TWI Start and Stop Conditions

START

SCL (BUS)

SDA (BUS)

STOP

Description of Operation

11-10 ADSP-BF537 Blackfin Processor Hardware Reference

If the TWI controller is to issue a general call as a master-transmitter the
appropriate address and transfer direction can be set along with loading
transmit FIFO data.

 The byte following the general call address usually defines what
action needs to be taken by the slaves in response to the call. The
command in the second byte is interpreted based on the value of its
LSB. For a TWI slave device, this is not applicable, and the bytes
received after the general call address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as standard mode of opera-
tion. It is the electrical specifications and timing that are most effected.
When fast mode is enabled (FAST) the following timings are modified to
meet the electrical requirements.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data
(tSU;STO)

• Bus free time between a stop and start condition (tBUF)

ADSP-BF537 Blackfin Processor Hardware Reference 11-11

Two-Wire Interface Controller

TWI General Operation
The following sections describe the general operation of the TWI.

TWI Control
The TWI control register (TWI_CONTROL) is used to enable the TWI mod-
ule as well as to establish a relationship between the system clock (SCLK)
and the TWI controller’s internally timed events. The internal time refer-
ence is derived from SCLK using a prescaled value.

PRESCALE = fSCLK/10MHz

SCCB compatibility is an optional feature and should not be used in an

I2C bus system. This feature is turned on by setting the SCCB bit in the
TWI_CONTROL register. When this feature is set all slave asserted acknowl-
edgement bits are ignored by this master. This feature is valid only during
transfers where the TWI is mastering an SCCB bus. Slave mode transfers
should be avoided when this feature is enabled because the TWI controller
always generates an acknowledge in slave mode.

For either master and/or slave mode of operation, the TWI controller is
enabled by setting the TWI_ENA bit in the TWI_CONTROL register. It is recom-
mended that this bit be set at the time PRESCALE is initialized and remain
set. This guarantees accurate operation of bus busy detection logic.

The PRESCALE field of the TWI_CONTROL register specifies the number of
system clock (SCLK) periods used in the generation of one internal time
reference. The value of PRESCALE must be set to create an internal time ref-
erence with a period of 10 MHz. It is represented as a 7-bit binary value.

Functional Description

11-12 ADSP-BF537 Blackfin Processor Hardware Reference

Clock Signal
The clock signal SCL is an output in master mode and an input in slave
mode.

During master mode operation, the SCL clock divider register
(TWI_CLKDIV) values are used to create the high and low durations of the
serial clock (SCL). Serial clock frequencies can vary from 400 KHz to less
than 20 KHz. The resolution of the clock generated is 1/10 MHz or
100 ns.

CLKDIV = TWI SCL period / 10 MHz time reference

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and
an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 and CLKHI = 8. Note
that CLKLOW and CLKHI add up to CLKDIV.

The clock high field of the TWI_CLKDIV register specifies the number of 10
MHz time reference periods the serial clock (SCL) waits before a new clock
low period begins, assuming a single master. It is represented as an 8-bit
binary value.

The clock low field of the TWI_CLKDIV register number of internal time ref-
erence periods the serial clock (SCL) is held low. It is represented as an
8-bit binary value.

Functional Description
The following sections describe the functional operation of the TWI.

ADSP-BF537 Blackfin Processor Hardware Reference 11-13

Two-Wire Interface Controller

General Setup
General setup refers to register writes that are required for both slave
mode operation and master mode operation. General setup should be per-
formed before either the master or slave enable bits are set.

• Program the TWI_CONTROL register to enable the TWI controller
and set the prescale value. Program the prescale value to the binary
representation of fSCLK / 10MHz

• All values should be rounded up to the next whole number. The
TWI_ENA bit enable must be set. Note once the TWI controller is
enabled a bus busy condition may be detected. This condition
should clear after tBUF has expired assuming no additional bus
activity has been detected.

Slave Mode
When enabled, slave mode operation supports both receive and transmit
data transfers. It is not possible to enable only one data transfer direction
and not acknowledge (NAK) the other.

This is reflected in the following setup.

1. Program TWI_SLAVE_ADDR. The appropriate 7 bits are used in deter-
mining a match during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. These are the initial
data values to be transmitted in the event the slave is addressed and
a transmit is required. This is an optional step. If no data is written
and the slave is addressed and a transmit is required, the serial
clock (SCL) is stretched and an interrupt is generated until data is
written to the transmit FIFO.

Functional Description

11-14 ADSP-BF537 Blackfin Processor Hardware Reference

3. Program TWI_INT_MASK. Enable bits are associated with the desired
interrupt sources. As an example, programming the value 0x000F
results in an interrupt output to the processor in the event that a
valid address match is detected, a valid slave transfer completes, a
slave transfer has an error, a subsequent transfer has begun yet the
previous transfer has not been serviced.

4. Program TWI_SLAVE_CTL. Ultimately this prepares and enables slave
mode operation. As an example, programming the value 0x0005
enables slave mode operation, requires 7-bit addressing, and indi-
cates that data in the transmit FIFO buffer is intended for slave
mode transmission.

Table 11-2 shows what the interaction between the TWI controller and
the processor might look like using this example.

Master Mode Clock Setup
Master mode operation is set up and executed on a per-transfer basis. An
example of programming steps for a receive and for a transmit are given
separately in following sections. The clock setup programming step listed
here is common to both transfer types.

• Program TWI_CLKDIV. This defines the clock high duration and
clock low duration.

Table 11-2. Slave Mode Setup Interaction

TWI Controller Master Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: SCOMP – Slave transfer complete. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

ADSP-BF537 Blackfin Processor Hardware Reference 11-15

Two-Wire Interface Controller

Master Mode Transmit
Follow these programming steps for a single master mode transmit:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_XMT_DATA8 or TWI_XMT_DATA16. This is the initial data
transmitted. It is considered an error to complete the address phase
of the transfer and not have data available in the transmit FIFO
buffer.

3. Program TWI_FIFO_CTL. Indicate if transmit FIFO buffer interrupts
should occur with each byte transmitted (8 bits) or with each 2
bytes transmitted (16 bits).

4. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. As an example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

5. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0201 enables master mode operation, generates a 7-bit address,
sets the direction to master-transmit, uses standard mode timing,
and transmits 8 data bytes before generating a Stop condition.

Table 11-3 shows what the interaction between the TWI controller and
the processor might look like using this example.

Table 11-3. Master Mode Transmit Setup Interaction

TWI Controller Master Processor

Interrupt: XMTEMPTY – Transmit buffer is
empty.

Write transmit FIFO buffer.
Acknowledge: Clear interrupt source bits.

Functional Description

11-16 ADSP-BF537 Blackfin Processor Hardware Reference

Master Mode Receive
Follow these programming steps for a single master mode receive:

1. Program TWI_MASTER_ADDR. This defines the address transmitted
during the address phase of the transfer.

2. Program TWI_FIFO_CTL. Indicate if receive FIFO buffer interrupts
should occur with each byte received (8 bits) or with each 2 bytes
received (16 bits).

3. Program TWI_INT_MASK. Enable bits associated with the desired
interrupt sources. For example, programming the value 0x0030
results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program TWI_MASTER_CTL. Ultimately this prepares and enables
master mode operation. As an example, programming the value
0x0205 enables master mode operation, generates a 7-bit address,
sets the direction to master-receive, uses standard mode timing,
and receives 8 data bytes before generating a Stop condition.

 After the TWI_DCNT bit is decremented to zero, the TWI master
device sends a NAK to indicate to the slave transmitter that the bus
should be released. This allows the master to send the STOP signal
to terminate the transfer.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.

Table 11-3. Master Mode Transmit Setup Interaction (Cont’d)

TWI Controller Master Processor

ADSP-BF537 Blackfin Processor Hardware Reference 11-17

Two-Wire Interface Controller

Table 11-4 shows what the interaction between the TWI controller and
the processor might look like using this example.

Repeated Start Condition
In general, a repeated start condition is the absence of a stop condition
between two transfers. The two transfers can be of any direction type.
Examples include a transmit followed by a receive, or a receive followed by
a transmit. The following sections contain information intended to be a
guide to assist the programmer in their service routine development.

Transmit/Receive Repeated Start Sequence

Figure 11-7 illustrates a repeated start data transmit followed by a data
receive sequence.

Table 11-4. Master Mode Receive Setup Interaction

TWI Controller Master Processor

Interrupt: RCVFULL – Receive buffer is full. Read receive FIFO buffer.
Acknowledge: Clear interrupt source bits.

... ...

Interrupt: MCOMP – Master transfer com-
plete.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

Figure 11-7. Transmit/Receive Data Repeated Start

ACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

XMTSERV INTERRUPT RCVSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W

Functional Description

11-18 ADSP-BF537 Blackfin Processor Hardware Reference

The tasks performed at each interrupt are:

• XMTSERV interrupt

This interrupt was generated due to a FIFO access. Since this is the
last byte of this transfer, FIFO_STATUS would indicate the transmit
FIFO is empty. When read, DCNT would be zero. Set the RSTART bit
to indicate a repeated start and set the MDIR bit should a subsequent
transfer be a data receive.

• MCOMP interrupt

This interrupt was generated since all data has been transferred
(DCNT = 0). If no errors were generated, a start condition is initi-
ated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to receive.

• RCVSERV interrupt

This interrupt is generated due to the arrival of a byte into the
receive FIFO. Simple data handling is all that is required.

• MCOMP interrupt

The transfer is complete.

ADSP-BF537 Blackfin Processor Hardware Reference 11-19

Two-Wire Interface Controller

Receive/Transmit Repeated Start Sequence

Figure 11-8 illustrates a repeated start data receive followed by a data
transmit sequence.

The tasks performed at each interrupt are:

• RCVSERV interrupt

This interrupt in generated due to the arrival of a data byte into the
receive FIFO. Set the RSTART bit to indicate a repeated start and
clear the MDIR bit should a subsequent transfer be a data transmit.

• MCOMP interrupt

This interrupt has occurred due to the completion of the data
receive transfer. If no errors were generated, a start condition is ini-
tiated. Clear the RSTART bit and program the DCNT with the desired
number of bytes to transmit.

• XMTSERV interrupt

This interrupt is generated due to a FIFO access. Simple data han-
dling is all that is required.

• MCOMP interrupt

The transfer is complete.

Figure 11-8. Receive/Transmit Data Repeated Start

NACKACKS S8-BIT DATA

SHADING INDICATES SLAVE HAS THE BUS

7-BIT ADDRESS ACK P8-BIT DATA ACK7-BIT ADDRESS

MCOMP INTERRUPT

RCVSERV INTERRUPT XMTSERV INTERRUPT

MCOMP INTERRUPT

R/W R/W

Functional Description

11-20 ADSP-BF537 Blackfin Processor Hardware Reference

 There is no timing constraint to meet the above conditions; the
user can program the bits as required. Refer to “Clock Stretching
During Repeated Start Condition” on page 11-23 for more on how
the controller stretches the clock during repeated start transfers.

Clock Stretching

Clock stretching is an added functionality of the TWI controller in master
mode operation. This new behavior utilizes self-induced stretching of the

I2C clock while waiting on servicing interrupts. Stretching is done auto-
matically by the hardware and no programming is required for this. The
TWI Controller as master supports three modes of clock stretching:

• “Clock Stretching During FIFO Underflow” on page 11-20

• “Clock Stretching During FIFO Overflow” on page 11-21

• “Clock Stretching During Repeated Start Condition” on
page 11-23

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated at the instant
the transmit FIFO becomes empty. At this time, the most recent byte
begins transmission. If the XMTSERV interrupt is not serviced, the con-
cluding acknowledge phase of the transfer is stretched. Stretching of the
clock continues until new data bytes are written to the transmit FIFO
(TWI_XMT_DATA8 or TWI_XMT_DATA16). No other action is required to release
the clock and continue the transmission. This behavior continues until the
transmission is complete (DCNT = 0) at which time the transmission is con-
cluded (MCOMP) as shown in Figure 11-9 and described in Figure 11-5.

ADSP-BF537 Blackfin Processor Hardware Reference 11-21

Two-Wire Interface Controller

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the
receive FIFO becomes full. It is during the acknowledge phase of this
received byte that clock stretching begins. No attempt is made to initiate
the reception of an additional byte. Stretching of the clock continues until
the data bytes previously received are read from the receive FIFO buffer
(TWI_RCV_DATA8, TWI_RCV_DATA16). No other action is required to release
the clock and continue the reception of data. This behavior continues

Figure 11-9. Clock Stretching During FIFO Underflow

Table 11-5. FIFO Underflow Case

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer
is empty.

Acknowledge: Clear interrupt source bits.
Write transmit FIFO buffer.

... ...

Interrupt: MCOMP – Master transmit com-
plete (DCNT= 0x00).

Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

11 01 00

XMTSTAT[1:0]

TWI_XMT_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

01

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

Functional Description

11-22 ADSP-BF537 Blackfin Processor Hardware Reference

until the reception is complete (DCNT = 0x00) at which time the reception
is concluded (MCOMP) as shown in Figure 11-10 and described in
Table 11-6.

Figure 11-10. Clock Stretching During FIFO Overflow

Table 11-6. FIFO Overflow Case

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is
full.

Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

S ADDRESS DATA
ACK WITH
STRETCH

ACKR/W DATA ACK DATA

00 01 11

RCVSTAT[1:0]

TWI_RCV_DATA IS READ AT THIS TIME AND
CLOCK STRETCHING IS RELEASED.

ACKNOWLEDGE WITH STRETCH

00

SCL

ACKNOWLEDGE "STRETCH" BEGINS SOON AFTER SCL FALL.

ADSP-BF537 Blackfin Processor Hardware Reference 11-23

Two-Wire Interface Controller

Clock Stretching During Repeated Start Condition

The repeated start feature in I2C protocol requires transitioning between
two subsequent transfers. With the use of clock stretching, the task of
managing transitions becomes simpler, and common to all transfer types.

Once an initial TWI master transfer has completed (transmit or receive)
the clock initiates a stretch during the repeated start phase between trans-
fers. Concurrent with this event the initial transfer will generate a transfer
complete interrupt (MCOMP) to signify the initial transfer has completed
(DCNT = 0). This initial transfer is handled without any special bit setting
sequences or timings. The clock stretching logic described above applies
here. With no system related timing constraints the subsequent transfer
(receive or transmit) is setup and activated. This sequence can be repeated
as many times as required to string a series of repeated start transfers
together. This is shown in Figure 11-11 and described in Table 11-7.

Figure 11-11. Clock Stretching During Repeated Start Condition

S ADDRESS RSTART/
STRETCH

ADDRESSACKR/W DATA ACK DATA

0x01 0x00 0x80

DCNT[7:0]

MDIR (DIRECTION) AND DCNT ARE
WRITTEN AT THIS TIME.
CLOCK STRETCHING

IS RELEASED.

REPEATED START WITH STRETCH

0x7F

SCL

REPEATED START "STRETCH" BEGINS SOON AFTER SCL FALL
DUE TO DCNT=0X00 AND RSTART.

MCOMP IS SET AT THIS TIME INDICATING
INITIAL TRANSFER HAS COMPLETED.

ACK ACK

Functional Description

11-24 ADSP-BF537 Blackfin Processor Hardware Reference

Table 11-7. Repeated Start Case

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has com-
pleted and DCNT = 0x00.

Note: transfer in progress, RSTART previously
set.

Acknowledge: Clear interrupt source bits.

Write TWI_MASTER_CTL, setting MDIR
(receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits.
Read receive FIFO buffer.

... ...

Interrupt: MCOMP – Master receive complete. Acknowledge: Clear interrupt source bits.

ADSP-BF537 Blackfin Processor Hardware Reference 11-25

Two-Wire Interface Controller

Programming Model
Figure 11-12 and Figure 11-13 illustrate the programming model for the
TWI.

Figure 11-12. TWI Slave Mode

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_SLAVE_ADDR

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

INTERRUPT
SOURCE

SCOMP

XMTSERV

WRITE TO TWI_XMT_DATA REGISTER
TO PRE-LOAD THE TX FIFO

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WRITE TO TWI_SLAVE_CTL TO
ENABLE SLAVE FUNCTIONALITY

WAIT FOR INTERRUPTS

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

REGISTER

RCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

WRITE TWI_INT_STAT TO CLEAR INTERRUPT

Programming Model

11-26 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 11-13. TWI Master Mode

DONE

WRITE DATA INTO
TWI_XMT_DATA

 REGISTER

TRANSFER
DIRECTION

MERR

TRANSMIT

WRITE TO TWI_CONTROL TO SET
 PRESCALE AND ENABLE THE TWI

WRITE TO TWI_CLK_DIV

WRITE TO TWI_MASTER_ADDR WITH THE
ADDRESS OF THE TARGETED DEVICE

WRITE TO TWI_FIFO_CTL TO SELECT WHETHER
 1 OR 2 BYTES GENERATE INTERRUPTS

WRITE TO TWI_INT_MASK TO UNMASK
TWI EVENTS TO GENERATE INTERRUPTS

WAIT FOR INTERRUPTS

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR CLEARED, AND MEN SET. THIS

STARTS THE TRANSFER

RECEIVE

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

INTERRUPT
SOURCE

XMTSERVMCOMP

WRITE TWI_MASTER_CTL WITH COUNT,
MDIR SET, AND MEN SET. THIS

STARTS THE TRANSFER

WAIT FOR INTERRUPTS

INTERRUPT
SOURCE

MCOMPRCVSERV

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

READ DATA FROM
TWI_RCV_DATA

 REGISTER

WRITE TWI_INT_STAT
TO CLEAR INTERRUPT

MERR

READ TWI_MASTER_STAT TO GET ERROR CAUSE

HANDLE ERROR AS APPROPRIATE AND W1C THE
CORRESPONDING BIT IN TWI_MASTER_STAT

WRITE TWI_INT_STAT TO CLEAR MERR BIT

WAIT FOR INTERRUPTS

ADSP-BF537 Blackfin Processor Hardware Reference 11-27

Two-Wire Interface Controller

TWI Register Descriptions
The TWI controller has 16 registers described in the following sections.
Figure 11-14 through Figure 11-30 on page 11-51 illustrate the registers.

TWI_CONTROL Register

TWI_CLKDIV Register

Figure 11-14. TWI Control Register

Figure 11-15. SCL Clock Divider Register

TWI Control Register (TWI_CONTROL)

Reset = 0x00000xFFC0 1404

PRESCALE[6:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCCB (SCCB Compatibility)

TWI_ENA (TWI Enable)

0 - Master transfers are not SCCB compatible
1 - Master transfers are SCCB compatible. All
slave asserted acknowledgement bits are
ignored by this master.

0 - TWI is disabled
1 - TWI is enabled

Insert here the value of
prescale (see page 11-10)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SCL Clock Divider Register (TWI_CLKDIV)

CLKLOW (TWI Clock Divider Low)

Reset = 0x00000xFFC0 1400

CLKHI (TWI Clock Divider High)

TWI Register Descriptions

11-28 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_SLAVE_CTL Register
The TWI slave mode control register (TWI_SLAVE_CTL) controls the logic
associated with slave mode operation. Settings in this register do not affect
master mode operation and should not be modified to control master
mode functionality.

Additional information for the TWI_SLAVE_CTL register bits includes:

• General call enable (GEN)

General call address detection is available only when slave mode is
enabled.

Figure 11-16. TWI Slave Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Control Register (TWI_SLAVE_CTL)

Reset = 0x00000xFFC0 1408

SEN (Slave Enable)

STDVAL (Slave Transmit
Data Valid)

NAK (Not Acknowledge)

GEN (General Call Enable)
0 - General call address matching is disabled
1 - General call address matching is enabled. All
status and interrupt source bits associated with
transfers are updated.

0 - Slave receive transfers generate an ACK at
the conclusion of a data transfer
1 - Slave receive transfers generate a data NAK
at the conclusion of a data transfer. The slave is
still considered to be addressed.

0 - The slave is not enabled. No
attempt is made to identify a
valid address. If clearing during
a valid transfer, clock stretching
ceases, the serial data line is
released, and the current byte is
not acknowledged.
1 - The slave is enabled.
Enabling slave and master
modes of operation concurrently
is allowed.

0 - Data in the transmit FIFO is
for master mode transmits and
is not allowed to be used during
a slave transmit, and the trans-
mit FIFO is treated as if it is
empty
1 - Data in the transmit FIFO is
available for slave transmission

ADSP-BF537 Blackfin Processor Hardware Reference 11-29

Two-Wire Interface Controller

[1] General call address matching is enabled. A general call slave
receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated.

[0] General call address matching is not enabled.

• NAK (NAK)

[1] Slave receive transfers generate a data NAK (not acknowledge)
at the conclusion of a data transfer. The slave is still considered to
be addressed.

[0] Slave receive transfers generate an ACK at the conclusion of a
data transfer.

• Slave transmit data valid (STDVAL)

[1] Data in the transmit FIFO is available for a slave transmission.

[0] Data in the transmit FIFO is for master mode transmits and is
not allowed to be used during a slave transmit, and the transmit
FIFO is treated as if it is empty.

• Slave enable (SEN)

[1] The slave is enabled. Enabling slave and master modes of oper-
ation concurrently is allowed.

[0] The slave is not enabled. No attempt is made to identify a valid
address. If cleared during a valid transfer, clock stretching ceases,
the serial data line is released, and the current byte is not
acknowledged.

TWI Register Descriptions

11-30 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_SLAVE_ADDR Register
The TWI slave mode address register (TWI_SLAVE_ADDR) holds the slave
mode address, which is the valid address that the slave-enabled TWI con-
troller responds to. The TWI controller compares this value with the
received address during the addressing phase of a transfer.

TWI_SLAVE_STAT Register
During and at the conclusion of slave mode transfers, the TWI slave mode
status register (TWI_SLAVE_STAT) holds information on the current trans-
fer. Generally slave mode status bits are not associated with the generation
of interrupts. Master mode operation does not affect slave mode status
bits.

Figure 11-17. TWI Slave Mode Address Register

Figure 11-18. TWI Slave Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Address Register (TWI_SLAVE_ADDR)

SADDR[6:0] (Slave Mode
Address)

Reset = 0x00000xFFC0 1410

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Slave Mode Status Register (TWI_SLAVE_STAT)

Reset = 0x00000xFFC0 140C

SDIR (Slave Transfer Direction) GCALL (General Call)
(Read Only)
0 - At the time of addressing, the address was
not determined to be a general call
1 - At the time of addressing, the address was
determined to be a general call

(Read Only)
0 - At the time of addressing,
the transfer direction was deter-
mined to be a slave receive
1 - At the time of addressing,
the transfer direction was deter-
mined to be a slave transmit

ADSP-BF537 Blackfin Processor Hardware Reference 11-31

Two-Wire Interface Controller

The TWI slave mode status register (TWI_SLAVE_STAT) holds the following
information.

• General call (GCALL)

This bit self clears if slave mode is disabled (SEN = 0).

1 At the time of addressing, the address was determined to be a
general call.

0At the time of addressing, the address was not determined to be a
general call.

• Slave transfer direction (SDIR)

This bit self clears if slave mode is disabled (SEN = 0).

1At the time of addressing, the transfer direction was determined
to be slave transmit.

0At the time of addressing, the transfer direction was determined
to be slave receive.

TWI Register Descriptions

11-32 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_MASTER_CTL Register
The TWI master mode control register (TWI_MASTER_CTL) controls the
logic associated with master mode operation. Bits in this register do not
affect slave mode operation and should not be modified to control slave
mode functionality.

Additional information for the TWI_MASTER_CTL register bits includes:

• Serial clock override (SCLOVR)

This bit can be used when direct control of the serial clock line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial clock output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial clock operation under the control of master
mode clock generation and slave mode clock stretching logic.

• Serial data (SDA) override (SDAOVR)

This bit can be used when direct control of the serial data line is
required. Normal master and slave mode operation should not
require override operation.

[1] Serial data output is driven to an active 0 level overriding all
other logic. This state is held until this bit is cleared.

[0] Normal serial data operation under the control of the transmit
shift register and acknowledge logic.

ADSP-BF537 Blackfin Processor Hardware Reference 11-33

Two-Wire Interface Controller

Figure 11-19. TWI Master Mode Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Control Register (TWI_MASTER_CTL)

Reset = 0x00000xFFC0 1414

MEN (Master Mode Enable)

MDIR (Master Transfer
Direction)

SDAOVR (Serial
Data Override)

SCLOVR (Serial
Clock Override)

DCNT[7:0] (Data
Transfer Count)

FAST (Fast Mode)

STOP (Issue Stop
Condition)

RSTART (Repeat Start)

0 - Normal serial clock
operation under the con-
trol of master mode clock
generation and slave mode
clock stretching logic
1 - Serial clock output is
driven to an active 0 level
overriding all other logic.
This state is held until this
bit is cleared.

0 - Normal serial data oper-
ation under the control of
the transmit shift register
and acknowledge logic
1 - Serial data output is
driven to an active 0 level
overriding all other logic.
This state is held until this
bit is cleared.

Indicates the number of
data bytes to transfer. As
each data word is trans-
ferred, DCNT is
decremented. When DCNT
is 0, a stop condition is
generated. Setting DCNT
to 0xFF disables the coun-
ter. In this transfer mode,
data continues to be trans-
ferred until it is concluded
by setting the STOP bit.

0 - Master mode functional-
ity is disabled. If this bit is
cleared during operation, the
transfer is aborted and all
logic associated with master
mode transfer is reset. Serial
data and serial clock are no
longer driven.
1 - Master mode functional-
ity is enabled. A start
condition is generated if the
bus is idle.

0 - Initiated transfer is mas-
ter transmit
1 - Initiated transfer is mas-
ter receive

0 - Standard mode (up to
100 K bits/s)
1 - Fast mode (up to 400 K
bits/s)

0 - Normal transfer
operation
1 - Transfer concludes as
soon as possible avoiding
any error conditions (as if
data transfer count had
been reached) and at the
time the TWI_INT_MASK is
updated along with any
associated bits

0 - Transfer concludes with
a stop condition
1 - Issue a repeat start
condition at the conclusion
of current transfer and
begin the next transfer.
The current transfer con-
cludes with updates to the
appropriate status and
interrupt bits. If errors
occurred during the previ-
ous transfer, a repeat start
does not occur. In the
absence of any errors,
MEN does not self clear on
the repeat start.

TWI Register Descriptions

11-34 ADSP-BF537 Blackfin Processor Hardware Reference

• Data transfer count (DCNT[7:0])

Indicates the number of data bytes to transfer. As each data word is
transferred, DCNT is decremented. When DCNT is 0, a stop condition
is generated. Setting DCNT to 0xFF disables the counter. In this
transfer mode, data continues to be transferred until it is concluded
by setting the STOP bit.

• Repeat start (RSTART)

[1] Issue a repeat start condition at the conclusion of the current
transfer (DCNT = 0) and begin the next transfer. The current transfer
concludes with updates to the appropriate status and interrupt bits.
If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (MEN) does
not self clear on a repeat start.

[0] Transfer concludes with a stop condition.

• Issue stop condition (STOP)

[1] The transfer concludes as soon as possible avoiding any error
conditions (as if data transfer count had been reached) and at that
time the TWI interrupt mask register (TWI_INT_MASK) is updated
along with any associated status bits.

[0] Normal transfer operation.

• Fast mode (FAST)

[1] Fast mode (up to 400K bits/s) timing specifications in use.

[0] Standard mode (up to 100K bits/s) timing specifications in use.

ADSP-BF537 Blackfin Processor Hardware Reference 11-35

Two-Wire Interface Controller

• Master transfer direction (MDIR)

[1] The initiated transfer is master receive.

[0] The initiated transfer is master transmit.

• Master mode enable (MEN)

This bit self clears at the completion of a transfer (after the DCNT bit
decrements to zero), including transfers terminated due to errors.

[1] Master mode functionality is enabled. A start condition is gen-
erated if the bus is idle.

[0] Master mode functionality is disabled. If this bit is cleared dur-
ing operation, the transfer is aborted and all logic associated with
master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not
affected.

TWI Register Descriptions

11-36 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_MASTER_ADDR Register
During the addressing phase of a transfer, the TWI controller, with its
master enabled, transmits the contents of the TWI master mode address
register (TWI_MASTER_ADDR). When programming this register, omit the
read/write bit. That is, only the upper 7 bits that make up the slave
address should be written to this register. For example, if the slave address
is b#1010000X, where X is the read/write bit, then TWI_MASTER_ADDR is pro-
grammed with b#1010000, which corresponds to 0x50. When sending out
the address on the bus, the TWI controller appends the read/write bit as
appropriate based on the state of the MDIR bit in the master mode control
register.

Figure 11-20. TWI Master Mode Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Address Register (TWI_MASTER_ADDR)

Reset = 0x00000xFFC0 141C

MADDR[6:0] (Master
Mode Address)

ADSP-BF537 Blackfin Processor Hardware Reference 11-37

Two-Wire Interface Controller

TWI_MASTER_STAT Register

Figure 11-21. TWI Master Mode Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Master Mode Status Register (TWI_MASTER_STAT)

Reset = 0x00000xFFC0 1418

MPROG (Master Transfer
in Progress)

LOSTARB (Lost Arbitration)

SCLSEN (Serial Clock Sense)

BUSBUSY (Bus Busy)

SDASEN (Serial Data Sense)

ANAK (Address Not
Acknowledged)

DNAK (Data Not
Acknowledged)

BUFWRERR (Buffer Write Error)

BUFRDERR (Buffer Read Error)

(Read Only)
0 - The bus is free. The clock and data bus sig-
nals have been inactive for the appropriate bus
free time.
1 - The bus is busy. Clock or data activity has
been detected.

(Read Only)
0 - An inactive “1” is currently being sensed on
the serial clock
1 - An active “0” is currently being sensed on the
serial clock. The source of the active driver is not
known and can be internal or external.

(Read Only)
0 - Currently no transfer is tak-
ing place. This can occur once
a transfer is complete or while
an enabled master is waiting for
an idle bus.
1 - Master transfer is in
progress

(Write-1-to-Clear)
0 - Current transfer has not lost
arbitration with another master
1 - Current transfer was aborted
due to the loss of arbitration
with another master

(Write-1-to-Clear)
0 - Current master transmit has
not detected NAK during
addressing
1 - Current master transfer
aborted due to detection of NAK
during the address phase of
transfer

(Write-1-to-Clear)
0 - Current master receive has
not detected NAK during data
transmission
1 - Current master transfer
aborted due to detection of NAK
during data transmission

(Write-1-to-Clear)
0 - Current master transmit has
not detected a buffer read error
1 - Current master transfer
aborted due to transmit buffer
read error. At the time data was
required by the transmit shift
register, the buffer was empty.

(Read Only)
0 - An inactive “1” is currently being sensed on
the serial data line
1 - An active “0” is currently being sensed on the
serial data line. The source of the active driver is
not known and can be internal or external.

(Write-1-to-Clear)
0 - Current master receive has
not detected a receive buffer
write error
1 - Current master transfer
aborted due to receive buffer
write error. The receive buffer
and receive shift register were
both full at the same time.

TWI Register Descriptions

11-38 ADSP-BF537 Blackfin Processor Hardware Reference

The TWI master mode status register (TWI_MASTER_STAT) holds informa-
tion during master mode transfers and at their conclusion. Generally,
master mode status bits are not directly associated with the generation of
interrupts but offer information on the current transfer. Slave mode oper-
ation does not affect master mode status bits.

• Bus busy (BUSBUSY)

Indicates whether the bus is currently busy or free. This indication
is not limited to only this device but is for all devices. Upon a start
condition, the setting of the register value is delayed due to the
input filtering. Upon a stop condition the clearing of the register
value occurs after tBUF.

[1] The bus is busy. Clock or data activity has been detected.

[0] The bus is free. The clock and data bus signals have been inac-
tive for the appropriate bus free time.

• Serial clock sense (SCLSEN)

This status bit can be used when direct sensing of the serial clock
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial clock.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial clock.

ADSP-BF537 Blackfin Processor Hardware Reference 11-39

Two-Wire Interface Controller

• Serial data sense (SDASEN)

This status bit can be used when direct sensing of the serial data
line is required. The register value is delayed due to the input filter
(nominally 50 ns). Normal master and slave mode operation
should not require this feature.

[1] An active “zero” is currently being sensed on the serial data line.
The source of the active driver is not known and can be internal or
external.

[0] An inactive “one” is currently being sensed on the serial data
line.

• Buffer write error (BUFWRERR)

[1] The current master transfer was aborted due to a receive buffer
write error. The receive buffer and receive shift register were both
full at the same time. This bit is W1C.

[0] The current master receive has not detected a receive buffer
write error.

• Buffer read error (BUFRDERR)

[1] The current master transfer was aborted due to a transmit buf-
fer read error. At the time data was required by the transmit shift
register the buffer was empty. This bit is W1C.

[0] The current master transmit has not detected a buffer read
error.

TWI Register Descriptions

11-40 ADSP-BF537 Blackfin Processor Hardware Reference

• Data not acknowledged (DNAK)

[1] The current master transfer was aborted due to the detection of
a NAK during data transmission. This bit is W1C.

[0] The current master receive has not detected a NAK during data
transmission.

• Address not acknowledged (ANAK)

[1] The current master transfer was aborted due to the detection of
a NAK during the address phase of the transfer. This bit is W1C.

[0] The current master transmit has not detected NAK during
addressing.

• Lost arbitration (LOSTARB)

[1] The current transfer was aborted due to the loss of arbitration
with another master. This bit is W1C.

[0] The current transfer has not lost arbitration with another
master.

• Master transfer in progress (MPROG)

[1] A master transfer is in progress.

[0] Currently no transfer is taking place. This can occur once a
transfer is complete or while an enabled master is waiting for an
idle bus.

TWI_FIFO_CTL Register
The TWI FIFO (TWI_FIFO_CTL) control register control bits affect only
the FIFO and are not tied in any way with master or slave mode
operation.

ADSP-BF537 Blackfin Processor Hardware Reference 11-41

Two-Wire Interface Controller

Additional information for the TWI_FIFO_CTL register bits includes:

• Receive buffer interrupt length (RCVINTLEN)

This bit determines the rate at which receive buffer interrupts are
to be generated. Interrupts may be generated with each byte
received or after two bytes are received.

[1] An interrupt (RCVSERV) is set when the RCVSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are full
(11).

[0] An interrupt (RCVSERV) is set when RCVSTAT indicates one or
two bytes in the FIFO are full (01 or 11).

Figure 11-22. TWI FIFO Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Control Register (TWI_FIFO_CTL)

XMTFLUSH (Transmit Buffer
Flush)

Reset = 0x0000

RCVFLUSH (Receive Buffer
Flush)

RCVINTLEN (Receive Buffer
Interrupt Length)

XMTINTLEN (Transmit Buffer
Interrupt Length)

0xFFC0 1428

0 - An interrupt (RCVSERV) is set when RCVSTAT
indicates one or two bytes in the FIFO are full (01 or
11)
1 - An interrupt (RCVSERV) is set when the RCV-
STAT field in the TWI_FIFO_STAT register indicates
two bytes in the FIFO are full (11)

0 - An interrupt (XMTSERV) is set when XMTSTAT
indicates one or two bytes in the FIFO are empty (01
or 00)
1 - An interrupt (XMTSERV) is set when the
XMTSTAT field in the TWI_FIFO_STAT register indi-
cates two bytes in the FIFO are empty (00)

0 - Normal operation of the
transmit buffer and its status bits
1 - Flush the contents of the
transmit buffer and update the
XMTSTAT status bit to indicate
the buffer is empty. This state is
held until this bit is cleared. Dur-
ing an active transmit, the
transmit buffer in this state
responds as if the transmit buf-
fer is empty.

0 - Normal operation of the
receive buffer and its status bits
1 - Flush the contents of the
receive buffer and update the
RCVSTAT status bit to indicate
the buffer is empty. This state is
held until this bit is cleared. Dur-
ing an active receive, the
receive buffer in this state
responds to the receive logic as
if it is full.

TWI Register Descriptions

11-42 ADSP-BF537 Blackfin Processor Hardware Reference

• Transmit buffer interrupt length (XMTINTLEN)

This bit determines the rate at which transmit buffer interrupts are
to be generated. Interrupts may be generated with each byte trans-
mitted or after two bytes are transmitted.

[1] An interrupt (XMTSERV) is set when the XMTSTAT field in the
TWI_FIFO_STAT register indicates two bytes in the FIFO are
empty (00).

[0] An interrupt (XMTSERV) is set when XMTSTAT indicates one or
two bytes in the FIFO are empty (01 or 00).

• Receive buffer flush (RCVFLUSH)

[1] Flush the contents of the receive buffer and update the RCVSTAT
status bit to indicate the buffer is empty. This state is held until
this bit is cleared. During an active receive the receive buffer in this
state responds to the receive logic as if it is full.

[0] Normal operation of the receive buffer and its status bits.

• Transmit buffer flush (XMTFLUSH)

[1] Flush the contents of the transmit buffer and update the
XMTSTAT status bit to indicate the buffer is empty. This state is held
until this bit is cleared. During an active transmit the transmit buf-
fer in this state responds as if the transmit buffer is empty.

[0] Normal operation of the transmit buffer and its status bits.

ADSP-BF537 Blackfin Processor Hardware Reference 11-43

Two-Wire Interface Controller

TWI_FIFO_STAT Register

The fields in the TWI FIFO status register (TWI_FIFO_STAT) indicate the
state of the FIFO buffers’ receive and transmit contents. The FIFO buffers
do not discriminate between master data and slave data. By using the
status and control bits provided, the FIFO can be managed to allow
simultaneous master and slave operation.

• Receive FIFO status (RCVSTAT[1:0])

The RCVSTAT field is read only. It indicates the number of valid data
bytes in the receive FIFO buffer. The status is updated with each
FIFO buffer read using the peripheral data bus or write access by
the receive shift register. Simultaneous accesses are allowed.

[11] The FIFO is full and contains two bytes of data. Either a sin-
gle or double byte peripheral read of the FIFO is allowed.

[10] Reserved

Figure 11-23. TWI FIFO Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Status Register (TWI_FIFO_STAT)
All bits are RO.

XMTSTAT[1:0] (Transmit
FIFO Status)

Reset = 0x0000

RCVSTAT[1:0] (Receive FIFO Status)

0xFFC0 142C

00 - The FIFO is empty
01 - The FIFO contains one byte of data. A single
byte peripheral read of the FIFO is allowed.
10 - Reserved
11 - The FIFO is full and contains two bytes of
data. Either a single or double byte peripheral
read of the FIFO is allowed.

00 - The FIFO is empty. Either a single
or double byte peripheral write of the
FIFO is allowed.
01 - The FIFO contains one byte of
data. A single byte peripheral write of
the FIFO is allowed.
10 - Reserved
11 - The FIFO is full and contains two
bytes of data.

TWI Register Descriptions

11-44 ADSP-BF537 Blackfin Processor Hardware Reference

[01] The FIFO contains one byte of data. A single byte peripheral
read of the FIFO is allowed.

[00] The FIFO is empty.

• Transmit FIFO status (XMTSTAT[1:0])

The XMTSTAT field is read only. It indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO
buffer write using the peripheral data bus or read access by the
transmit shift register. Simultaneous accesses are allowed.

[11] The FIFO is full and contains two bytes of data.

[10] Reserved

[01] The FIFO contains one byte of data. A single byte peripheral
write of the FIFO is allowed.

[00] The FIFO is empty. Either a single or double byte peripheral
write of the FIFO is allowed.

ADSP-BF537 Blackfin Processor Hardware Reference 11-45

Two-Wire Interface Controller

TWI_INT_STAT Register

Figure 11-24. TWI Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI Interrupt Status Register (TWI_INT_STAT)

SINIT (Slave Transfer
Initiated)

Reset = 0x0000

SCOMP (Slave Transfer
Complete)

SERR (Slave Transfer Error)

SOVF (Slave Overflow)

RCVSERV (Receive FIFO Service)

XMTSERV (Transmit FIFO Service)

0xFFC0 1420

MERR (Master Transfer Error)

MCOMP (Master Transfer Complete)

(Write-1-to-Clear)
0 - No errors detected
1 - FIFO does not require servic-
ing or the RCVSTAT field has not
changed since this bit was last
cleared

(Write-1-to-Clear)
0 - FIFO does not require servic-
ing or XMTSTAT field has not
changed since this bit was last
cleared
1 - Transmit FIFO buffer has one
or two 8-bit locations available to
be written

(Write-1-to-Clear)
0 - No errors detected
1 - Master error has occurred;
conditions surrounding the error
are indicated by
TWI_MASTER_STAT

(Write-1-to-Clear)
0 - Completion of transfer not
detected
1 - Initiated master transfer has
completed; in the absence of a
repeat start, the bus has been
released

(Write-1-to-Clear)
0 - Transfer not in progress; an
address match has not occurred
since the last time this bit was
cleared
1 - Slave has detected an
address match and transfer has
been initiated

(Write-1-to-Clear)
0 - Completion of transfer not
detected
1 - Transfer is complete and
either a stop or a restart was
detected

(Write-1-to-Clear)
0 - No errors detected
1 - Slave error occurred; restart
or stop condition occurred during
the data receive phase of a
transfer

(Write-1-to-Clear)
0 - No overflow detected
1 - Slave error occurred; restart
or stop condition occurred during
the data receive phase of a
transfer

TWI Register Descriptions

11-46 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_XMT_DATA8 Register
The TWI interrupt status register (TWI_INT_STAT) contains information
about functional areas requiring servicing. Many of the bits serve as an
indicator to further read and service various status registers. After servicing
the interrupt source associated with a bit, the user must clear that inter-
rupt source bit by writing a 1 to it.

• Receive FIFO service (RCVSERV)

If RCVINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the RCVSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 11. If RCVINTLEN is 1, this bit is set each time RCVSTAT
is updated to 11.

[0] The receive FIFO does not require servicing or the RCVSTAT
field has not changed since this bit was last cleared.

[1] The receive FIFO has one or two 8-bit locations available to be
read.

• Transmit FIFO service (XMTSERV)

If XMTINTLEN in the TWI_FIFO_CTL register is 0, this bit is set each
time the XMTSTAT field in the TWI_FIFO_STAT register is updated to
either 01 or 00. If XMTINTLEN is 1, this bit is set each time XMTSTAT
is updated to 00.

[1] The transmit FIFO buffer has one or two 8-bit locations avail-
able to be written.

[0] FIFO does not require servicing or XMTSTAT field has not
changed since this bit was last cleared.

ADSP-BF537 Blackfin Processor Hardware Reference 11-47

Two-Wire Interface Controller

• Master transfer error (MERR)

[1] A master error has occurred. The conditions surrounding the
error are indicated by the master status register (TWI_MASTER_STAT).

[0] No errors have been detected.

• Master transfer complete (MCOMP)

[1] The initiated master transfer has completed. In the absence of a
repeat start, the bus has been released.

[0] The completion of a transfer has not been detected.

• Slave overflow (SOVF)

[1] The slave transfer complete (SCOMP) bit was set at the time a
subsequent transfer has acknowledged an address phase. The trans-
fer continues, however, it may be difficult to delineate data of one
transfer from another.

[0] No overflow has been detected.

• Slave transfer error (SERR)

[1] A slave error has occurred. A restart or stop condition has
occurred during the data receive phase of a transfer.

[0] No errors have been detected.

• Slave transfer complete (SCOMP)

[1] The transfer is complete and either a stop, or a restart was
detected.

[0] The completion of a transfer has not been detected.

TWI Register Descriptions

11-48 ADSP-BF537 Blackfin Processor Hardware Reference

• Slave transfer initiated (SINIT)

[1] The slave has detected an address match and a transfer has been
initiated.

[0] A transfer is not in progress. An address match has not occurred
since the last time this bit was cleared.

The TWI FIFO transmit data single byte register (TWI_XMT_DATA8) holds
an 8-bit data value written into the FIFO buffer. Transmit data is entered
into the corresponding transmit buffer in a first-in first-out order.
Although peripheral bus writes are 16 bits, a write access to
TWI_XMT_DATA8 adds only one transmit data byte to the FIFO buffer. With
each access, the transmit status (XMTSTAT) field in the TWI_FIFO_STAT
register is updated. If an access is performed while the FIFO buffer is full,
the write is ignored and the existing FIFO buffer data and its status
remains unchanged.

Figure 11-25. TWI FIFO Transmit Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Single Byte Register (TWI_XMT_DATA8)
All bits are WO. This register always reads as 0x0000.

XMTDATA8[7:0] (Transmit
FIFO 8-Bit Data)

Reset = 0x00000xFFC0 1480

ADSP-BF537 Blackfin Processor Hardware Reference 11-49

Two-Wire Interface Controller

TWI_XMT_DATA16 Register
The TWI_FIFO transmit data double byte register (TWI_XMT_DATA16) holds a
16-bit data value written into the FIFO buffer. To reduce interrupt out-
put rates and peripheral bus access times, a double byte transfer data access
can be performed. Two data bytes can be written, effectively filling the
transmit FIFO buffer with a single access.

The data is written in little endian byte order as shown in Figure 11-26
where byte 0 is the first byte to be transferred and byte 1 is the second byte
to be transferred. With each access, the transmit status (XMTSTAT) field in
the TWI_FIFO_STAT register is updated. If an access is performed while the
FIFO buffer is not empty, the write is ignored and the existing FIFO buf-
fer data and its status remains unchanged.

Figure 11-26. Little Endian Byte Order

Figure 11-27. TWI FIFO Transmit Data Double Byte Register

B1

TRANSMIT DATA REGISTER

B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Transmit Data Double Byte Register (TWI_XMT_DATA16)
All bits are WO. This register always reads as 0x0000.

XMTDATA16[15:0] (Transmit
FIFO 16-Bit Data)

Reset = 0x00000xFFC0 1484

TWI Register Descriptions

11-50 ADSP-BF537 Blackfin Processor Hardware Reference

TWI_RCV_DATA8 Register
The TWI FIFO receive data single byte register (TWI_RCV_DATA8) holds an
8-bit data value read from the FIFO buffer. Receive data is read from the
corresponding receive buffer in a first-in first-out order. Although periph-
eral bus reads are 16 bits, a read access to TWI_RCV_DATA8 will access only
one transmit data byte from the FIFO buffer. With each access, the
receive status (RCVSTAT) field in the TWI_FIFO_STAT register is
updated. If an access is performed while the FIFO buffer is empty, the
data is unknown and the FIFO buffer status remains indicating it is
empty.

TWI_RCV_DATA16 Register
The TWI FIFO receive data double byte register (TWI_RCV_DATA16) holds
a 16-bit data value read from the FIFO buffer. To reduce interrupt output
rates and peripheral bus access times, a double byte receive data access can
be performed. Two data bytes can be read, effectively emptying the receive
FIFO buffer with a single access.

The data is read in little endian byte order as shown in Figure 11-29
where byte 0 is the first byte received and byte 1 is the second byte
received. With each access, the receive status (RCVSTAT) field in the
TWI_FIFO_STAT register is updated to indicate it is empty. If an access
is performed while the FIFO buffer is not full, the read data is unknown
and the existing FIFO buffer data and its status remains unchanged.

Figure 11-28. TWI FIFO Receive Data Single Byte Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Single Byte Register (TWI_RCV_DATA8)
All bits are RO.

RCVDATA8[7:0] (Receive
FIFO 8-Bit Data)

Reset = 0x00000xFFC0 1488

ADSP-BF537 Blackfin Processor Hardware Reference 11-51

Two-Wire Interface Controller

Programming Examples
The following sections include programming examples for general setup,
slave mode, and master mode, as well as guidance for repeated start
conditions.

Figure 11-29. Little Endian Byte Order

Figure 11-30. TWI FIFO Receive Data Double Byte Register

RECEIVE DATA REGISTER

B1 B0

TRANSMISSION LINE

B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TWI FIFO Receive Data Double Byte Register (TWI_RCV_DATA16)
All bits are WO.

RCVDATA16[15:0] (Receive
FIFO 16-Bit Data)

Reset = 0x00000xFFC0 148C

Programming Examples

11-52 ADSP-BF537 Blackfin Processor Hardware Reference

Master Mode Setup
Listing 11-1 shows how to initiate polled receive and transmit transfers in
master mode.

Listing 11-1. Master Mode Receive/Transmit Transfer

/***

 macro for the Count field of the TWI_MASTER_CTL register

 x can be any value between 0 and 0xFE (254). a value of

 0xFF disables the counter

***/

#define TWICount(x) (DCNT & ((x) << 6))

.section L1_data_b;

.byte TX_file[file_size] = "DATA.hex";

.BYTE RX_CHECK[file_size];

.byte rcvFirstWord[2];

.SECTION program;

_main:

/***

TWI Master Initialization subroutine

***/

TWI_INIT:

/***

Enable the TWI controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

P1 points to the base of the system MMRs

***/

ADSP-BF537 Blackfin Processor Hardware Reference 11-53

Two-Wire Interface Controller

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Set CLKDIV:

For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns)

and an internal time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, then CLKLOW = 17 (0x11) and

CLKHI = 8.

***/

R5 = CLKHI(0x8) | CLKLOW(0x11) (z);

W[P1 + LO(TWI_CLKDIV)] = R5;

/***

enable these signals to generate a TWI interrupt: optional

***/

R1 = RCVSERV | XMTSERV | MERR | MCOMP (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

The address needs to be shifted one place to the right

e.g., 1010 001x becomes 0101 0001 (0x51) the TWI controller

will actually send out 1010 001x where x is either a 0 for

writes or 1 for reads

***/

R6 = 0xBF;

R6 = R6 >> 1;

TWI_INIT.END: W[P1 + LO(TWI_MASTER_ADDR)] = R6;

/******************** END OF TWI INIT **********************/

/***

Starting the Read transfer

Programming Examples

11-54 ADSP-BF537 Blackfin Processor Hardware Reference

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or SLOW

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. This will kick off the master transfer

***/

R1 = TWICount(0x2) | FAST | MDIR | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

ssync;

/***

Poll the FIFO Status register to know when

2 bytes have been shifted into the RX FIFO

***/

Rx_stat:

R1 = W[P1 + LO(TWI_FIFO_STAT)](Z);

R0 = 0xC;

R1 = R1 & R0;

CC = R1 == R0;

IF !cc jump Rx_stat;

R0 = W[P1 + LO(TWI_RCV_DATA16)](Z); /* Read data from the RX

fifo */
ssync;

/***

check that master transfer has completed

MCOMP will be set when Count reaches zero

***/

M_COMP:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if !CC jump M_COMP;

ADSP-BF537 Blackfin Processor Hardware Reference 11-55

Two-Wire Interface Controller

M_COMP.END: W[P1 + LO(TWI_INT_STAT)] = R1;

/* load the pointer with the address of the transmit buffer */

P2.H = TX_file;

P2.L = TX_file;

/***

Pre-load the tx FIFO with the first two bytes: this is

necessary to avoid the generation of the Buffer Read Error

(BUFRDERR) which occurs whenever a transmit transfer is

initiated while the transmit buffer is empty

***/

R3 = W[P2++](Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

Initiating the Write operation

Program the Master Control register with:

1. the number of bytes to transfer: TWICount(x)

2. Repeated Start (RESTART): optional

3. speed mode: FAST or Standard

4. direction of transfer:

MDIR = 1 for reads, MDIR = 0 for writes

5. Master Enable MEN. Setting this bit will kick off the transfer

***/

R1 = TWICount(0xFE) | FAST | MEN;

W[P1 + LO(TWI_MASTER_CTL)] = R1;

SSYNC;

/***

loop to write data to a TWI slave device P3 times

***/

P3 = length(TX_file);

Programming Examples

11-56 ADSP-BF537 Blackfin Processor Hardware Reference

LSETUP (Loop_Start, Loop_End) LC0 = P3;

Loop_Start:

/***

check that there's at least one byte location empty in

the tx fifo

***/

XMTSERV_Status:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(XMTSERV)); /* test XMTSERV bit */

if !CC jump XMTSERV_Status;

W[P1 + LO(TWI_INT_STAT)] = R1; /* clear status */

SSYNC;

/***

write byte into the transmit FIFO

***/

R3 = B[P2++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R3;

Loop_End: SSYNC;

/* check that master transfer has completed */

M_COMP:

R1 = W[P1 + LO(TWI_INT_STAT)](z);

CC = BITTST (R1, bitpos(MCOMP));

if !CC jump M_COMP;

M_COMP.END:W[P1 + LO(TWI_INT_STAT)] = R1;

idle;

_main.end:

ADSP-BF537 Blackfin Processor Hardware Reference 11-57

Two-Wire Interface Controller

Slave Mode Setup
Listing 11-2 shows how to configure the slave for interrupt based trans-
fers. The interrupts are serviced in the subroutine _TWI_ISR shown in
Listing 11-3.

Listing 11-2. Slave Mode Setup

#include <defBF537.h>

#include "startup.h"

#define file_size 254

#define SYSMMR_BASE 0xFFC00000

#define COREMMR_BASE 0xFFE00000

.GLOBAL _main;

.EXTERN _TWI_ISR;

.section L1_data_b;

.BYTE TWI_RX[file_size];

.BYTE TWI_TX[file_size] = "transmit.dat";

.section L1_code;

_main:

/***

TWI Slave Initialization subroutine

***/

TWI_SLAVE_INIT:

/***

Enable the TWI controller and set the Prescale value

Prescale = 10 (0xA) for an SCLK = 100 MHz (CLKIN = 50MHz)

Prescale = SCLK / 10 MHz

Programming Examples

11-58 ADSP-BF537 Blackfin Processor Hardware Reference

P1 points to the base of the system MMRs

P0 points to the base of the core MMRs

***/

R1 = TWI_ENA | 0xA (z);

W[P1 + LO(TWI_CONTROL)] = R1;

/***

Slave address

program the address to which this slave will respond to.

this is an arbitrary 7-bit value

***/

R1 = 0x5F;

W[P1 + LO(TWI_SLAVE_ADDR)] = R1;

/***

Pre-load the TX FIFO with the first two bytes to be

transmitted in the event the slave is addressed and a transmit

is required

***/

R3=0xB537(Z);

W[P1 + LO(TWI_XMT_DATA16)] = R3;

/***

FIFO Control determines whether an interrupt is generated

for every byte transferred or for every two bytes.

A value of zero which is the default, allows for single byte

events to generate interrupts

***/

R1 = 0;

 W[P1 + LO(TWI_FIFO_CTL)] = R1;

ADSP-BF537 Blackfin Processor Hardware Reference 11-59

Two-Wire Interface Controller

/***

enable these signals to generate a TWI interrupt

***/

R1 = RCVSERV | XMTSERV | SOVF | SERR | SCOMP | SINIT (z);

W[P1 + LO(TWI_INT_MASK)] = R1;

/***

Enable the TWI Slave

Program the Slave Control register with:

1. Slave transmit data valid (STDVAL) set so that the contents of

the TX FIFO can be used by this slave when a master requests data

from it.

2. Slave Enable SEN to enable Slave functionality

***/

R1 = STDVAL | SEN;

W[P1 + LO(TWI_SLAVE_CTL)] = R1;

TWI_SLAVE_INIT.END:

P2.H = HI(TWI_RX);

P2.L = LO(TWI_RX);

P4.H = HI(TWI_TX);

P4.L = LO(TWI_TX);

/***

Remap the vector table pointer from the default __I10HANDLER

to the new _TWI_ISR interrupt service routine

***/

R1.H = HI(_TWI_ISR);

R1.L = LO(_TWI_ISR);

[P0 + LO(EVT10)] = R1; /* note that P0 points to the base of

the core MMR registers */

/***

ENABLE TWI generate to interrupts at the system level

Programming Examples

11-60 ADSP-BF537 Blackfin Processor Hardware Reference

***/

R1 = [P1 + LO(SIC_IMASK)];

BITSET(R1,BITPOS(IRQ_TWI));

[P1 + LO(SIC_IMASK)] = R1;

/***

ENABLE TWI to generate interrupts at the core level

***/

R1 = [P0 + LO(IMASK)];

BITSET(R1,BITPOS(EVT_IVG10));

[P0 + LO(IMASK)] = R1;

/***

 wait for interrupts

***/

idle;

_main.END:

Listing 11-3. TWI Slave Interrupt Service Routine

/***

Function: _ TWI_ISR

Description: This ISR is executed when the TWI controller

detects a slave initiated transfer. After an interrupt is ser-

viced, its corresponding bit is cleared in the TWI_INT_STAT

register. This done by writing a 1 to the particular bit posi-

tion. All bits are write 1 to clear.

***/

#include <defBF537.h>

.GLOBAL _TWI_ISR;

.section L1_code;

ADSP-BF537 Blackfin Processor Hardware Reference 11-61

Two-Wire Interface Controller

_TWI_ISR:

/***

read the source of the interrupt

***/

R1 = W[P1 + LO(TWI_INT_STAT)](z);

/***

Slave Transfer Initiated

***/

CC = BITTST(R1, BITPOS(SINIT));

if !CC JUMP RECEIVE;

R0 = SINIT (Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/***

Receive service

***/

RECEIVE:

CC = BITTST(R1, BITPOS(RCVSERV));

if !CC JUMP TRANSMIT;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

R0 = RCVSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /*clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

Transmit service

***/

TRANSMIT:

CC = BITTST(R1, BITPOS(XMTSERV));

Programming Examples

11-62 ADSP-BF537 Blackfin Processor Hardware Reference

if !CC JUMP SlaveError;

R0 = B[P4++](Z);

W[P1 + LO(TWI_XMT_DATA8)] = R0;

R0 = XMTSERV(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

slave transfer error

***/

SlaveError:

CC = BITTST(R1, BITPOS(SERR));

if !CC SlaveOverflow;

R0 = SERR(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

slave overflow

***/

SlaveOverflow:

CC = BITTST(R1, BITPOS(SOVF));

if !CC JUMP SlaveTransferComplete;

R0 = SOVF(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

JUMP _TWI_ISR.END; /* exit */

/***

 slave transfer complete

***/

SlaveTransferComplete:

ADSP-BF537 Blackfin Processor Hardware Reference 11-63

Two-Wire Interface Controller

CC = BITTST(R1, BITPOS(SCOMP));

if !CC JUMP _TWI_ISR.END;

R0 = SCOMP(Z);

W[P1 + LO(TWI_INT_STAT)] = R0; /* clear interrupt source bit */

ssync;

/* Transfer complete read receive FIFO buffer and set/clear sema-

phores etc... */

R0 = W[P1 + LO(TWI_FIFO_STAT)](z);

CC = BITTST(R0,BITPOS(RCV_HALF)); /* BIT 2 indicates whether

there's a byte in the FIFO or not */

if !CC JUMP _TWI_ISR.END;

R0 = W[P1 + LO(TWI_RCV_DATA8)] (Z); /* read data */

B[P2++] = R0 ; /* store bytes into a buffer pointed to by P2 */

_TWI_ISR.END:RTI;

Electrical Specifications
All logic complies with the Electrical Specification outlined in the Philips

I2C Bus Specification version 2.1 dated January 2000.

Electrical Specifications

11-64 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 12-1

12 SPORT CONTROLLERS

This chapter describes the synchronous Serial Peripheral Port (SPORT).
Following an overview and a list of key features is a description of opera-
tion and functional modes of operation. The chapter concludes with a
programming model, consolidated register definitions, and programming
examples.

This chapter contains:

• “Overview” on page 12-2

• “Interface Overview” on page 12-4

• “Description of Operation” on page 12-11

• “Functional Description” on page 12-28

• “SPORT Registers” on page 12-47

• “Programming Examples” on page 12-72

Overview

12-2 ADSP-BF537 Blackfin Processor Hardware Reference

Overview
The ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors feature
two identical synchronous serial ports, called SPORTs. Unlike the SPI
interface which has been designed for SPI-compatible communication
only, the SPORT modules support a variety of serial data communication
protocols, for example:

• A-law or µ-law companding according to G.711 specification

• Multichannel or Time-Division-Multiplexed (TDM) modes

• Stereo Audio I2S Mode

• H.100 Telephony standard support

In addition to these standard protocols, the SPORT modules provide
straight-forward modes to connect to standard peripheral devices, such as
ADCs or codecs, without external glue logic. With support for high data
rates, independent transmit and receive channels, and dual data paths, the
SPORT interface is a perfect choice for direct serial interconnection
between two or more processors in a multiprocessor system. Many proces-
sors provide compatible interfaces, including DSPs from Analog Devices
and other manufacturers.

Both SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

Features
The SPORTs can operate at up to 1/2 the system clock (SCLK) rate for an
internally generated or external serial clock. The SPORT external clock
must always be less than the SCLK frequency. Independent transmit and
receive clocks provide greater flexibility for serial communications.

ADSP-BF537 Blackfin Processor Hardware Reference 12-3

SPORT Controllers

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from 3 to 32 bits in length, either MSB
first or LSB first.

• Provides alternate framing and control for interfacing to I2S serial
devices, as well as other audio formats (for example, left-justified
stereo serial data).

• Has FIFO plus double buffered data (both receive and transmit
functions have a data buffer register and a shift register), providing
additional time to service the SPORT.

• Provides two synchronous transmit and two synchronous receive
data signals and buffers in each SPORT to double the total sup-
ported datastreams.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 12-31 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

• Performs interrupt-driven, single word transfers to and from
on-chip memory under processor control.

Interface Overview

12-4 ADSP-BF537 Blackfin Processor Hardware Reference

• Provides direct memory access transfer to and from memory under
DMA master control. DMA can be autobuffer-based (a repeated,
identical range of transfers) or descriptor-based (individual or
repeated ranges of transfers with differing DMA parameters).

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from a time-division-multi-
plexed serial bitstream on 128 contiguous channels from a stream
of up to 1024 total channels. This mode can be useful as a network
communication scheme for multiple processors. The 128 channels
available to the processor can be selected to start at any channel
location from 0 to 895 = (1023 – 128). Note the multichannel
select registers and the WSIZE register control which subset of the
128 channels within the active region can be accessed.

Interface Overview
SPORT0 and SPORT1 provide an I/O interface to a wide variety of
peripheral serial devices. SPORT0 is accessible via port J and SPORT1 is
accessible via port G. For more information on the port configuration, see
Chapter 14, “General-Purpose Ports”. SPORTs provide synchronous
serial data transfer only. Each SPORT has one group of signals (primary
data, secondary data, clock, and frame sync) for transmit and a second set
of signals for receive. The receive and transmit functions are programmed
separately. Each SPORT is a full duplex device, capable of simultaneous
data transfer in both directions. The SPORTs can be programmed for bit
rate, frame sync, and number of bits per word by writing to mem-
ory-mapped registers.

 In this text, the naming conventions for registers and signals use a
lower case x to represent a digit. In this chapter, for example, the
name RFSx signals indicates RFS0 and RFS1 (corresponding to
SPORT0 and SPORT1, respectively). In this chapter, LSB refers to
least significant bit, and MSB refers to most significant bit.

ADSP-BF537 Blackfin Processor Hardware Reference 12-5

SPORT Controllers

Port J contains the SPORT0 pins. Some of the SPORT0 pins are multi-
plexed and can be used for other purposes if the entire SPORT0 block or
some of its signals are not required by an application. However, all pins
default to the SPORT0 module settings after reset.

The secondary data pins of SPORT0 are multiplexed with the CAN inter-
face. Unless the PJCE bit in the PORT_MUX register is set, the CAN signals
are disabled and the secondary data signals control the associated pins, by
default. Similarly, the PJSE bit can disconnect some of the transmit signals
and redirect the respective pins to the SPI module. The remaining
SPORT0 signals aren’t multiplexed. Nevertheless, they can be sensed by
the timer module as alternative clock modules, regardless of whether
SPORT0 is enabled or not. See Figure 14-4 on page 14-8 for details.

SPORT1 resides in port G. Its signals are mainly shared with upper PPI
data lines. By default, all port G pins are configured in GPIO mode. Writ-
ing a 1 to bits 8–15 of the PORTG_FER register enables either PPI or
SPORT1 signals on the respective pins. If the PGSE, PGRE, and PGTE bits in
the PORT_MUX register are also set, the full SPORT1 functionality is
enabled, while the PPI can still operate in 8-bit mode. See Figure 14-2 on
page 14-6 for details.

If the secondary data signals of SPORT1 are not used, 10-bit PPI opera-
tion is enabled by keeping the PGSE bit cleared. The SPORT1 transmit
channel remains fully functional, even when the PPI operates up to 13-bit
mode and the PGRE bit is cleared. Regardless of the multiplexing scheme
used, any pin that is not required by SPORT1 or by the PPI in a specific
application can function as GPIO by keeping that bit in the PORTG_FER
register cleared.

Figure 12-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s SPORTx_TX register via the peripheral bus. This data is optionally
compressed by the hardware and automatically transferred to the TX shift
register. The bits in the shift register are shifted out on the SPORT’s DTx-
PRI/DTxSEC pin, MSB first or LSB first, synchronous to the serial clock on
the TSCLKx pin. The receive portion of the SPORT accepts data from the

Interface Overview

12-6 ADSP-BF537 Blackfin Processor Hardware Reference

DRxPRI/DRxSEC pin synchronous to the serial clock on the RSCLKx pin.
When an entire word is received, the data is optionally expanded, then
automatically transferred to the SPORT’s SPORTx_RX register, and then
into the RX FIFO where it is available to the processor. Table 12-1 shows
the signals for each SPORT.

Blackfin SPORTs are designed such that I2S master mode, LRCLK, is held
at the last driven logic level and does not transition, to provide an edge,
after the final data word is driven out. Therefore, while transmitting a

fixed number of words to an I2S receiver that expects an LRCLK edge to
receive the incoming data word, the SPORT should send a dummy word
after transmitting the fixed number of words. The transmission of this
dummy word toggles LRCLK, generating an edge. Transmission of the

dummy word is not required when the I2S receiver is a Blackfin SPORT.

A SPORT receives serial data on its DRxPRI and DRxSEC inputs and trans-
mits serial data on its DTxPRI and DTxSEC outputs. It can receive and
transmit simultaneously for full-duplex operation. For transmit, the data

Table 12-1. SPORTx Signals

Pin1

1 A lowercase x within a signal name represents a possible value of 0 or 1 (corresponding to
SPORT0 or SPORT1).

Description

DTxPRI Transmit Data Primary

DTxSEC Transmit Data Secondary

TSCLKx Transmit Clock

TFSx Transmit Frame Sync

DRxPRI Receive Data Primary

DRxSEC Receive Data Secondary

RSCLKx Receive Clock

RFSx Receive Frame Sync

ADSP-BF537 Blackfin Processor Hardware Reference 12-7

SPORT Controllers

bits (DTxPRI and DTxSEC) are synchronous to the transmit clock (TSCLKx).
For receive, the data bits (DRxPRI and DRxSEC) are synchronous to the
receive clock (RSCLKx). The serial clock is an output if the processor
generates it, or an input if the clock is externally generated. Frame syn-
chronization signals RFSx and TFSx are used to indicate the start of a serial
data word or stream of serial words.

Figure 12-1. SPORT Block Diagram1,2,3

1 All wide arrow data paths are 16 or 32 bits wide, depending on SLEN. For SLEN = 2 to 15, a 16-bit
data path with 8-deep FIFO is used. For SLEN = 16 to 31, a 32-bit data path with 4-deep FIFO is
used.

2 Tx register is the bottom of the Tx FIFO, Rx register is the top of the Rx FIFO.
3 In multichannel mode, the TFS pin acts as Transmit Data Valid (TDV). For more information, see

“Multichannel Operation” on page 12-16.

COMPANDING
HARDWARE

COMPANDING
HARDWARE

TFS (TDV)

Rx FIFO
4 x 32 OR 8 x 16

TSCLK RSCLK RFS

PAB

DAB

Tx FIFO
4 x 32 OR 8 x 16

SERIAL
CONTROL

DT SECDT PRI DR SECDR PRI

Tx REGISTER Rx REGISTER

Tx PRI
SHIFT REG

Tx SEC
SHIFT REG

Tx PRI
HOLD REG

Tx SEC
HOLD REG

Rx PRI
HOLD REG

Rx SEC
HOLD REG

Rx PRI
SHIFT REG

Rx SEC
SHIFT REG

INTERNAL
CLOCK

GENERATOR

Interface Overview

12-8 ADSP-BF537 Blackfin Processor Hardware Reference

The primary and secondary data pins, if enabled by the port configura-
tion, provide a method to increase the data throughput of the serial port.
They do not behave as totally separate SPORTs; rather, they operate in a
synchronous manner (sharing clock and frame sync) but on separate data.
The data received on the primary and secondary signals is interleaved in
main memory and can be retrieved by setting a stride in the Data Address
Generators (DAG) unit. For more information about DAGs, see the
“Data Address Generators” chapter in Blackfin Processor Programming Ref-
erence. Similarly, for TX, data should be written to the TX register in an
alternating manner—first primary, then secondary, then primary, then
secondary, and so on. This is easily accomplished with the processor’s
powerful DAGs.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 12-2 shows a possible port connection for the SPORTs. Note serial
devices A and B must be synchronous, as they share common frame syncs
and clocks. The same is true for serial devices 1, 2, and N.

Figure 12-3 shows an example of a stereo serial device with three transmit
and two receive channels connected to the processor.

ADSP-BF537 Blackfin Processor Hardware Reference 12-9

SPORT Controllers

Figure 12-2. SPORT Connections (SPORT0 is Standard Mode, SPORT1

is Multichannel Mode)1, 2

1 In multichannel mode, TFS1 functions as a transmit data valid (TDV1) output. See “Multichannel
Operation” on page 12-16 for details.

2 Although shown as an external connector, the TSCLK1/RSCLK1 connection is internal in multi-
channel mode. See “Multichannel Operation” on page 12-16 for details.

RSCLK0

TSCLK0

TFS0

RFS0

SPORT0

DT0SEC

DR0SEC

DR0PRI

DT0PRI

TFS1 (TDV1)

TSCLK1

RSCLK1

RFS1

DT1SEC
DR1SEC

DR1PRI
DT1PRI

BLACKFIN

SPORT1

SERIAL
DEVICE 1

SERIAL
DEVICE B

(SECONDARY)

SERIAL
DEVICE A

(PRIMARY)

PJ4
PJ5

PJ8

PJ11

PJ7

PJ6

PJ10

PJ9

PORT J

PG8
PG9
PG12
PG15

PG11

PG14

PG10

PG13

PORT G

SERIAL
DEVICE 2

SERIAL
DEVICE N

Interface Overview

12-10 ADSP-BF537 Blackfin Processor Hardware Reference

SPORT Pin/Line Terminations
The processor has very fast drivers on all output pins, including the
SPORTs. If connections on the data, clock, or frame sync lines are longer
than six inches, consider using a series termination for strip lines on
point-to-point connections. This may be necessary even when using low
speed serial clocks, because of the edge rates.

Figure 12-3. Stereo Serial Connection

DBCLK
DLRCLK

DSDATA1

ALRCLK

ABCLK

DSDATA3
DSDATA2

ASDATA1

ASDATA2

AD1836
STEREO SERIAL

DEVICE BLACKFIN

RSCLK0

TSCLK0

TFS0

RFS0

PORT J

DT0SEC

PJ4

DR0PRI

DT0PRI

RSCLK1

TSCLK1

TFS1

RFS1

PORT G

DT1SEC

PG15

DR1PRI

DT1PRI

SPORT1

DR1SEC

SPORT0

DR0SEC

PG14

PG13

PJ5

PJ8

PJ11

PJ7
PJ6

PJ10

PJ9

ADSP-BF537 Blackfin Processor Hardware Reference 12-11

SPORT Controllers

Description of Operation
The following sections describe the operation of the SPORT controller.

SPORT Operation
This section describes general SPORT operation, illustrating the most
common use of a SPORT. Since the SPORT functionality is configurable,
this description represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFS signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred through the FIFO to the internal transmit shift register. The
bits are then sent, beginning with either the MSB or the LSB as specified
in the SPORTx_TCR1 register. Each bit is shifted out on the driving edge of
TSCLKx. The driving edge of TSCLKx can be configured to be rising or fall-
ing. The SPORT generates the transmit interrupt or requests a DMA
transfer as long as there is space in the TX FIFO.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORT
FIFO register and the receive interrupt for that SPORT is generated or a
DMA transfer is initiated. Interrupts are generated differently if DMA
block transfers are performed. For information about DMA, see
Chapter 5, “Direct Memory Access”.

SPORT Disable
The SPORTs are automatically disabled by a processor hardware or soft-
ware reset. A SPORT can also be disabled directly by clearing the
SPORT’s transmit or receive enable bits (TSPEN in the SPORTx_TCR1 regis-
ter and RSPEN in the SPORTx_RCR1 register, respectively). Each method has
a different effect on the SPORT.

Description of Operation

12-12 ADSP-BF537 Blackfin Processor Hardware Reference

A processor reset disables the SPORTs by clearing the SPORTx_TCR1,
SPORTx_TCR2, SPORTx_RCR1, and SPORTx_RCR2 registers (including the
TSPEN and RSPEN enable bits) and the SPORTx_TCLKDIV, SPORTx_RCLKDIV,
SPORTx_TFSDIVx, and SPORTx_RFSDIVx clock and frame sync divisor regis-
ters. Any ongoing operations are aborted.

Clearing the TSPEN and RSPEN enable bits disables the SPORTs and aborts
any ongoing operations. Status bits are also cleared. Configuration bits
remain unaffected and can be read by the software in order to be altered or
overwritten. To disable the SPORT output clock, set the SPORT to be
disabled.

 Note that disabling a SPORT via TSPEN/RSPEN may shorten any
currently active pulses on the TFSx/RFSx and TSCLKx/RSCLKx out-
puts, if these signals are configured to be generated internally.

When disabling the SPORT from multichannel operation, first disable
TSPEN and then disable RSPEN. Note both TSPEN and RSPEN must be dis-
abled before reenabling. Disabling only TX or RX is not allowed.

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for SPORTx_RCLKDIV,
SPORTx_TCLKDIV, and multichannel mode channel select registers). To
change values in all other SPORT configuration registers, disable the
SPORT by clearing TSPEN in SPORTx_TCR1 and/or RSPEN in SPORTx_RCR1.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the “SPORT Registers” section. All con-
trol and status bits in the SPORT registers are active high unless otherwise
noted.

ADSP-BF537 Blackfin Processor Hardware Reference 12-13

SPORT Controllers

Stereo Serial Operation
Several stereo serial modes can be supported by the SPORT, including the

popular I2S format. To use these modes, set bits in the SPORT_RCR2 or
SPORT_TCR2 registers. Setting RSFSE or TSFSE in SPORT_RCR2 or SPORT_TCR2
changes the operation of the frame sync pin to a left/right clock as

required for I2S and left-justified stereo serial data. Setting this bit enables
the SPORT to generate or accept the special LRCLK-style frame sync. All
other SPORT control bits remain in effect and should be set appropri-
ately. Figure 12-4 and Figure 12-5 show timing diagrams for stereo serial
mode operation.

Table 12-2 shows several modes that can be configured using bits in
SPORTx_TCR1 and SPORTx_RCR1. The table shows bits for the receive side of
the SPORT, but corresponding bits are available for configuring the trans-
mit portion of the SPORT. A control field which may be either set or
cleared depending on the user’s needs, without changing the standard, is
indicated by an “X.”

Table 12-2. Stereo Serial Settings

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

RSFSE 1 1 0

RRFST 0 0 0

LARFS 0 1 0

LRFS 0 1 0

RFSR 1 1 1

RCKFE 1 0 0

SLEN 2 – 31 2 – 31 2 – 31

RLSBIT 0 0 0

Description of Operation

12-14 ADSP-BF537 Blackfin Processor Hardware Reference

Note most bits shown as a 0 or 1 may be changed depending on the user’s
preference, creating many other “almost standard” modes of stereo serial
operation. These modes may be of use in interfacing to codecs with
slightly non-standard interfaces. The settings shown in Table 12-2 pro-
vide glueless interfaces to many popular codecs.

Note RFSDIV or TFSDIV must still be greater than or equal to SLEN. For I2S
operation, RFSDIV or TFSDIV is usually 1/64 of the serial clock rate. With
RSFSE set, the formulas to calculate frame sync period and frequency (dis-
cussed in “Clock and Frame Sync Frequencies” on page 12-28) still apply,
but now refer to one half the period and twice the frequency. For instance,
setting RFSDIV or TFSDIV = 31 produces an LRCLK that transitions every 32
serial clock cycles and has a period of 64 serial clock cycles.

The LRFS bit determines the polarity of the RFS or TFS frame sync pin for
the channel that is considered a “right” channel. Thus, setting LRFS = 0
(meaning that it is an active high signal) indicates that the frame sync is
high for the “right” channel, thus implying that it is low for the “left”
channel.This is the default setting.

The RRFST and TRFST bits determine whether the first word received or
transmitted is a left or a right channel. If the bit is set, the first word
received or transmitted is a right channel. The default is to receive or
transmit the left channel word first.

RFSDIV
(If internal FS is selected.)

2 – Max 2 – Max 2 – Max

RXSE
(Secondary Enable is available for RX and TX.)

X X X

Table 12-2. Stereo Serial Settings (Cont’d)

Bit Field Stereo Audio Serial Scheme

I2S Left-Justified DSP Mode

ADSP-BF537 Blackfin Processor Hardware Reference 12-15

SPORT Controllers

The secondary DRxSEC and DTxSEC pins are useful extensions of the

SPORT which pair well with stereo serial mode. Multiple I2S streams of
data can be transmitted or received using a single SPORT. Note the pri-
mary and secondary pins are synchronous, as they share clock and LRCLK
(frame sync) pins. The transmit and receive sides of the SPORT need not
be synchronous, but may share a single clock in some designs. See
Figure 12-3 on page 12-10, which shows multiple stereo serial connec-
tions being made between the processor and an AD1836 codec.

Figure 12-4. SPORT Stereo Serial Modes, Transmit

TFS

TSCLKx

DTxPRI

TFS

TSCLKx

DTxPRI

TFS

TSCLKx

DTxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. TFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fS.
3. TSCLKx FREQUENCY IS NORMALLY 64 x TFS BUT MAY BE OPERATED IN BURST MODE.

Description of Operation

12-16 ADSP-BF537 Blackfin Processor Hardware Reference

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the
SPORT to communicate in a Time-Division-Multiplexed (TDM) serial
system. In multichannel communications, each data word of the serial bit-
stream occupies a separate channel. Each word belongs to the next
consecutive channel so that, for example, a 24-word block of data contains
one word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. These 128 channels can be any 128 out of the 1024

Figure 12-5. SPORT Stereo Serial Modes, Receive

RFS

RSCLKx

DRxPRI

RFS

RSCLKx

DRxPRI

RFS

RSCLKx

DRxPRI

LEFT CHANNEL
RIGHT CHANNEL

LEFT CHANNEL
RIGHT CHANNEL

MSB MSB

MSB MSB

MSB MSB

LSB LSB

LSB LSB

LSB LSB

LEFT-JUSTIFIED MODE—3 TO 32 BITS PER CHANNEL

I2S MODE—3 TO 32 BITS PER CHANNEL

DSP MODE—3 TO 32 BITS PER CHANNEL
1/fS

NOTES:
1. DSP MODE DOES NOT IDENTIFY CHANNEL.
2. RFS NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 x fs.
3. RSCLKx FREQUENCY IS NORMALLY 64 x RFS BUT MAY BE OPERATED IN BURST MODE.

ADSP-BF537 Blackfin Processor Hardware Reference 12-17

SPORT Controllers

total channels. RX and TX must use the same 128-channel region to
selectively enable channels. The SPORT can do any of the following on
each channel:

• Transmit data

• Receive data

• Transmit and receive data

• Do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DTPRI pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN = 1 in the SPORTx_TCR1 register), unless it is in multichannel mode
and an inactive time slot occurs. The DTSEC pin is always driven (not
three-stated) if the SPORT is enabled and the secondary transmit is
enabled (TXSE = 1 in the SPORTx_TCR2 register), unless the SPORT is in
multichannel mode and an inactive time slot occurs.

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT multichannel transmit select register and the SPORT
multichannel receive select register must be programmed before
enabling SPORTx_TX or SPORTx_RX operation for multichannel
mode. This is especially important in “DMA data unpacked
mode,” since SPORT FIFO operation begins immediately after
RSPEN and TSPEN are set, enabling both RX and TX. The MCMEN bit
(in SPORTx_MCMC2) must be enabled prior to enabling SPORTx_TX or
SPORTx_RX operation.

Description of Operation

12-18 ADSP-BF537 Blackfin Processor Hardware Reference

When disabling the SPORT from multichannel operation, first
disable TSPEN and then disable RSPEN. Note both TSPEN and RSPEN
must be disabled before reenabling. Disabling only TX or RX is not
allowed.

Figure 12-6 shows example timing for a multichannel transfer that has
these characteristics:

• Use TDM method where serial data is sent or received on different
channels sharing the same serial bus

• Can independently select transmit and receive channels

• RFS signals start of frame

• TFS (TDV) is used as “transmit data valid” for external logic, true
only during transmit channels

• Receive on channels 0 and 2, transmit on channels 1 and 2

• Multichannel frame delay is set to 1

See “Timing Examples” on page 12-42 for more examples.

ADSP-BF537 Blackfin Processor Hardware Reference 12-19

SPORT Controllers

Multichannel Enable

Setting the MCMEN bit in the SPORTx_MCM2 register enables multichannel
mode. When MCMEN = 1, multichannel operation is enabled; when
MCMEN = 0, all multichannel operations are disabled.

 Setting the MCMEN bit enables multichannel operation for both the
receive and transmit sides of the SPORT. Therefore, if a receiving
SPORT is in multichannel mode, the transmitting SPORT must
also be in multichannel mode.

 When in multichannel mode, do not enable the stereo serial frame
sync modes or the late frame sync feature, as these features are
incompatible with multichannel mode.

Figure 12-6. Multichannel Operation

RSCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT
B2B3 B0 B3 B2B1

CHANNEL 2CHANNEL 1CHANNEL 0

TFS (TDV)

MFD = 1

Description of Operation

12-20 ADSP-BF537 Blackfin Processor Hardware Reference

Table 12-3 shows the dependencies of bits in the SPORT configuration
register when the SPORT is in multichannel mode.

Frame Syncs in Multichannel Mode

All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

Table 12-3. Multichannel Mode Configuration

SPORTx_RCR1 or
SPORTx_RCR2

SPORTx_TCR1 or
SPORTx_TCR2

Notes

RSPEN TSPEN Set or clear both

IRCLK – Independent

– ITCLK Independent

RDTYPE TDTYPE Independent

RLSBIT TLSBIT Independent

IRFS – Independent

– ITFS Ignored

RFSR TFSR Ignored

– DITFS Ignored

LRFS LTFS Independent

LARFS LATFS Both must be 0

RCKFE TCKFE Set or clear both to same value

SLEN SLEN Set or clear both to same value

RXSE TXSE Independent

RSFSE TSFSE Both must be 0

RRFST TRFST Ignored

ADSP-BF537 Blackfin Processor Hardware Reference 12-21

SPORT Controllers

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFS indi-
cates the beginning of the channel 0 data word.

Since RFS is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in multichannel mode configuration, the corresponding bit pairs
in SPORTx_RCR1 and SPORTx_TCR1, and in SPORTx_RCR2 and SPORTx_TCR2,
should always be programmed identically, with the possible exception of
the RXSE and TXSE pair and the RDTYPE and TDTYPE pair. This is true even if
SPORTx_RX operation is not enabled.

In multichannel mode, RFS timing similar to late (alternative) frame mode
is entered automatically; the first bit of the transmit data word is available
and the first bit of the receive data word is sampled in the same serial clock
cycle that the frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s data transmit pin is
three-stated when the time slot is not active, and the TFS signal serves as an
output-enabled signal for the data transmit pin. The SPORT drives TFS in
multichannel mode whether or not ITFS is cleared. The TFS pin in multi-
channel mode still obeys the LTFS bit. If LTFS is set, the transmit data valid
signal will be active low—a low signal on the TFS pin indicates an active
channel.

Once the initial RFS is received, and a frame transfer has started, all other
RFS signals are ignored by the SPORT until the complete frame has been
transferred.

If MFD > 0, the RFS may occur during the last channels of a previous frame.
This is acceptable, and the frame sync is not ignored as long as the delayed
channel 0 starting point falls outside the complete frame.

Description of Operation

12-22 ADSP-BF537 Blackfin Processor Hardware Reference

In multichannel mode, the RFS signal is used for the block or frame start
reference, after which the word transfers are performed continuously with
no further RFS signals required. Therefore, internally generated frame
syncs are always data independent.

Multichannel Frame

A multichannel frame contains more than one channel, as specified by the
window size and window offset. A complete multichannel frame consists
of 1 – 1024 channels, starting with channel 0. The particular channels of
the multichannel frame that are selected for the SPORT are a combination
of the window offset, the window size, and the multichannel select regis-
ters. See Figure 12-7.

Figure 12-7. Relationships for Multichannel Parameters

FRAME
SYNC

DATA DATA IGNORED

CHANNEL

RSCLK

DATA IGNORED DATA IGNORED

MULTICHANNEL FRAME

WINDOW OFFSET WINDOW
SPx_MCMC
REG FIELD:

SIZE

UNITS:

MFD

RANGE:

NOTE: FRAME LENGTH IS SET BY FRAME SYNC DIVIDE OR EXTERNAL FRAME SYNC PERIOD.

BITS WORDS MULTIPLES OF 8 WORDS
0–15 0–1015 8–128

ADSP-BF537 Blackfin Processor Hardware Reference 12-23

SPORT Controllers

Multichannel Frame Delay

The 4-bit MFD field in SPORTx_MCMC2 specifies a delay between the frame
sync pulse and the first data bit in multichannel mode. The value of MFD is
the number of serial clock cycles of the delay. Multichannel frame delay
allows the processor to work with different types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Window Size

The window size (WSIZE[3:0]) defines the number of channels that can be
enabled/disabled by the multichannel select registers. This range of words
is called the active window. The number of channels can be any value in
the range of 0 to 15, corresponding to active window size of 8 to 128, in
increments of 8; the default value of 0 corresponds to a minimum active
window size of 8 channels. To calculate the active window size from the
WSIZE register, use this equation:

Number of words in active window = 8 x (WSIZE + 1)

Since the DMA buffer size is always fixed, it is possible to define a smaller
window size (for example, 32 words), resulting in a smaller DMA buffer
size (in this example, 32 words instead of 128 words) to save DMA band-
width. The window size cannot be changed while the SPORT is enabled.

Multichannel select bits that are enabled but fall outside the window
selected are ignored.

Description of Operation

12-24 ADSP-BF537 Blackfin Processor Hardware Reference

Window Offset

The window offset (WOFF[9:0]) specifies where in the 1024-channel range
to place the start of the active window. A value of 0 specifies no offset and
896 is the largest value that permits using all 128 channels. As an example,
a program could define an active window with a window size of 8
(WSIZE = 0) and an offset of 93 (WOFF = 93). This 8-channel window
would reside in the range from 93 to 100. Neither the window offset nor
the window size can be changed while the SPORT is enabled.

If the combination of the window size and the window offset would place
any portion of the window outside of the range of the channel counter,
none of the out-of-range channels in the frame are enabled.

Other Multichannel Fields in SPORTx_MCMC2

The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (When FSDR = 0), the data is transmitted on the same edge that
the TFS is generated. For example, a positive edge on TFS causes data to be
transmitted on the positive edge of the TSCLK—either the same edge or the
following one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR = 1), the frame sync
is expected to change on the falling edge of the clock and is sampled on
the rising edge of the clock. This is true even though data received is sam-
pled on the negative edge of the receive clock.

Channel Selection Register

A channel is a multibit word from 3 to 32 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are

ADSP-BF537 Blackfin Processor Hardware Reference 12-25

SPORT Controllers

received or transmitted, while disabled channel words are ignored. Up to
128 contiguous channels may be selected out of 1024 available channels.
The SPORTx_MRCSn and SPORTx_MTCSn multichannel select registers are
used to enable and disable individual channels; the SPORTx_MRCSn registers
specify the active receive channels, and the SPORTx_MTCSn registers specify
the active transmit channels.

Four registers make up each multichannel select register. Each of the four
registers has 32 bits, corresponding to 32 channels. Setting a bit enables
that channel, so the SPORT selects its word from the multiple word block
of data (for either receive or transmit). See Figure 12-8.

Channel select bit 0 always corresponds to the first word of the active win-
dow. To determine a channel’s absolute position in the frame, add the
window offset words to the channel select position. For example, setting
bit 7 in MCS2 selects word 71 of the active window to be enabled. Setting
bit 2 in MCS1 selects word 34 of the active window, and so on.

Setting a particular bit in the SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. Clearing
the bit in the SPORTx_MTCSn register causes the SPORT’s data transmit pin
to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSn register causes the SPORT to ignore the data.

Figure 12-8. Multichannel Select Registers

0 31 0 31 0 31 0 31

0 31 32 63 64 95 96 127

MCS1MCS0

Channel Select 0 – 127

MCS2 MCS3

Description of Operation

12-26 ADSP-BF537 Blackfin Processor Hardware Reference

Companding may be selected for all channels or for no channels. A-law or
-law companding is selected with the TDTYPE field in the SPORTx_TCR1
register and the RDTYPE field in the SPORTx_RCR1 register, and applies to all
active channels. (See “Companding” on page 12-31 for more information
about companding.)

Multichannel DMA Data Packing

Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration
register.

If the bits are set, indicating that data is packed, the SPORT expects the
data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each frame. It is not possible to change the total number of
enabled channels without changing the DMA buffer size, and reconfigur-
ing is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the active window, whether enabled or not, so the DMA buffer size
must be equal to the size of the window. For example, if channels 1 and 10
are enabled, and the window size is 16, the DMA buffer size would have
to be 16 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the buf-
fer, and the rest of the words in the DMA buffer would be ignored. This
mode allows changing the number of enabled channels while the SPORT
is enabled, with some caution. First read the channel register to make sure
that the active window is not being serviced. If the channel count is 0,
then the multichannel select registers can be updated.

ADSP-BF537 Blackfin Processor Hardware Reference 12-27

SPORT Controllers

Support for H.100 Standard Protocol
The processor supports the H.100 standard protocol. The following
SPORT parameters must be set to support this standard.

• Set for external frame sync. Frame sync generated by external bus
master.

• TFSR/RFSR set (frame syncs required)

• LTFS/LRFS set (active low frame syncs)

• Set for external clock

• MCMEN set (multichannel mode selected)

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half-clock-cycle
early frame sync)

2X Clock Recovery Control

The SPORTs can recover the data rate clock from a provided 2X input
clock. This enables the implementation of H.100 compatibility modes for
MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recovering
2 MHz from 4 MHz or 8 MHz from the 16 MHz incoming clock with
the proper phase relationship.

A 2-bit mode signal (MCCRM[1:0] in the SPORTx_MCMC2 register) chooses
the applicable clock mode, which includes a non-divide or bypass mode
for normal operation. A value of MCCRM = 00 chooses non-divide or bypass
mode (H.100-compatible), MCCRM = 10 chooses MVIP-90 clock divide
(extract 2 MHz from 4 MHz), and MCCRM = 11 chooses HMVIP clock
divide (extract 8 MHz from 16 MHz).

Functional Description

12-28 ADSP-BF537 Blackfin Processor Hardware Reference

Functional Description
The following sections provide a functional description of the SPORTs.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (SCLK) and the value of the
16-bit serial clock divide modulus registers, SPORTx_TCLKDIV and
SPORTx_RCLKDIV.

TSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_TCLKDIV + 1))

RSCLKx frequency = (SCLK frequency)/(2 x (SPORTx_RCLKDIV + 1))

If the value of SPORTx_TCLKDIV or SPORTx_RCLKDIV is changed while the
internal serial clock is enabled, the change in TSCLK or RSCLK frequency
takes effect at the start of the drive edge of TSCLK or RSCLK that follows the
next leading edge of TFS or RFS.

When an internal frame sync is selected (ITFS = 1 in the SPORTx_TCR1 reg-
ister or IRFS = 1 in the SPORTx_RCR1 register) and frame syncs are not
required, the first frame sync does not update the clock divider if the value
in SPORTx_TCLKDIV or SPORTx_RCLKDIV has changed. The second frame
sync will cause the update.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or
RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

ADSP-BF537 Blackfin Processor Hardware Reference 12-29

SPORT Controllers

The formula for the number of cycles between frame sync pulses is:

of transmit serial clocks between frame sync assertions =

TFSDIV + 1

of receive serial clocks between frame sync assertions =

RFSDIV + 1

Use the following equations to determine the correct value of TFSDIV or
RFSDIV, given the serial clock frequency and desired frame sync frequency:

SPORTxTFS frequency = (TSCLKx frequency)/(SPORTx_TFSDIV + 1)

SPORTxRFS frequency = (RSCLKx frequency)/(SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active (for transmit if
TFSDIV = 0 or for receive if RFSDIV = 0). However, the value of TFSDIV
(or RFSDIV) should not be less than the serial word length minus 1 (the
value of the SLEN field in SPORTx_TCR2 or SPORTx_RCR2). A smaller value
could cause an external device to abort the current operation or have other
unpredictable results. If a SPORT is not being used, the TFSDIV (or RFS-
DIV) divisor can be used as a counter for dividing an external clock or for
generating a periodic pulse or periodic interrupt. The SPORT must be
enabled for this mode of operation to work.

Maximum Clock Rate Restrictions

Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See the product data sheet for exact timing specifications.

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 32 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 32 bits long, residing in the LSB positions. The

Functional Description

12-30 ADSP-BF537 Blackfin Processor Hardware Reference

value of the serial word length (SLEN) field in the SPORTx_TCR2 and
SPORTx_RCR2 registers of each SPORT determines the word length accord-
ing to this formula:

Serial Word Length = SLEN + 1

 The SLEN value should not be set to 0 or 1; values from 2 to 31 are
allowed. Continuous operation (when the last bit of the current
word is immediately followed by the first bit of the next word) is
restricted to word sizes of 4 or longer (so SLEN 3).

Bit Order
Bit order determines whether the serial word is transmitted MSB first or
LSB first. Bit order is selected by the RLSBIT and TLSBIT bits in the
SPORTx_RCR1 and SPORTx_TCR1 registers. When RLSBIT (or TLSBIT) = 0,
serial words are received (or transmitted) MSB first. When RLSBIT (or
TLSBIT) = 1, serial words are received (or transmitted) LSB first.

Data Type
The TDTYPE field of the SPORTx_TCR1 register and the RDTYPE field of the
SPORTx_RCR1 register specify one of four data formats for both single and
multichannel operation. See Table 12-4.

Table 12-4. TDTYPE, RDTYPE, and Data Formatting

TDTYPE or
RDTYPE

SPORTx_TCR1 Data Formatting SPORTx_RCR1 Data Formatting

00 Normal operation Zero fill

01 Reserved Sign extend

10 Compand using -law Compand using -law

11 Compand using A-law Compand using A-law

ADSP-BF537 Blackfin Processor Hardware Reference 12-31

SPORT Controllers

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The SPORTs support the two most
widely used companding algorithms, -law and A-law. The processor
compands data according to the CCITT G.711 specification. The type of
companding can be selected independently for each SPORT.

When companding is enabled, valid data in the SPORTx_RX register is the
right-justified, expanded value of the eight LSBs received and sign
extended to 16 bits. A write to SPORTx_TX causes the 16-bit value to be
compressed to eight LSBs (sign extended to the width of the transmit
word) and written to the internal transmit register. Although the com-
panding standards support only 13-bit (A-law) or 14-bit (-law)
maximum word lengths, up to 16-bit word lengths can be used. If the
magnitude of the word value is greater than the maximum allowed, the
value is automatically compressed to the maximum positive or negative
value.

Lengths greater than 16 bits are not supported for companding operation.

Clock Signal Options
Each SPORT has a transmit clock signal (TSCLK) and a receive clock signal
(RSCLK). The clock signals are configured by the TCKFE and RCKFE bits of
the SPORTx_TCR1 and SPORTx_RCR1 registers. Serial clock frequency is con-
figured in the SPORTx_TCLKDIV and SPORTx_RCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both receive and transmit.

Functional Description

12-32 ADSP-BF537 Blackfin Processor Hardware Reference

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ITCLK bit of the SPORTx_TCR1
configuration register and the IRCLK bit in the SPORTx_RCR1 configuration
register determines the clock source.

When IRCLK or ITCLK = 1, the clock signal is generated internally by the
processor, and the TSCLK or RSCLK pin is an output. The clock frequency is
determined by the value of the serial clock divisor in the SPORTx_RCLKDIV
register.

When IRCLK or ITCLK = 0, the clock signal is accepted as an input on the
TSCLK or RSCLK pins, and the serial clock divisors in the
SPORTx_TCLKDIV/SPORTx_RCLKDIV registers are ignored. The externally
generated serial clocks do not need to be synchronous with the system
clock or with each other. The system clock must have a higher frequency
than RSCLK and TSCLK.

 When configured as inputs, the SPORT transmit and receive clock
signals are sensitive to noisy system environments. To improve
noise immunity, an additional 250 mV of hysteresis can be added
to these signals by setting the SPORT_HYS bit in the PLL_CTL register.
See Figure 20-5 on page 20-27 for details.

 When the SPORT uses external clocks, it must be enabled for a
minimal number of stable clock pulses before the first active frame
sync is sampled. Failure to allow for these clocks may result in a
SPORT malfunction. See the processor data sheet for details.

The first internal frame sync will occur one frame sync delay after
the SPORTs are ready. External frame syncs can occur as soon as
the SPORT is ready.

ADSP-BF537 Blackfin Processor Hardware Reference 12-33

SPORT Controllers

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame sync) and RFS
(receive frame sync). A variety of framing options are available; these
options are configured in the SPORT configuration registers
(SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1 and SPORTx_RCR2). The TFS
and RFS signals of a SPORT are independent and are separately configured
in the control registers.

 When configured as inputs, the SPORT transmit and receive frame
sync signals are sensitive to noisy system environments. To
improve noise immunity, an additional 250 mV of hysteresis can
be added to these signals by setting the SPORT_HYS bit in the
PLL_CTL register. See Figure 20-5 on page 20-27 for details.

Framed Versus Unframed

The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required select) and RFSR (receive
frame sync required select) control bits determine whether frame sync sig-
nals are required. These bits are located in the SPORTx_TCR1 and
SPORTx_RCR1 registers.

When TFSR = 1 or RFSR = 1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX hold register before the previous
word is shifted out and transmitted.

When TFSR = 0 or RFSR = 0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

Functional Description

12-34 ADSP-BF537 Blackfin Processor Hardware Reference

 With frame syncs not required, interrupt or DMA requests may
not be serviced frequently enough to guarantee continuous
unframed data flow. Monitor status bits or check for a SPORT
Error interrupt to detect underflow or overflow of data.

Figure 12-9 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TCR1 and SPORTx_RCR1 registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers.

See “Timing Examples” on page 12-42 for more timing examples.

Figure 12-9. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

FRAMED
DATA

UNFRAMED
DATA

TFS
OR

RFS

TFS
OR

RFS

DATA

TSCLK
OR

RSCLK

ADSP-BF537 Blackfin Processor Hardware Reference 12-35

SPORT Controllers

Internal Versus External Frame Syncs

Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TCR1 and SPORTx_RCR1 registers determine the frame sync
source.

When ITFS = 1 or IRFS = 1, the corresponding frame sync signal is gener-
ated internally by the SPORT, and the TFS pin or RFS pin is an output.
The frequency of the frame sync signal is determined by the value of the
frame sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV register.

When ITFS = 0 or IRFS = 0, the corresponding frame sync signal is
accepted as an input on the TFS pin or RFS pin, and the frame sync divisors
in the SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs

Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TCR1 and SPORTx_RCR1
registers determine frame sync logic levels:

• When LTFS = 0 or LRFS = 0, the corresponding frame sync signal
is active high.

• When LTFS = 1 or LRFS = 1, the corresponding frame sync signal
is active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Functional Description

12-36 ADSP-BF537 Blackfin Processor Hardware Reference

Sampling Edge for Data and Frame Syncs

Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The TCKFE and RCKFE bits of the SPORTx_TCR1
and SPORTx_RCR1 registers select the driving and sampling edges of the
serial data and frame syncs.

For the SPORT transmitter, setting TCKFE = 1 in the SPORTx_TCR1 register
selects the falling edge of TSCLKx to drive data and internally generated
frame syncs and selects the rising edge of TSCLKx to sample externally gen-
erated frame syncs. Setting TCKFE = 0 selects the rising edge of TSCLKx to
drive data and internally generated frame syncs and selects the falling edge
of TSCLKx to sample externally generated frame syncs.

For the SPORT receiver, setting RCKFE = 1 in the SPORTx_RCR1 register
selects the falling edge of RSCLKx to drive internally generated frame syncs
and selects the rising edge of RSCLKx to sample data and externally gener-
ated frame syncs. Setting RCKFE = 0 selects the rising edge of RSCLKx to
drive internally generated frame syncs and selects the falling edge of
RSCLKx to sample data and externally generated frame syncs.

 Note externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of the clock (TCKFE = 1 in the SPORTx_TCR1 reg-
ister), the frame sync must be driven on the falling edge of the
clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for TCKFE in the transmitter and RCKFE
in the receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

ADSP-BF537 Blackfin Processor Hardware Reference 12-37

SPORT Controllers

In Figure 12-10, TCKFE = RCKFE = 0 and transmit and receive are con-
nected together to share the same clock and frame syncs.

In Figure 12-11, TCKFE = RCKFE = 1 and transmit and receive are con-
nected together to share the same clock and frame syncs.

Figure 12-10. Example of TCKFE = RCKFE = 0, Transmit and Receive
Connected

Figure 12-11. Example of TCKFE = RCKFE = 1, Transmit and Receive
Connected

B1 B2 B3B0

B1 B2 B3B0

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT

DR

DRIVE
EDGE

SAMPLE
EDGE

B1 B2 B3

TSCLK = RSCLK
INTERNAL OR EXTERNAL

TFS = RFS
INTERNAL OR EXTERNAL

DT B0

B1 B2 B3DR B0

DRIVE
EDGE

SAMPLE
EDGE

Functional Description

12-38 ADSP-BF537 Blackfin Processor Hardware Reference

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TCR1 and SPORTx_RCR1 registers
configure this option.

When LATFS = 0 or LARFS = 0, early frame syncs are configured; this is
the normal mode of operation. In this mode, the first bit of the transmit
data word is available and the first bit of the receive data word is sampled
in the serial clock cycle after the frame sync is asserted, and the frame sync
is not checked again until the entire word has been transmitted or
received. In multichannel operation, this corresponds to the case when
multichannel frame delay is 1.

If data transmission is continuous in early framing mode (in other words,
the last bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (SLEN 3).

When LATFS = 1 or LARFS = 1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

ADSP-BF537 Blackfin Processor Hardware Reference 12-39

SPORT Controllers

Figure 12-12 illustrates the two modes of frame signal timing.

In summary:

• For the LATFS or LARFS bits of the SPORTx_TCR1 or SPORTx_RCR1 reg-
isters: LATFS = 0 or LARFS = 0 for early frame syncs, LATFS = 1 or
LARFS = 1 for late frame syncs.

• For early framing, the frame sync precedes data by one cycle. For
late framing, the frame sync is checked on the first bit only.

• Data is transmitted MSB first (TLSBIT = 0 or RLSBIT = 0) or LSB
first (TLSBIT = 1 or RLSBIT = 1).

• Frame sync and clock are generated internally or externally.

See “Timing Examples” on page 12-42 for more examples.

Data Independent Transmit Frame Sync

Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORTx_TX buffer has data ready to transmit. The
data-independent transmit frame sync select bit (DITFS) allows the contin-
uous generation of the TFS signal, with or without new data. The DITFS bit
of the SPORTx_TCR1 register configures this option.

Figure 12-12. Normal Versus Alternate Framing

B3 B2 B1 B0 ...

xSCLK

DATA

EARLY
FRAME

SYNC

LATE
FRAME

SYNC

Functional Description

12-40 ADSP-BF537 Blackfin Processor Hardware Reference

When DITFS = 0, the internally generated TFS is only output when a new
data word has been loaded into the SPORTx_TX buffer. The next TFS is gen-
erated once data is loaded into SPORTx_TX. This mode of operation allows
data to be transmitted only when it is available.

When DITFS = 1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORTx_TX buf-
fer. Whatever data is present in SPORTx_TX is transmitted again with each
assertion of TFS. The TUVF (transmit underflow status) bit in the
SPORTx_STAT register is set when this occurs and old data is retransmitted.
The TUVF status bit is also set if the SPORTx_TX buffer does not have new
data when an externally generated TFS occurs. Note that in this mode of
operation, data is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORTx_TX data
register is required to start the transfer.

Moving Data Between SPORTs and Memory
Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers.

If no SPORT DMA channel is enabled, the SPORT generates an interrupt
every time it has received a data word or needs a data word to transmit.
SPORT DMA provides a mechanism for receiving or transmitting an
entire block or multiple blocks of serial data before the interrupt is gener-
ated. The SPORT’s DMA controller handles the DMA transfer, allowing
the processor core to continue running until the entire block of data is
transmitted or received. Interrupt service routines (ISRs) can then operate
on the block of data rather than on single words, significantly reducing
overhead.

For information about DMA, see Chapter 5, “Direct Memory Access”.

ADSP-BF537 Blackfin Processor Hardware Reference 12-41

SPORT Controllers

SPORT RX, TX, and Error Interrupts
The SPORT RX interrupt is asserted when RSPEN is enabled and any
words are present in the RX FIFO. If RX DMA is enabled, the SPORT
RX interrupt is turned off and DMA services the RX FIFO.

The SPORT TX interrupt is asserted when TSPEN is enabled and the TX
FIFO has room for words. If TX DMA is enabled, the SPORT TX inter-
rupt is turned off and DMA services the TX FIFO.

The SPORT error interrupt is asserted when any of the sticky status bits
(ROVF, RUVF, TOVF, TUVF) are set. The ROVF and RUVF bits are cleared by
writing 0 to RSPEN. The TOVF and TUVF bits are cleared by writing 0 to
TSPEN.

PAB Errors
The SPORT generates a PAB error for illegal register read or write opera-
tions. Examples include:

• Reading a write-only register (for example, SPORT_TX)

• Writing a read-only register (for example, SPORT_RX)

• Writing or reading a register with the wrong size (for example,
32-bit read of a 16-bit register)

• Accessing reserved register locations

Functional Description

12-42 ADSP-BF537 Blackfin Processor Hardware Reference

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 12-33, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 12-38, and
“Frame Syncs in Multichannel Mode” on page 12-20). This section
contains additional examples to illustrate other possible combinations of
the framing options.

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the product data sheet for actual timing parameters and values.

These examples assume a word length of four bits (SLEN = 3). Framing
signals are active high (LRFS = 0 and LTFS = 0).

Figure 12-13 through Figure 12-18 show framing for receiving data.

In Figure 12-13 and Figure 12-14, the normal framing mode is shown for
non-continuous data (any number of TSCLK or RSCLK cycles between
words) and continuous data (no TSCLK or SCLK cycles between words).

Figure 12-13. SPORT Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

ADSP-BF537 Blackfin Processor Hardware Reference 12-43

SPORT Controllers

Figure 12-15 and Figure 12-16 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFS for the
other SPORT channel.

Figure 12-14. SPORT Continuous Receive, Normal Framing

Figure 12-15. SPORT Receive, Alternate Framing

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

:

B3B3 B2 B1 B0 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS OUTPUT

DR

RFS INPUT

Functional Description

12-44 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 12-17 and Figure 12-18 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
RSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode). This mode is appropriate for multiword bursts
(continuous reception).

Figure 12-16. SPORT Continuous Receive, Alternate Framing

Figure 12-17. SPORT Receive, Unframed Mode, Normal Framing

Figure 12-18. SPORT Receive, Unframed Mode, Alternate Framing

RSCLK

RFS OUTPUT

RFS INPUT

DR B3 B2 B1 B0 B3 B2 B1 B0

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

RSCLK

RFS

DR B3 B2 B1 B0 B3 B2 B1 B0 B2B3

DR REPRESENTS DRxPRI AND/OR DRxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF537 Blackfin Processor Hardware Reference 12-45

SPORT Controllers

Figure 12-19 through Figure 12-24 show framing for transmitting data
and are very similar to Figure 12-13 through Figure 12-18.

In Figure 12-19 and Figure 12-20, the normal framing mode is shown for
non-continuous data (any number of TSCLK cycles between words) and
continuous data (no TSCLK cycles between words). Figure 12-21 and
Figure 12-22 show non-continuous and continuous transmission in the
alternate framing mode. As noted previously for the receive timing dia-
grams, the RFS output meets the RFS input timing requirement.

Figure 12-19. SPORT Transmit, Normal Framing

Figure 12-20. SPORT Continuous Transmit, Normal Framing

TSCLK

TFS OUTPUT

DT B2 B1 B0B3 B2 B1 B0B3

TFS INPUT

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

B2 B1 B0B3 B2 B1 B0B3 B3 B2

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

Functional Description

12-46 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 12-23 and Figure 12-24 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
TSCLK before the first bit (in normal mode) or at the same time as the first
bit (in alternate mode).

Figure 12-21. SPORT Transmit, Alternate Framing

Figure 12-22. SPORT Continuous Transmit, Alternate Framing

Figure 12-23. SPORT Transmit, Unframed Mode, Normal Framing

B2 B1 B0B3 B2 B1 B0B3

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN.
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS OUTPUT

DT

TFS INPUT

B2 B1 B0B3 B0B3 B2 B1

TSCLK

TFS OUTPUT

TFS INPUT

TR

SPORT CONTROL REGISTER:
BOTH INTERNAL FRAMING OPTION AND EXTERNAL FRAMING OPTION SHOWN
DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

ADSP-BF537 Blackfin Processor Hardware Reference 12-47

SPORT Controllers

SPORT Registers
The following sections describe the SPORT registers. Table 12-5 provides
an overview of the available control registers.

Figure 12-24. SPORT Transmit, Unframed Mode, Alternate Framing

Table 12-5. SPORT Register Mapping

Register Name Function Notes

SPORTx_TCR1 Primary transmit con-
figuration register

Bits [15:1] can only be written if bit 0 = 0

SPORTx_TCR2 Secondary transmit
configuration register

SPORTx_TCLK_DIV Transmit clock divider
register

Ignored if external SPORT clock mode is
selected

SPORTx_TFSDIV Transmit frame sync
divider register

Ignored if external frame sync mode is selected

SPORTx_TX SPORT transmit data
register

See description of FIFO buffering at
“SPORTx_TX Register” on page 12-59

SPORTx_RCR1 Primary receive config-
uration register

Bits [15:1] can only be written if bit 0 = 0

SPORTx_RCR2 Secondary receive con-
figuration register

SPORTx_RCLK_DIV Receive clock divider
register

Ignored if external SPORT clock mode is
selected

TSCLK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

DT REPRESENTS DTxPRI AND/OR DTxSEC, DEPENDING ON DESIRED CONFIGURATION.

SPORT Registers

12-48 ADSP-BF537 Blackfin Processor Hardware Reference

Register Writes and Effective Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the SCLK cycle in which they
occurred, and the register reads back the newly-written value on the next
cycle.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORTx_RCLKDIV, SPORTx_TCLKDIV, and multichannel mode channel
select registers). The SPORTx_TX register writes are always enabled;
SPORTx_RX, SPORTx_CHNL, and SPORTx_STAT are read-only registers.

SPORTx_RFSDIV Receive frame sync
divider register

Ignored if external frame sync mode is selected

SPORTx_RX SPORT receive data
register

See description of FIFO buffering at
“SPORTx_RX Register” on page 12-61

SPORTx_STAT Receive and transmit
status

SPORTx_MCM1 Primary multichannel
mode configuration
register

Configure this register before enabling the
SPORT

SPORTx_MCM2 Secondary multichan-
nel mode configura-
tion register

Configure this register before enabling the
SPORT

SPORTx_MRCSn Receive channel selec-
tion registers

Select or deselect channels in a multichannel
frame

SPORTx_MTCSn Transmit channel selec-
tion registers

Select or deselect channels in a multichannel
frame

SPORTx_CHNL Currently serviced
channel in a multi-
channel frame

Table 12-5. SPORT Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF537 Blackfin Processor Hardware Reference 12-49

SPORT Controllers

After a write to a SPORT register, while the SPORT is disabled, any
changes to the control and mode bits generally take effect when the
SPORT is re-enabled.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN = 0). Changes take effect after
the SPORT is re-enabled. The only exceptions to this rule are the
TCLKDIV/RCLKDIV registers and multichannel select registers.

SPORTx_TCR1 and SPORTx_TCR2 Registers
The main control registers for the transmit portion of each SPORT are
the transmit configuration registers, SPORTx_TCR1 and SPORTx_TCR2,
shown in Figure 12-25 and Figure 12-26.

A SPORT is enabled for transmit if bit 0 (TSPEN) of the transmit configu-
ration 1 register is set to 1. This bit is cleared during either a hard reset or
a soft reset, disabling all SPORT transmission.

When the SPORT is enabled to transmit (TSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_TCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_TCR1 is not written except for bit 0 (TSPEN). For example,

write (SPORTx_TCR1, 0x0001) ; /* SPORT TX Enabled */

write (SPORTx_TCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_TCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_TCR1

still equal to 0x0000 */

SPORT Registers

12-50 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the SPORTx_TCR1 and SPORTx_TCR2 transmit
configuration register bits includes:

• Transmit enable (TSPEN). This bit selects whether the SPORT is
enabled to transmit (if set) or disabled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the transmit data write code in the TX interrupt service routine

Figure 12-25. SPORTx Transmit Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 1 Register (SPORTx_TCR1)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ITCLK (Internal Transmit
Clock Select)

TDTYPE[1:0] (Data Format-
ting Type Select)

TLSBIT (Transmit Bit Order)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
 Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

TCKFE (Clock Falling
Edge Select)

0 -External transmit clock
selected

1 - Internal transmit clock
selected

00 - Normal operation
01 - Reserved
10 - Compand using -law
11 - Compand using A-law

0 - Transmit MSB first
1 - Transmit LSB first

Reset = 0x0000

0 - External TFS used
1 - Internal TFS used

0 - Drive data and internal
frame syncs with rising
edge of TSCLK. Sample
external frame syncs with
falling edge of TSCLK.

1 - Drive data and internal
frame syncs with falling
edge of TSCLK. Sample
external frame syncs
with rising edge of TSCLK.

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data-Independent
Transmit Frame Sync Select)
0 - Data-dependent TFS generated
1 - Data-independent TFS generated

0 - Does not require TFS for
every data word

1 - Requires TFS for every
data word

SPORT0:
0xFFC0 0800

SPORT1:
0xFFC0 0900

ADSP-BF537 Blackfin Processor Hardware Reference 12-51

SPORT Controllers

(ISR). For this reason, the code should initialize the ISR and be
ready to service TX interrupts before setting TSPEN.

Similarly, if DMA transfers are used, DMA control should be con-
figured correctly before setting TSPEN. Set all DMA control
registers before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data, TSCLK, and
frame sync pins; it also shuts down the internal SPORT circuitry.
In low power applications, battery life can be extended by clearing
TSPEN whenever the SPORT is not in use.

 All SPORT control registers should be programmed before TSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_TCR1 with all of the necessary bits, including
TSPEN.

• Internal transmit clock select. (ITCLK). This bit selects the internal
transmit clock (if set) or the external transmit clock on the TSCLK
pin (if cleared). The TCLKDIV MMR value is not used when an
external clock is selected.

• Data formatting type select. The two TDTYPE bits specify data for-
mats used for single and multichannel operation.

• Bit order select. (TLSBIT). The TLSBIT bit selects the bit order of
the data words transmitted over the SPORT.

SPORT Registers

12-52 ADSP-BF537 Blackfin Processor Hardware Reference

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word transmitted over the SPORTs) is
calculated by adding 1 to the value of the SLEN field:

 Serial Word Length = SLEN + 1;

The SLEN field can be set to a value of 2 to 31; 0 and 1 are illegal
values for this field. Three common settings for the SLEN field are
15, to transmit a full 16-bit word; 7, to transmit an 8-bit byte; and
23, to transmit a 24-bit word. The processor can load 16- or 32-bit
values into the transmit buffer via DMA or an MMR write
instruction; the SLEN field tells the SPORT how many of those bits
to shift out of the register over the serial link. The SPORT always
transfers the SLEN+1 lower bits from the transmit buffer.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal transmit frame sync select. (ITFS). This bit selects
whether the SPORT uses an internal TFS (if set) or an external TFS
(if cleared).

• Transmit frame sync required select. (TFSR). This bit selects
whether the SPORT requires (if set) or does not require (if cleared)
a transmit frame sync for every data word.

 The TFSR bit is normally set during SPORT configuration. A frame
sync pulse is used to mark the beginning of each word or data
packet, and most systems need a frame sync to function properly.

ADSP-BF537 Blackfin Processor Hardware Reference 12-53

SPORT Controllers

• Data-Independent transmit frame sync select. (DITFS). This bit
selects whether the SPORT generates a data-independent TFS (sync
at selected interval) or a data-dependent TFS (sync when data is
present in SPORTx_TX) for the case of internal frame sync select
(ITFS = 1). The DITFS bit is ignored when external frame syncs are
selected.

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the
SPORTx_TX register has been loaded or not; if DITFS is cleared, the
frame sync pulse is only generated if the SPORTx_TX data register has
been loaded. If the receiver demands regular frame sync pulses,
DITFS should be set, and the processor should keep loading the
SPORTx_TX register on time. If the receiver can tolerate occasional
late frame sync pulses, DITFS should be cleared to prevent the
SPORT from transmitting old data twice or transmitting garbled
data if the processor is late in loading the SPORTx_TX register.

• Low transmit frame sync select. (LTFS). This bit selects an active
low TFS (if set) or active high TFS (if cleared).

• Late transmit frame sync. (LATFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (TCKFE). This bit selects which
edge of the TCLKx signal the SPORT uses for driving data, for driv-
ing internally generated frame syncs, and for sampling externally
generated frame syncs. If set, data and internally generated frame
syncs are driven on the falling edge, and externally generated frame
syncs are sampled on the rising edge. If cleared, data and internally
generated frame syncs are driven on the rising edge, and externally
generated frame syncs are sampled on the falling edge.

• TxSec enable. (TXSE). This bit enables the transmit secondary side
of the SPORT (if set).

SPORT Registers

12-54 ADSP-BF537 Blackfin Processor Hardware Reference

• Stereo serial enable. (TSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (TRFST). If this bit is set, the right channel is
transmitted first in stereo serial operating mode. By default this bit
is cleared, and the left channel is transmitted first.

SPORTx_RCR1 and SPORTx_RCR2 Registers
The main control registers for the receive portion of each SPORT are the
receive configuration registers, SPORTx_RCR1 and SPORTx_RCR2, shown in
Figure 12-27 and Figure 12-28.

A SPORT is enabled for receive if bit 0 (RSPEN) of the receive configura-
tion 1 register is set to 1. This bit is cleared during either a hard reset or a
soft reset, disabling all SPORT reception.

Figure 12-26. SPORTx Transmit Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration 2 Register (SPORTx_TCR2)

SLEN[4:0] (SPORT Word
Length)

TSFSE (Transmit Stereo
Frame Sync Enable)

TRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

TXSE (TxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0804

SPORT1:
0xFFC0 0904

ADSP-BF537 Blackfin Processor Hardware Reference 12-55

SPORT Controllers

When the SPORT is enabled to receive (RSPEN set), corresponding
SPORT configuration register writes are not allowed except for
SPORTx_RCLKDIV and multichannel mode channel select registers. Writes to
disallowed registers have no effect. While the SPORT is enabled,
SPORTx_RCR1 is not written except for bit 0 (RSPEN). For example,

write (SPORTx_RCR1, 0x0001) ; /* SPORT RX Enabled */

write (SPORTx_RCR1, 0xFF01) ; /* ignored, no effect */

write (SPORTx_RCR1, 0xFFF0) ; /* SPORT disabled, SPORTx_RCR1

still equal to 0x0000 */

Figure 12-27. SPORTx Receive Configuration 1 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 1 Register (SPORTx_RCR1)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

IRCLK (Internal Receive
Clock Select)

RDTYPE[1:0] (Data
Formatting Type Select)

RLSBIT (Receive Bit Order)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

RCKFE (Clock Falling
Edge Select)

0 -External receive clock
selected

1 - Internal receive clock
selected

00 - Zero fill
01 - Sign-extend
10 - Compand using -law
11 - Compand using A-law

0 - Receive MSB first
1 - Receive LSB first

Reset = 0x0000

0 - External RFS used
1 - Internal RFS used

0 - Drive internal frame sync
on rising edge of RSCLK.
Sample data and external
frame sync with falling
edge of RSCLK.

1 - Drive internal frame sync
on falling edge of RSCLK.
Sample data and external
frame sync with rising
edge of RSCLK.

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

SPORT0:
0xFFC0 0820

SPORT1:
0xFFC0 0920

SPORT Registers

12-56 ADSP-BF537 Blackfin Processor Hardware Reference

Additional information for the SPORTx_RCR1 and SPORTxRCR2 receive con-
figuration register bits:

• Receive enable. (RSPEN). This bit selects whether the SPORT is
enabled to receive (if set) or disabled (if cleared). Setting the RSPEN
bit turns on the SPORT and causes it to sample data from the data
receive pins as well as the receive bit clock and receive frame sync
pins if so programmed.

Setting RSPEN enables the SPORTx receiver, which can generate a
SPORTx RX interrupt. For this reason, the code should initialize
the ISR and the DMA control registers, and should be ready to
service RX interrupts before setting RSPEN. Setting RSPEN also gen-
erates DMA requests if DMA is enabled and data is received. Set all
DMA control registers before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT receive circuitry. In low power
applications, battery life can be extended by clearing RSPEN when-
ever the SPORT is not in use.

Figure 12-28. SPORTx Receive Configuration 2 Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration 2 Register (SPORTx_RCR2)

SLEN[4:0] (SPORT Word
Length)

RSFSE (Receive Stereo
Frame Sync Enable)

RRFST (Left/Right Order)
00000 - Illegal value
00001 - Illegal value
Serial word length is value in
this field plus 1

Reset = 0x0000

0 - Left stereo channel first
1 - Right stereo channel first

0 - Normal mode
1 - Frame sync becomes L/R clock

RXSE (RxSEC Enable)

0 - Secondary side disabled
1 - Secondary side enabled

SPORT0:
0xFFC0 0824

SPORT1:
0xFFC0 0924

ADSP-BF537 Blackfin Processor Hardware Reference 12-57

SPORT Controllers

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes all control regis-
ters, including DMA control if applicable. The last step in the code
is to write SPORTx_RCR1 with all of the necessary bits, including
RSPEN.

• Internal receive clock select. (IRCLK). This bit selects the internal
receive clock (if set) or external receive clock (if cleared). The RCLK-
DIV MMR value is not used when an external clock is selected.

• Data formatting type select. (RDTYPE). The two RDTYPE bits specify
one of four data formats used for single and multichannel
operation.

• Bit order select. (RLSBIT). The RLSBIT bit selects the bit order of
the data words received over the SPORTs.

• Serial word length select. (SLEN). The serial word length (the num-
ber of bits in each word received over the SPORTs) is calculated by
adding 1 to the value of the SLEN field. The SLEN field can be set to
a value of 2 to 31; 0 and 1 are illegal values for this field.

 The frame sync signal is controlled by the SPORTx_TFSDIV and
SPORTx_RFSDIV registers, not by SLEN. To produce a frame sync
pulse on each byte or word transmitted, the proper frame sync
divider must be programmed into the frame sync divider register;
setting SLEN to 7 does not produce a frame sync pulse on each byte
transmitted.

• Internal receive frame sync select. (IRFS). This bit selects whether
the SPORT uses an internal RFS (if set) or an external RFS (if
cleared).

• Receive frame sync required select. (RFSR). This bit selects whether
the SPORT requires (if set) or does not require (if cleared) a receive
frame sync for every data word.

SPORT Registers

12-58 ADSP-BF537 Blackfin Processor Hardware Reference

• Low receive frame sync select. (LRFS). This bit selects an active low
RFS (if set) or active high RFS (if cleared).

• Late receive frame sync. (LARFS). This bit configures late frame
syncs (if set) or early frame syncs (if cleared).

• Clock drive/sample edge select. (RCKFE). This bit selects which
edge of the RSCLK clock signal the SPORT uses for sampling data,
for sampling externally generated frame syncs, and for driving
internally generated frame syncs. If set, internally generated frame
syncs are driven on the falling edge, and data and externally gener-
ated frame syncs are sampled on the rising edge. If cleared,
internally generated frame syncs are driven on the rising edge, and
data and externally generated frame syncs are sampled on the fall-
ing edge.

• RxSec enable. (RXSE). This bit enables the receive secondary side of
the SPORT (if set).

• Stereo serial enable. (RSFSE). This bit enables the stereo serial oper-
ating mode of the SPORT (if set). By default this bit is cleared,
enabling normal clocking and frame sync.

• Left/Right order. (RRFST). If this bit is set, the right channel is
received first in stereo serial operating mode. By default this bit is
cleared, and the left channel is received first.

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the combination of transmit SLEN and receive SLEN; RDTYPE; TDTYPE;
RLSBIT; and TLSBIT bits of the SPORTx_TCR1, SPORTx_TCR2, SPORTx_RCR1,
and SPORTx_RCR2 registers.

ADSP-BF537 Blackfin Processor Hardware Reference 12-59

SPORT Controllers

SPORTx_TX Register
The SPORTx transmit data register (SPORTx_TX) is a write-only register.
Reads produce a Peripheral Access Bus (PAB) error. Writes to this register
cause writes into the transmitter FIFO. The 16-bit wide FIFO is 8 deep
for word length <= 16 and 4 deep for word length > 16. The FIFO is com-
mon to both primary and secondary data and stores data for both. Data
ordering in the FIFO is shown in the Figure 12-29. The SPORTx_TX regis-
ter is shown in Figure 12-30.

It is important to keep the interleaving of primary and secondary data in
the FIFO as shown. This means that PAB/DMA writes to the FIFO must
follow an order of primary first, and then secondary, if secondary is
enabled. DAB/PAB writes must match their size to the data word length.
For word length up to and including 16 bits, use a 16-bit write. Use a
32-bit write for word length greater than 16 bits.

Figure 12-29. SPORT Transmit FIFO Data Ordering

015

015

015

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

W6
W5

W4

W3

W2
W1

W0

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W3 LOW

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

SPORT Registers

12-60 ADSP-BF537 Blackfin Processor Hardware Reference

When transmit is enabled, data from the FIFO is assembled in the TX
Hold register based on TXSE and SLEN, and then shifted into the primary
and secondary shift registers. From here, the data is shifted out serially on
the DTPRI and DTSEC pins.

The SPORT TX interrupt is asserted when TSPEN = 1 and the TX FIFO
has room for additional words. This interrupt does not occur if SPORT
DMA is enabled. For DMA operation, see Chapter 5, “Direct Memory
Access”.

The transmit underflow status bit (TUVF) is set in the SPORT status regis-
ter when a transmit frame sync occurs and no new data has been loaded
into the serial shift register. In multichannel mode (MCM), TUVF is set
whenever the serial shift register is not loaded, and transmission begins on
the current enabled channel. The TUVF status bit is a sticky
write-1-to-clear (W1C) bit and is also cleared by disabling the SPORT
(writing TSPEN = 0).

If software causes the core processor to attempt a write to a full TX FIFO
with a SPORTx_TX write, the new data is lost and no overwrites occur to
data in the FIFO. The TOVF status bit is set and a SPORT error interrupt
is asserted. The TOVF bit is a sticky bit; it is only cleared by disabling the
SPORT TX. To find out whether the core processor can access the

Figure 12-30. SPORTx Transmit Data Register

SPORTx Transmit Data Register (SPORTx_TX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

SPORT0:
0xFFC0 0810

SPORT1:
0xFFC0 0910

ADSP-BF537 Blackfin Processor Hardware Reference 12-61

SPORT Controllers

SPORTx_TX register without causing this type of error, read the register’s
status first. The TXF bit in the SPORT status register is 0 if space is avail-
able for another word in the FIFO.

The TXF and TOVF status bits in the SPORTx status register are updated
upon writes from the core processor, even when the SPORT is disabled.

SPORTx_RX Register
The SPORTx receive data register (SPORTx_RX) is a read-only register.
Writes produce a PAB error. The same location is read for both primary
and secondary data. Reading from this register space causes reading of the
receive FIFO. This 16-bit FIFO is 8 deep for receive word length <= 16
and 4 deep for length > 16 bits. The FIFO is shared by both primary and
secondary receive data. The order for reading using PAB/DMA reads is
important since data is stored in differently depending on the setting of
the SLEN and RXSE configuration bits.

Data storage and data ordering in the FIFO are shown in Figure 12-31.
The SPORTx_RX register is shown in Figure 12-32.

When reading from the FIFO for both primary and secondary data, read
primary first, followed by secondary. DAB/PAB reads must match their
size to the data word length. For word length up to and including 16 bits,
use a 16-bit read. Use a 32-bit read for word length greater than 16 bits.

SPORT Registers

12-62 ADSP-BF537 Blackfin Processor Hardware Reference

When receiving is enabled, data from the DRPRI pin is loaded into the RX
primary shift register, while data from the DRSEC pin is loaded into the RX
secondary shift register. At transfer completion of a word, data is shifted
into the RX hold registers for primary and secondary data, respectively.
Data from the hold registers is moved into the FIFO based on RXSE and
SLEN.

Figure 12-31. SPORT Receive FIFO Data Ordering

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY

W7

0

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH <= 16 BITS

PRIMARY AND
SECONDARY ENABLED

DATA LENGTH > 16 BITS

15

W6
W5

W4

W3

W2
W1

W0

W3 LOW

015

W3 HIGH
W2 LOW

W2 HIGH

W1 LOW

W1 HIGH
W0 LOW

W0 HIGH

SECONDARY W3

015

PRIMARY

PRIMARY

PRIMARY

PRIMARY

PRIMARY
PRIMARY

PRIMARY

PRIMARY

SECONDARY

SECONDARY

SECONDARY

W3
W2

W2

W1

W1
W0

W0

SECONDARY W1 LOW

015

SECONDARY

SECONDARY

SECONDARY

W1 HIGH
W1 LOW

W1 HIGH

W0 LOW

W0 HIGH
W0 LOW

W0 HIGH

4 WORDS OF
PRIMARY DATA AND

4 WORDS OF
SECONDARY DATA

IN FIFO

2 WORDS OF
PRIMARY DATA AND

2 WORDS OF
SECONDARY DATA

IN FIFO

FROM Rx HOLD REGISTER

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

TO
PAB/DAB
BUSES

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

FROM Rx HOLD REGISTER

ONLY PRIMARY ENABLED
DATA LENGTH <= 16 BITS

ONLY PRIMARY ENABLED
DATA LENGTH > 16 BITS

8 WORDS OF
PRIMARY DATA

IN FIFO

4 WORDS OF
PRIMARY DATA

IN FIFO

ADSP-BF537 Blackfin Processor Hardware Reference 12-63

SPORT Controllers

The SPORT RX interrupt is generated when RSPEN = 1 and the RX FIFO
has received words in it. When the core processor has read all the words in
the FIFO, the RX interrupt is cleared. The SPORT RX interrupt is set
only if SPORT RX DMA is disabled; otherwise, the FIFO is read by
DMA reads.

If the program causes the core processor to attempt a read from an empty
RX FIFO, old data is read, the RUVF flag is set in the SPORTx_STAT register,
and the SPORT error interrupt is asserted. The RUVF bit is a sticky bit and
is cleared only when the SPORT is disabled. To determine if the core can
access the RX registers without causing this error, first read the RX FIFO
status (RXNE in the SPORTx status register). The RUVF status bit is updated
even when the SPORT is disabled.

The ROVF status bit is set in the SPORTx_STAT register when a new word is
assembled in the RX shift register and the RX hold register has not moved
the data to the FIFO. The previously written word in the hold register is
overwritten. The ROVF bit is a sticky bit; it is only cleared by disabling the
SPORT RX.

Figure 12-32. SPORTx Receive Data Register

SPORTx Receive Data Register (SPORTx_RX)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[31:16]

Reset = 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Receive Data[15:0]

SPORT0:
0xFFC0 0818

SPORT1:
0xFFC0 0918

SPORT Registers

12-64 ADSP-BF537 Blackfin Processor Hardware Reference

SPORTx_STAT Register
The SPORT status register (SPORTx_STAT) is used to determine if the
access to a SPORT RX or TX FIFO can be made by determining their full
or empty status. This register is shown in Figure 12-33.

The TXF bit in the SPORT status register indicates whether there is room
in the TX FIFO. The RXNE status bit indicates whether there are words in
the RX FIFO. The TXHRE bit indicates if the TX hold register is empty.

The transmit underflow status bit (TUVF) is set whenever the TFS signal
occurs (from either an external or internal source) while the TX shift regis-
ter is empty. The internally generated TFS may be suppressed whenever
SPORTx_TX is empty by clearing the DITFS control bit in the SPORT con-
figuration register. The TUVF status bit is a sticky write-1-to-clear (W1C)
bit and is also cleared by disabling the SPORT (writing TSPEN = 0).

For continuous transmission (TFSR = 0), TUVF is set at the end of a trans-
mitted word if no new word is available in the TX hold register.

Figure 12-33. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RUVF (Sticky Receive Under-
flow Status) - W1C

RXNE (Receive FIFO Not
Empty Status)

ROVF (Sticky Receive Over-
flow Status) - W1C

TUVF (Sticky Transmit Underflow Status) - W1C 0 - Disabled
1 - Enabled

0 - Empty
1 - Data present in FIFO

Reset = 0x0040

0 - Disabled
1 - Enabled

TOVF (Sticky Transmit Overflow Status) - W1C
0 - Disabled
1 - Enabled

TXF (Transmit FIFO Full Status)
0 - Not full
1 - Full

TXHRE (Transmit Hold Register Empty)

0 - Not empty
1 - Empty

SPORT0:
0xFFC0 0830

SPORT1:
 0xFFC0 0930

ADSP-BF537 Blackfin Processor Hardware Reference 12-65

SPORT Controllers

The TOVF bit is set when a word is written to the TX FIFO when it is full.
It is a sticky W1C bit and is also cleared by writing TSPEN = 0. Both TXF
and TOVF are updated even when the SPORT is disabled.

When the SPORT RX hold register is full, and a new receive word is
received in the shift register, the receive overflow status bit (ROVF) is set in
the SPORT status register. It is a sticky W1C bit and is also cleared by
disabling the SPORT (writing RSPEN = 0).

The RUVF bit is set when a read is attempted from the RX FIFO and it is
empty. It is a sticky W1C bit and is also cleared by writing RSPEN = 0.
The RUVF bit is updated even when the SPORT is disabled.

SPORTx_TCLKDIV Register
The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORTx transmit serial clock divider
register, SPORTx_TCLKDIV, shown in Figure 12-34).

Figure 12-34. SPORTx Transmit Serial Clock Divider Register

SPORTx Transmit Serial Clock Divider Register (SPORTx_TCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0808
SPORT1:

0xFFC0 0908

SPORT Registers

12-66 ADSP-BF537 Blackfin Processor Hardware Reference

SPORTx_RCLKDIV Register
The frequency of an internally generated clock is a function of the system
clock frequency (as seen at the SCLK pin) and the value of the 16-bit serial
clock divide modulus registers (the SPORTx receive serial clock divider
register, SPORTx_RCLKDIV, shown in Figure 12-35).

SPORTx_TFSDIV Register
The 16-bit SPORTx transmit frame sync divider register (SPORTx_TFSDIV)
specifies how many transmit clock cycles are counted before generating a
TFS pulse when the frame sync is internally generated. In this way, a frame
sync can be used to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks. The
register is shown in Figure 12-36.

Figure 12-35. SPORTx Receive Serial Clock Divider Register

Figure 12-36. SPORTx Transmit Frame Sync Divider Register

SPORTx Receive Serial Clock Divider Register (SPORTx_RCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
SPORT0:

0xFFC0 0828
SPORT1:

0xFFC0 0928

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before gener-
ating TFS pulse

SPORT0:
 0xFFC0 080C

SPORT1:
0xFFC0 090C

ADSP-BF537 Blackfin Processor Hardware Reference 12-67

SPORT Controllers

SPORTx_RFSDIV Register
The 16-bit SPORTx receive frame sync divider register (SPORTx_RFSDIV)
specifies how many receive clock cycles are counted before generating a
RFS pulse when the frame sync is internally generated. In this way, a frame
sync can be used to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks. The
register is shown in Figure 12-37.

SPORTx_MCMCn Registers
There are two SPORTx multichannel configuration registers
(SPORTx_MCMCn) for each SPORT. The SPORTx_MCMCn registers are used to
configure the multichannel operation of the SPORT. The two control
registers are shown in Figure 12-38 and Figure 12-39.

Figure 12-37. SPORTx Receive Frame Sync Divider Register

Figure 12-38. SPORTx Multichannel Configuration Register 1

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before gener-
ating RFS pulse

SPORT0:
0xFFC0 082C

SPORT1:
0xFFC0 092C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 1 (SPORTx_MCMC1)

WSIZE[3:0] (Window Size) WOFF[9:0] (Window Offset)

Reset = 0x0000

Places start of window anywhere
in the 0 to 1023 channel rangeValue in field = [(Desired window size)/8 –1]

SPORT0:
0xFFC0 0838

SPORT1:
0xFFC0 0938

SPORT Registers

12-68 ADSP-BF537 Blackfin Processor Hardware Reference

SPORTx_CHNL Register
The 10-bit CHNL field in the SPORTx current channel register
(SPORTx_CHNL) indicates which channel is currently being serviced during
multichannel operation. This field is a read-only status indicator. The
CHNL[9:0] field increments by one as each channel is serviced. The coun-
ter stops at the upper end of the defined window. The channel select
register restarts at 0 at each frame sync. As an example, for a window size
of 8 and an offset of 148, the counter displays a value between 0 and 156.

Once the window size has completed, the channel counter resets to 0 in
preparation for the next frame. Because there are synchronization delays
between RSCLK and the processor clock, the channel register value is
approximate. It is never ahead of the channel being served, but it may lag
behind. See Figure 12-40.

Figure 12-39. SPORTx Multichannel Configuration Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration Register 2 (SPORTx_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Normal
1 - Reversed, H.100 mode

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

Delay between frame sync pulse and the
first data bit in Multichannel mode

MFD[3:0] (Multichannel
Frame Delay)

0 - Multichannel operations disabled
1 - Multichannel operations enabled

MCMEN (Multichannel Frame Mode Enable)

SPORT0:
0xFFC0 083C

SPORT1:
0xFFC0 093C

ADSP-BF537 Blackfin Processor Hardware Reference 12-69

SPORT Controllers

SPORTx_MRCSn Registers
The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx_MRCSn (SPORTx multichannel receive select)
registers (Figure 12-41) specify the active receive channels. There are four
registers, each with 32 bits, corresponding to the 128 channels. Setting a
bit enables that channel so that the SPORT selects that word for receive
from the multiple word block of data. For example, setting bit 0 selects
word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MRCSn register causes the SPORT to
receive the word in that channel’s position of the datastream; the received
word is loaded into the RX buffer. When the secondary receive side is
enabled by the RXSE bit, both inputs are processed on enabled channels.
Clearing the bit in the SPORTx_MRCSn register causes the SPORT to ignore
the data on either channel.

Figure 12-40. SPORTx Current Channel Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Current Channel Register (SPORTx_CHNL)

CHNL[9:0] (Current
Channel Indicator)

Reset = 0x0000

RO

SPORT0:
 0xFFC0 0834

SPORT1:
0xFFC0 0934

SPORT Registers

12-70 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 12-41. SPORTx Multichannel Receive Select Registers

Table 12-6. SPORTx Multichannel Receive Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MRCS0 0xFFC0 0850

SPORT0_MRCS1 0xFFC0 0854

SPORT0_MRCS2 0xFFC0 0858

SPORT0_MRCS3 0xFFC0 085C

SPORT1_MRCS0 0xFFC0 0950

SPORT1_MRCS1 0xFFC0 0954

SPORT1_MRCS2 0xFFC0 0958

SPORT1_MRCS3 0xFFC0 095C

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple word
block of data.

31

31

0

0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MRCS0

MRCS1

MRCS2

MRCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For memory-mapped
addresses, see
Table 12-6.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

ADSP-BF537 Blackfin Processor Hardware Reference 12-71

SPORT Controllers

SPORTx_MTCSn Registers
The multichannel selection registers are used to enable and disable indi-
vidual channels. The four SPORTx_MTCSn (SPORTx multichannel transmit
select) registers (Figure 12-42) specify the active transmit channels. There
are four registers, each with 32 bits, corresponding to the 128 channels.
Setting a bit enables that channel so that the SPORT selects that word for
transmit from the multiple word block of data. For example, setting bit 0
selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in a SPORTx_MTCSn register causes the SPORT to
transmit the word in that channel’s position of the datastream. When the
secondary transmit side is enabled by the TXSE bit, both sides transmit a

Figure 12-42. SPORTx Multichannel Transmit Select Registers

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSn)
For all bits, 0 - Channel disabled, 1 - Channel enabled, so SPORT selects that word from multiple
word block of data.

31

31

0

0

31

63

0

32

31

95

0

64

31

127

0

96

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

Reset = 0x0000 0000

MTCS0

MTCS1

MTCS2

MTCS3

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

Channel number

Bit number in register

For memory-mapped
addresses, see
Table 12-7.

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

0 00 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

Programming Examples

12-72 ADSP-BF537 Blackfin Processor Hardware Reference

word on the enabled channel. Clearing the bit in the SPORTx_MTCSn
register causes both SPORT controllers’ data transmit pins to three-state
during the time slot of that channel.

Programming Examples
This section shows an example of typical usage of the SPORT peripheral
in conjunction with the DMA controller. See Listing 12-1 through
Listing 12-4.

The SPORT is usually employed for high-speed, continuous serial trans-
fers. The example reflects this, in that the SPORT is set-up for
auto-buffered, repeated DMA transfers.

Because of the many possible configurations, the example uses generic
labels for the content of the SPORT’s configuration registers
(SPORTx_RCRx and SPORTx_TCRx) and the DMA configuration. An example
value is given in the comments, but for the meaning of the individual bits
the user is referred to the detailed explanation in this chapter.

The example configures both the receive and the transmit section. Since
they are completely independent, the code uses separate labels.

Table 12-7. SPORTx Multichannel Transmit Select Register
Memory-Mapped Addresses

Register Name Memory-Mapped Address

SPORT0_MTCS0 0xFFC0 0840

SPORT0_MTCS1 0xFFC0 0844

SPORT0_MTCS2 0xFFC0 0848

SPORT0_MTCS3 0xFFC0 084C

SPORT1_MTCS0 0xFFC0 0940

SPORT1_MTCS1 0xFFC0 0944

SPORT1_MTCS2 0xFFC0 0948

SPORT1_MTCS3 0xFFC0 094C

ADSP-BF537 Blackfin Processor Hardware Reference 12-73

SPORT Controllers

SPORT Initialization Sequence
The SPORT’s receiver and transmitter are configured, but they are not
enabled yet.

Listing 12-1. SPORT Initialization

Program_SPORT_TRANSMITTER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

/* Configure Clock speeds */

R1 = SPORT_TCLK_CONFIG; /* Divider SCLK/TCLK (value 0 to

65535) */

W[P0 + (SPORT0_TCLKDIV - SPORT0_TCR1)] = R1;

/* TCK divider register */

/* number of Bitclocks between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_TFSDIV_CONFIG;

W[P0 + (SPORT0_TFSDIV - SPORT0_TCR1)] = R1;

/* TFSDIV register */

/* Transmit configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_TRANSMIT_CONF_2;

W[P0 + (SPORT0_TCR2 - SPORT0_TCR1)] = R1;

/* Configuration register 1 (for instance 0x4E12 for

internally generated clk and framesync) */

R1 = SPORT_TRANSMIT_CONF_1;

W[P0] = R1;

ssync;

/* NOTE: SPORT0 TX NOT enabled yet (bit 0 of TCR1 must be zero) */

Programming Examples

12-74 ADSP-BF537 Blackfin Processor Hardware Reference

Program_SPORT_RECEIVER_Registers:

/* Set P0 to SPORT0 Base Address */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

/* Configure Clock speeds */

R1 = SPORT_RCLK_CONFIG; /* Divider SCLK/RCLK (value 0

 to 65535) */

W[P0 + (SPORT0_RCLKDIV - SPORT0_RCR1)] = R1; /* RCK divider

register */

/* number of Bitclock between FrameSyncs -1 (value SPORT_SLEN

to 65535) */

R1 = SPORT_RFSDIV_CONFIG;

W[P0 + (SPORT0_RFSDIV - SPORT0_RCR1)] = R1;

/* RFSDIV register */

/* Receive configuration */

/* Configuration register 2 (for instance 0x000E for 16-bit

wordlength) */

R1 = SPORT_RECEIVE_CONF_2;

W[P0 + (SPORT0_RCR2 - SPORT0_RCR1)] = R1;

/* Configuration register 1 (for instance 0x4410 for external

clk and framesync) */

R1 = SPORT_RECEIVE_CONF_1;

W[P0] = R1;

ssync; /* NOTE: SPORT0 RX NOT enabled yet (bit 0 of RCR1

 must be zero) */

ADSP-BF537 Blackfin Processor Hardware Reference 12-75

SPORT Controllers

DMA Initialization Sequence
Next the DMA channels for receive (channel3) and for transmit
(channel4) are set up for auto-buffered, one-dimensional, 32-bit transfers.
Again, there are other possibilities, so generic labels have been used, with a
particular value shown in the comments. See Chapter 5, “Direct Memory
Access”, for a detailed explanation of the bits.

Note that the DMA channels can be enabled at the end of the configura-
tion since the SPORT is not enabled yet. However, if preferred, the user
can enable the DMA later, immediately before enabling the SPORT. The
only requirement is that the DMA channel be enabled before the associ-
ated peripheral is enabled to start the transfer.

Listing 12-2. DMA Initialization

Program_DMA_Controller:

/* Receiver (DMA channel 3) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA3_CONFIG);

P0.h = hi(DMA3_CONFIG);

/* Configuration (for instance 0x108A for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_RECEIVE_CONF(z);

W[P0] = R0; /* configuration register */

/* rx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(rx_buf)/4)(z);

W[P0 + (DMA3_X_COUNT - DMA3_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

Programming Examples

12-76 ADSP-BF537 Blackfin Processor Hardware Reference

W[P0 + (DMA3_X_MODIFY - DMA3_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer

to be filled */

R1.l = rx_buf;

R1.h = rx_buf;

[P0 + (DMA3_START_ADDR - DMA3_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

/* Transmitter (DMA channel 4) */

/* Set P0 to DMA Base Address */

P0.l = lo(DMA4_CONFIG);

P0.h = hi(DMA4_CONFIG);

/* Configuration (for instance 0x1088 for Autobuffer, 32-bit

wide transfers) */

R0 = DMA_TRANSMIT_CONF(z);

W[P0] = R0; /* configuration register */

/* tx_buf = Buffer in Data memory (divide count by four because

of 32-bit DMA transfers) */

R1 = (length(tx_buf)/4)(z);

W[P0 + (DMA4_X_COUNT - DMA4_CONFIG)] = R1;

/* X_count register */

R1 = 4(z); /* 4 bytes in a 32-bit transfer */

W[P0 + (DMA4_X_MODIFY - DMA4_CONFIG)] = R1;

/* X_modify register */

/* start_address register points to memory buffer to be

transmitted from */

R1.l = tx_buf;

ADSP-BF537 Blackfin Processor Hardware Reference 12-77

SPORT Controllers

R1.h = tx_buf;

[P0 + (DMA4_START_ADDR - DMA4_CONFIG)] = R1;

BITSET(R0,0); /* R0 still contains value of CONFIG register -

set bit 0 */

W[P0] = R0; /* enable DMA channel (SPORT not enabled yet) */

Interrupt Servicing
The receive channel and the transmit channel will each generate an inter-
rupt request if so programmed. The following code fragments show the
minimum actions that must be taken. Not shown is the programming of
the core and system event controllers.

Listing 12-3. Servicing an Interrupt

RECEIVE_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA3_IRQ_STATUS);

P0.l = lo(DMA3_IRQ_STATUS);

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

TRANSMIT_ISR:

[--SP] = RETI; /* nesting of interrupts */

/* clear DMA interrupt request */

P0.h = hi(DMA4_IRQ_STATUS);

P0.l = lo(DMA4_IRQ_STATUS);

Programming Examples

12-78 ADSP-BF537 Blackfin Processor Hardware Reference

R1 = 1;

W[P0] = R1.l; /* write one to clear */

RETI = [SP++];

rti;

Starting a Transfer
After the initialization procedure outlined in the previous sections, the
receiver and transmitter are enabled. The core may just wait for interrupts.

Listing 12-4. Starting a Transfer

/* Enable Sport0 RX and TX */

P0.h = hi(SPORT0_RCR1);

P0.l = lo(SPORT0_RCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Receiver (set bit 0) */

P0.h = hi(SPORT0_TCR1);

P0.l = lo(SPORT0_TCR1);

R1 = W[P0](Z);

BITSET(R1,0);

W[P0] = R1;

ssync; /* Enable Transmitter (set bit 0) */

/* dummy wait loop (do nothing but waiting for interrupts) */

wait_forever:

jump wait_forever;

ADSP-BF537 Blackfin Processor Hardware Reference 13-1

13 UART PORT CONTROLLERS

This chapter describes the Universal Asynchronous Receiver/Transmitter
(UART) modules. Following an overview and a list of key features is a
description of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

This chapter contains:

• “Overview” on page 13-1

• “Features” on page 13-2

• “Interface Overview” on page 13-3

• “Description of Operation” on page 13-5

• “Programming Model” on page 13-16

• “UART Registers” on page 13-20

• “Programming Examples” on page 13-33

Overview
The processor features two separate and identical UART modules.

The UART modules are full-duplex peripherals compatible with PC-style
industry-standard UARTs, sometimes called Serial Controller Interfaces
(SCI). The UARTs convert data between serial and parallel formats. The
serial communication follows an asynchronous protocol that supports var-
ious word length, stop bits, bit rate, and parity generation options.

Features

13-2 ADSP-BF537 Blackfin Processor Hardware Reference

Features
Each UART includes these features:

• 5 – 8 data bits

• 1 or 2 stop bits (1 1/2 in 5-bit mode)

• Even, odd, and sticky parity bit options

• 3 interrupt outputs for reception, transmission, and status

• Independent DMA operation for receive and transmit

• SIR IrDA operation mode

• Internal loop back

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and
LIN standards, but usually require external transceiver devices to meet
electrical requirements. In IrDA® (Infrared Data Association) mode, the
UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol.

ADSP-BF537 Blackfin Processor Hardware Reference 13-3

UART Port Controllers

Interface Overview
Figure 13-1 shows a simplified block diagram of one UARTx module and
how it interconnects to the Blackfin architecture and to the outside world.

External Interface
Each UART features an RX and a TX pin available through port F. These
two pins usually connect to an external transceiver device that meets the
electrical requirements of full duplex (for example, EIA-232, EIA-422,

Figure 13-1. UART Block Diagram

UARTx_IER

UARTx_THR

UARTx_RBR

UARTx_LSR

UARTx_LCR

UARTx_IIR

UARTx_MCR

SIC CONTROLLER

UARTx_DLL

UARTx_DLH

DMA CONTROLLER

UARTx_SCR

UARTx_GCTL

TSR

RSR P
O

R
T

 F

TRANSCEIVER

UARTxR
X

R
E

Q

T
X

R
E

Q

PA
B

D
A

B

E
R

R
E

Q

8 8

++

BLACKFIN

RX

TX

Interface Overview

13-4 ADSP-BF537 Blackfin Processor Hardware Reference

4-wire EIA-485) or half duplex (for example, 2-wire EIA-485, LIN) stan-
dards. While the UART0 signals are multiplexed with DMA request
inputs, the UART1 signals compete with timer 6 and timer 7. To connect
UART signals to the respective pins, clear the PFDE and PFTE bits in the
PORT_MUX register, and enable the alternate function in the PORTF_FER reg-
ister. If only the receive or only the transmit channel of a UART module is
used, the unused pin can still function as a General-Purpose I/O (GPIO).

 Modem status and control functionality is not supported by the
UART modules, but may be implemented using GPIO pins.

Internal Interface
The UARTs are DMA-capable peripherals with support for separate TX
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. Each UART has its own separate transmit
and receive DMA channels. For more information on DMA, see
Chapter 5, “Direct Memory Access”.

All UART registers are 8 bits wide. They connect to the PAB bus. How-
ever, some registers share their address as controlled by the DLAB bit in the
UARTx_LCR register. The UARTx_RBR and UARTx_THR registers also connect to
the DAB bus

Timer 1 provides a hardware assisted autobaud detection mechanism for
use with UART 0. Similarly, timer 6 supports UART 1. See Chapter 15,
“General-Purpose Timers”, for more information.

ADSP-BF537 Blackfin Processor Hardware Reference 13-5

UART Port Controllers

Description of Operation
The following sections describe the operation of the UART.

UART Transfer Protocol
UART communication follows an asynchronous serial protocol, consisting
of individual data words. A word has 5 to 8 data bits.

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. The for-
mat of received and transmitted character frames is controlled by the line
control register (UARTx_LCR). Data is always transmitted and received least
significant bit (LSB) first.

Figure 13-2 shows a typical physical bitstream measured on one of the TX
pins.

Aside from the standard UART functionality, the UART also supports
half-duplex serial data communication via infrared signals, according to
the recommendations of the Infrared Data Association (IrDA). The physi-
cal layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Figure 13-2. Bitstream on a TX Pin Transmitting an “S” Character (0x53)

DATA BITS STOP BIT(S)

START BIT LSB PARITY BIT (OPTIONAL, ODD OR EVEN)

D0 D1 D2 D3 D4 D5 D6 D7

Description of Operation

13-6 ADSP-BF537 Blackfin Processor Hardware Reference

Using the 16x data rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered.

IrDA support is enabled by setting the IREN bit in the UARTx_GCTL register.
The IrDA application requires external transceivers.

UART Transmit Operation
Receive and transmit paths operate completely independently except that
the bit rate and the frame format are identical for both transfer directions.

Transmission is initiated by writes to the UARTx_THR register. If no former
operation is pending, the data is immediately passed from the UARTx_THR
register to the internal TSR register where it is shifted out at a bit rate equal
to SCLK/(16 × Divisor) with start, stop, and parity bits appended as
defined the UARTx_LCR register. The least significant bit (LSB) is always
transmitted first. This is bit 0 of the value written to UARTx_THR.

Writes to the UARTx_THR register clear the THRE flag. Transfers of data from
UARTx_THR to the transmit shift registers (TSR) set this status flag in
UARTx_LSR again.

When enabled by the ETBEI bit in the UARTx_IER register, a 0 to 1 transi-
tion of the THRE flag requests an interrupt on the dedicated TXREQ output.
This signal is routed through the DMA controller. If the associated DMA
channel is enabled, the TXREQ signal functions as a DMA request, other-
wise the DMA controller simply forwards it to the SIC interrupt
controller.

The UARTx_THR register and the internal TSR register can be seen as a
two-stage transmit buffer. When data is pending in either one of these reg-
isters, the TEMT flag is low. As soon as the data has left the TSR register, the

ADSP-BF537 Blackfin Processor Hardware Reference 13-7

UART Port Controllers

TEMT bit goes high again and indicates that all pending transmit operation
has finished. At that time it is safe to disable the UCEN bit or to three-state
off-chip line drivers.

UART Receive Operation
The receive operation uses the same data format as the transmit configura-
tion, except that one valid stop bit is always sufficient, that is, the STB bit
has no impact to the receiver.

After detection of the start bit, the received word is shifted into the inter-
nal shift register (RSR) at a bit rate of SCLK/(16 x Divisor). Once the
appropriate number of bits (including one stop bit) is received, the con-
tent of the RSR register is transferred to the UARTx_RBR registers, shown in
Figure 13-11 on page 13-27. Finally, the data ready (DR) bit and the status
flags are updated in the UARTx_LSR register, to signal data reception, parity,
and also error conditions, if required.

The RSR and the UARTx_RBR registers can be seen as an almost two-stage
receive buffer. If the stop bit of a second byte is received before software
reads the first byte from the UARTx_RBR register, an overrun error is
reported and the first byte is overwritten.

If enabled by the ERBFI bit in the UARTx_IER register, a 0 to 1 transition of
the DR flag requests an interrupt on the dedicated RXREQ output. This sig-
nal is routed through the DMA controller. If the associated DMA channel
is enabled, the RXREQ signal functions as a DMA request, otherwise the
DMA controller simply forwards it to the SIC interrupt controller.

If errors are detected during reception, an interrupt can be requested to a
separate error interrupt output. This error request goes directly to the SIC
interrupt controller. However, it is hard-wired with the error requests of
other modules. The error handler routine may need to interrogate multi-
ple modules as to whether they requested the event. Error requests must

Description of Operation

13-8 ADSP-BF537 Blackfin Processor Hardware Reference

be enabled by the ELSI bit in the UARTx_IER register. The following error
situations are detected. Every error has an indicating bit in the UARTx_LSR
register.

• Overrun error (OE bit)

• Parity error (PE bit)

• Framing error/Invalid stop bit (FE bit)

• Break indicator (BI bit)

Reception is started when a falling edge is detected on the RX input pin.
The receiver attempts to see a start bit. For better immunity against noise
and hazards on the line, the receiver oversamples every bit 16 times and
does a majority decision based on the mid three samples. The data is
shifted immediately into the internal RSR register. After the 9th sample of
the first stop bit is processed, the received data is copied to the UARTx_RBR
register and the receiver recovers itself for further data.

The sampling clock equal to 16 times the bit rate samples the data bits
close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter’s data rate, the sampling point may drift relative to the
center of the data bits. The sampling point is synchronized again with
each start bit, so the error accumulates only over the length of a single
word. A receive filter removes spurious pulses of less than two times the
sampling clock period.

IrDA Transmit Operation
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted if the TPOLC bit is cleared, so a 0
is transmitted as a high pulse of 16 UART clock periods and a 1 is trans-
mitted as a low pulse for 16 UART clock periods. The leading edge of the
pulse is then delayed by six UART clock periods. Similarly, the trailing
edge of the pulse is truncated by eight UART clock periods. This results in

ADSP-BF537 Blackfin Processor Hardware Reference 13-9

UART Port Controllers

the final representation of the original 0 as a high pulse of only 3/16 clock
periods in a 16-cycle UART clock period. The pulse is centered around
the middle of the bit time, as shown in Figure 13-3. The final IrDA pulse
is fed to the off-chip infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 13-1 on page 13-13, the error terms associated with the bit rate gen-
erator are very small and well within the tolerance of most infrared
transceiver specifications.

IrDA Receive Operation
The IrDA receiver function is more complex than the transmit function.
The receiver must discriminate the IrDA pulse and reject noise. To do
this, the receiver looks for the IrDA pulse in a narrow window centered
around the middle of the expected pulse.

Glitch filtering is accomplished by counting 16 system clocks from the
time an initial pulse is seen. If the pulse is absent when the counter
expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This is
acceptable because glitches originating from on-chip capacitive cross-cou-
pling typically do not last for more than a fraction of the system clock
period. Sources outside of the chip and not part of the transmitter can be

Figure 13-3. IrDA Transmit Pulse

 0 1 0

8/16

9/167/16

16/16

NRZ

INVERTED

FINAL
IrDA

8/16

9/167/16

16/16

Description of Operation

13-10 ADSP-BF537 Blackfin Processor Hardware Reference

avoided by appropriate shielding. The only other source of a glitch is the
transmitter itself. The processor relies on the transmitter to perform
within specification. If the transmitter violates the specification, unpre-
dictable results may occur. The 4-bit counter adds an extra level of
protection at a minimal cost. Note because the system clock can change
across systems, the longest glitch tolerated is inversely proportional to the
system clock frequency.

The receive sampling window is determined by a counter that is clocked at
the 16x bit-time sample clock. The sampling window is re-synchronized
with each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 13-4
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

ADSP-BF537 Blackfin Processor Hardware Reference 13-11

UART Port Controllers

Interrupt Processing
Each UART module has three interrupt outputs. One is dedicated for
transmission, one for reception, and the third is used to report line status.
As shown in Figure 13-1 on page 13-3, the transmit and receive requests
are routed through the DMA controller. The status request goes directly
to the SIC controller after being ORed with interrupt signals from other
modules.

If the associated DMA channel is enabled, the request functions as a DMA
request. If the DMA channel is disabled, it simply forwards the request to
the SIC interrupt controller. Note that a DMA channel must be associated
with the UART module to enable TX and RX interrupts. Otherwise, the
transmit and receive requests cannot be forwarded. Refer to the descrip-
tion of the peripheral map registers on page 5-71 in the “Direct Memory
Access” chapter.

Figure 13-4. IrDA Receiver Pulse Detection

 0 1

16/16

PULSE
DETECT

OR
OUTPUT

SAMPLING
WINDOWN

8/16 16/16

RECOVERED
NRZ INPUT 1 0

8/16

 0 1

RECEIVED
IrDA

PULSE
IR POL = 1

RECEIVED
IrDA

PULSE
IR POL = 0

Description of Operation

13-12 ADSP-BF537 Blackfin Processor Hardware Reference

Transmit interrupts are enabled by the ETBEI bit in the UARTx_IER register.
If set, the transmit request is asserted when the THRE bit in the UART_LSR
register transitions from 0 to 1, indicating that the TX buffer is ready for
new data.

Note that the THRE bit resets to 1. When the ETBEI bit is set in the
UARTx_IER register, the UART module immediately issues an interrupt or
DMA request. This way, no special handling of the first character is
required when transmission of a string is initiated. Simply set the ETBEI
bit and let the interrupt service routine load the first character from mem-
ory and write it to the UARTx_THR register in the normal manner.
Accordingly, the ETBEI bit can be cleared if the string transmission has
completed. For more information, see “DMA Mode” on page 13-18.

The THRE bit is cleared by hardware when new data is written to the
UARTx_THR register. These writes also clear the TX interrupt request. How-
ever, they also initiate further transmission. If software doesn’t want to
continue transmission, the TX request can alternatively be cleared by
either clearing the ETBEI bit or by reading the UARTx_IIR register.

Receive interrupts are enabled by the ERBFI bit in the UARTx_IER register.
If set, the receive request is asserted when the DR bit in the UART_LSR regis-
ter transitions from 0 to 1, indicating that new data is available in the
UARTx_RBR register. When software reads the UARTx_RBR, hardware clears
the DR bit again. Reading UARTx_RBR also clears the RX interrupt request.

Status interrupts are enabled by the ELSI bit in the UARTx_IER register. If
set, the status interrupt request is asserted when any error bit in the
UART_LSR register transitions from 0 to 1. Refer to “UARTx_LSR Regis-
ters” on page 13-25 for details. Reading the UARTx_LSR register clears the
error bits destructively. These reads also clear the status interrupt request.

For legacy reasons, the UARTx_IIR registers still reflect the UART interrupt
status. Legacy operation may require bundling all UART interrupt sources
to a single interrupt channel and servicing them all by the same software

ADSP-BF537 Blackfin Processor Hardware Reference 13-13

UART Port Controllers

routine. This can be established by globally assigning all UART interrupts
to the same interrupt priority, by using the System Interrupt Controller
(SIC).

 If either the line status interrupt or the receive data interrupt has
been assigned a lower interrupt priority by the SIC, a deadlock
condition can occur. To avoid this, always assign the lowest prior-
ity of the enabled UART interrupts to the UARTx_THR empty event.

Bit Rate Generation
The UART clock is enabled by the UCEN bit in the UARTx_GCTL register.

The bit rate is characterized by the system clock (SCLK) and the 16-bit
divisor. The divisor is split into the UARTx_DLL and the UARTx_DLH regis-
ters. These registers form a 16-bit divisor. The bit clock is divided by 16
so that:

BIT RATE = SCLK/(16 x Divisor)

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

Table 13-1 provides example divide factors required to support most stan-
dard baud rates.

Table 13-1. UART Bit Rate Examples With 100 MHz SCLK

Bit Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

Description of Operation

13-14 ADSP-BF537 Blackfin Processor Hardware Reference

 Careful selection of SCLK frequencies, that is, even multiples of
desired bit rates, can result in lower error percentages.

Note that the UART module is clocked 16 times faster than the bit clock.
This is required to oversample bits on reception and to generate RZI code
in IrDA mode.

Autobaud Detection
At the chip level, the UART RX pins are routed to the alternate capture
inputs (TACIx) of the general purpose timers. When working in WDTH_CAP
mode these timers can be used to automatically detect the bit rate applied
to the RX pin by an external device. For more information, see Chapter 15,
“General-Purpose Timers”.

The capture capabilities of the timers are often used to supervise the bit
rate at runtime. If the Blackfin UART was talking to any device supplied
by a weak clock oscillator that drifts over time, the Blackfin can re-adjust
its UART bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations. There,
the Blackfin processor is most likely a slave device waiting for the host to
send a predefined autobaud character as discussed below. This is exactly
the scenario used for UART booting. In this scenario, it is recommended
that the UART clock enable bit UCEN is not enabled while autobaud
detection is performed to prevent the UART from starting reception with
incorrect bit rate matching. Alternatively, the UART can be disconnected
from the RX pin by setting the LOOP_EN bit.

921600 7 892857.14 3.119

6250000 1 6250000 -

Table 13-1. UART Bit Rate Examples With 100 MHz SCLK (Cont’d)

Bit Rate DL Actual % Error

ADSP-BF537 Blackfin Processor Hardware Reference 13-15

UART Port Controllers

A software routine can detect the pulse widths of serial stream bit cells.
Because the sample base of the timers is synchronous with the UART
operation—all derived from SCLK—the pulse widths can be used to calcu-
late the baud rate divider for the UART.

DIVISOR = (TIMERx_WIDTH) / (16 x Number of captured UART bits)

In order to increase the number of timer counts and therefore the resolu-
tion of the captured signal, it is recommended not to measure just the
pulse width of a single bit, but to enlarge the pulse of interest over more
bits. Traditionally, a NULL character (ASCII 0x00) was used in autobaud
detection, as shown in Figure 13-5.

Because the example frame in Figure 13-5 encloses 8 data bits and 1 start
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16 x 9)

Real UART RX signals often have asymmetrical falling and rising edges,
and the sampling logic level is not exactly in the middle of the signal volt-
age range. At higher bit rates, such pulse width-based autobaud detection
might not return adequate results without additional analog signal condi-
tioning. Measuring signal periods works around this issue and is strongly
recommended.

Figure 13-5. Autobaud Detection Character 0x00

FRAME WIDTH

S 1 2 3 4 5 6 7 STOP0

Programming Model

13-16 ADSP-BF537 Blackfin Processor Hardware Reference

For example, predefine ASCII character “@” (0x40) as the autobaud
detection character and measure the period between two subsequent fall-
ing edges. As shown in Figure 13-6, measure the period between the
falling edge of the start bit and the falling edge after bit 6. Since this
period encloses 8 bits, apply the formula:

DIVISOR = TIMERx_PERIOD >> 7

An example is provided in Listing 13-2 on page 13-34.

Programming Model
The following sections describe a programming model for the UARTs.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received data
can be read from UARTx_RBR. The processor must write and read one char-
acter at time.

To prevent any loss of data and misalignments of the serial datastream, the
UARTx_LSR register provides two status flags for handshaking—THRE and
DR.

Figure 13-6. Autobaud Detection Character 0x40

PERIOD

STOPS 1 2 3 4 5 6 70

ADSP-BF537 Blackfin Processor Hardware Reference 13-17

UART Port Controllers

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR
when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value. When
UARTx_RBR is not read in time, newly received data overwrites UARTx_RBR
and the OE flag is set.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.
Be careful if transmit and receive are served by different software threads,
because read operations on UART_LSR and UART_IIR registers are destruc-
tive. Polling the SIC_ISR register without enabling the interrupts by
SIC_MASK is an alternate method of operation to consider. Software can
write up to two words into the UARTx_THR register before enabling the
UART clock. As soon as the UCEN bit is set, those two words are sent.

Alternatively, UART writes and reads can be accomplished by interrupt
service routines (ISRs). Separate interrupt lines are provided for UART
TX, UART RX, and UART error. The independent interrupts can be
enabled individually by the UARTx_IER register.

The ISRs can evaluate the status bit field within the UARTx_IIR register to
determine the signalling interrupt source. If more than one source is sig-
nalling, the status field displays the one with the highest priority.
Interrupts also must be assigned and unmasked by the processor’s inter-
rupt controller. The ISRs must clear the interrupt latches explicitly. See
Figure 13-13 on page 13-30.

Programming Model

13-18 ADSP-BF537 Blackfin Processor Hardware Reference

DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The software does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabili-
ties of 6 words at both the transmit and receive sides. In DMA mode, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities. For more informa-
tion, see Chapter 5, “Direct Memory Access”.

DMA interrupt routines must explicitly write 1s to the corresponding
DMAx_IRQ_STATUS registers to clear the latched request of the pending
interrupt.

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. The UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

For transmit DMA, it is recommended to set the SYNC bit in the
DMAx_CONFIG register. With this bit set, the interrupt generation is delayed
until the entire DMA FIFO has been drained to the UART module. The
UART TX DMA interrupt service routine is allowed to start another
DMA sequence or to clear the ETBEI control bit only when the SYNC bit is
set.

ADSP-BF537 Blackfin Processor Hardware Reference 13-19

UART Port Controllers

If another DMA is started while data is still pending in the UART trans-
mitter, there is no need to pulse the ETBEI bit to initiate the second DMA.
If, however, the recent byte has already been loaded into the TSR registers
(that is, the THRE bit is set), then the ETBEI bit must be cleared and set
again to let the second DMA start.

In DMA transmit mode, the ETBEI bit enables the peripheral request to
the DMA FIFO. The strobe on the memory side is still enabled by the
DMAEN bit. If the DMA count is less than the DMA FIFO depth, which is
4, then the DMA interrupt might be requested already before the ETBEI
bit is set. If this is not wanted, set the SYNC bit in the DMAx_CONFIG register.

 Regardless of the SYNC setting, the DMA stream has not left the
UART transmitter completely at the time the interrupt is gener-
ated. Transmission may abort in the middle of the stream, causing
data loss, if the UART clock was disabled without additional poll-
ing of the TEMT bit.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit
operation. Sign extension is not supported.

Mixing Modes
Especially on the transmit side, switching from DMA mode to non-DMA
operation on the fly requires some thought. By default, the interrupt tim-
ing of the DMA is synchronized with the memory side of the DMA
FIFOs. The TX DMA completion interrupt is generated after the last byte
has been copied from the memory into the DMA FIFO. The TX DMA
interrupt service routine is not yet permitted to start other DMA
sequences or to switch to non-DMA transmission. The interrupt is
requested by the time the DMA_DONE bit is set. The DMA_RUN bit, however,
remains set until the data has completely left the TX DMA FIFO.

Therefore, when planning to switch from DMA to non-DMA of opera-
tion, always set the SYNC bit in the DMAx_CONFIG word of the last descriptor
or work unit before handing over control to non-DMA mode. Then, after

UART Registers

13-20 ADSP-BF537 Blackfin Processor Hardware Reference

the interrupt occurs, software can write new data into the UARTx_THR regis-
ter as soon as the THRE bit permits. If the SYNC bit cannot be set, software
can poll the DMA_RUN bit instead.

When switching from non-DMA to DMA operation, take care that the
very first DMA request is issued properly. If the DMA is enabled while the
UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the TEMT bit became high, the ETBEI bit should be
pulsed to initiate DMA transmission.

UART Registers
The processor provides a set of PC-style industry-standard control and
status registers for each UART. These memory-mapped registers (MMRs)
are byte-wide registers that are mapped as half words with the most signif-
icant byte zero filled. Table 13-2 provides an overview of the UART
registers.

Consistent with industry-standard devices, multiple registers are mapped
to the same address location. The UARTx_DLH and UARTx_DLL registers share
their addresses with the UARTx_THR registers, the UARTx_RBR registers, and
the UARTx_IER registers. The DLAB bit in the UARTx_LCR registers controls
which set of registers is accessible at a given time. Software must use
16-bit word load/store instructions to access these registers.

Transmit and receive channels are both buffered. The UARTx_THR registers
buffer the transmit shift register (TSR) and the UARTx_RBR registers buffer
the receive shift register (LSR). The shift registers are not directly accessible
by software.

ADSP-BF537 Blackfin Processor Hardware Reference 13-21

UART Port Controllers

Table 13-2. UART Register Overview

Name Address
Offset

DLAB Operation Reset
Value

Function

UARTx_RBR 0x0000 0 R 0x00 Receive buffer register

UARTx_THR 0x0000 0 W 0x00 Transmit hold register

UARTx_DLL 0x0000 1 R/W 0x01 Divisor latch low byte

UARTx_IER 0x0004 0 R/W 0x00 Interrupt enable regis-
ter

UARTx_DLH 0x0004 1 R/W 0x00 Divisor latch high byte

UARTx_IIR 0x0008 X R
Read operations are
destructive

0x01 Interrupt identifica-
tion register

UARTx_LCR 0x000C X R/W 0x00 Line control register

UARTx_MCR 0x0010 X R/W 0x00 Modem control regis-
ter

UARTx_LSR 0x0014 X R
Read operations are
destructive

0x60 Line status register

UARTx_SCR 0x001C X R/W 0x00 Scratch register

UARTx_GCTL 0x0024 X R/W 0x00 Global control register

UART Registers

13-22 ADSP-BF537 Blackfin Processor Hardware Reference

UARTx_LCR Registers
The UARTx_LCR registers, shown in Figure 13-7, control the format of
received and transmitted character frames.

The 2-bit WLS field determines whether the transmitted and received
UART word consists of 5, 6, 7 or 8 data bits.

The STB bit controls how many stop bits are appended to transmitted
data. When STB=0, one stop bit is transmitted. If WLS is non zero, STB=1
instructs the transmitter to add one additional stop bit, two stop bits in
total. If WLS=0 and 5-bit operation is chosen, STB=1 forces the transmitter
to append one additional half bit, 1 1/2 stop bits in total. Note that this
bit does not impact data reception—the receiver is always satisfied with
one stop bit.

Figure 13-7. UART Line Control Registers

DLAB (Divisor Latch Access)
0 - Enables access to UARTx_THR,

UARTx_RBR, and UARTx_IER
1 - Enables access to UARTx_DLL

and UARTx_DLH

SB (Set Break)
0 - No force
1 - Force TX pin to 0

STP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 0, parity transmitted and checked as 1
EPS = 1, parity transmitted and checked as 0

EPS (Even Parity Select)
0 - Odd parity when PEN = 1 and STP = 0
1 - Even parity

WLS[1:0] (Word Length Select)
00 - 5-bit word
01 - 6-bit word
10 - 7-bit word
11 - 8-bit word

STB (Stop Bits)
0 - 1 stop bit
1 - 2 stop bits for non-5-bit

word length or 1 1/2 stop
bits for 5-bit word length

PEN (Parity Enable)
0 - Parity not transmitted or

checked
1 - Transmit and check parity

UART Line Control Registers (UARTx_LCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
UART0:

0xFFC0 040C
UART1:

0xFFC0 200C

ADSP-BF537 Blackfin Processor Hardware Reference 13-23

UART Port Controllers

The PEN bit inserts one additional bit between the most significant data bit
and the first stop bit. The polarity of this so-called parity bit depends on
data and the STP and EPS control bits. Both transmitter and receiver calcu-
late the parity value. The receiver compares the received parity bit with
the expected value and issues a parity error if they don’t match. If PEN is
cleared, the STP and the EPS bits are ignored.

The STP bit controls whether the parity is generated by hardware based on
the data bits or whether it is set to a fixed value. If STP=0 the hardware cal-
culates the parity bit value based on the data bits. Then, the EPS bit
determines whether odd or even parity mode is chosen. If EPS=0, odd par-
ity is used. That means that the total count of logical–1 data bits
including the parity bit must be an odd value. Even parity is chosen by
STP=0 and EPS=1. Then, the count of logical–1 bits must be a even value.
If the STP bit is set, then hardware parity calculation is disabled. In this
case, the sent and received parity equals the inverted EPS bit.

The example in Table 13-3 summarizes polarity behavior assuming 8-bit
data words (WLS=3).

Table 13-3. UART Parity

PEN STP EPS Data (hex) Data (binary, LSB
first)

Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 1 x x 0

UART Registers

13-24 ADSP-BF537 Blackfin Processor Hardware Reference

If set, the SB bit forces the TX pin to low asynchronously, regardless of
whether or not data is currently transmitted. It functions even when the
UART clock is disabled. Since the TX pin normally drives high, it can be
used as a flag output pin, if the UART is not used.

The DLAB bit controls whether the UARTx_RBR, UARTx_THR and UARTx_IER
registers are accessible by the PAB bus (DLAB=0) or the divisor latch regis-
ters DLH and DLL alternatively (DLAB=1).

UARTx_MCR Registers
The UARTx_MCR registers control the UART port, as shown in Figure 13-8.
Even if modem functionality is not supported, the UART modem control
registers are available in order to support the loopback mode.

Loopback mode disconnects the receiver’s input from the RX pin, but
redirects it to the transmit output internally.

Figure 13-8. UART Modem Control Registers

LOOP_ENA(Loopback mode enable)
Disconnects RX from RSR

UART Modem Control Registers (UARTx_MCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000UART0:
0xFFC0 0410

UART1:
0xFFC0 2010

ADSP-BF537 Blackfin Processor Hardware Reference 13-25

UART Port Controllers

UARTx_LSR Registers
The UARTx_LSR registers contain UART status information as shown in
Figure 13-9.

The DR bit indicates that data is available in the receiver and can be read
from the UARTx_RBR register. The bit is set by hardware when the receiver
detects the first valid stop bit. It is cleared by hardware when the
UARTx_RBR register is read.

The OE bit indicates that a start bit condition has been detected, but the
internal receive shift register (RSR) and the receive buffer (UARTx_RBR)
already contain data. New data overwrites the content of the buffers. To
avoid overruns read the UARTx_RBR register in time. The OE bit cleared
when the LSR register is read.

Figure 13-9. UART Line Status Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 1 1 0 0 0 0

DR (Data Ready)

TEMT (TSR and UARTx_THR Empty)

UART Line Status Registers (UARTx_LSR)

0 - Full
1 - Both empty

0 - THR not empty
1 - THR empty

0 - No break interrupt
1 - Break interrupt; this

indicates RX was held low
for more than the maximum
word length

BI (Break Interrupt)

THRE (THR Empty)

FE (Framing Error)

0 - No new data
1 - UARTx_RBR holds

new data

OE (Overrun Error)
0 - No overrun
1 - UARTx_RBR overwritten

before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

Reset = 0x0060

RO

UART0:
0xFFC0 0414

UART1:
0xFFC0 2014

UART Registers

13-26 ADSP-BF537 Blackfin Processor Hardware Reference

The PE bit indicates that the received parity bit does not match the
expected value. The PE bit is set simultaneously with the DR bit. The PE bit
cleared when the LSR register is read. Invalid parity bits can be simulated
by setting the FPE bit in the UARTx_GCTL register.

The FE bit indicates that the first stop bit has been sampled low. It is
cleared by hardware when the UARTx_RBR register is read. Invalid stop bits
can be simulated by setting the FFE bit in the UARTx_GCTL register.

The BI bit indicates that the first stop bit has been sampled low and the
entire data word, including parity bit, consists of low bits only. It is
cleared by hardware when the UARTx_RBR register is read.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see the Memory chap-
ter in Blackfin Processor Programming Reference.

The THRE bit indicates that the UART transmit channel is ready for new
data and software can write to UARTx_THR. Writes to UARTx_THR clear the
THRE bit. It is set again when data is passed from UARTx_THR to the internal
TSR register.

The TEMT bit indicates that both the UARTx_THR register and the internal
TSR register are empty. In this case the program is permitted to write to
the UARTx_THR register twice without losing data. The TEMT bit can also be
used as indicator that pending UART transmission has been completed.
At that time it is safe to disable the UCEN bit or to three-state the off-chip
line driver.

UARTx_THR Registers
The write-only UARTx_THR registers, shown in Figure 13-10, are mapped to
the same address as the read-only UARTx_RBR and UARTx_DLL registers. To
access UARTx_THR, the DLAB bit in UARTx_LCR must be cleared. When the
DLAB bit is cleared, writes to this address target the UARTx_THR register, and
reads from this address return the UARTx_RBR register.

ADSP-BF537 Blackfin Processor Hardware Reference 13-27

UART Port Controllers

UARTx_RBR Registers
The read-only UARTx_RBR registers, shown in Figure 13-11, are mapped to
the same address as the write-only UARTx_THR and UARTx_DLL registers.

To access UARTx_RBR, the DLAB bit in UARTx_LCR must be cleared. When the
DLAB bit is cleared, writes to this address target the UARTx_THR register,
while reads from this address return the UARTx_RBR register.

UARTx_IER Registers
The UARTx_IER registers, shown in Figure 13-12, are used to enable
requests for system handling of empty or full states of UART data regis-
ters. Unless polling is used as a means of action, the ERBFI and/or ETBEI
bits in this register are normally set.

Figure 13-10. UART Transmit Holding Registers

Figure 13-11. UART Receive Buffer Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Hold[7:0]

UART Transmit Holding Registers (UARTx_THR)
WO

Reset = 0x0000UART0:
0xFFC0 0400

UART1:
0xFFC0 2000

Receive Buffer[7:0]

UART Receive Buffer Registers (UARTx_RBR)
RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000UART0:
0xFFC0 0400

UART1:
0xFFC0 2000

UART Registers

13-28 ADSP-BF537 Blackfin Processor Hardware Reference

Setting this register without enabling system DMA causes the UART to
notify the processor of data inventory state by means of interrupts. For
proper operation in this mode, system interrupts must be enabled, and
appropriate interrupt handling routines must be present. For backward
compatibility, the UARTx_IIR still reflects the correct interrupt status.

 Each UART features three separate interrupt channels to handle
data transmit, data receive, and line status events independently,
regardless whether DMA is enabled or not. At system level the two
UART status interrupt channels are ORed prior being connected
to the SIC controller.

With system DMA enabled, the UART uses DMA to transfer data to or
from the processor. Dedicated DMA channels are available to receive and
transmit operation. Line error handling can be configured completely
independently from the receive/transmit setup.

The UARTx_IER registers are mapped to the same address as the UARTx_DLH
registers. To access UARTx_IER, the DLAB bit in UARTx_LCR must be cleared.

Figure 13-12. UART Interrupt Enable Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERBFI (Enable Receive Buf-
fer Full Interrupt)

UART Interrupt Enable Registers (UARTx_IER)

ETBEI (Enable Transmit
Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)
0 - No interrupt
1 - Generate RX interrupt if

DR bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate TX interrupt if

THRE bit in UARTx_LSR is
set

0 - No interrupt
1 - Generate line status interrupt if
any of UARTx_LSR[4:1] is set

Reset = 0x0000
UART0:

0xFFC0 0404
UART1:

0xFFC0 2004

ADSP-BF537 Blackfin Processor Hardware Reference 13-29

UART Port Controllers

The UART’s DMA is enabled by first setting up the system DMA control
registers and then enabling the UART ERBFI and/or ETBEI interrupts in
the UARTx_IER register. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not,
upon receiving these requests, the DMA control unit either generates a
direct memory access or passes the UART interrupt on to the system inter-
rupt handling unit. However, UART’s error interrupt goes directly to the
system interrupt handling unit, bypassing the DMA unit completely.

The ELSI bit enables interrupt generation on an independent interrupt
channel when any of the following conditions are raised by the respective
bit in the UARTx_LSR register:

• Receive overrun error (OE)

• Receive parity error (PE)

• Receive framing error (FE)

• Break interrupt (BI)

UARTx_IIR Registers
When cleared, the NINT bit signals that an interrupt is pending. The STA-
TUS field indicates the highest priority pending interrupt. The receive line
status has the highest priority; the UARTx_THR empty interrupt has the low-
est priority. In the case where both interrupts are signalling, the UARTx_IIR
reads 0x06.

When a UART interrupt is pending, the interrupt service routine (ISR)
needs to clear the interrupt latch explicitly. Figure 13-13 shows how to
clear any of the three latches.

UART Registers

13-30 ADSP-BF537 Blackfin Processor Hardware Reference

The TX interrupt request is cleared by writing new data to the UARTx_THR
register or by reading the UARTx_IIR register. Note the special role of the
UARTx_IIR register read in the case where the service routine does not want
to transmit further data.

If software stops transmission, it must read the UARTx_IIR register to reset
the interrupt request. As long as the UARTx_IIR register reads 0x04 or 0x06
(indicating that another interrupt of higher priority is pending), the
UARTx_THR empty latch cannot be cleared by reading UARTx_IIR.

 Because of the destructive nature of these read operations, special
care should be taken. For more information, see the Memory chap-
ter in Blackfin Processor Programming Reference.

UARTx_DLL Registers
The UARTx_DLL registers are mapped to the same addresses as the
UARTx_THR and UARTx_RBR registers. The DLAB bit in UARTx_LCR must be set
before the UARTx_DLL registers, shown in Figure 13-14, can be accessed.

Figure 13-13. UART Interrupt Identification Registers

NINT (Pending interrupt)

UART Interrupt Identification Registers (UARTx_IIR)
RO

STATUS[1:0]

0 - Interrupt pending
1 - No interrupt pending

00 - Reserved
01 - UARTx_THR empty. Write UARTx_THR or read UARTx_IIR to clear

interrupt request.
10 - Receive data ready. Read UART RBR to clear interrupt request.
11 - Receive line status. Read UARTx_LSR to clear interrupt request.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001
UART0:

0xFFC0 0408
UART1:

0xFFC0 2008

ADSP-BF537 Blackfin Processor Hardware Reference 13-31

UART Port Controllers

 Note the 16-bit divisor formed by UARTx_DLL resets to 0x0001,
resulting in the highest possible clock frequency by default. If the
UART is not used, disabling the UART clock saves power. The
UARTx_DLL registers can be programmed by software before or after
setting the UCEN bit.

UARTx_DLH Registers
The UARTx_DLH registers are mapped to the same addresses as the
UARTx_IER registers. The DLAB bit in UARTx_LCR must be set before the
UARTx_DLH registers, shown in Figure 13-15, can be accessed.

 Note the 16-bit divisor formed by UARTx_DLH resets to 0x0001,
resulting in the highest possible clock frequency by default. If the
UART is not used, disabling the UART clock saves power. The
UARTx_DLH registers can be programmed by software before or after
setting the UCEN bit.

Figure 13-14. UART Divisor Latch Low-Byte Registers

Figure 13-15. UART Divisor Latch High-Byte Registers

Divisor Latch Low Byte[7:0]

UART Divisor Latch Low Byte Registers (UARTx_DLL)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001
UART0:

0xFFC0 0400
UART1:

0xFFC0 2000

Divisor Latch High Byte[15:8]

UART Divisor Latch High Byte Registers (UARTx_DLH)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
UART0:

0xFFC0 0404
UART1:

0xFFC0 2004

UART Registers

13-32 ADSP-BF537 Blackfin Processor Hardware Reference

UARTx_SCR Registers
The contents of the 8-bit UARTx_SCR registers, shown in Figure 13-16, are
reset to 0x00. They are used for general-purpose data storage and do not
control the UART hardware in any way.

UARTx_GCTL Registers
The UARTx_GCTL registers, shown in Figure 13-17, contain the enable bit
for internal UART clocks and for the IrDA mode of operation of the
UARTs.

Figure 13-16. UART Scratch Registers

Figure 13-17. UART Global Control Registers

Scratch[7:0]

UART Scratch Registers (UARTx_SCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000
UART0:

0xFFC0 041C
UART1:

0xFFC0 201C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UCEN (UART Controller Enable)
0 - Disable UART
1 - Enable UART

Reset = 0x0000

IREN (Enable IrDA Mode)
0 - Disable IrDA
1 - Enable IrDAFPE (Force Parity Error on Transmit)

0 - Normal operation
1 - Force error

FFE (Force Framing Error on Transmit)
0 - Normal operation
1 - Force error

UART Global Control Registers (UARTx_GCTL)

TPOLC (IrDA TX Polarity
Change)
0 - Serial line idles low
1 - Serial line idles high

UART0:
0xFFC0 0424

UART1:
0xFFC0 2024

RPOLC (IrDA RX Polarity Change)
0 - Serial line idles low
1 - Serial line idles high

ADSP-BF537 Blackfin Processor Hardware Reference 13-33

UART Port Controllers

The UCEN bit enables the UART clocks. It also resets the state machine and
control registers when cleared.

Note that the UCEN bit was not present in previous UART implementa-
tions. It has been introduced to save power if the UART is not used.
When porting code, be sure to enable this bit.

The IrDA TX polarity change bit and the IrDA RX polarity change bit are
effective only in IrDA mode. The two force error bits, FPE and FFE, are
intended for test purposes. They are useful for debugging software, espe-
cially in loopback mode.

Programming Examples
The subroutine in Listing 13-1 shows a typical UART initialization
sequence.

Listing 13-1. UART Initialization

/**

 * Configures UART in 8 data bits, no parity, 1 stop bit mode.

 * Input parameters: r0 holds divisor latch value to be

 * written into

 * DLH:DLL registers.

 * p0 contains the UARTx_GCTL register address

 * Return values: none

 ***/

uart_init:

[--sp] = r7;

r7 = UCEN (z); /* First of all, enable UART clock */

w[p0+UART0_GCTL-UART0_GCTL] = r7;

r7 = DLAB (z); /* to set bit rate */

w[p0+UART0_LCR-UART0_GCTL] = r7; /* set DLAB bit first */

Programming Examples

13-34 ADSP-BF537 Blackfin Processor Hardware Reference

w[p0+UART0_DLL-UART0_GCTL] = r0; /* write lower byte to DLL */

r7 = r0 >> 8;

w[p0+UART0_DLH-UART0_GCTL] = r7; /* write upper byte to DLH */

r7 = STB | WLS(8) (z); /* clear DLAB again and config to */

w[p0+UART0_LCR-UART0_GCTL] = r7;

/* 8 bits, no parity, 2 stop bits */

r7 = [sp++];

rts;

uart_init.end:

The subroutine in Listing 13-2 performs autobaud detection similarly to
UART boot.

Listing 13-2. UART Autobaud Detection Subroutine

/***

 * Assuming 8 data bits, this functions expects a '@'

 * (ASCII 0x40) character

 * on the UARTx RX pin. A Timer performs the autobaud detection.

 * Input parameters: p0 contains the UARTx_GCTL register address

 * p1 contains the TIMERx_CONFIG register

 * address

 * Return values: r0 holds timer period value (equals 8 bits)

***/

uart_autobaud:

[--sp] = (r7:5,p5:5);

r5.h = hi(TIMER0_CONFIG); /* for generic timer use calculate

*/

r5.l = lo(TIMER0_CONFIG); /* specific bits first */

r7 = p1;

r7 = r7 - r5;

r7 >>= 4; /* r7 holds the 'x' of TIMERx_CONFIG now */

r5 = TIMEN0 (z);

ADSP-BF537 Blackfin Processor Hardware Reference 13-35

UART Port Controllers

r5 <<= r7; /* r5 holds TIMENx/TIMDISx now */

r6 = TRUN0 | TOVL_ERR0 | TIMIL0 (z);

r6 <<= r7;

CC = r7 <= 3;

r7 = r6 << 12;

if !CC r6 = r7; /* r6 holds TRUNx | TOVL_ERRx | TIMILx */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

/* clear pending latches */

/* period capture, falling edge to falling edge */

r7 = TIN_SEL | IRQ_ENA | PERIOD_CNT | WDTH_CAP (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

w[p5+TIMER_ENABLE-TIMER_STATUS] = r5;

uart_autobaud.wait: /* wait for timer event */

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.wait;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5; /* disable Timer x

*/

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

/* clear pending latches */

/* Save period value to R0 */

r0 = [p1 + TIMER0_PERIOD - TIMER0_CONFIG];

/* delay processing as autobaud character is still ongoing */

r7 = OUT_DIS | IRQ_ENA | PERIOD_CNT | PWM_OUT (z);

w[p1 + TIMER0_CONFIG - TIMER0_CONFIG] = r7;

Programming Examples

13-36 ADSP-BF537 Blackfin Processor Hardware Reference

w[p5 + TIMER_ENABLE - TIMER_STATUS] = r5;

uart_autobaud.delay:

r7 = w[p5 + TIMER_STATUS - TIMER_STATUS] (z);

r7 = r7 & r5;

CC = r7 == 0;

if CC jump uart_autobaud.delay;

w[p5 + TIMER_DISABLE - TIMER_STATUS] = r5;

[p5 + TIMER_STATUS - TIMER_STATUS] = r6;

(r7:5,p5:5) = [sp++];

rts;

uart_autobaud.end:

The parent routine in Listing 13-3 performs autobaud detection using
UART0 and TIMER1.

Listing 13-3. UART Autobaud Detection Parent Routine

p0.l = lo(PORTF_FER);

/* function enable on UART0 pins PF0 and PF1 */

p0.h = hi(PORTF_FER);

/* by default PORT_MUX register is all set */

r0 = PF1 | PF0 (z)

w[p0] = r0;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

p1.l = lo(TIMER1_CONFIG); /* select TIMER 1 */

p1.h = hi(TIMER1_CONFIG);

call uart_autobaud;

r0 >>= 7; /* divide PERIOD value by (16 x 8) */

call uart_init;

...

The subroutine in Listing 13-4 transmits a character by polling operation.

ADSP-BF537 Blackfin Processor Hardware Reference 13-37

UART Port Controllers

Listing 13-4. UART Character Transmission

/***

 * Transmit a single byte by polling the THRE bit.

 * Input parameters: r0 holds the character to be transmitted

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_putc:

[--sp] = r7;

uart_putc.wait:

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

CC = bittst(r7, bitpos(THRE));

if !CC jump uart_putc.wait;

w[p0+UART0_THR-UART0_GCTL] = r0; /* write initiates transfer

*/

r7 = [sp++];

rts;

uart_putc.end:

Use the routine shown in Listing 13-5 to transmit a C-style string that is
terminated by a null character.

Listing 13-5. UART String Transmission

/**

 * Transmit a null-terminated string.

 * Input parameters: p1 points to the string

 * p0 contains UARTx_GCTL register address

 * Return values: none

***/

uart_puts:

[--sp] = rets;

[--sp] = r0;

Programming Examples

13-38 ADSP-BF537 Blackfin Processor Hardware Reference

uart_puts.loop:

r0 = b[p1++] (z);

CC = r0 == 0;

if CC jump uart_puts.exit;

call uart_putc;

jump uart_puts.loop;

uart_puts.exit:

r0 = [sp++];

rets = [sp++];

rts;

uart_puts.end:

Note that polling the UART0_LSR register for transmit purposes may clear
the receive error latch bits. It is, therefore, not recommended to poll
UART0_LSR for transmission this way while data is received. In case, write a
polling loop that reads UARTx_LSR once and then evaluates all status bits of
interest, as shown in Listing 13-6.

Listing 13-6. UART Polling Loop

uart_loop:

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

CC = bittst(r7, bitpos(DR));

if !CC jump uart_loop.transmit;

r6 = w[p0+UART0_RBR-UART0_GCTL] (z);

r5 = BI | OE | FE | PE (z);

r5 = r5 & r7;

CC = r5 == 0;

if !CC jump uart_loop.error;

b[p1++] = r6; /* store byte */

uart_loop.transmit:

CC = bittst(r7, bitpos(THRE));

if !CC jump uart_loop;

r5 = b[p2++] (z); /* load next byte */

ADSP-BF537 Blackfin Processor Hardware Reference 13-39

UART Port Controllers

w[p0+UART0_THR-UART0_GCTL] = r5;

jump uart_loop;

uart_loop.error:

...

jump uart_loop;

In non-DMA interrupt operation, the three UART interrupt request lines
may or may not be ORed together in the SIC controller. If they had three
different service routines, they may look as shown in Listing 13-7.

Listing 13-7. UART Non-DMA Interrupt Operation

isr_uart_rx:

[--sp] = astat;

[--sp] = r7;

r7 = w[p0+UART0_RBR-UART0_GCTL] (z);

b[p4++] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_rx.end:

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = b[p3++] (z);

CC = r7 == 0;

if CC jump isr_uart_tx.final;

w[p0+UART0_THR-UART0_GCTL] = r7;

r7 = [sp++];

astat = [sp++];

ssync;

rti;

Programming Examples

13-40 ADSP-BF537 Blackfin Processor Hardware Reference

isr_uart_tx.final:

r7 = w[p0+UART0_IER-UART0_GCTL] (z);

/* clear TX interrupt enable */

bitclr(r7, bitpos(ETBEI)); /* ensure this sequence is not */

w[p0+UART0_IER-UART0_GCTL] = r7;

/* interrupted by other IER accesses */

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

isr_uart_error:

[--sp] = astat;

[--sp] = r7;

r7 = w[p0+UART0_LSR-UART0_GCTL] (z);

/* read clears interrupt request */

/* do something with the error */

r7 = [sp++];

astat = [sp++];

ssync;

rti;

isr_uart_error.end:

Listing 13-8 transmits a string by DMA operation, waits until DMA com-
pletes and sends an additional string by polling. Note the importance of
the SYNC bit.

Listing 13-8. UART Transmission SYNC Bit Use

.section data;

.byte sHello[] = 'Hello Blackfin User',13,10,0;

.byte sWorld[] = 'How is life?',13,10,0;

ADSP-BF537 Blackfin Processor Hardware Reference 13-41

UART Port Controllers

.section program;

...

p1.l = lo(IMASK);

p1.h = hi(IMASK);

r0.l = lo(isr_uart_tx); /* register service routine */

r0.h = hi(isr_uart_tx); /* UART0 TX defaults to IVG10 */

r0 = [p1 + IMASK - IMASK]; /* unmask interrupt in CEC */

bitset(r0, bitpos(EVT_IVG10));

[p1] = r0;

p1.l = lo(SIC_IMASK);

p1.h = hi(SIC_IMASK); /* unmask interrupt in SIC */

r0.l = 0x1000;

r0.h = 0x0000;

[p1] = r0;

[--sp] = reti; /* enable nesting of interrupts */

p5.l = lo(DMA9_CONFIG); /* setup DMA in STOP mode */

p5.h = hi(DMA9_CONFIG);

r7.l = lo(sHello);

r7.h = hi(sHello);

[p5+DMA9_START_ADDR-DMA9_CONFIG] = r7;

r7 = length(sHello) (z);

r7+= -1; /* do not send trailing null character */

w[p5+DMA9_X_COUNT-DMA9_CONFIG] = r7;

r7 = 1;

w[p5+DMA9_X_MODIFY-DMA9_CONFIG] = r7;

r7 = FLOW_STOP | WDSIZE_8 | DI_EN | SYNC | DMAEN (z);

w[p5] = r7;

p0.l = lo(UART0_GCTL); /* select UART 0 */

p0.h = hi(UART0_GCTL);

r0 = ETBEI (z); /* enable and issue first request */

w[p0+UART0_IER-UART0_GCTL] = r0;

Programming Examples

13-42 ADSP-BF537 Blackfin Processor Hardware Reference

wait4dma: /* just one way to synchronize with the service rou-

tine */

r0 = w[p5+DMA9_IRQ_STATUS-DMA9_CONFIG] (z);

CC = bittst(r0,bitpos(DMA_RUN));

if CC jump wait4dma;

p1.l=lo(sWorld);

p1.h=hi(sWorld);

call uart_puts;

forever: jump forever;

isr_uart_tx:

[--sp] = astat;

[--sp] = r7;

r7 = DMA_DONE (z); /* W1C interrupt request */

w[p5+DMA9_IRQ_STATUS-DMA9_CONFIG] = r7;

r7 = 0; /* pulse ETBEI for general case */

w[p0+UART0_IER-UART0_GCTL] = r7;

ssync;

r7 = [sp++];

astat = [sp++];

rti;

isr_uart_tx.end:

ADSP-BF537 Blackfin Processor Hardware Reference 14-1

14 GENERAL-PURPOSE PORTS

This chapter describes the general-purpose ports. Following an overview
and a list of key features is a block diagram of the interface and a descrip-
tion of operation. The chapter concludes with a programming model,
consolidated register definitions, and programming examples.

This chapter contains:

• “Overview” on page 14-1

• “Features” on page 14-2

• “Interface Overview” on page 14-4

• “Description of Operation” on page 14-10

• “Programming Model” on page 14-20

• “Memory-Mapped GPIO Registers” on page 14-22

• “Programming Examples” on page 14-35

Overview
The ADSP-BF534, ADSP-BF536, and ADSP-BF537 Blackfin processors
feature a rich set of peripherals, which through a powerful pin multiplex-
ing scheme, provides great flexibility to the external application space.

Table 14-1shows all the peripheral signals that can be accessed off chip. In
total, there are signal count of 124 signals on the ADSP-BF534 processors
or 142 signals on the ADSP-BF536 and ADSP-BF537 processors. The

Features

14-2 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF534, ADSP-BF536, and ADSP-BF537 processors feature 60
pins for peripheral purposes from which the rich peripheral set signals are
multiplexed through.

Features
The peripheral pins are functionally organized into general-purpose ports
designated port F, port G, port H, and port J.

Port F provides 16 pins:

• UART0 and UART1 signals

• Primary timer signals

• Primary SPI signals

Table 14-1. General-Purpose and Special Function Signals

Peripheral Signals

10/100 Ethernet MAC1

1 ADSP-BF536 and ADSP-BF537 only.

MII interface (18) or RMII (11)

CAN 2.0 B Controller Data (2)

TWI Controller Data (1), clock (1)

PPI Interface Data (16), frame sync (3), clock (1)

SPI Interface Data (2), clock (1), slave select (1), slave enable (7)

SPORTs Data (8), clock (4), frame sync (4)

UARTs Data (4)

Timers PWM/capture/clock (8), alternate clock input (8), alternate cap-
ture input (3)

General-Purpose I/O GPIO (48)

Handshake MemDMA MemDMA request (2)

ADSP-BF537 Blackfin Processor Hardware Reference 14-3

General-Purpose Ports

• Handshake memDMA request signals

• GPIOs

Port G provides 16 pins:

• SPORT1 signals

• PPI data signals

• GPIOs

Port H provides 16 pins:

• MII/RMII signals (ADSP-BF536 and ADSP-BF537 processors
only)

• GPIOs

Port J provides 12 pins:

• SPORT0 signals

• TWI signals

• CAN signals

• Some alternate timer inputs

• Additional SPI slave select signals

• Two additional MII/RMII pins (ADSP-BF536 and ADSP-BF537
processors only—on the ADSP-BF534 processors, PJ0 should be
left “No Connect” and PJ1 should be “Connect to Ground”)

Interface Overview

14-4 ADSP-BF537 Blackfin Processor Hardware Reference

Interface Overview
By default all pins of port F, port G, and port H are in general-purpose
I/O (GPIO) mode. Port J does not provide GPIO functionality. In this
mode, a pin can function as either digital input, digital output, or inter-
rupt input. See “General-Purpose I/O Modules” on page 14-10 for details.
Peripheral functionality must be explicitly enabled by the function enable
registers (PORTF_FER, PORTG_FER, and PORTH_FER). The competing periph-
erals on port F, port G, and port H are controlled by the multiplexer
control register (PORT_MUX).

 In this chapter, the naming convention for registers and bits uses a
lower case x to represent F, G, or H. For example, the name
PORTx_FER represents PORTF_FER, PORTG_FER, and PORTH_FER. The
bit name Px0 represents PF0, PG0, and PH0. This convention is used
to discuss registers common to these three ports.

External Interface
The external interface of the general-purpose ports are described in the
following sections.

Port F Structure

Figure 14-1 shows the multiplexer scheme for port F. Port F is controlled
by the PORT_MUX and the PORTF_FER registers.

Port F provides both UART ports. If only one UART is required in the
target application, the user has the option to enable either the handshake
memDMA request pins (see “Handshaked Memory DMA Operation” on
page 5-39) or two additional timers. Other timers are competing with
additional SPI slave select signals and with the rarely used PPI frame sync
FS3.

ADSP-BF537 Blackfin Processor Hardware Reference 14-5

General-Purpose Ports

Special attention is required for the use of the timers: with PPI enabled,
timer 0 and timer 1 are typically used for PPI frame sync generation. The
alternate timer clock input TACLK0 needs to be enabled by the timer 0
module only. It is not gated by any function enable or multiplexer
register.

With UART0 enabled by PFDE = 0 in the PORT_MUX register, the UART0
RX pin can also be simultaneously captured by timer 1 through its alterna-
tive capture input TACI1 (see Chapter 15, “General-Purpose Timers”).
This allows for unique applications like autobaud detection. Similarly,
timer 6 can be used to capture UART1 RX through TACI6 if PFTE is
cleared. If the PFTE bit is set, timer 6 can still capture the same pin
through the regular TMR6 input.

Any GPIO can be enabled individually and overrides the peripheral func-
tion if the respective bit in the PORTF_FER is cleared.

Figure 14-1. Port F Multiplexing Scheme

PFDE

PPI CLK/TMRCLK

SPI SS

PF0

PORT F

GPIO PF0DMAR0

SPI MOSI

TMR2

PPI FS1/TMR0

SPI SSEL1

UART0 TX

SPI SCK
SPI MISO

TACLK0

GPIO PF1

GPIO PF2

GPIO PF3

GPIO PF4

GPIO PF5

GPIO PF6

GPIO PF7
GPIO PF8

GPIO PF9

GPIO PF10

GPIO PF11

GPIO PF12

GPIO PF13

GPIO PF14

GPIO PF15

PF1

PF2

PF3

PF4

PF5

PF6

PF7

PF8

PF9

PF10

PF11

PF12

PF13

PF14

PF15

PPI FS2/TMR1

TMR3

TMR4

TMR5

TMR6

TMR7

SPI SSEL4
SPI SSEL5

SPI SSEL6

DMAR1

PPI FS3

UART0 RX

UART1 TX

UART1 RX

PFTE

PFS6E

PFS5E

PFS4E

PFFE

Interface Overview

14-6 ADSP-BF537 Blackfin Processor Hardware Reference

The eight pins PF7 - PF0 can drive higher current than all other pins of the
processor, regardless whether in GPIO or peripheral function mode. The
high current option does not need to be enabled. It is always on. Refer to
the part-specific data sheet for further details.

Port G Structure

Figure 14-2 shows the multiplexer scheme for port G. It is controlled by
the PORT_MUX and the PORTG_FER registers.

SPORT1 signals are multiplexed with PPI data signals PPID15–8. Thus,
with an 8-bit PPI configuration, no restrictions apply to SPORT1. With a
10-bit PPI configuration, the secondary SPORT1 data signals are not
available. However, in a 12-bit PPI configuration, only the SPORT1
transmit channel remains functional.

Any GPIO can be enabled individually and overrides the PPI or SPORT
function.

Figure 14-2. Port G Multiplexing Scheme

PPI D15

PPI D14

PG0

PORT G

GPIO PG0

PPI D11

PPI D7

PPI D9

PPI D10

PPI D0

PPI D13

PPI D12

DT1PRI

GPIO PG1

GPIO PG2

GPIO PG3

GPIO PG4

GPIO PG5

GPIO PG6

GPIO PG7
GPIO PG8

GPIO PG9

GPIO PG10

GPIO PG11

GPIO PG12

GPIO PG13

GPIO PG14

GPIO PG15

PG1

PG2

PG3

PG4

PG5

PG6

PG7

PG8

PG9

PG10

PG11

PG12

PG13

PG14

PG15

PPI D8

PPI D6

PPI D5

PPI D4

RSCLK1

DT1SEC

TSCLK1

DR1PRI

RFS1

DR1SEC

TFS1

PPI D1

PPI D2

PPI D3

PGRE

PGSE

PGTE

ADSP-BF537 Blackfin Processor Hardware Reference 14-7

General-Purpose Ports

Port H Structure

Figure 14-3 shows the multiplexer scheme for port H. It is controlled by
the PORT_MUX and the PORTH_FER registers. On the ADSP-BF534 processor,
port H functions as a GPIO port only.

Port H provides most of the signals of the ADSP-BF536 and
ADSP-BF537 MII or alternate RMII interface. Refer to Chapter 8,
“Ethernet MAC”, for information about how to configure MII versus
RMII mode. The three alternate timer capture inputs are not gated by the
function enable or multiplexer control registers.

For MII operation, all bits of the PORTH_FER register must be set. For
RMII mode, 7 pins can be used in GPIO mode, and PORTH_FER should be
written with a value of 0xC373.

ADSP-BF534 programmers should not set any bit of the PORTH_FER regis-
ter. The PORTH_FER register is reserved on the ADSP-BF534 processors.

Figure 14-3. Port H Multiplexing Scheme

PH0

ADSP-BF534 PORT H

GPIO PH0

GPIO PH1

GPIO PH2

GPIO PH3

GPIO PH4

GPIO PH5

GPIO PH6

GPIO PH7
GPIO PH8

GPIO PH9

GPIO PH10

GPIO PH11

GPIO PH12

GPIO PH13

GPIO PH14

GPIO PH15

PH1

PH2

PH3

PH4

PH5

PH6

PH7

PH8

PH9

PH10

PH11

PH12

PH13

PH14

PH15

TACLK6

TACLK5

TACLK7

MII CRS

MII RXER

PH0

ADSP-BF536 AND ADSP-BF537 PORT H

GPIO PH0

MII RXD3

MII COL

MII RXD1

MII RXD2

MII TXD0

MII RXCLK

MII RXDV

RMII CRS_DV

GPIO PH1

GPIO PH2

GPIO PH3

GPIO PH4

GPIO PH5

GPIO PH6

GPIO PH7
GPIO PH8

GPIO PH9

GPIO PH10

GPIO PH11

GPIO PH12

GPIO PH13

GPIO PH14

GPIO PH15

PH1

PH2

PH3

PH4

PH5

PH6

PH7

PH8

PH9

PH10

PH11

PH12

PH13

PH14

PH15

MII RXD0

MII PHYINT

MII TXCLK

MII TXEN

RMII RXD1

RMII RXD0

RMII RXER

MII TXD1

MII TXD2

MII TXD3

TACLK6

TACLK5

TACLK7

RMII TXD0

RMII TXD1

RMII TXEN

RMII REFCLK

RMII MDINT

Interface Overview

14-8 ADSP-BF537 Blackfin Processor Hardware Reference

Port J Structure

Figure 14-4 shows the multiplexer scheme for port J. It is controlled by
the PORT_MUX register.

Port J does not provide GPIO functionality. The CAN pins share func-
tionality with the secondary SPORT0 data pins, as well as with SPI slave
select SSEL7. With the CAN port active, the SPORT0 can still be used in
6-pin mode. Even with all SPI slave selects enabled, the receive channel
SPORT0 is fully functional. The four alternate timer clock inputs TACLK1
to TACLK4 are always functional regardless of any multiplexer control or
function enable bit. The two MII pins and the TWI pins are not multi-
plexed at all.

When the CAN interface is selected by the PJCE bit field and in the
PORT_MUX register, timer 0 can capture the CAN RX pin through its TACI0
input for autobaud detection.

Figure 14-4. Port J Multiplexing Scheme

PJ0

PORT J

MII MDC

SPI SSEL2

SPI SSEL3

RMII MDC

TACLK3

MII MDIO

TWI SCL

TWI SDA

DR0SEC

DT0SEC

RSCLK0

RFS0
DR0PRI

TSCLK0

TFS0

DT0PRI

PJ1

PJ2

PJ3

PJ4

PJ5

PJ6

PJ7

PJ8

PJ9

PJ10

PJ11

CANTX

CANRX

SPI SSEL7

RMII MDIO

PJCE

PJSE

TACLK2

TACLK4

TACLK1

ADSP-BF537 Blackfin Processor Hardware Reference 14-9

General-Purpose Ports

Internal Interfaces
Port control and GPIO registers are part of the system memory-mapped
registers (MMRs). The addresses of the GPIO module MMRs appear in
Appendix B. Core access to the GPIO configuration registers is through
the system bus.

The PORT_MUX register controls the muxing schemes of port F, port G and
port J.

The function enable register (PORTF_FER, PORTG_FER, PORTH_FER)
enables the peripheral functionality for each individual pin of port x.

Performance/Throughput
The PFx, PGx, and PHx pins are synchronized to the system clock (SCLK).
When configured as outputs, the GPIOs can transition once every system
clock cycle.

When configured as inputs, the overall system design should take into
account the potential latency between the core and system clocks. Changes
in the state of port pins have a latency of 3 SCLK cycles before being detect-
able by the processor. When configured for level-sensitive interrupt
generation, there is a minimum latency of 4 SCLK cycles between the time
the signal is asserted on the pin and the time that program flow is inter-
rupted. When configured for edge-sensitive interrupt generation, an
additional SCLK cycle of latency is introduced, giving a total latency of 5
SCLK cycles between the time the edge is asserted and the time that the
core program flow is interrupted.

Description of Operation

14-10 ADSP-BF537 Blackfin Processor Hardware Reference

Description of Operation
The operation of the general-purpose ports is described in the following
sections.

Operation
The GPIO pins on port F, port G, and port H can be controlled individu-
ally by the function enable registers (PORTx_FER). With a control bit in
these registers cleared, the peripheral function is fully decoupled from the
pin. It functions as a GPIO pin only. To drive the pin in GPIO output
mode, set the respective direction bit in the PORTxIO_DIR register. To
make the pin a digital input or interrupt input, enable its input driver in
the PORTxIO_INEN register.

 By default all peripheral pins are configured as inputs after reset.
port F, port G, and port H pins are in GPIO mode. However,
GPIO input drivers are disabled to minimize power consumption
and any need of external pulling resistors.

When the control bit in the function enable registers (PORTx_FER) is set,
the pin is set to its peripheral functionality and is no longer controlled by
the GPIO module. However, the GPIO module can still sense the state of
the pin. When using a particular peripheral interface, pins required for the
peripheral must be individually enabled. Keep the related function enable
bit cleared if a signal provided by the peripheral is not required by your
application. This allows it to be used in GPIO mode.

General-Purpose I/O Modules
The processor supports 48 bidirectional or general-purpose I/O (GPIO)
signals. These 48 GPIOs are managed by three different GPIO modules,
which are functionally identical. One is associated with port F, one with
port G, and one with port H. Every module controls 16 GPIOs available
through the pins PF15–0, PG15–0, and PH15–0.

ADSP-BF537 Blackfin Processor Hardware Reference 14-11

General-Purpose Ports

Each GPIO can be individually configured as either an input or an output
by using the GPIO direction registers (PORTxIO_DIR).

When configured as output, the GPIO data registers (PORTFIO, PORTGIO,
and PORTHIO) can be directly written to specify the state of the GPIOs.

The GPIO direction registers are read-write registers with each bit posi-
tion corresponding to a particular GPIO. A logic 1 configures a GPIO as
an output, driving the state contained in the GPIO data register if the
peripheral function is not enabled by the function enable registers. A logic
0 configures a GPIO as an input.

 Note when using the GPIO as an input, the corresponding bit
should also be set in the GPIO input enable register. Otherwise,
changes at the input pins will not be recognized by the processor.

The GPIO input enable registers (PORTFIO_INEN, PORTGIO_INEN, and
PORTHIO_INEN) are used to enable the input buffers on any GPIO that is
being used as an input. Leaving the input buffer disabled eliminates the
need for pull-ups and pull-downs when a particular PFx, PGx, or PHx pin is
not used in the system. By default, the input buffers are disabled.

 Once the input driver of a GPIO pin is enabled, the GPIO is not
allowed to operate as an output anymore. Never enable the input
driver (by setting PORTxIO_INEN bits) and the output driver (by set-
ting PORTxIO_DIR bits) for the same GPIO.

A write operation to any of the GPIO data registers sets the value of all
GPIOs in this port that are configured as outputs. GPIOs configured as
inputs ignore the written value. A read operation returns the state of the
GPIOs defined as outputs and the sense of the inputs, based on the polar-
ity and sensitivity settings, if their input buffers are enabled.

Description of Operation

14-12 ADSP-BF537 Blackfin Processor Hardware Reference

Table 14-2 helps to interpret read values in GPIO mode, based on the set-
tings of the PORTxIO_POLAR, PORTxIO_EDGE, and PORTxIO_BOTH registers.

 For GPIOs configured as edge-sensitive, a readback of 1 from one
of these registers is sticky. That is, once it is set it remains set until
cleared by user code. For level-sensitive GPIOs, the pin state is
checked every cycle, so the readback value will change when the
original level on the pin changes.

The state of the output is reflected on the associated pin only if the func-
tion enable bit in the PORTx_FER register is cleared.

Write operations to the GPIO data registers modify the state of all GPIOs
of a port. In cases where only one or a few GPIOs need to be changed, the
user may write to the GPIO set registers, PORTxIO_SET, the GPIO clear
registers, PORTxIO_CLEAR, or to the GPIO toggle registers, PORTxIO_TOGGLE
instead.

While a direct write to a GPIO data register alters all bits in the register,
writes to a GPIO set register can be used to set a single or a few bits only.
No read-modify-write operations are required. The GPIO set registers are
write-1-to-set registers. All 1s contained in the value written to a GPIO set

Table 14-2. GPIO Value Register Pin Interpretation

POLAR EDGE BOTH Effect of MMR Settings

0 0 X Pin that is high reads as 1; pin that is low
reads as 0

0 1 0 If rising edge occurred, pin reads as 1;
otherwise, pin reads as 0

1 0 X Pin that is low reads as 1; pin that is high
reads as 0

1 1 0 If falling edge occurred, pin reads as 1;
otherwise, pin reads as 0

X 1 1 If any edge occurred, pin reads as 1; oth-
erwise, pin reads as 0

ADSP-BF537 Blackfin Processor Hardware Reference 14-13

General-Purpose Ports

register sets the respective bits in the GPIO data register. The 0s have no
effect. For example, assume that PF0 is configured as an output. Writing
0x0001 to the GPIO set register drives a logic 1 on the PF0 pin without
affecting the state of any other PFx pins. The GPIO set registers are typi-
cally also used to generate GPIO interrupts by software. Read operations
from the GPIO set registers return the content of the GPIO data registers.

The GPIO clear registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a GPIO clear register can be used to clear
individual bits only. No read-modify-write operations are required. The
clear registers are write-1-to-clear registers. All 1s contained in the value
written to the GPIO clear register clears the respective bits in the GPIO
data register. The 0s have no effect. For example, assume that PF4 and PF5
are configured as outputs. Writing 0x0030 to the PORTFIO_CLEAR register
drives a logic 0 on the PF4 and PF5 pins without affecting the state of any
other PFx pins.

 If an edge-sensitive pin generates an interrupt request, the service
routine must acknowledge the request by clearing the respective
GPIO latch. This is usually performed through the clear registers.

Read operations from the GPIO clear registers return the content of the
GPIO data registers.

The GPIO toggle registers provide an alternative port to manipulate the
GPIO data registers. While a direct write to a GPIO data register alters all
bits in the register, writes to a toggle register can be used to toggle individ-
ual bits. No read-modify-write operations are required. The GPIO toggle
registers are write-1-to-toggle registers. All 1s contained in the value writ-
ten to a GPIO toggle register toggle the respective bits in the GPIO data
register. The 0s have no effect. For example, assume that PG1 is configured
as an output. Writing 0x0002 to the PORTGIO_TOGGLE register changes the
pin state (from logic 0 to logic 1, or from logic 1 to logic 0) on the PG1 pin
without affecting the state of any other PGx pins. Read operations from the
GPIO toggle registers return the content of the GPIO data registers.

Description of Operation

14-14 ADSP-BF537 Blackfin Processor Hardware Reference

The state of the GPIOs can be read through any of these data, set, clear, or
toggle registers. However, the returned value reflects the state of the input
pin only if the proper input enable bit in the PORTxIO_INEN register is set.
Note that GPIOs can still sense the state of the pin when the function
enable bits in the PORTx_FER registers are set.

Since function enable registers and GPIO input enable registers reset to
zero, no external pull-ups or pull-downs are required on the unused pins
of port F, port G, and port H.

GPIO Interrupt Processing
Each GPIO can be configured to generate an interrupt. The processor can
sense up to 48 asynchronous off-chip signals, requesting interrupts
through five interrupt channels. To make a pin function as an interrupt
pin, the associated input enable bit in the PORTxIO_INEN register must be
set. The function enable bit in the PORTx_FER register is typically cleared.
Then, an interrupt request can be generated according to the state of the
pin (either high or low), an edge transition (low to high or high to low), or
on both edge transitions (low to high and high to low). Input sensitivity is
defined on a per-bit basis by the GPIO polarity registers (PORTFIO_POLAR,
PORTGIO_POLAR, and PORTHIO_POLAR), and the GPIO interrupt
sensitivity registers (PORTFIO_EDGE, PORTGIO_EDGE, and PORTHIO_EDGE). If
configured for edge sensitivity, the GPIO set on both edges registers
(PORTFIO_BOTH, PORTGIO_BOTH, and PORTHIO_BOTH) let the interrupt
request generate on both edges.

The GPIO polarity registers are used to configure the polarity of the
GPIO input source. To select active high or rising edge, set the bits in the
GPIO polarity register to 0. To select active low or falling edge, set the
bits in the GPIO polarity register to 1. This register has no effect on
GPIOs that are defined as outputs. The contents of the GPIO polarity
registers are cleared at reset, defaulting to active high polarity.

ADSP-BF537 Blackfin Processor Hardware Reference 14-15

General-Purpose Ports

The GPIO interrupt sensitivity registers are used to configure each of the
inputs as either a level-sensitive or an edge-sensitive source. When using
an edge-sensitive mode, an edge detection circuit is used to prevent a situ-
ation where a short event is missed because of the system clock rate. The
GPIO interrupt sensitivity register has no effect on GPIOs that are
defined as outputs. The contents of the GPIO interrupt sensitivity regis-
ters are cleared at reset, defaulting to level sensitivity.

The GPIO set on both edges registers are used to enable interrupt genera-
tion on both rising and falling edges. When a given GPIO has been set to
edge-sensitive in the GPIO interrupt sensitivity register, setting the
respective bit in the GPIO set on both edges register to both edges results
in an interrupt being generated on both the rising and falling edges. This
register has no effect on GPIOs that are defined as level-sensitive or as
outputs. See Table 14-2 for information on how the GPIO set on both
edges register interacts with the GPIO polarity and GPIO interrupt sensi-
tivity registers.

When the GPIO’s input drivers are enabled while the GPIO direction reg-
isters configure it as an output, software can trigger a GPIO interrupt by
writing to the data/set/toggle registers. The interrupt service routine
should clear the GPIO to acknowledge the request.

Each of the three GPIO modules provides two independent interrupt
channels. Identical in functionality, these are called interrupt A and inter-
rupt B. Both interrupt channels have their own mask register which lets
you assign the individual GPIOs to none, either, or both interrupt
channels.

Since all mask registers reset to zero, none of the GPIOs is assigned any
interrupt by default. Each GPIO represents a bit in each of these registers.
Setting a bit means enabling the interrupt on this channel.

Description of Operation

14-16 ADSP-BF537 Blackfin Processor Hardware Reference

Interrupt A and interrupt B operate independently. For example, writing
1 to a bit in the mask interrupt A register does not affect interrupt channel
B. This facility allows GPIOs to generate GPIO interrupt A, GPIO inter-
rupt B, both GPIO interrupts A and B, or neither.

A GPIO interrupt is generated by a logical OR of all unmasked GPIOs for
that interrupt. For example, if PF0 and PF1 are both unmasked for GPIO
interrupt channel A, GPIO interrupt A will be generated when triggered
by PF0 or PF1. The interrupt service routine must evaluate the GPIO data
register to determine the signaling interrupt source. Note that interrupt
channel A of port F and interrupt channel A of port G are ORed at system
level as shown in Figure 14-5.

 When using either rising or falling edge-triggered interrupts, the
interrupt condition must be cleared each time a corresponding
interrupt is serviced by writing 1 to the appropriate bit in the
GPIO clear register.

At reset, all interrupts are masked and disabled.

Similarly to the GPIOs themselves, the mask register can either be written
through the GPIO mask data registers (PORTxIO_MASKA, PORTxIO_MASKB) or
be controlled by the mask A/mask B set, clear and toggle registers.

The GPIO mask interrupt set registers (PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET) provide an alternative port to manipulate the GPIO
mask interrupt registers. While a direct write to a mask interrupt register
alters all bits in the register, writes to a mask interrupt set register can be
used to set a single or a few bits only. No read-modify-write operations are
required.

The mask interrupt set registers are write-1-to-set registers. All ones con-
tained in the value written to the mask interrupt set register set the
respective bits in the mask interrupt register. The zeroes have no effect.
Writing a one to any bit enables the interrupt for the respective GPIO.

ADSP-BF537 Blackfin Processor Hardware Reference 14-17

General-Purpose Ports

The GPIO mask interrupt clear registers (PORTxIO_MASKA_CLEAR,
PORTxIO_MASKB_CLEAR) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt

Figure 14-5. GPIO Interrupt Generation Flow for Interrupt Channel A

NO
(INPUT)

YES

YES

YES

YES

GENERATE INTERRUPT A

START

IS THE GPIO SET
AS AN OUTPUT IN

PORTxIO_DIR?

IS THE GPIO
EDGE-SENSITIVE

AS DEFINED IN
PORTxIO_EDGE?

IS THE INPUT
AN ACTIVE LEVEL

AS DEFINED IN
PORTxIO_POLAR?

IS THE GPIO
SET TO ONE?

YES

IS EDGE
DETECTED

AS DEFINED IN
PORTxIO_POLAR &

PORTxIO_BOTH?

IS THE INPUT
DRIVER ENABLED IN

PORTxIO_INEN?

IS THE
GPIO ENABLED IN

PORTxIO_MASKA_D?

NO
(LEVEL SENSITIVE)

YES
(OUTPUT)

YES
(EDGE SENSITIVE)

Description of Operation

14-18 ADSP-BF537 Blackfin Processor Hardware Reference

register alters all bits in the register, writes to the mask interrupt clear
register can be used to clear a single bit or a few bits only. No read-mod-
ify-write operations are required.

The mask interrupt clear registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt clear register clear the
respective bits in the mask interrupt register. The zeroes have no
effect.Writing a one to any bit disables the interrupt for the respective
GPIO.

The GPIO mask interrupt toggle registers (PORTxIO_MASKA_TOGGLE,
PORTxIO_MASKB_TOGGLE) provide an alternative port to manipulate the
GPIO mask interrupt registers. While a direct write to a mask interrupt
register alters all bits in the register, writes to a mask interrupt toggle reg-
ister can be used to toggle a single bit or a few bits only. No
read-modify-write operations are required.

The mask interrupt toggle registers are write-1-to-clear registers. All ones
contained in the value written to the mask interrupt toggle register toggle
the respective bits in the mask interrupt register. The zeroes have no
effect. Writing a one to any bit toggles the interrupt for the respective
GPIO.

Figure 14-5 illustrated the interrupt flow of any GPIO module’s interrupt
A channel. The interrupt B channel behaves identically.

All GPIOs assigned to the same interrupt channel are ORed. If multiple
GPIOs are assigned to the same interrupt channel, it is up to the interrupt
service routine to evaluate the GPIO data registers to determine the sig-
naling interrupt source.

Although each GPIO module provides two independent interrupt chan-
nels, the interrupt A channels of port F and port G are ORed as shown in
Figure 14-6. The total number of GPIO interrupt channels is five,
therefore.

ADSP-BF537 Blackfin Processor Hardware Reference 14-19

General-Purpose Ports

Figure 14-6. GPIO Interrupt Channels

P
F

0

PORTFIO_MASKA_D

P
F

1

P
F

2

P
F

3

P
F

4

P
F

5

P
F

6

P
F

7

P
F

8

P
F

9

P
F

10

P
F

11

P
F

12

P
F

13

P
F

14

P
F

15

PORTFIO_MASKB_D

P
G

0

PORTGIO_MASKA_D

P
G

1

P
G

2

P
G

3

P
G

4

P
G

5

P
G

6

P
G

7

P
G

8

P
G

9

P
G

10

P
G

11

P
G

12

P
G

13

P
G

14

P
G

15

PORTGIO_MASKB_D

P
H

0

PORTHIO_MASKA_D

P
H

1

P
H

2

P
H

3

P
H

4

P
H

5

P
H

6

P
H

7

P
H

8

P
H

9

P
H

10

P
H

11

P
H

12

P
H

13

P
H

14

P
H

15

PORTHIO_MASKB_D

IRQ27

IRQ31

IRQ28

IRQ17

IRQ18

Programming Model

14-20 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Model
Figure 14-7 and Figure 14-8 show the programming model for the
general-purpose ports.

Figure 14-7. GPIO Flow Chart (Part 1 of 2)

WRITE PORT_MUX, WRITE PORTx_FER
TO SET APPROPRIATE PERIPHERAL BITS

PERIPHERAL

GPIO

GPIO OR
PERIPHERAL?

WRITE PORTx_FER TO CLEAR
APPROPRIATE PFx, PGx, AND PHx BITS

SEE PERIPHERAL FOR MORE DETAILS

OUTPUT

INPUT

GPIO OUTPUT
OR INPUT?

WRITE PORTxIO_DIR TO CLEAR
APPROPRIATE BITS FOR INPUT DIRECTION

WRITE PORTxIO_INEN TO SET APPROPRIATE
BITS TO ENABLE INPUT DRIVERS DIRECTION

A

WRITE PORTxIO_DIR TO SET
APPROPRIATE BITS FOR OUTPUT DIRECTION

SET

CLEAR

SET OR CLEAR
GPIO?

WRITE PORTxIO_CLEAR TO SET
APPROPRIATE BITS TO LOWER INDIVIDUAL GPIO

WRITE PORTxIO_SET TO SET
APPROPRIATE BITS TO RAISE INDIVIDUAL GPIO

ADSP-BF537 Blackfin Processor Hardware Reference 14-21

General-Purpose Ports

Figure 14-8. GPIO Flow Chart (Part 2 of 2)

WRITE PORTxIO_EDGE TO SET
APPROPRIATE BITS FOR EDGE SENSITIVITY

EDGE

LEVEL

EDGE OR LEVEL
SENSITIVE?

WRITE PORTxIO_EDGE TO CLEAR
APPROPRIATE BITS FOR LEVEL SENSITIVITY

LOW

LEVEL HIGH
 OR LOW?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR LOW LEVEL SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR HIGH LEVEL SENSITIVITY

A

NO

YES

INTERRUPT
ABILITY?

SOFTWARE CAN INTERROGATE
PORTx_DATA BITS TO
DETERMINE EVENTS

RISING OR FALLING

BOTH

EDGE RISING/
FALLING OR BOTH?

WRITE PORTxIO_BOTH TO SET
APPROPRIATE BITS FOR BOTH EDGE SENSITIVITY

WRITE PORTxIO_BOTH TO CLEAR APPROPRIATE
BITS FOR EDGE SENSITIVITY

RISING

FALLING

EDGE RISING
OR FALLING?

WRITE PORTxIO_POLAR TO SET
APPROPRIATE BITS FOR FALLING EDGE SENSITIVITY

WRITE PORTxIO_POLAR TO CLEAR APPROPRIATE
BITS FOR RISING EDGE SENSITIVITY

HIGH

WRITE EITHER PORTxIO_MASKA, PORTxIO_MASKB, PORTxIO_MASKA_SET,
PORTxIO_MASKB_SET, PORTxIO_MASKA_TOGGLE, OR PORTxIO_MASKB_TOGGLE

TO SET APPROPRIATE BITS ON WHICH TO GENERATE AN INTERRUPT

INTERRUPTS MUST THEN BE CONFIGURED AT THE
SYSTEM INTERRUPT CONTROLLER AND

CORE EVENT CONTROLLER

Memory-Mapped GPIO Registers

14-22 ADSP-BF537 Blackfin Processor Hardware Reference

Memory-Mapped GPIO Registers
The GPIO registers are part of the system memory-mapped registers
(MMRs). Figure 14-9 through Figure 14-27 illustrate the GPIO registers.
The addresses of the programmable flag MMRs appear in Appendix B.

PORT_MUX Control Register

Figure 14-9. Port Multiplexer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Port Multiplexer Control Register (PORT_MUX)

0 - Enable TFS0 and DT0PRI
1 - Enable SPI SSEL 2 and

SPI SSEL 3

PFS6E (Port F SPI SSEL 6
Enable)

PJCE[1:0] (Port J CAN
Enable)

PFDE (Port F DMA Request
Enable)

PFTE (Port F Timer Enable)

PJSE (Port J SPI Enable)

PGSE (Port G SPORT Sec-
ondary Enable)

PGRE (Port G SPORT
 Receive Enable)

PGTE (Port G SPORT
Transmit Enable)

00 - Enable DR0SEC, DT0SEC
01 - Enable CAN RX, CAN TX
10 - Enable SPI SSEL 7
11 - Reserved

Reset = 0x0000

0 - Enable TMR5
1 - Enable SPI SSEL 6

0 - Enable PPI D13, PPI D14,
PPI D15

1 - Enable TSCLK1, TFS1, DT1PRI

0 - Enable PPI D8, PPI D9
1 - Enable DR1SEC, DT1SEC

PFS5E (Port F SPI SSEL 5
Enable)

PFFE (Port F PPI Frame Sync 3
Enable)
0 - Enable TMR2
1 - Enable PPI Frame Sync 3

0 - Enable TMR4
1 - Enable SPI SSEL 5

0xFFC0 320C

PFS4E (Port F SPI SSEL 4
Enable)
0 - Enable TMR3
1 - Enable SPI SSEL 4

0 - Enable UART0 RX, UART0 TX
1 - Enable DMAR0, DMAR1

0 - Enable UART1 RX, UART1 TX
1 - Enable TMR6, TMR7

0 - Enable PPI D10, PPI D11,
PPI D12

1 - Enable RSCLK1, RFS1, DR1PRI

ADSP-BF537 Blackfin Processor Hardware Reference 14-23

General-Purpose Ports

PORTx_FER Registers

PORTxIO_DIR Registers

Figure 14-10. Function Enable Registers

Figure 14-11. GPIO Direction Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Function Enable Registers (PORTx_FER)

Px0

Px12

Px13

Px14

Px15

Px1

Px2

Px3

Px4

Px5

For all bits, 0 - GPIO mode, 1 - Enable peripheral function

Px6

Px7
Px11

Px10 Px9

Px8

Reset = 0x0000Port F:
0xFFC0 3200

Port G:
0xFFC0 3204

Port H:
0xFFC0 3208

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Direction Registers (PORTxIO_DIR)

Px0 Direction

Px12 Direction

Px13 Direction

Px14 Direction

Px15 Direction

Px1 Direction

Px2 Direction

Px3 Direction

Px4 Direction

Px5 Direction

For all bits, 0 - Input, 1 - Output

Px6 Direction

Px7 Direction
Px11 Direction

Px10 Direction Px9 Direction
Px8 Direction

Reset = 0x0000Port F:
0xFFC0 0730

Port G:
0xFFC0 1530

Port H:
0xFFC0 1730

Memory-Mapped GPIO Registers

14-24 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_INEN Registers

PORTxIO Registers

Figure 14-12. GPIO Input Enable Registers

Figure 14-13. GPIO Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Input Enable Registers (PORTxIO_INEN)

Px0 Input Enable

Px12 Input Enable

Px13 Input Enable

Px14 Input Enable

Px15 Input Enable

Px1 Input Enable

Px2 Input Enable

Px3 Input Enable

Px4 Input Enable

Px5 Input Enable

For all bits, 0 - Input Buffer Disabled, 1 - Input Buffer Enabled

Px6 Input Enable

Px7 Input Enable
Px11 Input Enable

Px10 Input Enable Px9 Input Enable
Px8 Input Enable

Reset = 0x0000Port F:
0xFFC0 0740

Port G:
0xFFC0 1540

Port H:
0xFFC0 1740

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Data Registers (PORTxIO)

Program Px0

Program Px12

Program Px13

Program Px14

Program Px15

Program Px1

Program Px2

Program Px3

Program Px4

Program Px5

1 - Set, 0 - Clear

Program Px6

Program Px7
Program Px11

Program Px10 Program Px9
Program Px8

Reset = 0x0000Port F:
0xFFC0 0700

Port G:
0xFFC0 1500

Port H:
0xFFC0 1700

ADSP-BF537 Blackfin Processor Hardware Reference 14-25

General-Purpose Ports

PORTxIO_SET Registers

PORTxIO_CLEAR Registers

Figure 14-14. GPIO Set Registers

Figure 14-15. GPIO Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set Registers (PORTxIO_SET)

Set Px0

Set Px12

Set Px13

Set Px14

Set Px15

Set Px1

Set Px2

Set Px3

Set Px4

Set Px5

Write-1-to-set

Set Px6

Set Px7
Set Px11
Set Px10 Set Px9

Set Px8

Reset = 0x0000Port F:
0xFFC0 0708

Port G:
0xFFC0 1508

Port H:
0xFFC0 1708

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Clear Registers (PORTxIO_CLEAR)

Clear Px0

Clear Px12

Clear Px13

Clear Px14

Clear Px15

Clear Px1

Clear Px2

Clear Px3

Clear Px4

Clear Px5

Write-1-to-clear

Clear Px6

Clear Px7
Clear Px11

Clear Px10 Clear Px9
Clear Px8

Reset = 0x0000Port F:
0xFFC0 0704

Port G:
0xFFC0 1504

Port H:
0xFFC0 1704

Memory-Mapped GPIO Registers

14-26 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_TOGGLE Registers

PORTxIO_POLAR Registers

Figure 14-16. GPIO Toggle Registers

Figure 14-17. GPIO Polarity Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Toggle Registers (PORTxIO_TOGGLE)

Toggle Px0

Toggle Px12

Toggle Px13

Toggle Px14

Toggle Px15

Toggle Px1

Toggle Px2

Toggle Px3

Toggle Px4

Toggle Px5

Write-1-to-toggle

Toggle Px6

Toggle Px7
Toggle Px11

Toggle Px10 Toggle Px9

Toggle Px8

Reset = 0x0000Port F:
0xFFC0 070C

Port G:
0xFFC0 150C

Port H:
0xFFC0 170C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Polarity Registers (PORTxIO_POLAR)

Px0 Polarity

Px12 Polarity

Px13 Polarity

Px14 Polarity

Px15 Polarity

Px1 Polarity

Px2 Polarity

Px3 Polarity

Px4 Polarity

Px5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge

Px6 Polarity

Px7 Polarity
Px11 Polarity

Px10 Polarity Px9 Polarity
Px8 Polarity

Reset = 0x0000Port F:
0xFFC0 0734

Port G:
0xFFC0 1534

Port H:
0xFFC0 1734

ADSP-BF537 Blackfin Processor Hardware Reference 14-27

General-Purpose Ports

PORTxIO_EDGE Registers

PORTxIO_BOTH Registers

Figure 14-18. Interrupt Sensitivity Registers

Figure 14-19. GPIO Set on Both Edges Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interrupt Sensitivity Registers (PORTxIO_EDGE)

Px0 Sensitivity

Px12 Sensitivity

Px13 Sensitivity

Px14 Sensitivity

Px15 Sensitivity

Px1 Sensitivity

Px2 Sensitivity

Px3 Sensitivity

Px4 Sensitivity

Px5 Sensitivity

For all bits, 0 - Level, 1 - Edge

Px6 Sensitivity

Px7 Sensitivity
Px11 Sensitivity

Px10 Sensitivity Px9 Sensitivity
Px8 Sensitivity

Reset = 0x0000Port F:
0xFFC0 0738

Port G:
0xFFC0 1538

Port H:
0xFFC0 1738

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Set on Both Edges Registers (PORTxIO_BOTH)

Px0 Both Edges

Px12 Both Edges

Px13 Both Edges

Px14 Both Edges

Px15 Both Edges

Px1 Both Edges

Px2 Both Edges

Px3 Both Edges

Px4 Both Edges

Px5 Both Edges

For all bits when enabled for edge-sensitivity, 0 - Single edge, 1 - Both edges

Px6 Both Edges

Px7 Both Edges
Px11 Both Edges

Px10 Both Edges Px9 Both Edges
Px8 Both Edges

Reset = 0x0000Port F:
0xFFC0 073C

Port G:
0xFFC0 153C

Port H:
0xFFC0 173C

Memory-Mapped GPIO Registers

14-28 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_MASKA Registers

PORTxIO_MASKB Registers

Figure 14-20. GPIO Mask Interrupt A Registers

Figure 14-21. GPIO Mask Interrupt B Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Registers (PORTxIO_MASKA)

Enable Px0 Interrupt A

Enable Px12 Interrupt A

Enable Px13 Interrupt A

Enable Px14 Interrupt A

Enable Px15 Interrupt
A

Enable Px1 Interrupt A

Enable Px2 Interrupt A

Enable Px3 Interrupt A

Enable Px4 Interrupt A

Enable Px5 Interrupt A

For all bits, 1 - Enable, 0 - Disable

Enable Px6 Interrupt A

Enable Px7 Interrupt A
Enable Px11 Interrupt A

Enable Px10 Interrupt A Enable Px9 Interrupt A

Enable Px8 Interrupt A

Reset = 0x0000Port F:
0xFFC0 0710

Port G:
0xFFC0 1510

Port H:
0xFFC0 1710

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Registers (PORTxIO_MASKB)

Enable Px0 Interrupt B

Enable Px12 Interrupt B

Enable Px13 Interrupt B
Enable Px14 Interrupt B

Enable Px15
Interrupt B

Enable Px1 Interrupt B

Enable Px2 Interrupt B

Enable Px3 Interrupt B

Enable Px4 Interrupt B

Enable Px5 Interrupt B

For all bits, 1 - Enable

Enable Px6 Interrupt B

Enable Px7 Interrupt B
Enable Px11 Interrupt B

Enable Px10 Interrupt B Enable Px9 Interrupt B
Enable Px8 Interrupt B

Reset = 0x0000Port F:
0xFFC0 0720

Port G:
0xFFC0 1520

Port H:
0xFFC0 1720

ADSP-BF537 Blackfin Processor Hardware Reference 14-29

General-Purpose Ports

PORTxIO_MASKA_SET Registers

Figure 14-22. GPIO Mask Interrupt A Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Set Registers (PORTxIO_MASKA_SET)

Set Px0 Interrupt A
Enable

Set Px12 Interrupt A
Enable

Set Px13 Interrupt A
Enable

Set Px14 Interrupt A
Enable

Set Px15 Interrupt A
Enable

Set Px1 Interrupt A
Enable

Set Px2 Interrupt A
Enable

Set Px3 Interrupt A
Enable

Set Px4 Interrupt A
Enable

Set Px5 Interrupt A
Enable

For all bits, 1 - Set

Set Px6 Interrupt A
Enable

Set Px7 Interrupt A
Enable

Set Px11 Interrupt A
Enable
Set Px10 Interrupt A
Enable

Set Px9 Interrupt A
Enable

Set Px8 Interrupt A
Enable

Reset = 0x0000Port F:
0xFFC0 0718

Port G:
0xFFC0 1518

Port H:
0xFFC0 1718

Memory-Mapped GPIO Registers

14-30 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_MASKB_SET Registers

Figure 14-23. GPIO Mask Interrupt B Set Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Set Registers (PORTxIO_MASKB_SET)
For all bits, 1 - Set

Reset = 0x0000Port F:
0xFFC0 0728

Port G:
0xFFC0 1528

Port H:
0xFFC0 1728

Set Px0 Interrupt B
Enable
Set Px1 Interrupt B
Enable

Set Px2 Interrupt B
Enable

Set Px3 Interrupt B
Enable

Set Px4 Interrupt B
Enable

Set Px5 Interrupt B
Enable

Set Px6 Interrupt B
Enable

Set Px7 Interrupt B
Enable

Set Px9 Interrupt B
Enable

Set Px8 Interrupt B
Enable

Set Px12 Interrupt B
Enable

Set Px13 Interrupt B
Enable

Set Px14 Interrupt B
Enable

Set Px15 Interrupt B
Enable

Set Px11 Interrupt B
Enable
Set Px10 Interrupt B
Enable

ADSP-BF537 Blackfin Processor Hardware Reference 14-31

General-Purpose Ports

PORTxIO_MASKA_CLEAR Registers

Figure 14-24. GPIO Mask Interrupt A Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Clear Registers (PORTxIO_MASKA_CLEAR)

Clear Px0 Interrupt A
Enable

Clear Px12 Interrupt A
Enable

Clear Px13 Interrupt A
Enable

Clear Px14 Interrupt A
Enable

Clear Px15 Interrupt A
Enable

Clear Px1 Interrupt A
Enable

Clear Px2 Interrupt A
Enable

Clear Px3 Interrupt A
Enable

Clear Px4 Interrupt A
Enable

Clear Px5 Interrupt A
Enable

For all bits, 1 - Clear

Clear Px6 Interrupt A
Enable

Clear Px7 Interrupt A
Enable

Clear Px11 Interrupt A
Enable
Clear Px10 Interrupt A
Enable

Clear Px9 Interrupt A
Enable

Clear Px8 Interrupt A
Enable

Reset = 0x0000Port F:
0xFFC0 0714

Port G:
0xFFC0 1514

Port H:
0xFFC0 1714

Memory-Mapped GPIO Registers

14-32 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_MASKB_CLEAR Registers

Figure 14-25. GPIO Mask Interrupt B Clear Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Clear Registers (PORTxIO_MASKB_CLEAR)
For all bits, 1 - Clear

Reset = 0x0000Port F:
0xFFC0 0724

Port G:
0xFFC0 1524

Port H:
0xFFC0 1724

Clear Px0 Interrupt B
Enable
Clear Px1 Interrupt B
Enable

Clear Px2 Interrupt B
Enable

Clear Px3 Interrupt B
Enable
Clear Px4 Interrupt B
Enable
Clear Px5 Interrupt B
Enable
Clear Px6 Interrupt B
Enable
Clear Px7 Interrupt B
Enable

Clear Px9 Interrupt B
Enable

Clear Px8 Interrupt B
Enable

Clear Px12 Interrupt B
Enable

Clear Px13 Interrupt B
Enable

Clear Px14 Interrupt B
Enable

Clear Px15 Interrupt B
Enable

Clear Px11 Interrupt B
Enable

Clear Px10 Interrupt B
Enable

ADSP-BF537 Blackfin Processor Hardware Reference 14-33

General-Purpose Ports

PORTxIO_MASKA_TOGGLE Registers

Figure 14-26. GPIO Mask Interrupt A Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt A Toggle Registers (PORTxIO_MASKA_TOGGLE)

Toggle Px0 Interrupt A
Enable

Toggle Px12 Interrupt A
Enable

Toggle Px13 Interrupt A
Enable

Toggle Px14
Interrupt A Enable

Toggle Px15
Interrupt A Enable

Toggle Px1 Interrupt A
Enable

Toggle Px2 Interrupt A
Enable

Toggle Px3 Interrupt A
Enable
Toggle Px4 Interrupt A
Enable
Toggle Px5 Interrupt A
Enable

For all bits, 1 - Toggle

Toggle Px6 Interrupt A
Enable
Toggle Px7 Interrupt A
Enable

Toggle Px11 Interrupt A
Enable

Toggle Px10 Interrupt A
Enable

Toggle Px9 Interrupt A
Enable

Toggle Px8 Interrupt A
Enable

Reset = 0x0000Port F:
0xFFC0 071C

Port G:
0xFFC0 151C

Port H:
0xFFC0 171C

Memory-Mapped GPIO Registers

14-34 ADSP-BF537 Blackfin Processor Hardware Reference

PORTxIO_MASKB_TOGGLE Registers

Figure 14-27. GPIO Mask Interrupt B Toggle Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPIO Mask Interrupt B Toggle Registers (PORTxIO_MASKB_TOGGLE)
For all bits, 1 - Toggle

Reset = 0x0000Port F:
0xFFC0 072C

Port G:
0xFFC0 152C

Port H:
0xFFC0 172C

Toggle Px0 Interrupt B
Enable
Toggle Px1 Interrupt B
Enable

Toggle Px2 Interrupt B
Enable

Toggle Px3 Interrupt B
Enable
Toggle Px4 Interrupt B
Enable
Toggle Px5 Interrupt B
Enable
Toggle Px6 Interrupt B
Enable
Toggle Px7 Interrupt B
Enable

Toggle Px9 Interrupt B
Enable

Toggle Px8 Interrupt B
Enable

Toggle Px12 Interrupt B
Enable

Toggle Px13 Interrupt B
Enable

Toggle Px14
Interrupt B Enable

Toggle Px15
Interrupt B Enable

Toggle Px11 Interrupt B
Enable
Toggle Px10 Interrupt B
Enable

ADSP-BF537 Blackfin Processor Hardware Reference 14-35

General-Purpose Ports

Programming Examples
Listing 14-1 provides examples for using the general-purpose ports.
Listing 14-2 shows a representative example of how a GPIO interrupt
request might be serviced.

Listing 14-1. General-Purpose Ports

/* set port f function enable register to GPIO (not peripheral)

*/

p0.l = lo(PORTF_FER);

p0.h = hi(PORTF_FER);

R0.h = 0x0000;

r0.l = 0x0000;

w[p0] = r0;

/* set port f direction register to enable some GPIO as output,

remaining are input */

p0.l = lo(PORTFIO_DIR);

p0.h = hi(PORTFIO_DIR);

r0.h = 0x0000;

r0.l = 0x0FC0;

w[p0] = r0;

ssync;

/* set port f clear register */

p0.l = lo(PORTFIO_CLEAR);

p0.h = hi(PORTFIO_CLEAR);

r0.l = 0xFC0;

w[p0] = r0;

ssync;

Programming Examples

14-36 ADSP-BF537 Blackfin Processor Hardware Reference

/* set port f input enable register to enable input drivers of

some GPIOs */

p0.l = lo(PORTFIO_INEN);

p0.h = hi(PORTFIO_INEN);

r0.h = 0x0000;

r0.l = 0x003C;

w[p0] = r0;

ssync;

/* set port f polarity register */

p0.l = lo(PORTFIO_POLAR);

p0.h = hi(PORTFIO_POLAR);

r0 = 0x00000;

w[p0] = r0;

ssync;

Listing 14-2. Servicing GPIO Interrupt Request

#include <defBF537.h>

.section program;

_portg_a_isr:

/* push used registers */

[--sp] = (r7:7, p5:5);

/* clear interrupt request on GPIO pin PG2 */

/* no matter whether used A or B channel */

p5.l = lo(PORTGIO_CLEAR);

p5.h = hi(PORTGIO_CLEAR);

r7 = PG2;

w[p5] = r7;

/* place user code here */

ADSP-BF537 Blackfin Processor Hardware Reference 14-37

General-Purpose Ports

/* sync system, pop registers and exit */

ssync;

(r7:7, p5:5) = [sp++];

rti;

_portg_a_isr.end:

Programming Examples

14-38 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 15-1

15 GENERAL-PURPOSE TIMERS

This chapter describes the general-purpose timer module. Following an
overview and a list of key features is a description of operation and func-
tional modes of operation. The chapter concludes with a programming
model, consolidated register definitions, and programming examples.

This chapter contains:

• “Overview and Features” on page 15-1

• “Interface Overview” on page 15-3

• “Description of Operation” on page 15-6

• “Modes of Operation” on page 15-14

• “Programming Model” on page 15-37

• “Timer Registers” on page 15-38

• “Programming Examples” on page 15-54

Overview and Features
The processor features one general-purpose timer module that contains
eight identical 32-bit timers. Every timer can operate in various operating
modes on individual configuration. Although the timers operate com-
pletely independent from each other, all of them can be started and
stopped simultaneously for synchronous operation.

Overview and Features

15-2 ADSP-BF537 Blackfin Processor Hardware Reference

Features
The general-purpose timers support the following operating modes:

• Single-shot mode for interval timing and single pulse generation

• Pulse Width Modulation (PWM) generation with consistent
update of period and pulse width values

• External signal capture mode with consistent update of period and
pulse width values

• External event counter mode

Feature highlights are:

• Synchronous operation of all timers

• Consistent management of period and pulse width values

• Interaction with PPI module for video frame sync operation

• Autobaud detection for CAN and both UART modules

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

ADSP-BF537 Blackfin Processor Hardware Reference 15-3

General-Purpose Timers

Interface Overview
Figure 15-1 shows the derivative-specific block diagram of the gen-
eral-purpose timer module.

Figure 15-1. Timer Block Diagram

T
IM

E
R

 7

SIC CONTROLLER

PAB

T
IM

E
R

 6

T
IM

E
R

 5

T
IM

E
R

 4

T
IM

E
R

 3

T
IM

E
R

 2

T
IM

E
R

 1

T
IM

E
R

 0

TIMER_DISABLE

TIMER_ENABLE

TIMER_STATUS

PORT CONTROL

IR
Q

 2
6

IR
Q

 2
5

IR
Q

 2
4

IR
Q

 2
3

IR
Q

 2
2

IR
Q

 2
1

IR
Q

 2
0

IR
Q

 1
9

P
F

2

(U
A

R
T

1
R

X
)

P
F

3

P
F

4

P
F

5

P
F

6

P
F

7

(U
A

R
T

 0
 R

X
)

P
F

1
P

F
8

P
H

14

P
H

12

P
J8

P
J7

P
J6

P
F

9
(C

A
N

 R
X

)
P

J4

P
H

13

P
J9

P
F

14

T
M

R
7

T
M

R
6

T
M

R
5

T
M

R
4

T
M

R
3

T
M

R
2

T
M

R
1

T
M

R
0

T
A

C
L

K
7

T
A

C
L

K
5

T
A

C
L

K
4

T
A

C
L

K
3

T
A

C
L

K
2

T
A

C
L

K
1

T
A

C
I0

T
A

C
L

K
6

T
A

C
I1

T
A

C
L

K
0

T
A

C
I6

(P
P

IC
L

K
)

P
F

15

GP TIMERS

BLACKFIN

Interface Overview

15-4 ADSP-BF537 Blackfin Processor Hardware Reference

The timer module features a global infrastructure to control synchronous
operation of all timers if required. The internal structure of the individual
timers is illustrated by Figure 15-2, which shows the details of timer 0 rep-
resentatively. The other timers have identical structure.

Figure 15-2. Internal Timer Structure

TIMER0_CONFIG

PERIOD
MATCH

SCLK

ENABLE
LATCH

32

TMRCLK

TACLK0

TMR0

TIMER0_PERIOD (WRITE)

TIMER0_PERIOD (READ)

COMPARATOR

TIMER0_COUNTER

COMPARATOR

TIMER0_WIDTH (READ)

TIMER0_WIDTH (WRITE)

32

32

32

32

32 INTERRUPT
CONTROL

PIN
CONTROL

EDGE
DETECTOR

32

TRAILING EDGE

LEADING EDGE

OVERFLOW

WIDTH MATCH

PAB

16

TIMEN0

TIMDIS0

TRUN0

TOVF_ERR0

TIMIL0

TMR0

TACI0

TIMER 0

ADSP-BF537 Blackfin Processor Hardware Reference 15-5

General-Purpose Timers

External Interface
Every timer has a dedicated TMRx pin that can be found on port F. If
enabled, the TMRx pins output the single-pulse or PWM signals generated
by the timer. They function as input in capture and counter modes. Polar-
ity of the signals is programmable.

The timer outputs TMR2 to TMR7 connect to pin drivers that can source and
sink higher current than others. See the product data sheet for details.

Alternate clock (TACLKx) and capture (TACIx) inputs are found on port F,
port H and port J. The TACLKx pins can alternatively clock the timers in
PWM_OUT mode.

In WDTH_CAP mode, timer 0, timer 1, and timer 6 feature TACIx inputs that
can be used for bit rate detection on CAN and UART inputs. The TACI0
pin connects to the CAN RX input, the TACI1 pin connects to the UART0
RX input, and the TACI6 pin connects to the UART1 RX input. The
TACI2, TACI3, TACI4, TACI5, and TACI7 pins are not used.

The TMRCLK input is another clock input common to all eight timers. The
PPI unit is clocked by the same pin; therefore any of the timers can be
clocked by PPI_CLK. Since timer 0 and timer 1 are often used in conjunc-
tion with the PPI, they are internally looped back to the PPI module for
frame sync generation.

In order to enable TMRCLK, PORTF_FER bit 15 must be set and input enable
for GPIO bit 15 needs to be set in the PORTxIO_INEN register.

Interface Overview

15-6 ADSP-BF537 Blackfin Processor Hardware Reference

The timer signals TMR0, TMR1 and TMR2 are multiplexed with the PPI frame
syncs when the frame syncs are applied externally. PPI modes requiring
only two frame syncs free up TMR2 for any purpose. Similarly, PPI modes
requiring only one frame sync free up TMR1. For details, see Chapter 7,
“Parallel Peripheral Interface”.

 If the PPI frame syncs are applied externally, timer 0, timer 1, and
timer 2 are still fully functional and can be used for other purposes
not involving the three TMRx pins. Timer 0 and timer 1 must not
drive their TMR0 and TMR1 pins. If operating in PWM_OUT mode, the
OUT_DIS bit in the TIMER0_CONFIG and TIMER1_CONFIG registers
must be set.

When clocked internally, the clock source is the processor’s peripheral
clock (SCLK). Assuming the peripheral clock is running at 133 MHz, the

maximum period for the timer count is ((232-1) / 133 MHz) =
32.2 seconds.

Clock and capture input pins are sampled every SCLK cycle. The duration
of every low or high state must be one SCLK minimum. The maximum
allowed frequency of timer input signals is SCLK/2, therefore.

Internal Interface
Timer registers are always accessed by the core through the 16-bit PAB
bus. Hardware ensures that all read and write operations from and to
32-bit timer registers are atomic.

Every timer has its dedicated interrupt request output that connects to the
SIC controller. In total the module has eight interrupt outputs, therefore.

ADSP-BF537 Blackfin Processor Hardware Reference 15-7

General-Purpose Timers

Description of Operation
The core of every timer is a 32-bit counter, that can be interrogated
through the read-only TIMERx_COUNTER register. Depending on operation
mode, the counter is reset to either 0x0000 0000 or 0x0000 0001 when
the timer is enabled. The counter always counts upward. Usually, it is
clocked by SCLK. In PWM mode it can be clocked by the alternate clock
input TACLKx or the common timer clock input TMRCLK alternatively. In
counter mode, the counter is clocked by edges on the TMRx input. The sig-
nificant edge is programmable.

After 232-1 clocks the counter overflows. In case, this is reported by the
overflow/error bit TOVF_ERRx in the global timer status (TIMER_STATUS)
register. In PWM and counter mode the counter is reset by hardware
when its content reaches the values stored in the TIMERx_PERIOD register.
In capture mode the counter is reset by leading edges on the input pin
TMRx or TACIx. If enabled, these events cause the interrupt latch TIMILx in
the TIMER_STATUS registers to be set and issue a system interrupt request.
The TOVF_ERRx and TIMILx latches are sticky and should be cleared by
software using W1C operations to clear the interrupt request. The global
TIMER_STATUS is 32-bits wide. A single atomic 32-bit read can report the
status of all eight timers consistently.

Before a timer can be enabled, its mode of operation is programmed in the
individual timer-specific TIMERx_CONFIG registers. Then, the timers are
started by writing a 1 to the representative bits in the global TIMER_ENABLE
register.

The timer enable (TIMER_ENABLE) register can be used to enable all eight
timers simultaneously. The register contains eight “write-1-to-set” control
bits, one for each timer. Correspondingly, the timer disable
(TIMER_DISABLE) register contains eight “write-1-to-clear” control bits to
allow simultaneous or independent disabling of the eight timers. Either
the timer enable or the timer disable register can be read back to check the

Description of Operation

15-8 ADSP-BF537 Blackfin Processor Hardware Reference

enable status of the timers. A 1 indicates that the corresponding timer is
enabled. The timer starts counting three SCLK cycles after the TIMENx bit is
set.

While the PWM mode is used to generate PWM patterns, the capture
mode (WDTH_CAP) is designed to “receive” PWM signals. A PWM pattern is
represented by a pulse width and a signal period. This is described by the
TIMERx_WIDTH and TIMERx_PERIOD register pair. In capture mode these reg-
isters are read only. Hardware always captures both values.

Regardless of whether in PWM or capture mode, shadow buffers always
ensure consistency between the TIMERx_WIDTH and TIMERx_PERIOD values.
In PWM mode, hardware performs a plausibility check by the time the
timer is enabled. In this case the error type is reported by the
TIMERx_CONFIG register and signalled by the TOVF_ERRx bit.

Interrupt Processing
Each of the eight timers can generate a single interrupt. The eight result-
ing interrupt signals are routed to the system interrupt controller block for
prioritization and masking. The timer status (TIMER_STATUS) register
latches the timer interrupts to provide a means for software to determine
the interrupt source.

To enable interrupt generation, set the IRQ_ENA bit and unmask the inter-
rupt source in the IMASK and SIC_IMASK registers. To poll the TIMILx bit
without interrupt generation, set IRQ_ENA but leave the interrupt masked
at the system level. If enabled by IRQ_ENA, interrupt requests are also gen-
erated by error conditions as reported by the TOVF_ERRx bits.

The system interrupt controller enables flexible interrupt handling. All
timers may or may not share the same CEC interrupt channel, so that a
single interrupt routine services more than one timer. In PWM mode,
multiple timers may run with the same period settings and issue their

ADSP-BF537 Blackfin Processor Hardware Reference 15-9

General-Purpose Timers

interrupt requests simultaneously. In this case, the service routine might
clear all TIMILx latch bits at once by writing 0x000F 000F to the
TIMER_STATUS register.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the TIMILx bit in the TIMER_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the TIMILx clear command from the RTI instruction,
an extra SSYNC instruction may be inserted. In EXT_CLK mode, reset the
TIMILx bit in the TIMER_STATUS register at the very beginning of the inter-
rupt service routine to avoid missing any timer events.

Description of Operation

15-10 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 15-3 shows the timers interrupt structure.

Figure 15-3. Timers Interrupt Structure

ERROR EVENT

IRQ_ENA

TIMILx

TIMER
IRQx PROCESSOR

CORE

TMODE
PWM_OUT WDTH_CAP EXT_CLK

TOVF_ERRx

RST RST

SET SET

INTERRUPT
EVENT

RESET

TOVF_ERRx WRITE DATA
TIMILx WRITE DATA

MMR WRITE TO
TIMER_STATUS

COUNTER
OVERFLOW

ILLEGAL
TIMERX_PERIOD

ILLEGAL
TIMERX_WIDTH

1 0 1 0PERIOD_CNT

LEADING
EDGE

TRAILING
EDGE

COUNT = WIDTH

COUNT = PERIOD

TMODE
PWM_OUT WDTH_CAP EXT_CLK

SYSTEM
INTERRUPT

CONTROLLER

ADSP-BF537 Blackfin Processor Hardware Reference 15-11

General-Purpose Timers

Illegal States
Every timer features an error detection circuit. It handles overflow situa-
tions but also performs pulse width vs. period plausibility checks. Errors
are reported by the TOVF_ERRx bits in the TIMER_STATUS register and the
ERR_TYP bit field in the individual TIMERx_CONFIG registers. Table 15-1
provides a summary of error conditions, by using these terms:

• Startup. The first clock period during which the timer counter is
running after the timer is enabled by writing TIMER_ENABLE.

• Rollover. The time when the current count matches the value in
TIMERx_PERIOD and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a
rollover when it was holding the maximum possible count value of
0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value
of 0x0000 0000.

• Unchanged. No new error.

• When ERR_TYP is unchanged, it displays the previously
reported error code or 00 if there has been no error since
this timer was enabled.

• When TOVF_ERR is unchanged, it reads 0 if there has been no
error since this timer was enabled, or if software has per-
formed a W1C to clear any previous error. If a previous
error has not been acknowledged by software, TOVF_ERR
reads 1.

Software should read TOVF_ERR to check for an error. If TOVF_ERR is set,
software can then read ERR_TYP for more information. Once detected,
software should write 1 to clear TOVF_ERR to acknowledge the error.

Description of Operation

15-12 ADSP-BF537 Blackfin Processor Hardware Reference

Table 15-1 can be read as: “In mode __ at event __, if TIMERx_PERIOD
is __ and TIMERx_WIDTH is __, then ERR_TYP is __ and
TOVF_ERR is __.”

 Startup error conditions do not prevent the timer from starting.
Similarly, overflow and rollover error conditions do not stop the
timer. Illegal cases may cause unwanted behavior of the TMRx pin.

Table 15-1. Overview of Illegal States

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

PWM_OUT,
PERIOD_
CNT = 1

Startup
(No boundary
condition tests
performed on
TIMERx_
WIDTH)

== 0 Anything b#10 Set

== 1 Anything b#10 Set

>= 2 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

== 1 Anything b#11 Set

>= 2 == 0 b#11 Set

>= 2 < TIMERx_
PERIOD

Unchanged Unchanged

>= 2 >= TIMERx_
PERIOD

b#11 Set

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

ADSP-BF537 Blackfin Processor Hardware Reference 15-13

General-Purpose Timers

PWM_OUT,
PERIOD_
CNT = 0

Startup Anything == 0 b#01 Set

This case is not detected at startup, but results in an overflow
error once the counter counts through its entire range.

Anything >= 1 Unchanged Unchanged

Rollover Rollover is not possible in this mode.

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
WIDTH == 0.

Anything Anything b#01 Set

WDTH_CAP Startup TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Rollover TIMERx_PERIOD and TIMERx_WIDTH are read-only in
this mode, no error possible.

Overflow Anything Anything b#01 Set

EXT_CLK Startup == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Rollover == 0 Anything b#10 Set

>= 1 Anything Unchanged Unchanged

Overflow, not
possible unless
there is also
another error,
such as
TIMERx_
PERIOD == 0.

Anything Anything b#01 Set

Table 15-1. Overview of Illegal States (Cont’d)

Mode Event TIMERx_
PERIOD

TIMERx_
WIDTH

ERR_TYP TOVF_ERR

Modes of Operation

15-14 ADSP-BF537 Blackfin Processor Hardware Reference

Modes of Operation
The following sections provide a functional description of the gen-
eral-purpose timers in various operating modes.

Pulse Width Modulation (PWM_OUT) Mode
Use the PWM_OUT mode for PWM signal or single-pulse generation, for
interval timing or for periodic interrupt generation. Figure 15-4 illustrates
PWM_OUT mode.

Setting the TMODE field to b#01 in the timer configuration
(TIMERx_CONFIG) register enables PWM_OUT mode. Here, the timer TMRx pin
is an output, but it can be disabled by setting the OUT_DIS bit in the timer
configuration register.

In PWM_OUT mode, the bits PULSE_HI, PERIOD_CNT, IRQ_ENA, OUT_DIS,
CLK_SEL, EMU_RUN, and TOGGLE_HI enable orthogonal functionality. They
may be set individually or in any combination, although some combina-
tions are not useful (such as TOGGLE_HI = 1 with OUT_DIS = 1 or
PERIOD_CNT = 0).

Once a timer has been enabled, the timer counter register is loaded with a
starting value. If CLK_SEL = 0, the timer counter starts at 0x1. If
CLK_SEL = 1, it is reset to 0x0 as in EXT_CLK mode. The timer counts
upward to the value of the timer period register. For either setting of
CLK_SEL, when the timer counter equals the timer period, the timer coun-
ter is reset to 0x1 on the next clock.

In PWM_OUT mode, the PERIOD_CNT bit controls whether the timer generates
one pulse or many pulses. When PERIOD_CNT is cleared (PWM_OUT single
pulse mode), the timer uses the TIMERx_WIDTH register, generates one
asserting and one deasserting edge, then generates an interrupt (if enabled)
and stops. When PERIOD_CNT is set (PWM_OUT continuous pulse mode), the
timer uses both the TIMERx_PERIOD and TIMERx_WIDTH registers and

ADSP-BF537 Blackfin Processor Hardware Reference 15-15

General-Purpose Timers

generates a repeating (and possibly modulated) waveform. It generates an
interrupt (if enabled) at the end of each period and stops only after it is
disabled. A setting of PERIOD_CNT = 0 counts to the end of the width; a set-
ting of PERIOD_CNT = 1 counts to the end of the period.

 The TIMERx_PERIOD and TIMERx_WIDTH registers are read-only in
some operation modes. Be sure to set the TMODE field in the
TIMERx_CONFIG register to b#01 before writing to these registers.

Figure 15-4. Timer Flow Diagram, PWM_OUT Mode

TIN_SEL

DATA BUS

0

1 PWM_CLK

SCLK

CLK_SEL
EQUAL?

TIMER_ENABLE

EQUAL?

1

1

0

0

YES

CLOCK RESET

ASSERT DEASSERT

INTERRUPT

PERIOD_CNT

TMRx

PWMOUT
LOGIC

PULSE_HI
TOGGLE_HI
OUT_DIS

YES

TACLKx

TMRCLK

TIMERx_COUNTER

TIMERx_PERIOD TIMERx_WIDTH

Modes of Operation

15-16 ADSP-BF537 Blackfin Processor Hardware Reference

Output Pad Disable

The output pin can be disabled in PWM_OUT mode by setting the OUT_DIS
bit in the timer configuration register. The TMRx pin is then three-stated
regardless of the setting of PULSE_HI and TOGGLE_HI. This can reduce
power consumption when the output signal is not being used. The TMRx
pin can also be disabled by the function enable and the multiplexer con-
trol registers.

Single Pulse Generation

If the PERIOD_CNT bit is cleared, the PWM_OUT mode generates a single pulse
on the TMRx pin. This mode can also be used to implement a precise delay.
The pulse width is defined by the pulse width register, and the period reg-
ister is not used. See Figure 15-5.

At the end of the pulse, the timer interrupt latch bit TIMILx is set, and the
timer is stopped automatically. No writes to the TIMER_DISABLE register
are required in this mode. If the PULSE_HI bit is set, an active high pulse is
generated on the TMRx pin. If PULSE_HI is not set, the pulse is active low.

Figure 15-5. Timer Enable and Automatic Disable Timing

EXAMPLE TIMER ENABLE AND AUTOMATIC DISABLE TIMING
(PWM_OUT MODE, PERIOD_CNT = 0)

3

21X 3

SCLK

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

ADSP-BF537 Blackfin Processor Hardware Reference 15-17

General-Purpose Timers

The pulse width may be programmed to any value from 1 to (232-1),
inclusive.

Pulse Width Modulation Waveform Generation

If the PERIOD_CNT bit is set, the internally clocked timer generates rectan-
gular signals with well-defined period and duty cycle (PWM patterns).
This mode also generates periodic interrupts for real-time signal
processing.

The 32-bit timer period (TIMERx_PERIOD) and timer pulse width
(TIMERx_WIDTH) registers are programmed with the values required by the
PWM signal.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the counter equals the value of the pulse width
register, and the pin is asserted again when the period expires (or when the
timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the cor-
responding TIMERx_CONFIG register is used. For a low assertion level, clear
this bit. For a high assertion level, set this bit. When the timer is disabled
in PWM_OUT mode, the TMRx pin is driven to the deasserted level.

Figure 15-6 shows timing details.

Modes of Operation

15-18 ADSP-BF537 Blackfin Processor Hardware Reference

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine (ISR) must clear the interrupt latch bit (TIMILx)
and might alter period and/or width values. In pulse width modulation
(PWM) applications, the software needs to update period and pulse width
values while the timer is running. When software updates either period or
pulse width registers, the new values are held by special buffer registers
until the period expires. Then the new period and pulse width values
become active simultaneously. Reads from timer period and timer pulse
width registers return the old values until the period expires.

The TOVF_ERRx status bit signifies an error condition in PWM_OUT mode.
The TOVF_ERRx bit is set if TIMERx_PERIOD = 0 or TIMERx_PERIOD = 1 at
startup, or when the timer counter register rolls over. It is also set if the
timer pulse width register is greater than or equal to the timer period reg-
ister by the time the counter rolls over. The ERR_TYP bits are set when the
TOVF_ERRx bit is set.

Although the hardware reports an error if the TIMERx_WIDTH value equals
the TIMERx_PERIOD value, this is still a valid operation to implement PWM
patterns with 100% duty cycle. If doing so, software must generally ignore

Figure 15-6. Timer Enable Timing

SCLK

TIMERx_PERIOD 4 4 4

EXAMPLE TIMER ENABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

1 1 1

X 41 2 3 1 2 3

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

W1S TO
TIMER_ENABLE

ADSP-BF537 Blackfin Processor Hardware Reference 15-19

General-Purpose Timers

the TOVL_ERRx flags. Pulse width values greater than the period value are
not recommended. Similarly, TIMERx_WIDTH = 0 is not a valid operation.
Duty cycles of 0% are not supported.

To generate the maximum frequency on the TMRx output pin, set the
period value to 2 and the pulse width to 1. This makes TMRx toggle each
SCLK clock, producing a duty cycle of 50%. The period may be pro-

grammed to any value from 2 to (232 – 1), inclusive. The pulse width may
be programmed to any value from 1 to (period – 1), inclusive.

PULSE_HI Toggle Mode

The waveform produced in PWM_OUT mode with PERIOD_CNT = 1 normally
has a fixed assertion time and a programmable deassertion time (via the
TIMERx_WIDTH register). When two timers are running synchronously by
the same period settings, the pulses are aligned to the asserting edge as
shown in Figure 15-7.

The TOGGLE_HI mode enables control of the timing of both the asserting
and deasserting edges of the output waveform produced. The phase
between the asserting edges of two timer outputs is programmable. The
effective state of the PULSE_HI bit alternates every period. The adjacent

Figure 15-7. Timers With Pulses Aligned to Asserting Edge

TMR0

TMR1

PERIOD 1

TMR2

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TOGGLE_HI = 0
PULSE_HI = 1

TIMER
ENABLE

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

Modes of Operation

15-20 ADSP-BF537 Blackfin Processor Hardware Reference

active low and active high pulses, taken together, create two halves of a
fully arbitrary rectangular waveform. The effective waveform is still active
high when PULSE_HI is set and active low when PULSE_HI is cleared. The
value of the TOGGLE_HI bit has no effect unless the mode is PWM_OUT and
PERIOD_CNT = 1.

In TOGGLE_HI mode, when PULSE_HI is set, an active low pulse is generated
in the first, third, and all odd-numbered periods, and an active high pulse
is generated in the second, fourth, and all even-numbered periods. When
PULSE_HI is cleared, an active high pulse is generated in the first, third,
and all odd-numbered periods, and an active low pulse is generated in the
second, fourth, and all even-numbered periods.

The deasserted state at the end of one period matches the asserted state at
the beginning of the next period, so the output waveform only transitions
when Count = Pulse Width. The net result is an output waveform pulse
that repeats every two counter periods and is centered around the end of
the first period (or the start of the second period).

Figure 15-8 shows an example with three timers running with the same
period settings. When software does not alter the PWM settings at
run-time, the duty cycle is 50%. The values of the TIMERx_WIDTH registers
control the phase between the signals.

ADSP-BF537 Blackfin Processor Hardware Reference 15-21

General-Purpose Timers

Similarly, two timers can generate non-overlapping clocks, by cen-
ter-aligning the pulses while inverting the signal polarity for one of the
timers (see Figure 15-9).

Figure 15-8. Three Timers With Same Period Settings

Figure 15-9. Two Timers With Non-overlapping Clocks

TMR0

TMR1

TMR2

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TOGGLE_HI = 1
PULSE_HI = 1

TMR0

TMR1

WAVEFORM
PERIOD 1

WAVEFORM
PERIOD 2

TIMER
ENABLE

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

ACTIVE
LOW

ACTIVE
HIGH

ACTIVE
HIGH

ACTIVE
LOW

TOGGLE_HI = 1
PULSE_HI = 0

TOGGLE_HI = 1
PULSE_HI = 1

TIMER
PERIOD 1

TIMER
PERIOD 2

TIMER
PERIOD 3

TIMER
PERIOD 4

Modes of Operation

15-22 ADSP-BF537 Blackfin Processor Hardware Reference

When TOGGLE_HI = 0, software updates the timer period and timer pulse
width registers once per waveform period. When TOGGLE_HI = 1, software
updates the timer period and timer pulse width registers twice per wave-
form. Period values are half as large. In odd-numbered periods, write
(Period – Width) instead of Width to the timer pulse width register in
order to obtain center-aligned pulses.

For example, if the pseudo-code when TOGGLE_HI = 0 is:

int period, width ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, period) ;

write(TIMERx_WIDTH, width) ;

}

Then when TOGGLE_HI = 1, the pseudo-code would be:

int period, width ;

int per1, per2, wid1, wid2 ;

for (;;) {

period = generate_period(...) ;

width = generate_width(...) ;

per1 = period/2 ;

wid1 = width/2 ;

per2 = period/2 ;

wid2 = width/2 ;

waitfor (interrupt) ;

ADSP-BF537 Blackfin Processor Hardware Reference 15-23

General-Purpose Timers

write(TIMERx_PERIOD, per1) ;

write(TIMERx_WIDTH, per1 - wid1) ;

waitfor (interrupt) ;

write(TIMERx_PERIOD, per2) ;

write(TIMERx_WIDTH, wid2) ;

}

As shown in this example, the pulses produced do not need to be symmet-
ric (wid1 does not need to equal wid2). The period can be offset to adjust
the phase of the pulses produced (per1 does not need to equal per2).

The timer enable latch (TRUNx bit in the TIMER_STATUS register) is
updated only at the end of even-numbered periods in TOGGLE_HI mode.
When TIMER_DISABLE is written to 1, the current pair of counter periods
(one waveform period) completes before the timer is disabled.

As when TOGGLE_HI = 0, errors are reported if the TIMERx_PERIOD register
is either set to 0 or 1, or when the width value is greater than or equal to
the period value.

Externally Clocked PWM_OUT

By default, the timer is clocked internally by SCLK. Alternatively, if the
CLK_SEL bit in the Timer Configuration (TIMERx_CONFIG) register is set,
the timer is clocked by PWM_CLK. The PWM_CLK is normally input from the
TACLKx pin, but may be taken from the common TMRCLK pin regardless of
whether the timers are configured to work with the PPI. Different timers
may receive different signals on their PWM_CLK inputs, depending on con-
figuration. As selected by the PERIOD_CNT bit, the PWM_OUT mode either
generates pulse width modulation waveforms or generates a single pulse
with pulse width defined by the TIMERx_WIDTH register.

Modes of Operation

15-24 ADSP-BF537 Blackfin Processor Hardware Reference

When CLK_SEL is set, the counter resets to 0x0 at startup and increments
on each rising edge of PWM_CLK. The TMRx pin transitions on rising edges
of PWM_CLK. There is no way to select the falling edges of PWM_CLK. In this
mode, the PULSE_HI bit controls only the polarity of the pulses produced.
The timer interrupt may occur slightly before the corresponding edge on
the TMRx pin (the interrupt occurs on an SCLK edge, the pin transitions on
a later PWM_CLK edge). It is still safe to program new period and pulse
width values as soon as the interrupt occurs. After a period expires, the
counter rolls over to a value of 0x1.

The PWM_CLK clock waveform is not required to have a 50% duty cycle, but
the minimum PWM_CLK clock low time is one SCLK period, and the mini-
mum PWM_CLK clock high time is one SCLK period. This implies the
maximum PWM_CLK clock frequency is SCLK/2.

The alternate timer clock inputs (TACLKx) are enabled when a timer is in
PWM_OUT mode with CLK_SEL = 1 and TIN_SEL = 0, without regard to the
content of the multiplexer control and function enable registers.

Using PWM_OUT Mode With the PPI

Up to three timers are used to generate frame sync signals for certain PPI
modes. For detailed instructions on how to configure the timers for use
with the PPI, refer to “Frame Synchronization in GP Modes” on
page 7-21 of the PPI chapter.

Stopping the Timer in PWM_OUT Mode

In all PWM_OUT mode variants, the timer treats a disable operation (W1C to
TIMER_DISABLE) as a “stop is pending” condition. When disabled, it auto-
matically completes the current waveform and then stops cleanly. This
prevents truncation of the current pulse and unwanted PWM patterns at
the TMRx pin. The processor can determine when the timer stops running
by polling for the corresponding TRUNx bit in the TIMER_STATUS register to

ADSP-BF537 Blackfin Processor Hardware Reference 15-25

General-Purpose Timers

read 0 or by waiting for the last interrupt (if enabled). Note the timer
cannot be reconfigured (TIMERx_CONFIG cannot be written to a new value)
until after the timer stops and TRUNx reads 0.

In PWM_OUT single pulse mode (PERIOD_CNT = 0), it is not necessary to
write TIMER_DISABLE to stop the timer. At the end of the pulse, the timer
stops automatically, the corresponding bit in TIMER_ENABLE (and
TIMER_DISABLE) is cleared, and the corresponding TRUNx bit is cleared. See
Figure 15-5 on page 15-16. To generate multiple pulses, write a 1 to
TIMER_ENABLE, wait for the timer to stop, then write another 1 to
TIMER_ENABLE.

In continuous PWM generation mode (PWM_OUT, PERIOD_CNT = 1) software
can stop the timer by writing to the TIMER_DISABLE register. To prevent
the ongoing PWM pattern from being spoiled in unpredictable fashion,
the timer does not stop immediately when the corresponding 1 has been
written to the TIMER_DISABLE register. Rather, the write simply clears the
enable latch and the timer still completes the ongoing PWM patterns
gracefully. It stops cleanly at the end of the first period when the enable
latch is cleared. During this final period the TIMENx bit returns 0, but the
TRUNx bit still reads as a 1.

If the TRUNx bit is not cleared explicitly, and the enable latch can be
cleared and re-enabled all before the end of the current period will con-
tinue to run as if nothing happened. Typically, software should disable a
PWM_OUT timer and then wait for it to stop itself.

Figure 15-10 shows detailed timing.

Modes of Operation

15-26 ADSP-BF537 Blackfin Processor Hardware Reference

If necessary, the processor can force a timer in PWM_OUT mode to abort
immediately. Do this by first writing a 1 to the corresponding bit in
TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx bit in
TIMER_STATUS. This stops the timer whether the pending stop was waiting
for the end of the current period (PERIOD_CNT = 1) or the end of the cur-
rent pulse width (PERIOD_CNT = 0). This feature may be used to regain
immediate control of a timer during an error recovery sequence.

 Use this feature carefully, because it may corrupt the PWM pattern
generated at the TMRx pin.

When timers are disabled, the timer counter registers retain their state;
when a timer is re-enabled, the timer counter is reinitialized based on the
operating mode. The timer counter registers are read-only. Software can-
not overwrite or preset the timer counter value directly.

Figure 15-10. Timer Disable Timing

7

EXAMPLE TIMER DISABLE TIMING (PWM_OUT MODE, PERIOD_CNT = 1)

5

7

5

7

5

7 1 2 3 5 6 74

W1C TO
TIMER_DISABLE

SCLK

TIMERx_PERIOD

TIMERx_WIDTH

TIMERx_COUNTER

TIMENx

TRUNx

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

ADSP-BF537 Blackfin Processor Hardware Reference 15-27

General-Purpose Timers

Pulse Width Count and Capture (WDTH_CAP) Mode
Use the WDTH_CAP mode, often simply called “capture mode,” to measure
pulse widths on the TMRx or TACIx input pins, or to “receive” PWM sig-
nals. Figure 15-11 shows a flow diagram for WDTH_CAP mode.

In WDTH_CAP mode, the TMRx pin is an input pin. The internally clocked
timer is used to determine the period and pulse width of externally applied
rectangular waveforms. Setting the TMODE field to b#10 in the
TIMERx_CONFIG register enables this mode.

When enabled in this mode, the timer resets the count in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects a leading edge on the TMRx pin.

When the timer detects the first leading edge, it starts incrementing.
When it detects a trailing edge of a waveform, the timer captures the cur-
rent 32-bit value of the TIMERx_COUNTER register into the width buffer
register. At the next leading edge, the timer transfers the current 32-bit
value of the TIMERx_COUNTER register into the period buffer register. The
count register is reset to 0x0000 0001 again, and the timer continues
counting and capturing until it is disabled.

In this mode, software can measure both the pulse width and the pulse
period of a waveform. To control the definition of leading edge and trail-
ing edge of the TMRx pin, the PULSE_HI bit in the TIMERx_CONFIG register is
set or cleared. If the PULSE_HI bit is cleared, the measurement is initiated
by a falling edge, the content of the counter register is captured to the
pulse width buffer on the rising edge, and to the period buffer on the next
falling edge. When the PULSE_HI bit is set, the measurement is initiated by
a rising edge, the counter value is captured to the pulse width buffer on
the falling edge, and to the period buffer on the next rising edge.

Modes of Operation

15-28 ADSP-BF537 Blackfin Processor Hardware Reference

In WDTH_CAP mode, these three events always occur at the same time as one
unit:

1. The TIMERx_PERIOD register is updated from the period buffer
register.

2. The TIMERx_WIDTH register is updated from the width buffer
register.

3. The TIMILx bit gets set (if enabled) but does not generate an error.

Figure 15-11. Timer Flow Diagram, WDTH_CAP Mode

SCLK

TIMER_ENABLE

RESET

INTERRUPT

PERIOD_CNT

TMRx

INTERRUPT
LOGIC

PULSE_HI

TOVF_ERR

TMRx

PULSE_HI

TRAILING
EDGE

DETECT

DATA BUS

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_WIDTHTIMERx_PERIOD

ADSP-BF537 Blackfin Processor Hardware Reference 15-29

General-Purpose Timers

The PERIOD_CNT bit in the TIMERx_CONFIG register controls the point in
time at which this set of transactions is executed. Taken together, these
three events are called a measurement report. The TOVF_ERRx bit does not
get set at a measurement report. A measurement report occurs at most
once per input signal period.

The current timer counter value is always copied to the width buffer and
period buffer registers at the trailing and leading edges of the input signal,
respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the
timer interrupt to signal that TIMERx_PERIOD and TIMERx_WIDTH are ready
to be read. When the PERIOD_CNT bit is set, the measurement report occurs
just after the period buffer register captures its value (at a leading edge).
When the PERIOD_CNT bit is cleared, the measurement report occurs just
after the width buffer register captures its value (at a trailing edge).

If the PERIOD_CNT bit is set and a leading edge occurred (see Figure 15-12),
then the TIMERx_PERIOD and TIMERx_WIDTH registers report the pulse
period and pulse width measured in the period that just ended. If the
PERIOD_CNT bit is cleared and a trailing edge occurred (see Figure 15-13),
then the TIMERx_WIDTH register reports the pulse width measured in the
pulse that just ended, but the TIMERx_PERIOD register reports the pulse
period measured at the end of the previous period.

If the PERIOD_CNT bit is cleared and the first trailing edge occurred, then
the first period value has not yet been measured at the first measurement
report, so the period value is not valid. Reading the TIMERx_PERIOD value
in this case returns 0, as shown in Figure 15-13. To measure the pulse
width of a waveform that has only one leading edge and one trailing edge,
set PERIOD_CNT = 0. If PERIOD_CNT = 1 for this case, no period value is cap-
tured in the period buffer register. Instead, an error report interrupt is
generated (if enabled) when the counter range is exceeded and the counter
wraps around. In this case, both TIMERx_WIDTH and TIMERx_PERIOD read 0

Modes of Operation

15-30 ADSP-BF537 Blackfin Processor Hardware Reference

(because no measurement report occurred to copy the value captured in
the width buffer register to TIMERx_WIDTH). See the first interrupt in
Figure 15-14.

Figure 15-12. Example of Period Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

SCLK

1 3 1 2 3 4 6 7 8

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 4 5 1X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2 3

TIMERx_WIDTH BUFFER

4

TIMERx_PERIOD

2

8

8

3

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

X 0

X 0

X 0

X 0

MEASUREMENT
REPORT

MEASUREMENT
REPORT

ADSP-BF537 Blackfin Processor Hardware Reference 15-31

General-Purpose Timers

Figure 15-13. Example of Width Capture Measurement Report Timing
(WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 5 6 8 3 4 34 7 1 2 1X

TIMERx_COUNTER

8 4

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

2

1 2

0 4

3

8

1 2

X 0

X 0

X 0

X 0

STARTS
COUNTING

MEASUREMENT
REPORT

MEASUREMENT
REPORT

MEASUREMENT
REPORT

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

15-32 ADSP-BF537 Blackfin Processor Hardware Reference

 When using the PERIOD_CNT = 0 mode described above to measure
the width of a single pulse, it is recommended to disable the timer
after taking the interrupt that ends the measurement interval. If
desired, the timer can then be reenabled as appropriate in
preparation for another measurement. This procedure prevents the
timer from free-running after the width measurement and logging
errors generated by the timer count overflowing.

A timer interrupt (if enabled) is generated if the timer counter register
wraps around from 0xFFFF FFFF to 0 in the absence of a leading edge. At
that point, the TOVF_ERRx bit in the TIMER_STATUS register and the ERR_TYP
bits in the TIMERx_CONFIG register are set, indicating a count overflow due
to a period greater than the counter’s range. This is called an error report.

When a timer generates an interrupt in WDTH_CAP mode, either an error has
occurred (an error report) or a new measurement is ready to be read (a
measurement report), but never both at the same time. The
TIMERx_PERIOD and TIMERx_WIDTH registers are never updated at the time
an error is signaled.

Refer to Figure 15-14 and Figure 15-15 for more information.

ADSP-BF537 Blackfin Processor Hardware Reference 15-33

General-Purpose Timers

Figure 15-14. Example Timing for Period Overflow Followed by Period
Capture (WDTH_CAP mode, PERIOD_CNT = 1)

STARTS
COUNTING

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 3 1 2 3 40X

TIMERx_COUNTER

4

TIMERx_PERIOD BUFFER

2

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

4

5

2

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

X 0

X 0

X 0

X 0

0

2

0

0

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

Modes of Operation

15-34 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 15-15. Example Timing for Width Capture Followed by Period
Overflow (WDTH_CAP mode, PERIOD_CNT = 0)

SCLK

1

TMRx, PULSE_HI = 0

TMRx, PULSE_HI = 1

2 1 2 3 40X

TIMERx_COUNTER

4X

TIMERx_PERIOD BUFFER

3

TIMERx_WIDTH BUFFER

TIMERx_PERIOD

TIMERx_WIDTH

TIMILx

TOVF_ERRx

TIMENx

1 2

0

3

0

X 0

X 0

X 0

0

3

0

3

NOTE: FOR SIMPLICITY, THE SYNCHRONIZATION DELAY BETWEEN TMRx EDGES AND BUFFER
REGISTER UPDATES IS NOT SHOWN.

STARTS
COUNTING

ERROR
REPORT

MEASUREMENT
REPORT

0xFFFF
FFFC

0xFFFF
FFFD

0xFFFF
FFFE

0xFFFF
FFFF

3

ADSP-BF537 Blackfin Processor Hardware Reference 15-35

General-Purpose Timers

Both TIMILx and TOVF_ERRx are sticky bits, and software has to explicitly
clear them. If the timer overflowed and PERIOD_CNT = 1, neither the
TIMERx_PERIOD nor the TIMERx_WIDTH register were updated. If the timer
overflowed and PERIOD_CNT = 0, the TIMERx_PERIOD and TIMERx_WIDTH
registers were updated only if a trailing edge was detected at a previous
measurement report.

Software can count the number of error report interrupts between mea-
surement report interrupts to measure input signal periods longer than

0xFFFF FFFF. Each error report interrupt adds a full 232 SCLK counts to the
total for the period, but the width is ambiguous. For example, in
Figure 15-14 the period is 0x1 0000 0004 but the pulse width could be
either 0x0 0000 0002 or 0x1 0000 0002.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2 with a 50% duty cycle. Under these conditions,
the WDTH_CAP mode timer would measure Period = 2 and
Pulse Width = 1.

Autobaud Mode

In WDTH_CAP mode, some of the timers can provide autobaud detection for
the Universal Asynchronous Receiver/Transmitter (UART) and Control-
ler Area Network (CAN) interfaces. The timer input select (TIN_SEL) bit
in the TIMERx_CONFIG register causes the timer to sample the TACIx pin
instead of the TMRx pin when enabled for WDTH_CAP mode. Autobaud detec-
tion can be used for initial bit rate negotiations as well as for detection of
bit rate drifts while the interface is operation. For details with the UART
interface, see Chapter 13, “UART Port Controllers”. For details with the
CAN interface, see Chapter 9, “CAN Module”.

Modes of Operation

15-36 ADSP-BF537 Blackfin Processor Hardware Reference

External Event (EXT_CLK) Mode
Use the EXT_CLK mode, sometimes referred to as the “counter mode,” to
count external events, that is, signal edges on the TMRx pin which is an
input in this mode. Figure 15-16 shows a flow diagram for EXT_CLK mode.

The timer works as a counter clocked by an external source, which can
also be asynchronous to the system clock. The current count in
TIMERx_COUNTER represents the number of leading edge events detected.
Setting the TMODE field to b#11 in the TIMERx_CONFIG register enables this
mode. The TIMERx_PERIOD register is programmed with the value of the
maximum timer external count.

The waveform applied to the TMRx pin is not required to have a 50% duty
cycle, but the minimum TMRx low time is one SCLK period, and the mini-
mum TMRx high time is one SCLK period. This implies the maximum TMRx
input frequency is SCLK/2.

Period may be programmed to any value from 1 to (232 – 1), inclusive.

After the timer has been enabled, it resets the timer counter register to 0x0
and then waits for the first leading edge on the TMRx pin. This edge causes
the timer counter register to be incremented to the value 0x1. Every
subsequent leading edge increments the count register. After reaching the
period value, the TIMILx bit is set, and an interrupt is generated. The next
leading edge reloads the timer counter register again with 0x1. The timer
continues counting until it is disabled. The PULSE_HI bit determines
whether the leading edge is rising (PULSE_HI set) or falling (PULSE_HI
cleared).

The configuration bits, TIN_SEL and PERIOD_CNT, have no effect in this
mode. The TOVF_ERRx and ERR_TYP bits are set if the timer counter register
wraps around from 0xFFFF FFFF to 0 or if Period = 0 at startup or when
the timer counter register rolls over (from Count = Period to
Count = 0x1). The timer pulse width register is unused.

ADSP-BF537 Blackfin Processor Hardware Reference 15-37

General-Purpose Timers

Programming Model
The architecture of the timer block enables any of the eight timers to work
individually or synchronously along with others as a group of timers.
Regardless of the operation mode, the timers’ programming model is
always straightforward. Because of the error checking mechanism, always
follow this order when enabling timers:

1. Set timer mode.

2. Write TIMERx_WIDTH and TIMERx_PERIOD registers as applicable.

3. Enable timer.

Figure 15-16. Timer Flow Diagram, EXT_CLK Mode

CLOCKRESET

LEADING
EDGE

DETECT

TIMERx_COUNTER

TIMERx_PERIOD

TIMER_ENABLE

INTERRUPT

EQUAL?

Y

PULSE_HI TMRx

DATA BUS

Timer Registers

15-38 ADSP-BF537 Blackfin Processor Hardware Reference

If this order is not followed, the plausibility check may fail because of
undefined width and period values, or writes to TIMERx_WIDTH and
TIMERx_PERIOD may result in an error condition, because the registers are
read-only in some modes. The timer may not start as expected.

If in PWM_OUT mode the PWM patterns of the second period differ from
the patterns of the first one, the initialization sequence above might
become:

1. Set timer mode to PWM_OUT.

2. Write first TIMERx_WIDTH and TIMERx_PERIOD value pair.

3. Enable timer.

4. Immediately write second TIMERx_WIDTH and TIMERx_PERIOD value
pair.

Hardware ensures that the buffered width and period values become active
when the first period expires.

Once started, timers require minimal interaction with software, which is
usually performed by an interrupt service routine. In PWM_OUT mode soft-
ware must update the pulse width and/or settings as required. In WDTH_CAP
mode it must store captured values for further processing. In any case, the
service routine should clear the TIMILx bits of the timers it controls.

Timer Registers
The timer peripheral module provides general-purpose timer functional-
ity. It consists of eight identical timer units.

ADSP-BF537 Blackfin Processor Hardware Reference 15-39

General-Purpose Timers

Each timer provides four registers:

• TIMERx_CONFIG[15:0] – timer configuration register
(on page 15-44)

• TIMERx_WIDTH[31:0] – timer pulse width register (on page 15-50)

• TIMERx_PERIOD[31:0] – timer period register (on page 15-47)

• TIMERx_COUNTER[31:0] – timer counter register (on page 15-45)

Additionally, three registers are shared between the eight timers:

• TIMER_ENABLE[15:0] – timer enable register (on page 15-39)

• TIMER_DISABLE[15:0] – timer disable register (on page 15-40)

• TIMER_STATUS[31:0] – timer status register (on page 15-42)

The size of accesses is enforced. A 32-bit access to a timer configuration
register or a 16-bit access to a timer pulse width, timer period, or timer
counter register results in a Memory-Mapped Register (MMR) error. Both
16- and 32-bit accesses are allowed for the timer enable, timer disable, and
timer status registers. On a 32-bit read of one of the 16-bit registers, the
upper word returns all 0s.

TIMER_ENABLE Register
The TIMER_ENABLE register, shown in Figure 15-17, allows all eight timers
to be enabled simultaneously in order to make them run completely syn-
chronously. For each timer there is a single W1S control bit. Writing a 1
enables the corresponding timer; writing a 0 has no effect. The eight bits
can be set individually or in any combination. A read of the TIMER_ENABLE
register shows the status of the enable for the corresponding timer. A 1
indicates that the timer is enabled. All unused bits return 0 when read.

Timer Registers

15-40 ADSP-BF537 Blackfin Processor Hardware Reference

TIMER_DISABLE Register
The TIMER_DISABLE register, shown in Figure 15-18, allows all eight tim-
ers to be disabled simultaneously. For each timer there is a single W1C
control bit. Writing a 1 disables the corresponding timer; writing a 0 has
no effect. The eight bits can be cleared individually or in any combina-
tion. A read of the TIMER_DISABLE register returns a value identical to a
read of the TIMER_ENABLE register. A 1 indicates that the timer is enabled.
All unused bits return 0 when read.

Figure 15-17. Timer Enable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Enable Register (TIMER_ENABLE)

TIMEN0 (Timer0 Enable)

TIMEN1 (Timer1 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN2 (Timer2 Enable)
1 - Enable timer
Read as 1 when enabled

0xFFC0 0680

TIMEN3 (Timer3 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN7 (Timer7 Enable)

TIMEN6 (Timer6 Enable)

1 - Enable timer
Read as 1 when enabled

1 - Enable timer
Read as 1 when enabled

TIMEN5 (Timer5 Enable)
1 - Enable timer
Read as 1 when enabled

TIMEN4 (Timer4 Enable)
1 - Enable timer
Read as 1 when enabled

ADSP-BF537 Blackfin Processor Hardware Reference 15-41

General-Purpose Timers

In PWM_OUT mode, a write of a 1 to TIMER_DISABLE does not stop the corre-
sponding timer immediately. Rather, the timer continues running and
stops cleanly at the end of the current period (if PERIOD_CNT = 1) or pulse
(if PERIOD_CNT = 0). If necessary, the processor can force a timer in
PWM_OUT mode to stop immediately by first writing a 1 to the correspond-
ing bit in TIMER_DISABLE, and then writing a 1 to the corresponding TRUNx
bit in TIMER_STATUS. See “Stopping the Timer in PWM_OUT Mode” on
page 15-24.

In WDTH_CAP and EXT_CLK modes, a write of a 1 to TIMER_DISABLE stops the
corresponding timer immediately.

Figure 15-18. Timer Disable Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer Disable Register (TIMER_DISABLE)

TIMDIS0 (Timer0 Disable)

TIMDIS1 (Timer1 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS2 (Timer2 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

0xFFC0 0684

TIMDIS3 (Timer3 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS7 (Timer7 Disable)

TIMDIS6 (Timer6 Disable)

1 - Disable timer
Read as 1 if this timer is enabled

1 - Disable timer
Read as 1 if this timer is enabled

TIMDIS5 (Timer5 Disable)
1 - Disable timer
Read as 1 if this timer is enabled
TIMDIS4 (Timer4 Disable)
1 - Disable timer
Read as 1 if this timer is enabled

Timer Registers

15-42 ADSP-BF537 Blackfin Processor Hardware Reference

TIMER_STATUS Register
The TIMER_STATUS register indicates the status of the timers and is used to
check the status of eight timers with a single read. The TIMER_STATUS reg-
ister, shown in Figure 15-19, reports the status of timer 0 through timer
7. Status bits are sticky and W1C. The TRUNx bits can clear themselves,
which they do when a PWM_OUT mode timer stops at the end of a period.
During a TIMER_STATUS register read access, all reserved or unused bits
return a 0.

For detailed behavior and usage of the TRUNx bit see “Stopping the Timer
in PWM_OUT Mode” on page 15-24. Writing the TRUNx bits has no
effect in other modes or when a timer has not been enabled. Writing the
TRUNx bits to 1 in PWM_OUT mode has no effect on a timer that has not first
been disabled.

Error conditions are explained in “Illegal States” on page 15-11.

ADSP-BF537 Blackfin Processor Hardware Reference 15-43

General-Purpose Timers

Figure 15-19. Timer Status Register

0

0 0 00 00

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0 0 0 0 0 0 0 0 0

TIMIL4 (Timer4 Interrupt)

Reset = 0x0000 00000

Timer Status Register (TIMER_STATUS)

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL5 (Timer5 Interrupt)

TRUN6 (Timer6 Slave
Enable Status)

TIMIL6 (Timer6 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR4 (Timer4
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN5 (Timer5 Slave
Enable Status)

Read as 1 if timer running, W1C to abort
in PWM_OUT mode

TRUN4 (Timer4 Slave Enable
Status)

TOVF_ERR5 (Timer5
Counter Overflow)TOVF_ERR7 (Timer7 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

0xFFC0 0688

TIMIL7 (Timer7 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort in
PWM_OUT mode

TRUN7 (Timer7
Slave Enable Status)

TOVF_ERR6 (Timer6 Counter Overflow)
Indicates that an error or an overflow occurred

All bits are W1C

0 0 00 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

TIMIL0 (Timer0 Interrupt)

0

Read as 1 if timer running,
W1C to abort in PWM_OUT
mode

Indicates an interrupt request
when IRQ_ENA is set
TIMIL1 (Timer1 Interrupt)

TRUN2 (Timer2 Slave
Enable Status)

TIMIL2 (Timer2 Interrupt)

Indicates that an error or an
overflow occurred

TOVF_ERR0 (Timer0
Counter Overflow)

Read as 1 if timer running, W1C
to abort in PWM_OUT mode

TRUN1 (Timer1 Slave
Enable Status)

Read as 1 if timer running, W1C to
abort in PWM_OUT mode

TRUN0 (Timer0 Slave Enable
Status)

TOVF_ERR1 (Timer1
Counter Overflow)TOVF_ERR3 (Timer3 Counter Overflow)

Indicates an interrupt request
when IRQ_ENA is set

Indicates an interrupt request
when IRQ_ENA is set

Indicates that an error or an
overflow occurred

Indicates that an error or an overflow occurred

TIMIL3 (Timer3 Interrupt)
Indicates an interrupt request
when IRQ_ENA is set

Read as 1 if timer
running, W1C to abort
in PWM_OUT mode

TRUN3 (Timer3
Slave Enable Status)

TOVF_ERR2 (Timer2 Counter Overflow)
Indicates that an error or an overflow occurred

Timer Registers

15-44 ADSP-BF537 Blackfin Processor Hardware Reference

TIMERx_CONFIG Registers
The operating mode for each timer is specified by its TIMERx_CONFIG regis-
ter. The TIMERx_CONFIG register, shown in Figure 15-20, may be written
only when the timer is not running.

After disabling the timer in PWM_OUT mode, make sure the timer has
stopped running by checking its TRUNx bit in TIMER_STATUS before
attempting to reprogram TIMERx_CONFIG. The TIMERx_CONFIG registers
may be read at any time. The ERR_TYP field is read-only. It is cleared at
reset and when the timer is enabled.

Figure 15-20. Timer Configuration Registers

0 00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Use system clock SCLK for counter
1 - Use PWM_CLK to clock counter

0 - The effective state of PULSE_HI
is the programmed state

1 - The effective state of PULSE_HI
alternates each period

00 - No error
01 - Counter overflow error
10 - Period register programming error
11 - Pulse width register programming error

00 - Reset state - unused
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI
Toggle Mode)

ERR_TYP[1:0] (Error
Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request disable
1 - Interrupt request enable

0 - Count to end of width
1 - Count to end of period

IRQ_ENA (Interrupt
Request Enable)

PWM_OUT Mode
0 - Clock from TACLKx

input if CLK_SEL = 1
1 - Clock from TMRCLK

input if CLK_SEL = 1
WDTH_CAP Mode
0 - Sample TMRx input
1 - Sample TACIx input

TIN_SEL (Timer Input
Select)

0 - Enable TMRx pad in PWM_OUT mode
1 - Disable pad in PWM_OUT mode

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation
1 - Timer counter runs during emulation

EMU_RUN (Emulation Behavior Select)

For memory-
mapped
addresses, see
Table 15-2.

ADSP-BF537 Blackfin Processor Hardware Reference 15-45

General-Purpose Timers

Each time TOVF_ERRx is set, ERR_TYP[1:0] is loaded with a code that iden-
tifies the type of error that was detected. This value is held until the next
error or timer enable occurs. For an overview of error conditions, see
Table 15-1 on page 15-12. The TIMERx_CONFIG register also controls the
behavior of the TMRx pin, which becomes an output in PWM_OUT mode
(TMODE = 01) when the OUT_DIS bit is cleared.

 When operating the PPI in GP output modes with internal frame
syncs, the CLK_SEL and the TIN_SEL bits must be set to 1.

TIMERx_COUNTER Registers
These read-only registers retain their state when disabled. When enabled,
the TIMERx_COUNTER register is reinitialized by hardware based on configu-
ration and mode. The TIMERx_COUNTER register, shown in
Figure 15-21, may be read at any time (whether the timer is running or
stopped), and it returns an atomic 32-bit value. Depending on the opera-
tion mode, the incrementing counter can be clocked by four different
sources: SCLK, the TMRx pin, the alternative timer clock pin TACLKx, or the
common TMRCLK pin, which is most likely used as the PPI clock (PPI_CLK).

Table 15-2. Timer Configuration Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_CONFIG 0xFFC0 0600

TIMER1_CONFIG 0xFFC0 0610

TIMER2_CONFIG 0xFFC0 0620

TIMER3_CONFIG 0xFFC0 0630

TIMER4_CONFIG 0xFFC0 0640

TIMER5_CONFIG 0xFFC0 0650

TIMER6_CONFIG 0xFFC0 0660

TIMER7_CONFIG 0xFFC0 0670

Timer Registers

15-46 ADSP-BF537 Blackfin Processor Hardware Reference

While the processor core is being accessed by an external emulator debug-
ger, all code execution stops. By default, the TIMERx_COUNTER also halts its
counting during an emulation access in order to remain synchronized with
the software. While stopped, the count does not advance—in PWM_OUT
mode, the TMRx pin waveform is “stretched”; in WDTH_CAP mode, measured
values are incorrect; in EXT_CLK mode, input events on TMRx may be
missed. All other timer functions such as register reads and writes, inter-
rupts previously asserted (unless cleared), and the loading of
TIMERx_PERIOD and TIMERx_WIDTH in WDTH_CAP mode remain active during
an emulation stop.

Some applications may require the timer to continue counting asynchro-
nously to the emulation-halted processor core. Set the EMU_RUN bit in
TIMERx_CONFIG to enable this behavior.

Figure 15-21. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter[31:16]

Reset = 0x0000 0001

Timer Counter Registers (TIMERx_COUNTER)

For memory-
mapped
addresses, see
Table 15-3.

ADSP-BF537 Blackfin Processor Hardware Reference 15-47

General-Purpose Timers

TIMERx_PERIOD Registers

 When a timer is enabled and running, and the software writes new
values to the timer period register and the timer pulse width regis-
ter, the writes are buffered and do not update the registers until the
end of the current period (when the timer counter register equals
the timer period register).

Usage of the TIMERx_PERIOD register, shown in Figure 15-22, varies
depending on the mode of the timer:

• In pulse width modulation mode (PWM_OUT), both the timer period
and timer pulse width register values can be updated “on-the-fly”
since the timer period and timer pulse width (duty cycle) register
values change simultaneously.

• In pulse width and period capture mode (WDTH_CAP), the timer
period and timer pulse width buffer values are captured at the
appropriate time. The timer period and timer pulse width registers
are then updated simultaneously from their respective buffers. Both
registers are read-only in this mode.

Table 15-3. Timer Counter Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_COUNTER 0xFFC0 0604

TIMER1_COUNTER 0xFFC0 0614

TIMER2_COUNTER 0xFFC0 0624

TIMER3_COUNTER 0xFFC0 0634

TIMER4_COUNTER 0xFFC0 0644

TIMER5_COUNTER 0xFFC0 0654

TIMER6_COUNTER 0xFFC0 0664

TIMER7_COUNTER 0xFFC0 0674

Timer Registers

15-48 ADSP-BF537 Blackfin Processor Hardware Reference

• In external event capture mode (EXT_CLK), the timer period register
is writable and can be updated “on-the-fly.” The timer pulse width
register is not used.

If new values are not written to the timer period register or the timer pulse
width register, the value from the previous period is reused. Writes to the
32-bit timer period register and timer pulse width register are atomic; it is
not possible for the high word to be written without the low word also
being written.

Values written to the timer period registers or timer pulse width registers
are always stored in the buffer registers. Reads from the timer period or
timer pulse width registers always return the current, active value of
period or pulse width. Written values are not read back until they become
active. When the timer is enabled, they do not become active until after
the timer period and timer pulse width registers are updated from their
respective buffers at the end of the current period. See Figure 15-2 on
page 15-4.

When the timer is disabled, writes to the buffer registers are immediately
copied through to the timer period or timer pulse width register so that
they will be ready for use in the first timer period. For example, to change

Figure 15-22. Timer Period Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period[31:16]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD)

For memory-
mapped
addresses, see
Table 15-4.

ADSP-BF537 Blackfin Processor Hardware Reference 15-49

General-Purpose Timers

the values for the timer period and/or timer pulse width registers in order
to use a different setting for each of the first three timer periods after the
timer is enabled, the procedure to follow is:

1. Program the first set of register values.

2. Enable the timer.

3. Immediately program the second set of register values.

4. Wait for the first timer interrupt.

5. Program the third set of register values.

Each new setting is then programmed when a timer interrupt is received.

 In PWM_OUT mode with very small periods (less than 10 counts),
there may not be enough time between updates from the buffer
registers to write both the timer period register and the timer pulse
width register. The next period may use one old value and one new
value. In order to prevent “pulse width >= period” errors, write the
timer pulse width register before the timer period register when
decreasing the values, and write the timer period register before the
timer pulse width register when increasing the value.

Table 15-4. Timer Period Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_PERIOD 0xFFC0 0608

TIMER1_PERIOD 0xFFC0 0618

TIMER2_PERIOD 0xFFC0 0628

TIMER3_PERIOD 0xFFC0 0638

TIMER4_PERIOD 0xFFC0 0648

TIMER5_PERIOD 0xFFC0 0658

TIMER6_PERIOD 0xFFC0 0668

TIMER7_PERIOD 0xFFC0 0678

Timer Registers

15-50 ADSP-BF537 Blackfin Processor Hardware Reference

TIMERx_WIDTH Registers

 When a timer is enabled and running, and the software writes new
values to the timer period register and the timer pulse width regis-
ter, the writes are buffered and do not update the registers until the
end of the current period (when the timer counter register equals
the timer period register).

Usage of the TIMERx_WIDTH register, shown in Figure 15-23, varies
depending on the mode of the timer. Refer to “TIMERx_PERIOD Regis-
ters” on page 15-47 for appropriate timer operation information.

Table 15-5. Timer Width Register Memory-Mapped Addresses

Register Name Memory-Mapped Address

TIMER0_WIDTH 0xFFC0 060C

TIMER1_WIDTH 0xFFC0 061C

TIMER2_WIDTH 0xFFC0 062C

TIMER3_WIDTH 0xFFC0 063C

TIMER4_WIDTH 0xFFC0 064C

TIMER5_WIDTH 0xFFC0 065C

TIMER6_WIDTH 0xFFC0 066C

TIMER7_WIDTH 0xFFC0 067C

ADSP-BF537 Blackfin Processor Hardware Reference 15-51

General-Purpose Timers

Summary
Table 15-6 summarizes control bit and register usage in each timer mode.

Figure 15-23. Timer Width Registers

Table 15-6. Control Bit and Register Usage Chart

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

TIMER_ENABLE 1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

1 - Enable timer
0 - No effect

TIMER_DISABLE 1 - Disable timer at end
of period
0 - No effect

1 - Disable timer
0 - No effect

1 - Disable timer
0 - No effect

TMODE b#01 b#10 b#11

PULSE_HI 1 - Generate high width
0 - Generate low width

1 - Measure high width
0 - Measure low width

1 - Count rising edges
0 - Count falling edges

PERIOD_CNT 1 - Generate PWM
0 - Single width pulse

1 - Interrupt after mea-
suring period
0 - Interrupt after mea-
suring width

Unused

IRQ_ENA 1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

1 - Enable interrupt
0 - Disable interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH)

For memory-
mapped
addresses, see
Table 15-5.

Timer Registers

15-52 ADSP-BF537 Blackfin Processor Hardware Reference

TIN_SEL Depends on CLK_SEL:

If CLK_SEL = 1,
1 - Count TMRCLK
clocks
0 - Count TACLKx
clocks

If CLK_SEL = 0,
Unused

1 - Select TACI input
0 - Select TMRx input

Unused

OUT_DIS 1 - Disable TMRx pin
0 - Enable TMRx pin

Unused Unused

CLK_SEL 1 - PWM_CLK clocks
timer
0 - SCLK clocks timer

Unused Unused

TOGGLE_HI 1 - One waveform
period every two coun-
ter periods
0 - One waveform
period every one coun-
ter period

Unused Unused

ERR_TYP Reports b#00, b#01,
b#10, or b#11, as
appropriate

Reports b#00 or b#01,
as appropriate

Reports b#00, b#01, or
b#10, as appropriate

EMU_RUN 0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

0 - Halt during
emulation
1 - Count during
emulation

TMR Pin Depends on
OUT_DIS:
1 - Three-state
0 - Output

Depends on TIN_SEL:
1 - Unused
0 - Input

Input

Period R/W: Period value RO: Period value R/W: Period value

Width R/W: Width value RO: Width value Unused

Table 15-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

ADSP-BF537 Blackfin Processor Hardware Reference 15-53

General-Purpose Timers

Counter RO: Counts up on
SCLK or PWM_CLK

RO: Counts up on
SCLK

RO: Counts up on
TMRx event

TRUNx Read: Timer slave
enable status
Write:
1 - Stop timer if dis-
abled
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

Read: Timer slave
enable status
Write:
1 - No effect
0 - No effect

TOVF_ERR Set at startup or roll-
over if period = 0 or 1
Set at rollover if width
>= Period
Set if counter wraps

Set if counter wraps Set if counter wraps or
set at startup or roll-
over if period = 0

IRQ Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter equals
period and
PERIOD_CNT = 1 or
when counter equals
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when
TOVF_ERR set or
when counter captures
period and
PERIOD_CNT = 1 or
when counter captures
width and
PERIOD_CNT = 0
0 - Not set

Depends on
IRQ_ENA:
1 - Set when counter
equals period or
TOVF_ERR set
0 - Not set

Table 15-6. Control Bit and Register Usage Chart (Cont’d)

Bit / Register PWM_OUT Mode WDTH_CAP Mode EXT_CLK Mode

Programming Examples

15-54 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Examples
Listing 15-1 configures the port control registers in a way that all eight
TMRx pins are connected to port F.

Listing 15-1. Port Setup

timer_port_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(PORTF_FER);

p5.l = lo(PORTF_FER);

r7.l = PF2|PF3|PF4|PF5|PF6|PF7|PF8|PF9;

w[p5] = r7;

p5.l = lo(PORT_MUX);

r7.l = PFTE;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer_port_setup.end:

Listing 15-2 generates signals on the TMR4 (PF5) and TMR5 (PF4) outputs.
By default, timer 5 generates a continuous PWM signal with a duty cycle
of 50% (period = 0x40 SCLKs, width = 0x20 SCLKs) while the PWM sig-
nal generated by timer 4 has the same period but 25% duty cycle (width =
0x10 SCLKs).

If the preprocessor constant SINGLE_PULSE is defined, every TMRx pin out-
puts only a single high pulse of 0x20 (timer 4) and 0x10 SCLKs (timer 5)
duration.

In any case the timers are started synchronously and the rising edges are
aligned, that is, the pulses are left aligned.

ADSP-BF537 Blackfin Processor Hardware Reference 15-55

General-Purpose Timers

Listing 15-2. Signal Generation

// #define SINGLE_PULSE

timer45_signal_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = PULSE_HI | PWM_OUT;

#else

r7.l = PERIOD_CNT | PULSE_HI | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x10 (z);

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7 = 0x20 (z);

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

#ifndef SINGLE_PULSE

r7 = 0x40 (z);

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r7;

#endif

r7.l = TIMEN5 | TIMEN4;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer45_signal_generation.end:

All subsequent examples use interrupts. Thus, Listing 15-3 illustrates how
interrupts are generated and how interrupt service routines can be regis-
tered. In this example, the timer 5 interrupt is assigned to the IVG7
interrupt channel of the CEC controller.

Programming Examples

15-56 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 15-3. Interrupt Setup

timer5_interrupt_setup:

[--sp] = (r7:7, p5:5);

p5.h = hi(IMASK);

p5.l = lo(IMASK);

/* register interrupt service routine */

r7.h = hi(isr_timer5);

r7.l = lo(isr_timer5);

[p5 + EVT7 - IMASK] = r7;

/* unmask IVG7 in CEC */

r7 = [p5];

bitset(r7, bitpos(EVT_IVG7));

[p5] = r7;

p5.h = hi(SIC_IMASK);

p5.l = lo(SIC_IMASK);

/* assign timer 5 IRQ = IRQ24 to IVG7 */

r7 = -1 (x);

[p5 + SIC_IAR0 - SIC_IMASK] = r7;

[p5 + SIC_IAR1 - SIC_IMASK] = r7;

[p5 + SIC_IAR2 - SIC_IMASK] = r7;

r7.h = hi(P24_IVG(7));

r7.l = lo(P24_IVG(7));

[p5 + SIC_IAR3 - SIC_IMASK] = r7;

/* enable timer 5 IRQ */

r7 = [p5];

bitset(r7, 24);

[p5] = r7;

/* enable interrupt nesting */

(r7:7, p5:5) = [sp++];

[--sp] = reti;

rts;

timer5_interrupt_setup.end:

ADSP-BF537 Blackfin Processor Hardware Reference 15-57

General-Purpose Timers

The example shown in Listing 15-4 does not drive the TMRx pin. It gener-
ates periodic interrupt requests every 0x1000 SCLK cycles. If the
preprocessor constant SINGLE_PULSE was defined, timer 5 requests an
interrupt only once. Unlike in a real application, the purpose of the inter-
rupt service routine shown in this example is just the clearing of the
interrupt request and counting interrupt occurrences.

Listing 15-4. Periodic Interrupt Requests

// #define SINGLE_PULSE

timer5_interrupt_generation:

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

#ifdef SINGLE_PULSE

r7.l = EMU_RUN | IRQ_ENA | OUT_DIS | PWM_OUT;

#else

r7.l = EMU_RUN | IRQ_ENA | PERIOD_CNT | OUT_DIS | PWM_OUT;

#endif

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7 = 0x1000 (z);

#ifndef SINGLE_PULSE

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r7;

r7 = 0x1 (z);

#endif

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5] = r7;

(r7:7, p5:5) = [sp++];

r0 = 0 (z);

rts;

timer5_interrupt_generation.end:

isr_timer5:

[--sp] = astat;

Programming Examples

15-58 ADSP-BF537 Blackfin Processor Hardware Reference

[--sp] = (r7:7, p5:5);

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

r0+= 1;

ssync;

(r7:7, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Listing 15-5 illustrates how two timers can generate two non-overlapping
clock pulses as typically required for break-before-make scenarios. Both
timers are running in PWM_OUT mode with PERIOD_CNT = 1 and
PULSE_HI = 1.

Listing 15-5. Non-Overlapping Clock Pulses

#define P 0x1000 /* signal period */

#define W 0x0600 /* signal pulse width */

#define N 4 /* number of pulses before disable */

timer45_toggle_hi:

[--sp] = (r7:1, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* config timers */

r7.l = IRQ_ENA | PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = PERIOD_CNT | TOGGLE_HI | PULSE_HI | PWM_OUT;

w[p5 + TIMER4_CONFIG - TIMER_ENABLE] = r7;

/* calculate timers widths and period */

r0.l = lo(P);

r0.h = hi(P);

ADSP-BF537 Blackfin Processor Hardware Reference 15-59

General-Purpose Timers

r1.l = lo(W);

r1.h = hi(W);

r2 = r1 >> 1; /* W/2 */

r3 = r0 >> 1; /* P/2 */

r4 = r3 - r2; /* P/2 - W/2 */

r5 = r0 - r2; /* P - W/2 */

/* write values for initial period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r0;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r5;

[p5 + TIMER5_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r4;

/* start timers */

r7.l = TIMEN5 | TIMEN4 ;

w[p5 + TIMER_ENABLE - TIMER_ENABLE] = r7;

/* write values for second period */

[p5 + TIMER4_PERIOD - TIMER_ENABLE] = r3;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r2;

/* r0 functions as signal period counter */

r0.h = hi(N * 2 - 1);

r0.l = lo(N * 2 - 1);

(r7:1, p5:5) = [sp++];

rts;

timer45_toggle_hi.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:5, p5:5);

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

/* clear interrupt request */

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5 + TIMER_STATUS - TIMER_ENABLE] = r7;

/* toggle width values (width = period - width) */

r7 = [p5 + TIMER5_PERIOD - TIMER_ENABLE];

Programming Examples

15-60 ADSP-BF537 Blackfin Processor Hardware Reference

r6 = [p5 + TIMER5_WIDTH - TIMER_ENABLE];

r5 = r7 - r6;

[p5 + TIMER5_WIDTH - TIMER_ENABLE] = r5;

r5 = [p5 + TIMER4_WIDTH - TIMER_ENABLE];

r7 = r7 - r5;

CC = r7 < 0;

if CC r7 = r6;

[p5 + TIMER4_WIDTH - TIMER_ENABLE] = r7;

/* disable after a certain number of periods */

r0+= -1;

CC = r0 == 0;

r5.l = 0;

r7.l = TIMDIS5 | TIMDIS4;

if !CC r7 = r5;

w[p5 + TIMER_DISABLE - TIMER_ENABLE] = r7;

(r7:5, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Figure 15-24 explains how the signal waveform represented by the period
P and the pulse width W translates to timer period and width values.
Table 15-7 summarizes the register writes.

Since hardware only updates the written period and width values at the
end of periods, software can write new values immediately after the timers
have been enabled. Note that both timers’ period expires at exactly the
same times with the exception of the first timer 5 interrupt (at IRQ1)
which is not visible to timer 4.

Listing 15-5 generates N pulses on both timer output pins. Disabling the
timers does not corrupt the generated pulse pattern anyhow.

ADSP-BF537 Blackfin Processor Hardware Reference 15-61

General-Purpose Timers

Listing 15-6 configures timer 5 in WDTH_CAP mode. If looped back exter-
nally, this code might be used to receive N PWM patterns generated by
one of the other timers. Ensure that the PWM generator and consumer
both use the same PERIOD_CNT and PULSE_HI settings.

Figure 15-24. Non-Overlapping Clock Pulses

Table 15-7. Register Writes for Non-Overlapping Clock Pulses

Register Before Enable After
Enable

At IRQ1 At IRQ2

TIMER5_PERIOD P/2

TIMER5_WIDTH P/2 - W/2 W/2 P/2 - W/2 W/2

TIMER4_PERIOD P P/2

TIMER4_WIDTH P - W/2 W/2 P/2 - W-2

PF4 (TMR5)

ENABLE IRQ1 IRQ2

P/2 - W/2

PF5 (TMR4)

IRQ3

W/2 W/2 W/2 W/2

P/2 P/2 P/2 P/2

P - W/2

P W

Programming Examples

15-62 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 15-6. Timer Configured in WDTH_CAP Mode

.section L1_data_a;

.align 4;

#define N 1024

.var buffReceive[N*2];

.section L1_code;

timer5_capture:

[--sp] = (r7:7, p5:5);

/* setup DAG2 */

r7.h = hi(buffReceive);

r7.l = lo(buffReceive);

i2 = r7;

b2 = r7;

l2 = length(buffReceive)*4;

/* config timer for high pulses capture */

p5.h = hi(TIMER_ENABLE);

p5.l = lo(TIMER_ENABLE);

r7.l = EMU_RUN|IRQ_ENA|PERIOD_CNT|PULSE_HI|WDTH_CAP;

w[p5 + TIMER5_CONFIG - TIMER_ENABLE] = r7;

r7.l = TIMEN5;

w[p5 + TIMER_ENABLE - TIMER_ ENABLE] = r7;

(r7:7, p5:5) = [sp++];

rts;

timer5_capture.end:

isr_timer5:

[--sp] = astat;

[--sp] = (r7:7, p5:5);

/* clear interrupt request first */

p5.h = hi(TIMER_STATUS);

p5.l = lo(TIMER_STATUS);

r7.h = hi(TIMIL5);

r7.l = lo(TIMIL5);

[p5] = r7;

ADSP-BF537 Blackfin Processor Hardware Reference 15-63

General-Purpose Timers

r7 = [p5 + TIMER0_PERIOD - TIMER_STATUS];

[i2++] = r7;

r7 = [p5 + TIMER0_WIDTH - TIMER_STATUS];

[i2++] = r7;

ssync;

(r7:7, p5:5) = [sp++];

astat = [sp++];

rti;

isr_timer5.end:

Programming Examples

15-64 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 16-1

16 CORE TIMER

This brief chapter describes the core timer. Following an overview, func-
tional description, and consolidated register definitions, the chapter
concludes with a programming example.

This chapter contains:

• “Overview and Features” on page 16-1

• “Timer Overview” on page 16-2

• “Description of Operation” on page 16-3

• “Core Timer Registers” on page 16-4

• “Programming Examples” on page 16-7

Overview and Features
The core timer is a programmable 32-bit interval timer which can gener-
ate periodic interrupts. Unlike other peripherals, the core timer resides
inside the Blackfin core and runs at the core clock (CCLK) rate. Core timer
features include:

• 32-bit timer with 8-bit prescaler

• Operates at core clock (CCLK) rate

• Dedicated high-priority interrupt channel

• Single-shot or continuous operation

Timer Overview

16-2 ADSP-BF537 Blackfin Processor Hardware Reference

Timer Overview
Figure 16-1 provides a block diagram of the core timer.

External Interfaces
The core timer does not directly interact with any pins of the chip.

Internal Interfaces
The core timer is accessed through the 32-bit Register Access Bus (RAB).
The module is clocked by the core clock CCLK. The timer has its dedicated
interrupt request signal which is of higher priority than all other peripher-
als’ requests.

Figure 16-1. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZEROTCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

T
IN

T

T
M

R
E

N

CORE REGISTER ACCESS BUS (RAB)

32

ADSP-BF537 Blackfin Processor Hardware Reference 16-3

Core Timer

Description of Operation
It is up to software to initialize the core timer’s counter (TCOUNT) before the
timer is enabled. The TCOUNT register can be written directly. However,
writes to the TPERIOD register are also passed through to TCOUNT.

When the timer is enabled by setting the TMREN bit in the core timer con-
trol register (TCNTL), the TCOUNT register is decremented once every time
the prescaler TSCALE expires, that is, every TSCALE + 1 number of CCLK
clock cycles. When the value of the TCOUNT register reaches 0, an interrupt
is generated and the TINT bit is set in the TCNTL register.

If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT register is
reloaded with the contents of the TPERIOD register and the count begins
again. If the TAUTORLD bit is not set, the timer stops operation.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Interrupt Processing
The core timer has its dedicated interrupt request signal which is of higher
priority than all other peripherals’ requests. The requests goes directly to
the Core Event Controller (CEC) and does not pass the System Interrupt
Controller (SIC). Therefore, the interrupt processing is also completely in
the CCLK domain.

 Unlike requests from other Blackfin peripherals, the core interrupt
request is edge sensitive and cleared by hardware automatically as
soon as the interrupt serviced.

Core Timer Registers

16-4 ADSP-BF537 Blackfin Processor Hardware Reference

The TINT bit in the TCNTL register indicates that an interrupt has been gen-
erated. Note that this is not a W1C bit. Write a 0 to clear it. However, the
write is optional. It is not required to clear interrupt requests. The core
time module doesn’t provide any further interrupt enable bit. When the
timer is enabled, interrupts can be masked in the CEC controller.

Core Timer Registers
The core timer includes four core memory-mapped registers (MMRs), the
timer control register (TCNTL), the timer count register (TCOUNT), the timer
period register (TPERIOD), and the timer scale register (TSCALE). As with all
core MMRs, these registers are always accessed by 32-bit read and write
operations.

TCNTL Register
The timer control register, shown in Figure 16-2, functions as control and
status register.

ADSP-BF537 Blackfin Processor Hardware Reference 16-5

Core Timer

TCOUNT Register
The core timer count register (TCOUNT, shown in Figure 16-3) decrements
once every TSCALE + 1 clock cycles. When the value of TCOUNT reaches 0,
an interrupt is generated and the TINT bit of the TCNTL register is set.

Values written to the TPERIOD register are automatically copied to the
TCOUNT register as well. Nevertheless, the TCOUNT register can be written
directly. In auto reload mode the value written to TCOUNT may differ from
the TPERIOD value to let the initial period be shorter or longer than the fol-
lowing ones. To do this, write to TPERIOD first and overwrite TCOUNT
afterward.

Writes to TCOUNT are ignored once the timer is running.

Figure 16-2. Core Timer Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low
power mode

1 - Active state. Timer can be
enabled using the TMREN
bit

Meaningful only when
TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt and halts

1 - Enable auto-reload feature. When TCOUNT reaches zero
and the timer generates an interrupt, TCOUNT is
automatically reloaded with the contents of TPERIOD
and the timer continues to count

0xFFE0 3000

Core Timer Registers

16-6 ADSP-BF537 Blackfin Processor Hardware Reference

TPERIOD Register
When auto-reload is enabled, the TCOUNT register is reloaded with the
value of the core timer period register (TPERIOD, shown in Figure 16-4),
whenever TCOUNT reaches 0. Writes to TPERIOD are ignored when the timer
is running.

Figure 16-3. Core Timer Count Register

Figure 16-4. Core Timer Period Register

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

ADSP-BF537 Blackfin Processor Hardware Reference 16-7

Core Timer

TSCALE Register
The core timer scale register (TSCALE, shown in Figure 16-5,) stores the
scaling value that is one less than the number of cycles between decre-
ments of TCOUNT. For example, if the value in the TSCALE register is 0, the
counter register decrements once every CCLK clock cycle. If TSCALE is 1, the
counter decrements once every two cycles.

Programming Examples
Listing 16-1 configures the core timer in auto reload mode. Assuming a
CCLK of 500 MHz, the resulting period is 1 s. The initial period is twice as
long as the others.

Listing 16-1. Core Timer Configuration

#include <defBF534.h>

.section L1_code;

.global _main;

_main:

/* Register service routine at EVT6 and unmask interrupt */

p1.l = lo(IMASK);

p1.h = hi(IMASK);

r0.l = lo(isr_core_timer);

Figure 16-5. Core Timer Scale Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value[7:0]

0xFFE0 3008

Programming Examples

16-8 ADSP-BF537 Blackfin Processor Hardware Reference

r0.h = hi(isr_core_timer);

[p1 + EVT6 - IMASK] = r0;

r0 = [p1];

bitset(r0, bitpos(EVT_IVTMR));

[p1] = r0;

/* Prescaler = 50, Period = 10,000,000, First Period = 20,000,000

*/

p1.l = lo(TCNTL);

p1.h = hi(TCNTL);

r0 = 50 (z);

[p1 + TSCALE - TCNTL] = r0;

r0.l = lo(10000000);

r0.h = hi(10000000);

[p1 + TPERIOD - TCNTL] = r0;

r0 <<= 1;

[p1 + TCOUNT - TCNTL] = r0;

/* R6 counts interrupts */

r6 = 0 (z);

/* start in auto-reload mode */

r0 = TAUTORLD | TMPWR | TMREN (z);

[p1] = r0;

_main.forever:

jump _main.forever;

_main.end:

/* interrupt service routine simple increments R6 */

isr_core_timer:

[--sp] = astat;

r6+= 1;

astat = [sp++];

rti;

isr_core_timer.end:

ADSP-BF537 Blackfin Processor Hardware Reference 17-1

17 WATCHDOG TIMER

This brief chapter describes the watchdog timer. Following an overview,
functional description, and consolidated register definitions, the chapter
concludes with programming examples.

This chapter contains:

• “Overview and Features” on page 17-1

• “Interface Overview” on page 17-3

• “Description of Operation” on page 17-4

• “Watchdog Timer Register Definitions” on page 17-5

• “Programming Examples” on page 17-9

Overview and Features
The processor includes a 32-bit timer that can be used to implement a
software watchdog function. A software watchdog can improve system
reliability by generating an event to the processor core if the watchdog
expires before being updated by software.

Watchdog timer key features include:

• 32-bit watchdog timer

• 8-bit disable bit pattern

• System reset on expire option

Overview and Features

17-2 ADSP-BF537 Blackfin Processor Hardware Reference

• NMI on expire option

• General-purpose interrupt option

Typically, the watchdog timer is used to supervise stability of the system
software. When used in this way, software reloads the watchdog timer in a
regular manner in so that the downward counting timer never expires
(never becomes 0). An expiring timer then indicates that system software
might be out of control. At this point a special error handler may recover
the system. For safety, however, it is often better to reset and reboot the
system directly by hardware control.

Especially in slave boot configurations, a processor reset cannot automati-
cally force the part to be rebooted. In this case, the processor may reset
without booting again and may negotiate with the host device by the time
program execution starts. Alternatively, a watchdog event can cause an
NMI event. The NMI service routine may request the host device to reset
and/or reboot the Blackfin processor.

Often, the watchdog timer is also programmed to let the processor wake
up from sleep mode after a programmable period of time.

 For easier debugging, the watchdog timer does not decrement
(even if enabled) when the processor is in emulation mode.

ADSP-BF537 Blackfin Processor Hardware Reference 17-3

Watchdog Timer

Interface Overview
Figure 17-1 provides a block diagram of the watchdog timer.

External Interface
The watchdog timer does not directly interact with any pins of the chip.

Internal Interface
The watchdog timer is clocked by the system clock SCLK. Its registers are
accessed through the 16-bit peripheral access bus PAB. The 32-bit regis-
ters WDOG_CNT and WDOG_STAT must always be accessed by 32-bit read/write
operations. Hardware ensures that those accesses are atomic.

Figure 17-1. Watchdog Timer Block Diagram

EVENT
CONTROL

WRITE

SCLK

WDOG_CNT

32

PAB

READ

RELOAD

RESET
WDOG_STAT

WDOG_CTL

WDEV

WDEN

16

EXPIRE

WDRO

NMI

IRQ31

WATCHDOG

Description of Operation

17-4 ADSP-BF537 Blackfin Processor Hardware Reference

When the counter expires, one of three event requests can be generated.
Either a reset or an NMI request is issued to the Core Event Controller
(CEC) or a general-purpose interrupt request is passed to the System
Interrupt Controller (SIC).

Description of Operation
If enabled, the 32-bit watchdog timer counts downward every SCLK cycle.
If it becomes 0, one of three event requests can be issued to either the
CEC or the SIC. Depending on how the WDEV bit field in the WDOG_CTL
register is programmed, the event that is generated may be a reset, a
non-maskable interrupt, or a general-purpose interrupt.

The counter value can be read through the 32-bit WDOG_STAT register. The
WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before
the watchdog is enabled. Once the watchdog is started, the period value
cannot be altered.

To start the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the watchdog count register (WDOG_CNT). Since the
watchdog timer is not enabled yet, the write to the WDOG_CNT regis-
ters automatically pre-loads the WDOG_STAT register as well.

2. In the watchdog control register (WDOG_CTL), select the event to be
generated upon timeout.

3. Enable the watchdog timer in WDOG_CTL. The watchdog timer then
begins counting down, decrementing the value in the WDOG_STAT
register.

ADSP-BF537 Blackfin Processor Hardware Reference 17-5

Watchdog Timer

If software does not serve the watchdog in time, WDOG_STAT continues dec-
rementing until it reaches 0. Then, the programmed event is generated.
The counter stops decrementing and remains at zero. Additionally, the
WDRO latch bit in the WDOG_CTL register is set and can be interrogated by
software in case event generation is not enabled.

When the watchdog is programmed to generate a reset, it resets the pro-
cessor core and peripherals. If the NOBOOT bit in the SYSCR register was set
by the time the watchdog resets the part, the chip is not rebooted. This is
recommended behavior in slave boot configurations. The reset handler
may evaluate the RESET_WDOG bit in the software reset register SWRST to
detect a reset caused by the watchdog. For details, see Chapter 19, “Sys-
tem Reset and Booting”.

To prevent the watchdog from expiring, software serves the watchdog by
performing dummy writes to the WDOG_STAT register address in time. The
values written are ignored, but the write commands cause the WDOG_STAT
register to be reloaded from the WDOG_CNT register.

If the watchdog is enabled with a zero value loaded to the counter and the
WDRO bit was cleared, the WDRO bit of the watchdog control register is set
immediately and the counter remains at zero without further decrements.
If, however, the WDRO bit was set by the time the watchdog is enabled, the
counter decrements to 0xFFFF FFFF and continues operation.

Software can disable the watchdog timer only by writing a 0xAD value
(WDDIS) to the WDEN field in the WDOG_CTL register.

 Watchdog Timer Register Definitions
The watchdog timer is controlled by three registers: WDOG_CNT, WDOG_STAT,
and WDOG_CTL.

Watchdog Timer Register Definitions

17-6 ADSP-BF537 Blackfin Processor Hardware Reference

WDOG_CNT Register
The watchdog count register (WDOG_CNT), shown in Figure 17-2, holds the
32-bit unsigned count value. The WDOG_CNT register must always be
accessed with 32-bit read/writes.

The watchdog count register holds the programmable count value. A valid
write to the watchdog count register also preloads the watchdog counter.
For added safety, the watchdog count register can be updated only when
the watchdog timer is disabled. A write to the watchdog count register
while the timer is enabled does not modify the contents of this register.

Figure 17-2. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 0204

ADSP-BF537 Blackfin Processor Hardware Reference 17-7

Watchdog Timer

WDOG_STAT Register
The 32-bit watchdog status register (WDOG_STAT), shown in Figure 17-3,
contains the current count value of the watchdog timer. Reads to
WDOG_STAT return the current count value. Values cannot be stored directly
in WDOG_STAT, but are instead copied from WDOG_CNT. This can happen in
two ways.

• While the watchdog timer is disabled, writing the WDOG_CNT register
pre-loads the WDOG_STAT register.

• While the watchdog timer is enabled, but not rolled over yet,
writes to the WDOG_STAT register load it with the value in WDOG_CNT.

 Enabling the watchdog timer does not automatically reload
WDOG_STAT from WDOG_CNT.

The WDOG_STAT register is a 32-bit unsigned system memory-mapped regis-
ter that must be accessed with 32-bit reads and writes.

Figure 17-3. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 0208

Watchdog Timer Register Definitions

17-8 ADSP-BF537 Blackfin Processor Hardware Reference

WDOG_CTL Register
The watchdog control register (WDOG_CTL), shown in Figure 17-4, is a
16-bit system memory-mapped register used to control the watchdog
timer.

The watchdog event (WDEV[1:0]) bit field is used to select the event that is
generated when the watchdog timer expires. Note that if the general-pur-
pose interrupt option is selected, the system interrupt mask register
(SIC_IMASK) should be appropriately configured to unmask that interrupt.
If the generation of watchdog events is disabled, the watchdog timer oper-
ates as described, except that no event is generated when the watchdog
timer expires.

The watchdog enable (WDEN[7:0]) bit field is used to enable and disable
the watchdog timer. Writing any value other than the disable value
(0xAD) into this field enables the watchdog timer. This multibit disable
key minimizes the chance of inadvertently disabling the watchdog timer.

Figure 17-4. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 1 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

WDEV[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event

generation

WDEN[7:0]
0xAD - Counter disabled
All other values - Counter
enabled

WDRO - W1C
0 - Watchdog timer has not expired
1 - Watchdog timer has expired

Reset = 0x0AD00xFFC0 0200

ADSP-BF537 Blackfin Processor Hardware Reference 17-9

Watchdog Timer

Software can determine whether the watchdog has expired by interrogat-
ing the watchdog rolled over (WDRO) status bit of the watchdog control
register. This is a sticky bit that is set whenever the watchdog timer count
reaches 0. It can be cleared only by writing a 1 to the bit when the watch-
dog has been disabled first.

Programming Examples
Listing 17-1 shows how to configure the watchdog timer so that it resets
the chip when it expires. At startup, the code evaluates whether the recent
reset event has been caused by the watchdog. Additionally, the example
sets the NOBOOT bit to prevent the memory from being rebooted.

Listing 17-1. Watchdog Timer Configuration

#include <defBF534.h>

#define WDOGPERIOD 0x00200000

.section L1_code;

.global _reset;

_reset:

 ...

/* optionally, test whether reset was caused by watchdog */

p0.h=hi(SWRST);

p0.l=lo(SWRST);

r6 = w[p0] (z);

CC = bittst(r6, bitpos(RESET_WDOG));

if !CC jump _reset.no_watchdog_reset;

/* optionally, warn at system level or host device here */

_reset.no_watchdog_reset:

/* optionally, set NOBOOT bit to avoid reboot in case */

Programming Examples

17-10 ADSP-BF537 Blackfin Processor Hardware Reference

p0.h=hi(SYSCR);

p0.l=lo(SYSCR);

r0 = w[p0](z);

bitset(r0,bitpos(NOBOOT));

w[p0] = r0;

/* start watchdog timer, reset if expires */

p0.h = hi(WDOG_CNT);

p0.l = lo(WDOG_CNT);

r0.h = hi(WDOGPERIOD);

r0.l = lo(WDOGPERIOD);

[p0] = r0;

p0.l = lo(WDOG_CTL);

r0.l = WDEN | WDEV_RESET;

w[p0] = r0;

...

jump _main;

_reset.end:

The subroutine shown in Listing 17-2 can be called by software to service
the watchdog. Note that the value written to the WDOG_STAT register does
not matter.

Listing 17-2. Service Watchdog

service_watchdog:

[--sp] = p5;

p5.h = hi(WDOG_STAT);

p5.l = lo(WDOG_STAT);

[p5] = r0;

p5 = [sp++];

rts;

service_watchdog.end:

ADSP-BF537 Blackfin Processor Hardware Reference 17-11

Watchdog Timer

Listing 17-3 is an interrupt service routine that restarts the watchdog.
Note that the watchdog must be disabled first.

Listing 17-3. Watchdog Restarted by Interrupt Service Routine

isr_watchdog:

[--sp] = astat;

[--sp] = (p5:5, r7:7);

p5.h = hi(WDOG_CTL);

p5.l = lo(WDOG_CTL);

r7.l = WDDIS;

w[p5] = r7;

bitset(r7, bitpos(WDRO));

w[p5] = r7;

r7 = [p5 + WDOG_CNT - WDOG_CTL];

[p5 + WDOG_CNT - WDOG_CTL] = r7;

r7.l = WDEN | WDEV_GPI;

w[p5] = r7;

(p5:5, r7:7) = [sp++];

astat = [sp++];

rti;

isr_watchdog.end:

Programming Examples

17-12 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 18-1

18 REAL-TIME CLOCK

This chapter describes the Real-Time Clock (RTC). Following an over-
view and list of key features is a description of operation. The chapter
concludes with a programming model, consolidated register definitions,
and programming examples.

This chapter contains:

• “Overview” on page 18-1

• “Interface Overview” on page 18-3

• “Description of Operation” on page 18-5

• “RTC Programming Model” on page 18-7

• “RTC Register Definitions” on page 18-20

• “Programming Examples” on page 18-24

Overview
The RTC provides a set of digital watch features to the processor, includ-
ing time of day, alarm, and stopwatch countdown. It is typically used to
implement either a real-time watch or a life counter, which counts the
elapsed time since the last system reset.

Overview

18-2 ADSP-BF537 Blackfin Processor Hardware Reference

The RTC watch features are clocked by a 32.768 kHz crystal external to
the processor. The RTC uses dedicated power supply pins and is
independent of any reset, which enables it to maintain functionality even
when the rest of the processor is powered down.

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 32768-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 32768-day counter
is incremented each day at midnight (0 hours, 0 minutes, 0 seconds).
Interrupts can be issued periodically, either every second, every minute,
every hour, or every day. Each of these interrupts can be independently
controlled.

The RTC provides two alarm features, programmed with the RTC Alarm
register (RTC_ALARM). The first is a time of day alarm (hour, minute, and
second). When the alarm interrupt is enabled, the RTC generates an
interrupt each day at the time specified. The second alarm feature allows
the application to specify a day as well as a time. When the day alarm
interrupt is enabled, the RTC generates an interrupt on the day and time
specified. The alarm interrupt and day alarm interrupt can be enabled or
disabled independently.

ADSP-BF537 Blackfin Processor Hardware Reference 18-3

Real-Time Clock

The RTC provides a stopwatch function that acts as a countdown timer.
The application can program a second count into the RTC stopwatch
count register (RTC_SWCNT). When the stopwatch interrupt is enabled and
the specified number of seconds have elapsed, the RTC generates an
interrupt.

Interface Overview
The RTC external interface consists of two clock pins, which together
with the external components form the reference clock circuit for the
RTC. The RTC interfaces internally to the processor system through the
Peripheral Access Bus (PAB), and through the interrupt interface to the
SIC (System Interrupt Controller).

The RTC has dedicated power supply pins that power the clock functions
at all times, including when the core power supply is turned off.

Figure 18-1 provides a block diagram of the RTC.

Interface Overview

18-4 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 18-1. RTC Block Diagram

DAYS
COUNTER

DAY
ALARM
EVENT

24 HOURS
EVENT

1

0

9

RTC_ALARM REGISTER

RTC_PREN

EQUAL?

HOURS
COUNTER

MINUTES
COUNTER

SECONDS
COUNTER

HOURS
EVENT

MINUTES
EVENT

SECONDS
EVENT

PRESCALE
COUNTER

5 6 6

9 5 6 6

ALARM
EVENT

Y Y Y Y

RTXI
32.768 kHz

1 Hz
TICK

SET

RST

STOPWATCH
EVENT

STOPWATCH
ENABLE

Y

16

STOPWATCH
COUNTER

WRITE
RTC_SWCNT

EQUAL?

EQUAL 0?

EQUAL? EQUAL?

ADSP-BF537 Blackfin Processor Hardware Reference 18-5

Real-Time Clock

Description of Operation
The following sections describe the operation of the RTC.

RTC Clock Requirements
The RTC timer is clocked by a 32.768 kHz crystal external to the proces-
sor. The RTC system memory-mapped registers (MMRs) are clocked by
this crystal. When the prescaler is disabled, the RTC MMRs are clocked at
the 32.768 kHz crystal frequency. When the prescaler is enabled, the
RTC MMRs are clocked at the 1 Hz rate.

There is no way to disable the RTC counters from software. If a given sys-
tem does not require the RTC functionality, then it may be disabled with
hardware tieoffs. Tie the RTXI and RTCGND pins to EGND, tie the RTCVDD pin
to EVDD, and leave the RTXO pin unconnected. Additionally, writing
RTC_PREN to 0 saves a small amount of power.

Prescaler Enable
The single active bit of the RTC prescaler enable register (RTC_PREN) is
written using a synchronization path. Clearing of the bit is synchronized
to the 32.768 kHz clock. This faster synchronization allows the module to
be put into high-speed mode (bypassing the prescaler) without waiting the
full 1 second for the write to complete that would be necessary if the mod-
ule were already running with the prescaler enabled. When this bit is
cleared, the prescaler is disabled, and the RTC runs at the 32.768 kHz
crystal frequency.

When setting the RTC_PREN bit, the first positive edge of the 1 Hz clock
occurs 1 to 2 cycles of the 32.768 kHz clock after the prescaler is enabled.
The write complete status/interrupt works as usual when enabling or dis-
abling the prescale counter. The new RTC clock rate is in effect before the
write complete status is set. In order for the RTC to operate at the proper

Description of Operation

18-6 ADSP-BF537 Blackfin Processor Hardware Reference

rate, software must set the prescaler enable bit after initial powerup. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz.

Write RTC_PREN and then wait for the write complete event before pro-
gramming the other registers. It is safe to write RTC_PREN to 1 every time
the processor boots. The first time sets the bit, and subsequent writes have
no effect, as no state is changed.

 Do not disable the prescaler by clearing the bit in RTC_PREN with-
out making sure that there are no writes to RTC MMRs in
progress. Do not switch between fast and slow mode during normal
operation by setting and clearing this bit, as this disrupts the accu-
rate tracking of real time by the counters. To avoid these potential
errors, initialize the RTC during startup via RTC_PREN and do not
dynamically alter the state of the prescaler during normal
operation.

Running without the prescaler enabled is provided primarily as a test
mode. All functionality works, just 32,768 times as fast. Typical software
should never program RTC_PREN to 0. The only reason to do so is to syn-
chronize the 1 Hz tick to a more precise external event, as the 1 Hz tick
predictably occurs a few RTXI cycles after a 0-to-1 transition of RTC_PREN.

Use the following sequence to achieve synchronization to within 100 ms.

1. Write RTC_PREN to 0.

2. Wait for the write to complete.

3. Wait for the external event.

4. Write RTC_PREN to 1.

5. Wait for the write to complete.

6. Reprogram the time into RTC_STAT.

ADSP-BF537 Blackfin Processor Hardware Reference 18-7

Real-Time Clock

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC interrupt control
register (RTC_ICTL) and the RTC interrupt status register (RTC_ISTAT) pro-
vide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. At reset, all interrupts are
disabled. The RTC state can be read via the system MMR status registers
at any time.

The primary RTC functionality, shown in Figure 18-1, consists of regis-
ters and counters that are powered by an independent RTC Vdd supply.
This logic is never reset; it comes up in an unknown state when RTC Vdd
is first powered on.

The RTC also contains logic powered by the same internal Vdd as the pro-
cessor core and other peripherals. This logic contains some control
functionality, holding registers for PAB write data, and prefetched PAB
read data shadow registers for each of the five RTC Vdd-powered registers.
This logic is reset by the same system reset and clocked by the same SCLK
as the other peripherals.

Figure 18-2 shows the connections between the RTC Vdd-powered RTC
MMRs and their corresponding internal Vdd-powered write holding regis-
ters and read shadow registers. In the figure, “REG” means each of the
RTC_STAT, RTC_ALARM, RTC_SWCNT, RTC_ICTL, and RTC_PREN registers. The
RTC_ISTAT register connects only to the PAB.

The rising edge of the 1 Hz RTC clock is the “1 Hz tick”. Software can
synchronize to the 1 Hz tick by waiting for the seconds event flag to set or
by waiting for the seconds interrupt (if enabled).

RTC Programming Model

18-8 ADSP-BF537 Blackfin Processor Hardware Reference

Register Writes
Writes to all RTC MMRs, except the RTC interrupt status register
(RTC_ISTAT), are saved in write holding registers and then are synchro-
nized to the RTC 1 Hz clock. The write pending status bit in RTC_ISTAT
indicates the progress of the write. The write pending status bit is set when
a write is initiated and is cleared when all writes are complete. The falling
edge of the write pending status bit causes the write complete flag in
RTC_ISTAT to be set. This flag can be configured in RTC_ICTL to cause an
interrupt. Software does not have to wait for writes to one RTC MMR to

Figure 18-2. RTC Register Architecture

FALLING
EDGE DETECT

WRITE
COMPLETE
EVENT

N

1 Hz
TICK

RST

SET
PAB

16/32

REG WRITE
PENDING

REG WRITE
HOLDING

REG READ
SHADOW RTC_ISTAT

REG

161616/32

N

MMR WRITE
TO REG

5

WRITE
PENDING
STATUS

POWERED BY RTC VDD
CLOCKED BY 1 Hz TICK

POWERED BY INTERNAL VDD
CLOCKED BY SCLK

ADSP-BF537 Blackfin Processor Hardware Reference 18-9

Real-Time Clock

complete before writing to another RTC MMR. The write pending status
bit is set if any writes are in progress, and the write complete flag is set
only when all writes are complete.

 Any writes in progress when peripherals are reset are aborted. Do
not stop SCLK (enter deep sleep mode) or remove Internal Vdd
power until all RTC writes have completed.

Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

Reading a register that has been written before the write complete
flag is set will return the old value. Always check the write pending
status bit before attempting a read or write.

Write Latency
Writes to the RTC MMRs are synchronized to the 1 Hz RTC clock.
When setting the time of day, do not factor in the delay when writing to
the RTC MMRs. The most accurate method of setting the RTC is to
monitor the seconds (1 Hz) event flag or to program an interrupt for this
event and then write the current time to the RTC status register
(RTC_STAT) in the interrupt service routine (ISR). The new value is
inserted ahead of the incrementer. Hardware adds one second to the writ-
ten value (with appropriate carries into minutes, hours and days) and
loads the incremented value at the next 1 Hz tick, when it represents the
then-current time.

Writes posted at any time are properly synchronized to the 1 Hz clock.
Writes complete at the rising edge of the 1 Hz clock. A write posted just
before the 1 Hz tick may not be completed until the 1 Hz tick one second
later. Any write posted in the first 990 ms after a 1 Hz tick completes on
the next 1 Hz tick, but the simplest, most predictable and recommended

RTC Programming Model

18-10 ADSP-BF537 Blackfin Processor Hardware Reference

technique is to only post writes to RTC_STAT, RTC_ALARM, RTC_SWCNT,
RTC_ICTL, or RTC_PREN immediately after a seconds interrupt or event. All
five registers may be written in the same second.

W1C bits in the RTC_ISTAT register take effect immediately.

Register Reads
There is no latency when reading RTC MMRs, as the values come from
the read shadow registers. The shadows are updated and ready for reading
by the time any RTC interrupts or event flags for that second are asserted.
Once the internal Vdd logic completes its initialization sequence after SCLK
starts, there is no point in time when it is unsafe to read the RTC MMRs
for synchronization reasons. They always return coherent values, although
the values may be unknown.

Deep Sleep
When the Dynamic Power Management Controller (DPMC) state is deep
sleep, all clocks in the system (except RTXI and the RTC 1 Hz tick) are
stopped. In this state, the RTC Vdd counters continue to increment. The
internal Vdd shadow registers are not updated, but neither can they be
read.

During deep sleep state, all bits in RTC_ISTAT are cleared. Events that
occur during deep sleep are not recorded in RTC_ISTAT. The internal Vdd
RTC control logic generates a virtual 1 Hz tick within one RTXI period
(30.52 s) after SCLK restarts. This loads all shadow registers with
up-to-date values and sets the seconds event flag. Other event flags may
also be set. When the system wakes up from deep sleep, whether by an
RTC event or a hardware reset, all of the RTC events that occurred during
that second (and only that second) are reported in RTC_ISTAT.

ADSP-BF537 Blackfin Processor Hardware Reference 18-11

Real-Time Clock

When the system wakes up from deep sleep state, software does not need
to W1C the bits in RTC_ISTAT. All W1C bits are already cleared by
hardware. The seconds event flag is set when the RTC internal Vdd logic
has completed its restart sequence. Software should wait until the seconds
event flag is set and then may begin reading or writing any RTC register.

Event Flags

 The unknown values in the registers at power-up can cause event
flags to set before the correct value is written into each of the regis-
ters. By catching the 1 Hz clock edge, the write to RTC_STAT can
occur a full second before the write to RTC_ALARM. This would cause
an extra second of delay between the validity of RTC_STAT and
RTC_ALARM, if the value of the RTC_ALARM out of reset is the same as
the value written to RTC_STAT. Wait for the writes to complete on
these registers before using the flags and interrupts associated with
their values.

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) event flag

Always set on the positive edge of the 1 Hz clock and after shadow
registers have updated after waking from deep sleep. This is valid as
long as the RTC 1 Hz clock is running. Use this flag or interrupt to
validate the other flags.

• Write complete and write pending status

Always valid.

RTC Programming Model

18-12 ADSP-BF537 Blackfin Processor Hardware Reference

• Minutes event flag

Valid only after the second field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Hours event flag

Valid only after the minute field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• 24 Hours event flag

Valid only after the hour field in RTC_STAT is valid. Use the write
complete and write pending status flags or interrupts to validate the
RTC_STAT value before using this flag value or enabling the
interrupt.

• Stopwatch event flag

Valid only after the RTC_SWCNT register is valid. Use the write com-
plete and write pending status flags or interrupts to validate the
RTC_SWCNT value before using this flag value or enabling the
interrupt.

• Alarm event and day alarm event flags

Valid only after the RTC_STAT and RTC_ALARM registers are valid. Use
the write complete and write pending status flags or interrupts to
validate the RTC_STAT and RTC_ALARM values before using this flag
value or enabling its interrupt.

ADSP-BF537 Blackfin Processor Hardware Reference 18-13

Real-Time Clock

Writes posted together at the beginning of the same second take effect
together at the next 1 Hz tick. The following sequence is safe and does not
result in any spurious interrupts from a previous state.

1. Wait for 1 Hz tick.

2. Write 1s to clear the RTC_ISTAT flags for alarm, day alarm, stop-
watch, and/or per-interval.

3. Write new values for RTC_STAT, RTC_ALARM, and/or RTC_SWCNT.

4. Write new value for RTC_ICTL with alarm, day alarm, stopwatch,
and/or per-interval interrupts enabled.

5. Wait for 1 Hz tick.

6. New values have now taken effect simultaneously.

Setting Time of Day
The RTC status register (RTC_STAT) is used to read or write the current
time. Reads return a 32-bit value that always reflects the current state of
the days, hours, minutes, and seconds counters. Reads and writes must be
32-bit transactions; attempted 16-bit transactions result in an MMR
error. Reads always return a coherent 32-bit value. The hours, minutes,
and seconds fields are usually set to match the real time of day. The day
counter value is incremented every day at midnight to record how many
days have elapsed since it was last modified. Its value does not correspond
to a particular calendar day. The 15-bit day counter provides a range of 89
years, 260 or 261 days (depending on leap years) before it overflows.

After the 1 Hz tick, program RTC_STAT with the current time. At the next
1 Hz tick, RTC_STAT takes on the new, incremented value. For example:

1. Wait for 1 Hz tick.

2. Read RTC_STAT, get 10:45:30.

RTC Programming Model

18-14 ADSP-BF537 Blackfin Processor Hardware Reference

3. Write RTC_STAT to current time, 13:10:59.

4. Read RTC_STAT, still get old time 10:45:30.

5. Wait for 1 Hz tick.

6. Read RTC_STAT, get new current time, 13:11:00.

Using the Stopwatch
The RTC stopwatch count register (RTC_SWCNT) contains the countdown
value for the stopwatch. The stopwatch counts down seconds from the
programmed value and generates an interrupt (if enabled) when the count
reaches 0. The counter stops counting at this point and does not resume
counting until a new value is written to RTC_SWCNT. Once running, the
counter may be overwritten with a new value. This allows the stopwatch
to be used as a watchdog timer with a precision of one second.

The stopwatch can be programmed to any value between 0 and (216 – 1)
seconds, which is a range of 18 hours, 12 minutes, and 15 seconds.

Typically, software should wait for a 1 Hz tick, then write RTC_SWCNT. One
second later, RTC_SWCNT changes to the new value and begins decrement-
ing. Because the register write occupies nearly one second, the time from
writing a value of N until the stopwatch interrupt is nearly N + 1 seconds.
To produce an exact delay, software can compensate by writing N – 1 to
get a delay of nearly N seconds. This implies that you cannot achieve a
delay of 1 second with the stopwatch. Writing a value of 1 immediately
after a 1 Hz tick results in a stopwatch interrupt nearly two seconds later.
To wait one second, software should just wait for the next 1 Hz tick.

The RTC_SWCNT register is not reset. After initial powerup, it may be
running. When the stopwatch is not used, writing it to 0 to force it to stop
saves a small amount of power.

ADSP-BF537 Blackfin Processor Hardware Reference 18-15

Real-Time Clock

Interrupts
The RTC can provide interrupts at several programmable intervals:

• Per second, minute, hour, and day—based on increments to the
respective counters in RTC_STAT

• Daily at a specific time—all fields of RTC_ALARM must match
RTC_STAT except the day field

• On a specific day and time—all fields of RTC_ALARM register must
match RTC_STAT

• On countdown from a programmable value—value in RTC_SWCNT
transitions to 0 or is written with 0 by software (whether it was pre-
viously running or already stopped with a count of 0)

The RTC can be programmed to provide an interrupt at the completion
of all pending writes to any of the 1 Hz registers (RTC_STAT, RTC_ALARM,
RTC_SWCNT, RTC_ICTL, and RTC_PREN). The eight RTC interrupt events can
be individually masked or enabled by the RTC interrupt control register
(RTC_ICTL). The seconds interrupt is generated on each 1 Hz clock tick, if
enabled. The minutes interrupt is generated at the 1 Hz clock tick that
advances the seconds counter from 59 to 0. The hour interrupt is gener-
ated at the 1 Hz clock tick that advances the minute counter from 59 to 0.
The 24-hour interrupt occurs once per 24-hour period at the 1 Hz clock
tick that advances the time to midnight (00:00:00). Any of these inter-
rupts can generate a wakeup request to the processor, if enabled. All
implemented bits are read/write.

This register is only partially cleared at reset, so some events may appear to
be enabled initially. However, the RTC interrupt and the RTC wakeup to
the PLL are handled specially and are masked (forced low) until after the
first write to the RTC_ICTL register is complete. Therefore, all interrupts
act as if they were disabled at system reset (as if all bits of RTC_ICTL were
zero), even though some bits of RTC_ICTL may read as nonzero. If no RTC

RTC Programming Model

18-16 ADSP-BF537 Blackfin Processor Hardware Reference

interrupts are needed immediately after reset, it is recommended to write
RTC_ICTL to 0x0000 so that later read-modify-write accesses function as
intended.

Interrupt status can be determined by reading the RTC interrupt status
register (RTC_ISTAT). All bits in RTC_ISTAT are sticky. Once set by the cor-
responding event, each bit remains set until cleared by a software write to
this register. Event flags are always set; they are not masked by the inter-
rupt enable bits in RTC_ICTL. Values are cleared by writing a 1 to the
respective bit location, except for the write pending status bit, which is
read-only. Writes of 0 to any bit of the register have no effect. This regis-
ter is cleared at reset and during deep sleep.

The RTC interrupt is set whenever an event latched into the RTC_ISTAT
register is enabled in the RTC_ICTL register. The pending RTC interrupt is
cleared whenever all enabled and set bits in RTC_ISTAT are cleared, or when
all bits in RTC_ICTL corresponding to pending events are cleared.

As shown in Figure 18-3, the RTC generates an interrupt request (IRQ)
to the processor core for event handling and wakeup from a sleep state.
The RTC generates a separate signal for wakeup from a deep sleep or from
an internal Vdd power-off state. The deep sleep wakeup signal is asserted
at the 1 Hz tick when any RTC interval event enabled in RTC_ICTL occurs.
The assertion of the deep sleep wakeup signal causes the processor core
clock (CCLK) and the system clock (SCLK) to restart. Any enabled event that
asserts the RTC deep sleep wakeup signal also causes the RTC IRQ to
assert once SCLK restarts.

ADSP-BF537 Blackfin Processor Hardware Reference 18-17

Real-Time Clock

Figure 18-3. RTC Interrupt Structure

VOLTAGE
REGULATOR

WRITE
COMPLETE
EVENT

1 Hz
TICK

PLL

RTC_ISTAT ICTL READ
SHADOW

RTC_ICTL

7

RTC
IRQ

7

POWERED BY
RTC VDD

7

7

7

DAY,
HOURS,
SECONDS,
STOPWATCH

24 HOURS,
MINUTES,
ALARM,
EVENTS

POWERED BY
INTERNAL VDD

POWERED BY
EXTERNAL VDD

7 SYSTEM
INTERRUPT

CONTROLLER

PROCESSOR
CORE

WRITE
COMPLETE
ENABLE

77

WAKE FROM
DEEP SLEEP

WAKE
FROM
POWER
OFF

RTC Programming Model

18-18 ADSP-BF537 Blackfin Processor Hardware Reference

State Transitions Summary
Table 18-1 shows how each RTC MMR is affected by the system states.
The phase locked loop (PLL) states (reset, full on, active, sleep, and deep
sleep) are defined in Chapter 20, “Dynamic Power Management”. “No
power” means none of the processor power supply pins are connected to a
source of energy. “Off” means the processor core, peripherals, and mem-
ory are not powered (Internal Vdd is off), while the RTC is still powered
and running. External Vdd may still be powered. Registers described as “as
written” are holding the last value software wrote to the register. If the
register has not been written since RTC Vdd power was applied, then the
state is unknown (for all bits of RTC_STAT, RTC_ALARM, and RTC_SWCNT, and
for some bits of RTC_ISTAT, RTC_PREN, and RTC_ICTL).

Table 18-1. Effect of States on RTC MMRs

RTC
Vdd

IVdd System
State

RTC_ICTL RTC_ISTAT RTC_STAT
RTC_SWCNT

RTC_ALARM
RTC_PREN

Off Off No
power

X X X X

On On Reset As written 0 Counting As written

On On Full on As written Events Counting As written

On On Sleep As written Events Counting As written

On On Active As written Events Counting As written

On On Deep
sleep

As written 0 Counting As written

On Off Off As written X Counting As written

ADSP-BF537 Blackfin Processor Hardware Reference 18-19

Real-Time Clock

Table 18-2 summarizes software’s responsibilities with respect to the RTC
at various system state transition events.

Table 18-2. RTC System State Transition Events

At This Event: Execute This Sequence:

Power on from no power Write RTC_PREN = 1.
Wait for write complete.
Write RTC_STAT to current time.
Write RTC_ALARM, if needed.
Write RTC_SWCNT.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.

Full on after reset
or
Full on after power on from off

Wait for seconds event, or write RTC_PREN = 1 and
wait for write complete.
Write RTC_ISTAT to clear any pending RTC events.
Write RTC_ICTL to enable any desired RTC interrupts
or to disable all RTC interrupts.
Read RTC MMRs as required.

Wake from deep sleep Wait for seconds event flag to set.
Write RTC_ISTAT to acknowledge RTC deep sleep
wakeup.
Read RTC MMRs as required.
The PLL state is now active. Transition to full on as
needed.

Wake from sleep If wakeup came from RTC, seconds event flag will be set.
In this case, write RTC_ISTAT to acknowledge RTC
wakeup IRQ.
Always, read RTC MMRs as required.

Before going to sleep If wakeup by RTC is desired:
Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC interrupt
sources for wakeup.
Wait for write complete.
Enable RTC for wakeup in the system interrupt
wakeup-enable register (SIC_IWR).

RTC Register Definitions

18-20 ADSP-BF537 Blackfin Processor Hardware Reference

RTC Register Definitions
The following sections contain the RTC register definitions. Figure 18-4
through Figure 18-9 illustrate the registers.

Table 18-3 shows the functions of the RTC registers.

Before going to deep sleep Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable the desired RTC event
sources for deep sleep wakeup.
Wait for write complete.

Before going to off Write RTC_ALARM and/or RTC_SWCNT as needed to
schedule a wakeup event.
Write RTC_ICTL to enable any desired RTC event
sources for powerup wakeup.
Wait for write complete.
Set the wake bit in the voltage regulator control register
(VR_CTL).

Table 18-3. RTC Register Mapping

Register Name Function Notes

RTC_STAT RTC status register Holds time of day

RTC_ICTL RTC interrupt control
register

Bits 14:7 are reserved

RTC_ISTAT RTC interrupt status
register

Bits 13:7 are reserved

RTC_SWCNT RTC stopwatch count
register

Undefined at reset

RTC_ALARM RTC alarm register Undefined at reset

RTC_PREN Prescaler enable register Always set PREN = 1 for 1 Hz ticks

Table 18-2. RTC System State Transition Events (Cont’d)

At This Event: Execute This Sequence:

ADSP-BF537 Blackfin Processor Hardware Reference 18-21

Real-Time Clock

RTC_STAT Register

RTC_ICTL Register

Figure 18-4. RTC Status Register

Figure 18-5. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0-23)

Day Counter[14:0]
(0-32767)

Seconds[5:0]
(0-59)

Minutes[5:0]
(0-59)

Hours[3:0]
(0-23)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 0300

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 X X X X X X

Stopwatch Interrupt
Enable

Alarm Interrupt Enable
(Hour, Minute, Second)

Seconds (1Hz) Interrupt
Enable

Minutes Interrupt
Enable

Write Complete
Interrupt Enable

Day Alarm Interrupt Enable
(Day, Hour, Minute, Second)

24 Hours Interrupt Enable

Hours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x00XX

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 0304

RTC Register Definitions

18-22 ADSP-BF537 Blackfin Processor Hardware Reference

RTC_ISTAT Register

RTC_SWCNT Register

Figure 18-6. RTC Interrupt Status Register

Figure 18-7. RTC Stopwatch Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Hours Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Writes (if any) not yet

complete
1 - All pending writes

complete

Write Pending
Status (RO)
0 - No writes pending
1 - At least one write

pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14

0xFFC0 0308

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Stopwatch Count[15:0]
(0 to 65,535)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 030C

ADSP-BF537 Blackfin Processor Hardware Reference 18-23

Real-Time Clock

RTC_ALARM Register

RTC_PREN Register

Figure 18-8. RTC Alarm Register

Figure 18-9. Prescaler Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Hours[4]
(0 to 23)

Day[14:0]
(0 to 32767)

Seconds[5:0]
(0 to 59)

Minutes[5:0]
(0 to 59)

Hours[3:0]
(0 to 23)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 0310

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PREN (Prescaler Enable)

Prescaler Enable Register (RTC_PREN)

Reset = Undefined0xFFC0 0314

Programming Examples

18-24 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Examples
The following RTC code examples show how to enable the RTC pres-
caler, how to set up a stopwatch event to take the RTC out of deep sleep
mode, and how to use the RTC alarm to exit hibernate state. Each of these
code examples assumes that the appropriate header file is included in the
source code (that is, #include <defBF537.h> for ADSP-BF537 projects).

Enable RTC Prescaler
Listing 18-1 properly enables the prescaler and clears any pending
interrupts.

Listing 18-1. Enabling the RTC Prescaler

RTC_Initialization:

P0.H = HI(RTC_PREN);

P0.L = LO(RTC_PREN);

R0=PREN(Z); /* enable pre-scalar for 1 Hz ticks */

W[P0] = R0.L;

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC;

RTS;

ADSP-BF537 Blackfin Processor Hardware Reference 18-25

Real-Time Clock

RTC Stopwatch For Exiting Deep Sleep Mode
Listing 18-2 sets up the RTC to utilize the stopwatch feature to come out
of deep sleep mode. This code assumes that the _RTC_Interrupt is prop-
erly registered as the ISR for the real-time clock event, the RTC interrupt
is enabled in both IMASK and SIC_IMASK, and that the RTC prescaler has
already been enabled properly.

Listing 18-2. RTC Stopwatch Interrupt to Exit Deep Sleep

/* RTC Wake-Up Interrupt To Be Used With Deep Sleep Code */

_RTC_Interrupt:

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITCLR (R0, BITPOS(BYPASS));

W[P0] = R0; /* BYPASS Set By Default, Must Clear It */

IDLE; /* Must go to IDLE for PLL changes to be effected */

R0 = 0x807F(Z);

P0.H = HI(RTC_ISTAT);

P0.L = LO(RTC_ISTAT);

W[P0] = R7; /* clear pending RTC IRQs */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC_IRQ: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC_IRQ;

RTI;

Programming Examples

18-26 ADSP-BF537 Blackfin Processor Hardware Reference

Deep_Sleep_Code:

P0.H = HI(RTC_SWCNT);

P0.L = LO(RTC_SWCNT);

R1 = 0x0010(Z); /* set stop-watch to 16 seconds */

W[P0] = R1.L; /* will produce ~15 second delay */

P0.L = LO(RTC_ICTL);

R1 = STOPWATCH(Z);

W[P0] = R1.L; /* enable Stop-Watch interrupt */

P0.L = LO(RTC_ISTAT);

R1 = 0x807F(Z);

W[P0] = R1.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z); /* mask for WRITE-COMPLETE bit */

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct stop-watch count and interrupts

*/

P0.H = HI(PLL_CTL);

P0.L = LO(PLL_CTL);

R0 = W[P0](Z);

BITSET (R0, BITPOS(PDWN)); /* set PDWN To Go To Deep Sleep */

W[P0] = R0.L; /* Issue Command for Deep Sleep */

CLI R0; /* Perform PLL Programming Sequence */

IDLE;

STI R0; /* In Deep Sleep When Idle Exits */

RTS;

ADSP-BF537 Blackfin Processor Hardware Reference 18-27

Real-Time Clock

RTC Alarm to Come Out of Hibernate State
Listing 18-3 sets up the RTC to utilize the alarm feature to come out of
hibernate state. This code assumes that the prescaler has already been
properly enabled.

Listing 18-3. Setting RTC Alarm to Exit Hibernate State

Hibernate_Code:

P0.H = HI(RTC_ALARM);

P0.L = LO(RTC_ALARM);

R0 = 0x0010(Z); /* set alarm to 16 seconds from now */

W[P0] = R0.L;

P0.L = LO(RTC_STAT);

R0 = 0; /* Clear RTC Status to Start Counting at 0 */

W[P0] = R0.L;

P0.L = LO(RTC_ICTL);

R0 = ALARM(Z);

W[P0] = R0.L; /* enable Alarm interrupt */

P0.L = LO(RTC_ISTAT);

R0 = 0x807F(Z);

W[P0] = R0.L; /* clear any pending RTC interrupts */

R0 = WRITE_COMPLETE(Z);

Poll_WC1: R1 = W[P0](Z);

R1 = R1 & R0; /* wait for Write Complete */

CC = AZ;

IF CC JUMP Poll_WC1;

/* RTC now running with correct RTC status */

GoToHibernate:

Programming Examples

18-28 ADSP-BF537 Blackfin Processor Hardware Reference

P0.H = HI(VR_CTL);

 P0.L = LO(VR_CTL);

 R0 = W[P0](Z);

 BITCLR(R0, 0); /* Clear FREQ (bits 0 and 1) to */

 BITCLR(R0, 1); /* go to Hibernate State */

 BITSET(R0, BITPOS(WAKE)); /* Enable RTC Wakeup */

W[P0] = R0.L;

CLI R0; /* Use PLL programming sequence to */

IDLE; /* make VR_CTL changes take effect */

RTS; /* Should Never Execute This */

ADSP-BF537 Blackfin Processor Hardware Reference 19-1

19 SYSTEM RESET AND
BOOTING

This chapter describes system resets and powerup, reset registers, and the
booting process.

This chapter contains:

• “Overview” on page 19-1

• “Reset and Powerup” on page 19-3

• “Booting Process” on page 19-12

• “Specific Blackfin Boot Modes” on page 19-33

• “Blackfin Loader File Viewer” on page 19-58

Overview
When the RESET input signal releases, the processor starts fetching and
executing instructions from either off-chip asynchronous memory or from
the on-chip boot ROM.

The internal boot ROM includes a small boot kernel that loads applica-
tion data from an external memory or host device. The application data is
expected to be available in a well-defined format, called the boot stream. A
boot stream consists of multiple blocks of data as well as special com-
mands that instruct the boot kernel on how to initialize on-chip L1 SRAM
as well as off-chip volatile memories.

Overview

19-2 ADSP-BF537 Blackfin Processor Hardware Reference

The boot kernel processes the boot stream block by block until it is
instructed by a special command to terminate the procedure and to jump
to the processor’s reset vector at 0xFFA0 0000 in on-chip L1 memory. This
process is called “booting.”

The processor features three dedicated input pins BMODE[2:0] that instruct
the processor on how to behave after reset. If all three pins are low when
RESET releases, the processor bypasses the boot ROM and starts code exe-
cution directly at address 0x2000 0000 in off-chip memory bank 0. Then
a 16-bit memory device must be connected to the AMS0 strobe. Otherwise
program execution starts at 0xEF00 0000, which is populated by the boot
ROM. The boot kernel further evaluates the BMODE pins and performs
booting from respective sources. Table 19-1 shows the truth table of the
BMODE pins.

Table 19-1. Reset Vector Addresses

Boot Source BMODE[2:0] Execution Start
Address

Bypass boot ROM; execute from 16-bit external
memory connected to ASYNC Bank 0

000 0x2000 0000

Use boot ROM to boot from 8-bit or 16-bit memory
(PROM/flash)

001 0xEF00 0000

Reserved 010 0xEF00 0000

Boots from 8-, 16-, or 24-bit addressable SPI mem-
ory in SPI master mode with support for Atmel
AT45DB041B, AT45DB081B, and AT45DB161B
DataFlash® devices

011 0xEF00 0000

Boot from SPI host (slave mode) 100 0xEF00 0000

Boot from serial TWI memory (EEPROM/flash) 101 0xEF00 0000

Boot from TWI host (slave mode) 110 0xEF00 0000

Boot from UART host (slave mode) 111 0xEF00 0000

ADSP-BF537 Blackfin Processor Hardware Reference 19-3

System Reset and Booting

Reset and Powerup
Table 19-2 describes the five types of resets. Note all resets, except system
software, reset the core.

Table 19-2. Resets

Reset Source Result

Hardware reset The RESET pin causes a hard-
ware reset.

Resets both the core and the peripherals,
including the Dynamic Power Management
Controller (DPMC).
Resets the no boot on software reset bit in
SYSCR. For more information, see “System
Reset Configuration Register (SYSCR)” on
page 19-5.

System software
reset

Writing b#111 to bits [2:0]
in the system MMR SWRST
at address 0xFFC0 0100
causes a system software
reset.

Resets only the peripherals, excluding the RTC
(Real-Time Clock) block and most of the
DPMC. The system software reset clears bit 4
(no boot on software reset) in the SYSCR regis-
ter. Does not reset the core. Does not initiate a
boot sequence.

Watchdog timer
reset

Programming the watchdog
timer appropriately causes a
watchdog timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The software reset register (SWRST) can be
read to determine whether the reset source was
the watchdog timer.

Reset and Powerup

19-4 ADSP-BF537 Blackfin Processor Hardware Reference

Hardware Reset
The processor chip reset is an asynchronous reset event. The RESET input
pin must be deasserted to perform a hardware reset. For more informa-
tion, see the product data sheet.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the processor
ensures that all asynchronous peripherals have recognized and completed a
reset. After the reset, the processor transitions into the boot mode
sequence configured by the BMODE state.

The BMODE pins are dedicated mode control pins. No other functions are
shared with these pins, and they may be permanently strapped by tying
them directly to either VDD or VSS. The pins and the corresponding bits
in SYSCR configure the Boot mode that is employed after hardware reset or
System Software reset. See Blackfin Processor Programming Reference for
further information.

Core double-
fault reset

If the core enters a dou-
ble-fault state, and the Core
Double Fault Reset Enable
bit (DOUBLE_FAULT) is
set in the SWRST register,
then a software reset occurs.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC.
The SWRST register can be read to determine
whether the reset source was core double fault.

Core-Only soft-
ware reset

This reset is caused by exe-
cuting a RAISE1 instruction
or by setting the software
reset (SYSRST) bit in the
core debug control register
(DBGCTL) via emulation
software through the JTAG
port. The DBGCTL register
is not visible to the memory
map.

Resets only the core.
The peripherals do not recognize this reset.

Table 19-2. Resets (Cont’d)

Reset Source Result

ADSP-BF537 Blackfin Processor Hardware Reference 19-5

System Reset and Booting

System Reset Configuration Register (SYSCR)
The values sensed from the BMODE[2:0] pins are latched into the system
reset configuration register (SYSCR) when the RESET pin is deasserted. The
values are made available for software access and modification after the
hardware reset sequence. Software can modify only the no boot on soft-
ware reset bit in this register. Setting this bit has effect only in the case of
a core-only software reset. All other types of reset clear this bit when
issued. See Table 19-2.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 19-1).

Figure 19-1. System Reset Configuration Register

X0000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE[2:0] (Boot Mode) - RO
 000 - Bypass boot ROM,

execute from 16-bit
external memory

 001 - Use Boot ROM to load
from 8-bit or 16-bit flash

 010 - Reserved
 011 - Boot from serial SPI

memory
 100 - Boot from SPI host

(slave mode)
 101 - Boot from serial TWI

memory
 110 - Boot from TWI host

(slave mode)
 111 - Boot from UART host

(slave mode)

0 0 0 0 0 0 0 0 X X Reset = dependent on pin
values

System Reset Configuration Register (SYSCR)
X - state is initialized from mode pins during hardware reset

NOBOOT (No Boot on Software
Reset)
 0 - Use BMODE to determine

boot source
 1 - Start executing from the

beginning of on-chip L1
memory or the beginning of
ASYNC Bank 0 when
BMODE[2:0] = b#000

0xFFC0 0104

Reset and Powerup

19-6 ADSP-BF537 Blackfin Processor Hardware Reference

Software Resets and Watchdog Timer
A software reset may be initiated in three ways:

• By the watchdog timer, if appropriately configured

• By setting the system software reset field in the software reset regis-
ter (see Figure 19-2)

• By the RAISE 1 instruction

The watchdog timer resets both the core and the peripherals. A system
software reset results in a reset of the peripherals without resetting the core
and without initiating a booting sequence.

 The system software reset must be performed while executing from
level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the sys-
tem software reset sequence has been read into the cache.

After either the watchdog or system software reset is initiated, the proces-
sor ensures that all asynchronous peripherals have recognized and
completed a reset.

For a reset generated by the watchdog timer, the processors transitions
into the boot mode sequence. The boot mode is configured by the state of
the BMODE and the no boot on software reset control bits.

If the no boot on software reset bit in SYSCR is cleared, the reset sequence
is determined by the BMODE control bits.

Software Reset Register (SWRST)
A software reset can be initiated by setting bits [2:0] in the system soft-
ware reset field in the SWRST (software reset) register (Figure 19-2). Bit 3
can be read to determine whether the reset source was core double fault. A
core double fault reset resets both the core and the peripherals, excluding

ADSP-BF537 Blackfin Processor Hardware Reference 19-7

System Reset and Booting

the RTC block and most of the DPMC. Bit 15 indicates whether a soft-
ware reset has occurred since the last time SWRST was read. Bit 14 and bit
13, respectively, indicate whether the software watchdog timer or a core
double fault has generated a software reset. Bits [15:13] are read-only and
cleared when the register is read. Bits [3:0] are read/write.

When the BMODE pins are not set to b#000 and the no boot on software
reset bit in SYSCR is set, the processor starts executing from the start of
on-chip L1 memory. In this configuration, the core begins fetching
instructions from the beginning of on-chip L1 memory.

When the BMODE pins are set to b#000, the core begins fetching instruc-
tions from address 0x2000 0000 (the beginning of async bank 0).

Figure 19-2. Software Reset Register

0

Software Reset Register (SWRST)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

SYSTEM_RESET (System
Software Reset)
 0x0 – 0x6 - No SW reset
 0x7 - Triggers SW reset

RESET_SOFTWARE
(Software Reset
Status - RO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

RESET_DOUBLE (Core
Double Fault Reset) - RO
 0 - SW reset not generated
by double fault
 1 - SW reset generated by
double fault

RESET_WDOG (Software
Watchdog Timer Source)
 - RO
 0 - SW reset not generated by

watchdog
 1 - SW reset generated by

watchdog

DOUBLE_FAULT (Core
Double Fault Reset
Enable)

0xFFC0 0100

 0 - No SW reset since last
SWRST read

 1 - SW reset occurred since
last SWRST read

 0 - No reset caused by
 Core Double Fault
 1 - Reset generated upon
 Core Double Fault

Reset and Powerup

19-8 ADSP-BF537 Blackfin Processor Hardware Reference

Core-Only Software Reset
A core-only software reset is initiated by executing the RAISE 1 instruction
or by setting the software reset (SYSRST) bit in the core debug control reg-
ister (DBGCTL) via emulation software through the JTAG port. (DBGCTL is
not visible to the memory map.)

A core-only software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Core and System Reset
To perform a system and core reset, use the code sequence shown in
Listing 19-1. As described in the code comments in the listing, the system
soft reset takes five system clock cycles to complete, so a delay loop is
needed. This code must reside in L1 memory for the system soft reset to
work properly.

Listing 19-1. Core and System Reset

/* Issue system soft reset */

P0.L = LO(SWRST) ;

P0.H = HI(SWRST) ;

R0.L = 0x0007 ;

W[P0] = R0 ;

SSYNC ;

/* *****************/

Wait for system reset to complete (needs to be 5 SCLKs). Assuming

a worst case CCLK:SCLK ratio (15:1), use 5*15 = 75 as the loop

count./

/***************** */

ADSP-BF537 Blackfin Processor Hardware Reference 19-9

System Reset and Booting

P1 = 75 ;

LSETUP(start, end) LCO = P1 ;

start:

end:

NOP ;

/* Clear system soft reset */

R0.L = 0x0000 ;

W[P0] = R0 ;

SSYNC ;

/* Core reset - forces reboot */

RAISE 1 ;

Reset Vector
When reset releases in no-boot mode (BMODE=b#000), the processor starts
fetching and executing instructions from off-chip memory at address
0x2000 0000. In all other boot modes the processor starts program execu-
tion at address 0xEF00 0000 which is populated by the on-chip boot
ROM.

On a hardware reset, the boot kernel initializes the EVT1 register to 0xFFA0
0000. When the booting process completes, the boot kernel jumps to the
location provided by the EVT1 vector register. If bit 4 of the SYSCR register
is set, the EVT1 register is not modified by the boot kernel on software
resets. Therefore, programs can control the reset vector for software resets
through the EVT1 register.

Neither hardware nor the kernel initializes the EVT1 register in no-boot
mode. Programs should initialize EVT1 before issuing software resets in
no-boot environments.

Reset and Powerup

19-10 ADSP-BF537 Blackfin Processor Hardware Reference

Servicing Reset Interrupts
The processor services a reset event just like other interrupts. The reset
interrupt has top-priority. Only emulation events have higher priority.
When it comes out of reset, the processor is in supervisor mode and has
full access to all system resources. To enter the user mode, the reset service
routine must initialize the RETI register and terminate by an RTI
instruction.

The code examples in Listing 19-2 and Listing 19-3 show the least
instructions required to handle the reset event. See Blackfin Processor Pro-
gramming Reference for details on user and supervisor modes.

Systems that do not work in an OS environment may not enter user
mode. Typically, the interrupt level needs to be degraded down to IVG15.
The following listing shows how this is accomplished.

Listing 19-2. Exiting Reset to User Mode

_reset:
P1.L = LO(_usercode) ; /* Point to start of user code */

P1.H = HI(_usercode) ;
RETI = P1 ; /* Load address of _start into RETI */

RTI ; /* Exit reset priority */

_reset.end:

_usercode: /* Place user code here */

...

Listing 19-3. Exiting Reset by Staying in Supervisor Mode

_reset:
P0.L = LO(EVT15) ; /* Point to IVG15 in Event Vector Table */
P0.H = HI(EVT15) ;
P1.L = LO(_isr_IVG15) ; /* Point to start of IVG15 code */
P1.H = HI(_isr_IVG15) ;
[P0] = P1 ; /* Initialize interrupt vector EVT15 */

ADSP-BF537 Blackfin Processor Hardware Reference 19-11

System Reset and Booting

P0.L = LO(IMASK) ; /* read-modify-write IMASK register */
R0 = [P0] ; /* to enable IVG15 interrupts */
R1 = EVT_IVG15 (Z);
R0 = R0 | R1 ; /* set IVG15 bit */
[P0] = R0 ; /* write back to IMASK */

RAISE 15 ; /* generate IVG15 interrupt request */
/* IVG 15 is not served until reset

handler returns */

P0.L = LO(_usercode) ;
P0.H = HI(_usercode) ;
RETI = P0 ; /* RETI loaded with return address */
RTI ; /* Return from Reset Event */

_reset.end:
_usercode: /* Wait in user mode till IVG15 */

JUMP _usercode; /* interrupt is serviced */

_isr_IVG15: /* IVG15 vectors here due to EVT15 */

...

The reset handler most likely performs additional tasks not shown in the
examples above. Stack pointers and EVTx registers are initialized here.

 As the boot kernel is running at reset interrupt priority, NMI
events, hardware errors and exceptions are not served at boot time.
As soon as the reset service routine returns, the processor may ser-
vice the events that occurred during the boot sequence. It is
recommended that programs install NMI, hardware error and
exception handlers before leaving the reset service routine. This
includes proper initialization of the respective event vector regis-
ters, EVTx.

Booting Process

19-12 ADSP-BF537 Blackfin Processor Hardware Reference

Booting Process
After reset, the boot kernel residing in the on-chip boot ROM starts pro-
cessing the boot stream. The boot stream is either read from memory or
received from a host processor. A boot stream represents the application
data and is formatted in a special manner. The application data is seg-
mented into multiple blocks of data. Each block begins with a block
header. The header contains control words such as the destination address
and data length information.

As Figure 19-3 illustrates, the CCES or VisualDSP++ tools suite features a
loader utility (elfloader.exe). The loader utility parses the input execut-
able file (.dxe), segments the application data into multiple blocks, and
creates the header information for each block. The output is stored in a
loader file (.ldr). The loader file contains the boot stream and is made
available to hardware by programming or burning it into non-volatile
external memory. Refer to Loader and Utilities Manual for information
about the loader.

Figure 19-3. Project Flow for a Standalone System

B

ADSP-BF534/ADSP-BF536/
ADSP-BF537
PROCESSOR

BOOTING
UPON RESET

EXTERNAL
MEMORY

SOURCE
FILES

ASSEMBLER
AND/OR

COMPILER
LINKER LOADER

.ASM/.C/.CPP .DOJ(s) .DXE(s)

TARGET SYSTEM

.LDR

ADSP-BF537 Blackfin Processor Hardware Reference 19-13

System Reset and Booting

Figure 19-4 shows the boot stream contained in a flash memory device,
which could be of parallel or serial type. In host boot scenarios the
non-volatile memory more likely connects to the host processor rather
than directly to the Blackfin processor. After reset, the headers are read
and parsed by the on-chip boot ROM, and processed block by block. Pay-
load data is copied to destination addresses, either in on-chip L1 memory
or off-chip SRAM/SDRAM.

 Booting into scratchpad memory (0xFFB0 0000 - 0xFFB0 0FFF) is
not supported. If booting to scratchpad memory is attempted, the
processor hangs within the on-chip boot ROM. Similarly, booting
into the upper 16 bytes of L1 data bank A (0xFF80 7FF0 - 0XFF80
7FFF) is not supported. These memory locations are used by the
boot kernel for intermediate storage of block header information
and cannot be initialized at boot time. After booting, this memory
range can be used by the application during runtime.

The entire source code of the boot ROM is shipped with the CCES or
VisualDSP++ tools installation. Refer to the source code for any addi-
tional questions not covered in this manual. Note that minor maintenance
work is done to the content of the boot ROM when silicon is updated.

Figure 19-4. Booting Process

10-BYTE HEADER FOR BLOCK 1

BLOCK 1

10-BYTE HEADER FOR BLOCK 2

BLOCK 2

10-BYTE HEADER FOR BLOCK 3

BLOCK n

. . .

10-BYTE HEADER FOR BLOCK n

BLOCK 3

FLASH/PROM

APPLICATION
CODE/DATA

BLOCK 2

SDRAM

ADSP-BF534/BF536/BF537
PROCESSOR

ON-CHIP
BOOT ROM

BLOCK 1
BLOCK 3

LI MEMORY

0xEF00 0000

.LDR FILE

B

Booting Process

19-14 ADSP-BF537 Blackfin Processor Hardware Reference

Header Information
As shown in Figure 19-5, each 10-byte header within the loader file con-
sists of a 4-byte ADDRESS field, a 4-byte COUNT field, and a 2-byte FLAG field.

This 10-byte header, which precedes each block in the loader file, contains
the following information used by the on-chip boot ROM during the boot
process:

• ADDRESS (4 bytes)—the target address, to which the block boots
to within memory

• COUNT (4 bytes)—the number of data bytes in the block. The
COUNT field can be any 32-bit value including zero.

• FLAG (2 bytes)—block type and control commands

Figure 19-5. 10-Byte Header Contents

10-BYTE HEADER FOR BLOCK 1

32-BIT ADDRESS

32-BIT COUNT

BLOCK 1

10-BYTE HEADER FOR BLOCK 2

BLOCK 2

10-BYTE HEADER FOR BLOCK 3

BLOCK 3

. . .

10-BYTE HEADER FOR BLOCK n

16-BIT FLAG

ADSP-BF537 Blackfin Processor Hardware Reference 19-15

System Reset and Booting

Figure 19-6 shows the individual flag word bits.

Additional information for the FLAG word bits includes:

• ZEROFILL

Indicates that the block is a buffer with zeros. Blocks that are ZERO-
FILL have no payload data. They simply instruct the on-chip boot
ROM to zero COUNT bytes starting from ADDRESS in memory. This
yields a condensed loader file for applications with large zero buf-
fers. It is also very helpful for ANSI-C compliant projects which
often require large buffers to be zeroed during boot time.

• RESVECT

This bit has no function on ADSP-BF534, ADSP-BF536, and
ADSP-BF537 processors. For compatibility with Blackfin deriva-
tives, it is always set to 1, indicating a reset vector address of
0xFFA0 0000.

Figure 19-6. Individual Control Bits of the Flag Word Register

615 1013

Flag Word

14 12 11 9 8 7 5 4 3 2 1 0

ZEROFILL
 0 - Non-ZEROFILL block
 1 - ZEROFILL block

FINAL

INIT
 0 - Non-INIT block
 1 - INIT block
IGNORE
 0 - Non-IGNORE block
 1 - IGNORE block

RESVECT
 0 - Non-last block
 1 - Last block

 1 - Always 1

PFLAG[3:0]
 GPIO number used for
HWAIT signal

PPORT[1:0]
Port of HWAIT signal
00 - HWAIT disabled
01 - HWAIT on Port F
10 - HWAIT on Port G
11 - HWAIT on Port H

Booting Process

19-16 ADSP-BF537 Blackfin Processor Hardware Reference

After a hardware reset, the reset vector (stored in the EVT1 register)
is set to 0xFFA0 0000. If bit 4 (no boot on software reset) of the
SYSCR register is set and a software reset is issued, the processor vec-
tors to the address set in the EVT1 register. This reset vector can be
reconfigure to another address during runtime and hence, an appli-
cation can vector to an address other than 0xFFA0 0000 after a
software reset. If the reset vector is modified during runtime,
ensure that the reset vector address within the EVT1 register is a
valid instruction address. This address can be internal instruction
memory, SDRAM memory, or asynchronous memory. The EVT1
register does not have a default value. The value within this register
is retained after a reset is issued. When BMODE = 000, the on-chip
boot ROM is bypassed and the user’s application must initialize
the EVT1 register before issuing a software reset.

• INIT

An initialization block (INIT block) is a block of code that exe-
cutes before the actual application code boots over it. When the
on-chip boot ROM detects an INIT block, it boots the block into
internal memory and makes a CALL to it (initialization code must
have an RTS at the end). After the initialization code is executed, it
is typically overwritten with application code. See Figure 19-8. In
the special case where the COUNT value of an INIT block is 0, the
10-byte header behaves like a command that instructs the boot ker-
nel to simply issue the CALL command to the ADDRESS location.

• IGNORE

Indicates a block that is not booted into memory. It instructs the
boot ROM to skip COUNT bytes of the boot stream. In master boot
modes, the boot ROM can just modify its source address pointer.
In slave boot modes, the boot ROM actively boots in the payload
data to a single location in memory. This essentially trashes the

ADSP-BF537 Blackfin Processor Hardware Reference 19-17

System Reset and Booting

block. The current CCES or VisualDSP++ tools support IGNORE
blocks for global headers only (currently the 4-byte DXE count, see
“Multi-Application (Multi-DXE) Management” on page 19-26).

• PFLAG

This field is used in all boot modes. It tells the boot ROM which
GPIO pin is used for the HWAIT feedback strobe. If PPORT is zero,
the PFLAG field is ignored. For more information, see “Host Wait
Feedback Strobe (HWAIT)” on page 19-19.

• PPORT

This field tells the boot ROM whether the HWAIT signal should be
activated and on which port it should appear. If enabled, the PFLAG
field reports the respective GPIO number. For more information,
see “Host Wait Feedback Strobe (HWAIT)” on page 19-19.

• FINAL

Indicates boot process is complete after this block. After processing
a FINAL block, the on-chip boot ROM jumps to the reset vector
address stored in the EVT1 register. The EVT1 register is set to the
start of L1 instruction memory upon a hardware reset. The proces-
sor is still in supervisor mode and in the lowest priority interrupt
(IVG15) when it jumps to L1 memory for code execution.

For every boot block, the individual flags are processed by the algorithm
shown in Figure 19-7. The IGNORE flag requires different processing for
slave versus master boot modes. Where master modes can simply incre-
ment their source address pointer, slave modes actively consume and
“trash” the payload data.

The PFLAG and PPORT bit fields are processed only once while processing
the header of the first boot block. If the setting changes for later blocks,
that change is ignored.

Booting Process

19-18 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 19-7. Boot Block Flag Processing

START

READ NEXT HEADER
(SEE NOTE 1)

FIRST BLOCK
YES DETERMINE AND

ASSERT HWAIT

PERFORM DMA
(SEE NOTE 1 AND

NOTE 2)

1 (MASTER
MODE)

INIT
1

DONE

DEASSERT HWAIT,
JUMP TO EVT1 VECTOR

NO

ZEROFILL
1 ZERO-FILL MDMA

(SEE NOTE 2)

0

IGNORE

1 (SLAVE
 MODE)

OVERWRITE DESTINATION
 POINTER AND SET

DMA MODIFIER TO ZERO

0

FINAL

1

0

CALL TARGET ADDRESS

UPDATE SOURCE POINTER

NOTE 1: TEMPORARILY, DEASSERT HWAIT TO REQUEST MORE DATA FROM HOST DEVICE

NOTE 2: DMA AND MDMA BLOCKS SUPPORT BYTE COUNTS FROM 0 TO 232-1 BY
PERFORMING MULTIPLE DMA SEQUENCES AND GUARDING AGAINST ZERO

0

ADSP-BF537 Blackfin Processor Hardware Reference 19-19

System Reset and Booting

Host Wait Feedback Strobe (HWAIT)

The HWAIT feedback strobe is a handshake signal that is used to hold off
the host device from sending further data while the boot kernel is busy.
This is especially critical when processing initialization code or zero-filling
memory where the boot kernel may not be ready for additional data. It is
used primarily for slave boot modes, such as with the UART and SPI slave
modes, but is available to all boot modes.

The HWAIT strobe does not stick to a certain pin. Rather, any of the 48
GPIOs can be used for this purpose. The flag word of the first block in the
boot stream tells the boot kernel which GPIO to use. The 2-bit field
PPORT enables the HWAIT functionality and determines whether the HWAIT
strobe operates at port F, G, or H. See Figure 19-6 for the bit settings.

The 4-bit field PFLAG (also shown in Figure 19-6) then determines which
GPIO pin of the chosen port is used to handshake with the host. For
example, if PPORT=b#10 and PFLAG=b#0110 then HWAIT strobe is activated
on PG6.

For individual boot modes, certain GPIOs on port F cannot be used for
HWAIT functionality as they are used for other purposes. Table 19-3 shows
how the port function enable and muxing registers are programmed at
boot time.

To specify which GPIO is to be used as the HWAIT signal, use the -PFLAG
switch in the CCES or VisualDSP++ loader properties page. For example,
to use PG13 as HWAIT, in the additional options tab of the loader property
page write:

-pflag PG13

The switch -pflag takes as an argument PF#, PG#, or PH#, where # is the
number of the GPIO in the corresponding port, for example, PG10.

Booting Process

19-20 ADSP-BF537 Blackfin Processor Hardware Reference

The signal polarity of the HWAIT strobe is programmable by an external
pull-up resistor in the 10 k range. A pull-down resistor instructs the
HWAIT signal to be active high. In this case the host is permitted to send
data when HWAIT is low, but should pause while HWAIT is high. This is the
mode used in SPI slave booting on other Blackfin derivatives. Similarly,
active-low behavior is programmed by a pull-up resistor.

After reset, the boot kernel waits to receive the first 10-byte block header.
At this time the HWAIT pin is not yet actively driven. Instead, the resistor
pulls the signal to the inactive state, encouraging the host to send data.
After receiving the ten bytes, the boot kernel knows whether to activate
the HWAIT signal and which GPIO to use. If PPORT is not zero, the boot
kernel first senses the polarity on the respective GPIO pin. Then, it
enables the output driver and inverts the signal polarity to immediately
hold off the host. The signal is not released again until the boot kernel is
ready for further data, or when a receive DMA has been started. As soon as
the DMA completes, HWAIT becomes active again.

Table 19-3. Settings for Port Function Enable and Muxing
Registers

BMODE Boot Mode PORTF_FER at Boot Time PORT_MUX at
Boot Time

000 Bypass ROM, No-Boot – –

001 Parallel Flash on /AMS0 – –

010 Reserved PF1 –

011 SPI Memory PF11, PF12, PF13, PF14 –

100 SPI Host PF11, PF12, PF13, PF14 –

101 TWI Memory – –

110 TWI Host – –

111 UART Host PF0, PF1 –

ADSP-BF537 Blackfin Processor Hardware Reference 19-21

System Reset and Booting

This conservative behavior lets the host send data with high data rates
without knowing the structure of the boot stream. The most critical speed
path during the entire boot procedure is the time during when the kernel
received the 10th bytes and must still evaluate the block header before it
can drive HWAIT. For the highest data rate, the host is encouraged to per-
form these steps:

1. Send the first 10 bytes.

2. Wait until HWAIT goes active.

3. For every further byte, wait until HWAIT is inactive and then send
the next byte.

Final Initialization

After the successful download of the application into the bootable mem-
ory, and before jumping to the EVT1 vector address, the boot kernel does
some housekeeping work. Most of the used registers are changed back to
their default state, but some register values may differ for the individual
boot modes. These registers are reset to 0x0:

• SPI_CTL

• UART0_GCTL

• UART0_IER

• TWI_CONTROL

• MDMA_S0_CONFIG

• MDMA_D0_CONFIG

• MDMA_S1_CONFIG

• MDMA_D1_CONFIG

• DMA7_CONFIG

Booting Process

19-22 ADSP-BF537 Blackfin Processor Hardware Reference

• DMA8_CONFIG

• PORTF_FER

• PORT_MUX

Initialization Code
Initialization code (INIT code) allows the execution of a piece of code
before the actual application is booted into the processor. This code can
serve a number of purposes including initializing the SDRAM controller,
the SPI baud rate, or EBIU wait states for faster boot time.

The INIT code is added to the beginning of the loader file stream via the
elfloader -Init Init_Code.dxe command-line switch, where
Init_Code.dxe refers to the user-provided custom initialization code exe-
cutable, that is, from a separate project.

Figure 19-8 shows a boot stream example that performs these steps:

1. Boot INIT code into L1 memory.

2. Execute INIT code.

3. The INIT initializes the SDRAM controller and returns.

4. Overwrite INIT code with final application code.

5. Boot data/code into SDRAM.

6. Continue program execution with block n.

When the on-chip boot ROM detects a block with the INIT bit set, it first
boots it into Blackfin memory and then executes it, by issuing a CALL to its
target address. For this reason, every INIT code must be terminated by an
RTS instruction to ensure that the processor vectors back to the on-chip
boot ROM for the rest of the boot process.

ADSP-BF537 Blackfin Processor Hardware Reference 19-23

System Reset and Booting

 Programs must be sure to save all processor registers modified by
INIT code and to restore them before the INIT code returns. At a
minimum, it is recommended that every INIT code saves the
ASTAT, RETS, and the Rx and Px registers used in the INIT code.

Figure 19-8. Initialization Code Execution/Boot

Blackfin Processor

Header for Init Block

App.
Code/
Data

Init Block

Flash/PROM or SPI Device

A

L1 Memory
Init Block

SDRAM

0xEF00 0000

On-Chip Boot
ROM

........

Header for L1 Block

L1 Block

SDRAM Block

Header for SDRAM Block

Header for Block n

Block n

Flash/PROM or SPI Device

A

Init Block

........

 L1 Block

Blackfin Processor

Header for Init Block

Init Block

Header for L1 Block

L1 Block
Header for SDRAM Block

SDRAM Block

Header for Block n

Block n

SDRAM

SDRAM Block

App.
Code/
Data

On-Chip Boot
ROM

0xEF00 0000

After
Init Code
Execution

Before

L1 Memory

Booting Process

19-24 ADSP-BF537 Blackfin Processor Hardware Reference

The INIT code can perform push and pop operations through the
stack pointer SP. The boot kernel provides sufficient stack space in
scratchpad memory (0xFFB0 0000 – 0xFFB0 0FFF).

Listing 19-4 shows an example INIT code file that demonstrates the setup
of the SDRAM controller.

Listing 19-4. Example INIT Code (SDRAM Controller Setup)

#include <defBF537.h>

.section program;

/***/

[--SP] = ASTAT; // Save registers onto Stack

[--SP] = RETS;

[--SP] = (R7:0);

[--SP] = (P5:0);

/***/

/*******INIT Code Section*******************/

/*******SDRAM Setup************/

Setup_SDRAM:

P0.L = LO(EBIU_SDRRC);

P0.H = HI(EBIU_SDRRC); // SDRAM Refresh Rate Control Register

R0 = 0x074A(Z);

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDBCTL);

P0.H = HI(EBIU_SDBCTL); // SDRAM Memory Bank Control Register

R0 = EBCAW_8|EBSZ_16|EBE(Z); //This is just an example!

W[P0] = R0;

SSYNC;

P0.L = LO(EBIU_SDGCTL);

P0.H = HI(EBIU_SDGCTL); //SDRAM Memory Global Control Register

R0.H = HI(PSS|TWR_2|TRCD_3|TRP_3|TRAS_6|CL_3|SCTLE);

ADSP-BF537 Blackfin Processor Hardware Reference 19-25

System Reset and Booting

R0.L = LO(PSS|TWR_2|TRCD_3|TRP_3|TRAS_6|CL_3|SCTLE);

[P0] = R0;

SSYNC;

/***/

(P5:0) = [SP++]; // Restore registers from Stack

(R7:0) = [SP++];

RETS = [SP++];

ASTAT = [SP++];

/***/

RTS;

Typically, INIT code consists of a single section and is represented by a
single block within the boot stream. This block has, of course, the INIT bit
set. Nevertheless, an INIT block can also consist of multiple sections.
Then, multiple blocks represent the INIT code within the boot stream.
Only the last block has the INIT bit set. The elfloader utility ensures that
the last of these blocks vectors to the INIT code’s entry address. It
instructs the on-chip boot ROM to execute a CALL instruction to the given
ADDRESS.

Although INIT code .dxe files are built through their own CCES or Visu-
alDSP++ projects, they differ from standard projects. INIT codes provide
a callable sub-function only, and thus, they look more like a library than
an application. An INIT code is always a heading for the regular applica-
tion code. Consequently, regardless whether the INIT code consists of one
or multiple blocks, it is not terminated by a FINAL bit indicator, which
would cause the boot ROM to terminate the boot process.

Booting Process

19-26 ADSP-BF537 Blackfin Processor Hardware Reference

Multi-Application (Multi-DXE) Management
In addition to pre-boot initialization, the INIT code feature can also be
used for boot management. A loader file (.ldr) can store multiple applica-
tions if multiple executable (.dxe) files are listed on the elfloader
command line. The elfloader utility creates multiple boot streams with
the individual executable files appended one after the other with the INIT
code DXE (if any) located at the beginning (see Figure 19-9).

The Blackfin processor loader file (.ldr) structure can be used to deter-
mine the boundary between the individual boot streams stored in the
external memory, and hence, provides the ability to boot in a specific DXE
application.

Figure 19-9. Multi-DXE Loader File Contents

10-BYTE HEADER FOR BLOCK 1

BLOCK 1

10-BYTE HEADER FOR BLOCK 1

BLOCK 2

10-BYTE HEADER FOR BLOCK 2

BLOCK 2

10-BYTE HEADER FOR BLOCK 3

BLOCK 3

. . .

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR INIT CODE DXE

INIT CODE

4-BYTE COUNT FOR FIRST DXE

10-BYTE HEADER FOR COUNT

FIRST DXE APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR SECOND DXE

SECOND DXE APPLICATION

10-BYTE HEADER FOR COUNT

4-BYTE COUNT FOR THIRD DXE

THIRD DXE APPLICATION

. . .

FIRST
BOOT STREAM

SECOND
BOOT STREAM

THIRD
BOOT STREAM

FOURTH
BOOT STREAM

.

.

.

LOADER FILE

ADSP-BF537 Blackfin Processor Hardware Reference 19-27

System Reset and Booting

Each DXE application is represented by a complete boot stream in the .ldr
file. By definition, each boot stream is preceded by a special IGNORE
block. Currently, this IGNORE block contains a 4-byte pointer value,
which is the number of bytes contained within the DXE application includ-
ing headers. In other words, it is the offset to the next DXE application.

This relative Next DXE Pointer (NDP) guides to the start address of the
next boot stream. In the most likely case, when one boot stream appends
to the other contiguously, the NDP also represents the byte count of the
boot stream it is heading, with the exception of the first IGNORE block.
This is why the NDP is often called “DXE byte count” as in Figure 19-9.
Note that each IGNORE block is headed by a 10-byte header.

 Currently, the initial IGNORE block contains only 4 bytes of data
to store the NDP. In the future, the length of initial IGNORE
blocks may increase without notice.

With this NDP, the boot streams are structured like a chained list. The
user can essentially “jump” through whole DXE applications within the.ldr
file until the DXE application chosen to be booted in is reached.

User-Callable Boot ROM Functions

The boot ROM contains a set of functions that can be called at runtime
from the user code. The major purpose of these functions is to support
multi-DXE and second-stage loader scenarios.

Booting a Different Application

As discussed in “Multi-Application (Multi-DXE) Management” on
page 19-26, Blackfin hardware must often execute different applications.
In slave boot modes the host device may be required to pull the processor’s
RESET pin and to provide new application data through the interface
chosen by the BMODE pins. In the three master modes that boot from flash,
SPI or TWI memory, this is not possible. Therefore, the on-chip boot
ROM provides special support for these three boot modes.

Booting Process

19-28 ADSP-BF537 Blackfin Processor Hardware Reference

When a different application (.dxe) needs to be booted into a running
Blackfin processor, it should be booted into the processor’s internal mem-
ory. Programs do not require simulating the built-in boot kernel—instead,
the original kernel can be reused for this purpose. The boot ROM pro-
vides the proper entry addresses for the three master boot modes. All three
functions expect register R7 to hold the start address where the boot
stream to be booted resides. For flash boot, the following sequence may
boot in a stream that is stored in asynchronous memory bank 1.

#include <defBF537.h> /* provides function entry addresses */

P0.H = HI(_BOOTROM_Boot_DXE_Flash) ;
P0.L = LO(_BOOTROM_Boot_DXE_Flash) ;
R7.H = HI(0x20100000) ; /* start of async bank 1 */
R7.L = LO(0x20100000) ;
JUMP (P0) ; /* jump to Boot ROM */

This example assumes that the AMS1 strobe has already been activated. The
function determines whether an 8-bit or a 16-bit memory device is con-
nected. Note that the boot stream may also reside in SRAM or SDRAM
memory.

The SPI master boot from flash version takes two more parameters: R6,
which holds the GPIO on port F that the SPI memory’s CS input connects
to, and R5 which holds the value that is written to the SPI_BAUD register
internally. Since the routine writes this value directly into the
PORTFIO_DIR register, other GPIOs on port F might be impacted.

The following example loads a boot stream from address 0 of an SPI mem-
ory connected to the PF4 pin:

#include <defBF537.h> /* provides function entry addresses */

P0.H = HI(_BOOTROM_Boot_DXE_SPI) ;

P0.L = LO(_BOOTROM_Boot_DXE_SPI) ;

R7 = 0 (Z) ; /* SPI address is zero */

R6 = PF4 (z) ; /* SPI's /CS connects to PF4 pin */

R5 = 0x0085(Z) ; /* SPI clock divider */

JUMP (P0) ; /* jump to Boot ROM */

ADSP-BF537 Blackfin Processor Hardware Reference 19-29

System Reset and Booting

Note the following additional points on master booting from flash.

• For standard booting after reset, connect the SPI memory’s chip
select to the PF10 pin. The example above assumes a second SPI
device is connected to the PF4 pin.

• The optimal SPI_BAUD value written to R5 depends on the SCLK
clock rate and the timing parameters of the particular SPI memory
device.

TWI master boot from flash takes three input parameters where R7 is
again the start address and R6 holds the 7-bit TWI chip select address. If
three address inputs of a TWI memory are named A2, A1 and A0, then R6
should provide binary b#1010.A2.A1.A0.x in its lower byte. In this case,
R5 holds the clock divider value that is written to the TWI_CLKDIV register
as shown in the example below.

#include <defBF537.h> /* provides function entry addresses */

P0.H = HI(_BOOTROM_Boot_DXE_TWI) ;
P0.L = LO(_BOOTROM_Boot_DXE_TWI) ;
R7 = 0 (Z) ; /* TWI address is zero */
R6 = 0xA2 (Z) ; /* A2=0, A1=0, A0=1 */
R5 = 0x0811 (Z) ; /* default clock divider */
JUMP (P0) ; /* jump to Boot ROM */

Determining Boot Stream Start Addresses

In some cases the individual boot streams reside at hard coded start
addresses, for example, at page boundaries of flash devices. If multiple
boot streams are generated by a single pass of the elfloader utility, they
can be appended one after another and the start addresses vary on build
variables.

Booting Process

19-30 ADSP-BF537 Blackfin Processor Hardware Reference

When the individual boot streams are chained by the Next DXE Pointer
(NDP) scheme as described in “Multi-Application (Multi-DXE) Manage-
ment” on page 19-26, a set of Boot ROM functions help to determine the
start addresses of the individual boot streams. Again, different functions
are available for the three master boot modes.

The user is responsible for initializing the stack and saving and restoring
all needed registers prior to calling these functions.

The following example boots the third boot stream contained in the flash
connected to AMS0. Register R7 simply requires the number of the boot
stream to be loaded. The parameter passed in R6 tells the function where
to find the chain of boot streams.

#include <defBF537.h> /* provides function entry addresses */

P0.H = HI(_BOOTROM_Get_DXE_Address_Flash) ;
P0.L = LO(_BOOTROM_Get_DXE_Address_Flash) ;
R7 = 2 (Z) ; /* DXE #3 - start counting from zero */
R6.H = HI(0x20000000) ; /* start of async bank 0 */
R6.L = LO(0x20000000) ;
CALL (P0) ; /* call to Boot ROM */

/* start address of DXE #3 is returned in R7 */
/* R7 is passed to the next function */

P0.H = HI(_BOOTROM_Boot_DXE_Flash) ;
P0.L = LO(_BOOTROM_Boot_DXE_Flash) ;
JUMP (P0) ; /* boot DXE #3 */

While parsing the chain the function tests for every individual boot stream
whether it is homed in an 8-bit or a 16-bit device. Therefore the chain
may cross different memory types heterogeneously. However, the data
width must not change within the same boot stream.

ADSP-BF537 Blackfin Processor Hardware Reference 19-31

System Reset and Booting

The Get_DXE_Address functions require a valid stack. These functions may
use the address range between 0xFF80 7FF0 and 0xFF80 7FFF for local data
storage.

 Care must be taken when the Get_DXE_Address functions are used
in a manner other than as shown. Because of space restrictions in
the boot ROM, these functions do not save and restore the registers
modified locally. All core registers, as well as DMA, GPIO, and
port control registers, may be subject to change by the routines.
Programs must initialize the stack and save all required registers to
the stack, as the stack pointer SP is returned correctly.

The _BOOTROM_Get_DXE_Address_SPI function requires the same three
parameters as its _BOOTROM_Boot_DXE_SPI counterpart. Register R7 holds
the number of the .dxe files whose address is to be returned by the
function.

 Enable the SPI signals in the PORTF_FER register before calling this
function.

R1 = PF13 | PF12 | PF11 (Z);
P1.L = LO(PORTF_FER);
P1.H = HI(PORTF_FER);
W[P1] = R1.L; /* function enable on SPI signals */

R5 = 0x0085 (Z); /* SPI baud rate */
R6 = 0xA; /* R6 holds the addressed memory device chip select */
R7 = 0x3; /* holds the DXE # to be booted in. */

[--SP] = R6;
[--SP] = R5;

p5.l = lo(_BOOTROM_GET_DXE_ADDRESS_SPI);
p5.h = hi(_BOOTROM_GET_DXE_ADDRESS_SPI);

call (p5); /* GET DXE ADDRESS */

/***
BOOT DXE
R7 holds the DXE address

Booting Process

19-32 ADSP-BF537 Blackfin Processor Hardware Reference

**/
R5 = [SP++];
R6 = [SP++];

p5.l = lo(_BOOTROM_BOOT_DXE_SPI);
p5.h = hi(_BOOTROM_BOOT_DXE_SPI);
jump (p5);

Also the _BOOTROM_Get_DXE_Address_TWI function expects the same
parameters as _BOOTROM_Boot_DXE_TWI. Additionally, pointer P2 should
point to a 32-bit scratch location.

_main:
/***
user must setup the stack pointer as well as save
and restore needed resources
**/
sp.h = 0xFFB0;
sp.l = 0x1000;
/***

GET DXE ADDRESS
R7 holds the DXE #

**/
R5 = 0x0811 (Z); /* TWI_CLKDIV value to produce 400 KHz SCL in a
~30% duty cycle */
R6 = 0xA0 (Z); /* R6 holds the addressed memory device */
R7 = 0x3; /* holds the DXE # to be booted in */

p2.h = 0xff90; /* P2 holds a 4 byte scratch location */
p2.l = 0x0000;

[--SP] = R6;
[--SP] = R5;

p5.l = lo(_BOOTROM_GET_DXE_ADDRESS_TWI);
p5.h = hi(_BOOTROM_GET_DXE_ADDRESS_TWI);
call (p5); /* GET DXE ADDRESS */

/***
BOOT DXE
R7 holds the DXE address

**/
R5 = [SP++];

ADSP-BF537 Blackfin Processor Hardware Reference 19-33

System Reset and Booting

R6 = [SP++];

p5.l = lo(_BOOTROM_BOOT_DXE_TWI);
p5.h = hi(_BOOTROM_BOOT_DXE_TWI);
jump (p5);
_main.END:

When the Get_DXE_Address function is used in an INIT code application,
care must be taken to not restore these registers before returning to the
boot ROM code:

• R0 for flash booting

• R3 for SPI master booting

• R4 for TWI master booting

For example, when booting from SPI, do not restore R3, when booting
from TWI do not restore R4, and so on.

When the processor returns to the on-chip boot ROM after the RTS
instruction, the on-chip boot ROM continues booting from the location
stored in the register for the corresponding boot mode (R0, R3, R4).

Specific Blackfin Boot Modes
The Blackfin processors feature seven different boot modes (and one
no-boot mode).

• “Bypass (No-Boot) Mode (BMODE = 000)” on page 19-34

• “8-Bit Flash/PROM Boot (BMODE = 001)” on page 19-35

• “16-Bit Flash/PROM Boot (BMODE = 001)” on page 19-39

• “SPI Slave Mode Boot From SPI Host (BMODE = 100)” on
page 19-47

Specific Blackfin Boot Modes

19-34 ADSP-BF537 Blackfin Processor Hardware Reference

• “SPI Master Mode Boot from SPI Memory (BMODE = 011)” on
page 19-42

• “TWI Master Boot Mode (BMODE = 101)” on page 19-52

• “TWI Slave Boot Mode (BMODE = 110)” on page 19-54

• “UART Slave Mode Boot via Master Host (BMODE = 111)” on
page 19-55

This section discusses the hardware connections required for each boot
mode and explains topics specific to the individual modes.

Bypass (No-Boot) Mode (BMODE = 000)
In bypass mode (BMODE = 000), the processor starts code execution from
address 0x2000 0000. This is the first address in the asynchronous mem-
ory bank 0. The memory device must therefore be connected to the AMS0
strobe. Code execution from 8-bit memory is not supported. Bypass mode
always requires 16-bit wide memory, which may be built from a single
16-bit device or two parallel 8-bit devices. Because the jump to the
0x2000 0000 address is the first action performed after powerup, the
device connected is most likely a non-volatile memory such as a flash or
EPROM device.

Figure 19-10 illustrates the pin-to-pin connections between the Blackfin
processor and a 16-bit flash/PROM.

In addition to the signal connection shown in Figure 19-10, a pull-up
resistor on the AMS0 chip select line may prevent any data corruption when
the Blackfin processor is in any undefined state, for example, during
powerup.

In bypass mode the content of the flash device is not formatted in any
way. Instead it holds plain application code, the loader utility needs to be
invoked in its “splitter mode” to create a proper file. Refer to Loader and

ADSP-BF537 Blackfin Processor Hardware Reference 19-35

System Reset and Booting

Utilities Manual for more information. Execution from external 16-bit
memory (BMODE = 000) is discussed in the application note Running Pro-
grams from Flash on ADSP-BF533 Blackfin Processors (EE-239).

8-Bit Flash/PROM Boot (BMODE = 001)
Booting from 8-bit flash requires the same BMODE settings as with 16-bit
flash. The two modes are differentiated by the first byte read in. While
booting from 8-bit flash/PROM sounds cheaper and may result in smaller
board space, there are also some disadvantages compared to the 16-bit
mode: 8-bit mode supports only up to 512k byte devices directly, whereas
16-bit mode supports up to 1M byte. Because code execution from 8-bit
external memory is not supported, in 8-bit mode the usage of the
flash/PROM device is most likely restricted to booting purposes. The boot
kernel assumes these conditions for the flash boot mode (BMODE = 001):

• Asynchronous Memory Bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• Bank 0 RDY is set to active high

Figure 19-10. Connections Between a Blackfin Processor and a 16-Bit
Flash/PROM

AMS(0)

ADSP-BF534/
BF536/BF537

AOE

AWE

ADDR[N+1:1]

DATA[15:0]

16-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[15:0]

Specific Blackfin Boot Modes

19-36 ADSP-BF537 Blackfin Processor Hardware Reference

• Bank 0 hold time (read/write deasserted to AOE deasserted) =
3 cycles

• Bank 0 read/write access times = 15 cycles

Since the EBIU on the Blackfin processor is 16 bits wide (hence no
ADDR[0]), an 8-bit flash/PROM occupies only the lower 8 bits of the data
bus (D[7:0]). Figure 19-11 illustrates the pin-to-pin connections between
the Blackfin processor and an 8-bit flash/PROM.

In some cases an additional pull-up resistor on the AMS0 strobe might pro-
tect the content of the flash device from being corrupted when the
processor is in undefined state (that is, during powerup).

Figure 19-11. Connections Between a Blackfin Processor and an 8-Bit
Flash/PROM

ADSP-BF534/
BF536/BF537

AOE

AWE

ADDR[N+1:1]

DATA[7:0]

8-BIT FLASH/PROM

AMS

OE

R/W or WR

ADDR[N:0]

DATA[7:0]

AMS0

ADSP-BF537 Blackfin Processor Hardware Reference 19-37

System Reset and Booting

Figure 19-12 shows a loader file created for an 8-bit flash/PROM in Intel
hex format. It is split into different sections to illustrate the loader file’s
structure:

1. Intel hex overhead

2. 10-Byte header for INIT code DXE count block, consisting of an
ADDRESS of 10-byte header, COUNT of 10-byte header, and
FLAG of 10-byte header

3. INIT code DXE count block

4. 10-Byte header for block 1 of INIT code DXE, consisting of an
ADDRESS of 10-byte header, count of 10-byte header, and FLAG
of 10-byte header

5. 10-Byte header for block 2 of INIT code DXE, consisting of an
ADDRESS of 10-byte header, count of 10-byte header, and FLAG
of 10-byte header

6. DXE1 count block

7. 10-Byte header for block 1 of DXE1, consisting of an ADDRESS
of 10-byte header, count of 10-byte header, and FLAG of 10-byte
header

8. Block 1 of DXE1

When this loader file is programmed into an 8-bit flash connected to asyn-
chronous bank 0 of the Blackfin processor, the contents of memory
(starting at location 0x2000 0000) viewed from the Blackfin processor look
like Figure 19-13.

Specific Blackfin Boot Modes

19-38 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 19-14 shows the start of a boot sequence for an 8-bit flash/PROM
boot.

 The processor performs an initial core byte read of location 0x0 of
the flash to determine the memory width of the flash. When boot-
ing from a FIFO in this mode, the first byte (which is part of the
first 10-byte header contained within the loader file) must be sent
twice—once for this initial core read and once for the actual boot
sequence.

Figure 19-12. Example Intel Hex Loader File

020000040000FA
:0A0000004080A0FF04000000120061
:04000A005C00000096
:20000E000000A0FF460000000200660167014005C00408E1180A48E1C0FF80E14A070097D7
:20002E00240008E1140A48E1C0FF80E101000097240008E1100A48E1C0FF00E18D9940E16F
:10004E009100009324008004000527012601100072
:0C005E000000A0FF020000000A00660184
:0A006A004080A0FF040000001200F7
:0400740088020000FE
:200078000000A0FF7E02000002808161113E08E1082048E1E0FF00E1D00040E1A0FF00927A
:2000980000E1D20040E1A0FF0092009200E1F60040E1A0FF009200E1F80040E1A0FF00925D
:2000B80000E1FA0040E1A0FF009200E1FC0040E1A0FF009200E1FE0040E1A0FF009200E1BA
:2000D800000140E1A0FF009200E1020140E1A0FF009200E1040140E1A0FF009200E106015F
:2000F80040E1A0FF009200E1080140E1A0FF009200E10A0140E1A0FF00924EE1B0FF0EE14F
:2001180000047E3208E1CC0148E1A0FF583E08E13C2048E1E0FF00E1C00040E1A0FF0092BF
:2001380080E1008040009F0011007B0108E1CC0148E1A0FF50002000FF2F002008E13007FE
:2001580048E1C0FF0095104A009708E1080748E1C0FF80E10000104A00923090709000200C
:200178001100002000200020002000200020002000200020002080E1000081E10100A2E0D0
:20019800062001900A90110801020850100008E1300748E1C0FF0095004A009708E10807FC
:2001B80048E1C0FF80E10000004A009230907090002008E1300748E1C0FF0095084A00979C
:2001D80008E1080748E1C0FF80E10000084A00923090709000200000000048E1C0FF08E131
:2001F800040A00E1B07B40E1B07B0093240048E1C0FF08E1080A00E1B07B40E1B07B0093FC
:20021800240048E1C0FF08E1000A0082796008560097240049E1272009E1040000600897F5
:20023800240049E1272009E1060080E1FFFF0897240010000000FFE3D2FF08E1300748E1F3
:20025800C0FF00E100000097240008E1340748E1C0FF00600097240008E1400748E1C0FFEC
:20027800009501E1000F08560097240049E1272009E105000C9923E1C0001C55FB61AA6027
:200298009A5494560A9B2400D243056000E3260008E1000748E1C0FF009521E10001485416
:2002B800010C0318AA60056021E100024854010C0318FA61056021E100044854010C03183D
:2002D8009A61056021E100084854010C0410050CD81BDF2F0D60DD2F0AE100004AE18003BB
:0802F800A2E00220000010004A
:00000001FF

:0A000000
:04000A00
:20000E00
:20002E00
:10004E00
:0C005E00
:0A006A00
:04007400
:20007800
:20009800
:2000B800
:2000D800
:2000F800
:20011800
:20013800
:20015800
:20017800
:20019800
:2001B800
:2001D800
:2001F800
:20021800
:20023800
:20025800
:20027800
:20029800
:2002B800
:2002D800
:0802F800
:00000001

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

3 4

5

6 7
8

1

D7
16F

7A
5D
BA
5F
4F
BF
FE
0C
D0
FC
9C
31
FC
F5
F3
EC
27
16
3D
BB

2020000040000FA

ADSP-BF537 Blackfin Processor Hardware Reference 19-39

System Reset and Booting

16-Bit Flash/PROM Boot (BMODE = 001)
The hardware connection for this boot scenario has already been shown in
Figure 19-10. It is one of the advantages of the 16-bit flash boot mode
that it requires the same hardware as the bypass mode. This not only

Figure 19-13. 8-Bit Flash/PROM Memory Contents Viewed From Black-
fin Memory Window

Figure 19-14. Timing Diagram for 8-Bit Flash Boot Sequence

 ADDRESS DATA DATA
 [15:8] [7:0]

0x20000000 xx 0x40
0x20000002 xx 0x00
0x20000004 xx 0x80
0x20000006 xx 0xFF
0x20000008 xx 0x04
0x2000000A xx 0x00
0x2000000C xx 0x00
0x2000000E xx 0x00
0x20000010 xx 0x12
0x20000012 xx 0x00
0x20000014 xx 0x5C
0x20000016 xx 0x00
0x20000018 xx 0x00
0x2000001A xx 0x00

ADDRESS

COUNT

FLAG

DXE
COUNT
BLOCK

 ADDRESS DATA DATA
 [15:8] [7:0]

0x2000001C xx 0x00
0x2000001E xx 0x00
0x20000020 xx 0xA0
0x20000022 xx 0xFF
0x20000024 xx 0x46
0x20000026 xx 0x00
0x20000028 xx 0x00
0x2000002A xx 0x00
0x2000002C xx 0x02
0x2000002E xx 0x00
0x20000030 xx 0x66
0x20000032 xx 0x01
0x20000034 xx 0x67
0x20000036 xx 0x01
....................

ADDRESS

COUNT

FLAG

AMS all

AOE all

ARE all

AWE all

A[19:1] all

D[15:0] all

0 1

0 1

0 1

0

0

1

0 0 0 0 0 0 0 0 0 0

1

1

1

00 02 02 03 04 05 06 07 08 09

00000012**0000000400FF00A000800040

ADDRESS COUNT FLAGREAD*

*iNITIAL CORE BYTE READ FROM LOCATION
 OxO OF THE FLASH TO DETERMINE 8-BIT
 FLASH (0X40) OR 16-BIT FLASH (0X60).
**NOTE THAT EACH DATA READ OF AN 8-BIT
 FLASH IS IN THE LEAST SIGNIFICANT BYTE
 OF THE 16-BIT BUS.

Specific Blackfin Boot Modes

19-40 ADSP-BF537 Blackfin Processor Hardware Reference

enables the user to support two booting methods on a given board by a
single jumper on the BMODE0 pin, but it also enables programming to exe-
cute slow subroutines directly out of the flash/PROM at runtime.

A loader file for a 16-bit flash/PROM will be exactly the same as the one
shown in Figure 19-12, except that the ADDRESS of the 10-byte header for
the DXE count blocks will be 0xFF80 0060 or 0xFF80 0020 instead of
0xFF80 0040 as in the case of an 8-bit flash/PROM. This causes the first
byte of the loader file to be 0x60 or 0x20 instead of 0x40. The on-chip
boot ROM uses this first byte to determine whether an 8- or a 16-bit
flash/PROM is connected. If the first byte is 0x20, it assumes a 16-bit
flash/PROM device and performs 16-bit DMA operations. Note that
16-bit DMA requires the ADDRESS and COUNT fields to be even values. This
is ensured by the elfloader utility. If the boot stream was generated by any
other tool, and either ADDRESS or COUNT might be odd values, the first byte
should be 0x60. Then, a 16-bit flash/PROM device is still assumed, but
8-bit DMA is performed, resulting in almost twice the boot time. If the
first byte is 0x40, an 8-bit flash/PROM device is assumed.

When this loader file is programmed into a 16-bit flash connected to asyn-
chronous bank 0 of the Blackfin processor, the contents of memory
(starting at location 0x2000 0000) viewed from the Blackfin processor
look like Figure 19-15.

Figure 19-16 shows the start of a boot sequence for a 16-bit flash/PROM
boot.

 The processor performs an initial core byte read of location 0x0 of
the flash to determine the memory width of the flash. When boot-
ing from a FIFO, the first 16-bit word (which is part of first
10-byte header contained within the loader file) must be sent
twice—once for this initial core read and once for the actual boot
sequence.

ADSP-BF537 Blackfin Processor Hardware Reference 19-41

System Reset and Booting

Figure 19-15. 16-Bit Flash/PROM Memory Contents Viewed From
Blackfin Memory Window

Figure 19-16. Timing Diagram for 16-Bit Flash Boot Sequence

 ADDRESS DATA DATA
 [15:8] [7:0]

0x20000000 0x00 0x60
0x20000002 0xFE 0x80
0x20000004 0x00 0x04
0x20000006 0x00 0x00
0x20000008 0x00 0x12
0x2000000A 0x00 0x5C
0x2000000C 0x00 0x00
0x2000000E 0x00 0x00
0x20000010 0xFF 0xA0
0x20000012 0x00 0x46
0x20000014 0x00 0x00
0x20000016 0x00 0x02
0x20000018 0x01 0x66
...................
0x2000005C 0x00 0x10

ADDRESS
COUNT
FLAG
DXE COUNT
BLOCK

 ADDRESS DATA DATA
 [15:8] [7:0]

0x2000005E 0x00 0x00
....................
0x20000066 0x00 0x0A
0x20000068 0x01 0x66
0x2000002A 0x00 0x60
....................
0x20000072 0x00 0x12
0x20000074 0x02 0x88
0x20000076 0x00 0x00
0x20000078 0x00 0x00
....................
0x20000080 0x80 0x02
0x20000082 0x61 0x81
....................
0x200002FE 0x00 0x10

10-BYTE
HEADER FOR
BLOCK 2 OF
INIT CODE

10-BYTE
HEADER FOR
DXE1 COUNT

DXE1 COUNT
ADDRESS

COUNT

FLAG
BLOCK 1 OF
INIT CODE
DXE

BLOCK 2 OF
INIT CODE

10-BYTE
HEADER FOR
BLOCK 1 OF DXE1

BLOCK 1 OF DXE1

*INITIAL CORE BYTE READ OF FLASH
 LOCATION Ox0 DETERMINES 8-BIT FLASH
 (0x40) OR 16-BIT FLASH (0x60).

AMS[0] all

AOE all

ARE all

AWE all

A[19:1] all

D[15:0] all

0 1

0 1

0 1

0

0

1

0

00 01 02 03 07 08 09

0046001200000004FFA08060

10 0

1 0

1

0

0

0A 0B 0C 0D

0000 FFA0 0000 0166

READ* ADDRESS COUNT F.

10-BYTE HEADER FOR INIT CODE
DXE COUNT BLOCK

ADDRESS COUNT F.

10-BYTE HEADER FOR FOR BLOCK 1
OF INIT CODE DXE

BLOCK 1 OF
INIT CODE DXE

04

1

1

0002

Specific Blackfin Boot Modes

19-42 ADSP-BF537 Blackfin Processor Hardware Reference

SPI Master Mode Boot from SPI Memory
(BMODE = 011)

For SPI master mode boot (BMODE = 011), the boot kernel assumes that the
SPI baud rate is SCLK/(2 x 133) Kbit/s. SPI serial EEPROMs that are
8-bit, 16-bit, and 24-bit addressable are supported. The SPI uses the PF10
output pin to select a single SPI EEPROM device. The SPI controller
submits successive read commands at addresses 0x00, 0x0000, and
0x000000 until a valid 8-, 16-, or 24-bit addressable EEPROM is detected.
It then begins clocking data into the beginning of L1 instruction memory.

For SPI master mode booting, the processor is configured as an SPI master
connected to an SPI memory. Figure 19-17 shows the pin-to-pin connec-
tions needed for this mode.

 A pull-up resistor on MISO is required for this boot mode to work
properly. For this reason, the Blackfin processor reads a 0xFF on
the MISO pin if the SPI memory is not responding (that is, no data
written on the MISO pin by the SPI memory). This enables the boot
kernel to automatically determine the type of SPI memory con-
nected prior to the boot procedure.

Figure 19-17. Blackfin - SPI Memory Pin-to-Pin Connections

(MASTER SPI DEVICE)
SPI MEMORY

SPI SCK SCK

PF10 CS

SPI MOSI MOSI

ADSP-BF534/BF536/BF537
(SLAVE SPI DEVICE)

SPI MISO MISO

VDDEXT

10KΩ

ADSP-BF537 Blackfin Processor Hardware Reference 19-43

System Reset and Booting

Although the pull-up resistor on the MISO line is mandatory, additional
pull-up resistors might also be worthwhile as well—pull up the chip select
signal on PF10 to ensure the SPI memory is not activated while the Black-
fin processor is in reset. Also, experience has shown that a pull-down
resistor on the SCK line results in nicer plots on the oscilloscope in case of
debugging the boot process.

The SPI memories supported by this interface are standard 8-,16-, and
24-bit addressable SPI memories (read sequence explained below) and
these Atmel SPI DataFlash devices: AT45DB041B, AT45DB081B,
AT45DB161B, AT45DB321, AT45DB642 or AT45DB1282.

Standard 8-, 16-, and 24-bit addressable SPI memories are memories that
take in a read command byte of 0x03 followed by one address byte (for
8-bit addressable SPI memories), two address bytes (for 16-bit addressable
SPI memories), or three address bytes (for 24-bit addressable SPI memo-
ries). After the correct read command and address are sent, the data stored
in the memory at the selected address is shifted out on the MISO pin. Data
is sent out sequentially from that address with continuing clock pulses.
Analog Devices has tested these standard SPI memory devices:

• 8-bit addressable SPI memory: 25LC040 from Microchip

• 16-bit addressable SPI memory: 25LC640 from Microchip

• 24-bit addressable SPI memory: M25P80 from STMicroelectronics

• 24-bit addressable SPI dataflash: AT45DB321 from Atmel

All these devices are compatible with products from different vendors.

SPI Memory Detection Routine

Since BMODE = 011 supports booting from various SPI memories, the
on-chip boot ROM detects what type of memory is connected. To deter-
mine the type of memory (8-, 16-, or 24-bit addressable) connected to the

Specific Blackfin Boot Modes

19-44 ADSP-BF537 Blackfin Processor Hardware Reference

processor, the on-chip boot ROM sends the following sequence of bytes to
the SPI memory until the memory responds back. The SPI memory does
not respond back until it is properly addressed.

The on-chip boot ROM:

1. Sends the read command, 0x03, on the MOSI pin then does a
dummy read of the MISO pin.

2. Sends an address byte, 0x00, on the MOSI pin then does a dummy
read of the MISO pin.

3. Sends another byte, 0x00, on the MOSI pin and checks whether the
incoming byte on the MISO pin is anything other than 0xFF (value
from the pull-up resistor). An incoming byte that is not 0xFF
means that the SPI memory has responded back after one address
byte and an 8-bit addressable SPI memory device is assumed to be
connected.

4. If the incoming byte is 0xFF, the on-chip boot ROM sends another
byte, 0x00, on the MOSI pin and checks whether the incoming byte
on the MISO pin is anything other than 0xFF. An incoming byte
other than 0xFF means that the SPI memory has responded back
after two address bytes and a 16-bit addressable SPI memory device
is assumed to be connected.

5. If the incoming byte is 0xFF, the on-chip boot ROM sends another
byte, 0x00, on the MOSI pin and checks whether the incoming byte
on the MISO pin is anything other than 0xFF. An incoming byte
other than 0xFF means that the SPI memory has responded back
after three address bytes and a 24-bit addressable SPI memory
device is assumed to be connected.

6. If an incoming byte is 0xFF (meaning no devices have responded
back), the on-chip boot ROM assumes that one of these Atmel
DataFlash devices is connected: AT45DB041B, AT45DB081B,
AT45DB161B, AT45DB321, AT45DB642 or AT45DB1282.

ADSP-BF537 Blackfin Processor Hardware Reference 19-45

System Reset and Booting

These DataFlash devices have a different read sequence than the
one described above for standard SPI memories. For more
information, refer to the data sheet for the device. The on-chip
Boot ROM determines which of the above Atmel DataFlash mem-
ories is connected by reading the status register.

The SPI baud rate register is set to 133, which, when based on a 54 MHz
system clock, results in a 54 MHz/(2 x 133) = 203 kbit/s bit rate.

Figure 19-18 through Figure 19-21 show the boot sequence for an SPI
master mode boot using a 24-bit addressable SPI memory (25LC640 from
Microchip). The loader file used is the same as shown in Figure 19-12 on
page 19-38.

Initially, the on-chip boot ROM determines the SPI memory type con-
nected–an 8-, 16-, or 24-bit addressable or an Atmel DataFlash.

Figure 19-18. SPI Master Mode Boot Sequence: SPI Memory Detection
Sequence

0

SPICLK all

PF10 all

MISO all

MOSI all 0

0

01

00

1

DSP SENDS
FIRST

ADDRESS
BYTE (0x00)

SPI MEMORY DETECTION ROUTINE

DSP SENDS
SECOND

ADDRESS
BYTE (0x00)***

DSP SENDS
ANOTHER

BYTE**

DSP SENDS
READ

COMMAND
(0x03)

0

* START OF BOOT SEQUENCE
** DSP SENDS ANOTHER BYTE AND SPI MEMORY RESPONDS WITH THE BYTE LOCATED AT ADDRESS 0x0
 (WITH A VALUE OF 0x40).
***AFTER THIS ADDRESS BYTE IS SENT, A 16-BIT ADDRESSABLE SPI MEMORY IS PROPERLY ADDRESSED
 AND READY TO SEND BACK DATA.

0

*

01

Specific Blackfin Boot Modes

19-46 ADSP-BF537 Blackfin Processor Hardware Reference

The on-chip boot ROM has detected that a 16-bit addressable SPI mem-
ory is connected at this point. Next, it issues the read command and sends
out address 0x0000 to read in the first 10-byte header for the INIT code
DXE count block.

Since the INIT code DXE count block is a 4-byte IGNORE block, the
on-chip boot ROM then issues the read command and sends out address
0x000E for the 10-byte header for block 1 of the INIT code DXE. After
this header is read in, the on-chip boot ROM knows where block 1 resides
in memory and how many bytes to boot into that location.

Once this information is processed, the on-chip boot ROM again issues a
read command and sends out address 0x0018 to boot in block 1 of the
INIT code DXE.

Figure 19-19. SPI Master Mode Boot Sequence: Boot 10-Byte Header for
INIT Code DXE Count Block

0

1 1

SPICLK all

PF10 all

MISO all

MOSI all 0

0

0x40

ADDRESS

10-BYTE HEADER FOR INIT CODE DXE COUNT BLOCK

FLAG

0

DSP SENDS OUT
READ COMMAND*

*DSP SENDS OUT READ COMMAND (0x03) AND THEN TWO ADDRESS BYTES
 (ADDR[15:8] FIRST AND THEN ADDR[7:0]).

0 0 0 1 0 0 0 1

0x80 0xA0 0xFF 0x04 0x00 0x00 0x00

COUNT

0x00 0x12

ADSP-BF537 Blackfin Processor Hardware Reference 19-47

System Reset and Booting

SPI Slave Mode Boot From SPI Host (BMODE = 100)
For SPI slave mode boot (BMODE = 100), the Blackfin processor is config-
ured as an SPI slave device and a host is used to boot the processor. The
hardware configuration shown in Figure 19-22 is assumed.

Figure 19-20. SPI Master Mode Boot Sequence: Boot 10-Byte Header for
Block 1 of INIT Code DXE

Figure 19-21. SPI Master Mode Boot Sequence: Boot Block 1 of INIT
Code DXE

0

1

SPICLK all

PF10 all

MISO all

MOSI all 0

0

0x00

ADDRESS

10-BYTE HEADER FOR BLOCK 1 OF INIT CODE DXE

FLAG

0

DSP SENDS OUT
READ COMMAND*

*DSP SENDS OUT READ COMMAND (0x03) AND THEN TWO ADDRESS BYTES (ADDR[15:8] EQUALS 0x0,
 ADDR[7:0] EQUALS 0x0E).

0 0 1 0 0 1

0x00 0xA0 0xFF 0x46 0x00 0x00 0x00

COUNT

0x00 0x02

1

SPICLK all

PF10 all

MISO all

MOSI all

0

0x66

BLOCK 1 OF INIT CODE DXE. . .

0

DSP SENDS OUT
READ COMMAND*

*PROCESSOR SENDS OUT READ COMMAND (0x03) AND THEN TWO
 ADDRESS BYTES (ADDR[15:8] EQUALS 0x0, ADDR[7:0] EQUALS 0x18).

0 0 1 0 0 1

0x01 0x67 0x01 0x40 0x05 0xC0 0x04 0xE1 0x08

00 0 0 0 0 00 0 0 0 00

Specific Blackfin Boot Modes

19-48 ADSP-BF537 Blackfin Processor Hardware Reference

The host drives the SPI clock and is therefore responsible for the timing.
The host must provide an active-low chip select signal that connects to the
SPISS input of the Blackfin processor on pin PF14. It can toggle with each
byte transferred or remain low during the entire procedure. In SPI slave
boot mode, the boot kernel sets the CPHA bit and clears the CPOL bit in the
SPI_CTL register. Therefore the MOSI pin is latched on the falling edge of
the SPI_SCK pin. See “SPI Transfer Protocols” on page 10-15 for details.
Eight-bit data is expected; 16-bit mode is not supported.

In SPI slave mode the HWAIT functionality must be activated. The HWAIT
handshake signal can operate on any GPIO pin of port F, G or H. The
resistor shown in Figure 19-15 on page 19-41 programs HWAIT to hold off
the host when high. See “Host Wait Feedback Strobe (HWAIT)” on
page 19-19 for further details. The SPI module does not provide
extremely large receive FIFOs, so the host is requested to test the HWAIT
signal at every byte.

Figure 19-22. Connections Between Host (SPI Master) and Blackfin Pro-
cessor (SPI Slave)

(MASTER SPI DEVICE)
ADSP-BF534/BF536/BF537

SPICLK SPICLK

S_SEL SPISS

MOSI MOSI

HOST
(SLAVE SPI DEVICE)

MISO MISO

HWAITFLAG/INTERRUPT

ADSP-BF537 Blackfin Processor Hardware Reference 19-49

System Reset and Booting

Below are timing diagrams of an SPI slave mode boot using an
ADSP-BF536 processor as the host and an ADSP-BF537 processor as the
slave SPI device. On the host side, PF4 is used as the CS which is connected
to the SPISS of the slave ADSP-BF537 processor. The SPI slave’s PG0
(ADSP-BF537 processor) functions as HWAIT and connects to PG1 of the
host (ADSP-BF536 processor). All the timing diagrams are from the SPI
slave point of view.

The loader file used (SPI_Slave_HostFile.ldr) is the same one as in
Figure 19-12 on page 19-38, except two more blocks are added to show
the functionality of this boot mode—a ZEROFILL block going to location
0xFFA0 0300 with a byte count of 0x4000 and a data block going to loca-
tion 0xFFA0 4300 with these values: 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF, and 0x19.

After the SPI slave receives the first 10-byte header from the host, it knows
which PG flag to configure as the HWAIT feedback strobe. In this case, PG0 is
used. Note the deassertion of HWAIT in Figure 19-23 after bits 8–5 of the
FLAG word are processed.

After that, the host sends out the 4-byte INIT code DXE count block, the
10-byte header for block 1 of the INIT code DXE, and then block 1 itself.
See Figure 19-24.

Figure 19-23. SPI Slave Mode Boot Sequence: Start of Boot Sequence

0 0 0

1

1

1

SPICLK all

SPISS all

MISO all

MOSI all

PFLAG all

0 0 0 0

0

0x40 0x80 0xA0 0xFF 0x04 0x00 0x00 0x00 0xB2 0x01

ADDRESS COUNT FLAG

10-BYTE HEADER FOR INIT CODE DXE COUNT BLOCK

Specific Blackfin Boot Modes

19-50 ADSP-BF537 Blackfin Processor Hardware Reference

After the full INIT code DXE is booted into Blackfin memory, the slave
SPI Blackfin processor then asserts the feedback strobe, HWAIT, to indicate
to the host not to send any more bytes during INIT code execution. Since
the Blackfin processor core is running much faster than the SPI interface,
the INIT code executes at a much faster rate compared to the rate at
which bytes are sent from the host. See Figure 19-25.

Figure 19-24. SPI Slave Mode Boot Sequence: Boot Block 1 of INIT
Code DXE

Figure 19-25. SPI Slave Mode Boot Sequence: Boot Block 2 of INIT
Code DXE

0 0 0

1

1

SPICLK all

SPISS all

MISO all

MOSI all

PFLAG all

0

0

0x5C 0x00 0x00 0x00

INIT CODE DXE COUNT

0x00 0x00 0xA0 0xFF

ADDRESS

10-BYTE HEADER FOR BLOCK 1 of INIT CODE DXE

1
0

0x46 0x00 0x00 0x00

COUNT

0xA2 0x01

FLAG

0x66 0x01 0x67

BLOCK 1
OF INIT CODE

0

1

1

SPICLK all

SPISS all

MISO all

MOSI all

PFLAG all

0

0

0x00 0x00 0xA0 0xFF 0x02 0x00 0x00 0x00

COUNT

10-BYTE HEADER FOR BLOCK 2 of INIT CODE DXE

0

0xAA 0x01

FLAG

0x40 0x80 0xA0 0xFF

10-BYTE HEADER
DXE1 COUNT BLOCK

0 0 0

0

11 0 0

0x66 0x01

BLOCK 2ADDRESS

0

*

*ASSERTION OF FEEDBACK STROBE (PG13) DURING SHORT DURATION OF INIT CODE

ADSP-BF537 Blackfin Processor Hardware Reference 19-51

System Reset and Booting

Figure 19-26 shows the processing of a ZEROFILL block for this boot
mode. When the on-chip boot ROM encounters a ZEROFILL block, it
asserts the feedback strobe, HWAIT, to hold off the host from sending any
more bytes. During this time, it fills 0x4000 zeros to locations
0xFFA0 0300 – 0xFFA0 4300 via MDMA. When complete, the on-chip
boot ROM deasserts the feedback strobe and the host continues to send
the remaining bytes of the boot process (10-byte header for block 3 and
block 3 itself), as shown in Figure 19-27.

Figure 19-26. SPI Slave Mode Boot Sequence: Boot ZEROFILL Block
(Block 2 of DXE1)

1
1

SPICLK all

SPISS all

MISO all

MOSI all

PFLAG all

0

0

ADDRESS
0xFFA00300

10-BYTE HEADER FOR BLOCK 2
OF DXE1 (ZERO-FILL BLOCK)

0

FLAG
0x01A3

FEEDBACK STROBE*

0

0

1

0

1 0 0

0

COUNT
0x00004000

* NOTE THAT THE NEXT BYTE OF DATA WILL BE SENT BY THE HOST. THE DATA WILL SIT IN THE FIFO UNTIL
 THE FEEDBACK STROBE IS DEASSERTED. IN THIS CASE, IT IS THE FIRST BYTE (0x00) OF THE 10-BYTE HEADER
 FOR BLOCK 3 OF DXE1.
**ASSERTION OF FEEDBACK STROBE (PFLAG) DURING ZERO-FILL BLOCK PROCESSING. PROCESSOR IS
 ZERO-FILLING MEMORY VIA MemDMA DURING THIS TIME.

*

Specific Blackfin Boot Modes

19-52 ADSP-BF537 Blackfin Processor Hardware Reference

TWI Master Boot Mode (BMODE = 101)
The Blackfin processor selects the slave EEPROM with the unique id
0xA0, and submits successive read commands to the device starting at two
byte internal address 0x0000 and begins clocking data into the processor.
The serial EEPROM must be two-byte addressable. Note the EEPROM’s

device select bits A2–A0 must be 0s (tied low). The I2C EPROM device
should comply with Philips I2C Bus Specification version 2.1 and should
have the capability to auto increment its internal address counter such that
the contents of the memory device can be read sequentially. See
Figure 19-28.

The TWI controller is programmed so as to generate a 30% duty cycle

clock in accordance with the I2C clock specification for fast-mode
operation.

 In both TWI master and slave boot modes, the upper 256 bytes
starting at address 0xFF90 7F00 must not be used. The boot ROM
code uses this space for the TWI boot modes to temporarily hold
the serial data which is then transferred to L1 instruction memory
using DMA.

Figure 19-27. SPI Slave Mode Boot Sequence: Boot Block 3 of DXE1
(Last Block)

0

1

SPISS all

MISO all

MOSI all

PFLAG all

FEEDBACK STROBE*

1

0

0

BLOCK 3 OF DXE110-BYTE HEADER
FOR BLOCK 3
OF DXE1 LAST

BLOCK)

0

SPICLK all

0

ADSP-BF537 Blackfin Processor Hardware Reference 19-53

System Reset and Booting

In Figure 19-29, The BF534/6/7 TWI controller outputs on the bus the

address of the I2C device to boot from: 0xA0 where the least significant
bit indicates the direction of the transfer. In this case it is a write (0) in
order to write the first 2 bytes of the internal address from which to start
booting (0x00). Figure 19-30 shows the TWI init and zero fill blocks.

Figure 19-28. TWI Master Boot Mode

Figure 19-29. TWI Master Booting

ADSP-BF537

SDA SDA

SCL

I2C-COMPATIBLE
MEMORY DEVICE

SCL

A0

A1

A2

VSS

 TWI SCL all

TWI SDA all

 RESET all 0

1

1

00

0 0 0 0 0 0 0 0 0 0

THE ADSP-BF534/BF536/BF537 TWI CONTROLLER OUTPUTS ON THE BUS THE
ADDRESS OF THE I2C DEVIDE TO BOOT FROM: 0xA0 WHERE THE LEAST
SIGNIFICANT BIT INDICATES THE DIRECTION OF THE TRANSFER. IN THIS CASE
IT IS A WRITE (0) IN ORDER TO WRITE THE FIRST 2 BYTES OF THE INTERNAL
ADDRESS FROM WHICH TO START BOOTING (0x00).

1 1

1

Specific Blackfin Boot Modes

19-54 ADSP-BF537 Blackfin Processor Hardware Reference

TWI Slave Boot Mode (BMODE = 110)

The I2C host agent selects the slave (Blackfin processor) with the 7-bit
slave address of 0x5F. The processor replies with an acknowledgement and

the host can then download the boot stream. The I2C host agent should
comply with Philips I2C Bus Specification version 2.1. The host device sup-
plies the serial clock. See Figure 19-31 and Figure 19-32.

Figure 19-30. TWI Init and Zero Fill Blocks

Figure 19-31. TWI Slave Booting

TWI SDA all

TWI SCL all

RESET all

1 1

1

1 1

BUS IDLE
DURING

PROCESSING
OF AN

INIT BLOCK

BUS IDLE
DURING

PROCESSING
OF A ZERO
FILL BLOCK

TWI SDA all

TWI SCL all

RESET all

1 1

1

0 0

* *

* DURING THE PROCESSING OF INIT AND/OR ZERO FILL BLOCKS, THE ADSP-BF537 TWI
CONTROLLER STRETCHES THE SCL LINE TO INDICATE TO THE HOST THAT IT CANNOT
ACCEPT ANY BYTES AT THIS TIME.

0

1

ADSP-BF537 Blackfin Processor Hardware Reference 19-55

System Reset and Booting

 On the Blackfin processor, in both TWI master and slave boot
modes, the upper 256 bytes of data bank A starting at address
0xFF90 7F00 must not be used. The boot ROM code uses this
space for the TWI boot modes to temporarily hold the serial data
which is then transferred to L1 instruction memory using DMA.

UART Slave Mode Boot via Master Host
(BMODE = 111)

UART booting on the Blackfin processor is supported only through
UART0, and the Blackfin processor is always a slave.

Using an autobaud detection sequence, a boot-stream-formatted program
is downloaded by the host. The host agent selects a bit rate within the
UART’s clocking capabilities. When performing the autobaud, the UART
expects an “@” character (0x40, eight bits data, one start bit, one stop bit,
no parity bit) on the UART0 RXD input to determine the bit rate. The
hardware support and the mathematical operations to perform for this
autobaud detection is explained in “Autobaud Mode” on page 15-35 of
Chapter 15, “General-Purpose Timers”.

The boot kernel then replies with an acknowledgement, and the host can
then download the boot stream. The acknowledgement consists of the fol-
lowing four bytes: 0xBF, UART0_DLL, UART0_DLH, 0x00. The host is

Figure 19-32. TWI Slave Boot Mode

ADSP-BF537
(SLAVE DEVICE)

I2C-COMPATIBLE HOST

SDA SDA

SCL

(MASTER DEVICE)

SCL

Specific Blackfin Boot Modes

19-56 ADSP-BF537 Blackfin Processor Hardware Reference

requested to not send further bytes until it has received the complete
acknowledge string. Once the 0x00 byte has been received, the host can
send the entire boot stream at once. The host should know the total byte
count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream.

When the boot kernel is processing ZEROFILL or INIT blocks, it might
require extra processing time and needs to hold the host off from sending
more data. This is signalled with the HWAIT output which can operate on
any GPIO of port G. The GPIO which is actually used is encoded in the
FLAG word of all block headers. See Figure 19-6 on page 19-15 for
details.

The boot kernel is not permitted to drive any of the GPIOs before the first
block header has been received and evaluated completely. Therefore, a
pulling resistor on the HWAIT signal is recommended. If the resistor pulls
down to ground, the host is always permitted to send when the HWAIT sig-
nal is low and must pause transmission when HWAIT is high. The Blackfin
UART module does not provide extremely large receive FIFOs, so the
host is requested to test HWAIT at every transmitted byte.

As indicated in Figure 19-33, the HWAIT feedback may connect to the
Clear-To-Send (CTS) input of an EIA-232E compatible host device,
resulting in a subset of a so-called hardware handshake protocol. At boot
time the Blackfin does not evaluate any Request-To-Send (RTS) signal
driven by the host.

Figure 19-33 shows the logical interconnection between the UART host
and the Blackfin device as required for booting. The figure does not show
physical line drivers and level shifters that are typically required to meet
the individual UART-compatible standards.

 Figure 19-34 and Figure 19-35 provide more information about UART
booting.

ADSP-BF537 Blackfin Processor Hardware Reference 19-57

System Reset and Booting

Figure 19-33. UART Slave Boot Mode

Figure 19-34. UART Slave Booting

(MASTER UART DEVICE)
ADSP-BF537

TX UART0 RXD

HOST
(SLAVE UART DEVICE)

RX UART0 TXD

CTS / INTERRUPT HWAIT

0
UART RX all

UART TX all

HWAIT all

1

0

0 0

ADSP-BF537
RECEIVES
THE AUTOBAUD
CHARACTER
"@" (0x40)

ADSP-BF537
ASSERTS HWAIT
AFTER RECEIVING
THE FIRST
HEADER

0

00 0

1

00 0

0

1 1

1

ADSP-BF537 SENDS BACK
FOUR BYTES AT THE END
OF AUTOBAUD DETECTION:
0xBF, UART0_DLL (0x36 IN
THIS CASE), UART0_DLH
(0x00), AND 0x00

ADSP-BF537 RECEIVES THE FIRST 10-BYTE HEADER
0x40, 0x00, 0x80, 0xFF, 0x04, 0x00, 0x00, 0x00, 0xB2, 0x05

Blackfin Loader File Viewer

19-58 ADSP-BF537 Blackfin Processor Hardware Reference

Blackfin Loader File Viewer
The Blackfin Loader File Viewer (LdrViewer) available from
http://www.blackfin.org/tools) is a very useful utility that takes a
loader file as an input and breaks it down and categorizes it into individual
.dxe files and displays it as individual blocks with headers (ADDRESS,
COUNT, and FLAG). This handy utility can help to view a loader file’s
content.

When the file in Figure 19-12 on page 19-38 is loaded into the
LdrViewer, the GUI contents look like Figure 19-36.

Figure 19-35. UART Init and Zero Fill Blocks

0
UART RX all

UART TX all

HWAIT all

1

0

00

ADSP-BF537 ASSERTS HWAIT
DURING THE PROCESSING
OF AN INIT BLOCK

ADSP-BF537 ASSERTS HWAIT
DURING THE PROCESSING
OF A ZERO FILL BLOCK

0 0 0 01 0 0 0

0

ADSP-BF537 Blackfin Processor Hardware Reference 19-59

System Reset and Booting

Note that the LdrViewer utility is a 3rd-party freeware product and is not
part of the CCES or VisualDSP++ software toolset.

Figure 19-36. Blackfin Loader File Viewer Utility

Blackfin Loader File Viewer

19-60 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 20-1

20 DYNAMIC POWER
MANAGEMENT

This chapter describes the dynamic power management functionality of
the processor. This functionality includes:

• Phase Locked Loop (PLL) and clock control

• Dynamic power management controller

• Operating modes

• Voltage control

Following a description of the above functionality are consolidated regis-
ter definitions and programming examples.

This chapter contains:

• “Phase Locked Loop and Clock Control” on page 20-1

• “Dynamic Power Management Controller” on page 20-7

• “PLL Registers” on page 20-25

• “Programming Examples” on page 20-30

Phase Locked Loop and Clock Control
The input clock into the processor, CLKIN, provides the necessary clock
frequency, duty cycle, and stability to allow accurate internal clock multi-
plication by means of an on-chip PLL module. During normal operation,
the user programs the PLL with a multiplication factor for CLKIN. The

Phase Locked Loop and Clock Control

20-2 ADSP-BF537 Blackfin Processor Hardware Reference

resulting, multiplied signal is the voltage controlled oscillator (VCO) clock.
A user-programmable value then divides the VCO clock signal to generate
the core clock (CCLK).

A user-programmable value divides the VCO signal to generate the system
clock (SCLK). The SCLK signal clocks the Peripheral Access Bus (PAB),
DMA Access Bus (DAB), External Access Bus (EAB), and the External
Bus Interface Unit (EBIU).

 These buses run at the PLL frequency divided by 1–15 (SCLK
domain). Using the SSEL parameter of the PLL divide register,
select a divider value that allows these buses to run at or below the
maximum SCLK rate specified in the processor data sheet.

To optimize performance and power dissipation, the processor allows the
core and system clock frequencies to be changed dynamically in a “coarse
adjustment.” For a “fine adjustment,” the PLL clock frequency can also be
varied.

PLL Overview
To provide the clock generation for the core and system, the processor
uses an analog PLL with programmable state machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications and low cost, general-purpose processors, in
which performance, flexibility, and control of power dissipation are key
features. This broad range of applications requires a wide range of
frequencies for the clock generation circuitry. The input clock may be a
crystal, a crystal oscillator, or a buffered, shaped clock derived from an
external system clock oscillator.

The PLL interacts with the Dynamic Power Management Controller
(DPMC) block to provide power management functions for the processor.
For information about the DPMC, see “Dynamic Power Management
Controller” on page 20-7.

ADSP-BF537 Blackfin Processor Hardware Reference 20-3

Dynamic Power Management

Subject to the maximum VCO frequency, the PLL supports a wide range of
multiplier ratios and achieves multiplication of the input clock, CLKIN. To
achieve this wide multiplication range, the processor uses a combination
of programmable dividers in the PLL feedback circuit and output configu-
ration blocks.

Figure 20-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs. In the figure, the VCO is an intermediate
clock from which the core clock (CCLK) and system clock (SCLK) are
derived.

PLL Clock Multiplier Ratios
The PLL control register (PLL_CTL) governs the operation of the PLL. For
more details, see “PLL_CTL Register” on page 20-27.

The divide frequency (DF) bit and multiplier select (MSEL[5:0]) field con-
figure the various PLL clock dividers:

• DF enables the input divider

• MSEL[5:0] controls the feedback dividers

Figure 20-1. PLL Block Diagram

VCOCLKIN

DF

MSEL[5:0]

SSEL[3:0]

DIVIDER

CCLK

SCLK

BYPASS

CSEL[1:0]

LOOP
FILTER

PHASE
DETECT

CLOCK
DIVIDE

AND
MUX

/1 or /2

Phase Locked Loop and Clock Control

20-4 ADSP-BF537 Blackfin Processor Hardware Reference

The reset value of MSEL is 0xA. This value can be reprogrammed at startup
in the boot code.

Table 20-1 illustrates the VCO multiplication factors for the various MSEL
and DF settings.

As shown in the table, different combinations of MSEL[5:0] and DF can
generate the same VCO frequencies. For a given application, one combina-
tion may provide lower power or satisfy the VCO maximum frequency.
Under normal conditions, setting DF to 1 typically results in lower power
dissipation. See the processor data sheet for maximum and minimum fre-
quencies for CLKIN, CCLK, and VCO.

The PLL control register (PLL_CTL) controls operation of the PLL (See
Figure 20-5 on page 20-27). Note that changes to the PLL_CTL register do
not take effect immediately. In general, the PLL_CTL register is first pro-
grammed with a new value, and then a specific PLL programming
sequence must be executed to implement the changes. See “PLL Program-
ming Sequence” on page 20-15.

Table 20-1. MSEL Encodings

Signal Name
MSEL[5:0]

VCO Frequency
DF = 0 DF = 1

0 64x 32x

1 1x 0.5x

2 2x 1x

N = 3–62 Nx 0.5Nx

63 63x 31.5x

ADSP-BF537 Blackfin Processor Hardware Reference 20-5

Dynamic Power Management

Core Clock/System Clock Ratio Control

Table 20-2 describes the programmable relationship between the VCO fre-
quency and the core clock. Table 20-3 shows the relationship of the VCO
frequency to the system clock. Note the divider ratio must be chosen to
limit the SCLK to a frequency specified in the processor data sheet. The
SCLK drives all synchronous, system-level logic.

The divider ratio control bits, CSEL and SSEL, are in the PLL divide regis-
ter (PLL_DIV). For information about this register, see “PLL_DIV
Register” on page 20-27.

The reset value of CSEL[1:0] is 0x0, and the reset value of SSEL[3:0] is
0x5. These values can be reprogrammed at startup by the boot code.

By writing the appropriate value to PLL_DIV, you can change the CSEL and
SSEL value dynamically. Note the divider ratio of the core clock can never
be greater than the divider ratio of the system clock. If the PLL_DIV register
is programmed to illegal values, the SCLK divider is automatically increased
to be greater than or equal to the core clock divider.

Unlike writing the PLL_CTL register, the PLL_DIV register can be pro-
grammed at any time to change the CCLK and SCLK divide values without
entering the idle state.

As long as the MSEL and DF control bits in the PLL control register
(PLL_CTL) remain constant, the PLL is locked.

Table 20-2. Core Clock Ratio

Signal Name
CSEL[1:0]

Divider Ratio
VCO/CCLK

Example Frequency Ratios (MHz)
VCO CCLK

00 1 300 300

01 2 600 300

10 4 600 150

11 8 400 50

Phase Locked Loop and Clock Control

20-6 ADSP-BF537 Blackfin Processor Hardware Reference

 If changing the clock ratio via writing a new SSEL value into
PLL_DIV, take care that the enabled peripherals do not suffer data
loss due to SCLK frequency changes.

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequency. The PLL lock count register
(PLL_LOCKCNT) defines the number of CLKIN cycles that occur before the
processor sets the PLL_LOCKED bit in the PLL_STAT register. When execut-
ing the PLL programming sequence, the internal PLL lock counter begins
incrementing upon execution of the IDLE instruction. The lock counter
increments by 1 each CLKIN cycle. When the lock counter has incremented
to the value defined in the PLL_LOCKCNT register, the PLL_LOCKED bit is set.

See the processor data sheet for more information about PLL stabilization
time and programmed values for this register. For more information about
operating modes, see “Operating Modes” on page 20-8. For further infor-
mation about the PLL programming sequence, see “PLL Programming
Sequence” on page 20-15.

Table 20-3. System Clock Ratio

Signal Name
SSEL[3:0]

Divider Ratio
VCO/SCLK

Example Frequency Ratios (MHz)
VCO SCLK

0000 Reserved N/A N/A

0001 1:1 100 100

0010 2:1 200 100

0011 3:1 400 133

0100 4:1 500 125

0101 5:1 600 120

0110 6:1 600 100

N = 7–15 N:1 600 600/N

ADSP-BF537 Blackfin Processor Hardware Reference 20-7

Dynamic Power Management

Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) works in conjunc-
tion with the PLL, allowing the user to control the processor’s
performance characteristics and power dissipation dynamically. The
DPMC provides these features that allow the user to control performance
and power:

• Multiple operating modes – The processor works in four operating
modes, each with different performance characteristics and power
dissipation profiles. See “Operating Modes” on page 20-8.

• Peripheral clocks – Clocks to each peripheral are disabled automat-
ically when the peripheral is disabled.

• Voltage control – The processor provides an on-chip switching reg-
ulator controller which, with some external components, can
generate internal voltage levels from the external Vdd (VDDEXT)
supply.

Depending on the needs of the system, the voltage level can be
reduced to save power. See “Controlling the Voltage Regulator” on
page 20-19.

Dynamic Power Management Controller

20-8 ADSP-BF537 Blackfin Processor Hardware Reference

Operating Modes
The processor works in four operating modes, each with unique perfor-
mance and power saving benefits. Table 20-4 summarizes the operational
characteristics of each mode.

Dynamic Power Management Controller States
Power management states are synonymous with the PLL control state.
The active and full on states of the DPMC/PLL can be determined by
reading the PLL status register (see “PLL_STAT Register” on page 20-28).
In these modes, the core can either execute instructions or be in the Idle
core state. If the core is in the Idle state, it can be awakened by several
sources (See Blackfin Processor Programming Reference for details).

The following sections describe the DPMC/PLL states in more detail, as
they relate to the power management controller functions.

Full-On Mode

Full-on mode is the maximum performance mode. In this mode, the PLL
is enabled and not bypassed. Full-on mode is the normal execution state of
the processor, with the processor and all enabled peripherals running at

Table 20-4. Operational Characteristics

Operating
Mode

Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA
Access

Full On None Enabled No Enabled Enabled L1

Active Medium Enabled 1

1 PLL can also be disabled in this mode.

Yes Enabled Enabled L1

Sleep High Enabled No Disabled Enabled –

Deep Sleep Maximum Disabled – Disabled Disabled –

ADSP-BF537 Blackfin Processor Hardware Reference 20-9

Dynamic Power Management

full speed. The system clock (SCLK) frequency is determined by the
SSEL-specified ratio to VCO. DMA access is available to L1 and external
memories. From full-on mode, the processor can transition directly to
active, sleep, or deep sleep modes, as shown in Figure 20-2.

Active Mode

In active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) and system clock (SCLK) run at
the input clock (CLKIN) frequency. DMA access is available to appropri-
ately configured L1 and external memories.

In active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to full-
on or sleep modes.

From active mode, the processor can transition directly to full-on, sleep,
or deep sleep modes.

Sleep Mode

Sleep mode significantly reduces power dissipation by idling the core pro-
cessor. The CCLK is disabled in this mode; however, SCLK continues to run
at the speed configured by MSEL and SSEL bit settings. Since CCLK is dis-
abled, DMA access is available only to external memory in sleep mode.
From sleep mode, a wakeup event causes the processor to transition to one
of these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full-on mode if the BYPASS bit is cleared

Dynamic Power Management Controller

20-10 ADSP-BF537 Blackfin Processor Hardware Reference

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Deep Sleep Mode

Deep sleep mode maximizes power savings by disabling the PLL, CCLK,
and SCLK. In this mode, the processor core and all peripherals except the
Real-Time Clock (RTC) are disabled. DMA is not supported in this
mode.

Deep sleep mode can be exited only by a hardware reset event or an RTC
interrupt. A hardware reset begins the hardware reset sequence. For more
information about hardware reset, see Blackfin Processor Programming Ref-
erence. An RTC interrupt causes the processor to transition to active
mode, and execution resumes from where the program counter was when
deep sleep mode was entered. If an interrupt is also enabled in SIC_IMASK,
the vector is taken immediately after exiting deep sleep and the ISR is
executed.

Note an RTC interrupt in deep sleep mode automatically resets some
fields of the PLL control register (PLL_CTL). See Table 20-5.

 When in deep sleep mode, clocking to the SDRAM is turned off.
Before entering deep sleep mode, software should ensure that
important information in SDRAM is saved to a non-volatile mem-
ory and/or the SDRAM is placed into self-refresh mode.

ADSP-BF537 Blackfin Processor Hardware Reference 20-11

Dynamic Power Management

Hibernate State

For lowest possible power dissipation, this state allows the internal supply
(VDDINT) to be powered down, while keeping the I/O supply (VDDEXT)
running. Although not strictly an operating mode like the four modes
detailed above, it is illustrative to view it as such in the diagram of
Figure 20-2. Since this feature is coupled to the on-chip switching regula-
tor controller, it is discussed in detail in “Powering Down the Core
(Hibernate State)” on page 20-22.

Operating Mode Transitions
Figure 20-2 graphically illustrates the operating modes and transitions. In
the diagram, ellipses represent operating modes and rectangles represent
processor states. Arrows show the allowed transitions into and out of each
mode or state.

For mode transitions, the text next to each transition arrow shows the
fields in the PLL control register (PLL_CTL) that must be changed for the
transition to occur. For example, the transition from full on mode to sleep
mode indicates that the STOPCK bit must be set to 1 and the PDWN bit must
be set to 0.

For transitions to processor states, the text next to each transition arrow
shows either a processor event (RTC wake up or hardware reset) or the
fields in the voltage regulator control register (VR_CTL) that must be
changed for the transition to occur.

Table 20-5. PLL_CTL Values after RTC Wakeup Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

Dynamic Power Management Controller

20-12 ADSP-BF537 Blackfin Processor Hardware Reference

For information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 20-14.

Figure 20-2. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wakeup &
BYPASS = 0

STOPCK = 1 &
 PDWN = 0

 PDWN = 1

RTC_WAKEUP

 PDWN = 1

STOPCK = 1 &
 PDWN = 0

HARDWARE
 RESET

BYPASS = 0 & PLL_OFF = 0 &
 STOPCK = 0 & PDWN = 0

BYPASS = 1 & STOPCK = 0 &
 PDWN = 0

Wakeup &
BYPASS = 1

Hibernate
RTC_WAKEUP

 WAKE = 1 &

HARDWARE RESET

 FREQ = 00

 FREQ = 00

CAN Activity &
CANWE = 1

PHY Activity &
PHYWE = 1

ADSP-BF537 Blackfin Processor Hardware Reference 20-13

Dynamic Power Management

In addition to the mode transitions shown in Figure 20-2, the PLL can be
modified while in active operating mode. Power to the PLL can be applied
and removed, and new clock-in to VCO clock (CLKIN to VCO) multiplier
ratios can be programmed. Described in detail below, these changes to the
PLL do not take effect immediately. As with operating mode transitions,
the PLL programming sequence must be executed for these changes to
take effect (see “PLL Programming Sequence” on page 20-15).

• PLL disabled: In addition to being bypassed in the active mode, the
PLL can be disabled.

When the PLL is disabled, additional power savings are achieved
although they are relatively small. To disable the PLL, set the
PLL_OFF bit in the PLL_CTL register, and then execute the PLL pro-
gramming sequence.

• PLL enabled: When the PLL is disabled, it can be re-enabled later
when additional performance is required.

The PLL must be re-enabled before transitioning to full on or sleep
operating modes. To re-enable the PLL, clear the PLL_OFF bit in
the PLL_CTL register, and then execute the PLL programming
sequence.

• New multiplier ratio in active mode: New clock-in to VCO clock
(CLKIN to VCO) multiplier ratios can be programmed while in active
mode.

Although the CLKIN to VCO multiplier changes are not realized in
active mode, forcing the PLL to lock to the new ratio in active
mode before transitioning to full on mode reduces the transition
time because the PLL is already locked to the new ratio. Note that
the PLL must be powered up to lock to the new ratio. To program
a new CLKIN to VCO multiplier, write the new MSEL[5:0] and/or DF
values to the PLL_CTL register; then execute the PLL programming
sequence.

Dynamic Power Management Controller

20-14 ADSP-BF537 Blackfin Processor Hardware Reference

• New multiplier ratio in full on mode: The multiplier ratio can also
be changed while in full on mode.

In this case, the PLL state automatically transitions to active mode
while the PLL is locking. After locking, the PLL returns to full on
mode. To program a new CLKIN to VCO multiplier, write the new
MSEL[5:0] and/or DF values to the PLL_CTL register; then execute
the PLL programming sequence (see information on page 20-15).

Table 20-6 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 20-6 causes unpredictable behavior.

Programming Operating Mode Transitions

The operating mode is defined by the state of the PLL_OFF, BYPASS,
STOPCK, and PDWN bits of the PLL control register (PLL_CTL). Merely modi-
fying the bits of the PLL_CTL register does not change the operating mode
or the behavior of the PLL.

Changes to the PLL_CTL register are realized only after executing a specific
code sequence, which is shown in Listing 20-1 and Listing 20-2. This
code sequence first brings the processor to a known, idled state. Once in
this idled state, the PLL recognizes and implements the changes made to

Table 20-6. Allowed Operating Mode Transitions

New Mode

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed Allowed

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

ADSP-BF537 Blackfin Processor Hardware Reference 20-15

Dynamic Power Management

the PLL_CTL register. After the changes take effect, the processor operates
with the new settings, including the new operating mode, if one is
programmed.

PLL Programming Sequence

If new values are assigned to MSEL or DF in the PLL control register
(PLL_CTL), the instruction sequence shown in Listing 20-1 and
Listing 20-2 puts those changes into effect. The PLL programming
sequence is also executed when transitioning between operating modes.

 Changes to the divider-ratio bits, CSEL and SSEL, can be made
dynamically; they do not require execution of the PLL program-
ming sequence.

Listing 20-1. PLL Programming Sequence (ASM)

CLI R0 ; /* disable interrupts */

IDLE ; /* drain pipeline and send core into IDLE state */

STI R0 ; /* re-enable interrupts after wakeup */

The first two instructions in the sequence take the core to an idled state
with interrupts disabled; the interrupt mask (IMASK) is saved to the R0 reg-
ister, and the instruction pipeline is halted. The PLL state machine then
loads the PLL_CTL register changes into the PLL. In order to break from
the idled state, the PLL wakeup event must be enabled in the system inter-
rupt controller interrupt wakeup register (set bit 0 of SIC_IWR).

Listing 20-2. PLL Programming Sequence (C)

#include <ccblkfn.h>

int temp;

temp = cli();

idle();

sti(temp);

Dynamic Power Management Controller

20-16 ADSP-BF537 Blackfin Processor Hardware Reference

This sequence behaves the same way as the ASM sequence in Listing 20-1.
However, the interrupt mask (IMASK) is saved to the data element temp
rather than to the R0 register.

If the PLL_CTL register changes include a new CLKIN to VCO multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, and then it begins incrementing,
once per SCLK cycle. After the PLL lock counter reaches the value pro-
grammed into the PLL lock count register (PLL_LOCKCNT), the PLL sets the
PLL_LOCKED bit in the PLL status register (PLL_STAT), and the PLL asserts
the PLL wakeup interrupt.

Depending on how the PLL_CTL register is programmed, the processor
proceeds in one of the following four ways:

• If the PLL_CTL register is programmed to enter either active or full
on operating mode, the PLL generates a wakeup signal, and then
the processor continues with the STI instruction in the sequence, as
described in “PLL Programming Sequence” on page 20-15.

When the state change enters full on mode from active mode or
active from full on, the PLL itself generates a wakeup signal that
can be used to exit the idled core state. The wakeup signal is gener-
ated by the PLL itself or another peripheral, watchdog or other
timer, RTC, or other source. For more information about events
that cause the processor to wakeup from being idled, see the “Pro-
gram Sequencer” chapter in Blackfin Processor Programming
Reference.

• If the PLL_CTL register is programmed to enter the sleep operating
mode, the processor immediately transitions to the sleep mode and
waits for a wakeup signal before continuing.

ADSP-BF537 Blackfin Processor Hardware Reference 20-17

Dynamic Power Management

When the wakeup signal has been asserted, the instruction
sequence continues with the STI instruction, as described in “PLL
Programming Sequence” on page 20-15, causing the processor to
transition to:

• —Active mode if BYPASS in the PLL_CTL register is set

—Full on mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter deep sleep operating
mode, the processor immediately transitions to deep sleep mode
and waits for an RTC interrupt or hardware reset signal:

• —An RTC interrupt causes the processor to enter active
operating mode and continue with the STI instruction in
the sequence, as described below.

—A hardware reset causes the processor to execute the reset
sequence. For more information about hardware reset, see
Blackfin Processor Programming Reference.

• If no operating mode transition is programmed, the PLL generates
a wakeup signal, and the processor continues with the STI instruc-
tion in the sequence, as described in the following section.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 20-1 and Listing 20-2 then
continues with the STI instruction. Interrupts are re-enabled, IMASK is
restored, and normal program flow resumes.

 To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence.

Dynamic Power Management Controller

20-18 ADSP-BF537 Blackfin Processor Hardware Reference

Dynamic Supply Voltage Control
In addition to clock frequency control, the processor provides the capabil-
ity to run the core processor at different voltage levels. As power
dissipation is proportional to the voltage squared, significant power reduc-
tions can be accomplished when lower voltages are used.

The processor uses three power domains. These power domains are shown
in Table 20-7. Each power domain has a separate VDD supply. Note that
the internal logic of the processor and much of the processor I/O can be
run over a range of voltages. See the product data sheet for details on the
allowed voltage ranges for each power domain and power dissipation data.

Table 20-7. Power Domains

Power Domain VDD Range

All internal logic except RTC Variable

Real-Time Clock I/O and internal logic Variable

All other I/O Variable

ADSP-BF537 Blackfin Processor Hardware Reference 20-19

Dynamic Power Management

Power Supply Management
The processor provides an on-chip switching regulator controller which,
with some external hardware, can generate internal voltage levels from the
external VDDEXT supply with an external power transistor as shown in
Figure 20-3. This voltage level can be reduced to save power, depending
upon the needs of the system.

 When increasing the VDDINT voltage, the external FET switches
on for a longer period. The VDDEXT supply should have appropri-
ate capacitive bypassing to enable it to provide sufficient current
without drooping the supply voltage.

Figure 20-3. Processor Voltage Regulator

VDDEXT

(LOW-INDUCTANCE)

VDDINT

VROUT

100µF

VROUT

GND

SHORT AND LOW-
INDUCTANCE WIRE

VDDEXT

+ +

+

100µF

100µF

10µF
LOW ESR

100nF

SET OF DECOUPLING
CAPACITORS

FDS9431A

ZHCS1000

2.25V TO 3.6V
INPUT VOLTAGE
RANGE

NOTE: DESIGNER SHOULD MINIMIZE
TRACE LENGTH TO FDS9431A.

10µH

Dynamic Power Management Controller

20-20 ADSP-BF537 Blackfin Processor Hardware Reference

Controlling the Voltage Regulator

The on-chip core voltage regulator controller manages the internal logic
voltage levels for the VDDINT supply. The voltage regulator control regis-
ter (VR_CTL) controls the regulator (see Figure 20-8 on page 20-29). The
state of the VR_CTL register is maintained during power down modes and
hibernate. It is only set to its reset value by a powerup reset sequence.
Writing to VR_CTL initiates a PLL relock sequence, thus, the PLL repro-
gramming sequence must be followed after modifying VR_CTL.

The on-chip switching regulator can be modified in terms of its transient
behavior in the GAIN and FREQ fields of the VR_CTL register.

The two-bit GAIN field controls the internal loop gain of the switching reg-
ulator loop; this bit controls how quickly the voltage output settles on its
final value. In general, higher gain allows for quicker settling times but
causes more overshoot in the process.

Table 20-8 lists the gain levels configured by GAIN[1:0].

The two-bit FREQ field controls the switching oscillator frequency for the
voltage regulator. A higher frequency setting allows for smaller switching
capacitor and inductor values, while potentially generating more EMI
(electromagnetic interference).

Table 20-8. GAIN Encodings

GAIN Value

00 5

01 10

10 20

11 50

ADSP-BF537 Blackfin Processor Hardware Reference 20-21

Dynamic Power Management

Table 20-9 lists the switching frequency values configured by FREQ[1:0].

 To bypass onboard regulation, program a value of b#00 in the FREQ
field and leave the VROUT pins floating.

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See the
processor data sheet for more information about voltage tolerances and
allowed rates of change.

 Reducing the processor’s operating voltage to greatly conserve
power or raising the operating voltage to greatly increase perfor-
mance will probably require significant changes to the operating
voltage level. To ensure predictable behavior when varying the
operating voltage, the processor should be brought to a known and
stable state before the operating voltage is modified.

The recommended procedure is to follow the PLL programming sequence
when varying the voltage. The four-bit voltage level (VLEV) field identifies
the nominal internal voltage level. Refer to the processor data sheet for the
applicable VLEV voltage range and associated voltage tolerances.

Table 20-9. FREQ Encodings

FREQ Value

00 Powerdown/Bypass onboard regulation

01 333 kHz

10 667 kHz

11 1MHz

Dynamic Power Management Controller

20-22 ADSP-BF537 Blackfin Processor Hardware Reference

Table 20-10 lists the voltage level values for VLEV[3:0].

 For legal VLEV values with respect to voltage tolerance, consult the
appropriate processor-specific data sheet.

After changing the voltage level in the VR_CTL register, the PLL automati-
cally enters the active mode when the processor enters the idle state. At
that point the voltage level changes and the PLL relocks with the new volt-
age. After the PLL_LOCKCNT has expired, the part returns to the full on
state. When changing voltages, a larger PLL_LOCKCNT value may be neces-
sary than when changing just the PLL frequency. See the processor data
sheet for details.

After the voltage has been changed to the new level, the processor can
safely return to any operational mode so long as the operating parameters,
such as core clock frequency (CCLK), are within the limits specified in the
processor data sheet for the new operating voltage level.

Table 20-10. VLEV Encodings

VLEV Voltage

0000–0101 Reserved

0110 .85 volts

0111 .90 volts

1000 .95 volts

1001 1.00 volts

1010 1.05 volts

1011 1.10 volts

1100 1.15 volts

1101 1.20 volts

1110 1.25 volts

1111 1.30 volts

ADSP-BF537 Blackfin Processor Hardware Reference 20-23

Dynamic Power Management

Powering Down the Core (Hibernate State)

The internal supply regulator for the processor can be shut off by writing
b#00 to the FREQ bits of the VR_CTL register. This disables both CCLK and
SCLK. Furthermore, it sets the internal power supply voltage (VDDINT) to
0 V, eliminating any leakage currents from the processor. The internal
supply regulator can be woken up by several user-selectable events, all of
which are controlled in the VR_CTL register:

• Assertion of the RESET pin will always exit hibernate state and
requires no modification to the VR_CTL register.

• RTC event. Set the wakeup-enable (WAKE) control bit to enable
wakeup upon a RTC interrupt. This can be any of the RTC inter-
rupts (alarm, daily alarm, day, hour, minute, second, or
stopwatch).

• External GP event, or PHY event (ADSP-BF536 or ADSP-BF537
processors only, if PHY is used). On the ADSP-BF536 and
ADSP-BF537 processors, set the PHY wakeup enable (PHYWE)
control bit to enable wakeup upon assertion of the PHY_INT/PH6 pin
by an external PHY device. If no external PHY interrupt is needed,
or if using the ADSP-BF534 processor, set this bit to enable a gen-
eral-purpose external wake-up event via the PH6 pin. When
enabled, a high level on PH6 wakes up the processor from hibernate.

• Activity on the CANRX pin. Set the CAN RX wakeup enable (CANWE)
control bit to enable wakeup upon detection of CAN bus activity
on the CANRX pin. See “CAN Wakeup From Hibernate State” on
page 9-41 for more details.

Dynamic Power Management Controller

20-24 ADSP-BF537 Blackfin Processor Hardware Reference

If the on-chip supply controller is bypassed, so that VDDINT is sourced
externally, the only way to power down the core is to remove the external
VDDINT voltage source.

 When the core is powered down, VDDINT is set to 0 V, and thus
the internal state of the processor is not maintained, with the
exception of the VR_CTL register. Therefore, any critical informa-
tion stored internally (memory contents, register contents, and so
on) must be written to a non-volatile storage device prior to remov-
ing power. Be sure to set the drive SCKE low during reset (SCKELOW)
control bit in VR_CTL to protect against the default reset state
behavior of setting the EBIU pins to their inactive state. Failure to
set this bit results in the SCKE pin going high during reset, which
takes the SDRAM out of self-refresh mode, resulting in data decay
in the SDRAM due to loss of refresh rate.

Powering down VDDINT does not affect VDDEXT. While VDDEXT is still
applied to the processor, external pins are maintained at a three-state level,
unless otherwise specified.

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in VR_CTL prior to entering the hibernate
state, an external pull-down resistor on the SCKE pin is required to
also keep the pin low when the Blackfin processor is not driving it.

To power down the internal power supply:

1. Write 0 to the SIC_IWR register to prevent peripheral resources
from interrupting the hibernate process.

2. Write to VR_CTL, setting the FREQ bits to b#00, and the appropriate
wakeup bit to 1 (CANWE, PHYWE, WAKE on the ADSP-BF536 or
ADSP-BF537 processors, and CANWE, WAKE on the ADSP-BF534
processors). Optionally, set the SCKELOW bit if SDRAM data should
be maintained.

ADSP-BF537 Blackfin Processor Hardware Reference 20-25

Dynamic Power Management

 The SCKE pin will be three-stated during hibernate. In addition to
setting the SCKELOW bit in VR_CTL prior to entering the hibernate
state, an external pull-down resistor on the SCKE pin is required to
also keep the pin low when the Blackfin processor is not driving it.

3. Execute the PLL reprogramming sequence.

4. When the idle state is reached, VDDINT will transition to 0 V.

5. When the processor is woken up, whether by RTC, CAN, or PHY
on the ADSP-BF536 or ADSP-BF537 processors, or by RTC or
CAN on the ADSP-BF534 processors, or by a reset interrupt, the
PLL relocks and the boot sequence defined by the BMODE[1:0] pin
settings takes effect.

 Failure to allow VDDINT to complete the transition to 0 V before
waking up the processor can cause undesired results.

 If the CLKBUFOE bit is set, the crystal oscillator and CLKBUF signals
remain enabled during hibernate and draw current.

PLL Registers
The user interface to the PLL is through four memory-mapped registers
(MMRs):

• The PLL divide register (PLL_DIV)

• The PLL control register (PLL_CTL)

• The PLL status register (PLL_STAT)

• The PLL lock count register (PLL_LOCKCNT)

All four registers are 16-bit MMRs and must be accessed with aligned
16-bit reads/writes. These registers are shown in Figure 20-4 through
Figure 20-7.

PLL Registers

20-26 ADSP-BF537 Blackfin Processor Hardware Reference

Table 20-11 shows the functions of the PLL/VR registers.

Table 20-11. PLL/VR Register Mapping

Register Name Function Notes

PLL_CTL PLL control register Requires reprogramming sequence when writ-
ten

PLL_DIV PLL divisor register Can be written freely

PLL_STAT PLL status register Monitors active modes of operation

PLL_LOCKCNT PLL lock count reg-
ister

Number of SCLKs allowed for PLL to relock

VR_CTL Voltage regulator
control register

Requires PLL reprogramming sequence when
written

ADSP-BF537 Blackfin Processor Hardware Reference 20-27

Dynamic Power Management

PLL_DIV Register

PLL_CTL Register

Figure 20-4. PLL Divide Register

Figure 20-5. PLL Control Register

PLL Divide Register (PLL_DIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

0 - Reserved
1-15 - SCLK = VCO / X

CSEL[1:0] (Core Select)

0 0 0 0 0 0 0 0 0 0 0 0 1 0

00 - CCLK = VCO /1
01 - CCLK = VCO / 2
10 - CCLK = VCO / 4
11 - CCLK = VCO / 8

SSEL[3:0] (System Select)

Reset = 0x000500xFFC0 0004

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 0 1 0 0 0 0 0 0 0 0

See Table 20-1 on page 20-4
for CLKIN/VCO multiplication
factors

PLL Control Register (PLL_CTL)

BYPASS
0 - Do not bypass PLL
1 - Bypass PLL

MSEL[5:0]
(Multiplier Select)

DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

Reset = 0x14000xFFC0 0000

IN_DELAY
0 - Do not add output delay
1 - Add approximately 200 ps

of delay to external memory
output signals

OUT_DELAY

SPORT_HYS
0 - No added hysteresis to
SPORT input pins
1 - Add 250 mV of hysteresis to
SPORT input pins

0 - Do not add input delay
1 - Add approximately 200 ps

of delay to the time when
inputs are latched on the
external memory interface

PLL Registers

20-28 ADSP-BF537 Blackfin Processor Hardware Reference

PLL_STAT Register

PLL_LOCKCNT Register

Figure 20-6. PLL Status Register

Figure 20-7. PLL Lock Count Register

000 0 0 0 0 0

PLL Status Register (PLL_STAT)
Read only. Unless otherwise noted, 1 - Processor operating in this mode. For more infor-
mation, see “Operating Modes” on page 20-8.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 0 1 0 0 0 1 Reset = 0x00A2

ACTIVE_PLLENABLED

FULL_ONACTIVE_PLLDISABLED

PLL_LOCKED

0xFFC0 000C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

LOCKCNT[15:0]
Number of CLKIN cycles
before PLL Lock Count
timer expires.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0010

ADSP-BF537 Blackfin Processor Hardware Reference 20-29

Dynamic Power Management

VR_CTL Register

When driven low, the PH6 pin (controlled by bit 10 in Figure 20-8) can be
used to wake up the processor from hibernate state, regardless whether
used in Ethernet mode as PHYINT or in normal GPIO mode. If used for
wakeup, pull the signal up by a resistor and enable the feature by the
PHYWE bit in the VR_CTL register.

The CLKIN buffer output enable (CLKBUFOE) control bit (bit 14 in
Figure 20-8) allows another device, most likely the Ethernet PHY, and the
Blackfin processor to run from a single crystal oscillator. Clearing this bit
prevents the CLKBUF pin from driving a buffered version of the input clock
CLKIN.

Figure 20-8. Voltage Regulator Control Register

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 1 0 0 0 0 1 1 0 1 0

Voltage Regulator Control Register (VR_CTL)

Reset = 0x40DB

VLEV[3:0] (Internal Voltage Level)
See Table 20-10 for encodings

FREQ[1:0] (Switching Frequency)
Controls the switching oscillator
frequency for the voltage regulator,
see Table 20-8 for encodings

GAIN[1:0] (Voltage Level Gain)
Controls how quickly the voltage
output settles on its final value,
see Table 20-9 for encodings

0 11

WAKE (RTC Wakeup
Enable)
0 - RTC wakeup disabled
1 - RTC wakeup enabled

0xFFC0 0008

SCKELOW (Drive
SCKE Low During
Reset)
0 - Allow SCKE to go
high (=1) during reset
1 - Maintain SCKE low
(=0) during reset
CLKBUFOE
(CLKIN Buffer
Output Enable)
0 - CLKIN buffer disabled
1 - CLKIN buffer enabled

CANWE (CAN Wakeup
Enable)
0 - CAN RX wakeup disabled
1 - CAN RX wakeup enabled

PHYWE (PHY/PH6 Wakeup Enable)

0 - Ethernet PHY wakeup disabled
 (ADSP-BF536/BF537)
 PH6 low wakeup disabled
 (ADSP-BF534)
1 - Ethernet PHY wakeup enabled
 (ADSP-BF536/BF537)
 PH6 low wakeup enabled
 (ADSP-BF534)

Programming Examples

20-30 ADSP-BF537 Blackfin Processor Hardware Reference

Programming Examples
The following code examples illustrate how to use the on-chip voltage reg-
ulator and how to effect various operating mode transitions. Some setup
code has been removed for clarity, and the following assumptions are
made:

• For operating mode transition examples:

• In the ASM examples, P0 points to the PLL control register
(PLL_CTL). P1 points to the PLL divide register (PLL_DIV).

• In the C examples, the appropriate headers are included and
one data element is declared, as follows:

#include <cdefBF537.h> /* sets up MMR access via

*pREGISTER_NAME labels */

#include <ccblkfn.h> /* contains intrinsics for

Blackfin assembler commands */

int IMASK_reg; /* 32-bit data element to

temporarily store IMASK */

• The PLL wakeup interrupt is enabled as a wakeup signal.

• MSEL[5:0] and DF in PLL_CTL are set to (b#011111) and
(b#0) respectively, signifying a CLKIN to VCO multiplier of
31x.

ADSP-BF537 Blackfin Processor Hardware Reference 20-31

Dynamic Power Management

• For voltage regulator examples:

• In the ASM examples, P0 points to the voltage regulator
control register (VR_CTL).

• In the C examples, the appropriate headers are included and
three data elements are declared, as follows.

#include <cdefBF537.h> /* sets up MMR access via

*pREGISTER_NAME labels */

#include <ccblkfn.h> /* contains intrinsics for

Blackfin assembler commands */

int IMASK_reg; /* 32-bit data element to

temporarily store IMASK */

short VR_CTL_reg; /* 16-bit data element to

temporarily store VR_CTL */

short VLEV_field; /* 16-bit data element for

VLEV field */

• The CAN, RTC/RESET, and PHY/GP wakeup interrupts are
enabled as wakeup signals.

Active Mode to Full-On Mode
Listing 20-3 and Listing 20-4 provide code for transitioning from active
operating mode to full-on mode, in Blackfin assembly and C code,
respectively.

Programming Examples

20-32 ADSP-BF537 Blackfin Processor Hardware Reference

Listing 20-3. Transitioning From Active Mode to Full-On Mode (ASM)

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3E00; /* clear BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for PLL wakeup

*/

STI R2; /* after PLL wakeup occurs, restore interrupts and IMASK

*/

/* processor is now in Full On mode */

Listing 20-4. Transitioning From Active Mode to Full On Mode (C)

IMASK_reg = cli();

/* disable interrupts, copy IMASK to IMASK_reg */

pPLL_CTL &= ~BYPASS; / clear BYPASS bit and write to PLL_CTL

*/

idle();

/* drain pipeline, enter idled state, wait for PLL wakeup */

sti(IMASK_reg);

/* after PLL wakeup occurs, restore interrupts and IMASK */

/* processor is now in Full On mode */

ADSP-BF537 Blackfin Processor Hardware Reference 20-33

Dynamic Power Management

Full-On Mode to Active Mode
Listing 20-5 and Listing 20-6 provide code for transitioning from the
full-on operating mode to active mode, in Blackfin assembly and C code,
respectively.

Listing 20-5. Transitioning From Full-On Mode to Active Mode (ASM)

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x3F00; /* set BYPASS bit */

W[P0] = R1; /* and write to PLL_CTL */

IDLE;

/* drain pipeline, enter idled state, wait for PLL wakeup */

STI R2;

/* after PLL wakeup occurs, restore interrupts and IMASK */

/* processor is now in Active mode */

Listing 20-6. Transitioning From Full On Mode to Active Mode (C)

IMASK_reg = cli();

/* disable interrupts, copy IMASK to IMASK_reg */

pPLL_CTL | = BYPASS; / set BYPASS bit and write to PLL_CTL */

idle();

 /* drain pipeline, enter idled state, wait for PLL wakeup */

sti(IMASK_reg);

/* after PLL wakeup occurs, restore interrupts and IMASK */

/* processor is now in Active mode */

Programming Examples

20-34 ADSP-BF537 Blackfin Processor Hardware Reference

In the Full On Mode, Change CLKIN to VCO
Multiplier From 31x to 2x

Listing 20-7 and Listing 20-7 provide code for changing the CLKIN to VCO
multiplier from 31x to 2x in full on operating mode, in Blackfin assembly
and C code, respectively.

Listing 20-7. Changing CLKIN to VCO Multiplier (ASM)

CLI R2; /* disable interrupts, copy IMASK to R2 */

R1.L = 0x0400; /* change VCO multiplier to 2x */

W[P0] = R1; /* by writing to PLL_CTL */

IDLE; /* drain pipeline, enter idled state, wait for PLL wakeup

*/

STI R2; /* after PLL wakeup occurs, restore interrupts and IMASK

*/

/* CLKIN to VCO multiplier is now set to 2x */

Listing 20-8. Changing CLKIN to VCO Multiplier (C)

IMASK_reg = cli();

/* disable interrupts, copy IMASK to IMASK_reg */

*pPLL_CTL = 0x0400;

/* change VCO multiplier to 2x by writing to PLL_CTL */

idle();/* drain pipeline, enter idled state, wait for PLL wakeup

*/

sti(IMASK_reg);

/* after PLL wakeup occurs, restore interrupts and IMASK */

/* CLKIN to VCO multiplier is now set to 2x */

ADSP-BF537 Blackfin Processor Hardware Reference 20-35

Dynamic Power Management

Setting Wakeups and Entering Hibernate State
Listing 20-9 and Listing 20-10 provide code for configuring the regulator
wakeups and placing the regulator in the hibernate state, in Blackfin
assembly and C code, respectively.

Listing 20-9. Configuring Regulator Wakeups and Entering Hibernate
State (ASM)

R1 = W[P0](Z); /* read VR_CTL register */

BITSET (R1, 8); /* enable wakeup from RTC/reset */

BITSET (R1, 15);

/* protect SDRAM contents during reset after wakeup */

BITCLR (R1, 0);

BITCLR (R1, 1); /* clear FREQ bits to powerdown core */

CLI R0; /* disable interrupts, copy IMASK to R0 */

W[P0] = R1; /* write to VR_CTL */

IDLE; /* drain pipeline, enter idled state, wait for VR

to hibernate */

/* Hibernate state: no code executes until wakeup

triggers reset */

Listing 20-10. Configuring Regulator Wakeups and Entering Hibernate
State (C)

VR_reg = *pVR_CTL; /* read VR_CTL into temporary data */

VR_reg |= (WAKE|SCKELOW); /* enable RTC/Reset and protect SDRAM

*/

VR_reg &= ~FREQ; /* clear FREQ bits to powerdown core */

IMASK_reg = cli();

/* disable interrupts, copy IMASK to IMASK_reg */

pVR_CTL = VR_reg; / write new value to VR_CTL */

Programming Examples

20-36 ADSP-BF537 Blackfin Processor Hardware Reference

idle();

/* drain pipeline, enter idled state, wait for PLL wakeup */

/* Hibernate state: no code executes until wakeup triggers

reset */

Changing Internal Voltage Levels
Listing 20-11 and Listing 20-12 provide code for dynamically changing
the internal voltage level, in Blackfin assembly and C code, respectively.
Additional code may be required to alter the core clock frequency when
voltage level is being decreased. Refer to the processor data sheet for the
applicable VLEV voltage range and associated supported core clock speeds.

Listing 20-11. Changing Core Voltage via the On-Chip Regulator (ASM)

R1 = W[P0](Z); /* read VR_CTL into backgnd_reg for DEPOSIT */

R7 = 0xC; /* 0xC = 1.15V (-5% - +10%) in VLEV */

R7 <<= 16; /* value to be deposited must be upper 16 bits */

R2 = 0x0404(Z); /* VLEV field position = bit 4,

VLEV field length = 4 bits */

R7 = R7|R2; /* R7.L now contains position and length for DEPOSIT

*/

R2 = DEPOSIT(R1, R7); /* R2 contains previous VR_CTL value with

new VLEV field */

CLI R1; /* disable interrupts, copy IMASK to R1 */

W[P0] = R2; /* write new value to VR_CTL */

IDLE; /* drain pipeline, enter idled state, wait for PLL wakeup

*/

STI R1; /* after PLL wakeup occurs, restore interrupts and IMASK

*/

/* internal voltage now at 1.15V (-5% - +10%) */

ADSP-BF537 Blackfin Processor Hardware Reference 20-37

Dynamic Power Management

Listing 20-12. Changing Core Voltage via the On-Chip Regulator (C)

VLEV_field = 0xC; /* 0xC = 1.15V (-5% - +10%) in VLEV */

VR_reg = *pVR_CTL; /* read VR_CTL into temporary data */

VR_reg &= 0xFF0F; /* clear out current VLEV field data */

VLEV_field <<= 4; /* shift VLEV field into proper position */

VR_reg |= VLEV_field;

/* deposit new VLEV field into VR_CTL word

*/

IMASK_reg = cli();

/* disable interrupts, copy IMASK to IMASK_reg */

pVR_CTL = VR_reg; / write new value to VR_CTL */

idle();

/* drain pipeline, enter idled state, wait for PLL wakeup */

sti(IMASK_reg);

/* after PLL wakeup occurs, restore interrupts and IMASK */

/* internal voltage now at 1.15V (-5% - +10%) */

Programming Examples

20-38 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference 21-1

21 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the Blackfin processor. The
design options implemented in a system are influenced by cost, perfor-
mance, and system requirements. In many cases, design issues cited here
are discussed in detail in other sections of this manual. In such cases, a ref-
erence appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

This chapter contains:

• “Pin Descriptions” on page 21-2

• “Managing Clocks” on page 21-2

• “Configuring and Servicing Interrupts” on page 21-2

• “Semaphores” on page 21-3

• “Data Delays, Latencies and Throughput” on page 21-5

• “Bus Priorities” on page 21-5

• “External Memory Design Issues” on page 21-5

• “High-Frequency Design Considerations” on page 21-8

Pin Descriptions

21-2 ADSP-BF537 Blackfin Processor Hardware Reference

Pin Descriptions
Refer to the processor data sheet for pin information, including pin num-
bers for the 208-ball Pb-free sparse MBGA and 182-ball MBGA.

Managing Clocks
Systems can drive the clock inputs with a crystal oscillator or a buffered,
shaped clock derived from an external clock oscillator. The external clock
connects to the processor’s CLKIN pin. It is not possible to halt, change, or
operate CLKIN below the specified frequency during normal operation. The
processor uses the clock input (CLKIN) to generate on-chip clocks. These
include the core clock (CCLK) and the peripheral clock (SCLK).

Managing Core and System Clocks
The processor produces a multiplication of the clock input provided on
the CLKIN pin to generate the PLL VCO clock. This VCO clock is divided to
produce the core clock (CCLK) and the system clock (SCLK). The core clock
is based on a divider ratio that is programmed via the CSEL bit settings in
the PLL_DIV register. The system clock is based on a divider ratio that is
programmed via the SSEL bit settings in the PLL_DIV register. For detailed
information about how to set and change CCLK and SCLK frequencies, see
Chapter 20, “Dynamic Power Management”.

Configuring and Servicing Interrupts
A variety of interrupts are available. They include both core and periph-
eral interrupts. The processor assigns default core priorities to system-level
interrupts. However, these system interrupts can be remapped via the sys-
tem interrupt assignment registers (SIC_IARx). For more information, see
Chapter 4, “System Interrupts”.

ADSP-BF537 Blackfin Processor Hardware Reference 21-3

System Design

The processor core supports nested and non-nested interrupts, as well as
self-nested interrupts. For explanations of the various modes of servicing
events, see Blackfin Processor Programming Reference.

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signalling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the test and set byte (atomic)
instruction (TESTSET). The TESTSET instruction performs these functions.

• Loads the half word at memory location pointed to by a P-register.
The P-register must be aligned on a half-word boundary.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit (MSB) of the low byte set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the TESTSET
instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC instruction immediately after semaphore release.

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method. The TESTSET instruction sup-
ports a system-level requirement for a multicycle bus lock mechanism.

Semaphores

21-4 ADSP-BF537 Blackfin Processor Hardware Reference

The processor restricts use of the TESTSET instruction to the external mem-
ory region only. Use of the TESTSET instruction to address any other area
of the memory map may result in unreliable behavior.

Example Code for Query Semaphore
Listing 21-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 21-1. Query Semaphore

/* Query semaphore. Denotes “Busy” if its value is nonzero. Wait

until free (or reschedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is nonzero. Current thread could write thread_id to

semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0] = R0 ;

/* When done using shared resource, write a zero byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

ADSP-BF537 Blackfin Processor Hardware Reference 21-5

System Design

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and external memory buses, refer to Chapter 2, “Chip Bus
Hierarchy”.

Bus Priorities
For an explanation of prioritization between the various internal buses,
refer to Chapter 2, “Chip Bus Hierarchy”.

External Memory Design Issues
This section describes design issues related to external memory.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 16-bit wide SRAM. Note this
interface does not require external assertion of ARDY, since the internal wait
state counter is sufficient for deterministic access times of memories.

External Memory Design Issues

21-6 ADSP-BF537 Blackfin Processor Hardware Reference

Figure 21-1 shows the interface to 8-bit SRAM or flash. Figure 21-2
shows the interface to 16-bit SRAM or flash.

Figure 21-1. Interface to 8-Bit SRAM or Flash

Figure 21-2. Interface to 16-Bit SRAM or Flash

ADSP-BF537
ADSP-BF536
ADSP-BF534

8-BIT SRAM
OR FLASH

DATA[7:0]

ARDY

D[7:0]

ADDR[N+1:1] A[N:0]

ARE

ABE[1:0]

AWE

AOE

AMS[X]

R/W OR WR

OE

AMS[X]

ADSP-BF537
ADSP-BF536
ADSP-BF534

DATA[15:0]

ARDY

R/W OR WR

16-BIT SRAM
OR FLASH

BE[1:0]

D[15:0]

ADDR[N+1:1] A[N:0]

ARE

AWE

AOE OE

AMS[X] AMS[X]

ABE[1:0]

ADSP-BF537 Blackfin Processor Hardware Reference 21-7

System Design

Figure 21-3 shows the system interconnect required to support 16-bit
memories. Note this application requires the 16-bit packing mode be
enabled for this bank of memory. Otherwise, the programming model
must ensure that every other 16-bit memory location is accessed starting
on an even (byte address[1:0] = 00) 16-bit address.

Avoiding Bus Contention
Because the three-stated data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to three-state and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the data bus
drivers can potentially contend with those of the memory device addressed
by the read. The second case is back-to-back reads from two different

Figure 21-3. Interface to 16-Bit SRAM

ADDR[N+1:2]

DATA[15:0]

ARDY

CE

OE

R/W

SRAM

BE[1:0]

A[N:1]

D[15:0]

ADDR[1]

ADSP-BF537
ADSP-BF536
ADSP-BF534

A[0]

AWE

AOE

AMS[X]

ABE[1:0]

ARE

High-Frequency Design Considerations

21-8 ADSP-BF537 Blackfin Processor Hardware Reference

memory spaces. In this case, the two memory devices addressed by the two
reads can potentially contend at the transition between the two read
operations.

To avoid contention, program the turnaround time (bank transition time)
appropriately in the asynchronous memory bank control registers. This
feature allows software to set the number of clock cycles between these
types of accesses on a bank-by-bank basis. Minimally, the External Bus
Interface Unit (EBIU) provides one cycle for the transition to occur.

High-Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging signal processing
systems.

Signal Integrity
In addition to reducing signal length and capacitive loading, critical sig-
nals should be treated like transmission lines.

Capacitive loading and signal length of buses can be reduced by using a
buffer for devices that operate with wait states (for example, SDRAMs).
This reduces the capacitance on signals tied to the zero-wait-state devices,
allowing these signals to switch faster and reducing noise-producing cur-
rent spikes. Extra care should be taken with certain signals such as external
memory, read, write, and acknowledge strobes.

Use simple signal integrity methods to prevent transmission line reflec-
tions that may cause extraneous extra clock and sync signals. Additionally,
avoid overshoot and undershoot that can cause long term damage to input
pins.

ADSP-BF537 Blackfin Processor Hardware Reference 21-9

System Design

Some signals are especially critical for short trace length and usually
require series termination. The CLKIN pin should have impedance match-
ing series resistance at its driver. SPORT interface signals TCLK, RCLK, RFS,
and TFS should use some termination. Although the serial ports may be
operated at a slow rate, the output drivers still have fast edge rates and for
longer distances the drivers often require resistive termination located at
the source. (Note also that TFS and RFS should not be shorted in
multi-channel mode.) On the PPI interface, the PPI_CLK and SYNC signals
also benefit from these standard signal integrity techniques. If these pins
have multiple sources, it will be difficult to keep the traces short. Consider
termination of SDRAM clocks, control, address, and data to improve sig-
nal quality and reduce unwanted EMI.

Adding termination to fix a problem on an existing board requires delays
for new artwork and new boards. A transmission line simulator is recom-
mended for critical signals. IBIS models are available from Analog Devices
Inc. that will assist signal simulation software. Some signals can be cor-
rected with a small zero or 22 ohm resistor located near the driver. The
resistor value can be adjusted after measuring the signal at all endpoints.

For details, see the reference sources in “Recommended Reading” on
page 21-13 for suggestions on transmission line termination.

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the Printed Circuit Board
(PCB) to reduce crosstalk. Be sure to use lots of vias between the
ground planes.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

High-Frequency Design Considerations

21-10 ADSP-BF537 Blackfin Processor Hardware Reference

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 21-4. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. A ground plane should be located near the component side of
the board to reduce the distance that ground current must travel through
vias. The ground planes must not be densely perforated with vias or traces
as their effectiveness is reduced.

VDDINT is the highest frequency and requires special attention. Two things
help power filtering above 100 MHz. First, capacitors should be physically
small to reduce the inductance. Surface mount capacitors of size 0402 give
better results than larger sizes. Secondly, lower values of capacitance will
raise the resonant frequency of the LC circuit. While a cluster of 0.1 uF is
acceptable below 50 MHz, a mix of 0.1, 0.01, 0.001uF and even 100 pF is
preferred in the 500 MHz range.

Note that the instantaneous voltage on both internal and external power
pins must at all times be within the recommended operating conditions as
specified in the product data sheet. Local “bulk capacitance” (many micro-
farads) is also necessary. Although all capacitors should be kept close to
the power consuming device, small capacitance values should be the clos-
est and larger values may be placed further from the chip.

ADSP-BF537 Blackfin Processor Hardware Reference 21-11

System Design

5 Volt Tolerance
Outputs that connect to inputs on 5 V devices can float or be pulled up to
5 V. Most Blackfin pins are not 5 V tolerant. There are a few exceptions
such as the TWI pins. Level shifters are required on all other Blackfin pins
to keep the pin voltage at or below absolute maximum ratings.

Figure 21-4. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH PACKAGE

a

B
ADSP -BF537

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND PACKAGE

High-Frequency Design Considerations

21-12 ADSP-BF537 Blackfin Processor Hardware Reference

Resetting the Processor
Our processor pins have no hysteresis and therefore require a monotonic
rise and fall. Therefore even the RESET pin should not be connected
directly to an R/C time delay because such a circuit would be noise
sensitive.

In addition to the hardware reset mode provided via the RESET pin, the
processor supports several software reset modes. For detailed information
on the various modes, see Blackfin Processor Programming Reference. The
processor state after reset is also described in Blackfin Processor Program-
ming Reference.

Recommendations for Unused Pins
Most often, there is no need to terminate unused pins, but the handful
that do require termination are listed at the end of the pin list description
section of the product data sheet.

If the real-time clock is not used, RTXI should be pulled low.

Programmable Outputs
Programmable pins used as output pins should be connected to a pullup
or pulldown resistor to prevent damage to other devices during reset and
before these pins are programmed as outputs.

Test Point Access
The debug process is aided by test points on signals such as CLKOUT or
SCLK, bank selects, PPICLK, and RESET. If selection pins such as boot mode
are connected directly to power or ground, they are inaccessible under a
BGA chip. Use pull-up and pull-down resistors instead.

ADSP-BF537 Blackfin Processor Hardware Reference 21-13

System Design

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

Recommended Reading
 For more information, refer to High-Speed Digital Design: A Handbook of
Black Magic, Johnson & Graham, Prentice Hall, Inc., ISBN
0-13-395724-1.

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent

source of information and practical ideas. Topics covered in the book
include:

• High-speed properties of logic gates

• Measurement techniques

• Transmission lines

• Ground planes and layer stacking

• Terminations

• Vias

• Power systems

• Connectors

High-Frequency Design Considerations

21-14 ADSP-BF537 Blackfin Processor Hardware Reference

• Ribbon cables

• Clock distribution

• Clock oscillators

Consult your CAD software tools vendor. Some companies offer demon-
stration versions of signal integrity software. Simply by using their free
software, you can learn:

• Transmission lines are real

• Unterminated printed circuit board traces will ring and have over-
shoot and undershoot

• Simple termination will control signal integrity problems

ADSP-BF537 Blackfin Processor Hardware Reference A-1

A SYSTEM MMR ASSIGNMENTS

This appendix lists MMR addresses and register names for the system
memory-mapped registers (MMRs), the core timer registers, and the pro-
cessor-specific memory registers mentioned in this manual.

This appendix contains:

• “Dynamic Power Management Registers” on page A-3

• “System Reset and Interrupt Control Registers” on page A-3

• “Watchdog Timer Registers” on page A-4

• “Real-Time Clock Registers” on page A-5

• “UART0 Controller Registers” on page A-5

• “SPI Controller Registers” on page A-6

• “Timer Registers” on page A-7

• “Ports Registers” on page A-9

• “SPORT0 Controller Registers” on page A-12

• “SPORT1 Controller Registers” on page A-14

• “External Bus Interface Unit Registers” on page A-16

• “DMA/Memory DMA Control Registers” on page A-17

• “PPI Registers” on page A-19

• “TWI Registers” on page A-20

A-2 ADSP-BF537 Blackfin Processor Hardware Reference

• “UART1 Controller Registers” on page A-21

• “CAN Registers” on page A-22

• “Ethernet MAC Registers” on page A-29

• “Handshake MDMA Control Registers” on page A-35

• “Core Timer Registers” on page A-36

• “Processor-Specific Memory Registers” on page A-37

Registers are listed in order by their memory-mapped address. To find
more information about an MMR, refer to the page shown in the “See
Page” column. When viewing the PDF version of this document, click a
reference in the “See Page” column to jump to additional information
about the MMR.

These notes provide general information about the system memory-
mapped registers (MMRs):

• The system MMR address range is 0xFFC0 0000 – 0xFFDF FFFF.

• All system MMRs are either 16 bits or 32 bits wide. MMRs that are
16 bits wide must be accessed with 16-bit read or write operations.
MMRs that are 32 bits wide must be accessed with 32-bit read or
write operations. Check the description of the MMR to determine
whether a 16-bit or a 32-bit access is required.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

ADSP-BF537 Blackfin Processor Hardware Reference A-3

System MMR Assignments

Dynamic Power Management Registers
Dynamic power management registers (0xFFC0 0000 – 0xFFC0 00FF) are listed in
Table A-1.

System Reset and Interrupt Control Registers
System reset and interrupt control registers (0xFFC0 0100 – 0xFFC0 01FF) are
listed in Table A-2.

Table A-1. Dynamic Power Management Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0000 PLL_CTL “PLL Control Register” on page 20-27

0xFFC0 0004 PLL_DIV “PLL Divide Register” on page 20-27

0xFFC0 0008 VR_CTL “Voltage Regulator Control Register” on
page 20-29

0xFFC0 000C PLL_STAT “PLL Status Register” on page 20-28

0xFFC0 0010 PLL_LOCKCNT “PLL Lock Count Register” on page 20-28

Table A-2. System Reset and Interrupt Control Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0104 SYSCR “System Reset Configuration Register” on
page 19-5

0xFFC0 010C SIC_IMASK “System Interrupt Mask Register” on page 4-21

0xFFC0 0110 SIC_IAR0 “System Interrupt Assignment Register 0” on
page 4-19

0xFFC0 0114 SIC_IAR1 “System Interrupt Assignment Register 1” on
page 4-19

Watchdog Timer Registers

A-4 ADSP-BF537 Blackfin Processor Hardware Reference

Watchdog Timer Registers
Watchdog timer registers (0xFFC0 0200 – 0xFFC0 02FF) are listed in
Table A-3.

0xFFC0 0118 SIC_IAR2 “System Interrupt Assignment Register 2” on
page 4-20

0xFFC0 011C SIC_IAR3 “System Interrupt Assignment Register 3” on
page 4-20

0xFFC0 0120 SIC_ISR “System Interrupt Status Register” on
page 4-22

0xFFC0 0124 SIC_IWR “System Interrupt Wakeup-enable Register” on
page 4-23

Table A-3. Watchdog Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0200 WDOG_CTL “Watchdog Control Register” on page 17-8

0xFFC0 0204 WDOG_CNT “Watchdog Count Register” on page 17-6

0xFFC0 0208 WDOG_STAT “Watchdog Status Register” on page 17-7

Table A-2. System Reset and Interrupt Control Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-5

System MMR Assignments

Real-Time Clock Registers
Real-time clock registers (0xFFC0 0300 – 0xFFC0 03FF) are listed in
Table A-4.

UART0 Controller Registers
UART0 controller registers (0xFFC0 0400 – 0xFFC0 04FF) are listed in
Table A-5. For UART1 registers, see Table A-17 on page A-21.

Table A-4. Real-Time Clock Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0300 RTC_STAT “RTC Status Register” on page 18-21

0xFFC0 0304 RTC_ICTL “RTC Interrupt Control Register” on
page 18-21

0xFFC0 0308 RTC_ISTAT “RTC Interrupt Status Register” on page 18-22

0xFFC0 030C RTC_SWCNT “RTC Stopwatch Count Register” on
page 18-22

0xFFC0 0310 RTC_ALARM “RTC Alarm Register” on page 18-23

0xFFC0 0314 RTC_PREN “Prescaler Enable Register” on page 18-23

Table A-5. UART0 Controller Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0400 UART0_THR “UART Transmit Holding Registers” on
page 13-27

0xFFC0 0400 UART0_RBR “UART Receive Buffer Registers” on
page 13-27

0xFFC0 0400 UART0_DLL “UART Divisor Latch High-Byte Registers” on
page 13-31

SPI Controller Registers

A-6 ADSP-BF537 Blackfin Processor Hardware Reference

SPI Controller Registers
SPI controller registers (0xFFC0 0500 – 0xFFC0 05FF) are listed in
Table A-6.

0xFFC0 0404 UART0_DLH “UART Divisor Latch High-Byte Registers” on
page 13-31

0xFFC0 0404 UART0_IER “UART Interrupt Enable Registers” on
page 13-28

0xFFC0 0408 UART0_IIR “UART Interrupt Identification Registers” on
page 13-30

0xFFC0 040C UART0_LCR “UART Line Control Registers” on page 13-22

0xFFC0 0410 UART0_MCR “UART Modem Control Registers” on
page 13-24

0xFFC0 0414 UART0_LSR “UART Line Status Registers” on page 13-25

0xFFC0 041C UART0_SCR “UART Scratch Registers” on page 13-32

0xFFC0 0424 UART0_GCTL “UART Global Control Registers” on
page 13-32

Table A-6. SPI Controller Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0500 SPI_CTL “SPI Control Register” on page 10-43

0xFFC0 0504 SPI_FLG “SPI Flag Register” on page 10-44

0xFFC0 0508 SPI_STAT “SPI Status Register” on page 10-46

0xFFC0 050C SPI_TDBR “SPI Transmit Data Buffer Register” on
page 10-46

Table A-5. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-7

System MMR Assignments

Timer Registers
Timer registers (0xFFC0 0600 – 0xFFC0 06FF) are listed in Table A-7.

0xFFC0 0510 SPI_RDBR “SPI Receive Data Buffer Register” on
page 10-47

0xFFC0 0514 SPI_BAUD “SPI Baud Rate Register” on page 10-42

0xFFC0 0518 SPI_SHADOW “SPI RDBR Shadow Register” on page 10-47

Table A-7. Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0600 TIMER0_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0604 TIMER0_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0608 TIMER0_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 060C TIMER0_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0610 TIMER1_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0614 TIMER1_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0618 TIMER1_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 061C TIMER1_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0620 TIMER2_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0624 TIMER2_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0628 TIMER2_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 062C TIMER2_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0630 TIMER3_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0634 TIMER3_COUNTER “Timer Counter Registers” on page 15-46

Table A-6. SPI Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

Timer Registers

A-8 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 0638 TIMER3_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 063C TIMER3_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0640 TIMER4_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0644 TIMER4_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0648 TIMER4_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 064C TIMER4_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0650 TIMER5_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0654 TIMER5_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0658 TIMER5_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 065C TIMER5_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0660 TIMER6_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0664 TIMER6_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0668 TIMER6_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 066C TIMER6_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0670 TIMER7_CONFIG “Timer Configuration Registers” on page 15-44

0xFFC0 0674 TIMER7_COUNTER “Timer Counter Registers” on page 15-46

0xFFC0 0678 TIMER7_PERIOD “Timer Period Registers” on page 15-48

0xFFC0 067C TIMER7_WIDTH “Timer Width Registers” on page 15-51

0xFFC0 0680 TIMER_ENABLE “Timer Enable Register” on page 15-40

0xFFC0 0684 TIMER_DISABLE “Timer Disable Register” on page 15-41

0xFFC0 0688 TIMER_STATUS “Timer Status Register” on page 15-43

Table A-7. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-9

System MMR Assignments

Ports Registers
Ports registers (port F: 0xFFC0 0700 – 0xFFC0 07FF, port G:
0xFFC0 1500 – 0xFFC0 15FF, port H: 0xFFC0 1700 – 0xFFC0 17FF, pin
control: 0xFFC0 3200 – 0xFFC0 32FF) are listed in Table A-8.

Table A-8. Ports Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0700 PORTFIO “GPIO Data Registers” on page 14-24

0xFFC0 0704 PORTFIO_CLEAR “GPIO Clear Registers” on page 14-25

0xFFC0 0708 PORTFIO_SET “GPIO Set Registers” on page 14-25

0xFFC0 070C PORTFIO_TOGGLE “GPIO Toggle Registers” on page 14-26

0xFFC0 0710 PORTFIO_MASKA “GPIO Mask Interrupt A Registers” on
page 14-28

0xFFC0 0714 PORTFIO_MASKA_
CLEAR

“GPIO Mask Interrupt A Clear Registers” on
page 14-31

0xFFC0 0718 PORTFIO_MASKA_
SET

“GPIO Mask Interrupt A Set Registers” on
page 14-29

0xFFC0 071C PORTFIO_MASKA_
TOGGLE

“GPIO Mask Interrupt A Toggle Registers” on
page 14-33

0xFFC0 0720 PORTFIO_MASKB “GPIO Mask Interrupt B Registers” on
page 14-28

0xFFC0 0724 PORTFIO_MASKB_
CLEAR

“GPIO Mask Interrupt B Clear Registers” on
page 14-32

0xFFC0 0728 PORTFIO_MASKB_
SET

“GPIO Mask Interrupt B Set Registers” on
page 14-30

0xFFC0 072C PORTFIO_MASKB_
TOGGLE

“GPIO Mask Interrupt B Toggle Registers” on
page 14-34

0xFFC0 0730 PORTFIO_DIR “GPIO Direction Registers” on page 14-23

0xFFC0 0734 PORTFIO_POLAR “GPIO Polarity Registers” on page 14-26

0xFFC0 0738 PORTFIO_EDGE “Interrupt Sensitivity Registers” on page 14-27

Ports Registers

A-10 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 073C PORTFIO_BOTH “GPIO Set on Both Edges Registers” on
page 14-27

0xFFC0 0740 PORTFIO_INEN “GPIO Input Enable Registers” on page 14-24

0xFFC0 1500 PORTGIO “GPIO Data Registers” on page 14-24

0xFFC0 1504 PORTGIO_CLEAR “GPIO Clear Registers” on page 14-25

0xFFC0 1508 PORTGIO_SET “GPIO Set Registers” on page 14-25

0xFFC0 150C PORTGIO_TOGGLE “GPIO Toggle Registers” on page 14-26

0xFFC0 1510 PORTGIO_MASKA “GPIO Mask Interrupt A Registers” on
page 14-28

0xFFC0 1514 PORTGIO_MASKA_
CLEAR

“GPIO Mask Interrupt A Clear Registers” on
page 14-31

0xFFC0 1518 PORTGIO_MASKA_
SET

“GPIO Mask Interrupt A Set Registers” on
page 14-29

0xFFC0 151C PORTGIO_MASKA_
TOGGLE

“GPIO Mask Interrupt A Toggle Registers” on
page 14-33

0xFFC0 1520 PORTGIO_MASKB “GPIO Mask Interrupt B Registers” on
page 14-28

0xFFC0 1524 PORTGIO_MASKB_
CLEAR

“GPIO Mask Interrupt B Clear Registers” on
page 14-32

0xFFC0 1528 PORTGIO_MASKB_
SET

“GPIO Mask Interrupt B Set Registers” on
page 14-30

0xFFC0 152C PORTGIO_MASKB_
TOGGLE

“GPIO Mask Interrupt B Toggle Registers” on
page 14-34

0xFFC0 1530 PORTGIO_DIR “GPIO Direction Registers” on page 14-23

0xFFC0 1534 PORTGIO_POLAR “GPIO Polarity Registers” on page 14-26

0xFFC0 1538 PORTGIO_EDGE “Interrupt Sensitivity Registers” on page 14-27

0xFFC0 153C PORTGIO_BOTH “GPIO Set on Both Edges Registers” on
page 14-27

0xFFC0 1540 PORTGIO_INEN “GPIO Input Enable Registers” on page 14-24

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-11

System MMR Assignments

0xFFC0 1700 PORTHIO “GPIO Data Registers” on page 14-24

0xFFC0 1704 PORTHIO_CLEAR “GPIO Clear Registers” on page 14-25

0xFFC0 1708 PORTHIO_SET “GPIO Set Registers” on page 14-25

0xFFC0 170C PORTHIO_TOGGLE “GPIO Toggle Registers” on page 14-26

0xFFC0 1710 PORTHIO_MASKA “GPIO Mask Interrupt A Registers” on
page 14-28

0xFFC0 1714 PORTHIO_MASKA_
CLEAR

“GPIO Mask Interrupt A Clear Registers” on
page 14-31

0xFFC0 1718 PORTHIO_MASKA_
SET

“GPIO Mask Interrupt A Set Registers” on
page 14-29

0xFFC0 171C PORTHIO_MASKA_
TOGGLE

“GPIO Mask Interrupt A Toggle Registers” on
page 14-33

0xFFC0 1720 PORTHIO_MASKB “GPIO Mask Interrupt B Registers” on
page 14-28

0xFFC0 1724 PORTHIO_MASKB_
CLEAR

“GPIO Mask Interrupt B Clear Registers” on
page 14-32

0xFFC0 1728 PORTHIO_MASKB_
SET

“GPIO Mask Interrupt B Set Registers” on
page 14-30

0xFFC0 172C PORTHIO_MASKB_
TOGGLE

“GPIO Mask Interrupt B Toggle Registers” on
page 14-34

0xFFC0 1730 PORTHIO_DIR “GPIO Direction Registers” on page 14-23

0xFFC0 1734 PORTHIO_POLAR “GPIO Polarity Registers” on page 14-26

0xFFC0 1738 PORTHIO_EDGE “Interrupt Sensitivity Registers” on page 14-27

0xFFC0 173C PORTHIO_BOTH “GPIO Set on Both Edges Registers” on
page 14-27

0xFFC0 1740 PORTHIO_INEN “GPIO Input Enable Registers” on page 14-24

0xFFC0 3200 PORTF_FER “Function Enable Registers” on page 14-23

0xFFC0 3204 PORTG_FER “Function Enable Registers” on page 14-23

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

SPORT0 Controller Registers

A-12 ADSP-BF537 Blackfin Processor Hardware Reference

SPORT0 Controller Registers
SPORT0 controller registers (0xFFC0 0800 – 0xFFC0 08FF) are listed in
Table A-9.

0xFFC0 3208 PORTH_FER “Function Enable Registers” on page 14-23

0xFFC0 320C PORT_MUX “Port Multiplexer Control Register” on
page 14-22

Table A-9. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0800 SPORT0_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 12-50

0xFFC0 0804 SPORT0_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 12-54

0xFFC0 0808 SPORT0_TCLKDIV “SPORTx Transmit Serial Clock Divider Regis-
ter” on page 12-65

0xFFC0 080C SPORT0_TFSDIV “SPORTx Transmit Frame Sync Divider Regis-
ter” on page 12-66

0xFFC0 0810 SPORT0_TX “SPORTx Transmit Data Register” on
page 12-60

0xFFC0 0818 SPORT0_RX “SPORTx Receive Data Register” on
page 12-63

0xFFC0 0820 SPORT0_RCR1 “SPORTx Receive Configuration 1 Register”
on page 12-55

0xFFC0 0824 SPORT0_RCR2 “SPORTx Receive Configuration 2 Register”
on page 12-56

Table A-8. Ports Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-13

System MMR Assignments

0xFFC0 0828 SPORT0_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 12-66

0xFFC0 082C SPORT0_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 12-67

0xFFC0 0830 SPORT0_STAT “SPORTx Status Register” on page 12-64

0xFFC0 0834 SPORT0_CHNL “SPORTx Current Channel Register” on
page 12-69

0xFFC0 0838 SPORT0_MCMC1 “SPORTx Multichannel Configuration Register
1” on page 12-67

0xFFC0 083C SPORT0_MCMC2 “SPORTx Multichannel Configuration Register
2” on page 12-68

0xFFC0 0840 SPORT0_MTCS0 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0844 SPORT0_MTCS1 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0848 SPORT0_MTCS2 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 084C SPORT0_MTCS3 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0850 SPORT0_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 0854 SPORT0_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 0858 SPORT0_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 085C SPORT0_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

Table A-9. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

SPORT1 Controller Registers

A-14 ADSP-BF537 Blackfin Processor Hardware Reference

SPORT1 Controller Registers
SPORT1 controller registers (0xFFC0 0900 – 0xFFC0 09FF) are listed in
Table A-10.

Table A-10. SPORT 1 Controller Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0900 SPORT1_TCR1 “SPORTx Transmit Configuration 1 Register”
on page 12-50

0xFFC0 0904 SPORT1_TCR2 “SPORTx Transmit Configuration 2 Register”
on page 12-54

0xFFC0 0908 SPORT1_TCLKDIV “SPORTx Transmit Serial Clock Divider Regis-
ter” on page 12-65

0xFFC0 090C SPORT1_TFSDIV “SPORTx Transmit Frame Sync Divider Regis-
ter” on page 12-66

0xFFC0 0910 SPORT1_TX “SPORTx Transmit Data Register” on
page 12-60

0xFFC0 0918 SPORT1_RX “SPORTx Receive Data Register” on
page 12-63

0xFFC0 0920 SPORT1_RCR1 “SPORTx Receive Configuration 1 Register”
on page 12-55

0xFFC0 0924 SPORT1_RCR2 “SPORTx Receive Configuration 2 Register”
on page 12-56

0xFFC0 0928 SPORT1_RCLKDIV “SPORTx Receive Serial Clock Divider Regis-
ter” on page 12-66

0xFFC0 092C SPORT1_RFSDIV “SPORTx Receive Frame Sync Divider Regis-
ter” on page 12-67

0xFFC0 0930 SPORT1_STAT “SPORTx Status Register” on page 12-64

0xFFC0 0934 SPORT1_CHNL “SPORTx Current Channel Register” on
page 12-69

0xFFC0 0938 SPORT1_MCMC1 “SPORTx Multichannel Configuration Register
1” on page 12-67

ADSP-BF537 Blackfin Processor Hardware Reference A-15

System MMR Assignments

0xFFC0 093C SPORT1_MCMC2 “SPORTx Multichannel Configuration Register
2” on page 12-68

0xFFC0 0940 SPORT1_MTCS0 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0944 SPORT1_MTCS1 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0948 SPORT1_MTCS2 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 094C SPORT1_MTCS3 “SPORTx Multichannel Transmit Select Regis-
ters” on page 12-71

0xFFC0 0950 SPORT1_MRCS0 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 0954 SPORT1_MRCS1 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 0958 SPORT1_MRCS2 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

0xFFC0 095C SPORT1_MRCS3 “SPORTx Multichannel Receive Select Regis-
ters” on page 12-70

Table A-10. SPORT 1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

External Bus Interface Unit Registers

A-16 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Interface Unit Registers
External bus interface unit registers (0xFFC0 0A00 – 0xFFC0 0AFF) are
listed in Table A-11.

Table A-11. External Bus Interface Unit Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0A00 EBIU_AMGCTL “Asynchronous Memory Global Control Regis-
ter” on page 6-21

0xFFC0 0A04 EBIU_AMBCTL0 “Asynchronous Memory Bank Control 0 Regis-
ter” on page 6-23

0xFFC0 0A08 EBIU_AMBCTL1 “Asynchronous Memory Bank Control 1 Regis-
ter” on page 6-24

0xFFC0 0A10 EBIU_SDGCTL “SDRAM Memory Global Control Register” on
page 6-71

0xFFC0 0A14 EBIU_SDBCTL “SDRAM Memory Bank Control Register” on
page 6-67

0xFFC0 0A18 EBIU_SDRRC “SDRAM Refresh Rate Control Register” on
page 6-64

0xFFC0 0A1C EBIU_SDSTAT “SDRAM Control Status Register” on
page 6-81

ADSP-BF537 Blackfin Processor Hardware Reference A-17

System MMR Assignments

DMA/Memory DMA Control Registers
DMA control registers (0xFFC0 0B00 – 0xFFC0 0FFF) are listed in
Table A-12.

Since each DMA channel has an identical MMR set, with fixed offsets
from the base address associated with that DMA channel, it is convenient
to view the MMR information as provided in Table A-13 and Table A-14.
Table A-13 identifies the base address of each DMA channel, as well as the
register prefix that identifies the channel. Table A-14 then lists the register
suffix and provides its offset from the Base Address.

As an example, the DMA channel 0 Y_MODIFY register is called
DMA0_Y_MODIFY, and its address is 0xFFC0 0C1C. Likewise, the memory
DMA stream 0 source current address register is called
MDMA_S0_CURR_ADDR, and its address is 0xFFC0 0E64.

Table A-12. DMA Traffic Control Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 0B0C DMA_TC_PER “DMA Traffic Control Counter Period Regis-
ter” on page 5-106

0xFFC0 0B10 DMA_TC_CNT “DMA Traffic Control Counter Register” on
page 5-107

Table A-13. DMA Channel Base Addresses

DMA Channel
Identifier

MMR Base Address Register Prefix

0 0xFFC0 0C00 DMA0_

1 0xFFC0 0C40 DMA1_

2 0xFFC0 0C80 DMA2_

3 0xFFC0 0CC0 DMA3_

DMA/Memory DMA Control Registers

A-18 ADSP-BF537 Blackfin Processor Hardware Reference

4 0xFFC0 0D00 DMA4_

5 0xFFC0 0D40 DMA5_

6 0xFFC0 0D80 DMA6_

7 0xFFC0 0DC0 DMA7_

8 0xFFC0 0E00 DMA8_

9 0xFFC0 0E40 DMA9_

10 0xFFC0 0E80 DMA10_

11 0xFFC0 0EC0 DMA11_

MemDMA stream
0 destination

0xFFC0 0F00 MDMA_D0_

MemDMA stream
0 source

0xFFC0 0F40 MDMA_S0_

MemDMA stream
1 destination

0xFFC0 0F80 MDMA_D1_

MemDMA stream
1 source

0xFFC0 0FC0 MDMA_S1_

Table A-14. DMA Register Suffix and Offset

Register Suffix Offset From
Base

See Page

NEXT_DESC_PTR 0x00 “Next Descriptor Pointer Registers” on page 5-95

START_ADDR 0x04 “Start Address Registers” on page 5-82

CONFIG 0x08 “Configuration Registers” on page 5-74

X_COUNT 0x10 “Inner Loop Count Registers” on page 5-85

X_MODIFY 0x14 “Inner Loop Address Increment Registers” on page 5-88

Y_COUNT 0x18 “Outer Loop Count Registers” on page 5-90

Y_MODIFY 0x1C “Outer Loop Address Increment Registers” on page 5-93

Table A-13. DMA Channel Base Addresses (Cont’d)

DMA Channel
Identifier

MMR Base Address Register Prefix

ADSP-BF537 Blackfin Processor Hardware Reference A-19

System MMR Assignments

PPI Registers
PPI registers (0xFFC0 1000 – 0xFFC0 10FF) are listed in Table A-15.

CURR_DESC_PTR 0x20 “Current Descriptor Pointer Registers” on page 5-97

CURR_ADDR 0x24 “Current Address Registers” on page 5-83

IRQ_STATUS 0x28 “Interrupt Status Registers” on page 5-79

PERIPHERAL_MAP 0x2C “Peripheral Map Registers” on page 5-71

CURR_X_COUNT 0x30 “Current Inner Loop Count Registers” on page 5-86

CURR_Y_COUNT 0x38 “Current Outer Loop Count Registers” on page 5-92

Table A-15. PPI Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 1000 PPI_CONTROL “PPI Control Register” on page 7-28

0xFFC0 1004 PPI_STATUS “PPI Status Register” on page 7-32

0xFFC0 1008 PPI_COUNT “Transfer Count Register” on page 7-35

0xFFC0 100C PPI_DELAY “Delay Count Register” on page 7-34

0xFFC0 1010 PPI_FRAME “Lines Per Frame Register” on page 7-35

Table A-14. DMA Register Suffix and Offset (Cont’d)

Register Suffix Offset From
Base

See Page

TWI Registers

A-20 ADSP-BF537 Blackfin Processor Hardware Reference

TWI Registers
Two-Wire Interface (TWI) registers (0xFFC0 1400 – 0xFFC0 14FF) are-
listed in Table A-16.

Table A-16. TWI Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 1400 TWI_CLKDIV “TWI_CLKDIV Register” on page 11-27

0xFFC0 1404 TWI_CONTROL “TWI_CONTROL Register” on page 11-27

0xFFC0 1408 TWI_SLAVE_CTL “TWI_SLAVE_CTL Register” on page 11-28

0xFFC0 140C TWI_SLAVE_STAT “TWI_SLAVE_STAT Register” on page 11-30

0xFFC0 1410 TWI_SLAVE_ADDR “TWI_SLAVE_ADDR Register” on
page 11-30

0xFFC0 1414 TWI_MASTER_CTL “TWI_MASTER_CTL Register” on
page 11-32

0xFFC0 1418 TWI_MASTER_STAT “TWI_MASTER_STAT Register” on
page 11-37

0xFFC0 141C TWI_MASTER_ADDR “TWI_MASTER_ADDR Register” on
page 11-36

0xFFC0 1420 TWI_INT_STAT “TWI_INT_STAT Register” on page 11-45

0xFFC0 1424 TWI_INT_MASK “TWI_FIFO_STAT Register” on page 11-43

0xFFC0 1428 TWI_FIFO_CTL “TWI_FIFO_CTL Register” on page 11-40

0xFFC0 142C TWI_FIFO_STAT “TWI_FIFO_STAT Register” on page 11-43

0xFFC0 1480 TWI_XMT_DATA8 “TWI_XMT_DATA8 Register” on page 11-46

0xFFC0 1484 TWI_XMT_DATA16 “TWI_XMT_DATA16 Register” on
page 11-49

0xFFC0 1488 TWI_RCV_DATA8 “TWI_RCV_DATA8 Register” on page 11-50

0xFFC0 148C TWI_RCV_DATA16 “TWI_RCV_DATA16 Register” on page 11-50

ADSP-BF537 Blackfin Processor Hardware Reference A-21

System MMR Assignments

UART1 Controller Registers
UART1 controller registers (0xFFC0 2000 – 0xFFC0 20FF) are listed in
Table A-17. For UART0 registers, see Table A-5 on page A-5.

Table A-17. UART1 Controller Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 2000 UART1_THR “UART Transmit Holding Registers” on
page 13-27

0xFFC0 2000 UART1_RBR “UART Receive Buffer Registers” on
page 13-27

0xFFC0 2000 UART1_DLL “UART Divisor Latch High-Byte Registers” on
page 13-31

0xFFC0 2004 UART1_DLH “UART Divisor Latch High-Byte Registers” on
page 13-31

0xFFC0 2004 UART1_IER “UART Interrupt Enable Registers” on
page 13-28

0xFFC0 2008 UART1_IIR “UART Interrupt Identification Registers” on
page 13-30

0xFFC0 200C UART1_LCR “UART Line Control Registers” on page 13-22

0xFFC0 2010 UART1_MCR “UART Modem Control Registers” on
page 13-24

0xFFC0 2014 UART1_LSR “UART Line Status Registers” on page 13-25

0xFFC0 201C UART1_SCR “UART Scratch Registers” on page 13-32

0xFFC0 2024 UART1_GCTL “UART Global Control Registers” on
page 13-32

CAN Registers

A-22 ADSP-BF537 Blackfin Processor Hardware Reference

CAN Registers
CAN registers (0xFFC0 2A00 – 0xFFC0 2FFF) are listed in Table A-18
through Table A-21.

Table A-18. CAN Control and Configuration Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 2A00 CAN_MC1 “Mailbox Configuration Register 1” on
page 9-70

0xFFC0 2A04 CAN_MD1 “Mailbox Direction Register 1” on page 9-71

0xFFC0 2A08 CAN_TRS1 “Transmission Request Set Register 1” on
page 9-75

0xFFC0 2A0C CAN_TRR1 “Transmission Request Reset Register 1” on
page 9-76

0xFFC0 2A10 CAN_TA1 “Transmission Acknowledge Register 1” on
page 9-78

0xFFC0 2A14 CAN_AA1 “Abort Acknowledge Register 1” on page 9-77

0xFFC0 2A18 CAN_RMP1 “Receive Message Pending Register 1” on
page 9-72

0xFFC0 2A1C CAN_RML1 “Receive Message Lost Register 1” on page 9-73

0xFFC0 2A20 CAN_MBTIF1 “Mailbox Transmit Interrupt Flag Register 1”
on page 9-81

0xFFC0 2A24 CAN_MBRIF1 “Mailbox Receive Interrupt Flag Register 1” on
page 9-82

0xFFC0 2A28 CAN_MBIM1 “Mailbox Interrupt Mask Register 1” on
page 9-80

0xFFC0 2A2C CAN_RFH1 “Remote Frame Handling Register 1” on
page 9-79

0xFFC0 2A30 CAN_OPSS1 “Overwrite Protection/Single Shot Transmis-
sion Register 1” on page 9-74

0xFFC0 2A40 CAN_MC2 “Mailbox Configuration Register 2” on
page 9-70

ADSP-BF537 Blackfin Processor Hardware Reference A-23

System MMR Assignments

0xFFC0 2A44 CAN_MD2 “Mailbox Direction Register 2” on page 9-71

0xFFC0 2A48 CAN_TRS2 “Transmission Request Set Register 2” on
page 9-75

0xFFC0 2A4C CAN_TRR2 “Transmission Request Reset Register 2” on
page 9-76

0xFFC0 2A50 CAN_TA2 “Transmission Acknowledge Register 2” on
page 9-78

0xFFC0 2A54 CAN_AA2 “Abort Acknowledge Register 2” on page 9-77

0xFFC0 2A58 CAN_RMP2 “Receive Message Pending Register 2” on
page 9-72

0xFFC0 2A5C CAN_RML2 “Receive Message Lost Register 2” on page 9-73

0xFFC0 2A60 CAN_MBTIF2 “Mailbox Transmit Interrupt Flag Register 2”
on page 9-82

0xFFC0 2A64 CAN_MBRIF2 “Mailbox Receive Interrupt Flag Register 2” on
page 9-83

0xFFC0 2A68 CAN_MBIM2 “Mailbox Interrupt Mask Register 2” on
page 9-81

0xFFC0 2A6C CAN_RFH2 “Remote Frame Handling Register 2” on
page 9-80

0xFFC0 2A70 CAN_OPSS2 “Overwrite Protection/Single Shot Transmis-
sion Register 2” on page 9-74

0xFFC0 2A80 CAN_CLOCK “CAN Clock Register” on page 9-48

0xFFC0 2A84 CAN_TIMING “CAN Timing Register” on page 9-49

0xFFC0 2A8C CAN_STATUS “Global CAN Status Register” on page 9-47

0xFFC0 2A90 CAN_CEC “CAN Error Counter Register” on page 9-86

0xFFC0 2A94 CAN_GIS “Global CAN Interrupt Status Register” on
page 9-50

0xFFC0 2A98 CAN_GIM “Global CAN Interrupt Mask Register” on
page 9-50

Table A-18. CAN Control and Configuration Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

CAN Registers

A-24 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 2A9C CAN_GIF “Global CAN Interrupt Flag Register” on
page 9-51

0xFFC0 2AA0 CAN_CONTROL “Master Control Register” on page 9-46

0xFFC0 2AA4 CAN_INTR “CAN Interrupt Register” on page 9-49

0xFFC0 2AAC CAN_MBTD “Temporary Mailbox Disable Register” on
page 9-79

0xFFC0 2AB0 CAN_EWR “CAN Error Counter Warning Level Register”
on page 9-86

0xFFC0 2AB4 CAN_ESR “Error Status Register” on page 9-86

0xFFC0 2AC4 CAN_UCCNT “Universal Counter Register” on page 9-85

0xFFC0 2AC8 CAN_UCRC “Universal Counter Reload/Capture Register”
on page 9-85

0xFFC0 2ACC CAN_UCCNF “Universal Counter Configuration Mode Regis-
ter” on page 9-84

Table A-19. CAN Mailbox Acceptance Mask Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2B00 CAN_AM00L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B04 CAN_AM00H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B08 CAN_AM01L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B0C CAN_AM01H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B10 CAN_AM02L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B14 CAN_AM02H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B18 CAN_AM03L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B1C CAN_AM03H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B20 CAN_AM04L “Acceptance Mask Register (L)” on page 9-53

Table A-18. CAN Control and Configuration Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-25

System MMR Assignments

0xFFC0 2B24 CAN_AM04H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B28 CAN_AM05L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B2C CAN_AM05H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B30 CAN_AM06L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B34 CAN_AM06H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B38 CAN_AM07L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B3C CAN_AM07H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B40 CAN_AM08L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B44 CAN_AM08H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B48 CAN_AM09L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B4C CAN_AM09H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B50 CAN_AM10L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B54 CAN_AM10H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B58 CAN_AM11L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B5C CAN_AM11H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B60 CAN_AM12L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B64 CAN_AM12H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B68 CAN_AM13L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B6C CAN_AM13H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B70 CAN_AM14L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B74 CAN_AM14H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B78 CAN_AM15L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B7C CAN_AM15H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B80 CAN_AM16L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B84 CAN_AM16H “Acceptance Mask Register (H)” on page 9-51

Table A-19. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

CAN Registers

A-26 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 2B88 CAN_AM17L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B8C CAN_AM17H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B90 CAN_AM18L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B94 CAN_AM18H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2B98 CAN_AM19L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2B9C CAN_AM19H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BA0 CAN_AM20L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BA4 CAN_AM20H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BA8 CAN_AM21L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BAC CAN_AM21H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BB0 CAN_AM22L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BB4 CAN_AM22H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BB8 CAN_AM23L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BBC CAN_AM23H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BC0 CAN_AM24L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BC4 CAN_AM24H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BC8 CAN_AM25L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BCC CAN_AM25H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BD0 CAN_AM26L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BD4 CAN_AM26H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BD8 CAN_AM27L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BDC CAN_AM27H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BE0 CAN_AM28L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BE4 CAN_AM28H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BE8 CAN_AM29L “Acceptance Mask Register (L)” on page 9-53

Table A-19. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF537 Blackfin Processor Hardware Reference A-27

System MMR Assignments

Since each CAN mailbox has an identical MMR set, with fixed offsets
from the base address associated with that mailbox, it is convenient to
view the MMR information as provided in Table A-20 and Table A-21.
Table A-20 identifies the base address of each CAN mailbox, as well as the
register prefix that identifies mailbox. Table A-21 then lists the register
suffix and provides its offset from the base address.

As an example, the CAN mailbox 2 length register is called
CAN_MB02_LENGTH, and its address is 0xFFC0 2C50. Likewise, the CAN
mailbox 17 timestamp register is called CAN_MB17_TIMESTAMP, and its
address is 0xFFC0 2E34.

0xFFC0 2BEC CAN_AM29H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BF0 CAN_AM30L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BF4 CAN_AM30H “Acceptance Mask Register (H)” on page 9-51

0xFFC0 2BF8 CAN_AM31L “Acceptance Mask Register (L)” on page 9-53

0xFFC0 2BFC CAN_AM31H “Acceptance Mask Register (H)” on page 9-51

Table A-20. CAN Mailbox Base Addresses

Mailbox Identifier MMR Base Address Register Prefix

0 0xFFC0 2C00 CAN_MB00_

1 0xFFC0 2C20 CAN_MB01_

2 0xFFC0 2C40 CAN_MB02_

3 0xFFC0 2C60 CAN_MB03_

4 0xFFC0 2C80 CAN_MB04_

5 0xFFC0 2CA0 CAN_MB05_

6 0xFFC0 2CC0 CAN_MB06_

7 0xFFC0 2CE0 CAN_MB07_

Table A-19. CAN Mailbox Acceptance Mask Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

CAN Registers

A-28 ADSP-BF537 Blackfin Processor Hardware Reference

8 0xFFC0 2D00 CAN_MB08_

9 0xFFC0 2D20 CAN_MB09_

10 0xFFC0 2D40 CAN_MB10_

11 0xFFC0 2D60 CAN_MB11_

12 0xFFC0 2D80 CAN_MB12_

13 0xFFC0 2DA0 CAN_MB13_

14 0xFFC0 2DC0 CAN_MB14_

15 0xFFC0 2DE0 CAN_MB15_

16 0xFFC0 2E00 CAN_MB16_

17 0xFFC0 2E20 CAN_MB17_

18 0xFFC0 2E40 CAN_MB18_

19 0xFFC0 2E60 CAN_MB19_

20 0xFFC0 2E80 CAN_MB20_

21 0xFFC0 2EA0 CAN_MB21_

22 0xFFC0 2EC0 CAN_MB22_

23 0xFFC0 2EE0 CAN_MB23_

24 0xFFC0 2F00 CAN_MB24_

25 0xFFC0 2F20 CAN_MB25_

26 0xFFC0 2F40 CAN_MB26_

27 0xFFC0 2F60 CAN_MB27_

28 0xFFC0 2F80 CAN_MB28_

29 0xFFC0 2FA0 CAN_MB29_

30 0xFFC0 2FC0 CAN_MB30_

31 0xFFC0 2FE0 CAN_MB31_

Table A-20. CAN Mailbox Base Addresses (Cont’d)

Mailbox Identifier MMR Base Address Register Prefix

ADSP-BF537 Blackfin Processor Hardware Reference A-29

System MMR Assignments

Ethernet MAC Registers
Ethernet MAC registers (0xFFC0 3000 – 0xFFC0 31FF) are listed in
Table A-22.

Table A-21. CAN Mailbox Register Suffix and Offset

Register Suffix Offset From
Base

See Page

DATA0 0x00 “Mailbox Word 0 Register” on page 9-67

DATA1 0x04 “Mailbox Word 1 Register” on page 9-66

DATA2 0x08 “Mailbox Word 2 Register” on page 9-64

DATA3 0x0C “Mailbox Word 3 Register” on page 9-62

LENGTH 0x10 “Mailbox Word 4 Register” on page 9-61

TIMESTAMP 0x14 “Mailbox Word 5 Register” on page 9-59

ID0 0x18 “Mailbox Word 6 Register” on page 9-57

ID1 0x1C “Mailbox Word 7 Register” on page 9-55

Table A-22. Ethernet MAC Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 3000 EMAC_OPMODE “MAC Operating Mode Register” on page 8-65

0xFFC0 3004 EMAC_ADDRLO “MAC Address Low Register” on page 8-72

0xFFC0 3008 EMAC_ADDRHI “MAC Address High Register” on page 8-73

0xFFC0 300C EMAC_HASHLO “MAC Multicast Hash Table Low Register” on
page 8-74

0xFFC0 3010 EMAC_HASHHI “MAC Multicast Hash Table High Register” on
page 8-76

0xFFC0 3014 EMAC_STAADD “MAC Station Management Address Register”
on page 8-77

Ethernet MAC Registers

A-30 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3018 EMAC_STADAT “MAC Station Management Data Register” on
page 8-78

0xFFC0 301C EMAC_FLC “MAC Flow Control Register” on page 8-79

0xFFC0 3020 EMAC_VLAN1 “MAC VLAN1 Tag Register” on page 8-81

0xFFC0 3024 EMAC_VLAN2 “MAC VLAN2 Tag Register” on page 8-82

0xFFC0 302C EMAC_WKUP_CTL “MAC Wakeup Frame Control and Status Reg-
ister” on page 8-83

0xFFC0 3030 EMAC_WKUP_
FFMSK0

“MAC Wakeup Frame0 Byte Mask Register”
on page 8-86

0xFFC0 3034 EMAC_WKUP_
FFMSK1

“MAC Wakeup Frame1 Byte Mask Register”
on page 8-87

0xFFC0 3038 EMAC_WKUP_
FFMSK2

“MAC Wakeup Frame2 Byte Mask Register”
on page 8-88

0xFFC0 303C EMAC_WKUP_
FFMSK3

“MAC Wakeup Frame3 Byte Mask Register”
on page 8-89

0xFFC0 3040 EMAC_WKUP_
FFCMD

“MAC Wakeup Frame Filter Commands Regis-
ter” on page 8-90

0xFFC0 3044 EMAC_WKUP_FFOFF “Ethernet MAC Wakeup Frame Filter Offsets
Register” on page 8-92

0xFFC0 3048 EMAC_WKUP_
FFCRC0/1

“MAC Wakeup Frame Filter CRC0/1 Register”
on page 8-92

0xFFC0 304C EMAC_WKUP_
FFCRC2/3

“MAC Wakeup Frame Filter CRC2/3 Register”
on page 8-93

0xFFC0 3060 EMAC_SYSCTL “MAC System Control Register” on page 8-94

0xFFC0 3064 EMAC_SYSTAT “MAC System Status Register” on page 8-96

0xFFC0 3068 EMAC_RX_STAT “Ethernet MAC RX Current Frame Status Reg-
ister” on page 8-99

0xFFC0 306C EMAC_RX_STKY “Ethernet MAC RX Sticky Frame Status Regis-
ter” on page 8-105

Table A-22. Ethernet MAC Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-31

System MMR Assignments

0xFFC0 3070 EMAC_RX_IRQE “Ethernet MAC RX Frame Status Interrupt
Enable Register” on page 8-109

0xFFC0 3074 EMAC_TX_STAT “Ethernet MAC TX Current Frame Status Reg-
ister” on page 8-110

0xFFC0 3078 EMAC_TX_STKY “Ethernet MAC TX Sticky Frame Status Regis-
ter” on page 8-113

0xFFC0 307C EMAC_TX_IRQE “Ethernet MAC TX Frame Status Interrupt
Enable Register” on page 8-116

0xFFC0 3080 EMAC_MMC_CTL “MAC Management Counters Control Regis-
ter” on page 8-125

0xFFC0 3084 EMAC_MMC_RIRQS “Ethernet MAC MMC RX Interrupt Status
Register” on page 8-117

0xFFC0 3088 EMAC_MMC_RIRQE “Ethernet MAC MMC RX Interrupt Enable
Register” on page 8-119

0xFFC0 308C EMAC_MMC_TIRQS “Ethernet MAC MMC TX Interrupt Status
Register” on page 8-121

0xFFC0 3090 EMAC_MMC_TIRQE “Ethernet MAC MMC TX Interrupt Enable
Register” on page 8-123

0xFFC0 3100 EMAC_RXC_OK “MAC Management Counter Registers” on
page 8-55

0xFFC0 3104 EMAC_RXC_FCS “MAC Management Counter Registers” on
page 8-55

0xFFC0 3108 EMAC_RXC_ALIGN “MAC Management Counter Registers” on
page 8-55

0xFFC0 310C EMAC_RXC_OCTET “MAC Management Counter Registers” on
page 8-55

0xFFC0 3110 EMAC_RXC_
DMAOVF

“MAC Management Counter Registers” on
page 8-55

0xFFC0 3114 EMAC_RXC_UNICST “MAC Management Counter Registers” on
page 8-55

Table A-22. Ethernet MAC Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

Ethernet MAC Registers

A-32 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 3118 EMAC_RXC_MULTI “MAC Management Counter Registers” on
page 8-55

0xFFC0 311C EMAC_RXC_BROAD “MAC Management Counter Registers” on
page 8-55

0xFFC0 3120 EMAC_RXC_LNERRI “MAC Management Counter Registers” on
page 8-55

0xFFC0 3124 EMAC_RXC_LNERRO “MAC Management Counter Registers” on
page 8-55

0xFFC0 3128 EMAC_RXC_LONG “MAC Management Counter Registers” on
page 8-55

0xFFC0 312C EMAC_RXC_MACCTL “MAC Management Counter Registers” on
page 8-55

0xFFC0 3130 EMAC_RXC_OPCODE “MAC Management Counter Registers” on
page 8-55

0xFFC0 3134 EMAC_RXC_PAUSE “MAC Management Counter Registers” on
page 8-55

0xFFC0 3138 EMAC_RXC_ALLFRM “MAC Management Counter Registers” on
page 8-55

0xFFC0 313C EMAC_RXC_ALLOCT “MAC Management Counter Registers” on
page 8-55

0xFFC0 3140 EMAC_RXC_TYPED “MAC Management Counter Registers” on
page 8-55

0xFFC0 3144 EMAC_RXC_SHORT “MAC Management Counter Registers” on
page 8-55

0xFFC0 3148 EMAC_RXC_EQ64 “MAC Management Counter Registers” on
page 8-55

0xFFC0 314C EMAC_RXC_LT128 “MAC Management Counter Registers” on
page 8-55

0xFFC0 3150 EMAC_RXC_LT256 “MAC Management Counter Registers” on
page 8-55

Table A-22. Ethernet MAC Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-33

System MMR Assignments

0xFFC0 3154 EMAC_RXC_LT512 “MAC Management Counter Registers” on
page 8-55

0xFFC0 3158 EMAC_RXC_LT1024 “MAC Management Counter Registers” on
page 8-55

0xFFC0 315C EMAC_RXC_GE1024 “MAC Management Counter Registers” on
page 8-55

0xFFC0 3180 EMAC_TXC_OK “MAC Management Counter Registers” on
page 8-55

0xFFC0 3184 EMAC_TXC_1COL “MAC Management Counter Registers” on
page 8-55

0xFFC0 3188 EMAC_TXC_GT1COL “MAC Management Counter Registers” on
page 8-55

0xFFC0 318C EMAC_TXC_OCTET “MAC Management Counter Registers” on
page 8-55

0xFFC0 3190 EMAC_TXC_DEFER “MAC Management Counter Registers” on
page 8-55

0xFFC0 3194 EMAC_TXC_LATECL “MAC Management Counter Registers” on
page 8-55

0xFFC0 3198 EMAC_TXC_XS_COL “MAC Management Counter Registers” on
page 8-55

0xFFC0 319C EMAC_TXC_
DMAUND

“MAC Management Counter Registers” on
page 8-55

0xFFC0 31A0 EMAC_TXC_CRSERR “MAC Management Counter Registers” on
page 8-55

0xFFC0 31A4 EMAC_TXC_UNICST “MAC Management Counter Registers” on
page 8-55

0xFFC0 31A8 EMAC_TXC_MULTI “MAC Management Counter Registers” on
page 8-55

0xFFC0 31AC EMAC_TXC_BROAD “MAC Management Counter Registers” on
page 8-55

Table A-22. Ethernet MAC Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

Ethernet MAC Registers

A-34 ADSP-BF537 Blackfin Processor Hardware Reference

0xFFC0 31B0 EMAC_TXC_ES_DFR “MAC Management Counter Registers” on
page 8-55

0xFFC0 31B4 EMAC_TXC_MACCTL “MAC Management Counter Registers” on
page 8-55

0xFFC0 31B8 EMAC_TXC_ALLFRM “MAC Management Counter Registers” on
page 8-55

0xFFC0 31BC EMAC_TXC_ALLOCT “MAC Management Counter Registers” on
page 8-55

0xFFC0 31C0 EMAC_TXC_EQ64 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31C4 EMAC_TXC_LT128 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31C8 EMAC_TXC_LT254 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31CC EMAC_TXC_LT512 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31D0 EMAC_TXC_LT1024 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31D4 EMAC_TXC_GE1024 “MAC Management Counter Registers” on
page 8-55

0xFFC0 31D8 EMAC_TXC_ABORT “MAC Management Counter Registers” on
page 8-55

Table A-22. Ethernet MAC Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-35

System MMR Assignments

Handshake MDMA Control Registers
HMDMA registers (0xFFC0 3300 – 0xFFC0 33FF) are listed in
Table A-23.

Table A-23. HMDMA Registers

Memory-Mapped
Address

Register Name See Page

0xFFC0 3300 HMDMA0_CONTROL “Handshake MDMA Control Registers” on
page 5-100

0xFFC0 3304 HMDMA0_ECINIT “Handshake MDMA Initial Edge Count Regis-
ters” on page 5-104

0xFFC0 3308 HMDMA0_BCINIT “Handshake MDMA Initial Block Count Reg-
isters” on page 5-102

0xFFC0 330C HMDMA0_
ECURGENT

“Handshake MDMA Edge Count Urgent Reg-
isters” on page 5-105

0xFFC0 3310 HMDMA0_
ECOVERFLOW

“Handshake MDMA Edge Count Overflow
Interrupt Registers” on page 5-105

0xFFC0 3314 HMDMA0_ECOUNT “Handshake MDMA Current Edge Count Reg-
isters” on page 5-104

0xFFC0 3318 HMDMA0_BCOUNT “Handshake MDMA Current Block Count
Registers” on page 5-103

0xFFC0 3340 HMDMA1_CONTROL “Handshake MDMA Control Registers” on
page 5-100

0xFFC0 3344 HMDMA1_ECINIT “Handshake MDMA Initial Edge Count Regis-
ters” on page 5-104

0xFFC0 3348 HMDMA1_BCINIT “Handshake MDMA Initial Block Count Reg-
isters” on page 5-102

0xFFC0 334C HMDMA1_
ECURGENT

“Handshake MDMA Edge Count Urgent Reg-
isters” on page 5-105

0xFFC0 3350 HMDMA1_
ECOVERFLOW

“Handshake MDMA Edge Count Overflow
Interrupt Registers” on page 5-105

Core Timer Registers

A-36 ADSP-BF537 Blackfin Processor Hardware Reference

Core Timer Registers
Core timer registers (0xFFE0 3000 – 0xFFE0 300C) are listed in
Table A-24.

0xFFC0 3354 HMDMA1_ECOUNT “Handshake MDMA Current Edge Count Reg-
isters” on page 5-104

0xFFC0 3358 HMDMA1_BCOUNT “Handshake MDMA Current Block Count
Registers” on page 5-103

Table A-24. Core Timer Registers

Memory-Mapped
Address

Register Name See Page

0xFFE0 3000 TCNTL “Core Timer Control Register” on page 16-5

0xFFE0 3004 TPERIOD “Core Timer Period Register” on page 16-6

0xFFE0 3008 TSCALE “Core Timer Scale Register” on page 16-7

0xFFE0 300C TCOUNT “Core Timer Count Register” on page 16-6

Table A-23. HMDMA Registers (Cont’d)

Memory-Mapped
Address

Register Name See Page

ADSP-BF537 Blackfin Processor Hardware Reference A-37

System MMR Assignments

Processor-Specific Memory Registers
Processor-specific memory registers (0xFFE0 0004 – 0xFFE0 0300) are
listed in Table A-25.

Table A-25. Processor-Specific Memory Registers

Memory-Mapped
Address

Register Name See Page

0xFFE0 0004 DMEM_CONTROL “L1 Data Memory Control Register” on
page 3-10

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register” on page 3-11

Processor-Specific Memory Registers

A-38 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference B-1

B TEST FEATURES

This appendix discusses the test features of the processor. The appendix
contains:

• “JTAG Standard” on page B-1

• “Boundary-Scan Architecture” on page B-2

JTAG Standard
The processor is fully compatible with the IEEE 1149.1 standard, also
known as the Joint Test Action Group (JTAG) standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
boundary-scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

Boundary-Scan Architecture

B-2 ADSP-BF537 Blackfin Processor Hardware Reference

The test logic consists of a boundary-scan register and other building
blocks. The test logic is accessed through a Test Access Port (TAP).

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP comprised of five pins (see Table B-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

Table B-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

ADSP-BF537 Blackfin Processor Hardware Reference B-3

Test Features

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure B-1 shows the state diagram for the TAP controller.

Figure B-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

Boundary-Scan Architecture

B-4 ADSP-BF537 Blackfin Processor Hardware Reference

Note:

• The TAP controller enters the test-logic-reset state when TMS is
held high after five TCK cycles.

• The TAP controller enters the test-logic-reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The binary decode column of Table B-2 lists the decode for the public
instructions. The register column lists the serial scan paths.

Table B-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

SAMPLE/PRELOAD 10000 Boundary-Scan

BYPASS 11111 Bypass

ADSP-BF537 Blackfin Processor Hardware Reference B-5

Test Features

Figure B-2 shows the instruction bit scan ordering for the paths shown in
Table B-2.

Figure B-2. Serial Scan Paths

TDOTDI

N

N-1

N-2 2

1

0

0
130

31

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Boundary-Scan Architecture

B-6 ADSP-BF537 Blackfin Processor Hardware Reference

Public Instructions
The following sections describe the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the boundary-scan register to be connected
between the TDI and TDO pins. This instruction allows testing of on-board
circuitry external to the device.

The EXTEST instruction allows internal data to be driven to the boundary
outputs and external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the processor’s output pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects the
Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the device
pins and driven out on the board with the EXTEST instruction. Data is pre-
loaded on the pins on the falling edge of TCK.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

ADSP-BF537 Blackfin Processor Hardware Reference B-7

Test Features

Boundary-Scan Register
The boundary-scan register is selected by the EXTEST and SAMPLE/PRELOAD
instructions. These instructions allow the pins of the processor to be con-
trolled and sampled for board-level testing.

Boundary-Scan Architecture

B-8 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference G-1

G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller supporting multiple banks of asynchro-
nous memory including SRAM, ROM, and flash, where each bank can be
independently programmed with different timing parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative, and logical
functions.

bank activate command.

The bank activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the bank activate command is issued, it opens a new row address in
the dedicated bank. The memory in the open internal bank and row is
referred to as the open page. The bank activate command must be applied
before a read or write command.

base address.

The starting address of a circular buffer.

G-2 ADSP-BF537 Blackfin Processor Hardware Reference

base register.

A Data Address Generator (DAG) register that contains the starting
address for a circular buffer.

bit-reversed addressing.

The addressing mode in which the Data Address Generator (DAG) pro-
vides a bit-reversed address during a data move without reversing the
stored address.

Boot memory space.

Internal memory space designated for a program that is executed immedi-
ately after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command followed
by a NOP (no operation) command, respectively (Number of NOPs =
burst length - 1). Burst lengths of full page, 8, 4, 2, and 1 (no burst) are
available. The burst length is selected by writing the BL bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

Burst Stop command.

The burst stop command is one of several ways to terminate a burst read
or write operation.

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data. The burst type is selected by writing the BT bits in the
SDRAM’s mode register during the SDRAM powerup sequence.

ADSP-BF537 Blackfin Processor Hardware Reference G-3

Glossary

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as cache block. In this document, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

cache tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory
map.

CAM (Content Addressable Memory).

Also called associative memory. A memory device that includes compari-
son logic with each bit of storage. A data value is broadcast to all words in
memory; it is compared with the stored values; and values that match are
flagged.

CAS (Column Address Strobe).

A signal sent from the SDC to a DRAM device to indicate that the col-
umn address lines are valid.

G-4 ADSP-BF537 Blackfin Processor Hardware Reference

CAS latency (also tAA, tCAC, CL).

The CAS latency or read latency specifies the time between latching a read
address and driving the data off chip. This spec is normalized to the sys-
tem clock and varies from 2 to 3 cycles based on the speed. The CAS
latency is selected by writing the CL bits in the SDRAM’s mode register
during the SDRAM powerup sequence.

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By
activating Column Address Strobe (CAS) before activating Row Address
Strobe (RAS), this counter is selected to supply the row address instead of
the address inputs.

CEC.

See Core Event Controller

circular addressing.

The process by which the Data Address Generator (DAG) “wraps around”
or repeatedly steps through a range of registers.

companding.

(Compressing/expanding). The process of logarithmically encoding and
decoding data to minimize the number of bits that must be sent.

conditional branches.

Jump or call/return instructions whose execution is based on defined
conditions.

core.

The core consists of these functional blocks: CPU, L1 memory, event con-
troller, core timer, and performance monitoring registers.

ADSP-BF537 Blackfin Processor Hardware Reference G-5

Glossary

Core Event Controller (CEC).

The CEC works with the System Interrupt Controller (SIC) to prioritize
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

DAB.

See DMA Access Bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that is used to transfer data between computation
units and memory while providing local storage for operands.

data registers (Dreg).

Registers located in the data arithmetic unit that hold operands and results
for multiplier, ALU, or shifter operations.

DCB.

See DMA Core Bus

DEB.

See DMA External Bus

G-6 ADSP-BF537 Blackfin Processor Hardware Reference

descriptor block, DMA.

A set of parameters used by the direct memory access (DMA) controller to
describe a set of DMA sequences.

descriptor loading, DMA.

The process in which the direct memory access (DMA) controller down-
loads a DMA descriptor from data memory and autoinitializes the DMA
parameter registers.

DFT (Design For Testability).

A set of techniques that helps designers of digital systems ensure that those
systems will be testable.

Digital Signal Processor (DSP).

An integrated circuit designated for high-speed manipulation of analog
information that has been converted into digital form.

direct branches.

Jump or call/return instructions that use absolute addresses that do not
change at runtime (such as a program label), or they use a PC-relative
address.

direct-mapped.

Cache architecture where each line has only one place that it can appear in
the cache. Also described as 1-way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the
data is transferred through a DMA port without involving the processor.

ADSP-BF537 Blackfin Processor Hardware Reference G-7

Glossary

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the
data cache line has been changed since it was copied from the source
memory and, therefore, needs to be updated in that source memory.

DMA.

See Direct Memory Access

DMA Access Bus (DAB).

A bus that provides a means for DMA channels to be accessed by the
peripherals.

DMA chaining.

The linking or chaining of multiple direct memory access (DMA)
sequences. In chained DMA, the I/O processor loads the next DMA
descriptor into the DMA parameter registers when the current DMA fin-
ishes and autoinitializes the next DMA sequence.

DMA Core Bus (DCB).

A bus that provides a means for DMA channels to gain access to on-chip
memory.

DMA descriptor registers.

Registers that hold the initialization information for a direct memory
access (DMA) process.

DMA External Bus (DEB).

A bus that provides a means for DMA channels to gain access to off-chip
memory.

G-8 ADSP-BF537 Blackfin Processor Hardware Reference

DPMC (Dynamic Power Management Controller).

A processor’s control block that allows the user to dynamically control the
processor’s performance characteristics and power dissipation.

DQM Data I/O Mask Function.

The SDQM[1:0] pins provide a byte-masking capability on 8-bit writes to
SDRAM.

DRAM (Dynamic Random Access Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in an array of cells, each consisting of a capacitor and a transistor.
The cells are arranged on a chip in a grid of rows and columns. Since the
capacitors discharge gradually—and the cells lose their information—the
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit

edge-sensitive interrupt.

A signal or interrupt the processor detects if the input signal is high (inac-
tive) on one cycle and low (active) on the next cycle when sampled on the
rising edge of CLKIN.

ADSP-BF537 Blackfin Processor Hardware Reference G-9

Glossary

Endian format.

The ordering of bytes in a multibyte number.

EPB.

See External Port Bus

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates—a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, dis-
charges the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in memory that contains sixteen 32-bit entries; each entry
contains a vector address for an interrupt service routine (ISR). When an
event occurs, instruction fetch starts at the address location in the corre-
sponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line indicating the line is valid and the data con-
tained in the line matches that in the source memory. The data in a clean
cache line does not need to be written to source memory before it is
replaced.

External Access Bus (EAB).

A bus mastered by the core memory management unit to access external
memory.

G-10 ADSP-BF537 Blackfin Processor Hardware Reference

External Bus Controller (EBC).

A component that provides arbitration between the External Access Bus
(EAB) and the DMA External Bus (DEB), granting at most one requester
per cycle.

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core or from a DMA channel.

external port.

A channel or port that extends the processor’s internal address and data
buses off-chip, providing the processor’s interface to off-chip memory and
peripherals.

External Port Bus (EPB).

A bus that connects the output of the EBIU to external devices.

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data
values. The FFT expresses a finite set of data points, for example a peri-
odic sampling of a real-world signal, in terms of its component
frequencies. Or conversely, the FFT reconstructs a signal from the fre-
quency data. The FFT can also be used to multiply two polynomials.

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in.

flash memory.

A type of single transistor cell, erasable memory in which erasing can only
be done in blocks or for the entire chip.

ADSP-BF537 Blackfin Processor Hardware Reference G-11

Glossary

fully associative.

Cache architecture where each line can be placed anywhere in the cache.

glueless.

No external hardware is required.

Harvard architecture.

A processor memory architecture that uses separate buses for program and
data storage. The two buses let the processor fetch a data word and an
instruction word simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions.

I2C.

A bus standard specified in the Philips I2C Bus Specification version 2.1
dated January 2000.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

index.

Address portion that is used to select an array element (for example, line
index).

G-12 ADSP-BF537 Blackfin Processor Hardware Reference

Index registers.

A Data Address Generator (DAG) register that holds an address and acts
as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data
address generator, evaluated at runtime.

input clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication via the phase locked loop (PLL) module.

internal memory bank.

There are up to 4 internal memory banks on a given SDRAM. Each of
these banks can be accessed with the bank select lines BA[1:0]. The bank
address can be thought of as part of the row address.

interrupt.

An event that suspends normal processing and temporarily diverts the flow
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

IrDA (Infrared Data Association).

A nonprofit trade association that established standards for ensuring the
quality and interoperability of devices using the infrared spectrum.

isochronous.

Processes where data must be delivered within certain time constraints.

ADSP-BF537 Blackfin Processor Hardware Reference G-13

Glossary

ISR (Interrupt Service Routine).

Software that is executed when a specific interrupt occurs. A table stored
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard
for a test access port for testing electronic devices.

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard
for system test. This standard defines a method for serially scanning the
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program
memory.

latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have
been unused for the longest time.

Least Significant Bit (LSB).

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones.

G-14 ADSP-BF537 Blackfin Processor Hardware Reference

Length registers.

A Data Address Generator (DAG) register that specifies the range of
addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

level-sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low
(active) when sampled on the rising edge of CLKIN.

LIFO (Last In, First Out).

A data structure from which the next item taken out is the most recent
item put in.

little endian.

The native data store format of the processor. Words and half words are
stored in memory (and registers) with the least significant byte at the low-
est byte address and the most significant byte at the highest byte address of
the data storage location.

loop.

A sequence of instructions that executes several times.

LRU.

See Least Recently Used algorithm

ADSP-BF537 Blackfin Processor Hardware Reference G-15

Glossary

LSB.

See Least Significant Bit

MAC (Media Access Control).

The Ethernet MAC provides a 10/100Mbit/s Ethernet interface, compli-
ant to IEEE Std. 802.3-2002, between an MII (Media Independent
Interface) and the Blackfin peripheral subsystem.

MAC (Multiply/Accumulate).

A mathematical operation that multiplies two numbers and then adds a
third to get the result (see Multiply Accumulator).

Memory Management Unit (MMU).

A component of the processor that supports protection and selective cach-
ing of memory by using Cacheability Protection Lookaside Buffers
(CPLBs).

Mode register.

Internal configuration registers within SDRAM devices which allow speci-
fication of the SDRAM device’s functionality.

modified addressing.

The process whereby the Data Address Generator (DAG) produces an
address that is incremented by a value or the contents of a register.

Modify register.

A Data Address Generator (DAG) register that provides the increment or
step size by which an index register is pre- or post-modified during a regis-
ter move.

G-16 ADSP-BF537 Blackfin Processor Hardware Reference

MMR (Memory-Mapped Register).

A specific location in main memory used by the processor as if it were a
register.

MMU.

See Memory Management Unit

MSB (Most Significant Bit).

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)).

multifunction computations.

The parallel execution of multiple computational instructions. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the computational units and memory accesses. The multiple
operations perform the same as if they were in corresponding single func-
tion computations.

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

NMI (Nonmaskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt.

NRZ (Non-return-to-Zero).

A binary encoding scheme in which a 1 is represented by a change in the
signal and a 0 by no change—there is no return to a reference (0) voltage
between encoded bits. This method eliminates the need for a clock signal.

ADSP-BF537 Blackfin Processor Hardware Reference G-17

Glossary

NRZI (Non-return-to-Zero Inverted).

A binary encoding scheme in which a 0 is represented by a change in the
signal and a 1 is represented by no change—there is no return to a refer-
ence (0) voltage between encoded bits. This method eliminates the need
for a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus

page size.

The amount of memory which has the same row address and can be
accessed with successive read or write commands without needing to acti-
vate another row.

Parallel Peripheral Interface (PPI).

The PPI is a half-duplex, bidirectional port accommodating up to 16 bits
of data. It has a dedicated clock pin and three multiplexed frame sync
pins.

PC (Program Counter).

A register that contains the address of the next instruction to be executed.

peripheral.

Functional blocks not included as part of the core, and typically used to
support system level operations.

Peripheral Access Bus (PAB).

A bus used to provide access to EBIU memory-mapped registers.

G-18 ADSP-BF537 Blackfin Processor Hardware Reference

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full speed master clock
from a lower frequency input clock signal.

PLL.

See Phase Locked Loop

PPI.

See Parallel Peripheral Interface

precision.

The number of bits after the binary point in the storage format for the
number.

post-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments after the instruction is
executed.

precharge command.

The precharge command closes a specific active page in an internal bank
and the precharge all command closes all 4 active pages in all 4 banks.

pre-modify addressing.

The process in which the Data Address Generator (DAG) provides an
address during a data move and auto-increments before the instruction is
executed.

ADSP-BF537 Blackfin Processor Hardware Reference G-19

Glossary

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), PWM is a pulse modula-
tion technique in which the duration of the pulses is varied by the
modulating voltage.

RAS (Row Address Strobe).

A signal sent from the SDC to a DRAM device to indicate validity of row
address lines.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of
the processor, including time of day, alarm, and stopwatch countdown
features.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

RTC.

See Real-Time Clock

RZ (Return-to-Zero modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 0 is represented by a change from the low voltage level to the high
voltage level; a 1 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

G-20 ADSP-BF537 Blackfin Processor Hardware Reference

RZI (Return-to-Zero-Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A 1 is represented by a change from the low voltage level to the high
voltage level; a 0 is represented by a change from the high voltage level to
the low voltage level. A return to a reference (0) voltage is made between
encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SDC (SDRAM Controller).

A configurable memory controller supporting a bank of synchronous
memory consisting of SDRAM.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access
modes that clock out a series of successive bits.

SDRAM bank.

Region of external memory that can be configured to be 16M bytes, 32M
bytes, 64M bytes, or 128M bytes and is selected by the SMS pin.

ADSP-BF537 Blackfin Processor Hardware Reference G-21

Glossary

Self-Refresh.

When the SDRAM is in self-refresh mode, the SDRAM’s internal timer
initiates auto-refresh cycles periodically, without external control input.
The SDRAM Controller (SDC) must issue a series of commands includ-
ing the self-refresh command to put SDRAM into low power mode, and it
must issue another series of commands to exit self-refresh mode. Entering
self-refresh mode is programmed in the SDRAM memory global control
register (EBIU_SDGCTL) and any access to the SDRAM address space causes
the SDC to exit SDRAM from self-refresh mode. See “Enter Self-Refresh
Mode” on page 6-38 and “Exit Self-Refresh Mode” on page 6-38.

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

serial ports (SPORTs).

A high speed synchronous input/output device on the processor. The pro-
cessor uses two synchronous serial ports that provide inexpensive
interfaces to a wide variety of digital and mixed-signal peripheral devices.

set.

A group of N-line storage locations in the ways of an N-way cache,
selected by the index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or
ways).

shifter.

A computational unit that completes logical and arithmetic shifts.

G-22 ADSP-BF537 Blackfin Processor Hardware Reference

SIC (System Interrupt Controller).

Part of the processor’s two-level event control mechanism. The SIC works
with the Core Event Controller (CEC) to prioritize and control all system
interrupts. The SIC provides mapping between the peripheral interrupt
sources and the prioritized general-purpose interrupt inputs of the core.

SIMD (Single Instruction, Multiple Data).

A parallel computer architecture in which multiple data operands are pro-
cessed simultaneously using one instruction.

SP (Stack Pointer).

A register that points to the top of the stack.

SPI.

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

stack.

A data structure for storing items that are to be accessed in Last In, First
Out (LIFO) order. When a data item is added to the stack, it is “pushed”;
when a data item is removed from the stack, it is “popped.”

Static Random Access Memory (SRAM).

Very fast read/write memory that does not require periodic refreshing.

system.

The system includes the peripheral set (timers, real-time clock, program-
mable flags, UART, SPORTs, PPI, and SPIs), the external memory
controller (EBIU), the memory DMA controller, as well as the interfaces
between these peripherals, and the optional, external (off-chip) resources.

ADSP-BF537 Blackfin Processor Hardware Reference G-23

Glossary

System clock (SCLK).

A component that delivers clock pulses at a frequency determined by a
programmable divider ratio within the PLL.

System Interrupt Controller (SIC).

Component that maps and routes events from peripheral interrupt sources
to the prioritized, general-purpose interrupt inputs of the Core Event
Controller (CEC).

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel.
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of the 24
channels.

TWI.

See Two-Wire Interface

Two-Wire Interface (TWI).

The TWI controller allows a device to interface to an Inter IC bus as spec-

ified by the Philips I2C Bus Specification version 2.1 dated January 2000.
The interface is essentially a shift register that serially transmits and
receives data bits, one bit at a time at the SCL rate, to and from other TWI
devices.

G-24 ADSP-BF537 Blackfin Processor Hardware Reference

UART.

See Universal Asynchronous Receiver Transmitter

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits
required for asynchronous serial communication.

Valid.

A state bit (stored along with the tag) that indicates the corresponding tag
and data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access.

Way.

An array of line storage elements in an N-Way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

ADSP-BF537 Blackfin Processor Hardware Reference G-25

Glossary

Write-1-to-Set (W1S) bit.

A control or status bit that is set by writing 1 to it. It cannot be cleared by
writing 0 to it.

write back.

A cache write policy (also known as copyback). The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to source memory. The modified cache line
is not written to the source memory when it is replaced.

G-26 ADSP-BF537 Blackfin Processor Hardware Reference

ADSP-BF537 Blackfin Processor Hardware Reference I-1

I INDEX

Numerics
DMC, 3-8
16-bit flash, booting from, 19-39
16-bit flash interface, 21-6
16-bit SRAM, interface, 21-5
16-bit SRAM interface, 21-6
24 hours event flag bit, 18-22
24 hours interrupt enable bit, 18-21
2D DMA, 5-14
2X input clock, 12-27
5 Volt tolerance, 21-11
8-bit flash, booting from, 19-35
8-bit flash interface, 21-6
8-bit SRAM interface, 21-6

A
A[10] pin, 6-59
AAIF bit, 9-27, 9-51
AAIM bit, 9-27, 9-50
AAIS bit, 9-27, 9-50
AAn bit, 9-77
ABE[1:0] pins, 6-17, 6-18
ABO bit, 9-46
abort acknowledge interrupt, CAN, 9-27
abort acknowledge register 1 (CAN_AA1),

9-77
abort acknowledge register 2 (CAN_AA2),

9-77
aborted frames, MAC, 8-16
aborts, DMA, 5-32

acceptance mask register (CAN_AMxxH),
9-51

acceptance mask register (CAN_AMxxL),
9-53

access denied interrupt, CAN, 9-26
accesses

off-core, 2-5
to internal memory, 3-2

access to unimplemented address interrupt,
CAN, 9-27

access way•instruction address bit 11 bit,
3-11

ACKE bit, 9-86
active descriptor queue, and DMA

synchronization, 5-64
active low/high frame syncs, serial port,

12-35
active mode, 1-23, 20-9
active mode to full-on mode example,

20-31
ACTIVE_PLLDISABLED bit, 20-28
ACTIVE_PLLENABLED bit, 20-28
active video only mode, PPI, 7-11
ADCs, connecting to, 12-2
address bus, 6-8
address filter evaluation, MAC, 8-14
address mapping, SDRAM, 6-30
ADIF bit, 9-26, 9-51
ADIM bit, 9-26, 9-50
ADIS bit, 9-26, 9-50
alarm clock, RTC, 18-2
alarm event flag bit, 18-22

Index

I-2 ADSP-BF537 Blackfin Processor Hardware Reference

alarm interrupt enable bit, 18-21
A-law companding, 12-26, 12-31
AlignmentErrors register, 8-55
alternate frame sync mode, 12-38
alternate timing, serial port, 12-38
AMBEN[2:0] field, 6-21
AMC, 1-6, 1-9

bus contention, 6-11
EBIU block diagram, 6-5
features, 6-9
signals, 6-10

AMCKEN bit, 6-21
AME bit, 9-6, 9-55
AMIDE bit, 9-51
AMS, 6-10
ANAK bit, 11-37, 11-40
application data, loading, 19-1
arbitration

DAB, 2-8, 2-9
DCB, 2-8, 2-9
DEB, 2-8, 2-9
EAB, 2-11
latency, 2-10
TWI, 11-8

architecture, memory, 3-1
ARDY pin, 6-12, 6-16
array access bit, 3-11
ASIC/FPGA designs, 6-1
ASTP bit, 8-18, 8-64, 8-70
asynchronous

FIFO connection, 5-41
interfaces, supported, 6-1
memory, 3-2, 6-4, 6-9
memory bank address range (table), 6-10
memory controller, 1-9
read, 6-13
serial communications, 13-5
write, 6-14

asynchronous memory bank control 0
register (EBIU_AMBCTL0), 6-23

asynchronous memory bank control 1
register (EBIU_AMBCTL1), 6-24

asynchronous memory bank control
registers (EBIU_AMBCTLx), 6-22

asynchronous memory controller, See AMC
asynchronous memory global control

register (EBIU_AMGCTL), 6-19
ASYNC memory banks, 6-3
atomic operations, 21-3
autobaud, and general-purpose timers,

15-35
autobaud detection, 13-4, 13-14, 15-35
autobaud detection sequence, 19-55
autobuffer mode, 5-14, 5-31, 5-76
auto-refresh

command, 6-38, 6-56
timing, 6-64

auto-transmit mode, CAN, 9-16
avoiding bus contention, 6-11

B
B0HT[1:0] field, 6-23
B0RAT[3:0] field, 6-23
B0RDYEN bit, 6-23
B0RDYPOL bit, 6-23
B0ST[1:0] field, 6-23
B0TT[1:0] field, 6-23
B0WAT[3:0] field, 6-23
B1HT[1:0] field, 6-23
B1RAT[3:0] field, 6-23
B1RDYEN bit, 6-23
B1RDYPOL bit, 6-23
B1ST[1:0] field, 6-23
B1TT[1:0] field, 6-23
B1WAT[3:0] field, 6-23
B2HT[1:0] field, 6-24
B2RAT[3:0] field, 6-24
B2RDYEN bit, 6-24
B2RDYPOL bit, 6-24
B2ST[1:0] field, 6-24

ADSP-BF537 Blackfin Processor Hardware Reference I-3

Index

B2TT[1:0] field, 6-24
B2WAT[3:0] field, 6-24
B3HT[1:0] field, 6-24
B3RAT[3:0] field, 6-24
B3RDYEN bit, 6-24
B3RDYPOL bit, 6-24
B3ST[1:0] field, 6-24
B3TT[1:0] field, 6-24
B3WAT[3:0] field, 6-24
BA[1:0] pins, 6-36
bandwidth, and memory DMA operations,

5-51
bank

address, 6-68
size, 6-29, 6-68
size encodings (table), 6-31
width, 6-29

bank activate command, 6-37, G-1
bank activation command, 6-53
BASEID[10:0] field, 9-51, 9-55
baud rate

SPI, 10-21
UART, 13-7, 13-13

baud rate[15:0] field, 10-42
BCINIT[15:0] field, 5-102
BCOUNT[15:0] field, 5-103
BDI bit, 5-100
BDIE bit, 5-43, 5-100
BEF bit, 9-86
BGH pin, 6-8
BG signal, 6-8
BGSTAT bit, 6-8, 6-81, 6-82
BI bit, 13-25, 13-26
binary decode, B-4
bin x bit, 8-73, 8-75
bit order, selecting, 12-30
bit rate generation, 13-13
BKPRSEN bit, 8-78, 8-79

Blackfin loader file viewer, 19-58
Blackfin processor family

I/O memory space, 1-6
memory architecture, 1-4

block, DMA, 5-11
block count, DMA, 5-40
block diagrams

bus hierarchy, 2-3
CAN, 9-3
core, 2-4
core timer, 16-2
DMA controller, 5-5
EBIU, 6-4
general-purpose timers, 15-3
interrupt processing, 4-17
MAC, 8-3
PLL, 20-3
PPI, 7-3
processor, 1-4
RTC, 18-4
SDRAM, 6-61, 6-62
SPI, 10-3, 10-4
SPORT, 12-7
TWI, 11-3
UART, 13-3
watchdog timer, 17-3

block done interrupt, DMA, 5-43
block transfers, DMA, 5-40
BMODE[2:0] field, 19-5
BMODE[2:0] pins, 19-4
BMODE pins, 19-2
BOIF bit, 9-28, 9-51
BOIM bit, 9-28, 9-50
BOIS bit, 9-28, 9-50
BOLMT[1:0] field, 8-64, 8-67
boot

kernel, 19-1, 19-9
modes, 1-25

Index

I-4 ADSP-BF537 Blackfin Processor Hardware Reference

booting, 19-1 to 19-59
16-bit flash boot mode, 19-39
Blackfin modes, 19-33
boot block flag processing, 19-18
booting a different application, 19-27
boot ROM functions, 19-27
boot stream, 19-12
bypass mode, 19-34
completed, 19-17
control bits, 19-15
final initialization, 19-21
from 8-bit flash, 19-35
from PROM, 19-35
from SPI memory, 19-43
header, 19-14
host boot scenarios, 19-13
IGNORE block, 19-27
initialization code, 19-22
Intel hex loader file, 19-38
LdrViewer utility, 19-58
memory locations, 19-13
multi-application management, 19-26
multi-DXE, 19-26
overview, 1-25, 19-1
PORTF_FER, 19-20
PORT_MUX, 19-20
pre-boot initialization, 19-26
RESET input signal, 19-1
scratchpad memory, 19-13
slave boot modes, 19-19
SPI master boot from flash, 19-28
SPI master mode, 19-42
SPI slave mode, 19-47
start address, 19-29
TWI master boot from flash, 19-29
TWI master mode, 19-52
TWI slave mode, 19-54
UART slave mode, 19-55

boot ROM
internal, 19-1
memory space, 3-8

_BOOTROM_Boot_DXE_SPI function,
19-31

_BOOTROM_Get_DXE_Address_SPI
function, 19-31

boot stream, determining start address,
19-29

boundary-scan architecture, B-2
boundary-scan register, B-7
BroadcastFramesReceivedOK register,

8-56
BroadcastFramesXmittedOK register, 8-62
broadcast mode, 10-11, 10-18, 10-19
BRP[9:0] field, 9-10, 9-48
BR signal, 6-8
buffer registers, timers, 15-48
BUFRDERR bit, 11-37, 11-39
BUFWRERR bit, 11-37, 11-39
burst

length, 6-36, G-2
type, 6-36, G-2

bus agents
DAB, 2-9
PAB, 2-6

BUSBUSY bit, 11-37, 11-38
bus contention, avoiding, 6-11, 21-7
bus cycles

asynchronous read, 6-13
asynchronous write, 6-14

bus error, EBIU, 6-7
buses

See also DAB, DCB, DEB, EAB, EPB,
PAB

bandwidth, 1-3
core, 2-4
and DMA, 5-45
hierarchy, 2-2
on-chip, 2-1

ADSP-BF537 Blackfin Processor Hardware Reference I-5

Index

buses (continued)
PAB, 2-6
peripheral, 2-6
and peripherals, 1-3
prioritization and DMA, 5-53

busmastership, granting to external SDC,
6-49

bus-off interrupt, CAN, 9-28
bus request and grant, 6-8
bus standard, I2C, 1-11
bypass

capacitor placement, 21-11
mode, 19-34

BYPASS bit, 20-27
BYPASS instruction, B-6
BYPASS register, B-6
byte

address, 6-68
byte enable x bit, 8-85, 8-86, 8-87, 8-88

C
CAN, 1-12, 9-1 to 9-93

abort acknowledge interrupt, 9-27
acceptance mask filtering, 9-17
acceptance mask registers, 9-6
access denied interrupt, 9-26
access to unimplemented address

interrupt, 9-27
acknowledge error, 9-31
architecture, 9-4
autobaud detection, 15-35
auto-transmit mode, 9-16
bit error, 9-30
bit rate detection, 15-5
bit timing, 9-10
block diagram, 9-3
bus interface, 9-2
bus-off interrupt, 9-28
clock, 9-10
code examples, 9-87

CAN (continued)
configuration mode, 9-9, 9-12
CRC error, 9-31
data field filtering, 9-20
debug and test modes, 9-36
enabling mailboxes, 9-89
error frames, 9-29, 9-32
error levels, 9-34
errors, 9-30
error warning receive interrupt, 9-28
error warning transmit interrupt, 9-28
event counter, 9-29
extended frame, 9-9
external trigger output interrupt, 9-26
features, 9-1
form error, 9-31
global interrupts, 9-23, 9-26
hibernate state, 9-41
identifier frame, 9-9
initializing code, 9-87
initializing mailboxes, 9-89
initiating transfers, 9-90
interrupt processing, 9-90
interrupts, 9-25
lost arbitration, 9-29
low power designs, 9-41
low power features, 9-40
mailbox area registers, 9-5
mailbox control, 9-6
mailboxes, 9-4
mailbox interrupts, 9-25
mailbox RAM, 9-4
message buffers, 9-4
message received, 9-29
message stored, 9-30
multiplexing of signals, 9-4
nominal bit rate, 9-11
nominal bit time, 9-10
overload frame, 9-29
overview, 1-12

Index

I-6 ADSP-BF537 Blackfin Processor Hardware Reference

CAN (continued)
pins, 14-3
port J, 14-8
propagation segment, 9-11
protocol, 1-12
protocol basics, 9-7
receive message lost, 9-29
receive message lost interrupt, 9-27
receive message rejected, 9-29
receive operation, 9-17
receive operation flow chart, 9-19
registers, table, 9-42
remote frame handling, 9-21
re-synchronization, 9-11
retransmission, 9-14
sampling, 9-12
single shot transmission, 9-16
sleep mode, 9-41
software reset, 9-12
standard frame, 9-8
stuff error, 9-31
suspend mode, 9-40
test modes, 9-38
time quantum, 9-10
time stamps, 9-22
timing parameters, 9-12
transceiver interconnection, 9-2
transmission, 9-8
transmission aborted, 9-29
transmission succeeded, 9-29
transmit operation, 9-13
transmit operation flow chart, 9-14
universal counter as event counter, 9-29
universal counter exceeded interrupt,

9-27
valid message, 9-30
wakeup from hibernate, 9-41
wakeup interrupt, 9-27
warnings, 9-30
watchdog mode, 9-21

CAN_AA1 (abort acknowledge) register 1,
9-77

CAN_AA2 (abort acknowledge) register 2,
9-77

CAN_AAx (abort acknowledge) registers,
9-44

CAN_AMxxH (acceptance mask) register,
9-6, 9-43, 9-51

CAN_AMxxL (acceptance mask) register,
9-6, 9-43, 9-53

CAN_CEC (CAN error counter) register,
9-38, 9-45, 9-86

CAN_CLOCK (CAN clock) register, 9-10,
9-43, 9-48

CAN_CONTROL (master control)
register, 9-43, 9-46

CAN_DEBUG (CAN debug) register,
9-36, 9-37, 9-43, 9-48

CAN_ESR (error status) register, 9-45,
9-86

CAN_EWR (CAN error counter warning
level) register, 9-45, 9-86

CAN_GIF (global interrupt flag) register,
9-43, 9-51

CAN_GIM (global interrupt mask)
register, 9-43, 9-50

CAN_GIS (global interrupt status) register,
9-43, 9-50

CAN_INTR (CAN interrupt) register,
9-43, 9-49

CAN_MBIM1 (mailbox interrupt mask)
register 1, 9-80

CAN_MBIM2 (mailbox interrupt mask)
register 2, 9-81

CAN_MBIMx (mailbox interrupt mask)
registers, 9-44

CAN_MBRIF1 (mailbox receive interrupt
flag) register 1, 9-82

CAN_MBRIF2 (mailbox receive interrupt
flag) register 2, 9-83

ADSP-BF537 Blackfin Processor Hardware Reference I-7

Index

CAN_MBRIFx (mailbox receive interrupt
flag) registers, 9-45

CAN_MBTD (mailbox temporary disable)
register, 9-23

CAN_MBTD (temporary mailbox disable
feature) register, 9-44, 9-79

CAN_MBTIF1 (mailbox transmit
interrupt flag) register 1, 9-81

CAN_MBTIF2 (mailbox transmit
interrupt flag) register 2, 9-82

CAN_MBTIFx (mailbox transmit
interrupt flag) registers, 9-45

CAN_MBxx_DATA0 (mailbox word 0)
register, 9-43, 9-67

CAN_MBxx_DATA1 (mailbox word 1)
register, 9-43, 9-66

CAN_MBxx_DATA2 (mailbox word 2)
register, 9-43, 9-64

CAN_MBxx_DATA3 (mailbox word 3)
register, 9-43, 9-62

CAN_MBxx_DATA registers, 9-5
CAN_MBxx_ID0 (mailbox word 6)

register, 9-43, 9-57, 9-59
CAN_MBxx_ID1 (mailbox word 7)

register, 9-4, 9-43, 9-55
CAN_MBxx_IDx (mailbox word 6)

register, 9-4
CAN_MBxx_LENGTH (mailbox word 4)

register, 9-5, 9-43, 9-61
CAN_MBxx_TIMESTAMP (mailbox

word 5) register, 9-5, 9-43
CAN_MC1 (mailbox configuration)

register 1, 9-70
CAN_MC2 (mailbox configuration)

register 2, 9-70
CAN_MCx (mailbox configuration)

registers, 9-44
CAN_MD1 (mailbox direction) register 1,

9-71

CAN_MD2 (mailbox direction) register 2,
9-71

CAN_MDx (mailbox direction) registers,
9-44

CAN_OPSS1 (overwrite protection/single
shot transmission) register 1, 9-74

CAN_OPSS2 (overwrite protection/single
shot transmission) register 2, 9-74

CAN_OPSSx (overwrite protection/single
shot transmission) registers, 9-44

CAN_RFH1 (remote frame handling)
register 1, 9-79

CAN_RFH2 (remote frame handling)
register 2, 9-80

CAN_RFHx (remote frame handling)
registers, 9-21, 9-44

CAN_RML1 (receive message lost) register
1, 9-73

CAN_RML2 (receive message lost) register
2, 9-73

CAN_RMLx registers, 9-44
CAN_RMP1 (receive message pending)

register 1, 9-72
CAN_RMP2 (receive message pending)

register 2, 9-72
CAN_RMPx registers, 9-44
CANRX bit, 9-49
CANRX input, sampling, 9-11
CANRX pin, 9-7
CAN_STATUS (global status) register,

9-43, 9-47
CAN_TA1 (transmission acknowledge)

register 1, 9-78
CAN_TA2 (transmission acknowledge)

register 2, 9-78
CAN_TAx (transmission acknowledge)

registers, 9-44
CAN_TIMING (CAN timing) register,

9-10, 9-43, 9-49

Index

I-8 ADSP-BF537 Blackfin Processor Hardware Reference

CAN_TRR1 (transmission request reset)
register 1, 9-76

CAN_TRR2 (transmission request reset)
register 2, 9-76

CAN_TRRx (transmission request reset)
registers, 9-44

CAN_TRS1 (transmission request set)
register 1, 9-75

CAN_TRS2 (transmission request set)
register 2, 9-75

CAN_TRSx (transmission request set)
registers, 9-44

CANTX bit, 9-49
CANTX pin, 9-7
CAN_UCCNF (universal counter

configuration mode) register, 9-45,
9-84

CAN_UCCNT (universal counter)
register, 9-45, 9-85

CAN_UCRC (universal counter
reload/capture) register, 9-45, 9-85

CANWE bit, 20-29
capacitors, 21-10
capture mode, See WDTH_CAP mode
CAPWKFRM bit, 8-82, 8-83
CarrierSenseErrors register, 8-62
CAS latency, 6-37, 6-40
CAW, 6-68
CCA bit, 9-47
CCIR-656, See ITU-R 656
CCITT G.711 specification, 12-31
CCLK (core clock), 20-5

disabling, 20-23
status by operating mode, 20-8

CCLK (core processor clock), 2-3
CCOR bit, 8-44, 8-124
CCR bit, 9-46
CDDBG bit, 6-49, 6-71, 6-80
CDE bit, 9-36, 9-48
CDPRIO bit, 2-8, 6-21, 6-47

channels
defined, serial, 12-24
serial port TDM, 12-25
serial select offset, 12-24

CHNL[9:0] field, 12-68, 12-69
circuit board testing, B-1, B-6
circular addressing, 5-61
CKELOW bit, 20-29
CKE pin, 20-24
CL, 6-40
CL[1:0] field, 6-71, 6-73
clear Pxn bit, 14-25
clear Pxn interrupt A enable bit, 14-31
clear Pxn interrupt B enable bit, 14-32
CLKBUFOE bit, 20-29
CLKBUF pin, 8-4, 8-47
CLKHI[7:0] field, 11-27
CLKIN, 1-22
CLKIN (input clock), 2-3, 20-3
CLKIN input clock, 20-1
CLKIN to VCO, changing the multiplier,

20-16
CLKIN to VCO, changing the multiplier,

example, 20-34
CLKLOW[7:0] field, 11-27
CLKOUT pin, 6-7, 6-73

disabling, 6-78
CLK_SEL bit, 15-14, 15-23, 15-44, 15-52
clock

clock signals, 1-22
control, 20-1
EBIU, 6-2
external, 1-22
frequency for SPORT, 12-65
internal, 2-3
MAC, 8-4
managing, 21-2
peripheral, 20-7
RTC, 18-5
source for general-purpose timers, 15-6

ADSP-BF537 Blackfin Processor Hardware Reference I-9

Index

clock (continued)
SPI clock signal, 10-5
system, 1-22
system (SCLK), 21-2
types, 21-2

clock divide modulus registers, 12-65
clock domain synchronization, PPI, 7-16
clock input (CLKIN) pin, 21-2
clock phase, SPI, 10-15, 10-16
clock polarity, SPI, 10-15
clock rate

core timer, 16-1
SPORT, 12-2

clock ratio, changing, 20-6
clocks, overview, 1-22
codecs, connecting to, 12-2
column address, 6-68

strobe latency, 6-37, G-4
column read/write, SDRAM, 6-35
command inhibit command, 6-58
commands

auto-refresh, 6-38, 6-56, 6-64
bank activate, 6-37, G-1
bank activation, 6-53
command inhibit, 6-58
DMA control, 5-34, 5-35
EMRS, 6-53
ERMS, 6-37
MRS, 6-37, 6-52
no operation (NOP), 6-58
precharge, 6-38, G-18
precharge all, 6-38, 6-55
read, 6-38
read/write, 6-54
SDC, 6-50
self-refresh, 6-56
single precharge, 6-55
transfer initiate, 10-25, 10-26
write, 6-38

write with data mask, 6-54
companding, 12-17, 12-26

defined, 12-31
lengths supported, 12-31
multichannel operations, 12-26

configuration
CAN, 9-12
regulator wakeups, 20-35
SDC, 6-59
SDRAM, 6-27
SPORT, 12-12

congestion, on DMA channels, 5-50
contention, bus, avoiding, 6-11
continuous polling, and MMC register,

8-44
continuous transition, DMA, 5-30
control bit summary, general-purpose

timers, 15-51
control byte sequences, PPI, 7-10
control frames, MAC, 8-17
controller area network, See CAN
controller area network (CAN), 9-1
control register

data memory, 3-9
EBIU, 6-6

core
block diagram, 2-4
core bus, 2-4
core clock (CCLK), 20-5, 21-2
core clock/system clock ratio control,

20-5
powering down, 20-23
timer, 4-8
waking from idle state, 4-10

core and system reset, code example, 19-8
core clock, See CCLK
core clock (CCLK), 16-1, 20-2
core event controller (CEC), 4-2, 4-4
core-only software reset, 19-4, 19-8

Index

I-10 ADSP-BF537 Blackfin Processor Hardware Reference

core timer, 16-1 to 16-8
block diagram, 16-2
clock rate, 16-1
initialization, 16-3
internal interfaces, 16-2
interrupts, 16-3
low power mode, 16-3
operation, 16-3
registers, 16-4
scaling, 16-7

core timer control register (TCNTL), 16-3,
16-5

core timer count register (TCOUNT),
16-5

core timer period register (TPERIOD),
16-6

core timer scale register (TSCALE), 16-7
core voltage, changing, 20-36
counter, RTC, 18-2
count value[15:0] field, 16-6
count value[31:16] field, 16-6
CPHA bit, 10-43
CPOL bit, 10-43
CRC-16 hash value calculation, 8-38
CRC-32 calculation, MAC, 8-74
CRCE bit, 9-86
CRC state, MAC, 8-36
CROLL bit, 8-44, 8-124
CROSSCORE software, 1-28
crosstalk, 21-9
CSA bit, 9-40, 9-47
CSEL[1:0] field, 20-5, 20-27
CSEL bit, 21-2
CSR bit, 9-40, 9-46
CTYPE bit, 5-71
current address field, 5-83
current address registers

(DMAx_CURR_ADDR), 5-83
(MDMA_yy_CURR_ADDR), 5-83

current descriptor pointer field, 5-97

current descriptor pointer registers
(DMAx_CURR_DESC_PTR), 5-96
(MDMA_yy_CURR_DESC_PTR),

5-96
current inner loop count registers

(DMAx_CURR_X_COUNT), 5-86,
5-87

(MDMA_yy_CURR_X_COUNT),
5-86, 5-87

current outer loop count registers
(DMAx_CURR_Y_COUNT), 5-91
(MDMA_yy_CURR_Y_COUNT),

5-91
current time, 18-13
CURR_X_COUNT[15:0] field, 5-86
CURR_Y_COUNT[15:0] field, 5-92

D
DAB, 2-8, 5-7, 5-45, 5-107

arbitration, 2-8, 2-9
bus agents (masters), 2-9
clocking, 20-2
latencies, 2-10
performance, 2-10
throughput, 2-10

DAB_TRAFFIC_COUNT[2:0] field,
5-107

data
bus, 6-8
I/O mask function, 6-37
masks, 6-44
sampling, serial, 12-36

data bank access bit, 3-11
data cache select/address bit 14 bit, 3-11
data corruption, avoiding with SPI, 10-18
data-driven interrupts, 5-80
data field byte 0[7:0] field, 9-62
data field byte 1[7:0] field, 9-62
data field byte 2[7:0] field, 9-64
data field byte 3[7:0] field, 9-64

ADSP-BF537 Blackfin Processor Hardware Reference I-11

Index

data field byte 4[7:0] field, 9-66
data field byte 5[7:0] field, 9-66
data field byte 6[7:0] field, 9-67
data field byte 7[7:0] field, 9-67
data field filtering, CAN, 9-20
data formats, SPORT, 12-30
data input modes for PPI, 7-16 to 7-18
data/instruction access bit, 3-11
data memory control register

(DMEM_CONTROL), 3-9, 3-10
data move, serial port operations, 12-40
data output modes for PPI, 7-18 to 7-20
data test command register

(DTEST_COMMAND), 3-11
data transfers

DMA, 2-10, 5-2
SPI, 10-18

data word, serial data formats, 12-58
day[14:0] field, 18-23
day alarm event flag bit, 18-22
day alarm interrupt enable bit, 18-21
day counter[14:0] field, 18-21
DBF bit, 8-64, 8-69
DCB, 2-8, 5-6, 5-45, 5-108

arbitration, 2-8, 2-9
DC bit, 8-64, 8-67
DCBS bit, 3-10
DCB_TRAFFIC_COUNT field, 5-108
DCB_TRAFFIC_PERIOD field, 5-108
DCNT[7:0] field, 11-33, 11-34
DEB, 2-8, 5-7, 5-45, 5-108

arbitration, 2-8, 2-9
and EBIU, 6-5
frequency, 2-11
performance, 2-11

DEB_TRAFFIC_COUNT field, 5-108
DEB_TRAFFIC_PERIOD field, 5-108
debugging

test point access, 21-12
DEC bit, 9-38, 9-48

deep sleep, and RTC, 18-10
deep sleep mode, 1-24, 6-49, 20-10
default mapping, peripheral to DMA, 5-8
delay count register (PPI_DELAY), 7-34
descriptor

array mode, DMA, 5-18, 5-76
chains, DMA, 5-30
list mode, DMA, 5-17, 5-76
pairs, DMA, 8-12

descriptor-based DMA, 5-16
descriptor queue, 5-62

management, 5-61
synchronization, 5-62

descriptor structures
alternative, 8-26
DMA, 5-60
MDMA, 5-67

destination channels, memory DMA, 5-9
development tools, 1-28
DF bit, 20-3, 20-4, 20-27
DFC[15:0] field, 9-57, 9-59
DFETCH bit, 5-17, 5-24, 5-79
DFM[15:0] field, 9-53
DI_EN bit, 5-16, 5-74, 5-76
DIL bit, 9-37, 9-48
direction errors, MAC, 8-30
direct memory access, See DMA
disabling

general-purpose timers, 15-40
PLL, 20-13

discarded frames, MAC, 8-16
DI_SEL bit, 5-74, 5-77
DITFS bit, 12-39, 12-50, 12-53, 12-64
divisor latch high byte[15:8] field, 13-31
divisor latch low byte[7:0] field, 13-31
divisor reset, UART, 13-31
DLAB bit, 13-22, 13-27, 13-28
DLC[3:0] field, 9-61
DLEN[2:0] field, 7-27, 7-28

Index

I-12 ADSP-BF537 Blackfin Processor Hardware Reference

DMA, 5-1 to 5-119
1D interrupt-driven, 5-58
1D unsynchronized FIFO, 5-60
2D, polled, 5-59
2D array, example, 5-109
2D interrupt-driven, 5-58
autobuffer mode, 5-14, 5-31, 5-76
bandwidth, 5-49
block count, 5-40
block diagram, 5-5
block done interrupt, 5-43
block transfers, 5-11, 5-40
buffer size, multichannel SPORT, 12-26
buses, 2-8
channel registers, 5-70
channels, 5-45
channels and control schemes, 5-55
channel-specific register names, 5-69
congestion, 5-50
connecting asynchronous FIFO, 5-41
continuous transfers using autobuffering,

5-58
continuous transition, 5-30
control command restrictions, 5-38
control commands, 5-34, 5-35
controllers, 1-7
data transfers, 5-2
default peripheral mapping, 5-8
descriptor array, 5-25
descriptor array mode, 5-18, 5-76
descriptor-based, 5-16
descriptor-based, initializing, 5-112
descriptor-based vs. register-based

transfers, 5-3
descriptor chains, 5-30
descriptor element offsets, 5-18
descriptor list mode, 5-17, 5-76
descriptor lists, 5-25
descriptor queue, 5-61, 5-62
descriptors, and MAC, 8-127

DMA (continued)
descriptors, recommended size, 5-19
descriptor structures, 5-60
direction, 5-78
DMA error interrupt, 5-81
double buffer scheme, 5-58
and EBIU, 5-6
errors, 5-32, 5-33
example connection, receive, 5-43
example connection, transmit, 5-42
external interfaces, 5-6
features, 5-2
finish control command, 5-36
first data memory access, 5-24
flow chart, 5-21, 5-22
FLOW mode, 5-19
FLOW value, 5-23
for SPI transmit, 10-12
functions, summary, 5-4
handshake DMA, 1-8
handshake operation, 5-39
header file to define descriptor structures

example, 5-113
HMDMA1 block enable example, 5-118
HMDMA pins, 14-3
HMDMA with delayed processing

example, 5-119
initializing, 5-20
internal interfaces, 5-6
and L1 memory, 5-6
large model mode, 5-76
latency, 5-27
linked list, 8-127
MAC configuration, 8-126
mapping to peripherals, 4-11
memory conflict, 5-53
memory DMA, 1-8, 5-9
memory DMA streams, 5-10
memory DMA transfers, 5-7
memory read, 5-28

ADSP-BF537 Blackfin Processor Hardware Reference I-13

Index

DMA (continued)
operation flow, 5-20
orphan access, 5-31
overflow interrupt, 5-44
overview, 1-7
performance considerations, 5-46
peripheral, 5-7
peripheral channels, 5-2
peripheral channels priority, 5-8
peripheral interrupts, 4-10
peripheral priority and default mapping,

5-48
pipelining requests, 5-41
polling DMA status example, 5-111
polling registers, 5-56
and PPI, 7-37
prioritization and traffic control, 5-48 to

5-54
programming examples, 5-108 to 5-119
receive, 5-30
receive restart or finish, 5-38
refresh, 5-25
register-based, 5-12
register-based 2D memory DMA

example, 5-109
register naming conventions, 5-70
remapping peripheral assignment, 5-8
request data control command, 5-37
request data urgent control command,

5-37
restart control command, 5-36
round robin operation, 5-52
serial port block transfers, 12-40
single-buffer transfers, 5-58
small model mode, 5-76
software management, 5-55
software-triggered descriptor fetch

example, 5-115
and SPI, 10-13
SPI data transmission, 10-14

DMA (continued)
SPI master, 10-31
SPI slave, 10-34
and SPORT, 12-4
startup, 5-20
stop mode, 5-13, 5-75
stopping transfers, 5-31
support for peripherals, 1-3
switching peripherals from, 5-81
and synchronization with PPI, 7-14
synchronization, 5-55 to 5-65
synchronized transition, 5-30
termination without abort, 5-31
throughput, 5-45
traffic control, 5-53
traffic exceeding available bandwidth,

5-49
transfers, 1-7, 2-11
transfers, urgent, 5-49
transmit, 5-28
transmit operation, MAC, 8-24
transmit restart or finish, 5-38
triggering transfers, 5-65
two descriptors in small list flow mode,

example, 5-112
two-dimensional, 5-14
two-dimensional memory DMA setup

example, 5-110
types supported, 1-8
and UART, 13-18, 13-28
using descriptor structures example,

5-114
variable descriptor size, 5-18
with PPI, 7-24
word size, changing, 5-30, 5-31
work units, 5-16, 5-25, 5-27

DMA2D bit, 5-74, 5-77
DMA bus, See DAB
DMACFG field, 5-24, 5-67
DMA channel registers, 5-68

Index

I-14 ADSP-BF537 Blackfin Processor Hardware Reference

DMA configuration registers
(DMAx_CONFIG), 5-74
(MDMA_yy_CONFIG), 5-74

DMA controller, 5-2
DMA core bus, See DCB
DMA descriptor pairs, 8-24
DMA_DONE bit, 5-13, 5-79
DMA_DONE interrupt, 5-78
DMAEN bit, 5-20, 5-66, 5-74, 5-78
DMA_ERR bit, 5-13, 5-79
DMA_ERROR interrupt, 5-32
DMA error interrupts, 5-80
DMA external bus, See DEB
DMA performance optimization, 5-44
DMA queue completion interrupt, 5-64
DMAR0 pin, 5-6
DMAR1 pin, 5-6
DMA registers, 5-67, 5-68
DMA_RUN bit, 5-24, 5-63, 5-66, 5-79
DMA_RUN bit), 5-13
DMARx pin, 5-41
DMA start address field, 5-82
DMA_TC_CNT (DMA traffic control

counter) register, 5-107
DMA_TC_PER (DMA traffic control

counter period) register, 5-51, 5-107
DMA_TRAFFIC_PERIOD field, 5-107
DMAx_CONFIG (DMA configuration)

registers, 5-11, 5-20, 5-27, 5-74
DMAx_CURR_ADDR (current address)

registers, 5-83
DMAx_CURR_DESC_PTR (current

descriptor pointer) registers, 5-96
DMAx_CURR_X_COUNT (current

inner loop count) registers, 5-86, 5-87
DMAx_CURR_Y_COUNT (current

outer loop count) registers, 5-91
DMAx_IRQ_STATUS (interrupt status)

registers, 5-78, 5-79

DMAx_NEXT_DESC_PTR (next
descriptor pointer) registers, 5-20,
5-94

DMAx_PERIPHERAL_MAP (peripheral
map) registers, 4-10, 5-71

DMAx_START_ADDR (start address)
registers, 5-20, 5-82

DMAx_X_COUNT (inner loop count)
registers, 5-85

DMAx_X_MODIFY (inner loop address
increment) registers, 5-20, 5-88

DMAx_Y_COUNT (outer loop count)
registers, 5-90

DMAx_Y_MODIFY (outer loop address
increment) registers, 5-20, 5-93

DMC[1:0] field, 3-10
DMEM_CONTROL (data memory

control) register, 3-8, 3-9, 3-10
DNAK bit, 11-37, 11-40
DNM bit, 9-46
DOUBLE_FAULT bit, 19-7
double word index[1:0] field, 3-11
DPMC, 20-2, 20-7 to 20-37

controlling performance and power, 20-7
states, 20-8

DR bit, 13-12, 13-25
DR flag, 13-17
DRI bit, 9-37, 9-48
DRO bit, 8-64, 8-65
DRQ[1:0] field, 5-50, 5-100, 5-101
DRTY bit, 8-64, 8-66
DRxPRI signal, 12-6
DRxPRI SPORT input, 12-6
DRxSEC signal, 12-6
DRxSEC SPORT input, 12-6
DTEST_COMMAND (data test

command) register, 3-11
DTO bit, 9-37, 9-48
DTXCRC bit, 8-64, 8-68
DTXPAD bit, 8-64, 8-68

ADSP-BF537 Blackfin Processor Hardware Reference I-15

Index

DTxPRI signal, 12-6
DTxPRI SPORT output, 12-6
DTxSEC signal, 12-6
DTxSEC SPORT output, 12-6
dynamic power management, 1-22, 20-1

controller, 20-2
dynamic power management controller

(DPMC), 20-7

E
EAB

arbitration, 2-11
clocking, 20-2
and EBIU, 6-5
frequency, 2-11
performance, 2-11

early frame sync, 12-38
EAV signal, 7-7
EBC, 6-5
EBCAW[1:0] field, 6-67
EBE bit, 6-60, 6-66, 6-67
EBIU, 1-8

as slave, 6-5
asynchronous interfaces supported, 6-1
block diagram, 6-4
bus errors, 6-7
clock, 6-2
clocking, 20-2
control registers, 6-6
core transfers to SRAM, 6-26
and DMA, 5-6
error detection, 6-7
external access extension, 6-16
overview, 6-1
programmable timing characteristics,

6-12
read access period, 6-16
request priority, 6-2
shared pins, 6-6
status register, 6-6

EBIU (continued)
system clock, 6-7
wait states, 6-16

EBIU_AMBCTL0 (asynchronous memory
bank control 0) register, 6-22, 6-23

EBIU_AMBCTL1 (asynchronous memory
bank control 1) register, 6-22, 6-24

EBIU_AMBCTLx (asynchronous memory
bank control) registers, 6-22

EBIU_AMGCTL (asynchronous memory
global control) register, 6-20

EBIU_SDBCTL (SDRAM memory bank
control) register, 6-66

EBIU_SDGCTL (SDRAM memory bank
control) register, 6-61

EBIU_SDGCTL (SDRAM memory global
control) register, 6-70

EBIU_SDRRC (SDRAM refresh rate
control) register, 6-64

EBIU_SDSTAT (SDRAM control status)
register, 6-81

EBO bit, 9-47
EBSZ[2:0] field, 6-29, 6-67
EBUFE bit, 6-63, 6-71, 6-79
ECINIT[15:0] field, 5-104
ECOUNT[15:0] field, 5-104
edge detection, GPIO, 14-15
elfloader.exe loader utility, 19-12
elfloader utility, 19-25, 19-26
ELSI bit, 13-8, 13-28, 13-29
EMAC_ADDRHI (MAC address high)

register, 8-52, 8-71
EMAC_ADDRLO (MAC address low)

register, 8-52, 8-71
EMAC_FLC (MAC flow control) register,

8-52, 8-78
EMAC_HASHHI (EMAC multicast hash

table high) register, 8-52, 8-75
EMAC_HASHLO (EMAC multicast hash

table low) register, 8-52, 8-72

Index

I-16 ADSP-BF537 Blackfin Processor Hardware Reference

EMAC_MMC_CTL (MAC management
counters control) register, 8-54, 8-123

EMAC_MMC_RIRQE (EMAC MMC
RX interrupt enable) register, 8-54,
8-117

EMAC_MMC_RIRQS (EMAC MMC
RX interrupt status) register, 8-54,
8-115

EMAC_MMC_TIRQE (EMAC MMC
TX interrupt enable) register, 8-54,
8-121

EMAC_MMC_TIRQS (EMAC MMC
TX interrupt status) register, 8-54,
8-119

EMAC multicast hash table high register
(EMAC_HASHHI), 8-75

EMAC multicast hash table low register
(EMAC_HASHLO), 8-72

EMAC_OPMODE (MAC operating
mode) register, 8-52, 8-64

EMAC_RXC_ALIGN register, 8-55
EMAC_RXC_ALLFRM register, 8-59
EMAC_RXC_ALLOCT register, 8-59
EMAC_RXC_BROAD register, 8-56
EMAC_RXC_DMAOVF register, 8-55
EMAC_RXC_EQ64 register, 8-59
EMAC_RXC_FCS register, 8-55
EMAC_RXC_GE1024 register, 8-60
EMAC_RXC_LNERRI register, 8-57
EMAC_RXC_LNERRO register, 8-57
EMAC_RXC_LONG register, 8-57
EMAC_RXC_LT1024 register, 8-60
EMAC_RXC_LT128 register, 8-59
EMAC_RXC_LT256 register, 8-59
EMAC_RXC_LT512 register, 8-60
EMAC_RXC_MACCTL register, 8-58
EMAC_RXC_MULTI register, 8-56
EMAC_RXC_OCTET register, 8-55
EMAC_RXC_OK register, 8-54
EMAC_RXC_OPCODE register, 8-58

EMAC_RXC_PAUSE register, 8-58
EMAC_RXC_SHORT register, 8-59
EMAC_RXC_TYPED register, 8-59
EMAC_RXC_UNICST register, 8-56
EMAC_RX_IRQE (EMAC RX frame

status interrupt enable) register, 8-53,
8-107

EMAC_RX_STAT (EMAC RX current
frame status) register, 8-53, 8-97

EMAC_RX_STKY (EMAC RX sticky
frame status) register, 8-53, 8-103

EMAC_STAADD (MAC station
management address) register, 8-11,
8-52, 8-76

EMAC_STADAT (MAC station
management data) register, 8-10,
8-52, 8-77

EMAC_SYSCTL (MAC system control)
register, 8-10, 8-53, 8-92

EMAC_SYSTAT (MAC system status)
register, 8-53, 8-94

EMAC_TXC_1COL register, 8-60
EMAC_TXC_ALLFRM register, 8-62
EMAC_TXC_ALLOCT register, 8-63
EMAC_TXC_BROAD register, 8-62
EMAC_TXC_CRSERR register, 8-62
EMAC_TXC_DEFER register, 8-61
EMAC_TXC_DMAUND register, 8-61
EMAC_TXC_EQ64 register, 8-63
EMAC_TXC_GT1COL register, 8-60
EMAC_TXC_LATECL register, 8-61
EMAC_TXC_LT128 register, 8-63
EMAC_TXC_MACCTL register, 8-62
EMAC_TXC_MULTI register, 8-62
EMAC_TXC_OCTET register, 8-60
EMAC_TXC_OK register, 8-60
EMAC_TXC_UNICST register, 8-62
EMAC_TXC_XS_COL register, 8-61
EMAC_TXC_XS_DFR register, 8-62

ADSP-BF537 Blackfin Processor Hardware Reference I-17

Index

EMAC_TX_IRQE (EMAC TX frame
status interrupt enable) register, 8-53,
8-115

EMAC_TX_STAT (EMAC TX current
frame status) register, 8-53, 8-107

EMAC_TX_STKY (EMAC TX sticky
frame status) register, 8-53, 8-112

EMAC_VLAN1 (MAC VLAN1 tag)
register, 8-52, 8-80

EMAC_VLAN2 (MAC VLAN2 tag)
register, 8-52, 8-81

EMAC_WKUP_CTL (MAC wakeup
frame control and status) register,
8-52, 8-81

EMAC_WKUP_FFCMD (MAC wakeup
frame filter commands) register, 8-53,
8-89

EMAC_WKUP_FFCRC0 (MAC wakeup
frame filter CRC0/1) register, 8-53,
8-91

EMAC_WKUP_FFCRC1 (MAC wakeup
frame filter CRC2/3) register, 8-53,
8-91

EMAC_WKUP_FFMSKx (MAC wakeup
frameX byte mask) registers, 8-52,
8-84

EMAC_WKUP_FFOFF (EMAC wakeup
frame filter offsets) register, 8-53, 8-91

embedded Ethernet controller, 1-1
EMISO bit, 10-20, 10-43
EMREN bit, 6-53, 6-71, 6-80
EMRS command, 6-53
emulation, and timer counter, 15-46
EMU_RUN bit, 15-44, 15-46, 15-52
enable interrupts (STI) instruction, 20-17
enable Pxn interrupt A bit, 14-28
enable Pxn interrupt B bit, 14-28
enable wakeup filter 0 bit, 8-89, 8-90
enable wakeup filter 1 bit, 8-89, 8-90
enable wakeup filter 2 bit, 8-89, 8-90

enable wakeup filter 3 bit, 8-89
enabling

interrupts, 4-9
PPI, 7-3

ENDCPLB bit, 3-10
entering hibernate state, 20-35
entire field mode, PPI, 7-10
EP bit, 9-47
EPIF bit, 9-28, 9-51
EPIM bit, 9-28, 9-50
EPIS bit, 9-28, 9-50
EPROM, 1-6
EPS bit, 13-22
ERBFI bit, 13-7, 13-12, 13-27, 13-28
ERMS command, 6-37
ERR_DET bit, 7-31, 7-32
ERR_NCOR bit, 7-31, 7-32
error frames, CAN, 9-32
error-passive interrupt, CAN, 9-28
errors

DMA, 5-32
not detected by DMA hardware, 5-33
startup, and timers, 15-12

error signals, SPI, 10-21 to 10-24
error status register (CAN_ESR), 9-86
error warning receive interrupt, CAN, 9-28
error warning transmit interrupt, CAN,

9-28
ERR_TYP[1:0] field, 15-11, 15-44, 15-45,

15-52
ERR_TYP bits, 15-32
ETBEI bit, 13-6, 13-12, 13-19, 13-27,

13-28
Ethernet controller

architecture, 8-2
embedded, 1-1

Ethernet frame header, 8-50
Ethernet MAC, See MAC
event counter, CAN, 9-29
event handling, 4-4

Index

I-18 ADSP-BF537 Blackfin Processor Hardware Reference

events
default mapping, 4-12
definition, 4-4
types of, 4-4

event system, 4-4
event vector table (EVT), 4-2
EVT1 register, 19-9
EWLREC[7:0] field, 9-86
EWLTEC[7:0] field, 9-86
EWRIF bit, 9-28, 9-51
EWRIM bit, 9-28, 9-50
EWRIS bit, 9-28, 9-50
EWTIF bit, 9-28, 9-51
EWTIM bit, 9-28, 9-50
EWTIS bit, 9-28, 9-50
EXT_CLK mode, 15-36, 15-48

control bit and register usage, 15-51
flow diagram, 15-37

extended mode register, initialization, 6-53
external

crystal, 1-22
emulator debugger, 15-46
SDRAM memory, 6-29

external access bus, See EAB
external bank, SDRAM, 6-36
external bus interface unit, See EBIU
external memory, 1-6, 3-8

design issues, 21-5
interfaces, 6-6

external memory map, 3-2
figure, 6-3

external PHY, 8-4
external trigger output interrupt, CAN,

9-26
EXTEST instruction, B-6
EXTID[15:0] field, 9-53, 9-57, 9-59
EXTID[17:16] field, 9-51, 9-55
EXTIF bit, 9-26, 9-51
EXTIM bit, 9-26, 9-50
EXTIS bit, 9-26, 9-50

F
FAST bit, 11-33, 11-34
fast mode, TWI, 11-10
FBBRW bit, 6-71, 6-80
FDF bit, 9-20, 9-51
FDMODE bit, 8-64, 8-65
FE bit, 13-25, 13-26
FER bit, 9-86
FFE bit, 13-32, 13-33
field, 3-8
FIFO, 6-1
filtering, MAC, 8-14
FINAL bit, 19-15, 19-17
finish control command, DMA, 5-36
FLAG word bits, 19-15
flag word register, 19-15
flash

boot mode, 19-35
interface, 21-6
memory, 1-6, 6-1

FLCBUSY bit, 8-78, 8-80
FLCE bit, 8-17, 8-78, 8-79
FLCPAUSE[15:0] field, 8-78
FLD bit, 7-32
FLD_SEL bit, 7-6, 7-28, 7-30
flex descriptors, 5-3
FLGx bit, 10-44, 10-45
FLOW[2:0] field, 5-25, 5-26, 5-60, 5-74,

5-75
FLOW bit, 5-17, 5-18
flow charts

boot block flag processing, 19-18
CAN receive operation, 9-19
CAN transmit operation, 9-14
DMA, 5-21, 5-22
general-purpose timers interrupt

structure, 15-10
GPIO, 14-20
GPIO interrupt generation, 14-17
PPI, 7-26

ADSP-BF537 Blackfin Processor Hardware Reference I-19

Index

flow charts (continued)
SPI core-driven, 10-37
SPI DMA, 10-38
timer EXT_CLK mode, 15-37
timer PWM_OUT mode, 15-15
timer WDTH_CAP mode, 15-28
TWI master mode, 11-26
TWI slave mode, 11-25

FLOW mode, DMA, 5-19
FLOW value, DMA, 5-23
FLSx bit, 10-11, 10-44
FMD bit, 9-51
FPE bit, 13-32, 13-33
frame buffer, Ethernet, 8-127
FrameCheckSequenceErrors register, 8-55
framed serial transfers, characteristics,

12-34
framed/unframed data, 12-33
frame filter evaluation, MAC, 8-15
FramesAbortedDueToXSColls register,

8-61
FramesLen1024_MaxReceived register,

8-60
FramesLen128_255Received register, 8-59
FramesLen256_511Received register, 8-60
FramesLen512_1023Received register,

8-60
FramesLen65_127Received register, 8-59
FramesLen65_127Transmitted register,

8-63
FramesLenEq64Received register, 8-59
FramesLenEq64Transmitted register, 8-63
FramesLenLt64Received register, 8-59
FramesLostDueToIntMAC RcvError

register, 8-55
FramesLostDueToIntMACXmitError

register, 8-61
FramesReceivedAll register, 8-59
FramesReceivedOK register, 8-54
frame start detect, PPI, 7-36

FramesTransmittedAll register, 8-62
FramesTransmittedOK register, 8-60
FramesWithDeferredXmissions register,

8-61
FramesWithExcessiveDeferral register,

8-62
frame sync

active high/low, 12-35
early, 12-38
early/late, 12-38
external/internal, 12-35
internal, 12-28
internally generated, 12-66
late, 12-38
multichannel mode, 12-20
sampling edge, 12-36
SPORT options, 12-33

frame sync divider[15:0] field, 12-66,
12-67

frame synchronization
PPI in GP modes, 7-21
and SPORT, 12-3

frame sync polarity, PPI and timer, 7-22
frame sync pulse

use of, 12-52
when issued, 12-53

frame sync signal, control of, 12-52, 12-57
FrameTooLongErrors register, 8-57
frame track error, 7-31, 7-36
FREQ[1:0] field, 20-21, 20-29
frequencies, clock and frame sync, 12-28
frequency, DEB, 2-11
frequency, EAB, 2-11
FSDR bit, 12-24, 12-68
F signal, 7-32
FT_ERR bit, 7-31, 7-32, 7-36
full duplex, 12-4, 12-6

SPI, 10-2
FULL_ON bit, 20-28
full-on mode, 1-23, 20-8

Index

I-20 ADSP-BF537 Blackfin Processor Hardware Reference

full-on mode to active mode example,
20-33

function enable register (PORTF_FER),
14-9

function enable register (PORTG_FER),
14-9

function enable register (PORTH_FER),
14-9

function enable registers (PORTx_FER),
14-23

G
GAIN[1:0] field, 20-20, 20-29
gain levels, 20-20
GCALL bit, 11-30, 11-31
GEN bit, 11-28
general call address, TWI, 11-10
general-purpose interrupts, 4-4
general-purpose I/O, See GPIO
general-purpose ports, 1-9, 14-1 to 14-36

assigning interrupt channels, 14-15
interrupt channels, 14-15
interrupt generation flow, 14-15
latency, 14-9
pin defaults, 14-4
pins, interrupt, 14-14
throughput, 14-9

general-purpose ports, See GPIO
general-purpose signals, 14-2
general-purpose timers, 15-1 to 15-63

aborting immediately, 15-26
and startup errors, 15-12
autobaud mode, 15-35
block diagram, 15-3
buffer registers, 15-48
capture mode, 15-8
clock source, 15-6
code examples, 15-54
control bit summary, 15-51
counter, 15-7

general-purpose timers (continued)
disable timing, 15-26
disabling, 15-40
enabling, 15-7, 15-37, 15-39
error detection, 15-11
EXT_CLK mode, 15-48
external interface, 15-5
features, 15-2
flow diagram for EXT_CLK mode,

15-37
generating maximum frequency, 15-19
illegal states, 15-11, 15-12
internal interface, 15-6
internal timer structure, 15-4
interrupts, 15-7, 15-8, 15-18, 15-32
interrupt setup, 15-56
interrupt structure, 15-10
measurement report, 15-29, 15-30,

15-31
non-overlapping clock pulses, 15-58
output pad disable, 15-16
overflow, 15-7
periodic interrupt requests, 15-57
port setup, 15-54
and PPI, 15-6, 15-24
preventing errors in PWM_OUT mode,

15-49
programming model, 15-37
PULSE_HI toggle mode, 15-19
PWM mode, 15-8
PWM_OUT mode, 15-14 to 15-26,

15-47
registers, 15-38
signal generation, 15-55
single pulse generation, 15-16
size of register accesses, 15-39
stopping in PWM_OUT mode, 15-24
three timers with same period, 15-20
timer outputs, 15-5

ADSP-BF537 Blackfin Processor Hardware Reference I-21

Index

general-purpose timers (continued)
two timers with non-overlapping clocks,

15-21
waveform generation, 15-17
WDTH_CAP mode, 15-27, 15-47
WDTH_CAP mode configuration,

15-62
WDTH_CAP mode flow diagram,

15-28
Get_DXE_Address functions, 19-31,

19-33
GIRQ bit, 9-49
glitch filtering, UART, 13-9
global interrupts, CAN, 9-26
global interrupt status register (CAN_GIS),

9-50
global status register (CAN_STATUS),

9-47
glueless connection, 21-5
GM bit, 10-28, 10-43
GPIO, 1-10, 14-1 to 14-36

assigned to same interrupt channel,
14-18

and booting, 19-19
clearing interrupt condition, 14-16
clear registers, 14-13
code examples, 14-35
configuration, 14-11
data registers, 14-11, 14-12
direction registers, 14-11, 14-15
edge detection, 14-15
edge-sensitive, 14-12
flow chart, 14-20
function enable registers, 14-10, 14-14
high current option, 14-6
input buffers, 14-11
input driver, 14-11
input drivers, 14-15
input enable registers, 14-11, 14-14

GPIO (continued)
interrupt channels, 14-18, 14-19
interrupt generation flow chart, 14-17
interrupts, 14-15
interrupts at reset, 14-16
interrupt sensitivity registers, 14-15
mask data registers, 14-16
mask interrupt clear registers, 14-17
mask interrupt set registers, 14-16
mask interrupt toggle registers, 14-18
mask registers, 14-15
overview, 1-10
pins, 14-3, 14-10
polarity registers, 14-14
port F, 14-5
port G, 14-6
registers, 14-22
set registers, 14-12
toggle registers, 14-13
using as input, 14-11
write operations, 14-11
writes to registers, 14-13

GPIO clear registers (PORTxIO_CLEAR),
14-25

GPIO data registers (PORTxIO), 14-24
GPIO direction registers

(PORTxIO_DIR), 14-23
GPIO input enable registers

(PORTxIO_INEN), 14-24
GPIO mask interrupt A clear registers

(PORTxIO_MASKA_CLEAR),
14-31

GPIO mask interrupt A registers
(PORTxIO_MASKA), 14-28

GPIO mask interrupt A set registers
(PORTxIO_MASKA_SET), 14-29

GPIO mask interrupt A toggle registers
(PORTxIO_MASKA_TOGGLE),
14-33

Index

I-22 ADSP-BF537 Blackfin Processor Hardware Reference

GPIO mask interrupt B clear registers
(PORTxIO_MASKB_CLEAR),
14-32

GPIO mask interrupt B registers
(PORTxIO_MASKB), 14-28

GPIO mask interrupt B set registers
(PORTxIO_MASKB_SET), 14-30

GPIO mask interrupt B toggle registers
(PORTxIO_MASKB_TOGGLE),
14-34

GPIO pins, 14-10
GPIO polarity registers

(PORTxIO_POLAR), 14-26
GPIO set on both edges registers

(PORTxIO_BOTH), 14-27
GPIO set registers (PORTxIO_SET),

14-25
GPIO toggle registers

(PORTxIO_TOGGLE), 14-26
GP modes, PPI, 7-15
ground plane, 21-9, 21-10
GUWKE bit, 8-82, 8-83

H
H.100, 12-24
H.100 standard protocol, 12-27
handshake DMA, 1-8
handshake MDMA, 5-11, 5-39

interrupts, 5-43
handshake MDMA control registers

(HMDMAx_CONTROL), 5-100
handshake MDMA current block count

registers (HMDMAx_BCOUNT),
5-102, 5-103

handshake MDMA current edge count
registers (HMDMAx_ECOUNT),
5-103, 5-104

handshake MDMA edge count overflow
interrupt registers

(HMDMAx_ECOVERFLOW), 5-105
handshake MDMA edge count overflow

interrupt registers
(HMDMAx_ECOVERFLOW),
5-105

handshake MDMA edge count urgent
registers

(HMDMAx_ECURGENT), 5-105
handshake MDMA initial block count

registers (HMDMAx_BCINIT),
5-101

handshake MDMA initial edge count
registers

(HMDMAx_ECINIT), 5-104
handshake MDMA initial edge count

registers (HMDMAx_ECINIT),
5-104

handshaking MDMA operation, 5-6
handshaking memory DMA (HMDMA),

5-2
hardware reset, 19-9
hardware reset mode, 21-12
header, within the loader file, 19-14
hibernate state, 1-24, 6-49, 20-11, 20-23

and CAN, 9-41
entering, 20-35

high current option, 14-6
high-frequency design considerations, 21-8
HM bit, 8-64, 8-70
HMDMA, 5-11

pins, 14-3
HMDMAEN bit, 5-39, 5-41, 5-100
HMDMAx_BCINIT (handshake MDMA

configuration) registers, 5-40, 5-101
HMDMAx_BCOUNT (handshake

MDMA current block count)
registers, 5-40, 5-102, 5-103

ADSP-BF537 Blackfin Processor Hardware Reference I-23

Index

HMDMAx_CONTROL (handshake
MDMA control) registers, 5-6, 5-100

HMDMAx_ECINIT (handshake MDMA
initial edge count) registers, 5-41,
5-104

HMDMAx_ECOUNT (handshake
MDMA current edge count) registers,
5-41, 5-103, 5-104

HMDMAx_ECOVERFLOW (handshake
MDMA edge count overflow
interrupt) registers, 5-105

HMDMAx_ECURGENT (handshake
MDMA edge count urgent) registers,
5-105

HMVIP, 12-27
horizontal blanking, 7-7
horizontal tracking, PPI, 7-33
hours[3:0] field, 18-21, 18-23
hours[4] bit, 18-21, 18-23
hours event flag bit, 18-22
hours interrupt enable bit, 18-21
HU bit, 8-64, 8-70
HWAIT strobe, 19-19

I
I2C, See TWI
I2C bus standard, 1-11, 11-2
I2S, 1-16

format, 12-13
serial devices, 12-3

IDE bit, 9-55
idle state, waking from, 4-10
IEEE 1149.1 standard, See JTAG standard
IEEE 802.3, 1-13, 8-4, 8-8, 8-43
IFE bit, 8-64, 8-69
IGNORE bit, 19-15, 19-16
IGNORE block, 19-27
IMASK register initialization, 4-15
information processing time (IPT), 9-11
INIT bit, 19-16, 19-22

initialization
block, 19-16
code, 19-16, 19-22
IMASK register, 4-15
interrupt, 4-15
SDRAM, 6-77

initializing
CAN, 9-9
DMA, 5-20

inner loop address increment registers
(DMAx_X_MODIFY), 5-88
(MDMA_yy_X_MODIFY), 5-88

inner loop count registers
(DMAx_X_COUNT), 5-85
(MDMA_yy_X_COUNT), 5-85

input buffers, GPIO, 14-11
input clock, See CLKIN
input delay bit, 20-27
input driver, GPIO, 14-11
InRangeLengthErrors register, 8-57
instruction bit scan ordering, B-5
instruction register (IR), B-2, B-4
instructions, 1-27

private, B-4
public, B-4
See also instructions by name

Intel hex loader file, 19-38
interfaces

external memory, 6-6
internal memory, 6-5
on-chip, 2-2
overview, 2-2
RTC, 18-3
system, 2-1

inter IC bus, 11-2
interlaced video, 7-7
interleaving

of data in SPORT FIFO, 12-59
SPORT data, 12-8

Index

I-24 ADSP-BF537 Blackfin Processor Hardware Reference

internal
address mapping (table), 6-68
bank, 6-36, G-12
boot ROM, 19-1
clocks, 2-3
SDRAM banks, 6-31

internal/external frame syncs, See frame
sync

internal memory, 1-6
accesses, 3-2
interfaces, 6-5

internal supply regulator, shutting off,
20-23

internal TSR register, UART, 13-6
internal voltage levels, changing, 20-36
interrupt A, 14-15
interrupt B, 14-15
interrupt channels, UART, 13-28
interrupt conditions, UART, 13-29
interrupt handler and DMA

synchronization, 5-63
interrupt output, SPI, 10-24
interrupt request lines, peripheral, 4-2
interrupts, 4-1 to 4-23

assigning priority for UART, 13-13
CAN, 9-25
channels, assigning, 14-15
channels, GPIO, 14-15
configuring and servicing, 21-2
configuring for MAC, 8-47
control of system, 4-4
core timer, 16-3
default mapping, 4-5
definition, 4-4
determining source, 4-9
DMA channels, 4-10
DMA_ERROR, 5-32
DMA error, 5-81
DMA overflow, 5-44

interrupts (continued)
DMA queue completion, 5-64
enabling, 4-9
Ethernet event, 8-38
ethernet event, 8-39
evaluation of GPIO interrupts, 14-18
general-purpose, 4-4
general-purpose timers, 15-7, 15-8,

15-18, 15-32
generated by peripheral, 4-15
global, 9-26
GPIO, 14-14, 14-18, 14-19
handshake MDMA, 5-43
initialization, 4-15
inputs and outputs, 4-8
mailbox, 9-25
mapping, 4-8
mask function, 4-11
multiple sources, 4-16
peripheral, 4-4, 4-8 to 4-14
peripheral IDs, 4-12
peripheral interrupt events, 4-12
prioritization, 4-8
processing, 4-1, 4-15
remote wakeup, 8-35
reset, 19-10
routing overview, 4-3
RTC, 18-3, 18-7, 18-15
shared, 4-8
software, 4-4
SPI, 10-24, 10-50
SPORT error, 12-41
SPORT RX, 12-41, 12-63
SPORT TX, 12-41, 12-60
system, 4-1
to wake core from idle, 4-10
UART, 13-11
use in managing a descriptor queue, 5-62

interrupt sensitivity registers
(PORTxIO_EDGE), 14-27

ADSP-BF537 Blackfin Processor Hardware Reference I-25

Index

interrupt service routine, determining
source of interrupt, 4-9

interrupt status registers
(DMAx_IRQ_STATUS), 5-78, 5-79
(MDMA_yy_IRQ_STATUS), 5-78,

5-79
I/O interface to peripheral serial device,

12-4
I/O memory space, 1-6
I/O pins, general-purpose, 14-10
IP checksum, MAC, 8-19
IRCLK bit, 12-55, 12-57
IrDA, 13-32

receiver, 13-9
transmitter, 13-8

IrDA SIR, 13-5
IREN bit, 13-32
IRFS bit, 12-35, 12-55, 12-57
IR instruction register, B-2, B-4
IRPOL bit, 13-10
IRQ bit, 15-53
IRQ_ENA bit, 15-44, 15-51, 15-53
ISR and multiple interrupt sources, 4-16
ISR for the MMC interrupt, structure, 8-45
ITCLK bit, 12-50, 12-51
ITFS bit, 12-21, 12-35, 12-50, 12-52
ITHR[15:0] field, 5-105
ITU-R 601/656, 1-14
ITU-R 601 recommendation, 7-17
ITU-R 656 modes, 7-7, 7-10, 7-30, 7-31

active video only submode, 7-10, 7-11
and DLEN field, 7-27
entire field submode, 7-10
frame start detect, 7-36
frame synchronization, 7-13
output, 7-12
SAV codes, 7-33
supported, 1-14
vertical blanking interval only submode,

7-10, 7-12

J
JPEG compression, PPI, 7-39
JTAG, B-1, B-3, B-4
JTAG port, 19-8

L
L1

data cache, 3-8
data memory, 1-6
data memory subbanks, 3-7
data SRAM, 3-7
instruction memory, 1-6, 3-5
memory and core, 2-4
memory and DMA controller, 5-6
scratchpad RAM, 1-6

L1 instruction memory
address alignment, 3-5
subbanks, 3-6

LARFS bit, 12-38, 12-55, 12-58
large descriptor mode, DMA, 5-17
large model mode, DMA, 5-76
LateCollisions register, 8-61
late frame sync, 12-19, 12-38
latency

DAB, 2-10
DMA, 5-27
general-purpose ports, 14-9
powerup, 6-60
SDC, 6-44
SDRAM, 6-77

LATFS bit, 12-38, 12-50, 12-53
LB bit, 8-64, 8-65
LCRTE bit, 8-28
LCTRE bit, 8-64, 8-66
LdrViewer, 19-58
LdrViewer utility, 19-58
level shifters, 21-11
lines per frame register (PPI_FRAME),

7-35

Index

I-26 ADSP-BF537 Blackfin Processor Hardware Reference

line terminations, SPORT, 12-10
linked list, DMA, 8-127
little endian byte order, 11-49
loader file (.ldr), 19-12
loader utility, 19-12
LOCKCNT[15:0] field, 20-28
locked transfers, DMA, 2-10
logic voltage, controlling, 20-20
loopback feature, PPI, 7-11
loopback mode, UART, 13-24
LOOP bit, 13-24
LOSTARB bit, 11-37, 11-40
LRFS bit, 12-14, 12-34, 12-35, 12-55,

12-58
LSBF bit, 10-43
LT_ERR_OVR bit, 7-32, 7-33
LT_ERR_OVR flag, 7-33
LT_ERR_UNDR bit, 7-32, 7-33
LT_ERR_UNDR flag, 7-33
LTFS bit, 12-21, 12-34, 12-35, 12-50,

12-53

M
MAA bit, 9-48
MAC, 1-13, 8-1 to 8-131

aborted frames, 8-16
address filter evaluation, 8-14
address setup, 8-128
alternative descriptor structure, 8-26
block diagram, 8-3
clocking, 8-4
code examples, 8-125
configuration, 8-46
configuring address registers, 8-48
configuring interrupts, 8-47
configuring PHY, 8-50
continuous polling, 8-44
control frames, 8-17
CRC-16 hash value calculation, 8-38

MAC (continued)
CRC-32 address calculation, 8-74
CRC state, 8-36
CSMA/CD protocol, 8-2
descriptor structure, alternative, 8-26
discarded frames, 8-16
DMA configuration, 8-126
DMA data transfer, 8-50
DMA descriptor pairs, 8-12, 8-24
DMA descriptors, 8-127
Ethernet event interrupts, 8-38
ethernet event interrupts, 8-39
Ethernet frame buffer, 8-127
Ethernet frame header, 8-50
features, 8-2
filters, 8-14
flexible descriptor structure, 8-27
frame filter evaluation, 8-15
frame reception and filtering, 8-13
internal interface, 8-7
IP checksum, 8-19
late collisions, 8-28
linked list of DMAs, 8-127
Magic Packet detection, 8-34
management counters, 8-43
MII management interface, 8-8
MMC interrupt, 8-40, 8-45
multiplexed pins, 8-47
multiplexing, 8-5
operation in sleep state, 8-32
overview, 1-13
peripheral, 8-10
PHY control routines, 8-129
PHYINT interrupt, 8-40
pins, 8-5, 14-3
and PMAP field, 5-49
port H, 14-7
power management states, 8-7
protocol compliance, 8-8
read access to the PHY, 8-131

ADSP-BF537 Blackfin Processor Hardware Reference I-27

Index

MAC (continued)
receive DMA operation, 8-11
receiving data, 8-51
registers, table, 8-51
remote wakeup frame filters, 8-35
RX•TX frame status interrupt operation,

8-42
RX automatic pad stripping, 8-18
RX DMA buffer structure, 8-18
RX DMA data alignment, 8-18
RX DMA direction error detected, 8-41
RX DMA direction errors, 8-23
RX frame status buffer, 8-19
RX frame status classification, 8-20
RX frame status interrupt, 8-40
RX frame status register operation, 8-43
RX IP frame checksum calculation, 8-21
RX receive status priority, 8-21
speculative read, 8-44
station management read, 8-9
station management read transfer, 8-49
station management transfer done, 8-41
station management write, 8-10
station management write transfer, 8-49
transfer frame protocol, 8-9
transmit DMA operation, 8-24
transmitting data, 8-51
TX DMA data alignment, 8-27
TX DMA direction error detected, 8-41
TX DMA direction errors, 8-30
TX frame status classification, 8-29
TX frame status interrupt, 8-40
TX frame status register operation, 8-43
TX transmit status priority, 8-29
type definitions, 8-126
wake from hibernate, 8-31
wake from sleep, 8-32
wakeup frame detected, 8-41

MAC address high[15:0] field, 8-72

MAC address high register
(EMAC_ADDRHI), 8-71

MAC address low[15:0] field, 8-71
MAC address low[31:16] field, 8-71
MAC address low register

(EMAC_ADDRLO), 8-71
MACControlFramesReceived register,

8-58
MACControlFramesTransmitted register,

8-62
MAC flow control register (EMAC_FLC),

8-78
MAC management counters control

register (EMAC_MMC_CTL), 8-123
MAC operating mode register

(EMAC_OPMODE), 8-64
MAC station management address register

(EMAC_STAADD), 8-76
MAC station management data register

(EMAC_STADAT), 8-77
MAC system control register

(EMAC_SYSCTL), 8-92
MAC system status register

(EMAC_SYSTAT), 8-94
MAC VLAN1 tag register

(EMAC_VLAN1), 8-80
MAC VLAN2 tag register

(EMAC_VLAN2), 8-81
MADDR[6:0] field, 11-36
Magic Packet, 8-34
mailbox configuration register 1

(CAN_MC1), 9-70
mailbox configuration register 2

(CAN_MC2), 9-70
mailbox direction register 1 (CAN_MD1),

9-71
mailbox direction register 2 (CAN_MD2),

9-71
mailboxes, CAN, 9-4
mailbox interrupt mask registers, 9-80

Index

I-28 ADSP-BF537 Blackfin Processor Hardware Reference

mailbox interrupts, CAN, 9-25
mailbox receive interrupt flag registers,

9-82
mailbox transmit interrupt flag registers,

9-81
mailbox word 0 register

(CAN_MBxx_DATA0), 9-67
mailbox word 1 register

(CAN_MBxx_DATA1), 9-66
mailbox word 2 register

(CAN_MBxx_DATA2), 9-64
mailbox word 3 register

(CAN_MBxx_DATA3), 9-62
mailbox word 4 register

(CAN_MBxx_LENGTH), 9-61
mailbox word 6 register

(CAN_MBxx_ID0), 9-57, 9-59
mailbox word 7 register

(CAN_MBxx_ID1), 9-55
mapping

default interrupt, 4-12
peripheral to DMA, 4-11

master control register
(CAN_CONTROL), 9-46

masters
DAB, 2-9
PAB, 2-6

MBDI bit, 5-43, 5-100
MBIMn bit, 9-80, 9-81
MBPTR[4:0] field, 9-47
MBRIFn bit, 9-82, 9-83
MBRIRQ bit, 9-49
MBTIFn bit, 9-81, 9-82
MBTIRQ bit, 9-49
MCCRM[1:0] field, 12-68
MCDRXPE bit, 12-68
MCDTXPE bit, 12-68
MCMEN bit, 12-19, 12-68
MCOMP bit, 11-45, 11-47
MCx bit, 9-70

MDCDIV[5:0] field, 8-93
MDIO station management interface, 8-8
MDIR bit, 11-33, 11-35
MDMA controllers, 5-9
MDMA_ROUND_ROBIN_COUNT[4:

0] field, 5-52, 5-107
MDMA_ROUND_ROBIN_PERIOD

field, 5-51, 5-52, 5-107
MDMA_yy_CONFIG (DMA

configuration) registers, 5-74
MDMA_yy_CURR_ADDR (current

address) registers, 5-83
MDMA_yy_CURR_DESC_PTR (current

descriptor pointer) registers, 5-96
MDMA_yy_CURR_X_COUNT (current

inner loop count) registers, 5-86, 5-87
MDMA_yy_CURR_Y_COUNT (current

outer loop count) registers, 5-91
MDMA_yy_IRQ_STATUS (interrupt

status) registers, 5-78, 5-79
MDMA_yy_NEXT_DESC_PTR (next

descriptor pointer) registers, 5-94
MDMA_yy_PERIPHERAL_MAP

(peripheral map) registers, 5-71
MDMA_yy_START_ADDR (start

address) registers, 5-82
MDMA_yy_X_COUNT (inner loop

count) registers, 5-85
MDMA_yy_X_MODIFY (inner loop

address increment) registers, 5-88
MDMA_yy_Y_COUNT (outer loop

count) registers, 5-90
MDMA_yy_Y_MODIFY (outer loop

address increment) registers, 5-93
MDn bit, 9-71
measurement report, general-purpose

timers, 15-29, 15-30, 15-31
memory, 3-1 to 3-11

accesses to internal, 3-2
ADSP-BF534, 3-3

ADSP-BF537 Blackfin Processor Hardware Reference I-29

Index

memory (continued)
ADSP-BF536, 3-4
ADSP-BF537, 3-5
architecture, 1-4, 3-1
asynchronous, 3-2
asynchronous interface, 21-5
asynchronous region, 6-4
boot ROM, 3-8
configurations, 1-5, 3-2
external, 1-6, 3-8
external memory, 6-6
external memory map, 3-2
external SDRAM, 6-29
internal, 1-6
internal bank, 6-36, G-12
I/O space, 1-6
L1, 2-4
L1 data, 1-6, 3-7
L1 data cache, 3-8
L1 instruction, 1-6, 3-5
L1 scratchpad RAM, 1-6
moving data between SPORT and,

12-40
off-chip, 1-6
on-chip, 1-6
SDRAM, 3-2
start locations of L1 instruction memory

subbanks, 3-6
structure, 1-4
unpopulated, 6-10

memory conflict, DMA, 5-53
memory DMA, 1-8, 5-9

bandwidth, 5-47
buffers, 5-10
channels, 5-9
descriptor structures, 5-67
handshake operation, 5-11
priority, 5-51
scheduling, 5-51
timing, 5-48

memory DMA (continued)
transfer operation, starting, 5-11
transfer performance, 2-11, 2-12
transfers, 5-2, 5-7
word size, 5-10

memory map, external (figure), 6-3
memory-mapped registers, See MMRs
memory-to-memory transfer, 5-10
MEN bit, 11-33, 11-35
MERR bit, 11-45, 11-47
MFD[3:0] field, 12-23, 12-68
MII

communications protocol, setting up,
8-48

management interface, 8-8
multiplexing, 8-5
pins, 8-5, 14-3
port H, 14-7
port J, 14-8

minutes[5:0] field, 18-21, 18-23
minutes event flag bit, 18-22
minutes interrupt enable bit, 18-21
MISO pin, 10-5, 10-6, 10-16, 10-18,

10-19, 10-20, 10-28, 19-42
-law companding, 12-26, 12-31
MMC, continuous polling, 8-44
MMCE bit, 8-43, 8-123, 8-124
MMCINT bit, 8-95, 8-96
MMC interrupt, 8-40, 8-45
MMRs, 1-6

addresses, A-1
address range, A-2
for PPI, 7-27
memory-related, 3-9
width, A-2

mode fault error, 10-22, 10-24
modes

boot, 1-25, 19-33
broadcast, 10-11, 10-18, 10-19
multichannel, 12-16

Index

I-30 ADSP-BF537 Blackfin Processor Hardware Reference

modes (continued)
serial port, 12-12
SPI master, 10-18, 10-25
SPI slave, 10-19, 10-27
UART DMA, 13-18
UART non-DMA, 13-16

MODF bit, 10-22, 10-46
MOSI pin, 10-5, 10-16, 10-18, 10-19,

10-20, 10-28
moving data, serial port, 12-40
MPEG compression, PPI, 7-39
MPKE bit, 8-34, 8-82, 8-83
MPKS bit, 8-34, 8-82
MPROG bit, 11-37, 11-40
MRB bit, 9-48
MRS command, 6-37, 6-52
MSEL[5:0] field, 20-3, 20-4, 20-27
MSTR bit, 10-20, 10-43
multibank operation, 6-46
MulticastFramesReceivedOK register, 8-56
MulticastFramesXmittedOK register, 8-62
multichannel frame, 12-22
multichannel frame delay field, 12-23
multichannel mode, 12-16

enable/disable, 12-19
frame syncs, 12-20
SPORT, 12-20

multichannel operation, SPORT, 12-16 to
12-26

multi-DXE, 19-26
MultipleCollisionFrames register, 8-60
multiple interrupt sources, 4-16
multiple slave SPI systems, 10-11
multiplexed SDRAM addressing scheme

figure, 6-30
multiplexing, 14-1

MII and RMII, 8-5
port F, 14-6
port G, 14-6

port H, 14-7
multiplexing (continued)

port J, 14-8
PPI, 7-4

MVIP-90, 12-27

N
NAK bit, 11-28, 11-29
NDPH bit, 5-23
NDPL bit, 5-23
NDSIZE[3:0] field, 5-18, 5-74, 5-76

legal values, 5-34
next descriptor pointer registers

(DMAx_NEXT_DESC_PTR), 5-94
(MDMA_yy_NEXT_DESC_PTR),

5-94
next DXE pointer, 19-27
NINT bit, 13-29, 13-30
no-boot mode, 19-9, 19-34
no boot on software reset bit, 19-5
nominal bit rate, CAN, 9-11
nominal bit time, CAN, 9-10
NOP (no operation) command, 6-58
normal frame sync mode, 12-38
normal timing, serial port, 12-38
NTSC systems, 7-8

O
OctetsReceivedAll register, 8-59
OctetsReceivedOK register, 8-55
OctetsTransmittedAll register, 8-63
OctetsTransmittedOK register, 8-60
OE bit, 13-25
off-chip

bus connections, 2-8
infrared driver, 13-9
line drivers, 13-7
memory, 1-5, 1-6

ADSP-BF537 Blackfin Processor Hardware Reference I-31

Index

signals (continued)
signals, 14-14
volatile memory initialization, 19-1

off-chip memory
external access bus (EAB), 2-11

off-core
accesses, 2-5

offsets, DMA descriptor elements, 5-18
OI bit, 5-100
OIE bit, 5-100
onboard regulation, bypassing, 20-21
on-chip

busses, 2-8
internal voltage regulator, 1-21
I/O devices, 1-6
memory, 1-4, 1-6
peripherals, 1-7, 5-2
PLL, 1-22
SDRAM interface controller, 6-50
switching regulator controller, 20-19
voltage regulator, 1-24

open drain drivers, 10-2
open drain outputs, 10-18
open page, G-1
open page, in memory, 6-38
operating modes, 20-8

active, 1-23, 20-9
deep sleep, 1-24, 20-10
full-on, 1-23, 20-8
hibernate state, 1-24, 20-11
PPI, 7-6
sleep, 1-23, 20-9
transition, 20-11, 20-12

operating mode transitions, 20-14
OPSSn bit, 9-74
optimization, of DMA performance, 5-44
oscilloscope probes, 21-13
OUT_DIS bit, 7-4, 15-6, 15-44, 15-45,

15-52

outer loop address increment registers
(DMAx_Y_MODIFY), 5-93
(MDMA_yy_Y_MODIFY), 5-93

outer loop count registers
(DMAx_Y_COUNT), 5-90
(MDMA_yy_Y_COUNT), 5-90

OutOfRangeLengthField register, 8-57
output delay bit, 20-27
output pad disable, timer, 15-16
outputs, programmable pins, 21-12
overflow interrupt, DMA, 5-44
overwrite protection/single shot

transmission register 1
(CAN_OPSS1), 9-74

overwrite protection/single shot
transmission register 2
(CAN_OPSS2), 9-74

OVR bit, 7-32, 7-33

P
PAB, 2-6

arbitration, 2-6
bus agents (masters, slaves), 2-6
clocking, 20-2
and EBIU, 6-5
errors generated by SPORT, 12-41
performance, 2-7

PACK_EN bit, 7-28, 7-29
packing, serial port, 12-26
page hit, and SDC, 6-44
page miss, 6-55
page miss, and SDC, 6-44
page size, 6-68
PAL systems, 7-8
PAM bit, 8-64, 8-69
parallel peripheral interface, See PPI
PASR[1:0] field, 6-71, 6-73
PASR feature, 6-31
PAUSEMACCtrlFramesReceived register,

8-58

Index

I-32 ADSP-BF537 Blackfin Processor Hardware Reference

PBF bit, 8-64, 8-69
PC100 SDRAM standard, 6-1
PC133 SDRAM controller, 1-9
PC133 SDRAM standard, 6-1
PCF bit, 8-15, 8-78, 8-79
PDWN bit, 20-27
PE bit, 13-25, 13-26
PEN bit, 13-22
performance

DAB, 2-10
DCB, 2-10
DEB, 2-10, 2-11
DMA, 5-46
EAB, 2-11
general-purpose ports, 14-9
memory DMA, 5-47
memory DMA transfers, 2-11, 2-12
optimization, DMA, 5-44
PAB, 2-7
SDRAM, 6-33

PERIOD_CNT bit, 15-14, 15-23, 15-29,
15-44, 15-51

period value[15:0] field, 16-6
period value[31:16] field, 16-6
peripheral

DMA, 5-7
DMA channels, 5-45
DMA transfers, 5-2
error interrupts, 5-80
interrupt request lines, 4-2

peripheral access bus, See PAB
peripheral DMA start address registers,

5-82
peripheral interrupts, 4-4, 4-8 to 4-14
peripheral map registers

(DMAx_PERIPHERAL_MAP), 5-71
(MDMA_yy_PERIPHERAL_MAP),

5-71
peripheral pins, default configuration,

14-10

peripherals, 1-2
and buses, 1-3
compatible with SPI, 10-3
configuring for an IVG priority, 4-18
default mapping to DMA, 5-8
and DMA controller, 5-34
DMA support, 1-3
enabling, 14-4
interrupt events, 4-12
interrupt generated by, 4-15
interrupt IDs, 4-12
list of, 1-2
mapping to DMA, 4-11, 5-48
multiplexing, 14-1, 14-2
remapping DMA assignment, 5-8
switching from DMA to non-DMA,

5-81
timing, 2-4
used to wake from idle, 4-10

PF0 bit, 5-6
PF0 pin, 14-13
PF1 bit, 5-6
PFDE bit, 5-6, 14-22
PFFE bit, 7-4, 14-22
PFLAG[3:0] field, 19-15
PFLAG bit, 19-17
-PFLAG switch, 19-19
PFS4E bit, 14-22
PFS5E bit, 14-22
PFS6E bit, 14-22
PFTE bit, 14-22
PFx pin, 10-9
PGRE bit, 14-22
PGSE bit, 14-22
PGTE bit, 14-22
phase locked loop, 20-1
phase locked loop, See PLL
PHY, 8-4

configuring, 8-50
control routines, 8-129

ADSP-BF537 Blackfin Processor Hardware Reference I-33

Index

PHY (continued)
initialization, minimum requirements,

8-131
read access, 8-131

PHYAD[4:0] field, 8-76
PHYCLKOE bit, 8-47
PHYIE bit, 8-93, 8-94
PHYINT bit, 8-95, 8-96
PHYINT interrupt, 8-40
PHYWE bit, 20-29
pin, SDRAM, 6-59
pin information, 21-2
pins, 21-2

GPIO, 14-10
MAC, 8-5
multiplexing, 14-1
PPI, 7-4
unused, 21-12

pin state during SDC commands (table),
6-51

pin terminations, SPORT, 12-10
pipeline, lengths of, 5-57
pipelining

DMA requests, 5-41
SDC supported, 6-79

PJCE[1:0] field, 14-22
PJSE bit, 14-22
PJx pin, 10-9
PLL, 20-1 to 20-37

active (enabled but bypassed) mode, 20-9
active mode, 20-9
active mode, effect of programming for,

20-16
applying power to the PLL, 20-13
block diagram, 20-3
BYPASS bit, 20-9, 20-17
bypassing onboard regulation, 20-21
CCLK derivation, 20-3
changing CLKIN-to-VCO multiplier,

20-13

PLL (continued)
changing clock frequencies, 20-6
changing clock ratio, 20-6
clock control, 20-1
clock dividers, 20-3
clocking to SDRAM, 20-10
clock multiplier ratios, 20-3
code example, active mode to full-on

mode, 20-31
code example, changing clock multiplier,

20-34
code example, changing internal voltage

levels, 20-36
code example, full on mode to active

mode, 20-33
code example, setting wakeups and

entering hibernate state, 20-35
code examples, 20-30
configuration, 20-3
control bits, 20-11
deep sleep mode, 20-10
deep sleep mode, effect of programming

for, 20-17
design overview, 20-2
disabled, 20-13
divide frequency, 20-3
DMA access, 20-9, 20-17
dynamic power management controller

(DPMC), 20-7
enabled, 20-13
full on mode, effect of programming for,

20-16
hibernate state, 20-11
interacting with DPMC, 20-2
and internal clocks, 2-3
maximum performance mode, 20-8
modification, activating changes to DF

or MSEL, 20-15
modification in active mode, 20-13
multiplier select (MSEL) field, 20-3

Index

I-34 ADSP-BF537 Blackfin Processor Hardware Reference

PLL (continued)
new multiplier ratio, 20-13
operating modes, operational

characteristics, 20-8
operating mode transitions, 20-11,

20-14
PDWN bit, 20-11
phase locked loop, 20-1
PLL_LOCKED bit, 20-16
PLL_OFF bit, 20-13
PLL status (table), 20-8
power domains, 20-18
powering down core, 20-23
power savings by operating mode (table),

20-8
processing during PLL programming

sequence, 20-16
programming operating mode

transitions, 20-14
programming sequence, 20-15
registers, 20-25
registers, table, 20-26
relocking after changes, 20-16
removing power to the PLL, 20-13
RTC interrupt, 20-10, 20-17
SCLK derivation, 20-2, 20-3
sleep mode, 20-9, 20-16
STOPCK bit, 20-11
voltage control, 20-7, 20-21
wakeup interrupt, 20-30
wakeup signal, 20-16

PLL_CTL (PLL control) register, 20-3,
20-4, 20-26, 20-27

PLL divide register, 2-4
PLL_DIV (PLL divide) register, 20-5,

20-26, 20-27
PLL_LOCKCNT (PLL lock count)

register, 20-26, 20-28
PLL_LOCKED bit, 20-28

PLL_OFF bit, 20-27
PLL_STAT (PLL status) register, 20-26,

20-28
PLL VCO frequency, changing, 6-48
PMAP[3:0] field, 5-7, 5-48, 5-49, 5-71
polarity, GPIO, 14-14
POLC bit, 7-6, 7-27, 7-28
polling DMA registers, 5-56
POLS bit, 7-6, 7-27, 7-28
PORT_CFG[1:0] field, 7-6, 7-28, 7-30
port connection, SPORT, 12-8
PORT_DIR bit, 7-6, 7-28, 7-30
PORT_EN bit, 7-28, 7-31
port F

and general-purpose timers, 15-5
GPIO, 14-5, 14-10
interrupt A channel, 14-18
multiplexing, 14-6
peripherals, 14-2
and PPI, 7-4, 14-5
and SPI, 10-4
structure, 14-4
timer port setup, 15-54
timers, 14-4
UART, 14-4
UART pins, 13-3

PORTF_FER and booting, 19-20
PORTF_FER (function enable) register,

5-6, 7-5, 14-9
port G

GPIO, 14-6, 14-10
interrupt A channel, 14-18
multiplexing, 14-6
peripherals, 14-3, 14-6
and PPI, 7-4, 14-6
SPORT, 14-6
structure, 14-6

PORTG_FER (function enable) register,
7-5, 14-9

ADSP-BF537 Blackfin Processor Hardware Reference I-35

Index

port H
GPIO, 14-10
and MAC, 8-47, 14-7
MII, 14-7
multiplexing, 14-7
peripherals, 14-3
RMII, 14-7
structure, 14-7
timers, 14-7

PORTH_FER (function enable) register,
14-9

port J
CAN, 14-8
and MAC, 8-47
MII, 14-8
multiplexing, 14-8
peripherals, 14-3, 14-8
and SPI, 10-5
SPI, 14-8
SPORT, 14-8
structure, 14-8
TWI, 14-8

PORT_MUX (port multiplexer control)
register, 5-6, 7-5, 14-4, 14-8, 14-9,
14-22

port pins, 10-45, 14-4
port pins, test access, B-2
PORT_PREF0 bit, 3-10
PORT_PREF1 bit, 3-10
ports, 1-9

See also ports by name
port width, PPI, 7-29
PORTx_FER (function enable) registers,

14-4, 14-10, 14-14, 14-23
PORTxIO_BOTH (GPIO set on both

edges) registers, 14-27
PORTxIO_CLEAR (GPIO clear) registers,

14-25
PORTxIO_DIR (GPIO direction)

registers, 14-23

PORTxIO_EDGE (interrupt sensitivity)
registers, 14-27

PORTxIO (GPIO data) registers, 14-24
PORTxIO_INEN (GPIO input enable)

registers, 14-14, 14-24
PORTxIO_MASKA_CLEAR (GPIO

mask interrupt A clear) registers,
14-17, 14-31

PORTxIO_MASKA (GPIO mask
interrupt A) registers, 14-28

PORTxIO_MASKA_SET (GPIO mask
interrupt A set) registers, 14-29

PORTxIO_MASKA_TOGGLE (GPIO
mask interrupt A toggle) registers,
14-33

PORTxIO_MASKB_CLEAR (GPIO
mask interrupt B clear) registers,
14-17, 14-32

PORTxIO_MASKB (GPIO mask
interrupt B) registers, 14-28

PORTxIO_MASKB_SET (GPIO mask
interrupt B set) registers, 14-30

PORTxIO_MASKB_TOGGLE (GPIO
mask interrupt B toggle) registers,
14-34

PORTxIO_POLAR (GPIO polarity)
registers, 14-26

PORTxIO_SET (GPIO set) registers,
14-25

PORTxIO_TOGGLE (GPIO toggle)
registers, 14-26

power
dissipation, 20-18
domains, 20-18
plane, 21-10

powering down core, 20-23
power management, 1-22, 20-1 to 20-37

active mode to full-on mode, 20-31
changing internal voltage levels, 20-36
full on mode to active mode, 20-33

Index

I-36 ADSP-BF537 Blackfin Processor Hardware Reference

power management (continued)
modification of PLL, 20-15
setting wakeups and entering hibernate

state, 20-35
power management states, 20-8
power supply management, 20-19
power-up

SDRAM, 6-52, 6-77
sequence mode, 6-76
start delay, 6-76
start enable, 6-77

power-up latency, SDC, 6-60
PPI, 1-14, 7-2 to 7-39

active video only mode, 7-11
block diagram, 7-3
clearing DMA completion interrupt,

7-39
clock input, 7-3
configure DMA registers, 7-37
configuring registers, 7-38
control byte sequences, 7-10
control signal polarities, 7-27
data input modes, 7-16 to 7-18
data movement, 7-10
data output modes, 7-18 to 7-20
data width, 7-27
delay before starting, 7-34
DMA operation, 7-24
edge-sensitive inputs, 7-22
enabling, 7-3, 7-31, 7-38
enabling DMA, 7-38
entire field mode, 7-10
external frame syncs, 7-17, 7-19
external frame syncs modes, 7-17
features, 7-2
FIFO, 7-33
flow diagram, 7-26
frame start detect, 7-36
frame synchronization with ITU-R 656,

7-13

PPI (continued)
frame sync polarity with timer

peripherals, 7-22
frame sync signals, 7-4
frame track error, 7-31, 7-36
and general-purpose timers, 15-24
general flow for GP modes, 7-15
general-purpose modes, 7-13
GP modes, 7-15
GP modes with frame synchronization,

7-21
GP output, 7-20
hardware signalling, 7-17
horizontal tracking, 7-33
interlaced video, 7-7
internal frame syncs, 7-18
internal frame syncs modes, 7-17, 7-20
ITU-R 601 recommendation, 7-17
ITU-R 656 modes, 7-7
ITU-R 656 output mode, 7-12
JPEG compression, 7-39
loopback feature, 7-11
memory-mapped registers, 7-27
multiplexed with general-purpose timers,

15-6
multiplexed with SPORT, 14-6
multiplexing, 7-4
no frame syncs modes, 7-16, 7-18
number of lines per frame, 7-35
number of samples, 7-34
operating modes, 7-6, 7-27
overview, 1-14
pins, 7-3, 7-4, 7-5, 14-3
port F, 7-3, 14-5
port G, 7-4, 14-6
port width, 7-29
preamble, 7-8
programming model, 7-24
progressive video, 7-7
submodes for ITU-R 656, 7-10

ADSP-BF537 Blackfin Processor Hardware Reference I-37

Index

PPI (continued)
and synchronization with DMA, 7-14
timer pins, 7-22
transfer delay, 7-19
TX modes with external frame syncs,

7-23
TX modes with internal frame syncs,

7-21
valid data detection, 7-16
vertical blanking interval only mode,

7-12
video data transfer, 7-39
video frame partitioning, 7-8
video processing, 7-7
video streams, 7-9
when data transfer begins, 7-31

PPI_CLK cycle count, 7-34
PPI_CLK pin, 7-3
PPI_CLK signal, 7-27
PPI_CONTROL (PPI control) register,

7-27, 7-28
PPI control register (PPI_CONTROL),

7-28
PPI_COUNT[15:0] field, 7-35
PPI_COUNT (transfer count) register,

7-34, 7-35
PPI_DELAY[15:0] field, 7-34
PPI_DELAY (delay count) register, 7-34
PPI_FRAME[15:0] field, 7-35
PPI_FRAME (lines per frame) register,

7-35
PPI_FS1 signal, 7-27
PPI_FS2 signal, 7-27
PPI_FS3 signal, 7-32
PPI_STATUS (PPI status) register, 7-31,

7-32
PPORT[1:0] field, 19-15
PPORT bit, 19-17
PR bit, 8-64, 8-69
preamble, PPI, 7-8

pre-boot initialization, 19-26
precharge all command, 6-38, 6-55
precharge command, 6-38, G-18
PREN bit, 18-23
prescale[6:0] field, 11-27
prescaler, RTC, 18-2
prescaler enable register (RTC_PREN),

18-23
PRESCALE value, 11-4
priorities

memory DMA operations, 5-51
peripheral DMA operations, 5-51

prioritization
DMA, 5-48 to 5-54
interrupts, 4-8

private instructions, B-4
probes, oscilloscope, 21-13
processor

dynamic power management, 20-1
resetting, 21-12
test features, B-1

processor block diagram, 1-4
programmable outputs, 21-12
programmable timing characteristics,

EBIU, 6-12
program Pxn bit, 14-24
progressive video, 7-7
propagation segment, CAN, 9-11
PS bit, 5-100
PSF bit, 8-64, 8-68
PSM bit, 6-52, 6-61, 6-71, 6-76
PSSE bit, 6-47, 6-52, 6-61, 6-71, 6-77,

10-20, 10-43
public instructions, B-4
public JTAG scan instructions, B-6
pull-up resistor, 19-43
PULSE_HI bit, 15-17, 15-19, 15-27,

15-44, 15-51
PULSE_HI toggle mode, 15-19

Index

I-38 ADSP-BF537 Blackfin Processor Hardware Reference

pulse width count and capture mode, See
WDTH_CAP mode

pulse width modulation mode, See
PWM_OUT mode

pulse width modulation mode, See
PWM_OUT mode

pulse width modulator, 1-18
PUPSD bit, 6-71, 6-76
PWM_CLK clock, 15-24
PWM_CLK signal, 15-23
PWM_OUT mode, 15-14 to 15-26, 15-47

control bit and register usage, 15-51
error prevention, 15-49
externally clocked, 15-23
PULSE_HI toggle mode, 15-19
stopping the timer, 15-24

Pxn bit, 14-23
Pxn both edges bit, 14-27
Pxn direction bit, 14-23
Pxn input enable bit, 14-24
Pxn polarity bits, 14-26
Pxn sensitivity bit, 14-27

Q
query semaphore, 21-4

R
RAF bit, 8-64, 8-68
RAISE 1 instruction, 19-8
RBC bit, 5-41, 5-100
RBSY bit, 10-46
RBSY flag, 10-23
RCKFE bit, 12-36, 12-55, 12-58
RCVDATA16[15:0] field, 11-51
RCVDATA8[7:0] field, 11-50
RCVFLUSH bit, 11-41, 11-42
RCVINTLEN bit, 11-41
RCVSERV bit, 11-45, 11-46
RCVSTAT[1:0] field, 11-43

RDIV
field, 6-43, 6-60
field, equation for value, 6-64

RDIV[11:0] field, 6-64
RDTYPE[1:0] field, 12-30, 12-55, 12-57
read

asynchronous, 6-13
command, 6-38
transfers to SDRAM banks, 6-54

read/write access bit, 3-11
read/write command, 6-54
real-time clock, See RTC
real-time clock, see RTC
RE bit, 8-43, 8-51, 8-64, 8-70
REC bit, 9-47
receive buffer[7:0] field, 13-27
receive configuration registers

(SPORTx_RCR1, SPORTx_RCR2),
12-54

receive data[15:0] field, 12-63
receive data[31:16] field, 12-63
receive FIFO, SPORT, 12-61
receive message lost interrupt, CAN, 9-27
receive message lost register 1

(CAN_RML1), 9-73
receive message lost register 2

(CAN_RML2), 9-73
receive message pending register 1

(CAN_RMP1), 9-72
receive message pending register 2

(CAN_RMP2), 9-72
reception error, SPI, 10-23
refresh, SDRAM, 6-35
REGAD[4:0] field, 8-76
register-based DMA, 5-12
registers

See also registers by name
reset to zero, 19-21
system, A-2

regulator controller, switching, 20-19

ADSP-BF537 Blackfin Processor Hardware Reference I-39

Index

remote frame handling, CAN, 9-21
remote frame handling register 1

(CAN_RFH1), 9-79
remote frame handling register 2

(CAN_RFH2), 9-80
remote wakeup frame filters, MAC, 8-35
REP bit, 5-6, 5-41, 5-100
request data control command, DMA, 5-37
request data urgent control command,

DMA, 5-37
reserved SDRAM, 6-4
reset

effect on SPI, 10-19
vector, 19-2, 19-9
vector addresses, 19-2

RESET_DOUBLE bit, 19-7
RESET input signal, 19-1
RESET pin, 19-2, 19-4
resets

core and system, 19-8
core-only software, 19-4, 19-8
hardware, 19-9
interrupts, 19-10
software, 19-6
system software, 19-3
watchdog timer, 19-6

RESET_SOFTWARE bit, 19-7
RESET_WDOG bit, 17-5, 19-7
resource sharing, with semaphores, 21-3
restart control command, DMA, 5-36
restart or finish control command, receive,

5-38
restart or finish control command,

transmit, 5-38
restrictions

DMA control commands, 5-38
DMA work unit, 5-27

RESVECT bit, 19-15
re-synchronization, CAN, 9-11
RETI register, 19-10

RFHn bit, 9-79, 9-80
RFS pins, 12-33
RFSR bit, 12-33, 12-34, 12-55, 12-57
RFS signal, 12-20
RFSx signal, 12-6
RLSBIT bit, 12-55, 12-57
RMII

interface, 14-7
multiplexing, 8-5
pins, 8-5, 14-3
port H, 14-7

RMII_10 bit, 8-64, 8-66
RMII bit, 8-64, 8-66
RMLIF bit, 9-27, 9-51
RMLIM bit, 9-27, 9-50
RMLIS bit, 9-27, 9-50
RMLn bit, 9-73
RMPn bit, 9-72
ROM, 1-6, 6-1
round robin operation, MDMA, 5-52
routing of interrupts, 4-3
ROVF bit, 12-63, 12-64, 12-65
row activation, SDRAM, 6-35
row address, 6-68
row precharge, SDRAM, 6-35
RPOLC bit, 13-32, 13-33
RRFST bit, 12-14, 12-56, 12-58
RSCLKx pins, 12-31
RSCLKx signal, 12-6
RSFSE bit, 12-13, 12-56, 12-58
RSPEN bit, 12-11, 12-54, 12-55, 12-56
RSTART bit, 11-33, 11-34
RSTC bit, 8-44, 8-124, 8-125
RTC, 1-20, 18-1 to 18-28

alarm clock features, 18-2, 18-27
block diagram, 18-3
clock rate, 18-5
clock requirements, 18-5
code examples, 18-24
counters, 18-2

Index

I-40 ADSP-BF537 Blackfin Processor Hardware Reference

RTC (continued)
deep sleep, 18-10
digital watch features, 18-1
disabling prescaler, 18-6
enabling prescaler, 18-5, 18-24
event flags, 18-11
initializing, 18-6
input clock, 18-2
interfaces, 18-3
interrupt, 20-10
interrupts, 18-7, 18-15
interrupt structure, 18-16
overview, 1-20
prescaler, 18-2
programming model, 18-7
reads, 18-10
registers, table, 18-20
setting time of day, 18-13
state transitions, 18-18
stopwatch, 18-3, 18-14, 18-25
synchronization, 18-6
system state transition events, 18-19
test mode, 18-6
write latency, 18-9
writes, 18-8, 18-9

RTC_ALARM (RTC alarm) register, 18-2,
18-20, 18-23

RTC_ICTL (RTC interrupt control)
register, 18-20, 18-21

RTC_ISTAT (RTC interrupt status)
register, 18-20, 18-22

RTC_PREN bit, 18-5
RTC_PREN (prescaler enable) register,

18-5, 18-20, 18-23
RTC_STAT (RTC status) register, 18-13,

18-20, 18-21
RTC_SWCNT (RTC stopwatch count)

register, 18-3, 18-14, 18-20, 18-22
RTR bit, 9-55
RTS instruction, 19-22

RUVF bit, 12-63, 12-64, 12-65
RWKE bit, 8-35, 8-82, 8-83
RWKS[3:0] field, 8-82
RX_ACCEPT bit, 8-98, 8-103, 8-104,

8-108
RX_ADDR bit, 8-98, 8-101, 8-104, 8-106,

8-108
RX_ALIGN bit, 8-98, 8-102, 8-104,

8-106, 8-108
RX_ALIGN_CNT bit, 8-116, 8-118
RX_ALLF_CNT bit, 8-116, 8-118
RX_ALLO_CNT bit, 8-116, 8-118
RX_BROAD, RX_MULTI field, 8-98
RX_BROAD bit, 8-100, 8-104, 8-105,

8-108
RX_BROAD_CNT bit, 8-116, 8-118
RXCKS bit, 8-93, 8-94
RX_COMP bit, 8-98, 8-102, 8-104,

8-107, 8-108
RX_CRC bit, 8-98, 8-101, 8-104, 8-106,

8-108
RX_CTL bit, 8-98, 8-100, 8-104, 8-108
RX DMA direction error detected, 8-41
RXDMAERR bit, 8-95
RX_DMAO bit, 8-98, 8-101, 8-104,

8-105, 8-108
RXDWA bit, 8-18, 8-51, 8-93, 8-94
RXECNT[7:0] field, 9-86
RX_EQ64_CNT bit, 8-116, 8-118
RX_FCS_CNT bit, 8-116, 8-118
RX_FRAG bit, 8-98, 8-101, 8-104, 8-106,

8-108
RX frame status interrupt, 8-40
RX_FRLEN[10:0] field, 8-98, 8-103
RXFSINT bit, 8-95, 8-96
RX_GE1024_CNT bit, 8-116, 8-118
RX hold register, 12-62
RX_IRL_CNT bit, 8-116, 8-118
RX_LATE bit, 8-98, 8-100, 8-104, 8-105,

8-108

ADSP-BF537 Blackfin Processor Hardware Reference I-41

Index

RX_LEN bit, 8-98, 8-101, 8-104, 8-106,
8-108

RX_LONG bit, 8-98, 8-102, 8-104,
8-106, 8-108

RX_LONG_CNT bit, 8-116, 8-118
RX_LOST_CNT bit, 8-116, 8-118
RX_LT1024_CNT bit, 8-116, 8-118
RX_LT128_CNT bit, 8-116, 8-118
RX_LT256_CNT bit, 8-116, 8-118
RX_LT512_CNT bit, 8-116, 8-118
RX_MACCTL_CNT bit, 8-118
RX modes with external frame syncs, 7-22
RX_MULTI bit, 8-100, 8-104, 8-105,

8-108
RX_MULTI_CNT bit, 8-116, 8-118
RXNE bit, 12-64
RX_OCTET_CNT bit, 8-116, 8-118
RX_OK bit, 8-98, 8-102, 8-104, 8-107,

8-108
RX_OK_CNT bit, 8-116, 8-118
RX_OPCODE_CNT bit, 8-116, 8-118
RX_ORL_CNT bit, 8-116, 8-118
RX_PAUSE_CNT bit, 8-116, 8-118
RX_PHY bit, 8-98, 8-100, 8-104, 8-105,

8-108
RX_RANGE bit, 8-98, 8-100, 8-104,

8-105, 8-108
RXREQ signal, 13-7
RXS bit, 10-29, 10-46
RXSE bit, 12-56, 12-58
RX_SHORT_CNT bit, 8-116, 8-118
RX_TYPE bit, 8-98, 8-99, 8-103, 8-104,

8-108
RX_TYPED_CNT bit, 8-116, 8-118
RX_UCTL bit, 8-98, 8-99, 8-104, 8-108
RX_UNI_CNT bit, 8-116, 8-118
RX_VLAN1 bit, 8-98, 8-99, 8-103, 8-104,

8-108
RX_VLAN2 bit, 8-98, 8-99, 8-103, 8-104,

8-108

S
SA0 bit, 9-86
SA10 pin, 6-59
SADDR[6:0] field, 11-30
SAM bit, 9-49
SAMPLE/PRELOAD instruction, B-6
sampling, CAN, 9-12
sampling clock period, UART, 13-8
sampling edge, SPORT, 12-36
SAV codes, 7-33
SAV signal, 7-7
SB bit, 13-22
scale value[7:0] field, 16-7
scaling, of core timer, 16-7
scan paths, B-5
SCCB bit, 11-27
scheduling, memory DMA, 5-51
SCKE pin, 6-57
SCK signal, 10-5, 10-16, 10-18, 10-20
SCLK, 2-4, 20-5

changing frequency, 6-48
derivation, 20-2
disabling, 20-23
EBIU, 6-2
status by operating mode (table), 20-8

SCLOVR bit, 11-32, 11-33
SCL pin, 11-5
SCLSEN bit, 11-37, 11-38
SCL serial clock, 11-12
SCL (serial clock) signal, 11-4
SCOMP bit, 11-45, 11-47
scratch[7:0] field, 13-32
scratchpad memory, booting into, 19-13
SCTLE bit, 6-57, 6-61, 6-71, 6-72, 6-73,

6-77
SDAOVR bit, 11-32, 11-33
SDA pin, 11-5
SDASEN bit, 11-37, 11-39
SDA (serial data) signal, 11-4

Index

I-42 ADSP-BF537 Blackfin Processor Hardware Reference

SDC, 1-9, 6-5, 6-27
address mapping, 6-30
address muxing, 6-45
architecture, 6-43
code examples, 6-82
commands, 6-50
component configurations, 6-29
configuration, 6-59
core and DMA arbitration, 6-47
core transfers to SDRAM, 6-84
disabled CLKOUT, 6-85
features, 6-27
no burst mode, 6-44
operation, 6-42
pin state during commands, 6-51
power-up latency, 6-60
registers, 6-64
SA10 pin, 6-59
self-refresh mode, 6-85
transfers to SDRAM using byte mask,

6-85
SDC commands, 6-50
SDCI bit, 6-81
SDEASE bit, 6-81, 6-82
SDIR bit, 11-30
SDPUA bit, 6-81, 6-82
SDQM[1:0] encodings during writes, 6-55
SDRAM, 1-6

A[10] pin, 6-59
address connections, 6-45
address mapping, 6-30
auto-refresh command, 6-38, 6-56
bank activate command, 6-37
banks, 3-8
bank size, 6-2
burst length, 6-36
burst type, 6-36
and busmastership, 6-8
CAS latency, 6-37
clock enables, setting, 6-72

SDRAM (continued)
column read/write, 6-35
commands, 6-37
configuration, 6-27
ERMS command, 6-37
exiting self-refresh mode, 6-57
external bank, 6-36
external memory, 6-29
initialization, 6-52, 6-77
interface controller commands, 6-50
interface management, 6-50
interface signals, 6-32
internal banks, 6-31
internal memory banks, 6-36
latency, 6-77
memory banks, 6-3
memory size, 6-36
memory space, 6-2
MRS command, 6-37
multibank operation, 6-46
NOP command, 6-58
operation parameters, initializing, 6-52
parallel connection, 6-31
performance, 6-33
power-up sequence, 6-47, 6-52, 6-77
precharge all command, 6-38
precharge command, 6-38
read command, 6-38
read transfers, 6-54
read/write command, 6-54
refresh, 6-35
reserved, 6-4
row activation, 6-35
row precharge, 6-35
self-refresh mode, 6-38, 6-56
shared, 6-49
sharing external, 6-76
size configuration, 6-66
sizes supported, 3-8, 6-27
smaller than 16M byte, 6-69

ADSP-BF537 Blackfin Processor Hardware Reference I-43

Index

SDRAM (continued)
specification of system, 6-31
stall cycles, 6-34
start address, 6-4
system block diagram, 6-62, 6-63
timing specs, 6-39
write command, 6-38

SDRAM controller, See SDC
SDRAM control status register

(EBIU_SDSTAT), 6-81
SDRAM memory, 3-2
SDRAM memory bank control register

(EBIU_SDBCTL), 6-66
SDRAM memory global control register

(EBIU_SDGCTL), 6-70
SDRAM refresh rate control register

(EBIU_SDRRC), 6-64
SDRS bit, 6-60, 6-81, 6-82
SDSRA bit, 6-81
seconds (1 Hz) event flag bit, 18-22
seconds (1Hz) interrupt enable bit, 18-21
seconds[5:0] field, 18-21, 18-23
self-refresh command, 6-56
self-refresh mode, 6-38, 6-56, 6-78, 6-85

entering, 6-56
exiting, 6-57

semaphores
coherency, 21-3
example code, 21-4
query, 21-4
resource sharing, 21-3
signalling with, 21-3

SEN bit, 11-28, 11-29
SER bit, 9-86
serial

clock frequency, 10-21
communications, 13-5
data transfer, 12-4
scan paths, B-4

serial clock divide modulus[15:0] field,
12-65, 12-66

serial peripheral interface, See SPI
serial scan paths, B-5
SERR bit, 11-45, 11-47
set index[5:0] field, 3-11
SET_PHYAD macro, 8-130
set Pxn bit, 14-25
set Pxn interrupt A enable bit, 14-29
set Pxn interrupt B enable bit, 14-30
SET_REGAD macro, 8-130
setup

SDRAM clock enables, 6-72
shared interrupts, 4-8
SIC, See system interrupt controller
SIC_IAR0 (system interrupt assignment)

register 0, 4-19
SIC_IAR1 (system interrupt assignment)

register 1, 4-19
SIC_IAR2 (system interrupt assignment)

register 2, 4-20
SIC_IAR3 (system interrupt assignment)

register 3, 4-20
SIC_IMASK (system interrupt mask)

register, 4-8, 4-21
SIC_ISR (system interrupt status) register,

4-9, 4-22
SIC_IWR (system interrupt

wakeup-enable) register, 4-10, 4-23
SIC registers, 4-18
signal integrity, 21-8
signalling, via semaphores, 21-3
sine wave input, 1-22
SingleCollisionFrames register, 8-60
single precharge command, 6-55
single pulse generation, timer, 15-16
single shot transmission, CAN, 9-16
SINIT bit, 11-45, 11-48
SIZE bit, 10-19, 10-43
size of accesses, timer registers, 15-39

Index

I-44 ADSP-BF537 Blackfin Processor Hardware Reference

SJW[1:0] field, 9-49
SJW[1:0] (synchronization jump width)

field, 9-11
SKIP_EN bit, 7-27, 7-28
SKIP_EO bit, 7-28, 7-29
slave mode setup, in TWI, 11-13, 11-57
slaves

EBIU, 6-5
PAB, 2-6

slave select, SPI, 10-45
slave SPI device, 10-6
sleep mode, 1-23, 20-9

CAN, 9-41
MAC operation in, 8-32

SLEN[4:0] field, 12-52, 12-54, 12-56,
12-57

restrictions, 12-30
word length formula, 12-30

small descriptor mode, DMA, 5-17
small model mode, DMA, 5-76
SMR bit, 9-46
software

interrupts, 4-4
management of DMA, 5-55
reset, 19-6
watchdog timer, 1-21, 17-1

software reset, and CAN, 9-12
software reset register (SWRST), 19-6,

19-7
source channels, memory DMA, 5-9
SOVF bit, 11-45, 11-47
SPE bit, 10-20, 10-43
special function signals, 14-2
speculative read, and MAC, 8-44
SPI, 1-17, 10-1 to 10-56

beginning and ending transfers, 10-29
bit mapping to port pins, 10-10
block diagram, 10-3, 10-4
booting memory detection, 19-43
clock phase, 10-15, 10-16, 10-20

SPI (continued)
clock polarity, 10-15, 10-20
clock signal, 10-3, 10-20
code examples, 10-48
compatible peripherals, 10-3
data corruption, avoiding, 10-18
data interrupt, 10-24
data transfer, 10-18
detecting transfer complete, 10-21
and DMA, 10-13
DMA initialization, 10-52
DMA transfers, 10-51
effect of reset, 10-19
enabling the SPI system, 10-19
error interrupt, 10-24
error signals, 10-21 to 10-24
features, 10-2
full-duplex synchronous serial interface,

10-1
general operation, 10-18 to 10-28
initialization, 10-48
internal interfaces, 10-13
interrupt outputs, 10-24
interrupts, 10-50
master boot from flash, 19-28
master boot mode, 19-42
master mode, 10-18, 10-25
master mode DMA operation, 10-31
mode fault error, 10-22
multiple slave systems, 10-11
overview, 1-17
pins, 14-2, 14-3
port F, 10-4
port J, 14-8
reception error, 10-23
registers, table, 10-41
SCK signal, 10-5
slave boot mode, 19-47
slave device, 10-6
slave mode, 10-19, 10-27

ADSP-BF537 Blackfin Processor Hardware Reference I-45

Index

SPI (continued)
slave mode DMA operation, 10-34
slave select enable setup, 10-9
slave-select function, 10-44
slave transfer preparation, 10-28
SPI_FLG mapping to port pins, 10-45
starting DMA transfer, 10-54
starting transfer, 10-49
stopping, 10-51
stopping DMA transfers, 10-54
switching between transmit and receive,

10-30
timing, 10-7
transfer formats, 10-15 to 10-16
transfer initiate command, 10-25, 10-26
transfer modes, 10-26
transfer protocol, 10-16, 10-17
transmission error, 10-23
transmission/reception errors, 10-21
transmit collision error, 10-23
using DMA, 10-12
word length, 10-19

SPI_BAUD (SPI baud rate) register, 10-41,
10-42

SPI_BAUD (SPI baud rate) registers, 10-21
SPI_BAUD values, 10-21
SPI_CTL (SPI control) register, 10-5,

10-19, 10-41, 10-43
SPIF bit, 10-12, 10-29, 10-46
SPI_FLG bit, 10-9
SPI_FLG (SPI flag) register, 10-9, 10-11,

10-41, 10-44
SPI_RDBR shadow[15:0] field, 10-47
SPI RDBR shadow register

(SPI_SHADOW), 10-14, 10-41,
10-47

SPI_RDBR (SPI receive data buffer)
register, 10-14, 10-41, 10-47

SPI_SHADOW (SPI RDBR shadow)
register, 10-14, 10-41, 10-47

SPI slave select, 10-45
SPISS signal, 10-7, 10-10, 10-11, 10-16
SPI_STAT (SPI status) register, 10-21,

10-41, 10-46
SPI_TDBR (SPI transmit data buffer)

register, 10-14, 10-41, 10-46
SPORT, 1-16, 12-1 to 12-78

2X clock recovery control, 12-27
active low vs. active high frame syncs,

12-35
channels, 12-16
clock, 12-31
clock frequency, 12-28, 12-65
clock rate, 12-2
clock rate restrictions, 12-29
companding, 12-31
configuration, 12-12
data formats, 12-30
data word formats, 12-58
disabling, 12-12, 12-32
DMA data packing, 12-26
enable/disable, 12-11
enabling functionality, 12-5
enabling multichannel mode, 12-19
framed serial transfers, 12-34
framed vs. unframed, 12-33
frame sync, 12-35, 12-38
frame sync frequencies, 12-28
framing signals, 12-33
general operation, 12-11
H.100 standard protocol, 12-27
initialization code, 12-57
internal memory access, 12-40
internal vs. external frame syncs, 12-35
late frame sync, 12-19
modes, 12-12
moving data to memory, 12-40
multichannel frame, 12-22
multichannel operation, 12-16 to 12-26
multichannel transfer timing, 12-18

Index

I-46 ADSP-BF537 Blackfin Processor Hardware Reference

SPORT (continued)
multiplexed pins, 12-5
multiplexed with PPI, 14-6
overview, 1-16
PAB error, 12-41
packing data, multichannel DMA, 12-26
pin/line terminations, 12-10
pins, 12-5, 14-3
port connection, 12-8
port G, 12-5, 14-6
port J, 12-5, 14-8
receive and transmit functions, 12-4
receive clock signal, 12-31
receive FIFO, 12-61
receive word length, 12-61
register writes, 12-48
RX hold register, 12-62
sampling edge, 12-36
selecting bit order, 12-30
serial data communication protocols,

12-2
shortened active pulses, 12-12, 12-32
signals, 12-6
single clock for both receive and

transmit, 12-31
single word transfers, 12-40
stereo serial connection, 12-8
stereo serial frame sync modes, 12-19
stereo serial operation, 12-13
support for standard protocols, 12-27
termination, 12-10
throughput, 12-8
timing, 12-42
transmit clock signal, 12-31
transmitter FIFO, 12-59
transmit word length, 12-59
TX hold register, 12-60
TX interrupt, 12-60
unframed data flow, 12-34

SPORT (continued)
unpacking data, multichannel DMA,

12-26
window offset, 12-24
word length, 12-29

SPORT0 module settings, 12-5
SPORT1 module settings, 12-5
SPORT error interrupt, 12-41
SPORT registers, table, 12-47
SPORT RX interrupt, 12-41, 12-63
SPORT TX interrupt, 12-41
SPORTx_CHNL (SPORTx current

channel) register, 12-68
SPORTx_MCMCn (SPORTx

multichannel configuration) registers,
12-67

SPORTx_MRCSn (SPORTx
multichannel receive select) registers,
12-25, 12-69

SPORTx_MTCSn (SPORT multichannel
transmit select) registers, 12-25

SPORTx_MTCSn (SPORTx
multichannel transmit select) registers,
12-25, 12-71

SPORTx_RCLKDIV (SPORTx receive
serial clock divider) register, 12-65

SPORTx_RCR1 (SPORTx receive
configuration 1) register, 12-54

SPORTx_RCR2 (SPORTx receive
configuration 2) register, 12-54,
12-56

SPORTx_RFSDIV (SPORTx receive
frame sync divider) register, 12-66

SPORTx_RX (SPORTx receive data)
register, 12-61

SPORTx_RX (SPORTx receive data)
registers, 12-21, 12-61

SPORTx_STAT (SPORTx status) register,
12-64

ADSP-BF537 Blackfin Processor Hardware Reference I-47

Index

SPORTx_STAT (SPORTx status)
registers, 12-64

SPORTx_TCLKDIV (SPORTx transmit
serial clock divider) register, 12-65

SPORTx_TCR1 (transmit configuration
1) register, 12-49

SPORTx_TCR2 (transmit configuration
2) register, 12-49

SPORTx_TFSDIV (SPORTx transmit
frame sync divider) register, 12-66

SPORTx_TX (SPORTx transmit data)
register, 12-59

SPORTx_TX (SPORTx transmit data)
registers, 12-21, 12-39

SRAM, 1-6, 6-1
interface, 21-5

SRAM ADDR[13:12] field, 3-11
SRFS bit, 6-56, 6-71, 6-73, 6-77
SRS bit, 9-46
SSEL[3:0] field, 2-4, 20-5, 20-27
SSEL bit, 21-2
STABUSY bit, 8-76, 8-77
stack, initializing, 19-30
STADATA[15:0] field, 8-77
STADISPRE bit, 8-76
STAIE bit, 8-76
stall cycles, SDRAM, 6-34
STAOP bit, 8-76, 8-77
start address registers

(DMAx_START_ADDR), 5-82
(MDMA_yy_START_ADDR), 5-82

state transitions, RTC, 18-18
station management

read transfer, MAC, 8-49
transfer done, 8-41
write transfer, MAC, 8-49

STATUS[1:0] field, 13-29, 13-30
STB bit, 13-22
STDVAL bit, 11-28, 11-29

stereo serial
data, 12-3
device, SPORT connection, 12-8
frame sync modes, 12-19
operation, SPORT, 12-13

STI instruction, 20-17
STMDONE bit, 8-95
STOP bit, 11-34
STOPCK bit, 20-27
stop mode, DMA, 5-13, 5-75
stopping DMA transfers, 5-31
stopwatch, 18-14
stopwatch count[15:0] field, 18-22
stopwatch event flag bit, 18-22
stopwatch function, RTC, 18-3
stopwatch interrupt enable bit, 18-21
STP bit, 13-22
streams, memory DMA, 5-10
subbank access[1:0] field, 3-11
subbanks

L1 data memory, 3-7
L1 instruction memory, 3-6

supervisor mode, 19-10
surface-mount capacitors, 21-10
suspend mode, CAN, 9-40
switching frequency values, 20-21
switching regulator controller, 20-19
SWRST (software reset) register, 19-6,

19-7
SYNC bit, 5-27, 5-28, 5-30, 5-66, 5-74,

5-77, 13-18
synchronization

interrupt-based methods, 5-55
of descriptor queue, 5-62
of DMA, 5-55 to 5-65

synchronized transition, DMA, 5-30
synchronous serial data transfer, 12-4
synchronous serial ports, See SPORT
SYSCR (system reset configuration)

register, 19-5

Index

I-48 ADSP-BF537 Blackfin Processor Hardware Reference

SYSRST bit, 19-8
system

clock, 1-22
interrupt controller, 4-2, 15-8
interrupt processing, 4-15
interrupts, 4-1, 4-4
peripherals, 1-2
software reset, 19-3

system and core event mapping (table), 4-5
system clock, 20-5
system clock, changing during runtime,

6-47
system clock (SCLK), 17-3, 20-2

managing, 21-2
system design, 21-1 to 21-14

high frequency considerations, 21-8
recommendations and suggestions, 21-9
recommended reading, 21-13

system interrupt assignment register 0
(SIC_IAR0), 4-19

system interrupt assignment register 1
(SIC_IAR1), 4-19

system interrupt assignment register 2
(SIC_IAR2), 4-20

system interrupt assignment register 3
(SIC_IAR3), 4-20

system interrupt controller (SIC), 4-2, 4-4
controlling interrupts, 4-8
enabling flexible interrupt handling,

15-8
enabling individual peripheral interrupts,

4-8
main functions of, 4-8
peripheral interrupt events, 4-12
registers, 4-18

system interrupt mask register
(SIC_IMASK), 4-8, 4-21

system interrupt status register (SIC_ISR),
4-9, 4-22

system interrupt wakeup-enable register
(SIC_IWR), 4-10, 4-23

system peripheral clock, See SCLK
system reset, 19-1 to 19-59
SYSTEM_RESET[2:0] field, 19-7
system reset configuration register

(SYSCR), 19-5
SZ bit, 10-28, 10-43

T
TACIx pins, 15-5, 15-35
TACLKx pins, 15-5
TAn bit, 9-78
TAP registers

boundary-scan, B-7
BYPASS, B-6
instruction, B-2, B-4

TAP (test access port), B-2
controller, B-2

TAUTORLD bit, 16-3, 16-5
TCKFE bit, 12-36, 12-50, 12-53
TCNTL (core timer control) register, 16-3,

16-5
TCOUNT (core timer count) register,

16-3, 16-5
TCP/IP-style checksums, MAC, 8-21
TCSR bit, 6-71, 6-80
TDA bit, 9-23, 9-79
TDM interfaces, 12-4
TDPTR[4:0] field, 9-79
TDR bit, 9-23, 9-79
TDTYPE[1:0] field, 12-30, 12-50, 12-51
TE bit, 8-43, 8-51, 8-64, 8-68
technical support, -l
temporary mailbox disable feature register

(CAN_MBTD), 9-79
TEMT bit, 13-7, 13-25, 13-26
termination, DMA, 5-31
terminations, SPORT pin/line, 12-10

ADSP-BF537 Blackfin Processor Hardware Reference I-49

Index

test access port (TAP), B-2
controller, B-2

test clock (TCK), B-6
test features, B-1 to B-7
testing circuit boards, B-1, B-6
test-logic-reset state, B-4
test point access, 21-12
TESTSET instruction, 2-10, 21-3
TFS pins, 12-33, 12-39
TFSR bit, 12-33, 12-34, 12-50, 12-52
TFS signal, 12-21
TFSx signal, 12-6
THRE bit, 13-12, 13-25, 13-26
THRE flag, 13-6, 13-17
throughput

DAB, 2-10
DMA, 5-45
from DMA system, 5-44
general-purpose ports, 14-9
SPORT, 12-8

TIMDISx bit, 15-40, 15-41
time-division-multiplexed (TDM) mode,

12-16
See also SPORT, multichannel operation

TIMENx bit, 15-39, 15-40
time quantum (TQ), 9-10
timer counter[15:0] field, 15-46
timer counter[31:16] field, 15-46
TIMER_DISABLE bit, 15-51
TIMER_DISABLE (timer disable) register,

15-7, 15-40, 15-41
TIMER_ENABLE bit, 15-51
TIMER_ENABLE (timer enable) register,

7-25, 15-7, 15-39, 15-40
timer period[15:0] field, 15-48
timer period[31:16] field, 15-48
timers, 1-18, 15-1 to 15-63

core, 16-1 to 16-8
EXT_CLK mode, 15-36
overview, 1-18

timers (continued)
pins, 14-2
port F, 14-4
port H, 14-7
UART, 13-4
watchdog, 1-21, 17-1 to 17-10
WDTH_CAP mode, 13-16

TIMER_STATUS (timer status) register,
15-7, 15-8, 15-42, 15-43

timer width[15:0] field, 15-51
timer width[31:16] field, 15-51
TIMERx_CONFIG (timer configuration)

registers, 15-7, 15-44
TIMERx_COUNTER (timer counter)

registers, 15-7, 15-45, 15-46
TIMERx_PERIOD (timer period)

registers, 15-7, 15-47, 15-48
TIMERx_WIDTH (timer width) registers,

15-50, 15-51
time stamps, CAN, 9-22
TIMILx bits, 15-7, 15-43
timing

auto-refresh, 6-64
memory DMA, 5-48
multichannel transfer, 12-18
peripherals, 2-4
SPI, 10-7

timing examples, for SPORTs, 12-42
timing parameters, CAN, 9-12
timing specs, SDRAM, 6-39
TIMOD[1:0] field, 10-19, 10-24, 10-26,

10-43
TIN_SEL bit, 15-35, 15-44, 15-52
TINT bit, 16-3, 16-5
TLSBIT bit, 12-50, 12-51
TMODE[1:0] field, 15-14, 15-44, 15-51
TMPWR bit, 16-3, 16-5
TMRCLK input, 15-5
TMREN bit, 16-3, 16-5
TMR pin, 15-52

Index

I-50 ADSP-BF537 Blackfin Processor Hardware Reference

TMRx pins, 15-5, 15-19, 15-35
TOGGLE_HI bit, 15-44, 15-52
TOGGLE_HI mode, 15-19
toggle Pxn bit, 14-26
toggle Pxn interrupt A enable bit, 14-33
toggle Pxn interrupt B enable bit, 14-34
tools, development, 1-28
TOVF bit, 12-61, 12-64, 12-65
TOVF_ERRx bit, 15-29, 15-32
TOVF_ERRx bits, 15-7, 15-11, 15-18,

15-43, 15-45, 15-53
TPERIOD (core timer period) register,

16-6
TPOLC bit, 13-32, 13-33
traffic control, DMA, 5-48 to 5-54
transfer count register (PPI_COUNT),

7-34, 7-35
transfer frame protocol, MAC, 8-9
transfer initiate command, 10-25, 10-26
transfer initiation from SPI master, 10-26
transfer rate

memory DMA channels, 5-45
peripheral DMA channels, 5-45

transitions
continuous DMA, 5-27
DMA work unit, 5-27
operating mode, 20-11, 20-12
synchronized DMA, 5-27

transmission acknowledge register 1
(CAN_TA1), 9-78

transmission acknowledge register 2
(CAN_TA2), 9-78

transmission error, SPI, 10-23
transmission request reset register 1

(CAN_TRR1), 9-76
transmission request reset register 2

(CAN_TRR2), 9-76
transmission request set register 1

(CAN_TRS1), 9-75

transmission request set register 2
(CAN_TRS2), 9-75

transmit clock, serial (TSCLKx) pins,
12-31

transmit collision error, SPI, 10-23
transmit configuration registers

(SPORTx_TCR1 and
SPORTx_TCR2), 12-49

transmit data[15:0] field, 12-60
transmit data[31:16] field, 12-60
transmit data buffer[15:0] field, 10-46,

10-47
transmit hold[7:0] field, 13-27
tRAS, 6-39
TRAS[3:0] field, 6-71, 6-74
tRC, 6-41
tRCD, 6-40
TRCD[2:0] field, 6-71, 6-75
tREF, 6-42
tREFI, 6-42
tRFC, 6-41
TRFST bit, 12-14, 12-54
triggering DMA transfers, 5-65
TRM bit, 9-47
tRP, 6-41
TRP[2:0] field, 6-71, 6-74
tRRD, 6-40
TRRn bit, 9-76
TRSn bit, 9-75
TRUNx bits, 15-24, 15-42, 15-43, 15-53
TSCALE (core timer scale) register, 16-3,

16-7
TSCLKx signal, 12-6
TSEG1[3:0] field, 9-10, 9-49
TSEG2[2:0] field, 9-10, 9-49
TSFSE bit, 12-13, 12-54
TSPEN bit, 12-11, 12-49, 12-50
TUVF bit, 12-40, 12-60, 12-64

ADSP-BF537 Blackfin Processor Hardware Reference I-51

Index

TWI, 1-11, 11-2 to 11-63
block diagram, 11-3
bus arbitration, 11-8
clock generation, 11-7
controller, 11-2
electrical specifications, 11-63
external signals, 11-4
fast mode, 11-10
features, 11-2
general call address, 11-9
general setup, 11-13
I2C compatibility, 1-11
master boot from flash, 19-29
master boot mode, 19-52
master mode clock setup, 11-14
master mode receive, 11-16
master mode transmit, 11-15
peripheral interface, 11-5
pins, 11-5
port J, 14-8
repeated start condition, 11-17
slave boot mode, 19-54
slave mode operation, 11-13
start and stop conditions, 11-8
synchronization, 11-7
transfer protocol, 11-6

TWI_CLKDIV (SCL clock divider)
register, 11-12, 11-27

TWI_CONTROL register, 11-4, 11-11,
11-27

TWI_ENA bit, 11-27
TWI_FIFO_CTL (TWI FIFO control)

register, 11-40
TWI FIFO receive data double byte register

(TWI_RCV_DATA16), 11-50
TWI FIFO receive data single byte register

(TWI_RCV_DATA8), 11-50
TWI_FIFO_STAT (TWI FIFO status)

register, 11-43

TWI FIFO transmit data double byte
register (TWI_XMT_DATA16),
11-49

TWI FIFO transmit data single byte
register (TWI_XMT_DATA8),
11-48

TWI_INT_STAT (TWI interrupt status)
register, 11-45, 11-46

TWI_MASTER_ADDR (TWI master
mode address) register, 11-36

TWI_MASTER_CTL (TWI master mode
control) register, 11-32

TWI_MASTER_STAT (TWI master
mode status) register, 11-37, 11-38

TWI pins, 14-3
TWI_RCV_DATA16 (TWI FIFO receive

data double byte) register, 11-50
TWI_RCV_DATA8 (TWI FIFO receive

data single byte) register, 11-50
TWI_SLAVE_ADDR (TWI slave mode

address) register, 11-30
TWI_SLAVE_CTL (TWI slave mode

control) register, 11-28
TWI_SLAVE_STAT (TWI slave mode

status) register, 11-30, 11-31
TWI_XMT_DATA16 (TWI FIFO

transmit data double byte) register,
11-49

TWI_XMT_DATA8 (TWI FIFO transmit
data single byte) register, 11-48

two-dimensional DMA, 5-14
two-wire interface, See TWI
tWR, 6-40
TWR[1:0] field, 6-71, 6-75
TX_ABORTC_CNT bit, 8-120, 8-122
TX_ABORT_CNT bit, 8-120, 8-122
TX_ALLF_CNT bit, 8-120, 8-122
TX_ALLO_CNT bit, 8-120, 8-122
TX_BROAD bit, 8-110, 8-112, 8-113,

8-115

Index

I-52 ADSP-BF537 Blackfin Processor Hardware Reference

TX_BROAD_CNT bit, 8-120, 8-122
TX_CCNT[3:0] field, 8-109, 8-110
TXCOL bit, 10-46
TXCOL flag, 10-23
TX_COMP bit, 8-109, 8-112, 8-114
TX_CRS bit, 8-109, 8-112, 8-113, 8-115
TX_CRS_CNT bit, 8-120, 8-122
TX_DEFER bit, 8-109, 8-112, 8-113,

8-115
TX_DEFER_CNT bit, 8-120, 8-122
TX DMA direction error detected, 8-41
TXDMAERR bit, 8-30, 8-95
TX_DMAU bit, 8-109, 8-111
TXDWA bit, 8-27, 8-93
TXE bit, 10-23, 10-46
TXECNT[7:0] field, 9-86
TX_ECOLL bit, 8-109, 8-111, 8-112,

8-114, 8-115
TX_EDEFER bit, 8-109, 8-110, 8-112,

8-114, 8-115
TX_EQ64_CNT bit, 8-120, 8-122
TX_ER pin, 8-7
TX_EXDEF_CNT bit, 8-120, 8-122
TXF bit, 12-61, 12-64
TX frame status interrupt, 8-40
TX_FRLEN[10:0] field, 8-107
TXFSINT bit, 8-95, 8-96
TX_GE1024_CNT bit, 8-120, 8-122
TX hold register, 12-60
TXHRE bit, 12-64
TX_LATE bit, 8-109, 8-111, 8-112,

8-114, 8-115
TX_LATE_CNT bit, 8-120, 8-122
TX_LOSS bit, 8-108, 8-109, 8-112,

8-113, 8-115
TX_LOST_CNT bit, 8-120, 8-122
TX_LT1024_CNT bit, 8-120, 8-122
TX_LT128_CNT bit, 8-120, 8-122
TX_LT256_CNT bit, 8-120, 8-122
TX_LT512_CNT bit, 8-120, 8-122

TX_MACCTL_CNT bit, 8-120, 8-122
TX_MACE bit, 8-112, 8-114, 8-115
TX_MCOLL_CNT bit, 8-120, 8-122
TX_MULTI bit, 8-110, 8-112, 8-113,

8-115
TX Multicast, TX Broadcast[1:0] field,

8-109
TX_MULTI_CNT bit, 8-120, 8-122
TX_OCTET_CNT bit, 8-120, 8-122
TX_OK bit, 8-109, 8-111, 8-112, 8-114
TX_OK_CNT bit, 8-120, 8-122
TXREQ signal, 13-6
TX_RETRY bit, 8-107, 8-109, 8-112,

8-113, 8-115
TXS bit, 10-29, 10-46
TX_SCOLL_CNT bit, 8-120, 8-122
TXSE bit, 12-53, 12-54
tXSR, 6-41
TX_UNI_CNT bit, 8-120, 8-122
type definitions, MAC, 8-126
TypedFramesReceived register, 8-59

U
UART, 1-19, 13-1 to 13-42

assigning interrupt priority, 13-13
autobaud detection, 13-14, 13-36, 15-35
baud rate, 13-7
baud rate examples, 13-13
bit rate detection, 15-5
bit rate examples, 13-13
bit rate generation, 13-13
bitstream, 13-5
block diagram, 13-3
booting, 13-14
character transmission, 13-37
clearing interrupt latches, 13-29
clock, 13-13
clock rate, 2-4
code examples, 13-33
connected to PAB bus, 13-4

ADSP-BF537 Blackfin Processor Hardware Reference I-53

Index

UART (continued)
data communication via infrared signals,

13-5
data words, 13-5
divisor reset, 13-31
DMA channels, 13-18
DMA mode, 13-18
errors during reception, 13-7
external interfaces, 13-3
features, 13-2
glitch filtering, 13-9
initialization, 13-33
internal interfaces, 13-4
internal TSR register, 13-6
interrupt channels, 13-28
interrupt conditions, 13-29
interrupts, 13-11
IrDA mode, 13-2
IrDA receiver, 13-9
IrDA receiver pulse detection, 13-11
IrDA transmit pulse, 13-9
IrDA transmitter, 13-8
and ISRs, 13-17
loopback mode, 13-24
mixing modes, 13-19
modem status, 13-4
non-DMA interrupt operation, 13-39
non-DMA mode, 13-16
pins, 14-2
polling, 13-38
port F, 14-4
receive operation, 13-7
receive sampling window, 13-10
registers, table, 13-21
sampling clock period, 13-8
slave boot mode, 19-55
standard, 13-1
string transmission, 13-37
switching from DMA to non-DMA,

13-19

UART (continued)
switching from non-DMA to DMA,

13-20
and system DMA, 13-28
timers, 13-4
transmission, 13-6
transmission SYNC bit use, 13-40

UART ports, overview, 1-19
UART receive buffer registers

(UARTx_RBR), 13-7
UARTx_DLH (UART divisor latch high

byte) registers, 13-21, 13-31
UARTx_DLH (UART divisor latch

high-byte) registers, 13-31
UARTx_DLL (UART divisor latch low

byte) registers, 13-21, 13-31
UARTx_DLL (UART divisor latch

low-byte) registers, 13-30
UARTx_GCTL (UART global control)

registers, 13-21, 13-32
UARTx_IER (UART interrupt enable)

registers, 13-21, 13-27, 13-28
UARTx_IIR (UART interrupt

identification) registers, 13-12, 13-21,
13-29, 13-30

UARTx_LCR (UART line control)
registers, 13-6, 13-21, 13-22

UARTx_LSR (UART line status) registers,
13-21, 13-25

UARTx_MCR (UART modem control)
registers, 13-21, 13-24

UARTx_RBR (UART receive buffer)
registers, 13-7, 13-21, 13-27

UARTx_RBR (UART receive buffer)
registers, 13-27

UARTx_SCR (UART scratch) registers,
13-21, 13-32

UARTx_THR (UART transmit holding)
registers, 13-6, 13-21, 13-26, 13-27

UCCNF[3:0] field, 9-29, 9-84

Index

I-54 ADSP-BF537 Blackfin Processor Hardware Reference

UCCNT[15:0] field, 9-85
UCCT bit, 9-84
UCE bit, 9-84
UCEIF bit, 9-27, 9-51
UCEIM bit, 9-27, 9-50
UCEIS bit, 9-27, 9-50
UCEN bit, 13-7, 13-13, 13-31, 13-32,

13-33
UCRC[15:0] field, 9-85
UCRC bit, 9-84
UIAIF bit, 9-27, 9-51
UIAIM bit, 9-27, 9-50
UIAIS bit, 9-27, 9-50
UNDR bit, 7-32, 7-33
unframed/framed, serial data, 12-33
UnicastFramesReceivedOK register, 8-56
UnicastFramesXmittedOK register, 8-62
universal asynchronous

receiver/transmitter, See UART
universal counter, CAN, 9-29
universal counter configuration mode

register (CAN_UCCNF), 9-84
universal counter exceeded interrupt, CAN,

9-27
universal counter register

(CAN_UCCNT), 9-85
universal counter reload/capture register

(CAN_UCRC), 9-85
unpopulated memory, 6-10
UnsupportedOpcodesReceived register,

8-58
unused pins, 21-12
user mode, 19-10
UTE bit, 5-43, 5-100
UTHE[15:0] field, 5-105

V
VCO, multiplication factors, 20-4
VCO signal, 20-2
VDDEXT pins, 21-10

VDDINT pins, 21-10
vector address reset, 19-2
vertical blanking, 7-7
vertical blanking interval only submode,

7-12
video data transfers using PPI, 7-39
video frame partitioning, 7-8
video streams

CIF, 7-9
NTSC, 7-7
PAL, 7-7
QCIF, 7-9

VLAN1TAG[15:0] field, 8-80
VLAN2TAG[15:0] field, 8-81
VLEV[3:0] field, 20-22, 20-29
voltage, 20-18

changing, 20-21
control, 20-7
dynamic control, 20-18
level values, 20-22

voltage controlled oscillator (VCO), 20-2,
20-3

voltage regulator, 1-24
voltage regulator controller, 20-20
voltage regulator control register

(VR_CTL), 20-20, 20-29
VR_CTL (voltage regulator control)

register, 9-42, 20-20, 20-26, 20-29

W
wait states, additional, 6-16
WAKE bit, 20-29
WAKEDET bit, 8-35, 8-95, 8-96
wake from hibernate, MAC, 8-31
wake from sleep, MAC, 8-32
wakeup filter 0 address type bit, 8-89, 8-90
wakeup filter 0 pattern CRC[15:0] field,

8-91
wakeup filter 0 pattern offset[7:0] field,

8-91

ADSP-BF537 Blackfin Processor Hardware Reference I-55

Index

wakeup filter 1 address type bit, 8-89, 8-90
wakeup filter 1 pattern CRC[15:0] field,

8-91
wakeup filter 1 pattern offset[7:0] field,

8-91
wakeup filter 2 address type bit, 8-89, 8-90
wakeup filter 2 pattern CRC[15:0] field,

8-92
wakeup filter 2 pattern offset[7:0] field,

8-91
wakeup filter 3 address type bit, 8-89
wakeup filter 3 pattern CRC[15:0] field,

8-92
wakeup filter 3 pattern offset[7:0] field,

8-91
wakeup frame detected, 8-41
wakeup function, 4-11
wakeup interrupt, CAN, 9-27
WAKEUP signal, 20-16
watchdog control register (WDOG_CTL),

17-8
watchdog count[15:0] field, 17-6
watchdog count[31:16] field, 17-6
watchdog count register (WDOG_CNT),

17-6
watchdog mode, CAN, 9-21
watchdog status[15:0] field, 17-7
watchdog status[31:16] field, 17-7
watchdog status register (WDOG_STAT),

17-7
watchdog timer, 1-21, 17-1 to 17-10

block diagram, 17-3
disabling, 17-5
and emulation mode, 17-2
enabling with zero value, 17-5
features, 17-1
internal interface, 17-3
operation, 17-4
overview, 1-21
registers, 17-5

watchdog timer (continued)
reset, 17-5, 19-6
starting, 17-4

waveform generation, pulse width
modulation, 15-17

WBA bit, 9-46
WDEN[7:0] field, 17-8
WDEV[1:0] field, 17-4, 17-8
WDOG_CNT (watchdog control)

register, 17-3
WDOG_CNT (watchdog count) register,

17-6
WDOG_CTL (watchdog control) register,

17-8
WDOG_STAT (watchdog status) register,

17-3, 17-7
WDRO bit, 17-5
WDSIZE[1:0] field, 5-74, 5-77
WDTH_CAP mode, 15-27, 15-47

control bit and register usage, 15-51
WLS[1:0] field, 13-22
WNR bit, 5-74, 5-78
WOFF[9:0] field, 12-24, 12-67
WOM bit, 10-18, 10-43
word length

SPI, 10-19
SPORT, 12-29
SPORT receive data, 12-61
SPORT transmit data, 12-59

work unit
completion, 5-25
DMA, 5-16
interrupt timing, 5-28
restrictions, 5-27
transitions, 5-27

WR bit, 9-47
write

asynchronous, 6-14
command, 6-38
with data mask command, 6-54

Index

I-56 ADSP-BF537 Blackfin Processor Hardware Reference

write complete bit, 18-22
write complete interrupt enable bit, 18-21
write-one-to-clear (W1C) operations, 5-13
write operation, GPIO, 14-11
write pending status bit, 18-22
WSIZE[3:0] field, 12-23, 12-67
WT bit, 9-47
WUIF bit, 9-27, 9-51
WUIM bit, 9-27, 9-50
WUIS bit, 9-27, 9-50

X
X_COUNT[15:0] field, 5-85
XFR_TYPE[1:0] field, 7-6, 7-28, 7-30
X_MODIFY[15:0] field, 5-88
XMTDATA16[15:0] field, 11-49

XMTDATA8[7:0] field, 11-48
XMTFLUSH bit, 11-41, 11-42
XMTINTLEN bit, 11-41, 11-42
XMTSERV bit, 11-45, 11-46
XMTSTAT[1:0] field, 11-43, 11-44

Y
YCbCr format, 7-29
Y_COUNT[15:0] field, 5-90
Y_MODIFY[15:0] field, 5-93

Z
ZEROFILL bit, 19-15
ZEROFILL block, 19-49
µ-law companding, 12-26, 12-31

	ADSP-BF537 Blackfin Processor Hardware Reference, Revision 3.4
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	Peripherals
	Memory Architecture
	Internal Memory
	External Memory
	I/O Memory Space

	DMA Support
	External Bus Interface Unit
	PC133 SDRAM Controller
	Asynchronous Controller

	Ports
	General-Purpose I/O (GPIO)

	Two-Wire Interface
	Controller Area Network
	Ethernet MAC
	Parallel Peripheral Interface
	SPORT Controllers
	Serial Peripheral Interface (SPI) Port
	Timers
	UART Ports
	Real-Time Clock
	Watchdog Timer
	Clock Signals
	Dynamic Power Management
	Full-On Mode (Maximum Performance)
	Active Mode (Moderate Power Savings)
	Sleep Mode (High Power Savings)
	Deep Sleep Mode (Maximum Power Savings)
	Hibernate State

	Voltage Regulation
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Chip Bus Hierarchy
	Chip Bus Hierarchy Overview
	Interface Overview
	Internal Clocks
	Core Bus Overview
	Peripheral Access Bus (PAB)
	PAB Arbitration
	PAB Agents (Masters, Slaves)
	PAB Performance

	DMA Access Bus (DAB), DMA Core Bus (DCB), DMA External Bus (DEB)
	DAB Arbitration
	DAB Bus Agents (Masters)
	DAB, DCB, and DEB Performance

	External Access Bus (EAB)
	Arbitration of the External Bus
	DEB/EAB Performance

	3 Memory
	Memory Architecture
	L1 Instruction SRAM
	L1 Data SRAM
	L1 Data Cache
	Boot ROM
	External Memory
	Processor-Specific MMRs
	DMEM_CONTROL Register
	DTEST_COMMAND Register

	4 System Interrupts
	Overview
	Features

	Interfaces
	Description of Operation
	Events and Sequencing
	System Peripheral Interrupts

	Programming Model
	System Interrupt Initialization
	System Interrupt Processing Summary

	System Interrupt Controller Registers
	SIC_IARx Registers
	SIC_IMASK Register
	SIC_ISR Register
	SIC_IWR Register

	5 Direct Memory Access
	Overview and Features
	DMA Controller Overview
	External Interfaces
	Internal Interfaces
	Peripheral DMA
	Memory DMA
	Handshaked Memory DMA Mode

	Modes of Operation
	Register-Based DMA Operation
	Stop Mode
	Autobuffer Mode

	Two-Dimensional DMA Operation
	Examples of Two-Dimensional DMA

	Descriptor-Based DMA Operation
	Descriptor List Mode
	Descriptor Array Mode
	Variable Descriptor Size
	Mixing Flow Modes

	Functional Description
	DMA Operation Flow
	DMA Startup
	DMA Refresh
	Work Unit Transitions
	DMA Transmit and MDMA Source
	DMA Receive

	Stopping DMA Transfers

	DMA Errors (Aborts)
	DMA Control Commands
	Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish

	Handshaked Memory DMA Operation
	Pipelining DMA Requests
	HMDMA Interrupts

	DMA Performance
	DMA Throughput
	Memory DMA Timing Details
	Static Channel Prioritization
	Temporary DMA Urgency
	Memory DMA Priority and Scheduling
	Traffic Control

	Programming Model
	Synchronization of Software and DMA
	Single-Buffer DMA Transfers
	Continuous Transfers Using Autobuffering
	Descriptor Structures
	Descriptor Queue Management
	Descriptor Queue Using Interrupts on Every Descriptor
	Descriptor Queue Using Minimal Interrupts

	Software Triggered Descriptor Fetches

	DMA Registers
	DMA Channel Registers
	DMAx_PERIPHERAL_MAP/MDMA_yy_PERIPHERAL_MAP Registers
	DMAx_CONFIG/MDMA_yy_CONFIG Registers
	DMAx_IRQ_STATUS/MDMA_yy_IRQ_STATUS Registers
	DMAx_START_ADDR/MDMA_yy_START_ADDR Registers
	DMAx_CURR_ADDR/MDMA_yy_CURR_ADDR Registers
	DMAx_X_COUNT/MDMA_yy_X_COUNT Registers
	DMAx_CURR_X_COUNT/MDMA_yy_CURR_X_COUNT Registers
	DMAx_X_MODIFY/MDMA_yy_X_MODIFY Registers
	DMAx_Y_COUNT/MDMA_yy_Y_COUNT Registers
	DMAx_CURR_Y_COUNT/MDMA_yy_CURR_Y_COUNT Registers
	DMAx_Y_MODIFY/MDMA_yy_Y_MODIFY Registers
	DMAx_NEXT_DESC_PTR/MDMA_yy_NEXT_DESC_PTR Registers
	DMAx_CURR_DESC_PTR/MDMA_yy_CURR_DESC_PTR Registers

	HMDMA Registers
	HMDMAx_CONTROL Registers
	HMDMAx_BCINIT Registers
	HMDMAx_BCOUNT Registers
	HMDMAx_ECOUNT Registers
	HMDMAx_ECINIT Registers
	HMDMAx_ECURGENT Registers
	HMDMAx_ECOVERFLOW Registers

	DMA Traffic Control Registers
	DMA_TC_PER Register
	DMA_TC_CNT Register

	Programming Examples
	Register-Based 2D Memory DMA
	Initializing Descriptors in Memory
	Software-Triggered Descriptor Fetch Example
	Handshaked Memory DMA Example

	6 External Bus Interface Unit
	EBIU Overview
	Block Diagram
	Internal Memory Interfaces
	Registers
	Shared Pins
	System Clock
	Error Detection
	Bus Request and Grant
	Operation

	AMC Overview and Features
	Features
	Asynchronous Memory Interface
	Asynchronous Memory Address Decode

	AMC Pin Description
	AMC Description of Operation
	Avoiding Bus Contention
	External Access Extension

	AMC Functional Description
	Programmable Timing Characteristics
	Asynchronous Reads
	Asynchronous Writes
	Adding External Access Extension

	Partial Write
	Instruction Fetch
	Cache Line Fill

	AMC Programming Model
	AMC Configuration

	AMC Register Definition
	EBIU_AMGCTL Register
	EBIU_AMBCTL0 and EBIU_AMBCTL1 Registers

	AMC Programming Examples
	SDC Overview and Features
	Features
	SDRAM Configurations Supported
	SDRAM External Bank Size
	SDC Address Mapping
	Internal SDRAM Bank Select
	Parallel Connection of SDRAMs
	Instruction Fetch
	Cache Line Fill

	SDC Interface Overview
	SDC Pin Description
	SDRAM Performance

	SDC Description of Operation
	Definition of SDRAM Architecture Terms
	Refresh
	Row Activation
	Column Read/Write
	Row Precharge
	Internal Bank
	External Bank
	Memory Size
	Burst Length
	Burst Type
	CAS Latency
	Data I/O Mask Function
	SDRAM Commands
	Mode Register Set (MRS) Command
	Extended Mode Register Set (EMRS) Command
	Bank Activate Command
	Read/Write Command
	Precharge/Precharge All Command
	Auto-Refresh Command
	Enter Self-Refresh Mode
	Exit Self-Refresh Mode

	SDC Timing Specs
	tMRD
	tRAS
	CL
	tRCD
	tRRD
	tWR
	tRP
	tRC
	tRFC
	tXSR
	tREF
	tREFI

	SDC Functional Description
	SDC Operation
	SDC Address Muxing
	Multibank Operation
	Core and DMA Arbitration
	Changing System Clock During Runtime
	Changing Power Management During Runtime
	Deep Sleep Mode
	Hibernate State

	Shared SDRAM

	SDC Commands
	Mode Register Set Command
	Extended Mode Register Set Command (Mobile SDRAM)
	Bank Activation Command
	Read/Write Command
	Partial Write
	Single Precharge Command
	Precharge All Command
	Auto-Refresh Command
	Self-Refresh Mode
	Self-Refresh Entry Command
	Self-Refresh Exit Command

	No Operation Command

	SDC SA10 Pin

	SDC Programming Model
	SDC Configuration
	Example SDRAM System Block Diagrams

	SDC Registers
	EBIU_SDRRC Register
	EBIU_SDBCTL Register
	Using SDRAMs With Systems Smaller Than 16M Byte

	EBIU_SDGCTL Register
	EBIU_SDSTAT Register

	SDC Programming Examples

	7 Parallel Peripheral Interface
	Overview
	Features
	Interface Overview
	Description of Operation
	Functional Description
	ITU-R 656 Modes
	ITU-R 656 Background
	ITU-R 656 Input Modes
	Entire Field
	Active Video Only
	Vertical Blanking Interval (VBI) Only

	ITU-R 656 Output Mode
	Frame Synchronization in ITU-R 656 Modes

	General-Purpose PPI Modes
	Data Input (RX) Modes
	No Frame Syncs
	1, 2, or 3 External Frame Syncs
	2 or 3 Internal Frame Syncs

	Data Output (TX) Modes
	No Frame Syncs
	1 or 2 External Frame Syncs
	1, 2, or 3 Internal Frame Syncs

	Frame Synchronization in GP Modes
	Modes With Internal Frame Syncs
	Modes With External Frame Syncs

	Programming Model
	DMA Operation

	PPI Registers
	PPI_CONTROL Register
	PPI_STATUS Register
	PPI_DELAY Register
	PPI_COUNT Register
	PPI_FRAME Register

	Programming Examples
	Data Transfer Scenarios

	8 Ethernet MAC
	Overview
	Features

	Interface Overview
	External Interface
	Clocking
	Pins

	Internal Interface
	Power Management

	Description of Operation
	Protocol
	MII Management Interface

	Operation
	MII Management Interface Operation
	Receive DMA Operation
	Frame Reception and Filtering
	Discarded Frames
	Aborted Frames
	Control Frames
	Examples

	RX Automatic Pad Stripping
	RX DMA Data Alignment
	RX DMA Buffer Structure
	RX Frame Status Buffer
	RX Frame Status Classification
	RX IP Frame Checksum Calculation
	RX DMA Direction Errors

	Transmit DMA Operation
	Flexible Descriptor Structure
	TX DMA Data Alignment
	Late Collisions
	TX Frame Status Classification
	TX DMA Direction Errors

	Power Management
	Ethernet Operation in the Sleep State
	Magic Packet Detection
	Remote Wake-up Filters

	Ethernet Event Interrupts
	RX/TX Frame Status Interrupt Operation
	RX Frame Status Register Operation at Startup and Shutdown
	TX Frame Status Register Operation at Startup and Shutdown

	MAC Management Counters

	Programming Model
	Configure MAC Pins
	Multiplexing Scheme
	CLKBUF

	Configure Interrupts
	Configure MAC Registers
	MAC Address
	MII Station Management

	Configure PHY
	Receive and Transmit Data
	Receiving Data
	Transmitting Data

	Ethernet MAC Register Definitions
	Control-Status Register Group
	EMAC_OPMODE Register
	EMAC_ADDRLO Register
	EMAC_ADDRHI Register
	EMAC_HASHLO Register
	EMAC_HASHHI Register
	EMAC_STAADD Register
	EMAC_STADAT Register
	EMAC_FLC Register
	EMAC_VLAN1 Register
	EMAC_VLAN2 Register
	EMAC_WKUP_CTL Register
	EMAC_WKUP_FFMSKx Registers
	EMAC_WKUP_FFCMD Register
	EMAC_WKUP_FFOFF Register
	EMAC_WKUP_FFCRC0 and EMAC_WKUP_FFCRC1 Registers

	System Interface Register Group
	EMAC_SYSCTL Register
	EMAC_SYSTAT Register

	Ethernet MAC Frame Status Registers
	EMAC_RX_STAT Register
	EMAC_RX_STKY Register
	EMAC_RX_IRQE Register
	EMAC_TX_STAT Register
	EMAC_TX_STKY Register
	EMAC_TX_IRQE Register
	EMAC_MMC_RIRQS Register
	EMAC_MMC_RIRQE Register
	EMAC_MMC_TIRQS Register
	EMAC_MMC_TIRQE Register

	MAC Management Counter Registers
	EMAC_MMC_CTL Register

	Programming Examples
	Ethernet Structures
	MAC Address Setup
	PHY Control Routines

	9 CAN Module
	Overview
	Interface Overview
	CAN Mailbox Area
	CAN Mailbox Control
	CAN Protocol Basics

	CAN Operation
	Bit Timing
	Transmit Operation
	Retransmission
	Single Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filter
	Remote Frame Handling
	Watchdog Mode

	Time Stamps
	Temporarily Disabling Mailboxes

	Functional Operation
	CAN Interrupts
	Mailbox Interrupts
	Global CAN Status Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	CAN Error Handling
	Error Frames
	Error Levels

	Debug and Test Modes
	Low Power Features
	CAN Built-In Suspend Mode
	CAN Built-In Sleep Mode
	CAN Wakeup From Hibernate State

	CAN Register Definitions
	Global CAN Registers
	CAN_CONTROL Register
	CAN_STATUS Register
	CAN_DEBUG Register
	CAN_CLOCK Register
	CAN_TIMING Register
	CAN_INTR Register
	CAN_GIM Register
	CAN_GIS Register
	CAN_GIF Register

	Mailbox/Mask Registers
	CAN_AMxx Registers
	CAN_MBxx_ID1 Registers
	CAN_MBxx_ID0 Registers
	CAN_MBxx_TIMESTAMP Registers
	CAN_MBxx_LENGTH Registers
	CAN_MBxx_DATAx Registers

	Mailbox Control Registers
	CAN_MCx Registers
	CAN_MDx Registers
	CAN_RMPx Register
	CAN_RMLx Register
	CAN_OPSSx Register
	CAN_TRSx Registers
	CAN_TRRx Registers
	CAN_AAx Register
	CAN_TAx Register
	CAN_MBTD Register
	CAN_RFHx Registers
	CAN_MBIMx Registers
	CAN_MBTIFx Registers
	CAN_MBRIFx Registers

	Universal Counter Registers
	CAN_UCCNF Register
	CAN_UCCNT Register
	CAN_UCRC Register

	Error Registers
	CAN_CEC Register
	CAN_ESR Register
	CAN_EWR Register

	Programming Examples
	CAN Setup Code
	Initializing and Enabling CAN Mailboxes
	Initiating CAN Transfers and Processing Interrupts

	10 SPI Compatible Port Controllers
	Overview
	Features
	Interface Overview
	External Interface
	Serial Peripheral Interface Clock Signal (SCK)
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Serial Peripheral Interface Slave Select Input Signal
	Serial Peripheral Interface Slave Select Enable Output Signals
	Slave Select Inputs
	Use of FLS Bits in SPI_FLG for Multiple Slave SPI Systems

	Internal Interfaces
	DMA Functionality

	SPI Transmit Data Buffer
	SPI Receive Data Buffer

	Description of Operation
	SPI Transfer Protocols
	SPI General Operation
	SPI Control
	Clock Signals
	SPI Baud Rate
	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Interrupt Output

	Functional Description
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Programming Model
	Starting and Ending an SPI Transfer
	Master Mode DMA Operation
	Slave Mode DMA Operation

	SPI Registers
	SPI_BAUD Register
	SPI_CTL Register
	SPI_FLG Register
	SPI_STAT Register
	SPI_TDBR Register
	SPI_RDBR Register
	SPI_SHADOW Register

	Programming Examples
	Core Generated Transfer
	Initialization Sequence
	Starting a Transfer
	Post Transfer and Next Transfer
	Stopping

	DMA Transfer
	DMA Initialization Sequence
	SPI Initialization Sequence
	Starting a Transfer
	Stopping a Transfer

	11 Two-Wire Interface Controller
	Overview
	Interface Overview
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)
	TWI Pins

	Internal Interfaces

	Description of Operation
	TWI Transfer Protocols
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI General Operation
	TWI Control
	Clock Signal

	Functional Description
	General Setup
	Slave Mode
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive
	Repeated Start Condition
	Transmit/Receive Repeated Start Sequence
	Receive/Transmit Repeated Start Sequence
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start Condition

	Programming Model
	TWI Register Descriptions
	TWI_CONTROL Register
	TWI_CLKDIV Register
	TWI_SLAVE_CTL Register
	TWI_SLAVE_ADDR Register
	TWI_SLAVE_STAT Register
	TWI_MASTER_CTL Register
	TWI_MASTER_ADDR Register
	TWI_MASTER_STAT Register
	TWI_FIFO_CTL Register
	TWI_FIFO_STAT Register
	TWI_INT_STAT Register
	TWI_XMT_DATA8 Register
	TWI_XMT_DATA16 Register
	TWI_RCV_DATA8 Register
	TWI_RCV_DATA16 Register

	Programming Examples
	Master Mode Setup
	Slave Mode Setup

	Electrical Specifications

	12 SPORT Controllers
	Overview
	Features

	Interface Overview
	SPORT Pin/Line Terminations

	Description of Operation
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	Stereo Serial Operation
	Multichannel Operation
	Multichannel Enable
	Frame Syncs in Multichannel Mode
	Multichannel Frame
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORTx_MCMC2
	Channel Selection Register
	Multichannel DMA Data Packing

	Support for H.100 Standard Protocol
	2X Clock Recovery Control

	Functional Description
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Word Length
	Bit Order
	Data Type
	Companding
	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Moving Data Between SPORTs and Memory
	SPORT RX, TX, and Error Interrupts
	PAB Errors
	Timing Examples

	SPORT Registers
	Register Writes and Effective Latency
	SPORTx_TCR1 and SPORTx_TCR2 Registers
	SPORTx_RCR1 and SPORTx_RCR2 Registers
	Data Word Formats
	SPORTx_TX Register
	SPORTx_RX Register
	SPORTx_STAT Register
	SPORTx_TCLKDIV Register
	SPORTx_RCLKDIV Register
	SPORTx_TFSDIV Register
	SPORTx_RFSDIV Register
	SPORTx_MCMCn Registers
	SPORTx_CHNL Register
	SPORTx_MRCSn Registers
	SPORTx_MTCSn Registers

	Programming Examples
	SPORT Initialization Sequence
	DMA Initialization Sequence
	Interrupt Servicing
	Starting a Transfer

	13 UART Port Controllers
	Overview
	Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	UART Transfer Protocol
	UART Transmit Operation
	UART Receive Operation
	IrDA Transmit Operation
	IrDA Receive Operation
	Interrupt Processing
	Bit Rate Generation
	Autobaud Detection

	Programming Model
	Non-DMA Mode
	DMA Mode
	Mixing Modes

	UART Registers
	UARTx_LCR Registers
	UARTx_MCR Registers
	UARTx_LSR Registers
	UARTx_THR Registers
	UARTx_RBR Registers
	UARTx_IER Registers
	UARTx_IIR Registers
	UARTx_DLL Registers
	UARTx_DLH Registers
	UARTx_SCR Registers
	UARTx_GCTL Registers

	Programming Examples

	14 General-Purpose Ports
	Overview
	Features
	Interface Overview
	External Interface
	Port F Structure
	Port G Structure
	Port H Structure
	Port J Structure

	Internal Interfaces
	Performance/Throughput

	Description of Operation
	Operation
	General-Purpose I/O Modules
	GPIO Interrupt Processing

	Programming Model
	Memory-Mapped GPIO Registers
	PORT_MUX Control Register
	PORTx_FER Registers
	PORTxIO_DIR Registers
	PORTxIO_INEN Registers
	PORTxIO Registers
	PORTxIO_SET Registers
	PORTxIO_CLEAR Registers
	PORTxIO_TOGGLE Registers
	PORTxIO_POLAR Registers
	PORTxIO_EDGE Registers
	PORTxIO_BOTH Registers
	PORTxIO_MASKA Registers
	PORTxIO_MASKB Registers
	PORTxIO_MASKA_SET Registers
	PORTxIO_MASKB_SET Registers
	PORTxIO_MASKA_CLEAR Registers
	PORTxIO_MASKB_CLEAR Registers
	PORTxIO_MASKA_TOGGLE Registers
	PORTxIO_MASKB_TOGGLE Registers

	Programming Examples

	15 General-Purpose Timers
	Overview and Features
	Features

	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Interrupt Processing
	Illegal States

	Modes of Operation
	Pulse Width Modulation (PWM_OUT) Mode
	Output Pad Disable
	Single Pulse Generation
	Pulse Width Modulation Waveform Generation
	PULSE_HI Toggle Mode
	Externally Clocked PWM_OUT
	Using PWM_OUT Mode With the PPI
	Stopping the Timer in PWM_OUT Mode

	Pulse Width Count and Capture (WDTH_CAP) Mode
	Autobaud Mode

	External Event (EXT_CLK) Mode

	Programming Model
	Timer Registers
	TIMER_ENABLE Register
	TIMER_DISABLE Register
	TIMER_STATUS Register
	TIMERx_CONFIG Registers
	TIMERx_COUNTER Registers
	TIMERx_PERIOD Registers
	TIMERx_WIDTH Registers
	Summary

	Programming Examples

	16 Core Timer
	Overview and Features
	Timer Overview
	External Interfaces
	Internal Interfaces

	Description of Operation
	Interrupt Processing

	Core Timer Registers
	TCNTL Register
	TCOUNT Register
	TPERIOD Register
	TSCALE Register

	Programming Examples

	17 Watchdog Timer
	Overview and Features
	Interface Overview
	External Interface
	Internal Interface

	Description of Operation
	Watchdog Timer Register Definitions
	WDOG_CNT Register
	WDOG_STAT Register
	WDOG_CTL Register

	Programming Examples

	18 Real-Time Clock
	Overview
	Interface Overview
	Description of Operation
	RTC Clock Requirements
	Prescaler Enable

	RTC Programming Model
	Register Writes
	Write Latency
	Register Reads
	Deep Sleep
	Event Flags
	Setting Time of Day
	Using the Stopwatch
	Interrupts
	State Transitions Summary

	RTC Register Definitions
	RTC_STAT Register
	RTC_ICTL Register
	RTC_ISTAT Register
	RTC_SWCNT Register
	RTC_ALARM Register
	RTC_PREN Register

	Programming Examples
	Enable RTC Prescaler
	RTC Stopwatch For Exiting Deep Sleep Mode
	RTC Alarm to Come Out of Hibernate State

	19 System Reset and Booting
	Overview
	Reset and Powerup
	Hardware Reset
	System Reset Configuration Register (SYSCR)
	Software Resets and Watchdog Timer
	Software Reset Register (SWRST)
	Core-Only Software Reset
	Core and System Reset
	Reset Vector
	Servicing Reset Interrupts

	Booting Process
	Header Information
	Host Wait Feedback Strobe (HWAIT)
	Final Initialization

	Initialization Code
	Multi-Application (Multi-DXE) Management
	User-Callable Boot ROM Functions
	Booting a Different Application
	Determining Boot Stream Start Addresses

	Specific Blackfin Boot Modes
	Bypass (No-Boot) Mode (BMODE = 000)
	8-Bit Flash/PROM Boot (BMODE = 001)
	16-Bit Flash/PROM Boot (BMODE = 001)
	SPI Master Mode Boot from SPI Memory (BMODE = 011)
	SPI Memory Detection Routine

	SPI Slave Mode Boot From SPI Host (BMODE = 100)
	TWI Master Boot Mode (BMODE = 101)
	TWI Slave Boot Mode (BMODE = 110)
	UART Slave Mode Boot via Master Host (BMODE = 111)

	Blackfin Loader File Viewer

	20 Dynamic Power Management
	Phase Locked Loop and Clock Control
	PLL Overview
	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	Dynamic Power Management Controller
	Operating Modes
	Dynamic Power Management Controller States
	Full-On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode
	Hibernate State

	Operating Mode Transitions
	Programming Operating Mode Transitions
	PLL Programming Sequence
	PLL Programming Sequence Continues

	Dynamic Supply Voltage Control
	Power Supply Management
	Controlling the Voltage Regulator
	Changing Voltage
	Powering Down the Core (Hibernate State)

	PLL Registers
	PLL_DIV Register
	PLL_CTL Register
	PLL_STAT Register
	PLL_LOCKCNT Register
	VR_CTL Register

	Programming Examples
	Active Mode to Full-On Mode
	Full-On Mode to Active Mode
	In the Full On Mode, Change CLKIN to VCO Multiplier From 31x to 2x
	Setting Wakeups and Entering Hibernate State
	Changing Internal Voltage Levels

	21 System Design
	Pin Descriptions
	Managing Clocks
	Managing Core and System Clocks

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	External Memory Design Issues
	Example Asynchronous Memory Interfaces
	Avoiding Bus Contention

	High-Frequency Design Considerations
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	5 Volt Tolerance
	Resetting the Processor
	Recommendations for Unused Pins
	Programmable Outputs
	Test Point Access
	Oscilloscope Probes
	Recommended Reading

	A System MMR Assignments
	Dynamic Power Management Registers
	System Reset and Interrupt Control Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	UART0 Controller Registers
	SPI Controller Registers
	Timer Registers
	Ports Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	External Bus Interface Unit Registers
	DMA/Memory DMA Control Registers
	PPI Registers
	TWI Registers
	UART1 Controller Registers
	CAN Registers
	Ethernet MAC Registers
	Handshake MDMA Control Registers
	Core Timer Registers
	Processor-Specific Memory Registers

	B Test Features
	JTAG Standard
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	G Glossary
	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

