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 PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc. 

Purpose of This Manual 
ADSP-BF535 Blackfin Processor Hardware Reference provides architectural 
information about the Blackfin processors. The architectural descriptions 
cover functional blocks, buses, and ports, including all features and pro-
cesses that they support. 

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see ADSP-BF535 
Blackfin Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar 
with Analog Devices processors. The manual assumes the audience has a 
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors 
can use this manual, but should supplement it with other texts, such as 
hardware and programming reference manuals that describe their target 
architecture.
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Manual Contents
This manual contains:

• Chapter 1, Introduction
Provides a high level overview of the Blackfin processor. Architec-
tural descriptions include functional blocks, buses, and ports, 
including all features and processes that they support.

• Chapter 2, Computational Units
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units, shifter, and the set of video ALUs. The chapter also 
discusses data formats, data types, and register files.

• Chapter 3, Operating Modes and States
Describes the three operating modes of the ADSP-BF535 proces-
sor: Emulation mode, Supervisor mode, and User mode. The 
chapter also describes Idle state and Reset state.

• Chapter 4, Program Sequencer
Describes the operation of the program sequencer, which controls 
program flow by providing the address of the next instruction to be 
executed. The chapter also discusses loops, subroutines, jumps, 
interrupts, exceptions, and the IDLE instruction.

• Chapter 5, Data Address Generators
Describes the Data Address Generators (DAGs), addressing modes, 
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 6, Memory
Describes L1 memories and L2 memories. In particular, details 
their memory architecture, memory model, memory transaction 
model, and memory-mapped registers (MMRs). The L1 section 
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discusses the instruction, data, and scratchpad memory, which are 
part of the Blackfin processor core. The L2 section discusses 
on-chip and off-chip L2 memories.

• Chapter 7, Chip Bus Hierarchy
Describes on-chip buses, including how data moves through the 
system. The chapter also discusses the system memory map, major 
system components, and the system interconnects.

• Chapter 8, Dynamic Power Management
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

• Chapter 9, Direct Memory Access
Describes the channel DMA and Memory DMA controllers. The 
channel DMA section discusses direct, block data movements 
between a peripheral with DMA access and internal or external 
memory spaces. 

The Memory DMA section discusses memory-to-memory transfer 
capabilities among the ADSP-BF535 processor memory spaces  
and the L1, L2, external synchronous, and asynchronous 
memories.

• Chapter 10, SPI Compatible Port Controllers
Describes the two independent Serial Peripheral Interface (SPI) 
ports, SPI0 and SPI1, that provide an I/O interface to a variety of 
SPI compatible peripheral devices.

• Chapter 11, Serial Port Controllers
Describes the two independent, synchronous Serial Port Control-
lers (SPORT0 and SPORT1) that provide an I/O interface to a 
variety of serial peripheral devices.
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• Chapter 12, UART Port Controller

Describes the Universal Asynchronous Receiver/ Transmitter 
(UART) ports (UART0 and UART1), which convert data between 
serial and parallel formats and include modem control and inter-
rupt handling hardware.

• Chapter 13, PCI Bus Interface
Describes the Peripheral Component Interconnect (PCI) periph-
eral, which supports PCI device and Host-to-PCI bridge functions.

• Chapter 14, USB Device
Discusses the USB Device module in the ADSP- 21535 processor. 
The chapter includes a block diagram of the USBD as well as 
descriptions of the USBD registers, interrupts, and programming 
model.

• Chapter 15, Programmable Flags
Describes the programmable flags, or general-purpose I/O pins, in 
the ADSP-BF535 processor, including how to configure the pins as 
inputs and outputs and how to generate interrupts.

• Chapter 16, Timers
Describes the three general-purpose timers that can be configured 
in any of three modes, the core timer that can generate periodic 
interrupts for a variety of timing functions, and the watchdog timer 
that can implement software watchdog functions, such as generat-
ing events to the Blackfin processor core.

• Chapter 17, Real-Time Clock (RTC)
Describes a set of digital watch features of the ADSP-BF535 pro-
cessor, including time of day, alarm, and stopwatch countdown.
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• Chapter 18, External Bus Interface Unit
Describes the External Bus Interface Unit of the ADSP-BF535 pro-
cessor. The chapter also discusses the asynchronous memory 
interface, the SDRAM controller (SDC), related registers, and 
SDC configuration and commands.

• Chapter 19, System Design
Describes how to use the processor as part of an overall system. It 
includes information about interfacing the ADSP-BF535 processor 
to external memory chips, bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused processor pins.

• Chapter 20, Blackfin Processor’s Debug
Describes the Blackfin processor debug functionality, which can be 
used for software debugging and complements some services often 
found in an operating system.

• Appendix A, Blackfin Processor Core MMR Assignments
Lists the core memory-mapped registers and their addresses.

• Appendix B, System MMR Assignments
Lists the system memory-mapped registers and their addresses.

• Appendix C, Test Features
Describes test features for the ADSP-BF535 processor; discusses 
the JTAG standard, boundary-scan architecture, instruction and 
boundary registers, and public instructions.

• Appendix D, Numeric Formats
Describes various aspects of the 16-bit data format. The chapter 
also describes how to implement a block floating-point format in 
software.

• Appendix G, Glossary
Contains definitions of terms used in this book, including 
acronyms.



What’s New in This Manual

xlviii ADSP-BF535 Blackfin Processor Hardware Reference
 

What’s New in This Manual
This is Revision 3.3 of ADSP-BF535 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following 
issues: 

• RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in 
Chapter 4, “Program Sequencer”

• Note on programming the STOPCK bit in Chapter 8, “Dynamic 
Power Management”

• Description of multichannel mode operation in Chapter 11, 
“Serial Port Controllers”

• Note on timing dependencies for the TRP and TRAS settings in the 
EBIU_SDGCTL register in Chapter 18, “External Bus Interface Unit”

• Clarification of watchpoint ranges in Chapter 20, “Blackfin Pro-
cessor’s Debug”

Technical Support
You can reach Analog Devices processors and DSP technical support in 
the following ways:

• Post your questions in the processors and DSP support community 
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

http://ez.analog.com/community/dsp
http://www.analog.com/support
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• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or 
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches 
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications 
to: 
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor. 
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors. 
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales 
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Product Information
Product information can be obtained from the Analog Devices Web site 
and the CCES or VisualDSP++ online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information 
about a broad range of products—analog integrated circuits, amplifiers, 
converters, and digital signal processors.

To access a complete technical library for each processor family, go to 
http://www.analog.com/processors/technical_library. The manuals 
selection opens a list of current manuals related to the product as well as a 
link to the previous revisions of the manuals. When locating your manual 
title, note a possible errata check mark next to the title that leads to the 
current correction report against the manual. 

Also note, myAnalog is a free feature of the Analog Devices Web site that 
allows customization of a Web page to display only the latest information 
about products you are interested in. You can choose to receive weekly 
e-mail notifications containing updates to the Web pages that meet your 
interests, including documentation errata against all manuals. myAnalog 
provides access to books, application notes, data sheets, code examples, 
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your 
user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/ 
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
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EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It 
allows you direct access to ADI technical support engineers. You can 
search FAQs and technical information to get quick answers to your 
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar 
design challenges. You can also use this open forum to share knowledge 
and collaborate with the ADI support team and your peers. Visit 
http://ez.analog.com to sign up. 

http://ez.analog.com
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Notation Conventions
Text conventions in this manual are identified and described as follows. 

Example Description

Close command 
(File menu)

Titles in reference sections indicate the location of an item within the 
IDE environment’s menu system (for example, the Close command 
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly 
brackets and separated by vertical bars; read the example as this or 
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an 
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with 
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the 
online version of this book, the word Note appears instead of this 

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ... 
A Caution identifies conditions or inappropriate usage of the product 
that could lead to undesirable results or product damage. In the online 
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ... 
A Warning identifies conditions or inappropriate usage of the product 
that could lead to conditions that are potentially hazardous for devices 
users. In the online version of this book, the word Warning appears 
instead of this symbol.
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Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by 
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or 
write-1-to-clear (W1C), this information appears under the name. 
Read/write is the default and is not noted. Additional descriptive 
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit 
description, followed by the long name in parentheses. 

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register. 

• Bits marked x have an unknown reset value. Consequently, the 
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations, 
write back the value that is read for reserved bits in a register, 
unless otherwise specified. 
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The following figure shows an example of these conventions.

Figure 1.  Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI 
is the programmed state.
1 - The effective state of PULSE_HI 
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period 
Count)

0 - Interrupt request 
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt 
Request Enable)

0 - Sample TMRx pin or 
PF1 pin.
1 - Sample UART RX pin 
or PPI_CLK pin.

TIN_SEL (Timer Input 
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)



ADSP-BF535 Blackfin Processor Hardware Reference 1-1 
 

1 INTRODUCTION

The ADSP-BF535 processor is a member of the Blackfin family of prod-
ucts. The core architecture combines a dual-MAC signal processing 
engine, an orthogonal RISC-like microprocessor instruction set, and sin-
gle instruction multiple data (SIMD), multimedia capabilities into a single 
instruction set architecture. 

Blackfin processors feature dynamic power management, the ability to 
vary both the voltage and frequency of operation to provide lower overall 
power consumption than other DSPs.

Throughout this manual, the words core and system are used to describe 
sections of the ADSP-BF535 processor:

• The word core denotes the processor, L1 memory, Event Control-
ler, core timer, and Performance Monitoring registers.

• The word system denotes the peripheral set described in the follow-
ing section plus the Peripheral Component Interconnect (PCI) 
controller, the external memory controller (EBIU), the Direct 
Memory Access (DMA) controller, and the interfaces between 
these, the system, and the optional, external (off chip) resources.

ADSP-BF535 Peripherals
The ADSP-BF535 processor system peripherals include:

• Universal Asynchronous Receiver Transmitters (UARTs)

• Serial Peripheral Interfaces (SPIs)
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• Serial Ports (SPORTs)

• General-purpose timers

• Real-Time Clock (RTC)

• General-purpose I/O (Programmable Flags)

• Watchdog Timer

• Universal Serial Bus (USB)

• Peripheral Component Interconnect (PCI) Bus

These peripherals are connected to the core via several high bandwidth 
buses, as shown in Figure 1-1.

All DMA capable peripherals benefit from individual DMA channels, 
which are integrated into the peripheral. There is also a separate memory 
DMA channel dedicated to data transfers among the various chip memory 
spaces, including external, synchronous dynamic random access memory 
(SDRAM) and asynchronous memory, and internal Level 2 SRAM and 
PCI memory spaces. Multiple on-chip 32-bit buses run at up to 133 MHz 
to provide bandwidth for the processor core and for on-chip and external 
peripherals.

ADSP-BF535 Core Architecture
The ADSP-BF535 processor core contains two multiplier/accumulators 
(MACs), two 40-bit arithmetic logic units (ALUs), four video ALUs, and 
a single shifter, as shown in Figure 1-2. The computational units process 
8-, 16-, or 32-bit data from the register file. Each MAC performs a 16- by 
16-bit multiply per cycle, with accumulation to a 40-bit result. This pro-
vides eight bits of extended precision.
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Two ALUs perform all standard arithmetic and logical operations on 16- 
or 32-bit data. Each of the two 32-bit input registers can be regarded as 
two 16-bit halves. By using the registers as pairs of 16-bit operands, dual 
16-bit or single 32-bit operations can occur in a single cycle.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

Data for the computational units is located in a multiported register file of 
sixteen 16-bit entries or eight 32-bit entries.

Figure 1-1. ADSP-BF535 Block Diagram
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A program sequencer controls the instruction execution flow, including 
instruction alignment and decoding. The sequencer supports conditional 
jumps and subroutine calls, as well as zero-overhead looping. A loop buf-
fer stores instructions locally.

Two data address generators (DAGs) provide addresses for simultaneous 
dual operand fetches from memory. The DAGs share a register file con-
taining four sets of 32-bit Index, Modify, Length, and Base registers. 
Eight additional 32-bit registers provide pointers for general indexing of 
variables and stack locations.

Figure 1-2. ADSP-BF535 Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16
88 8 8

40 40

A0 A1

FP

P5

P4

P3

P2

P1

P0

R7

R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

DATA ARITHMETIC UNIT

BARREL
SHIFTER

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT



ADSP-BF535 Blackfin Processor Hardware Reference 1-5 
 

Introduction

Blackfins support a modified Harvard architecture in combination with a 
hierarchical memory structure. Level 1 (L1) memories operate at the full 
processor speed. On-chip and off-chip Level 2 (L2) memories can take 
multiple processor cycles to access. At the L1 level, the instruction mem-
ory holds instructions only. The two data memories hold data, and a 
dedicated scratchpad data memory stores stack and local variable informa-
tion. At the L2 level, there is a single unified memory space, holding both 
instructions and data. 

In addition, the L1 instruction memory and L1 data memories may be 
configured as either static RAMs (SRAMs) or caches. The Memory Man-
agement unit (MMU) provides memory protection for individual tasks 
that may be operating on the core and may protect system registers from 
unintended access.

The architecture provides three modes of operation: User, Supervisor, and 
Emulation. User mode has restricted access to a subset of system resources, 
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin instruction set is optimized so that 16-bit opcodes represent 
the most frequently used instructions. Complex DSP instructions are 
encoded into 32-bit opcodes as multifunction instructions. Blackfins sup-
port a limited multi-issue capability, where a 32-bit instruction can be 
issued in parallel to two 16-bit instructions. This allows the programmer 
to use many of the core resources in a single instruction cycle.

The Blackfin assembly language uses an algebraic syntax. The architecture 
is optimized for use with a C/C++ compiler.

Memory Architecture
The Blackfin architecture structures memory as a single, unified 4 Gbyte 
address space using 32-bit addresses. All resources, including internal 
memory, external memory, PCI address spaces, and I/O control registers 
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occupy separate sections of this common address space. The memory por-
tions of this address space are arranged in a hierarchical structure. Fast, 
low latency memory systems for cache or SRAM are located close to the 
processor. Figure 1-3 shows the memory map for the ADSP-BF535 
processor.

The L1 memory system is the primary highest performance memory avail-
able to the Blackfin core. The L2 memory system provides additional 
capacity with slightly lower performance. The off-chip memory system, 

Figure 1-3. ADSP-BF535 Processor Internal/External Memory Map

PCI Configuration Space Port (4 byte)

PCI Configuration Registers (64 Kbyte)

Reserved

PCI I/O Space (64 Kbyte)

Reserved

PCI Memory Space (128 Mbyte)

Reserved

Async Memory Bank 3 (64 Mbyte)

Async Memory Bank 2 (64 Mbyte)

Async Memory Bank 1 (64 Mbyte)

Async Memory Bank 0 (64 Mbyte)

SDRAM Memory Bank 3
(16 MB - 128 MB)*

SDRAM Memory Bank 2
(16 MB - 128 MB)*

SDRAM Memory Bank 1
(16 MB - 128 MB)*

SDRAM Memory Bank 0
(16 MB - 128 MB)*

0xEEFF FFFC

0xEEFF FF00

0xEEFE FFFF

0xEEFE 0000

0xE7FF FFFF

0xE000 0000

0x2FFF FFFF

0x2C00 0000

0x2800 0000

0x2400 0000

0x2000 0000

0x1800 0000

0x1000 0000

0x0800 0000

0x0000 0000

0xEF00 0000

External Memory Map

Core Memory-Mapped Registers (2 Mbyte)

Reserved

Scratchpad SRAM (4 Kbyte)

Instruction SRAM (16 Kbyte)

System Memory-Mapped Registers (2 Mbyte)

Reserved

Reserved

Data Bank B SRAM (16 Kbyte)

Reserved

Data Bank A SRAM (16 Kbyte)

Reserved

L2 SRAM Memory (256 Kbyte)

Reserved

0xFFFF FFFF

0xFFE0 0000

0xFFB0 0000

0xFF90 4000

0xFF90 0000

0xFF80 4000

0xFF80 0000

0xF003 FFFF

0xF000 0000

0xEF00 0000

0xFFC0 0000

0xFFB0 1000

0xFFA0 4000

0xFFA0 0000

Internal Memory Map

* The addresses shown for the SDRAM banks reflect a fully populated SDRAM array with 512 Mbytes of memory. If any
bank contains less than 128 Mbytes of memory, it would only extend to the length of the real memory systems and the
end address would become the start address of the next bank. This would continue for all four banks, with any remaining
space between the end of Memory Bank 3 and the beginning of Async Memory Bank 0 at address 0x2000 0000 treated
as reserved address space.
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accessed through the External Bus Interface Unit (EBIU), provides 
expansion with SDRAM, flash memory, and SRAM, optionally accessing 
more than 768 Mbytes of physical memory.

The memory DMA controller provides high bandwidth data movement 
capability. It can perform block transfers of code or data between the 
internal L1/L2 memories and the external memory spaces, including PCI 
memory space.

Internal (On-Chip) Memory
The ADSP-BF535 processor has four blocks of on-chip memory that pro-
vide high bandwidth access to the core:

• L1 instruction memory consisting of 16 Kbytes of 4-way set asso-
ciative cache memory. In addition, the memory may be configured 
as an SRAM. This memory is accessed at full processor speed.

• L1 data memory, consisting of two banks of 16 Kbytes each. Each 
L1 data memory bank may be configured as a 1- or 2-way set asso-
ciative cache or as an SRAM, and it is accessed at full speed by the 
core. 

• 4 Kbyte scratchpad RAM, which runs at the same speed as the L1 
memories but is only accessible as data SRAM and cannot be con-
figured as cache memory. 

• L2 SRAM memory array, which provides 256 Kbytes of high speed 
SRAM at the full bandwidth of the core and slightly longer latency 
than the L1 memory banks. The L2 memory is a unified instruc-
tion and data memory and can hold any mixture of code and data 
required by the system design.
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The ADSP-BF535 processor core has a dedicated low latency 64-bit wide 
datapath port into the L2 SRAM memory. For example, at a core fre-
quency of 300 MHz, the peak data transfer rate across this interface is up 
to 2.4 Gbytes per second.

External (Off-Chip) Memory
External memory is accessed via the External Bus Interface Unit. This 
interface provides a glueless connection to up to four banks of synchro-
nous DRAM (SDRAM) as well as up to four banks of asynchronous 
memory devices including flash memory, EPROM, ROM, SRAM, and 
memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face with up to four banks of SDRAM. Each bank contains between 
16 Mbytes and 128 Mbytes, providing access to up to 512 Mbytes of 
RAM. Each bank can be programmed independently and is contiguous 
with adjacent banks, regardless of the size or placement of the banks. This 
permits configuration and upgrade of the system memory, and allows the 
core to view all SDRAM as a single, contiguous, physical address space.

The asynchronous memory controller can also be programmed to control 
up to four banks of devices. Each bank occupies a 64 Mbyte segment 
regardless of the size of the devices used, so that these banks are only con-
tiguous if fully populated with 64 Mbytes of memory.

PCI
The PCI bus defines three separate address spaces, which are accessed 
through windows in the ADSP-BF535 processor memory space: 

• PCI memory

• PCI I/O

• PCI configuration space
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In addition, the PCI interface can either be used as a bridge from the pro-
cessor core as the controlling CPU in the system or as a host port where 
another CPU in the system is the host and the ADSP-BF535 processor is 
functioning as an intelligent I/O device on the PCI bus.

When the ADSP-BF535 processor acts as the system controller, it views 
the PCI address spaces through its mapped windows. It can initialize all 
devices in the system and maintain a map of the topology of the 
environment.

The PCI memory region is a 4 Gbyte space that appears on the PCI bus 
and can be used to map memory on I/O devices on the bus. The 
ADSP-BF535 processor uses a 128 Mbyte window in memory space to see 
a portion of the PCI memory space. A base address register positions this 
window anywhere in the 4 Gbyte PCI memory space while its position 
with respect to the processor addresses remains fixed.

The PCI I/O region is also a 4 Gbyte space; however, most systems and 
I/O devices use only a 64 Kbyte subset of this space for I/O mapped 
addresses. The ADSP-BF535 processor implements a 64 Kbyte window in 
this space, along with a base address register that positions the window 
anywhere in PCI I/O address space, while the window remains at the same 
address in the processor address space.

PCI configuration space is a limited address space that is used for system 
enumeration and initialization. It is a very low performance communica-
tion mode between the processor and PCI devices. The ADSP-BF535 
processor provides a 1-value window to access a single data value at any 
address in PCI configuration space. This window is fixed and receives the 
address of the value, and the value if the operation is a write. Otherwise 
the device returns the value into the same address on a read operation.
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I/O Memory Space
Blackfins do not define a separate I/O space. All resources are mapped 
through the flat 32-bit address space. On-chip I/O devices have their con-
trol registers mapped into memory-mapped registers (MMRs) at addresses 
near the top of the 4 Gbyte address space. These are separated into two 
smaller blocks: one that contains the control MMRs for all CPU core 
functions and the other contains the registers needed for setup and control 
of the on-chip peripherals outside of the CPU core. The core MMRs are 
accessible only by the core and only in Supervisor mode. They appear as 
reserved space by on-chip peripherals, as well as external devices accessing 
resources through the PCI bus. The system MMRs are accessible by the 
core in Supervisor mode and can be mapped as either visible or reserved to 
other devices, depending on the system protection model.

Event Handling
The event controller on the ADSP-BF535 processor handles all asynchro-
nous and synchronous events to the processor. The ADSP-BF535 
processor event handling supports both nesting and prioritization. Nest-
ing allows multiple event service routines to be active simultaneously. 
Prioritization ensures that servicing a higher priority event takes prece-
dence over servicing a lower priority event. The controller provides 
support for five different types of events: 

• Emulation

• Causes the processor to enter Emulation mode, allowing command 
and control of the processor via the JTAG interface.

• Reset

• Resets the processor.

• Nonmaskable Interrupt (NMI)
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• The software watchdog timer or the NMI input signal to the pro-
cessor generates this event. The NMI event is frequently used as a 
power-down indicator to initiate an orderly shut down of the 
system.

• Exceptions

• Synchronous to program flow. That is, the exception is taken 
before the instruction is allowed to complete. Conditions such as 
data alignment violations, undefined instructions, etc. cause 
exceptions.

• Interrupts

• Asynchronous to program flow. These are caused by timers, 
peripherals, input pins, etc.

Each event has an associated register to hold the return address and an 
associated return-from-event instruction. When an event is triggered, the 
state of the processor is saved on the kernel stack.

The ADSP-BF535 processor event controller consists of two stages: the 
Core Event Controller (CEC) and the System Interrupt Controller (SIC). 
The CEC works with the SIC to prioritize and control all system events. 
Conceptually, interrupts from the peripherals arrive at the SIC and are 
routed directly into the general-purpose interrupts of the CEC. 

DMA Support 
The ADSP-BF535 processor has independent DMA channels for each 
DMA capable peripheral that supports automated data transfers with min-
imal processor core overhead. DMA transfers can occur between the 
ADSP-BF535 internal memories and any of its DMA capable peripherals. 
Additionally, DMA transfers can be accomplished between any of the 
DMA capable peripherals and external devices connected to the external 
memory interfaces. These include the SDRAM controller, asynchronous 
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memory controller, and the PCI bus interface. DMA capable peripherals 
include the SPORTs, SPIs, UARTs, USBs, and memory DMA controller. 
Each individual DMA capable peripheral has at least one dedicated DMA 
channel. DMA to and from PCI is accomplished via the memory DMA 
channel. 

To describe each DMA sequence, the DMA controller uses a set of param-
eters, called a descriptor block. When successive DMA sequences are 
needed, these descriptor blocks can be linked or chained together so the 
completion of one DMA sequence autoinitiates and starts the next 
sequence. The descriptor blocks include full 32-bit addresses for the base 
pointers for source and destination, enabling access to the entire Blackfin 
address space.

In addition to the dedicated peripheral DMA channels, there is a separate 
memory DMA channel provided for transfers between the various 
ADSP-BF535 system memories. This enables transfers of blocks of data 
between any of the memories, including on-chip Level 2 memory, external 
SDRAM, ROM, SRAM and flash memory, and PCI address spaces with 
little processor intervention.

External Bus Interface Unit
The External Bus Interface Unit on the ADSP-BF535 processor interfaces 
with a wide variety of industry-standard memory devices. The controller 
consists of an SDRAM controller and an asynchronous memory 
controller. 

PC133 SDRAM Controller
The SDRAM controller provides an interface to up to four separate banks 
of industry-standard SDRAM devices or DIMMs. Fully compliant with 
the PC133 SDRAM standard, each bank can be configured to contain 
between 16 and 128 Mbytes of memory. 
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The controller maintains all banks as a contiguous address space. The pro-
cessor sees this as a single address space, even if different size devices are 
used in different banks. This allows a system to be upgraded with either 
similar or different memories.

A set of programmable timing parameters is available to configure 
SDRAM banks to support slower memory devices. The memory banks can 
be configured as either 32 bits wide for maximum performance and band-
width or 16 bits wide for minimum device count and lower system cost. 

All four banks share common SDRAM control signals and have their own 
bank select lines, providing a glueless interface for most system 
configurations.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for 
up to four separate banks of memory or I/O devices. Each bank can be 
independently programmed with different timing parameters. This allows 
connection to a wide variety of memory devices, including SRAM, ROM, 
and flash EPROM, as well as I/O devices that interface with standard 
memory control lines. Each bank occupies a 64 Mbyte window in the pro-
cessor address space, but if not fully populated, these are not made 
contiguous by the memory controller. The banks can also be configured as 
16- or 32-bit wide buses for interfacing to a range of memories and I/O 
devices for high performance or low cost and power.

PCI Interface
The ADSP-BF535 processor provides a 33 MHz, 32-bit, revision 2.2 
compliant Peripheral Component Interconnect (PCI) interface. The PCI 
provides a bus bridge function between the processor core and on-chip 
peripherals and an external PCI bus. The PCI interface of the 
ADSP-BF535 processor supports two PCI functions:
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• A host to PCI Bridge function, in which the ADSP-BF535 proces-
sor resources (the processor core, internal and external memory, 
and the memory DMA controller) provide the necessary hardware 
components to emulate a host PC-PCI interface from the perspec-
tive of a PCI target device.

• A PCI target function, in which an ADSP-BF535 processor-based 
intelligent peripheral can be designed to easily interface to a revi-
sion 2.2 compliant PCI bus.

PCI Host Function
The ADSP-BF535 processor provides the necessary PCI host (platform) 
functions to support and control a variety of off-the-shelf PCI I/O 
devices, such as Ethernet controllers, bus bridges, etc. in systems where 
the ADSP-BF535 processor is the host. 

The three PCI address spaces (memory, I/O, and configuration space) are 
mapped into the ADSP-BF535 flat 32-bit memory space. Since the PCI 
memory space is as large as the ADSP-BF535 memory address space, a 
segmented, or windowed, approach is employed. This uses separate win-
dows in the ADSP-BF535 address space for accessing the three PCI 
address spaces. Base address registers are provided so that these windows 
can be positioned to view any range in the PCI address spaces while they 
remain fixed in position in the ADSP-BF535 processor address range.

For devices on the PCI bus that view the ADSP-BF535 resources, several 
mapping registers are provided to allow resources to be viewed in the PCI 
address space. The ADSP-BF535 external memory space, internal L2, and 
some I/O MMRs can be selectively enabled as target memory spaces. 
Devices on the PCI bus can use these as PCI memory transaction targets.
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PCI Target Function
As a PCI target device, the PCI host processor can configure the 
ADSP-BF535 subsystem during enumeration of the PCI bus system. The 
ADSP-BF535 subsystem then acts as an intelligent I/O device. As a target 
device, the PCI controller uses the memory DMA controller to perform 
DMA transfers required by the PCI host.

USB Port
The ADSP-BF535 processor provides a USB 1.1-compliant device type 
interface to support direct connection to a host system. The USB core 
interface provides a programmable environment with up to eight end-
points. Each endpoint can support all of the USB data types, including 
Control, Bulk, Interrupt, and Isochronous. Each endpoint provides a 
memory-mapped buffer for transferring data to the application. The 
ADSP-BF535 USB port has a dedicated DMA controller and interrupt 
input to minimize processor polling overhead and to enable asynchronous 
requests for CPU attention when only transfer management is required.

Real-Time Clock
The ADSP-BF535 Real-Time Clock (RTC) provides a robust set of digital 
watch features, including current time, stopwatch, and alarm. The RTC is 
clocked by a 32.768 kHz crystal external to the ADSP-BF535 processor. 
The RTC peripheral has dedicated power supply pins, so that it can 
remain powered up and clocked even when the rest of the processor is in a 
low power state. The RTC provides several programmable interrupt 
options, including interrupt per second, minute, or day clock ticks, or 
interrupt on programmable stopwatch countdown.



Watchdog Timer

1-16 ADSP-BF535 Blackfin Processor Hardware Reference
 

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal 
by a prescaler. The counter function of the timer consists of four counters: 
a 6-bit second counter, a 6-bit minute counter, a 5-bit hours counter, and 
an 8-bit day counter.

When enabled, the alarm function generates an interrupt when the output 
of the timer matches the programmed value in the alarm control register.

The stopwatch function counts down from a programmed value, with one 
minute resolution. When the stopwatch is enabled and the counter under-
flows, the allotted time has expired and an interrupt is generated. 

Like the other peripherals, the RTC can wake up the ADSP-BF535 pro-
cessor from a low power state upon generation of any interrupt.

Watchdog Timer
The ADSP-BF535 processor includes a 32-bit timer, which can be used to 
implement a software watchdog function. A software watchdog can 
improve system availability by forcing the processor to a known state, via 
generation of a hardware reset, non-maskable interrupt (NMI), or 
general-purpose interrupt, if the timer expires before being reset by soft-
ware. The programmer initializes the count value of the timer, enables the 
appropriate interrupt, then enables the timer. Thereafter, the software 
must reload the counter before it counts to zero from the programmed 
value. This protects the system from remaining in an unknown state 
where software, which would normally reset the timer, has stopped run-
ning due to an external noise condition or software error.

If configured to generate a hardware reset, the timer can be programmed 
to reset only the ADSP-BF535 CPU, or both the CPU and the 
ADSP-BF535 peripherals. After a reset, software can determine if the 
watchdog was the source of the hardware reset by interrogating a status bit 
in the timer control register, which is set only upon a watchdog generated 
reset.
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Timers
There are three general-purpose programmable timer units in the 
ADSP-BF535 processor. Each timer has one external pin that can be con-
figured either as a Pulse Width Modulator (PWM) or timer output, as an 
input to clock the timer, or for measuring pulse widths of external events. 
Each of the three timer units can be independently programmed as a 
PWM, internally or externally clocked timer, or pulse width counter.

The timer units can be used in conjunction with either of the UARTs to 
measure the width of the pulses in the data stream to provide an autobaud 
detect function for a serial channel. 

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count 
of external signals.

In addition to the three general-purpose programmable timers, a fourth 
timer is also provided. This extra timer is clocked by the internal processor 
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.

The ADSP-BF535 processor uses a programmable interval timer to gener-
ate periodic interrupts. An 8-bit prescale register sets the number of clock 
cycles for decrementing a 32-bit count register. The number of clock 
cycles per timer decrement can be from 1 to 256. An interrupt is gener-
ated when this count register reaches 0. The count register can be 
automatically reloaded from a 16-bit period register and the count 
resumed.

Serial Ports (SPORTs)
The ADSP-BF535 processor incorporates two complete synchronous 
serial ports (SPORT0 and SPORT1) for serial and multiprocessor com-
munications. The SPORTs support these features:
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• Bidirectional operation 

• Each SPORT has independent transmit and receive pins.

• Buffered (8 deep) transmit and receive ports

• Each port has a data register for transferring data words to 
and from other processor components and shift registers for 
shifting data in and out of the data registers.

• Clocking

• Each transmit and receive port either uses an external serial 
clock or generates a wide range of frequencies.

• Word length

• Each SPORT supports serial data words from 3 to 16 bits in 
length transferred in most significant bit first or least signif-
icant bit first format.

• Framing

• Each transmit and receive port can run with or without 
frame sync signals for each data word. Frame sync signals 
can be generated internally or externally, active high or low, 
and with either of two pulse widths and early or late frame 
sync.

• Companding in hardware

• Each SPORT can perform A-law or µ-law companding 
according to ITU recommendation G.711. Companding 
can be selected on the transmit and/or receive channel of 
the SPORT without additional latencies.
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• DMA operations with single cycle overhead

• Each SPORT can automatically receive and transmit multi-
ple buffers of memory data. The processor can link or chain 
sequences of DMA transfers between a SPORT and mem-
ory. The chained DMA can be dynamically allocated and 
updated through the descriptor blocks or DMA parameters 
that set up the chain.

• Interrupts

• Each transmit and receive port generates an interrupt upon 
completing the transfer of a data word or after transferring 
an entire data buffer or buffers through DMA.

• Multichannel capability

• Each SPORT supports 128 channels and is compatible with 
the H.100, H.110, MVIP-90, and HMVIP standards. 

Serial Peripheral Interface (SPI) Ports
The ADSP-BF535 processor has two SPI-compatible ports that enable the 
processor to communicate with multiple SPI-compatible devices. 

The SPI interface uses three pins for transferring data: two data pins and a 
clock pin. Two SPI chip select input pins let other SPI devices select the 
processor, and fourteen SPI chip select output pins let the processor select 
other SPI devices. The SPI select pins are reconfigured Programmable Flag 
pins. Using these pins, the SPI ports provide a full duplex, synchronous 
serial interface, which supports both master and slave modes and multi-
master environments. 

Each SPI port baud rate and clock phase/polarities are programmable, and 
each has an integrated DMA controller, configurable to support either 
transmit or receive data streams.
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During transfers, the SPI ports simultaneously transmit and receive by 
serially shifting data in and out on their two serial data lines. The serial 
clock line synchronizes the shifting and sampling of data on the two serial 
data lines.

UART Ports
The ADSP-BF535 processor provides two full-duplex independent Uni-
versal Asynchronous Receiver/Transmitter (UART) ports: UART0 and 
UART1. UART0 enhances the standard functionality and supports the 
half duplex IrDA® SIR (9.6/115.2 Kbps rate) protocol. The UART ports 
provide a simplified UART interface to other peripherals or hosts. They 
provide full duplex, DMA-supported, asynchronous transfers of serial 
data. Each UART port includes support for 5 to 8 data bits; 1 or 2 stop 
bits; and none, even, or odd parity. The UART ports support two modes 
of operation:

• Programmed I/O (PIO)

• The processor sends or receives data by writing or reading 
I/O-mapped UART transmit and receive registers, respectively. 
The data is double buffered on both transmit and receive.

• Direct Memory Access (DMA)

• The DMA controller transfers both transmit and receive data. This 
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each UART has two dedicated 
DMA channels, one for transmit and one for receive. These DMA 
channels have lower priority than most DMA channels because of 
their relatively low service rates.
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The UART port baud rate, serial data format, error code generation and 
status, and interrupts can be programmed to support the following:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

Programmable Flags
The ADSP-BF535 processor supports 16 bidirectional programmable flag 
(PF) or general-purpose I/O pins, PF[15:0]. Each pin can be individually 
configured as either an input or an output.

Each PF pin can be further configured to generate an interrupt. When a PF 
pin is configured as an input, an interrupt can be generated according to 
the state of the pin (high or low), an edge transition (low to high or high 
to low), or on both edge transitions (low to high and high to low). Input 
sensitivity is defined on a per-bit basis.

When a PF pin is configured as an output, enabling interrupts for the pin 
provides a software interrupt mechanism. Output sensitivity is defined on 
a per-bit basis. 

The ADSP-BF535 processor provides two independent interrupt channels 
for the PF pins.

The PF pins are also used by the Serial Port Interface (SPI) as a chip select 
and by the phase locked loop (PLL) circuitry to determine the multiplica-
tion factor applied. For more information, see “Serial Port Controllers” on 
page 11-1 and “Dynamic Power Management” on page 8-1.
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Low Power Operation
The ADSP-BF535 processor provides four operating modes, each with a 
different performance/power dissipation profile. In addition, Dynamic 
Power Management provides the control functions with the appropriate 
external power regulation capability to dynamically alter the processor 
core supply voltage to further reduce power dissipation. Control of clock-
ing to each of the ADSP-BF535 peripherals also reduces power 
dissipation. 

Full On Operating Mode (Maximum Performance)
In the Full On mode, the phase-locked loop (PLL) is enabled, not 
bypassed, providing the maximum operational frequency. This is the nor-
mal execution state in which maximum performance can be achieved. The 
processor core and all enabled peripherals run at full speed.

Active Operating Mode (Low Power Savings)
In the Active mode, the PLL is enabled, but bypassed. The input clock is 
used to directly generate the clocks for the processor core and peripherals. 
When running off the input clock rather than the PLL, significant power 
savings can be achieved. Before transitioning back to the Full On Operat-
ing mode, software can dynamically change the PLL multiplication ratio 
by writing the appropriate values in the PLL Control register, choosing 
either to increase performance or reduce power dissipation.

Sleep Operating Mode (High Power Savings)
The Sleep mode reduces power consumption by disabling the clock to the 
processor core. The system clock however, continues to operate in this 
mode. Any interrupt, typically via some external event or Real-Time clock 
(RTC) activity, will wake up the processor. In this mode, the core proces-
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sor is effectively shut down while all peripherals continue to operate. 
Without clocking to the processor core, significant power savings are 
achieved. 

Deep Sleep Operating Mode (Maximum Power 
Savings)

The Deep Sleep mode maximizes power savings by disabling the clocks to 
the processor core and to all synchronous systems. Asynchronous systems, 
such as the RTC, continue to operate but access to processor resources is 
limited. This powered-down mode can only be exited by assertion of the 
reset interrupt or by an interrupt generated by the RTC. 

Clock Signals
The ADSP-BF535 processor can be clocked by a sine wave input or a buff-
ered, shaped clock derived from an external clock oscillator. 

The processor provides a user-programmable 1 to 31 multiplication of the 
input clock to support external to internal (processor core) clock ratios. At 
runtime, the multiplication factor can be controlled in software.

All on-chip peripherals operate at the rate set by the system clock. The sys-
tem clock frequency is programmable by the PLL Control register. The 
programmable values define a divide ratio between the core clock (CCLK) 
and the system clock (SCLK).
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Boot Modes
The ADSP-BF535 processor has three mechanisms for automatically load-
ing internal L2 memory after a reset. A fourth mode is provided to execute 
from external memory, bypassing the boot sequence:

• Execute from 16-bit external memory (Bypass boot ROM)

• Boot from 8-bit flash memory

• Boot from SPI0 serial ROM (8-bit address range)

• Boot from SPI0 serial ROM (16-bit address range)

Instruction Set Description
The Blackfin family assembly language instruction set uses an algebraic 
syntax that compiles to a small final memory size. The set also provides 
multifunction instructions that allow the programmer to use many of the 
processor core resources in a single instruction. The architecture supports 
both user (algorithm/application code) and supervisor (O/S kernel, device 
drivers, debuggers, ISRs) modes of operations.

Development Tools
The processor is supported by a complete set of software and hardware 
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The 
emulator hardware that supports other Analog Devices processors also 
emulates the processor.)
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The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written 
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access 
port to monitor and control the target board processor during emulation. 
The emulator provides full speed emulation, allowing inspection and 
modification of memory, registers, and processor stacks. Nonintrusive 
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing. 

Software tools also include Board Support Packages (BSPs). Hardware 
tools also include standalone evaluation systems (boards and extenders). In 
addition to the software and hardware development tools available from 
Analog Devices, third parties provide a wide range of tools supporting the 
Blackfin processors. Third party software tools include DSP libraries, 
real-time operating systems, and block diagram design tools.
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2 COMPUTATIONAL UNITS

The ADSP-BF535 processor’s computational units perform numeric pro-
cessing for DSP and general control algorithms. The six computational 
units are two arithmetic/logic units (ALUs), two multiplier/accumulator 
(multiplier) units, a shifter, and a set of video ALUs. These units get data 
from registers in the Data Register File. Computational instructions for 
these units provide fixed-point operations, and each computational 
instruction can execute every cycle.

The computational units handle different types of operations. The ALUs 
perform arithmetic and logic operations. The multipliers perform 
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs 
bit packing and extraction. The video ALUs perform single instruction, 
multiple data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data 
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen 
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register 
File. The syntax lets programs move data to and from these registers and 
specify a computation’s data format at the same time. 

Figure 2-1 provides a graphical guide to the other topics in this chapter. 
An examination of each computational unit provides details about its 
operation and is followed by a summary of computational instructions. 
Tracing inputs to the computational units and considering details about 
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register files and data buses shows how to set up the data flow for 
computations. Next, details about the processor’s advanced parallelism 
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the ADSP-BF535 Data Regis-
ter File and computational units: multipliers, ALUs, and shifter.

Figure 2-1. ADSP-BF535 Core Architecture
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Single function multiplier, ALU, and shifter instructions have unrestricted 
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that 
operation.

Two additional registers, A0 and A1, provide 40-bit accumulator results. 
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and 
integer, are specified directly in the instruction. Rounding modes are set 
from the ASTAT register, which also records status/conditions for the 
results of the computational operations.

Using Data Formats
Blackfin processors are primarily 16-bit, fixed-point machines. Most oper-
ations assume a two’s-complement number representation, while others 
assume unsigned numbers or simple binary strings. Other instructions 
support 32-bit integer arithmetic, with further special features supporting 
8-bit arithmetic and block floating point. For detailed information about 
each number format, see “Numeric Formats” on page D-1.

In the Blackfin processor family arithmetic, signed numbers are always in 
two’s-complement format. These processors do not use signed-magnitude, 
one’s-complement, BCD, or excess-n formats. 

Binary String
The binary string format is the least complex binary notation; in it, sixteen 
bits are treated as a bit pattern. Examples of computations using this for-
mat are the logical operations: NOT, AND, OR, XOR. These ALU 
operations treat their operands as binary strings with no provision for sign 
bit or binary point placement.
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Unsigned
Unsigned binary numbers may be thought of as positive and having nearly 
twice the magnitude of a signed number of the same length. The processor 
treats the least significant words of multiple precision numbers as 
unsigned numbers.

Signed Numbers: Two’s-Complement
In Blackfin processor arithmetic, the word signed refers to two’s-comple-
ment numbers. Most Blackfin processor family operations presume or 
support two’s-complement arithmetic.

Fractional Representation: 1.15
Blackfin processor arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15 
format, one sign bit (the MSB) and fifteen fractional bits represent values 
from –1 up to one LSB less than +1.

Figure 2-2 shows the bit weighting for 1.15 numbers. and some examples 
of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers
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Register Files
The ADSP-BF535 processor’s computational units have three definitive 
register groups—a Data Register File, a Pointer Register File, and set of 
Data Address Generator (DAG) registers:

• The Data Register File receives operands from the data buses for 
the computational units and stores computational results. 

• The Pointer Register File has pointers for addressing operations. 

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see “Data Address Generators” on page 5-1.

The ADSP-BF535 processor register files appear in Figure 2-3.

Figure 2-3. ADSP-BF535 Processor Register Files

 Data Registers    Data Address Generator Registers (DAGs)

R0

R1

R2

R3

R4

R5

R6

R7

A0

A1

A0.X A0.W

P0

P1

P2

P3

P4

P5

 SP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

A1.X A1.W

FP

M0

M3

M1

M2
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 In the ADSP-BF535 processor, a word is 32 bits long; H denotes 
the high order 16 bits of a 32-bit register; L denotes the low order 
16 bits of a 32-bit register. For example, A0.W contains the lower 
32 bits of the 40-bit A0 register; A0.L contains the lower 16 bits of 
A0.W, and A0.H contains the upper 16 bits of A0.W.

Data Register File
The Data Register File consists of eight registers, each of which are 32 bits 
wide. Each register may be viewed as a pair of independent 16-bit regis-
ters. Each is denoted as the low half or high half. Thus the 32-bit register 
R0 may be regarded as two independent register halves, R0.L and R0.H

Two separate buses connect the register file to the L1 data memory, each 
bus being 32 bits wide. Transfers between the Data Register File and the 
data memory can move up to four 16-bit words of valid data in each cycle.

Accumulator Registers 
In addition to the Data Register File, the ADSP-BF535 processor has two 
dedicated, 40-bit accumulator registers. Each may be referred to as its 
16-bit low half (An.L) or high half (An.H) plus its 8-bit extension (An.X), 
or as a 32-bit register (An.W) consisting of the lower 32 bits, or as a com-
plete 40-bit result register (An). 

Pointer Register File
The general-purpose address Pointer registers, also called the P-registers, 
are organized as:

• A 6-entry, P-register file P[5:0]

• A Frame Pointer (FP) used to point to the current procedure’s acti-
vation record
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• A Stack Pointer register (SP) used to point to the last used location 
on the runtime stack. See mode dependent registers in “Operating 
Modes and States” on page 3-1.

P-registers are 32 bits wide. Although P-registers are primarily used for 
address calculations, they may also be used for general integer arithmetic 
with a limited set of arithmetic operations, for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not 
affect the Arithmetic Status (ASTAT) register status flags.

DAG Register Set 
DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The DAG register set consists of these registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All DAG registers are 32 bits wide. 

The I (Index) registers and B (Base) registers always contain addresses of 
8-bit bytes in memory. The Index registers contain an effective address. 
The M (Modify) registers contain an offset value that is added to one of 
the Index registers or subtracted from it. 

The B (Base) and L (Length) registers define circular buffers. B contains 
the starting address of a buffer, and L contains the length in bytes. Each L 
and B register pair is associated with the corresponding I register. For 
example, L0 and B0 are always associated with I0. However, any M register 
may be associated with any I register. For example, I0 may be modified by 
M3. For more information, see “Data Address Generators” on page 5-1.
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Register File Instruction Summary
Table 2-1 lists the register file instructions. For more information about 
assembly language syntax, see Blackfin Processor Programming Reference.

In Table 2-1, note the meaning of these symbols:

• Allreg denotes R[7:0], P[5:0], SP, FP, I[3:0], M[3:0], B[3:0], 
L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI, RETX, RETN, 
RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT, SYSCFG, EMUDAT, 
CYCLES, and CYCLES2.

• An denotes A0 or A1.

• Dreg denotes any Data Register File register.

• Sysreg denotes ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, or 
RETS, LC[1:0], LT[1:0], LB[1:0], EMUDAT, CYCLES, and CYCLES2.

• Preg denotes any Pointer register, FP or SP register.

• Dreg_even denotes R0, R2, R4, or R6.

• Dreg_odd denotes R1, R3, R5, or R7.

• DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register. 

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register.

• An.L denotes the lower 16 bits of Accumulator An.W.

• An.H denotes the upper 16 bits of Accumulator An.W.

• Dreg_byte denotes the low order 8 bits of each Data register.
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• Option (X) denotes sign extended.

• Option (Z) denotes zero extended.

• * Indicates the flag may be set or cleared, depending on the result 
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC1

AV0
AV0S

AV1
AV1S

CC V
VS

allreg = allreg ; 1 * * – – – – *

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Sysreg = Preg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Dreg_even = A0, Dreg_odd = A1 ; * * – – – – *

Dreg_odd = A1, Dreg_even = A0 ; * * – – – – *

Dreg_even = A0.X ; * * – – – – *

Dreg_odd = A1.X ; * * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; * * – – – – *

Dreg_lo = An.X ; * * – – – – *
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Data Types
The ADSP-BF535 processor supports 32-bit words, 16-bit half words, 
and bytes. The 32- and 16-bit words can be integer or fractional, but bytes 
are always integers. Integer data types can be signed or unsigned, but frac-
tional data types are always signed.

Table 2-2 illustrates the data formats for data that resides in memory, in 
the register file, and in the accumulators. In the table, the letter d repre-
sents one bit, and the letter s represents one signed bit.

Some instructions manipulate data in the registers by sign extending or 
zero extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes 

An.L = Dreg_lo ; * * – – – – *

An.H = Dreg_hi ; * * – – – – *

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1   Warning: not all register combinations are allowed. For details, see the Functional Description of 
the Move Register instruction in the Blackfin Processor Programming Reference.

Table 2-1. Register File Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC1

AV0
AV0S

AV1
AV1S

CC V
VS
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Other instructions manipulate data as 32-bit numbers. In addition, two 
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values. 
For details, refer to the instructions in Blackfin Processor Programming 
Reference.

Data Formats
In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does 
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-Bit Register

32.0 Unsigned 
Word

dddd dddd dddd dddd dddd 
dddd dddd dddd 

dddd dddd dddd dddd dddd dddd dddd 
dddd

32.0 Signed 
Word

sddd dddd dddd dddd dddd 
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd 
dddd

16.0 Unsigned 
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd 
dddd

16.0 Signed 
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned 
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd 
dddd

8.0 Signed 
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

0.16 Unsigned 
Fraction

.dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd 
dddd
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Endianess
Both internal and external memory are accessed in little endian byte order. 
For more information, see “Memory Transaction Model” on page 6-76. 

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit 
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags 
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by 
writing directly to the ASTAT register. An additional V flag is set or cleared 
depending on the transfer of the result from both accumulators to the reg-
ister file. Furthermore, the sticky VS bit is set with the V bit and remains 
set until cleared. 

1.15 Signed 
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

0.32 Unsigned 
Fraction

.dddd dddd dddd dddd dddd 
dddd dddd dddd

.dddd dddd dddd dddd dddd dddd dddd 
dddd

1.31 Signed 
Fraction

s.ddd dddd dddd dddd dddd 
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd 
dddd

Packed 8.0 
Unsigned Byte

dddd dddd dddd dddd dddd 
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 0.16 
Unsigned Frac-
tion

.dddd dddd dddd dddd .dddd 
dddd dddd dddd

.dddd dddd dddd dddd .dddd dddd dddd 
dddd

Packed 1.15 
Signed 
Fraction

s.ddd dddd dddd dddd s.ddd 
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-Bit Register
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The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on 
two’s-complement arithmetic. A bit or set of bits is set if the MSB changes 
in a manner not predicted by the signs of the operands and the nature of 
the operation. For example, adding two positive numbers must generate a 
positive result; a change in the sign bit signifies an overflow and sets AVn, 
the corresponding overflow flags. Adding a negative and a positive may 
result in either a negative or positive result, but cannot overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude 
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB). 
The carry bits (AC0, AC1) are most useful for the lower word portions of a 
multiword operation.

ALU results generate status information. For more information about 
using ALU status, see “ALU Instruction Summary” on page 2-28.

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are 
interpreted according to the information given in the instruction itself 
(whether it is signed multiplied by signed, unsigned multiplied by 
unsigned, a mixture, or a rounding operation). The 32-bit result from the 
multipliers is assumed to be signed; it is sign extended across the full 
40-bit width of the A0 or A1 registers.

The ADSP-BF535 processors support two modes of format adjustment: 
the fractional mode for fractional operands (1.15 format with 1 sign bit 
and 15 fractional bits) and the integer mode for integer operands (16.0 
format).

When the processor multiplies two 1.15 operands, the result is a 2.30        
(2 sign bits and 30 fractional bits) number. In the fractional mode, the 
multiplier automatically shifts the multiplier product left one bit before 
transferring the result to the multiplier result register (A0, A1). This shift of 
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the redundant sign bit causes the multiplier result to be in 1.31 format, 
which can be rounded to 1.15 format. The resulting format appears in 
Figure 2-4 on page 2-17.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0 
format. A left shift is not needed and would change the numerical 
representation. This result format appears in Figure 2-5 on page 2-17.

Multiplier results generate status information when they are transferred to 
a destination register in the register file. For more information, see “Mul-
tiplier Instruction Summary” on page 2-35.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values: logical shifts assume unsigned magnitude or 
binary string values, and arithmetic shifts assume two’s-complement 
values. 

The exponent logic assumes two’s-complement numbers. The exponent 
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about 
using shifter status, see “Shifter Instruction Summary” on page 2-48. 
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Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the 
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary String Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Multiplication / addition 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Multiplication / subtraction 1.15 explicitly signed or 
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or 
unsigned

32.0 not shifted

Multiplication / addition 16.0 explicitly signed or 
unsigned

32.0 not shifted

Multiplication / subtraction 16.0 explicitly signed or 
unsigned

32.0 not shifted
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Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the ADSP-BF535 processor pro-
vides two choices: fractional arithmetic for fractional numbers (1.15) and 
integer arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted— 
sign extended and shifted one bit to the left—before being added to accu-
mulator A0 or A1. For example, bit 31 of the product lines up with bit 32 
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1 
of A0 (which is bit 1 of A0.W). The LSB is zero filled. The fractional multi-
plier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before 
being added to A0 or A1. Figure 2-5 shows the integer mode result 
placement.

With either fractional or integer operations, the multiplier output product 
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final 
40-bit result.

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands
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Figure 2-4. Fractional Multiplier Results Format

Figure 2-5. Integer Multiplier Results Format

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 03 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN, 7
BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

3 1 31 3 1 31 3 1 31 3 1 31 30 2 9 28 2 7 26 2 5 24 2 3 22 2 1 20 1 9 18 1 7 16 1 5 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 03 1

1 5 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 03 1 30 2 9 28 2 7 26 2 5 24 2 3 22 2 1 20 1 9 18 1 7 167 6 5 4 3 2 1 0

P SIGN, 8
BITS MULTIPLIER P OUTPUT

A0.X A0.W
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Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results 
rounding (RND option). Rounding is a means of reducing the precision of a 
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to 
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only 
M bits of precision (where N>M). The process of rounding, then, removes 
N-M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option 
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD 
bit = 0. For biased rounding, set RND_MOD bit = 1. 

 For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two 
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit, 
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit, 
two’s-complement fraction, the result would be 0.0, because that is the 
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based 
on the surrounding values, this method is called unbiased rounding. 

Unbiased rounding uses the multiplier’s capability of rounding the 40-bit 
result at the boundary between bit 15 and bit 16. Rounding can be speci-
fied as part of the instruction code. When rounding is selected, A0.H/A1.H 
contain the rounded 16-bit result; the rounding effect in A0.H/A1.H 
affects A0.X/A1.X as well. The A0.X/A0.H and A1.X/A1.H registers repre-
sent the rounded 24-bit result, including sign extension and overflow.
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The accumulator uses an unbiased rounding scheme. The conventional 
method of biased rounding adds a 1 into bit position 15 of the adder 
chain. This method causes a net positive bias because the midway value 
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output 
to zero when it detects this midway point. Forcing bit 16 to zero has the 
effect of rounding odd A0.L/A1.L values upward and even values down-
ward, yielding a zero large sample bias, assuming uniformly distributed 
values.

The following examples use x to represent any bit pattern (not all zeros). 
The example in Figure 2-6 shows a typical rounding operation for A0; the 
example also applies for A1. 

The compensation to avoid net bias becomes visible when all lower 15 bits 
are zero and bit 15 is one (the midpoint value) as shown in Figure 2-7.

Figure 2-6. Typical Unbiased Multiplier Rounding 

.........|................|................
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:

A0.X A0.W
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In Figure 2-7, A0 bit 16 is forced to zero. This algorithm is employed on 
every rounding operation, but is evident only when the bit patterns shown 
in the lower 16 bits of the next example are present.

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway 
between two numbers always rounds up to the larger of the two. For 
example, when rounding the 3-bit, two’s-complement fraction 0.25 
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method 
returns 0.5 (binary 0.1). The original fraction lies exactly midway between 
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always 
rounds up, this method is called biased rounding.

The RND_MOD bit in the ASTAT register enables biased rounding. When the 
RND_MOD bit is cleared, the RND option in multiplier instructions uses the 
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding 
instead of unbiased rounding. When operating in biased rounding mode, 
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather 
than only rounding odd values up. For an example of biased rounding, see 
Figure 2-8.

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

........|................|................
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
A0 bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

A0.X A0.W
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Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode 
allows more efficient implementation of bit specified algorithms that use 
biased rounding, for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines. 

Truncation

Another common way to reduce the significant bits representing a number 
is to simply mask off the N-M lower bits. This process is known as trunca-
tion and results in a relatively large bias. Instructions that do not support 
rounding revert to truncation. The RND_MOD bit in ASTAT has no effect on 
truncation. 

Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into 
a data register with biased or unbiased rounding as described above. It also 
provides the ability to round on different bit boundaries. The options 

Figure 2-8. Biased Rounding in Multiplier Operation

0x00  0000 8000 0x00 0001 8000 0x00 0000 0000
0x00  0001 8000 0x00 0002 0000 0x00 0002 0000
0x00  0000 8001 0x00 0001 0001 0x00 0001 0001
0x00  0001 8001 0x00 0002 0001 0x00 0002 0001
0x00  0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00  0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

A0/A1 before RND

Biased RND result

Unbiased RND result
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RND12, RND and RND20 extract 16-bit values from bit 12, bit 16 and bit 20, 
respectively, and perform biased rounding regardless of the state of the 
RND_MOD bit in ASTAT.

For example:
R3.L = R4 ( RND ) ; 

performs biased rounding at bit 16, depositing the result in a half word.
R3.L = R4 + R5 ( RND12 ) ; 

performs an addition of two 32-bit numbers, biased rounding at bit 12, 
depositing the result in a half word.
R3.L = R4 + R5 ( RND20 ) ; 

performs an addition of two 32-bit numbers, biased rounding at bit 20, 
depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status 
flags in the processor’s Arithmetic Status (ASTAT) register. To use status 
conditions from computations in program sequencing, use conditional 
instructions to test the CC flag (bit 5, ASTAT register) after the instruction 
executes. This method permits monitoring each instruction’s outcome. 
The ASTAT register is a 32-bit register, with some bits reserved. To ensure 
compatibility with future implementations, writes to this register should 
write back the values read from these reserved bits.
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Arithmetic Status Register (ASTAT)
Figure 2-9 describes the ASTAT register. The processor updates the status 
bits in ASTAT, indicating the status of the most recent ALU, multiplier, or 
shifter operation.

 See Appendix A, “ADSP-BF535 Considerations”, in the Blackfin 
Processor Programming Reference for information regarding how 
ALU operations affect this register. 

Figure 2-9. Arithmetic Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X 0 X 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X X X X X X X X

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 -  Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = Undefined

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

AN (Negative Result)AQ (Quotient)

AZ (Zero Result) 
RND_MOD (Rounding Mode)

AC (ALU Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation is
not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative
Multipurpose flag, used 
primarily to hold resolution of 
arithmetic comparisons. Also 
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU does not
generate a carry

1 - Operation generates a
carry
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Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point 
data. ALU fixed-point instructions operate on 16-bit, 32-bit, and 40-bit 
fixed-point operands and output 16-bit, 32-bit, or 40-bit fixed-point 
results. ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulator and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, Negate

• Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur 
on ALU1, which performs a subset of ALU0 operations.

Table 2-7 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two 
32-bit results, or two 40-bit results generated in a single instruction. 

Table 2-7. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier 
with a 40-bit accumulation result
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Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as 
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register 
half. ALU0 is used for this operation, because it is the primary resource for 
ALU operations.

For example:
R3.H = R1.H + R2.L (NS) ; 

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2 
low half) and deposits the result in R3.H (R3 high half) with no saturation.

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the 
input to the ALU, considered as pairs of 16-bit operands. An addition, 
subtraction, or logical operation produces two 16-bit results that are 
deposited into an arbitrary 32-bit destination register. ALU0 is used for 
this operation, because it is the primary resource for ALU operations.

For example:
R3 = R1 +|- R2 (S) ; 

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1 
high half) and deposits the result in R3.H (R3 high half) with saturation. 

The instruction also subtracts the 16-bit contents of R2.L (R2 low half) 
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3 
low half) with saturation (see Figure 2-11 on page 2-30).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the 
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A 
small number of addition or subtraction operations produces four 16-bit 
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results that are deposited into two arbitrary, 32-bit destination registers. 
Both ALU0 and ALU1 are used for this operation. Because there are only 
two 32-bit data paths from the Data Register File to the arithmetic units, 
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0. 
The instruction construct is identical to that of a dual 16-bit operation, 
and input operands must be the same for both ALUs.

For example:
R3 = R0 +|+ R1, R2 = R0 -|- R1 (S) ;

performs four operations: 

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of the R0.H (R0 high half) and deposits the result in R3.H, 
with saturation.

• Adds R1.L + R0.L and deposits the result in R3.L, with saturation. 

• Subtracts 16-bit contents of R1.H (R1 high half) from the 16-bit 
contents of the R0.H (R0 high half) and deposits the result in R2.H, 
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L, with 
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S) ;

R3.L = R0.L + R1.L (S) ;

R2.H = R0.H - R1.H (S) ;

R2.L = R0.L - R1.L (S) ;
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Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the 
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an 
arbitrary 32-bit destination register. ALU0 is used for this operation, 
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register 
File, operands may be sourced and deposited into the Pointer Register 
File, consisting of the eight registers P[5:0], SP, FP. 

 Instructions may not intermingle Pointer registers with Data 
registers.

For example:
R3 = R1 + R2 (NS) ; 

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the 
result in R3 with no saturation.

R3 = R1 + R2 (S) ; 

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the 
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the 
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An 
addition or subtraction produces two 32-bit results that are deposited into 
two 32-bit destination registers. Both ALU0 and ALU1 are used for this 
operation. Because only two 32-bit data paths go from the Register File to 
the arithmetic units, the same two 32-bit input registers are presented to 
ALU0 and ALU1.

For example:
R3 = R1 + R2, R4 = R1 – R2 (NS) ; 
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adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the 
result in R3. 

The instruction also subtracts the 32-bit contents of R2 from that of R1 
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers 
as input operands, creating the sum and differences of the A0 and A1 
registers.

For example:
R3 = A0 +A1, R4 = A0-A1 (S) ; 

transfers to the result registers two 32-bit, saturated, sum and difference 
values of the ALU registers.

ALU Instruction Summary
For information about assembly language syntax and the effect of ALU 
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in the Blackfin Processor Programming Reference. 

ALU Data Flow Details
Figure 2-10 shows a more detailed diagram of the Arithmetic Units and 
Data Register File, which appears in Figure 2-1 on page 2-2.

ALU0 is described here for convenience. ALU1 is very similar—a subset of 
ALU0.

Each ALU performs 40-bit addition for the accumulation of the multiplier 
results, as well as 32-bit and dual 16-bit operations. Each ALU has two 
32-bit input ports that can be considered a pair of 16-bit operands or a 
single 32-bit operand. For single 16-bit operations, any of the four 
possible 16-bit operands may be used with any of the other 16-bit oper-
ands presented at the input to the ALU.
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As shown in Figure 2-11, for dual 16-bit operations, the high halves and 
low halves are paired, providing four possible combinations of addition 
and subtraction: 
(A) H+H, L+L   (B) H+H, L-L   (C) H-H, L+L   (D) H-H, L-L

Figure 2-10. Register Files and ALUs
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Dual 16-Bit Cross Options 

For dual 16-bit operations, the results may be crossed. Crossing the results 
changes where in the result register an operation places the result of a cal-
culation. Usually, the result from the high side calculation is placed in the 
high half of the result register, and the result from the low side calculation 
is placed in the low half of the result register. 

With the cross option, the high result is placed in the low half of the desti-
nation register, and the low result placed in the high half of the 
destination register (see Figure 2-12). This is particularly useful when 
dealing with complex math and portions of the Fast Fourier Transform 
(FFT).

Figure 2-11. Dual 16-Bit ALU Operations
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ALU Status Signals

Each ALU generates five status signals: the zero (AZ) status, the negative 
(AN) status, the carry (AC) status, immediate overflow (AVn) status and the 
quotient (AQ) status. All arithmetic status signals are latched into the arith-
metic status register (ASTAT) at the end of the cycle. For the effect of ALU 
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in the Blackfin Processor Programming Reference.

Depending on the instruction, the inputs can come from the Data Regis-
ter File, the Pointer Register File, or the Arithmetic Result registers. 
Arithmetic on 32-bit operands directly support multiprecision operations 
in the ALU.

ALU Division Support Features
The ALU supports division with two special divide primitives. These 
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), add-subtract-division algorithm. 

Figure 2-12. Cross Options for Dual 16-Bit ALU Operations
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The division can be either signed or unsigned, but both the dividend and 
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Blackfin Processor Programming 
Reference.

Special SIMD Video ALU Operations 
Four 8-bit Video ALUs enable the ADSP-BF535 processor to process 
video information with high efficiency. Each Video ALU instruction may 
take from one to four pairs of 8-bit inputs and return one to four 8-bit 
results. The inputs are presented to the Video ALUs in two 32-bit words 
from the Data Register File. The possible operations include:

• Byte alignment

• Quad-byte-sum absolute differences

• Quad-byte averaging

• Quad-byte pack and unpack

• Addition with trimming

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.

Multiply Accumulators (Multipliers)
The two ADSP-BF535 processor multipliers (MAC0 and MAC1) perform 
fixed-point multiplication and multiply and accumulate operations. Mul-
tiply and accumulate operations are available with either cumulative 
addition or cumulative subtraction. 

Multiplier fixed-point instructions operate on 16-bit fixed-point data and 
produce 32-bit results that may be added or subtracted from a 40-bit 
accumulator.
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Inputs are treated as fractional or integer, unsigned or two’s-complement. 
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit 
operands. For single multiply and accumulate instructions, these operands 
can be any data registers in the Data Register File. Each multiplier can 
accumulate results in its Accumulator register, A1 or A0. The accumulator 
results can be saturated to 32 or 40 bits. The multiplier result can also be 
written directly to a 16- or 32-bit destination register with optional 
rounding.

Each multiplier instruction determines whether the inputs are either both 
in integer format or both in fractional format. The format of the result 
matches the format of the inputs. In MAC0, both inputs are treated as 
signed or unsigned. In MAC1, there is a mixed-mode option. 

If both inputs are fractional and signed, the multiplier automatically shifts 
the result left one bit to remove the redundant sign bit. Multiplier instruc-
tion options specify the data format of the inputs:

• FU for Fractional Unsigned 

• IS for Integer Signed

• M for Mixed signed and unsigned operands

Also available is the W32 option, which specifies 32-bit saturation of the 
accumulation result.
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Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-10 on page 2-29, each multiplier has a dedicated 
accumulator, A0 or A1. Each accumulator register is divided into three sec-
tions: A0.L/A1.L (bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits 
39:32).

When the multiplier writes to its result accumulator registers, the 32-bit 
result is deposited into the lower bits of the combined accumulator regis-
ter, and the MSB is sign extended into the upper eight bits of the register 
(A0.X/A1.X).

Multiplier output can be deposited not only in the A0 or A1 registers, but 
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half. 
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way.

The rounding and saturation operations work as follows:

• Rounding is applied only to fractional results except for the IH 
option, which applies rounding and high half extraction to an inte-
ger result.

• The rounded result is obtained by adding 0x8000 to the accumula-
tor (for MAC) or multiply result (for mult) and then saturating to 
32-bits. For more information, see “Rounding Multiplier Results” 
on page 2-18.

• If an overflow or underflow has occurred, the saturate operation 
sets the specified result register to the maximum positive or nega-
tive value. For more information, see the following section.
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Saturating Multiplier Results on Overflow 
These bits in ASTAT indicate multiplier overflow status: 

• Bit 3 (AV0) and bit 4 (AV1) record overflow condition (whether the 
result has overflowed 32 bits) for the A0 and A1 accumulators, 
respectively. 

If the bit is cleared (=0), no overflow or underflow has occurred. If 
the bit is set (=1), an overflow or underflow has occurred.

Multiplier Instruction Summary
For information about assembly language syntax and the effect of multi-
plier instructions on the status flags, see Appendix A, “ADSP-BF535 
Considerations”, in the Blackfin Processor Programming Reference.

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an 
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see 
Blackfin Processor Programming Reference.

default No option; input data is signed fraction.

(IS) Input data operands are signed integer. No shift 
correction is made.

(FU) Input data operands are unsigned fraction. No shift 
correction is made.

(IU)  Input data operands are unsigned integer. No shift 
correction is made.
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(T)  Input data operands are signed fraction. When 
copying to the destination half register, truncates 
the lower 16 bits of the Accumulator contents.

(TFU)  Input data operands are unsigned fraction. When 
copying to the destination half register, truncates 
the lower 16 bits of the Accumulator contents.

(S2RND) If multiplying and accumulating to a register: 

Input data operands are signed fraction. When 
copying to the destination register, scales Accumu-
lator contents (multiply x2 by a one-place shift-left) 
and rounds. If scaling and rounding produce a 
signed value larger than 32 bits, the number is satu-
rated to its maximum positive or negative value.

(S2RND) If multiplying and accumulating to a half register: 

Input data operands are signed fraction. When 
copying to the destination register, scales Accumu-
lator contents (multiply x2 by a one-place shift-left) 
and rounds the upper 16 bits before truncating the 
lower 16 bits of the Accumulator. If scaling and 
rounding produce a signed value larger than 16 bits, 
the number is saturated to its maximum positive or 
negative value.

(ISS2) If multiplying and accumulating to a register: 

Input data operands are signed integer. When copy-
ing to the destination register, scales Accumulator 
contents (multiply x2 by a one-place shift-left). If 
scaling produces a signed value larger than 32 bits, 
the number is saturated to its maximum positive or 
negative value.
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(ISS2) If multiplying and accumulating to a half register:

When copying the lower 16 bits to the destination 
half-register, scales the Accumulator contents. If 
scaling produces a signed value greater than 16 bits, 
the number is saturated to its maximum positive or 
negative value.

(IH) This option indicates integer multiplication with 
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the 
Accumulator are rounded, then copied into the des-
tination half register.

(W32) Input data operands are signed fraction with no 
extension bits in the Accumulators at 32 bits.

Left-shift correction of the product is performed, as 
required. This option is used for legacy GSM 
speech vocoder algorithms written for 32-bit 
Accumulators.

(M) Operation uses mixed multiply mode. Valid only 
for MAC1 versions of the instruction. Multiplies a 
signed fraction by an unsigned fractional operand 
with no left-shift correction. 

Operand one is signed; operand two is unsigned. 
MAC0 performs an unmixed multiply on signed 
fractions by default or another format, as specified. 
The (M) option can be used alone or in conjunction 
with one other format option.
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Multiplier Data Flow Details
Figure 2-13 shows the multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication, 
and stores the result in a 40-bit accumulator or extracts to a 16-bit or 
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

Figure 2-13. Register Files and ALUs
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One of the operands must be selected from the low half or the high half of 
one 32-bit word. The other operand must be selected from the low half or 
the high half of the other 32-bit word. Thus, each MAC is presented with 
four possible input operand combinations. The two 32-bit words can con-
tain the same register information giving the options for squaring and 
multiplying the high half and low half of the same register. Figure 2-14 
show these possible combinations. 

The 32-bit product is passed to a 40-bit adder/subtracter, which may add 
or subtract the new product from the contents of the accumulator result 
register or pass the new product directly to the Data Register File results 
register. For results, the A0 and A1 registers are 40 bits wide. Each of these 
registers consists of smaller 32-bit and 8-bit registers: A0.W, A1.W, A0.X, 
and A1.X.

Some example instructions follow:
A0 = R3.L * R4.H (S) ; 

The MAC0 multiplier/accumulator performs a multiply and puts the result 
in the accumulator register.
A1 += R3.H * R4.H (S) ; 

The MAC1 multiplier/accumulator performs a multiply and accumulates 
the result with the previous results in the A1 accumulator.
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Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the 
Data Register File or the Accumulator register. The destination register 
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then 
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

Figure 2-14. Four Possible Combinations of MAC Operations
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If the destination register is 16-bits, then the word that is extracted from 
the multiplier depends on the data type of the input:

• If the multiplication uses fractional operands or the IH option, then 
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-15). 

• If the multiplication uses integer operands, then the low half of the 
result is extracted and stored in the 16-bit destination registers. 
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-16).

This example uses fractional, unsigned operands:
R0.L = R1.L * R2.L (FU) ; 

The instruction deposits the upper 16 bits of the multiply answer with 
rounding and saturation into the lower half of R0, using MAC0. 

This example uses unsigned integer operands:
R0.H = R2.H * R3.H (IU) ; 

Figure 2-15. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination 
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination 
Register



Multiply Accumulators (Multipliers)

2-42 ADSP-BF535 Blackfin Processor Hardware Reference
 

The instruction deposits the lower 16 bits of the multiply answer with any 
required saturation into the high half of R0, using MAC1.
R0 = R1.L * R2.L (S) ; 

Regardless of operand type, the preceding operation deposits 32 bits of the 
multiplier answer with saturation into R0, using MAC0.

Special 32-Bit Integer MAC Instruction
The ADSP-BF535 processor supports a multicycle 32-bit MAC instruc-
tion, that is,

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides 
a 32-bit integer result, destroying one of the input operands.

Figure 2-16. Multiplication of Integer Operands
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The instruction takes multiple cycles to execute. Refer to the product data 
sheet and Blackfin Processor Programming Reference for more information 
about the exact operation of this instruction. This ‘macro’ function is 
interruptable and does not modify the data in either accumulator register 
A0 or A1.

Dual MAC Operations
The ADSP-BF535 processor has two 16-bit MACs. Both MACs can be 
used in the same operation to double the MAC throughput. The same two 
32-bit input registers are offered to each MAC unit, providing each with 
four possible combinations of 16-bit input operands. Dual MAC opera-
tions are frequently referred to as Vector operations, because a program 
could store vectors of samples in the four input operands and perform vec-
tor computations.

An example of a dual multiply and accumulate instruction is
A1 += R1.H * R2.L, A0 += R1.L * R2.H ; 

This instruction represents two multiply and accumulate operations:

• In one operation, in MAC1, the high half of R1 is multiplied by the 
low half of R2 and added to the contents of the A1 accumulator.

• In the second operation, in MAC0, the low half of R1 is multiplied 
by the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an 
independent 16-bit half register or 32-bit register.

For example:
R3.H = ( A1 += R1.H * R2.L ), R3.L = ( A0 += R1.L * R2.L ) ;
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In this instruction, the 40-bit accumulator is packed into a 16-bit half reg-
ister. The result from MAC1 must be transferred to a high half of a 
destination register and the result from MAC0 must be transferred to the 
low half of the same destination register. 

The operand type determines the correct bits to extract from the accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without 
Accumulate” on page 2-40.

R3 = ( A1 += R1.H * R2.L ), R2=( A0 += R1.L * R2.L ) ;

In this instruction, the 40-bit accumulators are packed into two 32-bit 
registers. The registers must be register pairs ( R[1:0] ; R[3:2] ; R[5:4] 
; R[7:6] )

R3.H = ( A1 += R1.H * R2.L ), A0 += R1.L * R2.L ;

This instruction is an example of one accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16- or 32-bit inputs, 
yielding a 16-, 32-, or 40-bit output. These functions include arithmetic 
shift, logical shift, rotate, and various bit-test, set, pack, unpack and expo-
nent-detection functions. These shift functions can be combined to 
implement numerical format control, including full floating-point 
representation.

Shifter Operations
The shifter instructions (>>>, >>, ASHIFT, LSHIFT, ROT) can be used various 
ways, depending on the underlying arithmetic requirements. ASHIFT and 
>>> represents the arithmetic shift. LSHIFT and >> represent the logical 
shift.
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The arithmetic shift and logical shift operations can be further broken 
into subsections. Instructions that are intended to operate on 16-bit single 
or paired numeric values, as would occur in many DSP algorithms, can 
use the instructions ASHIFT and LSHIFT. These are typically three operand 
instructions.

Instructions that are intended to operate on a 32-bit register value and use 
two operands, such as instructions frequently used by a compiler, can use 
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift 
argument from a register or directly from an immediate value in the 
instruction. For details about shifter-related instructions, see “Shifter 
Instruction Summary” on page 2-48.

Two Operand Shifts

Two operand shift instructions shift an input register and deposit the 
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right 
(down-shift) or left (up-shift) by a given number of bits. Immediate shift 
instructions use the data value in the instruction itself to control the 
amount and direction of the shifting operation.

The following example shows the input value down-shifted.

R0 = 0x0000 B6A3 ;

R0 >>= 0x04 ;

results in 

R0.H = 0x0000 ;

R0.L = 0xB6A3 ;
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The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R0 <<= 0x04 ;

results in 

R0.H = 0x000B ;

R0.L = 0x6A30 ;

Register Shifts

Register based shifts use a register to hold the shift value. The entire 
32-bit register is used to derive the shift value, and when the magnitude of 
the shift is greater than 32, then the result is either 0 or –1.

The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R2 = 0x0000 0004 ;

R0 <<= R2 ;

results in 
R0 = 0x000B 6A30 ;

Three Operand Shifts

Three operand shifter instructions shift an input register and deposit the 
result in a destination register. 

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to 
control the amount and direction of the shifting operation.
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The following example shows the input value down-shifted.

R0 = 0x0000 B6A3 ;

R1 = R0 >> 0x04 ;

results in 
R1 = 0x0000 0B6A ;

The following example shows the input value up-shifted.

R0.L = 0xB6A3 ;

R1.H = R0.L << 0x04 ;

results in 
R1.H = 0x6A30 ;

Register Shifts

Register based shifts use a register to hold the shift value. When a register 
is used to hold the shift value, for ASHIFT, LSHIFT or ROT, then the shift 
value is always found in the low half of a register (Rn.L). The bottom 6 
bits of Rn.L are masked off and used as the shift value. 

The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R2.L = 0x0004 ;

R1 = R0 ASHIFT by R2.L ;

results in 
R1 = 0x000B 6A30 ;

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see 
“Condition Code Flag” on page 4-12.

R0 = 0xABCD EF12 ;

R2.L = 0x0004 ;

R1 = R0 ROT by R2.L ; 
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results in 
R1 = 0xBCDE F125 ; 

Note that the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits 
of a data register. All instructions have two arguments—the source register 
and the bit-field value. The test instruction does not change the source 
register. The result of the test instruction resides in the CC bit. 

The following examples show a variety of operations.

BITCLR ( R0, 6 ) ;

BITSET ( R2, 9 ) ;

BITTGL ( R3, 2 ) ;

CC = BITTST ( R3, 0 ) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit 
destination field. The source field may be from 1 bit to 16 bits in length. 
In addition, a 1- to 16-bit field may be extracted from anywhere within a 
32-bit source field.

Two register arguments are used for these functions. One holds the 32-bit 
destination or 32-bit source. The other holds the extract/deposit value, its 
length, and its position within the source. 

Shifter Instruction Summary
For information about assembly language syntax and the effect of shifter 
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in Blackfin Processor Programming Reference.
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3 OPERATING MODES AND 
STATES 

The ADSP-BF535 processor supports three processor modes: 

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core 
resources. User mode has restricted access to certain system resources, thus 
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor 
mode and Emulation mode are usually reserved for the kernel code of an 
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, non-maskable interrupt (NMI), or exception, the 
processor is in Supervisor mode. When servicing an emulation event, the 
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND 
memory-mapped register (MMR), as shown in Table 3-1.

 MMRs cannot be read while the processor is in User mode.
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In addition, the ADSP-BF535 processor supports two nonprocessing 
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states and the transition 
conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor  0x10
but IPEND[0], IPEND[1], IPEND[2], and 
IPEND[3] = 0.

Exception Supervisor  0x08
The core is processing an exception event if 
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0, 
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s. 

NMI Supervisor  0x04
The core is processing an NMI event if IPEND[0] 
= 0, IPEND[1] = 0, IPEND[2] = 1, and 
IPEND[15:2] are 0’s or 1’s. 

Emulation Emulator  0x01
The processor is in Emulation mode if 
IPEND[0] = 1, and the state of the remaining 
bits IPEND[15:1] are undefined. Can be 0’s or 
1’s. 

None User  0x00
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User Mode
The processor is in User mode when it is not in Reset or Idle state or ser-
vicing an interrupt, NMI, exception, or emulation event. User mode is 
used to process application level code that does not require explicit access 
to system registers. Any attempt to access restricted system registers causes 
an exception event. Table 3-2 lists the registers that may be accessed in 
User mode.

Figure 3-1. Processor Modes and States

Interrupt
RTI,

Event

EMULATION

SUPERVISOR

IDLE

RESET

Application Level 
Code

System Code, 
Event Handlers

USER

Emulation 

Event
Emulation 

RTX, RTNException

RTERST
Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may have ini-
tiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE and SSYNC
instructions

or



User Mode

3-4 ADSP-BF535 Blackfin Processor Hardware Reference
 

Protected Resources and Instructions
System resources consist of a subset of the processor registers, all MMRs, 
and a subset of protected instructions. These system and core MMRs are 
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from User mode access. Attempts to access MMR space in User 
mode cause an exception.

A list of protected instructions appears in Table 3-3. Attempts to issue any 
of the protected instructions from User mode causes an exception event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES, 
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

IDLE Idle

RTE Return from Emulation
Causes an exception only if executed outside Emulation mode
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Protected Memory
Additional memory locations can be protected from User mode access. A 
Cacheability Protection Lookaside Buffer (CPLB) entry can be created 
and enabled, as described in “Memory Management Unit” on page 6-56.

Entering User Mode
When coming out of reset, the processor is in Supervisor mode because it 
is servicing a reset event. To enter User mode from the Reset state, two 
steps must be performed. First, a return address must be loaded into the 
RETI register. Second, an RTI must be issued. 

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from the Reset state.

Listing 3-1. Entering User Mode From Reset

P1.L = START ;   /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ;   /* Return from Reset Event */

START :   /* Place user code here */

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to 
invoke User mode from various processor event service routines. When 
these instructions are used in service routines, the value of the return 
address must be first stored in the appropriate event RETx register. If the 
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service routine is interruptible, the return address is stored on the stack. 
For this case, the address can be found by popping the value from the 
stack. Once RETx has been loaded, the RTx instruction can be issued.

 Note the stack pop is optional. The service routine becomes 
non-interruptible, because the return address is not saved on the 
stack.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Supervisor Mode
The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Table 3-4. Return Instructions That can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address 
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service 
Routine

RTN RETN

Emulation Service Routine RTE RETE
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Supervisor mode has full, unrestricted access to all processor system 
resources, including all emulation resources unless a CPLB has been con-
figured and enabled, as described in “Memory Management Unit” on 
page 6-56. Only Supervisor mode can use the register alias USP, which 
locates the User Stack Pointer in memory.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to 
Supervisor mode where it remains until an emulation event or Return 
instruction occurs to change the mode. Before the return instruction is 
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in Supervisor 
mode so that it can access all core and system resources. When RESET is 
deasserted, the processor initiates operation by servicing the reset event. 
Emulation is the only event that can preempt this activity. Lower priority 
events cannot be processed.

One method to keep the processor in Supervisor mode and still allow 
lower priority events to be processed can be implemented by setting up 
and forcing the lowest priority interrupt (IVG15). Events and interrupts are 
described further in “Events and Sequencing” on page 4-17. Once the low 
priority interrupt has been forced using the RAISE 15 instruction, RETI 
can be loaded with a return address that points to user code that can exe-
cute until IVG15 is issued. Once RETI has been loaded, the RTI instruction 
can be issued to return from the reset event.    

The interrupt handler for IVG15 can be set to jump to the application code 
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this 
point, the processor is servicing the lowest priority interrupt. This ensures 
that higher priority interrupts can be processed. 
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Example Code to Stay in Supervisor Mode Coming Out of 
Reset

To remain in Supervisor mode when coming out of Reset state, use code 
as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = IVG15_EVT & 0xFFFF ;   /* Point to IVG15 in Event Vector 

Table */

P0.H = (IVG15_EVT >> 16) & 0xFFFF;

P1.L = START ;   /* Point to start of User code */

P1.H = START ;

[P0] = P1 ;   /* Place the address of start code in IVG15 of EVT 

*/

P0.L = IMASK & 0xFFFF ;

R0 = W[P0] ;

R1.L = IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

W[P0] = R0 ;   /* Set (enable) IVG15 bit in SIC Interrupt Mask 

Register */

RAISE 15 ;   /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ;   /* RETI loaded with return address */

RTI ;   /* Return from Reset Event */

WAIT_HERE :   /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START :   /* IVG15 vectors here */

[--SP] = RETI ;   /* Enables interrupts and saves return address 

to stack */
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Emulation Mode
The processor enters Emulation mode if either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued. 

The processor remains in Emulation mode until the emulation service 
routine executes an RTE instruction. If no interrupts are pending when the 
RTE instruction executes, the processor switches to User mode. Otherwise, 
the processor switches to Supervisor mode to service the interrupt. 

 Emulation mode is the highest priority mode, and the processor 
has unrestricted access to all system resources.

Idle State
Idle state stops all processor activity at the user’s discretion, usually to 
conserve power during lulls in activity. No processing occurs during the 
Idle state. The Idle state is invoked by a sequential combination of the 
IDLE and SSYNC instructions in Supervisor mode. The IDLE instruction 
notifies the processor hardware that the Idle state is requested. The SSYNC 
instruction purges all speculative and transient states in the core and exter-
nal system.

 Without the SSYNC instruction, the IDLE instruction does not place 
the processor into an Idle state.

The processor remains in the Idle state until a peripheral or external 
device, such as a SPORT or the Real-Time Clock (RTC), generates an 
interrupt that requires servicing.
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Idle state can be entered only in Supervisor mode, and the processor 
returns to Supervisor mode when transitioning from the Idle state. Appli-
cation programs in User mode cannot invoke the Idle state, except 
through a system call provided by an operating system kernel.

In the following code example, core interrupts are disabled and the IDLE 
instruction is executed. When all the pending processes have completed, 
the core disables its clocks. Idle state can be terminated only by asserting a 
WAKEUP signal. For more information, see “System Interrupt 
Wakeup-Enable Register (SIC_IWR)” on page 4-24. While not required, 
an interrupt could also be enabled in conjunction with the WAKEUP signal. 

When the WAKEUP signal is asserted, the processor finishes executing the 
SSYNC instruction. The next instruction in this sequence should be the 
STI. Interrupts are enabled after this instruction is executed.

Example Code for Transition to Idle State
To transition to the Idle state, use code as shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ;   /* disable interrupts */

IDLE ;   /* source NOPs into pipeline and assert IDLE output on 

SSYNC */

SSYNC ;   /* drain the pipeline, IDLE asserts after SSYNC_ACK 

back from system */ 

STI R0 ; /* re-enable interrupts after wakeup */

Reset State
Reset state initializes the processor logic. During Reset state, application 
programs and the operating system do not execute.
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The processor remains in the Reset state as long as external logic asserts 
the external RESET signal. Upon deassertion, the processor completes the 
reset sequence and switches to Supervisor mode, where it executes code 
found at the reset event vector identified in the Event Vector Table 
(EVT).

Software in Supervisor or Emulation mode can invoke the Reset state 
without involving the external RESET signal by issuing the Reset version of 
the RAISE instruction. After the reset sequence, the processor returns to 
the Supervisor or Emulation mode that issued the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except 
through a system call provided by an operating system kernel. Table 3-5 
summarizes the state of the processor upon reset.

Table 3-5. Processor State on Reset 

Item Description of Reset State

Core

Operating mode Supervisor mode in reset event

Rounding mode Unbiased rounding

Cycle counters Disabled

DAG registers (I,L,B,M) Random values (must be cleared at initialization)

Data and address registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 instruction memory SRAM (cache disabled)

L1 data memory SRAM (cache disabled)

Cache validity bits Random (must be set to invalid prior to cache initialization)

System

Booting methods Determined by the values of BMODE pins at reset

MSEL clock frequency Determined by sampling MSEL pins at reset
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System Reset and Power-up 
Configuration

Table 3-6 describes the five types of ADSP-BF535 processor resets. Note 
all resets, except System Software, reset the core.

PLL Bypass mode Determined by sampling BYPASS pin at reset

Core clock/system clock ratio Determined by sampling SSEL pins at reset

Peripheral clocks Enabled

Table 3-6. ADSP-BF535 Processor Resets

Reset Source Result

Hardware reset The ADSP-BF535 processor 
RESET pin causes a hardware 
reset.

Resets both the core and the peripherals, 
including the Dynamic Power Manage-
ment Controller (DPMC). 
Resets the No Boot on Software Reset bit 
in SYSCR. For more information, see 
“System Reset Configuration Register 
(SYSCR)” on page 3-14.

System Software 
reset

Writing b#111 to bits [2:0] 
in the system MMR SWRST 
at address 0xFFC0 0410 
causes a System Software 
reset.

Resets only the peripherals, excluding the 
RTC (Real-Time Clock) block and most 
of the DPMC. The DPMC resets only 
the Peripheral Clock Enable register 
(PLL_IOCK) and the No Boot on Software 
Reset bit in SYSCR. Does not reset the 
core. 

Table 3-5. Processor State on Reset  (Cont’d)

Item Description of Reset State
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Hardware Reset
The ADSP-BF535 processor chip reset is an asynchronous reset event. 
The RESET input pin must be deasserted to perform a Hardware reset. See 
ADSP-21535 Blackfin Embedded Processor Data Sheet for more 
information.

A hardware initiated reset results in a system wide reset that includes both 
core and peripherals. After the RESET pin is deasserted, the ADSP-BF535 
processor ensures that all asynchronous peripherals, such as the Universal 
Serial Bus (USB), have recognized and completed a reset. After the reset, 
the ADSP-BF535 processor transitions into the boot mode sequence con-
figured by the BMODE state.

Watchdog Timer 
reset

Programming the watchdog 
timer appropriately causes a 
Watchdog Timer reset.

Resets both the core and the peripherals, 
excluding the RTC block and most of the 
DPMC. The DPMC resets only   
PLL_IOCK.
The Software Reset register (SWRST) can 
be read to determine whether the reset 
source was the watchdog timer. 

Core Double- 
Fault reset

If the core enters a dou-
ble-fault state, a reset can be 
caused by unmasking the 
Core Double-Fault Reset 
Mask bit in the SIC Inter-
rupt Mask register 
(SIC_IMASK).

Resets both the core and the peripherals, 
excluding the RTC block and most of the 
DPMC. The DPMC resets only   
PLL_IOCK.
SWRST can be read to determine whether 
the reset source was Core Double-Fault. 

Core-Only Soft-
ware reset

Executing a RAISE1 instruc-
tion or writing to an MMR 
through the emulator causes 
a Core-Only Software reset. 

Resets only the core.
The peripherals have no knowledge of 
this reset.

Table 3-6. ADSP-BF535 Processor Resets (Cont’d)

Reset Source Result
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The BMODE[2:0] pins are dedicated mode control pins. No other functions 
are shared with these pins, and they may be permanently strapped by tie-
ing them directly to either VDD or VSS. The pins and the corresponding bits 
in SYSCR configure the boot mode that is employed after Hardware reset or 
System Software reset. See also “Reset” on page 4-36, and Table 4-11 on 
page 4-40.

The MSEL[6:0], and DF pins are shared with the programmable flag pins 
PF[7:0]. During Hardware reset, these pins are sensed for configuration 
state. Configuration state may either be directly driven by off-chip hard-
ware or strapped high or low by resistor. The sensed state is used to 
configure the phase locked loop. For more information, see “Phase Locked 
Loop and Clock Control” on page 8-2.

System Reset Configuration Register (SYSCR)
The values sensed from the BMODE[2:0] pins are latched into the System 
Reset Configuration register (SYSCR) upon the deassertion of the RESET 
pin. They are made available for software access and modification after the 
Hardware reset sequence. Software can modify only the No Boot on Soft-
ware Reset bit.

The various configuration parameters are distributed to the appropriate 
destinations from SYSCR (see Figure 3-2).

Software Resets and Watchdog Timer
A software reset may be initiated in three ways: 

• By the watchdog timer, if appropriately configured 

• By setting the System Software Reset field in the Software Reset 
register (see Figure 3-3)

• By the RAISE1 instruction
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The watchdog timer resets both the core and the peripherals. A System 
Software reset results in a reset of the peripherals without resetting the 
core.

 The System Software reset must be performed while executing 
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the 
System Software reset sequence has been read into the cache.

After either the watchdog or System Software reset is initiated, the 
ADSP-BF535 processor ensures that all asynchronous peripherals, such as 
USB, have recognized and completed a reset. 

For a reset generated by the watchdog timer, the ADSP-BF535 processor 
transitions into the boot mode sequence. The boot mode is configured by 
the state of the BMODE and the No Boot on Software Reset control bits. 

Figure 3-2. System Reset Configuration Register

0000000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE 2-0 - RO
000 - Bypass boot ROM,

execute from 16-bit-wide
external memory

001 - Use boot ROM to load
from 8-bit flash

010 - Use boot ROM to configure
and load boot code from
SPI0 serial ROM
(8-bit address range)

011 - Use boot ROM to configure
and load boot code from
SPI0 serial ROM
(16-bit address range)

100-111 - Reserved

0 0 X X X Reset = dependent on 
pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
0 - Use BMODE to determine

boot source
1 - Start executing from the

beginning of on-chip L2 memory
(or the beginning of ASYNC Bank 0
when BMODE[2:0] = b#000)

0xFFC0 0414
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If the No Boot on Software Reset bit in SYSCR is cleared, the reset 
sequence is determined by the BMODE[2:0] control bits.

Software Reset Register (SWRST)
A software reset can be initiated by setting the System Software Reset field 
in the Software Reset register (SWRST), which is shown in Figure 3-3. Bit 
15 indicates whether a software reset has occurred since the last time 
SWRST was read. Bit 14 and Bit 13, respectively, indicate whether the Soft-
ware Watchdog Timer or a Core Double Fault has generated a software 
reset. Bits [15:13] are read-only and cleared when the register is read. Bits 
[2:0] are read/write. 

When the BMODE pins are not set to b#000 and the No Boot on Software 
Reset bit in SYSCR is set, the ADSP-BF535 processor starts executing from 
the start of on-chip L2 memory. In this configuration, the core begins 
fetching instructions from address 0xF000 0000 (the beginning of 
on-chip L2 memory).

Figure 3-3. Software Reset Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Software Reset Register (SWRST)

System Software Reset 
0x0 through 0x6 - No SW

reset
0x7 - Triggers SW reset

Software Reset Status - RO
0 - No SW reset since last

SWRST read
1 - SW reset occurred since

last SWRST read

Reset = 0x0000

Core Double Fault Reset 
- RO
0 - No SW reset
1 - SW reset generated

Software Watchdog Timer 
Source - RO
0 - SW reset not generated by

watchdog
1 - SW reset generated by

watchdog

0xFFC0 0410
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When the BMODE pins are set to b#000 and the No Boot on Software Reset 
bit is set, the core begins fetching instructions from address 0x2000 0000 
(the beginning of ASYNC Bank 0).

Core Only Software Reset
A software reset is initiated by executing the RAISE 1 instruction or by set-
ting the Software Reset (SYSRST) bit in the core Debug Control register 
(DBGCTL) via emulation software through the JTAG port. (DBGCTL is not 
visible to the memory map). 

A Core Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state, 
depending on the system activity during the reset period. 

Booting Methods
The internal boot ROM includes a small boot kernel that can either be 
bypassed or used to load user code from an external memory device, as 
defined in Table 4-10 on page 4-37. The boot kernel reads the 
BMODE[2:0] pin state at reset to identify the download source (see 
Table 4-7 on page 4-22). When in Bypass mode, the processor is set to 
execute from 16-bit wide external memory at address 0x2000 0000 
(ASYNC Bank 0).

Several boot methods are available in which user code can be loaded from 
an external memory device. For these modes, the boot kernel sets up the 
selected peripheral based on the BMODE[0:2] pin settings. 

For each boot mode, user code read in from the memory device is placed 
at the starting location of L2 memory (0xF000 0000). The boot kernel 
terminates the boot process with a jump to the start of the L2 memory 
space. The processor then begins execution from this address.
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 If booting from SPI0, general-purpose flag pin 10 is used as the SPI 
chip select. This line must be connected for proper operation. 

A Core Only Software reset also vectors the core to the boot ROM. The 
Core Only Software reset resets only the core; it does not affect the rest of 
the ADSP-BF535 processor system. The boot ROM kernel detects a No 
Boot on Software Reset condition in SYSCR to avoid initiating a download. 
If this bit is set on a software reset, the processor skips the normal boot 
sequence and jumps to the beginning of L2 memory and begins execution.

The boot kernel assumes these conditions for the flash boot mode:

• Asynchronous Memory Bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• Bank 0 RDY is set to active high

• Bank 0 hold time 
(read/write deasserted to AOE deasserted) = 3 cycles

• Bank 0 read/write access times = 15 cycles

The boot kernel assumes that the SPI baud rate is 500 kHz. Both 8-bit 
and 16-bit addressable SPI serial PROMs are supported. A second stage 
loader is available to include the SPI baud rate up to 2 MHz.
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4 PROGRAM SEQUENCER

In the ADSP-BF535 processor, the Program Sequencer controls program 
flow, constantly providing the address of the next instruction to be exe-
cuted by other parts of the ADSP-BF535 processor. Program flow in the 
chip is mostly linear, with the processor executing program instructions 
sequentially. 

The linear flow varies occasionally when the program uses nonsequential 
program structures, such as those illustrated in Figure 4-1. Nonsequential 
structures direct the ADSP-BF535 processor to execute an instruction that 
is not at the next sequential address. These structures include: 

• Loops. One sequence of instructions executes several times with 
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow 
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of 
memory.

• Interrupts and Exceptions. A runtime event or instruction triggers 
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and 
hold its current state until an interrupt occurs. Then, the processor 
services the interrupt and continues normal execution.
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The Sequencer manages execution of these program structures by selecting 
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the 
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses 
generated by the Sequencer are 32-bit memory instruction addresses.

Figure 4-1. Program Flow Variations
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To manage events, the Sequencer’s event controller handles interrupt and 
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the Data Address Generators 
(DAGs) can provide instruction addresses for the Sequencer’s indirect 
branches.

The Sequencer evaluates conditional instructions and loop termination 
conditions. The loop registers support nested loops. The memory-mapped 
registers (MMRs) store information used to implement interrupt service 
routines.

Sequencer Related Registers 
Table 4-1 lists the registers within the ADSP-BF535 processor that are 
related to the Sequencer. Except for the PC register, all Sequencer related 
registers are directly readable and writable. Manually pushing or popping 
registers to or from the stack is done using the explicit instructions 
[--SP] = Rn (for push) or Rn = [SP++] (for pop).
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Sequencer Status Register (SEQSTAT)
The Sequencer Status register (SEQSTAT), shown in Figure 4-2, contains 
information about the current state of the Sequencer as well as diagnostic 
information from the last event. SEQSTAT is a read-only register and is 
accessible only in Supervisor mode.

Table 4-1. Sequencer Related Registers 

Register Name Description

SEQSTAT Sequencer Status register

Return Address registers: See “Events and Sequencing” on page 4-17.

RETX
RETN
RETI
RETE
RETS 

Exception Return 
NMI Return
Interrupt Return
Emulation Return
Subroutine Return

Zero-Overhead Loop registers:

LC0, LC1
LT0, LT1
LB0, LB1

Loop Counters
Loop Tops
Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Data Address Generators” on 
page 5-1.

SYSCFG System Configuration Register

CYCLES, CYCLES2 Cycle Counters: See “Blackfin Processor’s Debug” on page 20-1.
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Zero-Overhead Loop Registers (LC, LT, LB)
Two sets of zero-overhead loop registers implement loops, using hardware 
counters instead of software instructions to evaluate loop conditions. After 
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom 
(LB) registers.

Figure 4-2. Sequencer Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 X X 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sequencer Status Register (SEQSTAT)

IDLE_REQ

EXCAUSE[5:0]
Holds information about the 
last-executed exception. See 
Table 4-11.

This bit is set by the IDLE 
instruction.
0 - No pending request for

idle state
1 - Pending request for idle

state

Reset = 0x0000 0X00

HWERRCAUSE[1:0]
Holds cause of last hardware error 
generated by the core. Hardware 
errors trigger interrupt number 5 
(IVHW).
0x12 - Performance Monitor

overflow
0x15 - Reserved
0x16 - Error accessing reserved or

undefined memory
0x17 - Error accessing reserved or

undefined memory
0x18 - Instruction RAISE
All other values - Reserved

SFTRESET
0 - Last core reset was not a

software-triggered reset
1 - Last core reset was a soft-

ware-triggered reset, rather
than a hardware power-up
reset

HWERRCAUSE[4:2]
See description under bits [1:0], 
below
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The 32-bit loop register sets are described in Table 4-2.

System Configuration Register (SYSCFG)
The System Configuration Register (SYSCFG), shown in Figure 4-3, con-
trols the configuration of the processor. This register is accessible only 
from the Supervisor mode.

Table 4-2. Loop Registers 

Registers Description Function

LC[1:0] Loop Counters Maintain a count of the remaining iterations of the 
loop

LT[1:0] Loop Tops Hold the address of the first statement within a loop

LB[1:0] Loop Bottoms Hold the address of the last statement of the loop

Figure 4-3. System Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X X 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

System Configuration Register (SYSCFG)

CCEN (Cycle-Counter Enable)

SSSTEP (Supervisor Single Step)
When set, a Supervisor excep-
tion is taken after each instruction 
is executed. It applies only to 
User mode, or when processing 
interrupts in Supervisor mode. It 
is ignored if the core is process-
ing an exception or higher-priority 
event. If precise exception timing 
is required, CSYNC must be 
used after setting this bit.

CCEN must be set after PFPWR is 
set (See chapter 20, Blackfin 
Debug)
0 - Disable 64-bit, free-running

cycle counter
1 - Enable 64-bit, free-running

cycle counter

Reset = Undefined

SNEN (Self-Nesting Interrupt Enable)
0 - Disable self-nesting interrupts
1 - Enable self-nesting interrupts
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Instruction Pipeline
The Program Sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of 
the processor. If no conditions require otherwise, the processor executes 
instructions from memory in sequential order by incrementing the look 
ahead address. 

The ADSP-BF535 processor has an eight-stage instruction pipeline, 
shown in Figure 4-4.

Figure 4-4. ADSP-BF535 Processor Pipeline

Table 4-3. Stages of Instruction Pipeline 

Pipeline Stage Description

Instruction Fetch 1 (IF1) Start instruction memory access.

Instruction Fetch 2 (IF2) Finish L1 instruction memory access and align 
instruction.

Instruction Decode (DEC) Start instruction decode and access Pointer register file.

Address Calculation (AC) Calculate data addresses and branch target address.

Execute 1 (EX1) Read data and start access of data memory.

Execute 2 (EX2) Finish accesses of data memory and start execution of 
dual cycle instructions.

Execute 3 (EX3) Execute single cycle instructions.

Write Back (WB) Write states to Data and Pointer register files and process 
events.

Inst 
Fetch 1

Inst 
Fetch 2

Inst 
Decode

Address 
Calc

Ex1 Ex2 Ex3 WB

Inst 
Fetch 1

Inst 
Fetch 2

Inst 
Decode

Address 
Calc

Ex1 Ex2 Ex3 WB
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The Sequencer decodes and distributes operations to the Instruction 
Memory Unit and Instruction Alignment Unit. It also controls stalling 
and invalidating the instructions in the pipeline. The Sequencer ensures 
that the pipeline is fully interlocked and that the programmer does not 
need to manage the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for 
the Instruction Memory Unit. The Instruction Alignment Unit returns 
instructions and their width information at the end of the IF2 stage.

For each instruction type (16-, 32-, or 64-bit), the Alignment Unit 
ensures that the alignment buffers have enough valid data to be able to 
provide an instruction every cycle. Since the instructions can be 16, 32, or 
64 bits wide, the Alignment Unit may not need to fetch data from the 
cache every cycle. For example, for a series of 16-bit instructions, the 
Alignment Unit gets data from the Instruction Memory Unit once in 4 
cycles. The alignment logic requests the next instruction address based on 
the status of the alignment buffers. The Sequencer responds by generating 
the next fetch address in the next cycle, provided there is no change of 
flow.

The Sequencer holds the fetch address until it receives a request from the 
alignment logic or until a change of flow occurs. It always increments the 
previous fetch address by 8 (the next 8 bytes). If a change of flow occurs, 
such as a branch or an interrupt, the Sequencer communicates it to the 
Instruction Memory Unit, which invalidates the data in the Alignment 
Unit. In addition to the change-of-flow indication, the Sequencer can also 
kill instructions in IF1 and IF2 stages or stall the Instruction Memory 
Unit.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs, 
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit 
ALU support), and an 8-entry 32-bit Data Register File.
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Register File reads occur in the EX1 pipeline stage (for operands) and the 
EX3 pipeline stage (for stores). Writes occur in the WB stage. The multi-
pliers and the video unit are active in the EX2 stage, and the ALUs and 
shifter are active in the EX3 stage. The accumulators are written at the end 
of the EX3 stage.

Any nonsequential program flow can potentially decrease the processor’s 
instruction throughput. Nonsequential program operations include:

• Program memory data accesses that conflict with instruction 
fetches

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops 

Branches and Sequencing
One type of nonsequential program flow that the Sequencer supports is 
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For 
descriptions of how to use the JUMP and CALL instructions, see Blackfin 
Processor Programming Reference. Briefly, these instructions operate as 
follows:

• A JUMP or a CALL instruction transfers program flow to another 
memory location. The difference between a JUMP and a CALL is that 
a CALL automatically loads the return address into the RETS register. 
The return address is the next sequential address after the CALL 
instruction. This push makes the address available for the CALL 
instruction’s matching return instruction, allowing easy return 
from the subroutine.
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• A return instruction causes the Sequencer to fetch the instruction 
at the return address, which is stored in the RETS register (for sub-
routine returns). The types of return instructions are return from 
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from 
non-maskable interrupt (RTN). Each return type has its own register 
for holding the return address.

• JUMP instructions can be conditional, depending on the status of 
the CC bit of the ASTAT register. They are immediate and may not 
be delayed. The Program Sequencer can evaluate the CC status bit 
to decide whether to execute a branch. If no condition is specified, 
the branch is always taken.

• Conditional JUMP instructions use static branch prediction to 
reduce the branch latency because of the effects of the pipeline.

Branches can be direct or indirect. The difference is that the Sequencer 
generates the address for a direct branch, for example JUMP 0x30, and the 
Data Address Generator produces the address for an indirect branch, for 
example JUMP (P3).

Direct branches are JUMP or CALL instructions that use a PC-relative 
address.

Indirect branches are JUMP or CALL instructions that use a dynamic 
address—an address that changes at runtime—that comes from a Data 
Address Generator. For more information, see “Data Address Generators” 
on page 5-1.
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Direct Short and Long Jumps
The Sequencer supports both short and long jumps. The target of the 
branch is a PC-relative address from the location of the instruction, plus 
an offset. The PC-relative offset for the short jump is a 13-bit immediate 
value that must be a multiple of two (bit zero must be a zero). The 13-bit 
value gives an effective dynamic range of –4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that 
must also be a multiple of two (bit zero must be a zero). The 25-bit value 
gives an effective dynamic range of –16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less 
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn 

instruction may be used. If the destination requires more than a 13-bit 
offset, then the JUMP.L 0xnnnn instruction must be used. If the destination 
offset is unknown and development tools must evaluate the offset, then 
use the instruction JUMP 0xnnnn. Upon disassembly, the instruction is 
replaced by the appropriate JUMP.S or JUMP.L instruction.

Direct Call 
The CALL instruction is a branch instruction that copies the location of the 
instruction after the call into the RETS register. The CALL instruction has a 
25-bit PC-relative offset that must be a multiple of two (bit zero must be a 
zero). The 25-bit value gives an effective dynamic range of –16,777,216 to 
+16,777,214 bytes.

Indirect Branch and Call
The indirect JUMP and CALL instructions use a dynamic address—an 
address that changes at runtime—that comes from the Data Address Gen-
erator. The effective address is stored in a P-register. For the CALL 
instruction, the RETS register is loaded with the address of the instruction 
following the CALL instruction.
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For example:

JUMP (P3) ;

CALL (P0) ;

PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use a P-register as an 
offset to the branch target. For the CALL instruction, the RETS register is 
loaded with the address of the instruction following the CALL instruction. 

For example: 

JUMP (PC + P3) ;

CALL (PC + P0) ;

Condition Code Flag
The ADSP-BF535 supports a condition code (CC) flag bit, which is used 
to resolve the direction of a branch. This flag may be accessed five ways:

• A conditional branch is resolved by the value in CC.

• A Data register value may be copied into CC, and the value in CC 
may be copied to a Data register.

• A status flag may be copied into CC, and the value in CC may be 
copied to a status flag.

• CC may be set to the result of a Pointer register comparison.

• CC may be set to the result of a Data register comparison. 
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These five ways of accessing the CC bit are used to control program flow. 
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies 
the interpretation for the value of CC. The interpretation is branch on true 
or false.

The comparison operations have the form CC = expr where expr involves a 
pair of registers of the same type (for example, Data registers or Pointer 
registers, or a single register and a small immediate constant). The small 
immediate constant is a 3-bit (–4 through 3) signed number for signed 
comparisons and a 3-bit (0 through 7) unsigned number for unsigned 
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or 
equal to (<=). There are also bit test operations that test whether a bit in a 
32-bit register is set.

Conditional Branches

The Sequencer supports conditional branches. These are JUMP instructions 
whose execution is based on testing an IF condition that is based on the 
status of the CC bit. The target of the branch is a PC-relative address from 
the location of the instruction plus an offset. The PC-relative offset is an 
11-bit immediate value that must be a multiple of two (bit zero must be a 
zero). This gives an effective dynamic range of –1024 to +1022 bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address.

IF CC JUMP dest_address ;

Conditional Register Move

For condition handling where the value of a register is set based on the 
condition code, a conditional move instruction can be used instead of a 
branch statement. A register move can be performed, depending on 
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whether the value of the CC flag is true or false (1 or 0). In some cases, 
using this instruction instead of a branch eliminates the cycles lost because 
of the branch. 

Example code: 
IF CC R0 = P0 ; 

Branch Prediction
The Sequencer supports static branch prediction to accelerate execution of 
conditional branches. These branches are executed based on the state of 
the CC bit.

The branch target address calculation takes place in the AC stage of the 
instruction pipeline. In the EX3 stage, the Sequencer compares the actual 
CC bit value to the predicted value. If the value was mis-predicted, the 
branch is corrected, and the correct address is available for the WB stage 
of the pipeline.

The branch latency for conditional branches is as follows:

• If prediction was “not to take branch,” and branch was actually not 
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually 
taken: 6 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken: 
3 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not 
taken: 6 CCLK cycles.

For all unconditional branches, the branch target address computed in the 
AC stage of the pipeline is sent to the Instruction Fetch address bus at the 
beginning of the EX1 stage. All unconditional branches have a latency of 3 
CCLK cycles.
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Consider the two examples in Table 4-4.

Loops and Sequencing
Another type of nonsequential program flow that the Sequencer supports 
is looping. A loop occurs when the values in a pair of loop top and loop 
bottom registers define an address range that includes the currently exe-
cuting instruction. The corresponding loop counter must contain a 
nonzero value. One way to load these registers is by using the Loop Setup 
(LSETUP) instruction; however, it is also possible to load these registers 
directly. The ADSP-BF535 processor provides two sets of dedicated regis-
ters to support two nested loops.

The condition for terminating a loop is that the counter decreases to zero. 
This condition tests whether the loop has completed the number of itera-
tions loaded from the Loop Count register (LC[1] or LC[0]).

Table 4-4. Branch Prediction 

Instruction Description

If CC JUMP back_dest (bp) This instruction tests the CC flag, and if it is set, 
jumps to a location, identified by the label, 
back_dest. 
If back_dest is a prior address and the CC flag is set, 
then the branch is correctly predicted and the branch 
latency is reduced. 

If CC JUMP sub_dest (bp) This instruction tests the CC flag, and if it is set, 
jumps to a location, identified by the label, 
sub_dest. 
If sub_dest is a subsequent address and the CC flag 
is set, then the branch is incorrectly predicted and 
the branch latency increases.
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The zero-overhead loop hardware provides efficient loops without the 
overhead of additional instructions to branch, test a condition, or decre-
ment a counter. If the effective range of the loop needs to be larger than 
that shown in Table 4-5, the loop can be set up manually by loading the 
LCx, LTx, and LBx registers manually.

The code example in Listing 4-1 shows a loop that contains two instruc-
tions and iterates 32 times.

Listing 4-1. Loop

P5 = 0x20 ;

LSETUP ( lp_start, lp_end ) LCO = P5 ;

lp_start:

R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end:  R5 = R5 + R2 ;

Two sets of loop registers are used to manage two nested loops:

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers

When executing an LSETUP instruction, the Program Sequencer loads the 
address of the loop’s last instruction into LBx and the address of the loop’s 
first instruction into LTx. The top and bottom addresses of the loop are 
computed as PC-relative addresses from the LSETUP instruction plus an 
offset. In each case, the offset value is added to the location of the LSETUP 
instruction.

LC0 and LC1 are unsigned 32-bit registers supporting 232–1 iterations 
through the loop. 
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 When LCx = 0, the loop is disabled, and a single pass of the code 
executes.

The ADSP-BF535 processor supports a four-location instruction loop 
buffer that reduces instruction fetches while in loops. If the loop code 
contains four or fewer instructions, then no fetches to instruction memory 
are necessary for any number of loop iterations, because the instructions 
are stored locally. The loop buffer effectively shortens the instruction 
fetch time in loops with more than four instructions by allowing fetches to 
take place while instructions in the loop buffer are being executed.

Events and Sequencing
The Event Controller of the processor manages five types of activities:

• Emulation

• Reset

• Non-maskable interrupts (NMI)

• Exceptions

• Interrupts 

Table 4-5. Loop Registers 

First/Last Address of the 
Loop

PC-Relative Offset Used to 
Compute the Loop Start Address

Effective Range of the Loop 
Start Instruction

Top / First 5-bit signed immediate; must be a 
multiple of 2.

0 to 30 bytes away from LSETUP 
instruction.

Bottom / Last 11-bit signed immediate; must be a 
multiple of 2.

0 to 2046 bytes away from 
LSETUP instruction (the defined 
loop can be 2046 bytes long).
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Note that the word event describes all five types. The Event Controller 
manages fifteen events in all: Emulation, Reset, NMI, Exception, and 
eleven interrupts.

An interrupt is an event that changes normal processor instruction flow 
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service 
routines may be active at any time, and a low priority event is preempted 
by one of higher priority.

The ADSP-BF535 processor employs a two-level event control mecha-
nism. The ADSP-BF535 processor System Interrupt Controller (SIC) 
works with the Core Event Controller (CEC) to prioritize and control all 
system interrupts. The SIC provides mapping between the many periph-
eral interrupt sources and the prioritized general-purpose interrupt inputs 
of the core. This mapping is programmable, and individual interrupt 
sources can be masked in the SIC.

The CEC supports nine general-purpose interrupts (IVG7 - IVG15) in addi-
tion to the dedicated interrupt and exception events that are described in 
Table 4-6. It is recommended that the lowest two priority interrupts 
(IVG14 and IVG15) be reserved for software interrupt handlers, leaving 
seven prioritized interrupt inputs (IVG7 - IVG13) to support the 
ADSP-BF535 processor system. Refer to Table 4-6.

Note the System Interrupt to Core Event mappings shown are the default 
values at reset and can be changed by software.
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Table 4-6. System and Core Event Mapping 

Event Source Core Event Name

Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware Error IVHW

Core Timer IVTMR

System Interrupts RTC
USB
PCI

IVG7

SPORT0 RX/TX
SPORT1 RX/TX

IVG8

SPI0
SPI1

IVG9

UART0 RX/TX
UART1 RX/TX

IVG10

Timer0, Timer1, Timer2 IVG11

Programmable Flags Interrupt A/B IVG12

Memory DMA
Watchdog Timer

IVG13

Software Interrupt 1 IVG14

Software Interrupt 2 (lowest priority) IVG15
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System Interrupt Processing
Referring to Figure 4-5, note that when an interrupt (Interrupt A) is gen-
erated by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that 
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the ADSP-BF535 pro-
cessor core from an idled state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the 
system level. If Interrupt A is not masked, the request proceeds to 
Step 4.

4. The SIC_IARx registers, which map the peripheral interrupts to a 
smaller set of general-purpose core interrupts (IVG7-IVG15), deter-
mine the core priority of Interrupt A.

5. ILAT adds Interrupt A to its log of interrupts latched by the core 
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the 
IVGx event corresponding to Interrupt A is not masked, the process 
proceeds to Step 7.

7. The Event Vector Table (EVT) is accessed to look up the appropri-
ate vector for Interrupt A’s interrupt service routine (ISR).

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective 
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those 
being presently serviced.
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9. When the interrupt service routine for Interrupt A has been exe-
cuted, the RTI instruction clears the appropriate IPEND bit. 
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt 
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as 
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests, 
enter the interrupt processing chain at the ILAT level and are not affected 
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK, 
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the ISR 
must identify the peripheral that generated the interrupt. The ISR may 
then need to interrogate the peripheral to determine the appropriate 
action to take.

Figure 4-5. Interrupt Processing Block Diagram
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System Peripheral Interrupts
The ADSP-BF535 processor system has numerous peripherals, which 
therefore require many supporting interrupts. Table 4-7 lists:

• Peripheral interrupt source

• Peripheral interrupt ID used in the System Interrupt Assignment 
registers (SIC_IARx). See “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29.

• General-purpose interrupt of the core to which the interrupt maps 
at reset

• The Core Interrupt ID used in the System Interrupt Assignment 
registers (SIC_IARx). See “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29.

Table 4-7. Peripheral Interrupt Source Reset State

Peripheral Interrupt Source Peripheral 
Interrupt ID

General-purpose 
Interrupt (Assignment 
at Reset)

Core 
Interrupt ID

Real-Time Clock interrupts (alarm, 
second, minute, hour, countdown)

0 IVG7 0

Reserved 1 IVG7 0

USB interrupt 2 IVG7 0

PCI interrupts 3 IVG7 0

SPORT0 RX DMA interrupt 4 IVG8 1

SPORT0 TX DMA interrupt 5 IVG8 1

SPORT1 RX DMA interrupt 6 IVG8 1

SPORT1 TX DMA interrupt 7 IVG8 1

SPI0 DMA interrupt 8 IVG9 2

SPI1 DMA interrupt 9 IVG9 2
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The peripheral interrupt structure of the ADSP-BF535 processor is flexi-
ble. By default upon reset, multiple peripheral interrupts share a single, 
general-purpose interrupt in the core, as shown in the preceding table.

An interrupt service routine that supports multiple interrupt sources must 
interrogate the appropriate system MMRs to determine which peripheral 
generated the interrupt.

If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only initialization of the core EVT vector 
address entries and IMASK register, and unmasking the specific peripheral 
interrupts in SIC_IMASK that the system requires.

UART0 RX interrupt 10 IVG10 3

UART0 TX interrupt 11 IVG10 3

UART1 RX interrupt 12 IVG10 3

UART1 TX interrupt 13 IVG10 3

Timer0 interrupt 14 IVG11 4

Timer1 interrupt 15 IVG11 4

Timer2 interrupt 16 IVG11 4

PF interrupt A 17 IVG12 5

PF interrupt B 18 IVG12 5

Memory DMA interrupt 19 IVG13 6

Software Watchdog Timer interrupt 20 IVG13 6

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral 
Interrupt ID

General-purpose 
Interrupt (Assignment 
at Reset)

Core 
Interrupt ID
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System Interrupt Wakeup-Enable Register 
(SIC_IWR)

The SIC provides the mapping between the peripheral interrupt source 
and the Dynamic Power Management Controller (DPMC). Any of the 
ADSP-BF535 processor peripherals can be configured to wake up the core 
from its idled state to process the interrupt, simply by enabling the appro-
priate bit in the System Interrupt Wakeup-enable register (refer to 
Figure 4-6). If a peripheral interrupt source is enabled in SIC_IWR and the 
core is idled, the interrupt causes the DPMC to initiate the core wake-up 
sequence in order to process the interrupt. Note that this mode of opera-
tion may add latency to interrupt processing, depending on the power 
control state. For further discussion of power modes and the idled state of 
the core, see “Dynamic Power Management” on page 8-1.

By default, all interrupts generate a wake-up request to the core. However, 
for some applications it may be desirable to disable this function for some 
peripherals, such as a SPORTx Transmit Interrupt.

The SIC_IWR register has no effect unless the core is idled. The bits in this 
register correspond to those of the System Interrupt Mask (SIC_IMASK) 
and Interrupt Status (SIC_ISR) registers.

After reset, all valid bits of this register are set to 1, enabling the wake-up 
function for all interrupts that are not masked. Before enabling interrupts, 
configure this register in the reset initialization sequence. The SIC_IWR 
register can be read from or written to at any time. To prevent spurious or 
lost interrupt activity, this register should be written only when all periph-
eral interrupts are disabled.

 Note the wake-up function is independent of the interrupt mask 
function. If an interrupt source is enabled in SIC_ISR but masked 
off in SIC_IMASK, the core wakes up if it is idled, but it does not 
generate an interrupt.
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System Interrupt Status Register (SIC_ISR)
The SIC includes a read-only status register, the System Interrupt Status 
register, shown in Figure 4-7. Each valid bit in this register corresponds to 
one of the peripheral interrupt sources. The bit is set when the SIC detects 
the interrupt is asserted and cleared when the SIC detects that the periph-
eral interrupt input has been deasserted. Note that for some peripherals, 
such as programmable flag asynchronous input interrupts, many cycles of 
latency may pass from the time that an interrupt service routine initiates 
the clearing of the interrupt (usually by writing a system MMR) to the 
time that the SIC senses that the interrupt has been deasserted.

Figure 4-6. System Interrupt Wakeup-Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wakeup-Enable Register (SIC_IWR)

Reset = 0xFFFF FFFF

Timer 2 Interrupt

For all bits, 0 - Wake-up function not enabled, 1 - Wake-up function enabled.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer 
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupt

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

0xFFC0 0C18
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Depending on how interrupt sources map to the general-purpose interrupt 
inputs of the core, the interrupt service routine may have to interrogate 
multiple interrupt status bits to determine the source of the interrupt. 
One of the first instructions executed in an interrupt service routine 
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine 
should fully process all pending, shared interrupts before executing the 
RTI, which enables further interrupt generation on that interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction 
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the 
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing 
each peripheral to map to a unique core priority level. In these designs, 
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the Interrupt Mask reg-
ister and can be read at any time. Writes to SIC_ISR have no effect on its 
contents.
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System Interrupt Mask Register (SIC_IMASK)
The System Interrupt Mask register, shown in Figure 4-8, allows masking 
of any peripheral interrupt source at the SIC, independently of whether it 
is enabled at the peripheral itself.

A reset forces the contents of SIC_IMASK to all 0s to mask off all peripheral 
interrupts. Writing a 1 to a bit location turns off the mask and enables the 
interrupt.

Figure 4-7. System Interrupt Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register (SIC_ISR)

Reset = 0x0000 0000

Timer 2 Interrupt

RO. For all bits, 0 - Deasserted, 1 - Asserted.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer 
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupt

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

0xFFC0 0C14
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Although this register can be read from or written to at any time (in 
Supervisor mode), it should be configured in the reset initialization 
sequence before enabling interrupts.

 SIC_IMASK[31] provides a mask for the core double-fault 
condition:

• If the condition is unmasked and the core detects a double-fault 
condition, a hardware reset is generated.

• If the condition is masked and the core detects a double-fault con-
dition, core behavior may be unreliable.

Figure 4-8. System Interrupt Mask Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register (SIC_IMASK)

Reset = 0x0000 0000

Timer 2 Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer 
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupts

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

Core Double-fault 
Reset Mask

0xFFC0 0C10
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System Interrupt Assignment Registers (SIC_IARx)
The relative priority of peripheral interrupts can be set by mapping the 
peripheral interrupt to the appropriate general-purpose interrupt level in 
the core. The mapping is controlled by the System Interrupt Assignment 
register settings, as detailed in Figure 4-9, Figure 4-10, and Figure 4-11. If 
more than one interrupt source is mapped to the same interrupt, they are 
logically OR’ed, with no hardware prioritization. Software can prioritize 
the interrupt processing as required for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts 
assigned to them, take special care to ensure that software correctly 
processes all pending interrupts sharing that input. Software is 
responsible for prioritizing the shared interrupts.

Figure 4-9. System Interrupt Assignment Register 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

Real-Time Clock Interrupt
IVG select

PCI Interrupt
IVG select

USB Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 0 0 0 1 0 0 0 1 0 0 0

SPORT 1 TX Interrupt
IVG select

SPORT1 RX Interrupt
IVG select

Reset = 0x1111 0000

SPORT0 RX Interrupt
IVG select

SPORT0 TX Interrupt
IVG select

0xFFC0 0C04
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These registers can be read or written at any time in Supervisor mode. It is 
advisable, however, to configure them in the Reset interrupt service rou-
tine before enabling interrupts. To prevent spurious or lost interrupt 
activity, these registers should be written to only when all peripheral inter-
rupts are disabled.

Figure 4-10. System Interrupt Assignment Register 1

Figure 4-11. System Interrupt Assignment Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 0 1 1 0 0 1 0 0 0 1

SPI0 Interrupt
IVG select

SPI1 Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 0 0 0 1 0 0 0 0 1 1 0 0 1

UART1 RX Interrupt
IVG select

UART1 TX Interrupt
IVG select

Timer 1 Interrupt
IVG select

Timer 0 Interrupt
IVG select

UART0 TX Interrupt
IVG select

UART0 RX Interrupt
IVG select

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x4433 33220xFFC0 0C08

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 0 0 1 0 1 0 1 0 1 0 1 0

Memory DMA Interrupt
IVG select

PF Interrupt B
IVG select

Software Watchdog Timer 
Interrupt
IVG select

Reset = 0x0006 6554

Timer 2 Interrupt
IVG select

PF Interrupt A
IVG select

0xFFC0 0C0C
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Table 4-8 defines the value to write in SIC_IARx to configure a peripheral 
for a particular IVG priority.

Event Controller Registers
The Event Controller uses three MMRs to coordinate pending event 
requests. Each register is 16 bits wide, and each bit, N, corresponds to the 
EVT[N] event in the Event Vector Table. The registers are:

• IMASK - interrupt mask 

• ILAT - interrupt latch

• IPEND - interrupts pending

The Event Controller updates ILAT and IPEND. The IPEND register is 
read-only in Supervisor mode. The ILAT and IMASK registers may be both 
read and written in Supervisor mode, with the exception of ILAT[0], 
which is read-only. None of the three registers can be accessed in User 
mode.

Table 4-8. IVG-Select Definitions 

General-purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8
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Core Interrupt Mask Register (IMASK)
Each bit in IMASK indicates when the corresponding interrupt is enabled 
(see Figure 4-12). When an interrupt bit is set in the ILAT register, the 
corresponding interrupt is accepted only if the corresponding bit is also set 
in the IMASK register. The IMASK register may be read and written in 
Supervisor mode. 

Only the emulator may mask emulation events. Refer to “Blackfin Proces-
sor’s Debug” on page 20-1.

Core Interrupt Latch Register (ILAT)
Each bit in ILAT indicates when the corresponding event is latched (see 
Figure 4-13). The bit is reset before the first instruction in the corre-
sponding ISR is executed. Writes to any ILAT bit can only occur when the 
corresponding IMASK bit is set. Otherwise, the write is ignored. This write 
functionality to ILAT is provided for cases where latched interrupt requests 
need to be cleared (cancelled) instead of servicing them.

Figure 4-12. Core Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)

Reset = 0x001F

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled.

0xFFE0 2104
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When an event is serviced, its corresponding bit in ILAT is cleared. The 
RAISE N instruction causes specific bits in ILAT to be set and can trigger 
only events IVG15-IVG7, IVTMR, IVHW, NMI and RST.

Only the JTAG TRST pin can clear ILAT[0].

Core Interrupts Pending Register (IPEND)
The IPEND register keeps track of all currently nested interrupts (see 
Figure 4-14). Each bit in IPEND indicates that the corresponding interrupt 
is currently active or nested at some level. It may be read in Supervisor 
mode, but not written. The IPEND[4] bit is used by the Event Controller 
to temporarily disable interrupts on entry and exit to an interrupt service 
routine.

When an event is processed, the corresponding bit in IPEND is set. The 
least significant bit in IPEND that is currently set indicates the interrupt 
that is currently being serviced. At any given time, IPEND holds the current 
status of all nested events.

Figure 4-13. Core Interrupt Latch Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Non-Maskable Interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)

Reset = 0x000X

EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched.

0xFFE0 210C
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Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg 
instruction and re-enabled with the STI Dreg instruction, both of which 
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts 
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the “External Event Management” 
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able general-purpose interrupts, but be sure to re-enable them at the 
conclusion of the code sequence.

Figure 4-14. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Non-Maskable Interrupt)

EMU (Emulation)

IVHW (Hardware Error)

Reset = 0x0010

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active.

Global Interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled

Set and cleared by event
controller only.

0xFFE0 2108
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Event Vector Table
The Event Vector Table (EVT) is a hardware table with sixteen entries 
that are each 32 bits wide. The EVT contains an entry for each possible 
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt 
service routine. When an event occurs, instruction fetch starts at the 
address location in the EVT entry for that event.

The ADSP-BF535 processor architecture allows unique addresses to be 
programmed into each of the interrupt vectors; that is, interrupt vectors 
are not determined by a fixed offset from an interrupt vector table base 
address. This approach minimizes latency by not requiring a long jump 
from the vector table to the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in 
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location Notes

EVT0 Emulation EMU 0xFFE0 2000 Highest priority. Vec-
tor address is provided 
by JTAG.

EVT1 Reset RST 0xFFE0 2004 Read-only.

EVT2 NMI NMI 0xFFE0 2008

EVT3 Exception EVX 0xFFE0 200C

EVT4 Reserved Reserved 0xFFE0 2010 Reserved vector.

EVT5 Hardware Error IVHW 0xFFE0 2014

EVT6 Core Timer IVTMR 0xFFE0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVG8 0xFFE0 2020

EVT9 Interrupt 9 IVG9 0xFFE0 2024
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Emulation
An emulation event causes the processor to enter Emulation mode, in 
which instructions are read from the JTAG interface. It is the highest pri-
ority interrupt to the core.

For detailed information about emulation, see “Blackfin Processor’s 
Debug” on page 20-1.

Reset
The reset interrupt (RST) can be initiated via the RESET pin or through 
expiration of the Watchdog timer. The EVT[1] register holds the address 
at which the processor begins execution after reset. This location differs 
from that of other interrupts in that its content is read-only. Writes to this 
address have no effect.

The core has an output that indicates that a double-fault has occurred. 
This is a non-recoverable state. The SIC (via SIC_IMASK) can be pro-
grammed to send a reset request if a double-fault condition is detected. 
Subsequently, the reset request forces a system reset for core and 
peripherals.

EVT10 Interrupt 10 IVG10 0xFFE0 2028

EVT11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFE0 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFE0 203C Lowest priority.

Table 4-9. Core Event Vector Table (Cont’d)

Event Number Event Class Name MMR Location Notes
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The reset vector is determined by the ADSP-BF535 processor system. It 
points to the start of the on-chip boot ROM, or to the start of external 
asynchronous memory, depending on the state of the BMODE[2:0] pins. 
Refer to Table 4-10.

If the BMODE[2:0] pins indicate either booting from flash or serial ROM, 
the reset vector points to the start of the internal boot ROM, where a 
small bootstrap kernel resides. The bootstrap code reads the System Reset 
Configuration register (SYSCR) to determine the value of the BMODE[2:0] 
pins, which determine the appropriate boot sequence. For information 
about the ADSP-BF535 processor boot ROM, see “Booting Methods” on 
page 3-17.

If the BMODE[2:0] pins indicate to bypass boot ROM, the reset vector 
points to the start of the external asynchronous memory region. In this 
mode, the internal boot ROM is not used. To support reads from this 
memory region, the external bus interface unit (EBIU) uses the default 
external memory configuration that results from hardware reset.

Table 4-10. Reset Vector Addresses 

Boot Source BMODE[2:0] Execution Start 
Address

Bypass boot ROM; execute from 16-bit-wide exter-
nal memory (Async Bank 0)

000 0x2000 0000

Use boot ROM to boot from 8-bit flash 001 0xF000 0000

Use boot ROM to configure and load boot code 
from SPI0 serial ROM (8-bit address range)

010 0xF000 0000

Use boot ROM to configure and load boot code 
from SPI0 serial ROM (16-bit address range)

011 0xF000 0000

Reserved 100-111 N/A
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NMI (Non-Maskable Interrupt)
The NMI entry is reserved for a non-maskable interrupt, which can be 
generated by the Watchdog timer or by the NMI input signal to the 
ADSP-BF535 processor. An example of an event that requires immediate 
processor attention, and thus is appropriate as an NMI, is a power-down 
warning. During the execution of the NMI service routine, exceptions are 
suspended, as they have a lower priority than the NMI interrupt.

 If an exception occurs during handling of an NMI, servicing the 
exception is delayed until completion of the NMI. 

Exceptions
Exception events are synchronous to the instruction that generates the 
exception; that is, the exception is taken before the instruction is allowed 
to complete. Note, however, the architecture can generate exceptions for 
memory references that meet any of these criteria: 

• Misalign

• Miss the ICPLB (for an instruction fetch), or DCPLB (for a load or 
store)

• Violate the protection specification for the CPLB entry

• Generate multiple hits on the respective CPLB

• Receive a bus error response on an instruction fetch

For more information about alignment and CPLBs, see “Memory” on 
page 6-1.
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As shown in Table 4-11, exceptions can be services or error conditions. 
The value in the Type column indicates whether the exception for that 
row is a service or an error condition.

• For services (S), the return address is the address of the instruction 
that follows the exception, because a service is never re-executed.

• To allow the program to resume execution on return from a service 
routine, the processor state must be preserved before the excepting 
instruction.

• For error conditions (E), the return address is the address of the 
instruction that caused the exception, because some types of errors, 
such as a page fault, require that the offending instruction be 
re-executed.

• Determining whether the instruction is re-executed depends on the 
excepting instruction and error condition and is determined by the 
exception handler. When the instruction should be re-executed, 
the return address is used. When the instruction should not be 
re-executed, the exception handler must advance the return address 
by the instruction length.

• EXCAUSE[5:0] is placed in the Sequencer Status register (SEQSTAT), 
depending on the type of event.
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Table 4-11. Events That Cause Exceptions

Exception EXCAUSE[5:0] Type:
(E) error
(S) service 
See note 1.

Notes/Examples

Force Exception 
instruction EXCPT with 
4-bit field m

m-field S Instruction provides 4 bits of 
EXCAUSE.

Single step 0x10 S When the processor is in single step 
mode, every instruction generates an 
exception. Primarily used for debug-
ging.

Exception caused by 
an emulation trace 
buffer overflow

0x11 S The processor takes this exception 
when the trace buffer overflows (only 
when enabled by the trace unit con-
trol register).

Undefined instruction 0x21 E May be used to emulate instructions 
that are not defined for a particular 
processor implementation.

Illegal instruction 
combination

0x22 E See section for multi-issue rules in the 
Blackfin Processor Programming Refer-
ence.

Data access CPLB pro-
tection violation

0x23 E Attempted read or write to supervisor 
resource, or illegal data memory 
access. Supervisor resources are regis-
ters and instructions that are reserved 
for Supervisor use: Supervisor only 
registers, all MMRs, and Supervisor 
only instructions. (A simultaneous, 
dual access to two MMRs using the 
Data Address Generators generates 
this type of exception.) In addition, 
this entry is used to signal a protec-
tion violation caused by disallowed 
memory access, and it is defined by 
the Memory Management Unit 
(MMU) cacheability protection loo-
kaside buffer (CPLB).
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Data access mis-
aligned address viola-
tion

0x24 E Attempted misaligned data memory 
or data cache access.

Unrecoverable event 0x25 E For example, an exception generated 
while processing a previous exception.

Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB 
miss on a data access.

Data access multiple 
CPLB hits

0x27 E More than one CPLB entry matches 
data fetch address.

Exception caused by 
an emulation watch-
point match

0x28 E There is a watchpoint match, and one 
of the EMUSW bits in the Watch-
point Instruction Address Control 
register (WPIACTL) is set.

Instruction fetch 
access exception

0x29 E Error from instruction fetch, for 
example, instruction bus parity error.

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction 
cache fetch. On a misaligned instruc-
tion fetch exception, the return 
address provided in RETX is the desti-
nation address which is misaligned, 
rather than the address of the offend-
ing instruction. For example, if an 
indirect branch to a misaligned 
address held in P0 is attempted, the 
return address in RETX is equal to P0, 
rather than to the address of the 
branch instruction. (Note that this 
exception can never be generated 
from PC-relative branches, only from 
indirect branches.)

Instruction fetch 
CPLB protection vio-
lation

0x2B E Illegal instruction fetch access (mem-
ory protection violation).

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE[5:0] Type:
(E) error
(S) service 
See note 1.

Notes/Examples
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Note 1: For services (S), the return address is the address of the instruction 
that follows the exception. For errors (E), the return address is the address 
of the excepting instruction. 

If an instruction causes multiple exceptions, only the exception with the 
highest priority is taken. Table 4-12 ranks exceptions by descending 
priority.

Instruction fetch 
CPLB miss

0x2C E CPLB miss on an instruction fetch.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches 
instruction fetch address.

Illegal use of supervi-
sor resource

0x2E E Attempted to use a Supervisor register 
or instruction from User mode. 
Supervisor resources are registers and 
instructions that are reserved for 
Supervisor use: Supervisor only regis-
ters, all MMRs, and Supervisor only 
instructions.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE[5:0] Type:
(E) error
(S) service 
See note 1.

Notes/Examples
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Exceptions While Executing an Exception Handler
While executing the exception handler, avoid issuing an instruction that 
generates another exception. Generating an exception before the exception 
handler finishes results in these actions:

• The generated exception is not taken.

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable 
event code.

• The address of the offending instruction is saved in RETX.

8 Undefined Instruction 0x21

9 Illegal Combination 0x22

10 Illegal use protected resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT instruction m- field

20 Single Step 0x10

21 Trace Buffer 0x11

Table 4-12. Exceptions by Descending Priority (Cont’d)

Priority Exception EXCAUSE
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To determine whether an exception occurred while an exception handler 
was executing, check SEQSTAT at the end of the exception handler. If an 
exception has occurred, register RETX holds the address of the instruction 
that caused the exception.

At the end of the exception handler, the return address is used to return 
normally to lower interrupt level code. Whether an exception occurs dur-
ing the execution of an NMI, emulation, or reset event, the same set of 
actions occurs.

Hardware Error Interrupt
The hardware error interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a 
memory bus controller, is unable to complete a data transfer (read or 
write) and asserts the core’s error input signal. Such hardware errors 
invoke the hardware error interrupt (interrupt IVHW in the Event Vector 
Table (EVT) and ILAT, IMASK, and IPEND registers). The hardware error 
interrupt service routine can then read the cause of the error from the 
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The hardware error interrupt is generated by:

• Attempted access to a reserved memory location

• Attempted access to uninitialized external memory space

• Bus parity errors

• Internal error conditions within the core, such as Performance 
Monitor overflow

• The DMA Access Bus Comparator interrupt (attempted write to 
an active DMA register)
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• Peripheral errors

• Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE 
codes, appears in Table 4-13. The bit code for the most recent error 
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does 
not support prioritizing, pipelining, or queuing multiple error codes. The 
hardware error interrupt remains active as long as any of the error condi-
tions remain active. 

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts 

Hardware 
Condition

HWERRCAUSE 
(binary)

HWERRCAUSE 
(hexadecimal)

Notes / Examples

DMA Bus 
Comparator 
Source

0b00001 0x01 The Compare Hit output is 
routed directly to the Hardware 
Error interrupt input. The Com-
pare Hit interrupt is maskable by 
writing to the DMA Bus Control 
Comparator register (DB_CCOMP). 
See “DMA Bus Debug Registers” 
on page 20-27.

Performance 
Monitor 
Overflow

0b10010 0x12 Refer to “Performance Monitor-
ing Unit” on page 20-19.

Error accessing 
reserved or unde-
fined memory

0b10110 0x16 An access to reserved or uninitial-
ized memory was attempted

Error accessing 
reserved or unde-
fined memory

0b10111 0x17 An access to reserved or uninitial-
ized memory was attempted

RAISE instruction 0b11000 0x18 Software issued a RAISE instruc-
tion to invoke the hardware error 
interrupt (IVHW).

Reserved All other bit combi-
nations.

All other bit combi-
nations.
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Core Timer
The Core Timer Interrupt (IVTMR) is triggered when the core timer value 
reaches zero. See “Timers” on page 16-1.

General-Purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor 
attention. For instance, a DMA controller may use them to signal the end 
of a data transmission, or a serial communications device may use them to 
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE 
instruction. The RAISE instruction can force events for interrupts 
IVG15-IVG7, IVTMR, IVHW, NMI, and RST, but not for exceptions and emula-
tion (EVX and EMU, respectively).

 It is recommended to reserve the two lowest priority interrupts 
(IVG15 and IVG14) for software interrupt handlers.

Servicing Interrupts
The CEC has a single interrupt queueing element per event, as a bit in the 
ILAT register. The appropriate ILAT bit is set when an interrupt rising edge 
is detected (which takes 2 core clock cycles) and cleared when the respec-
tive IPEND register bit is set. The IPEND bit indicates that the event vector 
has entered the core pipeline. At this point, the CEC recognizes and 
queues the next rising edge event on the corresponding interrupt input. 
The minimum latency from the rising edge transition of the general-pur-
pose interrupt to the IPEND output asserted is three core clock cycles. 
However, the latency can be much higher, depending on the core’s activ-
ity level and state.
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To determine when to service an interrupt, the controller logically ANDs 
the three quantities in ILAT, IMASK, and the current processor priority 
level. 

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the EVT becomes the next fetch address. 

On an interrupt, all instructions currently in the pipeline are 
aborted. On a service exception, all instructions after the excepting 
instruction are aborted. On an error exception, the excepting 
instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register.

The return register is RETI for interrupts, RETX for exceptions, RETN 
for NMIs, and RETE for debug emulation. The return address is the 
address of the instruction after the last-executed instruction from 
normal program flow.

3. Processor mode is set to the level of the event taken. 

If the event is an NMI, exception, or interrupt, the processor mode 
is Supervisor. If the event is an emulation exception, the processor 
mode is Emulation. 

4. Before the first instruction starts execution, the corresponding 
interrupt bit in ILAT is cleared and the corresponding bit in IPEND 
is set. 

Bit IPEND[4] is also set to disable all interrupts until the return 
address in RETI is saved.
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Interrupts With and Without Nesting
Interrupts are handled either with or without nesting. If interrupts do not 
require nesting, all interrupts are disabled during the interrupt service 
routine. Note, however, that emulation, NMI, and exceptions are still 
accepted by the system.

When the system does not need to support nested interrupts, there is no 
need to store the return address held in RETI. Only the portion of the 
machine state used in the interrupt service routine must be saved in the 
Supervisor stack. To return from a non-nested interrupt service routine, 
only the RTI instruction must be executed, because the return address is 
already held in the RETI register.

Figure 4-15 shows an example of interrupt handling where interrupts are 
globally disabled for the entire interrupt service routine.

If nested interrupts are desired, the return address to the interrupted point 
in the original interrupt service routine (ISR) must be explicitly saved and 
subsequently restored when execution of the nested ISR has completed. 
Nesting is enabled by pushing the return address currently held in RETI 
to the Supervisor stack ([--SP] = RETI), which is typically done early in 
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are 
modified by the interrupt service routine are saved onto the Supervisor 
stack. Processor state is stored in the Supervisor stack, not in the User 
stack. Hence, the instructions to push RETI ([--SP]=RETI) and pop RETI 
(RETI=[SP++]) use the Supervisor stack.
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Figure 4-15. Non-Nested Interrupt Handling
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Figure 4-16 illustrates that by pushing RETI onto the stack, interrupts can 
be re-enabled during an ISR, resulting in only a short duration where 
interrupts are globally disabled.

Figure 4-16. Nested Interrupt Handling
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Example Prolog Code for Nested Interrupt Service 
Routine

Listing 4-2. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine. Push return 

address in RETI into Supervisor stack, ensuring that interrupts 

are back on. Until now, interrupts have been suspended. */

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to 

stack */

[--SP] = ASTAT ;

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note that none of the processor 

resources (accumulators, DAGs, loop counters and bounds) have 

been saved. It's assumed that this interrupt service routine does 

not use them. */

Example Epilog Code for Nested Interrupt Service 
Routine

Listing 4-3. Epilog Code for Nested ISR

/* Epilog code for nested-interrupt service routine. */

/* Restore ASTAT, Data, and Pointer registers. Popping RETI from 

Supervisor stack ensures that interrupts are suspended between 

load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP    = [SP++] ;

ASTAT = [SP++] ;

RETI  = [SP++] ;
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/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested 

interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return 
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes 
executing. The suspension of interrupts prevents a subsequent interrupt 
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set 
in IPEND. The processor then jumps to the address pointed to by the value 
in the RETI register and re-enables the interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests
The SIC detects level-sensitive interrupt requests from the peripherals. 
The CEC provides edge-sensitive detection for its general-purpose inter-
rupts (IVG7-IVG15). Consequently, the SIC generates a synchronous 
interrupt pulse to the CEC and then waits for interrupt acknowledgement 
from the CEC. When the interrupt has been acknowledged by the core 
(via assertion of the appropriate IPEND output), the SIC generates another 
synchronous interrupt pulse to the CEC if the peripheral interrupt is still 
asserted. This way, the system does not lose peripheral interrupt requests 
that occur during servicing of another interrupt. 

Because multiple interrupt sources can map to a single core processor gen-
eral-purpose interrupt, multiple pulse assertions from the SIC can occur 
simultaneously, before, or during interrupt processing for an interrupt 
event that is already detected on this interrupt input. For a shared inter-
rupt, the IPEND interrupt acknowledge mechanism described above 
re-enables all shared interrupts. If any of the shared interrupt sources are 
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still asserted, at least one pulse is again generated by the SIC. The 
Interrupt Status registers indicate the current state of the shared interrupt 
sources.

Self-Nesting Mode
The nesting method described in the previous section allows an interrupt 
of higher priority to preempt interrupts of lower priority. However, it 
does not allow one interrupt to preempt another interrupt of the same pri-
ority, nor does it allow nesting at the same priority level.

When self-nested interrupts are not enabled, general-purpose interrupts 
can only preempt general-purpose interrupts of a lower priority (higher 
index). For example, when processing interrupt 7, another interrupt 7 
request remains pending (ILAT[7] = 1), but the interrupt is not serviced 
until the current interrupt 7 service routine executes an RTI.

On the other hand, when self-nesting interrupts are enabled, an event 
interrupts processing at the same interrupt service level, provided RETI is 
pushed to the stack and interrupts are enabled. For example, when pro-
cessing interrupt 7 (IPEND[7:0] = 0x80), another interrupt 7 request 
causes software to again vector to the interrupt 7 service routine. 

 Self-nesting of interrupts applies only to core interrupts or inter-
rupts generated using the RAISE instruction; it is not allowed with 
peripheral interrupts.

For the interrupt system to allow self-nesting, software must set bit SNEN 
(self-nesting enable) in SYSCFG. See Figure 4-3 on page 4-6. In self-nesting 
mode, the system sets the LSB of the address in the return register RETI 
(RETI[0]) to indicate an incoming interrupt has the same priority as an 
interrupt that is currently being serviced. The bit RETI[0] is automatically 
set on entry into an interrupt service routine, and it is simply used as a sta-
tus bit to flag the processor that the current ISR is self-nesting.



Interrupts With and Without Nesting

4-54 ADSP-BF535 Blackfin Processor Hardware Reference
 

The return-from-interrupt instruction, RTI, is sensitive to the state of 
RETI[0] and SNEN. When both RETI[0] and SNEN are set, RTI clears only 
the global disable bit IPEND[4]. However, when self-nesting mode is dis-
abled (SNEN = 0), RTI clears both IPEND[4] and the IPEND bit that 
corresponds to the current interrupt level.

The SNEN bit should be set once in the reset service routine and not 
changed again during normal interrupt processing.

Since the LSB of the RETI register is used to store the self-nesting state, 
avoid changing the contents of the RETI register when self-nesting is 
enabled, except for saving and restoring the register to the stack.

Exception Handling
Interrupts and exceptions treat instructions in the pipeline differently:

• When an interrupt occurs, all instructions in the pipeline are 
aborted.

• When an exception occurs, all instructions in the pipeline after the 
excepting instruction are aborted. For service exceptions, the 
excepting instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return 
register, guarding the return address is optional. Consequently, the push 
and pop instructions for exceptions, NMIs, and emulation events do not 
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE) 
do clear the least significant bit currently set in IPEND.
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Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action 
accordingly. The length of the routines may result in long periods during 
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to 
identify the exception cause, but defer the processing to a low priority 
interrupt. To set up the low priority interrupt handler, use the Force 
Interrupt / Reset instruction (RAISE).

 When deferring the processing of an exception to lower priority 
interrupt IVGx, the system must guarantee that IVGx is entered 
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is 
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

Listing 4-4. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of R0, P0, P1 and ASTAT in Supervisor 

SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 <<= 26 ;

R0 >>= 26 ;

/* Using jump table EVTABLE, jump to the event pointed by R0 */

P0 = R0 ;
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P1 = _EVTABLE ;

P0 = P1 + ( P0 << 1 ) ;

R0 = W [ P0 ] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing 

is deferred to low-priority interrupt IVG15. Also, parame-

ter-passing would typically be done here. */

_EVENT1:

RAISE 15 ;

JUMP.S _EXIT ;

/* Entry for event at IVG14 */

_EVENT2:

RAISE 14 ;

JUMP.S _EXIT ;

/* comments for other events */

/* At the end of handler, restore R0, P0, P1 and ASTAT, and 

return. */

_EXIT:

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTX ;

_EVTABLE:

.byte2 addr_event1;

.byte2 addr_event2;

...

.byte2 addr_eventN;

/* The jump table EVTABLE holds 16-bit address offsets for each 

event. With offsets, this code is position-independent and the 

table is small.

+--------------+

| addr_event1  | _EVTABLE
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+--------------+

| addr_event2  | _EVTABLE + 2

+--------------+

|     . . .    |

+--------------+

| addr_eventN  | _EVTABLE + 2N

+--------------+

*/

Example Code for an Exception Routine

Listing 4-5 provides an example framework for an exception routine that 
would be jumped to from an exception handler such as that described 
above.

Listing 4-5. Exception Routine

[--SP] = RETX ;   /* Push return address on stack. No change to 

ILAT or IPEND. */

/* Put body of exception routine here. */

RETX = [SP++] ;   /* To return, pop return address and jump. No 

change to ILAT or IPEND. */

RTX ;   /* Return from exception. Clear IPEND[3] (Exception Pend-

ing bit). */

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception, 
NMI, or emulator event, respectively. Do not use them to return from a 
lower-priority event. To return from an interrupt, use the RTI instruction. 
Failure to use the correct instruction produces the following results.
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• If a program mistakenly uses RTX, RTN, or RTE to return from an 
interrupt, the core branches to the address in the corresponding 
return register (RETX, RETN, RETE) and leaves IPEND unaffected.

• If a program mistakenly uses RTI or RTX to return from an NMI 
routine, the core branches to the address in the corresponding 
return register (RETI, RETX), and clears the bit in IPEND that corre-
sponds to the return instruction.

• In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit 
of the highest priority interrupt in IPEND is cleared.

Recommendation for Allocating the System Stack

The software stack model for processing exceptions implies that the 
Supervisor stack must never generate an exception while the exception 
handler is saving its state. However, if the Supervisor stack grows past a 
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the 
exception handler—calculate the maximum space that all interrupt service 
routines and the exception handler occupy while they are active, and then 
allocate this amount of SRAM memory. 

Latency in Servicing Events
In some DSP architectures, if instructions are executed from external 
memory and an interrupt occurs while the instruction fetch operation is 
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at 
300 MHz and executing code from external memory with 100 ns access 
times. Depending on when the interrupt occurs in the instruction fetch 
operation, the interrupt service routine (ISR) may be held off for around 
30 instruction clock cycles. When cache line fill operations are taken into 
account, the ISR could be held off for many hundreds of cycles. 
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In order for high-priority interrupts to be serviced with the least latency 
possible, the ADSP-BF535 processor allows any high latency fill operation 
to be completed at the system level, while an ISR executes from L1 mem-
ory. Figure 4-17 illustrates this concept.

If an ADSP-BF535 processor instruction load operation misses the L1 
Instruction Cache and generates a high latency line fill operation on the 
SBIU, then when an interrupt occurs, it is not held off until the fill has 
completed. Instead, the processor executes the ISR in its new context, and 
the cache fill operation completes in the background.

Note the ISR must reside in L1 cache or SRAM memory and must not 
generate a cache miss, an L2 memory access, or a peripheral access, as the 
SBIU is already busy completing the original cache line fill operation. If a 

Figure 4-17. Minimizing Latency in Servicing an ISR
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load or store operation is executed in the ISR requiring the SBIU, then the 
ISR is held off while the original external access is completed, before initi-
ating the new load or store.

If the ISR finishes execution before the load operation has completed, 
then the ADSP-BF535 processor continues to stall, waiting for the fill to 
complete.

This same behavior is also exhibited for stalls involving reads of slow data 
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes 
are deemed to be single cycle, being immediately transferred to the write 
buffer for subsequent execution.

For detailed information about cache and memory structures, see “Mem-
ory” on page 6-1.
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5 DATA ADDRESS 
GENERATORS

The Data Address Generators (DAGs) of the ADSP-BF535 processor gen-
erate addresses for data moves to and from memory. By generating 
addresses, the DAGs let programs refer to addresses indirectly, using a 
DAG register instead of an absolute address. 

The DAG architecture, which appears in Figure 5-1, supports several 
functions that minimize overhead in data access routines. These functions 
include:

• Supply address and post-modify—provides an address during a 
data move and auto-increments/decrements the stored address for 
the next move.

• Supply address with offset—provides an address from a base with 
an offset without incrementing the original address pointer.

• Modify address—increments or decrements the stored address 
without performing a data move.

• Bit-reversed carry address—provides a bit-reversed carry address 
during a data move without reversing the stored address. 

The DAG subsystem comprises two DAG Arithmetic units, eight Pointer 
registers, four Index registers and four complete sets of related Modify, 
Base and Length registers. These registers hold the values that the DAGs 
use to generate addresses. The types of registers are:
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• Index registers, I[3:0]. 32-bit Index registers hold an address 
pointer to memory. For example, the instruction R3 = [I0] loads 
the data value found at the memory location pointed to by the reg-
ister I0. Index registers can be used for 16- and 32-bit memory 
accesses.

• Modify registers, M[3:0]. 32-bit Modify registers provide the 
increment or step size by which an index register is post-modified 
during a register move. 

• For example, the R0 = [I0 += M1] instruction directs the DAG to:

• Output the address in register I0

• Load the contents of the memory location pointed to by I0 
into R0

• Then modify the contents of I0 by the value contained in 
the M1 register.

• Base and Length registers, B[3:0] and L[3:0]. 32-bit Base and 
Length registers set up the range of addresses and the starting 
address of a circular buffer. For more information on circular buf-
fers, see “Addressing Circular Buffers” on page 5-6.

• Pointer registers, P[5:0], FP, and SP. 32-bit Pointer registers hold 
an address pointer to memory. The P[5:0] field, FP (Frame 
Pointer), and SP (Stack Pointer) can be manipulated and used in 
various instructions. For example, the instruction R3 = [P0] loads 
the register R3 with the data value found at the memory location 
pointed to by the register P0. The Pointer registers have no effect 
on circular buffer addressing. They can be used for 8-, 16-, and 
32-bit memory accesses.
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 Do not assume the L-registers are automatically initialized to zero 
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must 
initialize the corresponding L-registers to zero for linear addressing 
or to the buffer length for circular buffer addressing.

All DAG registers must be initialized individually. Initializing a 
B-register does not automatically initialize the I-register.

Figure 5-1. ADSP-BF535 Processor DAG Registers

   Data Address Generator Registers (DAGs)
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Addressing With DAGs
The DAGs can generate an address that is incremented by a value or by a 
register. In post-modify addressing, the DAG outputs the I-register value 
unchanged; then the DAG adds an M-register or immediate value to the 
I-register. 

In Indexed addressing, the DAG adds a small offset to the value in the 
P-register, but does not update the P-register with this new value, thus 
providing an offset for that particular memory access.

The ADSP-BF535 processor addressing is always byte aligned. Depending 
on the type of data used, increments and decrements to the DAG registers 
can be by 1, 2, or 4 to match the 8-bit, 16-bit, or 32-bit accesses.

For example, consider this instruction:
R0 = [ P3++ ] ;

This instruction fetches a 32-bit word, pointed to by the value in P3, and 
places it in R0. It then post-increments P3 by four, maintaining alignment 
with the 32-bit access.
R0.L = W [ I3++ ] ;

This instruction fetches a 16-bit word, pointed to by the value in I3 and 
places it in the low half of the destination register, R0.L. It then 
post-increments I3 by two, maintaining alignment with the 16-bit access.
R0 = B [ P3++ ] (X) ;

This instruction fetches an 8-bit word, pointed to by the value in P3 and 
places it in the destination register, R0. It then post-increments P3 by one, 
maintaining alignment with the 8-bit access. The byte value may be 
zero-extended or sign-extended into the 32-bit data register.

Instructions using Index registers use an M-register or a small immediate 
value (+/– 2 or 4) as the modifier. Instructions using Pointer registers use 
a small immediate value or another P-register as the modifier. For instruc-
tion summary details, see Table 5-3 on page 5-17. 
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Frame and Stack Pointers
In many respects, the Frame and Stack Pointer registers perform like the 
other P-registers, P[5:0]. They can act as general pointers in any of the 
load/store instructions. For example, R1 = B[SP] (Z). However, FP and SP 
have additional functionality.

The Stack Pointer registers include: 

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register 
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as 
SP: 

• In User mode, any reference to SP (for example, stack pop 
R0 = [ SP++ ] ;) implicitly uses the USP as the effective address.

• In Supervisor mode, the same reference to SP (for example, 
R0 = [ SP++ ] ;) implicitly uses the Supervisor Stack Pointer as 
the effective address. 

• To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a 
register move from USP (for example, R0 = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be 
used in Supervisor mode.

Some load/store instructions use FP and SP exclusively, for example: 

• FP-indexed load/store, which extends the addressing range for 
16-bit encoded load/stores

• Stack push/pop instructions
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Addressing Circular Buffers
The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, wrapping around to 
repeat stepping through the same range of addresses in a circular pattern. 

The DAGs use four types of DAG registers for addressing circular buffers. 
For circular buffering, the registers operate this way:

• The Index (I) register contains the value that the DAG outputs on 
the address bus.

• The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of 
each memory access. 

• Any M-register can be used with any I-register. The modify value 
can also be an immediate value instead of an M-register. The size of 
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.

• The Length (L) register sets the size of the circular buffer and the 
address range through which the DAG circulates the I-register. 

• L is positive and cannot have a value greater than 231 – 1. If an 
L-register’s value is zero, its circular buffer operation is disabled.

• The Base (B) register or the B-register plus the L-register is the 
value with which the DAG compares the modified I-register value 
after each access.

To address a circular buffer, the DAG steps the index pointer (I-register) 
through the buffer values, post-modifying and updating the index on each 
access with a positive or negative modify value from the M-register.
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If the index pointer falls outside the buffer range, the DAG subtracts the 
length of the buffer (L-register) from the value or adds the length of the 
buffer to the value, wrapping the index pointer back to a point inside the 
buffer.

The starting address that the DAG wraps around is called the buffer’s base 
address (B-register). There are no restrictions on the value of the base 
address for circular buffers that contains 8-bit data. Circular buffers that 
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned, 
respectively. Circular buffering uses post-modify addressing.

• As seen in Figure 5-2, on the first post-modify access to the buffer, 
the DAG outputs the I-register value on the address bus, then 
modifies the address by adding the modify value: 

• If the updated index value is within the buffer length, the DAG 
writes the value to the I-register. 

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify 
value) the L-register value before writing the updated index value 
to the I-register. 

In equation form, these post-modify and wraparound operations work as 
follows.

• If M is positive:

• Inew = Iold + M 

if Iold + M < buffer base + length (end of buffer)

• Inew = Iold + M – L 

if Iold + M  buffer base + length (end of buffer)



Addressing With DAGs

5-8 ADSP-BF535 Blackfin Processor Hardware Reference
 

• If M is negative:

• Inew = Iold + M 

if Iold + M  buffer base (start of buffer)

• Inew = Iold + M + L 

if Iold + M < buffer base (start of buffer)

Figure 5-2. Circular Data Buffers
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The columns above show the sequence in order of locations accessed in one pass.
The sequence repeats on subsequent passes.
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Addressing With Bit-Reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry 
addressing for some algorithms, particularly Fast Fourier Transform 
(FFT) calculations. To satisfy the requirements of these algorithms, the 
DAG’s bit-reversed addressing feature permits repeatedly subdividing data 
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment 
instruction in Blackfin Processor Programming Reference.

Indexed Addressing With Index and 
Pointer Registers

Indexed addressing uses the value in the Index or Pointer register as an 
effective address. This instruction can load or store 16-bit or 32-bit values. 
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W 
designator is used to preface the load or store.

For example: 

R0 = [ I2 ] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the 
destination register R0.

R0.H = W [ I2 ] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the 
16-bit destination register R0.H.

[ P1 ] = R0 ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores. 
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For example:

B [ P1++ ] = R0 ; 

stores the 8-bit value from the R0 register in the address pointed to by the 
P1 register, then increments the P1 register. 

Auto-Increment and Auto-Decrement Addressing
Auto-increment addressing updates the Pointer and Index registers after 
the access. The amount of increment depends on the word size. An access 
of 32-bit words results in an update of the pointer by 4. A 16-bit word 
access updates the pointer by 2, and an access of an 8-bit word updates the 
pointer by 1. Both 8-bit and 16-bit read operations may specify either to 
sign-extend or zero-extend the contents into the destination register. 
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index 
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [ P1++ ] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address 
pointed to by the P1 Pointer register. The Pointer is then incremented by 
2 and the word is zero-extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after 
the access. 

For example:

R0 = [ I2-- ] ;

loads a 32-bit value into the destination register and decrements the Index 
register by 4.
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Pre-Modify Stack Pointer Addressing
The only pre-modify instruction in the ADSP-BF535 processor uses the 
Stack Pointer register, SP. The address in SP is decremented by four and 
then used as an effective address for the store. The instruction 
[ --SP ] = R0 ; is used for stack push operations and can support only a 
32-bit word transfer.

Indexed Addressing With Immediate Offset
Indexed addressing allows programs to obtain values from data tables, 
with reference to the base of that table. The Pointer register is modified by 
the immediate field and then used as the effective address. The value of 
the Pointer register is not updated. 

For example:
P5 = [ P1 + 0x10 ] ;

is an acceptable offset, but 
P5 = [ P1 + 0x11 ] ;

causes an alignment exception.

 Be sure the offset is divisible by the word-transfer size, measured in 
bytes; for example, for a 32-bit transfer, the offset should be a mul-
tiple of 4; for a 16-bit transfer, the offset should be a multiple of 2. 
Correct offsets ensure memory alignment.

Post-Modify Addressing 
Post-modify addressing uses the value in the Index or Pointer registers as 
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by another Pointer register. Index 
registers are modified by a Modify register. This instruction does not sup-
port the Pointer registers as a destination register, nor does it support 
byte-addressing.
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For example:

R5 = [ P1++P2 ] ;

loads a 32-bit value into the R5 register, found in the memory location 
pointed to by the P1 register. 

The value in the P2 register is then added to the value in the P1 register.

For example:

R2 = W [ P4++P5 ] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and 
zero-extends it to 32-bits. It adds the value the pointer P4 by the value of 
the pointer P5.

For example:

R2 = [ I2++M1 ] ;

loads a 32-bit word into the destination register R2. It updates the value in 
the Index register I2 by the value in the Modify register M1.

Modifying DAG and Pointer Registers
The DAGs support an operation that modifies an address value in an 
index register without outputting an address. The operation, address- 
modify, is useful for maintaining pointers.

The instruction modifies addresses in any DAG Index and Pointer register 
(I[3:0], P[5:0], FP, SP) without accessing memory. If the Index register’s 
corresponding B- and L-registers are set up for circular buffering, the 
instruction performs the specified buffer wraparound (if needed). 
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The syntax is similar to post-modify addressing (index += modifier). For 
Index registers, an M-register is used as the modifier. For Pointer registers, 
another P-register is used as the modifier.

Consider the example, I1 += M2 ; 

This instruction adds M2 to I1 and updates I1 with the new value.

Memory Address Alignment 
The ADSP-BF535 processor requires proper memory alignment to be 
maintained for the data size being accessed. Unless exceptions are dis-
abled, violations of memory alignment cause an alignment exception. 
Some instructions—for example, many of the Video ALU instructions—
automatically disable alignment exceptions because the data may not be 
properly aligned when stored in memory. Alignment exceptions may be 
disabled by issuing the DISALGNEXPT instruction in parallel with a 
load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries, 
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries, 
meaning the least significant bit of the address must be b#0.
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Table 5-1 summarizes the types of transfers and transfer sizes that the 
addressing modes support.

 Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers 
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data 
Registers

LOADS:
32-bit word
16-bit, zero-extended half word
16-bit, sign-extended half word
8-bit, zero-extended byte
8-bit, sign-extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from Pointer 
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from Data 
Registers

LOADS:
32-bit word
16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero-extended half word 
16-bit, sign-extended half word
STORES:
32-bit word 
16-bit half word from Data Register high half
16-bit half word from Data Register low half
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Table 5-2 summarizes the addressing modes. In the table, an asterisk (*) 
indicates that the ADSP-BF535 processor supports the addressing mode.

Table 5-2. Addressing Modes

P Auto-
inc

P Auto-
dec

P
Indirect

P 
Indexed

FP-
Indexed

P 
Post-
inc

I Auto-
inc

I 
Auto-
dec

I 
Indirect

I Post-inc

[P0++] [P0--] [P0] [P0+im] [FP+im] [P0++P1] [I0++] [I0--] [I0] [I0++M0]

32-bit 
Word

* * * * * * * * * *

16-bit 
Half
Word

* * * * * * * *

8-bit 
Byte

* * * *

Sign/
Zero 
Extend

* * * * *

Data 
Register 

* * * * * * * * * *

Pointer 
Register 

* * * * *

Data 
Register 
Half

* * * * *
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DAG Instruction Summary
Table 5-3 lists the DAG instructions. For more information on assembly 
language syntax, see Blackfin Processor Programming Reference. In the table, 
note the meaning of these symbols:

• Dreg denotes any Data Register File register. 

• Dreg_lo denotes the lower 16 bits of any Data Register File 
register. 

• Dreg_hi denotes the upper 16 bits of any Data Register File 
register.

• Preg denotes any Pointer register, FP or SP register.

• Ireg denotes any DAG Index register.

• Mreg denotes any DAG Modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that 
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

Blackfin Processor Programming Reference more fully describes the options 
that may be applied to these instructions and the sizes of immediate fields.
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DAG instructions do not affect the ASTAT Status flags. 

Table 5-3. DAG Instruction Summary

Instruction

Preg = [ Preg ] ;

Preg = [ Preg ++ ] ;

Preg = [ Preg -- ] ;

Preg = [ Preg + uimm6m4 ] ;

Preg = [ Preg  + uimm17m4 ] ;

Preg =  [ Preg – uimm17m4 ] ;

Preg = [ FP – uimm7m4 ] ;

Dreg = [ Preg ] ;

Dreg = [ Preg ++ ] ;

Dreg = [ Preg -- ] ;

Dreg = [ Preg + uimm6m4 ] ;

Dreg = [ Preg  + uimm17m4 ] ;

Dreg =  [ Preg – uimm17m4 ] ;

Dreg = [ Preg ++ Preg ] ;

Dreg = [ FP – uimm7m4 ] ;

Dreg = [ Ireg ] ;

Dreg = [ Ireg ++ ] ;

Dreg = [ Ireg -- ] ;

Dreg = [ Ireg ++ Mreg ] ;

Dreg =W [ Preg ] (Z) ;

Dreg =W [ Preg ++ ] (Z) ;

Dreg =W [ Preg -- ] (Z) ;

Dreg =W [ Preg + uimm5m2 ] (Z) ;

Dreg =W [ Preg + uimm16m2 ] (Z) ; 
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Dreg =W [ Preg – uimm16m2 ] (Z) ;

Dreg =W [ Preg ++ Preg ] (Z) ;

Dreg = W [ Preg ] (X) ;

Dreg = W [ Preg ++] (X) ;

Dreg = W [ Preg -- ] (X) ;

Dreg =W [ Preg + uimm5m2 ] (X) ;

Dreg =W [ Preg + uimm16m2 ] (X) ; 

Dreg =W [ Preg – uimm16m2 ] (X) ;

Dreg =W [ Preg ++ Preg ] (X) ;

Dreg_hi = W [ Ireg ] ;

Dreg_hi = W [ Ireg ++ ] ;

Dreg_hi = W [ Ireg -- ] ;

Dreg_hi = W [ Preg ] ;

Dreg_hi = W [ Preg ++ Preg ] ;

Dreg_lo = W [ Ireg ] ;

Dreg_lo = W [ Ireg ++]  ;

Dreg_lo = W [ Ireg  -- ] ;

Dreg_lo = W [ Preg ] ;

Dreg_lo = W [ Preg ++ Preg ] ;

Dreg = B [ Preg ] (Z) ;

Dreg = B [ Preg ++ ] (Z) ;

Dreg = B [ Preg -- ] (Z) ;

Dreg = B [ Preg + uimm15 ] (Z) ;

Dreg = B [ Preg – uimm15 ] (Z) ;

Dreg = B [ Preg ] (X) ;

Dreg = B [ Preg ++ ] (X) ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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Dreg = B [ Preg -- ] (X) ;

Dreg = B [ Preg + uimm15 ] (X) ;

Dreg = B [ Preg – uimm15 ] (X) ;

[ Preg ] = Preg ; 

[ Preg ++ ] = Preg ;

[ Preg -- ] = Preg ;

[ Preg + uimm6m4 ] = Preg ;

[ Preg + uimm17m4 ] = Preg ;

[ Preg – uimm17m4 ] = Preg ;

[ FP – uimm7m4 ] = Preg ;

[ Preg ] = Dreg ;

[ Preg ++ ] = Dreg ;

[ Preg -- ] = Dreg ;

[ Preg + uimm6m4 ] = Dreg ;

[ Preg + uimm17m4 ] = Dreg ;

[ Preg – uimm17m4 ] = Dreg ;

[ Preg ++ Preg ] = Dreg ;

[FP – uimm7m4 ] = Dreg ;

[ Ireg ] = Dreg ;

[ Ireg ++ ] = Dreg ;

[ Ireg -- ] = Dreg ;

[ Ireg ++ Mreg ] = Dreg ;

W [ Ireg ] = Dreg_hi ;

W [ Ireg ++ ] = Dreg_hi ; 

W [ Ireg -- ] = Dreg_hi ;

W [ Preg ] = Dreg_hi ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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W [ Preg ++ Preg ] = Dreg_hi ;

W [ Ireg ] = Dreg_lo ;

W [ Ireg ++ ] = Dreg_lo ;

W [ Ireg -- ] = Dreg_lo ;

W [ Preg ] = Dreg_lo ;

W [ Preg ] = Dreg ;

W [ Preg ++ ] = Dreg ;

W [ Preg -- ] = Dreg ;

W [ Preg + uimm5m2 ] = Dreg ;

W [ Preg + uimm16m2 ] = Dreg ;

W [ Preg –  uimm16m2 ] = Dreg ;

W [ Preg ++ Preg ] = Dreg_lo ;

B [ Preg ] = Dreg ;

B [ Preg ++ ] = Dreg ;

B [ Preg -- ] = Dreg ;

B [ Preg + uimm15 ] = Dreg ;

B [ Preg – uimm15 ] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction
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6 MEMORY

The ADSP-21535 processor supports a hierarchical memory model with 
different performance and size parameters, depending on the memory 
location within the hierarchy. Level 1 (L1) memories are faster memories 
located closer to the processor core, whereas Level 2 (L2) memories are 
memory systems farther from the core, typically with longer access laten-
cies. The faster L1 memories, which include an instruction, data, and 
scratchpad memory as part of the Blackfin core, are accessed in a single 
cycle. The L2 memories, which include an on-chip SRAM and off-chip 
mapping to synchronous, asynchronous and PCI devices, provide much 
larger memory spaces with higher latencies.

The focus of this chapter is on-chip L1 and L2 memory. The off-chip L2 
memory is explained in more detail in “External Bus Interface Unit” on 
page 18-1. The PCI memory space, which is also part of the off-chip L2 
memory, is further described in “PCI Bus Interface” on page 13-1.

Terminology
The following terminology is used to describe memory. 

cache block.

The smallest unit of memory that is transferred to/from the next level of 
memory from/to a cache as a result of a cache miss.

cache hit. 

A memory access that is satisfied by a valid, present entry in the cache.
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cache line.

Same as cache block. In this chapter, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

direct mapped. 

Cache architecture in which each line has only one place in which it can 
appear in the cache. Also described as 1-Way associative.

dirty (or modified).

A state bit, stored along with the tag, indicating whether the data in the 
data cache line has been changed since it was copied from the source 
memory and, therefore, needs to be updated in that source memory.

exclusive, clean.

The state of a data cache line, indicating that the line is valid and that the 
data contained in the line matches that in the source memory. The data in 
a clean cache line does not need to be written to source memory before it 
is replaced.

fully associative. 

Cache architecture in which each line can be placed anywhere in the 
cache.

index.

Address portion that is used to select an array element (for example, a line 
index).

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache 
line match cannot occur.
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least recently used (LRU) algorithm.

Replacement algorithm, used by cache, that first replaces lines that have 
been unused for the longest time.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory 
subsystems between it and the core.

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a 
larger capacity than L1 memory, but it requires additional latency to 
access.

little endian.

The native data store format of the ADSP-21535 processor. Words and 
half words are stored in memory (and registers) with the least significant 
byte at the lowest byte address and the most significant byte in the highest 
byte address of the data storage location.

replacement policy.

The function used by the ADSP-BF535 processor to determine which line 
to replace on a cache miss. Often, an LRU algorithm is employed.

set. 

A group of N-line storage locations in the Ways of an N-Way cache, 
selected by the INDEX field of the address (see Figure 6-6 on page 6-18).

set-associative.

Cache architecture that limits line placement to a number of sets (or 
Ways).
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tag.

Upper address bits, stored along with the cached data line, to identify the 
specific address source in memory that the cached line represents.

valid.

A state bit, stored with the tag, indicating that the corresponding tag and 
data are current and correct and can be used to satisfy memory access 
requests.

victim. 

A dirty cache line that must be written to memory before it can be 
replaced to free space for a cache line allocation.

Way. 

An array of line storage elements in an N-Way cache (see Figure 6-6 on 
page 6-18).

write back.

A cache write policy, also known as copyback. The write data is written 
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to the source memory. The modified cache 
line is not written to the source memory when it is replaced.
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Memory Architecture
The ADSP-BF535 processor has a unified 4GB address range that spans a 
combination of on-chip and off-chip memory and memory-mapped I/O 
resources. Of this range, 285 MB of address space are dedicated to inter-
nal, on-chip resources. The ADSP-BF535 processor populates portions of 
this internal memory space with:

• A set of L1 and L2 Static Random Access Memories (SRAM)

• A set of memory-mapped registers (MMRs) and 

• A boot Read Only Memory (ROM) 

A portion of the internal L1 SRAM can also be configured to run as cache. 
The ADSP-BF535 processor also provides support for an external memory 
space that includes PCI space, asynchronous memory space, and synchro-
nous DRAM (SDRAM) space. See “PCI Bus Interface” on page 13-1 and 
“External Bus Interface Unit” on page 18-1, for a detailed discussion of 
each of these memory regions and the controllers that support them.

The diagram in Figure 6-1 provides an overview of the ADSP-BF535 pro-
cessor system memory map. Note that the architecture does not define a 
separate I/O space. All resources are mapped through the flat 32-bit 
address space. The memory is byte addressable.

As shown in Figure 6-1, L1 instruction and data memories occupy 52 KB 
of internal memory space: 

• 16 KB of instruction SRAM/cache

• 32 KB of data SRAM/cache (two 16 KB banks) 

• 4 KB of data scratchpad SRAM



Memory Architecture

6-6 ADSP-BF535 Blackfin Processor Hardware Reference
 

An on-chip SRAM provides 256 KB of L2 memory space. For systems 
using some or all ADSP-BF535 processor L1 memory as cache, the 
on-chip L2 SRAM memory system can help provide deterministic, 
bounded memory access times.

The upper portion of internal memory space is allocated to the core and 
system MMRs of the ADSP-BF535 processor. Accesses to this area are 
allowed only when the processor is in Supervisor mode or Emulation 
mode (see “Operating Modes and States” on page 3-1).

Figure 6-1. ADSP-BF535 Processor Memory Map

PCI Configuration Space Port (4 byte)

PCI Configuration Registers (64 Kbyte)

Reserved

PCI I/O Space (64 Kbyte)

Reserved

PCI Memory Space (128 Mbyte)

Reserved

Async Memory Bank 3 (64 Mbyte)

Async Memory Bank 2 (64 Mbyte)

Async Memory Bank 1 (64 Mbyte)

Async Memory Bank 0 (64 Mbyte)

SDRAM Memory Bank 3
(16 MB - 128 MB)*

SDRAM Memory Bank 2
(16 MB - 128 MB)*

SDRAM Memory Bank 1
(16 MB - 128 MB)*

SDRAM Memory Bank 0
(16 MB - 128 MB)*

0xEEFF FFFC

0xEEFF FF00

0xEEFE FFFF

0xEEFE 0000

0xE7FF FFFF

0xE000 0000

0x2FFF FFFF

0x2C00 0000

0x2800 0000

0x2400 0000

0x2000 0000

0x1800 0000

0x1000 0000

0x0800 0000

0x0000 0000

0xEF00 0000

External Memory Map

Core Memory-Mapped Registers (2 Mbyte)

Reserved

Scratchpad SRAM (4 Kbyte)

Instruction SRAM (16 Kbyte)

System Memory-Mapped Registers (2 Mbyte)

Reserved

Reserved

Data Bank B SRAM (16 Kbyte)

Reserved

Data Bank A SRAM (16 Kbyte)

Reserved

L2 SRAM Memory (256 Kbyte)

Reserved

0xFFFF FFFF

0xFFE0 0000

0xFFB0 0000

0xFF90 4000

0xFF90 0000

0xFF80 4000

0xFF80 0000

0xF003 FFFF

0xF000 0000

0xEF00 0000

0xFFC0 0000

0xFFB0 1000

0xFFA0 4000

0xFFA0 0000

Internal Memory Map

* The addresses shown for the SDRAM banks reflect a fully populated SDRAM array with 512 Mbytes of memory. If any
bank contains less than 128 Mbytes of memory, it would only extend to the length of the real memory systems and the
end address would become the start address of the next bank. This would continue for all four banks, with any remaining
space between the end of Memory Bank 3 and the beginning of Async Memory Bank 0 at address 0x2000 0000 treated
as reserved address space.
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The lowest 1 KB of internal memory space is occupied by the boot ROM 
of the ADSP-BF535 processor. Depending on the booting option selected, 
the appropriate boot program is executed from this memory space when 
the ADSP-BF535 processor is reset (see “Booting Methods” on 
page 3-17).

Within the external memory map, the PCI address range consists of PCI 
memory, PCI I/O space and PCI configuration space. In addition, four 
banks are available for SDRAM. Each bank can vary in size from 16 MB 
to 128 MB. An additional four banks of asynchronous memory space are 
also available. Each of the asynchronous banks is 64 MB.

Figure 6-2 shows the overall memory architecture for the ADSP-BF535 
processor.
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Figure 6-2. ADSP-BF535 Memory Architecture
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Internal Memory
The ADSP-BF535 processor L1 memory system performance provides 
high bandwidth and low latency. Because SRAMs provide deterministic 
access time and very high throughput, DSP systems have traditionally 
achieved performance improvements by providing fast SRAM on chip. 
The ADSP-BF535 processor supports this memory architecture for appli-
cations that require direct control over access time.

The addition of instruction and data caches (SRAMs with cache control 
hardware) provides both high performance and a simple programming 
model. Caches eliminate the need to explicitly manage data movement 
into and out of the L1 memories. Code can be ported to or developed for 
the ADSP-BF535 processor quickly without requiring performance opti-
mization for the memory organization.

The ADSP-BF535 processor L1 memory provides:

• A modified Harvard architecture, allowing up to three core mem-
ory accesses per clock cycle (one 64-bit instruction fetch, and two 
32-bit data references)

• Simultaneous system DMA and core accesses 

• Fast SRAM access for critical processor algorithms and fast context 
switching

• Instruction and data cache options for microcontroller code, excel-
lent High-Level Language (HLL) support, and ease of 
programming cache control instructions, such as PREFETCH and 
FLUSH

• Memory protection



Memory Architecture

6-10 ADSP-BF535 Blackfin Processor Hardware Reference
 

Overview of L1 Instruction SRAM

The 16 KB L1 instruction SRAM consists of four 4 KB sub-banks. When 
configured as cache, the L1 Instruction Memory is 4-Way set associative. 
Consequently, instructions can be brought into four different sub-banks 
of cache, decreasing the frequency of cache line replacements and increas-
ing overall performance. Although the entire 16 KB L1 memory must be 
configured as an SRAM or a cache, individual sub-banks of L1 instruction 
cache can be locked down, allowing further control over the location of 
time critical code. The cache locking concept is explained further in 
“Instruction Cache Locking” on page 6-24. For more information about 
L1 instruction SRAM, see “L1 Instruction SRAM” on page 6-14.   

Overview of L1 Data SRAM

The ADSP-BF535 processor provides two 16 KB L1 data SRAM banks 
(Data Bank A and Data Bank B). Each 16 KB L1 data bank consists of 
four 4 KB sub-banks. This organization—like the L1 Instruction mem-
ory—provides an effective dual port capability that gives the system DMA 
controller and the core simultaneous access to the SRAMs, provided that 
collisions to the same sub-bank do not occur.

Each 16 KB L1 data bank can be configured to operate either as a cache or 
an SRAM. Consequently, the ADSP-BF535 processor can be configured 
to run in these configurations:

• 32 KB L1 data SRAM

• 32 KB L1 data cache

• 16 KB L1 data SRAM and 16 KB L1 data cache

Each L1 data bank is a 2-Way set associative structure. Even when one 
16KB L1 Data Memory bank is configured as SRAM, the other still func-
tions as a 2-Way cache rather than as a 16 KB direct mapped cache. This 
also provides two separate locations that can hold cached data, decreasing 
the rate of cache line replacements and increasing overall performance. 
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When both banks are configured as cache, they operate as two indepen-
dent, 16 KB, 2-Way set associative caches that can be independently 
mapped into the Blackfin address space. For more information about L1 
data SRAM, see “L1 Data SRAM” on page 6-38.

Overview of Scratchpad Data SRAM

The ADSP-BF535 processor provides a dedicated 4 KB bank of scratch-
pad data SRAM. The scratchpad is independent of the configuration of 
the other L1 memory banks and cannot be configured as cache. Typical 
applications use the scratchpad data memory where speed is critical. For 
example, the User and Supervisor stacks should be mapped to the scratch-
pad memory for the fastest context switching during interrupt handling.

 The L1 memories operate at the core clock frequency (CCLK).   

Overview of On-Chip L2 Memory

The on-chip Level 2 (L2) memory provides 256 KB of low latency, high 
bandwidth capacity. This memory system is referred to as on-chip L2, 
because it forms an on-chip memory hierarchy with L1 memory.   
On-chip L2 memory provides much more capacity than L1 memory, but 
the latency is higher. The on-chip L2 memory of the ADSP-BF535 pro-
cessor is SRAM and cannot be configured as cache.

For more information about on-chip L2 Memory, see “On-Chip Level 2 
(L2) Memory” on page 6-52.

 On-chip and off-chip L2 memories are capable of storing both 
instructions and data.
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Level 1 Memory
Figure 6-3 and Figure 6-4 show the Data Memory Control register 
(DMEM_CONTROL) and Instruction Memory Control register (IMEM_CONTROL), 
respectively. The bits in these registers can be used to configure L1 Data 
Memory and L1 Instruction Memory.

The sections after the figures describe the instruction and data memories 
in more detail—including SRAM and cache configurations for each type 
of L1 memory.

 L1 Instruction Memory can be used only to store instructions, and 
L1 Data Memory can be used only to store data.

Data Memory Control Register (DMEM_CONTROL)
The Data Memory Control register (DMEM_CONTROL), shown in Figure 6-3, 
contains control bits for the L1 Data Memory. The reset values of the 
ENDM and DMC bits indicate that the L1 Instruction Memory is enabled and 
configured as SRAM after reset. The ENDCPLB bit is used to enable/disable 
the sixteen Cacheability Protection Lookaside Buffers (CPLBs) used for 
data (see “L1 Data Cache” on page 6-40).

Instruction Memory Control Register 
(IMEM_CONTROL)

The Instruction Memory Control register (IMEM_CONTROL), shown in 
Figure 6-4, contains control bits for the L1 Instruction Memory. The 
reset values of the ENIM and IMC bits indicate that the L1 Instruction Mem-
ory is enabled and configured as SRAM after reset. The ENICPLB bit is used 
to enable/disable the sixteen CPLBs used for instructions (see “L1 Instruc-
tion Cache” on page 6-17).
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Figure 6-3. L1 Data Memory Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X XX 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X

Data Memory Control Register (DMEM_CONTROL)

Reset = Undefined

ENDCPLB (Enable DCPLB)

ENDM (Enable Data Memory)
0 - Disable L1 Data Memory
1 - Enable L1 Data Memory

0 - Disable DCPLB. Flush all
dirty cache lines before
disabling

1 - Enable DCPLB. CPLBs
are disabled during reset.
The reset service routine
must enable CPLBs after
adding entries for the
exception and NMI
service routines.

00 - Both data banks are
SRAM
01 - Reserved
10 - Data Bank A is cache,

Data Bank B is SRAM
11 - Both data banks are

cache

DMC[1:0] (L1 Data Memory 
Configure) 

DCBS (L1 Data Cache 
Bank Select) 

This bit has no effect except 
when the DMC bits are b#11.

Determines whether Address 
bit A[14] or A[23] is used to 
select the L1 data cache bank.
0 - If Bit 14 of address is 1,

select L1 Data Memory 
Data Bank B; if Bit 14 of
address is 0, select L1 Data
Memory Data Bank A

1 - If Bit 23 of address is 1,
select L1 Data Memory
Data Bank B; if Bit 23 of
address is 0, select L1 Data
Memory Data Bank A

See “Example of Mapping 
Cacheable Address Space into 
Data Banks” on page 6-41.

0xFFE0 0004
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L1 Instruction Memory
Control bits in the IMEM_CONTROL register can be used to organize all four 
sub-banks of the L1 Instruction Memory as:

• A simple SRAM

• A 4-Way, set associative instruction cache

• A cache with as many as four locked Ways

L1 Instruction SRAM

L1 Instruction Memory can be configured as a 16 KB SRAM. 

Figure 6-4. L1 Instruction Memory Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1X X X X X X X X X 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

 Instruction Memory Control Register (IMEM_CONTROL)

Reset = Undefined

ENICPLB

ENIMILOC[3:0]
(Icache Lock-by-Way)
0 - Unlock
1 - Lock
For details, see “Instruction 
Cache Locking” on page 6-24.

L1 Instruction Memory Configure (IMC)
0 - SRAM
1 - Icache

0 - Disable L1 instruction    
memory

1 - Enable L1 instruction 
memory

0 - Disable ICPLB
1 - Enable ICPLB. CPLBs

are disabled during reset.
The reset service routine
must enable CPLBs after
adding entries for the
exception and NMI 
service routines.

0xFFE0 1004
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The ADSP-BF535 core reads the 16 KB instruction memory through the 
64-bit wide instruction fetch bus. All addresses from this bus are 64-bit 
aligned. Each instruction fetch can return any combination of 16-, 32- or 
64-bit instructions (for example, four 16-bit instructions, two 16-bit 
instructions and one 32-bit instruction, or one 64-bit instruction).   

The DAGs, which are described in Chapter 5, cannot access L1 Instruc-
tion Memory directly. If instruction space must be accessed as data, L2 
memory must be used, because it serves as a unified space for both instruc-
tions and data. A DAG reference to instruction memory SRAM space 
generates an exception (see “Exceptions” on page 4-38).

Write access to the L1 instruction SRAM memory must be made through 
the 64-bit wide system DMA port. Because the SRAM is implemented as 
four single ported sub-banks, the instruction memory is effectively dual 
ported. Provided that system and core accesses do not collide on the same 
sub-bank, effective dual porting of the instruction memory is achieved. If 
both system and core attempt to access the same bank, the system DMA 
controller has priority over the core instruction fetch.

Alternatively, both the IMC and ENIM bits in the IMEM_CONTROL register can 
disable these sub-banks entirely. The configuration state in the control 
register can be modified only while in Supervisor mode or Emulation 
mode.

 Before changing the configuration state, be sure to flush the cache 
or move all modified data from the SRAM, if so configured.
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Table 6-1 lists the memory start locations of the L1 Instruction Memory 
sub-banks.

Figure 6-5 describes the bank architecture of the L1 Instruction Memory.

Table 6-1. L1 Instruction Memory Sub-Banks

Memory Sub-Bank Memory Start 
Location

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

Figure 6-5. L1 Instruction Memory Bank Architecture

4 KB SUB-BANK 4 KB SUB-BANK

4 KB SUB-BANK 4 KB SUB-BANK

INSTRUCTION

FILL

DMA
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L1 Instruction Cache
The L1 Instruction Memory may also be configured as a flexible, 4-Way 
set associative instruction cache. To improve the average access latency for 
critical code sections, each Way of the cache can be locked independently. 
When the memory is configured as cache, it cannot be accessed directly.

When cache is enabled, memory pages must be defined with Cacheability 
Protection Lookaside Buffers (CPLBs). When CPLBs are enabled, any 
memory location that is accessed must have an associated page definition 
available, or an exception will be generated. CPLBs are described in 
“Memory Protection and Properties” on page 6-56.

Figure 6-6 shows the overall Blackfin processor instruction cache 
organization.

Cache Lines

As shown in Figure 6-6, the cache consists of a collection of cache lines. 
Each cache line is made up of a tag component and a data component:

• The tag component incorporates a 20-bit address tag, least recently 
used (LRU) bits, and a Valid bit.

• The data component is made up of four 64-bit words of instruction 
data. 

The tag and data components of cache lines are stored in the tag and data 
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the 
physical address. Bits 12 and 13 of the physical address are not part of the 
address tag. Instead, these bits are used to identify the 4 KB memory 
sub-bank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which 
cache line should be replaced if a cache miss occurs. 
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Figure 6-6. Blackfin Instruction Cache Organization
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The Valid bit indicates the state of a cache line. A cache line is always 
valid or invalid:

• Invalid cache lines have their Valid bit cleared, indicating the line 
will be ignored during an address tag compare operation. 

• Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source 
memory.

The tag and data components of a cache line are illustrated in Figure 6-7.

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from 
the core matches a valid entry in the cache. Specifically, a cache hit is 
determined by comparing the upper 18 bits and bits 11 and 10 of the 
instruction fetch address to the address tags of valid lines currently stored 
in a cache set. The cache set is selected, using bits 9 through 5 of the 
instruction fetch address. If the address tag compare operation results in a 
match, a cache hit occurs. If the address tag compare operation does not 
result in a match, a cache miss occurs.

Figure 6-7. Cache Line – Tag and Data Portions 

             TAG                                                            LRU              V

TAG  — 20-BIT ADDRESS TAG
LRU  — LRU STATE
V       — VALID BIT

WD 3 WD 2 WD 1 WD 0

WD       — 64-BIT DATA WORD
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 Note that only valid cache lines (cache lines with their Valid bit 
set) are included in the address tag compare operation. For cache 
hits to occur:

• The instruction memory unit must be enabled and configured as 
cache by setting bit 0 and bit 2 of the IMEM_CONTROL register. 

• The CPLB must be enabled, and the page corresponding to the 
instruction fetch address must be mapped as cacheable.

When a cache hit occurs, the target 64-bit instruction word is first sent to 
the Instruction Alignment Unit where it is stored in one of two 64-bit 
instruction buffers.

When a cache miss occurs, the instruction memory unit generates a cache 
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address 
of the target instruction word. When a cache miss occurs, the core halts 
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The 
operation starts when the instruction memory unit requests a line-read 
data transfer (a burst of four 64-bit words of data) on its external 
read-data port. The address for the read transfer is the address of the target 
instruction word. When responding to a line-read request from the 
instruction memory unit, the L2 memory returns the target instruction 
word first. After it has returned the target instruction word, the next three 
words are fetched in sequential address order. This fetch will wrap around 
if necessary, as shown in Table 6-2.
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Line Fill Buffer

As the new cache line is retrieved from L2 memory, each 64-bit word is 
buffered in a four-entry line fill buffer before it is written to a 4 KB mem-
ory bank within L1 memory. The line fill buffer allows the core to access 
the data from the new cache line as the line is being retrieved from exter-
nal memory, rather than having to wait until the line has been written into 
the cache.

The line fill buffer organization is shown in Figure 6-8.

During a line fill operation, the line fill buffer’s address tag contains the 
upper 18 bits plus bits 11 and 10 of the instruction fetch address. The 
contents of the Way field identify the cache Way selected for replacement 
(see Table 6-3). Both fields are loaded at the end of a tag-address compare 
operation that results in a cache miss.

Table 6-2. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

Figure 6-8. Line Fill Buffer Organization

ADDRESS TAG         WAY          WORD 0      V      WORD 1      V      WORD 2      V      WORD 3      V         

VALID BITS
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Non-Cacheable Accesses

The line fill buffer is also used to support non-cacheable accesses. A 
non-cacheable access consists of a single 64-bit word data transfer on the 
instruction memory unit’s external read port. Non-cacheable accesses 
include: 

• External memory accesses performed while the instruction memory 
unit is disabled 

• External memory accesses performed while the instruction memory 
unit is enabled and configured as SRAM

• Accesses to non-cacheable pages 

A page is considered non-cacheable if the CPLB_L1_CHBL bit of the associ-
ated CPLB descriptor for the matching address is cleared.

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through 
5 of the instruction fetch address are used as the index to select the cache 
set for the tag-address compare operation. If the tag-address compare 
operation results in a cache miss, the Valid bits for the selected set are 
examined by a cache line replacement unit to determine the entry to use 
for the new cache line, that is, whether to use Way0, Way1, Way2, or 
Way3 (see the cache organization in Figure 6-6 on page 6-18).

Table 6-3. Encoded Cache Ways

Line-Buffer Way [1:0] Cache Way

00 Way 0

01 Way 1

10 Way 2

11 Way 3
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The cache line replacement unit first checks for invalid entries (that is, 
entries having its Valid bit cleared). If only a single invalid entry is found, 
that entry is selected for the new cache line. If multiple invalid entries are 
found, the replacement entry for the new cache line is selected based on 
this priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for 
the new cache line. 

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is 
selected for the new cache line. 

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is 
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an 
LRU algorithm.

 The coherency of instruction cache must be explicitly managed. To 
accomplish this and ensure that the instruction cache fetches the 
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.
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Instruction Cache Management
The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core 
MMRs, it is possible to initialize the instruction tag and data arrays 
indirectly and provide a mechanism for instruction cache test, initializa-
tion, and debug (See the Instruction Test Command Register in 
Figure 6-9 on page 6-27 and Data Test Command Register in Figure 6-15 
on page 6-49.)

Instruction Cache Locking

The instruction cache has four independent lock bits (ILOC[3:0]) that 
control each of the four Ways of the instruction cache. When the cache is 
enabled, each sub-bank of L1 Instruction Memory is a Way. Setting the 
lock bit for a specific Way prevents state transitions for all the lines in that 
Way; that is, lines cannot change state from valid to invalid, or vice versa. 
Thus, setting the lock bit for a Way effectively prevents the Way from par-
ticipating in the replacement policy. 

An example sequence is provided below to demonstrate how to lock down 
Way0:

• If the code of interest may already reside in the instruction cache, 
invalidate the entire cache first (for an example, see “Instruction 
Cache Invalidation” on page 6-25).

• Disable interrupts, if needed, to prevent Interrupt Service Routines 
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other Ways of the cache by setting ILOC[3:1]. 
Only Way0 of the instruction cache can now be replaced by new 
code.
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• Execute the code of interest. Any cacheable exceptions, such as exit 
code, traversed by this code execution are also locked into the 
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1], and set ILOC[0]. 
The critical code (and the instructions which set ILOC[0]), are now 
locked into Way0.

• Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the 
cache is prevented.

Instruction Cache Invalidation

The IFLUSH instruction can explicitly invalidate cache lines based on their 
tag addresses. The target address of the instruction is generated from the 
P-registers. Because the instruction cache never contains modified (dirty) 
data, the cache line is simply invalidated. 

In the following example, the P2 register contains the address of a valid 
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction. 

Example of ICACHE instruction:
iflush [ p2 ] ;   /* Invalidate cache line containing address 

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in 
the ADSP-BF535 processor memory map, it is impractical to use this 
instruction to invalidate an entire bank of cache. A second, faster tech-
nique can be used to invalidate an entire cache bank directly. This second 
technique directly invalidates Valid bits, which are in a random state when 
the ADSP-BF535 processor comes out of reset; it sets the Valid bit of each 
cache line to the invalid state. To implement this technique, additional 
MMRs are available to allow arbitrary read/write of all cache entries 
directly. 
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Instruction Test Registers

The Instruction Test registers allow arbitrary read/write of all L1 cache 
entries directly. They make it possible to initialize the instruction tag and 
data arrays and provide a mechanism for instruction cache test, initializa-
tion, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used, 
the L1 cache data or tag arrays are accessed and data is transferred through 
the Instruction Test Data registers (ITEST_DATA[1:0]). The ITEST_DATAx 
registers contain either the 64-bit data that the access is to write to or the 
64-bit data that the access is to read from. The lower 32-bits are stored in 
the ITEST_DATA[0] register, and the upper 32-bits are stored in the 
ITEST_DATA[1] register. When the tag arrays are accessed, ITEST_DATA[0] 
is used. Graphic representations of the ITEST registers begin with 
Figure 6-9 on page 6-27.

 Before the cache entries are accessed through the ITEST registers, 
L1 Instruction Memory should be enabled by setting the ENIM and 
IMS bits and clearing the ENICPLB bit in the Instruction Memory 
Control register (IMEM_CONTROL). 

These figures describe the ITEST registers:

• Instruction Test Command Register in Figure 6-9 on page 6-27

• Instruction Test Data 1 Register in Figure 6-10 on page 6-28

• Instruction Test Data 0 Register in Figure 6-11 on page 6-29 

Access to these registers is possible only in Supervisor mode or Emulation 
mode. When writing to ITEST registers, always write to the ITEST_DATAx 
registers first, then the ITEST_COMMAND register. When reading from ITEST 
registers, write the ITEST_COMMAND register first, then read the ITEST_DATA 
registers.
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Instruction Test Command Register 
(ITEST_COMMAND)

When the Instruction Test Command register (ITEST_COMMAND)s, shown 
in Figure 6-9, is written to, the L1 cache data or tag arrays are accessed, 
and the data is transferred through the Instruction Test Data registers 
(ITEST_DATA[1:0]).

Figure 6-9. Instruction Test Command Register

XXX

XXX X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X

X XX X X X XX X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XXX

Instruction Test Command Register (ITEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3

Sub-bank Access[1:0]

Reset = Undefined

Read/Write Access

Access Way[1:0]

00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3

0 - Read access
1 - Write access

Array Access
0 - Access tag array
1 - Access data array

Double-Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit 
line

Set Index[4:0]
Selects one of 32 sets

0xFFE0 1300



Memory Architecture

6-28 ADSP-BF535 Blackfin Processor Hardware Reference
 

Instruction Test Data 1 Register (ITEST_DATA1)
Instruction Test Data registers (ITEST_DATA[1:0]), shown in Figure 6-10, 
are used to access L1 cache data arrays. They contain either the 64-bit data 
that the access is to write to or the 64-bit data that the access is to read 
from. The Instruction Test Data 1 register (ITEST_DATA1) stores the upper 
32 bits.

Figure 6-10. Instruction Test Data 1 Register

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the upper 32 bits of 
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-17.

0XFFE0 1404
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Instruction Test Data 0 Register (ITEST_DATA0)
The Instruction Test Data 0 register (ITEST_DATA0), shown in 
Figure 6-11, stores the lower 32 bits of the 64-bit data to be written to or 
read from by the access. The ITEST_DATA0 register is also used to access the 
tag arrays and contains the Valid and Dirty bits, which indicate the state 
of the cache line.

Figure 6-11. Instruction Test Data 0 Register

XX X X X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0]

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag[1:0]
Dirty

0 - Cache line 
unmodified since it
was copied from
source memory

1 - Cache line modified
since it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of 
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-17.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of 
the physical address. See “Cache Lines” on page 6-17.

Physical address

Physical address

Physical address

Reset = Undefined0XFFE0 1400
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Example Code for Direct Invalidation
The following four listings show how to invalidate instruction cache 
(Listing 6-1), how to invalidate data cache (Listing 6-2), how to invalidate 
Superbank A (Listing 6-3), and how to invalidate Superbank B 
(Listing 6-4).

Listing 6-1. Invalidating Instruction Cache Lines Directly

/* Setting the icache to cache for preloading */

P0.L = (IMEM_CONTROL & 0xFFFF);

P0.H = (IMEM_CONTROL >> 16);

R0.L = 0X5;   /* Enable instruction memory as cache. */

R0.H = 0X0;

[P0] = R0;

P1.L = (DMEM_CONTROL & 0xFFFF);

P1.H = (DMEM_CONTROL >> 16);

R0.L = 0XD;   /* Enable data bank A and B as caches. */
R0.H = 0X0;

[P1] = R0;

csync;

/* Preloading the Instruction Cache */

/* Registers used: */
/* r0 - contains the command value. written to ITEST COMMAND */

/* r1 - value written to ITEST DATA0 and ITEST DATA1 */

/*    * DATA write */

/*    - contains the instruction to be written */

/* r2 - contains intermediate values during computation */
/* r3 - contains mask for the double word index (bit[3:4]=00) */

/* r4 - contains mask for the set index (bit[5:9]=00000) */

/* r5 - contains mask for the ways (bit[26:27]=00) */

/* r6 - value written to ITEST DATA0 */

/*    * TAG write */

/*    - contains the original address */
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/*    - used to determine sub-banks */

/* i0 - pointer to ITEST_COMMAND */

/* i1 - pointer to ITEST_DATA0 */

/* i2 - pointer to ITEST_DATA1 */

/* i3 - pointer to relocated (instruction) data */

/* p4 - loop counter to perform the writes to DATA and TAGs */

/* m0 - save command for sub-bank 0 */

/* m1 - save command for sub-bank 1 */

/* m2 - save command for sub-bank 2 */

/* m3 - save command for sub-bank 3 */

/* */

R7.L = 0;

R7.H = 0;

L0 = R7;

L1 = R7;

L2 = R7;

L3 = R7;

M0 = R7;

M1 = R7;

M2 = R7;

M3 = R7;

I0.L = (ITEST_COMMAND & 0xFFFF);

I0.H = (ITEST_COMMAND >> 16);

I1.L = (ITEST_DATA0 & 0xFFFF);

I1.H = (ITEST_DATA0 >> 16);

/* Writing zero to the ITEST_DATA0 */

/* Whenever we write to Cache TAG/ARRAY, the value in the 

ITEST_DATA0 gets written to the caches. The ITEST_DATA0/1 should 

be written to before the write to ITEST_COMMAND register */
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R0.L = 0;

R0.H = 0;

[I1] = R0;

/* The cache lines come out of reset in a random state. The valid 

bits of each line must be set to zero at initialization. */

/* Explanation: The invalidation routine is as follows: */

/*  Cache setup: */

/*  I-CACHE: */

/*    4 sub-banks, */

/*    each sub-bank has 4 ways, */

/*    each way has 32 lines, */

/*    each line (or set) has 4 double words. */

/*  Routine: */

/*  - Take way 0, and way 1 */

/*  - Inner loop: */

/*      Invalidate all sets (cache lines) in sub- bank for way 0 

and way 1 */
/*      Instruction Cache has 32 sets (cache lines), hence loop 

count is 32 */
/*  - Outer loop: */

/*      Increment sub-banks */

/*      repeat inner loop */

/*      do it 4 times because of 4 sub-banks. */

/*  - Repeat again for way 2, way 3 */

R2 = 32;   /* Need to increment the set index every loop (Should 

be 64 for D-cache) */

R3.L = 0;   /* sub-bank increment, at the end of inner loop */

R3.H = 1;

P4 = 4;   /* Number of sub-bank - also outer loop counter (Should 

be 2 for D-cache) */

P3 = R2;   /* Inner loop counter (Number of set index) */
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R4 = 2;   /* Initial value for ITEST_COMMAND for way 0 - should be 

WRITE to TAG */ 
R5.H = 0x400;   /* Initial value for ITEST_COMMAND for way 1 - 

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */ 
lsetup(LBL0A,LBL3A) lc1 = p4;

LBL0A: r0 = r4;

r1 = r5;

lsetup(LBL1A,LBL2A) lc0 = p3;

LBL1A:   r0 = r0+|+r2 || [i0]=r0;

LBL2A:   r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3A: r5 = r5+r3;

R4.H = 0x800;   /* Initial value for ITEST_COMMAND for way 2 - 

should be WRITE to TAG */

R4.L = 2;                

R5.H = 0xc00;   /* Initial value for ITEST_COMMAND for way 3 - 

should be WRITE to TAG */

R5.L = 2;

/* Way 2,3 invalidation */

lsetup(LBL0B,LBL3B) lc1 = p4;

LBL0B: r0 = r4;

r1 = r5;

lsetup(LBL1B,LBL2B) lc0 = p3;

LBL1B:   r0 = r0+|+r2 || [i0]=r0;

LBL2B:   r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3B: r5 = r5+r3;



Memory Architecture

6-34 ADSP-BF535 Blackfin Processor Hardware Reference
 

Listing 6-2. Invalidating Data Cache

I0.L = (DTEST_COMMAND & 0xFFFF);

I0.H = (DTEST_COMMAND >> 16);

I1.L = (DTEST_DATA0 & 0xFFFF);

I1.H = (DTEST_DATA0 >> 16);

R0.L = 0;

R0.H = 0;

[I1] = R0;

/* Repeat for data cache */

/* Explanation: The invalidation routine is as follows: */

/*  Cache construction: */

/*  D-CACHE: */

/*    2 data banks, */

/*    each data bank has 4 sub-banks, */ 

/*    each sub-bank has 2 ways, */ 

/*    each way has 64 lines, */

/*    each line (or set) has 4 double words. */

/*  Routine: */

/*  - Take way 0, and way1 */

/*  - Inner loop: */

/*      Invalidate all sets (cache lines) in sub-bank for way 0 

and way1 */

/*      Instruction Cache has 64 sets (cache lines), hence loop 

count is 64 */ 
/*  - Outer loop: */ 
/*      Increment sub-banks */

/*      repeat inner loop */

/*      do it 4 times because of 4 sub-banks. */

/*  - Repeat again for superbank B */
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R2 = 64;   /* Need to increment the set index every loop (Should 

be 64 for D-cache) */ 

R3.L = 0;   /* sub-bank increment, at the end of inner loop */

R3.H = 1;

P4 = 4;   /* Number of sub-bank - also outer loop counter (Should 

be 2 for D-cache) */

P3 = R2;   /* Inner loop counter (Number of set index) */

Listing 6-3. Invalidating Bank A

R4.H = 0x00;   /* Initial value for DTEST_COMMAND for way 0 - 

should be WRITE to TAG */ 
R4.L = 2;

R5.H = 0x400;   /* Initial value for DTEST_COMMAND for way 1 - 

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */

lsetup(LBL0C,LBL3C) lc1 = p4;

LBL0C: r0 = r4;

r1 = r5;

lsetup(LBL1C,LBL2C) lc0 = p3;

LBL1C:   r0 = r0+|+r2 || [i0]=r0;

LBL2C:   r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3C: r5 = r5+r3;
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Listing 6-4. Invalidating Bank B

R4.H = 0x080;   /* Initial value for DTEST_COMMAND for way 0 - 

should be WRITE to TAG */

R4.L = 2;

R5.H = 0x480;   /* Initial value for DTEST_COMMAND for way 1 - 

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */

lsetup(LBL0D,LBL3D) lc1 = p4;

LBL0D: r0 = r4;

r1 = r5;

lsetup(LBL1D,LBL2D) lc0 = p3;

LBL1D:   r0 = r0 +|+ r2 || [i0]=r0;

LBL2D:   r1 = r1 +|+ r2 || [i0]=r1;

r4 = r4+r3;

LBL3D: r5 = r5+r3;

/* Configure L1 SRAM data banks as SRAM */

/* - Default to DCBS==0, so LOWBIT (bit14) selects bank A or B 

(because that splits L2 across A and B) */

/* - set ENDM==1, so L1 Data Memory is enabled. */

P0.L = (DMEM_CONTROL & 0xFFFF);

P0.H = (DMEM_CONTROL >> 16);

R0 = (ENDM);

[P0] = R0;

/* Configure L1 SRAM code bank as SRAM */

/* - Default to ILOC==0000 */

/* - Set ENIM==1, so Code memory is enabled. */

P0.L = (IMEM_CONTROL & 0xFFFF);

P0.H = (IMEM_CONTROL >> 16);

R0 = (ENIM);
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[P0] = R0;

/* L1CACHE */

L1 Data Memory
In addition to the 4 KB scratchpad memory, the ADSP-BF535 processor 
has two 16 KB, L1 data SRAM banks. Each 16 KB, L1 data bank consists 
of four 4 KB sub-banks.

Each 16 KB L1 Data bank can be configured to operate as either a cache 
or an SRAM. As shown in Table 6-4, the data memory banks of the 
ADSP-BF535 processor can be configured several ways. 

The scratchpad SRAM bank is always enabled. However, DMA access is 
not available to the scratchpad memory. 

The interaction of the Data Memory Configure bits (DMC[1:0]) and the 
Enable Data Memory (ENDM) control bit in the DMEM_CONTROL register 
determines how the data banks are configured (see Table 6-5 and 
Figure 6-3 on page 6-13). The ENDM bit is used to enable or disable both 
L1 data banks.

 If ENDM is cleared, L1 memory is disabled, and all data memory ref-
erences generate exceptions.

Table 6-4. Primary Data Memory Banks

Data Memory 
Bank

Description

Data Scratchpad 
SRAM

A local memory space particularly suited for Supervisor/User stack allocation.

Data Bank A Can be configured as SRAM, data cache, or disabled. If Data Bank A is 
configured as SRAM, the system DMA can also access it directly. 

Data Bank B Can be configured as SRAM, data cache, or disabled. If Data Bank B is 
configured as SRAM, the system DMA can also access it directly.
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 Critical processor applications can take advantage of this memory 
organization so that one data bank can be configured as data cache 
to support other software functions.

L1 Data SRAM

Each of the 16 KB SRAM regions implemented for Data Bank A and Data 
Bank B is further divided into four sub-banks. Like the organization of L1 
Instruction Memory, this organization provides an effective dual port 
capability that gives the system DMA simultaneous access to the 
SRAMs—provided that collisions to the same sub-bank do not occur. 
Each of these regions is single ported, and if address collision is detected, 
access is granted first to system DMA, then to the DAGs.

The division of each data bank into four sub-banks allows code optimiza-
tion that permits two simultaneous, parallel DAG references to the same 
data bank. The division into sub-banks and subsequent code optimization 
also permit system DMA access—for example, to preload or postunload 
data buffers. For more information, see“Data Address Generators” on 
page 5-1.

Table 6-5. Data Memory Configure Bits

ENDM DMC[1:0] Configuration

0 xx Data Bank A is disabled; Data Bank B is disabled

1 00 Data Bank A is SRAM; Data Bank B is SRAM. This is the 
default state at reset.

1 01 Reserved

1 10 Data Bank A is cache; Data Bank B is SRAM

1 11 Data Bank A is cache; Data Bank B is cache
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Table 6-6 shows how the sub-bank organization is mapped into memory.

Figure 6-12 describes the L1 Data Memory architecture.

Table 6-6. L1 Data Memory SRAM Sub-Bank Start Addresses

Memory 
Sub-Bank

Data Bank A Data Bank B

0 0xFF80 0000 0xFF90 0000

1 0xFF80 1000 0xFF90 1000

2 0xFF80 2000 0xFF90 2000

3 0xFF80 3000 0xFF90 3000

Figure 6-12. L1 Data Memory Architecture

16 KB
DATA BANK A

16 KB
DATA BANK B

4 KB
SRAM

FILL A

FILL B

DMA A

DMA B

DATA 0

DATA 1
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Figure 6-13 describes the L1 data bank architecture.

L1 Data Cache

The L1 Data Memory architecture provides two 16 KB banks that can be 
configured as cache. In general, L1 data cache operates like the L1 Instruc-
tion cache described in the previous section. In addition to operating as a 
2-Way set associative cache, however, L1 data cache has some unique fea-
tures that are described below.

The DCPLB descriptors control data cacheability. Through these descrip-
tors, the data cache can contain data from any address region that is 
defined as cacheable and has a valid CPLB entry. The data cache cannot, 
however, contain data from the MMR address space, which is always 
cache inhibited. Software must maintain the CPLBs in a manner consis-
tent with the hardware configuration. 

Figure 6-13. L1 Data Bank Architecture

DMA

4 KB SUB-BANK 4 KB SUB-BANK

4 KB SUB-BANK4 KB SUB-BANK

DATA 1

DATA 0

FILL
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 If one or more L1 data banks are configured as cache, CPLB 
descriptors must be present and must describe these things as cache 
inhibited:

• The scratchpad SRAM

• Any of the data or instruction banks that are enabled as SRAM

• PCI space

• Peripherals that cannot support burst accesses and that are mapped 
into memory outside the system MMR space 

If only Data Bank A is configured as cache, then all cacheable memory ref-
erences access that bank. If both data banks are configured as cache, the 
bank-select mechanism is programmable. The Data Cache Bank Select 
(DCBS) bit in the DMEM_CONTROL register selects either the large bank size or 
the small bank size (see Table 6-7).

Example of Mapping Cacheable Address Space into Data Banks

An example of how the cacheable address space maps into the two banks 
follows.

When both banks are configured as cache, they operate as two indepen-
dent, 16 KB, 2-Way set associative caches that can be independently 
mapped into the Blackfin address space.

Table 6-7. Data Cache Bank-Select Address (DBCS) Bit

DCBS Description

0 Use Address bit A[14] to select Data Cache Bank A or B 

1 Use Address bit A[23] to select Data Cache Bank A or B
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If both data banks are configured as cache, DCBS designates Address bit 
A[14] or A[23] as the cache selector. Address bit A[14] or A[23] selects the 
cache implemented by Data Bank A or the cache implemented by Data 
Bank B.

• If DCBS=0, then A[14] is part of the address index, and all addresses 
in which A[14]=0 use Data Bank A. All addresses in which A[14]=1 
use Data Bank B.

• In this case, A[23] is treated as just another bit in the address that is 
stored with the tag in the cache and compared for Hit/Miss pro-
cessing by the cache.

• If DCBS=1, then A[23] is part of the address index, and all addresses 
where A[23]=0 use Data Bank A. All addresses where A[23]=1 use 
Data Bank B.   

• In this case, A[14] is treated as just another bit in the address that is 
stored with the tag in the cache and compared for Hit/Miss pro-
cessing by the cache. 

The result of choosing DCBS=0 or DCBS=1 is:

• If DCBS=0, A[14] selects Data Bank A instead of Data Bank B.

• Alternating 16 KB pages of memory map into each of the two 
16 KB caches implemented by the two data banks. Consequently, 
any data in the first 16 KB of memory could be stored only in Data 
Bank A. Any data in the next address range (16 KB through 
32 KB)–1 could be stored only in Data Bank B. Any data in the 
next range (32 KB through 48 KB)–1 would be stored in Data 
Bank A. Alternate mapping would continue. 

• As a result, the cache operates as if it were a single, contiguous, 
2-Way set-associative 32 KB cache. Each Way is 16 KB long and 
all data elements having the same first 14 bits of address compete 
for two entries that may be used to store them.
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• If DCBS=1, A[23] selects Data Bank A instead of Data Bank B.

• With DCBS=1, the system functions more like two independent 
caches, each a 16 KB, 2-Way set associative cache. Each Bank 
serves an alternating set of 8 MB blocks of memory. For example, 
Data Bank A caches all data accesses for the first 8 MB of memory 
address range. That is, every 8 MB of range vies for the two line 
entries (rather than every 16 KB repeat). Likewise, Data Bank B 
caches data located above 8MB and below 16 MB. 

• For example, if the application is working from a data set that is 
1 MB long and located entirely in the first 8 MB of memory, it is 
effectively served by only half the cache, that is, by Data Bank A, 
which is a 16 KB, 2-Way set associative cache. In this instance, the 
application never derives any benefit from Data Bank B. 

 For most applications, it is best to operate with DCBS=0. When 
DCBS=1, on-chip L2 memory is cached only in Data Bank A. 

However, if the application is working from two data sets, located in two 
memory spaces at least 8 MB apart, closer control over how the cache 
maps to the data is possible. For example, if the program is doing a series 
of dual-MAC operations in which both DAGs are accessing data on every 
cycle, by placing DAG0’s data set in one block of memory and DAG1’s 
data set in the other, the system can ensure that:

• DAG0 gets its data from Data Bank A for all of its accesses and 

• DAG1 gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line 
transfer and achieves the maximum data bandwidth between the cache 
and the core.

Figure 6-14 shows an example of how mapping is performed when 
DCBS=1.
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 The DCBS selection can be changed dynamically; however, to ensure 
that no data is lost, first flush and invalidate the entire cache.

The ADSP-BF535 processor implements each data cache as a multibank 
organization of subcaches. Provided that the dual access DSP instructions 
address different subcaches and the cache line fill is not writing to the 
same bank, address collision detection does not halt the processor. If a col-
lision is detected, the access priority is:

• System DMA access

• Cache Line Fill

• DAGs

Figure 6-14. Data Cache Mapping When DCBS=1

DATA BANK B

DATA BANK A

WAY0 WAY1

WAY0 WAY1

8MB
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Data Cache Access

The cache controller tests the address from either DAG against the tag 
bits. If the logical address is present in L1 cache, a cache hit occurs, and 
the data is accessed in L1. If the logical address is not present, a cache miss 
occurs, and the memory transaction is passed to the next level of memory 
via the system interface. The line index and replacement policy for the 
cache controller determines the cache tag and data space that are allocated 
for the data coming back from L2 memory via the System Bus Interface 
Unit (SBIU). 

A data cache line is in one of three states: invalid, exclusive (valid and 
clean), and modified (valid and dirty). If valid data already occupies the 
allocated line space and the cache is configured for write-back storage, the 
controller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data 
write over the old line. 

• If the state of the line is modified (dirty), then the cache contains 
the only valid copy of the data. 

• If the line is dirty, the current contents of the cache are copied back 
to L2 memory before the new data is written to the cache.

The ADSP-BF535 processor provides victim buffers and line fill buffers. 
These buffers are used if a cache load miss generates a victim cache line 
that should be replaced. The line fill operation goes to the L2 memory via 
the SBIU before the victim copyback operation. The data cache performs 
the line fill request to the system as critical, or requested, word first and 
forwards that data to the waiting DAG as it updates the cache line. In 
other words, the cache performs critical word forwarding.
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The ADSP-BF535 processor data cache supports hit-under-a-store miss, 
and hit-under-a-prefetch miss. In other words, on a write-miss or execu-
tion of a PREFETCH instruction that misses the cache (and is to a cacheable 
region), the instruction pipeline does not stall on the miss. Furthermore, a 
subsequent load or store instruction can hit in the L1 cache while the 
line-fill completes. 

Interrupts of sufficient priority (relative to the current context) cancel a 
stalled load instruction. Consequently, if the load operation misses the L1 
Data Memory cache and generates a high latency line fill operation on the 
system interface, it is possible to interrupt the core, causing it to begin 
processing a different context. The system access to fill the cache line is 
not cancelled, and the data cache is updated with the new data before any 
further cache miss operations to the respective data bank are serviced. For 
more information see “Exceptions” on page 4-38.

Cache Write Method

Cache write memory operations can be implemented by using either a 
write through method or a write back method:

• For each store operation, write through caches initiate a write to L2 
memory immediately upon the write to cache.

• If the cache line is replaced or explicitly flushed by software, the 
contents of the cache line are invalidated rather than written back 
to L2 memory.

• A write back cache does not write to L2 memory until the line is 
replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on 
each data bank. In addition, a four-entry write buffer in the L1 Data 
Memory accepts all stores with cache inhibited or store through protec-
tion. An SSYNC instruction flushes the write buffer.
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Data Cache Control Instructions

The ADSP-BF535 processor defines three data cache control instructions 
that are accessible in User and Supervisor modes. The instructions are 
PREFETCH, FLUSH, and FLUSHINV:

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the 
L1 cache.   If the prefetch hits in the cache, generates an exception, 
or addresses a cache inhibited region, PREFETCH functions like a 
NOP. 

• FLUSH (Data Cache Flush) causes the data cache to synchronize the 
specified cache line with L2 memory. If the cached data line is 
dirty, the instruction writes the line out and marks the line clean in 
the data cache. If the specified data cache line is already clean or 
does not exist, FLUSH functions like a NOP. 

• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data 
cache to perform the same function as the FLUSH instruction and 
then invalidate the specified line in the cache. If the line is in the 
cache and dirty, the cache line is written out to L2 memory. The 
Valid bit in the cache line is then cleared. If the line is not in the 
cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC 
instruction after the FLUSH instruction to ensure that the flush operation 
has completed. If ordering is desired, to ensure that previous stores have 
been pushed through all the queues, place an SSYNC instruction before the 
FLUSH.

Data Test Registers
Like L1 Instruction Memory, L1 Data Memory contains additional 
MMRs to allow arbitrary read/write of all cache entries directly. They 
make provide a mechanism for data cache test, initialization, and debug.
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When the Data Test Command register (DTEST_COMMAND) is written to, the 
L1 cache data or tag arrays are accessed and data is transferred through the 
Data Test Data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination 
for the 64-bit data read. The lower 32-bits are stored in the 
DTEST_DATA[0] and the upper 32-bits are stored in the DTEST_DATA[1] reg-
ister. When the tag arrays are being accessed, then DTEST_DATA[0] is used.

 Before accessing the cache entries through the DTEST registers, 
enable the L1 Data memories by setting the ENDM and DMC[1:0] bits 
and clearing the ENDCPLB bit in DMEM_CONTROL register.

These figures describe the DTEST registers:

• Data Test Command Register in Figure 6-15 on page 6-49

• Data Test Data 1 Register in Figure 6-16 on page 6-50

• Data Test Data 0 Register in Figure 6-17 on page 6-51

Access to these registers is possible only in Supervisor or Emulation mode. 
When writing to DTEST registers, always write to the DTEST_DATA registers 
first, then the DTEST_COMMAND register. When reading from DTEST registers, 
reverse the sequence. Always read the DTEST_COMMAND register first, then 
the DTEST_DATA registers.
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Data Test Command Register (DTEST_COMMAND)
When the Data Test Command register (DTEST_COMMAND), shown in 
Figure 6-15, is written to, the L1 cache data or tag arrays are accessed, and 
the data is transferred through the Data Test Data registers (DTEST 
DATA[1:0]).

Data Test Data 1 Register (DTEST_DATA1)
Data Test Data registers (DTEST_DATA[1:0]) contain the 64-bit data to be 
written, or they contain the destination for the 64-bit data read. The Data 
Test Data 1 register (DTEST_DATA1), shown in Figure 6-16, stores the 
upper 32 bits.

Figure 6-15. Data Test Command Register

XX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access sub-bank 0.
01 - Access sub-bank 1.
10 - Access sub-bank 2.
11 - Access sub-bank 3.

Sub-bank Access

Reset = Undefined

Read/Write Access

Access Way

0 - Access Way0.
1 - Access Way1.

Data Bank Access

0 - Access Data Bank A.
1 - Access Data Bank B.

0 - Read access
1 - Write access

Array Access
0 - Access tag array
1 - Access data array

Double-word Index
Selects one of four 64-bit
double words in a 256-bit line

Set Index
Selects one of 64 sets

0xFFE0 0300
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Data Test Data 0 Register (DTEST_DATA0)
The Data Test Data 0 register (DTEST_DATA0), Figure 6-17, stores the 
lower 32 bits of the 64-bit data to be written or of the destination for the 
64-bit data read.

The DTEST_DATA0 register is also used to access the tag arrays and contains 
the Valid and Dirty bits, which indicate the state of the cache line.

Figure 6-16. Data Test Data 1 Register

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404
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Figure 6-17. Data Test Data 0 Register

XX X X X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag[1:0]
Dirty
0 - Cache line unmodified

since it was copied
from source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits 
and bits 11 and 10 of the physical address. See “Cache Lines” on page 6-17.

Physical address

Physical address

Physical address

0xFFE0 0400
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On-Chip Level 2 (L2) Memory
Configured as SRAM, the on-chip Level 2 (L2) memory of the 
ADSP-BF535 processor provides 256 KB of low latency, high bandwidth 
storage capacity. For systems that use some or all ADSP-BF535 processor 
L1 memory as cache, the on-chip L2 SRAM memory system can help pro-
vide deterministic, bounded memory access times.

Simultaneous access to the multibanked, on-chip L2 memory architecture 
from the core processor and peripheral bus can occur in parallel, provided 
that they access different banks. A fixed-priority arbitration scheme 
resolves conflicts. The on-chip DMA controllers and the PCI controller 
share a dedicated 32-bit data path into the L2 memory system. This inter-
face operates at the SCLK frequency. Dedicated L2 access from the 
processor core is also supported.

The ADSP-BF535 processor has a dedicated, low latency, 64-bit data path 
into the L2 SRAM memory. At a core clock frequency of 300 MHz, the 
peak data transfer rate across this interface is 2.4 GB/second.

On-Chip L2 Bank Access
The on-chip L2 memory employs a multibank architecture like that of the 
L1 memory (see Figure 6-18). The ADSP-BF535 processor has 256 KB of 
SRAM organized as eight SRAM banks of 32 KB each. Figure 6-18 shows 
the size and starting location of each L2 bank.

Two L2 access ports, a processor core port and an I/O port, are provided 
to allow concurrent access to the L2 memory, provided that the two ports 
access different memory sub-banks. If simultaneous access to the same 
memory sub-bank is attempted, collision detection logic in the L2 pro-
vides arbitration. This is a fixed priority arbiter; the DMA/PCI port 
always has the highest priority, unless the core is granted access to the 
sub-bank for a burst transfer. In this case, the L2 finishes the burst transfer 
before the system bus is granted access.
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Latency
When cache is enabled, the bus between the core and L2 memory is fully 
pipelined for contiguous burst transfers. The cache line fill from on-chip 
memory behaves the same for instruction and data fetches. Operations 
that miss the cache trigger a cache line replacement. This replacement fills 
one 256-bit (32-byte) line with four 64-bit reads. Under this condition, 
the L1 cache line fills from the L2 SRAM in 7+1+1+1=10 cycles. In other 
words, after seven core cycles, the first 64-bit (8-byte) fill is available for 
the processor. Figure 6-19 shows an example of L2 latency with cache on.

Figure 6-18. L2 Memory Map

0xF000 0000

Memory Bank 0
(32 KByte)

Memory Bank 1
(32 KByte)

0xF002 0000

0xF002 8000
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0xF000 8000

0xF001 0000

0xF001 8000

0xF003 FFFF

0xF003 0000

0xF003 8000

Memory Bank 4
(32 KByte)

Memory Bank 5
(32 KByte)

Memory Bank 6
(32 KByte)

Memory Bank 7
(32 KByte)
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In this example, at the end of ten core cycles, 32 bytes of instructions or 
data have been brought into cache and are available to the sequencer. If all 
the instructions contain 16 bits, sixteen instructions are brought into 
cache at the end of ten cycles. In addition, the first instruction that is part 
of the cache-line fill executes on the eighth cycle; the second instruction 
executes on the ninth cycle, and the third instruction executes on the 
tenth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested 
instruction or data is not 32-byte aligned, the requested item is always 
loaded in the first read; each read is forwarded to the core as the line is 
filled. Sequential memory accesses miss the cache only when they reach 
the end of a cache line.

When on-chip L2 memory is configured as non-cacheable, instruction 
fetches and data fetches occur in 64-bit fills. In this case, each fill takes 
seven core cycles to complete. As shown in Figure 6-20, on-chip L2 

Figure 6-19. L2 Latency With Cache On
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memory is configured as non-cacheable. To illustrate the concept of L2 
latency with cache off, simple instructions are used that do not require 
additional external data fetches. In this case, consecutive instructions are 
issued on consecutive cycles if multiple instructions are brought into the 
core in a given fetch. Note also that two of the seven cycles are hidden by 
the Blackfin processor pipeline. This is because the sequencer fetches the 
next 64-bit fill before executing all available instructions obtained from 
the previous fill.

Off-Chip L2 Memory
The external memory space is shown in Figure 20-1 on page 20-5. Four of 
the memory regions are dedicated to SDRAM support. The size of each 
SDRAM bank is programmable. Each SDRAM bank can range in size 
from 16 MB to 128 MB. The start address of bank 0 is 0x0000 0000. The 
start addresses of banks 1, 2, and 3 follow contiguously from the previous 

Figure 6-20. L2 Latency With Cache Off
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bank. If all four SDRAM banks are not fully populated with 128 MB of 
SDRAM, the area from the end of bank 3 to address 0x2000 0000 is 
reserved.

Each of the next four banks contains 64 MB and is dedicated to support 
asynchronous memories. 

The next region is reserved off-chip memory space. References to this 
region do not generate external bus transactions. Writes have no effect on 
external memory values, and reads return undefined values. The EBIU 
generates an error response on the internal bus that generates a hardware 
exception for a core access or, optionally, generates an interrupt from PCI 
or a DMA channel, depending on where the access originated.

Because the PCI memory space is as large as the full memory address space 
of the ADSP-BF535 processor, a segmented, or windowed, approach must 
be employed, so that only a portion of one of the PCI address spaces is vis-
ible to the core at one time. 

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory 
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin ADSP-BF535 processor contains a page based Memory 
Management Unit (MMU). This mechanism provides control over cache-
ability of memory ranges, as well as management of protection attributes 
at a page level. The MMU provides great flexibility in allocating memory 
and I/O resources between tasks, with complete control over access rights 
and cache behavior.
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The MMU is implemented as two 16-entry Content Addressable Memory 
(CAM). Each entry is referred to as a Cacheability Protection Lookaside 
Buffer (CPLB) descriptor. When enabled, every valid entry in the MMU 
is examined on any fetch, load, or store operation to determine whether 
there is a match between the address being requested and the page 
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory 
transaction with no additional cycles added to the execution of the 
instruction.

Because the Level 1 memories are separated into instruction and data 
memories, the CPLB entries are also divided between instruction and data 
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these 
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by 
setting the appropriate bits in the Instruction Memory Control 
(IMEM_CONTROL) and Data Memory Control (DMEM_CONTROL) registers, 
respectively. These registers are shown in Figure 6-4 on page 6-14 and 
Figure 6-3 on page 6-13, respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction 
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by 
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the 
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by 
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the 
CPLB descriptor.
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Memory Pages
The 4 GB address space of the ADSP-BF535 processor can be divided into 
smaller ranges of memory or I/O referred to as memory pages. Every 
address within a page shares the attributes defined for that page. The 
ADSP-BF535 architecture supports four different page sizes:

• 1 KB

• 4 KB

• 1 MB

• 4 MB

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O. For example, a 
large data structure in memory, such as a video frame buffer, would typi-
cally span a significant address range, as large as 16 MB or more. The 
entire address range would typically share the same attributes, such as 
access protection and cacheability; therefore, ideally only one descriptor 
for the entire range is needed. In the case of the ADSP-BF535 processor, 
such a video frame buffer could be mapped using four 4 MB pages.

Conversely, when protecting access to different parts of memory between 
programs or tasks running on a system, a small memory granularity is 
desirable. If a task uses a data structure that is only 1 KB long and needs to 
be protected from other tasks, storing it in a 1 MB page would waste 
1 MB minus 1 KB of memory, or 1023 KB, to keep this structure isolated 
from other tasks.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address 
descriptor word xCPLB_ADDR[n] and a properties descriptor word 
xCPLB_DATA[n]. The address descriptor word provides the base address of 
the page in memory. Pages must be aligned on page boundaries that are an 
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integer multiple of their size. For example, a 4 MB page must start on an 
address divisible by 4 MB; whereas a 1 KB page can start on any 1 KB 
boundary. The second word in the descriptor specifies the other properties 
or attributes of the page. These properties include:

• Page size

1 KB, 4 KB, 1 MB, 4 MB

• Cacheable / Non-Cacheable

Accesses to this page use the L1 cache or bypass the cache.

• If cacheable: Write Through / Write Back

Data writes propagate directly to memory or are deferred until the 
cache line is reallocated.

• Dirty/Modified

The data in this page in memory has changed since the CPLB was 
last loaded.

• Supervisor write access permission

• Enables or disables writes to this page when in Supervisor 
mode

• Data pages only

• User write access permission

• Enables or disables writes to this page when in User mode

• Data pages only

• User read access permission

Enables or disables reads from this page when in User mode
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• Valid

Check this bit to determine whether this is valid CPLB data.

• Lock

Keep this entry in MMR; do not participate in CPLB replacement 
policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for 
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are 
limited to 16 descriptors for instruction fetches and 16 descriptors for 
data load and store operations.

For small and/or simple memory models, it may be possible to define a set 
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is 
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the 
available on-chip CPLB MMRs. When this happens, a memory-based 
data structure, called a Page Descriptor Table, is used; in it can be stored 
all the potentially required CPLB descriptors. As in many RISC architec-
tures, the specific format for the Page Descriptor Table is not defined as 
part of the Blackfin processor architecture. Different operating systems, 
which have different memory management models, can implement Page 
Descriptor Table structures that are consistent with the OS requirements. 
This allows adjustments to be made between the level of protection 
afforded versus the performance attributes of the memory-management 
support routines.
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CPLB Management
When the Blackfin processor issues a memory operation for which no 
valid CPLB descriptor exists in an MMR pair, an exception occurs that 
places the processor into Supervisor mode and vectors to the MMU excep-
tion handler (see “Exceptions” on page 4-38 for more information). The 
handler is typically part of the operating system kernel that implements 
the CPLB replacement policy.

 Before CPLBs are enabled, valid CPLB descriptors must be in place 
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bit of these CPLB descriptors are commonly set so 
that they are not inadvertently replaced.

The handler uses the faulting address to index into the Page Descriptor 
Table structure to find the correct CPLB descriptor data to load into one 
of the on-chip CPLB register pairs. If all on-chip registers contain valid 
CPLB entries, the handler selects one of the descriptors to be replaced, 
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must 
be disabled by clearing the Enable DCPLB (ENDCPLB) bit in the 
DMEM_CONTROL register for data descriptors or the Enable ICPLB (ENICPLB) 
bit in the IMEM_CONTROL register for instruction descriptors.

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is 
dictated by the characteristics of the operating system, usually implements 
a modified LRU (Least Recently Used) policy, a round-robin scheduling 
method, or pseudo-random replacement.

After the new CPLB descriptor is loaded, the exception handler returns, 
and the faulting memory operation restarted. It should then find a valid 
CPLB descriptor for the requested address, and the operation should 
proceed.
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A single instruction may generate an instruction fetch as well as one or 
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an 
MMR pair. In this case, the exceptions are prioritized and serviced in this 
order:

1. Instruction page miss

2. A miss on DAG0

3. A miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin architecture. 
Its use is predicated on the system requirements of a given application. 
Upon reset, all CPLBs are disabled, and the MMU is not used.

If all L1 Memory is configured as SRAM, then the data and instruction 
MMU functions are optional, depending on the application’s need for 
protection of memory spaces either between tasks or between User and 
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages 
available for each task and make those pages visible only when the relevant 
task is running. When a task switch occurs, the operating system can 
ensure the invalidation of any CPLB descriptors on chip that should not 
be available to the new task. It can also preload descriptors appropriate to 
the new task. 

For many operating systems, the application program is run in User mode 
while the operating system and its services run in Supervisor mode. It is 
desirable to protect code and data structures used by the operating system 
from inadvertent modification by a running User mode application. This 
protection can be achieved by defining CPLB descriptors for protected 
memory ranges that allow write access only when in Supervisor mode. If a 
write to a protected memory region is attempted while in User mode, an 
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exception is generated before the memory is modified. Optionally, the 
User mode application may be granted read access for data structures that 
are useful to the application. Even Supervisor mode functions can be 
blocked from writing some memory pages that contain code that is not 
expected to be modified. Because CPLB entries are MMRs that can be 
written only while in Supervisor mode, user programs cannot gain access 
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured 
partially or entirely as cache, the corresponding CPLBs must be enabled. 
When an instruction generates a memory request and the cache is enabled, 
the processor first checks the ICPLBs to determine whether the address 
requested is in a cacheable address range. If no valid ICPLB entry in an 
MMR pair corresponds to the requested address, an MMU exception is 
generated to obtain a valid ICPLB descriptor to determine whether the 
memory is cacheable or not. As a result, if the L1 Instruction Memory is 
enabled as cache, then any memory region that may contain instructions 
must have a valid ICPLB descriptor defined for it. These descriptors must 
either reside in MMRs at all times or be resident in a memory-based Page 
Descriptor Table that is managed by the MMU exception handler. 
Likewise, if either or both L1 data banks are configured as cache, all 
potential data memory ranges must be supported by DCPLB descriptors.

 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions
In Figure 6-21, a starting point is provided for basic CPLB allocation for 
Instruction and Data CPLBs. Note that some ICPLBs and DCLBs have 
common descriptors for the same address space. For example, on-chip L2 
memory would typically be configured as cacheable with an instruction 
and data CPLB. In such a case, external memory would take advantage of 
the page replacement mechanism described in the section above. 
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Figure 6-21. Examples of Protected Memory Regions

L1 Instruction: Non-cacheable
1 MB page

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

SDRAM: Cacheable
Eight 4 MB pages

Async: Non-cacheable
One 4 MB page

Async: Cacheable
Two 4 MB pages

MMRs: Non-cacheable
4 MB page

L1 Data: Non-cacheable
One 4 MB page

Scratchpad: Non-cacheable
4 KB page

SDRAM: Cacheable
Eight 4 MB pages

Async: Non-cacheable
One 4 MB page

Async: Cacheable
One 4 MB page

L2 Memory: Cacheable
1 MB page

PCI: Non-cacheable
Two 4 MB pages

L2 Memory: Cacheable
1 MB page

PCI: Non-cacheable
Two 4 MB pages

Reset Area: Non-cacheable
for example 0xEF00 0000

4 MB page
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DCPLB Data Registers (DCPLB_DATAx)

Figure 6-22. DCPLB Data Registers 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX 1 X 0 X X X X 1 0 0 1 1 1 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

DCPLB Data Registers (DCPLB_DATAx)

00 - 1 KB page size
01 - 4 KB page size
10 - 1 MB page size
11 - 4 MB page size

PAGE_SIZE[1:0]

Reset = Undefined

DCPLB_LOCK

DCPLB_USER_WR

DCPLB_VALID

DCPLB_DIRTY

DCPLB_WT
0 - Write back
1 - Write through

DCPLB_L1_CHBL

Clear this bit when L1 memory is 
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Clean
1 - Dirty
If DCPLB_DIRTY=0 and 
DCPLB_WT=0, a Protection Violation 
exception is generated on a store 
access. The exception service routine 
must set this bit.

0 - DCPLB entry not valid
1 - DCPLB entry valid

0 - DCPLB entry may be
replaced

1 - DCPLB entry may not be
replaced

0 - Read access not allowed
in User mode. If a read
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Read access allowed in
User mode

DCPLB_USER_RD

0 - Write access not allowed
in User mode. If a write
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Write access allowed in
User mode

DCPLB_SUPV_WR
0 - Write access not allowed

in Supervisor mode. If a
write access is attempted
in Supervisor mode, a 
Protection Violation 
exception occurs.

1 - Write access allowed in
Supervisor mode

DCPLB_DA0ACC
0 - Access allowed from either DAG
1 - Access allowed only from DAG0

DCPLB_L1SRAM
0 - SRAM is not mapped into L1 

memory
1 - SRAM is mapped into L1 memory

Accesses to non-existent memory
in L1 cause an Illegal Address
exception.

For MMR assign-
ments, see Table 6-8.
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Table 6-8. DCPLB Data Register MMR Assignments

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0 xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C
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ICPLB Data Registers (ICPLB_DATAx)

Figure 6-23. ICPLB Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X 0 X X X X X X X X X 1 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

ICPLB Data Registers (ICPLB_DATAx)

00 - 1 KB page size
01 - 4 KB page size
10 - 1 MB page size
11 - 4 MB page size

PAGE_SIZE[1:0]

Reset = Undefined

ICPLB_LOCK

ICPLB_VALID

ICPLB_L1_CHBL

Clear this bit whenever L1 memory 
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - ICPLB entry not valid
1 - ICPLB entry valid

0 - ICPLB entry can be
replaced

1 - ICPLB entry cannot be
replaced

0 - Read access not allowed
in User mode. If a read
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Read access allowed in
User mode

ICPLB_USER_RD

For MMR assign-
ments, see Table 6-9.
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Table 6-9. ICPLB Data Register MMR Assignments

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C
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DCPLB Address Registers (DCPLB_ADDRx)

Figure 6-24. DCPLB Address Registers 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Registers (DCPLB_ADDRx)

Address for Match[21:6]

Reset = Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Address for Match[5:0]

For MMR assign-
ments, see 
Table 6-10.
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Table 6-10. DCPLB Address Register MMR Assignments

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C
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ICPLB Address Registers (ICPLB_ADDRx)

Figure 6-25. ICPLB Address Registers 

X XX X X X X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

ICPLB Address Registers (ICPLB_ADDRx)

Address for Match[21:6]

Reset = Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Address for Match[5:0]

For MMR assign-
ments, see 
Table 6-11.
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DCPLB and ICPLB Status Registers (DCPLB_STATUS, 
ICPLB_STATUS)

Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered CPLB 
related exceptions. The exception service routine can infer the cause of the 
fault by examining the CPLB entries.

Table 6-11. ICPLB Address Register MMR Assignments

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C
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DCPLB Status Register (DCPLB_STATUS)
Bits FAULT_DAG, FAULT_USERSUPV and FAULT_READWRITE in the DCPLB Sta-
tus register (DCPLB_STATUS) are used to identify the DCPLB entry that has 
triggered the DCPLB related exception (see Figure 6-26). 

Figure 6-26. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_READWRITE

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to non-existent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates that the 
DCPLB associated with that 
bit has faulted. DCPLB0 fault 
sets FAULT0, DCPLB15 sets 
FAULT15.

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008
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ICPLB Status Register (ICPLB_STATUS)
Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used 
to identify the ICPLB entry that has triggered the ICPLB related excep-
tion (see Figure 6-27) 

DCPLB and ICPLB Fault Address Registers 
(DCPLB_FAULT_ADDR, ICPLB_FAULT-ADDR)

The DCPLB Fault Address register (DCPLB_FAULT_ADDR), shown in 
Figure 6-28, and ICPLB Fault Address register (ICPLB_FAULT_ADDR), 
shown in Figure 6-29, hold the address that has caused a fault in the L1 
Data Memory or L1 Instruction Memory, respectively.

Figure 6-27. ICPLB Status Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to non-existent memory

Each bit indicates that the 
CPLB associated with that bit 
has faulted. ICPLB0 fault sets 
FAULT0, ICPLB15 sets 
FAULT15.

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008
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DCPLB Fault Address Register (DCPLB_FAULT_ADDR)
The DCPLB Fault Address register holds the address that has caused a 
fault in the L1 Data Memory.

Figure 6-28. DCPLB Fault Address Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Fault Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused 
a fault in the L1 Data Memory

FAULT_ADDR[31:16]
Data address that has caused 
a fault in L1 Data Memory

0xFFE0 000C
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ICPLB Fault Address Register (ICPLB_FAULT_ADDR)
The Instruction Fault Address Register, shown in Figure 6-29, holds the 
address that has caused a fault in the L1 Instruction Memory.

Memory Transaction Model
Both internal and external memory locations are accessed in little endian 
byte order. Figure 6-30 shows a data word as it is stored in register R0 and 
in memory at address location addr. B0 refers to the least significant byte 
of the 32-bit word.

Figure 6-29. ICPLB Fault Address Register 

Figure 6-30. Data Stored in Little Endian Order

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Instruction address that has 
caused a fault in L1 Instruc-
tion Memory

FAULT_ADDR[31:16]
Instruction address that has 
caused a fault in the L1 
Instruction Memory

0xFFE0 100C

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr
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Figure 6-31 shows 16-bit and 32-bit instructions stored in memory. The 
diagram on the left shows how 16-bit instructions are stored in memory 
with the most significant byte of the instruction stored in the high address 
(byte B1 in addr+1) and the least significant byte in the low address (byte 
B0 in addr). 

The diagram on the right shows how 32-bit instructions are stored in 
memory. The most significant 16-bit half word of the instruction (bytes 
B3 and B2) is stored in the low addresses (addr+1 and addr), and the least 
significant half word (bytes B1 and B0) is stored in the high addresses 
(addr+3 and addr+2).

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a 
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally 
separated from the arithmetic functions that use the targets of the memory 
operations. The separation is made, because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take 
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Figure 6-31. Instructions Stored in Little Endian Order

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0
INST 0 INST 0
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Separating load operations from their associated arithmetic functions 
allows compilers or assembly language programmers to place unrelated 
instructions between the load and its dependent instructions. The unre-
lated instructions execute in parallel while the processor waits for the 
memory system to return the data. If the value is returned before the 
dependent operation reaches the execution stage of the pipeline, the oper-
ation completes in one cycle.

In write operations, the store instruction is considered complete as soon as 
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement 
allows the processor to execute one instruction per clock cycle, and it 
implies that the synchronization between when writes complete and the 
execution of subsequent instructions is not guaranteed and is considered 
unimportant in the context of most memory operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the 
target register of the read operation is marked as busy until the value is 
returned from the memory system. If a subsequent instruction tries to 
access this register before the new value is present, the pipeline will stall 
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the 
previous or invalid data in the register, even though instructions are 
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between 
the load and the instruction(s) that use the read target without requiring 
the programmer or compiler to know how many cycles are actually needed 
for the memory-read operation to complete. If the instruction immedi-
ately following the load uses the same register, it simply stalls until the 
value is returned. Consequently, it operates as the programmer expects. 
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However, if four other instructions are placed after the load before the 
instruction that uses the same register, all of them execute, and the overall 
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions 
and their surrounding instructions is referred to as weak ordering of loads 
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events 
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a 
subsequent instruction.

• Load operations using data previously written will use the updated 
values.

• Store operations will eventually propagate to their ultimate 
destination.

Because of weak ordering, the memory system is allowed to prioritize 
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation, 
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation 
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more 
cycles to propagate the value out to memory. This behavior could cause a 
read that occurs in the program source code after a write in the program 
flow to actually return its value before the write has been completed.   
This ordering provides significant performance advantages in the opera-
tion of most memory instructions. However, it can cause side effects that 
the programmer must be aware of to avoid improper system operation.
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When writing to or reading from non-memory locations such as I/O 
device registers, the order of how read and write operations complete is 
often significant. For example, a read of a status register may depend on a 
write to a control register. If the address is the same, the read would return 
a value from the write buffer rather than from the actual I/O device regis-
ter, and the order of the read and write at the register may be reversed. 
Both these effects could cause undesirable side effects in the intended 
operation of the program and peripheral. To ensure that these effects do 
not occur in code that requires precise, or strong, ordering of load and 
store operations, synchronization instructions (CSYNC or SSYNC) should be 
used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case 
for sequential writes to an I/O device for setup and control, use the core or 
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures that all pending core operations have com-
pleted and the core buffer (between the processor core and the L1 
memories) has been flushed before proceeding to the next instruction. 
Pending core operations may include any pending interrupts, speculative 
states (such as branch predictions) or exceptions.

Consider this example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:
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In the preceding example code, the CSYNC instruction ensures that

• The conditional branch (IF CC JUMP away_from_here) is resolved, 
forcing stalls into the execution pipeline until the condition is 
resolved and any entries in the processor store buffer have been 
flushed.

• All pending interrupts or exceptions have been processed before 
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations 
are propagated out through the interface between the L1 memories and 
the rest of the chip. In addition to performing the core synchronization 
functions of CSYNC, SSYNC flushes any write buffers between the L1 mem-
ory and the SBIU and generates a sync request to the SBIU. The sync 
request requires acknowledgement by the SBIU before SSYNC completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory 
value. Consequently, issuing a speculative memory-read operation for a 
subsequent load instruction usually has no undesirable side effect. In some 
code sequences, such as a conditional branch instruction followed by a 
load, performance may be improved by speculatively issuing the read 
request to the memory system before the conditional branch is resolved.   
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:
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If the branch is taken, then the load is flushed from the pipeline, and any 
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the 
correct value earlier than if the operation were stalled until the branch 
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side 
effect for a peripheral that returns sequential data from a FIFO or from a 
register that changes value based on the number of reads that are 
requested. To avoid this effect, use synchronizing instructions (CSYNC or 
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could 
cause modification of a memory value before it is determined whether the 
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved 
before a load instruction initiates a memory reference. However, the load 
instruction itself may generate more than one memory-read operation, 
because it is interruptible. If an interrupt of sufficient priority occurs 
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction. 
After execution of the interrupt, the interrupted load is re-executed. This 
approach minimizes interrupt latency. However, it is possible that a mem-
ory-read cycle was initiated before the load was canceled, and this would 
be followed by a second read operation after the load is re-executed. For 
most memory accesses, multiple reads of the same memory address have 
no side effects. However, for some memory-mapped devices, such as 
peripheral data FIFOs, reads are destructive. Each time the device is read, 
the FIFO advances, and the data cannot be recovered and re-read. 
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 When accessing memory-mapped devices that have state dependen-
cies on the number of read or write operations on a given address 
location, disable interrupts before performing the load or store 
operation.

Working With Memory
This section contains information about alignment of data in memory and 
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming 
example.

Alignment
Unaligned memory operations are not directly supported. An unaligned 
memory reference generates a Misaligned Access exception event 
(see“Exceptions” on page 4-38). However, because some data streams, 
such as 8-bit video data, can properly be unaligned in memory, alignment 
exceptions may be disabled by using the DISALGNEXCPT instruction. More-
over, some instructions in the Quad 8-Bit group automatically disable 
alignment exceptions.

For shared data, software must provide cache coherency support as 
required. To accomplish this, use the FLUSH instruction (see “Data Cache 
Control Instructions” on page 6-47), and/or explicit line invalidation 
through the core MMRs (see “ICPLB Address Registers 
(ICPLB_ADDRx)” on page 6-71).

Atomic Operations
Atomic operations are used to provide non-interruptible memory opera-
tions in support of semaphores between tasks.
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On the ADSP-BF535 processor, atomic operations use a test and set 
instruction (TESTSET). The TESTSET instruction is a two-step process that 
no other memory transaction can interrupt. The test portion of the 
instruction is a load. The set portion sets the CC bit and stores a 1 to the 
MSB at the same memory address. The set portion of the instruction is 
conditional; that is, set occurs only if the value tested is 0.

The atomic operation can access the entire logical memory space except 
the core MMR address region. However, atomicity may not be guaranteed 
for all memory regions. The memory architecture treats atomic operations 
as cache inhibited accesses even if the CPLB descriptor for the address 
indicates a cache enabled access.

If a cache hit is detected, the line is flushed and invalidated before the 
TESTSET is allowed to proceed.

 The ADSP-BF535 processor does not guarantee atomic access to 
L1 memory space configured as SRAM. Consequently, semaphores 
must not reside in L1 memory.

To ensure that all previous exceptions and interrupts have been processed 
before the atomic operation begins, a CSYNC or SSYNC instruction may pre-
cede the TESTSET atomic access instruction.

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space 
(0xFFC0 0000). This region is defined as non-cacheable and is divided 
between the system MMRs (0xFFC0 0000-0xFFE0 0000) and core 
MMRs (0xFFE0 0000-0xFFFF FFFF).

 If strong ordering is required, place a synchronization instruction 
after stores to MMRs. For more information, see “Load/Store 
Operation” on page 6-77.
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All MMRs are accessible only in Supervisor mode. Access to MMRs in 
User mode generates an Illegal Access exception.

All core MMRs are read and written using 32-bit-aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the 
unused bits are reserved.

Accesses to nonexistent MMRs generate an exception. The system ignores 
writes to read-only MMRs. 

Appendix A provides a summary of all Core MMRs. Appendix B provides 
a summary of all System MMRs. 

 To ensure upward compatibility with future implementations, 
write back the value that is read for reserved bits in a register. 

Core MMR Programming Code Example

Core MMRs may be accessed only as aligned 32-bit words. Non-aligned 
access to MMRs generates an exception event. Listing 6-5 shows the 
instructions required to manipulate a generic core MMR.

Listing 6-5. Core MMR Programming

CLI R0;   /* stop interrupts and save IMASK */

P0 = MMR_BASE;   /* 32-bit instruction to loadbase of MMRs */

R1 = [P0 + TIMER_CONTROL_REG];   /* get value of control reg */

BITSET R1, #N;   /* set bit N  */

[P0 + TIMER_CONTROL_REG] = R1;   /* restore control reg */

CSYNC;   /* assures that the control reg is written */

STI R0;   /* enable interrupts */ 

In the code listing, CLI saves the contents of the IMASK register and dis-
ables interrupts by clearing IMASK, while STI restores the contents of the 
IMASK register, thus enabling interrupts. The instructions between CLI and 
STI are not interruptible.
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7 CHIP BUS HIERARCHY

This chapter discusses the on-chip buses, including how data moves 
through the system and factors that determine the system organization. 
The chapter describes the system internal chip interfaces and discusses the 
system interconnects, including the System Bus Interface Unit (SBIU) and 
the associated system buses.

Internal Interfaces
Figure 7-1 shows the core processor and system boundaries and the inter-
faces between them. In the figure, a box receiving an arrow is a slave on 
that bus and a box sourcing an arrow is a master on that bus. The System 
Bus Interface Unit (SBIU) functions as the major crossbar switch between 
the various buses.



ADSP-BF535 Internal Clocks

7-2 ADSP-BF535 Blackfin Processor Hardware Reference
 

ADSP-BF535 Internal Clocks
The Peripheral Access Bus (PAB), the DMA Access Bus (DAB), the Exter-
nal Access Bus (EAB), the External Mastered Bus (EMB), and the External 
Bus Interface Unit (EBIU) run at the core clock frequency (CCLK domain) 
divided by 2, 2.5, 3, or 4. This divided frequency is the frequency of the 

Figure 7-1. ADSP-BF535 Processor Bus Hierarchy
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SCLK domain. This divider ratio is set using the SSEL parameter of the PLL 
Control register. For example, for a 300 MHz core frequency, dividing by 
2.5 yields 120 MHz.

These buses can also be cycled at a lower frequency to reduce power con-
sumption. Note that all synchronous peripherals derive their timing from 
the SCLK. For example, the UART clock rate is determined by further 
dividing this clock frequency.

Core Overview
For the purposes of this discussion, Level 1 memories (L1) are included in 
the description of the core; they enjoy full bandwidth access from the pro-
cessor core. The core includes the Level 1 (L1) memory subsystem, with 
16 KB Instruction SRAM/cache, a dedicated 4 KB Scratchpad SRAM 
block, and 32 KB of data SRAM/cache configured as two independent 
banks. Except for the Scratchpad, each independent bank can be config-
ured as either SRAM or cache.

The block diagram in Figure 7-2 shows the core processor and its inter-
faces to the SBIU. The core processor is master to these three off-core 
interfaces: 

• Instruction Fetch (Core I bus), used to fetch 64 bits of instruction 
from memory

• Bank0 Load/Store (Core D0 bus), used to write or store 32 bits of 
data to or from memory

• Bank1 Load/Store (Core D1 bus), used to write or store 32 bits of 
data to or from memory 

The core can generate up to three simultaneous off-core accesses per cycle. 
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The off-core system is master to a dedicated L1 interface (System L1 bus). 
This bus provides direct memory access to L1 memory configured as 
SRAM, except for the Scratchpad SRAM. L1 memory configured as cache 
is not accessible by the off-core system.

The Core I bus, the Core D0 bus, the Core D1 bus, and the System L1 
bus run at the full core frequency, have data paths up to 64 bits, and sup-
port burst transfers. All four ports have 32-bit address buses. The Core D0 

Figure 7-2. Blackfin Processor Core Block Diagram
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and Core D1 ports can perform single-byte, 2-byte (16-bit), or 4-byte 
(32-bit) aligned read/writes on behalf of the core load/store instructions, 
or four 64-bit wide, 32-byte burst transfers on behalf of the cache line 
fill/write back hardware.

The Core I bus makes only 64-bit read requests (either single, or as part of 
a 32-byte line-fill burst operation).

When the request is filled, the 64-bit read can contain a single 64-bit 
instruction or any combination of 16-, 32-, or partial 64-bit instructions.

When cache is enabled, four 64-bit read requests are issued to support 
32-byte line-fill burst operations. These requests are pipelined so that each 
transfer after the first is filled in a single, consecutive cycle. The Core I bus 
handles both instruction and data cache fills.

System Overview
The system includes the SBIU, the on-chip L2 SRAM memory, the 
peripheral set, and the controllers for system interrupts, test/emulation, 
and clock and power management. The SBIU intercepts all bus transfers 
to or from the core, the L2 memory, and the ADSP-BF535 processor sys-
tem. The SBIU performs all protocol conversions, including any 
synchronous clock domain conversion required to support the transaction.

System Bus Interface Unit (SBIU)
The SBIU functions as a high-speed parallel switch, or router. It provides 
crossbar switches between the core buses, operating at the full core fre-
quency, and the system buses, running at the SCLK frequency. 
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Table 7-1 describes the interconnect routing supported by the SBIU. The 
relative priority of the requesters is shown in the target resource columns. 
A value of 1 indicates the highest priority. Empty table cells represent 
unsupported interconnects.

Up to five parallel, concurrent bus operations can be in progress in any 
one cycle.

For example:

• A peripheral DMA channel is accessing L1 memory.

• PCI is accessing L2 memory.

• The core is fetching instructions from L2 memory.

• Core D0 is accessing a system MMR on the PAB.

• Core D1 is accessing external memory.

Table 7-1. SBIU Internal Routing Priority

Target Resource

Requestor SysL1 CoreL2 SysL2 PAB EAB

CoreD0 1 2 1

CoreD1 2 2

CoreI 3 3

PCI (EMB) 1 1

DAB 1 2 4

MemDMA (EAB) 5
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On-Chip L2 SRAM Memory Interface
The on-chip L2 SRAM memory block consists of 256 KB of fast, deter-
ministic access time memory. The L2 memory is unified; that is, it is 
directly accessible by both the instruction core port and the data core 
ports of the architecture. The L2 is organized as a multibank architecture 
of single ported SRAMs, so that multiple accesses to different banks can 
occur in parallel. The SBIU has two ports into the L2 memory, one dedi-
cated to core requests (Core L2), the other dedicated to system DMA and 
PCI requests (Sys L2). For additional information about L2 memory, see 
“Memory” on page 6-1.

System Interfaces
The ADSP-BF535 processor system includes the peripheral set (Timers, 
Real Time Clock, USB, programmable flags, UARTs, SPORTs, and 
SPIs), the PCI controller, the external memory controller (EBIU), the 
Memory DMA controller, and the interfaces between these, the system, 
and the optional external (off-chip) resources. See Figure 7-1.

These sections describe the four on-chip interfaces between the system 
and the peripherals:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• External Access Bus (EAB)

• External Mastered Bus (EMB)

There are also two primary chip pin buses, the PCI Bus and the External 
Bus Interface Unit (EBIU). The PCI Bus is discussed in “PCI Bus Inter-
face” on page 13-1. The External Bus Interface Unit is discussed in 
“External Bus Interface Unit” on page 18-1.
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The system interfaces operate at a divided frequency from that of the core.

Peripheral Bus (PAB)
The ADSP-BF535 processor has a dedicated peripheral bus. A low latency 
peripheral bus keeps core stalls to a minimum and allows for manageable 
interrupt latencies to time-critical peripherals. All peripheral resources 
accessed through the PAB are mapped into the System MMR space of the 
ADSP-BF535 processor memory map. Both the core and the PCI Con-
troller can access system MMR space through the PAB bus.

Both the core processor and the PCI masters have byte addressability, but 
the programming model is restricted to only 16- or 32-bit (aligned) access 
to the system MMRs. Byte access to this region is not supported.

PAB Arbitration

The core, through the Core D0 bus, and the PCI port, through the EMB, 
are the only masters on this bus. A fixed priority arbitration policy is sup-
ported. The PCI port interface unit has highest priority. Maximum 
arbitration latency for either master is 2 SCLK cycles.

PAB Performance

For PAB, the primary performance criteria is latency. Transfer latencies 
for both read and write transfers on the PAB are 2 SCLK cycles.

The core or the PCI controller can transfer up to 32 bits per access to the 
PAB slaves. Configured with a 1:2 core clock ratio, the first and subse-
quent system MMR (single cycle) read or write accesses take 4 core clocks 
(CCLK) of latency. Configured with a 1:2.5 or 1:3 core clock ratio, the first 
and subsequent system MMR (single cycle) read or write accesses take 6 
core clocks (CCLK) of latency.

With a 300 MHz core clock and a 1:2.5 bus clock ratio, the peak periph-
eral bus throughput is 240 MBytes per second. 
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PAB Agents (Masters, Slaves)

The processor core and the PCI controller can master bus operations on 
the PAB, through the SBIU. All peripherals have a peripheral bus slave 
interface which allows the processor core to access control and status state. 
These registers are mapped into the system MMR space of the memory 
map. System MMR addresses are listed in Appendix A, “Blackfin Proces-
sor Core MMR Assignments” and Appendix B, “System MMR 
Assignments”. 

The slaves on the PAB bus are as follows:

• Event Controller

• Emulation/Test Control

• Clock and Power Management Controller

• Watchdog Timer

• Real Time Clock

• Timer 0, 1, and 2

• SPORT0

• SPORT1

• SPI0

• SPI1

• Programmable Flags

• UART0

• UART1

• USB
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• PCI Port

• Asynchronous Memory Controller (AMC)

• SDRAM Controller (SDC)

• Memory DMA Controller

• SBIU

DMA Bus (DAB)
The DAB provides a means for DMA capable peripherals to gain access to 
on-chip and off-chip memory with little or no degradation in core band-
width to memory.

DAB Arbitration

There are 8 DMA capable peripherals in the ADSP-BF535 processor sys-
tem. Twelve DMA channels and bus masters support these devices. The 
peripheral DMA controllers can transfer data between peripherals and one 
of:

• Internal memory (L1 or L2 memory, through SBIU) 

• External memory (EAB, through SBIU)

Both the read and write channels of the Memory DMA controller access 
their descriptor lists through the DAB. 

The DAB has priority over the core processor on arbitration into L1 con-
figured as SRAM and L2. For off-chip memory, the core has priority over 
the DAB on the EAB bus. The ADSP-BF535 processor uses a fixed prior-
ity arbitration policy on the DAB. Table 7-2 shows the arbitration 
priority.
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DAB Performance

The ADSP-BF535 processor DAB supports single word accesses of 8-bit, 
16-bit, or 32-bit data types as well as 4- and 8-cycle bursts (32-byte trans-
fers on behalf of Memory DMA controller only). The data bus has a 
32-bit width. Therefore, maximum throughput on this bus is 
(SCLK  4) MBs per second. However, arbitration latencies and memory 
read latencies can degrade this peak throughput, particularly to off-chip 
memory.

The DAB has a dedicated port into L1 memory. The DAB and PCI share 
a port to L2 on-chip memories. No stalls occur as long as the core access, 
PCI direct access, and the DMA access are not to the same memory bank 
(4 KB size for L1, 32 KB size for L2). If there is a conflict, PCI is the 
highest priority requester, followed by the DMA access, then by the core. 

Table 7-2. DAB Arbitration Priority

DAB Master Arbitration Priority

SPORT0 RCV DMA Controller 0 - highest

SPORT1 RCV DMA Controller 1

SPORT0 XMT DMA Controller 2

SPORT1 XMT DMA Controller 3

USB DMA Controller 4

SPI0 DMA Controller 5

SPI1 DMA Controller 6

UART0 RCV Controller 7

UART1 RCV Controller 8

UART0 XMT Controller 9

UART1 XMT Controller 10

Memory DMA Controller 11 - lowest
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Note that a locked transfer by the core processor (for example, execution 
of a TESTSET instruction) effectively disables arbitration for the addressed 
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L2 memory can only be stalled by:

• An access already in progress from another DMA channel.

• A PCI request (1 cycle stall on L1 or L2 access).

• A core processor access already in progress to the same 32 KB super 
bank.

DMA access to L1 memory can only be stalled by:

• An access already in progress from another DMA channel. 

DMA read and write latency through the DAB to both on-chip and 
off-chip memory is shown in Table 7-3. The latencies shown are the total 
number of cycles per memory access including cycles required for 
arbitration.

Table 7-3. DAB Latencies

Use of DAB Core Clock to System 
Clock Ratio 
(CCLK/SCLK)

Latency in SCLKs
Burst of 4

Latency in SCLKs
Burst of 8

Burst Write to L1 Memory Best cases (4:1, 3:1, 
2.5:1)

5-2-2-2 5-2-2-2-2-2-2-2

Burst Read from L1 Memory Best case (4:1) 6-2-2-2 6-2-2-2-2-2-2-2

Burst Write to L2 Memory
(16-byte and 32-byte)

All ratios 4-1-1-1 4-1-1-1-1-1-1-1

Burst Read from L2 Memory
(16-byte and 32-byte)

4:1, 3:1 5-1-1-1 5-1-1-1-1-1-1-1

2.5:1, 2:1 6-1-1-1 6-1-1-1-1-1-1-1
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 The PCI controller, the core processor, and the DAB must arbi-
trate for access to external memory through the EBIU. This 
additional arbitration latency added to the latency required to read 
off-chip memory devices can significantly degrade DAB through-
put, potentially causing peripheral data buffers to underflow or 
overflow. If you use DMA peripherals other than the Memory 
DMA controller, and you target external memory for DMA 
accesses, you need to carefully analyze your specific traffic patterns 
to ensure that those isochronous peripherals targeting internal 
memory have enough allocated bandwidth and the appropriate 
maximum arbitration latencies.

When two or more DMA master channels are actively requesting the 
DAB, bus utilization is considerably higher due to the DAB’s pipelined 
design. Bus arbitration cycles are concurrent with the previous DMA 
access’s data cycles.

Memory DMA transfers typically result in repeated accesses to the same 
memory location. Because the memory DMA controller has the potential 
of simultaneously accessing on-chip and off-chip memory, considerable 
throughput can be achieved. The throughput rate for an on-chip/off-chip 
memory access is limited by the slower of the two accesses. An additional 
1 to 2 cycles per burst access is inherent in the design.

Burst Read from External Mem-
ory (SDRAM)
(16-byte and 32-byte)

All ratios 9-1-1-1 9-1-1-1-1-1-1-1

Write to SDRAM (burst of 8) All ratios 4-2-2-2 4-2-2-2-2-2-2-2

Burst Read from Async Memory All ratios 12-4-4-4 12-4-4-4-4-4-4-4

Burst Write to Async Memory All ratios 12-4-4-4 12-4-4-4-4-4-4-4

Table 7-3. DAB Latencies (Cont’d)

Use of DAB Core Clock to System 
Clock Ratio 
(CCLK/SCLK)

Latency in SCLKs
Burst of 4

Latency in SCLKs
Burst of 8
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In the case where the transfer is from on-chip to on-chip memory or from 
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an 
additional cycle between each transfer.

Table 7-4 shows an example of two types of memory DMA transfers.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus, 
as shown in the DAB arbitration priorities in Table 7-2. A single arbiter 
supports a fixed priority arbitration policy for access to the DAB.

External Access Bus (EAB)
The EAB provides a way for the processor core and the Memory DMA 
controller to directly access off-chip memory and the PCI memory space 
to perform instruction fetches, data loads, data stores, and high through-
put memory-to-memory DMA transfers.

Table 7-4. Memory DMA Transfer Rates

Description of Transfer Primary Burst of 
8 Access in 
SCLKs

Secondary Burst 
of 8 Access in 
SCLKs

Total SCLKs

Burst of 8 Transfer from SDRAM to 
L1
(Off-chip to On-chip Memory Trans-
fer)

19 Cycles (L1) 16 Cycles 
(SDRAM)

21 (19+2)

Burst of 8 Transfer from L2 to L1
(On-chip to On-chip Memory Trans-
fer)

19 Cycles (L1) 12 Cycles (L2) 33 (19+12+2)
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EAB Arbitration

The EAB is mastered by the SBIU (on behalf of core processor requests, or 
DAB requests), and by the Memory DMA controller. Arbitration for use 
of the External Bus Interface Unit (EBIU) resources or the PCI bus 
resources is required because of possible contention between the potential 
masters of this bus. A fixed priority arbitration scheme is used, with the 
SBIU internal routing priorities shown in Table 7-1.

EAB Performance

The EAB supports single word accesses of either 8-bit, 16-bit or 32-bit 
data types, as well as 4- and 8-cycle bursts. The EAB operates at the same 
frequency as the PAB and the DAB.

Table 7-5 provides EAB latency and bandwidth estimates for PCI, very 
slow (100 ns) flash memory, and SDRAM accesses. Because of the wide 
range of access parameters supported by the EAB slaves, and the many 
possible uses of these resources for different applications, this analysis may 
not apply to a particular application. It is presented here for comparative 
purposes only.
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Table 7-5. EAB Performance

EAB Performance SCLK/
(PCI_CLK) 
cycles

Core 
cycles at 
2.5:1

Peak BW 
MB/s at 133 
MHz

Notes

133/33 SCLK to PCI 
clock ratio

5 13 4 SCLK cycles/PCI cycle 
(slight rounding)

PCI read, non-burst 36/
(9)

90 4 PCI cycles for core delay 
and synchronization + 1 PCI 
cycle for arbitration + 1 PCI 
cycle for address + 1 PCI 
cycle for data + 2 PCI cycles 
for core delay and synchroni-
zation

PCI read, 16-byte burst 48/
(12)

120 44 4 PCI cycles for core delay 
and synchronization + 1 PCI 
cycle for arbitration + 1 PCI 
cycle for address + 4 PCI 
cycles for data + 2 PCI cycles 
for core delay and synchroni-
zation

PCI read, 32-byte burst 64/
(16)

160 66 4 PCI cycles for core delay 
and synchronization + 1 PCI 
cycle for arbitration + 1 PCI 
cycle for address + 8 PCI 
cycles for data + 2 PCI cycles 
for core delay and synchroni-
zation

PCI write, non-burst, 
FIFO empty

2 5 2128

PCI write, 16-byte burst, 
FIFO empty

5 13 851

PCI write, 32-byte burst, 
FIFO empty

9 23 472

PCI write, non-burst, 
FIFO full

12/
(3)

30 44 1 PCI cycle for arbitration + 1 
PCI cycle for address + 1 PCI 
cycle for data (4 bytes)
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EAB Bus Agents (Masters, Slaves)

The SBIU and the Memory DMA controller devices are masters on this 
bus. The PCI, boot ROM, and EBIU are slaves on this bus.

PCI write, 16-byte burst, 
FIFO full

24/
(6)

60 88 1 PCI cycle for arbitration + 1 
PCI cycle for address + 4 PCI 
cycles for data (4 bytes each)

PCI write, 32-byte burst, 
FIFO full

40/
(10)

100 106 1 PCI cycle for arbitration + 1 
PCI cycle for address + 8 PCI 
cycles for data (4 bytes each)

DMA or cache-line read, 
32-byte burst access to 
16-bit 100 ns flash

258 645 16 Worst-case read latency

DMA read, 32-byte burst, 
from SDRAM

13.4 318 10% page misses

DMA read, 16-byte burst, 
from SDRAM

9.4 227 10% page misses

DMA write, 32-byte 
burst, to SDRAM

16.4 260 10% page misses

DMA write, 16-byte 
burst, to SDRAM

8.4 254 10% page misses

Cache line read, 32-byte 
burst, from SDRAM

8 533 Continuous Read Buffer full 
hits

Cache line read, 32-byte 
burst, from SDRAM

13.4 318 Read Buffer disabled, 10% 
page misses

Cache line write, 32-byte 
burst, to SDRAM

16.4 260 10% page misses

Table 7-5. EAB Performance (Cont’d)

EAB Performance SCLK/
(PCI_CLK) 
cycles

Core 
cycles at 
2.5:1

Peak BW 
MB/s at 133 
MHz

Notes
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External Mastered Bus (EMB)
The EMB provides a means for the PCI to directly access internal L2 
memory, off-chip memory, and the system MMRs.

EMB Arbitration

For ADSP-BF535 processors, only the PCI controller can master this bus.

EMB Performance

The EMB supports single word accesses of either 8-bit, 16-bit or 32-bit 
data types. The EMB operates at the same frequency as the PAB and the 
DAB. 

The EMB supports access to the external memory space. PCI-mastered 
accesses to internal L2 memory have higher priority than core accesses to 
the same bank, unless the core has the memory lock asserted, or the core is 
in the middle of a burst. 

The EMB provides access to memory-mapped registers from the PCI. 
Access to the system MMRs through the SBIU to the PAB is deterministic 
and always requires 3 SCLK cycles for the first read, requiring 1 wait state. 
Writes require no wait states and are fully pipelined. Burst access is not 
supported.

EMB Bus Agents (Masters, Slaves, Bridges)

The PCI is the only master on this bus. The SBIU and EBIU are the slaves 
on this bus. The PCI controller is a bridge between the EMB and the PCI 
buses.



ADSP-BF535 Blackfin Processor Hardware Reference 7-19 
 

Chip Bus Hierarchy

Resources Accessible From EMB

The EMB provides access to: 

• L2 SRAM

• External memory

• System MMR space

The EMB does not have access to:

• L1 memory

• Boot ROM

• PCI space (the PCI EAB slave cannot be accessed by the EMB bus, 
but the system MMRs of the PCI can be accessed)
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8 DYNAMIC POWER 
MANAGEMENT

This chapter describes the Dynamic Power Management functionality of 
the ADSP-BF535 Blackfin processor. This functionality includes:

• Clocking

• Phase Locked Loop (PLL)

• Dynamic Power Management Controller

• Operating Modes

• Voltage Control

Clocking
The input clock into the ADSP-BF535 processor, CLKIN, provides the nec-
essary clock frequency, duty cycle, and stability to allow accurate internal 
clock multiplication by means of an on-chip, Phase Locked Loop (PLL) 
module. In normal operation, the user programs the PLL with a multipli-
cation factor for CLKIN. The resulting multiplied signal is the core clock 
(CCLK). The CCLK signal clocks the Blackfin core processor.

A user-programmable value then divides the CCLK signal to generate the 
system clock (SCLK). The SCLK signal clocks the Peripheral Access Bus 
(PAB), DMA Bus (DAB), External Address Bus (EAB), External Mastered 
Bus (EMB) and the External Bus Interface Unit (EBIU). To optimize per-
formance and power dissipation, the ADSP-BF535 processor allows the 
core and system clock frequencies to be changed dynamically. 
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All synchronous peripherals derive their timing from SCLK. For example, 
the Universal Asynchronous Receiver/Transmitter (UART) clock rate is 
determined by further dividing the SCLK signal. Several of the 
ADSP-BF535 peripherals, such as Universal Serial Bus (USB), Peripheral 
Control Interface (PCI), and Real-Time Clock (RTC), have their own 
clock inputs that operate asynchronously to SCLK.

Phase Locked Loop and Clock Control
To provide the clock generation for the core and system, the 
ADSP-BF535 processor uses an analog PLL with programmable state 
machine control. 

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications in which performance, flexibility and 
control of power dissipation are key features. This broad range of applica-
tions requires a wide range of frequencies for the clock generation 
circuitry. The PLL interacts with the Dynamic Power Management Con-
troller (DPMC) block to provide power management functions for the 
ADSP-BF535 processor.

PLL Overview

The PLL supports a wide range of multiplier ratios, achieving 1–31x mul-
tiplication of the input clock, CLKIN. To achieve this wide multiplication 
range, the ADSP-BF535 processor uses a combination of programmable 
dividers in the PLL feedback circuit and output configuration blocks.   

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs.

The input clock, CLKIN, is a square wave derived from a crystal oscillator 
or external reference clock. The Voltage Controlled Oscillator (VCO) is an 
intermediate clock from which the core clock (CCLK) and system clock 
(SCLK) are derived. 
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PLL Clock Multiplier Ratios
The PLL Control register (PLL_CTL) governs the operation of the PLL. For 
details about the PLL_CTL register, see “PLL Control Register (PLL_CTL)” 
on page 8-7.

The Divide Frequency (DF) bit and Multiplier Select (MSEL[6:0]) field 
configure the various PLL clock dividers: 

• The DF bit enables the input divider

• The MSEL[6] bit enables the output divider

• The MSEL[5:0] bits control the feedback dividers

• The feedback divider is composed in two stages, a divide by N 
(1:32), selected by MSEL[4:0], and a divide by 2, selected by 
MSEL[5].

Figure 8-1. PLL Conceptual Block Diagram
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Table 8-1 illustrates the CCLK and VCO multiplication factors for the vari-
ous MSEL and DF settings. Blank entries in the table indicate MSEL/DF 
combinations that are not supported.

As shown in the table, different combinations of MSEL[6:0] and DF can 
generate the same CCLK and VCO frequencies. For a given application, one 
combination may provide lower power or satisfy the VCO maximum fre-
quency. Under normal conditions, setting DF to 1 typically results in lower 
power dissipation. Note that when MSEL[5] is set to 1, DF must also be set 
to 1. Whether MSEL[5] and DF are set to 1 or both are set to 0, multiplica-
tion factors are the same. See ADSP-BF535 Blackfin Embedded Processor 
Data Sheet for maximum and minimum frequencies for CLKIN, CCLK, and 
VCO. 

Table 8-1. CCLK/VCO Multiplication Factors

MSEL[4:0] MSEL[6:5]:DF

000 001 010 011 100 101 110 111

00000 – 16x/16x – - 16x/32x 8x/16x – 16x/32x

00001 1x/1x – – 1x/1x – – – –

00010 2x/2x 1x/1x – 2x/2x 1x/2x – – 1x/2x

00011 3x/3x – – 3x/3x – – – –

00100 4x/4x 2x/2x – 4x/4x 2x/4x 1x/2x – 2x/4x

00101 5x/5x – – 5x/5x – – – –

00110 6x/6x 3x/3x – 6x/6x 3x/6x – – 3x/6x

00111 7x/7x – – 7x/7x – – – –

01000 8x/8x 4x/4x – 8x/8x 4x/8x 2x/4x – 4x/8x

01001 9x/9x – – 9x/9x – – – –

01010 10x/10x 5x/5x – 10x/10x 5x/10x – – 5x/10x

01011 11x/11x – – 11x/11x – – – –

01100 12x/12x 6x/6x – 12x/12x 6x/12x 3x/6x – 6x/12x

01101 13x/13x – – 13x/13x – – – –
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Core Clock/System Clock Ratio Control 

The ADSP-BF535 processor divides down the core clock (CCLK) to gener-
ate the system clock (SCLK). Table 8-2 shows the allowed divide ratios and 
various examples of CCLK and SCLK frequencies. Note that the divider ratio 
must be chosen so that SCLK does not exceed its maximum frequency. See 
ADSP-BF535 Blackfin Embedded Processor Data Sheet for more informa-
tion about the maximum frequency of SCLK.

01110 14x/14x 7x/7x – 14x/14x 7x/14x – – 7x/14x

01111 15x/15x – – 15x/15x – – – –

10000 16x/16x 8x/8x – 16x/16x 8x/16x 4x/8x – 8x/16x

10001 17x/17x – – 17x/17x – – – –

10010 18x/18x 9x/9x – 18x/18x 9x/18x – – 9x/18x

10011 19x/19x – – 19x/19x – – – –

10100 20x/20x 10x/10x – 20x/20x 10x/20x 5x/10x – 10x/20x

10101 21x/21x – – 21x/21x – – – –

10110 22x/22x 11x/11x – 22x/22x 11x/22x – – 11x/22x

10111 23x/23x – – 23x/23x – – – –

11000 24x/24x 12x/12x – 24x/24x 12x/24x 6x/12x – 12x/24x

11001 25x/25x – – 25x/25x – – – –

11010 26x/26x 13x/13x – 26x/26x 13x/26x – – 13x/26x

11011 27x/27x – – 27x/27x – – – –

11100 28x/28x 14x/14x – 28x/28x 14x/28x 7x/14x – 14x/28x

11101 29x/29x – – 29x/29x – – – –

11110 30x/30x 15x/15x – 30x/30x 15x/30x – – 15x/30x

11111 31x/31x – – 31x/31x – – – –

Table 8-1. CCLK/VCO Multiplication Factors (Cont’d)

MSEL[4:0] MSEL[6:5]:DF

000 001 010 011 100 101 110 111
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The System Select field (SSEL[1:0]) of the PLL Control Register 
(PLL_CTL) controls the ratio of CCLK to SCLK. Upon reset, the input pins 
SSEL[1:0] are sampled. (These pins are shared with flag input pins 
PF[9:8].)

 The values on SSEL[1:0] determine the initial system clock ratio.

To change the CCLK-SCLK divider ratio, the SSEL field in the PLL_CTL regis-
ter should be modified with the new value. This field can be changed at 
any time, but changes to the divider ratio do not take effect until the PLL 
programming sequence is executed. See “PLL Programming Sequence” on 
page 8-17.

 The user should ensure that peripheral operation does not suffer 
adverse effects when the system clock ratio is changed.

Table 8-2 shows the system clock ratio, or frequency ratio of SCLK relative 
to CCLK.

Table 8-2. System Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios 
(MHz)

SSEL[1:0] CCLK/SCLK CCLK SCLK

00 2:1 266 133

01 2.5:1 275 110

10 3:1 300 100

11 4:1 300 75
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PLL Memory-Mapped Registers (MMRs)
The user interface to the PLL is through three MMRs: 

• The PLL Control register (PLL_CTL)

• The PLL Status register (PLL_STAT)

• The PLL Lock Count register (PLL_LOCKCNT) 

The PLL_CTL register is a 32-bit MMR and must be accessed with aligned 
32-bit reads/writes. The PLL_STAT and PLL_LOCKCNT registers are 16-bit 
MMRs and must be accessed with aligned 16-bit reads/writes.

PLL Control Register (PLL_CTL)

The PLL Control register (PLL_CTL), shown in Figure 8-2, controls opera-
tion of the PLL. Note that changes to the PLL_CTL register do not take 
effect immediately. In general, the PLL_CTL register is first programmed 
with new values, and then a specific PLL programming sequence must be 
executed to implement the changes. See “PLL Programming Sequence” on 
page 8-17.

These fields of the PLL_CTL register are used to control the PLL:

• SSEL[1:0] – The SCLK Select (SSEL) field defines the core clock 
(CCLK) to system clock (SCLK) divider ratio. Upon reset, the value 
for this field is sensed from the SSEL pins.

• MSEL[6:0] – The Multiplier Select (MSEL) field defines the input 
clock (CLKIN) to core clock (CCLK) multiplier. Upon reset, the value 
for this field is sensed from the MSEL pins.

• BYPASS – This bit is used to bypass the PLL. When the PLL is 
bypassed, CCLK runs at half the frequency of CLKIN. Upon reset, the 
value for this field is sensed from the BYPASS pin.
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• PDWN – The Power Down (PDWN) bit is used to place the 
ADSP-BF535 in the Deep Sleep operating mode. For more infor-
mation on operating modes, see “Operating Modes” on page 8-12.

• STOPCK – The Stop Clock (STOPCK) bit is used to enable/disable 
CCLK.

• PLL_OFF – This bit is used to enable/disable power to the PLL.

• DF – The Divide Frequency (DF) bit determines whether CLKIN is 
passed directly to the PLL or CLKIN/2 is passed. Upon reset, the 
value for this field is sensed from the DF pin.

 Note some fields of the PLL_CTL register cannot be updated with a 
new value simultaneously. Specifically, the MSEL and DF fields can-
not be updated at the same time as the BYPASS field. Should MSEL 

Figure 8-2. The PLL Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

SSEL[1:0] (SCLK Select)
00 - SCLK = CCLK/2
01 - SCLK = CCLK/2.5
10 - SCLK = CCLK/3
11 - SCLK = CCLK/4

See Table 8-1 on page 8-4  for 
CCLK/VCO multiplication factors

Reset = undefined

PLL Control Register (PLL_CTL)
X - state is initialized during hardware reset from external pins. 

BYPASS

0 - Do not bypass the PLL
1 - Bypass the PLL

MSEL[6:0] (Multiplier Select) DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

0xFFC0 0400
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and/or DF and BYPASS need to be modified, the PLL_CTL register 
should be written twice—once with the MSEL and/or DF field 
changes, then a second time with the BYPASS field change. 

PLL Status Register (PLL_STAT)

The PLL Status register (PLL_STAT), shown in Figure 8-3, indicates the 
operating mode of the PLL and ADSP-BF535 processor. For more infor-
mation about operating modes, see “Operating Modes” on page 8-12.

These fields are used in the PLL_STAT register:

• CORE_IDLE – This field is set to 1 when the Blackfin processor core 
is idled; that is, an IDLE instruction has executed, and the core 
awaits a wake-up signal.

• PLL_LOCKED – This field is set to 1 when the internal PLL lock 
counter has incremented to the value set in the PLL Lock Count 
register (PLL_LOCKCNT). For more information, see “PLL Lock 
Count Register (PLL_LOCKCNT)” on page 8-10.

• SLEEP – This field is set to 1 when the ADSP-BF535 processor is in 
the Sleep operating mode.

Figure 8-3. PLL Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

PLL Status Register (PLL_STAT)
Read only. 1 - processor operating in this mode. For more information, see “Operating Modes” on page 8-12.

Reset = 0x0001 if BYPASS pin low

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED

DEEP_SLEEP

SLEEP

PLL_LOCKED

CORE_IDLE

0xFFC0 0404
0x0002 if BYPASS pin high
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• DEEP_SLEEP – This field is set to 1 when the ADSP-BF535 proces-
sor is in the Deep Sleep operating mode.

• ACTIVE_PLLDISABLED – This field is set to 1 when the ADSP-BF535 
processor is in the Active operating mode with the PLL powered 
down. 

• FULL_ON – This field is set to 1 when the ADSP-BF535 processor is 
in the Full On operating mode.

• ACTIVE_PLLENABLED – This field is set to 1 when the ADSP-BF535 
processor is in the Active operating mode with the PLL powered 
up.

PLL Lock Count Register (PLL_LOCKCNT)

When changing clock frequencies in the PLL, the PLL requires time to 
stabilize and lock to the new frequencies.

The PLL Lock Count register (PLL_LOCKCNT), shown in Figure 8-4, defines 
the number of SCLK cycles that will occur before the processor sets the 
PLL_LOCKED bit in the PLL_STAT register. When executing the PLL pro-
gramming sequence, the internal PLL lock counter begins incrementing 
upon execution of the IDLE instruction. The lock counter increments by 1 
each SCLK cycle. When the lock counter has incremented to the value 
defined in the PLL_LOCKCNT register, the PLL_LOCKED bit is set.

See ADSP-BF535 Blackfin Embedded Processor Data Sheet for more infor-
mation about PLL stabilization time and values that should be 
programmed into this register. For more information about operating 
modes, see “Operating Modes” on page 8-12. For more about the PLL 
programming sequence, see “PLL Programming Sequence” on page 8-17.
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Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) of the 
ADSP-BF535 processor works in conjunction with the PLL, allowing the 
user to control the processor’s performance characteristics and power dis-
sipation dynamically. The DPMC provides these features that allow the 
user to control performance and power:

• Multiple operating modes – The ADSP-BF535 processor operates 
in four different operating modes, each with different performance 
characteristics and power dissipation profiles.

• Peripheral clocks – The user controls which peripherals are clocked 
and which are not, saving power when a peripheral is idle or not 
used. 

• Voltage control – The ADSP-BF535 processor has five internal 
power domains, allowing an external power management controller 
to shut down a power domain if it is not required. Additionally, 
logic is provided to allow an external power management controller 
to manipulate the Blackfin processor core’s internal voltage, further 
reducing power.

Figure 8-4. PLL Lock Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

LOCKCNT[9:0]
Number of SCLK cycles
before PLL Lock Count
timer expires

Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0406
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Operating Modes
The ADSP-BF535 processor operates in four operating modes, each with 
unique performance and power saving benefits. Table 8-3 summarizes the 
operational characteristics of each mode. 

Full On Mode

Full On is the maximum performance mode of the ADSP-BF535 proces-
sor. In this mode, the PLL is enabled and not bypassed. This is the normal 
execution state of the ADSP-BF535 processor, with the processor and all 
enabled peripherals running at full speed. In this mode, the input clock 
(CLKIN) to core clock (CCLK) multiplier ratio cannot be changed. DMA 
access is available to both L1 and L2 memories. From the Full On mode, 
the processor can transition directly to the Active, Sleep or Deep Sleep 
modes.

Active Mode

In the Active mode, the PLL is enabled but bypassed. Because the PLL is 
bypassed, the processor’s core clock (CCLK) runs at one-half the input clock 
(CLKIN) frequency, offering significant power savings. The system clock 
(SCLK) frequency is also reduced, because it is derived from 

Table 8-3. Operational Characteristics

Operating Mode Power 
Savings

PLL
Status Bypassed

CCLK SCLK Allowed 
DMA Access

Full On None Enabled No Enabled Enabled L1, L2

Active Medium Enabled 1

1   PLL can also be disabled in this mode.

Yes Enabled Enabled L1, L2

Sleep High Enabled 2

2   Depends on the previous state.

Disabled Enabled L2

Deep Sleep Maximum Disabled – Disabled Disabled –
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CCLK (SCLK = CCLK/(SSEL divider)); this reduction further reduces power. 
In this mode, the CLKIN to CCLK multiplier ratio can be changed, although 
the changes are not realized until the Full On mode is entered. DMA 
access is available to both L1 and L2 memories.

In the Active mode, it is possible not only to bypass, but also to disable the 
PLL. If disabled, the PLL must be re-enabled before transitioning to the 
Full On or Sleep modes.

From the Active mode, the processor can transition directly to the Full 
On, Sleep or Deep Sleep modes.

Sleep Mode

The Sleep mode significantly reduces power dissipation by idling the core 
processor. The CCLK is disabled in this mode; however, SCLK continues to 
run at the same frequency as before transitioning to the Sleep mode. If the 
processor transitions from the Active mode to the Sleep mode, SCLK con-
tinues to run at the Active mode SCLK frequency. If the processor 
transitions from the Full On mode to the Sleep mode, SCLK continues to 
run at the Full On SCLK frequency. As CCLK is disabled, DMA access is 
available only to L2 memory in the Sleep mode. From the Sleep mode, a 
wake-up event causes the processor to transition to one of these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present 
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by 
hardware when the wakeup occurs. Software must explicitly clear 
STOPCK in the next write to PLL_CTL to avoid going back into sleep 
mode.
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Deep Sleep Mode

The Deep Sleep mode maximizes power savings by disabling the PLL, 
CCLK and SCLK. In this mode, the processor core and all peripherals except 
the Real-Time Clock (RTC) are disabled. DMA is not supported in this 
mode. 

In the Deep Sleep mode, the DEEP_SLEEP output pin is asserted. The Deep 
Sleep mode can only be exited by an RTC interrupt or hardware reset 
event. An RTC interrupt causes the processor to transition to the Active 
mode; a hardware reset begins the hardware reset sequence. For more 
information about hardware reset, see “Hardware Reset” on page 3-13.

Note that an RTC interrupt in the Deep Sleep mode automatically resets 
some fields of the PLL Control register (PLL_CTL), as shown in Table 8-4.

 When in the Deep Sleep operating mode, clocking to the SDRAM 
is turned off. Software should ensure that important information in 
SDRAM is saved to a non-volatile memory before entering the 
Deep Sleep mode.

Operating Mode Transitions
Figure 8-5 graphically illustrates the operating modes and allowed transi-
tions among them. In the diagram, an ellipse represents an operating 
mode. Thin arrows between the ellipses show the allowed transitions into 
and out of each mode. 

Table 8-4. PLL Control Register Values after RTC Wake-up Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1
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The text next to each transition arrow shows the fields in the PLL Control 
Register (PLL_CTL) that must be changed for the transition to occur. For 
example, the transition from the Full On mode to Sleep mode indicates 
that the STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For 
information about how to effect mode transitions, see “Programming 
Operating Mode Transitions” on page 8-17.

Figure 8-5. Operating Mode Transitions
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Deep
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In addition to the mode transitions shown in Figure 8-5, the PLL can be 
modified while in the Active operating mode. Power to the PLL can be 
applied and removed, and new clockin (CLKIN) to core clock (CCLK) multi-
plier ratios can be programmed. Described in detail below, these changes 
to the PLL do not take effect immediately. As with operating mode 
transitions, the PLL programming sequence must be executed for these 
changes to take effect. See “PLL Programming Sequence” on page 8-17:

• PLL Disabled: In addition to being bypassed in the Active mode, 
power to the PLL can be removed. When power is removed from 
the PLL, additional power savings are achieved although they are 
relatively small. To remove power to the PLL, set the PLL_OFF bit 
in the PLL_CTL register, and then execute the PLL programming 
sequence.

• PLL Enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required. Power to the 
PLL must be reapplied before transitioning to the Full On or Sleep 
operating modes. To apply power to the PLL, clear the PLL_OFF bit 
in the PLL_CTL register, and then execute the PLL programming 
sequence.

• New Multiplier Ratio: New clockin (CLKIN) to core clock (CCLK) 
multiplier ratios can be programmed while in the Active mode. 
Although the CLKIN to CCLK multiplier changes are not realized in 
the Active mode, forcing the PLL to lock to the new ratio in the 
Active mode before transitioning to Full On reduces the transition 
time, because the PLL is already locked to the new ratio. Note that 
the PLL must be powered up to lock to the new ratio. To program 
a new CLKIN to CCLK multiplier, write the new MSEL[6:0] and/or DF 
values to the PLL_CTL register; then execute the PLL programming 
sequence.
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Table 8-5 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in 
Table 8-5 causes unpredictable behavior.

Programming Operating Mode Transitions

The operating mode of the ADSP-BF535 processor is defined by the state 
of the PLL_OFF, BYPASS, STOPCK and PDWN bits of the PLL Control register 
(PLL_CTL). Simply modifying the bits of the PLL_CTL register does not 
change the operating mode or the behavior of the PLL. Changes to the 
PLL_CTL register are realized only after executing a specific code sequence, 
which is shown below. This code sequence first brings the ADSP-BF535 
processor to a known, idled state. Once in this idled state, the PLL recog-
nizes and implements the changes made to the PLL_CTL register. After the 
changes take effect, the ADSP-BF535 processor operates with the new set-
tings, including the new operating mode, if one is programmed.

PLL Programming Sequence

Assuming that the PLL Control register (PLL_CTL) has been modified with 
the new values, the instruction sequence shown in Listing 8-1 puts those 
changes into effect.

Table 8-5. Allowed Operating Mode Transitions 

New Modes

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –
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Listing 8-1. PLL Programming Sequence

CLI Rn;   /* disable interrupts, copy IMASK to Rn */

IDLE;   /* source NOPs into pipeline, and enter idled state upon 

SSYNC */

SSYNC;   /* drain pipeline, enter idled state */

STI Rn;   /* re-enable interrupts after wakeup, restore IMASK 

from Rn */

The first three instructions in the sequence (CLI, IDLE, and SSYNC) take the 
core to an idled state with interrupts disabled; the interrupt mask (IMASK) 
is saved to the Rn register, and the instruction pipeline is halted. The PLL 
state machine then loads the PLL_CTL register changes into the PLL.

If the PLL_CTL register changes include a new CLKIN to CCLK multiplier or 
the changes reapply power to the PLL, the PLL needs to relock. To relock, 
the PLL lock counter is first cleared, then begins incrementing, once per 
SCLK cycle. After the PLL lock counter reaches the value programmed into 
the PLL Lock Count register (PLL_LOCKCNT), the PLL sets the PLL_LOCKED 
bit in the PLL Status register (PLL_STAT).

Depending on how the PLL_CTL register is programmed, the processor 
proceeds in one of four ways:

• If the PLL_CTL register is programmed to enter either the Active or 
Full On operating mode, the processor waits for a wake-up signal, 
then continues with the STI instruction in the sequence, as 
described in “PLL Programming Sequence Continues” on 
page 8-19.

• The wake-up signal is an interrupt generated by a peripheral, 
watchdog or other timer, RTC, or other source. For more informa-
tion about events that cause the processor to wake-up from being 
idled, see “System Interrupt Wakeup-Enable Register (SIC_IWR)” 
on page 4-24.
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• If the PLL_CTL register is programmed to enter the Sleep operating 
mode, the processor immediately transitions to the Sleep mode and 
waits for a wake-up signal before continuing. When the wake-up 
signal has been asserted, the instruction sequence continues with 
the STI instruction, as described in the section, “PLL Programming 
Sequence Continues” on page 8-19 causing the processor to transi-
tion to:

• – Active mode if BYPASS in the PLL_CTL register is set 

• – Full On mode if the BYPASS bit is cleared 

• If the PLL_CTL register is programmed to enter the Deep Sleep 
operating mode, the processor immediately transitions to the Deep 
Sleep mode and waits for a Real-Time Clock (RTC) interrupt or 
hardware reset signal:

• – An RTC interrupt causes the processor to enter the Active 
operating mode and continue with the STI instruction in 
the sequence, as described below. 

• – A hardware reset causes the processor to execute the reset 
sequence, as described in “Hardware Reset” on page 3-13.

• If no operating mode transition is programmed, the processor waits 
for a wake-up signal to continue with the STI instruction in the 
sequence, as described in the section below. 

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 on page 8-18 then contin-
ues with the STI instruction. Interrupts are re-enabled, IMASK is restored 
and normal program flow resumes.   

 To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence. 
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Examples

The following code examples illustrate how to effect various operating 
mode transitions. These examples use the watchdog timer as the wake-up 
signal. Some setup code has been removed for clarity, and these assump-
tions are made:

• P0 points to the PLL Control register (PLL_CTL).

• The watchdog timer has been initialized and enabled as a wake-up 
signal.

• MSEL[6:0] and DF in PLL_CTL are set to (b#0011111) and (b#0) 
respectively, signifying a CLKIN to CCLK multiplier of 31x.

• Core clock (CCLK) to system clock (SCLK) divider ratio (SSEL) is set 
at 2 to 1 (b#00). 

Listing 8-2. Transitioning From Active Mode to Full On Mode

R1.H = 0x0000;   /* clear BYPASS bit in PLL_CTL */

R1.L = 0x3E00;

[P0] = R1;

SSYNC;

CLI R1;   /* disable interrupts, copy IMASK to R1 */

IDLE;   /* source NOPs into pipeline, prepare to enter idled 

state */

SSYNC;   /* drain pipeline, enter idled state, wait for watchdog 

*/

STI R1;   /* after watchdog occurs, restore interrupts and IMASK 

*/ 
...   /* processor is now in the Full-On mode */
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Listing 8-3. Transitioning from Full On Mode to Active Mode

R1.H = 0x0000;   /* set BYPASS bit in PLL_CTL */

R1.L = 0x3F00;

[P0] = R1;

SSYNC;

CLI R1;   /* disable interrupts, copy IMASK to R1 */
IDLE;   /* source NOPs into pipeline, prepare to enter idled 

state */
SSYNC;   /* drain pipeline, enter idled state, wait for watchdog 

*/

STI R1;   /* after watchdog occurs, restore interrupts and IMASK 

*/

...   /* processor is now in the Active mode */

Listing 8-4. Changing CLKIN to CCLK Multiplier From 31x to 2x in 
Full On Mode

R1.H = 0x0000;   /* set BYPASS bit in PLL_CTL without modifying 

MSEL because we must be in BYPASS to change MSEL */

R1.L = 0x3F00;

[P0] = R1;

SSYNC;

CLI R1;   /* disable interrupts, copy IMASK to R1 */

IDLE;   /* source NOPs into pipeline, prepare to enter idled 

state */

SSYNC;   /* drain pipeline, enter idled state, wait for watchdog 

*/

STI R1;   /* after watchdog occurs, restore interrupts and IMASK 
*/
/* processor is now in the Active mode */

R1.H = 0x0000;   /* set CLKIN to CCLK multiplier to 2x in PLL_CTL, 

keeping BYPASS bit set as both MSEL and BYPASS cannot be changed 

simultaneously */
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R1.L = 0x0500;

[P0] = R1;

SSYNC;

R1.H = 0x0000;   /* clear BYPASS bit in PLL_CTL, satisfying the 

requirement of breaking up simultaneous changes to MSEL and 

BYPASS */

R1.L = 0x0400;

[P0] = R1;

SSYNC;

CLI R1;   /* disable interrupts, copy IMASK to r1 */

IDLE;   /* source NOPs into pipeline, prepare to enter idled 

state */

SSYNC;   /* drain pipeline, enter idled state, wait for watchdog 

*/

STI R1;   /* after watchdog occurs, restore interrupts and IMASK 

*/

...   /* processor is now in the Full-On mode with the CLKIN to 

CCLK multiplier set to 2x */

Peripheral Clocking
To further reduce power dissipation, the ADSP-BF535 processor allows 
software to control the clocking of many peripherals. If a peripheral is not 
currently needed, clocking to the peripheral can be disabled, resulting in 
lower power dissipation. Clocking to a peripheral can be re-enabled later 
when use of the peripheral is required.

Peripheral Clock Enable Register (PLL_IOCK)

As shown in Figure 8-6, the Peripheral Clock Enable register (PLL_IOCK) is 
a 16-bit MMR that controls clocking to the peripherals. Each peripheral 
whose clocking can be controlled is represented by a bit in the register. A 1 
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in the bit enables clocking to that peripheral; a 0 in the bit turns off 
clocking to that peripheral. This register can be altered at any time in any 
operating mode.

After a reset, the PLL_IOCK register defaults to enable clocking for all 
peripherals. 

Dynamic Supply Voltage Control
In addition to clock frequency control, the ADSP-BF535 processor pro-
vides the capability to run the core processor at different voltage levels. As 
power dissipation is proportional to the voltage squared, significant power 
reductions can be accomplished when lower voltages are used.

The ADSP-BF535 processor uses five power domains. These power 
domains are shown in Table 8-6. Each power domain has a separate VDD 
supply. Note the internal logic of the processor and much of the processor 
I/O can be run over a range of voltages. See ADSP-BF535 Blackfin Embed-
ded Processor Data Sheet for details on the allowed voltage ranges for each 
power domain and power dissipation data.

Figure 8-6. Peripheral Clock Enable Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reset = 0xFFFF

Peripheral Clock Enable Register (PLL_IOCK)
0 = Disabled, 1 = Enabled

SPI0 Clock

SPORT1 Clock 

SPORT0 Clock

Memory DMA Clock

PF Clock

EBIU Clock

PCI Clock

SPI1 Clock

UART0 Clock

UART1 Clock 

Timer 0, 1, 2 Clock

USB Clock

0xFFC0 0408
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PCI Power Savings

If the PCI controller of the ADSP-BF535 processor is not needed for a 
particular application, it does not need to be clocked. For information 
about how to disable clocking to the PCI controller, see “Peripheral 
Clocking” on page 8-22. Refer to ADSP-BF535 Blackfin Embedded Proces-
sor Data Sheet for the procedure for handling unused pins.

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See 
ADSP-BF535 Blackfin Embedded Processor Data Sheet for more informa-
tion about voltage tolerances and allowed rates of change. 

Reducing the ADSP-BF535 processor’s operating voltage to greatly con-
serve power, or raising the operating voltage to greatly increase 
performance will probably require significant changes to the operating 
voltage level. To ensure predictable behavior when varying the operating 
voltage, the ADSP-BF535 processor should be brought to a known and 
stable state before the operating voltage is modified.

Table 8-6. ADSP-BF535 Power Domains

Power Domain VDD Range

Analog PLL internal logic Fixed

All internal logic except PLL, RTC Variable

RTC internal logic, and crystal I/O Fixed

PCI I/O Fixed

All other I/O Variable
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The recommended procedure is to bring the processor to the Sleep operat-
ing mode before substantially varying the voltage. For more information 
about the Sleep operating mode, see “Sleep Mode” on page 8-13. This 
procedure ensures the integrity and deterministic behavior of the 
processor.

As soon as the processor is placed in the Sleep operating mode, the operat-
ing voltage can be safely modified. After the voltage has been changed to 
the new level, the processor can safely return to any operational mode so 
long as the operating parameters, such as core clock frequency (CCLK), are 
within the limits specified in ADSP-BF535 Blackfin Embedded Processor 
Data Sheet for the new operating voltage level.

External Voltage Regulator Example

A programmable voltage regulator external to the ADSP-BF535 processor 
can be used to modify the operating voltage of the processor dynamically. 
A simple handshaking mechanism allows the ADSP-BF535 processor and 
the voltage regulator to alter the operating voltage dynamically.

The following examples use a simple signaling mechanism between the 
ADSP-BF535 processor and the external voltage regulator to toggle 
between a high performance and power saving mode of operation. The 
Programmable Flags peripheral of the ADSP-BF535 processor provides a 
convenient means for such a mechanism. For more information about 
operating modes, see “Operating Modes” on page 8-12. For more infor-
mation about the programmable flag peripheral, see “Programmable 
Flags” on page 15-1.

Power Saving Sequence

In the following example, the Full On operating mode represents the high 
performance mode of operation, and the Active operating mode represents 
the power saving mode.
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The sequence for toggling between the high performance mode and power 
saving mode works as follows:

• The application software, running on the ADSP-BF535 processor 
in the Full On operating mode, determines that the ADSP-BF535 
processor should switch to the power saving mode of operation.

• The ADSP-BF535 processor programs the PLL to transition to the 
Active operating mode after transitioning through the Sleep mode. 

• The processor modifies the PLL Control register (PLL_CTL), setting 
BYPASS to 1, STOPCK to 1 and PDWN to 0. Note that the transition 
does not occur until the PLL programming sequence is executed. 

• The ADSP-BF535 processor signals the voltage regulator, via a 
programmable flag, to lower the operating voltage, then immedi-
ately executes the PLL programming sequence to begin the 
transition to the Active operating mode.

• As described in the section, “PLL Programming Sequence” on 
page 8-17, the ADSP-BF535 processor waits in the Sleep mode for 
the wake-up signal before completing the transition to the Active 
operating mode.

• While the ADSP-BF535 processor is waiting, the voltage regulator 
lowers the voltage.

• After the voltage has stabilized, the voltage regulator signals the 
ADSP-BF535 processor, via a programmable flag, that the voltage 
has been lowered.

• This signal wakes up the ADSP-BF535 processor, allowing it to 
complete the transition to the Active operating mode. 

High Performance Sequence

The same sequence used to toggle to power saving mode can be used to 
return the ADSP-BF535 into a high performance mode.
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• The application software, running on the ADSP-BF535 processor 
in the Active operating mode, determines that the ADSP-BF535 
processor should switch to the high performance mode of 
operation.

• The ADSP-BF535 processor programs the PLL to transition to the 
Full On operating mode after transitioning through the Sleep 
mode.

• The processor modifies PLL_CTL, setting BYPASS to 0, STOPCK to 1 
and PDWN to 0. Again, the transition does not occur until the PLL 
programming sequence is executed.

• The ADSP-BF535 processor signals the voltage regulator, via a 
programmable flag, to raise the operating voltage, then immedi-
ately executes the PLL programming sequence to begin the 
transition to the Full On operating mode.

• The ADSP-BF535 processor again waits in the Sleep mode for the 
wake-up signal before completing the transition to the Full On 
operating mode.

• While the ADSP-BF535 processor is waiting, the voltage regulator 
raises the voltage.

• When the voltage has stabilized, the voltage regulator signals the 
ADSP-BF535 processor, via a programmable flag, that the voltage 
has been raised.

• The signal from the voltage regulator wakes up the ADSP-BF535 
processor, allowing it to complete the transition to the Full On 
operating mode. 
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9 DIRECT MEMORY ACCESS

The ADSP-BF535 processor uses Direct Memory Access (DMA) to trans-
fer data within memory spaces or between a memory space and a 
peripheral. The fully integrated DMA controller allows the ADSP-BF535 
processor or an external device to specify data transfer operations and 
return to normal processing while the DMA controller carries out the data 
transfers independent from processor activity.

The DMA controller can perform several types of data transfers:

• Memory  Memory (MemDMA) (see “Memory DMA (Mem-
DMA)” on page 9-31)

• Memory  Serial Peripheral Interface (SPI) Port (Chapter 10)

• Memory  Serial Port (Chapter 11)

• Memory  UART Port (Chapter 12)

• Memory USB Device (Chapter 14)

The ADSP-BF535 processor system includes eight DMA capable periph-
erals, including the Memory DMA controller (MemDMA). Twelve DMA 
channels and bus masters support these devices:

• SPORT0 RCV DMA Controller

• SPORT1 RCV DMA Controller

• SPORT0 XMT DMA Controller

• SPORT1 XMT DMA Controller
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• USB DMA Controller

• SPI0 DMA Controller

• SPI1 DMA Controller

• UART0 RCV Controller

• UART1 RCV Controller

• UART0 XMT Controller

• UART1 XMT Controller

• Memory DMA Controller

This chapter describes the features common to all the DMA channels and 
how DMA operations are set up. For specific peripheral features, see the 
appropriate peripheral chapter for additional information. Performance 
and bus arbitration for DMA operations can be found in “DAB Perfor-
mance” on page 7-11.

DMA transfers on the ADSP-BF535 processor can be descriptor based or 
autobuffer based. Descriptor based DMA transfers require a set of param-
eters stored within memory to initiate a DMA sequence. This sort of 
transfer allows chaining multiple DMA sequences together. In descriptor 
based DMA operations, a DMA channel can be programmed to set up and 
start another DMA transfer automatically after the current sequence com-
pletes. Autobuffer based DMA allows the processor to program DMA 
control registers directly to initiate a DMA transfer. Upon completion, 
the control registers are automatically updated with their original setup 
values.
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Descriptor Based DMA
Descriptor based DMA is the most common method of controlling DMA 
transfers on the ADSP-BF535 processor. To use this method, the DMA 
channel requires a set of parameters, called a DMA descriptor block, stored 
within memory. Each descriptor block contains all the information 
needed for a particular DMA transfer sequence and consists of:

• The 32-bit starting address of the data block to be transferred

• The number of data transfers

• Other miscellaneous control information—for example, the con-
figuration for what the DMA channel does when the transfer is 
complete

• A pointer to the next descriptor block
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DMA Descriptor Block Structure
The elements of a DMA descriptor block are defined in Table 9-1, where 
BASE refers to the starting address of the descriptor block.

The processor can place multiple sets of descriptor blocks, representing 
multiple transfers, in memory. A set of descriptor blocks is called a linked 
list (see Figure 9-1). When a linked list has been generated, the DMA 
channel has all the information needed to perform multiple transfer 
sequences without processor intervention.

Figure 9-1. Linked List Containing Two Descriptor Blocks

CONFIGURATION WORD AA + 0

DESCRIPTOR BLOCK
A

TRANSFER COUNT AA + 2

START ADDRESS[15:0]A + 4

START ADDRESS[31:16]A + 6

B + 0A + 8

B + 0

DESCRIPTOR BLOCK
B

B + 2

B + 4

B + 6

B + 8

DMA_END 0X0001

LINKED LIST

CONFIGURATION WORD B

TRANSFER COUNT B

START ADDRESS[15:0]

START ADDRESS[31:16]

DMA_END



ADSP-BF535 Blackfin Processor Hardware Reference 9-5 
 

Direct Memory Access

To end the sequence of transfers, the Next Descriptor Pointer must point 
to a memory location containing a 16-bit data value containing a 0 in bit 
15 (0xxx xxxx xxxx xxxx). If bit 0 is a 1 (0xxx xxxx xxxx xxx1), the DMA 
channel is still enabled, but stalled, and the remaining FIFO values are not 
discarded. 

 Note the order of the descriptor block elements differs from that of 
the DMA register set. This order allows the 32-bit address pointers 
(BASE+4 and BASE+6) to be 32-bit aligned in little endian 
memory. The user can configure the DMA Start Address[31:0] as 
one 32-bit load into the descriptor block rather than as two 16-bit 
loads. For this reason, it is recommended DMA descriptor blocks 
be 32-bit aligned within memory. At a minimum, descriptor blocks 
must be 16-bit aligned.

Table 9-1. DMA Descriptor Block Parameters 

Address Location Name Description

BASE+0 DMA Configuration Word (see 
Table 9-2 for bit definitions)

Descriptor ownership, DMA configura-
tion, and completion status

BASE+2 DMA Transfer Count Number of elements (8-bit bytes, 16-bit 
half words, or 32-bit words) to be trans-
ferred

BASE+4 DMA Start Address[15:0] 16 LSBs of the transfer start address

BASE+6 DMA Start Address[31:16] 16 MSBs of the transfer start address

BASE+8 Next Descriptor Pointer[15:0] 16 LSBs of the next descriptor block 

head address 1

1   16 MSBs of the next descriptor block base address are determined by the global DMA Descriptor 
Base Pointer register (DMA_DBP), which is shared across all ADSP-BF535 DMA channels.
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DMA Configuration Word
Table 9-2 describes the bits in the DMA Configuration Word located in 
address BASE+0 of the descriptor block within memory.

Table 9-2. DMA Configuration Word 

Bit Name Values

0 DMA Enable 0 - Disabled
1 - Enabled

1 Direction Peripheral dependent definition of values

2 Interrupt on Completion Enable (IOC) 0 - Interrupt disabled
1 - Interrupt enabled

3 Data Size Peripheral dependent definition of values (for 
data size, see Table 9-3)

4 Autobuffer Peripheral dependent definition of values

5-6 Control State Peripheral dependent definition of values

7 Buffer Clear Must be set to 0 in Configuration Word

8 Interrupt on Error Enable Peripheral dependent definition of values

9-11 Status Peripheral dependent definition of values

12-13 Buffer Status / Data Size1

1   Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit in 
some peripherals (see Table 9-3).

Peripheral dependent definition of values

14 DMA Completion Status (DCS) 0 - Successful completion
1 - Error

15 Descriptor Block Ownership (DBO) 0 - Processor has ownership
1 - DMA channel has ownership
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Each DMA channel has peripheral dependent functionality. The follow-
ing peripheral dependent behavior is controlled or monitored through the 
DMA Configuration Word:

• Data transfer direction (bit 1)

• The peripheral dependent direction bit is dedicated as either read 
or write. For some peripherals and MemDMA, this bit cannot be 
modified.

• Data size (bits 3 and 12)

• The peripheral dependent data size can be 8, 16, or 32 bits. Some 
peripherals support only 16- and 32-bit data sizes. With each trans-
fer, the DMA address (stored in the DMA Start Address registers) 
increments relative to the data size. The address increments by 1 
for 8-bit data transfers, by 2 for 16-bit transfers, or by 4 for 32-bit 
transfers. 

Table 9-3 shows how to configure the DMA Configuration Word for each 
valid data size.

Table 9-3. DMA Configuration Word Data Size Settings

Bit 12 1

1   Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and writ-
ten as a data size bit.

Bit 3 Data Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte
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The DMA controller does not support data packing. For example, in an 
8-bit device, if the data size is set up for 32 bits, the upper 3 bytes of the 
32-bit transfer are zero-filled. 

• Peripheral control (bits 5 and 6)

• Peripheral dependent control bits provide peripheral control 
through descriptor blocks. For more information about the use of 
these bits in a specific peripheral, see the appropriate peripheral 
chapter.

• Peripheral status (bits 9 – 13)

• The peripheral dependent status bits contain peripheral specific 
information about the DMA transfer for the current descriptor 
block, including buffer status. At the completion of the DMA 
transfer, this information is written back to the DMA Configura-
tion Word of the current DMA descriptor block. For more 
information about the use of these bits in a specific peripheral, see 
the appropriate peripheral chapter.

Setting Up Descriptor Based DMA
The following steps illustrate the typical sequence for setting up descriptor 
based DMA. 

 Before these steps, the DMA Descriptor Base Pointer register 
(DMA_DBP) must be configured with the upper 16 bits (MSBs) of the 
descriptor block base address, BASE+0.

1. Write the DMA Configuration Word (with bit 15 set to 1), DMA 
Transfer Count, DMA Start Address[15:0], DMA Start 
Address[31:16], and Next Descriptor Pointer[15:0] to the descrip-
tor block memory addresses BASE+0 through BASE+8.



ADSP-BF535 Blackfin Processor Hardware Reference 9-9 
 

Direct Memory Access

• If the descriptor block is the last one in a linked list or the 
only one (that is, a standalone transfer sequence), the Next 
Descriptor Pointer within the descriptor block must point 
to a memory location that contains a data value with bit 15 
set to 0 (0xxx xxxx xxxx xxxx). If bit 0 is a 1 (0xxx xxxx xxxx 
xxx1), the DMA channel is still enabled, but stalled, and the 
remaining FIFO values are not discarded. This allows the 
DMA engine to finish transferring the remaining values in 
the FIFO.

• Because of this requirement, the Next Descriptor Pointer 
can point to the base address (BASE+0) of the current DMA 
descriptor block. (After the DMA transfer sequence, bit 15 
of the DMA Configuration Word is cleared, returning own-
ership to the processor. If ownership returns to the 
processor, the DMA channel is still enabled but stalls after 
the DMA transfer.) 

2. Write the lower 16 bits (LSBs) of the descriptor block base address 
(the first descriptor block if in a linked list), BASE+0, to the Next 
Descriptor Pointer register of the appropriate peripheral.

3. Set the DMA Enable bit in the appropriate peripheral’s DMA 
Configuration register.

• This final write is needed only if this DMA descriptor block 
is for a standalone transfer sequence or the first one in a 
linked list.

Descriptor-Based DMA Operation
Upon detecting the assertion of the DMA Enable bit in the peripheral’s 
DMA Configuration register, the DMA channel fetches the first element 
from the descriptor block, the DMA Configuration Word, and copies it to 
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the DMA Configuration register. Bit 15, the DBO bit, of this register is 
checked to determine whether the descriptor block is configured and 
ready for use: 

• If bit 15 is not set, the DMA channel stalls and waits until a pro-
cessor write occurs to the peripheral’s DMA Descriptor Ready 
register (see “Peripheral DMA Descriptor Ready Register” on 
page 9-25). 

• This write triggers the DMA controller to recopy the DMA Con-
figuration Word from the current descriptor block into the DMA 
Configuration register and to recheck bit 15.

• If bit 15 is set, the DMA channel fetches the remaining four ele-
ments (BASE+2, BASE+4, BASE+6, BASE+8) from the descriptor 
block, loads them to the respective DMA control registers, and 
begins DMA transfers. 

• The status of the transfer sequence is updated every cycle in the 
appropriate peripheral’s DMA status registers.
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The DMA transfer sequence is completed when the count value in the 
DMA Transfer Count register has decremented to zero. Upon completion 
of the transfer sequence, the DMA channel: 

• Clears the DBO bit of the DMA Configuration register, returning 
ownership to the processor

• Copies the contents of the DMA Configuration register to the 
DMA Configuration Word of the current descriptor block. 

• This write-back includes the final status of the transfer sequence. 

• Generates an interrupt if interrupts are enabled (see the appropriate 
peripheral chapter for more information) 

• Fetches the Configuration Word of the next descriptor block 

• The process continues.

The flow diagram in Figure 9-2 and Figure 9-3 shows how the DMA 
channel performs two consecutive DMA transfers using descriptor blocks. 
(The structure of the descriptor blocks is shown in Figure 9-1 on 
page 9-4.) Figure 9-4 on page 9-14 illustrates the time segments from the 
flow diagram (Time T1 through Time T5).

In Figure 9-4, the actions in T1 and T2 are the same as those in T3 and 
T4 except for the name of the descriptor block. 
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Figure 9-2. Consecutive DMA Sequences With Descriptor Blocks (1 of 2)
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Figure 9-3. Consecutive DMA Sequences With Descriptor Blocks (2 of 2)
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Figure 9-4. Time T1 Through T5 of Consecutive DMA Sequences Using 
Descriptor Blocks
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Autobuffer Based DMA
Autobuffer based DMA operates like descriptor based DMA except that it 
does not require descriptors in memory. In autobuffer mode, DMA con-
trol registers are writable and programmed directly by the processor to 
initiate a DMA transfer sequence. Upon completion of the transfer 
sequence, the control registers are reloaded with their original setup values 
for the next transfer. This effectively creates a circular buffer that contin-
ues to transfer data until disabled by clearing the DMA Enable bit in the 
peripheral’s DMA Configuration register. If enabled, interrupts are gener-
ated at the halfway and completion points in the transfer sequence. For 
more information about peripheral interrupts, see the appropriate periph-
eral chapter.

Setting Up Autobuffer Based DMA
The following steps illustrate the typical sequence for setting up autobuf-
fer based DMA.

1. Set the Autobuffer Enable bit in the DMA Configuration register.

2. Initialize the DMA Transfer Count, DMA Start Address High, and 
DMA Start Address Low registers.

3. Write to the DMA Configuration register, configuring the DMA 
transfer and setting the DMA Enable bit.

This final write starts the autobuffer based DMA transfer sequence.

 To disable autobuffering, clear the DMA Enable bit in the Config-
uration register. Clearing the bit during active operation will stop 
the current single or burst transfer, but it will not cause a DMA 
error abort as it would for descriptor based DMA. The Autobuffer 
Enable bit in the DMA Configuration register can then be cleared.
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Upon detecting that the DMA Enable bit is cleared, the DMA channel 
completes the current single or burst transfer and disables DMA. After the 
bit is cleared, the DMA Start Address and DMA Transfer Count registers 
can be used to monitor the status of the DMA transfers.

DMA Control Registers
The registers in this section are a generic representation of the actual 
peripheral DMA control registers, which are listed in Table 9-12 on 
page 9-30. The word “peripheral” is used in the register name in place of 
the specific peripheral name.

Peripheral DMA Configuration Register
The peripheral’s DMA Configuration register determines whether DMA 
is enabled and performs other essential DMA functions, including func-
tions that are peripheral dependent (see Figure 9-5). 

The DMA Enable bit enables and activates a DMA channel to begin load-
ing a descriptor block from memory. The processor should write the 
DMA Enable bit only during DMA channel initialization and in activat-
ing or terminating autobuffer mode. For descriptor based DMA, if the 
processor resets this bit during active operation, the DMA channel termi-
nates with an error condition (see “DMA Abort Conditions” on 
page 9-44).

The Buffer Clear bit is used to clear the DMA buffer and should be 
accessed only when a DMA channel is not enabled.

 The Buffer Clear bit should not be set when using autobuffer 
mode.
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Figure 9-5. Peripheral DMA Configuration Register
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0 0 0 0 0 0 0 0

0 - Read from memory
1 - Write to memory

Interrupt on Error 
Enable - RO

0 - Interrupt disabled
1 - Interrupt enabled

0 - Disabled
1 - Enabled

Peripheral Dependent 
Control State[1:0] - RO

Buffer Clear 
0 - Normal buffer

operation
1 - Clear buffer

Reset = 0x0000

See peripheral
documentation

See peripheral
documentation

See peripheral
documentation

In autobuffer mode, these bits are R/W. In some peripherals, Bit 12 of the DMA Configuration 
Word is read as a FIFO Status bit and written as a data size bit.

Data Size Bit 1 
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

See peripheral
documentation

For MMR assign-
ments, see Table 9-4.
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Table 9-4 lists the MMR assignments for the peripheral DMA Configura-
tion registers.

The Descriptor Block Ownership (DBO) bit can be set only when bit 15 of a 
descriptor block’s DMA Configuration Word is set and the DMA Config-
uration Word is loaded into the peripheral’s DMA Configuration register.

When the current DMA transfer sequence has completed, the DMA chan-
nel clears bit 15 in the peripheral’s DMA Configuration register and 
writes the contents of the register to the current descriptor block’s Config-
uration Word in memory. Then the next descriptor block’s Configuration 
Word is loaded into the peripheral’s DMA Configuration register. If bit 
15 of the Configuration Word is set (DMA channel has ownership), a full 
descriptor block download is performed, and bit 15 of the peripheral’s 
DMA Configuration register is set once again.

Table 9-4. Peripheral DMA Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CONFIG 0xFFC0 3202

SPI1_CONFIG 0xFFC0 3602

SPORT0_RX_CONFIG 0xFFC0 2802

SPORT1_RX_CONFIG 0xFFC0 2C02

SPORT0_TX_CONFIG 0xFFC0 2800

SPORT1_TX_CONFIG 0xFFC0 2C00

UART0_CONFIG_RX 0xFFC0 1A02

UART1_CONFIG_RX 0xFFC0 1E02

UART0_CONFIG_TX 0xFFC0 1B02

UART1_CONFIG_TX 0xFFC0 1F02

USBD_DMACFG 0xFFC0 4440
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Peripheral DMA Transfer Count Register
The peripheral’s DMA Transfer Count register, shown in Figure 9-6, con-
tains the number of transfers needed to complete the current DMA 
sequence. For descriptor based DMA, the value of this register is loaded 
when a descriptor block is read from memory. For autobuffer based DMA, 
this register is configured directly by the user.

Table 9-5 lists the MMR assignments for the peripheral DMA Transfer 
Count registers.

Figure 9-6. Peripheral DMA Transfer Count Register

Table 9-5. Peripheral DMA Transfer Count Register MMR 
Assignments  

Register Name Memory-Mapped Address

SPI0_COUNT 0xFFC0 3208

SPI1_COUNT 0xFFC0 3608

SPORT0_COUNT_RX 0xFFC0 2A08

SPORT1_COUNT_RX 0xFFC0 2E08

SPORT0_COUNT_TX 0xFFC0 2B08

SPORT1_COUNT_TX 0xFFC0 2F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Block Transfer 
Count[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Transfer Count Register
RO. R/W in autobuffer mode.

Reset = 0x0000

The number of transfers 
needed to complete the 
current DMA transfer 
sequence

For MMR assign-
ments, see Table 9-5.
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The DMA Transfer Count always decrements by 1 for each bus transfer, 
independent of the transfer size (8, 16, or 32 bits). A DMA transfer 
sequence is complete when the transfer count reaches 0.

UART0_COUNT_RX 0xFFC0 1A08

UART1_COUNT_RX 0xFFC0 1E08

UART0_COUNT_TX 0xFFC0 1B08

UART1_COUNT_TX 0xFFC0 1F08

USBD_DMACT xFFC0 4446

Table 9-5. Peripheral DMA Transfer Count Register MMR 
Assignments (Cont’d) 

Register Name Memory-Mapped Address
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Peripheral DMA Start Address Registers
The peripheral’s DMA Start Address range is 32 bits, formed by concate-
nating its DMA Start Address High [15:0] and its DMA Start Address 
Low [15:0] registers.

Table 9-6 lists the MMR assignments for the peripheral DMA Start 
Address registers.

Figure 9-7. Peripheral DMA Start Address Registers

Table 9-6. Peripheral DMA Start Address Register MMR 
Assignments

Register Name Memory-Mapped Address

SPI0_START_ADDR_HI 0xFFC0 3204

SPI1_START_ADDR_HI 0xFFC0 3604

SPI0_START_ADDR_LO 0xFFC0 3206

SPI1_START_ADDR_LO 0xFFC0 3606

SPORT0_START_ADDR_HI_TX 0xFFC0 2B04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address 
[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Start Address High Register
RO. R/W in autobuffer mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address 
[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Start Address Low Register
RO. R/W in autobuffer mode.

Reset = 0x0000

For MMR assign-
ments, see Table 9-6.
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The Start Address must be aligned to the transfer size, as shown in 
Table 9-7.

Upon completion of the current access, the DMA address generators 
increment the start address by 1 for 8-bit transfers, by 2 for 16-bit trans-
fers, or by 4 for 32-bit transfers. 

SPORT1_START_ADDR_HI_TX 0xFFC0 2F04

SPORT0_START_ADDR_HI_RX 0xFFC0 2A04

SPORT1_START_ADDR_HI_RX 0xFFC0 2E04

UART0_START_ADDR_HI_RX 0xFFC0 1A04

UART1_START_ADDR_HI_RX 0xFFC0 1E04

UART0_START_ADDR_LO_RX 0xFFC0 1A06

UART1_START_ADDR_LO_RX 0xFFC0 1E06

USBD_DMABH (High) 0xFFC0 4444

USBD_DMABL (Low) 0xFFC0 4442

Table 9-7. Start Address Alignment Requirements

Transfer Size Start Address Alignment Requirements

8 bits Start Address has no alignment restriction.

16 bits Start Address must be 16-bit aligned.

32 bits Start Address must be 32-bit aligned.

Table 9-6. Peripheral DMA Start Address Register MMR 
Assignments (Cont’d)

Register Name Memory-Mapped Address
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No data packing is done on 8- or 16-bit transfers. These modes exist to 
support the alignment function, as required. The highest throughput is 
achieved with 32-bit transfers. 

 Use extreme caution when programming start addresses and trans-
fer count to make sure that the DMA channel does not access 
unsupported memory, MMR space, scratchpad, or other critical 
system resources. Access to illegal memory ranges causes an 
exception.

Peripheral DMA Next Descriptor Pointer Register
The value of the peripheral’s DMA Next Descriptor Pointer register deter-
mines the lower 16 bits of the descriptor block base address for the next 
DMA transfer sequence. After initial configuration of the DMA register 
set, this register is updated whenever the DMA channel fetches a new 
descriptor block from memory. Figure 9-8 describes the peripheral DMA 
Next Descriptor Pointer register.

The LSB of this register must always be 0, because the descriptor list must 
be 16-bit aligned. This register is not used for autobuffer mode.

Figure 9-8. Peripheral DMA Next Descriptor Pointer Register

Peripheral DMA Next Descriptor Pointer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Next Descriptor 
Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

For MMR assign-
ments, see Table 9-8.
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Table 9-8 lists the MMR assignments for the peripheral DMA Next 
Descriptor Pointer registers.

DMA Descriptor Base Pointer Register (DMA_DBP)
In the ADSP-BF535 processor, the linked list of DMA descriptor blocks is 
relocatable. By default, the DMA Descriptor Base Pointer register locates 
the descriptor block linked list in the top 64 KB of on-chip L2 memory. 
This register, shown in Figure 9-9, is not updated on DMA descriptor 
block fetches; software controls it directly. The DMA Descriptor Base 
Pointer must be restricted to L2 memory space.

This register is not used for autobuffer mode and is shared across all 
peripherals.

Table 9-8. Peripheral DMA Next Descriptor Pointer Register MMR 
Assignments 

Register Name Memory-Mapped Address

SPI0_NEXT_DESCR 0xFFC0 320A

SPI1_NEXT_DESCR 0xFFC0 360A

SPORT0_NEXT_DESCR_RX 0xFFC0 2A0A

SPORT1_NEXT_DESCR_RX 0xFFC0 2E0A

SPORT0_NEXT_DESCR_TX 0xFFC0 2B0A

SPORT1_NEXT_DESCR_TX 0xFFC0 2F0A

UART0_NEXT_DESCR_RX 0xFFC0 1A0A

UART1_NEXT_DESCR_RX 0xFFC0 1E0A

UART0_NEXT_DESCR_TX 0xFFC0 1B0A

UART1_NEXT_DESCR_TX 0xFFC0 1F0A

USB (none)
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Peripheral DMA Descriptor Ready Register
If a descriptor block’s DBO bit is 0 when the descriptor block Configura-
tion Word is accessed, the DMA channel halts. Writing a 1 to bit 0 of the 
peripheral’s DMA Descriptor Ready register synchronizes the DMA chan-
nel, causing the Configuration Word to be reloaded into the DMA 
Configuration Register and causing bit 15 to be rechecked. If this bit is 
set, processing of the descriptor block resumes. Bit 0 of the peripheral’s 
DMA Descriptor Ready register remains set until a descriptor block has 
been successfully fetched. After a successful fetch, bit 0 of the DMA 
Descriptor Ready register is cleared. Figure 9-10 describes the peripheral 
DMA Descriptor Ready register.

This register is not used for autobuffer mode. 

Figure 9-9. DMA Descriptor Base Pointer Register

Figure 9-10. Peripheral DMA Descriptor Ready Register

DMA Descriptor Base Pointer Register (DMA_DBP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

Address[31:16] of 
Descriptor Block 
Base Pointer

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 Reset = 0xF0030xFFC0 4880

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Descriptor Ready Register

Reactivate Descriptor 
Fetch

Read/write

Reset = 0x0000
For MMR assign-
ments, see Table 9-9.



DMA Control Registers

9-26 ADSP-BF535 Blackfin Processor Hardware Reference
 

Peripheral DMA Current Descriptor Pointer Register
The peripheral’s DMA Current Descriptor Pointer register contains the 
least significant 16 bits of the base address of the descriptor block that the 
DMA channel is actively processing. This register, shown in Figure 9-11, 
is loaded with the value from the peripheral’s DMA Next Descriptor 
Pointer register before each DMA work block is fetched. This register is 
not used for autobuffer mode.

Table 9-9. Peripheral DMA Descriptor Ready Register MMR Assignments 

Register Name Memory-Mapped Address

SPI0_DESCR_RDY 0xFFC0 320C

SPI1_DESCR_RDY 0xFFC0 360C

SPORT0_DESCR_RDY_RX 0xFFC0 2A0C

SPORT1_DESCR_RDY_RX 0xFFC0 2E0C

SPORT0_DESCR_RDY_TX 0xFFC0 2B0C

SPORT1_DESCR_RDY_TX 0xFFC0 2F0C

UART0_DESCR_RDY_RX 0xFFC0 1A0C

UART1_DESCR_RDY_RX 0xFFC0 1E0C

UART0_DESCR_RDY_TX 0xFFC0 1B0C

UART1_DESCR_RDY_TX 0xFFC0 1F0C

USBD (N/A)
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Figure 9-11. Peripheral DMA Current Descriptor Pointer Register

Table 9-10. Peripheral DMA Current Descriptor Pointer Register MMR 
Assignments 

Register Name Memory-Mapped Address

SPI0_CURR_PTR 0xFFC0 3200

SPI1_CURR_PTR 0xFFC0 3600

SPORT0_CURR_PTR_RX 0xFFC0 2A00

SPORT1_CURR_PTR_RX 0xFFC0 2E00

SPORT0_CURR_PTR_TX 0xFFC0 2B00

SPORT1_CURR_PTR_TX 0xFFC0 2F00

UART0_CURR_PTR_RX 0xFFC0 1A00

UART1_CURR_PTR_RX 0xFFC0 1E00

UART0_CURR_PTR_TX 0xFFC0 1B00

UART1_CURR_PTR_TX 0xFFC0 1F00

USBD (N/A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Current Descriptor 
Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Current Descriptor Pointer Register
RO

Reset = 0x0000
For MMR 
assignments, see 
Table 9-10.
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Peripheral DMA IRQ Status Register
The peripheral’s DMA IRQ Status register, shown in Figure 9-12, is a 
sticky register that records the occurrence of any of its interrupt sources.

Figure 9-12. Peripheral DMA IRQ Status Register

Table 9-11. Peripheral DMA Interrupt Status Register MMR 
Assignments

Register Name Memory-Mapped Address

SPI0_DMA_INT 0xFFC0 320E

SPI1_DMA_INT 0xFFC0 360E

SPORT0_IRQSTAT_RX 0xFFC0 2A0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

SPORT0_IRQSTAT_TX 0xFFC0 2B0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

UART0_IRQSTAT_RX 0xFFC0 1A0E

UART1_IRQSTAT_RX 0xFFC0 1E0E

UART0_IRQSTAT_TX 0xFFC0 1B0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Completion IRQ 
Status - W1C

Peripheral DMA IRQ Status Register
RO. W1C.

Peripheral-Dependent 
Error IRQ Status - W1C

1 - Interrupt generated
at end of DMA
transfer sequence

Bus Error IRQ Status - 
W1C
1 -  Bus error interrupt

generated because 
of misaligned data
or illegal memory 
access

Reset = 0x0000

1 - Peripheral-specific
interrupt generated

For MMR assign-
ments, see 
Table 9-11.
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Each ADSP-BF535 processor DMA channel can produce three types of 
interrupts: 

• A completion interrupt, generated when a DMA transfer sequence 
completes

• A bus error interrupt, generated when one of two events occur:

• Misalignment of an address to data size (see “Data Misalign-
ment” on page 9-46)

• A memory access resulting in an error response (see “Illegal 
Memory Access” on page 9-46)

• A peripheral specific interrupt (see the appropriate chapter for 
more information)

If the Interrupt on Completion (IOC) bit of the peripheral’s DMA Con-
figuration register is set, an interrupt is generated at the end of a DMA 
transfer sequence, and the Completion IRQ Status bit is set in the periph-
eral’s DMA IRQ Status register:

• The Interrupt on Error Enable bit is associated with peripheral spe-
cific interrupts.

• The Bus Error IRQ Status bit is non-maskable because of misalign-
ment or illegal access. 

For conditions resulting in a peripheral specific interrupt, see the chapter 
that describes the peripheral.

UART1_IRQSTAT_TX 0xFFC0 1F0E

USBD_DMAIRQ 0xFFC0 4446

Table 9-11. Peripheral DMA Interrupt Status Register MMR 
Assignments (Cont’d)

Register Name Memory-Mapped Address
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Table 9-12 lists the peripheral DMA control registers.

Table 9-12. Peripheral DMA Control Registers 

Peripheral Config 
Register

Next 
Descriptor 
Pointer 
Register

Descriptor 
Ready 
Register

Interrupt 
Status 
Register

Current 
Descriptor 
Pointer 
Register

Start 
Address 
High 
Register

Start 
Address 
Low 
Register

Transfer 
Count 
Register

MemDMA 
(Source)

MDS_
DCFG

MDS_
DND

MDS_
DDR

MDS_
DI

MDS_
DCP

MDS_
DSAH

MDS_
DSAL

MDS_
DCT

MemDMA 
(Destina-
tion)

MDD_
DCFG

MDD_
DND

MDD_
DDR

MDD_
DI

MDD_
DCP

MDD_
DSAH

MDD_
DSAL

MDD_
DCT

SPI SPIx_
CONFIG

SPIx_
NEXT_
DESCR

SPIx_
DESCR_
RDY

SPIx_
DMA_
INT

SPIx_
CURR_
PTR

SPIx_
START_
ADDR_
HI

SPIx_
START_
ADDR_
LO

SPIx_
COUNT

SPORTx 
RX

SPORTx_
CONFIG_
DMA_
RX

SPORTx_
NEXT_
DESCR_
RX

SPORTx_
DESCR_
RDY_
RX

SPORTx_
IRQSTAT_
RX

SPORTx_
CURR_
PTR_RX

SPORTx_
START_
ADDR_
HI_RX

SPORTx_
START_
ADDR_
LO_RX

SPORTx_
COUNT_
RX

SPORTx 
TX

SPORTx_
CONFIG_
DMA_
TX

SPORTx_
NEXT_
DESCR_
TX

SPORTx_
DESCR_
RDY_TX

SPORTx_
IRQSTAT_
TX

SPORTx_
CURR_
PTR_TX

SPORTx_
START_
ADDR_
HI_TX

SPORTx_
START_
ADDR_
LO_TX

SPORTx_
COUNT_
TX

UARTx RX UARTx_
CONFIG_
RX

UARTx_
NEXT_
DESCR_
RX

UARTx_
DESCR_
RDY_RX

UARTx_
IRQSTAT_
RX

UARTx_
CURR_
PTR_RX

UARTx_
START_
ADDR_
HI_RX

UARTx_
START_
ADDR_
LO_RX

UARTx_
COUNT_
RX

UARTx TX UARTx_
CONFIG_
TX

UARTx_
NEXT_
DESCR_
TX

UARTx_
DESCR_
RDY_TX

UARTx_
IRQSTAT_
TX

UARTx_
CURR_
PTR_TX

UARTx_
START_
ADDR_
HI_TX

UARTx_
START_
ADDR_
LO_TX

UARTx_
COUNT_
TX

USB USBD_
DMACFG

N/A N/A USBD_
DMAIRQ

N/A USBD_
DMABH

USBD_
DMABL

USBD_
DMACT
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Memory DMA (MemDMA)
The Memory DMA (MemDMA) controller provides memory-to-memory 
DMA transfers among the ADSP-BF535 processor memory spaces. These 
memory spaces include the Peripheral Component Interconnect (PCI) 
address spaces, L1, L2, external synchronous, and asynchronous 
memories.

The MemDMA controller consists of two channels—one for the source, 
which is used to read from memory, and one for the destination, which is 
used to write to memory. Both channels share a 16-entry, 32-bit FIFO. 
The source DMA channel fills the FIFO; the destination DMA channel 
empties it. The FIFO depth significantly improves throughput on block 
transfers between internal and external memory. The FIFO supports 8-, 
16-, and 32-bit transfers. However, 8- and 16-bit transfers use only part of 
the 32-bit data bus for each transfer; therefore, the throughput for these 
transfer sizes is less than for full, 32-bit DMA operations.

The MemDMA controller does not support autobuffer based DMA. 
Transfers using the MemDMA controller must use descriptor based 
DMA. Two separate linked lists of descriptor blocks are required—one for 
the source DMA channel and one for the destination DMA channel. The 
separation of control allows an off-chip host processor to manage one list 
through the PCI port bus and the core processor to manage the other list. 
For a detailed explanation of descriptor based DMA, see “Descriptor 
Based DMA” on page 9-3.

 Because the source and destination DMA channels share a single 
FIFO buffer, the descriptor blocks must be configured to have the 
same transfer count and data size.

It is preferable to activate interrupts on only one channel. This eliminates 
ambiguity when trying to identify the channel (either source or destina-
tion) that requested the interrupt.
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MemDMA Control Registers
MemDMA control registers are like DMA control registers but have fewer 
bit assignments. Because MemDMA provides only memory-to-memory 
DMA transfers, MemDMA control registers contain no peripheral depen-
dent bits.

MemDMA control registers consist of source registers, used to read from 
memory, and destination registers, used to write to memory. This section 
shows destination registers first, then source registers. For descriptions of 
the registers, see the related DMA register.
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Destination Memory DMA Configuration Register 
(MDD_DCFG)

Figure 9-13 shows the Destination Memory DMA Configuration register. 
The related DMA register is described in “Peripheral DMA Configuration 
Register” on page 9-16.

Figure 9-13. Destination Memory DMA Configuration Register

000 100

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Destination Memory DMA Configuration Register (MDD_DCFG)
Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit.

DMA Enable
0 - Disabled
1 - Enabled

DBO (Descriptor 
Block Owner) - RO

Reset = 0x0002

DCS (DMA Completion 
Status) - RO
0 - Successful completion
1 - Error

IOC (Interrupt on 
Completion) - RO

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit

word

DMA Buffer Status - RO
00 - Buffer empty
01 - 1 to 7 words present
10 - 8 to 15 words present
11 - Buffer full (16 words present,

actively updated)

0 - Processor
1 - DMA engine

1 - Interrupt generated
at end of DMA
transfer sequence

Data Buffer Clear 
0 - Normal buffer

operation
1 - Clear buffer

Data Size Bit 1 
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

0xFFC0 3802



MemDMA Control Registers

9-34 ADSP-BF535 Blackfin Processor Hardware Reference
 

Destination Memory DMA Transfer Count Register 
(MDD_DCT)

Figure 9-14 shows the Destination Memory DMA Transfer Count regis-
ter. The related DMA register is described in “Peripheral DMA Transfer 
Count Register” on page 9-19.

Figure 9-14. Destination Memory DMA Transfer Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Transfer Count (MDD_DCT)
RO

DMA Block Transfer 
Count[15:0]

000 Reset = 0x00000xFFC0 3808
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Destination Memory DMA Start Address Registers 
(MDD_DSAH, MDD_DSAL)

Figure 9-15 shows the Destination DMA Start Address registers. The 
related DMA registers are found in “Peripheral DMA Start Address Regis-
ters” on page 9-21.

Figure 9-15. Destination Memory DMA Start Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Start Address High Register (MDD_DSAH)
RO

Destination DMA Start 
Address High[31:16]

Destination Memory DMA Start Address Low Register (MDD_DSAL)
RO

Destination DMA Start 
Address Low [15:0]

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

0xFFC0 3804

0xFFC0 3806
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Destination Memory DMA Next Descriptor Pointer 
Register (MDD_DND)

Figure 9-16 shows the Destination Memory DMA Next Descriptor 
Pointer register. The related DMA register is described in “Peripheral 
DMA Next Descriptor Pointer Register” on page 9-23.

Destination Memory DMA Descriptor Ready 
Register (MDD_DDR)

Figure 9-17 shows the Destination Memory DMA Descriptor Ready reg-
ister. The related DMA register is described in “Peripheral DMA 
Descriptor Ready Register” on page 9-25.

Figure 9-16. Destination Memory DMA Next Descriptor Pointer Register

Figure 9-17. Destination Memory DMA Descriptor Ready Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Next Descriptor Pointer Register (MDD_DND)

Next Descriptor 
Pointer[15:0]

Reset = 0x00000xFFC0 380A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Descriptor Ready Register (MDD_DDR)

Reactivate Descriptor 
Pointer

Reset = 0x0000

1 - Reactivate Descriptor
Pointer

0xFFC0 380C
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Destination Memory DMA Current Descriptor 
Pointer Register (MDD_DCP)

Figure 9-18 shows the Destination Memory DMA Current Descriptor 
Pointer register. The related DMA register is described in “Peripheral 
DMA Current Descriptor Pointer Register” on page 9-26.

Figure 9-18. Destination Memory DMA Current Descriptor Pointer 
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Current Descriptor Pointer Register (MDD_DCP)
RO

Reset = 0x0000

Current Descriptor 
Pointer[15:0]

0xFFC0 3800
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Destination Memory DMA Interrupt Register 
(MDD_DI)

Figure 9-19 shows the Destination Memory DMA Interrupt register. The 
related DMA register is described in “Peripheral DMA IRQ Status Regis-
ter” on page 9-28.

Figure 9-19. Destination Memory DMA Interrupt Register

0 00 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0

1 0

0

Destination Memory DMA Interrupt Register (MDD_DI)

Interrupt on Completion
W1C

Reset = 0x0000

Interrupt on DMA Bus 
Error - W1C

1 - Interrupt generated
at end of DMA
transfer sequence

1 - Bus error interrupt
generated because
of misaligned data
or illegal memory 
access

0xFFC0 380E
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Source Memory DMA Configuration Register 
(MDS_DCFG)

Figure 9-20 shows the Source Memory DMA Configuration register. The 
related DMA register is described in “Peripheral DMA Configuration 
Register” on page 9-16.

Figure 9-20. Source Memory DMA Configuration Register

0000 0 00 0

Source Memory DMA Configuration Register (MDS_DCFG)

DMA Enable 
0 - Disabled
1 - Enabled

DBO (Descriptor Block 
Owner) - RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 Reset = 0x0000

DCS (DMA Completion 
Status) - RO

DMA Buffer Status[1:0] - RO

IOC (Interrupt on 
Completion Enable) - 
RO

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit

word

Data Buffer Clear 
0 - Normal buffer

operation
1 - Clear buffer

1 - Interrupt generated
at end of DMA
transfer sequence

0 - Processor
1 - DMA engine

0 - Successful completion
1 - Error

00 - Buffer empty
01 - 1 to 7 words present
10 - 8 to 15 words present
11 - Buffer full (16 words

present, actively updated)

Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit.

Data Size Bit 1 
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

0xFFC0 3902
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Source Memory DMA Transfer Count Register 
(MDD_DCT)

Figure 9-21 shows the Source Memory DMA Transfer Count register. 
The related DMA register is described in “Peripheral DMA Transfer 
Count Register” on page 9-19.

Figure 9-21. Source Memory DMA Transfer Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Transfer Count Register (MDS_DCT)
RO

DMA Block Transfer 
Count[12:0]

Reset = 0x00000xFFC0 3908
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Source Memory DMA Start Address Registers 
(MDS_DSAH, MDS_DSAL)

Figure 9-22 shows the Source Memory DMA Start Address registers. The 
related DMA registers are described in “Peripheral DMA Start Address 
Registers” on page 9-21.

Figure 9-22. Source Memory DMA Start Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Start Address High Register (MDS_DSAH)
RO

Source DMA Start 
Address High [31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Start Address Low Register (MDS_DSAL)
RO

Source DMA Start 
Address Low [15:0]

Reset = 0x0000

Reset = 0x0000

0xFFC0 3904

0xFFC0 3906
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Source Memory DMA Next Descriptor Pointer 
Register (MDS_DND)

Figure 9-23 shows the Source Memory DMA Next Descriptor Pointer 
register. The related DMA register is described in “Peripheral DMA Next 
Descriptor Pointer Register” on page 9-23.

Source Memory DMA Descriptor Ready Register 
(MDS_DDR)

Figure 9-24 shows the Source DMA Descriptor Ready register. The 
related DMA register is described in “Peripheral DMA Descriptor Ready 
Register” on page 9-25.

Figure 9-23. Source Memory DMA Next Descriptor Pointer Register

Figure 9-24. Source Memory DMA Descriptor Ready Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Next Descriptor Pointer Register (MDS_DND)

Next Descriptor 
Pointer[15:0] 

Reset = 0x00000xFFC0 390A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Descriptor Ready Register (MDS_DDR)

Reactivate Descriptor 
Pointer

Reset = 0x0000

1 - Reactivate Descriptor
   Pointer

0xFFC0 390C
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Source Memory DMA Current Descriptor Pointer 
Register (MDS_DCP)

Figure 9-25 shows the Source Memory DMA Current Descriptor Pointer 
register. The related DMA register is described in “Peripheral DMA Cur-
rent Descriptor Pointer Register” on page 9-26.

Source Memory DMA Interrupt Register (MDS_DI)
Figure 9-26 shows the Source Memory DMA Interrupt register. The 
related DMA register is described in “Peripheral DMA IRQ Status Regis-
ter” on page 9-28.

Figure 9-25. Source Memory DMA Current Descriptor Pointer Register

Figure 9-26. Source Memory DMA Interrupt Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Current Descriptor Pointer Register (MDS_DCP)
RO

Current Descriptor 
Pointer[15:0] - RO

Reset = 0x00000xFFC0 3900

000000000000 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00

Source Memory DMA Interrupt Register (MDS_DI)

Interrupt on Completion

Reset = 0x0000

Interrupt on DMA Bus 
Error

1 - Interrupt generated
at end of DMA
transfer sequence

1 - Bus error interrupt
generated because 
of misaligned data
or illegal memory 
access

0xFFC0 390E
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Performance/Throughput for MemDMA
Performance and throughput numbers for the MemDMA controller can 
be found in “DAB Performance” on page 7-11.

Note that reads from EBIU lower performance because of the higher 
latency of off-chip memory reads versus writes. Also, throughput is 
reduced for partial bus-width transfers (that is, specifying 8- or 16-bit 
DMA transfer widths instead of 32-bit transfer widths). Bus arbitration 
induces additional latency.

Note the Memory DMA architecture achieves highest throughput on 
block copies between external SDRAM and internal memory. L1-to-L2 
transfer throughput is less, because only the DAB bus is employed.

The Memory DMA controller performs a burst transfer across the DAB 
bus to fill the FIFO, then a burst transfer across the DAB bus to empty the 
FIFO in a serialized fashion. Likewise, external-to-external block copies 
are also serialized across the EAB bus.

 Note that DMA descriptor list fetches always occur across the DAB 
bus.

DMA Abort Conditions
These conditions cause a DMA abort:

• The processor clears the DMA Enable bit during active DMA 
processing.

• The DMA channel does not relinquish the descriptor block back to 
the processor, nor does it write back error status information. No 
interrupt is generated.
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Direct Memory Access

• The processor clears the DMA buffer during active DMA process-
ing by setting the Buffer Clear bit (bit 7 of the DMA 
Configuration register).

• The DMA channel relinquishes the descriptor block to the proces-
sor and writes back error status information.

• A system software reset occurs during active DMA processing.

• This action causes loss of state and immediate termination of DMA 
processing. The DMA channel does not relinquish the descriptor 
block back to the processor, nor does it write back error status 
information. No interrupt is generated.

• Any other error condition results in a proper error abort.

• The DMA channel relinquishes the descriptor block to the proces-
sor and writes back error status. If enabled, an interrupt is 
generated.

DMA Bus Error Conditions
Two general conditions cause DMA bus error conditions: 

• Data misalignment

• Illegal memory access 
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Data Misalignment
Data misalignment occurs when the data size to be transferred is not con-
sistent with the current address. Misalignment includes:

• Descriptor fetch on a byte boundary

• 16-bit data access on other than a half word boundary

• 32-bit data access on other than a word boundary

Data misalignment causes these things to occur:

• The DMA channel does not access the bus for data transfers.

• The DMA Enable bit (bit 0 of the Configuration Word) is cleared.

• A Bus Error interrupt is generated, and Bit 2 of the IRQ Status reg-
ister is set. 

• The Configuration Word is not written back to the descriptor 
block.

Illegal Memory Access
If an illegal memory access occurs, such as access to MMR space, the pro-
cessor responds with an error, and:

• The DMA channel completes the current single or burst transfer.

• The DMA Enable bit (bit 0 of the Configuration Word) is cleared.

• The Bus Error interrupt is generated, and Bit 2 of the IRQ Status 
register is set. 

• The Configuration Word is not written back to the descriptor 
block.
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10 SPI COMPATIBLE PORT 
CONTROLLERS

The ADSP-BF535 processor has two independent Serial Peripheral Inter-
face (SPI) ports, SPI0 and SPI1, that provide an I/O interface to a wide 
variety of SPI compatible peripheral devices. Each SPI port has its own set 
of control registers and data buffers.

With a range of configurable options, the SPI ports provide a glueless 
hardware interface with other SPI compatible devices. Typical SPI 
compatible peripheral devices that can be used to interface to the 
ADSP-BF535 SPI compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation
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The ADSP-BF535 SPI is an industry-standard synchronous serial link that 
supports communication with multiple SPI compatible devices. The SPI 
peripheral is a synchronous, 4-wire interface consisting of two data pins 
(MOSI and MISO), one device select pin (SPISS), and a gated clock pin (SCK). 
The ADSP-BF535 SPI supports these features:

• Full duplex operation

• Master-slave mode multimaster environment 

• Open drain outputs 

• Programmable baud rates, clock polarities, and phases 

• Slave operations with another master SPI device

The SPI can operate in a multimaster environment by interfacing with 
several other devices, acting as either a master device or a slave device. In a 
multimaster environment, the SPI interface uses open drain outputs to 
avoid data bus contention.

Figure 10-1 provides a block diagram of the ADSP-BF535 SPI. The inter-
face is essentially a shift register that serially transmits and receives data 
bits, one bit a time at the SCK rate, to and from other SPI devices. SPI data 
is transmitted and received at the same time through the use of a shift reg-
ister. When an SPI transfer occurs, data is simultaneously transmitted 
(shifted serially out of the shift register) as new data is received (shifted 
serially into the other end of the same shift register). The SCK synchronizes 
the shifting and sampling of the data on the two serial data pins.
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SPI Compatible Port Controllers

During SPI data transfers, one SPI device acts as the SPI link master, 
where it controls the data flow by generating the SPI serial clock and 
asserting the SPI device select signal (SPISS). The other SPI device acts as 
the slave and accepts new data from the master into its shift register, while 
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple ADSP-BF535 processors can take turns being the 
master device, as can other microcontrollers or microprocessors. One mas-
ter device can also simultaneously shift data into multiple slaves (known as 
broadcast mode). However, only one slave may drive its output to write 
data back to the master at any given time. This must be enforced in broad-
cast mode, where several slaves can be selected to receive data from the 
master, but only one slave at a time can be enabled to send data back to 
the master.

Figure 10-1. ADSP-BF535 SPI Block Diagram
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In a multimaster or multidevice ADSP-BF535 environment where multi-
ple ADSP-BF535 processors are connected via their SPI ports, all MOSI 
pins are connected together, all MISO pins are connected together, and all 
SCK pins are connected together.

For a multislave environment, the ADSP-BF535 processor can make use 
of 14 programmable flags, PF2–PF15, that are dedicated SPI slave select 
signals for the SPI slave devices. SPI0 and SPI1 each have seven available 
slave select signals.

 At reset, the SPI is disabled and configured as a slave.

Interface Signals
The following sections discuss the SPI signals.

Serial Peripheral Interface Clock Signal (SCK) 
The SCK signal is the SPI clock signal. This control signal is driven by the 
master and controls the rate at which data is transferred. The master may 
transmit data at a variety of baud rates. SCK cycles once for each bit trans-
mitted. It is an output signal if the device is configured as a master, and an 
input signal if the device is configured as a slave.

The SCK signal is a gated clock that is active during data transfers only for 
the length of the transferred word. The number of active clock edges is 
equal to the number of bits driven on the data lines. Slave devices ignore 
the serial clock if the Serial Peripheral Slave Select Input (SPISS) is driven 
inactive (high). 

The SCK signal is used to shift out and shift in the data driven on the MISO 
and MOSI lines. The data is always shifted out on active edges of the clock 
and sampled on inactive edges of the clock. Clock polarity and clock phase 
relative to data are programmable in the SPIx Control register (SPIx_CTL) 
and define the transfer format.



ADSP-BF535 Blackfin Processor Hardware Reference 10-5 
 

SPI Compatible Port Controllers

Serial Peripheral Interface Slave Select Input 
Signal

The SPISS signal is the SPI Serial Peripheral Slave Select Input signal. 
This is an active-low signal used to enable an ADSP-BF535 processor 
when it is configured as a slave device. This input-only pin behaves like a 
chip select and is provided by the master device for the slave devices. For a 
master device, it can act as an error signal input in case of the multimaster 
environment. In multimaster mode, if the SPISS input signal of a master is 
asserted (driven low), an error has occurred. This means that another 
device is also trying to be the master device. 

Master Out Slave In (MOSI)
The MOSI signal is the Master Out Slave In pin, one of the bidirectional 
I/O data pins. If the ADSP-BF535 processor is configured as a master, the 
MOSI pin becomes a data transmit (output) pin, transmitting output data. 
If the ADSP-BF535 processor is configured as a slave, the MOSI pin 
becomes a data receive (input) pin, receiving input data. In an 
ADSP-BF535 SPI interconnection, the data is shifted out from the MOSI 
output pin of the master and shifted into the MOSI input(s) of the slave(s).

Master In Slave Out (MISO)
The MISO signal is the Master In Slave Out pin, one of the bidirectional 
I/O data pins. If the ADSP-BF535 processor is configured as a master, the 
MISO pin becomes a data receive (input) pin, receiving input data. If the 
ADSP-BF535 is configured as a slave, the MISO pin becomes a data trans-
mit (output) pin, transmitting output data. In a ADSP-BF535 SPI 
interconnection, the data is shifted out from the MISO output pin of the 
slave and shifted into the MISO input pin of the master. 

 Only one slave is allowed to transmit data at any given time.
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The SPI configuration example in Figure 10-2 illustrates how the 
ADSP-BF535 processor can be used as the slave SPI device. The 8-bit host 
microcontroller is the SPI master.

Interrupt Behavior
The behavior of the SPI interrupt signal depends on the transfer initiation 
mode bit field (TIMOD) in the SPI Control register. In DMA mode, the 
interrupt can be generated upon completion of a DMA multiword transfer 
or upon an SPI error condition (MODF, TXE when TRAN = 0, or RBSY when 
TRAN = 1). When not using DMA mode, an interrupt is generated when 
the SPI is ready to accept new data for a transfer. The TXE and RBSY error 
conditions do not generate interrupts in these modes. An interrupt is also 
generated in a master when the mode fault error occurs.

For more information about this interrupt output, see the discussion of 
the TIMOD bits in “SPIx Control Register (SPIx_CTL)” on page 10-8.

Figure 10-2. ADSP-BF535 Processor as Slave SPI Device

8-bit Host
Microcontroller
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S_SEL
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SPISS

MOSI

MISO

Slave SPI Device
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SPI Registers
The SPI peripheral on the ADSP-BF535 processor includes a number of 
user-accessible registers. Some of these registers are also accessible through 
the DMA bus. Four registers contain control and status information: 
SPIx_BAUD, SPIx_CTL, SPIx_FLG, and SPIx_ST. Two registers are used for 
buffering receive and transmit data: SPIx_RDBR and SPIx_TDBR. Eight reg-
isters are related to DMA functionality. The shift register, SFDR, is internal 
to the SPI module and is not directly accessible.

See “Error Signals and Flags” on page 10-35 for more information about 
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-26 for more information about 
SPI register and bit functions.

Non-DMA Registers
The following sections describes the SPI non-DMA registers.

SPIx Baud Rate Register (SPIx_BAUD)

The SPIx Baud Rate register (SPIx_BAUD) is used to set the bit transfer rate 
for a master device. When configured as a slave, the value written to this 
register is ignored. The serial clock frequency is determined by this 
formula:

• SCKx frequency = (System clock frequency)/(2  SPIx_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.
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Table 10-2 lists several possible baud rate values for SPIx_BAUD.

SPIx Control Register (SPIx_CTL)

The SPIx_CTL register is used to configure and enable the SPI system. This 
register is used to enable the SPI interface, select the device as a master or 
slave, and determine the data transfer format and word size.

Figure 10-3. SPIx Baud Rate Registers

Table 10-1. SPIx Baud Rate Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_BAUD 0xFFC0 300A

SPI1_BAUD 0xFFC0 340A

Table 10-2. SPI Master Baud Rate Example 

SPIBAUD Decimal Value SPI Clock (SCK) Divide 
Factor

Baud Rate for 
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate
SCLK / (2 xSPIBAUD)

Reset = 0x0000

SPIx Baud Rate Register (SPIx_BAUD)

For MMR assign-
ments, see 
Table 10-1.
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Figure 10-4 provides the bit descriptions for SPIx_CTL.

Figure 10-4. SPIx Control Register

Table 10-3. SPIx Control Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CTL 0xFFC0 3000

SPI1_CTL 0xFFC0 3400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD (Transfer Initiation 
Mode)
00 - Set transfer from read 

of receive buffer, interrupt
when receive buffer is full

01 - Set transfer from write 
to transmit buffer,
interrupt when
transmit buffer is empty

10 - DMA transfer mode
IRQ configuration from
DMA

11 - Reserved

SZ (Send Zero)
Send 0 or last word when
SPIx_TRBR empty
0 - Send last word
1 - Send 0s

GM (Get More Data)
When SPIx_RDBR full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite
previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disable
1 - Enable

WOM (Open Drain Data)
Output enable (for MOSI
and MISO)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format
0 - SCK toggles at middle

of transfer
1 - SCK toggles from start

of transfer

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPIx Control Register (SPIx_CTL)

For MMR 
assignments, see 
Table 10-3.
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SPIx Flag Register (SPIx_FLG)

If the SPI is enabled as a master, the SPI uses SPIx_FLG to enable up to 14 
general-purpose programmable flag pins (7 for each SPI) to be used as 
individual slave select lines. In slave mode, the SPIx_FLG bits have no 
effect, and each SPI uses the SPISS input as a slave select. Figure 10-5 
shows the SPIx_FLG register diagram.

Figure 10-5. SPIx Flag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPIxSEL1 disabled
1 - SPIxSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPIxSEL2 disabled
1 - SPIxSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPIxSEL3 disabled
1 - SPIxSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPIxSEL4 disabled
1 - SPIxSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPIxSEL5 disabled
1 - SPIxSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPIxSEL6 disabled
1 - SPIxSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPIxSEL7 disabled
1 - SPIxSEL7 enabled

FLG7 (Slave Select 
Value 7)
SPIxSEL7 value

FLG6 (Slave Select 
Value 6)
SPIxSEL6 value

FLG5 (Slave Select 
Value 5)
SPIxSEL5 value

FLG4 (Slave Select 
Value 4)
SPIxSEL4 value

FLG3 (Slave Select 
Value 3)
SPIxSEL3 value

FLG2 (Slave Select 
Value 2)
SPIxSEL2 value

FLG1 (Slave Select 
Value 1)
SPIxSEL1 value

SPIx Flag Register (SPIx_FLG)

For MMR 
assignments, 
see Table 10-4.
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The SPIx_FLG register consists of two sets of bits that function as follows.

• Slave Select Enable (FLSx) bits

• Each FLSx bit corresponds to a Programmable Flag (PFx) pin. 
When an FLSx bit is set, the corresponding PFx pin is driven as a 
slave select. For example, if FLS1 is set in SPI0_FLG, PF2 is driven as 
a slave select (SPI0SEL1). Table 10-5 and Table 10-6 show the asso-
ciation of the FLSx bits and the corresponding PFx pins.

• If the FLSx bit is not set, the general-purpose programmable flag 
registers (FIO_DIR and others) configure and control the corre-
sponding PFx pin.

• Slave Select Value (FLGx) bits

• When a PFx pin is configured as a slave select output, the FLGx bits 
can determine the value driven onto the output. If the CPHA bit in 
SPIx_CTL is set, the output value is set by software control of the 
FLGx bits. The SPI protocol permits the slave select line to either 
remain asserted (low) or be deasserted between transferred words. 
The user must set or clear the appropriate FLGx bits. For example, 
to drive PF3 as a slave select, FLS1 in SPI1_FLG must be set. Clearing 
FLG1 in SPI1_FLG drives PF3 low; setting FLG1 drives PF3 high. The 
PF3 pin can be cycled high and low between transfers by setting 
and clearing FLG1. Otherwise, PF3 remains active (low) between 
transfers.

Table 10-4. SPIx Flag Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_FLG 0xFFC0 3002

SPI1_FLG 0xFFC0 3402
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• If CPHA = 0, the SPI hardware sets the output value and the FLGx 
bits are ignored. The SPI protocol requires that the slave select be 
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PF3 as a slave select pin, 
it is only necessary to set the FLS1 bit in SPI1_FLG. It is not neces-
sary to write to the FLG1 bit, because the SPI hardware 
automatically drives the PF3 pin. Table 10-5 and Table 10-6, 
respectively, list the SPI0_FLG and SPI1_FLG bit mapping to the 
PFx pins.

Table 10-5. SPI0_FLG Bit Mapping to PFx Pins 

Bit Name Function PFx Pin

0 Reserved

1 FLS1 SPI0SEL1 Enable PF2

2 FLS2 SPI0SEL2 Enable PF4

3 FLS3 SPI0SEL3 Enable PF6

4 FLS4 SPI0SEL4 Enable PF8

5 FLS5 SPI0SEL5 Enable PF10

6 FLS6 SPI0SEL6 Enable PF12

7 FLS7 SPI0SEL7 Enable PF14

8 Reserved

9 FLG1 SPI0SEL1 Value PF2

10 FLG2 SPI0SEL2 Value PF4

11 FLG3 SPI0SEL3 Value PF6

12 FLG4 SPI0SEL4 Value PF8

13 FLG5 SPI0SEL5 Value PF10

14 FLG6 SPI0SEL6 Value PF12

15 FLG7 SPI0SEL7 Value PF14
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Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When 
enabled as a master, SPISS can serve as an error detection input for the SPI 
in a multimaster environment. The PSSE bit in SPIx_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master-mode error input. 
Otherwise, SPISS is ignored. The state of these input pins can be observed 
in the Flag Clear register (FIO_FLAG_C) or the Flag Set register 
(FIO_FLAG_S).

Table 10-6. SPI1_FLG Bit Mapping to PFx Pins 

Bit Name Function PFx Pin

0 Reserved

1 FLS1 SPI1SEL1 Enable PF3

2 FLS2 SPI1SEL2 Enable PF5

3 FLS3 SPI1SEL3 Enable PF7

4 FLS4 SPI1SEL4 Enable PF9

5 FLS5 SPI1SEL5 Enable PF11

6 FLS6 SPI1SEL6 Enable PF13

7 FLS7 SPI1SEL7 Enable PF15

8 Reserved

9 FLG1 SPI1SEL1 Value PF3

10 FLG2 SPI1SEL2 Value PF5

11 FLG3 SPI1SEL3 Value PF7

12 FLG4 SPI1SEL4 Value PF9

13 FLG5 SPI1SEL5 Value PF11

14 FLG6 SPI1SEL6 Value PF13

15 FLG7 SPI1SEL7 Value PF15
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Multiple Slave SPI Systems

The FLSx bits in SPIx_FLG are used in a multiple slave SPI environment. 
For example, if there are eight SPI devices in the system including an 
ADSP-BF535 processor master, the master ADSP-BF535 processor can 
support the SPI mode transactions across the other seven devices. This 
configuration requires only one master ADSP-BF535 processor in this 
multislave environment. For example, assume that SPI0 is the master. The 
seven flag pins (PF2, PF4, PF6, PF8, PF10, PF12, and PF14) on the 
ADSP-BF535 processor master can be connected to each of the slave SPI 
device’s SPISS pins. In this configuration, the FLSx bits in SPIx_FLG can be 
used in three cases.

In cases 1 and 2, the ADSP-BF535 processor is the master and the seven 
microcontrollers/peripherals with SPI interfaces are slaves. The 
ADSP-BF535 processor can:

• Transmit to all seven SPI devices at the same time in a broadcast 
mode. Here, all FLSx bits are set. 

• Receive and transmit from one SPI device by enabling only one 
slave SPI device at a time. 

In case 3, all eight devices connected via SPI ports can be ADSP-BF535 
processors.

• If all the slaves are also ADSP-BF535 processors, then the requestor 
can receive data from only one ADSP-BF535 processor (enabled by 
clearing the EMISO bit in the six other slave processors) at a time 
and transmit broadcast data to all seven at the same time. This 
EMISO feature may be available in some other microcontrollers. 
Therefore, it is possible to use the EMISO feature with any other SPI 
device that includes this functionality.
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Figure 10-6 shows one ADSP-BF535 processor as a master with three 
ADSP-BF535 processors (or other SPI compatible devices) as slaves.

SPIx Status Register (SPIx_ST)

The SPI Status register (SPIx_ST) is used to detect when an SPI transfer is 
complete or if transmission/reception errors occur. The SPIx_ST register 
can be read at any time.

Some of the bits in SPIx_ST are read-only and other bits are sticky. Bits 
that just provide information about the SPI are read-only. These bits are 
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by 
software. To clear a sticky bit, the user must write a 1 to the desired bit 
position of SPIx_ST. For example, if the TXE bit is set, the user must write 
a 1 to bit 2 of SPIx_ST to clear the TXE error condition. This allows the 
user to read SPIx_ST without changing its value.

Figure 10-6. Single Master, Multiple Slave Configuration

MISO SCK MOSI SPISS MISO SCK MOSI SPISS MISO SCK MOSI SPISS
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Sticky bits can only be cleared by writing a 1 to them. Writing 0 does not 
have any effect on a sticky bit. This is known as a write-1-to-clear (W1C) 
bit.

The transmit buffer becomes full after it is written to. It becomes empty 
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift 
register value is loaded into the receive buffer. It becomes empty when the 
receive buffer is read.

Figure 10-7. SPIx Status Register

Table 10-7. SPIx Status Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_ST 0xFFC0 3004

SPI1_ST 0xFFC0 3404

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) - 
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) - 
W1C
Set when transmission
occurred with no new data in
 SPIx_TDBR

TXS (SPIx_TDBR Data Buf-
fer Status) - RO
0 - Empty
1 - Full

SPIx Status Register (SPIx_ST)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may 
have been transmitted

SPIx_RDBR Data Buffer Status - RO
0 - Empty
1 - Full

RBSY (Reception Error) - W1C
Set when data is received with
receive buffer full

For MMR 
assignments, 
see Table 10-7.
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SPIx Transmit Data Buffer Register (SPIx_TDBR)

The Transmit Data Buffer register (SPIx_TDBR) is a 16-bit read-write regis-
ter. Data is loaded into this register before being transmitted. Just prior to 
the beginning of a data transfer, the data in SPIx_TDBR is loaded into the 
Shift Data register (SFDR). A read of SPIx_TDBR can occur at any time and 
does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads 
data into this register for transmission just prior to the beginning of a data 
transfer. A write to SPIx_TDBR should not occur in this mode because this 
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of 
SPIx_TDBR are repeatedly transmitted. A write to SPIx_TDBR is permitted in 
this mode, and this data is transmitted.

If multiple writes to SPIx_TDBR occur while a transfer is already in prog-
ress, only the last data written is transmitted. None of the intermediate 
values written to SPIx_TDBR are transmitted. Multiple writes to SPIx_TDBR 
are possible, but not recommended.

Figure 10-8. SPIx Transmit Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer

SPIx Transmit Data Buffer Register (SPIx_TDBR)

For MMR 
assignments, 
see Table 10-8.
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SPIx Receive Data Buffer Register (SPIx_RDBR)

The Receive Data Buffer register (SPIx_RDBR) is a 16-bit read-only regis-
ter. At the end of a data transfer, the data in the shift register is loaded 
into SPIx_RDBR. During a DMA receive operation, the data in SPIx_RDBR 
is automatically read by the DMA. 

SPIx RDBR Shadow Register (SPIx_SHADOW)

A shadow register for the receive data buffer, SPIx_RDBR, has been pro-
vided for use in debugging software. This register is at a different address 
than SPIx_RDBR, but its contents are identical to that of SPIx_RDBR. When 
a software read of SPIx_RDBR occurs, the RXS bit in SPIx_ST is cleared and 

Table 10-8. SPIx Transmit Data Buffer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_ST 0xFFC0 3004

SPI1_ST 0xFFC0 3404

Figure 10-9. SPIx Receive Data Buffer Register

Table 10-9. SPIx Receive Data Buffer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_RDBR 0xFFC0 3008

SPI1_RDBR 0xFFC0 3408

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer

SPIx Receive Data Buffer Register (SPIx_RDBR)
RO

For MMR 
assignments, 
see Table 10-9.
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an SPI transfer may be initiated (if TIMOD = 00 in SPIx_CTL). No such 
hardware action occurs when the shadow register is read. SPIx_SHADOW is a 
read-only register.

DMA Registers
The SPI DMA has two basic modes of operation—autobuffer and descrip-
tor. In autobuffer mode, all registers are read/write except the Current 
Descriptor Pointer register, which is read-only. In this mode, the DMA 
operates as a simple circular buffer. Autobuffer mode is enabled by writing 
to bit 4 of the DMA configuration register. In descriptor mode, descriptor 
work blocks are read from memory. In this mode, many registers and con-
figuration bits are no longer writable, since their values are loaded via 
descriptors. These include the DMA Start Address and Count registers 
and DMA Configuration register bits such as TRAN, DATA SIZE BIT 0, 
DATA SIZE BIT 1, and INTERRUPT ENABLE. Descriptor mode is initiated by 
writing to the Next Descriptor Pointer register, followed by a write to the 
DMA Configuration register. For more information about DMA, see 
“Direct Memory Access” on page 9-1.

Figure 10-10. SPIx RDBR Shadow Register

Table 10-10. SPIx RDBR Shadow Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_SHADOW 0xFFC0 300C

SPI1_SHADOW 0xFFC0 340C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

RDBR Shadow

SPIx RDBR Shadow Register (SPIx_SHADOW)
RO

For MMR 
assignments, see 
Table 10-10.
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SPIx DMA Current Descriptor Pointer Register (SPIx_CURR_PTR)

This 16-bit read-only register holds the lower 16 bits of the pointer to the 
current descriptor block for the SPI DMA receive operation. The full 
32-bit address to the current pointer is formed by concatenating the Next 
Descriptor Base Pointer register (DB_NDBP) with the DMA Current 
Descriptor Pointer register.

Figure 10-11. SPIx DMA Current Descriptor Pointer Register

Table 10-11. SPIx Current Descriptor Pointer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CURR_PTR 0xFFC0 3200

SPI1_CURR_PTR 0xFFC0 3600

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Current Descriptor Pointer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Current Descriptor Pointer Register (SPIx_CURR_PTR)
RO

For MMR 
assignments, see 
Table 10-11.
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SPIx DMA Configuration Register (SPIx_CONFIG)

The SPIx_CONFIG register, shown in Figure 10-12, is one of five registers 
that make up the descriptor block for a DMA transfer. These registers are 
accessible through the DMA bus.

Figure 10-12. SPIx DMA Configuration Register

000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DEN (DMA Enable) - RW
0 - Disabled
1 - Enabled

TRAN (Transfer Direction) - 
RO
0 - Memory read
1 - Memory write
Writable if DAUTO = 1

DCOME (Interrupt on 
Completion Enable) - RO
0 - Disables the channel’s

DMA complete interrupt
1 - Enables the channel’s

DMA complete interrupt
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

DAUTO 
(Autobuffer/Descriptor 
Mode) - RW
0 - Descriptor mode
1 - Autobuffer mode

FLSH (DMA Buffer Clear) - 
RW
Can be set following a DMA 
termination due to an error 
condition

DOWN (Ownership) - RO
0 - Core
1 - DMA

DS (DMA Completion Status) - 
RO
0 - Successful completion
1 - Error

FS (DMA Buffer Status) - RO
00 - Buffer empty
11 - Buffer full

Data Size Bit 1 - WO 
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if Autobuffer/Descriptor 
Mode = 1 (Shared with DMA 
Buffer Status bit)

MODF (Mode Fault Error) - RO
0 - No error
1 - Error

TXE (Transmit Underrun Error) - 
RO
Set = 0 only if TRAN = 1

RBSY (Receive Overflow Error) - 
RO
Set = 0 only if TRAN = 0

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

0 0 0 0 0 0 0 0 0 0 00 Reset 0x0000

SPIx DMA Configuration Register (SPIx_CONFIG)

For MMR 
assignments, see 
Table 10-12.
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SPIx DMA Start Address High Register (SPIx_START_ADDR_HI) 
and SPIx DMA Start Address Low Register 
(SPIx_START_ADDR_LO)

The SPIx_START_ADDR_HI and SPIx_START_ADDR_LO registers, shown in 
Figure 10-13, hold a pointer to the DMA address that is being accessed. 

Table 10-12. SPIx DMA Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CONFIG 0xFFC0 3202

SPI1_CONFIG 0xFFC0 3602

Figure 10-13. SPIx DMA Start Address High and Low Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Start Address High Register (SPIx_START_ADDR_HI)
RW if DAUTO = 1 in SPIx_CONFIG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Start Address Low Register (SPIx_START_ADDR_LO)
RW if DAUTO = 1 in SPIx_CONFIG

For MMR 
assignments, see 
Table 10-13.

For MMR 
assignments, see 
Table 10-13.
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SPIx DMA Count Register (SPIx_COUNT)

The SPIx_COUNT register, shown in Figure 10-14, holds the block word 
count (number of remaining words in the transfer).

Table 10-13. SPIx Start Address High and SPIx Start Address Low Register 
MMR Assignments

Register Name Memory-Mapped Address

SPI0_START_ADDR_HI 0xFFC0 3204

SPI1_START_ADDR_HI 0xFFC0 3604

SPI0_START_ADDR_LO 0xFFC0 3206

SPI1_START_ADDR_LO 0xFFC0 3606

Figure 10-14. SPIx DMA Count Register

Table 10-14. SPIx DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_COUNT 0xFFC0 3208

SPI1_COUNT 0xFFC0 3608

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Block Transfer Count

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Count Register (SPIx_COUNT)
RW if DAUTO = 1 in SPIx_CONFIG

For MMR 
assignments, see 
Table 10-14.
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SPIx DMA Next Descriptor Pointer Register (SPIx_NEXT_DESCR)

The SPIx_NEXT_DESCR register, shown in Figure 10-15, is used to write to 
the head of a descriptor list. It holds the address for the next transfer con-
trol block in a DMA operation. The Next Descriptor address [31:0], 
which provides a pointer to the address of the next descriptor block, is the 
concatenation of two registers:

Next Descriptor Address [31:0] = Next Descriptor Base Pointer [15:0] || 
Next Descriptor Pointer [15:0]

Figure 10-15. DMA Next Descriptor Pointer Register

Table 10-15. SPIx Next Descriptor Pointer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_NEXT_DESCR 0xFFC0 320A

SPI1_NEXT_DESCR 0xFFC0 360A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Next Descriptor Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Next Descriptor Pointer Register (SPIx_NEXT_DESCR)

For MMR 
assignments, see 
Table 10-15.
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SPIx DMA Descriptor Ready Register (SPIx_DESCR_RDY)

The SPIx_DESCR_RDY register, shown in Figure 10-16, is used to reactivate 
a descriptor fetch in the event of a stall (DOWN = 0). Write a 1 to bit 0 to 
reactivate a descriptor fetch.

Figure 10-16. SPIx DMA Descriptor Ready Register

Table 10-16. SPIx DMA Descriptor Ready Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_DESCR_RDY 0xFFC0 320C

SPI1_DESCR_RDY 0xFFC0 360C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reactivate Descriptor Fetch

Reset = 0x0000

SPIx DMA Descriptor Ready Register (SPIx_DESCR_RDY)

For MMR 
assignments, see 
Table 10-16.
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SPIx DMA Interrupt Register (SPIx_DMA_INT)

The SPIx_DMA_INT register, shown in Figure 10-17, indicates the SPI 
DMA interrupt status. Write a 1 to the corresponding bit to clear.

Register Functions
Table 10-18 shows the functions of the SPI registers.

Figure 10-17. SPIx DMA Interrupt Register

Table 10-17. SPIx DMA Interrupt Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_DMA_INT 0xFFC0 320E

SPI1_DMA_INT 0xFFC0 360E

0000000000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 Reset = 0x0000

DCOMI (DMA Interrupt on 
Completion)
0 - Inactive
1 - Complete

DERI (DMA Interrupt on Error)
0 - Inactive
1 - Error

Bus Error IRQ Status
0 - Inactive
1 - Bus error

SPIx DMA Interrupt Register (SPIx_DMA_INT)
W1C

For MMR 
assignments, see 
Table 10-17.
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Table 10-18. SPI Register Mapping

Register Name Function Notes

SPIx_CTL SPI port control SPE and MSTR bits can also be modified by 
hardware (when MODF is set)

SPIx_FLG SPI port flag

SPIx_ST SPI port status SPIF bit can be set by clearing SPE in 
SPIx_CTL

SPIx_TDBR SPI port transmit 
data buffer

Register contents can also be modified by 
hardware (by DMA and/or when SZ = 1 in 
SPIx_CTL)

SPIx_RDBR SPI port receive 
data buffer

When register is read, hardware events are 
triggered

SPIx_BAUD SPI port baud 
control

SPIx_SHADOW SPI port data Register has the same contents as 
SPIx_RDBR, but no action is taken when it 
is read

SPIx_CURR_PTR SPI port DMA 
current pointer

Register is always read-only

SPIx_CONFIG SPI port DMA con-
figuration

Five of the control bits (TRAN, DCOME, 
DERE, DATA SIZE BITS 0 and 1) can only 
be written to via software when the DAUTO 
bit is set

SPIx_START_ADDR_HI SPI port DMA start 
address (upper 16 
bits)

Register can only be written to via software 
when the DAUTO bit in SPIx_CONFIG is 
set

SPIx_START_ADDR_LO SPI port DMA start 
address (lower 16 
bits)

Register can only be written to via software 
when the DAUTO bit in SPIx_CONFIG is 
set

SPIx_COUNT SPI port DMA 
count

Register can only be written to via software 
when the DAUTO bit in SPIx_CONFIG is 
set

SPIx_NEXT_DESCR SPI port DMA next 
descriptor pointer

Register is concatenated with Next Descrip-
tor Base Pointer register to form head 
address
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SPI Transfer Formats
The ADSP-BF535 SPI supports four different combinations of serial clock 
phase and polarity, selectable using the CPOL and CPHA bits in SPIx_CTL.

The SPI transfer protocols shown in Figure 10-18 and Figure 10-19 dem-
onstrate the two basic transfer formats as defined by the CPHA bit. Two 
waveforms are shown for SCK: one for CPOL = 0 and the other for CPOL = 
1. The diagrams may be interpreted as master or slave timing diagrams 
since the SCK, MISO, and MOSI pins are directly connected between the mas-
ter and the slave. The MISO signal is the output from the slave (slave 
transmission), and the MOSI signal is the output from the master (master 
transmission). The SCK signal is generated by the master, and the SPISS 
signal is the slave device select input to the slave from the master. The dia-
grams represent an 8-bit transfer (SIZE = 0) with MSB first (LSBF = 0). 
Any combination of the SIZE and LSBF bits of SPIx_CTL is allowed. For 
example, a 16-bit transfer with LSB first is another possible configuration.

The clock polarity and the clock phase should be identical for the master 
device and the slave device involved in the communication link. The 
transfer format from the master may be changed between transfers to 
adjust to various requirements of a slave device.

SPIx_DESCR_RDY SPI port DMA 
descriptor ready

Write a 1 to bit 0 to reactivate a descriptor 
fetch

SPIx_DMA_INT SPI port interrupt 
status

All three Interrupt Status bits are sticky; 
write a 1 to the corresponding bit to clear

Table 10-18. SPI Register Mapping (Cont’d)

Register Name Function Notes
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When CPHA = 0, the slave select line, SPISS, must be inactive (high) 
between each serial transfer. This is controlled automatically by the SPI 
hardware logic. When CPHA = 1, SPISS may either remain active (low) 
between successive transfers or be inactive (high). This must be controlled 
by the software by manipulating SPIx_FLG.

Figure 10-18 shows the SPI transfer protocol for CPHA = 0. Note that SCK 
starts toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-18. SPI Transfer Protocol for CPHA = 0

CL OCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO

(FROM SLAVE)

SPISS
(TO SLAVE)

MSB

MSB

LSB

LSB

* = UNDEFINED

* *

*

1 2 3 4 5 6 7 8

123456

123456
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Figure 10-19 shows the SPI transfer protocol for CPHA = 1. Note that SCK 
starts toggling at the beginning of the data transfer, SIZE = 0, and 
LSBF = 0.

SPI General Operation
The SPI in ADSP-BF535 processors can be used in a single master as well 
as multimaster environment. The MOSI, MISO, and the SCK signals are all 
tied together in both configurations. SPI transmission and reception are 
always enabled simultaneously, unless the broadcast mode has been 
selected. In broadcast mode, several slaves can be enabled to receive, but 
only one of the slaves must be in transmit mode driving the MISO line. If 
the transmit or receive is not needed, it can simply be ignored. This sec-
tion describes the clock signals, SPI operation as a master and as a slave, 
and the error generation.

Figure 10-19. SPI Transfer Protocol for CPHA = 1

CLOCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO

(FROM SLAVE)

SPISS
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LSB

LSB

* =UNDEFINED

* *
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123456

123456*
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Precautions must be taken to avoid data corruption when changing the 
SPI module configuration. The configuration must not be changed during 
a data transfer. The clock polarity should only be changed when no slaves 
are selected (except when an SPI communication link consists of a single 
master and a single slave, CPHA = 1, and the slave select input of the slave 
is always tied low. In this case, the slave is always selected and data corrup-
tion can be avoided by enabling the slave only after both the master and 
slave devices are configured).

In a multimaster or multislave SPI system, the data output pins (MOSI and 
MISO) can be configured to behave as open drain outputs, which prevents 
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is 
selected.

The WOM bit controls this feature. When WOM is set and the ADSP-BF535 
SPI is configured as a master, the MOSI pin is three-stated when the data 
driven out on MOSI is a logic high. The MOSI pin is not three-stated when 
the driven data is a logic low. Similarly, when WOM is set and the 
ADSP-BF535 SPI is configured as a slave, the MISO pin is three-stated if 
the data driven out on MISO is a logic high.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for 
the duration of the transferred word. The number of active edges is equal 
to the number of bits driven on the data lines. The clock rate can be as 
high as one-fourth of the SCLK rate. For master devices, the clock rate is 
determined by the 16-bit value of SPIx_BAUD. For slave devices, the value 
in SPIx_BAUD is ignored. When the SPI device is a master, SCK is an output 
signal. When the SPI is a slave, SCK is an input signal. Slave devices ignore 
the serial clock if the slave select input is driven inactive (high).
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The SCK signal is used to shift out and shift in the data driven onto the 
MISO and MOSI lines. The data is always shifted out on one edge of the 
clock (the active edge) and sampled on the opposite edge of the clock 
(the sampling edge). Clock polarity and clock phase relative to data are pro-
grammable into SPIx_CTL and define the transfer format.

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected), 
the interface operates in the following manner.

• The core writes to SPIx_FLG, setting one or more of the SPI flag 
select bits (FLSx). This ensures that the desired slaves are properly 
deselected while the master is configured.

• The core writes to the SPIx_CTL and SPIx_BAUD registers, enabling 
the device as a master and configuring the SPI system by specifying 
the appropriate word length, transfer format, baud rate, and other 
necessary information.

• If CPHA = 1, the core activates the desired slaves by clearing one or 
more of the SPI flag bits (FLGx) of SPIx_FLG.

• The TIMOD bits in SPIx_CTL determine the SPI transfer initiate 
mode. The transfer on the SPI link begins upon either a data write 
by the core to the transmit data buffer (SPIx_TDBR) or a data read 
of the receive data buffer (SPIx_RDBR).

• The SPI then generates the programmed clock pulses on SCK and 
simultaneously shifts data out of MOSI and shifts data in from MISO. 
Before a shift, the shift register is loaded with the contents of the 
SPIx_TDBR register. At the end of the transfer, the contents of the 
shift register are loaded into SPIx_RDBR.

• With each new transfer initiate command, the SPI continues to 
send and receive words, according to the SPI transfer initiate mode.



ADSP-BF535 Blackfin Processor Hardware Reference 10-33 
 

SPI Compatible Port Controllers

If the transmit buffer remains empty or the receive buffer remains full, the 
device operates according to the states of the SZ and GM bits in SPIx_CTL. If 
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s 
on the MOSI pin. One word is transmitted for each new transfer initiate 
command. If SZ = 0 and the transmit buffer is empty, the device repeat-
edly transmits the last word it transmitted before the transmit buffer 
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the MISO pin, overwriting the older data in 
the SPIx_RDBR buffer. If GM = 0 and the receive buffer is full, the incoming 
data is discarded and SPIx_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined 
by the two TIMOD bits of SPIx_CTL. Based on those two bits and the status 
of the interface, a new transfer is started upon either a read of SPIx_RDBR 
or a write to SPIx_TDBR. Transfer initiation is summarized in Table 10-19.

Table 10-19. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and 
Receive

Initiate new single-word trans-
fer upon read of SPIx_RDBR 
and previous transfer com-
pleted

Interrupt active when receive 
buffer is full

Read of SPIx_RDBR clears 
interrupt

01 Transmit and 
Receive

Initiate new single-word trans-
fer upon write to SPIx_TDBR 
and previous transfer com-
pleted

Interrupt active when transmit 
buffer is empty

Writing to SPIx_TDBR clears 
interrupt
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Slave Mode Operation

When a device is enabled as a slave (and DMA mode is not selected), the 
start of a transfer is triggered by a transition of the SPISS select signal to 
the active state (low) or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

These steps illustrate SPI operation in the slave mode:

• The core writes to SPIx_CTL to define the mode of the serial link to 
be the same as the mode setup in the SPI master.

• To prepare for the data transfer, the core writes data to be trans-
mitted into SPIx_TDBR.

• Once the SPISS falling edge is detected, the slave starts sending and 
receiving data on active SCK edges.

• Reception/transmission continues until SPISS is released or until 
the slave has received the proper number of clock cycles.

• The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or active SCK clock edge.

10 Transmit or 
Receive with 
DMA

Initiate new multiword trans-
fer upon write to DMA enable 
bit. Individual word transfers 
begin with either a DMA write 
to SPIx_TDBR or a DMA read 
of SPIx_RDBR (depending on 
TRAN bit), and last transfer 
complete

Interrupt active upon DMA 
error or multiword transfer 
complete

Write 1 to SPIx_DMA_INT 
register clears interrupt

11 Reserved N/A N/A

Table 10-19. Transfer Initiation (Cont’d)

TIMOD Function Transfer Initiated Upon Action, Interrupt



ADSP-BF535 Blackfin Processor Hardware Reference 10-35 
 

SPI Compatible Port Controllers

If the transmit buffer remains empty or the receive buffer remains full, the 
device operates according to the states of the SZ and GM bits in SPIx_CTL. If 
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s 
on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeatedly 
transmits the last word it transmitted before the transmit buffer became 
empty. If GM = 1 and the receive buffer is full, the device continues to 
receive new data from the MOSI pin, overwriting the older data in 
SPIx_RDBR. If GM = 0 and the receive buffer is full, the incoming data is 
discarded, and SPIx_RDBR is not updated.

Slave Ready for a Transfer

Table 10-20 shows the actions necessary to prepare the device for a new 
transfer, when a device is enabled as a slave.

Error Signals and Flags
The status of a device is indicated by the SPIx_ST register. See “SPIx Sta-
tus Register (SPIx_ST)” on page 10-15 for more information.

Table 10-20. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and 
Receive

Interrupt active when receive buffer is full

Read of SPIx_RDBR clears interrupt

01 Transmit and 
Receive

Interrupt active when transmit buffer is empty

Writing to SPIx_TDBR clears interrupt

10 Transmit or 
Receive with 
DMA

Interrupt configured in SPIx_CONFIG
Interrupt active upon DMA error or multiword transfer com-
plete

Writing 1 to SPI_DMA_INT clears interrupt

11 Reserved N/A
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Mode Fault Error (MODF)
The MODF bit is set in SPIx_ST when the SPISS input pin of a device 
enabled as a master is driven low by some other device in the system. This 
occurs in multimaster systems when another device is also trying to be the 
master. To enable this feature, the PSSE bit in SPIx_CTL must be set. This 
contention between two drivers can potentially damage the driving pins. 
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPIx_CTL is cleared, configuring the SPI 
interface as a slave

• The SPE control bit in SPIx_CTL is cleared, disabling the SPI system

• The MODF status bit in SPIx_ST is set

• An SPI interrupt is generated

These four conditions persist until the MODF bit is cleared by software. 
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave. 
Hardware prevents the user from setting either SPE or MSTR while MODF is 
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to 
re-enable the SPI as a master, the state of the SPISS input pin should be 
checked to make sure the pin is high. Otherwise, once SPE and MSTR are 
set, another mode fault error condition immediately occurs. The state of 
the input pin is observable in the Flag Clear register (FIO_FLAG_C) or the 
Flag Set register (FIO_FLAG_S).

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI, 
MISO, and SCK) are disabled. However, the slave select output pins revert to 
being controlled by the programmable flag registers. This could lead to 
contention on the slave select lines if these lines are still driven by the 
ADSP-BF535 processor. To ensure that the slave select output drivers are 
disabled once a MODF error occurs, the program must configure the pro-
grammable flag registers appropriately.
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When enabling the MODF feature, the program must configure as inputs all 
of the PFx pins that will be used as slave selects. Programs can do this by 
writing to the Flag Direction register (FIO_DIR) prior to configuring the 
SPI. This ensures that, once the MODF error occurs and the slave selects are 
automatically reconfigured as PFx pins, the slave select output drivers are 
disabled.

Transmission Error (TXE)
The TXE bit is set in SPIx_ST when all the conditions of transmission are 
met, but there is no new data in SPIx_TDBR (SPIx_TDBR is empty). In this 
case, the contents of the transmission depend on the state of the SZ bit in 
SPIx_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)
The RBSY flag is set in SPIx_ST when a new transfer is completed before 
the previous data can be read from SPIx_RDBR. The state of the GM bit in 
SPIx_CTL determines whether SPIx_RDBR is updated with the newly 
received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)
The TXCOL flag is set in SPIx_ST when a write to SPIx_TDBR coincides with 
the load of the shift register. The write to SPIx_TDBR can be via software or 
the DMA. The TXCOL bit indicates that corrupt data may have been loaded 
into the shift register and transmitted. In this case, the data in SPIx_TDBR 
may not match what was transmitted. This error can easily be avoided by 
proper software control. The TXCOL bit is sticky (W1C).

 The TXCOL bit is never set when the SPI is configured as a slave with 
CPHA = 0. A collision may occur, but it cannot be detected.
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Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is 
configured as a master or a slave, the CPHA mode selected, and the transfer 
initiation mode (TIMOD) selected. For a master SPI with CPHA = 0, a trans-
fer starts when either SPIx_TDBR is written to or SPIx_RDBR is read, 
depending on TIMOD. At the start of the transfer, the enabled slave select 
outputs are driven active (low). However, the SCK signal remains inactive 
for the first half of the first cycle of SCK. For a slave with CPHA = 0, the 
transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both 
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data 
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit in SPIx_STATUS defines when the receive buffer can be read. 
The TXS bit defines when the transmit buffer can be filled. The end of a 
single word transfer occurs when the RXS bit is set, indicating that a new 
word has just been received and latched into the receive buffer, SPIx_RDBR. 
RXS is set shortly after the last sampling edge of SCK. The latency is typi-
cally a few SCLK cycles and is independent of CPHA, TIMOD, and the baud 
rate. If configured to generate an interrupt when SPIx_RDBR is full 
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set. 
When not relying on this interrupt, the end of a transfer can be detected 
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is 
also available for polling. This bit may have a slightly different behavior 
from that of other commercially available devices. For a slave device, SPIF 
is set at the same time as RXS. For a master device, SPIF is set one-half SCK 
period after the last SCK edge, regardless of CPHA or CPOL.

Thus, the time at which SPIF is set depends on the baud rate. In general, 
SPIF is set after RXS, but at the lowest baud rate settings (SPIx_BAUD < 4). 
SPIF is set before RXS is set, and consequently before new data is latched 
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into SPIx_RDBR, because of the latency. Therefore, for SPIx_BAUD = 2 or 
SPIx_BAUD = 3, RXS must be set before SPIF to read SPIx_RDBR. For larger 
SPIx_BAUD settings, RXS is guaranteed to be set before SPIF is set.
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The ADSP-BF535 processor has two identical synchronous serial ports, or 
SPORTs. These support a variety of serial data communications protocols 
and can provide a direct interconnection between processors in a multi-
processor system.

 In this text, the naming conventions for registers and pins use a 
lowercase x to represent a digit. In this chapter, for example, the 
name DTx pins indicates DT0 and DT1 (corresponding to SPORT0 
and SPORT1, respectively).

The serial ports (SPORT0 and SPORT1) provide an I/O interface to a 
wide variety of peripheral serial devices. SPORTs provide synchronous 
serial data transfer only; the ADSP-BF535 processor provides asynchro-
nous RS-232 data transfer via the UARTs. Each SPORT is a full duplex 
device, capable of simultaneous data transfer in both directions. Each 
SPORT has one group of pins (data, clock, and frame sync) for transmit 
and a second set of pins for receive. The receive and transmit functions are 
programmed separately. The SPORTs can be programmed for bit rate, 
frame sync, and bits per word by writing to memory-mapped registers.

Both SPORTs have the same capabilities and are programmed in the same 
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs use frame sync pulses to indicate the beginning of each word 
or packet, and the bit clock marks the beginning of each data bit. External 
bit clock and frame sync are available for the TX and RX buffers.
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With a range of clock and frame synchronization options, the SPORTs 
allow a variety of serial communication protocols, including H.100, and 
provide a glueless hardware interface to many industry-standard data con-
verters and CODECs.

The SPORTs can operate at up to 1/2 the full clock rate of SCLK (where 
SCLK is the peripheral clock). Independent transmit and receive functions 
provide greater flexibility for serial communications. SPORT data can be 
automatically transferred to and from on-chip memory using DMA block 
transfers. Additionally, each of the SPORTs offers a TDM (time division 
multiplexed) multichannel mode.

SPORT clocks and frame syncs can be internally generated by the core or 
received from an external source. The SPORTs can operate with little 
endian or big endian transmission formats, with word lengths selectable 
from 3 to 16 bits. They offer selectable transmit modes and optional -law 
or A-law companding in hardware. 

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from three to sixteen bits in length, 
either most significant bit first (MSB) or least significant bit first 
(LSB).

• Double buffers data (both receive and transmit functions have a 
data buffer register and a shift register), providing additional time 
to service the SPORT.

• Performs A-law and -law hardware companding on transmitted 
and received words. (See “Companding” on page 11-52 for more 
information.)

• Internally generates serial clock and frame sync signals in a wide 
range of frequencies or accepts clock and frame sync input from an 
external source.
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• Performs interrupt-driven, single word transfers to and from 
on-chip memory under core control.

• Provides Direct Memory Access transfer to and from memory 
under DMA Master control. DMA can be autobuffer based (a 
repeated, identical range of transfers) or descriptor based (individ-
ual or repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory. Each 
SPORT can automatically receive and transmit an entire block of 
data.

• Permits chaining of DMA operations for multiple data blocks.

• Has a multichannel mode for TDM interfaces. Each SPORT can 
receive and transmit data selectively from channels of a time-divi-
sion-multiplexed serial bitstream multiplexed into up to 128 
channels. This mode can be useful as a network communication 
scheme for multiple processors.

• Operates with or without frame synchronization signals for each 
data word, with internally generated or externally generated frame 
signals, with active high or active low frame signals, and with either 
of two configurable pulse widths and frame signal timing.

Table 11-1 shows the pins for each SPORT.

Table 11-1. Serial Port (SPORT) Pins 

Pin Description

DTx Transmit Data

DRx Receive Data

TCLKx Transmit Clock

RCLKx Receive Clock

TFSx Transmit Frame Sync

RFSx Receive Frame Sync
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A SPORT receives serial data on its DR input and transmits serial data on 
its DT output. It can receive and transmit simultaneously for full duplex 
operation. For both transmit and receive data, the data bits (DR or DT) are 
synchronous to the serial clocks (RCLK or TCLK); this is an output if the 
processor generates this clock or an input if the clock is externally gener-
ated. Frame synchronization signals RFS and TFS are used to indicate the 
start of a serial data word or stream of serial words.

In addition to the serial clock signal, data must be signalled by a frame 
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 11-1 shows a simplified block diagram of a single SPORT. Data to 
be transmitted is written from an internal processor register to the 
SPORT’s memory-mapped SPORTx_TX register. This data is optionally 
compressed by the hardware then automatically transferred to the transmit 
shift register. The bits in the shift register are shifted out on the SPORT’s 
DT pin, MSB first or LSB first, synchronous to the serial clock on the TCLK 
pin. The receive portion of the SPORT accepts data from the DR pin syn-
chronous to the serial clock. When an entire word is received, the data is 
optionally expanded, then automatically transferred to the SPORT’s 
memory-mapped SPORTx_RX register, where it is available to the processor. 
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Figure 11-1. SPORT Block Diagram
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Figure 11-2 shows the port connections for the ADSP-BF535 processor 
SPORTs.

SPORT Operation
This section provides an example of SPORT operation, illustrating the 
most common use of a SPORT. Since the SPORT functionality is config-
urable, this example represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFS signal initiates the transmission of serial data. Once 
transmission has begun, each value written to the SPORTx_TX register is 
transferred to the internal transmit shift register. The bits are then sent, 
beginning with either the MSB or the LSB as specified. Each bit is shifted 
out on the rising edge of SCK. After the first bit of a word has been trans-

Figure 11-2. SPORT Connections
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ferred, the SPORT generates the transmit interrupt. The SPORTx_TX 
register is then available for the next data word, even though the transmis-
sion of the first word continues.

As a SPORT receives bits, they accumulate in an internal receive register. 
When a complete word has been received, it is written to the SPORTx_RX 
register and the receive interrupt for that SPORT is generated. Interrupts 
are generated differently if DMA block transfers are performed. For infor-
mation about DMA, see “Direct Memory Access” on page 9-1.

SPORT Disable
The SPORTs are automatically disabled by a hardware or software reset. A 
SPORT can also be disabled directly by clearing the SPORT’s transmit or 
receive enable bits (TSPEN in the SPORTx_TX_CONFIG control register and 
RSPEN in the SPORTx_RX_CONFIG control register, respectively). Each 
method has a different effect on the SPORT.

A reset disables the SPORTs by clearing the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG control registers (including the TSPEN and RSPEN enable 
bits) and the TSCLKDIVx, RSCLKDIVx, SPORTx_TFSDIVx, and SPORTx_RFSDIVx 
clock and frame sync divisor registers. Any ongoing operations are 
aborted.

Disabling the TSPEN and RSPEN enable bits disables the SPORTs and 
aborts any ongoing operations. Status bits are also cleared. Configuration 
bits remain unaffected and can be read by the software in order to be 
altered or overwritten. To disable the SPORT output clock after the 
SPORT has been enabled, set the SPORT to receive an external clock. 

The SPORTs are ready to start transmitting or receiving data three serial 
clock cycles after they are enabled in the SPORTx_TX_CONFIG or 
SPORTx_RX_CONFIG control register. No serial clock cycles are lost from this 
point on.
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Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in 
configuration registers. Each SPORT must be configured prior to being 
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for the SPORTx_TSCLKDIV and 
SPORTx_RSCLKDIV registers, which can be modified while the SPORT is 
enabled). To change values in all other SPORT configuration registers, 
disable the SPORT by clearing TSPEN in SPORTx_TX_CONFIG and/or RSPEN 
in SPORTx_RX_CONFIG.

Each SPORT has its own set of control registers and data buffers. These 
registers are described in detail in the following sections.

The SPORT control registers are programmed by writing to the appropri-
ate address in memory. All control and status bits in the SPORT registers 
are active high unless otherwise noted.

 Most configuration registers can only be changed while the 
SPORT is disabled (TSPEN/RSPEN=0). Changes take effect after the 
SPORT is re-enabled. The only exceptions to this rule are the 
TSCLKDIV/RSCLKDIV registers and multichannel configuration 
registers.

SPORT Registers
The following sections describe the SPORT registers.
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Transmit and Receive Configuration Registers 
(SPORTx_TX_CONFIG, SPORTx_RX_CONFIG)

The main control registers for each SPORT are the transmit configuration 
register, SPORTx_TX_CONFIG, shown in Figure 11-3 on page 11-10, and the 
receive configuration register, SPORTx_RX_CONFIG, shown in Figure 11-4 
on page 11-14.

A SPORT is enabled for transmit if Bit 0 (TSPEN) of the Transmit Config-
uration register is set to 1; it is enabled to receive if Bit 0 (RSPEN) of the 
Receive Configuration register is set to 1. Both of these bits are cleared 
during either a hard reset or a soft reset, disabling all SPORT channels.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set), 
corresponding SPORT configuration register writes are disabled except 
for SPORTx_RSCLKDIV, SPORTx_TSCLKDIV, and multichannel mode channel 
enable registers. Writes are always enabled to the SPORTx_TX buffer. 
SPORTx_RX is a read-only register.

After a write to a SPORT register, any changes to the control and mode 
bits generally take effect when the SPORT is re-enabled.

When changing operating modes, a SPORT control register should be 
cleared before the new mode is written to the register.

The TXS status bit in the SPORT Status register indicates whether the 
SPORTx_TX buffer is full (1) or empty (0).

The Transmit Underflow Status bit (TUVF) in the SPORT Status register is 
set whenever the TFS signal occurs from either an external or an internal 
source while the SPORTx_TX buffer is empty. The internally generated TFS 
may be suppressed whenever SPORTx_TX is empty by clearing the DITFS 
control bit in the SPORT Configuration register.

When DITFS=0 (the default), the internal transmit frame sync signal (TFS) 
is dependent upon new data being present in the SPORTx_TX buffer; the 
TFS signal is only generated for new data. Setting DITFS to 1 selects data 
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independent frame syncs. This causes the TFS signal to be generated 
whether or not new data is present, transmitting the contents of the 
SPORTx_TX buffer regardless. SPORT DMA typically keeps the SPORTx_TX 
buffer full, and when the DMA operation is complete, the last word in 
SPORTx_TX is continuously transmitted. For information about DMA, see 
“Direct Memory Access” on page 9-1.

The SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers control the 
SPORTs’ operating modes for the I/O processor.

Figure 11-3. SPORTx Transmit Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration Register (SPORTx_TX_CONFIG)

SLEN[3:0] (Serial Word 
Length Select)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit 
Frame Sync Select)

ICLK (Internal Transmit 
Clock Select)

DTYPE[1:0] (Data Formatting 
Type Select)

SENDN (Endian Format 
Select)

TSPEN (Transmit Enable)

LTFS (Low Transmit 
Frame Sync Select)

LATFS (Late Transmit 
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

CKFE (Clock Drive/ 
Sample Edge Select)

0 - External transmit clock
selected

1 - Internal transmit clock
selected

00 - Right justify and zero fill
01 - Right justify and sign

extend
10 - Compand using -law
11 - Compand using A-law

0 - Transmit most significant
bit first

1 - Transmit least significant
bit first

Reset = 0x0000

0000 - Illegal value
0001 - Illegal value
Serial word length is value in 
this field plus 1

0 - External TFS used
1 - Internal TFS used

0 - Rising edge used to drive,
falling edge used to sample

1 - Falling edge used to drive,
rising edge used to sample

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync 
Required Select)

DITFS (Data Independent 
Transmit Frame Sync Select)
0 - Data dependent TFS used
1 - Data independent TFS used

0 - Does not require TFS for
every data word

1 - Requires TFS for every data
word

For MMR 
assignments, see 
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Additional information for the SPORTx_TX_CONFIG transmit configuration 
register bits:

• Transmit Enable. SPORTx_TX_CONFIG[0] (TSPEN). This bit 
selects whether the SPORT is enabled to transmit (if set) or dis-
abled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be 
filled. This is normally desirable because it allows centralization of 
the TD write code in the TX interrupt service routine. For this rea-
son, the code should initialize the interrupt service routine and be 
ready to service TX interrupts before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data and frame 
sync pins; it also shuts down the internal SPORT circuitry. In low 
power applications, battery life can be extended by clearing TSPEN 
whenever the SPORT is not in use.

• Data Formatting Type Select. SPORTx_TX_CONFIG[3:2] (DTYPE). 
The DTYPE, SENDN, and SLEN bits configure the format of the data 
words transmitted over the SPORTs. The two DTYPE bits specify 
one of four data formats used for single and multichannel opera-
tion (00=right justify and zero fill unused most significant bits, 
01=right justify and sign extend into unused most significant bits, 
10=compand using -law, 11=compand using A-law).

Table 11-2. SPORTx Transmit Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_TX_CONFIG 0xFFC0 2800

SPORT1_TX_CONFIG 0xFFC0 2C00
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• Endian Format Select. SPORTx_TX_CONFIG[4] (SENDN). The DTYPE, 
SENDN, and SLEN bits configure the format of the data words trans-
mitted over the SPORTs. The SENDN bit selects the endian format 
(0=serial words are transmitted MSB first, 1=serial words are trans-
mitted LSB first).

• Serial Word Length Select. SPORTx_TX_CONFIG[8:5] (SLEN). The 
DTYPE, SENDN, and SLEN bits configure the format of the data words 
transmitted over the SPORTs. The serial word length (the number 
of bits in each word transmitted over the SPORTs) is calculated by 
adding 1 to the value of the SLEN field:

Serial Word = SLEN + 1;

The SLEN field can be set to a value of 2 to 15; 0 and 1 are illegal 
values for this field. Two common settings for the SLEN field are 
15, to transmit a full 16-bit word, and 7, to transmit an 8-bit byte. 
The ADSP-BF535 processor is a 16-bit processor, so program 
instruction or DMA engine loads of the TX data register always 
move 16 bits into the register; the SLEN field tells the SPORT how 
many of those 16 bits to shift out of the register over the serial link.

 The frame sync signal is controlled by the Frame Sync Divider reg-
ister, not by SLEN. To produce a frame sync pulse on each byte or 
word transmitted, the proper frame sync divider must be pro-
grammed into the Frame Sync Divider register; setting SLEN to 7 
does not produce a frame sync pulse on each byte transmitted.

• Internal Transmit Frame Sync Select. SPORTx_TX_CONFIG[9] 
(ITFS). This bit selects whether the SPORT uses an internal TFS (if 
set) or an external TFS (if cleared).

• Transmit Frame Sync Required Select. SPORTx_TX_CONFIG[10] 
(TFSR). This bit selects whether the SPORT requires (if set) or does 
not require (if cleared) a transfer frame sync for every data word.
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 The TFSR bit is normally set. A frame sync pulse is used to mark the 
beginning of each word or data packet, and most systems need 
frame sync to function properly.

• Data Independent Transmit Frame Sync Select. 
SPORTx_TX_CONFIG[11] (DITFS). This bit selects whether the 
SPORT uses a data independent TFS (sync at selected interval, if 
set) or uses a data dependent TFS (sync when data in SPORTx_TX, if 
cleared).

The frame sync pulse marks the beginning of the data word. If 
DITFS is set, the frame sync pulse is issued on time, whether the TX 
register has been loaded or not; if DITFS is cleared, the frame sync 
pulse is only generated if the TX data register has been loaded. If the 
receiver demands regular frame sync pulses, DITFS should be set, 
and the core should keep loading the SPORTx_TX register on time. If 
the receiver can tolerate occasional late frame sync pulses, DITFS 
should be cleared to prevent the SPORT from transmitting old 
data twice or transmitting garbled data if the core is late in loading 
the TX register.

• Low Transmit Frame Sync Select. SPORTx_TX_CONFIG[12] (LTFS). 
This bit selects an active low TFS (if set) or active high TFS (if 
cleared).

• Late Transmit Frame Sync. SPORTx_TX_CONFIG[13] (LATFS). This 
bit configures late frame syncs (if set) or early frame syncs (if 
cleared).

• Clock Drive/Sample Edge Select. SPORTx_TX_CONFIG[14] (CKFE). 
This bit selects which edge of the TCLKx signal the SPORT uses for 
driving data, for driving internally generated frame syncs, and for 
sampling externally generated frame syncs. If set, data and inter-
nally generated frame syncs are driven on the falling edge and 
externally generated frame syncs are sampled on the rising edge. 
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If cleared, data and internally generated frame syncs are driven on 
the rising edge and externally generated frame syncs are sampled on 
the falling edge.

Figure 11-4. SPORTx Receive Configuration Register

Table 11-3. SPORTx Receive Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_RX_CONFIG 0xFFC0 2802

SPORT1_RX_CONFIG 0xFFC0 2C02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration Register (SPORTx_RX_CONFIG)

Reset = 0x0000

SLEN[3:0] (Serial Word 
Length Select)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame 
Sync Select)

ICLK (Internal Receive Clock 
Select)

DTYPE[1:0] (Data Format-
ting Type Select)

SENDN (Endian Format 
Select)

RSPEN (Receive Enable)

LRFS (Low Receive Frame 
Sync Select)

LARFS (Late Receive 
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

CKFE (Clock Drive/ 
Sample Edge Select)

0 - External receive clock
selected

1 - Internal receive clock
selected

00 - Right justify and zero fill
01 - Right justify and sign

extend
10 - Compand using -law
11 - Compand using A-law

0 - Transmit most significant
bits first

1 - Transmit least significant
bits first

0000 - Illegal value
0001 - Illegal value
Serial word length is value in 
this field plus 1

0 - External RFS used
1 - Internal RFS used

0 - Rising edge used to drive,
falling edge used to sample

1 - Falling edge used to drive,
rising edge used to sample

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync 
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

For MMR 
assignments, see 
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Additional information for the SPORTx_RX_CONFIG receive configuration 
register bits:

• Receive Enable. SPORTx_RX_CONFIG[0] (RSPEN). This bit selects 
whether the SPORT is enabled to receive (if set) or disabled (if 
cleared).

Setting the RSPEN bit turns on the SPORT and causes it to sample 
data from the DRx pin as well as the RX bit clock and receive frame 
sync pins if so programmed. 

 All SPORT control registers should be programmed before RSPEN is 
set. Typical SPORT initialization code first writes 
SPORTx_RX_CONFIG with everything except RSPEN, then the last step 
in the code is to rewrite SPORTx_RX_CONFIG with all of the necessary 
bits including RSPEN.

Setting RSPEN enables the SPORT RX interrupt. For this reason, the 
code should initialize the interrupt service routine and be ready to 
service RX interrupts before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also 
shuts down the internal SPORT circuitry. In low power applica-
tions, battery life can be extended by clearing RSPEN whenever the 
SPORT is not in use.

• Internal Receive Clock Select. SPORTx_RX_CONFIG[1] (ICLK). This 
bit selects the internal receive clock (if set) or external receive clock 
(if cleared).

• Data Formatting Type Select. SPORTx_RX_CONFIG[3:2] (DTYPE). 
The DTYPE, SENDN, and SLEN bits configure the format of the data 
words received over the SPORTs. The two DTYPE bits specify one 
of four data formats used for single and multichannel operation 
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(00=right justify and zero fill unused most significant bits, 
01=right justify and sign extend into unused MSBs, 10=compand 
using -law, 11=compand using A-law).

• Endian Format Select. SPORTx_RX_CONFIG[4] (SENDN). The DTYPE, 
SENDN, and SLEN bits configure the format of the data words 
received over the SPORTs. The SENDN bit selects the endian format 
(0=serial words are received MSB first, 1=serial words are received 
LSB first).

• Serial Word Length Select. SPORTx_RX_CONFIG[8:5] (SLEN). The 
DTYPE, SENDN, and SLEN bits configure the format of the data words 
received over the SPORTs. The serial word length (the number of 
bits in each word received over the SPORTs) is calculated by add-
ing 1 to the value of the SLEN field. The SLEN field can be set to a 
value of 2 to 15; 0 and 1 are illegal values for this field.

• Internal Receive Frame Sync Select. SPORTx_RX_CONFIG[9] (IRFS). 
This bit selects whether the SPORT uses an internal RFS (if set) or 
an external RFS (if cleared).

• Receive Frame Sync Required Select. SPORTx_RX_CONFIG[10] 
(RFSR). This bit selects whether the SPORT requires (if set) or does 
not require (if cleared) a receive frame sync for every data word.

• Low Receive Frame Sync Select. SPORTx_RX_CONFIG[12] (LRFS). 
This bit selects an active low RFS (if set) or active high RFS (if 
cleared).

• Late Receive Frame Sync. SPORTx_RX_CONFIG[13] (LARFS). This bit 
configures late frame syncs (if set) or early frame syncs (if cleared).

• Clock Drive/Sample Edge Select. SPORTx_RX_CONFIG[14] (CKFE). 
This bit selects which edge of the RCLK clock signal the SPORT 
uses for sampling data, for sampling externally generated frame 
syncs, and for driving internally generated frame syncs. If set, inter-
nally generated frame syncs are driven on the falling edge, and data 
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and externally generated frame syncs are sampled on the rising 
edge. If cleared, internally generated frame syncs are driven on the 
rising edge, and data and externally generated frame syncs are sam-
pled on the falling edge.

SPORTx Transmit (SPORTx_TX) Registers
The SPORTx_TX register, shown in Figure 11-5, acts as the transmit data 
buffer for the SPORT. It is a 16-bit register which must be loaded with 
the data to be transmitted; the data is loaded either by the DMA control-
ler or by the program running on the core. Word lengths of less than 16 
bits are right justified.

The SPORT transmit registers act like a two-location FIFO because there 
is a data register (SPORTx_TX) with an accompanying output shift register 
as shown in Figure 11-1 on page 11-5. Two 16-bit words may be stored in 
these registers at any one time. When the SPORTx_TX register is loaded and 
any previous word has been transmitted, the contents are automatically 
loaded into the output shifter. An interrupt is generated when the output 
shifter has been loaded, signifying that the SPORTx_TX register is ready to 
accept the next word (the SPORTx_TX buffer is “not full”). This interrupt 
does not occur if SPORT DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT Status regis-
ter when a transmit frame sync occurs and no new data has been loaded 
into the serial shift register. In multichannel mode, TUVF is set whenever 
the serial shift register is not loaded, when that transmission should begin 
on an enabled channel. The TUVF status bit is cleared on a hard reset. From 
that moment on, if it is set, it stays set until the SPORT is re-enabled (dis-
abled and then enabled again). Once the SPORT is enabled, it takes at 
least 4 transmit clock cycles to clear the TUVF bit.
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Once the TUVF bit is cleared, the DMA’s Peripheral-Dependent Error IRQ 
Status bit in the DMA IRQ Status register can be cleared by writing 1 to 
it. See “Peripheral DMA IRQ Status Register” on page 9-28. Follow these 
steps:

1. Disable the SPORT.

2. Enable the SPORT.

3. Poll the TUVF bit of the SPORTx_STAT register, waiting for a 0.

4. Write 1 to the Peripheral-Dependent Error IRQ Status bit to clear 
it.

If the program causes the core processor to attempt a write to a full 
SPORTx_TX register, the new data overwrites the SPORTx_TX register. If it is 
not known whether the core processor can access the SPORTx_TX register 
without causing such an error, the register’s full or empty status should be 
read first (in the SPORT Status register) to determine if the access can be 
made. See “SPORTx Status (SPORTx_STAT) Registers” on page 11-23.

The SPORTx_TX register can be read whether or not the SPORT is enabled.

Figure 11-5. SPORTx Transmit Registers

SPORTx Transmit Registers (SPORTx_TX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

Reset = 0x0000
For MMR 
assignments, see 
Table 11-4.
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SPORTx Receive (SPORTx_RX) Registers
The SPORTx_RX register, shown in Figure 11-6, acts as the receive data 
buffer for the SPORT. It is a 16-bit register which is automatically loaded 
from the receive shifter when a complete word has been received. Word 
lengths of less than 16 bits are right justified.

The SPORT receive registers act like a two-location FIFO buffer because 
there is a data register (SPORTx_RX) with an accompanying input shift reg-
ister as shown in Figure 11-1 on page 11-5. Two 16-bit words may be 
stored in these registers at any one time. SPORTx_RX is read-only and the 
reset values are undefined.

Two 16-bit words can be stored in the SPORT receive registers at any one 
time. The third word overwrites the second if the first word has not been 
read out by the Master core or the DMA controller. When this happens, 
the receive overflow status bit (ROVF) is set in the SPORT Status register. 
The overflow status is generated on the last bit of the second word. The 
ROVF status bit is sticky and is only cleared by disabling the serial port.

An interrupt is generated when the SPORTx_RX register has been loaded 
with a received word (that is, the SPORTx_RX register is not empty). This 
interrupt is masked out if serial port DMA is enabled.

If the program causes the core processor to attempt a read from an empty 
SPORTx_RX register, any old data is read. If it is not known whether the 
core processor can access the SPORTx_RX register without causing such an 
error, the register’s full or empty status should be read first (in the SPORT 
Status register) to determine if the access can be made.

Table 11-4. SPORTx Transmit Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_TX 0xFFC0 2804

SPORT1_TX 0xFFC0 2C04
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The RXS and TXS status bits in the SPORT Status register are updated 
upon reads and writes from the core processor, even when the SPORT is 
disabled.

SPORTx Transmit (SPORTx_TSCLKDIV) and Receive 
(SPORTx_RSCLKDIV) Serial Clock Divider Registers

The frequency of an internally generated clock is a function of the system 
clock frequency (as determined by SSEL, MSEL, and DF) and the value of the 
16-bit serial clock divide modulus registers: SPORTx_TSCLKDIV and 
SPORTx_RSCLKDIV. These registers are shown in Figure 11-7 and 
Figure 11-8, respectively.

Figure 11-6. SPORTx Receive Registers

Table 11-5. SPORTx Receive Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_RX 0xFFC0 2806

SPORT1_RX 0xFFC0 2C06

SPORTx Receive Registers (SPORTx_RX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Receive Data[15:0]

Reset = Undefined

RO

For MMR 
assignments, see 
Table 11-5.
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Figure 11-7. SPORTx Transmit Serial Clock Divider Register

Table 11-6. SPORTx Transmit Serial Clock Divider Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_TSCLKDIV 0xFFC0 2808

SPORT1_TSCLKDIV 0xFFC0 2C08

Figure 11-8. SPORTx Receive Serial Clock Divider Register

Table 11-7. SPORTx Receive Serial Clock Divider Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_RSCLKDIV 0xFFC0 280A

SPORT1_RSCLKDIV 0xFFC0 2C0A

SPORTx Transmit Serial Clock Divider Register (SPORTx_TSCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide 
Modulus[15:0]

Reset = 0x0000
For MMR 
assignments, see 
Table 11-6.

SPORTx Receive Serial Clock Divider Register (SPORTx_RSCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide 
Modulus[15:0]

Reset = 0x0000
For MMR 
assignments, see 
Table 11-7.
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SPORTx Transmit (SPORTx_TFSDIV) and Receive 
(SPORTx_RFSDIV) Frame Sync Divider Registers

These 16-bit registers specify how many transmit or receive clock cycles 
are counted before generating a TFS or RFS pulse when the frame sync is 
internally generated. In this way, a frame sync can be used to initiate peri-
odic transfers. The counting of serial clock cycles applies to either 
internally or externally generated serial clocks. The SPORTx_TFDIV register 
is shown in Figure 11-9; the SPORTx_RFSDIV register is shown in 
Figure 11-10.

Figure 11-9. SPORTx Transmit Frame Sync Divider Register

Table 11-8. SPORTx Transmit Frame Sync Divider Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_TFSDIV 0xFFC0 280C

SPORT1_TFSDIV 0xFFC0 2C0C

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0] 

Reset = 0x0000

Number of transmit clock 
cycles counted before gener-
ating TFS pulse

For MMR 
assignments, see 
Table 11-8.
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SPORTx Status (SPORTx_STAT) Registers
The RXS and TXS status bits in the SPORT Status register are updated 
upon reads and writes from the core processor even when the serial port is 
disabled. The SPORT Status register is used to determine if the access to a 
SPORT RX or TX buffer can be made by determining their full or empty 
status. It is a read-only register. The reset value is undefined. The 
SPORTx Status register is shown in Figure 11-11.

The transmit underflow status bit (TUVF) is set in the SPORT Status regis-
ter when a transmit frame sync occurs and no new data has been loaded 
into the SPORTx_TX register. The TUVF status bit is sticky and is only 
cleared by disabling the serial port.

Figure 11-10. SPORTx Receive Frame Sync Divider Register

Table 11-9. SPORTx Receive Frame Sync Divider Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_RFSDIV 0xFFC0 280E

SPORT1_RFSDIV 0xFFC0 2C0E

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0] 

Reset = 0x0000

Number of receive clock 
cycles counted before gener-
ating RFS pulse

For MMR 
assignments, see 
Table 11-9.
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When the SPORT RX buffer is full, the receive overflow status bit (ROVF) 
is set in the SPORT Status register. The overflow status is generated on 
the last bit of the second word. The ROVF status bit is sticky and is only 
cleared by disabling the serial port.

The 7-bit CHNL field is the read-only status indicator that shows which 
channel is currently selected during multichannel operation. CHNL[6:0] 
increments by one as each channel is serviced. Note that in Channel Select 
Offset mode, the CHNL value is reset to 0 after the offset has been com-
pleted. For example, with offset equal to 21 and a window of 8, in the 
regular mode the counter displays a value between 0 and 28, while in 
Channel Select Offset mode, the counter resets to 0 after counting up to 
21, and then the frame completes when the CHNL bit reaches the 8th chan-
nel (value of 7).

Figure 11-11. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RXS (Receive Status)

TXS (Transmit Status)

ROVF (Sticky Receive Over-
flow Status)

TUVF (Sticky Transmit Underflow 
Status)

CHNL[6:0] (Current Channel Indicator)

0 - Empty
1 - Full

0 - Empty
1 - Full

Reset = 0xX000

0 - Disabled
1 - Enabled

RO

For MMR 
assignments, see 
Table 11-10.
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Table 11-10 lists the MMR assignments for the SPORTx Status registers.

SPORTx Multichannel Transmit Select 
(SPORTx_MTCSx) Registers 

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx_MTCSx register, shown in Figure 11-12, 
specifies the active transmit channels. Each register has 16 bits, corre-
sponding to the 16 channels. Setting a bit enables that channel so that the 
serial port selects that word for transmit from the multiple word block of 
data. For example, setting bit 0 selects word 0, setting bit 12 selects word 
12, and so on.

Table 11-10. SPORTx Status Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_STAT 0xFFC0 2810

SPORT1_STAT 0xFFC0 2C10
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Setting a particular bit in a SPORTx_MTCSx register causes the serial port to 
transmit the word in that channel’s position of the data stream. Clearing 
the bit in the SPORTx_MTCSx register causes the serial port’s DT (data trans-
mit) pin to three-state during the time slot of that channel.

Figure 11-12. SPORTx Multichannel Transmit Select Registers

Table 11-11. SPORTx Multichannel Transmit Select Register MMR 
Assignments 

SPORT0
Register Name

SPORT0
Memory-Mapped 
Address

SPORT1
Register Name

SPORT1
Memory-Mapped 
Address

SPORT0_MTCS0 0xFFC0 2812 SPORT1_MTCS0 0xFFC0 2C12

SPORT0_MTCS1 0xFFC0 2814 SPORT1_MTCS1 0xFFC0 2C14

SPORT0_MTCS2 0xFFC0 2816 SPORT1_MTCS2 0xFFC0 2C16

SPORT0_MTCS3 0xFFC0 2818 SPORT1_MTCS3 0xFFC0 2C18

SPORT0_MTCS4 0xFFC0 281A SPORT1_MTCS4 0xFFC0 2C1A

SPORT0_MTCS5 0xFFC0 281C SPORT1_MTCS5 0xFFC0 2C1C

SPORT0_MTCS6 0xFFC0 281E SPORT1_MTCS6 0xFFC0 2C1E

SPORT0_MTCS7 0xFFC0 2820 SPORT1_MTCS7 0xFFC0 2C20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSx)

Word 0 

Word 12 

Word 13 

Word 14 

Word 15 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

For all bits, 0 - Channel disabled, 1 - Channel enabled so SPORT selects that word from multiple word block of data.

Word 6 

Word 7 

Word 11 

Word 10 

Word 9 

Word 8 

Reset = 0x0000
For MMR 
assignments, see 
Table 11-11.
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SPORTx Multichannel Receive Select 
(SPORTx_MRCSx) Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx_MRCSx register, shown in Figure 11-13, 
specifies the active receive channels. Each register has 16 bits, correspond-
ing to the 16 channels. Setting a bit enables that channel so that the serial 
port selects that word for receive from the multiple word block of data. 
For example, setting bit 0 selects word 0, setting bit 12 selects word 12, 
and so on.

Setting a particular bit in the SPORTx_MRCSx register causes the serial port 
to receive the word in that channel’s position of the data stream; the 
received word is loaded into the RX buffer. Clearing the bit in the 
SPORTx_MRCSx register causes the serial port to ignore the data.
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Figure 11-13. SPORTx Multichannel Receive Select Registers

Table 11-12. SPORTx Multichannel Receive Select Register MMR 
Assignments 

SPORT0
Register Name

SPORT0
Memory-Mapped 
Address 

SPORT1
Register Name

SPORT1
Memory-Mapped 
Address

SPORT0_MRCS0 0xFFC0 2822 SPORT1_MRCS0 0xFFC0 2C22

SPORT0_MRCS1 0xFFC0 2824 SPORT1_MRCS1 0xFFC0 2C24

SPORT0_MRCS2 0xFFC0 2826 SPORT1_MRCS2 0xFFC0 2C26

SPORT0_MRCS3 0xFFC0 2828 SPORT1_MRCS3 0xFFC0 2C28

SPORT0_MRCS4 0xFFC0 282A SPORT1_MRCS4 0xFFC0 2C2A

SPORT0_MRCS5 0xFFC0 282C SPORT1_MRCS5 0xFFC0 2C2C

SPORT0_MRCS6 0xFFC0 282E SPORT1_MRCS6 0xFFC0 2C2E

SPORT0_MRCS7 0xFFC0 2830 SPORT1_MRCS7 0xFFC0 2C30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSx)

Word 0 

Word 12 

Word 13 

Word 14 

Word 15 

Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

For all bits, 0 - Channel disabled, 1 - Channel enabled so SPORT selects that word from multiple word block of data.

Word 6 

Word 7 

Word 11 

Word 10 

Word 9 

Word 8 

Reset = 0x0000
For MMR 
assignments, see 
Table 11-12.
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SPORTx Multichannel Configuration 
(SPORTx_MCMCx) Registers

There are two SPORTx_MCMCx registers for each SPORT. The SPORTx_MCMCx 
registers, represented in Figure 11-14 and Figure 11-15, are used to enable 
multichannel mode. Setting the MCM bit enables multichannel operation 
for both receive and transmit sides of the SPORT. A transmitting SPORT 
must therefore be in multichannel mode if the receiving SPORT is in 
multichannel mode.

The value of MFD is the number of serial clock cycles of the delay. Multi-
channel frame delay allows the processor to work with different types of 
T1 interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the 
first data bit. The maximum value allowed for MFD is 15.

A new frame sync may occur before data from the last frame has been 
received because blocks of data occur back-to-back.

Figure 11-14. SPORTx Multichannel Configuration 1 Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration 1 Registers (SPORTx_MCMC1)

0 - Multichannel operations
disabled
1 - Multichannel operations
enabled

MFD[3:0] (Multichannel 
Frame Delay)

MCM (Multichannel Mode)

WSIZE[3:0] (Window Size)

WOFF[6:0] (Window Offset)

Delay between frame sync
pulse and first data bit in
multichannel mode

Reset = 0x0000

0 - Use all 128 channels, no offset
Other value - window offset

0 - Minimum window size of 8
channels
Other value 8 to 128 in incre-
ments of 8 - window size

For MMR 
assignments, see 
Table 11-13.
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Table 11-13. SPORTx Multichannel Configuration 1 Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_MCMC1 0xFFC0 2832

SPORT1_MCMC1 0xFFC0 2C32

Figure 11-15. SPORTx Multichannel Configuration 2 Registers

Table 11-14. SPORTx Multichannel Configuration 2 Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_MCMC2 0xFFC0 2834

SPORT1_MCMC2 0xFFC0 2C34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration 2 Registers (SPORTx_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel 
DMA Transmit Packing)

MCCRM[1:0] (2X Clock 
Recovery Mode)

MCFF[1:0] (TX FIFO Prefetch Max Distance)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Disabled
1 - Enabled

00 - 2 Channels
01 - 4 Channels
10 - 8 Channels
11 - 16 Channels

MCOM (Channel Select Offset Mode)
0 - Disabled
1 - Enabled

MCDRXPE (Multichannel 
DMA Receive Packing)
0 - Disabled
1 - Enabled

For MMR 
assignments, see 
Table 11-14.
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SPORTx Receive DMA Current Descriptor Pointer 
(SPORTx_CURR_PTR_RX) Registers

This 16-bit read-only register holds the lower 16 bits of the pointer to the 
current descriptor block for the SPORT DMA receive operation. The full 
32-bit address to the current pointer is formed by concatenating the Next 
Descriptor Base Pointer register and the SPORT Receive DMA Current 
Descriptor Pointer register. Figure 11-16 shows the SPORTx_CURR_PTR_ RX 
registers.

SPORTx Receive DMA Configuration 
(SPORTx_CONFIG_DMA_RX) Registers

During SPORT initialization, the program can write the head address of 
the first DMA descriptor block to the Receive DMA Next Descriptor 
Pointer register and then set the DMA Enable bit in the Receive DMA 

Figure 11-16. SPORTx Receive DMA Current Descriptor Pointer Register

Table 11-15. SPORTx Receive DMA Current Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_CURR_PTR_RX 0xFFC0 2A00

SPORT1_CURR_PTR_RX 0xFFC0 2E00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Current Descriptor Pointer register (SPORTx_CURR_PTR_RX)

Pointer to Current Descriptor 
Block for SPORT DMA 
Operation[15:0]

Reset = 0x0000

RO

For MMR 
assignments, see 
Table 11-15.
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Configuration register. The DMA Configuration register maintains 
real-time DMA buffer status. Figure 11-17 represents the 
SPORTx_CONFIG_DMA_RX registers.

Each SPORT DMA channel has a DMA Enable bit (DEN) for each of the 
serial ports. When DMA is not enabled for a particular channel, the 
SPORT generates an interrupt every time it receives a data word.

When the Interrupt on Completion bit of the SPORTx_CONFIG_DMA_RX reg-
ister is set, bit 0 of the SPORTx_IRQSTAT_RX register is set and a DMA 
interrupt is generated after the final transfer of data. Final transfer of data 
occurs when DMA count = 0, as specified by the descriptor work block.

DMA transfer size can be set to 8, 16, or 32 bits. This provides flexibility 
in how data is packed in memory. For DMA writes to memory in excess of 
the 16-bit FIFO size, the upper bits are padded with 0s. For DMA writes 
to memory smaller than the 16-bit FIFO size, only the LSBs of the FIFO 
are written. A DMA read of memory greater than the 16-bit FIFO size 
reads only the LSBs of memory into the FIFO. For DMA reads of memory 
smaller than the FIFO size, the least significant bits of the FIFO are 
loaded and the remaining FIFO bits have unknown values. DMA data 
transfer size is determined by setting the Data Size Bit 0 and Data Size Bit 
1 bits in the SPORTx_CONFIG_DMA_RX register.

When the Interrupt on Error bit is set, a receive overflow error results in 
bit 1 of the SPORTx_IRQSTAT_RX register being set and a DMA interrupt 
being generated.

The Receive Overflow Error bit is set if an overflow condition occurs. 
This bit is sticky only during the current work block. It is cleared on the 
next descriptor fetch.

The DMA Completion Status bit reflects the current error condition. It is 
set if a receive overflow error occurs. When the current descriptor work 
block completes (DMA count = 0), the value of this bit is written to 
memory as a record of the completion result, and the bit is cleared for the 
next data transfer.
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Figure 11-17. SPORTx Receive DMA Configuration Registers

Table 11-16. SPORTx Receive DMA Configuration Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_CONFIG_DMA_RX 0xFFC0 2A02

SPORT1_CONFIG_DMA_RX 0xFFC0 2E02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Configuration Registers (SPORTx_CONFIG_DMA_RX)

0 - Disabled
1 - Enabled

TRAN (Transfer Direction) - 
RO

DEN (DMA Enable) - RW

DS (DMA Completion 
Status) - RO

DOWN (Ownership) - RO

0 - Memory read
1 - Memory write
Set to 1 for receive DMA
master. Writable if DAUTO = 1.

0 - Processor
1 - DMA engine

0 - No error detected
1 - Error detected (ROVF)

FS[1:0] (DMA Buffer Status) - RO
00 - Buffer empty
01 - One word present
10 - Two words present
11 - Three words present

DCOME (Interrupt on 
Completion) - RO

0 - Disabled
1 - Enabled
Writable if DAUTO = 1

DAUTO (Autobuffer/Descrip-
tor Mode) - RW
0 - Descriptor mode enabled
1 - Autobuffer mode enabled

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

FLSH (Buffer Clear Enable) - RW
0 - Normal buffer operation
1 - Clear buffer

Data Size Bit 1 - WO
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if DAUTO = 1
(Shared with DMA Buffer Status bit)

Reset = 0x0000

ROVF (Receive Overflow Error) - RO
0 - No overflow detected
1 - Overflow detected

For MMR 
assignments, see 
Table 11-16.
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SPORTx Receive DMA Start Address High 
(SPORTx_START_ADDR_HI_RX) Registers

This register, shown in Figure 11-18, holds a running pointer to the 
DMA address that is being accessed. This register is read-only. It can be 
written in autobuffer mode. Together, SPORTx_START_ADDR_HI_RX and 
SPORTx_START_ADDR_LO_RX form the 32-bit address for data access.

Figure 11-18. SPORTx Receive DMA Start Address High Registers

Table 11-17. SPORTx Receive DMA Start Address High Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_HI_RX 0xFFC0 2A04

SPORT1_START_ADDR_HI_RX 0xFFC0 2E04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Start Address High Registers (SPORTx_START_ADDR_HI_RX)

Reset = 0x0000

RO. Writable in autobuffer mode.

DMA Start Address [31:16]

For MMR 
assignments, see 
Table 11-17.
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SPORTx Receive DMA Start Address Low 
(SPORTx_START_ADDR_LO_RX) Registers

The DMA Start Address Low register, shown in Figure 11-19, maintains a 
running pointer to the DMA address that is being accessed. 

It is a read-only register. It can be written in autobuffer mode. Together, 
SPORTx_START_ADDR_HI_RX and SPORTx_START_ADDR_LO_RX form the 32-bit 
address for data access.

Figure 11-19. SPORTx Receive DMA Start Address Low Registers

Table 11-18. SPORTx Receive DMA Start Address Low Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_LO_RX 0xFFC0 2A06

SPORT1_START_ADDR_LO_RX 0xFFC0 2E06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Start Address Low Registers (SPORTx_START_ADDR_LO_RX)

Reset = 0x0000

RO. Writable in autobuffer mode.

DMA Start Address [15:0]

For MMR 
assignments, see 
Table 11-18.
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SPORTx Receive DMA Count (SPORTx_COUNT_RX) 
Registers

The SPORT Receive DMA Count register, shown in Figure 11-20, holds 
the number of remaining words in the transfer. This is a read-only regis-
ter. It can be written in autobuffer mode.

SPORTx Receive DMA Next Descriptor Pointer 
(SPORTx_NEXT_DESCR_RX) Registers

The SPORT Receive DMA Next Descriptor Pointer register, shown in 
Figure 11-21, maintains the 16 LSBs of the head address of the next DMA 
descriptor block. Together, the SPORTx_NEXT_DESCR_RX and the DB_NDBP 
registers form the 32-bit head address of the next descriptor block. During 
SPORT initialization, the programmer writes the head address of the first 
DMA descriptor block to the Receive DMA Next Descriptor Pointer reg-
ister and then sets the DEN bit in the Transmit or Receive DMA 
Configuration Registers.

Figure 11-20. SPORTx Receive DMA Count Registers

Table 11-19. SPORTx Receive DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_COUNT_RX 0xFFC0 2A08

SPORT1_COUNT_RX 0xFFC0 2E08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Count Registers (SPORTx_COUNT_RX)

Words Remaining in 
Transfer[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR 
assignments, see 
Table 11-19.
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Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the 
SPORT DMA control registers.

 To initialize SPORTx_NEXT_DESCR_RX before starting a descriptor 
based DMA operation, first set the DAUTO bit in either the 
SPORTx_CONFIG_DMA_TX or the SPORTx_CONFIG_DMA_RX register. If 
the DAUTO bit is not set in at least one of these registers, writes to 
SPORTx_NEXT_DESCR_RX are ignored.

SPORTx Receive DMA Descriptor Ready 
(SPORTx_DESCR_RDY_RX) Registers

The DMA engine stalls if a low level ownership bit is detected during a 
descriptor block access. Writing a 1 to bit 0 of the SPORT Receive DMA 
Descriptor Ready register reactivates the processing of the descriptor 

Figure 11-21. SPORTx Receive DMA Next Descriptor Pointer Registers

Table 11-20. SPORTx Receive DMA Next Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_NEXT_DESCR_RX 0xFFC0 2A0A

SPORT1_NEXT_DESCR_RX 0xFFC0 2E0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Next Descriptor Pointer Registers (SPORTx_NEXT_DESCR_RX)

Head Address of Next DMA 
Descriptor Block [15:0]

Reset = 0x0000

RO

For MMR 
assignments, see 
Table 11-20.
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block. If the ownership bit is set, processing of the descriptor block 
resumes and bit 0 of the SPORT Receive DMA Descriptor Ready register 
is cleared. Figure 11-22 represents the SPORTx_DESCR_RDY_RX registers.

SPORTx Receive DMA IRQ Status 
(SPORTx_IRQSTAT_RX) Registers

Each SPORT DMA unit has three interrupt sources. Two of these sources 
are enabled by the Interrupt On Error and Interrupt On Completion bits 
within the SPORTx_CONFIG_DMA_RX configuration register. The third 
source, bus error, is not maskable at the DMA level. All three interrupt 
status bits contained within the SPORTx_IRQSTAT_RX register are sticky. 

Figure 11-22. SPORTx Receive DMA Descriptor Ready Registers

Table 11-21. SPORTx Receive DMA Descriptor Ready Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_DESCR_RDY_RX 0xFFC0 2A0C

SPORT1_DESCR_RDY_RX 0xFFC0 2E0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Descriptor Ready Registers (SPORTx_DESCR_RDY_RX)

Reset = 0x0000

RO

DMA Descriptor Reactivate
0 - No action taken
1 - Reactivate descriptor

block processing

For MMR assign-
ments, see 
Table 11-21.
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Bits are cleared by writing a 1 to them. All SPORTx_IRQSTAT_RX register 
bits are ORed to form a single DMA interrupt. Figure 11-23 represents 
the SPORTx_IRQSTAT_RX registers.

Figure 11-23. SPORTx Receive DMA IRQ Status Registers

Table 11-22. SPORTx Receive DMA IRQ Status Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_IRQSTAT_RX 0xFFC0 2A0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA IRQ Status Registers (SPORTx_IRQSTAT_RX)

0 - Inactive
1 - Completed

Error IRQ Status - W1C

Completion IRQ Status - W1C

0 - Inactive
1 - Error

Reset = 0x0000

Bus Error IRQ Status - W1C
0 - Inactive
1 - Bus error

For MMR 
assignments, see 
Table 11-22.
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SPORTx Transmit DMA Current Descriptor Pointer 
(SPORTx_CURR_PTR_TX) Registers

This 16-bit read-only register holds the lower 16 bits of the pointer to the 
current descriptor block for the SPORT DMA transmit operation. The 
full 32-bit address to the current pointer is formed by concatenating the 
Next Descriptor Base Pointer register and the SPORT Transmit DMA 
Current Descriptor Pointer register, shown in Figure 11-24.

SPORTx Transmit DMA Configuration 
(SPORTx_CONFIG_DMA_TX) Registers

During SPORT initialization, the program can write the head address of 
the first DMA descriptor block to the Transmit DMA Next Descriptor 
Pointer register, shown in Figure 11-29 on page 11-46, and then set the 

Figure 11-24. SPORTx Transmit DMA Current Descriptor Pointer 
Registers

Table 11-23. SPORTx Transmit DMA Current Descriptor Pointer 
Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_CURR_PTR_TX 0xFFC0 2B00

SPORT1_CURR_PTR_TX 0xFFC0 2F00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Current Descriptor Pointer Registers (SPORTx_CURR_PTR_TX)

Pointer to Current Descriptor 
Block for SPORT DMA 
Operation[15:0]

Reset = 0x0000
For MMR 
assignments, see 
Table 11-23.
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DMA Enable bit in the Transmit DMA Configuration registers, shown in 
Figure 11-25. The DMA Configuration register maintains real time DMA 
buffer status.

Each SPORT DMA channel has an enable bit (DEN) in these registers for 
each of the serial ports. When DMA is not enabled for a particular chan-
nel, the SPORT generates an interrupt every time it starts to transmit a 
data word.

When the Interrupt on Completion bit of the SPORTx_CONFIG_DMA_TX reg-
ister is set, bit 0 of the SPORTx_IRQSTAT_TX register is set and a DMA 
interrupt is generated after the final transfer of data. Final transfer of data 
occurs when DMA count = 0, as specified by the descriptor work block.

DMA transfer size can be set to 8, 16, or 32 bits. This provides flexibility 
in how data is packed in memory. For DMA writes to memory in excess of 
the 16-bit FIFO size, the upper bits are padded with zeros. For DMA 
writes to memory smaller than the 16-bit FIFO size, only the LSBs of the 
FIFO are written. A DMA read of memory greater than the 16-bit FIFO 
size reads only the LSBs of memory into the FIFO. For DMA reads of 
memory smaller than the FIFO size, the least significant bits of the FIFO 
are loaded and the remaining FIFO bits have unknown values. DMA data 
transfer size is determined by setting the Data Size Bit 0 and Data Size Bit 
1 bits in the SPORTx_CONFIG_DMA_TX register.

When the Interrupt on Error bit is set, a transmit underflow error results 
in bit 1 of the SPORTx_IRQSTAT_TX register being set and a DMA interrupt 
being generated.

The Transmit Underflow Error bit is set if an underflow condition occurs. 
This bit is sticky only during the current work block. It is cleared on the 
next descriptor fetch.
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The DMA Completion Status bit reflects the current error condition. It is 
set if a transmit underflow error occurs. When the current descriptor work 
block completes (DMA count = 0), the value of this bit is written to mem-
ory as a record of the completion result, and the bit is cleared for the next 
data transfer.

Figure 11-25. SPORTx Transmit DMA Configuration Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Configuration Registers (SPORTx_CONFIG_DMA_TX)

Reset = 0x0000

0 - Disabled
1 - Enabled

TRAN (Transfer Direction) - 
RO

DEN (DMA Enable) - RW

DS (DMA Completion 
Status) - RO

DOWN (Ownership) - RO

0 - Memory read
1 - Memory write
Set to 0 for transmit DMA
master. Writable if DAUTO = 1.

0 - Processor
1 - DMA engine

0 - No error detected
1 - Error detected (TUVF)

FS[1:0] (DMA Buffer Status) - RO
00 - Buffer empty
01 - One word present
10 - Two words present
11 - Three words present

DCOME (Interrupt on 
Completion) - RO

0 - Disabled
1 - Enabled
Writable if DAUTO = 1

DAUTO (Autobuffer/ 
Descriptor Mode) - RW
0 - Descriptor mode enabled
1 - Autobuffer mode enabled

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

FLSH (Buffer Clear Enable) - RW
0 - Normal buffer operation
1 - Clear buffer

Data Size Bit 1 - WO
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if DAUTO = 1
(Shared with DMA Buffer Status bit)

TUVF (Transmit Underflow Error) - RO
0 - No underflow detected
1 - Underflow detected

For MMR 
assignments, see 
Table 11-24.
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SPORTx Transmit DMA Start Address High 
(SPORTx_START_ADDR_HI_TX) Registers

This register, shown in Figure 11-26 holds a running pointer to the DMA 
address that is being accessed. This register is read-only. It can be written 
in autobuffer mode. 

Together, SPORTx_START_ADDR_HI_TX and SPORTx_START_ADDR_LO_TX form 
the 32-bit address for data access.

Table 11-24. SPORTx Transmit DMA Configuration Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_CONFIG_DMA_TX 0xFFC0 2B02

SPORT1_CONFIG_DMA_TX 0xFFC0 2F02

Figure 11-26. SPORTx Transmit DMA Start Address High Registers

Table 11-25. SPORTx Transmit DMA Start Address High Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_HI_TX 0xFFC0 2B04

SPORT1_START_ADDR_HI_TX 0xFFC0 2F04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Start Address High Registers (SPORTx_START_ADDR_HI_TX)

DMA Start Address[31:16]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR 
assignments, see 
Table 11-25.
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SPORTx Transmit DMA Start Address Low 
(SPORTx_START_ADDR_LO_TX) Registers

The DMA Start Address Low register, shown in Figure 11-27, maintains a 
running pointer to the DMA address that is being accessed. 

It is a read-only register. It can be written in autobuffer mode. Together, 
SPORTx_START_ADDR_HI_TX and SPORTx_START_ADDR_LO_TX form the 32-bit 
address for data access.

Figure 11-27. SPORTx Transmit DMA Start Address Low Registers

Table 11-26. SPORTx Transmit DMA Start Address Low Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_LO_TX 0xFFC0 2B06

SPORT1_START_ADDR_LO_TX 0xFFC0 2F06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Start Address Low Registers (SPORTx_START_ADDR_LO_TX)

DMA Start Address[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR 
assignments, see 
Table 11-26.
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SPORTx Transmit DMA Count (SPORTx_COUNT_TX) 
Registers

The SPORT Transmit DMA Count register, shown in Figure 11-28, 
holds the number of remaining words in the transfer. This is a read-only 
register. It can be written in autobuffer mode.

SPORTx Transmit DMA Next Descriptor Pointer 
(SPORTx_NEXT_DESCR_TX) Registers

The SPORT Transmit DMA Next Descriptor Pointer register, shown in 
Figure 11-29, holds the 16 LSBs of the head address of the next DMA 
descriptor block. Together, the SPORTx_NEXT_DESCR_TX and the DB_NDBP 
registers form the 32-bit head address of the next descriptor block. During 
SPORT initialization, the programmer writes the head address of the first 
DMA descriptor block to the Transmit DMA Next Descriptor Pointer 
register and then sets the DEN bit in the Transmit or Receive DMA Config-
uration Registers.

Figure 11-28. SPORTx Transmit DMA Count Registers

Table 11-27. SPORTx Transmit DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_COUNT_TX 0xFFC0 2B08

SPORT1_COUNT_TX 0xFFC0 2F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Count Registers (SPORTx_COUNT_TX)

Words Remaining in 
Transfer[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR 
assignments, see 
Table 11-27.
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Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the 
SPORT DMA control registers.

 To initialize SPORTx_NEXT_DESCR_TX before starting a descriptor 
based DMA operation, first set the DAUTO bit in either the 
SPORTx_CONFIG_DMA_TX or the SPORTx_CONFIG_DMA_RX register. If 
the DAUTO bit is not set in at least one of these registers, writes to 
SPORTx_NEXT_DESCR_TX are ignored.

SPORTx Transmit DMA Descriptor Ready 
(SPORTx_DESCR_RDY_TX) Registers

The DMA engine stalls if a low level ownership bit is detected during a 
descriptor block access. Writing a 1 to bit 0 of the SPORT Transmit 
DMA Descriptor Ready register reactivates the processing of the descrip-

Figure 11-29. SPORTx Transmit DMA Next Descriptor Pointer Registers

Table 11-28. SPORTx Transmit DMA Next Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_NEXT_DESCR_TX 0xFFC0 2B0A

SPORT1_NEXT_DESCR_TX 0xFFC0 2F0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Next Descriptor Pointer Registers (SPORTx_NEXT_DESCR_TX)

Head Address of Next DMA 
Descriptor Block[15:0]

Reset = 0x0000

RO

For MMR 
assignments, see 
Table 11-28.
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tor block. If the ownership bit is set, processing of the descriptor block 
resumes and bit 0 of the SPORT Transmit DMA Descriptor Ready regis-
ter is cleared (see Figure 11-30).

SPORTx Transmit DMA IRQ Status 
(SPORTx_IRQSTAT_TX) Registers

Each SPORT DMA unit has three interrupt sources. Two of these sources 
are enabled by the Interrupt On Error and Interrupt On Completion bits 
within the SPORTx_CONFIG_DMA_TX configuration register. The third 
source, bus error, is not maskable at the DMA level. All three interrupt 
status bits contained within the SPORTx_IRQSTAT_TX register are sticky. 

Figure 11-30. SPORTx Transmit DMA Descriptor Ready Registers

Table 11-29. SPORTx Transmit DMA Descriptor Ready Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_DESCR_RDY_TX 0xFFC0 2B0C

SPORT1_DESCR_RDY_TX 0xFFC0 2F0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Descriptor Ready Registers (SPORTx_DESCR_RDY_TX)
WO

Reset = 0x0000

DMA Descriptor Reactivate
0 - No action taken
1 - Reactivate descriptor

block processing

For MMR 
assignments, see 
Table 11-29.
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Bits are cleared by writing a 1 to them. All SPORTx_IRQSTAT_TX register 
bits are ORed to form a single DMA interrupt. Figure 11-31 shows the 
SPORTx_IRQSTAT_TX register.

Register Writes and Effect Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register 
writes are internally completed at the end of the next SCLK cycle after 
which they occurred and the register reads back the newly written value on 
the next cycle after that.

Figure 11-31. SPORTx Transmit DMA IRQ Status Registers

Table 11-30. SPORTx Transmit DMA IRQ Status Register MMR 
Assignments

Register Name Memory-Mapped Address

SPORT0_IRQSTAT_TX 0xFFC0 2B0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA IRQ Status Registers (SPORTx_IRQSTAT_TX)

Reset = 0x0000

0 - Inactive
1 - Completed

Error IRQ Status - W1C

Completion IRQ Status - W1C

0 - Inactive
1 - Error

Bus Error IRQ Status - W1C
0 - Inactive
1 - Error

For MMR assign-
ments, see 
Table 11-30.
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When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set), 
corresponding SPORT configuration register writes are disabled (except 
for SPORTx_RSCLKDIV, SPORTx_TSCLKDIV, and multichannel mode channel 
registers). SPORTx_TX register writes are always enabled; SPORTx_RX is a 
read-only register.

After a write to a SPORT register, any changes to the control and mode 
bits generally take effect when the SPORT is re-enabled.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an 
external source) is SCLK/2. The frequency of an internally generated clock 
is a function of the system clock frequency (as seen at the SCLK0 or 
CLKOUT_SCLK1 pin) and the value of the 16-bit serial clock divide modulus 
registers, SPORTx_TSCLKDIV and SPORTx_RSCLKDIV.

SPxTCLK frequency = (SCLK frequency) / (2  (SPORTx_TSCLDIV + 1))

SPxRCLK frequency = (SCLK frequency) / (2  (SPORTx_RSCLDIV + 1))

If the value of SPORTx_TSCLKDIV or SPORTx_RSCLKDIV is changed while the 
internal serial clock is enabled, the change in TCLK or RCLK frequency takes 
effect at the start of the rising edge of TCLK or RCLK that follows the next 
leading edge of TFS or RFS.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of 
transmit or receive clock cycles that are counted before generating a TFS or 
RFS pulse (when the frame sync is internally generated). This enables a 
frame sync to initiate periodic transfers. The counting of serial clock 
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

# of serial clocks between frame sync assertions = xFSDIV + 1
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Use the following equations to determine the correct value of xFSDIV, 
given the serial clock frequency and desired frame sync frequency:

SPxTFSCLK frequency = (CLKOUT frequency) / (SPORTx_TFSDIV + 1)

SPxRFSCLK frequency = (CLKOUT frequency) / (SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active if xFSDIV=0. However, 
the value of xFSDIV should not be less than the serial word length minus 
one (the value of the SLEN field in the transmit or receive control register); 
a smaller value of xFSDIV could cause an external device to abort the cur-
rent operation or have other unpredictable results. If the SPORT is not 
being used, the xFSDIV divisor can be used as a counter for dividing an 
external clock or for generating a periodic pulse or periodic interrupt. The 
SPORT must be enabled for this mode of operation to work.

Maximum Clock Rate Restrictions
Externally generated late transmit frame syncs also experience a delay from 
arrival to data output, and this can limit the maximum serial clock speed. 
See ADSP-BF535 Blackfin Embedded Processor Data Sheet for exact timing 
specifications.

 Be careful when operating with externally generated clocks near the 
frequency of SCLK/2. There is a delay between the clock signal’s 
arrival at the TCLK pin and the output of the data, and this delay 
may limit the receiver’s speed of operation. See ADSP-BF535 
Blackfin Embedded Processor Data Sheet for exact timing 
specifications. At full speed serial clock rate, the safest practice is to 
use an externally generated clock and externally generated frame 
sync (ICLK=0 and IRFS=0).
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Data Word Formats
The format of the data words transferred over the SPORTs is configured 
by the DTYPE, SENDN, and SLEN bits of the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers.

Word Length
Each SPORT channel (transmit and receive) independently handles word 
lengths of 3 to 16 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 16 bits long, residing in the LSB positions. The 
value of the serial word length (SLEN) field in the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers of each SPORT determines the word length 
according to this formula:
Serial Word Length = SLEN + 1

 The SLEN value should not be set to zero or one; values from 2 to 
15 are allowed. Continuous operation (when the last bit of the cur-
rent word is immediately followed by the first bit of the next word) 
is restricted to word sizes of 4 of longer (so SLEN  3).

Endian Format
Endian format determines whether the serial word is transmitted most sig-
nificant bit (MSB) first or least significant bit (LSB) first. Endian format 
is selected by the SENDN bit in the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers. When SENDN=0, serial words are transmitted 
(or received) MSB first. When SENDN=1, serial words are transmitted (or 
received) LSB first.
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Data Type
The DTYPE field of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers 
specifies one of four data formats for both single and multichannel opera-
tion (See Table 11-31).

These formats are applied to serial data words loaded into the SPORTx_RX 
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or 
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the 
number of bits that must be sent. The ADSP-BF535 processor’s SPORTs 
support the two most widely used companding algorithms, -law and 
A-law. The processor compands data according to the CCITT G.711 
specification. The type of companding can be selected independently for 
each SPORT.

Table 11-31. DTYPE and Data Formatting 

DTYPE Data Formatting

00 Right justify, zero fill unused MSBs

01 Right justify, sign extend into unused MSBs

10 Compand using -law

11 Compand using A-law
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When companding is enabled, valid data in the SPORTx_RX register is the 
right justified, expanded value of the eight LSBs received and sign 
extended. A write to SPORTx_TX causes the 16-bit value to be compressed 
to eight LSBs (sign extended to the width of the transmit word) and writ-
ten to the internal transmit register. If the magnitude of the 16-bit value is 
greater than the 13-bit A-law or 14-bit -law maximum, the value is auto-
matically compressed to the maximum positive or negative value.

Clock Signal Options
Each SPORT has a transmit clock signal (TCLK) and a receive clock signal 
(RCLK). The clock signals are configured by the ICLK and CKFE bits of the 
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers. Serial clock frequency 
is configured in the SPORTx_TSCLKDIV and SPORTx_RSCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single 
clock is desired for both input and output.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ICLK bit of the 
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers determines the clock 
source.

When ICLK=1, the clock signal is generated internally by the core and the 
TCLK or RCLK pin is an output. The clock frequency is determined by the 
value of the serial clock divisor in the SPORTx_TSCLKDIV or 
SPORTx_RSCLKDIV registers.

When ICLK=0, the clock signal is accepted as an input on the TCLK or RCLK 
pins, and the serial clock divisors in the 
SPORTx_TSCLKDIV/SPORTx_RSCLKDIV registers are ignored. The externally 
generated serial clock need not be synchronous with the core system clock.



Frame Sync Options

11-54 ADSP-BF535 Blackfin Processor Hardware Reference
 

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The 
framing signals for each SPORT are TFS (transmit frame synchronization) 
and RFS (receive frame synchronization). A variety of framing options are 
available; these options are configured in the SPORT control registers. 
The TFS and RFS signals of a SPORT are independent and are separately 
configured in the control registers.

Framed Versus Unframed
The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required) and RFSR (receive frame 
sync required) control bits determine whether frame sync signals are 
required. These bits are located in the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers.

When TFSR=1 or RFSR=1, a frame sync signal is required for every data 
word. To allow continuous transmitting by the SPORT, each new data 
word must be loaded into the SPORTx_TX buffer before the previous word 
is shifted out and transmitted. “Data Independent Transmit Frame Sync” 
on page 11-59.

When TFSR=0 or RFSR=0, the corresponding frame sync signal is not 
required. A single frame sync is needed to initiate communications but is 
ignored after the first bit is transferred. Data words are then transferred 
continuously, unframed. 

 When DMA is enabled in this mode, with frame syncs not 
required, DMA requests may be held off by chaining or may not be 
serviced frequently enough to guarantee continuous unframed data 
flow.
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Figure 11-32 illustrates framed serial transfers, which have these 
characteristics:

• TFSR and RFSR bits in the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG 
registers determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed 
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and 
LRFS bits of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers.

See “Timing Examples” on page 11-69 for more timing examples.

Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be independently generated 
internally or can be input from an external source. The ITFS and IRFS bits 
of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers determine the 
frame sync source.

Figure 11-32. Framed Versus Unframed Data
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When ITFS=1 or IRFS=1, the corresponding frame sync signal is generated 
internally by the SPORT, and the TFS pin or RFS pin is an output. The 
frequency of the frame sync signal is determined by the value of the frame 
sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV registers.

When ITFS=0 or IRFS=0, the corresponding frame sync signal is accepted 
as an input on the TFS pin or RFS pins, and the frame sync divisors in the 
SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated 
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be either active high or active low (in other words, 
inverted). The LTFS and LRFS bits of the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers determine the frame syncs’ logic level:

• When LTFS=0 or LRFS=0, the corresponding frame sync signal is 
active high.

• When LTFS=1 or LRFS=1, the corresponding frame sync signal is 
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on either the rising or falling edges 
of the SPORT clock signals. The CKFE bit of the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers selects the driving and sampling edges for the 
serial data and frame syncs. 
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For the SPORT transmitter, setting CKFE=1 in the SPORTx_TX_CONFIG reg-
ister selects the falling edge of TCLKx to be used to drive data and internally 
generated frame syncs and selects the rising edge of TCLKx to be used to 
sample externally generated frame syncs. Setting CKFE=0 selects the rising 
edge of TCLKx to be used to drive data and internally generated frame syncs 
and selects the falling edge of TCLKx to be used to sample externally gener-
ated frame syncs.

For the SPORT receiver, setting CKFE=1 in the SPORTx_RX_CONFIG register 
selects the falling edge of RCLKx to be used to drive internally generated 
frame syncs and selects the rising edge of RCLKx to be used to sample data 
and externally generated frame syncs. Setting CKFE=0 selects the rising edge 
of RCLKx to be used to drive internally generated frame syncs and selects 
the falling edge of RCLKx to be used to sample data and externally gener-
ated frame syncs.

 Note: externally generated data and frame sync signals should 
change state on the opposite edge than that selected for sampling. 
For example, for an externally generated frame sync to be sampled 
on the rising edge of clock (CKFE=1 in the SPORTx_TX_CONFIG regis-
ter), the frame sync must be transmitted on the falling edge of 
clock.

The transmit and receive functions of two SPORTs connected together 
should always select the same value for CKFE in the transmitter and 
receiver, so that the transmitter drives the data on one edge and the 
receiver samples the data on the opposite edge.

Early Versus Late Frame Syncs (Normal Versus 
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late) 
or during the serial clock cycle immediately preceding the first bit (early). 
The LATFS and LARFS bits of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG 
registers configure this option.
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When LATFS=0 or LARFS=0, early frame syncs are configured; this is the 
normal mode of operation. In this mode, the first bit of the transmit data 
word is available and the first bit of the receive data word is sampled in the 
serial clock cycle after the frame sync is asserted, and the frame sync is not 
checked again until the entire word has been transmitted or received. In 
multichannel operation, this is the case when frame delay is 1.

If data transmission is continuous in early framing mode, in other words, 
the last bit of each word is immediately followed by the first bit of the next 
word, then the frame sync signal occurs during the last bit of each word. 
Internally generated frame syncs are asserted for one clock cycle in early 
framing mode. Continuous operation is restricted to word sizes of 4 or 
longer (so SLEN  3).

When LATFS=1 or LARFS=1, late frame syncs are configured; this is the 
alternate mode of operation. In this mode, the first bit of the transmit data 
word is available and the first bit of the receive data word is sampled in the 
same serial clock cycle that the frame sync is asserted. In multichannel 
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during 
the first bit of each word. Internally generated frame syncs remain asserted 
for the entire length of the data word in late framing mode. Externally 
generated frame syncs are only checked during the first bit.

Figure 11-33 illustrates the two modes of frame signal timing. In frame 
signal timing:

• The LATFS or LARFS bits of the SPORTx_TX_CONFIG and 
SPORTx_RX_CONFIG registers configure early or late frame syncs. A 
value of LATFS=0 or LARFS=0 is used for early frame syncs. A value 
of LATFS=1 or LARFS=1 is used for late frame syncs.

• With early framing, the frame sync precedes data by one cycle. 
With late framing, the frame sync is checked on the first bit only.
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• Data is transmitted MSB first (if SENDN=0) or LSB first (if 
SENDN=1).

• The frame sync and clock can be generated internally or externally.

See “Timing Examples” on page 11-69 for more timing examples. 

Data Independent Transmit Frame Sync
Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORTx_TX buffer has data ready to transmit. The data 
independent transmit frame sync mode bit (DITFS) allows the continuous 
generation of the TFS signal, with or without new data. The DITFS bit of 
the SPORTx_TX_CONFIG register configures this option.

When DITFS=0, the internally generated TFS is only output when a new 
data word has been loaded into the SPORTx_TX buffer. The next TFS is gen-
erated once data is loaded into SPORTx_TX. This mode of operation allows 
data to be transmitted only when it is available.

When DITFS=1, the internally generated TFS is output at its programmed 
interval regardless of whether new data is available in the SPORTx_TX buf-
fer. Whatever data is present in SPORTx_TX is retransmitted with each 

Figure 11-33. Normal Versus Alternate Framing

B3 B 2 B1 B 0 ...

xCL K

L AT E
FR AME
S YNC

DAT A

E AR L Y
FR AME
S YNC



Multichannel Operation

11-60 ADSP-BF535 Blackfin Processor Hardware Reference
 

assertion of TFS. The TUVF transmit underflow status bit in the 
SPORTx_STAT register is set when this occurs and old data is retransmitted. 
The TUVF status bit is also set if the SPORTx_TX buffer does not have new 
data when an externally generated TFS occurs. Note that in this mode of 
operation, data is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORTx_TX data 
register is required to start the transfer.

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the 
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial bit 
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one 
word for each of 24 channels.

The SPORT can automatically select words for particular channels while 
ignoring the others. Up to 128 channels are available for transmitting or 
receiving; each SPORT can receive and transmit data selectively from any 
of the 128 channels. In other words, the SPORT can do any of these on 
each channel:

• transmit data

• receive data

• transmit and receive data

• do nothing

Data companding and DMA transfers can also be used in multichannel 
mode.



ADSP-BF535 Blackfin Processor Hardware Reference 11-61 
 

Serial Port Controllers

The DT pin is always driven (not three-stated) if the SPORT is enabled 
(TSPEN=1 in the SPORTx_TX_CONFIG register), unless it is in multichannel 
mode and an inactive time slot occurs.

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive 
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be 
internally distributed to both the receiver and transmitter circuitry.

 The SPORT Multichannel Transmit Select register and the 
SPORT Multichannel Receive Select register must be programmed 
before enabling SPORTx_TX/SPORTx_RX operation. This is especially 
important in DMA data unpacked mode, since SPORT FIFO 
operation begins immediately after SPORTx_TX/SPORTx_RX is 
enabled and depends on the values of these registers. Enable MCM_EN 
before enabling SPORTx_TX or SPORTx_RX operation.

Figure 11-34 shows example timing for a multichannel transfer (for exam-
ple, receive on channels 0 and 2, and transmit on channels 1 and 2). 
Multichannel transfer has these characteristics:

• Uses TDM method where serial data is sent or received on differ-
ent channels sharing the same serial bus.

• Can independently select transmit and receive channels.

• RFS signals start of frame.

• TFS is used as “Transmit Data Valid” for external logic, true only 
during transmit channels.

See “Timing Examples” on page 11-69 for more timing examples.
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Frame Syncs In Multichannel Mode
All receiving and transmitting devices in a multichannel system must have 
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

When multichannel mode is enabled on a SPORT, both the transmitter 
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the 
channels and restart each multichannel sequence. Assertion of RFS occurs 
at the beginning of the channel 0 data word.

Since RFS is used by both the SPORTx_TX and SPORTx_RX channels of the 
SPORT in MCM configuration, both SPORTx_RX configuration registers 
should always be programmed the same way as the SPORTx_TX configura-
tion register, even if SPORTx_RX operation is not enabled.

Figure 11-34. Multichannel Operation
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In multichannel mode, late (alternative) frame mode is entered automati-
cally; the first bit of the transmit data word is available and the first bit of 
the receive data word is sampled in the same serial clock cycle that the 
frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during 
transmission of an enabled word. The SPORT’s DT pin is three-stated 
when the time slot is not active, and the TFS signal serves as an output 
enabled signal for the DT pin. The SPORT drives TFS in multichannel 
mode whether or not ITFS is cleared.

Once the initial FS is received, and a frame transfer has started, all other FS 
signals are ignored by the SPORT until the complete frame has been 
transferred.

In multichannel mode, the RFS signal is used for the block or frame start 
reference, after which the transfers are performed continuously with no FS 
required. Therefore, internally generated frame syncs are always data 
independent.

Multichannel Frame Delay
The 4-bit MFD field in the multichannel configuration control register 
specifies a delay between the frame sync pulse and the first data bit in mul-
tichannel mode. The value of MFD is the number of serial clock cycles of 
the delay. Multichannel frame delay allows the processor to work with dif-
ferent types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first 
data bit. The maximum value allowed for MFD is 15. A new frame sync may 
occur before data from the last frame has been received, because blocks of 
data occur back-to-back.
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Window Size
The window size defines the range of the channels that can be enabled/dis-
abled in the current configuration. It can be any value in the range of 8 to 
128, in increments of 8; the default value of 0 corresponds to a minimum 
window size of 8 channels. Since the DMA buffer size is always fixed, it is 
possible to define a smaller window size (for example, 32 bits), resulting in 
a smaller DMA buffer size (in this example, 32 bits instead of 128 bits) to 
save DMA bandwidth. The window size cannot be changed while the 
SPORT is enabled.

Window Offset
The window offset specifies where in the 127-channel range to place the 
start of the window. A value of 0 specifies no offset and permits using all 
128 channels. As an example, a program could define a window with a 
window size of 5 and an offset of 93. This 5-channel window would reside 
in the range from 93 to 97. The window offset cannot be changed while 
the SPORT is enabled.

If the combination of the window size and the window offset would place 
the window outside of the range of the channel enable registers, none of 
the channels in the frame are enabled, since this combination is invalid.

Other Multichannel Fields in SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG

A multichannel frame contains more than one channel, as specified by the 
window size and window offset; the multichannel frame is a combined 
sequence of the window offset and the channels contained in the window. 
The total number of channels in the frame is calculated by adding the 
window size to the window offset.
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The channel select offset mode is bit 4 in the SPORTx_MCMC2 register. When 
this mode is selected, the first bit of the SPORTx_MTCSx or SPORTx_MRCSx 
register is linked to the first bit directly following the offset of the win-
dow. If the channel select offset mode is not enabled, the first bit of the 
SPORTx_MTCSx or SPORTx_MRCSx register is placed at offset 0.

The 7-bit CHNL field in the SPORTx_STAT register indicates which channel is 
currently selected during multichannel operation. This field is a read-only 
status indicator. CHNL[6:0] increments by one as each channel is serviced, 
and in channel select offset mode the value of CHNL is reset to 0 after the 
offset has been completed. So, as an example, for a window of 8 and an 
offset of 21, the counter displays a value between 0 and 28 in the regular 
mode, but in channel select offset mode the counter resets to 0 after 
counting up to 21 and the frame completes when the CHNL reaches a value 
of 7, indicating the eighth channel.

The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship 
between the frame sync and the clock received. This change enables the 
SPORT to comply with the H.100 protocol. 

Normally (FSDR=0), the data is transmitted on the same edge that the TFS 
is generated. For example, a positive edge TFS causes data to be transmit-
ted on the positive edge of the SCK, either the same edge or the following 
one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR=1), the frame sync is 
expected to change on the falling edge of the clock and is sampled on the 
rising edge of the clock. This is true even though data received is sampled 
on the negative edge of the receive clock

Channel Selection Registers
A channel is a multibit word from 3 to 16 bits in length that belongs to 
one of the TDM channels. Specific channels can be individually enabled 
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are 
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received or transmitted, while disabled channel words are ignored. Up to 
128 channels are available. The SPORTx_MRCSx and SPORTx_MTCSx registers 
are used to enable and disable individual channels; the SPORTx_MRCSx reg-
isters specify the active receive channels, and the SPORTx_MTCSx registers 
specify the active transmit channels. 

Each register has 16 bits, corresponding to the 16 channels. Setting a bit 
enables that channel, so the SPORT selects its word from the multi-
ple-word block of data (for either receive or transmit). For example, 
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MTCSx register causes the SPORT to 
transmit the word in that channel’s position of the data stream. Clearing 
the bit in the SPORTx_MTCSx register causes the SPORT’s DT (data transmit) 
pin to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSx register causes the SPORT to 
receive the word in that channel’s position of the data stream; the received 
word is loaded into the SPORTx_RX buffer. Clearing the bit in the 
SPORTx_MRCSx register causes the SPORT to ignore the data.

Companding may be selected on an all-or-none channel basis. A-law or 
-law companding is selected with the DTYPE bit 1 in the 
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers, and applies to all 
active channels. (See “Companding” on page 11-52 for more information 
about companding.)

Multichannel Enable
Setting the MCM bit in the multichannel mode configuration control regis-
ter 1 enables multichannel mode. When MCM=1, multichannel operation is 
enabled; when MCM=0, all multichannel operations are disabled.
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Setting the MCM bit enables multichannel operation for both the receive and 
transmit sides of the SPORT. Therefore, if a receiving SPORT is in multi-
channel mode, the transmitting SPORT must also be in multichannel 
mode.

Multichannel DMA Data Packing
Multichannel DMA data packing and unpacking are specified with the 
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration 
registers. 

If the bits are set, indicating that data is packed, the SPORT expects that 
the data contained by the DMA buffer corresponds only to the enabled 
SPORT channels. For example, if an MCM frame contains 10 enabled 
channels, the SPORT expects the DMA buffer to contain 10 consecutive 
words for each of the frames. It is not possible to change the total number 
of enabled channels without changing the DMA buffer size, and reconfig-
uring is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the 
SPORT expects the DMA buffer to have a word for each of the channels 
in the window, whether enabled or not, so the DMA buffer size must be 
equal to the size of the window. For example, if channels 1 and 10 are 
enabled, and the window size is 16, the DMA buffer size would have to be 
16 words. The data to be transmitted or received would be placed at 
addresses 1 and 10 of the buffer, and the rest of the words in the DMA 
buffer would be ignored. This mode has no restrictions on changing the 
number of enabled channels while the SPORT is enabled.
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Moving Data Between SPORTS and 
Memory

Transmit and receive data can be transferred between the SPORTs and 
on-chip memory in one of two ways: with single word transfers or with 
DMA block transfers. Both methods are interrupt-driven, using the same 
internally generated interrupts.

When SPORT DMA is not enabled in the SPORTx_TX_CONFIG or 
SPORTx_RX_CONFIG registers, the SPORT generates an interrupt every time 
it has received a data word or has started to transmit a data word. SPORT 
DMA provides a mechanism for receiving or transmitting an entire block 
or multiple blocks of serial data before the interrupt is generated. The 
SPORT’s DMA controller handles the DMA transfer, allowing the pro-
cessor core to continue running until the entire block of data is 
transmitted or received. Service routines can then operate on the block of 
data rather than on single words, significantly reducing overhead.

For information about DMA, see “Direct Memory Access” on page 9-1.

Support for Standard Protocols
The ADSP-BF535 processor supports the H.100 standard protocol. These 
SPORT parameters must be set to support this standard.

• SPORTx_TFSDIVx = SPORTx_RFSDIVx = 0x03FF (1024 clock cycles per 
frame, 122 ns wide, 125 s period frame sync)

• TFSR/RFSR set (FS required)

• LTFS/LRFS set (active low FS)

• TSCLKDIV = RSCLKDIV = 8 (for 8.192 MHz (+/- 2%) bit clock)

• MCM set (multichannel mode selected)
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• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half clock cycle 
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock (SCK) from a provided 2X 
input clock. This enables the implementation of H.100 compatibility 
modes for MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recov-
ering the 2 MHz or 8 MHz clock from the incoming 4 MHz or 16 MHz 
clock with the proper phase relationship. A 2-bit mode signal chooses the 
applicable clock mode, which includes a non-divide/bypass mode for nor-
mal operation.

SPORT Pin/Line Terminations
The ADSP-BF535 processor has very fast drivers on all output pins 
including the SPORTs. If connections on the data, clock, or frame sync 
lines are longer than six inches, consider using a series termination for 
strip lines on point-to-point connections. This may be necessary even 
when using low speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the 
sections “Framed Versus Unframed” on page 11-54, “Early Versus Late 
Frame Syncs (Normal Versus Alternate Timing)” on page 11-57, and 
“Frame Syncs In Multichannel Mode” on page 11-62). This section con-
tains additional examples to illustrate more possible combinations of the 
framing options.
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These timing examples show the relationships between the signals but are 
not scaled to show the actual timing parameters of the processor. Consult 
the ADSP-BF535 Blackfin Embedded Processor Data Sheet for actual timing 
parameters and values.

These examples assume a word length of four bits (SLEN=3). Framing sig-
nals are active high (LRFS=0 and LTFS=0).

Figure 11-35 through Figure 11-40 show framing for receiving data.

In Figure 11-35 and Figure 11-36, the normal framing mode is shown for 
non-continuous data (any number of SCK cycles between words) and con-
tinuous data (no SCK cycles between words). 

Figure 11-37 and Figure 11-38 show non-continuous and continuous 
receiving in the alternate framing mode. These four figures show the input 
timing requirement for an externally generated frame sync and also the 
output timing characteristic of an internally generated frame sync. Note 
the output meets the input timing requirement; therefore, with two 
SPORT channels used, one SPORT channel could provide RFS for the 
other SPORT channel.

Figure 11-39 and Figure 11-40 show the receive operation with normal 
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one 
SCK before the first bit (in normal mode) or at the same time as the first bit 
(in alternate mode). This mode is appropriate for multiword bursts (con-
tinuous reception).

Figure 11-41 through Figure 11-46 show framing for transmitting data 
and are very similar to Figure 11-35 through Figure 11-40.

In Figure 11-41 and Figure 11-42, the normal framing mode is shown for 
non-continuous data (any number of SCK cycles between words) and con-
tinuous data (no SCK cycles between words). 
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Figure 11-43 and Figure 11-44 show non-continuous and continuous 
transmission in the alternate framing mode. As noted previously for the 
receive timing diagrams, the TFS output meets the TFS input timing 
requirement.

Figure 11-45 and Figure 11-46 show the transmit operation with normal 
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one 
SCK before the first bit (in normal mode) or at the same time as the first bit 
(in alternate mode).

Figure 11-35. SPORT Receive, Normal Framing

Figure 11-36. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SCK

OUTPUTRFS

DR

RFS INPU T

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCK

OUTPUTRFS

DR

RFS INPUT

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown
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Figure 11-37. SPORT Receive, Alternate Framing

Figure 11-38. SPORT Continuous Receive, Alternate Framing

Figure 11-39. SPORT Receive, Unframed Mode, Normal Framing

SCK
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RFS INPUT
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SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown
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RFS INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3
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Figure 11-40. SPORT Receive, Unframed Mode, Alternate Framing

Figure 11-41. SPORT Transmit, Normal Framing

Figure 11-42. SPORT Continuous Transmit, Normal Framing
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Figure 11-43. SPORT Transmit, Alternate Framing

Figure 11-44. SPORT Continuous Transmit, Alternate Framing

Figure 11-45. SPORT Transmit, Unframed Mode, Normal Framing

SCK

TFS

DT
B2 B1 B0B3 B2 B1 B0B3
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OUTPUT

INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
datasheet for specifications.
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DT

TFS INPUT

B2 B1 B0B3 B0B3 B2 B1

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appro-
priate datasheet for specifications.
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Figure 11-46. SPORT Transmit, Unframed Mode, Alternate Framing

SCK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
datasheet for specifications.
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12 UART PORT CONTROLLER

The ADSP-BF535 processor’s Universal Asynchronous Receiver/Trans-
mitter (UART) is a full duplex peripheral compatible with PC-style 
industry standard UARTs. The UART converts data between serial and 
parallel formats. The serial communication follows an asynchronous pro-
tocol that supports various word length, stop bits, and parity generation 
options. The UART also includes modem control and interrupt handling 
hardware. Interrupts can be generated from 12 different events.

The ADSP-BF535 processor features two independent UART devices: 
UART0 and UART1. UART0 enhances the standard functionality and 
supports the half duplex IrDA® SIR (9.6/115.2 Kbps rate) protocol.

 Modem status and control registers are available, but only the 
transmit (TX) and receive (RX) data signals are routed to external 
pins.

The UARTs are DMA capable peripherals with support for separate TX 
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires 
software management of the data flow using either interrupts or polling. 
The DMA method requires minimal software intervention as the DMA 
engine itself moves the data. See Chapter 9, “Direct Memory Access” for 
more information on DMA.

Timers 0, 1, and 2 can be used to provide a hardware assisted autobaud 
detection mechanism for use with the UART. See “Timers” on page 16-1 
for more information.
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Serial Communications
The UART follows an asynchronous serial communication protocol with 
these options:

• 5 – 8 data bits

• 1, 1½, or 2 stop bits 

• None, even, or odd parity

• Baud rate = SCLK/(16 x Divisor), where SCLK is the system clock 
frequency and Divisor can be a value from 1 to 65536

All data words require a start bit and at least one stop bit. With the 
optional parity bit, this creates a 7- to 12-bit range for each word. Data is 
always transmitted and received least significant bit (LSB) first.

Figure 12-1 shows a typical physical bit stream measured on the TX pin.

UARTx Control and Status Registers

 The ADSP-BF535 processor provides a set of PC-style industry 
standard control and status registers for each UART. These MMRs 
are byte-wide registers that are accessed as 16-bit words with the 
most significant byte zero filled.

Figure 12-1. Bit Stream on the TX Pin

Start bit Parity Bit (optional, odd or even)

Stop bit(s)Data bits

D0 D1 D2 D3 D4 D5 D6 D7

LSB
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Consistent with industry standard interfaces, multiple registers are 
mapped to the same address location. The Divisor Latch registers 
(UARTx_DLH and UARTx_DLL) share their addresses with the Transmit Hold-
ing registers (UARTx_THR), the Receive Buffer registers (UARTx_RBR), and the 
Interrupt Enable registers (UARTx_IER). The Divisor Latch Access bit 
(DLAB) in the Line Control Register (UARTx_LCR) controls which sets of reg-
isters are accessible at a given time.

UARTx Line Control Registers (UARTx_LCR)
The UARTx Line Control register (UARTx_LCR) controls the format of 
received and transmitted character frames. Figure 12-2 shows the bits in 
this register.

Figure 12-2. UARTx Line Control Registers

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

DLAB (Divisor Latch Access)
1 - Enables access to UARTx_DLL

and UARTx_DLH
0 - Enables access to UARTx_THR/

UARTx_RBR and UARTx_IER

SB (Set Break)
0 - No force
1 - Force TX pin to 0

SP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 1, parity transmitted and checked as 0
EPS = 0, parity transmitted and checked as 1

EPS (Even Parity Select)
1 - Even parity
0 - Odd parity when PEN = 1 and SP = 0

WLS[1:0] (Word Length Select)
00 - 5 bit word
01 - 6 bit word
10 - 7 bit word
11 - 8 bit word

STB (Stop Bits)
1 - 2 stop bits for non-5-bit word length or

1 1/2 stop bits for 5-bit word length
0 - 1 stop bit

PEN (Parity Enable)
1 - Transmit and check parity
0 - Parity not transmitted or checked

UARTx Line Control Registers (UARTx_LCR)

For MMR assignments, 
see Table 12-1.
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UARTx Line Status Registers (UARTx_LSR)
The UARTx Line Status register contains UART status information, as 
shown in Figure 12-3.

Table 12-1. UARTx Line Control Register MMR Assignments

Register Name Memory-Mapped Address

UART0_LCR 0xFFC0 1806

UART1_LCR 0xFFC0 1C06

Figure 12-3. UARTx Line Status Registers

Table 12-2. UARTx Line Status Register MMR Assignments

Register Name Memory-Mapped Address

UART0_LSR 0xFFC0 180A

UART1_LSR 0xFFC0 1C0A

0

DR (Data Ready)

7 6 5 4 3 2 1 0

01 1 0 Reset = 0x6000

TEMT (TSR and UARTx_THR Empty)

0

UARTx Line Status Registers (UARTx_LSR)
RO

0 - Full
1 - Both empty

0 - Not empty
1 - Empty

0 - No break interrupt
1 - Break interrupt. This indicates RX pin

was held low for more than the 
maximum word length.

BI (Break Interrupt)

THRE (UARTx_THR Empty)

FE (Framing Error)

0 - No new data
1 - UARTx_RBR holds new data

OE (Overrun Error)
0 - No overrun
1 - UARTx_RBR overwritten before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

For MMR assignments, 
see Table 12-2.
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The Break Interrupt (BI), Overrun Error (OE), Parity Error (PE) and Fram-
ing Error (FE) bits are cleared when the UART Line Status register 
(UARTx_LSR) is read. The Data Ready (DR) bit is cleared when the UART 
Receive Buffer register (UARTx_RBR) is read. Because of the destructive 
nature of these read operations, special care should be taken. See “Specula-
tive Load Execution” on page 6-81 and “Conditional Load Behavior” on 
page 6-82 for more information.

UARTx Transmit Holding Registers (UARTx_THR)
A write to the UARTx Transmit Holding register (UARTx_THR), shown in 
Figure 12-4, initiates the transmit operation. The data is moved to the 
internal Transmit Shift register (TSR) where it is shifted out at a baud rate 
equal to SCLK/(16  Divisor) with start, stop, and parity bits appended as 
required. All data words begin with a 1-to-0-transition start bit. The 
transfer of data from UARTx_THR to the Transmit Shift register sets the 
Transmit Holding Register Empty (THRE) status flag in the UARTx Line 
Status register (UARTx_LSR).

The UARTx_THR register is mapped to the same address as UARTx_RBR and 
UARTx_DLL. To access UARTx_THR, the DLAB bit in UARTx_LCR must be 
cleared. When the DLAB bit is cleared, writes to this address target the 
UARTx_THR register, and reads from this address return the UARTx_RBR 
register.

Note that data is transmitted and received least significant bit first (bit 0) 
followed by the most significant bits.

Figure 12-4. UARTx Transmit Holding Registers

Transmit Hold[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Transmit Holding Registers (UARTx_THR)
WO

For MMR assignments, 
see Table 12-3.
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UARTx Receive Buffer Registers (UARTx_RBR)
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always 1. After detection of the 
start bit, the received word is shifted into the Receive Shift register (RSR) 
at a bit rate of SCLK/(16  Divisor). After the appropriate number of bits 
(including stop bits) is received, the data and any status are updated and 
the Receive Shift register is transferred to the UARTx Receive Buffer reg-
ister (UARTx_RBR), shown in Figure 12-5. After the transfer of the received 
word to the UARTx_RBR buffer and the appropriate synchronization delay, 
the Data Ready (DR) status flag is updated.

A sampling clock equal to 16 times the baud rate samples the data as close 
to the midpoint of the bit as possible. Because the internal sample clock 
may not exactly match the asynchronous receive data rate, the sampling 
point drifts from the center of each bit. The sampling point is resynchro-
nized with each start bit, so the error accumulates only over the length of a 
single word. A receive filter removes spurious pulses of less than two times 
the sampling clock period.

The UARTx_RBR register is mapped to the same address as UARTx_THR and 
UARTx_DLL. To access UARTx_RBR, the DLAB bit in UARTx_LCR must be 
cleared. When the DLAB bit is cleared, writes to this address target the 
UARTx_THR register, while reads from this address return the UARTx_RBR 
register.

Table 12-3. UARTx Transmit Holding Register MMR Assignments

Register Name Memory-Mapped Address

UART0_THR 0xFFC0 1800

UART1_THR 0xFFC0 1C00
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UARTx Interrupt Enable Registers (UARTx_IER)
The UARTx_IER register, shown in Figure 12-6, is used only in non-DMA 
mode. Four different interrupt sources are ORed to share a single IRQ 
channel, the UART RX interrupt. While the Receive Interrupt itself must 
be unmasked within the System Interrupt Controller (SIC), the four 
sources can be enabled individually by the control bits in this register. An 
Interrupt Service Routine (ISR) evaluates the UARTx_IIR register to deter-
mine the signaling interrupt source.

The UARTx_IER register is mapped to the same address as UARTx_DLH. To 
access UARTx_IER, the DLAB bit in UARTx_LCR must be cleared.

Figure 12-5. UARTx Receive Buffer Registers

Table 12-4. UARTx Receive Buffer Register MMR Assignments

Register Name Memory-Mapped Address

UART0_RBR 0xFFC0 1800

UART1_RBR 0xFFC0 1C00

Receive Buffer[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Receive Buffer Registers (UARTx_RBR)
RO

For MMR assignments, 
see Table 12-4.
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The ELSI bit enables interrupt generation when any of the following con-
ditions are raised by the respective bit in the UARTx Line Status register 
(UARTx_LSR):

• Receive Overrun Error (OE)

• Receive Parity Error (PE)

• Receive Framing Error (FE)

• Break Interrupt (BI)

Figure 12-6. UARTx Interrupt Enable Registers

Table 12-5. UARTx Interrupt Enable Register MMR Assignments

Register Name Memory-Mapped Address

UART0_IER 0xFFC0 1802

UART1_IER 0xFFC0 1C02

000 0

ERBFI (Enable Receive Buffer Full Interrupt)

7 6 5 4 3 2 1 0

00 Reset = 0x0000

UARTx Interrupt Enable Registers (UARTx_IER)

ETBEI (Enable Transmit Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)

EDDSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate interrupt if DR bit in UARTx_LSR is set 

0 - No interrupt
1 - Generate interrupt if THRE bit in UARTx_LSR is 

set 

0 - No interrupt
1 - Generate interrupt if any of UARTx_LSR[4:1] is set

0 - No interrupt
1 - Generate interrupt if any of UARTx_MSR[3:0] is 

set

For MMR assignments, 
see Table 12-5.



ADSP-BF535 Blackfin Processor Hardware Reference 12-9 
 

UART Port Controller

The EDDSI bit enables interrupt generation when any of the following con-
ditions are raised by the respective bit in the UARTx Modem Status 
register (UARTx_MSR):

• Delta CTS (DCTS)

• Delta DSR (DDSR)

• Trailing Edge RI (TERI)

• Delta DCD (DDCD)

On the ADSP-BF535 processor, the Modem Status interrupt is not gener-
ated if the LOOP bit in the UARTx Modem Control register (UARTx_MCR) is 
not set.

UARTx Interrupt Identification Registers (UARTx_IIR)
In non-DMA mode, a UART interrupt service routine (ISR) reads 
UARTx_IIR to determine the exact interrupt source, whenever more than 
one bit in the UARTx_IER register is set.

When cleared, the Pending Interrupt bit (NINT) signals that an interrupt is 
pending. The STATUS field indicates the highest priority pending interrupt 
(see Figure 12-7).
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Because of the destructive nature of these read operations, special care 
should be taken. See “Speculative Load Execution” on page 6-81 and 
“Conditional Load Behavior” on page 6-82 for more information.

UARTx Divisor Latch Registers (UARTx_DLL, 
UARTx_DLH)

The bit rate is characterized by the system clock (SCLK) and the 16-bit 
Divisor. The Divisor is split into the Divisor Latch Low Byte register 
(UARTx_DLL) and the Divisor Latch High Byte register (UARTx_DLH), as 
shown in Figure 12-8. These registers form a 16-bit divisor. The baud 
clock is divided by 16 so that:

BAUD RATE = SCLK/(16  Divisor)

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

Figure 12-7. UARTx Interrupt Identification Registers

Table 12-6. UARTx Interrupt Identification Register MMR Assignments

Register Name Memory-Mapped Address

UART0_IIR 0xFFC0 1804

UART1_IIR 0xFFC0 1C04

00000

NINT (Pending interrupt)

7 6 5 4 3 2 1 0

10 Reset = 0x010

UARTx Interrupt Identification Registers (UARTx_IIR)
RO

STATUS[1:0]

0 - Interrupt pending
1 - No interrupt pending

00 - Modem status interrupt. Read UARTx_MSR to clear.
01 - UARTx_THR empty. Write UARTx_THR or read

UARTx_IIR to clear.
10 - Receive data ready. Read UARTx RBR to clear.
11 - Receive line status. Read UARTx_LSR to clear.

For MMR assignments, 
see Table 12-6.
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The UARTx_DLL register is mapped to the same address as the UARTx_THR 
and UARTx_RBR registers. The UARTx_DLH register is mapped to the same 
address as the Interrupt Enable register (UARTx_IER). The DLAB bit in 
UARTx_LCR must be set before the UARTx Divisor Latch registers can be 
accessed.

Figure 12-8. UARTx Divisor Latch Low Byte Registers and UARTx 
Divisor Latch High Byte Registers

Table 12-7. UARTx Divisor Latch Low Byte Register MMR Assignments

Register Name Memory-Mapped Address

UART0_DLL 0xFFC0 1800

UART1_DLL 0xFFC0 1C00

Table 12-8. UARTx Divisor Latch High Byte Register MMR Assignments

Register Name Memory-Mapped Address

UART0_DLH 0xFFC0 1802

UART1_DLH 0xFFC0 1C02

Divisor Latch Low Byte[7:0]

7 6 5 4 3 2 1 0

10 0 0 0 0 Reset = 0x0100

Divisor Latch High Byte[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Divisor Latch Low Byte Registers (UARTx_DLL)

UARTx Divisor Latch High Byte Registers (UARTx_DLH)

For MMR assignments, 
see Table 12-7.

For MMR assignments, 
see Table 12-8.
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Note the 16-bit divisor resets to 0x0001 resulting in the highest possible 
clock frequency by default. If the UART is not used, changing the value of 
this register may help save power.

Table 12-9 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of 
desired baud rates, can result in lower error percentages.

UARTx Modem Control Registers (UARTx_MCR)
The UARTx_MCR register contains modem control and test signals, as shown 
in Figure 12-9.

Loopback mode forces the TX pin to high and disconnects the RX pin 
from the Receive Shift register (RSR), so the RSR input is directly connected 
to the Transmit Shift register (TSR) output. When Loopback mode is 
enabled, modem control signals in the UARTx Modem Control Register 

Table 12-9. UART Baud Rate Examples with 100 MHz SCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

921600 7 892857.14 3.119

6250000 1 6250000 -
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(UARTx_MCR) are directly connected to the fields in the UARTx Modem 
Status Register (UARTx_MSR): RTS to CTS, DTR to DSR, OUT1 to RI, OUT2 to 
DCD.

The four modem control bits do not have any effect on the processor 
when the LOOP bit is not set. This is a read/write register that enables com-
patibility with PC standard UART devices.

Figure 12-9. UARTx Modem Control Registers

Table 12-10. UARTx Modem Control Register MMR Assignments

Register Name Memory-Mapped Address

UART0_MCR 0xFFC0 1808

UART1_MCR 0xFFC0 1C08

000

DTR (Data Terminal Ready)

RTS (Request to Send)

OUT1 (General-purpose Output Function)

OUT2 (General-purpose Output Function)

7 6 5 4 3 2 1 0

00 Reset = 0x0000

LOOP (Loopback Mode Enable)

0

UARTx Modem Control Registers (UARTx_MCR)

0 - Loopback disabled
1 - Loopback enabled

For MMR assignments, 
see Table 12-10.
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UARTx Modem Status Registers (UARTx_MSR)
The UARTx_MSR register contains modem control status bits, as shown 
in Figure 12-10.

Figure 12-10. UARTx Modem Status Registers

Table 12-11. UARTx Modem Status Register MMR Assignments

Register Name Memory-Mapped Address

UART0_MSR 0xFFC0 180C

UART1_MSR 0xFFC0 1C0C

DCTS (Delta CTS)
0 - CTS has not changed state since

UARTx_MSR last read
1 - CTS changed state since UARTx_MSR 

last read

DDSR (Delta DSR)
0 - DSR has not changed state since

UARTx_MSR last read
1 - DSR changed state since UARTx_MSR

last read

TERI (Trailing Edge RI)
0 - RI has not changed from 0 to 1 since

UARTx_MSR last read
1 - RI changed from 0 to 1 since 

UARTx_MSR last read

DDCD (Delta DCD)
0 - DCD has not changed state since

UARTx_MSR last read
1 - DCD changed state since UARTx_MSR 

last read

7 6 5 4 3 2 1 0

00 0 0 0 Reset = 0x0000

DCD (Data Carrier Detect)

RI (Ring Indicator)

DSR (Data Set Ready)

CTS (Clear to Send)

0

UARTx Modem Status Registers (UARTx_MSR)
RO

For MMR assignments, 
see Table 12-11.
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 The Delta CTS (DCTS), Delta DSR (DDSR), Trailing Edge RI (TERI) 
and Delta DCD (DDCD) fields are cleared when the UARTx Modem 
Status register (UARTx_MSR) is read.

UARTx Scratch Registers (UARTx_SCR)
The contents of the 8-bit UARTx Scratch register (Figure 12-11) are not 
altered on reset. It is used for general-purpose data storage and does not 
control the UART hardware in any way.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received Data 
can be read from UARTx_RBR.

The ADSP-BF535 processor must write and read one character at time.

To prevent any loss of data and misalignments of the serial data stream, 
the UARTx Line Status Register (UARTx_LSR) provides two status flags for 
handshaking: THRE and DR.

Figure 12-11. UARTx Scratch Registers

Table 12-12. UARTx Scratch Register MMR Assignments

Register Name Memory-Mapped Address

UART0_SCR 0xFFC0 180E

UART1_SCR 0xFFC0 1C0E

Scratch[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0xXX00

UARTx Scratch Registers (UARTx_SCR)

For MMR assignments, 
see Table 12-12.
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The THRE flag is set when UARTx_THR is ready for new data and cleared 
when the processor loads new data into UARTx_THR. Writing UARTx_THR 
when it is not empty overwrites the register with the new value and the 
previous character is never transmitted. 

The DR flag signals when new data is available in UARTx_RBR. This flag is 
cleared automatically when the processor reads from UARTx_RBR. Reading 
UARTx_RBR when it is not full returns the previously received value. 

With interrupts disabled, these status flags can be polled to determine 
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.

Alternatively, UART writes and reads can be accomplished by ISRs. Both 
UART devices feature independent interrupt channels. In non-DMA 
mode, the UART TX interrupt channel is not used. All interrupt sources 
within one UART device share the same interrupt request, the UART RX 
interrupt channel. As controlled by UARTx_IER, this interrupt can be raised 
by any of the following:

• THR Empty (THRE) event 

• RBR Full (DR) event 

• Modem Status event

• Receive Error condition

The ISR can evaluate the Status bit field within the UARTx Interrupt 
Identification register (UARTx_IIR) to determine the exact interrupt 
source. Interrupts also must be assigned and unmasked by the 
ADSP-BF535 processor’s interrupt controller.
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DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels 
move data between the UART and memory. The processor does not have 
to move data, it just has to set up the appropriate transfers either through 
the descriptor mechanism or through autobuffer mode.

No additional buffering is provided in the UART DMA channels, so the 
latency requirements are the same as in non-DMA mode. However, the 
latency is determined by the bus activity and arbitration mechanism and 
not by the processor loading and interrupt priorities. For more informa-
tion, see “Direct Memory Access” on page 9-1.

The DMA interrupt mechanism works independently from the UARTx_IER 
and the UARTx_IIR registers. The TX DMA has its own dedicated inter-
rupt channel. The receive interrupt channel handles RX DMAs as well as 
receive error conditions when enabled in the UARTx Receive DMA Con-
figuration register (UARTx_CONFIG_RX). DMA interrupt routines must 
explicitly write ones to the corresponding DMA IRQ status registers 
explicitly to clear the latched request of the pending interrupt.

Mixing Modes
Non-DMA and DMA modes use different synchronization mechanisms. 
Consequently, any serial communication must be complete before switch-
ing from non-DMA to DMA mode or vice-versa. In other words, before 
switching from non-DMA transmission to DMA transmission, make sure 
that both UARTx_THR and the internal Transmit Shift register (TSR) are 
empty by testing the THRE and the TEMT status bits in UARTx_LSR. Other-
wise, the processor must wait until the 2-bit DMA Buffer Status field 
within the appropriate UARTx Transmit DMA Configuration register 
(UARTx_CONFIG_TX) is clear.
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UART DMA Receive Registers
Each of the two UART modules provides two complete independent 
DMA channels. The transmit channel reads from memory and the receive 
channel writes to memory. Every DMA channel features its own set of 
control registers. For more information on DMA registers, see “Direct 
Memory Access” on page 9-1.
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UARTx Receive DMA Current Descriptor Pointer 
Registers (UARTx_CURR_PTR_RX)

Figure 12-12 shows the UARTx Receive DMA Current Descriptor Point 
registers.

 This register defines the lower 16 bits of the Current Descriptor 
Pointer. The complete 32-bit address is created by combining this 
value with the upper 16 bits from the DMA Descriptor Base 
Pointer Register (DMA_DBP). For more information on the DMA 
Descriptor Base Pointer Register, see “Direct Memory Access” on 
page 9-1.

Figure 12-12. UARTx Receive DMA Current Descriptor Pointer Registers

Table 12-13. UARTx Receive DMA Current Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

UART0_CURR_PTR_RX 0xFFC0 1A00

UART1_CURR_PTR_RX 0xFFC0 1E00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_RX)
RO

Current Descriptor 
Pointer[15:0]

Reset 0x0000
For MMR assignments, 
see Table 12-13.
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UARTx Receive DMA Configuration Registers 
(UARTx_CONFIG_RX)

Figure 12-13 shows the UARTx Receive DMA Configuration registers.

Figure 12-13. UARTx Receive DMA Configuration Registers

000

UARTx Receive DMA Configuration Registers (UARTx_CONFIG_RX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Disabled
1 - Enabled0 - Processor

1 - DMA engine

0 0 0 0 0 0 0 0 0 0 00 Reset 0x0000

Ownership - RO

DMA Completion Status - RO

DMA Buffer Status[1:0] - RO

Data Size Bit 1

UARFE - RO

UARPE - RO

UAROE - RO

Interrupt on Error - RO

DMA Enable

Direction - RO

Interrupt on Completion - RO

Data Size Bit 0 - RO

Autobuffer

0 - No error detected
1 - Error detected

00 - Buffer empty
11 - Buffer full
Actively updated in register

0 - 16-bit half word or 32-bit word
1 - 8-bit byte
This field is writable if autobuffering
mode is enabled; shared with DMA
Buffer Status bit.

0 - No error
1 - Framing error

0 - No error
1 - Parity error

0 - No error
1 - Overrun error

0 - No interrupt generation
1 - Generate interrupt
This bit is writable if autobuffering 
mode is enabled.

0 - Autobuffer mode disabled
1 - Autobuffer mode enabled

0 - Memory read
1 - Memory write

0 - No interrupt generation
1 - Generate interrupt on

completion
This bit is writable if autobuffering
mode is enabled.

0 - 16-bit half word
1 - 8-bit byte or 32-bit word
This field is writable if
autobuffering mode is enabled.

For MMR assignments, 
see Table 12-14.



ADSP-BF535 Blackfin Processor Hardware Reference 12-21 
 

UART Port Controller

When autobuffering is enabled, Data Size Bit 0 and Data Size Bit 1 are 
used to determine the size of a DMA transfer. Table 12-15 defines the 
allowed DMA transfer sizes.

Note the receive DMA always writes to memory, so the Direction bit 
should always be set.

If the Interrupt on Error bit is set, a UARTx RX interrupt is issued when 
either an overflow error, a parity error, or a framing error has been 
detected. The RX interrupt service routine should evaluate bit 1 of the 
UARTx_IRQSTAT_RX register in order to determine whether it was requested 
by a line error condition rather than by the DMA completion. If this bit is 
set, the service routine should read the UARTx_LSR register to determine the 
error condition.

 Reading UARTx_LSR also clears the UART’s interrupt request. Since 
the error request has also been latched in the DMA engine, the 
error handler must also write a 1 to bit 1 of the UARTx_IRQSTAT_RX 
afterward.

Table 12-14. UARTx Receive DMA Configuration Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_CONFIG_RX 0xFFC0 1A02

UART1_CONFIG_RX 0xFFC0 1E02

Table 12-15. DMA Transfer Sizes

Data Size Bit 1 Data Size Bit 0 Transfer Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte
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In descriptor DMA mode, individual descriptors may be configured to 
disable interrupt generation. The erroneous DMA sequence can still be 
located. In this case, the UART error flags are mirrored in the 
UARTx_CONFIG_RX register and this one is copied to DMA descriptor in 
memory afterward.

UARTx Receive DMA Start Address High Registers 
(UARTx_START_ADDR_HI_RX)

Figure 12-14 shows the UARTx Receive DMA Start Address High 
registers.

Figure 12-14. UARTx Receive DMA Start Address High Registers

Table 12-16. UARTx Receive DMA Start Address High Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_HI_RX 0xFFC0 1A04

UART1_START_ADDR_HI_RX 0xFFC0 1E04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Start Address High Registers (UARTx_START_ADDR_HI_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[31:16]

Reset 0x0000For MMR assignments, 
see Table 12-16.
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UARTx Receive DMA Start Address Low Registers 
(UARTx_START_ADDR_LO_RX)

Figure 12-15 shows the UARTx Receive DMA Start Address Low 
registers.

Figure 12-15. UARTx Receive DMA Start Address Low Registers

Table 12-17. UARTx Receive DMA Start Address Low Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_LO_RX 0xFFC0 1A06

UART1_START_ADDR_LO_RX 0xFFC0 1E06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Start Address Low Registers (UARTx_START_ADDR_LO_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-17.
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UARTx Receive DMA Count Registers 
(UARTx_COUNT_RX)

Figure 12-16 shows the UARTx Receive DMA Count registers.

Figure 12-16. UARTx Receive DMA Count Registers

Table 12-18. UARTx Receive DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

UART0_COUNT_RX 0xFFC0 1A08

UART1_COUNT_RX 0xFFC0 1E08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Count Registers (UARTx_COUNT_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Transfer 
Count[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-18.
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UARTx Receive DMA Next Descriptor Pointer 
Registers (UARTx_NEXT_DESCR_RX)

Figure 12-17 shows the UARTx Receive DMA Next Descriptor Pointer 
registers.

 This register defines the lower 16 bits of the Next Descriptor 
Pointer. The complete 32-bit address is created by combining this 
value with the upper 16 bits from the DMA Descriptor Base 
Pointer Register (DMA_DBP). For more information on the DMA 
Descriptor Base Pointer Register, see “Direct Memory Access” on 
page 9-1.

Figure 12-17. UARTx Receive DMA Next Descriptor Pointer Registers

Table 12-19. UARTx Receive DMA Next Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

UART0_NEXT_DESCR_RX 0xFFC0 1A0A

UART1_NEXT_DESCR_RX 0xFFC0 1E0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_RX)

Next Descriptor 
Pointer[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-19.
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UARTx Receive DMA Descriptor Ready Registers 
(UARTx_DESCR_RDY_RX)

Figure 12-18 shows the UARTx Receive DMA Descriptor Ready registers.

Figure 12-18. UARTx Receive DMA Descriptor Ready Registers

Table 12-20. UARTx Receive DMA Descriptor Ready Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_DESCR_RDY_RX 0xFFC0 1A0C

UART1_DESCR_RDY_RX 0xFFC0 1E0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Descriptor Ready Registers (UARTx_DESCR_RDY_RX)

Descriptor Ready

Reset 0x0000

0 - Not ready
1 - Ready

For MMR assignments, 
see Table 12-20.
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UARTx Receive DMA IRQ Status Registers 
(UARTx_IRQSTAT_RX)

Figure 12-19 shows the UARTx Receive DMA IRQ Status registers.

UART DMA Transmit Registers
For more information on DMA registers, see “Direct Memory Access” on 
page 9-1.

Figure 12-19. UARTx Receive DMA IRQ Status Registers

Table 12-21. UARTx Receive DMA IRQ Status Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_IRQSTAT_RX 0xFFC0 1A0E

UART1_IRQSTAT_RX 0xFFC0 1E0E

0000000000000

UARTx Receive DMA IRQ Status Registers (UARTx_IRQSTAT_RX)

Completion IRQ Status - W1C
0 - Not complete
1 - Complete

Error IRQ Status - W1C
0 - No error
1 - Error
(See UARTx_Config_Rx[11:9])

Bus Error IRQ Status - W1C
0 - No error
1 - Error

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 Reset 0x0000For MMR assignments, 
see Table 12-21.
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UARTx Transmit DMA Current Descriptor Pointer 
Registers (UARTx_CURR_PTR_TX)

Figure 12-20 shows the UARTx Transmit DMA Current Descriptor 
Pointer registers.

 This register defines the lower 16 bits of the Current Descriptor 
Pointer. The complete 32-bit address is created by combining this 
value with the upper 16 bits from the DMA Descriptor Base 
Pointer Register (DMA_DBP). For more information on the DMA 
Descriptor Base Pointer Register, see “Direct Memory Access” on 
page 9-1.

Figure 12-20. UARTx Transmit DMA Current Descriptor Pointer 
Registers

Table 12-22. UARTx Transmit DMA Current Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

UART0_CURR_PTR_TX 0xFFC0 1B00

UART1_CURR_PTR_TX 0xFFC0 1F00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_TX)
RO

Current Descriptor 
Pointer[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-22.
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UARTx Transmit DMA Configuration Registers 
(UARTx_CONFIG_TX)

Figure 12-21 shows the UARTx Transmit DMA Configuration registers.

Figure 12-21. UARTx Transmit DMA Configuration Registers

Table 12-23. UARTx Transmit DMA Configuration Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_CONFIG_TX 0xFFC0 1B02

UART1_CONFIG_TX 0xFFC0 1F02

000 000

Ownership - RO

UARTx Transmit DMA Configuration Registers (UARTx_CONFIG_TX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 Reset 0x0000

0 - Disabled
1 - Enabled

DMA Enable

Direction - RO

Interrupt on Completion - RO

Data Size Bit 0 - RO

Autobuffer
0 - Autobuffer mode disabled
1 - Autobuffer mode enabled

0 - Memory read
1 - Memory write

0 - No interrupt generation
1 - Generate interrupt on

completion
This bit is writable if autobuffering
mode is enabled.

0 - 16-bit half word
1 - 8-bit byte or 32-bit word
This field is writable if 
autobuffering mode is enabled.

0 - Processor
1 - DMA engine

DMA Completion Status - RO

DMA Buffer Status[1:0] - RO

Data Size Bit 1

Interrupt on Error - RO

0 - No error detected
1 - Error detected

00 - Buffer empty
11 - Buffer full
Actively updated in register.

0 - 16-bit half word or 32-bit word
1 - 8-bit byte
This field is writable if autobuffering
mode is enabled; shared with DMA
Buffer Status bit.

0 - No interrupt generation
1 - Generate interrupt
This bit is writable if autobuffering mode
is enabled.

For MMR assignments, 
see Table 12-23.
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When autobuffering is enabled, Data Size Bit 0 and Data Size Bit 1 are 
used to determine the size of a DMA transfer. Table 12-24 defines the 
allowed DMA transfer sizes.

UARTx Transmit DMA Start Address High Registers 
(UARTx_START_ADDR_HI_TX)

Figure 12-22 shows the UARTx Transmit DMA Start Address High 
registers.

Table 12-24. DMA Transfer Sizes

Data Size Bit 1 Data Size Bit 0 Transfer Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte

Figure 12-22. UARTx Transmit DMA Start Address High Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Start Address High Registers (UARTx_START_ADDR_HI_TX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[31:16]

Reset 0x0000For MMR assignments, 
see Table 12-25.
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UARTx Transmit DMA Start Address Low Registers 
(UARTx_START_ADDR_LO_TX)

Figure 12-23 shows the UARTx Transmit DMA Start Address Low 
registers.

Table 12-25. UARTx Transmit DMA Start Address High Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_HI_TX 0xFFC0 1B04

UART1_START_ADDR_HI_TX 0xFFC0 1F04

Figure 12-23. UARTx Transmit DMA Start Address Low Registers

Table 12-26. UARTx Transmit DMA Start Address Low Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_LO_TX 0xFFC0 1B06

UART1_START_ADDR_LO_TX 0xFFC0 1F06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Start Address Low Registers (UARTx_START_ADDR_LO_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-26.
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UARTx Transmit DMA Count Registers 
(UARTx_COUNT_TX)

Figure 12-24 shows the UARTx Transmit DMA Count registers.

Figure 12-24. UARTx Transmit DMA Count Registers

Table 12-27. UARTx Transmit DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

UART0_COUNT_TX 0xFFC0 1B08

UART1_COUNT_TX 0xFFC0 1F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Count Registers (UARTx_COUNT_TX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Transfer Count[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-27.
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UARTx Transmit DMA Next Descriptor Pointer 
Registers (UARTx_NEXT_DESCR_TX)

Figure 12-25 shows the UARTx Transmit DMA Next Descriptor Pointer 
registers.

 This register defines the lower 16 bits of the Next Descriptor 
Pointer. The complete 32-bit address is created by combining this 
value with the upper 16 bits from the DMA Descriptor Base 
Pointer Register (DMA_DBP). For more information on the DMA 
Descriptor Base Pointer Register, see “Direct Memory Access” on 
page 9-1.

Figure 12-25. UARTx Transmit DMA Next Descriptor Pointer Registers

Table 12-28. UARTx Transmit DMA Next Descriptor Pointer Register 
MMR Assignments

Register Name Memory-Mapped Address

UART0_NEXT_DESCR_TX 0xFFC0 1B0A

UART1_NEXT_DESCR_TX 0xFFC0 1F0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_TX)

Next Descriptor Pointer[15:0]

Reset 0x0000For MMR assignments, 
see Table 12-28.
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UARTx Transmit DMA Descriptor Ready Registers 
(UARTx_DESCR_RDY_TX)

Figure 12-26 shows the UARTx Transmit DMA Descriptor Ready 
registers.

Figure 12-26. UARTx Transmit DMA Descriptor Ready Registers

Table 12-29. UARTx Transmit DMA Descriptor Ready Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_DESCR_RDY_TX 0xFFC0 1B0C

UART1_DESCR_RDY_TX 0xFFC0 1F0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Descriptor Ready Registers (UARTx_DESCR_RDY_TX)

Descriptor Ready

Reset 0x0000For MMR assignments, 
see Table 12-29.



ADSP-BF535 Blackfin Processor Hardware Reference 12-35 
 

UART Port Controller

UARTx Transmit DMA IRQ Status Registers 
(UARTx_IRQSTAT_TX)

Figure 12-27 shows the UARTx Transmit DMA IRQ Status registers.

IrDA Support
Aside from the standard UART functionality, UART0 also supports half 
duplex serial data communication via infrared signals, according to the 
recommendations of the Infrared Data Association (IrDA). The physical 

Figure 12-27. UARTx Transmit DMA IRQ Status Registers

Table 12-30. UARTx Transmit DMA IRQ Status Register MMR 
Assignments

Register Name Memory-Mapped Address

UART0_IRQSTAT_TX 0xFFC0 1B0E

UART1_IRQSTAT_TX 0xFFC0 1F0E

0000000000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000

UARTx Transmit DMA IRQ Status Registers (UARTx_IRQSTAT_TX)

Completion IRQ Status - W1C
0 - Not complete
1 - Complete

Error IRQ Status - W1C
0 - No error
1 - Error

Bus Error IRQ Status - W1C
0 - No error
1 - Error

Reset 0x0000For MMR assignments, 
see Table 12-30.
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layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on 
return-to-zero-inverted (RZI) modulation. Pulse position modulation is 
not supported.

Using the 16x date rate clock, RZI modulation is achieved by inverting 
and modulating the non-return-to-zero (NRZ) code normally transmitted 
by the UART. On the receive side, the 16x clock is used to determine an 
IrDA pulse sample window, from which the RZI-modulated NRZ code is 
recovered. The minimum pulse duration, that is, the time required for 
valid 0 receive data to be detected, is programmable.

IrDA support is enabled by setting the IREN bit in the UART0 Infrared 
Control register. The IrDA application requires external transceivers.

UART0 Infrared Control Register (UART0_IRCR)
The UART0_IRCR register, shown in Figure 12-28, contains bits that con-
trol all IrDA related features. These include the enable bit for IrDA mode 
of operation, bits to specify the minimum receive pulse width, and a bit to 
specify the polarity of the data received.

Figure 12-28. UART0 Infrared Control Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 00

UART0 Infrared Control Register (UART0_IRCR)

IREN (Enable IrDA Mode)
1 - Enable IrDA
0 - Disable IrDA

Reset 0x0000

UART0 Infrared Control Register (UART0_IRCR)

0xFFC0 1810

IRPD[9:0] (IrDA Receive 
Pulse Duration)
Minimum number of Serial
In samples required for a
valid pulse to be detected.
IRPD=
((Pulse width(sec)
xSCLK freq)–2).

IRPOL (IrDA Receive             
Polarity)
0 - Serial In Idle low
Data 0 = positive pulse
Data 1 = no pulse
1 - Serial In Idle high
Data 0 = negative pulse
Data 1 = no pulse
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IrDA Transmitter Description
To generate the IrDA pulse transmitted by the UART, the normal NRZ 
output of the transmitter is first inverted, so a 0 is transmitted as a high 
pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for 
16 UART clock periods. The leading edge of the pulse is then delayed by 
six UART clock periods. Similarly, the trailing edge of the pulse is trun-
cated by eight UART clock periods. This results in the final representation 
of the original 0 as a high pulse of only 3/16 clock periods in a 16-cycle 
UART clock period. The pulse is centered around the middle of the bit 
time, as shown in Figure 12-29. The final IrDA pulse is fed to the off-chip 
infrared driver.

This modulation approach ensures a pulse width output from the UART 
of three cycles high out of every 16 UART clock cycles. As shown in 
Table 12-9 on page 12-12, the error terms associated with the baud rate 
generator are very small and well within the tolerance of most infrared 
transceiver specifications. 

Figure 12-29. IrDA Transmit Pulse
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IrDA Receiver Description
The IrDA receiver function is more complex than the transmit function, 
The receiver must discriminate the IrDA pulse and reject noise. In 
addition, pulse widths of less than 1 UART clock period must be detected 
per existing standards. Consequently, both the position of valid data rela-
tive to the UART clock and the pulse duration must be considered.

The filter function enables IrDA sampling from the sixth through the 
eleventh 16x clock periods. The window is wider than the transmitted 
IrDA pulse to allow for clock frequency discrepancies between the trans-
mitter and receiver. Within this window, the receiver incorporates 
minimum pulse duration logic to detect valid data. 

The pulse duration is specified by the IRPD bits using this formula:

IRPD = (Desired Pulse Width(sec) * SLCK frequency)–2

For example, the Infrared Data Association specifies a receive pulse dura-
tion minimum of 1.41 S at 9.6 Kbits/second. For a SCLK frequency of 
100 MHz, IRPD should contain a value of 0x8b. In this example, receive 
data during the sampling window, whose duration is greater than 141 
SCLK cycles, is treated as valid data. Figure 12-30 shows the receiver 
functionality.



ADSP-BF535 Blackfin Processor Hardware Reference 12-39 
 

UART Port Controller

The receive sampling window is determined by a counter, clocked at the 
16x bit-time sample clock. The sampling window is resynchronized with 
each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 12-30 
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each 
active 1 transition corresponds to a UART NRZ value of 0. 

• IRPOL = 1 assumes that the receive data input idles 1 and each 
active 0 transition corresponds to a UART NRZ value of 0. 

Figure 12-30. IrDA Receiver Pulse Detection
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13 PCI BUS INTERFACE

The ADSP-BF535 processor includes a Revision 2.2-compliant, 33 MHz, 
32-bit Peripheral Component Interconnect (PCI) bus interface. The PCI 
interface provides a bus bridge function between an external PCI bus and 
the memories, the peripherals, and the processor core which are internal to 
the ADSP-BF535 processor. The PCI bus interface supports these 
functions:

• PCI device, in which an ADSP-BF535-processor-based system can 
be easily interfaced to a 3.3V Revision 2.2-compliant PCI bus.

• Host-to-PCI bridge, in which ADSP-BF535 processor resources 
(the core, internal and external memory, and the memory DMA 
controller) provide the necessary hardware components to act as 
the system controller of a PCI bus. This provides peripheral expan-
sion for the ADSP-BF535 processor, from the perspective of one or 
more PCI devices.

In either configuration, the PCI can function as either the PCI initiator 
(master) or the PCI target (slave) for a PCI bus transaction.

The PCI bus interface consists of a PCI controller, interfaces to internal 
buses, and drivers for the external PCI bus (see the block diagram in 
Figure 13-1).
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The PCI Bridge includes the PCI core controller, control and status mem-
ory-mapped registers, and the logic required to interface to the three 
internal buses.

The PCI external interface (PADs in the block diagram) includes special 
I/O drivers and dedicated power supplies that support the PCI electrical 
characteristics. The PCI operates at frequencies up to 33 MHz at 3.3 V, 
and is asynchronous with respect to the ADSP-BF535 processor system 
clock. The PCI bus multiplexes data transfers on the same bus used for 
address transfers and supports a maximum transfer rate of 132 
MB/second.

PCI Specification
The PCI bus interface conforms to PCI Local Bus Specification Rev. 2.2. 
The specification is maintained by the PCI Special Interest Group and can 
be obtained from http://www.pcisig.com.

Figure 13-1. PCI Bridge Block Diagram
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The PCI specification refers to a 32-bit wide word as a double-word, and 
to 16 bits as a word. This document defines 32 bits as a word, 16 bits as a 
half word, and 8 bits as a byte.

PCI Device Function
The PCI device function supports a glueless logical and electrical interface 
to a 3.3V PCI Revision 2.2-compliant bus platform (such as a PC) as a 
single function device. This enables the development of intelligent PCI 
peripheral systems based on the ADSP-BF535 processor. The 
ADSP-BF535 processor PCI bus interface does not support multifunction 
device applications; it supports one configuration space. The 
ADSP-BF535 processor can also support a PCI/USB bridge function.

As a PCI device, the PCI controller can use the Memory DMA controller 
to perform DMA transfers as required by the PCI host.

PCI Host Function
The ADSP-BF535 processor provides the PCI host (platform) functions 
required to support and control numerous off-the-shelf PCI device func-
tions (ethernet controllers, bus bridges, and so on) in a system in which 
the core processor is the host.

Processor Core Access to PCI Space
The Blackfin architecture defines only memory space; it does not define 
I/O or configuration address spaces. The three memory spaces of PCI 
space (memory, I/O, and configuration space) are mapped into the flat 
32-bit core memory space. Since the PCI memory space is as large as the 
full memory address space of the ADSP-BF535 processor, a segmented, or 
windowed, approach must be employed, so that only portions of the PCI 
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address spaces are visible to the processor core at any one time. The dia-
gram in Figure 13-2 shows the ADSP-BF535 processor external memory 
map, including the PCI-space components, and their address ranges.

External PCI Requirements
Although most functions are integrated into the ADSP-BF535 processor 
PCI device, several are not, including:

• PCI bus arbitration. An external device, such as a programmable 
array logic (PAL) device, is required to implement this function.

• Pull-up resistors on signals that may not always be driven to a valid 
state.

• Non-volatile memory. The intent is that EE/flash PROM require-
ments for a PCI initiator can be supported through programmable 
ROM attached to the EBIU.

• Direct method for selecting devices when configured in host mode. 
The contents of the PCI_CBAP register are placed directly on the bus 
when performing a configuration read or write. External hardware 
is needed to generate device selection IDs (IDSELs). ID selecting 
device 0 (the ADSP-BF535 processor device) results in a master 
abort.

Device Mode Operation
The ADSP-BF535 processor is in device mode when the Host/device bit 
in the PCI Bridge Control register is cleared (its default setting).
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Figure 13-2. PCI Memory Map
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Outbound Transactions (ADSP-BF535 Processor as 
PCI Initiator)

This section describes outbound transactions with the ADSP-BF535 pro-
cessor as the PCI initiator.

General Outbound Operation

Read and write transactions to PCI are achieved by first writing to the 
appropriate Base Address register to position the mapping windows in 
PCI address space. Write to the PCI_MBAP register for memory accesses, to 
the PCI_IBAP register for I/O accesses, or to the PCI_CBAP register for con-
figuration accesses. After writing to the appropriate register, a read or 
write to the appropriate data window initiates a PCI transaction.

For memory and I/O accesses, the address put onto the PCI Address/Data 
bus (PCI AD) is a concatenation of the upper bits of the Base Address 
pointer (MBAP or IBAP) and the lower bits of the load or store target 
address. These lower bits are actually the offset into the static-sized PCI 
Memory or I/O windows. Table 13-1 shows the PCI data windows for 
outbound reads and writes.

For all outbound read and write transactions, the control signals of the 
transactions are placed into a FIFO that is written in the SCLK domain and 
read by the PCI core in the PCI clock domain. For writes, the data written 

Table 13-1. Data Windows in EAB for Outbound Transactions

Name Lower Address Upper Address Size

Memory Data Window 0xE000 0000 0xE7FF FFFF 128 MB

I/O Data Window 0xEEFE 0000 0xEEFE FFFF 64 KB

Config Data Port 0xEEFF FFFC 0xEEFF FFFF 1 Word (32 bits)
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to the EAB bus is put into the master TX FIFO to be put onto the PCI 
AD bus during the data phase. For reads, the PCI AD bus data is placed 
into the master RX FIFO during the data phase.

Each of the data FIFOs is 8  32-bit words deep. The transaction FIFO is 
4 transactions deep. Writes are posted as long as there is room in both the 
transaction and the TX data FIFOs. Reads are delayed (slave inserts wait 
states) until there is room in the transaction FIFO, then until the read 
transaction makes it through to the PCI side of the FIFO, and then until 
the data is returned through the RX FIFO. Thus, reads from PCI space 
clear all three of the FIFOs.

If the transaction FIFO is full, all transactions are delayed until the next 
spot in the FIFO is opened. Even if the transaction FIFO only has one ele-
ment in it, the TX FIFO could be either full or not have enough space for 
the size burst being attempted, so the write is again delayed. Three status 
bits have been provided in the PCI_STAT register that let you interrogate 
whether the TX FIFO is full or empty and whether the transaction FIFO 
is full. The PCI Master TX FIFO Empty status bit is sticky and can be 
masked by the PCI_ICTL register to generate an interrupt to improve effi-
ciency when doing burst writes to PCI.

Outbound Error Detection and Reporting

All addresses between 0xE000 0000 and 0xEEFF FFFF are decoded to 
select the PCI interface, but only part of this space is valid. There are four 
windows in this space that have been marked for specific use by the PCI 
interface. Three of these are defined in Table 13-1. The fourth consists of 
the PCI configuration registers, from 0xEEFF FF00 through 
0xEEFF FFFB. Any accesses made between these four valid areas (that is, 
above 0xE000 0000, below 0xEEFF FFFF, and not within one of the win-
dows) results in an error. The logic in the PCI module generates a bus 
error and completes the transaction without actually reading or writing 
any data. The Unsupported EAB Access sticky bit in the PCI_STAT register 
is set, and causes an interrupt if masked to do so in the PCI_ICTL register.
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Any accesses that are valid on the EAB bus but cause fatal errors on PCI 
do not result in a bus error, but the transaction completes without doing 
any actual data reads or writes. A fatal error causes the PCI Fatal Error 
sticky bit in the PCI_STAT register to be set, and an interrupt occurs to the 
core if masked to do so in the PCI_ICTL register. PCI fatal errors occur in 
these cases:

• The requested PCI target does not respond. This usually indicates 
an invalid address. The core executes a master abort cycle.

• The requested PCI target terminates the cycle with a target abort.

• The requested PCI target responds with a PCI_DEVSEL#, but does 
not follow with PCI_TRDY or PCI_STOP to allow the cycle to com-
plete. The master abandons the cycle after 128 cycles.

• The PCI target device retried beyond the retry count. The master 
abandons the cycle after 128 retries.

If a parity error occurs for an access to the PCI bus during the actual trans-
action or at the end of the transaction, the PCI Parity Error sticky bit in 
the PCI_STAT register is set. An interrupt to the core occurs if masked to 
do so in the PCI_ICTL register.

Supported Transactions to PCI

The PCI interface is capable of handling these types of transactions:

• Single 8-bit, 16-bit, and 32-bit

• 4-beat incrementing 8-bit, 16-bit, and 32-bit bursts

• 8-beat incrementing 8-bit, 16-bit, and 32-bit bursts
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It is important to note that the PCI interface does not support wrapping 
bursts. Any access identified as a wrap signals a bus error and sets the 
Unsupported EAB Access bit in the PCI_STAT register. The interface treats 
wrapping bursts as incrementing bursts, but this behavior should not be 
relied upon for normal operation.

Since core cache burst transactions are wrapping bursts, all core access to 
the PCI module must be cache inhibited. This is accomplished by correct 
configuration of the core Cacheability Protection Lookaside Buffers 
(CPLBs), which describe the access characteristics of the core memory 
map. The data CPLB entry or entries used to describe the PCI memory 
and I/O spaces must have the CPLB_L1_CHBL bit cleared. Note that core 
instruction fetch from PCI space is not supported.

The PCI protocol is incapable of doing a 4-sequential byte burst, or a 
2-sequential 16-bit burst. For bursts smaller than 32 bits, the data is 
packed into words and bursted to PCI if necessary. Table 13-2 shows the 
PCI transaction produced for each supported burst size.

Table 13-2. Burst Transaction Conversion to PCI

Supported EAB Burst Transaction Number and Type of PCI Transaction 
Produced

4-beat incrementing 8-bit Single 32-bit word transaction

8-beat incrementing 8-bit Two 32-bit word bursts

4-beat incrementing 16-bit Two 32-bit word bursts

8-beat incrementing 16-bit Four 32-bit word bursts

4-beat incrementing 32-bit Four 32-bit word bursts

8-beat incrementing 32-bit Eight 32-bit word bursts
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Inbound Transactions (ADSP-BF535 Processor as 
PCI Target)

This section describes inbound transactions with the ADSP-BF535 pro-
cessor as the PCI target.

General Inbound Operation

To participate on a PCI bus as a target, the ADSP-BF535 processor must 
first be configured. First, the processor core must write to the Memory 
and I/O BAR Mask registers. Every bit set by the core in each of these 
masks allows the corresponding bit in the memory base address register 
(BAR) or I/O BAR, respectively, to be written by the PCI host during 
configuration. The number of upper bits writable by the PCI determines 
the size in bits of the base address register that configuration software on 
the PCI side programs into the BAR. This determines the size of the win-
dow for which the PCI interface can claim the transaction as the intended 
target.

Each bit of the mask registers must be set to 1 by the processor core, start-
ing with the uppermost bit (bit 31). To prevent the core from claiming 
either memory or I/O transactions, the corresponding mask should be 
programmed with all 0s (the default state). The pattern of all 1s is 
assumed by the PCI interface to be contiguous, stray 0s make the bit non-
writable, and cause unpredictable results.

The processor core must also program the PCI_TMBAP and PCI_TIBAP regis-
ters. These registers are the base address pointers (BAPs) for incoming 
memory and I/O transactions, respectively. The number of bits pro-
grammed into the upper portion of each of these registers must be the 
same as the number of bits set in the corresponding mask. Any bits written 
in the space where 0s exist in the mask are ignored, but the write to the 
BAP completes successfully. If memory or I/O transactions are not 
needed, then the corresponding BAP register is ignored and does not need 
to be programmed. When the processor core has completed writing to 
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both masks and both BAPs, it should allow PCI configuration software 
running on the host processor to configure the PCI interface from the PCI 
bus. This is done by setting the PCI Enable bit in the PCI_CTL register. 
Any configuration accesses to the PCI module before this bit is set are 
retried by the PCI module. It is a stipulation of the PCI protocol that this 

bit must be set. That is, the device has up to 225 PCI cycles to initialize 
itself after PCI_RST# is asserted. 

When PCI configuration software has configured the PCI interface, it is 
configured with a memory and/or I/O address range for which it claims 
the current transaction as the target. 

There is no incoming transaction FIFO, so only one transaction can occur 
at a time. Each of the data FIFOs is 8  32-bit words deep. If a burst 
greater than 8 words comes in, then each time the FIFO fills up, the PCI 
bus is retried until space is available for the next word.

Two status bits in the PCI_STAT register are set whenever the Slave TX 
Data FIFO or Slave RX Data FIFO have data written into them. These 
bits are sticky and can be configured by the PCI_ICTL register to generate 
interrupts. They can be used to determine PCI target bandwidth effi-
ciency or for general debugging of PCI target operation.

The PCI interface can also perform fast back-to-back accesses, which 
make multiple word accesses (not bursts) more efficient by removing the 
usually mandatory single idle cycle between transfers. The PCI interface 
can only perform fast back-to-back transfers when configuration software 
sets the Fast Back-to-Back Enable bit in the command register of the core 
PCI configuration space. This bit is set when all of the slaves on the PCI 
bus are fast back-to-back capable. The ADSP-BF535 processor must also 
enable its own ability to do fast back-to-back transfers by setting the Fast 
Back-to-Back Enable bit in the PCI_CTL register. This bit may be set and 
cleared at any time during operation to enable and disable fast 
back-to-back transfers whenever necessary.
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Inbound Error Detection and Reporting

Inbound transactions to ADSP-BF535 processor resources that are not 
accessible to the PCI bus result in an error. Reads to non-accessible 
resources result in the Error on Inbound Read bit being set in the 
PCI_STAT register and an interrupt to the processor core, if masked to do 
so in the PCI_ICTL register. The waiting read on the PCI side is aborted. 
Writes to non-accessible resources result in the Error on Inbound Write 
bit being set in the PCI_STAT register and an interrupt to the core, if 
masked to do so in the PCI_ICTL register. Writes are posted so that the 
transaction may already be finished. However, if the transaction (for 
example, a burst) is long enough, it is aborted by the error.

Supported Transactions From PCI

The PCI interface supports single 32-bit word memory and I/O accesses. 
It also supports memory bursts of any number of 32-bit words. However, 
the data FIFOs for inbound accesses are only 8 words deep, and if the 
write data FIFO becomes full in the middle of a burst, the interface retries 
the PCI transaction. I/O bursts to the ADSP-BF535 processor are not 
supported. The PCI interface also supports inbound fast back-to-back 
transactions, a method of doing more than one single 32-bit word transfer 
quickly, without the usual idle cycle between transfers. Inbound fast 
back-to-back transfers are passed through as ordinary single word accesses.

Unsupported Transactions From PCI

PCI as a protocol is capable of addressing any combination of the 4 bytes 
in a single word using its byte enable bits. This means that the 
ADSP-BF535 processor could receive a transfer that it does not support, 
such as a read or a write to bytes 0 and 2 of a word. On reads, this is not a 
problem because the whole word can be read and the master of the trans-
action can take the data it wants.
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A problem arises on writes because the internal bus protocols employed on 
the ADSP-BF535 processor support only byte, half word, and word 
transfers. In an effort to avoid the complexity of breaking writes into mul-
tiple transactions, all writes are assumed to have contiguous byte enables 
and the number of bits written to is rounded up to the nearest supported 
transfer size. This means that attempting to write from PCI to only the 
first and third bytes results in writing to the whole word, with possible 
corruption of data.

Host Mode Operation
When the ADSP-BF535 processor is in host mode, the core acts as the sys-
tem processor with the PCI interface acting as its host-to-PCI bridge. The 
ADSP-BF535 processor is put into host mode by setting the Host/Device 
Switch bit in the PCI_CTL register. In host mode, the core must perform 
PCI configuration on any devices attached to the PCI bus. The core must 
also configure the ADSP-BF535 processor PCI configuration space, since 
it is not accessible from the PCI bus side in host mode. The programmer 
should carefully review the values put into the PCI configuration registers 
to be sure that all required functionality is enabled correctly.

Outbound Transactions (ADSP-BF535 Processor as 
PCI Initiator)

Outbound transactions in host mode are accomplished by the same 
method as in device mode. The only difference is that the ADSP-BF535 
processor is responsible for configuring the devices on the PCI bus for cer-
tain memory ranges.
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Inbound Transactions (ADSP-BF535 Processor as 
PCI Target)

Inbound transactions in host mode are accomplished by the same method 
as in device mode. However, only memory accesses are claimed by the PCI 
interface, and PCI memory space is mapped directly to ADSP-BF535 
processor memory space. In other words, the ADSP-BF535 processor 
memory map becomes the system memory map, and all resources in the 
ADSP-BF535 processor memory map that are accessible from PCI lie at 
the same address in PCI memory space. In host mode, a register 
(PCI_HMCTL) is provided at the bottom of the PCI configuration registers 
to configure which ADSP-BF535 processor resources are accessible from 
PCI.

This register contains four enable bits, one for each region of 
ADSP-BF535 processor space that can be used for PCI accesses in host 
mode. The regions are system MMRs, L2 memory, asynchronous mem-
ory, and SDRAM. The register also contains two size fields, one for the 
asynchronous memory and one for SDRAM memory, that specify how 
much of each of these spaces is available to PCI. For the asynchronous 
memory region, the size field is 2 bits and specifies the number of contig-
uous banks that are accessible. For the SDRAM region, the size field is 5 
bits and specifies the number of contiguous 32 MB blocks that are accessi-
ble. These size fields are 0 based. This means, for example, enabling 
asynchronous memory and leaving its size field all 0s results in a single 
bank enabled. The size field can be thought of as the “size minus one” 
field. You must write a 0 to the enable bit to completely disable asynchro-
nous memory or SDRAM. This functionality allows the ADSP-BF535 
processor to prevent the PCI from accessing space above the valid memory 
region when SDRAM or asynchronous memory is not fully populated. It 
also allows the ADSP-BF535 processor to protect upper parts of SDRAM 
or asynchronous memory from PCI accesses. Any space between these 4 
regions is available for assignment to PCI devices during configuration. 
Any space made available by disabling one of these regions or by sizing 
down one of the RAM regions is also available for assignment to PCI 
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devices. Do not assign an address range so that one of the enabled regions 
in the ADSP-BF535 processor overlaps with any external PCI device. 
Doing so would cause contention on the PCI bus, since both the 
ADSP-BF535 processor and the external PCI device would assert DEVSEL# 
to claim the transaction.

Outbound Configuration Transactions
When in host mode, the ADSP-BF535 processor is responsible for the 
configuration of the devices on the PCI bus. The ADSP-BF535 processor 
is responsible for determining the memory or I/O window size for each 
device, and assigning it a base address where there is sufficient room for 
the device window. Because the ADSP-BF535 processor only claims trans-
actions in memory space when in host mode, all of the I/O space is 
available for the ADSP-BF535 processor to assign to different devices on 
the bus. Memory, however, must be allocated with care. The default con-
figuration of the PCI_HMCTL register disables all ADSP-BF535 processor 
resources: system MMRs, asynchronous memory, and SDRAM. Change 
this configuration if the PCI system needs these resources. External 
devices’ need for memory space must be balanced against the 
ADSP-BF535 processor’s need for memory space.

To configure devices on the PCI bus, the ADSP-BF535 processor must 
perform Type 0 and Type 1 transactions, depending on whether the tar-
geted device is on the bus directly connected to the PCI core or is on a bus 
on the other side of a PCI-to-PCI bridge. See the PCI specification for 
more information. The PCI core does not behave as a normal bridge—it 
does not convert a Type 1 transaction into a Type 0 transaction if the bus 
number connected to the PCI core matches the bus number in the config-
uration address. The PCI core behavior is consistent with that of the 
host-to-PCI-bridge behavior.



Reset Behavior and Control

13-16 ADSP-BF535 Blackfin Processor Hardware Reference
 

The PCI core does not generate IDSEL lines for the bus connected to it. 
For accomplishing configuration accesses, the PCI_CBAP address register 
and the accompanying Configuration Data port are used. The PCI_CBAP 
register contents are placed directly on the address bus during the address 
phase, to allow for maximum flexibility. The system designer must decide 
how to implement the IDSEL lines. This can be done with the upper 
address bits, with external logic, or by other means, and the addresses in 
the PCI_CBAP must be formatted according to the system design 
requirements.

Reset Behavior and Control
The PCI interface is a bridge between the PCI and the ADSP-BF535 pro-
cessor systems, so it must gracefully handle a reset from either system in 
both host and device modes. The PCI reset signal (PCI_RST) comes into 
the ADSP-BF535 processor and resets some registers in the PCI clock 
domain. PCI registers that are not affected by a PCI reset are PCI_CFG_DIC, 
PCI_CFG_VIC, PCI_CFG_STAT, PCI_CFG_CMD, PCI_CFG_MLT, PCI_CFG_CLS, 
PCI_CFG_MBAR, and PCI_CFG_IBAR. It signals all state machines interfacing 
the PCI with the internal buses to reset to IDLE. This enables the PCI 
module to completely recover from a PCI_RST, even if it was asserted dur-
ing a transaction to or from the ADSP-BF535 processor. The assertion of 
PCI_RST sets the PCI Reset bit of the PCI_STAT register, and generates an 
interrupt to the core if masked to do so in the PCI_ICTL register. This 
enables the core to recognize what has happened, especially in the case of 
the reset being asserted during a transaction. A system reset running to the 
PCI module within the ADSP-BF535 processor resets all logic in the PCI 
module, including the registers and state machines in the PCI core. This 
method enables PCI core logic to be reset during the reset of either sys-
tem. It also allows the surrounding logic to return to a known state but 
register the PCI_RST and only completely reset during an ADSP-BF535 
processor reset.
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The ADSP-BF535 processor can also cause a reset to the PCI using the 
two bits provided in the PCI_CTL register. The first bit is the RST to PCI 
Enable bit, which is the output enable on the PCI_RST pad. The second bit 
is the RST to PCI bit, which when set, causes the PCI_RST signal to be 
asserted. Resetting the PCI system in this manner has the same effect on 
the PCI core and surrounding logic as the PCI_RST input signal. The logic 
of the PCI module does not restrict the ADSP-BF535 processor from 
causing a PCI_RST in device mode, but doing this is recommended only 
when the ADSP-BF535 processor is in host mode.

Note all PCI signals are active low, but the bits in the PCI_CTL and the 
PCI_STAT registers are active high. This means that setting the RST to PCI 
bit in the PCI_CTL register asserts PCI_RST, and the PCI Reset bit in the 
PCI_STAT register is set when the PCI_RST line is asserted.

Interrupt Behavior and Control
All four interrupt lines from PCI (INTA-INTD) have associated sticky status 
bits in the PCI_STAT register. Whenever one of these interrupt lines is 
asserted, the appropriate bit is set and an interrupt is generated if masked 
to do so in the PCI_ICTL register. These bits are valid in host or device 
mode, but are most useful when the ADSP-BF535 processor is acting as 
the system host.

The INTA interrupt line is defined as an input/output because the 
ADSP-BF535 processor is capable of generating an interrupt to the system 
processor by setting the INTA to PCI bit in the PCI Bridge Control regis-
ter. This bit asserts INTA in device mode or host mode, but it is most 
useful in device mode. In host mode it makes more sense to use a core 
interrupt, if necessary.

Note all PCI signals are active low, but the bits in the PCI_CTL and the 
PCI_STAT registers are active high. So setting the INTA to PCI bit asserts 
the INTA signal and the INTA-INTD bits are set when the corresponding line 
is asserted.
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PCI Programming Model
The PCI interface programming model includes memory-mapped control 
and status registers, as well as memory-mapped PCI spaces (configuration, 
I/O, and memory). The memory-mapped PCI spaces are described in 
“Processor Core Access to PCI Space” on page 13-3. This section 
describes the memory-mapped control and status registers.

There are two sets of memory-mapped registers (MMRs) on the 
ADSP-BF535 processor. The control and status registers clocked in the 
internal ADSP-BF535 processor system clock domain are mapped into the 
system MMR space. The control and status registers clocked in the PCI 
clock domain are mapped into the PCI Configuration Registers memory 
range (see the PCI memory map in Figure 13-2 on page 13-5). Each 
group of registers is described in the sections that follow.

Bus Operation Ordering
Processor core accesses to the PCI interface always occur in the order that 
the processor core initiated the system access. This implies:

• Since the processor core allows reads to occur before writes, with 
respect to instruction order, the programmer must explicitly order 
the load and store instruction by inserting an SSYNC instruction 
between them in the cases where a PCI read must see the effect of a 
previous PCI write. This is not required if the load and store 
address and size are the same, for example, a write to a PCI Status 
register followed by a read from the same register.

• ADSP-BF535 processor hardware does not enforce ordering among 
the EAB, PAB, and EMB buses. Software must explicitly manage 
any coherency issues among these buses. Shared resources should 
be protected by software locks. With respect to program order, 
EAB reads and PAB accesses are always completed in order, since 
the core is stalled until they complete.
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System MMR Control and Status 
Registers

This section describes each of the memory-mapped registers (MMRs) for 
PCI. All defined registers are writable and readable. Reserved bits within a 
register always read 0. Do not access reserved register space. The address 
range for these registers is 0xFFC0 4000 - 0xFFC0 43FF. Refer to “System 
MMR Assignments” on page B-1 for the address of a particular register.

The PCI peripheral also has several registers mapped into the memory 
space. This is because these registers reside in the PCI clock domain, 
therefore they have high access latency from the SCLK domain.

See “Configuration Space Control and Status Registers” on page 13-26 for 
a description of the configuration space MMRs. Also see “System MMR 
Assignments” on page B-1 for the PCI MMRs mapped into the PAB sys-
tem MMR space.
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PCI Bridge Control Register (PCI_CTL)
This register, shown in Figure 13-3, controls the operation of the applica-
tion interface logic to the PCI core. 

It is used to put the interface in host or device mode. This register 
includes the PCI Enable bit used to enable PCI access after the configura-
tion registers have been set up, and it includes the enable bit for outbound 
fast back-to-back transactions.

Figure 13-3. PCI Bridge Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Bridge Control Register (PCI_CTL)

0 - Device operation
1 - Host operation

PCI Enable Bit

Fast Back-to-Back Enable

INTA to PCI Enable

Host/Device Switch

INTA to PCI

RST to PCI Enable

RST to PCI

0 - PCI disabled on the PCI
side

1 - PCI enabled on the PCI
side. Set this only after
setting up the
configuration registers.

0 - Do not generate a reset to 
PCI (no action)

1 - Generate a reset of the PCI
system by pulling the PCI_RST
pad low (active low)

0 - Disable PCI_RST pad as an
output

1 - Enable PCI_RST pad as an
output

0 - Do not generate interrupt to 
PCI (no action)

1 - Generate interrupt to PCI on 
the INTA line by pulling it low
(active low)

0 - No fast back-to-back
transfers

1 - Perform fast back-to-back
transfers for as long as
this bit is set

0 - Disable PCI_INTA pad as
an output

1 - Enable PCI_INTA pad as
an output

Reset = 0x0000 00000xFFC0 4000
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PCI Status Register (PCI_STAT)
The PCI_STAT register includes all PCI status flags visible to the core (see 
Figure 13-4). 

Figure 13-4. PCI Status Register

00000000000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Status Register (PCI_STAT)

0 - No interrupt
1 - Interrupt signaled on INTA

0 - No interrupt
1 - Interrupt signaled on INTC

0 - No parity error
1 - Parity error on PCI

0 - No fatal error
1 - Fatal error condition

occurred

0 - No reset
1 - Reset occurred on PCI

0 - No interrupt
1 - Interrupt signaled on INTD

0 - No interrupt
1 - Interrupt signaled on INTB

PCI Slave RX FIFO got 
Data

PCI Slave TX FIFO got 
Data
0 - No data
1 - Data written to slave

transmit FIFO

0 - No data
1 - Data written to slave

receive FIFO

0 0

INTA

INTB

INTC

INTD

PCI Parity Error

PCI Fatal Error

PCI Reset

PCI Master TX FIFO Empty

PCI Serr

Unsupported EAB Access

Error on Inbound Write

Error on Inbound Read

Memory Write Invalidate

PCI Master Queue Full

PCI Master TX FIFO Full

0 - Not empty
1 - Transmit FIFO empty

0 - No error
1 - Error

0 - No error
1 - Attempt to read/write to

reserved space on EHB

0 - No error
1 - Error writing to ADSP-BF535

0 - No error
1 - Error reading from ADSP-BF535

0 - No memory write invalidate
1 - A memory write invalidate 

transaction occurred to ADSP-BF535

0 - Queue not full
1 - Master transaction FIFO full

0 - Not full
1 - Transmit FIFO full for master

operation

Reset = 0x0000 00000xFFC0 4004
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Each of these flags can also generate a PCI interrupt to the core by setting 
the corresponding bit in the PCI_ICTL register. The PCI Master Queue 
Full bit and the PCI Master TX FIFO Full bit are status bits only. All the 
other bits in this register can be configured to cause interrupts via the 
PCI_ICTL register. These bits are sticky and all are write-1-to-clear. If these 
interrupts are enabled in the PCI_ICTL register, they should be cleared in 
the interrupt service routine to prevent them from continuously generat-
ing interrupts, by writing a 1 to the appropriate bits. 

PCI Interrupt Controller Register (PCI_ICTL)
The bits in this register, shown in Figure 13-5, enable the flags in PCI Sta-
tus register, except the PCI Master Queue Full bit and the PCI Master TX 
FIFO Empty bit. Those two bits are status bits only.

Figure 13-5. PCI Interrupt Controller Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For all bits, 0 - Not enabled, 1 - Enabled.

PCI Slave RX FIFO got 
Data Enable

PCI Slave TX FIFO got 
Data Enable

INTA Enable

INTB Enable

INTC Enable

INTD Enable

PCI Parity Error Enable

PCI Fatal Error Enable

PCI Reset Enable

PCI Master TX FIFO 
Empty Enable

PCI Serr Enable

Unsupported EAB Access 
Enable

Error on Inbound Write Enable

Error on Inbound Read Enable

Memory Write Invalidate Enable

Reset = 0x0000 0000

PCI Interrupt Controller Register (PCI_ICTL)

0xFFC0 4008
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PCI Outbound Memory Base Address Register 
(PCI_MBAP)

This register, shown in Figure 13-6, is the PCI memory base address 
pointer that is prepended to the EAB address for outgoing PCI memory 
transfers. The 5-bit PCI Space Address is prepended to the 27-bit offset 
into the PCI memory space window in the ADSP-BF535 processor EAB 
space. Write to this register before attempting a read or write to or from 
PCI memory space.

PCI Outbound I/O Base Address Register 
(PCI_IBAP)

This register, shown in Figure 13-7, is the I/O base address pointer. 

Figure 13-6. PCI Outbound Memory Base Address Register

Figure 13-7. PCI Outbound I/O Base Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound Memory Base Address Register (PCI_MBAP)

5-bit PCI Space 
Address

Reset = 0x0000 00000xFFC0 400C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound Memory Base Address Register (PCI_IBAP)

16-bit PCI Space Base 
Address

Reset = 0x0000 00000xFFC0 4010
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This address is prepended to the EAB address for outgoing PCI I/O trans-
fers. The 16-bit PCI Space Base Address is prepended to the 16-bit offset 
into the PCI I/O space window in ADSP-BF535 processor EAB space. 
Write to this register before attempting a read or write to or from PCI I/O 
space.

PCI Outbound I/O Configuration Address Register 
(PCI_CBAP)

This register, shown in Figure 13-8, is the PCI configuration space 
address port. The contents of this register are put directly on the PCI AD 
bus during the address phase for outgoing PCI configuration space 
transfers. The register can then be used for Type 1 or Type 0 addresses 
(with IDSELs on the upper bits) or a combination of the two address types 
if IDSEL generation is moved off chip. The software must generate Type 1 
and Type 0 accesses. The core has no logic for conversion or IDSEL gener-
ation. External hardware is needed to generate IDSELs.

There is no direct method for selecting devices for doing configuration in 
host mode.

Figure 13-8. PCI Outbound I/O Configuration Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound I/O Configuration Address Register (PCI_CBAP)

I/O Configuration 
Address [31:16]

I/O Configuration 
Address [15:0]

Reset = 0x0000 00000xFFC0 4014
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PCI Inbound Memory Base Address Register 
(PCI_TMBAP)

This register specifies a base address in the Blackfin ADSP-BF535 proces-
sor’s memory space. This is the base address of the window that a host 
processor may use to set for access to a buffer in PCI memory space. This 
register has meaning only when the PCI interface is configured as a device. 
The address written to this register by the Blackfin processor core is the 
start address of the section of memory that will be used by the host proces-
sor on the PCI bus for this purpose. The size of the window is specified by 
the mask loaded into the PCI_DMBARM register. The base address loaded 
into the PCI_TMBAP register must be aligned on a boundary that is an inte-
ger multiple of this size.

The MMR address for this register is 0xFFC0 4018. Its reset value is 
0x0000 0000.

PCI Inbound I/O Base Address Register (PCI_TIBAP)
This register specifies a base address in the Blackfin ADSP-BF535 proces-
sor’s memory space. This is the base address of the window that a host 
processor may use to set for access to a buffer in PCI I/O space. This reg-
ister has meaning only when the PCI interface is configured as a device. 
The address written to this register by the Blackfin processor core is the 
start address of the section of memory that will be used by the host proces-
sor on the PCI bus for this purpose. The size of the window is specified by 
the mask loaded into the PCI_DIBARM register. The base address loaded 
into the PCI_TIBAP register must be aligned on a boundary that is an inte-
ger multiple of this size.

The MMR address for this register is 0xFFC0 401C. Its reset value is 
0x0000 0000.
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Configuration Space Control and Status 
Registers

This section describes each of the MMRs for PCI that are accessible in the 
PCI Configuration Registers address space. All defined registers are writ-
able and readable. Reserved bits within a register read 0. Do not access 
reserved register name space. The address range for these registers is 
0xEEFF FF00 - 0xEEFF FFFF. Refer to “System MMR Assignments” on 
page B-1 for the address of a particular register.

The configuration address space-based register space includes all PCI 
clock domain MMRs for the PCI peripheral. This includes the PCI device 
basic configuration registers consisting of sixty-four 32-bit words.

This register space also includes the memory space and I/O space BAR 
masks. These registers define the size of the respective memory areas made 
available to the PCI bus when the PCI peripheral functions as a PCI 
device. The corresponding BARs are part of the PCI configuration space 
and are programmed by the PCI bus host/bridge.

PCI Device Memory BAR Mask Register 
(PCI_DMBARM)

This register is a bit mask that specifies the size of the window available to 
a host processor on the PCI bus for access into the Blackfin processor’s 
memory space using memory space PCI transactions. The PCI_DMBARM reg-
ister is shown in Figure 13-9. It is filled by the Blackfin processor core 
with 1s starting from the most significant bit (bit 31) down to the bit 
position corresponding to the window size available to the host processor. 
For example, if a 16 MB window is available for the host to use as a frame 
buffer in the Blackfin processor’s memory space, bits 31 through 24 would 
contain 1s and bits 0 through 23 would contain 0s. Bits 0 through 3 of 
this register are not writable and always contain 0s. As a result, the small-
est non zero window that can be specified is 16 bytes long. Similarly, bit 
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31 must always be used, limiting the largest window to 2 GB. Writing all 
0s to this register disables PCI memory space access by external bus 
masters.

During configuration, the PCI host processor loads the PCI_CFG_MBAR reg-
ister using this mask, setting the base address in PCI memory space of the 
window into the Blackfin processor’s memory system.

This register has meaning only when the PCI interface is configured as a 
device.

PCI Device I/O BAR Mask Register (PCI_DIBARM)
This register is a bit mask that specifies the size of the window available to 
a host processor on the PCI bus for access into the Blackfin processor’s 
memory space using I/O space PCI transactions. The PCI_DIBARM register 
is shown in Figure 13-10. It is filled by the Blackfin processor core with 1s 
starting from the most significant bit (bit 31) down to the bit position 
corresponding to the window size available to the host processor. For 
example, if a 64 byte window is available for the host to use as an I/O win-
dow in the Blackfin processor’s memory space, bits 31 through 6 would 

Figure 13-9. PCI Device Memory BAR Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Bits [3:0] are reserved and always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Size of Memory 
Window[31:16]

PCI Device Memory BAR Mask Register (PCI_DMBARM)

Size of Memory 
Window[15:4]

0xEEFF FF00
Reset = Never Reset 
on PCI Reset
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contain 1s and bits 0 through 5 would contain 0s. Bits 0 and 1 of this reg-
ister are not writable and always contain 0s. As a result, the smallest 
non-zero window that can be specified is 4 bytes long. Similarly, bit 31 
through 8 must always be used, limiting the largest window to 256 bytes. 
Writing all 0s to this register disables PCI I/O space access by external bus 
masters.

During configuration, the PCI host processor loads the PCI_CFG_IBAR reg-
ister using this mask, setting the base address in PCI I/O space of the 
window into the Blackfin processor’s memory system.

This register has meaning only when the PCI interface is configured as a 
device.

Figure 13-10. PCI Device I/O BAR Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Bits [1:0] are reserved and always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0X X X X X X X X X X X X X X X

Size of I/O Window[31:16]

PCI Device I/O BAR Mask Register (PCI_DIBARM)

Size of I/O Window[15:2]

0xEEFF FF04
Reset = Never Reset 
on PCI Reset
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PCI Configuration Device ID Register 
(PCI_CFG_DIC)

This register, shown in Figure 13-11, is the Device ID from the PCI con-
figuration registers. 

It is not used in host mode. Program this register before enabling the PCI 
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-11. PCI Configuration Device ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 1 0 0 1 1 0 1 0

PCI Configuration Device ID Register (PCI_CFG_DIC)

Device ID[15:0]

Reset = 0x0000 15350xEEFF FF08
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PCI Configuration Vendor ID Register 
(PCI_CFG_VIC)

The PCI_CFG_VIC register, shown in Figure 13-12, contains the Vendor 
ID from the PCI configuration registers. 

It is not used in host mode. Program this register before enabling the PCI 
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-12. PCI Configuration Vendor ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 0 0 1 1 1 0 1 0 1 0

PCI Configuration Vendor ID Register (PCI_CFG_VIC)

Vendor ID[15:0]

Reset = 0x0000 11D40xEEFF FF0C
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PCI Configuration Status Register (PCI_CFG_STAT)
This register, shown in Figure 13-13, is the status register for PCI config-
uration registers. 

The information in this register applies to both host mode and device 
mode. For more information, see the PCI Local Bus Specification Rev. 
2.2.

Figure 13-13. PCI Configuration Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 1 1 0 0 0 0 0 0

PCI Configuration Status Register (PCI_CFG_STAT)

0 - Not fast back-to-back
capable

1 - Fast back-to-back capable

00 - Fast
01 - Medium
10 - Slow
11 - Reserved

0 - No master data parity
1 - Master data parity

Fast Back-to-Back 
Capable

Master Data Parity

DEVSEL Timing[1:0]

Detected Parity Error

Signaled System Error

Received Master Abort

Received Target Abort

0 - No parity error detected
1 - Parity error detected

0 - No system error signaled
1 - System error signaled

0 - No master abort received
1 - Master abort received

0 - No target abort received
1 - Target abort received

0 - No target abort signaled
1 - Target abort signaled

Signaled Target Abort

Reset = 0x0000 05800xEEFF FF10
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PCI Configuration Command Register 
(PCI_CFG_CMD)

This register, shown in Figure 13-14, is the command register from the 
PCI configuration registers. 

Figure 13-14. PCI Configuration Command Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Command Register (PCI_CFG_CMD)

0 - Disable response to I/O
access

1 - I/O decoders respond to
access

0 - Disables bus mastering 
by device

1 - Enables device as bus
master

0 - Disable response to memory
accesses

1 - Memory decoders respond
to accesses

I/O Space

Memory Space

Bus Master

Fast Back-to-Back Enable

SERR Enable

Stepping Control - RO

Parity Error Response

0 - Disabled
1 - Fast back-to-back enabled

0 - Disabled
1 - Device enabled to generate SERR

0 - Disabled
1 - Address line stepping enabled

0 - Device does not report parity errors
1 - Device enabled to generate parity

errors

0 - Ignore special cycles
1 - Device enabled to monitor

for PCI special cycles

Special Cycles - RO

0 - Device uses memory write
command instead of 
memory write and invalidate
command

1 - Device enabled for memory
write and invalidate
command

Memory Write and Invalidate - 
RO

VGA Palette Snoop - RO

0 - Snooping disabled
1 - Device performs snooping of I/O

writes to the VGAs color palette
registers

Reset = 0x0000 00000xEEFF FF14
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This register is always writable, except for the reserved bits. Write in host 
mode only during configuration of the PCI system. In device mode, the 
system processor writes to this register. For more information, see the PCI 
Local Bus Specification Rev. 2.2.

PCI Configuration Class Code Register 
(PCI_CFG_CC)

This register, shown in Figure 13-15, holds the class code from the PCI 
configuration registers. It is not used in host mode. Program this register 
before enabling the PCI in device mode. For more information, see the 
PCI Local Bus Specification Rev. 2.2.

Figure 13-15. PCI Configuration Class Code Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Class Code Register (PCI_CFG_CC)

Class Code[23:16]

Class Code[15:0]

Reset = 0x0000 00000xEEFF FF18
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PCI Configuration Revision ID Register 
(PCI_CFG_RID)

This register, shown in Figure 13-16, holds the revision ID from the PCI 
configuration registers. 

It is not used in host mode. Program this register before enabling the PCI 
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-16. PCI Configuration Revision ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Revision ID Register (PCI_CFG_RID)

Revision ID[7:0]

Reset = 0x0000 00000xEEFF FF1C
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PCI Configuration BIST Register (PCI_CFG_BIST)
This register, shown in Figure 13-17, holds the value for the built-in self 
test (BIST) from the PCI configuration registers. 

The PCI core does not support BIST. For more information, see the PCI 
Local Bus Specification Rev. 2.2.

Figure 13-17. PCI Configuration BIST Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration BIST Register (PCI_CFG_BIST)

BIST[7:0]

Reset = 0x0000 00000xEEFF FF20
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PCI Configuration Header Type Register 
(PCI_CFG_HT)

This register, shown in Figure 13-18, holds the header type from the PCI 
configuration registers. 

The PCI core can only be single function and the configuration registers 
conform to Type 0. For more information, see the PCI Local Bus Specifi-
cation Rev. 2.2.

PCI Configuration Memory Latency Timer Register 
(PCI_CFG_MLT)

The PCI_CFG_MLT register, shown in Figure 13-19, holds the memory 
latency timer from the PCI configuration registers. It is always writable, 
except where reserved, and for two hardwired bits. Write to this register 
only during PCI system configuration in host mode. In device mode, the 
system processor writes to this register. The lowest two bits are read only 
and hardwired to 0 so that latency values are always in increments of four 
PCI clock cycles.

Figure 13-18. PCI Configuration Header Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Header Type Register (PCI_CFG_HT)

0000000 - Type 0

0 - Single
1 - Multifunction

Header Type[6:0] - RO

Single/Multifunction

Reset = 0x0000 00000xEEFF FF24
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PCI Configuration Cache Line Size Register 
(PCI_CFG_CLS)

The PCI_CFG_CLS register, shown in Figure 13-20, holds the cache line size 
from the PCI configuration registers. It is writable from the PCI and from 
the EAB side. It is unused because the memory write Invalidate (MWINV) 
commands are disabled in the control register and the Inbound Cacheline 
Wrap is not supported by the ADSP-BF535 processor. For more informa-
tion, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-19. PCI Configuration Memory Latency Timer Register

Figure 13-20. PCI Configuration Cache Line Size Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Memory Latency Timer Register (PCI_CFG_MLT)

Latency Timer[7:2]

Reset = 0x0000 0000

Latency Timer[1:0] - RO

0xEEFF FF28

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Cache Line Size Register (PCI_CFG_CLS)

Cache Line Size[7:0]

Reset = 0x0000 00000xEEFF FF2C
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PCI Configuration Memory Base Address Register 
(PCI_CFG_MBAR)

The PCI_CFG_MBAR register, shown in Figure 13-21, holds the memory 
base address from the PCI configuration registers. The lower 4 bits are 
hardcoded, and tell the configuration software to use this register for a 
prefetchable memory base address and to place it in the lower 4 Gbytes 
(32 bits) of address space. The PCI_DMBARM register configures the upper 
bits to be writable from the PCI side. Configuration software detects the 
size requested by looking at the number of writable upper bits and places a 
base address in this space. This register is unused in Host mode. For more 
information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-21. PCI Configuration Memory Base Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

PCI Configuration Memory Base Address Register (PCI_CFG_MBAR)

Base Address [31:16]

Base Address [15:4]

00 - Lower 4 GB
01 - Below 1 MB
10 - Over 4 GB
11 - Reserved

0 - Memory space
1 - I/O space

Memory Space Indicator 
RO

Type[1:0] - RO0 - Not prefetchable
1 - Prefetchable

Prefetchable - RO

RO

Reset = 0x0000 00080xEEFF FF30
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PCI Configuration I/O Base Address Register 
(PCI_CFG_IBAR)

This register, shown in Figure 13-22, holds the I/O base address from the 
PCI configuration registers. 

The hardcoded lower bits tell the configuration software to use this regis-
ter for an I/O base address. The PCI_DIBARM register configures the upper 
bits to be writable from the PCI side. The configuration software detects 
the size by looking at the number of writable upper bits and places a base 
address in this space. This register is unused in Host mode. For more 
information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-22. PCI Configuration I/O Base Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration I/O Base Address Register (PCI_CFG_IBAR)

Base Address[31:16]

Base Address[15:2] 0 - Memory space
1 - I/O space

I/O Space Indicator

RO

Reset = 0x0000 00010xEEFF FF34
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PCI Configuration Subsystem ID Register 
(PCI_CFG_SID)

The PCI_CFG_SID register, shown in Figure 13-23, holds the Subsystem ID 
from the PCI configuration registers. 

Program this register before enabling the PCI in device mode. This regis-
ter is not used in host mode. For more information, see the PCI Local Bus 
Specification Rev. 2.2.

PCI Configuration Subsystem Vendor ID Register 
(PCI_CFG_SVID)

The PCI_CFG_SVID register, shown in Figure 13-24, holds the subsystem 
vendor ID from the PCI configuration registers. Program this register 
before enabling the PCI in device mode. This register is not used in host 
mode. For more information, see the PCI Local Bus Specification Rev. 
2.2.

Figure 13-23. PCI Configuration Subsystem ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Subsystem ID Register (PCI_CFG_SID)

Subsystem ID[15:0]

Reset = 0x0000 00000xEEFF FF38
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PCI Configuration Maximum Latency Register 
(PCI_CFG_MAXL)

This register, shown in Figure 13-25, holds Max_Lat from the PCI config-
uration registers. Program this register before enabling the PCI in device 
mode. This register is optional for master operation (host or device). For 
more information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-24. PCI Configuration Subsystem Vendor ID Register

Figure 13-25. PCI Configuration Maximum Latency Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Subsystem Vendor ID Register (PCI_CFG_SVID)

Subsystem Vendor ID[15:0]

Reset = 0x0000 00000xEEFF FF3C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Maximum Latency Register (PCI_CFG_MAXL)

Maximum Latency Cycles[15:0]

Reset = 0x0000 00000xEEFF FF40
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PCI Configuration Minimum Grant Register 
(PCI_CFG_MING)

This register, shown in Figure 13-26, holds Min_Gnt from the PCI config-
uration registers. Program this register before enabling the PCI in device 
mode. This register is optional for master operation (host or device). For 
more information, see the PCI Local Bus Specification Rev. 2.2.

PCI Configuration Interrupt Pin Register 
(PCI_CFG_IP)

This register, shown in Figure 13-27, holds the interrupt pin value from 
the PCI configuration registers. For more information, see the PCI Local 
Bus Specification Rev. 2.2.

Figure 13-26. PCI Configuration Minimum Grant Register

Figure 13-27. PCI Configuration Interrupt Pin Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Minimum Grant Register (PCI_CFG_MING)

Minimum Grant Cycles[7:0]

Reset = 0x0000 00000xEEFF FF44

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Interrupt Pin Register (PCI_CFG_IP)

Interrupt Pin[7:0]

Reset = 0x0000 00000xEEFF FF48
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PCI Configuration Interrupt Line Register 
(PCI_CFG_IL)

This register, shown in Figure 13-28, holds the interrupt line from the 
PCI configuration registers. For more information, see the PCI Local Bus 
Specification Rev. 2.2.

PCI Host Memory Control Register (PCI_HMCTL)
This register, shown in Figure 13-29, configures which portions of 
ADSP-BF535 processor memory space are accessible from any initiators 
on the PCI bus. There is one-to-one mapping of addresses between the 
PCI and the ADSP-BF535 processor in host mode. The PCI core asserts 
DEVSEL and claims the transaction for any region indicated as enabled in 
this register. The asynchronous memory access is valid only if the Async 
Mem Access Enable bit is set and specifies the size of the accessible Async 
Mem window in 64-MB blocks. The SDRAM access size is valid only if 
the SDRAM Access Enable bit is set. It specifies the size of the accessible 
SDRAM window in 32-MB blocks. This register is valid only in host 
mode.

Figure 13-28. PCI Configuration Interrupt Line Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Interrupt Line Register (PCI_CFG_IL)

Interrupt Line[7:0]

Reset = 0x0000 00000xEEFF FF4C



PCI I/O Issues

13-44 ADSP-BF535 Blackfin Processor Hardware Reference
 

PCI I/O Issues
To meet the requirements of the PCI 2.2 specification, the PCI interface 
employs special I/O receivers and drivers.

Reflected Wave Switching
PCI specifies reflected wave switching bus topology, such that the output 
driver only charges/discharges the signal line part way to the desired logic 
level. The reflected wave from the end of the unterminated signal trace 
then fully drives the voltage to the desired level, before the next rising edge 
of the PCI clock. This approach minimizes noise and termination issues at 
the board level, and lowers overall system power consumption.

Figure 13-29. PCI Host Memory Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Host Memory Control Register (PCI_HMCTL)

SDRAM Access Size[4:0]

00 - 64 MB enabled
01 - 128 MB enabled
10 - 192 MB enabled
11 - 256 MB enabled

0 - Disabled
1 - Enabled

System MMR Access Enable

L2 Access Enable
0 - Disabled
1 - Enabled

Async Mem Access Size[1:0]
0 - Disabled
1 - Enabled

SDRAM Access Enable

Async Access Enable
0 - Disabled
1 - Enabled

00000 - 32 MB enabled
00001 - 64 MB enabled (2 x 32 MB)
00010 - 96 MB enabled (3 x 32 MB)
00011 - 128 MB enabled (4 x 32 MB)
00100 - 160 MB enabled (5 x 32 MB)
...
11111 - 2048 MB enabled (64x 32 MB)

Reset = 0x0000 00000xEEFF FF50
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Power Sequencing
The PCI interface operates on two power domains. The internal logic is 
on the same power domain as the rest of the internal logic of the 
ADSP-BF535 processor. The PCI I/O is powered through a dedicated set 
of power pins. These two domains can operate at different voltage levels. 
In general, it is recommended that power be applied to both domains at 
the same time, or to the I/O power domain first then to the internal logic 
power domain.

PCI Clock Requirements
The 33 MHz PCI clock requirements are >= 30 ns cycle time, with a max-
imum skew of <= 2 ns across all PCI component clock inputs. The clock 
may be stopped, but only in the low state. This clock can be driven com-
pletely asynchronously with respect to the internal ADSP-BF535 
processor’s clocks and CLKIN.
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14 USB DEVICE

The Universal Serial Bus Device (USBD) module in the ADSP-BF535 
processor contains a USB Device Controller core (UDC) and a front-end 
interface. The UDC handles all USB protocol requirements and provides 
a simple read/write interface to the front end. The front end adds hard-
ware to the UDC to connect it to the ADSP-BF535 processor’s peripheral 
buses and to support an operating system.

The USBD module also includes memory-mapped registers, an interrupt 
subsystem, a configuration and clock control for the UDC, and a DMA 
controller for the transfer of USB endpoint data between system memory 
and the USB.

On the system side, the USBD module interfaces with the Data Access 
Bus (DAB) and the Peripheral Access Bus (PAB). On the USB side, it 
interfaces with an off-chip USB transceiver.

This chapter includes a USBD block diagram and functional description. 
A list of references is provided at the end of the chapter.

Convention
All transfer directions use the USB host as the point of reference. An IN 
transfer indicates the host is receiving data, and an OUT transfer indicates 
the host is transmitting data.
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Requirements
The ADSP-BF535 processor supports a wide range of applications, 
including, but not limited to, multifunction peripherals such as laser 
printer/scanner/copier systems, and personal digital assistants. The USB 
device can use up to eight endpoints.

The USB protocol imposes a number of requirements on the design of a 
USB device. This is to ensure that USB devices comply with USB 
specifications.

USB Functionality
The ADSP-BF535 processor’s USB peripheral includes:

• Eight physical USB endpoints

• The ADSP-BF535 processor can support one configuration, with 
the configuration having two interfaces and each interface having 
two alternates. There are a total of 64 logical endpoints. All the log-
ical endpoints must be programmed for correct functioning, even if an 
application does not require all logical endpoints.

• Support for all USB transfer types

• Low power capabilities, and clocks that can be stopped

• Connection to the ADSP-BF535 interrupt system with a single 
interrupt line

• Connection to the PAB as a slave only for system access to registers

• Connection to the DAB as a master only for access to L2 memory, 
through a DMA Master module
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• Arbitration granted to the USB DMA channel within 3 to 5 USB 
cycles (with SCLK=100 MHz) after the assertion of its request from 
a host

If the arbitration requirement is not met, then USB Bulk, Interrupt, and 
Control In packet transfers may be terminated prematurely, resulting in 
degraded USB performance. Potentially, this can add complexity to the 
USB driver code. To minimize degraded USB performance, a system clock 
(SCLK) minimum of 100 MHz is recommended, but the ADSP-BF535 
Blackfin Embedded Processor Data Sheet should be consulted.

 Because SPORTs have a higher arbitration priority than the USB 
on the DAB bus, USB data transfers may be affected when there is 
excessive SPORT activity coupled with USB transactions on the 
DAB bus. This condition could also occur on an external memory 
access using MemDMA to a high latency external memory.

USB Requirements
The references listed at the end of this chapter describe the USB protocol 
in detail. This section gives a brief description of some features of the pro-
tocol used for this particular USB device implementation.

Master and Slave Buses

The USB is a master-slave bus, in which a single master generates data 
transfer requests to the attached slaves, and allocates bandwidth on the 
serial cable according to a specific algorithm.

The bus master is referred to as the USB host, and the bus slaves are 
referred to as USB devices. Each USB device implements one or more 
USB endpoints, which are similar to virtual data channels. Each endpoint 
on a USB device operates independently of all the others.
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Data Flow and Traffic Scheduling

Data flows between the USB host and the attached devices in units of 
packets, which are normally 8, 16, 32 or 64 bytes. An exception is the iso-
chronous data type, where packets can be as large as 1023 bytes. The 
packets are grouped into larger units called transfers.

To allocate the serial bus bandwidth fairly across all of the attached USB 
devices and endpoints, the USB host implements a traffic scheduling algo-
rithm. From the point of view of a USB device, this algorithm is not 
deterministic. Although the specific scheduling algorithm is standardized, 
the bus dynamically reallocates bandwidth based on factors such as packet 
error conditions and flow control. So far as the device is concerned, it can 
receive transfer requests for any endpoint at any time.

Depending on the bus loading, the USB host may request packets 
back-to-back, or it may request packet transfers to each endpoint in a 
round-robin fashion. The USB protocol also allows for detection and 
retransmission of packets in cases of bit errors and flow control problems.

Each USB device implementation must maintain state information for 
each endpoint that allows large data transfers to occur a packet at a time. 
Each device must also maintain state information for each packet to be 
retransmitted.

USB Implementation
The ADSP-BF535 processor’s USBD implementation includes:

• The peripheral has a single interrupt output (USBD_INTR).

• System software is responsible for managing interrupt priority and 
requeueing low priority events as software interrupts.

• Memory access for the USB endpoints is by means of the DAB as a 
bus master.
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• The DMA Master Channel module defines a 2 KB memory region 
in the system’s memory space; the region is partitioned into 
16-byte blocks. The peripheral requests transfers to individual 
blocks within the 2 KB memory space. Allocation of the 16-byte 
blocks within the 2 KB memory space is at the discretion of the 
programmer.

• Registers within the USB device module maintain the address off-
sets and byte counts for each endpoint.

• The registers are structured to allow multiple buffering of each 
endpoint’s data, resulting in streaming operation on the USB. The 
registers support the ability of the USB to perform packet retries, 
and the ability to break large data buffers into individual USB 
packets.

• The suspend capability of the USB device can be exploited by a 
clock and power management scheme implemented in software.

• The endpoints are configured as unidirectional. For example, once 
an endpoint is configured as a type IN endpoint, it should not be 
used as type OUT on any configuration.

 The USBD has multiple clock domains. Although the PLL_IOCK 
register allows shutting down the system clock for the front-end 
interface in USBD, the suspend capabilities allow for a software 
management scheme of the UDC’s clocks.
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Block Diagram
A block diagram of the USBD module is shown in Figure 14-1.

UDC Block
The UDC module implements the low-level USB protocol. It manages 
interaction with the USB host using the USB serial link, and presents data 
and command transactions to the application by means of a simple appli-
cation bus.

Figure 14-1. USBD Module Block Diagram
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Front-End Interface Block
The Front-End Interface consists of all blocks in the block diagram except 
the UDC. These blocks are:

• Clock Control

• Transaction Decode and Clock Synchronization

• Registers and Control

• Memory Interface

• DMA Master

• PAB Interface

Each is described in the following sections.

Clock Control Block
To reduce power consumption, the UDC module uses gated clocks. The 
gated-clock control circuit ensures error-free clocking to the UDC module 
in a DFT (design for testability) friendly way.

Transaction Decode and Clock Synchronization 
Block

The transaction decode module includes synchronizer elements to connect 
the system clock domain logic at the system clock rate to the USB logic at 
12 MHz.

It also decodes transactions that occur on the UDC’s application bus for 
presentation to the other submodules. This module routes endpoint trans-
actions to and from the Memory Interface module, and control, 
configuration, and status functions to and from the Registers and Control 
module.
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Registers and Control Block
The Registers and Control module implements the general-purpose regis-
ters for the USBD. These registers implement these types of functions:

• Module configuration

• Module status

• Interrupt status and masking

• Frame-related controls such as start of frame, current frame num-
ber, and frame number match

This module is connected to the PAB peripheral bus interface by means of 
a simple internal peripheral bus. A single interrupt request line connects 
the interrupt subsystem in USBD to the ADSP-BF535 processor’s inter-
rupt controller.

Memory Interface Block
The Memory Interface module connects the USB endpoints to specific 
memory resources in the system. It contains registers for software to assign 
each USB endpoint to specific regions in system memory and to control 
USB transactions. A small FIFO is included in this module to minimize 
the effects of DMA latency on USB packet throughput.

The Memory Interface module contains all the endpoint-specific registers 
of the USBD. Software uses the endpoint registers to route USB endpoint 
data transfers to specific regions within the module’s memory space.

This module is connected to the PAB interface by a simple internal 
peripheral bus.
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For each USB packet transfer, the Memory Interface reports this informa-
tion to the DMA master:

• Current USB endpoint number

• Buffer offset

• Transfer direction

• FIFO status

DMA Master Block
The DMA Master module connects the Memory Interface module to the 
DAB bus. The USB DMA channel must win arbitration within 22 DAB 
cycles of the assertion of its request.

This module maintains registers to indicate:

• Base address of the USBD module’s access space within system 
memory

• Burst count for the current transfer

• Direction for the current transfer

• Status of the DMA module

In normal operation, the device software programs the DMA master with 
the base address of a 2 KB block of memory that the USBD module can 
use to buffer its data transfers. Transfer offset addresses generated by the 
Memory Interface module are concatenated with the DMA base address to 
produce a physical address on the DAB. Device software is responsible for 
allocating the 2 KB buffer space among all active endpoints.

The DMA address, transfer count, direction, and interrupt status are 
available for monitoring.
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The DMA Master module is a standard component used to implement 
DAB bus accesses.

PAB Interface Block
The peripheral bus interface connects the PAB bus to the USBD module’s 
internal registers.

Features and Modes
This section describes the functions supported by the USBD module.

Endpoint Types
The USBD module supports four different transfer types using all their 
supported packet sizes: 

• Bulk

• Interrupt

• Isochronous

• Control

Any endpoint (1 through 7) can be defined as Bulk, Interrupt, or Isochro-
nous. In accordance with the USB specification, endpoint 0 is always 
defined as a Control endpoint. After each hard reset, specific hardware 
configuration information must be downloaded to the USBD module, as 
described in “USBD Device Initialization” on page 14-46.

From the point of view of the USB device, Bulk and Interrupt transfers 
function identically on the device. The differences between these transfer 
types are implemented in the USB host controller, the USB device’s 
descriptor tables, and in the software.
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Data Transfers
The four USB transfer types fall into three broad data transfer categories 
which must be implemented in hardware: Bulk, Isochronous, and 
Control.

Bulk Data Transfers

Bulk data transfers include Interrupt and Bulk endpoints. Bulk data is 
transferred using an error checking protocol. Packet sizes for bulk data are 
limited to 8, 16, 32, and 64 bytes. From the USB host’s perspective, the 
scheduling rules differ for each endpoint type. However, the data transfer 
mechanism is identical.

Isochronous Data Transfers

Isochronous endpoints are generally used for raw audio or video data. 
During each 1.0 ms frame, isochronous data transfers are given a guaran-
teed percentage of the USB’s bandwidth. Because of this guaranteed 
bandwidth, the isochronous endpoints have no error retry capability.

Depending on the application, isochronous packets can range from 0 to 
1023 bytes. Each isochronous endpoint has a specific maximum packet 
size that is guaranteed to it in each USB frame. On a frame-by-frame 
basis, the application can choose to use all available bandwidth or only 
part of it.

Control Transfers

Control transfers implement a COMMAND/DATA/STATUS protocol 
so the host can send command sequences to the device. Each DATA trans-
fer within this sequence consists of bulk data; that is, error checking/retry 
is included, and the range of packet sizes is limited.
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The command sequences include:

• Standard requests from Chapter 9 of the USB specification

• Class requests

• Vendor commands

The UDC module handles almost all standard requests directly without 
system intervention. Class requests are standardized and defined in the 
USB class specifications (for example, Printer, Imaging, Mass Storage). 
Vendor commands are commands that are specific to a vendor or device 
and not defined in a class specification. 

In the ADSP-BF535 processor’s UDC configuration, device software han-
dles these requests:

• SYNC_FRAME, SET_DESCRIPTOR, GET_DESCRIPTOR standard requests

• All class and vendor requests

Device software must monitor the interrupts to determine when a setup 
packet has been received on a control endpoint and respond accordingly. 
Interrupts are provided for determining when problems have occurred 
during a transfer, and for gracefully recovering from them.

UDC Configuration Control
The UDC module supports one USB configuration. The configuration 
can support two interfaces, and each interface can support two alternate 
interfaces. The ADSP-BF535 processor has 8 physical endpoints for USB. 
Each endpoint can have a different definition depending on the interface 
and alternate interface used. For communications to occur, the specific 
device configuration must be downloaded into the module after system 
startup. See “Configuration of the UDC Module” on page 14-44.
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Suspend Operation
The USBD_SUSPEND output is provided on the module interface to put the 
USB transceivers into suspend mode. System hardware can also use this 
signal to stop and start the module clocks when the USB is suspended. 
When the USBD_SUSPEND signal asserts, the system can stop all clocks. 

 On the inactive edge of USBD_SUSPEND, the system must restart all 
clocks within 10 ms.

USB Suspend mode is selected by the USB host. When the USB host 
wants to put a device into the suspended mode, it stops sending traffic to 
the device. After 3 ms of inactivity on the bus, the device automatically 
drops into a suspended state. After the USB host generates resume signal-
ing on the bus, the device reenters its active state and resumes 
communication on the bus.

Clocking
The 4X USB Clock (USBD_CLK4X) is nominally 48 MHz +/- 500 ppm for 
full-speed operation. The UDC uses this clock internally to drive a clock 
recovery circuit and to generate a 12 MHz clock (full-speed operation for 
the UDC module). 

The rest of the USBD module operates at system clock frequencies.

USB Transceiver
A USB buffer chip, such as the Philips PDI USB P11A, must be added in 
order to use the USB device functionality of the ADSP-BF535 processor. 
The diagram in Figure 14-2 shows how to connect a Philips PDI USB 
P11A transceiver to the ADSP-BF535 processor. 
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If the external transceiver supports a low power mode, it can be controlled 
by using one of the programmable flag pins.

Full Speed vs. Low Speed USB
The USB 1.1 specification supports two speed grades: full speed 
(12 Mbits/sec) and low speed (1.5 Mbits/sec). The ADSP-BF535 proces-
sor is configured to support full-speed operation at all times. The external 
transceiver must also be configured to support the fast slew rate of the 
full-speed USB mode.

Registers
This section describes the register set for the USBD module. All USBD 
memory-mapped registers are 16 bits wide, and 16-bit aligned.

The registers are grouped into three categories: general registers, DMA 
registers, and endpoint registers.

Figure 14-2. Connecting a USB Transceiver
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The general registers handle configuration, control, and status. These reg-
isters are described in later sections of this chapter. They are:

• USBD Device ID register (USBD_ID)

• Current USB Frame Number register (USBD_FRM)

• Match Value for USB Frame Number register (USBD_FRMAT)

• Enable Download of Configuration Into UDC Core register 
(USBD_EPBUF)

• USBD Module Status register (USBD_STAT)

• USBD Module Configuration and Control register (USBD_CTRL)

• Global Interrupt register (USBD_GINTR)

• Global Interrupt Mask register (USBD_GMASK)

The DMA registers handle configuration and control of the DMA master 
channel embedded within the module. These registers are described in 
later sections of this chapter. They are:

• DMA Master Channel Configuration register (USBD_DMACFG)

• DMA Master Channel Base Address Low register (USBD_DMABL)

• DMA Master Channel Base Address High register (USBD_DMABH)

• DMA Master Channel Count register (USBD_DMACT)

• DMA Master Channel DMA Count register (USBD_DMAIRQ)

The USB Endpoint registers handle endpoint specific interrupts and con-
trol of the datapath. The number of endpoint specific registers is 
dependent on the number of endpoints with which the design is compiled. 



Registers

14-16 ADSP-BF535 Blackfin Processor Hardware Reference
 

The ADSP-BF535 processor’s design is configured for eight endpoints. 
The endpoint registers are described in later sections of this chapter. They 
are:

• USB Endpoint x Interrupt registers (USBD_INTRx)

• USB Endpoint x Mask registers (USBD_MASKx)

• USB Endpoint x Control registers (USBD_EPCFGx)

• USB Endpoint x Address Offset registers (USBD_EPADRx)

• USB Endpoint x Buffer Length registers (USBD_EPLENx)

USB Device ID Register (USBD_ID)
This register, shown in Figure 14-3, is used to identify the module to the 
system. Using binary-coded decimal, the USBD_SPEC field indicates the ver-
sion of the USB specification that the module is compliant to. A value of 
0x110 corresponds to the USB Specification, Revision 1.1. The USBD_PID 
field indicates the silicon revision of the module. Use this value to allow 
software drivers to adapt to different hardware revisions.

 The specific vendor ID (for example, 0x0456 for Analog Devices, 
Inc.) and the product ID (for example, 0x2153 for the 
ADSP-BF535 processor) should not be programmed using this reg-
ister. They should be programmed using the Device Descriptor set.
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Current USB Frame Number Register (USBD_FRM)
This register, shown in Figure 14-4, reports the current USB frame num-
ber. This number updates each time a start of frame (SOF) token is 
received on the USB.

Match Value for USB Frame Number Register 
(USBD_FRMAT)

This register, shown in Figure 14-5, provides a mechanism for software to 
wait for the arrival of a specific USB frame number. This feature is typi-
cally used with isochronous endpoints for synchronization between the 

Figure 14-3. USB Device ID Register

Figure 14-4. Current USB Frame Number Register
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data source and sink. When the value in this register matches the value 
received on the Current USB Frame Number register (USBD_FRM), an inter-
rupt is generated in the Global Interrupt register (USBD_GINTR).

Enable Download of Configuration Into UDC Core 
Register (USBD_EPBUF)

This register, shown in Figure 14-6, allows the system to download end-
point buffer data into the UDC module after hard reset events. The 
EpBuf structures hold configuration information for each possible end-
point on the device including the configuration number, packet size, 
direction, type, and the interface/alternates to which the endpoint is 
attached.

The total number of physical endpoints on the device is hardwired, but 
the specific configuration of each endpoint is downloaded into the device 
by the firmware.

Figure 14-5. Match Value for USB Frame Number Register
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The USBD_EPDOWN field allows software to write data into the UDC core’s 
internal EpBuf structures. On reads, this field always returns 0s.

USBD Module Status Register (USBD_STAT)
This register reports various status conditions from the USB and from the 
module’s internal logic (see Figure 14-7).

The USBD_CFG field contains the current USB configuration number. It is 
updated when the USB host sends a SET_CONFIGURATION request to the 
USB device.

The USBD_IF field contains the USB interface number. It is updated when 
the USB host sends a SET_INTERFACE request to the device. It changes 
along with the USBD_AIF field.

The USBD_AIF field contains the alternate interface number. This field is 
updated when the USB host sends a SET_INTERFACE request to the device. 
It changes along with the USBD_IF field.

Figure 14-6. Enable Download of Configuration Into UDC Core Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Download of Configuration Into UDC Core Register (USBD_EPBUF)

USBD_EPDOWN[7:0] - WO
0 - Endpoint buffer

download complete
1 - Waiting for endpoint

buffer data via
USBD_EPDOWN

USBD_RDY - RO

0 - Cannot accept byte
1 - Ready to accept byte

USBD_CFG - RO

Reset = 0xC0000xFFC0 4406
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The USBD_SIP bit is valid when the USBD_PIP bit is set. The USBD_PIP bit 
asserts at the start of the packet request from the UDC module to the 
front-end interface and deasserts at the end of a packet. It is used to indi-
cate when the UDC module is actively transferring data on the USB.

The USBD_EP field holds the currently accessed endpoint, 0 through 7. 
This register bit field is valid only when the USBD_PIP bit is set. Note this 
is the endpoint number within the USBD hardware. It may not match the 
actual USB endpoint number due to mapping which occurs in the UDC 
hardware.

Figure 14-7. USBD Module Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USBD Module Status Register (USBD_STAT)

USBD_EP[2:0]

0 - Packet not in progress
1 - Packet in progress

USBD_RSTSIG

USBD_SIP

USBD_PIP

USBD_SUSPENDED

USBD_AIF[2:0]

USBD_IF[1:0]

USBD_CFG[1:0]
0 - USB not suspended
1 - USB suspended

0 - Reset signaling not
in progress

1 - Reset signaling in
progress

0 - Setup packet not in
progress

1 - Setup packet in progress

USB configuration number

USB interface number

USB alternate interface number

Currently accessed endpoint

Reset = 0x0000

RO

0xFFC0 4408
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USBD Module Configuration and Control Register 
(USBD_CTRL)

This register, shown in Figure 14-8, provides software control of various 
features of the USBD module. Note when the USBD_ENA bit is pro-
grammed to disable the USBD module, the module does not accept 
command and data packets from the USB, but suspend/resume can still 
occur, as well as the 1 ms start-of-frame interrupt.

The USBD_EPxSTALL bits assert a stall request on the corresponding end-
point at the next request from the USB host. The bit automatically clears 
after the stall takes effect.

Figure 14-8. USBD Module Configuration and Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USBD Module Configuration and Control Register (USBD_CTRL)

USBD_EP2STALL

0 - USBD module disabled
1 - USBD module enabled

USBD_EP3STALL

USBD_UDCRST

USBD_EP0STALL

USBD_EP1STALL

USBD_ENA

USBD_EP4STALL

USBD_EP5STALL

USBD_EP6STALL

USBD_EP7STALL

0 - Do nothing
1 - Execute hard reset for

UDC module only

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

Reset = 0x00000xFFC0 440A
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Global Interrupt Register (USBD_GINTR)
The Global Interrupt register, shown in Figure 14-9, is the top-tier inter-
rupt register for the module. This register tracks the status of all 
high-priority interrupts, and it includes one interrupt bit for each 
endpoint.

All bits are write-1-to-clear (W1C). Writing a 0 to any bit in this register 
has no effect.

The Global Interrupt Mask register (USBD_GMASK) can mask all bits. An 
interrupt may be masked or unmasked at any time. When masked, an 
interrupt does not affect the state of the module’s USBD_INTR output. To 
determine the interrupt status, software must poll a masked interrupt.

The interrupt circuit includes a protection mechanism for simultaneous 
clear and set operations. If software tries to clear an interrupt at the same 
time as the hardware is trying to set the interrupt, the set operation takes 
priority over the clear.

All the interrupts are edge triggered. Modifying the mask bit in an end-
point interrupt register may trigger an interrupt from an earlier endpoint 
interrupt.

See “Interrupt Descriptions” on page 14-37 for detailed explanations of 
each interrupt.
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Figure 14-9. Global Interrupt Register

Global Interrupt Register (USBD_GINTR)
All bits are write-1-to-clear.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

USBD_SUSP
0 - No USB suspended state

detected
1 - USB suspended state

detected
USBD_RESUME

USBD_CFG

USBD_MSOF

USBD_RST

USBD_SOF

USBD_EP4INT

USBD_EP5INT

0 - No interrupt pending
for endpoint 7

1 - Interrupt pending for
endpoint 7

USBD_EP6INT

USBD_EP7INT

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

USBD_FRMMAT

USBD_DMAIRQ

USBD_EP3INT

USBD_EP2INT

USBD_EP1INT

USBD_EP0INT

0 - No interrupt pending
for endpoint 6

1 - Interrupt pending for
endpoint 6

0 - No interrupt pending
for endpoint 5

1 - Interrupt pending for
endpoint 5

0 - No interrupt pending
for endpoint 4

1 - Interrupt pending for
endpoint 4

0 - No interrupt pending
for endpoint 3

1 - Interrupt pending for
endpoint 3

0 - No interrupt pending
for endpoint 2

1 - Interrupt pending for
endpoint 2

0 - No interrupt pending
for endpoint 1

1 - Interrupt pending for
endpoint 1

0 - No interrupt pending
for endpoint 0

1 - Interrupt pending for
endpoint 0

0 - No interrupt pending
for DMA master channel

1 - Interrupt pending for
DMA master channel

0 - No frame match
condition

1 - Frame match
condition

0 - No resume signaling
detected

1 - Resume signaling
detected

0 - No USB reset signaling
detected

1 - USB reset signaling
detected

0 - No missed start of frame
condition

1 - Start of frame interrupt
received while one
pending

0 - No configuration change
event detected

1 - Configuration change
event detected

0 - No start of frame token
detected

1 - Start of frame token
detected

Reset = 0x00400xFFC0 440C
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Global Interrupt Mask Register (USBD_GMASK)
The Global Interrupt Mask register, shown in Figure 14-10, allows mask-
ing of the interrupts in the Global Interrupt register. Setting a bit in the 
Global Interrupt Mask register masks the interrupt output from asserting 
for that interrupt. Clearing a bit in the Global Interrupt Mask register 
enables the interrupt output to assert for that interrupt.

DMA Master Channel Configuration Register 
(USBD_DMACFG)

This register, shown in Figure 14-11, is used to configure the DMA mas-
ter channel.

The USBD_DMABC bit is the DMA buffer clear bit. It forces the DMA FIFO 
to be cleared. Writing a 1 initiates and holds the buffer in a clear state. A 
write of 0 must follow before normal operation can resume. It is recom-
mended that the DMA be disabled and the USB be prevented from 
accessing the FIFO before USBD_DMABC is set.

Figure 14-10. Global Interrupt Mask Register

Global Interrupt Mask Register (USBD_GMASK)
For all bits, 0 - Enable interrupt to assert, 1 - Mask the interrupt output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

USBD_SUSPM

USBD_RESUMEM

USBD_CFGM

USBD_MSOFM

USBD_RSTM

USBD_SOFM

USBD_EP4MSK

USBD_EP5MSK

USBD_EP6MSK

USBD_EP7MSK

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

USBD_FRMATM

USBD_DMAIRQM

USBD_EP3MSK

USBD_EP2MSK

USBD_EP1MSK

USBD_EP0MSK

Reset = 0xFFFF0xFFC0 440E
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The USBD_DMAEN bit indicates the DMA-enabled and active status.

DMA Master Channel Base Address Low Register 
(USBD_DMABL)

This register, Figure 14-12, contains the low order bits of the base address 
for the memory block to be accessed for USB buffers. 

To produce a physical address on a per-transfer basis, the DMA master 
channel replaces bits [10:0] with an endpoint specific offset value. Bits 
[10:0] always read back 0.

Figure 14-11. DMA Master Channel Configuration Register

Figure 14-12. DMA Master Channel Base Address Low Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Master Channel Configuration Register (USBD_DMACFG)
DMA configuration register. USBD_IOE bit has no effect on DMA transactions.

0 - DMA master channel
disabled

1 - DMA master channel
enabled

USBD_IOC - ROUSBD_DMABC

USBD_DMAEN
USBD_DMABS[1:0] - RO
Number of words in FIFO
00 - DMA FIFO has 1 to 15 bytes
01 - DMA FIFO empty, 0 bytes
10 - DMA FIFO full, 16 bytes
11 - Will not occur

0 - Disable interrupt
1 - Interrupt concurrent

with each DMA burst
of 4 words

0 - Do nothing
1 - Clear DMA buffer

Reset = 0x00000xFFC0 4440

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Master Channel Base Address Low Register (USBD_DMABL)
Low order bits of base address.

USBD_BASE_LO[15:11]

Reset = 0x00000xFFC0 4442
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DMA Master Channel Base Address High Register 
(USBD_DMABH)

This register, shown in Figure 14-13, contains the high order bits of the 
base address for the memory block to be accessed for USB buffers. 

It is combined with the bits in the DMA Master Channel Base Address 
Low register and an endpoint specific offset value to produce a physical 
address on the DAB.

DMA Master Channel Count Register 
(USBD_DMACT)

This register, shown in Figure 14-14, holds the DMA count for the cur-
rent transfer. This reads back the number of bytes pending for the DMA 
transfer on the currently selected endpoint, and its value ranges from 0 to 
4 words (16 bytes).

Figure 14-13. DMA Master Channel Base Address High Register

Figure 14-14. DMA Master Channel Count Register

DMA Master Channel Base Address High Register (USBD_DMABH)
High order bits of base address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

USBD_BASE_HI[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 4444

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 0

DMA Master Channel Count Register (USBD_DMACT)

USBD_CT[2:0] - RO

Reset = 0x00040xFFC0 4446
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DMA Master Channel DMA Interrupt Register 
(USBD_DMAIRQ)

The DMA Interrupt Request feeds into the Global Interrupt register 
(USBD_GINTR). To mask the DMA Complete (DMA_COMP) interrupt in the 
USBD_DMAIRQ register (Figure 14-15), program the corresponding enable 
bit in the DMA Master Channel Configuration register. DMA_ERROR is not 
maskable at the DMA level. All bits are write-1-to-clear. Writing 0 to any 
bit in this register has no effect. 

USB Endpoint x Interrupt Registers (USBD_INTRx)
The USB Endpoint x Interrupt registers (Figure 14-16) report interrupt 
status for endpoint x. All bits are write-1-to-clear.

The USBD_MSETUP bit is set when a UDC_SETUP interrupt is pending, and 
another setup packet is received. This condition can occur if the USB 
device’s ACK of a setup packet is corrupted, and the USB host retries the 
setup packet. If both USBD_MSETUP and USBD_SETUP are pending, and soft-
ware tries to clear them both at the same time, a third setup packet is 
received, and USBD_MSETUP clears, while USBD_SETUP remains set.

The USBD_SETUP bit is set when a setup packet is received on the current 
endpoint.

Figure 14-15. DMA Master Channel DMA Interrupt Register

DMA Master Channel DMA Interrupt Register (USBD_DMAIRQ)

0 - No IRQ pending
1 - IRQ pending

DMA_COMP
0 - No IRQ pending
1 - IRQ pending

DMA_ERROR

Reset = 0x00000xFFC0 4448

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The USBD_MERR bit is 1 if the USBD_BCSTAT interrupt is set, and another 
packet request has come in for the current endpoint. This allows software 
to determine whether the device is NAKing requests from the USB host.

The USBD_BCSTAT bit is 1 if the byte count for the endpoint has decre-
mented to 0. This interrupt should be cleared before loading a new value 
into the USBD_EPLENx registers.

The USBD_PC bit is 1 if a complete USB packet has just transferred across 
the USB on the current endpoint. This interrupt normally asserts at the 
end of every USB packet transfer. However, in the case of isochronous 
transfers, this interrupt does not assert if the packet transferred with 
errors. Software can use the USBD_PC and USBD_TC interrupts, along with 
the endpoint configuration registers, to determine the fate of isochronous 
packets.

The USBD_TC bit is 1 if a USB transfer has completed on the current end-
point. This interrupt asserts for Bulk and Interrupt endpoints when a 
short packet is transferred. For Control endpoints, this interrupt asserts at 
the end of the control transfer’s data phase—either from a short packet 
transfer or from the expiration of the wLength counter from the setup 
packet. For Isochronous endpoints, this interrupt asserts at the end of 
every packet. The error detection mechanism used for isochronous 
transfers requires the software to examine the endpoint configuration reg-
isters and determine how much data was actually transferred.
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USB Endpoint x Mask Registers (USBD_MASKx)
The USB Endpoint x Mask registers, shown in Figure 14-17, can be used 
to mask the interrupts in the USB Endpoint x Interrupt registers 
(USBD_INTRx). Setting a bit in the USB Endpoint x Mask registers masks 

Figure 14-16. USB Endpoint x Interrupt Registers

Table 14-1. USB Endpoint x Interrupt Register MMR Assignments

Register Name Memory-Mapped Address

USBD_INTR0 0xFFC0 4480

USBD_INTR1 0xFFC0 448A

USBD_INTR2 0xFFC0 4494

USBD_INTR3 0xFFC0 449E

USBD_INTR4 0xFFC0 44A8

USBD_INTR5 0xFFC0 44B2

USBD_INTR6 0xFFC0 44BC

USBD_INTR7 0xFFC0 44C6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Interrupt Registers (USBD_INTRx)

0 - Transfer not completed
1 - Transfer completed

USBD_PC

USBD_BCSTAT

USBD_TC

USBD_SETUP
0 - No setup packet pending
1 - Setup packet pending

USBD_MSETUP

USBD_MERR
0 - No error
1 - Error

0 - Not multiple setup 
packets pending

1 - Multiple setup packets
pending

0 - Complete packet has not
transferred

1 - Complete packet
transferred

0 - Byte count not equal to 0
1 - Byte count equal to 0

Reset = 0x0000
For MMR 
assignments, see 
Table 14-1.
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Global Interrupt register (USBD_GINTR) bits from asserting for that inter-
rupt. Clearing a bit in the USB Endpoint x Mask register enables the 
interrupt bit to assert for that interrupt.

Figure 14-17. USB Endpoint x Mask Registers

Table 14-2. USB Endpoint x Mask Register MMR Assignments

Register Name Memory-Mapped Address

USBD_MASK0 0xFFC0 4482

USBD_MASK1 0xFFC0 448C

USBD_MASK2 0xFFC0 4496

USBD_MASK3 0xFFC0 44A0

USBD_MASK4 0xFFC0 44AA

USBD_MASK5 0xFFC0 44B4

USBD_MASK6 0xFFC0 44BE

USBD_MASK7 0xFFC0 44C8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 1 1 1 1

USB Endpoint x Mask Registers (USBD_MASKx)

0 - Interrupt enabled
1 - Interrupt disabled

USBD_PC

USBD_BCSTAT

USBD_TC

USBD_SETUP
0 - Interrupt enabled
1 - Interrupt disabled

USBD_MSETUP

USBD_MERRM
0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

Reset = 0x003F
For MMR 
assignments, see 
Table 14-2.
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USB Endpoint x Control Registers (USBD_EPCFGx)
The USB Endpoint x Control registers, shown in Figure 14-18, allow pro-
gramming the characteristics of individual endpoints.

The USBD_ARM bit is set to 1 to arm an endpoint. When the endpoint is 
armed, the USBD module can respond to transfer requests on the 
endpoint. If USBD_ARM = 1 and USBD_BC = 0, then the module generates a 
0-length data packet. This bit clears automatically when USBD_BC decre-
ments to 0 or when an end-of-transfer condition is detected.

The USBD_ARM bit is set to 0 to disarm an endpoint. If a packet transfer is 
in progress, clearing this bit does not stop the current packet transfer, but 
it does prevent succeeding packets in a multipacket transfer from occur-
ring. For example, consider a 64-byte packet, 128-byte count. If the 
system clears USBD_ARM during the transfer of the first packet, then the first 
packet completes normally, but the second one is unable to transfer until 
the endpoint is armed again.

The USBD_DIR bit indicates the transfer direction between the USB device 
and the USB host. If the USB host requests a packet transfer and the 
direction of the request does not agree with the endpoint direction, then 
the module NAKs the current packet. This can occur on USB control 
transfers when the endpoint is set to OUT for the setup packet and the 
USB host requests an IN data-phase packet before the device has recog-
nized the presence of the setup packet.
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The USBD_TYP field sets the USB endpoint type. For Endpoint 0, the 
USBD_TYP field is hardwired to 00. For all other endpoints, only Bulk, 
Interrupt, and Isochronous type codes are valid, with 01 for Bulk, 10 for 
Interrupt, and 11 for Isochronous.

Figure 14-18. USB Endpoint x Control Registers

Table 14-3. USB Endpoint x Mask Register MMR Assignments 

Register Name Memory-Mapped Address

USBD_EPCFG0 0xFFC0 4484

USBD_EPCFG1 0xFFC0 448E

USBD_EPCFG2 0xFFC0 4498

USBD_EPCFG3 0xFFC0 44A2

USBD_EPCFG4 0xFFC0 44AC

USBD_EPCFG5 0xFFC0 44B6

USBD_EPCFG6 0xFFC0 44C0

USBD_EPCFG7 0xFFC0 44CA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Control Registers (USBD_EPCFGx)

USBD_DIR

USBD_TYP[1:0]

USBD_ARMUSBD_MAX[1:0]
0 - Disarm endpoint
1 - Arm endpoint

0 - Transfer direction out
1 - Transfer direction in

USBD endpoint type
00 - Control
01 - Bulk
10 - Interrupt
11 - Isochronous

Maximum packet size
00 - 8 bytes
01 - 16 bytes
10 - 32 bytes
11 - 64 bytes

Reset = 0x0000

For MMR 
assignments, see 
Table 14-3.
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USB Endpoint x Address Offset Registers 
(USBD_EPADRx)

These registers, represented in Figure 14-19, are used to program the 
memory buffer offset for data transfers. 

They hold the memory offset within the DMA controller’s memory space 
for the transfer associated with this endpoint.

DMA transfers occur on 16-byte aligned offsets within the controller’s 
memory space (2 KB). As each packet is transferred on the USB, the 
USBD_OFFSET increments by the packet size.

For the USB Endpoint x Address Offset registers and the USB 
Endpoint x Buffer Length registers (USBD_EPLENx), it is assumed that soft-
ware is keeping track of the original buffer addresses and can calculate the 
bytes transferred and the end of valid data based on reading back these 
registers at the end of a transfer.

Figure 14-19. USB Endpoint x Address Offset Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Address Offset Registers (USBD_EPADRx)

USBD_OFFSET[10:0]
Memory offset within the 
DMA controller’s memory 
space

Reset = 0x0000
For MMR 
assignments, see 
Table 14-4.
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USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)

These registers, shown in Figure 14-20, are used to program the memory 
buffer byte counts for data transfers.

Packet transfers can be up to 1023 bytes (the maximum size isochronous 
packet allowed by USB specification). If the byte count for an endpoint is 
larger than the endpoint’s packet size, the transfer is partitioned into a 
number of individual packet transfers at the endpoint’s maximum packet 
size.

For non-isochronous endpoints, this field decrements by the packet size as 
each packet is transferred on the USB. For isochronous endpoints, this 
field decrements by the DMA burst size (16 bytes) at the end of each 
DMA burst.

Table 14-4. USB Endpoint x Address Offset Register MMR Assignments  

Register Name Memory-Mapped Address

USBD_EPADR0 0xFFC0 4486

USBD_EPADR1 0xFFC0 4490

USBD_EPADR2 0xFFC0 449A

USBD_EPADR3 0xFFC0 44A4

USBD_EPADR4 0xFFC0 44AE

USBD_EPADR5 0xFFC0 44B8

USBD_EPADR6 0xFFC0 44C2

USBD_EPADR7 0xFFC0 44CC
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UDC Endpoint Buffer Register
The UDC Endpoint Buffer register, shown in Figure 14-21, holds the 
configuration of each logical endpoint. The register is loaded using the 
endpoint buffer information in USBD_EPBUF, see “Enable Download of 
Configuration Into UDC Core Register (USBD_EPBUF)” on 
page 14-18. This register cannot be accessed through the peripheral bus. 
This register is not a memory-mapped register.

Figure 14-20. USB Endpoint x Buffer Length Registers

Table 14-5. USB Endpoint x Buffer Length Register MMR Assignments 

Register Name Memory-Mapped Address

USBD_EPLEN0 0xFFC0 4488

USBD_EPLEN1 0xFFC0 4492

USBD_EPLEN2 0xFFC0 449C

USBD_EPLEN3 0xFFC0 44A6

USBD_EPLEN4 0xFFC0 44B0

USBD_EPLEN5 0xFFC0 44BA

USBD_EPLEN6 0xFFC0 44C4

USBD_EPLEN7 0xFFC0 44CE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Buffer Length Registers (USBD_EPLENx)

USBD_BC[9:0]
Byte count for the 
transfer associated with 
this register

Reset = 0x0000

For MMR 
assignments, see 
Table 14-5.
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Each logical endpoint is broken into 5 bytes with each byte loaded with an 
access using the USBD_EPBUF register. 

 The MSB of the UDC Endpoint Buffer register should be loaded 
first.

 All endpoint buffer registers must be programmed for correct func-
tion of the USB device. Program all unused endpoint buffers to 
zeros.

The ADSP-BF535 processor supports 8 physical endpoints, one configura-
tion, two interfaces, and two alternate interfaces. Given this 
configuration, the EPNUM field (physical endpoints) can hold values from 0 
to 7; the EP_CONFIG field can be 0 or 1, the EP_INTERFACE and the 
EP_ALTSETTING fields can be 0 or 1.

The EP_MAXPKTSIZE field holds the maximum packet size. It can take val-
ues from 0 to 1023 with 8, 16, 32, or 64 as the only possible values for 
physical endpoints defined as Control, Bulk, and Interrupt.

The EP_BUFADRPTR field reflects the endpoint being used for the transac-
tion. For the ADSP-BF535 processor, the EP_BUFADRPTR should reflect the 
endpoint on bits [0:2].
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Interrupt Descriptions
This section provides detailed descriptions of each interrupt bit and the 
operation of the interrupt subsystem.

The interrupt subsystem is based on a two-tiered approach. The USBD 
module presents a single interrupt output to the system, but internally it 
manages separate interrupt registers for critical module events, the DMA 
master channel, and each endpoint.

Figure 14-21. UDC Endpoint Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 38 37 36 35 34 33 32

00 0 0 0 0 0 0

UDC Endpoint Buffer Register

EP_INTERFACE

EP_BUFADRPTR[2:0]
Same as EPNUM

EP_MAXPKTSIZE[9:0]
Maximum packet size for 
this endpoint

EP_DIR
0 - Out endpoint
1 - In endpoint
Ignored for control endpoints

EP_ALTSETTING

Type of endpoint
00 - Control
01 - Isochronous
10 - Bulk
11 - Interrupt

EP_TYPE[1:0]

EP_CONFIG

EPNUM[2:0]

Reset = 0x00 0000 0000
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Software can mask each interrupt individually. Under this scheme, it is 
possible to enable software polling of the interrupts or to enable the hard-
ware interrupt.

USB General Interrupts
The general interrupts are the top tier of the interrupt subsystem. This tier 
has the general interrupts and an interrupt for each endpoint.

USBD_SOF – Start of Frame

The USBD_SOF interrupt indicates that the USB device has received a Start 
of Frame (SOF) token from the USB host. The USB host broadcasts the 
SOF token at 1.0 ms intervals as a timebase for isochronous transfers. Iso-
chronous endpoints can use this interrupt as part of their synchronization 
mechanism.

USBD_CFG – USB Configuration Change

The USBD_CFG interrupt indicates to the device that a configuration change 
event occurred on the USB. The host has requested the device to change 
to a different configuration, or it has switched to a different alternate 
interface for one of the interfaces in the current configuration.

 Timely service of this interrupt is critical to ensure proper device 
operation. Once this interrupt is received, the software must imme-
diately reconfigure itself to match the new configuration settings, 
then clear the interrupt.

To prevent the device’s configuration from becoming out of sync with the 
intended configuration (from the USB host’s viewpoint), the device 
refuses all traffic from the USB while the interrupt is pending. Masking 
the interrupt does not disable the USB activity lockout feature.
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USBD_MSOF – Missed Start of Frame

This interrupt, or missed SOF indicator, asserts when a USBD_SOF inter-
rupt is already pending in the device, and another SOF is received. 
Software can use this interrupt, in combination with the USBD_SOF inter-
rupt, to help maintain synchronization with application software running 
on the USB host system.

USBD_RST – Reset Signaling Detected

This interrupt asserts when reset signaling is present on the USB. Software 
can use this interrupt as an indicator that something significant is about to 
happen or has happened (and perhaps the software wants to disable 
in-progress DMA transfers). Software can monitor the USBD_RSTSIG bit in 
the USBD_STAT register to monitor the state of reset signaling.

USBD_SUSP – Device Suspended

This interrupt asserts when the USB device enters suspend mode after 
3.0 ms of inactivity on the USB. This interrupt complements the 
USBD_SUSPEND signal on the USB Port Interface which can be used by the 
system to start and stop the clocks for low power operation.

USBD_RESUME – Resume Signaling

This interrupt asserts when the USB device leaves suspend mode. This 
interrupt complements the USBD_SUSPEND signal on the USB Port Inter-
face, which can be used by the system to start and stop the clocks for low 
power operation.

Because internal logic is synchronous, this interrupt may not assert when 
the module leaves the suspended state, depending on how and when the 
system restarts the clocks.
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USBD_FRMAT – Frame Match

The USBD_FRMAT interrupt indicates a match between the current USB 
frame number (stored in USBD_FRM) and the match value stored in the USB 
Frame Match (USBD_FRMAT) register. This feature is of interest for isochro-
nous applications that need to synchronize operations between the data 
source and data sink.

The USBD_FRMMAT bit in the USBD_GINTR register is 1 when there is a frame 
match condition between the Current USB Frame Number register 
(USBD_FRM) and the Match Value for USB Frame Number register 
(USBD_FRMAT). After hard reset, this interrupt is set because both the USB 
frame number and the match value are 0.

USBD_EPxINT – Endpoint(x) Interrupt

This interrupt indicates that an unmasked interrupt is present in the 
USBD_INTRx register.

DMA Master Interrupts
The DMA Master channel reports two interrupts:

• DMA_COMP

• DMA_ERROR

Each interrupt source is sticky. Thus an enabled interrupt source which 
asserts an interrupt request by setting the appropriate bit remains set until 
cleared. Clearing an interrupt source is accomplished by writing a 1 to the 
corresponding bit.
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DMA_COMP

The DMA_COMP interrupt is generated during a DMA burst transfer of data. 
Data is transferred over the DAB bus as a burst of four 32-bit words 
(16 bytes total). The interrupt is generated after the first two words have 
been transferred. This interrupt is not endpoint specific and is an indica-
tor that the USB device is in the process of a data transfer.

DMA_ERROR

Two general conditions cause a DMA bus error: 

• Data misalignment

• Illegal memory access

Data Misalignment

Misalignment of address to data size occurs when the USBD_OFFSET 
(USBD_EPADRx) is not word aligned. If the address is misaligned to the data:

• The DMA engine does not access the bus.

• The DMA enable bit (bit 0 of DMA Configuration register) is 
cleared.

• Bit 2 of the DMA Master Channel DMA Count register is set.

Illegal Memory Access

If an illegal memory access occurs, such as an access to unimplemented 
memory, the DMA engine responds with an error and:

• Completes the current burst transfer.

• Clears the DMA Enable bit (Bit 0 of the Configuration Word).

• Sets bit 2 of the DMA Master Channel DMA Count register.
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USB Endpoint Interrupts
Each endpoint interrupt in the USB General Interrupt register is based on 
the interrupt status of all interrupt sources for the endpoint. If any of the 
endpoint interrupts is active and unmasked, an interrupt is generated and 
sets the corresponding bit in the Global Interrupt register (USBD_GINTR).

The individual interrupt behaviors are described in the following sections. 
Note that it is possible to cause the top-tier interrupt to retrigger by tog-
gling the mask bit for the endpoint interrupts.

USBD_TC – Transfer Complete

The USBD_TC interrupt asserts when a transfer completes on the current 
endpoint. Because the USB protocol does not maintain a transfer count, 
the end of a transfer is assumed whenever a short packet is transferred on 
an endpoint. The USB protocol requires all bulk interrupt and control 
endpoints to transmit the maximum sized packet for the endpoint (that is, 
8, 16, 32, 64) until the end of a data transfer.

At the end of the transfer, the remaining bytes are transmitted in a short 
packet. If the data transfer ends on a packet boundary, the short packet 
can contain 0 bytes. The 0 byte packet is not required for isochronous 
transfers.

This interrupt does not assert when a setup packet is received on a control 
endpoint.

USBD_PC – Packet Complete

This interrupt asserts when a packet transfer completes on the current 
endpoint. System software can use this interrupt to monitor the progress 
of a data transfer.
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USBD_BCSTAT – Buffer Complete

This interrupt asserts when the byte count has counted down to 0 for an 
endpoint. Software can examine the USBD_EPADRx and USBD_EPLENx regis-
ters to determine the actual progress of the transfer.

USBD_SETUP – Setup Packet Received

This interrupt asserts when a setup packet is received on the current con-
trol endpoint. See USBD_MSETUP below for the device behavior if a 
USBD_SETUP interrupt is already pending and a new one arrives.

USBD_MSETUP – Multiple Setup Packets Received

This interrupt asserts when a USBD_SETUP interrupt is already pending and 
another setup packet is received, as could happen when the USB device’s 
ACK of the first setup packet is not received by the USB host, and the 
USB host retransmits the command.

USBD_MERR – Memory Controller Error

This interrupt covers the case of a buffer overrun or underrun. This inter-
rupt sets when the USBD_BC interrupt is pending for an endpoint and 
another packet request has been received from the USB host for the same 
endpoint. When this situation occurs, the USB device is NAKing requests 
from the USB host and must correct the situation to ensure maximum 
bandwidth usage.

The specific problem here is with OUT packets. Each time the USB host 
tries to send a 64-byte packet, for example, it sends the whole packet “in 
the blind” assuming that the USB device will accept it. If the USB device 
is not ready, then this is wasted bus bandwidth that could be given to 
another device which is ready to complete a packet transfer.
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USB Programming Model
This section discusses the USBD module from a programming viewpoint, 
including programming issues related to device initialization and data 
transfers.

Configuration of the UDC Module
The UDC module maintains a set of internal buffers that describe the 
endpoints and configurations available on the device. These buffers must 
be reloaded whenever a hard reset event occurs. These buffers are referred 
to as the logical endpoints or EpBufs.

For each unique physical endpoint on the device, there can be more than 
one EpBuf. For example, it is possible to have endpoint 1 in USB configu-
ration 1, as well as endpoint 1 in USB configuration 2. While the two 
endpoints have the same physical number as far as the USB is concerned, 
they are mapped to two separate EpBufs within the module. Because the 
endpoints are mapped to two different buffers, they can have completely 
different configurations.

The ADSP-BF535 processor is hardwired to support one configuration, 
two interfaces, two alternate interfaces per interface, and it has a pool of 
64 logical endpoint buffers to program.

 Note: Even if all 64 endpoint buffers are not used in a specific 
product, the core expects all 64 logical endpoint buffers to be allo-
cated data after each hard reset.
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The UDC module gives software access to the endpoint buffers via the 
USBD_EPBUF register. The following steps must be followed to ensure 
proper download.

1. Verify that the UDC is ready to accept configuration data by read-
ing the USBD_RDY bit from the USB_EPBUF register.

2. Write the first/next byte of the endpoint buffer to the USBD_EPDOWN 
field of the USBD_EPBUF register.

This action causes the USBD_RDY bit to change to 0. The USD_CFG bit 
remains at 1 until the download process is complete.

3. Wait for the USBD_RDY bit to return to 1.

Depending on the clock frequency of the PAB, the wait can be 30 
or more clock periods.

4. Go back to step 2.

After all bytes have been written, read back the USBD_CFG bit from 
the USBD_EPBUF register and verify that it has switched from 1 to 0, 
indicating that the UDC has received all the bytes expected.

 For each logical endpoint, you must download 5 bytes of data start-
ing with the most significant byte. See the UDC Endpoint Buffer 
register in Figure 14-21 on page 14-37 for more information about 
the UDC register format.

 For endpoint 0, program the configuration, interface, and alternate 
values to 0 in the UDC Endpoint Buffer register.
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USBD Device Initialization
Device initialization consists of several steps that prepare the USBD mod-
ule to transfer data. On a hard reset event, software should perform the 
following steps.

1. Program the UDC module’s endpoint buffers. For more informa-
tion, see “Configuration of the UDC Module” on page 14-44.

2. Program interrupt masks in USBD_GINTR, USBD_INTRx and the DMA 
interrupt enables in USBD_DMACFG.

3. Program the DMA master interface with the USB module’s base 
address (USBD_DMABLO, USBD_DMABHI) in system memory and enable 
the DMA.

4. Program the endpoint registers for endpoint 0 in order to receive 
commands from the USB host:

a. USBD_EPCFG0 – USBD_MAX = Endpoint’s maximum packet 
size, USBD_DIR = OUT, USBD_ARM = 1.

b. USBD_EPADR0 = As desired.

c. USBD_EPLEN0 = As desired. Control endpoints typically spec-
ify an 8 byte packet size.

5. Enable the module for USB activity by setting the USBD_ENA bit in 
the USBD_CTRL register.

6. Wait for a USBD_CFG interrupt, or for a SETUP packet on endpoint 
0.

The most likely sequence of events from the USB is that the device 
comes out of reset and receives a GET_DESCRIPTOR request from the 
USB host for the first 8 bytes of the device descriptor, potentially 
followed by additional GET_DESCRIPTOR requests. At that point, the 
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USB host assigns an address to the device and then selects a config-
uration. Optionally, if the USBD_CFG interrupt is masked, software 
can poll the USBD_GINTR register.

7. Read a new USB configuration number from the USBD_STAT regis-
ter, or decode and respond to the setup packet (For more 
information, see “Control Transfers” on page 14-11.).

8. Repeat steps 6 and 7 until a device configuration has been 
specified.

9. Program endpoint configuration and interrupt registers according 
to the current device configuration.

10.Initialization is complete.

USB Data Transfers
This section documents the programming of the endpoint configuration 
registers to support USB data transfers. It includes a number of cases typi-
cally encountered, such as Bulk IN/OUT, Isochronous IN/OUT, and 
Control transfers. Exception cases, such as packet retries, bad device 
requests, corrupted handshakes, and short transfers, are also discussed.

 From the device’s viewpoint, USB Interrupt transfers usually 
behave like Bulk transfers. The information that describes Bulk 
transfers also applied to USB Interrupt transfers. USB Interrupt 
transfers are not discussed separately.

USB Transfer Concepts

In general, the USB does not maintain a transfer count for data transfers 
between the device and the host. For isochronous endpoints, the transfer 
size is irrelevant, because they get the same bandwidth every frame, 
whether they need it or not. Control transfers specify the length of their 
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data phase in the setup packet, but the data phase may terminate early. 
Bulk and interrupt transfers, however, appear only as a continuous stream 
of packets to the USB.

To delineate blocks of data, the USB requires that all packets be sent at 
the maximum size for the endpoint, except for the last packet in a group. 
For example, if the endpoint’s maximum packet size is 8 bytes, and a 
63-byte transfer is being performed, the data source would send 7 packets 
at 8 bytes, and one last packet at 7 bytes. The software on the USB host or 
the USB device recognizes the shortened data packet as the end of a group 
of packets. If the data transfer ends on a packet boundary (that is, a 
64-byte transfer, 8-byte packet size), the data source sends a last 0-byte 
packet on the USB.

How to Transfer Data

Preparing a USB endpoint to transfer data consists of several steps:

1. For the first memory block, program the buffer offset and length 
into the USBD_EPADRx and USBD_EPLENx registers. The offset address 
is a word-aligned address in the ADSP-BF535 processor’s L2 
memory.

2. Unmask the USBD_BCSTAT, USBD_PC, and USBD_TC interrupts.

3. Program the USB_EPCFGx register with these fields:

• Set the USBD_MAX field to the code for the endpoint’s maxi-
mum packet size.

• Set USBD_TYP to the code for the endpoint type.

• Set USBD_DIR to IN or OUT.

• Set USBD_ARM to 1.

4. Wait for interrupts.
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The USBD_PC interrupt can be used by software to monitor the 
progress of a transfer on a packet-by-packet basis. The USBD_BCSTAT 
interrupt indicates when the byte count for the transfer has 
expired, and a new buffer must be set up. The USBD_TC interrupt 
indicates a completed transfer.

5. For multiple block transfers, repeat steps 1 through 4 until all 
blocks have been transferred.

If a bulk IN data transfer ends on a packet boundary, an additional 
block with a size of 0 bytes must be created to terminate the 
transfer.

 Due to packet scheduling on the USB, resetting the endpoint regis-
ters between transfers is a time-critical operation to avoid 
generating NAKs on the USB.

Bulk Transfers

Bulk data transfers (as well as interrupt and control transfers) are based 
around a limited set of packet sizes. The USB 1.1 specification defines 
valid sizes of 8, 16, 32, and 64 bytes. Each USB endpoint is assigned one 
of these possible basic packet sizes and cannot switch between them.

All large data transfers are broken down into units of the basic packet 
sizes. For example, a 1044-byte file transfer across the USB to a 64-byte 
bulk endpoint consists of 17 packet transfers. The first 16 packets are 64 
bytes, and the remaining 20 bytes are carried in a short packet. The USB 
host automatically assumes that the short packet represents an 
end-of-transfer indicator.

Scheduling individual packet transfers on the USB is non-deterministic 
from the device’s standpoint. It does not know in advance when the host 
is going to make a request. The best the device can do to ensure maximum 
bandwidth use of the USB is to be ready for a transfer at all times. This 
means setting up multiple buffering for the endpoints.
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Note that the endpoint configuration registers allow software to create 
data transfers larger than a single USB packet. The DMA master channel 
can address a 2 KB buffer space in system memory. Software must manage 
the space as a pool of buffers. By using the endpoint configuration regis-
ters, it can create transfers from 1 to 1023 bytes at various locations in the 
2 KB buffer space. This can be a single 1023-byte isochronous endpoint 
buffer or many 16-byte bulk endpoint buffers.

Bulk In

Assume 64-byte packet size, packet buffer located at address 0x80 in the 
L2 memory space, and buffer size 0x80 (two packets). Programming flow 
is:

1. Clear interrupt registers: USBD_EPINTRx and the USBD_EPxINTR bit 
of the USBD_GINTR register.

2. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

3. Configure the endpoint:

• USBD_EPCFGx: USBD_TYP = 01, USBD_DIR = 1, USBD_MAX = 11, 
USBD_ARM = 1.

• USBD_EPADRx: USBD_OFFSET = 0x0080.

• USBD_EPLEN0: USBD_BC = 0x0080.
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4. Wait for interrupts.

• If USBD_PC interrupt:

• Software can monitor transfer progress on a 
packet-by-packet basis. After each packet transfers, software 
must clear the USBD_PC and USBD_EPxINTR interrupts. Go 
back to step 4.

• If USBD_BCSTAT interrupt and not USBD_TC interrupt:

• If more data is to be sent, clear interrupts and go back to 
step 2. Update USBD_EPADRx and USBD_EPLENx to point to 
the next buffer of data, then set USBD_ARM = 1 to re-arm the 
endpoint.

• If no more data is to be sent, clear interrupts, program 
USBD_BC = 0, and set UDBD_ARM = 1. Wait for interrupts.

• If USBD_TC interrupt, the transfer is complete.

Bulk Out

Assume 16-byte packet size, packet buffer located at address 0x80 in the 
L2 memory space, and buffer size 0x80 (four packets). Programming flow 
is:

1. Clear interrupt registers: USBD_EPINTRx and the USBD_EPxINTR bit 
of the USBD_GINTR register.

2. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_TC = 0, USBD_PC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.
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3. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 01, USBD_DIR = 0, USBD_MAX = 01, USBD_ARM = 1.

• USBD_EPADRx: 

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x0080.

4. Wait for USBD_BCSTAT/USBD_PC/USBD_TC interrupt.

• If USBD_PC: 

• Software can monitor transfer progress on a packet by 
packet basis. After each packet transfers, software must clear 
the USBD_PC and USBD_EPxINTR interrupts.

• If USBD_BCSTAT and not USBD_TC:

• Clear interrupts, then go back to step 2. Update 
USBD_EPADRx and USBD_EPLENx to point to a new data buffer 
and then set USBD_ARM = 1 to re-arm the endpoint.

• If USBD_TC:

• The transfer is complete. Total length of transfer is equal to 
the number of complete buffers transferred multiplied by 
the buffer size, plus the buffer size minus the value remain-
ing in the USBD_EPLENx register at the end of the transfer.

5. Clear the endpoint interrupts, take the steps required to complete 
the transfer in software, then go back to step 2 and update the reg-
isters for a new data transfer.
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Isochronous Transfers

Isochronous endpoints are guaranteed exactly one packet transfer per USB 
frame. The maximum size of the packet is specified in the endpoint’s 
descriptors (software), and in the EpBufs (hardware). In any given frame, 
the USB may transfer from 0 to the maximum number of bytes allocated 
for the endpoint.

The specific timing of the packet within a frame is dynamic based on the 
USB traffic load. In the worst-case scenario, a device can get an isochro-
nous packet request at the end of frame X, and then another immediately 
at the beginning of frame X+1. For this reason, isochronous applications 
should consider prebuffering an entire packet one frame in advance of 
when it is needed.

For USB IN endpoints, prebuffering an entire packet involves setting up 
the transfer for the next frame as soon as the USBD_TC interrupt is received 
for the current frame. For USB OUT endpoints, this translates to putting 
a buffer in place as soon as the USBD_TC interrupt is received for the cur-
rent frame.

For USB OUT endpoints, the device software should program the byte 
count to the exact size of the maximum packet for the endpoint (1 to 
1023 bytes). For USB IN transfers, the device software should program 
the byte count to match the amount of data to be transferred in a given 
frame (the maximum packet size or less).

If the USB device does not have any data to transfer on a particular frame, 
it should disarm the endpoint by clearing the USBD_ARM bit in the 
USBD_EPCFGx register.

To monitor the progress of transfers, the device software monitors the 
USBD_SOF interrupt, and it can look at the status fields of the USBD_STAT 
register to see exactly what is occurring on the bus at any given time.

Specific examples of ISO IN and ISO OUT register programming are 
shown in the following sections.
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Iso In

Assume 128-byte packet size, packet buffer located at address 0x80 in the 
L2 memory space, and buffer size 0x80 (one packet). Programming flow 
is:

1. Clear all interrupts: Write USBD_EPINTRx = all ones. Write 
USBD_EPxINTR bit of USBD_GINTR register = 1.

2. Unmask interrupts: 

• USBD_MASKx: USBD_BCSTAT = 0, USBD_PC = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

3. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 11, USBD_DIR = 1, USBD_MAX = XX, 
USBD_ARM = 1.

• USBD_EPADRx: 

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x0080.
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4. Wait for interrupts.

• If USBD_TC interrupt and USBD_PC interrupt, then the packet 
transfer was error free.

• If USBD_TC interrupt and not USBD_PC interrupt, then the 
packet transfer had a problem of some kind. The specific 
problem must be handled by the programmer. Software 
must determinate whether this is an error or merely a 
warning.

5. Go back to step 2 to prepare for the next frame’s data transfer.

Iso Out

Assume 1023-byte packet size, packet buffer located at address 0x80 in the 
memory space, and buffer size 0x3FF (one packet). Programming flow is:

1. Unmask interrupts: 

• USBD_MASKx: USBD_BCSTAT = 0, USBD_PC = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

2. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 11, USBD_DIR = 0, USBD_MAX = XX, 
USBD_ARM = 1.

• USBD_EPADRx: 

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x03FF.
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3. Wait for interrupts. 

• If USBD_TC interrupt and USBD_PC interrupt, then the packet 
transfer was error free. 

• If USBD_TC interrupt and not USBD_PC interrupt, then the 
packet transfer had a problem of some kind. The specific 
problem must be handled by the programmer. Software 
must determine whether this is an error or merely a 
warning.

4. Number of bytes received is equal to the buffer size minus the value 
remaining in the USBD_EPLENx register when the USBD_TC interrupt 
is received. Take the steps required to complete the transfer in soft-
ware, then go back to step 2 and update the registers accordingly. 
Note that no error retries are performed.

Control Transfers

In general, Control endpoints (usually endpoint 0) operate like Bulk end-
points. However, Control endpoints are bidirectional and follow a special 
protocol that allows the USB host to send commands to the USB device. 
Control transfers consist of three phases: a setup phase, a data phase, and a 
status phase.

During the setup phase, the USB host sends an 8-byte setup packet to the 
USB device. The format and contents of the packet are defined in the 
USB specification.

The setup packet specifies information such as the type of command 
(standard request, vendor-specific, device-class-specific), the direction of 
the data phase (if any), the size of the data phase (if any), and the specific 
command code. 

After receiving the command, the device can choose to reject the com-
mand by stalling the endpoint, or it can process the command and 
proceed through the data and status phases.
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The following sections show example flows for control transfers without a 
data phase and with a data phase.

Control Transfer, No Data Phase

A control transfer with no data phase consists of these steps:

1. At initialization time, device software unmasks the USBD_SETUP 
interrupt on the control endpoint(s). 

2. Device initializes the USBD_EPADRx and USBD_EPLENx registers to 
point to storage buffers.

3. Device initializes the USBD_EPCFGx registers for OUT direction, 
USBD_TYP = 00, USBD_DIR = 0 (OUT direction). The USBD_MAX field 
is programmed to match the endpoint’s maximum packet size. The 
USBD_ARM bit is set to 1.

4. Monitor the USBD_SETUP interrupt.

5. On receipt of a USBD_SETUP interrupt, read the setup packet from 
the memory buffer and decode the command. If the command is 
valid, execute it.

6. To complete the command, a status packet must be returned to the 
USB host. For a transfer with no data phase, this is an IN transfer 
of 0 bytes, or a STALL handshake. If the command completes suc-
cessfully, set the endpoint registers (USBD_EPCFGx, USBD_EPLENx) for 
a 0 byte IN transfer, and set the USBD_ARM bit to 1. If the command 
does not complete successfully, set the USBD_EPxSTALL bit in the 
USBD_CTRL register.
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Control Transfer With Data Phase 

A control transfer can include a data phase between the setup and status 
phases. The data phase can run from 0 to 65,535 bytes, in either IN or 
OUT direction. The flow is:

1. At initialization time, device software unmasks the USBD_SETUP 
interrupt on the control endpoint(s). 

2. Device initializes the USBD_EPADRx and USBD_EPLENx registers to 
point to a storage buffer.

3. Device initializes the USBD_EPCFGx registers for OUT direction, 
USBD_TYP = 00, USBD_DIR = 0 (OUT direction). The USBD_MAX field 
is programmed to match the endpoint’s maximum packet size. The 
USBD_ARM bit is set to 1.

4. Monitor the USBD_SETUP interrupt.

5. On receipt of a USBD_SETUP interrupt, read the setup packet from 
the memory buffer and decode the command. If the command is 
valid, execute it. If the wLength field of the setup packet is nonzero, 
then a data phase is associated with the transfer. The direction of 
the transfer is specified by the bmAttributes[7] bit of the setup 
packet.

6. Program the endpoint registers to execute a data transfer as in the 
BULK IN example (see “Bulk Data Transfers” on page 14-11). 

 Under no circumstances should software attempt to transfer more 
bytes than specified in the wLength field of the setup packet. It can 
transfer fewer bytes than specified in the wLength field.

7. To complete the command, a status packet must be returned to the 
USB host. For a transfer with a data phase, this is a packet with 
0 bytes, or a STALL handshake. The direction of the status phase is 
opposite that of the data transfer. For example, for a control transfer 
with an OUT data phase, set the endpoint registers 
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(USBD_EPCFGx, USBD_EPLENx) for a zero-byte IN transfer, and set the 
USBD_ARM bit to 1. If the command does not complete successfully, 
set the USBD_EPxSTALL bit in the USBD_CTRL register.

Control Transfers Gone Bad

The USB protocol is usually very reliable about ensuring that packets 
reach their intended destination. However, in one case the packets can be 
confused. The particular corner case occurs when the USB host sends a 
command to a USB device.

The host sends a setup packet to the device, and the device acknowledges 
it with an ACK handshake. If the ACK handshake is corrupted, the USB 
host waits a while, then tries to resend the setup packet. In this case, the 
device can wind up with 2 (or more) setup packets in its internal buffer, 
and must figure out which is the real one before moving on and processing 
the command.

The USBD module includes several features to help deal with this situa-
tion. The features are:

• The UDC correctly handles the situation within its own logic and 
understands that the first setup packet is invalid.

• The USBD_SETUP and USBD_MSETUP interrupts can be used to deter-
mine whether two setup packets await service. An internal lockout 
mechanism guarantees that if software tries to clear USBD_SETUP and 
USBD_MSETUP at the same time that another setup packet is received, 
the software gets another USBD_SETUP interrupt indicating the 
condition.

• The USBD_SIP and USBD_PIP status bits can be used to determine 
whether the USB module is in the process of receiving a new setup 
packet. Software can check these bits before moving to the DATA 
or STATUS phase of the control transfer to determine whether the 
command request that it is processing is about to be invalidated.
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Exception Handling
Software must handle several exception cases. These exceptions consist of 
catastrophic endpoint errors, isochronous packets with data errors, and 
failed memory access requests.

Small Packets (Less Than 16-Byte Transfers)

The DMA master channel is required to address data in minimum bursts 
of 16 bytes.For this reason, using the USBD module with packet sizes of 
less than 16 bytes presents a challenge to system software.

To use 16-byte or smaller packets, the USB module pads the data to main-
tain the 16-byte boundary. It is up to the system software to read the 
USBD_EPLENx register to determine the valid data.

Endpoint Errors

Under normal circumstances, the hardware handles transfer errors on 
individual data packets transparently without software intervention. The 
USB protocol supports packet retries for Bulk, Control, and Interrupt 
packets.

In cases where a catastrophic problem occurs on a specific endpoint, and 
the device needs support from the application software (such as a configu-
ration change), the device has the option to stall individual endpoints. 
When a device stalls an endpoint, the USB host is required to clear the 
stall condition before further data transfers can occur on the endpoint. 
Presumably, while clearing the stall condition, the application also fixes 
the underlying condition which caused the stall in the first place.

The USBD module includes a stall bit for each endpoint in the USBD_CTRL 
register. When software needs to indicate a stall condition, it sets the 
USBD_EPxSTALL bit. After the USBD_EPxSTALL bit has been set, application 
behavior is product specific. The application must clear the 
USBD_EPxSTALL bit in the USBD_CTRL register.
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Isochronous Transfers Error Detection

While Control, Interrupt, and Bulk data transfers support a method for 
error correction, Isochronous transfers have only error detection capabil-
ity. Occasionally, the device can expect that an entire packet is lost, but in 
most cases, the device has to deal with CRC errors or bitstuff violations. 
In these cases, the entire packet transfers, but the application is responsi-
ble for determining how to handle the error.

Under normal circumstances, the USBD module generates both 
end-of-packet and end-of-transfer interrupts (USBD_PC, USBD_TC) for iso-
chronous packets.

If an error occurs (for example, CRC error, or bitstuff error), the module 
still asserts the USBD_TC, but it does not assert the USBD_PC. In this way, the 
application can detect and compensate for errors.

Reset Signaling Detected on USB

USB reset signaling is generated by the USB host. The Host uses reset sig-
naling when it needs to re-enumerate devices on the bus. This can occur 
just after power-up, when devices are initially connected to a hub port, 
and any time the USB host runs into a catastrophic failure situation.

The USBD module reports the presence of USB reset signaling to the sys-
tem through the USBD_RSTSIG bit of the USBD_STAT register and by means 
of the USBD_RST interrupt of the USBD_GINTR register.

When the system detects one of these cases, it should terminate any activi-
ties currently in progress and prepare for the device to be re-enumerated 
by the USB host. The system does not need to re-download the UDC end-
point buffer data, nor does it need to reinitialize the device.
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Suspend/Resume Considerations

During the time that the USB is suspended (USBD_SUSPEND output active), 
the system may stop all clocks to the USBD module. If the USB device is 
powered by the bus, it may be required to stop all clocks to meet the cur-
rent requirements during the suspended state.

On the inactive edge of USBD_SUSPEND, the module must immediately 
restart its clocks and guarantee stability within 10 ms (USB specification, 
section 9.2.6.2).

 Note: The 10 ms window is cited in the USB specification and is 
supposedly guaranteed by the system software on the USB host. 
Because no USB compliance tests exist for USB hosts, the 10 ms 
window cannot be guaranteed across all operating system/BIOS 
combinations. The system designer is urged to restart the clocks as 
quickly as possible.

More information about USB power distribution is given in Chapter 7 of 
the USB specification.

References
These reference materials may be of interest to the system integrator:

• Universal Serial Bus System Architecture, Don Anderson, Mindshare 
Inc.

• Universal Serial Bus Specification, Rev 1.1, USB Implementers 
Forum, www.usb.org. Available online.

• Open Host Controller Interface Specification, Rev 1.0, USB Imple-
menters Forum, www.usb.org. Available online.
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This additional resources is readily available for USB product developers:

• USB Device Class Specifications, www.usb.org. The common class 
specifications provide a framework in which device developers can 
make use of standardized device drivers on the USB host. Examples 
are printers, disk drives, and broadband modems.
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15 PROGRAMMABLE FLAGS

The ADSP-BF535 processor supports sixteen bidirectional programmable 
flags (PFx) or general-purpose I/O pins, PF[15:0]. Each pin can be indi-
vidually configured as either an input or an output by using the Flag 
Direction register (FIO_DIR). When configured as an output, the state 
written to the Flag Set (FIO_FLAG_S) and Flag Clear (FIO_FLAG_C) registers 
determines the state driven by the output PFx pin. Reading either the Flag 
Set or Flag Clear register returns the state of each pin, regardless of 
whether each individual pin is configured as an input or an output.

Each PFx pin can be further configured to generate an interrupt. When a 
PFx pin is configured as an input, an interrupt can be generated according 
to the state of the pin (either high or low), an edge transition (low to high 
or high to low), or on both edge transitions (low to high and high to low). 
Input sensitivity is defined on a per-bit basis by the Flag Polarity register 
(FIO_POLAR), the Flag Interrupt Sensitivity register (FIO_EDGE) and the 
Flag Set on Both Edges register (FIO_BOTH). When a PFx pin is configured 
as an output, enabling interrupts for the pin allows an interrupt to be gen-
erated by setting the PFx pin.

The ADSP-BF535 processor provides two independent interrupt channels 
for the PFx pins. Identical in functionality, these are called Interrupt A 
and Interrupt B. Each interrupt has two mask registers associated with it, a 
Flag Interrupt Mask Set register (FIO_MASKx_S) and a Flag Interrupt Mask 
Clear register (FIO_MASKx_C). This flexible mechanism allows each bit to 
generate Flag Interrupt A, Flag Interrupt B, both Flag Interrupts A and B, 
or neither.
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Each PFx pin is represented by a bit in each of the four registers. Writing a 
1 to a bit in a mask set register enables interrupt generation for that PFx 
pin, while writing a 1 to a bit in a mask clear register disables interrupt 
generation for that PFx pin.

The PFx pins are multiplexed for use by the Serial Port Interface (SPI) and 
Phase Locked Loop (PLL) circuitry. Refer to the “SPI” and the “Dynamic 
Power Management” chapters for more information.

Programmable Flag Memory-Mapped 
Registers (MMRs)

The programmable flag (PFx) registers are part of the system memory- 
mapped registers (MMRs). The addresses of the programmable flag 
MMRs appear in Appendix B. Core access to the flag configuration regis-
ters is through the system bus.

Flag Direction Register (FIO_DIR)
The Flag Direction register, shown in Figure 15-1, is a read-write register. 
Each bit position corresponds to a PFx pin. A logic 1 configures a PFx pin 
as an output, and a logic 0 configures a PFx pin as an input. The reset 
value of this register is 0x0000, making all PFx pins inputs upon reset.

Flag Set (FIO_FLAG_S) and Flag Clear 
(FIO_FLAG_C) Registers

The Flag Set and Flag Clear registers, shown in Figure 15-2 and 
Figure 15-3, are used to sense the value of the PFx pins defined as inputs, 
to set the state of PFx pins defined as outputs, and to clear interrupts gen-
erated by the PFx pins. Each PFx pin is represented by a bit in each of these 
registers.



ADSP-BF535 Blackfin Processor Hardware Reference 15-3 
 

Programmable Flags

Reading either the Flag Set or Flag Clear registers returns the value of the 
PFx pins. The value returned shows the state of the PFx pins defined as 
outputs and the sense of PFx pins defined as inputs, based on the polarity 
and sensitivity settings of each pin.

The Flag Set register is a write-1-to-set register, while the Flag Clear regis-
ter is a write-1-to-clear register. These registers are used to set or clear the 
output state associated with each output PFx pin, and to set or clear the 
latched interrupt state captured from each input PFx pin. This mechanism 
allows for more straightforward coding and is less prone to bit manipula-
tion errors than traditional read-modify-write mechanisms.

As an example, assume PF[0] is configured as an output. Writing 0x0001 
to the Flag Set register drives a logic 1 on the PF[0] pin without affecting 
the state of any other PFx pins. Writing 0x0001 to the Flag Clear register 
drives a logic 0 on the PF[0] pin without affecting the state of any other 
PFx pins. Reading either register shows 0s for those PFx pins defined as 
outputs and driven low, 1s for those pins (including PF[0]) defined as out-
puts and driven high, and the present sense of those PFx pins defined as 
inputs. Input sense is based on FIO_POLAR and FIO_EDGE settings, as well as 
the logic level at each pin.

Figure 15-1. Flag Direction Register
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Figure 15-2. Flag Set Register

Figure 15-3. Flag Clear Register
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Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)

Like the Flag Set and Flag Clear registers, the Flag Interrupt Mask regis-
ters are implemented as complementary pairs of write-1-to-set and 
write-1-to-clear registers. This implementation provides the ability to 
enable or disable a PFx pin to act as a processor interrupt without requir-
ing read-modify-write accesses.

Flag Interrupt A and Flag Interrupt B are each supported by a dedicated 
Flag Interrupt Mask Set register and a Flag Interrupt Mask Clear register 
(see Figure 15-4, Figure 15-5, Figure 15-6, and Figure 15-7). Each PFx 
pin is represented by a bit in each of the four registers. Writing a 1 to a bit 
in a mask set register enables interrupt generation for that PFx pin, while 
writing a 1 to a bit in a mask clear register disables interrupt generation 
for that PFx pin.

Interrupt A and Interrupt B operate independently. For example, writing 
a 1 to a bit in the Flag Interrupt A Mask Set register does not affect Flag 
Interrupt B. This facility allows PFx pins to generate Flag Interrupt A, Flag 
Interrupt B, both Flag Interrupts A and B, or neither.

When using either rising or falling edge-triggered interrupts, the interrupt 
condition must be cleared each time a corresponding interrupt is serviced 
by writing a 1 to the appropriate FIO_FLAG_C bit. 
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Figure 15-4. Flag Interrupt A Mask Set Register

Figure 15-5. Flag Interrupt A Mask Clear Register
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Figure 15-8 shows the process by which a Flag Interrupt A or a Flag Inter-
rupt B event can be generated. Note that the flow is shown for only one 
programmable flag, FlagN. However, a Flag Interrupt is generated by a 
logical OR of all unmasked PFx pins for that interrupt. For example, if 

Figure 15-6. Flag Interrupt B Mask Set Register

Figure 15-7. Flag Interrupt B Mask Clear Register
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only PF[0] and PF[1] are unmasked for Flag Interrupt A, this interrupt is 
generated when triggered by either PF[0] or PF[1]. At reset, all interrupts 
are masked.

Figure 15-8. Flag Interrupt Generation Flow
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Flag Polarity Register (FIO_POLAR)
The Flag Polarity register, shown in Figure 15-9, is used to configure the 
polarity of the flag input source. To select active high or rising edge, set 
the bits in this register to 0. To select active low or falling edge, set the bits 
in this register to 1. This register has no effect on PFx pins that are defined 
as outputs. The contents of this register are cleared at reset, defaulting to 
active high polarity.

Figure 15-9. Flag Polarity Register
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Flag Interrupt Sensitivity Register (FIO_EDGE)
The Flag Interrupt Sensitivity register, shown in Figure 15-10, is used to 
configure each of the flags as either a level sensitive or an edge sensitive 
source. 

When using an edge sensitive mode, an edge detection circuit is used to 
prevent a situation where a short event is missed due to the system clock 
rate.

The contents of this register are cleared at reset, defaulting to level 
sensitivity.

Flag Set on Both Edges Register (FIO_BOTH)
The Flag Set on Both Edges register, shown in Figure 15-11, is used to 
enable interrupt generation on both rising and falling edges.

Figure 15-10. Flag Interrupt Sensitivity Register
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When a given PFx pin has been set to edge-sensitive in the Flag Interrupt 
Sensitivity register, setting the PFx pin’s bit in the Flag Set on Both Edges 
register to Both edges results in an interrupt being generated on both the 
rising and falling edges. This register has no effect on PFx pins that are 
defined as level sensitive.

Performance/Throughput
The PFx pins are synchronized to the system clock (SCLK). When config-
ured as outputs, the programmable flags can transition once every 4 
system clock cycles.

When configured as inputs, the overall system design should take into 
account the potential latency between the core and the system clock. 
Changes in the state of PFx pins have a latency of 3 SCLK cycles before 
being detectable by the processor. When configured for level-sensitive 
interrupt generation, there is a minimum latency of 4 SCLK cycles between 
the time the flag is asserted and the time that program flow is interrupted. 
When configured for edge-sensitive interrupt generation, an additional 

Figure 15-11. Flag Set on Both Edges Register
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SCLK cycle of latency is introduced, giving a total latency of 5 SCLK cycles 
between the time the edge is asserted and the time that the core program 
flow is interrupted.
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The ADSP-BF535 processor features three general-purpose timers, a core 
timer, and a watchdog timer.

The general-purpose timers include five registers and can be configured in 
any of these three modes:

• Pulse Width Modulation mode (PWM_OUT)

• Pulse Width Count and Capture mode (WDTH_CAP)

• External Event Counter mode (EXT_CLK)

The core timer is available to generate periodic interrupts for a variety of 
system timing functions.

The watchdog timer can be used to implement a software watchdog func-
tion. A software watchdog can improve system availability by generating 
an event to the Blackfin processor core if the timer expires before being 
updated by software.

General-Purpose Timers
Each of the three general-purpose timers has one dedicated bidirectional 
pin, TMRx. This pin functions as an output pin in PWM_OUT mode and 
as an input pin in WDTH_CAP and EXT_CLK modes. When clocked 
internally, the clock source is the ADSP-BF535 processor’s system clock 
(SCLK).
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General-Purpose Timer Registers
Each general-purpose timer uses these 16-bit registers:

• Timer Status (TIMERx_STATUS)

• Timer Configuration (TIMERx_CONFIG)

• Timer Counter (TIMERx_COUNTER_LO/HI)

• Timer Period (TIMERx_PERIOD_LO/HI)

• Timer Width (TIMERx_WIDTH_LO/HI)

Timer registers are found in the memory range 0xFFC0 2000–
0xFFC0 23FF and are shown in Table 16-1.

 For the sake of readability, this chapter follows the notation speci-
fied in Table 16-2, which removes the LO/HI identifier from the 
TIMERx_COUNTER, TIMERx_PERIOD, and TIMERx_WIDTH registers, refer-
ring to each of these MMRs as a 32-bit entity. Table 16-1 shows 
the true register mappings that should be used in user code, as all 
timer registers are 16 bits wide.

 Always access 16-bit timer registers using 16-bit word read or write 
commands.

Table 16-1. Timer Registers

Register Name Memory-Mapped Address Description

TIMER0_STATUS 0xFFC0 2000 Timer0 Status register 

TIMER0_CONFIG 0xFFC0 2002 Timer0 Configuration register

TIMER0_COUNTER_LO 0xFFC0 2004 Timer0 Counter register, Low Word 

TIMER0_COUNTER_HI 0xFFC0 2006 Timer0 Counter register, High Word 

TIMER0_PERIOD_LO 0xFFC0 2008 Timer0 Period register, Low Word 

TIMER0_PERIOD_HI 0xFFC0 200A Timer0 Period register, High Word 
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TIMER0_WIDTH_LO 0xFFC0 200C Timer0 Width register, Low Word

TIMER0_WIDTH_HI 0xFFC0 200E Timer0 Width register, High Word

TIMER1_STATUS 0xFFC0 2010 Timer1 Status register

TIMER1_CONFIG 0xFFC0 2012 Timer1 Configuration register

TIMER1_COUNTER_LO 0xFFC0 2014 Timer1 Counter register, Low Word

TIMER1_COUNTER_HI 0xFFC0 2016 Timer1 Counter register, High Word

TIMER1_PERIOD_LO 0xFFC0 2018 Timer1 Period register, Low Word

TIMER1_PERIOD_HI 0xFFC0 201A Timer1 Period register, High Word

TIMER1_WIDTH_LO 0xFFC0 201C Timer1 Width register, Low Word 

TIMER1_WIDTH_HI 0xFFC0 201E Timer1 Width register, High Word 

TIMER2_STATUS 0xFFC0 2020 Timer2 Status register

TIMER2_CONFIG 0xFFC0 2022 Timer2 Configuration register

TIMER2_COUNTER_LO 0xFFC0 2024 Timer2 Counter register, Low Word

TIMER2_COUNTER_HI 0xFFC0 2026 Timer2 Counter register, High Word

TIMER2_PERIOD_LO 0xFFC0 2028 Timer2 Period register, Low Word

TIMER2_PERIOD_HI 0xFFC0 202A Timer2 Period register, High Word

TIMER2_WIDTH_LO 0xFFC0 202C Timer2 Width register, Low Word

TIMER2_WIDTH_HI 0xFFC0 202E Timer2 Width register, High Word

Table 16-2. Abbreviated MMR References from Table 16-1

Register Name Memory-Mapped 
Address

Description

TIMER0_COUNTER 0xFFC0 2004 Timer0 Counter register 

TIMER0_PERIOD 0xFFC0 2008 Timer0 Period register 

TIMER0_WIDTH 0xFFC0 200C Timer0 Width register

TIMER1_COUNTER 0xFFC0 2014 Timer1 Counter register

Table 16-1. Timer Registers (Cont’d)

Register Name Memory-Mapped Address Description
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Timer Status Registers (TIMERx_STATUS)
Each Timer Status register (TIMERx_STATUS) indicates the status of all 
three timers and can be used to check the status of all three timers with a 
single read. Each TIMERx_STATUS register contains timer-enable bits that 
enable the corresponding timer (for example, TIMER0_STATUS enables 
TIMER0). Within a timer’s TIMERx_STATUS register, that timer has a pair 
of sticky status bits that require a write-1-to-set (TIMENx) or 
write-1-to-clear (TIMDISx) to either enable or disable the timer. 

While the timer is enabled, both its TIMENx and TIMDISx bits read 1. The 
timer starts counting three peripheral clock cycles after the TIMENx bit is 
set. Setting the timer TIMDISx bit stops the timer without waiting for any 
additional event.

Each TIMERx_STATUS register also contains a Timer Interrupt bit (IRQx) 
and a Timer Overflow bit (OVF_ERRx) for each timer. These sticky bits are 
set by the timer hardware and may be monitored by software. They need 
to be cleared in TIMERx_STATUS for each timer explicitly. To clear, write a 
1 to the bit.

 Interrupt and overflow bits may be cleared at the same time as 
timer disable bits.

TIMER1_PERIOD 0xFFC0 2018 Timer1 Period register

TIMER1_WIDTH 0xFFC0 201C Timer1 Width register 

TIMER2_COUNTER 0xFFC0 2024 Timer2 Counter register

TIMER2_PERIOD 0xFFC0 2028 Timer2 Period register

TIMER2_WIDTH 0xFFC0 202C Timer2 Width register

Table 16-2. Abbreviated MMR References from Table 16-1 (Cont’d)

Register Name Memory-Mapped 
Address

Description
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To enable an individual timer, set the timer TIMENx bit in the 
TIMERx_STATUS register for that timer. To disable an individual timer, set 
the timer TIMDISx bit in the TIMERx_STATUS register for that timer.

For bits descriptions, see Figure 16-1, Figure 16-2, and Figure 16-3.

Figure 16-1. Timer0 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer0 Status Register (TIMER0_STATUS)

IRQ0 (Timer0 Interrupt) - W1C

IRQ1 (Timer1 Interrupt) - RO

1 - Clear Timer0 interrupt flag

0 - No Timer1 interrupt occurred
1 - Timer1 interrupt occurred

TIMDIS2 (Timer2 Disable) - 
RO

TIMEN2 (Timer2 Enable) - RO

1 - Timer2 enabled 
(if TIMEN2 = 1)

1 - Timer2 enabled 
(if TIMDIS2 = 1)

TIMDIS1 (Timer1 Disable) - RO

TIMEN1 (Timer1 Enable) - RO

TIMDIS0 (Timer0 Disable) - W1C

TIMEN0 (Timer0 Enable) - W1S

IRQ2 (Timer2 Interrupt) - RO

OVF_ERR0 (Timer0 Counter 
Overflow) - W1C

0 - No Timer2 interrupt occurred
1 - Timer2 interrupt occurred

1 - Clear Timer0 overflow flag

OVF_ERR1 (Timer1 Counter 
Overflow) - RO

OVF_ERR2 (Timer2 Counter 
Overflow) - RO

0 - No Timer1 overflow occurred
1 - Timer1 overflow occurred

0 - No Timer2 overflow occurred
1 - Timer2 overflow occurred

1 - Timer1 enabled (if TIMEN1 = 1)

1 - Timer1 enabled (if TIMDIS1 = 1)

1 - Disable Timer0

1 - Enable Timer0

0xFFC0 2000
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Figure 16-2. Timer1 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer1 Status Register (TIMER1_STATUS)

IRQ0 (Timer0 Interrupt) - RO

IRQ1 (Timer1 Interrupt) - W1C
1 - Clear Timer1 interrupt flag

0 - No Timer0 interrupt occurred
1 - Timer0 interrupt occurred

TIMDIS2 (Timer2 Disable) - 
RO

TIMEN2 (Timer2 Enable) - RO

1 - Timer2 enabled 
(if TIMEN2 = 1)

1 - Timer2 enabled
(if TIMDIS2 = 1)

TIMDIS1 (Timer1 Disable) - W1C

TIMEN1 (Timer1 Enable) - W1S

TIMDIS0 (Timer0 Disable) - RO

TIMEN0 (Timer0 Enable) - RO

IRQ2 (Timer2 Interrupt) - RO

OVF_ERR0 (Timer0 Counter 
Overflow) - RO

0 - No Timer2 interrupt occurred
1 - Timer2 interrupt occurred

1 - Clear Timer1 overflow flag

OVF_ERR1 (Timer1 Counter 
Overflow) - W1C

OVF_ERR2 (Timer2 Counter 
Overflow) - RO

0 - No Timer0 overflow occurred
1 - Timer0 overflow occurred

0 - No Timer2 overflow occurred
1 - Timer2 overflow occurred

1 - Disable Timer1

1 - Enable Timer1

1 - Timer0 enabled (if TIMEN0 = 1)

1 - Timer0 enabled (if TIMDIS0 = 1)

0xFFC0 2010
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Timer Configuration Registers (TIMERx_CONFIG)
To enable timer interrupts, set the IRQ_ENA bit in the Timer Configura-
tion register (TIMERx_CONFIG) and unmask the timer interrupt by setting 
the corresponding bit of the System Interrupt Mask register (SIC_IMASK). 
If the IRQ_ENA bit is cleared, a timer does not set its IRQx bits. To poll the 
IRQx bits without permitting a timer interrupt, set the IRQ_ENA bit while 
leaving the SIC_IMASK timer interrupt masked off.

If interrupts are enabled, make sure that the interrupt service routine 
(ISR) clears the IRQx bit in the TIMERx_STATUS register before the RTI 
instruction executes. This ensures that the interrupt is not reissued. 
Remember that writes to system registers are delayed. If only a few 
instructions separate the IRQx clear command from the RTI instruction, an 

Figure 16-3. Timer2 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer2 Status Register (TIMER2_STATUS)

IRQ0 (Timer0 Interrupt) - RO

IRQ1 (Timer1 Interrupt) - RO

1 - Clear Timer2 interrupt flag

0 - No Timer1 interrupt occurred
1 - Timer1 interrupt occurred

TIMDIS2 (Timer2 Disable) - 
W1C

TIMEN2 (Timer2 Enable) - W1S

1 - Disable Timer2

1 - Enable Timer2

TIMDIS1 (Timer1 Disable) - RO

TIMEN1 (Timer1 Enable) - RO

TIMDIS0 (Timer0 Disable) - RO

TIMEN0 (Timer0 Enable) - RO

IRQ2 (Timer2 Interrupt) - W1C

OVF_ERR0 (Timer0 Counter 
Overflow) - RO

0 - No Timer0 interrupt occurred
1 - Timer0 interrupt occurred

1 - Clear Timer2 overflow flag

OVF_ERR1 (Timer1 Counter 
Overflow) - RO

OVF_ERR2 (Timer2 Counter 
Overflow) - W1C

0 - No Timer1 overflow occurred
1 - Timer1 overflow occurred

0 - No Timer0 overflow occurred
1 - Timer0 overflow occurred

1 - Timer1 enabled (if TIMEN1 = 1)

1 - Timer1 enabled (if TIMDIS1 = 1)

1 - Timer0 enabled (if TIMEN0 = 1)

1 - Timer0 enabled (if TIMDIS0 = 1)

0xFFC0 2020
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extra SSYNC instruction may be inserted. In External Event Counter mode 
(EXT_CLK), reset the IRQx bit in the TIMERx_STATUS register at the very 
beginning of the ISR to avoid missing any timer events.

Before enabling a timer, always program the corresponding Timer Config-
uration register (TIMERx_CONFIG). This register defines the timer operating 
mode, the polarity of the TMRx pin, and the timer interrupt behavior. Do 
not alter the operating mode while the timer is running.

Figure 16-4 describes the Timer Configuration registers.

The UARTy_RX_SEL bit applies to WDTH_CAP mode only. It is intended 
for UART autobaud detection. If this bit is set, the UARTy RX pin is cap-
tured instead of the TMRx pin, Timer 0 alternatively captures UART0, Timer 
1 alternatively captures UART1, and Timer 2 alternatively captures UART1.

Figure 16-4. Timer Configuration Registers

Table 16-3. Timer Configuration Register MMR Assignments

Register Name Memory-Mapped Address

TIMER0_CONFIG 0xFFC0 2002

TIMER1_CONFIG 0xFFC0 2012

TIMER2_CONFIG 0xFFC0 2022

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

MODE_FIELD[1:0]

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Count to end of width
1 - Count to end of period

0 - Disable interrupt request
1 - Enable interrupt request

0 - TMR_PIN selected
1 - UARTy RX selected

00 - Reset state
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

PERIOD_CNT (Period Count)

IRQ_ENA (Interrupt Request Enable)

UARTy_RX_SEL (UARTy Input Select)

For MMR 
assignments, see 
Table 16-3.
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Figure 16-5 shows the timing for enabling and disabling the timers.

Figure 16-5. Timer Enable and Disable Timing

SCLK

PWM_OUT

SCLK
COUN T

= M
C OUN T

=M+ 1
C OUN T

=M+ 1
COUN T
= M+1

Timer Enable

Se t
T IM ENx

T ime r
Ena bled

PER IOD = 0x4
WID TH = 0x1
PU LSE_H I = 0

C OUN T
= xx

COUN T
=xx

CO UNT
=1

C OUN T
=2

C OU NT
=4

COU NT
= 3

C lear
T IMEN x

T ime r
Disab led

Timer Disable
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Timer Period Registers (TIMERx_PERIOD)
The Period registers, shown in Figure 16-6, perform these functions in the 
three timer modes:

• PWM_OUT: In conjunction with the Timer Width registers, these 
registers define output waveform characteristics.

• WDTH_CAP: These registers are read-only registers and contain 
the captured period value.

• EXT_CLK: These registers are write-only registers and contain the 
maximum timer external count.

Figure 16-6. Timer Period Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period Lo[15:0]

Timer Period Hi[15:0]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD_HI, TIMERx_PERIOD_LO)

For MMR 
assignments, see 
Table 16-1 on 
page 16-2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Timer Width Registers (TIMERx_WIDTH)
The Timer Width registers, shown in Figure 16-7, perform these func-
tions in the three timer modes:

• PWM_OUT: In conjunction with the Timer Period registers, these 
registers define output waveform characteristics.

• WDTH_CAP: These registers are read-only registers and contain 
the captured pulse width value.

• EXT_CLK: Not used.

Timer Counter Registers (TIMERx_COUNTER)
These read-only registers retain their state when disabled. When enabled, 
the counter is reinitialized from the Timer Period and Timer Width regis-
ters based on the mode selected in TIMERx_CONFIG.

Figure 16-7. Timer Width Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width Lo[15:0]

Timer Width Hi[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH_HI, TIMERx_WIDTH_LO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For MMR 
assignments, see 
Table 16-1 on 
page 16-2.
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The timer counter value cannot be set directly by the software. The coun-
ter should be read only when the respective timer is disabled. This 
prevents erroneous data from being returned.

 If it is necessary to read the TIMERx_COUNTER registers while that 
timer is running, this algorithm must be followed to guarantee 
valid results:

1. Read TIMERx_COUNTER_HI

2. Read TIMERx_COUNTER_LO

3. Read TIMERx_COUNTER_HI again

4. Compare the two TIMERx_COUNTER_HI values

5. Repeat from step 1 if they are not equal

In External Event Capture mode (EXT_CLK), the TMRx pin (RX1 or RX0 
for autobaud detection) is used to clock the timer counter. The counter is 
initialized with the period value and counts until the period expires. For 
more information about autobaud detection see “Autobaud Detection” on 
page 16-19.

Figure 16-8 describes the Timer Counter registers.

Figure 16-8. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter Lo[15:0]

Timer Counter Hi[31:16]

Reset = 0x0000 0000

Timer Counter Registers (TIMERx_COUNTER_HI, TIMERx_COUNTER_LO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For MMR 
assignments, see 
Table 16-1 on 
page 16-2.
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Timer Modes
The TMRx pins function as outputs in PWM_OUT mode and as inputs in 
WDTH_CAP and EXT_CLK modes. The timer mode is determined by 
the value of the MODE_FIELD bits in the TIMERx_CONFIG register. 

Pulse Width Modulation Mode (PWM_OUT)
Setting the MODE_FIELD bits to 01 in TIMERx_CONFIG enables PWM Output 
mode (PWM_OUT). In PWM_OUT, the timer TMRx pin is an output.

 In PWM_OUT mode, the TMRx pin is always driven low when the 
timer is disabled, regardless of the state of the PULSE_HI bit. When 
the timer is running, however, the TMRx pin polarity corresponds to 
the PULSE_HI bit setting.

The timer is clocked internally by SCLK. Depending on the state of the 
PERIOD_CNT bit in TIMERx_CONFIG, PWM_OUT either generates pulse 
width modulation waveforms or generates a single pulse on the TMRx pin.

When the timer is enabled, the timer checks the period and width values 
for validity (independent of PERIOD_CNT) and does not start to count when 
any of these invalid conditions is true:

• Width = 0

• Period value is lower than width value

• Width = period

The timer module tests these conditions on writes to the TIMERx_WIDTH_LO 
register. Before writing to TIMERx_WIDTH_LO, make sure that the 
TIMERx_WIDTH_HI and the TIMERx_PERIOD are set accordingly. On invalid 
conditions, the timer sets both the IRQx and the OVF_ERRx bits in 
TIMERx_STATUS after two SCLK cycles. The Timer Counter register is not 
altered. Note that after reset, the timer registers are all 0.
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If period and width values are valid after the timer is enabled, the Timer 
Counter register is loaded with the value (0xFFFF FFFF – width). The 
timer counts upward to 0xFFFF FFFE. The timer then reloads the Timer 
Counter register with the value (0xFFFF FFFF – (period – width)) and 
repeats.

Pulse Width Modulation (PWM) Waveform Generation

If the PERIOD_CNT bit in the TIMERx_CONFIG register is set, the internally 
clocked timer generates rectangular signals with well-defined period and 
duty cycle. This mode also generates periodic interrupts for real-time core 
processing. 

The Timer Period and Timer Width registers are programmed with the 
values of the timer count period and the pulse-width-modulated output 
pulse width.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the pulse width expires and the pin is asserted again 
when the period expires (or when the timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the 
TIMERx_CONFIG register is used. For a low assertion level, clear this bit. For 
a high assertion level, set this bit.

 Writes to TIMERx_PERIOD_HI, TIMERx_PERIOD_LO, and 
TIMERx_WIDTH_HI do not become active until TIMERx_WIDTH_LO is 
written. Therefore, TIMERx_WIDTH_LO must always be written after 
changing TIMERx_PERIOD. When the TIMERx_WIDTH_LO value is not 
subject to change, the ISR may read back the current value of 
TIMERx_WIDTH_LO and write it again.
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Listing 16-1. PWM Mode Initialization Sequence

/* A typical PWM mode initialization: */

#define lo(const32) (const32 & 0xFFFF)

#define hi(const32) ((const32 >> 16) & 0xFFFF)

PO.H = hi(TIMER0_CONFIG);

PO.L = lo(TIMER0_CONFIG);

R0.L = 0x0019;

W[P0] = R0.L;

/* */

PO.L = lo(TIMER0_PERIOD_HI);

W[P0] = R1.H;

PO.L = lo(TIMER0_PERIOD_LO);

W[P0] = R1.L;

/* */

PO.L = lo(TIMER0_WIDTH_HI);

W[P0] = R2.H;

PO.L = lo(TIMER0_WIDTH_LO);

W[P0] = R2.L;

/* */

PO.L = lo(TIMER0_STATUS);

R0.L = 0x0100;

W[P0] = R0.L;

SSYNC;

If enabled, a timer interrupt is generated at the end of each period. An 
interrupt service routine must clear the interrupt latch bit (IRQx) and 
might alter the period and/or width values. In PWM applications, the 
software may need to update period and width values while the timer is 
running. To guarantee coherency between Timer Period and Timer 
Width registers, a buffer mechanism is used. 
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 In PWM_OUT, the counter is reloaded at the end of every period 
as well as at the end of every pulse. The generated waveform 
depends on whether TIMERx_WIDTH_LO is updated before or after the 
pulse width expires, due to the reload sequence described in “Pulse 
Width Modulation Mode (PWM_OUT)” on page 16-13.

Changing the pulse width while the timer is running is typically accom-
plished by having an interrupt service routine write new values to the 
width registers. As seen in Figure 16-9, this causes the generation of one 
incorrect period if the write to the TIMERx_WIDTH_LO register occurs before 
the ongoing pulse width expires. This is very likely because the interrupt is 
requested at the end of a period.

If an application forbids single misaligned PWM patterns, the procedure 
illustrated in Figure 16-10 can be used. It alters the period value tempo-
rarily and restores the original period value the very next PWM cycle in 
order to obtain constant PWM periods.

Figure 16-9. Possible Period Failure Due to Width Update with Timer 
Running
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Note the period settings can be altered without similar impacts.

 When a timer is running in PWM_OUT mode with the 
PERIOD_CNT bit set, and it is subsequently stopped, it does not wait 
for the end of the current period before stopping. Once disabled, 
the TMRx pin goes low, and the last PWM cycle is not completed.

To generate the maximum frequency on the TMRx output pin, set the 
TIMERx_PERIOD value to 2 and the TIMERx_WIDTH value to 1. This makes 
TMRx toggle each SCLK cycle, producing a duty cycle of 50%.

Single Pulse Generation

If the PERIOD_CNT bit in TIMERx_CONFIG is cleared, PWM_OUT generates 
a single pulse on the TMRx pin. This mode can also be used to implement a 
precise delay. The pulse width is defined by the Timer Width register and 
the Timer Period register is not used.

At the end of the pulse the interrupt latch bit (IRQx) is set and the timer is 
stopped automatically. If the PULSE_HI bit is set, an active high pulse is 
generated on the TMRx pin. If PULSE_HI is not set, the pulse is active low.

 The active low pulse configuration is not recommended, since the 
TMRx pin is always driven low when the timer is not running, 
regardless of the PULSE_HI bit.

Figure 16-10. Recommended Width Update Procedure
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Pulse Width Count and Capture Mode (WDTH_CAP)
In WDTH_CAP mode, the TMRx pin is an input pin. The internally 
clocked timer is used to determine the period and pulse width of 
externally applied rectangular waveforms. Setting the MODE_FIELD bit in 
TIMERx_CONFIG to b#10 enables this mode. The period and width registers 
are read-only in WDTH_CAP mode.

When enabled in this mode, the timer resets the value in the 
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until 
it detects the leading edge on the TMRx pin.

When the timer detects a first leading edge, it starts incrementing. When 
it detects the trailing edge of a waveform, the timer captures the current 
32-bit value of TIMERx_COUNTER into TIMERx_WIDTH. At the next leading 
edge, the timer transfers the current 32-bit value of TIMERx_COUNTER into 
TIMERx_PERIOD. The TIMERx_COUNTER register is reset to 0x0000 0001, and 
the timer continues counting until it is either disabled or the count value 
reaches 0xFFFF FFFF.

In WDTH_CAP mode, software can simultaneously measure both the 
pulse width and the pulse period of a waveform. To control the definition 
of leading edge and trailing edge of the TMRx pin, the PULSE_HI bit in 
TIMERx_CONFIG is set or cleared. If the PULSE_HI bit is cleared, the mea-
surement is initiated by a falling edge, the value in the TIMERx_COUNTER 
register is captured to the TIMERx_WIDTH register on the rising edge, and 
the period is captured on the next falling edge.

 With IRQ_ENA set, the width registers become sticky in 
WDTH_CAP mode. Once a pulse width event (trailing edge) has 
been detected and properly latched, the width registers do not 
update anymore unless the IRQx bit is cleared by software. The 
period registers still update every time a leading edge is detected.
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The PERIOD_CNT bit in TIMERx_CONFIG controls whether an enabled inter-
rupt is generated when the pulse width or pulse period is captured. If the 
PERIOD_CNT bit is set, the IRQx bit is set when the pulse period value is cap-
tured. If the PERIOD_CNT bit is cleared, the IRQx bit is set when the pulse 
width value is captured.

If the PERIOD_CNT bit is cleared, the first interrupt is generated before the 
first period value has been measured, so the period value is not valid. If the 
ISR reads the period value in this case, the timer returns a period value of 
0.

If enabled, a timer interrupt is also generated if the TIMERx_COUNTER regis-
ter reaches a value of 0xFFFF FFFF. At that point, the timer is disabled 
automatically, and the OVF_ERRx status bit is set, indicating a count over-
flow. IRQx and OVF_ERRx are sticky bits, and software must clear them 
explicitly. 

Because of synchronizer latency, insert two NOP instructions between set-
ting WDTH_CAP and setting the TIMENx bit. The timer can be 
subsequently disabled and re-enabled without additional NOP 
instructions.

Autobaud Detection

Timer0 provides autobaud detection for UART0, and Timer1 and Timer2 
provide autobaud detection for UART1. When UARTx_RX_SEL is set in 
TIMERx_CONFIG, the timer samples the appropriate UART port receive data 
pin (RX0 or RX1) instead of the TMRx pin while enabled for WDTH_CAP 
mode. A software routine can measure the pulse widths of the bits received 
on the serial data line (RX). Because the timers operate synchronously with 
the UART operation (all are derived from the phase-locked loop (PLL) 
clock), the pulse widths can be used to calculate the baud-rate divider for 
the UART. To determine the UART baud rate, use this equation:

DIVISOR = TIMERx_WIDTH/(16 x (Number of captured UART bits))
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Use the equation above if you are capturing either the pulse width of a sin-
gle bit or the duration of a NULL-character frame, as shown in 
Figure 16-11.

Because the example frame in Figure 16-11 encloses 8 data bits and 1 start 
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16  9)

At higher bit rates such pulse-width-based autobaud detection might not 
return sufficient results without additional analog signal conditioning. 
Therefore, it is strongly recommended to measure signal periods instead. 
For example, predefine ASCII character “@” (40h) as an autobaud detec-
tion byte and measure the period between the falling edge of the start bit 
and the falling edge after bit 6, as shown in Figure 16-12. Since this 
period enclosed 8 bits, apply the formula:

DIVISOR = TIMERx_PERIOD/(16  8)

Figure 16-11. Autobaud Detection Character 0x00

Figure 16-12. Autobaud Detection Character 0x40

Frame Wid th

S 0 1 2 3 4 5 6 7 STOP
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S 0 1 2 3 4 5 6 7 STOP
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External Event Counter Mode (EXT_CLK)
In EXT_CLK mode, the TMRx pin is an input. The timer works as a coun-
ter clocked by any external source, which can also be asynchronous to the 
core clock. Setting the MODE_FIELD bits in TIMERx_CONFIG to b#11 enables 
this mode. The TIMERx_PERIOD register is programmed with the value of 
the maximum timer external count.

After the timer is enabled, it waits for the first rising edge on the TMRx pin. 
This edge forces the Timer Count register to be loaded by the value 
(0xFFFF FFFF – period). Every subsequent rising edge increments the 
count register. After reaching the count value 0xFFFF FFFE, the IRQx bit 
is set and an interrupt is generated. The next rising edge reloads the count 
register again by (0xFFFF FFFF – period).

The PULSE_HI and the PERIOD_CNT configuration bits have no effect in this 
mode, and the OVF_ERRx bits are never set. The Timer Width register is 
not used.

Core Timer
The core timer is a programmable interval timer which can generate peri-
odic interrupts. The core timer runs at the core clock (CCLK) rate. The 
timer includes four core MMRs, the Timer Control register (TCNTL), the 
Timer Count register (TCOUNT), the Timer Period register (TPERIOD), and 
the Timer Scale register (TSCALE).

Figure 16-13 provides a block diagram of the core timer.
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Core Timer Control Register (TCNTL)
When the timer is enabled by setting the TMREN bit in the TCNTL register, 
shown in Figure 16-14, the TCOUNT register is decremented once every 
TSCALE+1 number of clock cycles. When the value of the TCOUNT register 
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL reg-
ister. If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT 
register is reloaded with the contents of the TPERIOD register and the count 
begins again.

The core timer can be put into low power mode by clearing the TMPWR bit 
in the TCNTL register. Before using the timer, set the TMPWR bit. This 
restores clocks to the timer unit. When TMPWR is set, the core timer may 
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Figure 16-13. Core Timer Block Diagram
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Core Timer Count Register (TCOUNT)
This register, shown in Figure 16-15, decrements once every TSCALE + 1 
clock cycles. When the value of TCOUNT reaches 0, an interrupt is generated 
and the TINT bit of the TCNTL register is set. 

Figure 16-14. Core Timer Control Register

Figure 16-15. Core Timer Count Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low power
mode

1 - Active state. Timer can be 
enabled using the TMREN
bit.

Meaningful only when TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt 
and halts.

1 - Enable auto-reload feature. When TCOUNT 
reaches zero and the timer generates an interrupt,
TCOUNT is automatically reloaded with the contents
of TPERIOD and the timer continues to count.

0xFFE0 3000

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C
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Core Timer Period Register (TPERIOD)
When auto-reload is enabled, the TCOUNT register is reloaded with the 
value of TPERIOD (shown in Figure 16-16) whenever TCOUNT reaches 0.

Core Timer Scale Register (TSCALE)
The TSCALE register, shown in Figure 16-17, stores the scaling value that is 
one less than the number of cycles between decrements of TCOUNT. For 
example, if the value in the TSCALE register is zero, the counter register 
decrements once every clock cycle. If TSCALE is 1, the counter decrements 
once every 2 cycles.

Figure 16-16. Core Timer Period Register

Figure 16-17. Core Timer Scale Register

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value

0xFFE0 3008
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Timers

Watchdog Timer
The ADSP-BF535 processor includes a 32-bit timer that can be used to 
implement a software watchdog function. A software watchdog can 
improve system reliability by generating an event to the Blackfin core if 
the timer expires before being updated by software. Depending on how 
the watchdog timer is programmed, the event that is generated may be a 
reset, a non-maskable interrupt, or a general-purpose interrupt. The 
watchdog timer is clocked by the system clock (SCLK).

Watchdog Timer Operation
To use the watchdog timer:

1. Set the count value for the watchdog timer by writing the count 
value into the Watchdog Count register (WDOG_CNT). 

2. Copy the count value from WDOG_CNT into the Watchdog Status 
register (WDOG_STAT) by executing a write to WDOG_STAT. For more 
information, see “Watchdog Status Register (WDOG_STAT)” on 
page 16-26.

3. In the Watchdog Control register (WDOG_CTL), select the event to be 
generated upon timeout.

4. Enable the watchdog timer in WDOG_CTL.

5. The watchdog timer then begins counting down, decrementing the 
value in the WDOG_STAT register. When the WDOG_STAT reaches 0, the 
programmed event is generated. To prevent the event from being 
generated, software must reload the count value from WDOG_CNT to 
WDOG_STAT by executing a write (of any value) to WDOG_STAT, or 
must disable the watchdog timer in WDOG_CTL before the watchdog 
timer expires.
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Watchdog Count Register (WDOG_CNT)
The Watchdog Count register (WDOG_CNT), shown in Figure 16-18, con-
tains a 32-bit unsigned count value that is copied into WDOG_STAT. The 
WDOG_CNT register must be accessed with 32-bit read/writes only.

Watchdog Status Register (WDOG_STAT)
The Watchdog Status register (WDOG_STAT), shown in Figure 16-19, con-
tains the current value of the watchdog timer. Reads to WDOG_STAT return 
this value. When the watchdog timer is enabled, WDOG_STAT is decre-
mented by 1 on each SCLK cycle. When WDOG_STAT reaches 0, the watchdog 
timer stops counting and the event selected in the Watchdog Control reg-
ister (WDOG_CTL) is generated. 

Values cannot be stored directly in WDOG_STAT, but are instead copied from 
WDOG_CNT. When the processor executes a write (of an arbitrary value) to 
WDOG_STAT, the value in WDOG_CNT is copied into WDOG_STAT. Typically, 
software sets the value of WDOG_CNT at initialization, then periodically 
writes to WDOG_STAT before the timer expires. This reloads the timer with 
the value from WDOG_CNT and prevents generation of the selected event.

Figure 16-18. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 1004
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Timers

The WDOG_STAT register is a 32-bit unsigned system MMR that must be 
accessed with 32-bit reads and writes.

Watchdog Control Register (WDOG_CTL)
The Watchdog Control register (WDOG_CTL), shown in Figure 16-20, is a 
16-bit system MMR used to control the watchdog timer.

The ICTL[1:0] field is used to select the event that is generated when the 
watchdog timer expires. Note that if the general-purpose interrupt option 
is selected, the System Interrupt Mask register (SIC_IMASK) should be 
appropriately configured to unmask that interrupt. If the generation of 
watchdog events is disabled, the watchdog timer operates as described, 
except that no event is generated when the watchdog timer expires.

The TMR_EN[3:0] field is used to enable and disable the watchdog timer. 
Writing any value other than the disable value into this field enables the 
watchdog timer. This multibit disable key minimizes the chance of inad-
vertently disabling the watchdog timer. 

Figure 16-19. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 1008
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The TRO bit is a sticky bit that is set when the watchdog timer expires. 
Note that this bit is cleared by both hardware and software resets. If the 
reset event is selected in ICTL and subsequently generated by the watchdog 
timer, software must check the Software Watchdog Timer Source bit 
(SWTS) in the Software Reset register (SWRST) to determine if the reset was 
caused by the watchdog timer. For more information, see “Software Resets 
and Watchdog Timer” on page 3-14. The TRO bit can also be manually 
cleared by writing a 1 to it.

 When the processor is in Emulation mode, the watchdog timer will 
not decrement even if it is enabled.

Figure 16-20. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

ICTL[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event generation

TMR_EN[3:0]
0000-1000, 1110-1111 -

Counter enabled
1101 - Counter disabled

TRO - W1C
0 - Watchdog timer has not expired.
1 - Watchdog timer has expired.

Reset = 0x00D00xFFC0 1000
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17 REAL-TIME CLOCK (RTC)

The Real-Time Clock (RTC) provides a set of digital watch features to the 
ADSP-BF535 processor, including time of day, alarm, and stopwatch 
countdown. 

The RTC is clocked by a 32.768 kHz crystal external to the ADSP-BF535 
processor. The RTC uses dedicated power supply pins, which enable it to 
maintain functionality even when the rest of the ADSP-BF535 processor 
is powered down. 

The RTC input clock is divided down to a 1 Hz signal by a prescaler, 
which can be bypassed. When bypassed, the RTC is clocked at the 
32.768 kHz crystal rate. In normal operation, the prescaler is enabled. 

The primary function of the RTC is to maintain an accurate day count 
and time of day. The RTC accomplishes this by means of four counters: 

• 60-second counter

• 60-minute counter

• 24-hour counter

• 255-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 255-day counter is 
incremented each day at midnight (0 hours, 0 minutes, 0 seconds). The 
RTC can generate an interrupt once per second, once per minute, and 
once per day.
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The RTC provides two alarm features. The application can program an 
exact time (hour, minute, and second) into the RTC Alarm register 
(RTC_ALARM). When the alarm interrupt is enabled, the RTC generates an 
interrupt each day at the specified time. The second alarm feature allows 
the application to specify a day as well as a time. When the day alarm 
interrupt is enabled, the RTC generates an interrupt on the day and time 
specified by the application. The alarm interrupt and day-alarm interrupt 
can be enabled or disabled independently.

The RTC provides a stopwatch function that acts a countdown timer. The 
application can program a minute count into the RTC Stopwatch Count 
register (RTC_SWCNT). When the stopwatch interrupt is enabled and the 
specified number of minutes have elapsed, the RTC generates an 
interrupt.

The RTC can also generate an interrupt once every second, minute, and 
day. Each of these interrupts can be independently controlled. 

Note that although each of the RTC counters operates continually and 
cannot be stopped by the application, no interrupts are generated unless 
enabled in the RTC Interrupt Control register (RTC_ICTL).

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC 
through reads and writes to these registers. The RTC Interrupt Control 
register (RTC_ICTL) and the RTC Interrupt Status register (RTC_ISTAT) 
provide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However, 
all RTC interrupts can be disabled, or masked. The RTC state can be read 
via the system MMR status registers at any time.
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Real-Time Clock (RTC)

Writes to all RTC MMRs, except the RTC Interrupt Status register 
(RTC_ISTAT), are synchronized to the RTC clock. If the prescaler is 
enabled, writes are synchronized at a 1 Hz rate. If the prescaler is disabled, 
writes are synchronized to the 32.768 kHz crystal rate. The Write Pending 
Status bit in RTC_ISTAT indicates the progress of the write. The Write 
Pending Status bit is set when a write occurs and is cleared when the write 
is complete. The falling edge of the Write Pending Status bit causes the 
Write Complete flag in RTC_ISTAT to be set. This flag can be configured in 
RTC_ICTL to cause an interrupt. Software does not have to wait for writes 
to one RTC MMR to complete before writing to another RTC MMR. 
There is no latency when reading RTC MMRs. The Write Pending Status 
bit is set if any writes are in progress, and the Write Complete flag is set 
only when all writes are complete.

 Do not attempt another write to the same register without waiting 
for the previous write to complete. Subsequent writes to the same 
register are ignored if the previous write is not complete. 

 Do not read a register that has been written to until the Write 
Complete flag is set. Always check the Write Pending Status bit 
before attempting a read or write.

Writes to the RTC MMRs are synchronized to the RTC clock. When set-
ting the time of day with the prescaler enabled, do not factor in the delay 
when writing to the RTC MMRs. The most accurate method of setting 
the Real-Time Clock when the prescaler is enabled is to monitor the Sec-
onds (1 Hz) Event flag or to program an interrupt for this event and then 
write the current time plus two seconds to the RTC Status register 
(RTC_STAT) in the interrupt service routine (ISR). 

The Seconds (1 Hz) Event flag is set on every positive edge of the RTC 
clock. Because of this, the write to RTC_STAT occurs almost immediately 
following the positive edge of the RTC clock. Since the value is registered 
into the actual RTC_STAT register on the second clock edge after the write 
occurs, adding two seconds to the real time before writing accounts for the 
synchronization delay.
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Writes to clear bits in RTC_ISTAT take effect immediately. 

The single active bit of the RTC Enable register (RTC_FAST) is set using a 
synchronization path. Clearing the bit is accomplished with a clear signal 
that is synchronized by the 32.768 kHz clock. This faster synchronization 
allows the module to be put into high-speed mode (bypassing the pres-
caler) without waiting the 1 to 2 seconds for the write to complete if the 
module is already running with the prescaler enabled. The first positive 
edge of the 1 Hz clock occurs 2 to 3 cycles of the 32.768 kHz clock after 
the prescaler is enabled.

Note the clear path does not clear the synchronization path for the bit that 
is set. Setting, then immediately clearing, the Prescaler Enable bit could 
result in its being set.

 Clear all flags at power-up and when setting the RTC Status regis-
ter (RTC_STAT), the RTC Alarm register (RTC_ALARM), or the RTC 
Stopwatch Count register (RTC_SWCNT). Wait for the write to com-
plete for all of these registers before clearing the flags and enabling 
the Alarm interrupt, Day Alarm interrupt, or Stopwatch interrupt.

The unknown values in the registers at power-up can cause interrupts to 
occur before the correct value is written into each of the registers. By 
catching the slow clock edge, the write to RTC_STAT can occur a full second 
before the write to RTC_ALARM. This would cause an extra second of delay 
between the validity of RTC_STAT and RTC_ALARM, if the value of the 
RTC_ALARM out of reset is the same as the value written to RTC_STAT. Wait 
for the writes to complete on these registers before using the flags and 
interrupts associated with their values.
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Real-Time Clock (RTC)

The following is a list of flags along with the conditions under which they 
are valid:

• Seconds (1 Hz) Event Flag

• Always set on the positive edge of the slow clock. This is 
valid as long as the RTC clock is running. Use this flag or 
interrupt to validate the other flags.

• Write Complete

• Always valid, except before the first edge of the slow clock. 
Not valid for up to one second after power-up and at the 
start of the slow clock. Use the Seconds (1 Hz) Event flag to 
check for the first edge of the RTC clock. The Seconds (1 
Hz) interrupt may also be used, but this causes a delay of up 
to two seconds.

• Write Pending Status

• Same as Write Complete.

• Minutes Event Flag

• Valid only after the minute field in RTC_STAT is valid. Use 
the Write Complete and Write Pending Status flags or 
interrupts to validate the RTC_STAT value before using this 
flag value or enabling the interrupt.

• 24 Hours Event Flag

• Valid only after the hour field in RTC_STAT is valid. Use the 
Write Complete and Write Pending Status flags or inter-
rupts to validate the RTC_STAT value before using this flag 
value or enabling the interrupt.
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• Stopwatch Event Flag

• Valid only after the RTC_SWCNT register is valid. Use the 
Write Complete and Write Pending Status flags or interrupt 
to validate the RTC_SWCNT value before using this flag value 
or enabling the interrupt.

• Alarm Event Flag

• Valid only after the RTC_STAT and RTC_ALARM registers are 
valid. Use the Write Complete and Write Pending Status 
flags or interrupts to validate the RTC_STAT and RTC_ALARM 
values before using this flag value or enabling its interrupt.

• Day Alarm Event Flag

• Same as Alarm.

Wait for the RTC_STAT, RTC_ALARM, and RTC_SWCNT fields to be valid before 
enabling the alarm interrupt, so that no spurious interrupts occur before 
the values of these registers are updated.

 Do not disable the prescaler by clearing the bit in RTC_FAST with-
out making sure that there are no writes in progress. Do not switch 
between fast and slow mode during normal operation by setting 
and clearing this bit, because this introduces errors in the operation 
of the counters. To avoid these potential errors, initialize the RTC 
during startup and do not dynamically alter the state of the pres-
caler during normal operation.
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Real-Time Clock (RTC)

Interrupts
The RTC should be programmed to provide interrupts at several pro-
grammable intervals, including:

• Per second

• Per minute

• Per day

• On countdown from a programmable value

• Daily at a specific time

• On a specific day and time

Interrupts can be individually enabled or disabled using the RTC Inter-
rupt Control register (RTC_ICTL). Interrupt status can be determined by 
reading the RTC Interrupt Status register (RTC_STAT). 

RTC Memory-Mapped Registers (MMRs)
This section describes the memory-mapped registers for the RTC.

RTC Status Register (RTC_STAT)
The RTC Status register, shown in Figure 17-1, is used to read or write 
the current time. Reads and writes to this register can occur at any time. 
To ensure that a valid read occurred, software should read the register 
twice and compare for equal results (within one second). The hours, min-
utes, and seconds fields are usually set to match the real time of day. The 
day counter value is incremented every day at midnight to record how 
many days have elapsed since it was last modified. Its value does not corre-
spond to a particular calendar day.
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RTC Interrupt Control Register (RTC_ICTL)
The RTC provides up to six independently enabled (unmasked) interrupts 
in this register. At reset, all interrupts are disabled (masked). The stop-
watch and alarm interrupts have their own dedicated control registers to 
determine count values. The seconds interrupt is generated on each 1 Hz 
clock tick, if enabled. The minutes interrupt is generated as the minute 
counter counts through sixty 1 Hz clock ticks. The 24-hour interrupt 
occurs once per 24-hour period (at midnight). Any of these interrupts can 
generate a wake-up request to the processor. All bits are read/write. This 
register, shown in Figure 17-2, is cleared at reset.

Figure 17-1. RTC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 X X X X X X 0 0 X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X 0 0 0 X X X X

Hours
(0-23)

Day Counter 
(0-255)

Seconds 
(0-59)

Minutes 
(0-59)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 1400
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Real-Time Clock (RTC)

RTC Interrupt Status Register (RTC_ISTAT)
The RTC Interrupt Status register, shown in Figure 17-3, provides the 
status of all RTC interrupts. These bits are sticky. Once set by the corre-
sponding interrupt event, each bit remains set until cleared by a software 
write to this register. Values are cleared by writing a 1 to the respective bit 
location, except for the Write Pending Status bit, which is read-only. 
Writes of 0 to any bit of the register have no effect. This register is cleared 
at reset.

Figure 17-2. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Interrupt 
Enable

Alarm Interrupt Enable

Seconds (1Hz) Inter-
rupt Enable

Minutes Interrupt 
Enable

Write Complete Enable

Day Alarm Interrupt Enable

24 Hours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x0000

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 1404
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RTC Stopwatch Count Register (RTC_SWCNT)
The RTC Stopwatch Count register, shown in Figure 17-4, contains the 
countdown value for the stopwatch. The stopwatch counts down minutes 
from the programmed value and generates an interrupt when the count 
reaches 0. The counter stops counting at this point and does not resume 
counting until a new value is written to RTC_SWCNT. The register can be 
programmed to any value between 0 and 255 minutes.

Figure 17-3. RTC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Write not yet complete
or no write pending
1 - All pending writes
complete

Write Pending Status (RO)
0 - No writes pending
1 - At least one write 
pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14.

0xFFC0 1408
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Real-Time Clock (RTC)

RTC Alarm Register (RTC_ALARM)
The RTC Alarm register, shown in Figure 17-5, is programmed by soft-
ware for the time (in hours, minutes, and seconds) the alarm interrupt 
occurs. Reads and writes can occur at any time. The alarm interrupt 
occurs whenever the hour, minute, and second fields match those of the 
RTC Status register. The day interrupt occurs whenever the day, hour, 
minute, and second fields match those of the RTC Status register.

Figure 17-4. RTC Stopwatch Count Register

Figure 17-5. RTC Alarm Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 X X X X X X X

Stopwatch Count 
(0–255)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 140C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 X X X X X X 0 0 X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X 0 0 0 X X X X

Hours
(0–23)

Day 
(0-255)

Seconds 
(0–59)

Minutes
(0-59)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 1410
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RTC Enable Register (RTC_FAST)
The RTC Enable register, shown in Figure 17-6, has one active bit. When 
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of 
1 Hz. When this bit is cleared, the prescaler is disabled, and the RTC runs 
at the 32.768 kHz crystal frequency. Software must set this bit for the 
RTC to operate at the proper rate.

 Do not disable the prescaler by clearing the bit in RTC_FAST with-
out making sure that there are no writes in progress. Do not switch 
between fast and slow mode during normal operation by setting 
and clearing this bit, because this introduces errors in the operation 
of the counters. To avoid these potential errors, initialize the RTC 
during startup and do not dynamically alter the state of the pres-
caler during normal operation.

Figure 17-6. RTC Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prescaler Enable

Reset = Undefined

RTC Enable Register (RTC_FAST)

0xFFC0 1414
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18 EXTERNAL BUS INTERFACE 
UNIT

The ADSP-BF535 processor’s External Bus Interface Unit (EBIU) pro-
vides glueless interfaces to external memories. The ADSP-BF535 
processor supports synchronous DRAM (SDRAM) and is compliant with 
the PC100 and PC133 SDRAM standards. The EBIU also supports asyn-
chronous interfaces such as SRAM, ROM, FIFOs, flash memory, and 
ASIC/FPGA designs.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the ADSP-BF535 processor operate at the SCLK 
frequency. The ratio between core frequency and SCLK frequency is pro-
grammable using a PLL system MMR. For more information, see “Core 
Clock/System Clock Ratio Control” on page 8-5.

The external memory space is shown in Figure 18-1. Four of the memory 
regions are dedicated to SDRAM support. SDRAM interface timing and 
the size of each SDRAM region are programmable. Each SDRAM bank 
can range in size from 16 MBytes to 128 MBytes. The start address of 
bank 0 is 0x0000 0000. The start addresses of banks 1, 2, and 3 follow 
contiguously from the previous bank. If all four SDRAM banks are not 
fully populated with 128 MBytes of SDRAM, the area from the end of 
bank 3 to address 0x2000 0000 is reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently 
programmed to support different memory device characteristics. Each 
region has its own memory-select output pin from the EBIU.
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Figure 18-1. External Memory Map

0xE7FF FFFF

0xEEFE 0000

0x0000 0000

PCI Memory Space (128 MByte)

ASYNC Memory Bank 0 (64 MByte)

ASYNC Memory Bank 1 (64 MByte)

SDRAM Memory Bank 0
(16 MB-128 MByte)

SDRAM Memory Bank 1
(16 MB-128 MByte)

0x2000 0000

0x2400 0000

External Memory Map

SDRAM Memory Bank 2
(16 MB-128 MByte)

SDRAM Memory Bank 3
(16 MB-128 MByte)

0x2FFF FFFF

ASYNC Memory Bank 2 (64 MByte)

0x2800 0000

0x2C00 0000

0xE000 0000

0xEEFE FFFF

0xEEFF FFFC

PCI IO Space (64 KByte)

PCI Config Registers (64 KByte)

0xEEFF FF00

0xEEFF FFFF PCI Config Space Port (4 Bytes)

* This reserved block does not exist if all four blocks of SDRAM are configured to their full
128 MByte size.

ASYNC Memory Bank 3 (64 MByte)

Reserved

Reserved

Reserved

Reserved *
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External Bus Interface Unit

The next region is reserved memory space. References to this region do 
not generate external bus transactions. Writes have no effect on external 
memory values, and reads return undefined values. The EBIU generates 
an error response on the internal bus, which will generate a hardware 
exception for a core access or will optionally generate an interrupt from 
PCI or a DMA channel, depending on where the access originated. 

The PCI space shown at the top of the external memory map is supported 
by the PCI Controller, not the EBIU. For more information, refer to 
Chapter 15, “PCI.”

Block Diagram
Figure 18-2 is a conceptual block diagram of the EBIU and its interfaces. 
Since only one ADSP-BF535 processor can be accessed at a time, control, 
address, and data pins for each memory type are multiplexed together at 
the pins of the device. The Asynchronous Memory Controller (AMC) and 
the SDRAM Controller (SDC) effectively arbitrate for the shared pin 
resources.
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Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the ADSP-BF535 
processor:

• External Access Bus (EAB), mastered by the System Bus Interface 
Unit (SBIU) on behalf of external bus requests from the core or the 
DMA bus or mastered by the MemDMA controller.

• External Mastered Bus (EMB), mastered by the PCI bridge.

• Peripheral Access Bus (PAB), mastered by the SBIU on behalf of 
system MMR requests from the core or from the PCI master.

Figure 18-2. External Bus Interface Unit (EBIU)
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External Bus Interface Unit

EBIU Arbitration
The SDC and the AMC can accept transaction requests in parallel, if 
queue capacity is available. However, the External Bus Controller (EBC) 
serializes requests from the EMB and the EAB internal buses. The EMB 
bus is strictly for PCI accesses. The EMB and EAB buses have equal prior-
ity. However, once the EBIU grants a bus request to either the EMB or 
the EAB bus, the arbitration algorithm favors the opposite bus for subse-
quent requests if both buses are requesting EBIU access.

External Memory Interfaces
Both the AMC and the SDC share the external interface address and data 
pins, as well as some of the control signals. Table 18-1 and Table 18-2 
describe the signals associated with each interface. Pin types are abbrevi-
ated with “I” for input and “O” for output.

No other signals are multiplexed between the two controllers.

Table 18-1. Description of Shared EBIU Port Pins

EBIU Port Pins Pin Type Description

DATA[31:0] I/O Data Bus

ADDR[19:2] O Address Bus

ABE[3]/SDQM[3]/ADDR[1] O AMC Byte Enable 3/SDC Data Mask 3/Address 1

ABE[2:0]/SDQM[2:0] O AMC Byte Enables/SDC Data Masks

CLKOUT/SCLK[1] O AMC System Clock Output/SDC Clock 1
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Table 18-2. Asynchronous Memory Interface Signals

EBIU Port Pins Pin Type Description

DATA[31:0] I/O External Data Bus

ADDR[25:2] O External Address Bus

AMS[3:0] O Asynchronous Memory Selects

AWE O Asynchronous Memory Write Enable

ARE O Asynchronous Memory Read Enable

AOE O Asynchronous Memory Output Enable
Asynchronous Memory Output Enable. In most 
cases, the AOE pin should be connected to the OE 
pin of an external memory-mapped asynchronous 
device. Refer to ADSP-BF535 Blackfin Embedded 
Processor Data Sheet for specific timing informa-
tion between the AOE and ARE signals to deter-
mine which interface signal should be used in 
your system.

ARDY I Asynchronous Memory Ready Response
Note this is a synchronous input.

ABE[3]/ADDR[1] O Byte Enables
For 16 bit wide asynchronous memories ADDR[1] 
is output on ABE[3]. Shared with SDC.

ABE[2:0] O Byte Enables

CLKOUT O System Clock Output

Table 18-3. SDRAM Interface Signals

EBIU Port Pins Pin Type Description

DATA[31:0] I/O External Data Bus

ADDR[19:18], 
ADDR[16:2]

O External Address Bus
Connect to SDRAM Address pins. Bank address is output 
on ADDR[19:18] and should be connected to SDRAM 
BA[1:0] pins.

SRAS O SDRAM Row Address Strobe pin
Connect to SDRAM’s RAS pin.
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EBIU Programming Model
This section describes the programming model of the EBIU. This model is 
based on system memory-mapped registers (MMRs) used to program the 
EBIU.

SCAS O SDRAM Column Address Strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM Write Enable pin
Connect to SDRAM’s WE pin.

SDQM[3]/ADDR[1]
SDQM[2:0]

O SDRAM Data Mask pins
Connect to SDRAM’s DQM pins. For 16-bit wide SDRAM 
configurations ADDR[1] is output on SDQM[3] and 
should be connected to SDRAM A[0] pin.

SMS[3:0] O Memory select pin of external memory bank configured 
for SDRAM
Connect to SDRAM’s CS (chip select) pin.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to make refreshes possible 
while the AMC is using the bus. Connect to SDRAM’s 
A[10] pin.

SCKE O SDRAM Clock Enable pin
Connect to SDRAM’s CKE pin.

SCLK[0] O SDRAM Clock output pin 0
Switches at system clock frequency. Connect to the 
SDRAM’s CLK pin.

SCLK[1] O SDRAM Clock output pin 1
Same frequency and timing as SCLK[0]. Provided to 
reduce capacitive loading on SCLK[0]. Connect to the 
SDRAM’s CLK pin.

Table 18-3. SDRAM Interface Signals (Cont’d)

EBIU Port Pins Pin Type Description
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There are 6 control registers and 1 status register in the EBIU. They are:

• Asynchronous Memory Global Control register (EBIU_AMGCTL)

• Asynchronous Memory Bank Control 0 register (EBIU_AMBCTL0)

• Asynchronous Memory Bank Control 1 register (EBIU_AMBCTL1)

• SDRAM Memory Global Control register (EBIU_SDGCTL)

• SDRAM Memory Bank Control register (EBIU_SDBCTL)

• SDRAM Refresh Rate Control register (EBIU_SDRRC)

• SDRAM Control Status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections 
later in this chapter.

In addition to the EBIU control and status registers (system MMRs) 
described in this chapter, the clock distributed to the EBIU has a 
dedicated enable, located in the IOCK register of the PLL control. For more 
information, see “Peripheral Clock Enable Register (PLL_IOCK)” on 
page 8-22.

Error Detection
The EBIU responds to any operation which addresses the range of 0x0000 
0000 - 0xDFFF FFFF, even if that bus operation addresses reserved or dis-
abled memory. It responds by completing the bus operation (asserting the 
appropriate number of acknowledges as specified by the bus master) and 
by asserting the EAB or EMB bus error signal for these error conditions:

• Any access to reserved memory space

• Any access to a disabled external memory bank
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• Any access to an unpopulated area of an SDRAM memory bank

• Any access to SDRAM memory space before the SDC is enabled or 
before the power-up sequence has been initiated

If the core requested the faulting bus operation, the bus error response 
from the EBIU generates a hardware error interrupt (IVHW) internal to the 
core (this interrupt can be masked off in the core). If PCI requested the 
faulting bus operation, then the bus error is captured in that controller, 
and can optionally generate an interrupt to the core. For more informa-
tion, refer to “PCI Bus Interface” on page 13-1. If a DMA master 
requested the faulting bus operation, then the bus error is captured in that 
controller and can optionally generate an interrupt to the core. For more 
information, refer to “Direct Memory Access” on page 9-1.

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety 
of memory and peripheral types. These include SRAM, ROM, EPROM, 
flash memory, and FPGA/ASIC designs. Four asynchronous memory 
regions are supported. Each has a unique memory select associated with it, 
shown in Table 18-4. 

Table 18-4. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2C00 0000 2FFF FFFF

AMS[2] 2800 0000 2BFF FFFF

AMS[1] 2400 0000 27FF FFFF

AMS[0] 2000 0000 23FF FFFF



Asynchronous Memory Interface

18-10 ADSP-BF535 Blackfin Processor Hardware Reference
 

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at 
64 MB; however, not all of an enabled memory bank need be populated. 
It should be relatively easy to constrain code and data structures to fit 
within one of the supported asynchronous memory banks, because of the 
nature of the types of code or data that is stored here.

 Note that accesses to unpopulated memory of partially populated 
AMC banks do not result in a bus error and will alias to valid AMC 
addresses.

The asynchronous memory signals are defined in Table 18-2 on 
page 18-6. The timing of these pins is programmable to allow a flexible 
interface to devices of different speeds. For example interfaces, see “Sys-
tem Design” on page 19-1.

Asynchronous Memory Global Control Register 
(EBIU_AMGCTL)

The Asynchronous Memory Global Control register configures global 
aspects of the controller. It contains bank enables and other information 
as described in this section. This register should not be programmed while 
the AMC is in use. The EBIU_AMGCTL register should be the last control 
register written to when configuring the ADSP-BF535 processor to access 
external memory-mapped asynchronous devices. Figure 18-3 shows the 
Asynchronous Memory Global Control register.
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For external devices that need a clock, the CLKOUT pin can be enabled by 
setting the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not 
use CLKOUT, set the AMCKEN bit to zero.

The BxPEN bits allow software to enable 16-bit packing mode for each 
bank independently. When 16-bit packing is enabled, ABE[3] becomes 
ADDR[1] and ABE[2] is held deasserted. Only the lower 16 bits of the exter-
nal data bus are used, DATA[15:0]. 

In 16-bit packing mode, 32-bit transactions to AMC space that are 
requested on internal buses are converted to two sequential 16-bit accesses 
on the external bus. All 8-bit and 16-bit requests are still processed with a 
single external transaction. When 32-bit packing is enabled, all 32-bit 
transactions are processed with a single transfer.

Figure 18-3. Asynchronous Memory Global Control Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 1 1 0 0 1

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[1:0]

B0PEN

AMCKEN

B1PEN

B2PEN

B3PEN
0 - Disable CLKOUT for 

asynchronous memory
region accesses

1 - Enable CLKOUT for 
asynchronous memory
region accesses

Bank 3 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 2 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 1 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 0 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Enable asynchronous 
memory banks
00 - All banks disabled
01 - Bank0 enabled
10 - Bank0 and Bank1

enabled
11 All banks enabled

Reset = 0x00F20xFFC0 3C00
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Asynchronous Memory Bank Control Registers 
(EBIU_AMBCTL0, EBIU_AMBCTL1)

The EBIU Asynchronous Memory Controller has two memory bank con-
trol registers. They contain bits for counters for setup, strobe, and hold 
time, bits to determine memory type and size, and bits to configure use of 
ARDY. These registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these 
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x] 
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

• Read Access: the time between read-enable assertion (ARE low) and 
deassertion (ARE high).

• Write Access: the time between write-enable assertion (AWE low) 
and deassertion (AWE high).

• Hold: the time between read-enable deassertion (ARE high) or 
write-enable deassertion (AWE high) and the end of the memory 
cycle (AMS[x] high).

Each of these parameters can be programmed in terms of EBIU clock 
cycles. In addition, there are minimum values for these parameters:

• Setup  1 cycle.

• Read Access   1 cycle.

• Write Access   1 cycle.

• Hold  0 cycles.
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For bit descriptions of the two registers, see Figure 18-4 (Asynchronous 
Memory Bank Control 0 Register) and Figure 18-5 (Asynchronous Mem-
ory Bank Control 1 Register).

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or 
write access timer has counted down or to ignore this input signal. If 
enabled and disabled at the sample window, ARDY can be used to extend 
the access time as required. Note that ARDY is synchronously sampled, 
therefore:

• Assertion and deassertion of ARDY to the ADSP-BF535 processor 
must meet the data sheet setup and hold times. Failure to meet 
these synchronous specifications could result in meta-stable behav-
ior internally. The ADSP-BF535 processor’s CLKOUT signal should 
be used to ensure synchronous transitions of ARDY.

• The ARDY pin must be stable (either asserted or deasserted) at the 
external interface on the cycle before the internal bank counter 
reaches zero. That is, more than one CLKOUT cycle before the sched-
uled rising edge of AWE or ARE. This will determine whether the 
access is extended or not.

• Once the transaction has been extended by the assertion of ARDY, 
the transaction completes in the cycle after ARDY is sampled 
asserted.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is 
not sampled until an access is in progress to a bank in which the ARDY 
enable is asserted, ARDY does not need to be driven by default. For more 
information, see “Adding Additional Wait States” on page 18-26.
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Figure 18-4. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time
(number of cycles inserted after 
a read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY polarity
0 - Transition completes if ARDY

sampled low
1 - Transaction completes if

ARDY sampled high

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE 
or ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AOE 
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another
bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transition completes if ARDY

sampled low
1 - Transaction completes if

ARDY sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 3C04
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Figure 18-5. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of
cycles AWE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 3 read access time (number of
cycles ARE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 3 hold time (number of cycles between AWE 
or ARE deasserted, and AOE deasserted).
00 - 0 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 3 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted).
00 - 4 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 3 memory transition time
(number of cycles inserted after 
a read access to this bank, and
before a write access to this bank
or a read access to another bank).
00 - 4 cycles for bank transition.
01 - 1 cycle for bank transition.
10 - 2 cycles for bank transition.
11 - 3 cycles for bank transition.

Bank 3 ARDY polarity.
0 - Transition completes if ARDY

sampled low.
1 - Transaction completes if

ARDY sampled high.

Bank 3 ARDY enable.
0 - Ignore ARDY for accesses to

this memory bank.
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access.

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of
cycles AWE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 2 read access time (number of
cycles ARE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 2 hold time (number of cycles between AWE 
or ARE deasserted, and AOE deasserted).
00 - 0 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 2 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted).
00 - 4 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 2 memory transition time
(number of cycles inserted after 
a read access to this bank, and
before a write access to this bank
or a read access to another bank).
00 - 4 cycles for bank transition.
01 - 1 cycle for bank transition.
10 - 2 cycles for bank transition.
11 - 3 cycles for bank transition.

Bank 2 ARDY polarity.
0 - Transition completes if ARDY

sampled low.
1 - Transaction completes if

ARDY sampled high.

Bank 2 ARDY enable.
0 - Ignore ARDY for accesses to

this memory bank.
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access.

0xFFC0 3C08
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Programmable Timing Characteristics
This section describes the programmable timing characteristics for the 
EBIU. Timing relationships depend on the programming of the AMC, 
whether initiation is from the core or from MemDMA, and the sequence 
of transactions (read followed by read, read followed by write, etc.).

Asynchronous Accesses by Core Instructions

Some external memory accesses are caused by core instructions of the type:

R0 = [P0++] ; /* Read from external memory, where P0 points to 

a location in external memory */

or:

[P0++] = R0 ; /* Write to external memory */

Asynchronous Reads

Figure 18-6 shows two core-initiated asynchronous read bus cycles to the 
same bank, with timing programmed with setup = 1 cycle, read access = 3 
cycles, hold = 2 cycles, and transition time = 1 cycle.

Asynchronous read bus cycles proceed as:

• At the start of the setup period, AMS[x], the address bus, and 
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle, 
ARE asserts.

• At the beginning of the hold period, read data is sampled on the 
rising edge of CLKOUT. The ARE pin deasserts after this rising edge.
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• At the end of the hold period, AOE and AMS[x] deassert.

• Unless another read of the same memory bank is queued internally, 
the AMC appends the programmed number of memory transition 
time cycles.

Figure 18-6. Core-Initiated Asynchronous Read Bus Cycles

Setup
3 cycles

Read Access
2 cycles

TimeHold
1 cycle

Transition

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

ARE

1 cycle
Setup

3 cycles
Read Access

2 cycles
TimeHold

1 cycle

Transition

1 cycle
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Asynchronous Writes

Write accesses can only be initiated by the AMC every 5th SCLK cycle. If 
the setup period plus the access period plus the hold period is less than 5 
cycles, AMS[x] deasserts between accesses. This is shown in the next two 
examples. 

Figure 18-7 shows two core-initiated asynchronous write bus cycles to the 
same bank, with timing programmed with setup = 1 cycle, write access = 2 
cycles, hold = 2 cycles, and transition time = 1 cycle.

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] remains low for the next setup period 
of the next access.

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x] is still asserted. The address 
and data buses, and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-8 shows two higher-speed asynchronous write bus cycles to the 
same bank, with timing programmed with setup = 1 cycle, write access = 2 
cycles, hold = 0 cycles, and transition time = 1 cycle.



ADSP-BF535 Blackfin Processor Hardware Reference 18-19 
 

External Bus Interface Unit

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-7. Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

AWE

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle
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The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-8. High Speed Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

AWE

Setup
2 cycles

Write
Access

1 cycle
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Asynchronous Writes Followed by Reads

Figure 18-9 shows an asynchronous write bus cycle followed by two asyn-
chronous read cycles to the same bank, with timing programmed with 
setup = 1 cycle, write access = 2 cycles, read access = 2 cycles, hold = 2 
cycles, and transition time = 1 cycle.

The asynchronous write bus cycles proceed as:

• At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts and AMS[x] 
remains low for the setup period of the next access.

The first asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMS[x] is still asserted. The address 
bus, and ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts.

• At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

The second asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, and 
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts again.
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• At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

• Unless another read of the same memory bank is queued internally, 
the AMC appends the programmed number of memory transition 
time cycles.
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Asynchronous Accesses by MemDMA

External memory accesses are also caused by MemDMA. MemDMA 
transfers to external memory space occur in bursts of 8 accesses. There are 
6 SCLK cycles inserted between bursts due to internal bus transactions. 

Figure 18-9. Core-Initiated Write and Read Bus Cycles

Setup
2 cycles

Write Access
2 cycles

Hold
1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

ARE

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

AWE
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Within each burst, the accesses may be back-to-back (AMS[x] continually 
asserted) or there may be separation between accesses (AMS[x] deasserted 
after each access), depending on the programming of the AMC.

Asynchronous Reads

Figure 18-10 shows a MemDMA read access of 16 words from external 
memory. The asynchronous memory controller is programmed with setup 
= 1 cycle, read access = 3 cycles, hold = 3 cycles, and transition time = 1 
cycle.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, and 
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle, 
ARE asserts.

• At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert if the trans-
action is the last in the burst, otherwise AOE and AMS[x] remain 
asserted for the setup period of the next read.

Figure 18-10. MemDMA Read With 3-Cycle Hold

AMS[x]

AOE

ARE
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For MemDMA accesses through AMC, 2 SCLK cycles are required from 
the time the read data is sampled until the next setup period begins. As a 
result, if the hold period programmed is less than 2 cycles, AMS[x] and AOE 
deassert between accesses within a burst. Regardless of hold period pro-
gramming, if the access is the last in the burst, AMS[x] and AOE deassert for 
6 cycles before the next burst begins.

Figure 18-11 also shows a MemDMA read access of 16 words from exter-
nal memory. In this case, the asynchronous memory controller is 
programmed with setup = 1 cycle, read access = 3 cycles, hold = 1 cycle, 
and transition time = 1 cycle. This is a smaller number of hold cycles than 
programmed in Figure 18-10.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, and 
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle, 
ARE asserts.

• At the beginning of the hold period, read data is sampled on the 
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

Figure 18-11. MemDMA Read With 1-Cycle Hold
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Asynchronous Writes

Figure 18-12 shows a MemDMA write access of 16 words to external 
memory. The asynchronous memory controller is programmed with setup 
= 1 cycle, write access = 3 cycles, hold = 0 cycles, and transition time = 1 
cycle.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses, 
and ABE[3:0] become valid.

• At the beginning of the write access period and after the setup 
cycle, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• At the end of the hold period, AMS[x] deasserts if the transaction is 
the last in the burst, otherwise AMS[x] remains asserted for the 
setup period of the next write.

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. The input is sampled syn-
chronously with the EBIU internal clock. The EBIU starts sampling ARDY 
on the clock cycle before the end of the programmed strobe period. If 
ARDY is sampled deasserted, the access period is extended. The ARDY pin is 
then sampled on each subsequent clock edge. Read data is latched on the 
clock edge after ARDY is sampled asserted. The read- or write-enable 
remains asserted for one clock cycle after ARDY is sampled asserted. An 

Figure 18-12. MemDMA Write

AMS[x]

AWE
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example of this behavior is shown in Figure 18-13, where setup = 2 cycles, 
read access = 4 cycles, and hold = 1 cycle. Note that the read access period 
must be programmed to a minimum of two cycles to make use of the ARDY 
input.

Figure 18-13. Inserting Wait States Using ARDY
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SDRAM Controller (SDC)
The SDRAM Controller (SDC) enables the ADSP-BF535 processor to 
transfer data to and from Synchronous DRAM (SDRAM). The 
ADSP-BF535 processor supports a glueless interface with up to four banks 
of standard SDRAMs of 64 Mbit, 128 Mbit, 256 Mbit, and 512 Mbit 
with configurations x4, x8, and x16. Each bank supports up to 128 
MByte, with a maximum total capacity of 512 MBytes (MB) of SDRAM. 
The interface can also support DIMMs and includes timing options to 
support additional buffers between the ADSP-BF535 processor and 
SDRAM, to handle the capacitive loads of large memory arrays.

All inputs are sampled and all outputs are valid on the rising edge of the 
SDRAM clock output SCLK[0] (or SCLK[1], which has the same timing). 
The SDRAM interface is able to connect to as many as four external mem-
ory banks of SDRAM. All banks share the same SDRAM timing 
parameters.

 Do not confuse the “SDRAM internal banks” which are internal to 
the SDRAM and are selected with the bank address, with the four 
“SDRAM banks,” or “external banks,” that are enabled by the 
SMS[3:0] pins.

The EBIU SDC provides a glueless interface with standard SDRAMs. The 
ADSP-BF535 processor’s SDRAM controller:

• Supports SDRAMs of 64 Mbit, 128 Mbit, 256 Mbit, and 
512 Mbit with configurations of x4, x8, and x16.

• Supports up to two x64 DIMM modules, or up to four x32 DIMM 
modules.

• Supports up to 512 MB total array size with 128 MB of SDRAM 
on each of the four external SDRAM banks.
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• Supports SDRAM page sizes of 1 KB, 2 KB, 4 KB, and 8 KB for 
32-bit wide SDRAM banks and 1 KB, 2 KB, and 4 KB for 16-bit 
wide SDRAM banks.

• Supports four internal banks within the SDRAMs.

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate.

• Provides multiple timing options to support additional buffers 
between the ADSP-BF535 processor and SDRAM. The same tim-
ing options are applied to all four external memory banks.

• Provides two clock output pins to drive capacitive loads of larger 
memory arrays.

• Uses a separate pin (SA10) that enables the SDC to precharge 
SDRAM before issuing an Auto-Refresh or Self-Refresh command 
while the Asynchronous Memory Controller has control of the 
EBIU port.

• Supports self-refresh mode.

• Provides two SDRAM power-up options.

Definition of Terms
These definitions used in the remainder of this chapter.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank 
(specified by the bank address) in a row (specified by the row address). 
When the Bank Activate command is issued to the SDRAM, the SDRAM 
opens a new row address in the dedicated bank. The memory in the open 
internal bank and row is referred to as the open page. Therefore, only one 
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internal bank is open at a time, which means the banks are accessed 
sequentially. The Bank Activate command must be applied before a read 
or write command.

The SDC does not interleave SDRAM accesses, so only one internal bank 
in a row is open at a time.

Burst Length.

The burst length determines the number of words that the SDRAM device 
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s 
mode register during the SDRAM power-up sequence.

 The SDC supports only Burst Length = 1 mode. During a burst to 
SDRAM, the SDC applies the read or write command every cycle 
and keeps accessing the data. The Burst Length is independent 
from the performance throughput.

Burst Stop Command.

The Burst Stop command is one of several ways to terminate or interrupt a 
burst read or write operation. 

 Since the SDRAM burst length is always hardwired to be 1, the 
SDC does not support the Burst Stop command.

Burst Type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after 
detecting a write command. The burst type is programmed in the 
SDRAM during the SDRAM power-up sequence.

 Since the SDRAM burst length is always programmed to be 1, the 
burst type does not matter. However, the SDC always sets the 
burst type to sequential-accesses-only during the SDRAM 
power-up sequence.
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CAS Latency (also tAA, tCAC, CL).

The column address strobe (CAS) latency is the delay in clock cycles 
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the 
SDRAM Mode register during the power-up sequence.

The speed grade of the SDRAM and the SCLK[0] frequency determine the 
value of the CAS latency. The SDC can support CAS latency of 2 or 3 
clock cycles. The selected CAS latency value must be programmed into 
the SDRAM Memory Global Control register (EBIU_SDGCTL) before the 
SDRAM power-up sequence. See “SDRAM Memory Global Control Reg-
ister (EBIU_SDGCTL)” on page 18-37.

CBR (CAS before RAS) Refresh or Auto-Refresh.

When the SDC refresh counter times out, the SDC precharges all four 
banks of SDRAM and then issues an Auto-Refresh command to them. 
This causes the SDRAMs to generate an internal CBR refresh cycle. When 
the internal refresh completes, all four SDRAM banks are precharged.

DQM Data I/O Mask Function.

The SDQM[3:0] pins provide a byte-masking capability on 8- or 16-bit 
writes to SDRAM. The DQM pins are used to block the output buffer of the 
SDRAM during precharge and certain write operations. The SDQM[3:0] 
pins are not used to mask data on read cycles. For 16-bit wide SDRAM, 
only SDQM[1:0] are needed for byte masking.

Internal Bank.

There are several internal memory banks on a given SDRAM row. An 
internal bank in a specific row cannot be activated (opened) until the pre-
vious internal bank in that row has been precharged.
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The SDC does not support interleaved accesses. The bank address can be 
thought of as part of the row address. The SDC also assumes that all 
SDRAMs to which it interfaces have four internal banks. You cannot con-
nect two-bank (16 Mbit) SDRAMs to the interface.

 Do not confuse the “SDRAM internal banks” which are internal to 
the SDRAM and are selected with the bank address, with the four 
“SDRAM banks,” or “external banks,” that are enabled by the 
SMS[3:0] pins.

Mode Register.

SDRAM devices contain an internal configuration register which allows 
specification of the SDRAM device’s functionality. After power-up and 
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s mode register. The 
write of the SDRAM’s mode register is triggered by writing a 1 to the PSSE 
bit in the SDRAM Memory Global Control register (EBIU_SDGCTL) and 
then issuing a read or write transfer to the SDRAM address space. The ini-
tial read or write triggers the SDRAM power-up sequence to be run, 
which programs the SDRAM’s mode register with the CAS latency from 
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many 
cycles to complete. Note for most applications, the SDRAM power-up 
sequence and writing of the mode register needs to be done only once. 
Once the power-up sequence has completed, the PSSE bit should not be 
set again unless a change to the mode register is desired.

Page Size.

Page size is the amount of memory which has the same row address and 
can be accessed with successive read or write commands without needing 
to activate another row. The page size can be calculated for 32-bit and 
16-bit SDRAM banks with these formulas:

• 32-bit SDRAM banks: page size = 2(CAW + 2)
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• where CAW is the column address width of the SDRAM, plus 
2 because the SDRAM bank is 32 bits wide (2 address bits = 
4 bytes).

• 16-bit SDRAM banks: page size = 2(CAW + 1)

• where CAW is the column address width of the SDRAM, plus 
1 because the SDRAM bank is 16 bits wide (1 address bit = 
2 bytes).

Precharge Command.

The Precharge command closes a specific internal bank in the active page 
or all internal banks in the page. The SDC always does a Precharge All, 
closing all internal banks.

SDRAM banks.

The SDRAM banks are four regions of memory that can be configured to 
be 16 MB, 32 MB, 64 MB, or 128 MB and are selected by the SMS[3:0] 
pins. Each bank can be selected to be either all 32 bits wide or all 16 bits 
wide.

 Do not confuse the “SDRAM internal banks” which are internal to 
the SDRAM and are selected with the bank address, with the 
“SDRAM banks,” or “external banks,” that are enabled by the 
SMS[3:0] pins.

SDRAM DIMMs.

Dual In-line Memory Modules, or DIMMs, are an industry-standard 
SDRAM packaging option. The DIMM consists of a small, standardized 
form factor board, populated with SDRAM devices on one or both sides. 
DIMMs are populated with sufficient SDRAM to provide either 32-bit or 
64-bit data paths, with some configurations supporting additional data 
bits for parity protection.
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Many DIMMs also include a serial presence detect port, which provides 
access to an on-DIMM serial ROM which includes information describ-
ing the type and characteristics of SDRAMs on the DIMM. This 
information can be read to determine the type, size, and timing parame-
ters of installed DIMMs at boot time. One of the SPI or SPORT 
peripherals of the ADSP-BF535 processor can be used to interface to the 
DIMM serial-presence-detect port, if dynamic boot time determination of 
SDRAM configuration is required.

Self-Refresh.

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer 
initiates Auto-Refresh cycles periodically, without external control input. 
The SDC must issue a series of commands including the Self-Refresh 
command to put the SDRAM into this low power mode, and it must issue 
another series of commands to exit Self-Refresh mode. Entering 
Self-Refresh mode is programmable in the SDRAM Memory Global Con-
trol register (EBIU_SDGCTL) and any access to the SDRAM address space 
causes the SDC to exit the SDRAM from Self-Refresh mode. See “Enter-
ing and Exiting Self-Refresh Mode (SRFS)” on page 18-44.

tRAS.

Required delay between issuing a Bank Activate command and issuing a 
Precharge command, and between the Self-Refresh command and the exit 
from Self-Refresh. The TRAS bit field in the SDRAM Memory Global 
Control register (EBIU_SDGCTL) is 4 bits wide and can be programmed to 
be 1 to 15 clock cycles long. “Selecting the Bank Activate Command 
Delay (TRAS)” on page 18-47.
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tRP.

Required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) is 3 bits wide and can be programmed to be 1 to 7 clock 
cycles long. “Selecting the Precharge Delay (TRP)” on page 18-48.

tRCD.

Required delay between a Bank Activate command and the start of the 
first Read or Write command. The TRCD bit field in the SDRAM Memory 
Global Control register (EBIU_SDGCTL) is 3 bits wide and can be pro-
grammed to be from 1 to 7 clock cycles long.

tWR.

Required delay between a Write command (driving write data) and a Pre-
charge command. The TWR bit field in the SDRAM Memory Global 
Control register (EBIU_SDGCTL) is 2 bits wide and can be programmed to 
be from 1 to 3 clock cycles long.

tRC.

Required delay between issuing successive Bank Activate commands to the 
same SDRAM internal bank. This delay is not directly programmable. 
The tRC delay must be satisfied by programming the TRAS and TRP fields 
to ensure that tRAS + tRP  tRC.
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tRFC.

Required delay between issuing an Auto-Refresh command and a Bank 
Activate command and between issuing successive Auto-Refresh 
commands. This delay is not directly programmable and is assumed to be 
equal to tRC. The tRC delay must be satisfied by programming the TRAS 
and TRP fields to ensure that tRAS + tRP  tRC.

tXSR.

Required delay between exiting Self-Refresh mode and issuing the 
Auto-Refresh command. This delay is not directly programmable and is 
assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the tRAS and tRP fields to ensure that tRAS + tRP  tRC.
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SDRAM Memory Global Control Register 
(EBIU_SDGCTL)

The SDRAM Memory Global Control register includes all programmable 
parameters associated with the SDRAM access timing and configuration. 
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Figure 18-14 shows the SDRAM Global Control register bit definitions.
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Figure 18-14. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 0 0 0 0 0 0 0 1 0 1

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]X16DE

EBUFE

SRFS

SDRAM external datapath width
0 - 32 bits
1 - 16 bits

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh mode start
Always reads 0
0 - No effect
1 - Starts SDRAM self-refresh mode

SDRAM tRCD in SCLK
cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK
cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM power-up sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM power-up sequence
start enable. Always reads 0.
0 - No effect
1 - Enables SDRAM power-up

sequence on next SDRAM
access

Reset = 0x0008 800B

SCK1E

CL[1:0]

PFE

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD[0]

PFP
SDRAM prefetch priority
0 - Prefetch does not have priority
over AMC requests
1 - Prefetch has priority over AMC
requests

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable SCLK[0], SRAS, 
SCAS, SWE, SDQM[3:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

Enable SCLK[1]
0 - Disabled
1 - Enabled

SDRAM CAS latency
00-01 - Reserved
10 - 2 cycles
11 - 3 cycles

SDRAM prefetch enable
0 - Prefetch disabled
1 - Prefetch enabled

0xFFC0 4C00
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The SCTLE bit is used to enable or disable the SDC. If SCTLE is disabled, 
any access to SDRAM address space generates an internal bus error, and 
the access does not occur externally. For more information, see “Error 
Detection” on page 18-8. When SCTLE is disabled, all SDC control pins 
are in their inactive states and the SDRAM clock is not running. The 
SCTLE bit must be enabled for SDC operation.

To support higher clock load requirements, two SDRAM clock pins 
(SCLK[0] and SCLK[1]) are provided. The clock timing of these two pins is 
identical, and the clock load on SCLK[0] and SCLK[1] should be balanced. 
SCLK[0] runs whenever the SDC is enabled (SCTLE = 1). SCLK[1] runs 
whenever SCK1E is enabled. Both the SCTLE and SCK1E bits are enabled dur-
ing reset, so SCLK[0] and SCLK[1] are running after reset deasserts. If the 
SDC will not be used, the SCTLE and SCK1E bits can be disabled to stop the 
clocks and reduce power dissipation. Even though the SDC is enabled 
(SCTLE = 1) at reset, the power-up sequence (PSSE = 1) must be executed 
before reading or writing to SDRAM address space. 

 Failure to execute the power-up sequence before reading or writing 
to SDRAM address space results in unpredictable operation.

The CAS latency (CL), SDRAM tRAS timing (TRAS), SDRAM tRP timing 
(TRP), SDRAM tRCD timing (TRCD), and SDRAM tWR timing (TWR) bits 
should be programmed based on the system clock frequency and the tim-
ing specifications of the SDRAM used. Note that all SDRAM banks use 
the same timing. All timing parameters must be written with valid values 
based on the clock frequency and the timing specifications of the SDRAM 
before any access to SDRAM address space, including the power-up 
sequence.
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 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

Note that these timing parameters should not be changed while the 
SDC is active. Therefore, since the SDC is enabled by default upon 
reset, the SDC must be disabled after reset to allow for modifica-
tions to the default EBIU_SDGCTL bit values.

The PFE bit is used to enable or disable the SDC read buffer. When 
PFE = 1, the SDC speculatively prefetches (reads) a subsequent cache line 
in order to improve performance on cache misses. Clearing the PFE bit 
causes any data in the read buffer to be invalidated and disables 
prefetching.

When the read buffer is enabled (PFE = 1), SDC prefetching can poten-
tially take bus bandwidth away from the Asynchronous Memory 
Controller (AMC), because the external bus is shared between the SDC 
and the AMC. By clearing the PFP bit, the amount of bandwidth taken 
from the AMC is limited; when an AMC access needs the external bus, 
prefetching halts, and the AMC can use the pins immediately after the 
completion of prefetch reads that were already in progress. It should be 
noted that although clearing PFP limits the bandwidth taken from the 
AMC, it does not restore the AMC bandwidth to what it is when prefetch-
ing is disabled (PFE = 0). When PFP is set to 1, prefetching takes priority 
over AMC accesses. This means that the read buffer prefetches an entire 
cache line before releasing the external bus to the AMC for a pending 
AMC access.

Refer to “Read Buffer (Prefetch) Operation” on page 18-72 for more 
information.

The PSM and PSSE bits work together to specify and trigger an SDRAM 
power-up (initialization) sequence. If the PSM bit is set to 1, the SDC does 
a Precharge All command, followed by a Load Mode Register command, 
and then does eight Auto-Refresh cycles. If the PSM bit is cleared, the SDC 
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does a Precharge All command, followed by eight Auto-Refresh cycles, 
and then a Load Mode Register command. Two events must occur before 
the SDC does the SDRAM power-up sequence:

• The PSSE bit must be set to 1 to enable the SDRAM power-up 
sequence.

• A read or write access must be done to enabled SDRAM address 
space in order to have the external bus granted to the SDC so that 
the SDRAM power-up sequence may occur. The SDRAM 
power-up sequence is performed for all four SDRAM banks.

The SDRAM power-up sequence occurs and is followed immediately by 
the read or write transfer to SDRAM that was used to trigger the SDRAM 
power-up sequence. Note that there is a long latency for this first access to 
SDRAM because the SDRAM power-up sequence takes many cycles to 
complete. 

 Before executing the SDC power-up sequence, ensure that the 
SDRAM receives stable power and is clocked for the proper 
amount of time, as specified by the SDRAM specification.

When the SRFS bit is set to 1, Self-Refresh mode is triggered. Once the 
SDC completes any active transfers, the SDC executes the sequence of 
commands to put the SDRAM into Self-Refresh mode. The next access to 
an enabled SDRAM bank causes the SDC to execute the commands to 
exit the SDRAM from Self-Refresh and execute the access. See “Entering 
and Exiting Self-Refresh Mode (SRFS)” on page 18-44 for more informa-
tion about the SRFS bit.

The EBUFE bit is used to enable or disable external buffer timing. When 
buffered SDRAM modules or discrete register-buffers are used to drive the 
SDRAM control inputs, EBUFE should be set to 1. Using this setting adds a 
cycle of data buffering to read and write accesses. See “Setting the 
SDRAM Buffering Timing Option (EBUFE)” on page 18-45 for more 
information about the EBUFE bit.
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The X16DE bit is used to select whether the SDRAM interface is 32 bits 
wide or 16 bits wide. If X16DE is 0, DATA[31:0] should be connected to the 
SDRAM. If X16DE is 1, DATA[15:0] should be connected to the SDRAM. 
Note that all SDRAM banks must be either all 32 bits wide or all 16 bits 
wide.

Setting the SDRAM Clock Enables (SCTLE and SCK1E)

To meet higher clock load requirements for systems with multiple 
SDRAM devices, the ADSP-BF535 processor provides two SDRAM clock 
control pins, SCLK[0] and SCLK[1]. These pins eliminate the need for 
off-chip clock buffers for most system memory configurations. The SCTLE 
and SCK1E bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) provide control for the SDRAM clock control pins.

The SCTLE bit disables all of the SDRAM control pins: SDQM[3:0], SCAS, 
SRAS, SWE, SCKE, and the SCLK[0].

SCTLE = 0  Disable all SDRAM control pins (control pins deas-
serted, SCLK[0] low)

SCTLE = 1  Enable all SDRAM control pins (SCLK[0] toggles)

The SCK1E bit disables the SCLK[1] pin independently:

SCK1E = 0   Disable SCLK[1] (SCLK[1] low)

SCK1E = 1  Enable SCLK[1] (SCLK[1] toggles)

Note the SCLK[1] function is also shared with the Asynchronous Memory 
Controller (AMC). Even if SCTLE and SCK1E are disabled, SCLK[1] can be 
enabled independently by the CLKOUT enable in the AMC (AMCKEN in the 
EBIU_AMGCTL register).

If the system does not use SDRAM, both SCTLE and SCK1E should be 0.
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If the system uses SDRAM, but the clock load is minimal, SCTLE should be 
1 and SCK1E should be 0. This setting enables the SCLK[0] pin and all 
related SDRAM control pins, but disables (holds low) the second clock 
pin SCLK[1].

If the system uses SDRAM and the clock loading is high, both SCTLE and 
SCK1E should be set to 1. This setting enables SCLK[0], SCLK[1], and all 
SDRAM control pins. In this configuration, SCLK[0] and SCLK[1] should 
each share half of the clock load.

If an access occurs to the SDRAM address space while SCTLE is 0, the 
access generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 18-8. With 
careful software control, the SCTLE and SCK1E bits can be used in conjunc-
tion with Self-Refresh mode to further lower the power consumption. 
However, SCTLE must remain enabled at all times when the SDC is needed 
to generate Auto-Refresh commands to SDRAM.

Entering and Exiting Self-Refresh Mode (SRFS)

The SDC supports SDRAM Self-Refresh mode. In Self-Refresh mode, the 
SDRAM performs refresh operations internally—without external con-
trol—reducing the SDRAM’s power consumption.

The SRFS bit in EBIU_SDGCTL enables the start of Self-Refresh mode:

SRFS = 0  No effect

SRFS = 1 Start Self-Refresh mode

When SRFS is set to 1, once the SDC enters an idle state it issues a Pre-
charge command if necessary and then issues a Self-Refresh command. If 
an internal access is pending, the SDC delays issuing the Self-Refresh 
command until it completes the pending SDRAM access and any subse-
quent pending access requests. Refer to “SDC Commands” on page 18-75 
for more information.
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Once the SDRAM device enters into Self-Refresh mode, the SDRAM 
controller asserts the SDSRA bit in the SDRAM Control Status register 
(EBIU_SDSTAT). The SDRAM controller ignores another Self-Refresh 
request (SRFS = 1) when the SDRAM device is already in Self-Refresh 
mode.

The SDRAM device exits Self-Refresh mode only when the SDC receives 
a core, DMA, or PCI access request.

Note once the SRFS bit is set to 1, the SDC enters Self-Refresh mode when 
it finishes pending accesses. There is no way to cancel the entry into 
Self-Refresh mode.

Setting the SDRAM Buffering Timing Option (EBUFE)

To meet overall system timing requirements, systems that employ several 
SDRAM devices connected in parallel may require buffering between the 
ADSP-BF535 processor and multiple SDRAM devices. This buffering 
generally consists of a register and driver.

To meet such timing requirements, the SDC supports pipelining of 
SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

EBUFE = 0  Disable external buffering timing

EBUFE = 1 Enable external buffering timing

When EBUFE = 1, the SDRAM controller delays the data in write accesses 
by one cycle, enabling external buffer registers to latch the address and 
controls. In read accesses, the SDRAM controller samples data one cycle 
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses 
is increased by one cycle.
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Selecting the CAS Latency Value (CL)

The CAS latency value defines the delay, in number of SCLK cycles, 
between the time the SDRAM detects the Read command and the time it 
provides the data at its output pins.

CAS latency does not apply to write cycles.

The CL bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the CAS latency value:

CL = 00  Reserved

CL = 01 Reserved

CL = 10 2 clock cycles

CL = 11 3 clock cycles

Generally, the frequency of operation determines the value of the CAS 
latency. For specific information about setting this value, consult the 
SDRAM device documentation.
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SDQM Operation

The SDQM[3:0] (Data I/O Mask) pins enable the SDC to mask off bytes 
during byte and half word (two-byte) write transfers. For write cycles, the 
data masks have a latency of zero cycles, permitting data writes when the 
corresponding SDQM[x] pin is sampled low and blocking data writes when 
the SDQM[x] pin is sampled high on a byte-by-byte basis. The SDQM[x] pin 
should be asserted during Precharge.

Executing a Parallel Refresh Command

The SDC includes a separate address pin (SA10) to enable the execution of 
Auto-Refresh commands in parallel with any asynchronous memory 
access. This separate pin allows the SDC to Precharge the SDRAM before 
it issues an Auto-Refresh command. In addition, the SA10 pin allows the 
SDC to enter and exit Self-Refresh mode in parallel with any asynchro-
nous memory access. 

The SA10 pin should be directly connected to the A10 pin of the SDRAM 
(instead of to the ADDR[10] pin). During the Precharge command, SA10 is 
used to indicate that a Precharge All should be done. During a Bank Acti-
vate command, SA10 outputs the internal row address bit, which should be 
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

Selecting the Bank Activate Command Delay (TRAS)

The tRAS value (Bank Activate command delay) defines the required delay, 
in number of SCLK cycles, between the time the SDC issues a Bank Acti-
vate command and the time it issues a Precharge command. The SDRAM 
must also remain in Self-Refresh mode for a period of time of at least tRAS. 
The tRP and tRAS values define the tRFC, tRC, and tXSR values. See the 
tRFC, tRC, and tXSR descriptions on page 18-36 for more information.
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The tRAS parameter allows the ADSP-BF535 processor to adapt to the 
timing requirements of the system’s SDRAM devices.

The TRAS bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 SCLK 
cycles can be selected. For example:

TRAS = 0000  No effect

TRAS = 0001 1 clock cycle

TRAS = 0010 2 clock cycles

TRAS = 1111 15 clock cycles

For specific information on setting this value, consult the SDRAM device 
documentation. 

Selecting the Precharge Delay (TRP)

The tRP value (Precharge delay) defines the required delay, in number of 
SCLK cycles, between the time the SDC issues a Precharge command and 
the time it issues a Bank Activate command. The tRP also specifies the 
time required between Precharge and Auto-Refresh, and between Pre-
charge and Self-Refresh. The tRP and tRAS values define the tRFC, tRC, and 
tXSR values.

This parameter enables the application to accommodate the SDRAM’s 
timing requirements. 

The TRP bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 SCLK cycles 
may be selected. For example:

TRP = 000 No effect

TRP = 001 1 clock cycle
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TRP = 010 2 clock cycles

TRP = 111 7 clock cycles

Selecting the Write to Precharge Delay (TWR)

The tWR value defines the required delay, in number of SCLK cycles, 
between the time the SDC issues a Write command (drives write data) and 
a Precharge command.

This parameter enables the application to accommodate the SDRAM’s 
timing requirements. 

The TWR bits in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) select the tWR value. Any value between 1 and 3 SCLK cycles 
may be selected. For example:

TWR = 00 Reserved

TWR = 01 1 clock cycle

TWR = 10 2 clock cycles

TWR = 11 3 clock cycles

SDRAM Memory Bank Control Register 
(EBIU_SDBCTL)

The SDRAM Memory Bank Control register (Figure 18-15) includes 
external bank-specific programmable parameters. It allows software to 
control some parameters of the SDRAM on a per-external-bank basis. 
Each external bank can be individually configured for a different size of 
SDRAM; however, note that all external banks use the same access timing 
parameters, as defined in the SDRAM Memory Global Control register 
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before 
power-up and should be changed only when the SDC is idle.
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Figure 18-15. SDRAM Memory Bank Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EB0SZ

EB0CAW

EB0E

EB1E

EB1SZ

EB1CAW

EB2SZ

EB2CAW

EB2E

EB3E

EB3SZ

EB3CAW

SDRAM external bank 3 enable
0 - Disabled
1 - Enabled

SDRAM external bank 3 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 3 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 2 enable
0 - Disabled
1 - Enabled

SDRAM external bank 2 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 2 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 1 enable
0 - Disabled
1 - Enabled

SDRAM external bank 1 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 1 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 0 enable
0 - Disabled
1 - Enabled

SDRAM external bank 0 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 0 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x0000 00000xFFC0 4C04
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The EBIU_SDBCTL register stores the configuration information for each 
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit, 256 
Mbit, and 512 Mbit SDRAM devices with x4, x8, x16 configurations. See 
“SDRAM External Bank Address Decode” on page 18-56 for more infor-
mation on bank starting address decodes.

The SDC determines the internal SDRAM page size from the X16DE and 
EBxCAW parameters. Page sizes of 1 KB, 2 KB, 4 KB, and 8 KB are sup-
ported. Table 18-5 shows the page size and breakdown of the internal 
address (IA[31:0], as seen from the core, DMA, or PCI) into the row, 
bank, column, and byte address. The column address and the byte address 
together make up the address inside the page.

The bank address can be thought of as part of the row address. The com-
binations of external bank width (X16DE), external bank size (EBxSZ) and 
column address width (EBxCAW) which are not supported are also indicated 
in this table. Programming the SDC with non-supported values produces 
unpredictable results.

The EBxE bits in the EBIU_SDBCTL register are used to enable or disable a 
bank. If a bank is disabled, any access to the address space of that disabled 
bank generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 18-8. Note 
that the size (EBxSZ) of all banks, regardless of whether they are enabled or 
disabled, is used in determining the bank starting addresses.

Table 18-5. Internal Address Mapping

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips

32 128 11 8 IA[26:15] IA[14:13] IA[12:2] IA[1:0] 128 4 8

32 128 10 4 IA[26:14] IA[13:12] IA[11:2] IA[1:0] 256 8 4

512 16 2
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32 128 9
Not Supported - Reserved

32 128 8

32 64 11

32 64 10 4 IA[25:14] IA[13:12] IA[11:2] IA[1:0] 64 4 8

128 8 4

32 64 9 2 IA[25:13] IA[12:11] IA[10:2] IA[1:0] 256 16 2

32 64 8
Not Supported - Reserved

32 32 11

32 32 10

32 32 9 2 IA[24:13] IA[12:11] IA[10:2] IA[1:0] 64 8 4

128 16 2

32 32 8

Not Supported - Reserved32 16 11

32 16 10

32 16 9

32 16 8 1 IA[23:12] IA[11:10] IA[9:2] IA[1:0] 64 16 2

16 128 11 4 IA[26:14] IA[13:12] IA[11:1] IA[0] 256 4 4

512 8 2

16 128 10
Not Supported - Reserved

16 128 9

16 128 8

16 64 11 4 IA[25:14] IA[13:12] IA[11:1] IA[0] 128 4 4

16 64 10 2 IA[25:13] IA[12:11] IA[10:1] IA[0] 256 8 2

512 16 1

Table 18-5. Internal Address Mapping (Cont’d)

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips
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SDRAM Control Status Register (EBIU_SDSTAT)
The SDRAM Control Status register, shown in Figure 18-16, provides 
information on the state of the SDC. This information can be used to 
determine when it is safe to alter SDC control parameters or as a debug 
aid. The error bits of this register are sticky. Once an error bit has been 
set, software must explicitly write a 1 to the bit to clear it.

16 64 9
Not Supported - Reserved

16 64 8

16 32 11

16 32 10 2 IA[24:13] IA[12:11] IA[10:1] IA[0] 64 4 4

128 8 2

16 32 9 1 IA[24:12] IA[11:10] IA[9:1] IA[0] 256 16 1

16 32 8
Not Supported - Reserved

16 16 11

16 16 10

16 16 9 1 IA[23:12] IA[11:10] IA[9:1] IA[0] 64 8 2

128 16 1

16 16 8 Not Supported - Reserved

Table 18-5. Internal Address Mapping (Cont’d)

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips
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SDRAM Refresh Rate Control Register (EBIU_SDRRC)
The SDRAM Refresh Rate Control register, shown in Figure 18-17, pro-
vides a flexible mechanism for specifying the Auto-Refresh timing. The 
SDC provides a programmable refresh counter which has a period based 
on the value programmed into the RDIV field of this register, that coordi-
nates the supplied clock rate with the SDRAM device’s required refresh 
rate.

The delay (in number of SCLK cycles) desired between consecutive refresh 
counter time-outs must be written to the RDIV field. A refresh counter 
time-out triggers an Auto-Refresh command to all external SDRAM 
banks. Write the RDIV value to the EBIU_SDRRC register before the SDRAM 
power-up sequence is triggered. Change this value only when the SDC is 
idle.

Figure 18-16. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C

SDEMSE - W1C
SDRAM EMB sticky error status
0 - No error detected
1 - EMB access generated an error

SDRAM EAB sticky error status
0 - No error detected
1 - EAB access generated an error

SDRAMs in reset state
0 - A power-up sequence has been 

initiated since the last SDC reset
1 - A power-up sequence has not

occurred since an SDC reset
occurred

SDRAM controller idle
0 - SDC is busy performing

an access or an auto
refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh
mode

SDRAM power-up active
0 - SDC not in power-up

sequence
1 - SDC in power-up

sequence

Reset = 0x00080xFFC0 4C0E
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To calculate the value that should be written to the EBIU_SDRRC register, 
use this equation:

RDIV = ((fSCLK  tREF)/NRA) - (tRAS + tRP)

Where:

• fSCLK = SCLK frequency (system clock frequency)

• tREF = SDRAM refresh period

• NRA = Number of row addresses in SDRAM (refresh cycles to 
refresh whole SDRAM)

• tRAS = Active to Precharge time (TRAS in the SDRAM Memory 
Global Control register) in number of clock cycles

• tRP = RAS to Precharge time (TRP in the SDRAM Memory Global 
Control register) in number of clock cycles

This equation calculates the number of clock cycles between required 
refreshes and subtracts the required delay between Bank Activate com-
mands to the same bank (tRC = tRAS + tRP). The tRC value is subtracted, so 
that in the case where a refresh time-out occurs while an SDRAM cycle is 
active, the SDRAM refresh rate specification is guaranteed to be met. The 
result from the equation should always be rounded down to an integer.

Figure 18-17. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV

Reset = 0x081A0xFFC0 4C0A
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Below is an example of the calculation of RDIV for a typical SDRAM in a 
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 4096 row addresses

• tRAS = 2

• tRP = 2

The equation for RDIV yields:

RDIV = ( (133  106  64  10-3) /  4096) – (2 + 2) = 2074 clock cycles.

This means RDIV is 0x81A (hex) and the SDRAM Refresh Rate Control 
register should be written with 0x081A.

Note that RDIV must be programmed to a nonzero value if the SDRAM 
controller is enabled. When RDIV = 0, operation of the SDRAM controller 
is not supported and can produce undesirable behavior. Values for RDIV 
can range from 0x001 to 0xFFF.

SDRAM External Bank Address Decode
The memory address space for each SDRAM bank is contiguous. There-
fore, the starting addresses for each of the SDRAM banks and for the 
beginning of the unpopulated/reserved space is determined by adding up 
the sizes of each bank that precedes that bank. This can be done by simply 
summing the Bank Size Encodings listed in Table 18-6 for each bank as 
shown in Table 18-7. If every SDRAM bank is 128 MB, the SDRAM 
address space is fully populated. If any bank is less than 128 MB, the 
address space after bank3 is referred to as “unpopulated/reserved” space. 
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Any access to unpopulated/reserved space generates an internal bus error 
and the access does not occur externally. For more information, see “Error 
Detection” on page 18-8.

Table 18-6. Bank Size Encodings

EBxSZ Bank Size 
(Mbyte)

bank_x_size[4:0]

00 16 00001

01 32 00010

10 64 00100

11 128 01000

Table 18-7. Start Address Calculation

SDRAM 
Bank

bank_x_start_addr[28:24]

0 00000

1 00000 + bank_0_size[4:0]

2 00000 + bank_0_size[4:0] + bank_1_size[4:0]

3 00000 + bank_0_size[4:0] + bank_1_size[4:0] + bank_2_size[4:0]

Unpopu-
lated/ 
Reserved

00000 + bank_0_size[4:0] + bank_1_size[4:0] + bank_2_size[4:0] + 
bank_3_size[4:0]

Note: 
1. bank_x_start_addr[31:29] = 000 and bank_x_start_addr[23:0] = all 0’s
2. If there is a carry out on the reserved space start address, then the SDRAM address space is 
fully populated and therefore, no bus error from unpopulated/reserved space is possible.
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For example, if the SDRAM memory configuration is as follows:

• Bank0 and bank1 are connected to a 64 MByte SDRAM DIMM 
(EB0E=1, EB0SZ=01, EB1E=1, EB1SZ=01).

• Bank2 is unpopulated, but is set to be 16 MB (EB2E=0, EB2SZ=00).

• Bank3 is connected to a 64 MByte discrete SDRAM memory array 
(EB3E=0, EB3SZ=10).

The start addresses for the SDRAM banks and reserved spaces are calcu-
lated as:

Figure 18-18. Bank Start Address Calculation

00101

00100

bank_0_start_addr[28:24] =

bank_1_start_addr[28:24] =

bank_2_start_addr[28:24] =

bank_3_start_addr[28:24] =

00000

00000

00010

00010

00010

00010

00010

00010

00000

00100

00000

00001

00101

bank0

bank0

bank1

bank0

bank1

bank2

unpopulated_start_addr[28:24] =
00010

00010

00000

00001

bank0

bank1

bank2
bank3
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For all banks, bank_x_start_addr[31:29] = 000 and 
bank_x_start_addr[32:0] = all zeros. Therefore, the bank size encodings 
are as shown in Table 18-8.

Note even though bank2 is disabled (EB2E=0), the bank size (EB2SZ=00) is 
used to determine the start addresses of successive banks and unpopu-
lated/reserved space. 

SDRAM Address Mapping
To access SDRAM, the SDC multiplexes the internal 32-bit non-multi-
plexed address into a row address, a column address, a bank address, and 
the byte data masks for the SDRAM device, as shown in Figure 18-19. 
The lowest bit or bits are mapped to byte data masks, the next bits are 
mapped into the column address, the next 2 bits are mapped into the bank 
address, and the remaining bits are mapped into the row address. This 
mapping is based on the EBxSZ and EBxCAW parameters programmed into 
the SDRAM Memory Bank Control register, and the X16DE bit in the 
EBIU_SDGTL register.

Table 18-8. Bank Size Encodings

SDRAM 
Bank

Bank Size 
(MB)

Start Address (hex)

0 32 0x00000000

1 32 0x02000000

2 16 0x04000000

3 64 0x05000000

Reserved 368 0x09000000
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The following sections have tables which describe the muxing of the Inter-
nal Address (from the EAB or EMB buses) into the Row Address, Bank 
Address, and Column Address, for all the combinations of SDRAM bank 
width, and number of column address pins on the SDRAMs, and whether 
the SDRAM is 16- or 32-bits wide. This muxing assumes the SDRAMs 
have 4 internal banks.

All the possible configurations of SDRAM sizes and number of chips con-
nected in parallel are given for each muxing table.

Note there is no separate ADDR[1] pin on the ADSP-BF535 processor. The 
ADDR[1] pin is muxed onto the pin ABE[3]/SDQM[3]/ADDR[1] for 16-bit 
SDRAM banks. This is further described in “Data Mask (SDQM[3:0]) 
Encodings” on page 18-67.

32-Bit Wide SDRAM Address Muxing

Table 18-9, Table 18-10, Table 18-11, and Table 18-12 show address 
muxing for 32-bit wide SDRAM banks using SDRAMs with 8, 9, 10, or 
11 column address pins.

Figure 18-19. Multiplexed SDRAM Addressing Scheme

Row 
Address

31 25 0

Internal 32-bit Address 

Bank 
Select

Column 
Address

Byte 
Mask
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Table 18-9. 32-Bit SDRAM Bank, 8 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[16] IA[26] A[14]

ADDR[15] IA[25] A[13]

ADDR[14] IA[24] A[12]

ADDR[13] IA[23] A[11]

SA[10] IA[22] A[10]

ADDR[11] IA[21] A[9]

ADDR[10] IA[20] A[8]

ADDR[9] IA[19] IA[9] A[7]

ADDR[8] IA[18] IA[8] A[6]

ADDR[7] IA[17] IA[7] A[5]

ADDR[6] IA[16] IA[6] A[4]

ADDR[5] IA[15] IA[5] A[3]

ADDR[4] IA[14] IA[4] A[2]

ADDR[3] IA[13] IA[3] A[1]

ADDR[2] IA[12] IA[2] A[0]

ADDR[19] IA[11] IA[11] BA[1]

ADDR[18] IA[10] IA[10] BA[0]

Possible configurations:

2 chips: 64 Mb - 1 M  16  4 banks (16 MB)
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Table 18-10. 32-Bit SDRAM Bank, 9 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[15] IA[26] A[13]

ADDR[14] IA[25] A[12]

ADDR[13] IA[24] A[11]

SA[10] IA[23] A[10]

ADDR[11] IA[22] A[9]

ADDR[10] IA[21] IA[10] A[8]

ADDR[9] IA[20] IA[9] A[7]

ADDR[8] IA[19] IA[8] A[6]

ADDR[7] IA[18] IA[7] A[5]

ADDR[6] IA[17] IA[6] A[4]

ADDR[5] IA[16] IA[5] A[3]

ADDR[4] IA[15] IA[4] A[2]

ADDR[3] IA[14] IA[3] A[1]

ADDR[2] IA[13] IA[2] A[0]

ADDR[19] IA[12] IA[12] BA[1]

ADDR[18] IA[11] IA[11] BA[0]

Possible configurations:

2 chips: 256 Mb - 4 M  16  4 banks (64 MB)

2 chips: 128 Mb - 2 M  16  4 banks (32 MB)

4 chips: 64 Mb - 2 M  8  4 banks (32 MB)
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Table 18-11. 32-Bit SDRAM Bank, 10 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[14] IA[26] A[12]

ADDR[13] IA[25] A[11]

SA[10] IA[24] A[10]

ADDR[11] IA[23] IA[11] A[9]

ADDR[10] IA[22] IA[10] A[8]

ADDR[9] IA[21] IA[9] A[7]

ADDR[8] IA[20] IA[8] A[6]

ADDR[7] IA[19] IA[7] A[5]

ADDR[6] IA[18] IA[6] A[4]

ADDR[5] IA[17] IA[5] A[3]

ADDR[4] IA[16] IA[4] A[2]

ADDR[3] IA[15] IA[3] A[1]

ADDR[2] IA[14] IA[2] A[0]

ADDR[19] IA[13] IA[13] BA[1]

ADDR[18] IA[12] IA[12] BA[0]

Possible configurations:

2 chips: 256 Mb - 8 M  8  4 banks (128 MB)

2 chips: 512 Mb - 8 M  16  4 banks (128 MB)

2 chips: 128 Mb - 4 M  8  4 banks (64 MB)

2 chips: 64 Mb - 4 M  4  4 banks (64 MB)
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Table 18-12. 32-Bit SDRAM Bank, 11 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[13] IA[26] IA[12] A[11]

SA[10] IA[25] A[10]

ADDR[11] IA[24] IA[11] A[9]

ADDR[10] IA[23] IA[10] A[8]

ADDR[9] IA[22] IA[9] A[7]

ADDR[8] IA[21] IA[8] A[6]

ADDR[7] IA[20] IA[7] A[5]

ADDR[6] IA[19] IA[6] A[4]

ADDR[5] IA[18] IA[5] A[3]

ADDR[4] IA[17] IA[4] A[2]

ADDR[3] IA[16] IA[3] A[1]

ADDR[2] IA[15] IA[2] A[0]

ADDR[19] IA[14] IA[14] BA[1]

ADDR[18] IA[13] IA[13] BA[0]

Possible configurations:

8 chips: 128 Mb - 8 M  4  4 banks (128 MB)
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16-Bit Wide SDRAM Address Muxing

Table 18-13, Table 18-14, and Table 18-15 show address muxing for 
16-bit wide SDRAM banks using SDRAMs with 9, 10, or 11 column 
address pins.

Table 18-13. 16-Bit SDRAM Bank, 9 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[15] IA[26] A[14]

ADDR[14] IA[25] A[13]

ADDR[13] IA[24] A[12]

ADDR[12] IA[23] A[11]

SA[10] IA[22] A[10]

ADDR[10] IA[21] A[9]

ADDR[9] IA[20] IA[9] A[8]

ADDR[8] IA[19] IA[8] A[7]

ADDR[7] IA[18] IA[7] A[6]

ADDR[6] IA[17] IA[6] A[5]

ADDR[5] IA[16] IA[5] A[4]

ADDR[4] IA[15] IA[4] A[3]

ADDR[3] IA[14] IA[3] A[2]

ADDR[2] IA[13] IA[2] A[1]

ADDR[1] IA[12] IA[1] A[0]

ADDR[19] IA[11] IA[11] BA[1]

ADDR[18] IA[10] IA[10] BA[0]

Possible configurations:

1 chip: 256 Mb - 4 M  16  4 banks (32 MB)

1 chip: 128 Mb - 2 M  16  4 banks (16 MB)

2 chips: 64 Mb - 2 M  8  4 banks (16 MB)
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Table 18-14. 16-Bit SDRAM Bank, 10 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[14] IA[26] A[13]

ADDR[13] IA[25] A[12]

ADDR[12] IA[24] A[11]

SA[10] IA[23] A[10]

ADDR[10] IA[22] IA[10] A[9]

ADDR[9] IA[21] IA[9] A[8]

ADDR[8] IA[20] IA[8] A[7]

ADDR[7] IA[19] IA[7] A[6]

ADDR[6] IA[18] IA[6] A[5]

ADDR[5] IA[17] IA[5] A[4]

ADDR[4] IA[16] IA[4] A[3]

ADDR[3] IA[15] IA[3] A[2]

ADDR[2] IA[14] IA[2] A[1]

ADDR[1] IA[13] IA[1] A[0]

ADDR[19] IA[12] IA[12] BA[1]

ADDR[18] IA[11] IA[11] BA[0]

Possible configurations:

1 chip: 512 Mb - 8 M  16  4 banks (64 MB)

2 chips: 256 Mb - 8 M  8  4 banks (64 MB)

2 chips: 128 Mb - 4 M  8  4 banks (32 MB)

4 chips: 64 Mb - 4 M  4  4 banks (32 MB)
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Data Mask (SDQM[3:0]) Encodings
During write transfers to SDRAM, the SDQM[3:0] pins are used to mask 
writes to bytes that are not accessed. Table 18-16 shows the SDQM[3:0] 
encodings for 32-bit wide SDRAM banks based on the internal transfer 
address bits IA[1:0] and the transfer size.

Table 18-15. 16-Bit SDRAM Bank, 11 Column Address Pins

ADSP-BF535 
Processor Address Pin

Internal Address 
for RAS

Internal Address 
for CAS

SDRAM Address 
Pin

ADDR[13] IA[26] A[12]

ADDR[12] IA[25] IA[11] A[11]

SA[10] IA[24] A[10]

ADDR[10] IA[23] IA[10] A[9]

ADDR[9] IA[22] IA[9] A[8]

ADDR[8] IA[21] IA[8] A[7]

ADDR[7] IA[20] IA[7] A[6]

ADDR[6] IA[19] IA[6] A[5]

ADDR[5] IA[18] IA[5] A[4]

ADDR[4] IA[17] IA[4] A[3]

ADDR[3] IA[16] IA[3] A[2]

ADDR[2] IA[15] IA[2] A[1]

ADDR[1] IA[14] IA[1] A[0]

ADDR[19] IA[13] IA[13] BA[1]

ADDR[18] IA[12] IA[12] BA[0]

Possible configurations:

2 chips: 512 Mb - 16 M  8  4 banks (128 MB)

4 chips: 256 Mb - 16 M  4  4 banks (128 MB)

4 chips: 128 Mb - 8 M  4  4 banks (64 MB)
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During read transfers to SDRAM banks, reads are always done of all bytes 
in the bank regardless of the transfer size. This means for 32-bit SDRAM 
banks, SDQM[3:0] are all zeros and for 16-bit SDRAM banks, SDQM[1:0] 
are zeros, SDQM[2] is 1, and SDQM[3] outputs IA[1].

The only time that the SDQM[3:0] pins are high is when bytes are masked 
during write transfers to the SDRAM banks. At all other times, the 
SDQM[3:0] pins are held low (with the exception of SDQM[3] when the 
SDRAM banks are 16-bit wide). This means for 32-bit SDRAM banks, 
SDQM[3:0] are all zeros, and for 16-bit SDRAM banks SDQM[1:0] are zeros, 
SDQM[2] is 1, and SDQM[3] outputs IA[1].

The pin configurations in Table 18-16 are internally set up and not 
programmable.
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Table 18-17 shows the SDQM[1:0] encodings during writes for 16-bit 
SDRAM banks.

Table 18-16. SDQM[3:0] Encodings During Writes for 32-bit SDRAM 
Banks

Internal Address
IA[1:0]

Internal Transfer Size

byte 2 bytes 4 bytes

00 SDQM[3]=1
SDQM[2]=1
SDQM[1]=1
SDQM[0]=0

SDQM[3]=1
SDQM[2]=1
SDQM[1]=0
SDQM[0]=0

SDQM[3]=0
SDQM[2]=0
SDQM[1]=0
SDQM[0]=0

01 SDQM[3]=1
SDQM[2]=1
SDQM[1]=0
SDQM[0]=1

10 SDQM[3]=1
SDQM[2]=0
SDQM[1]=1
SDQM[0]=1

SDQM[3]=0
SDQM[2]=0
SDQM[1]=1
SDQM[0]=1

11 SDQM[3]=0
SDQM[2]=1
SDQM[1]=1
SDQM[0]=1

Table 18-17. SDQM[1:0] Encodings During Writes for 16-bit SDRAM 
Banks

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes 4 bytes

0 SDQM[1]=1
SDQM[0]=0

SDQM[1]=0
SDQM[0]=0

SDQM[1]=0
SDQM[0]=0

1 SDQM[1]=0
SDQM[0]=1

Note: SDQM[3] outputs IA[1] and SDQM[2] always outputs 1 for 16-bit 
SDRAM banks.
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SDC Operation 
The ADSP-BF535 processor’s SDC uses a burst length = 1 for read and 
write operations. Whenever a page miss occurs, the SDC executes a Pre-
charge command followed by a Bank Activate command before executing 
the Read or Write command. If there is a page hit, the Read or Write 
command can be given immediately without requiring the Precharge 
command.

For SDRAM Read commands, there is a latency from the start of the Read 
command to the availability of data from the SDRAM, equal to the CAS 
latency. This latency is always present for the first read in a burst and for 
any single read transfer. Subsequent reads in a burst do not have latency.

A programmable refresh counter is provided. It can be programmed to 
generate background Auto-Refresh cycles at the required refresh rate based 
on the clock frequency used. The refresh counter period is specified with 
the RDIV field in the SDRAM Refresh Rate Control register. 

To allow Auto-Refresh commands to execute in parallel with any AMC 
access, a separate A10 pin (SA10) is provided. All the SDRAM internal 
banks are precharged before issuing an Auto-Refresh command, and all 
external banks are refreshed at the same time. For more information, see 
“Executing a Parallel Refresh Command” on page 18-47.

SDC Configuration
After an ADSP-BF535 processor is reset, the SDC clocks are enabled; 
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the power-up sequence, ensure the clock to 
the SDRAM is enabled after the power has stabilized for the proper 
amount of time (as specified by the SDRAM). In order to set up the SDC 
and start the SDRAM power-up sequence for the SDRAMs, the SDRAM 
Refresh Rate Control register (EBIU_SDRRC), the SDRAM Memory Bank 
Control register (EBIU_SDBCTL), and SDRAM Memory Global Control 
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register (EBIU_SDGCTL) must be written, and a transfer must be started to 
SDRAM address space. The SDRS bit of the SDRAM Control Status regis-
ter can be checked to determine the current state of the SDC. If this bit is 
set, the SDRAM power-up sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the 
SDRAM refresh rate. 

The EBIU_SDBCTL register should be written to describe the sizes and 
SDRAM memory configuration used (EBxSZ and EBxCAW) and to enable 
the external banks which are populated (EBxE). Note until the SDRAM 
power-up sequence has been started, any access to SDRAM address space, 
regardless of the state of the EBxE bits, generates an internal bus error, and 
the access does not occur externally. For more information, see “Error 
Detection” on page 18-8. After the SDRAM power-up sequence has com-
pleted, any transfer to a disabled external bank results in a hardware error 
interrupt, and the SDRAM transfer does not occur.

The EBIU_SDGCTL register should be written:

• to set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR, 
EBUFE)

• to enable the SDRAM clocks (SCTLE, SCLK1)

• to set the prefetch functionality (PFE, PFP)

• to set the datapath width (X16DE)

• to select and enable the start of the SDRAM power-up sequence 
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an 
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 18-8.
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Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer 
occurs to enabled SDRAM address space, the SDC initiates the SDRAM 
power-up sequence. The exact sequence is determined by the PSM bit in 
the EBIU_SDGCTL register. The transfer that is used to trigger the SDRAM 
power-up sequence can be either a read or a write. This transfer occurs 
when the SDRAM power-up sequence has completed. This initial transfer 
takes many cycles to complete since the SDRAM power-up sequence must 
take place.

Read Buffer (Prefetch) Operation
When a cache line fill completes, the SDC launches speculative read 
accesses, or prefetches, in order to minimize the latency seen by L1 cache 
line fills. The SDC stores the read data from these prefetches into a read 
buffer. A cache line fill fetches 32 bytes, or 8 words, from memory. If a 
cache line fill hits (the address matches) at least 5 words (12 half words for 
16-bit wide SDRAM), the maximum throughput of 1 word per cycle is 
achieved.

Prefetches start only after a cache line fill if all of these conditions are met:

• Prefetching is enabled (PFE = 1 in the SDRAM Memory Global 
Control register).

• The AMC does not have priority over prefetches (PFP = 1 in the 
SDRAM Memory Global Control register), or the AMC has prior-
ity over prefetches (PFP = 0), but the AMC is not requesting use of 
the shared external pins.

• The successive memory line is in the page which is currently open.

• No Auto-Refresh or Self-Refresh request is pending.
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After the prefetch reads start, they continue until one of these conditions 
is met:

• The SDC read buffer is full.

• The AMC has a pending request and the AMC has priority over 
prefetches (PFP = 0 in the SDRAM Memory Global Control 
register).

• An Auto-Refresh or Self-Refresh request occurs.

• Another SDC access occurs from the core, a DMA, or PCI.

• Prefetching is disabled (PFE = 0 in the SDRAM Memory Global 
Control register).

If a cache line fill access starts to the address of the line stored in the read 
buffer, data from the read buffer starts being returned every cycle. At the 
same time, the SDC determines the address of the first word which is not 
in the read buffer and then starts this transfer from the SDRAM. As long 
as there are enough words that hit in the read buffer to cover the latency of 
reading the remaining addresses that did not hit in the read buffer, the 
maximum throughput can be achieved. If there are not enough hits to 
cover the latency, wait states are inserted in the middle of the cache line 
fill until read data for the remaining words can be returned. When the 
read accesses for the words that were not in the read buffer complete, the 
SDC begins launching prefetch reads of the next sequential line in 
memory.

If a cache line fill access starts to an address that does not match any of the 
addresses of the data in the read buffer (a read buffer miss), the read buffer 
data is invalidated, the accesses required to service the cache line fill are 
launched, and then prefetches of the next line begin.
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The read buffer is invalidated if any of these things occur:

• A cache line fill misses the read buffer.

• A write is done to any word in the line that is stored in the read 
buffer.

• Prefetching is disabled (PFE = 0 in the SDRAM Memory Global 
Control register).

Cache line fills always start at the address that missed in the cache. This 
word is referred to as the critical word. For a cache line fill to have a par-
tial read buffer hit, the address of the critical word of the line being filled 
must be in the read buffer.

A prefetch may be interrupted; therefore, it is possible to have a partially 
filled read buffer. Words that are successfully prefetched into the read buf-
fer are considered valid words. All valid words which follow the critical 
word in a line wrapping manner are counted as read buffer hits. For exam-
ple, prefetch begins and stores words 7, 0, 1, 2, and 3 into the read buffer, 
and then it is interrupted. If the critical word of a cache line fill is word 3, 
then only word 3 is a read buffer hit, since word 4 is not a valid word in 
the read buffer. If the critical word of a cache line fill is word 7 in the same 
prefetch, than all five words in the read buffer (words 7, 0, 1, 2, 3) would 
be read-buffer hits. In this case, the maximum throughput of 1 word per 
cycle is achieved.

Prefetch accesses are started only after a cache line fill access occurs. The 
address of the first prefetch read is always the corresponding address of the 
current critical word in the next line. For example, if a cache line fill access 
starts with word 5, then the next prefetch would be from word 5 in the 
following line. 
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SDC Commands
This section provides a description of each of the commands that the SDC 
uses to manage the SDRAM interface. These commands are handled auto-
matically by the SDC. A summary of the various commands used by the 
on-chip controller for the SDRAM interface is as follows:

• Precharge: Closes all internal banks.

• Activate: Activates a page in the required SDRAM internal bank.

• Load Mode Register: Initializes the SDRAM operation parameters 
during the power-up sequence.

• Read/Write.

• Auto-Refresh: Causes the SDRAM to execute a CAS before RAS 
refresh.

• Self-Refresh: Places the SDRAM in self-refresh mode, in which the 
SDRAM powers down and controls its refresh operations 
internally.

• NOP/Command Inhibit: No operation.

Table 18-18 shows the SDRAM pin state during SDC commands.
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Precharge Command

The Precharge command is given to precharge an active internal bank. 
The SDC always issues the Precharge command to all internal SDRAM 
banks (this is controlled by asserting the SA10 pin high). The Precharge 
command is executed by the SDC if the address to be accessed falls in a 
different page in the same external bank or before an Auto-Refresh or 
Self-Refresh. A Precharge is not done if the address to be accessed falls in 
an open page in another external bank or to an external bank with no page 
open. For page miss reads or writes, only the external bank to be accessed 
by the read or write is precharged. For Auto-Refresh and Self-Refresh, all 
external SDRAM banks are precharged at one time.

Table 18-18. Pin State During SDC Commands

Command SMS[x] SCAS SRAS SWE SCKE SA10

Precharge low high low low high high

Bank Activate low high low high high

Load Mode Reg-
ister

low low low low high

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high

Self-Refresh low low low high low

NOP low high high high high

Command 
Inhibit

high high high high high
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Bank Activate Command

The Bank Activate command is required if the next data access is in a dif-
ferent page. The SDC executes the Precharge command, followed by a 
Bank Activate command, to activate the page in the desired SDRAM 
internal bank. Only one SDRAM internal bank in each external bank may 
be active at a time.

Load Mode Register Command

The Load Mode Register command initializes SDRAM operation parame-
ters. This command is a part of the SDRAM power-up sequence. Load 
Mode Register uses the address bus of the SDRAM as data input. The 
power-up sequence is initiated by writing 1 to the PSSE bit in the SDRAM 
Memory Global Control register (EBIU_SDGCTL) and then writing or read-
ing from any enabled address within the SDRAM address space to trigger 
the power-up sequence. The exact order of the power-up sequence is 
determined by the PSM bit of the EBIU_SDGCTL register.

The Load Mode Register command initializes these parameters:

• Burst length = 1, bits 2-0, always zero

• Wrap type = sequential, bit 3, always zero

• Ltmode = latency mode (CAS latency), bits 6-4, programmable in 
the EBIU_SDGCTL register

• Bits 14-7, always zero

While executing the Load Mode Register command, the unused address 
pins are set to zero. During the two SCLK cycles following Load Mode Reg-
ister, the SDC issues only NOP commands.
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Read/Write Command

A Read/Write command is executed if the next read/write access is in the 
present active page. During the Read command, the SDRAM latches the 
column address. The delay between Activate and Read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after 
the CAS latency has been met.

In the Write command, the SDRAM latches the column address. The 
write data is also valid in the same cycle. The delay between Activate and 
Write commands is determined by the tRCD parameter.

In cases where the internal bus transfer is an L1 cache line fill burst-read 
operation, the SDC attempts to service the line fill with data stored in the 
read buffer. For each part of the line fill not available in the read buffer, 
the SDC issues a Read command. The SDC then speculatively issues Read 
commands if certain conditions are met. For more information, see “Read 
Buffer (Prefetch) Operation” on page 18-72.

The SDC never speculatively issues a write command to the SDRAM.

In the case of a page miss, the SDRAM is precharged and activated before 
issuing the Read or Write command. If the internal refresh counter asserts 
a refresh request, any new access is delayed until the Auto-Refresh cycle 
completes.

The SDC does not use the auto-precharge function of SDRAMs, which is 
enabled by asserting SA10 high during a Read or Write command.

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes 
a CAS before RAS (CBR) refresh to occur internally for that address when 
the Auto-Refresh command is given. The SDC generates an Auto-Refresh 
command after the SDC refresh counter times out. The RDIV value in the 
SDRAM Refresh Rate Control register must be set so that all addresses are 
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refreshed within the tREF period specified in the SDRAM timing specifi-
cations. This command is issued to all the external banks whether or not 
they are enabled (EBxE in the SDRAM Memory Global Control register). 
Before executing the Auto-Refresh command, the SDC executes a Pre-
charge All command to all external banks. The next Activate command is 
not given until the tRFC specification (tRFC = tRAS + tRP) is met.

Auto-Refresh commands are also issued by the SDC as part of the 
power-up sequence and after exiting Self-Refresh mode.

Self-Refresh Command

The Self-Refresh command causes refresh operations to be performed 
internally by the SDRAM, without any external control. This means that 
the SDC does not generate any Auto-Refresh cycles while the SDRAM is 
in Self-Refresh mode. Before executing the Self-Refresh command, all 
external banks are precharged. Self-Refresh mode is enabled by writing a 1 
to the SRFS bit of the SDRAM Memory Global Control register 
(EBIU_SDGCTL). The SDRAM remains in Self-Refresh mode for at least 
tRAS and until an internal access to SDRAM space occurs. When an inter-
nal access occurs causing the SDC to exit the SDRAM from Self-Refresh 
mode, the SDC waits to meet the tXSR specification (tXSR = tRAS + tRP) 
and then issues an Auto-Refresh command. After the Auto-Refresh com-
mand, the SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be 
met before executing the Activate command for the transfer that caused 
the SDRAM to exit Self-Refresh mode. Therefore the latency from when a 
transfer is received by the SDC while in Self-Refresh mode until the Acti-
vate command occurs for that transfer is 2  (tRC + tRP).

Note the SCLK[0] and SCLK[1] are not disabled by the SDC during 
Self-Refresh mode. However, software may disable the clocks by clearing 
the SCTLE and SCK1E bits in EBIU_SDGCTL. The application software should 
ensure that all applicable clock timing specifications are met before the 
transfer to SDRAM address space which causes the controller to exit 
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Self-Refresh mode. If a transfer occurs to SDRAM address space when the 
SCTLE bit is cleared, an internal bus error is generated, and the access does 
not occur externally, leaving the SDRAM in Self-Refresh mode. For more 
information, see “Error Detection” on page 18-8.

No Operation/Command Inhibit Commands

The No Operation (NOP) command to the SDRAM has no effect on 
operations currently in progress. The Command Inhibit command is the 
same as a NOP command; however, the SDRAM is not chip-selected. 
When the SDC is actively accessing the SDRAM but needs to insert addi-
tional commands with no effect, the NOP command is given. When the 
SDC is not accessing any SDRAM external banks, the Command Inhibit 
command is given.

SDRAM Timing Specifications
To support key timing requirements and power-up sequences for different 
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD, 
tWR and the power-up sequence mode. (For more information, see 
“SDRAM Memory Global Control Register (EBIU_SDGCTL)” on 
page 18-37.) CAS latency should be programmed in the EBIU_SDGCTL reg-
ister based on the frequency of operation. (Refer to the SDRAM vendor’s 
data sheet for more information.)

For other parameters, the SDC assumes:

• Bank Cycle Time: tRC = tRAS + tRP

• Refresh Cycle Time: tRFC = tRAS + tRP

• Exit Self-Refresh Time: tXSR = tRAS + tRP

• Load Mode Register to Activate Time: tMRD = 2 SCLK cycles
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SDRAM Performance 
Table 18-19 lists the data throughput rates for the core, DMA, or PCI 
read/write accesses to 32-bit wide SDRAM. For this example, assume all 
cycles are SCLK cycles and the following SCLK frequency and SDRAM 
parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)
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Table 18-19. Throughput for Accesses to 32-Bit Wide SDRAM 

Accesses Read/Write Page Hit/Miss1 Throughput

L1 Cache Line Fill 
( 5 word Read Buffer Hit)

Read Page Hit 8 words/8 cycles

L1 Cache Line Fill 
(N word Read Buffer Hit, where 
N < 5)

Read Page Hit N word hit: 8 
words/(13-N) cycles

L1 Cache Line Fill 
(Read Buffer Miss)

Read Page Hit 8 words/13 cycles

L1 Cache Copyback Write Page Hit 8 words/16 cycles

DMA Burst Read (4 words) Read Page Hit 4 words/9 cycles

DMA Burst Write (4 words) Write Page Hit 4 words/8 cycles

DMA Burst Read (8 words) Read Page Hit 8 words/13 cycles

DMA Burst Write (8 words) Write Page Hit 8 words/16 cycles

Single Read Read Page Hit 1 word/6 cycles

Single Write Write Page Hit 1 word/2 cycles

L1 Cache Line Fill 
(Read Buffer Miss)

Read Page Miss 8 words/17 cycles

L1 Cache Copyback Write Page Miss 8 words/20 cycles

DMA Burst Read (4 words) Read Page Miss 4 words/13 cycles

DMA Burst Write (4 words) Write Page Miss 4 words/12 cycles

DMA Burst Read (8 words) Read Page Miss 8 words/17 cycles

DMA Burst Write (8 words) Write Page Miss 8 words/20 cycles

Single Read Read Page Miss 1 word/10 cycles

Single Write Write Page Miss 1 word/6 cycles

1 Page Miss Penalty = tRP + tRCD
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When the external buffer timing (EBUFE = 1 in the SDRAM Memory 
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM 
Memory Global Control register) is used, all accesses take one extra cycle 
for each feature selected. Accesses that hit in the Read Buffer follow these 
rules:

If either EBUFE = 1 or CL = 11:

• For N = 8 to 6, N half word hit: 8 words/8 cycles

• For N = 5 to 0, N half word hit: 8 words/(14 – N) cycles

If both EBUFE = 1 and CL = 11:

• For N = 8 to 7, N half word hit: 8 words/8 cycles

• For N = 6 to 0, N half word hit: 8 words/(15 – N) cycles

Table 18-20 lists the data throughput rates for the core or DMA 
read/write accesses to 16-bit wide SDRAM. For this example, assume all 
cycles are SCLK cycles and the following SCLK frequency and SDRAM 
parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)
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Table 18-20. Throughput for Accesses to 16-Bit Wide SDRAM 

Accesses Read/
Write

Page Hit/Miss1 Throughput

L1 Cache Line Fill
( 12 half word Read Buffer Hit)

Read Page Hit 8 words/8 cycles

L1 Cache Line Fill
(N half word Read Buffer Hit, where 
N < 12)

Read Page Hit N half word hit: 8 
words/(21-N) cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Hit 8 words/21 cycles

L1 Cache Copyback Write Page Hit 8 words/24 cycles

DMA Burst Read (4 words) Read Page Hit 4 words/13 cycles

DMA Burst Write (4 words) Write Page Hit 4 words/12 cycles

DMA Burst Read (8 words) Read Page Hit 8 words/21 cycles

DMA Burst Write (8 words) Write Page Hit 8 words/20 cycles

Single Read Read Page Hit 1 word/7 cycles

Single Write Write Page Hit 1 word/3 cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Miss 8 words/25 cycles

L1 Cache Copyback Write Page Miss 8 words/28 cycles

DMA Burst Read (4 words) Read Page Miss 4 words/17 cycles

DMA Burst Write (4 words) Write Page Miss 4 words/16 cycles

DMA Burst Read (8 words) Read Page Miss 8 words/25 cycles

DMA Burst Write (8 words) Write Page Miss 8 words/24 cycles

Single Read Read Page Miss 1 words/11 cycles

Single Write Write Page Miss 1 words/7 cycles

1 Page-Miss Penalty = tRP + tRCD
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When the external buffer timing (EBUFE = 1 in the SDRAM Memory 
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM 
Memory Global Control register) is used, all accesses take one extra cycle 
for each feature selected. Accesses that hit in the Read Buffer follow these 
rules:

If either EBUFE = 1 or CL = 11:

• For N = 16 to 13, N half word hit: 8 words/8 cycles

• For N = 12 to 0, N half word hit: 8 words/(22 – N) cycles

If both EBUFE = 1 and CL = 11:

• For N = 16 to 14, N half word hit: 8 words/8 cycles

• For N = 13 to 0, N half word hit: 8 words/(23 – N) cycles
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19 SYSTEM DESIGN

This chapter provides hardware, software and system design information 
to aid users in developing systems based on the ADSP-BF535 processor. 
The design options implemented in a system are influenced by cost, per-
formance, and system requirements. In many cases, design issues cited 
here are discussed in detail in other sections of this manual. In such cases, 
a reference appears to the corresponding section of the text, instead of 
repeating the discussion in this chapter.

Pin Descriptions
Refer to ADSP-BF535 Blackfin Embedded Processor Data Sheet for pin 
information, including pin numbers for the 260-Lead PBGA package.

Recommendations for Unused Pins
Refer to ADSP-BF535 Blackfin Embedded Processor Data Sheet for detailed 
pin descriptions.

Pins Requiring Termination
ADSP-BF535 Blackfin Embedded Processor Data Sheet provides guidelines 
on pins that require termination during normal operation of the 
ADSP-BF535 processor.
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Resetting the Processor
In addition to the hardware reset mode provided via the RESET pin, the 
ADSP-BF535 processor supports several software reset modes. For 
detailed information on the various modes, see “System Reset and 
Power-up Configuration” on page 3-12.

The processor state of the ADSP-BF535 processor after reset is described 
in “Reset State” on page 3-10.

Booting the Processor
The ADSP-BF535 processor can be booted via a variety of methods. 
These include executing from external 16-bit memory, or booting from a 
ROM configured to load code from 8-bit FLASH memory or a serial 
ROM (8-bit or 16-bit address range). For more information on boot 
modes, see “Booting Methods” on page 3-17.

Managing Clocks
Systems can drive the ADSP-BF535 processor’s clock inputs with a crystal 
oscillator or a buffered, shaped clock derived from an external clock oscil-
lator. The external clock connects to the processor’s CLKIN pin. It is not 
possible to halt, change, or operate CLKIN below the specified frequency 
during normal operation. The processor uses the clock input (CLKIN) to 
generate on-chip clocks. These include the core clock (CCLK) and the 
peripheral clock (SCLK).
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Managing Core and System Clocks
The ADSP-BF535 processor produces a 1x-31x multiplication of the 
clock input provided on the CLKIN pin to generate the core clock (CCLK). 
Additionally, the system clock (SCLK) is derived from the core clock. This 
clock is based on a divider ratio that is programmed via the SSEL bit set-
tings. For detailed information about how to set and change CCLK and 
SCLK frequencies, see “Dynamic Power Management” on page 8-1.

Designing for Multiplexed Clock Pins
The ADSP-BF535 processor’s MSEL6–0 pins are multiplexed with the PF6–
0 pins; SSEL1–0 pins are multiplexed with the PF9–8 pins. During reset, 
these pins act as multiplier selects when in multiplier mode and as pro-
grammable flags after reset. This multiplexing influences system design as 
follows.

• For systems selecting Bypass mode during reset, MSELx pin states do 
not need to be managed during reset. The multiplexed nature of 
these pins does not influence system design for the PFx pins.

• For systems using Multiplier mode during reset and not using PFx 
pins at runtime, use pull-up or pull-down resistors to select the 
MSELx and SSELx values. Do not leave these pins unconnected.

• For systems using Multiplier mode during reset and using the PFx 
pins at runtime, use pull-up or pull-down resistors to select the 
MSELx values during reset. Ensure that the system permits the MSELx 
and SSELx pins to stabilize to a valid multiplier value in compli-
ance with the timing for RESET in the data sheet.
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Figure 19-1 shows an example clock pin configuration.

 All of the core and peripheral clocks are enabled during reset. This 
results in a momentary power surge after reset. To avoid this condi-
tion, use the MSEL pins to select a lower processor clock (CCLK) 
speed upon reset. Adjust the clock to the desired operating speed in 
the software.

Figure 19-1. External Clock Connections

CLKIN

25 MHz ~
Oscillator

ADSP-BF535

MSEL5 (PF5)

MSEL4 (PF4)

MSEL3 (PF3)

MSEL2 (PF2)

MSEL1 (PF1)

MSEL0 (PF0)

RESET

MSEL6 (PF6)

DF (PF7)

VDD

VDD

BYPASS

RESET
SOURCE

RUNTIME
PF PIN I/O

The pull-up/pull-down resis-
tors on the MSEL, SSEL, DF,
and BYPASS pins select the
core and system clock ratio.

The MSEL[6:0] selection and
25 MHz input clock produce a
150 MHz core clock.

Setting SSEL[1:0] to 00
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The timing for the SSELx, MSELx, BYPASS, and DF pins during reset is iden-
tical and has these features (as shown in Figure 19-2).

• tPFD—Delay from RESET asserted to PFx input or output is termi-
nated. From this point, the pin values begin stabilizing to a valid 
state.

• tMSD—Delay from RESET asserted to the appearance of valid data 
values on the pin. The values can change from this point, but only 
from one valid value to another.

• tMSS—Setup for pin value before RESET deasserted. The value must 
be held from this point until hold time completes.

• tMSH—Hold for pin value after RESET deasserted.

Configuring and Servicing Interrupts
A variety of interrupts are available on the ADSP-BF535 processor. They 
include both core and peripheral interrupts. The ADSP-BF535 processor 
assigns default core priorities to system-level interrupts. However, these 
system interrupts can be remapped via the System Interrupt Assignment 
Registers (SIC_IARx). For more information, see “System Interrupt Assign-
ment Registers (SIC_IARx)” on page 4-29.

Figure 19-2. SSELx, MSELx, BYPASS, and DF Timing
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The ADSP-BF535 processor supports nested and non-nested interrupts, 
as well as self-nested interrupts. For explanations of the various modes of 
servicing events, see “Interrupts With and Without Nesting” on 
page 4-48.

Semaphores
Semaphores provide a mechanism for communication between multiple 
processors or processes/threads running in the same system. They are used 
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait 
until the first process signals that it is no longer using the resource. This 
signaling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the Test and Set Byte 
(Atomic) instruction (TESTSET). The TESTSET instruction performs these 
functions.

• Loads the byte at memory location pointed to by a P-register.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit set to 1).

The events triggered by TESTSET are atomic operations. The bus for the 
memory where the address is located is acquired and not relinquished 
until the store operation completes. In multithreaded systems, the 
TESTSET instruction is required to maintain semaphore consistency. 

To ensure that the store operation is flushed through any store or write 
buffers, issue an SSYNC immediately after semaphore release.
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The TESTSET instruction can be used to implement binary semaphores or 
any other type of mutual exclusion method (for example, counting 
semaphores). TESTSET represents a system-level requirement for a multicy-
cle bus lock mechanism.

The ADSP-BF535 processor restricts use of the TESTSET instruction to the 
L2 memory and external memory regions only. Use of the TESTSET 
instruction to address any other area of the ADSP-BF535 memory map 
may result in unreliable behavior.

Example Code for Query Semaphore
Listing 19-1 provides an example of a query semaphore that checks the 
availability of a shared resource.

Listing 19-1. Query Semaphore

/* Query semaphore. Denotes "Busy" if its value is non-zero. Wait 

until free (or re-schedule thread-- see note below). P0 holds 

address of semaphore. */

QUERY:

TESTSET ( P0 ) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread, 

and all other contending threads are postponed because semaphore 

value at [P0] is non-zero. Current thread could write thread_id 

to semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0]=R0 ;

/* When done using shared resource, write a zero-byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;
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/* NOTE: Instead of busy idling in the QUERY loop, one can use an 

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the 
DMA and External Memory/PCI buses, refer to “Chip Bus Hierarchy” on 
page 7-1.

Bus Priorities
For an explanation of prioritization between the various internal SBIU 
buses, refer to “Chip Bus Hierarchy” on page 7-1.

PCI Arbiter
If the ADSP-BF535 processor is intended for use as a PCI host in a given 
application, an external PCI arbiter chip is required to connect to the 
on-chip PCI interface. There is no additional circuitry necessary in order 
for the ADSP-BF535 processor to act as a slave on the PCI bus.

USB Device Connection
The ADSP-BF535 processor’s USB peripheral supports USB device mode, 
but not USB host mode. For USB device operation, use an external USB 
buffer/driver chip and oscillator.
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External Memory Design Issues
This section describes design issues related to external memory including 
supported SDRAM configurations, examples of SDRAM and SRAM 
interfaces, and how to avoid bus contention on the external memory bus.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 32-bit and 16-bit wide SRAM. 
Note this interface does not require external assertion of ARDY, since the 
internal wait state counter is sufficient for deterministic access times of 
memories.

Figure 19-3 shows the glueless interface to 32-bit SRAM. Note that this 
application requires the 32-bit datapath mode to be enabled for this bank 
of memory in the Asynchronous Memory Global Control Register.

Figure 19-4 shows the system interconnect required to support 16-bit 
memories. Note this application requires that the 16-bit packing mode be 
enabled for this bank of memory. Otherwise, the programming model 
must ensure that every other 16-bit memory location is accessed starting 
on an even (byte address[1:0]=00) 16-bit address.

Figure 19-3. Interface to 32-bit SRAM
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Avoiding Bus Contention 
Because the tristatable data bus is shared by multiple devices in a system, 
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one 
device is getting off the bus and another is getting on. If the first device is 
slow to tristate and the second device is quick to drive, the devices 
contend.

There are two cases where contention can occur. The first case is a read 
followed by a write to the same memory space. In this case, the 
ADSP-BF535 processor’s data bus drivers can potentially contend with 
those of the memory device addressed by the read. The second case is 
back-to-back reads from two different memory spaces. In this case, the 
two memory devices addressed by the two reads can potentially contend at 
the transition between the two read operations.

To avoid contention, program the turnaround time (Bank Transition 
Time) appropriately in the Asynchronous Memory Bank Control Regis-
ters. This feature allows software to set the number of clock cycles 
between these types of accesses on a bank by bank basis. Minimally, the 
EBIU provides one cycle for the transition to occur.

Figure 19-4. Interface to 16-bit SRAM
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Supported SDRAM Configurations
Table 19-1 shows all possible bank sizes, bank widths and SDRAM dis-
crete component configurations that can be gluelessly interfaced to the 
SDC.

Table 19-1. SDRAM Discrete Component Configurations 
Supported

Bank Size
(MByte)

Bank 
Width
(Bits)

SDRAM

Size (Mbit) Configuration Number of 
Chips

Number of 
Column Address 
Pins

16 32 64 1M  16  4banks 2 8

32 32 64 2M  8  4banks 4 9

32 32 128 2M  16  4banks 2 9

64 32 64 4M  4  4banks 8 10

64 32 128 4M  8  4banks 4 10

64 32 256 4M  16  4banks 2 9

128 32 128 8M  4  4banks 8 11

128 32 256 8M  8  4banks 4 10

128 32 512 8M  16  4banks 2 10

16 16 64 2M  8  4banks 2 9

16 16 128 2M  16  4banks 1 9

32 16 64 4M  4  4banks 4 10

32 16 128 4M  8  4banks 2 10

32 16 256 4M  16  4banks 1 9

64 16 128 8M  4  4banks 4 11
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Example SDRAM Interfaces
Figure 19-5 shows a block diagram of the ADSP-BF535 processor’s 
SDRAM interface. In this example, the SDRAM interface connects to 
four 64 Mbit (x8) SDRAM devices, to form one external bank of 32 
Mbytes of memory. The same address and control bus feeds all four 
SDRAM devices.

The ADSP-BF535 processor’s SDRAM controller supports industry stan-
dard 32-bit and 64-bit wide data bus DIMMs. These DIMMs generally 
have multiple chip select inputs with each connected to a portion of the 
chips on the DIMM. Most DIMMs can be interfaced to the ADSP-BF535 
processor gluelessly by using the SMS[3:0] bank selects, the SDQM[3:0] 
data masks, and careful connection of the data bus.

Divide the DIMM into multiple banks and connect it based on the 
SDRAM chip enables. Since the data bus is only 32 bits wide at the most, 
64-bit DIMMs must be connected as two banks. Note the range of num-
bers for the DQM and DATA signals on the SDRAM DIMM may not match 
the corresponding range on the ADSP-BF535 processor. 

64 16 256 8M  8  4banks 2 10

64 16 512 8M  16  4banks 1 10

128 16 256 16M  4  4banks 4 11

128 16 512 16M  8  4banks 2 11

Table 19-1. SDRAM Discrete Component Configurations 
Supported (Cont’d)

Bank Size
(MByte)

Bank 
Width
(Bits)

SDRAM

Size (Mbit) Configuration Number of 
Chips

Number of 
Column Address 
Pins
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The SDRAM DIMM system example in Figure 19-6 shows a glueless 
interface to a 64 MB DIMM. The DIMM is connected to the 
ADSP-BF535 processor as bank 0 (SMS[0]) and bank 1 (SMS[1]) with each 
bank having 32 MB.

Figure 19-5. 64 MB SDRAM System Example
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High Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal 
integrity and noise problems must be considered for circuit board design 
and layout. The following sections discuss these topics and suggest various 
techniques to use when designing and debugging processor systems.

Point-to-Point Connections on Serial Ports
Although the processor’s serial ports may be operated at a slow rate, the 
output drivers still have fast edge rates and for longer distances may 
require source termination.

Figure 19-6. SDRAM DIMM System Example
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You can add a series termination resistor near the pin for point-to-point 
connections. Typically, serial port applications use this termination 
method when distances are greater than six inches. For details, see the ref-
erence source in “Recommended Reading” on page 19-17 for suggestions 
on transmission-line termination. Also, see ADSP-BF535 Blackfin Embed-
ded Processor Data Sheet for output drivers’ rise and fall time data.

Signal Integrity
The capacitive loading on high-speed signals should be reduced as much 
as possible. Loading of buses can be reduced by using a buffer for devices 
that operate with wait states (for example, DRAMs). This reduces the 
capacitance on signals tied to the zero-wait-state devices, allowing these 
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as external 
memory, read, write and acknowledge strobes. 

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the PCB to reduce crosstalk. 
Be sure to use lots of vias between the ground planes. These planes 
should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a 
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk. 

• Design for lower transmission line impedances to reduce crosstalk 
and to allow better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues 
from reflection issues. This can be done by driving a signal wire 
from a pulse generator and studying the reflections while other 
components and signals are passive.
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Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The 
capacitors should be placed very close to the VDDEXT and VDDINT pins of the 
package as shown in Figure 19-7. Use short and fat traces for this. The 
ground end of the capacitors should be tied directly to the ground plane 
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is 
recommended because of its lower series inductance. 

Connect the power plane to the power supply pins directly with minimum 
trace length. The ground planes must not be densely perforated with vias 
or traces as their effectiveness is reduced. In addition, there should be sev-
eral large tantalum capacitors on the board.

 Designs can use either bypass placement case shown in Figure 19-6 
or combinations of the two. Designs should try to minimize signal 
feedthroughs that perforate the ground plane.

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type 
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe 
with 3 pF or less of loading. The use of a standard ground clip with 
4 inches of ground lead causes ringing to be seen on the displayed trace 
and makes the signal appear to have excessive overshoot and undershoot. 
To see the signals accurately, a 1 GHz or better sampling oscilloscope is 
needed.
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Recommended Reading
High-Speed Digital Design: A Handbook of Black Magic, Johnson & Gra-
ham, Prentice Hall, Inc., ISBN 0-13-395724-1.

Figure 19-7. Bypass Capacitor Placement
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This book is a technical reference that covers the problems encountered in 
state of the art, high-frequency digital circuit design. It is an excellent 
source of information and practical ideas. Topics covered in the book 
include:

• High-speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes & Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators
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20 BLACKFIN PROCESSOR’S 
DEBUG 

The Blackfin processor’s debug functionality can be used for software 
debugging. It also complements some services often found in an operating 
system (OS) kernel. The functionality is implemented in the processor 
hardware and is grouped into multiple levels.

A summary of available debug features is shown in Table 20-1.

Watchpoint Unit
By monitoring the addresses on both the instruction bus and the data bus, 
the Watchpoint Unit provides several mechanisms for examining program 
behavior. After counting the number of times a particular address is 
matched, the unit schedules an event based on this count. 

Table 20-1. Blackfin Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the processor when 
satisfied. 

Trace History Stores the last 16 discontinuous values of the Program Counter in 
an on-chip trace buffer.

Cycle Count Provides functionality for all code profiling functions.

Performance Monitoring Allows internal resources to be monitored and measured 
non-intrusively.
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In addition, information that the Watchpoint Unit can provide helps 
optimize code. The unit can also make it easier to maintain executables 
through code patching.

The Watchpoint Unit contains these MMRs, which are accessible in 
Supervisor and Emulator modes:

• The Watchpoint Status register (WPSTAT)

• Six Watchpoint Instruction Address registers (WPIA[5:0])

• Six Watchpoint Instruction Address Count registers 
(WPIACNT[5:0])

• The Watchpoint Instruction Address Control register (WPIACTL)

• Two Watchpoint Data Address registers (WPDA[1:0])

• Two Watchpoint Data Address Count registers (WPDACNT[1:0])

• The Watchpoint Data Address Control register (WPDACTL) 

Two operations implement instruction watchpoints:

• The values in the six Watchpoint Instruction Address registers, 
WPIA[5:0], are compared to the address on the instruction bus.

• Corresponding count values in the Watchpoint Instruction 
Address Count registers, WPIACNT[5:0], are decremented on each 
match. 

The six Watchpoint Instruction Address registers may be further grouped 
into three ranges of instruction-address-range watchpoints. The ranges are 
identified by the addresses in WPIA0 to WPIA1, WPIA2 to WPIA3, and WPIA4 
to WPIA5.
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 The address ranges stored in WPIA0, WPIA1, WPIA2, WPIA3, WPIA4 and 
WPIA5 must satisfy these conditions:

• WPIA0 <= WPIA1

• WPIA2 <= WPIA3 

• WPIA4 <= WPIA5

Two operations implement data watchpoints:

• The values in the two Watchpoint Data Address registers, 
WPDA[1:0], are compared to the address on the data buses.

• Corresponding count values in the Watchpoint Data Address 
Count registers, WPDACNT[1:0], are decremented on each match.

The two Watchpoint Data Address registers may be further grouped 
together into one data-address-range watchpoint, WPDA[1:0].

The instruction and data count value registers must be loaded with one 
less than the number of times the watchpoint must match. After the count 
value reaches zero, the subsequent watchpoint match results in an excep-
tion or emulation event. 

 Note count values must be reinitialized after the event has 
occurred.

An event can also be triggered on a combination of the instruction and 
data watchpoints. If the WPAND bit in the WPIACTL register is set, then an 
event is triggered only when both an instruction address watchpoint 
matches and a data address watchpoint matches. If the WPAND bit is 0, then 
an event is triggered when any of the enabled watchpoints or watchpoint 
ranges match.
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To enable the Watchpoint Unit, the WPPWR bit in the WPIACTL register 
must be set. If WPPWR=1, then the individual watchpoints and watchpoint 
ranges may be enabled using the specific enable bits in the WPIACTL and 
WPDACTL MMRs. If WPPWR=0, then all watchpoint activity is disabled.

Instruction Watchpoints
Each instruction watchpoint is controlled by three bits in the WPIACTL reg-
ister, as shown in Table 20-2.

When two watchpoints are associated to form a range, two additional bits 
are used, as shown in Table 20-3.

Code patching allows software to replace sections of existing code with 
new code. The watchpoint registers are used to trigger an exception at the 
start addresses of the earlier code. The exception routine then vectors to 
the location in memory that contains the new code. 

Table 20-2. WPIACTL Control Bits

Bit Names Description

EMUSWx Determines whether an instruction-address match causes either an 
emulation event or an exception event. 

WPICNTENx Enables the 16-bit counter that counts the number of address 
matches. If the counter is disabled, then every match causes an 
event. 

WPIAENx Enables the address watchpoint activity. 

Table 20-3. WPIACTL Watchpoint Range Control Bits

Bit Names Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a 
range. 

WPIRINVxy Determines whether an event is caused by an address within the 
range identified or outside of the range identified.
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On the ADSP-BF535 processor, code patching can be achieved by writing 
the start address of the earlier code to one of the WPIAx registers and set-
ting the corresponding EMUSWx bit to trigger an exception. In the exception 
service routine, the WPSTAT register is read to determine which watchpoint 
triggered the exception. Next, the code writes the start address of the new 
code in the RETX register and then returns from the exception to the new 
code. Because the exception mechanism is used for code patching, event 
service routines of the same or higher priority (exception, NMI, and reset 
routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits. The data value 
written is ignored.

Watchpoint Instruction Address Registers (WPIAx)
When the Watchpoint Unit is enabled, the values in the WPIAx registers 
are compared to the address on the instruction bus. Corresponding count 
values in the Watchpoint Instruction Address Count registers (WPIACNTx) 
are decremented on each match.

Figure 20-1 shows the Watchpoint Instruction Address registers, 
WPIA[5:0].

Figure 20-1. Watchpoint Instruction Address Registers 

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Instruction Address Registers (WPIAx)

Reset = Undefined

WPIA (Instruction Address)[30:15]

WPIA (Instruction Address)[14:0]

For MMR assign-
ments, see 
Table 20-4.
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Watchpoint Instruction Address Count Registers 
(WPIACNTx)

When the Watchpoint Unit is enabled, the count values in the Watch-
point Instruction Address Count registers (WPIACNT[5:0]) are 
decremented each time the address or the address bus matches a value in 
the WPIAx registers. Load the WPIACNTx register with a value that is one less 
than the number of times the watchpoint must match before triggering an 
event (see Figure 20-2). 

Table 20-4. Watchpoint Instruction Address Register MMR Assignments

Register Name Memory-Mapped Address

WPIA0 0xFFE0 7040

WPIA1 0xFFE0 7044

WPIA2 0xFFE0 7048

WPIA3 0xFFE0 704C

WPIA4 0xFFE0 7050

WPIA5 0xFFE0 7054

Figure 20-2. Watchpoint Instruction Address Count Registers 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Watchpoint Instruction Address Count Registers (WPIACNTx)

Reset = Undefined

WPIACNT (Count Value)[15:0]

For MMR assign-
ments, see 
Table 20-5.
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Watchpoint Instruction Address Control Register 
(WPIACTL)

Three bits in the Watchpoint Instruction Address Control register (WPI-
ACTL) control each instruction watchpoint.

 The bits in the WPIACTL register have no effect unless the WPPWR bit 
is set.

Figure 20-3 shows the upper half of the register, and Figure 20-4 shows 
the lower half of the register. For more information about the bits in this 
register, see “Instruction Watchpoints” on page 20-4.

Table 20-5. Watchpoint Instruction Address Count Register MMR 
Assignments

Register Name Memory-Mapped Address

WPIACNT0 0xFFE0 7080

WPIACNT1 0xFFE0 7084

WPIACNT2 0xFFE0 7088

WPIACNT3 0xFFE0 708C

WPIACNT4 0xFFE0 7090

WPIACNT5 0xFFE0 7094
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Figure 20-3. Watchpoint Instruction Address Control Register [31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X 0 0 X 0

Watchpoint Instruction Address Control Register (WPIACTL)

Reset = Undefined

EMUSW3
0 - Match on WPIA3 causes an

exception event
1 - Match on WPIA3 causes an

emulation event
WPIREN45
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA4,
End address = WPIA5)

WPIRINV45
0 - Inclusive range comparison:

WPIA4<IA <= WPIA5
1 - Exclusive range comparison:

IA <= WPIA4 || IA >WPIA5

WPIAEN4
0 - Disable instruction address

watchpoint, WPIA4
1 - Enable instruction address

watchpoint, WPIA4
WPIAEN5
0 - Disable instruction address

watchpoint, WPIA5
1 - Enable instruction address

watchpoint, WPIA5

WPAND
0 - Any enabled watchpoint

triggers an exception or
emulation event

1 - Any enabled instruction 
address watchpoint AND
any enabled data address
watchpoint trigger an
exception or emulation
event

EMUSW5

WPICNTEN4
0 - Disable watchpoint 

instruction address counter 4
1 - Enable watchpoint 

instruction address counter 4

WPICNTEN5
0 - Disable watchpoint 

instruction address counter 5
1 - Enable watchpoint 

instruction address counter 5

EMUSW4
0 - Match on WPIA4 causes an

exception event
1 - Match on WPIA4 causes an

emulation event

0 - Match on WPIA5 causes an
exception event

1 - Match on WPIA5 causes an
emulation event

In range comparisons, IA = instruction address.

0xFFE0 7000
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Figure 20-4. Watchpoint Instruction Address Control Register [15:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 0 X 0 X X X X 0 0 X 0

Watchpoint Instruction Address Control Register (WPIACTL)

WPPWR
0 - Watchpoint Unit disabled
1 - Watchpoint Unit enabled
WPIREN01
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA0,
End address = WPIA1)

WPIRINV01

WPIAEN0
0 - Disable instruction address

watchpoint, WPIA0
1 - Enable instruction address

watchpoint, WPIA0
WPIAEN1
0 - Disable instruction address

watchpoint, WPIA1
1 - Enable instruction address

watchpoint, WPIA1
WPICNTEN0
0 - Disable watchpoint

instruction address counter 0
1 - Enable watchpoint

instruction address counter 0
WPICNTEN1
0 - Disable watchpoint

instruction address counter 1
1 - Enable watchpoint

instruction address counter 1
EMUSW0 

EMUSW1
0 - Match on WPIA1 causes an 

exception event
1 - Match on WPIA1 causes an

emulation event

WPIREN23
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA2,
End address = WPIA3)

WPIRINV23

WPIAEN2
0 - Disable instruction address

watchpoint, WPIA2
1 - Enable instruction address

watchpoint, WPIA2

WPIAEN3
0 - Disable instruction address

watchpoint, WPIA3
1 - Enable instruction address

watchpoint, WPIA3

WPICNTEN2
0 - Disable watchpoint

instruction address counter 2
1 - Enable watchpoint

instruction address counter 2

WPICNTEN3
0 - Disable watchpoint

instruction address counter 3
1 - Enable watchpoint 

instruction address counter 3

EMUSW2
0 - Match on WPIA2 causes an

exception event
1 - Match on WPIA2 causes an

emulation event

0 - Match on WPIA0 causes an
exception event

1 - Match on WPIA0 causes an
emulation event

0 - Inclusive range comparison:
WPIA0<IA <= WPIA1

1 - Exclusive range comparison:
IA <= WPIA0 || IA >WPIA1

In range comparisons, IA = instruction address.

0 - Inclusive range comparison:
WPIA2<IA <= WPIA3

1 - Exclusive range comparison:
IA <= WPIA2 || IA >WPIA3

Reset = Undefined0xFFE0 7000
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Data Address Watchpoints
Each data watchpoint is controlled by four bits in the WPDACTL register, as 
shown in Table 20-6. 

Alternatively, the watchpoint unit can be configured to monitor a range of 
data addresses. To enable this function, the WPDAEN0 and WPDAEN1 bits are 
not used and must be set to 0. Instead, the WPDREN01 and WPDRINV01 bits 
are used to configure the watchpoint unit, as described in Table 20-7. 

 Note Data address watchpoints always trigger emulation events. 

 To enable the Data address watchpoints, the WPPWR bit of the 
WPIACTL register must be set to 1.

Table 20-6. Data Address Watchpoints

Bit Names Description

WPDACCx Determines whether the match should be on a read or write access. 

WPDSRCx Determines which DAG the unit should monitor. 

WPDCNTENx Enables the counter that counts the number of address matches. If the coun-
ter is disabled, then every match causes an event. 

WPDAENx Enables the data watchpoint activity. 

Table 20-7. WPDACTL Watchpoint Control Bits

Bit Name Description

WPDREN01 Indicates the two watchpoints that are to be associated to form a range. 

WPDRINV01 Determines whether an event is caused by an address within the range iden-
tified or outside the range.
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Watchpoint Data Address Registers (WPDAx)
When the Watchpoint Unit is enabled, the values in the WPDAx registers 
are compared to the address on the data buses. Corresponding count 
values in the Watchpoint Data Address Count registers (WPDACNTx) are 
decremented on each match.

Figure 20-5 shows the Watchpoint Data Address registers, WPDA[1:0]. 

Watchpoint Data Address Count Value Registers 
(WPDACNTx)

When the Watchpoint Unit is enabled, the count values in these registers 
are decremented each time the address or the address bus matches a value 
in the WPDAx registers. Load this WPDACNTx register with a value that is one 
less than the number of times the watchpoint must match before trigger-
ing an event. 

Figure 20-5. Watchpoint Data Address Registers

Table 20-8. Watchpoint Data Address Register MMR Assignments

Register Name Memory-Mapped Address

WPDA0 0xFFE0 7140

WPDA1 0xFFE0 7144

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Data Address Registers (WPDAx)

Reset = Undefined

WPDA (Data Address) [31:16]

WPDA (Data Address) [15:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

For MMR assign-
ments, see 
Table 20-8.
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Figure 20-6 shows the Watchpoint Data Address Count Value registers, 
WPDACNT[1:0]. 

Figure 20-6. Watchpoint Data Address Count Value Registers 

Table 20-9. Watchpoint Data Address Count Value Register MMR 
Assignments

Register Name Memory-Mapped Address

WPDACNT0 0xFFE0 7180

WPDACNT1 0xFFE0 7184

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Watchpoint Data Address Count Value Registers (WPDACNTx) 

Reset = Undefined

WPDACNT (Count Value)[15:0] 

For MMR assign-
ments, see 
Table 20-9.
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Watchpoint Data Address Control Register (WPDACTL)

For more information about the bits in the WPDACTL register (Figure 20-7), 
see “Data Address Watchpoints” on page 20-10. 

Figure 20-7. Watchpoint Data Address Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

Watchpoint Data Address Control Register (WPDACTL) 

Reset = Undefined

00 - Reserved
01 - Match on write access only 

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or 

write accesses on WPDA1

WPDACC1[1:0]

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0 

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1
range

WPDACC0[1:0]

WPDREN01
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA0,
End address = WPIA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0

WPDAEN1
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0 or 

on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0 or 

on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1 

on WPDA0 or on the WPDA0 to WPDA1
range

0xFFE0 7100
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Watchpoint Status Register (WPSTAT) 
The WPSTAT register monitors the status of the watchpoints. It may be read 
and written in Supervisor or Emulator modes only. When a watchpoint or 
watchpoint range matches, this register reflects the source of the watch-
point. The status bits in the WPSTAT register are sticky, and all of them are 
cleared when any write, regardless of the value, is performed to the 
register.

Figure 20-8 shows the Watchpoint Status register.

Trace Unit
The Trace Unit stores a history of the last sixteen changes in program flow 
taken by the program sequencer. The history allows the user to recreate 
the program sequencer’s recent path. 

The trace buffer can be enabled to cause an exception when full. The 
exception service routine associated with the exception saves trace buffer 
entries to memory. Thus, the complete path of the program sequencer 
since the trace buffer was enabled can be recreated.

Changes in program flow because of zero-overhead loops are not stored in 
the trace buffer. For debugging code that is halted within a zero-overhead 
loop, the iteration count is available in the loop count registers, LC0 and 
LC1. 

The trace buffer can be configured to omit recording of changes in pro-
gram flow that match either the last entry or one of the last two entries. 
Omitting one of these entries from the record prevents the trace buffer 
from overflowing because of loops in the program. Because zero-overhead 
loops are not recorded in the trace buffer, this feature can be used to pre-
vent trace overflow from loops that are nested four deep.
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When read, the Trace Buffer register (TBUF) returns the top value from the 
Trace Unit stack, which contains as many as sixteen entries. Each entry 
contains a pair of branch source and branch target addresses. A read of 
TBUF returns the newest entry first, starting with the branch destination. 
The next read provides the branch source address. 

Figure 20-8. Watchpoint Status Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

Watchpoint Data Address Control Register (WPDACTL) 

Reset = Undefined

00 - Reserved
01 - Match on write access only 

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or 

write accesses on WPDA1

WPDACC1[1:0]

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0 

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1
range

WPDACC0[1:0]

WPDREN01
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA0,
End address = WPIA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0

WPDAEN1
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0 or 

on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0 or 

on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1 

on WPDA0 or on the WPDA0 to WPDA1
range

0xFFE0 7100
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The number of valid entries in TBUF is held in the TBUFCNT field of the 
TBUFSTAT register. On every second read, TBUFCNT is decremented. Because 
each entry corresponds to two pieces of data, a total of 2  TBUFCNT reads 
empties TBUF. 

 Discontinuities that are the same as either of the last two entries in 
the trace buffer are not recorded.

 Because reading the trace buffer is a destructive operation, it is rec-
ommended that TBUF be read in a non-interruptible section of 
code. 

Note if single-level compression has occurred, the LSB of the branch tar-
get address is set. If two-level compression has occurred, the LSB of the 
branch source address is set.

Trace Buffer Control Register (TBUFCTL)
The Trace Unit is enabled by two control bits in the Trace Buffer Control 
register (TBUFCTL) register. First, the Trace Unit must be activated by set-
ting the TBUFPWR bit. If TBUFPWR=1, then setting TBUFEN to 1 enables the 
Trace Unit.

Figure 20-9 shows the Trace Buffer Control register (TBUFCTL). If 
TBUFOVF = 1, then the Trace Unit does not record discontinuities in the 
exception, NMI, and reset routines. 
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Trace Buffer Status Register (TBUFSTAT)
Figure 20-10 shows the Trace Buffer Status register (TBUFSTAT). Two reads 
from TBUF decrements TBUFCNT by 1.

Figure 20-9. Trace Buffer Control Register 

Figure 20-10. Trace Buffer Status Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X X

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Control Register (TBUFCTL)

TBUFPWR
0 - Trace buffer is off
1 - Trace buffer is active

TBUFEN
0 - Trace buffer disabled
1 - Trace buffer enabled

TBUFOVF
0 - Overflows are ignored
1 - Trace buffer overflow

causes an exception event 

CMPLP[1:0]

X

00 - Compression disabled
Record all discontinuities

01 - Compress single-level
loops

10 - Compress two-level loops

0xFFE0 6000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X XX

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Status Register (TBUFSTAT)

TBUFCNT[4:0]
Number of valid discontinuities
stored in the trace buffer

0xFFE0 6004
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Trace Buffer Register (TBUF)
Figure 20-11 shows the Trace Buffer register (TBUF). The first read returns 
the latest branch target address. The second read returns the latest branch 
source address.

The Trace Unit does not record changes in program flow in:

• Emulator mode

• The reset service routine

• The exception or higher priority service routines (if TBUOVF = 1)

• In the exception service routine, the program flow discontinuities 
may be read from TBUF and stored in memory by using the follow-
ing code.

 While TBUF is being read, be sure to disable the trace buffer from 
recording new discontinuities.

Code to Recreate the Execution Trace in Memory

Listing 20-1 provides code that can be used to recreate the entire execu-
tion trace in memory. 

Figure 20-11. Trace Buffer Register 

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100
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Listing 20-1. Recreating the Execution Trace in Memory

[--sp] = (r7:7, p5:2);   /* save registers used in this routine 

*/

p5 = 32;   /* 32 reads are needed to empty TBUF pointer to the 

header (first location) of the software trace buffer */

p2.l = buf;

p2.h = buf;   /* the header stores the first available empty buf 

location for subsequent trace dumps */

p4 = [p2++];   /* get the first available empty buf location from 

the buf header */

p3.l = TBUF & 0xffff;   /* low 16-bits of TBUF */

p3.h = TBUF >> 16;   /* high 16-bits of TBUF */

lsetup(loop1_start, loop1_end) lc0 = p5;

loop1_start: r7 = [p3];   /* read from TBUF */

loop1_end: [p4++] = r7;   /* write to memory and increment */ 

[p2] = p4;   /* pointer to the next available buf location is 

saved in the header of buf */

(r7:7, p5:3) = [sp++];   /* restore saved registers */

Performance Monitoring Unit
Two 32-bit counters, the Performance Monitor Counter registers 
(PFCNTR[1:0]) and the Performance Control register (PFCTL), count the 
number of occurrences of an event from within a processor core unit dur-
ing a performance monitoring period. These registers provide feedback 
indicating the measure of load balancing between the various resources on 
the chip so that expected and actual usage can be compared and analyzed. 
In addition, events such as mispredictions and hold cycles can also be 
monitored.
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Performance Monitor Counter Registers (PFCNTRx)
Figure 20-12 shows the Performance Monitor Counter registers, 
PFCNTR[1:0]. The PFCNTR0 register contains the count value of perfor-
mance counter 0. The PFCNTR1 register contains the count value of 
performance counter 1. 

Performance Monitor Control Register (PFCTL)
To enable the Performance Monitoring Unit, set the PFPWR bit in the 
PFCTL register (Figure 20-13). Once the unit is enabled, individual 
count-enable bits (PFCENx) take effect. Use the PFCENx bits to enable or 
disable the performance monitors in User mode, Supervisor mode, or 
both. Use the PEMUSWx bits to select the type of event triggered. 

Figure 20-12. Performance Monitor Counter Registers 

Table 20-10. Performance Monitor Counter Register MMR Assignments

Register Name Memory-Mapped Address

PFCNTR0 0xFFE0 8100

PFCNTR1 0xFFE0 8104

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100
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Figure 20-13. Performance Monitor Control Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

XX X X

XXX

15 14 13 12 11 10 9 8 7 6

X X X X X X X X

X XX X X X X X X X X X

Performance Monitor Control Register (PFCTL) 

Reset = Undefined

PFMON1[7:0]
Refer to Event Monitor table 
(Table 20-11)

0

5 4 3 2 1 0

0 0 0

PFPWR
0 - Performance Monitor

disabled
1 - Performance Monitor

enabled
PEMUSW0
0 - Count down of performance

counter PFCNTR0 causes
exception event

1 - Count down of performance
counter PFCNTR0 causes
emulation event

PFCEN0[1:0]
00 - Disable Performance 

Monitor 0
01 - Enable Performance

Monitor 0 in User mode
only

10 - Enable Performance
Monitor 0 in Supervisor
mode only

11 - Enable Performance
Monitor 0 in both User and
Supervisor modes

PFCEN1[1:0]

Refer to Event Monitor table 
(Table 20-11)

PFMON0[7:0]

00 - Disable Performance 
Monitor 1

01 - Enable Performance
Monitor 1 in User mode
only

10 - Enable Performance
Monitor 1 in Supervisor
mode only

11 - Enable Performance
Monitor 1 in both User and
Supervisor modes

PEMUSW1
0 - Count down of performance

counter PFCNTR1 causes
exception event

1 - Count down of performance
counter PFCNTR1 causes
emulation event

0xFFE0 8000
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Event Monitor Table
Table 20-11 identifies events that cause the Performance Monitor Coun-
ter registers (PFMON[1:0]) to increment. 

Table 20-11. Event Monitor Table

PFMONx Fields Events That Cause the PFCNTRx Counter Registers 
to Increment

0x00 Stalls caused by L1 Instruction Cache (IC) misses

0x01 L1 IC misses

0x02 L1 IC hits

0x04 L1 IC bank conflicts

0x05 L1 IC fill buffer hits

0x20 Loop0 iterations

0x21 Loop1 iterations

0x22 Loop buffer 0 invalidates (because of branches, jumps, 
and similar operations)

0x23 Loop buffer 1 invalidates (because of branches, jumps, 
and similar operations)

0x24 PC-relative branches

0x25 Indirect branches

0x26 Mispredicted branches

0x27 Taken branches

0x28 Not taken branches

0x29 Total branches

0x2A Stalls because of CSYNC, SSYNC

0x2B EXCPT instructions

0x2C CSYNC, SSYNC instructions

0x2D Committed instructions

0x2E Interrupts taken
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0x2F Misaligned Address Violation exceptions

0x40 Stall cycles because of read-after-write hazards on DAG 
registers

0x41 Stall cycles because of write-after-write hazards on 
DAG registers

0x60 Load hits

0x61 Load misses

0x62 Store hits

0x63 Store misses

0x64 Data Bank A load hits

0x65 Data Bank A store hits

0x66 Data Bank B load hits

0x67 Data Bank B store hits

0x68 L1 data memory hits

0x69 L1 data memory misses

0x6A Store buffer is full

0x6B Write buffer is full

0x6C Core/system bank conflicts

0x6D DAG0 & DAG1 bank conflicts

0x6E Scratch SRAM hits

0x6F DMA reads

0x70 DMA writes

0x71 LMU stalls in EX2

0x72 LMU stalls in EX3

0x73 LMU exceptions

0x74 Stall cycles because of store buffer cancels

Table 20-11. Event Monitor Table (Cont’d)

PFMONx Fields Events That Cause the PFCNTRx Counter Registers 
to Increment
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Cycle Counter
The cycle counter counts CCLK cycles while the program is executing. All 
cycles, including execution, wait state, interrupts, and events, are counted 
while the processor is in User or Supervisor mode, but the cycle counter 
stops counting in Emulator mode.

The cycle counter is a 64-bit counter that increments every cycle. The 
count value is stored in two 32-bit registers, CYCLES and CYCLES2. The 
least significant 32 bits are stored in CYCLES. The most significant 32 bits 
are stored in CYCLES2. 

 To ensure the correct cycle count, a read from CYCLES must occur 
before reading from CYCLES2.

In User mode, these two registers may be read, but not written. In Super-
visor and Emulator modes, they are read/write registers. 

To enable the cycle counters, set the CCEN bit in the SYSCFG register.

This example shows how to turn on the cycle counter:

r2 = 0 ;

cycles = r2 ;

cycles2 = r2 ;

r2 = SYSCFG ;

bitset(r2, 1) ;

SYSCFG = r2 ;

/* Insert code to be benchmarked */

0x75 Store to load forwarding

0x80 Stall cycles because of EX stage data hazards

Table 20-11. Event Monitor Table (Cont’d)

PFMONx Fields Events That Cause the PFCNTRx Counter Registers 
to Increment
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r2 = SYSCFG ;

bitclr(r2, 1) ;

SYSCFG = r2 ;

Execution Cycle Count Registers (CYCLES and 
CYCLES2)

The Execution Cycle Count registers, shown in Figure 20-14, consist of 
CYCLES and CYCLES2. This 64-bit counter increments every CCLK cycle. The 
CYCLES register contains the least significant 32 bits of the cycle counter’s 
64-bit count value. The CYCLES2 register contains the most significant 32 
bits.

Product Identification Registers
The 32-bit Chip ID register (CHIPID) is a system MMR that contains the 
product identification and revision fields for the ADSP-BF535 processor. 
The 32-bit DSP Device ID register (DSPID) is a core MMR that contains 
core identification and revision fields for the core.

Figure 20-14. Execution Cycle Count Registers 

X X XX X X X X X X X X X X XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Execution Cycle Count Registers (CYCLES and CYCLES2)

CYCLES / CYCLES2[15:0]

CYCLES / CYCLES2[31:16]

RO in User mode. RW in Supervisor and Emulator modes.
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Chip ID Register (CHIPID)
The Chip ID register (CHIPID), shown in Figure 20-15, is a read-only reg-
ister. The definition of this register complies with Joint Electronic Device 
Engineering Council (JEDEC) standard JEP106, Standard Manufac-
turer’s Identification Code:

• CHIPID[31:28]: silicon revision number

• CHIPID[27:12]: part number 0x4000

• CHIPID[11:1]: Analog Devices, Inc., ID number 0xE5 – drop the 
MSB (parity) and set MSBs to 0 (no ID extension) in accordance 
with the JTAG standard: 0x065.

• CHIPID[0]: set to 1

Figure 20-15. Chip ID Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 0 0 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0X X X X 0 1 0 0 0 0 0 0 0 0 0

Chip ID Register (CHIPID)

Manufacturer ID[10:0]Part Number[3:0]

Part Number[15:4]Version[3:0]

Reset = See Data Sheet 

RO 

0xFFC0 48C0
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DSP Device ID Register (DSPID)
The DSP Device ID register (DSPID), shown in Figure 20-16, is read-only 
and part of the core. The DSPID value is an input to the core.

DMA Bus Debug Registers
During normal operation, the core has no direct visibility into the DMA 
bus. However, the SBIU includes two registers that provide visibility into 
the bus and control of it. Additional information about the SBIU is avail-
able in “Chip Bus Hierarchy” on page 7-1.

If a DMA channel does not behave as expected, these two registers provide 
a debug capability:

• DMA Bus Control Comparator register (DB_CCOMP)

• DMA Bus Address Comparator register (DB_ACOMP) 

Figure 20-16. DSP Device ID Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

DSP Device ID Register (DSPID)

DSPID[7:0]

Reset = 0x0000 0000

RO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1X X X X X X X 0 0 0 0 0 0 0

0xFFE0 5000
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DMA Bus Control Comparator Register 
(DB_CCOMP)

The DMA Bus Control Comparator register (DB_CCOMP), shown in 
Figure 20-17, provides control for the debug register pair. Program this 
register with the type of bus operation that you wish to detect. Program 
the address associated with this control field into the DMA Bus Address 
Comparator register (DB_ACOMP). See “DMA Bus Address Comparator 
Register (DB_ACOMP)” on page 20-29.

When enabled, this function compares the address and control fields of 
each bus operation on the DMA bus to those programmed into the 
address and control comparator fields. If a match occurs, the function sets 
the Compare Hit (CH) status bit in DB_CCOMP. If the interrupt is unmasked, 
the hit also generates a Hardware Error interrupt to the core. The source 
of the interrupt can be determined by reading the core MMR HWE Cause 
field in SEQSTAT, and/or by reading DB_CCOMP status. 

Figure 20-17. DMA Bus Control Comparator Register 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Bus Control Comparator Register (DB_CCOMP)

0 - Look for write operation
1 - Look for read operation

Compare Read

Compare Burst

0 - Comparator function is
disabled

1 - Comparator function is
enabled

Enable Compare and Count
0 - Look for burst operation
1 - Look for nonburst operation

CH (Compare Hit) - W1C

Enable HWE Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Cycle Count[15:0]

Read/write

0 - No interrupt generated 
on hit

1 - Interrupt generated on hit
detect

0 - No match detected
1 - Match detected

Reset = 0x0000 00000xFFC0 4888
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The upper 16 bits of the DMA Bus Control Comparator register provide a 
cycle count function that helps determine when a given DMA access has 
occurred. The counter is clocked by the DMA bus clock. 

The counter can be cleared in either of two ways: 

• By a hardware reset

• By clearing the Enable Compare and Count bit (DB_CCOMP[0])

When enabled, the counter increments from 0 to a maximum value of 
65,535 until a match is detected or the compare-and-count function is 
disabled. A comparison match freezes the counter within two cycles of the 
assertion of CH.

DMA Bus Address Comparator Register 
(DB_ACOMP)

Figure 20-18 shows the DMA Bus Address Comparator register 
(DB_ACOMP). Program into this register the DMA address that is associated 
with the type of bus information that you wish to detect.

Figure 20-18. DMA Bus Address Comparator Register 

DMA Bus Address Comparator Register (DB_ACOMP)
Read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Address[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Address[31:16]

Reset = 0x0000 00000xFFC0 4884
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A BLACKFIN PROCESSOR 
CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers are in the address 
range 0xFFE0 0000–0xFFFF FFFF. All MMRs are 32-bits and can be 
accessed only with 32-bit aligned memory operations.

This appendix lists core MMR addresses and register names. To find more 
information about an MMR, refer to the page shown in the “See Section” 
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to the additional information 
about the MMR.

L1 Data Memory Controller Registers
Table A-1 lists the MMR assignments for the L1 Data Memory Controller 
registers (0xFFE0 0000–0xFFE0 0040C).

Table A-1. L1 Data Memory Controller Registers

Memory- Mapped 
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “Data Memory Control Register 
(DMEM_CONTROL)” on page 6-12

0xFFE0 0008 DCPLB_STATUS “DCPLB Status Register 
(DCPLB_STATUS)” on page 6-73

0xFFE0 000C DCPLB_FAULT_ADDR “DCPLB Fault Address Register 
(DCPLB_FAULT_ADDR)” on page 6-75

0xFFE0 0100 DCPLB_ADDR0 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69
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0xFFE0 0104 DCPLB_ADDR1 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0108 DCPLB_ADDR2 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 010C DCPLB_ADDR3 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0110 DCPLB_ADDR4 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0114 DCPLB_ADDR5 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0118 DCPLB_ADDR6 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 011C DCPLB_ADDR7 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0120 DCPLB_ADDR8 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0124 DCPLB_ADDR9 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0128 DCPLB_ADDR10 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 012C DCPLB_ADDR11 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0130 DCPLB_ADDR12 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0134 DCPLB_ADDR13 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0138 DCPLB_ADDR14 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

0xFFE0 013C DCPLB_ADDR15 “DCPLB Address Registers 
(DCPLB_ADDRx)” on page 6-69

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFE0 0200 DCPLB_DATA0 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0204 DCPLB_DATA1 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0 xFFE0 0208 DCPLB_DATA2 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 020C DCPLB_DATA3 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0210 DCPLB_DATA4 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0214 DCPLB_DATA5 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0218 DCPLB_DATA6 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 021C DCPLB_DATA7 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0220 DCPLB_DATA8 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0224 DCPLB_DATA9 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0228 DCPLB_DATA10 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 022C DCPLB_DATA11 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0230 DCPLB_DATA12 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0234 DCPLB_DATA13 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0238 DCPLB_DATA14 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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L1 Instruction Memory Controller 
Registers

Table A-2 lists the MMR assignments for the L1 Instruction Memory 
Controller registers (0xFFE0 1004–0xFFE0 6100).

0xFFE0 023C DCPLB_DATA15 “DCPLB Data Registers (DCPLB_DATAx)” 
on page 6-65

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register 
(DTEST_COMMAND)” on page 6-49

0xFFE0 0400 DTEST_DATA0 “Data Test Data 0 Register 
(DTEST_DATA0)” on page 6-50

0xFFE0 0404 DTEST_DATA1 “Data Test Data 1 Register 
(DTEST_DATA1)” on page 6-49

0xFFE0 0408 DTEST_DATA2 “Data Test Data 0 Register 
(DTEST_DATA0)” on page 6-50

0xFFE0 040C DTEST_DATA3 “Data Test Data 1 Register 
(DTEST_DATA1)” on page 6-49

Table A-2. L1 Instruction Memory Controller Registers

Memory- Mapped 
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “Instruction Memory Control Register 
(IMEM_CONTROL)” on page 6-12

0xFFE0 1008 ICPLB_STATUS “ICPLB Status Register (ICPLB_STATUS)” 
on page 6-74

0xFFE0 100C ICPLB_FAULT_ADDR “ICPLB Fault Address Register 
(ICPLB_FAULT_ADDR)” on page 6-76

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFE0 1100 ICPLB_ADDR0 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1104 ICPLB_ADDR1 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1108 ICPLB_ADDR2 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 110C ICPLB_ADDR3 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1110 ICPLB_ADDR4 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1114 ICPLB_ADDR5 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1118 ICPLB_ADDR6 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 111C ICPLB_ADDR7 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1120 ICPLB_ADDR8 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1124 ICPLB_ADDR9 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1128 ICPLB_ADDR10 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 112C ICPLB_ADDR11 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1130 ICPLB_ADDR12 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1134 ICPLB_ADDR13 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1138 ICPLB_ADDR14 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFE0 113C ICPLB_ADDR15 “ICPLB Address Registers (ICPLB_ADDRx)” 
on page 6-71

0xFFE0 1200 ICPLB_DATA0 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1204 ICPLB_DATA1 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1208 ICPLB_DATA2 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 120C ICPLB_DATA3 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1210 ICPLB_DATA4 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1214 ICPLB_DATA5 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1218 ICPLB_DATA6 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 121C ICPLB_DATA7 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1220 ICPLB_DATA8 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 12245 ICPLB_DATA9 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1228 ICPLB_DATA10 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 122C ICPLB_DATA11 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1230 ICPLB_DATA12 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1234 ICPLB_DATA13 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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Interrupt Controller Registers
Table A-3 lists the MMR assignments for the Interrupt Controller regis-
ters (0xFFE0 2000–0xFFE0 210C).

0xFFE0 1238 ICPLB_DATA14 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 123C ICPLB_DATA15 “ICPLB Data Registers (ICPLB_DATAx)” on 
page 6-67

0xFFE0 1300 ITEST_COMMAND “Instruction Test Command Register 
(ITEST_COMMAND)” on page 6-27

0XFFE0 1400 ITEST_DATA0 “Instruction Test Data 0 Register 
(ITEST_DATA0)” on page 6-29

0XFFE0 1404 ITEST_DATA1 “Instruction Test Data 1 Register 
(ITEST_DATA1)” on page 6-28

Table A-3. Interrupt Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU) 

“Core Event Vector Table” on page 4-35

0xFFE0 2004 EVT1
(RST) 

“Core Event Vector Table” on page 4-35

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-35

0xFFE0 200C EVT3
(EVX) 

“Core Event Vector Table” on page 4-35

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-35

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-35

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-35

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-35

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-35

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-35

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-35

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-35

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-35

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-35

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-35

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-35

0xFFE0 2104 IMASK
(EVT_IMASK)

“Core Interrupt Mask Register” on page 4-32

0xFFE0 2108 IPEND
(EVT_IPEND)

“Core Interrupt Pending Register” on 
page 4-34

0xFFE0 210C ILAT
(EVT_ILAT)

“Core Interrupt Latch Register” on page 4-33

Table A-3. Interrupt Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Core Timer Registers
Table A-4 lists the MMR assignments for the Core Timer registers 
(0xFFE0 3000–0xFFE0 300C).

DSP Device ID Register
Table A-5 lists the MMR assignments for the DSP Device ID register 
(0xFFE0 5000–0xFFE0 500C). 

Table A-4. Core Timer Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 3000 TCNTL “Core Timer Control Register (TCNTL)” on 
page 16-22

0xFFE0 3004 TPERIOD “Core Timer Period Register (TPERIOD)” 
on page 16-24

0xFFE0 3008 TSCALE “Core Timer Scale Register (TSCALE)” on 
page 16-24

0xFFE0 300C TCOUNT “Core Timer Count Register (TCOUNT)” 
on page 16-23

Table A-5. DSPID Register

Memory- Mapped 
Address

Register Name See Section

0xFFE0 5000 DSPID “DSP Device ID Register (DSPID)” on 
page 20-27
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Trace Unit Registers
Table A-6 lists the MMR assignments for the Trace Unit registers 
(0xFFE0 6000–0xFFE0 6100).

Watchpoint and Patch Registers
Table A-7 lists the MMR assignments for the Watchpoint and Patch regis-
ters (0xFFE0 1C00–0xFFE0 7200). 

Table A-6. Trace Unit Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 6000 TBUFCTL “Trace Buffer Control Register (TBUFCTL)” 
on page 20-16

0xFFE0 6004 TBUFSTAT “Trace Buffer Status Register (TBUFSTAT)” 
on page 20-17

0xFFE0 6100 TBUF “Trace Buffer Register (TBUF)” on 
page 20-18

Table A-7. Watchpoint and Patch Registers

Memory- Mapped 
Address

Register Name See Section

0xFFE0 7000 WPIACTL “Watchpoint Instruction Address Control 
Register (WPIACTL)” on page 20-7

0xFFE0 7040 WPIA0 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7044 WPIA1 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7048 WPIA2 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5
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0xFFE0 704C WPIA3 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7050 WPIA4 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7054 WPIA5 “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7080 WPIACNT0 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7084 WPIACNT1 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7088 WPIACNT2 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 708C WPIACNT3 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7090 WPIACNT4 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7094 WPIACNT5 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7100 WPDACTL “Watchpoint Instruction Address Registers 
(WPIAx)” on page 20-5

0xFFE0 7140 WPDA0 “Watchpoint Data Address Registers 
(WPDAx)” on page 20-11

0xFFE0 7144 WPDA1 “Watchpoint Data Address Registers 
(WPDAx)” on page 20-11

0xFFE0 7180 WPDACNT0 “Watchpoint Data Address Count Value Reg-
isters (WPDACNTx)” on page 20-11

0xFFE0 7184 WPDACNT1 “Watchpoint Data Address Count Value Reg-
isters (WPDACNTx)” on page 20-11

0xFFE0 7200 WPSTAT “Trace Buffer Status Register (TBUFSTAT)” 
on page 20-17

Table A-7. Watchpoint and Patch Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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Performance Monitor Registers
Table A-8 lists the MMR assignments for the Performance Monitor regis-
ters (0xFFE0 8000–0xFFE0 8104). 

Table A-8. Performance Monitor Registers

Memory-Mapped 
Address

Register Name See Section

0xFFE0 8000 PFCTL “Performance Monitor Control Register 
(PFCTL)” on page 20-20

0xFFE0 8100 PFCNTR0 “Performance Monitor Control Register 
(PFCTL)” on page 20-20

0xFFE0 8104 PFCNTR1 “Performance Monitor Control Register 
(PFCTL)” on page 20-20
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B SYSTEM MMR ASSIGNMENTS

These notes provide general information about the ADSP-BF535 system 
memory-mapped registers (MMRs):

• The system MMR address range is 0xFFC00000–0xFFDFFFFF.

• All system MMRs are either 16-bit, or 32-bit register widths.

• 32-bit system MMRs can only be accessed with 32-bit aligned 
memory operations.

• A dedicated set of PCI registers reside at 0xEEFFFF00–
0xEEFFFFFF.

• All system MMR space that is not defined in this appendix is 
reserved for internal use only.

This appendix lists MMR addresses and register names. To find more 
information about an MMR, refer to the page shown in the “See Section” 
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to the additional information 
about the MMR.
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Clock and System Control Registers
Table B-1 lists the MMR assignments for the Clock and System Control 
registers (0xFFC0 0400–0xFFC0 07FF).

Chip ID Register
Table B-2 lists the MMR assignment for the Chip ID register (0xFFC0 
48C0).

Table B-1. Clock and System Control Registers

Memory- Mapped 
Address

Register Name See Section

0xFFC0 0400 PLL_CTL “PLL Control Register (PLL_CTL)” on 
page 8-7

0xFFC0 0404 PLL_STAT “PLL Status Register (PLL_STAT)” on 
page 8-9

0xFFC0 0406 PLL_LOCKCNT “PLL Lock Count Register 
(PLL_LOCKCNT)” on page 8-10

0xFFC0 0408 PLL_IOCK “Peripheral Clock Enable Register 
(PLL_IOCK)” on page 8-22

0xFFC0 0410 SWRST “Software Reset Register (SWRST)” on 
page 3-16

0xFFC0 0414 SYSCR “System Reset Configuration Register 
(SYSCR)” on page 3-14

Table B-2. Chip ID Register

Memory- Mapped 
Address

Register Name See Section

0xFFC0 48C0 CHIPID “Chip ID Register (CHIPID)” on page 20-26
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System Interrupt Controller Registers
Table B-3 lists the MMR assignments for the System Interrupt Controller 
registers (0xFFC0 0C00–0xFFC0 0FFF).

Table B-3. System Interrupt Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 0C04 SIC_IAR0 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29

0xFFC0 0C08 SIC_IAR1 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29

0xFFC0 0C0C SIC_IAR2 “System Interrupt Assignment Registers 
(SIC_IARx)” on page 4-29

0xFFC0 0C10 SIC_IMASK “System Interrupt Status Register (SIC_ISR)” 
on page 4-25

0xFFC0 0C14 SIC_ISR “System Interrupt Status Register (SIC_ISR)” 
on page 4-25

0xFFC0 0C18 SIC_IWR “System Interrupt Wakeup-Enable Register 
(SIC_IWR)” on page 4-24
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Watchdog Timer Registers
Table B-4 lists the MMR assignments for the Watchdog Timer registers 
(0xFFC0 1000–0xFFC0 13FF).

Real-Time Clock Registers
Table B-5 lists the MMR assignments for the Real-Time Clock registers 
(0xFFC0 1400–0xFFC0 17FF). 

Table B-4. Watchdog Timer Registers 

Memory-Mapped 
Address

Register Name See Section

0xFFC0 1000 WDOG_CTL “Watchdog Control Register (WDOG_CTL)” on 
page 16-27

0xFFC0 1004 WDOG_CNT “Watchdog Count Register (WDOG_CNT)” on 
page 16-26

0xFFC0 1008 WDOG_STAT “Watchdog Status Register (WDOG_STAT)” on 
page 16-26

Table B-5. Real-Time Clock Registers

Memory- Mapped 
Address

Register Name See Section

0xFFC0 1400 RTC_STAT “RTC Status Register (RTC_STAT)” on 
page 17-7

0xFFC0 1404 RTC_ICTL “RTC Interrupt Control Register 
(RTC_ICTL)” on page 17-8

0xFFC0 1408 RTC_ISTAT “RTC Interrupt Status Register 
(RTC_ISTAT)” on page 17-9

0xFFC0 140C RTC_SWCNT “RTC Stopwatch Count Register 
(RTC_SWCNT)” on page 17-10
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System MMR Assignments

UART0 Controller Registers
Table B-6 lists the MMR assignments for the UART0 Controller registers 
(0xFFC0 1800–0xFFC0 1BFF).

0xFFC0 1410 RTC_ALARM “RTC Alarm Register (RTC_ALARM)” on 
page 17-11

0xFFC0 1414 RTC_FAST “RTC Enable Register (RTC_FAST)” on 
page 17-12

Table B-6. UART0 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 1800 UART0_THR “UARTx Transmit Holding Regis-
ters (UARTx_THR)” on page 12-5

0xFFC0 1800 UART0_RBR “UARTx Receive Buffer Registers 
(UARTx_RBR)” on page 12-6

0xFFC0 1800 UART0_DLL “UARTx Divisor Latch Registers 
(UARTx_DLL, UARTx_DLH)” on 
page 12-10

0xFFC0 1802 UART0_DLH “UARTx Divisor Latch Registers 
(UARTx_DLL, UARTx_DLH)” on 
page 12-10

0xFFC0 1802 UART0_IER “UARTx Interrupt Enable Registers 
(UARTx_IER)” on page 12-7

0xFFC0 1804 UART0_IIR “UARTx Interrupt Identification 
Registers (UARTx_IIR)” on 
page 12-9

0xFFC0 1806 UART0_LCR “UARTx Line Control Registers 
(UARTx_LCR)” on page 12-3

Table B-5. Real-Time Clock Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFC0 1808 UART0_MCR “UARTx Modem Control Registers 
(UARTx_MCR)” on page 12-12

0xFFC0 180A UART0_LSR “UARTx Line Status Registers 
(UARTx_LSR)” on page 12-4

0xFFC0 180C UART0_MSR “UARTx Modem Status Registers 
(UARTx_MSR)” on page 12-14

0xFFC0 180E UART0_SCR “UARTx Scratch Registers 
(UARTx_SCR)” on page 12-15

0xFFC0 1810 UART0_IRCR “UART0 Infrared Control Register 
(UART0_IRCR)” on page 12-36

0xFFC0 1A00 UART0_CURR_PTR_RX “UARTx Receive DMA Current 
Descriptor Pointer Registers 
(UARTx_CURR_PTR_RX)” on 
page 12-19

0xFFC0 1A02 UART0_CONFIG_RX “UARTx Receive DMA Configura-
tion Registers 
(UARTx_CONFIG_RX)” on 
page 12-20

0xFFC0 1A04 UART0_START_ADDR_HI_RX “UARTx Receive DMA Start Address 
High Registers 
(UARTx_START_ADDR_HI_RX)” 
on page 12-22

0xFFC0 1A06 UART0_START_ADDR_LO_RX “UARTx Receive DMA Start Address 
Low Registers 
(UARTx_START_ADDR_LO_RX)” 
on page 12-23

0xFFC0 1A08 UART0_COUNT_RX “UARTx Receive DMA Count Regis-
ters (UARTx_COUNT_RX)” on 
page 12-24

0xFFC0 1A0A UART0_NEXT_DESCR_RX “UARTx Receive DMA Next 
Descriptor Pointer Registers 
(UARTx_NEXT_DESCR_RX)” on 
page 12-25

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 1A0C UART0_DESCR_RDY_RX “UARTx Receive DMA Descriptor 
Ready Registers 
(UARTx_DESCR_RDY_RX)” on 
page 12-26

0xFFC0 1A0E UART0_IRQSTAT_RX “UARTx Receive DMA IRQ Status 
Registers (UARTx_IRQSTAT_RX)” 
on page 12-27

0xFFC0 1B00 UART0_CURR_PTR_TX “UARTx Transmit DMA Current 
Descriptor Pointer Registers 
(UARTx_CURR_PTR_TX)” on 
page 12-28

0xFFC0 1B02 UART0_CONFIG_TX “UARTx Transmit DMA Configura-
tion Registers 
(UARTx_CONFIG_TX)” on 
page 12-29

0xFFC0 1B04 UART0_START_ADDR_HI_TX “UARTx Transmit DMA Start 
Address High Registers 
(UARTx_START_ADDR_HI_TX)” 
on page 12-30

0xFFC0 1B06 UART0_START_ADDR_LO_TX “UARTx Transmit DMA Start 
Address Low Registers 
(UARTx_START_ADDR_LO_TX)” 
on page 12-31

0xFFC0 1B08 UART0_COUNT_TX “UARTx Transmit DMA Count Reg-
isters (UARTx_COUNT_TX)” on 
page 12-32

0xFFC0 1B0A UART0_NEXT_DESCR_TX “UARTx Transmit DMA Next 
Descriptor Pointer Registers 
(UARTx_NEXT_DESCR_TX)” on 
page 12-33

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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UART1 Controller Registers
Table B-7 lists the MMR assignments for the UART1 Controller registers 
(0xFFC0 1C00–0xFFC0 1FFF). 

0xFFC0 1B0C UART0_DESCR_RDY_TX “UARTx Transmit DMA Descriptor 
Ready Registers 
(UARTx_DESCR_RDY_TX)” on 
page 12-34

0xFFC0 1B0E UART0_IRQSTAT_TX “UARTx Transmit DMA IRQ Status 
Registers (UARTx_IRQSTAT_TX)” 
on page 12-35

Table B-7. UART1 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 1C00 UART1_THR “UARTx Transmit Holding Regis-
ters (UARTx_THR)” on page 12-5

0xFFC0 1C00 UART1_RBR “UARTx Receive Buffer Registers 
(UARTx_RBR)” on page 12-6

0xFFC0 1C00 UART1_DLL “UARTx Divisor Latch Registers 
(UARTx_DLL, UARTx_DLH)” on 
page 12-10

0xFFC0 1C02 UART1_DLH “UARTx Divisor Latch Registers 
(UARTx_DLL, UARTx_DLH)” on 
page 12-10

0xFFC0 1C02 UART1_IER “UARTx Interrupt Enable Registers 
(UARTx_IER)” on page 12-7

0xFFC0 1C04 UART1_IIR “UARTx Interrupt Identification 
Registers (UARTx_IIR)” on 
page 12-9

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 1C06 UART1_LCR “UARTx Line Control Registers 
(UARTx_LCR)” on page 12-3

0xFFC0 1C08 UART1_MCR “UARTx Modem Control Registers 
(UARTx_MCR)” on page 12-12

0xFFC0 1C0A UART1_LSR “UARTx Line Status Registers 
(UARTx_LSR)” on page 12-4

0xFFC0 1C0C UART1_MSR “UARTx Modem Status Registers 
(UARTx_MSR)” on page 12-14

0xFFC0 1C0E UART1_SCR “UARTx Scratch Registers 
(UARTx_SCR)” on page 12-15

0xFFC0 1E00 UART1_CURR_PTR_RX “UARTx Receive DMA Current 
Descriptor Pointer Registers 
(UARTx_CURR_PTR_RX)” on 
page 12-19

0xFFC0 1E02 UART1_CONFIG_RX “UARTx Receive DMA Configura-
tion Registers 
(UARTx_CONFIG_RX)” on 
page 12-20

0xFFC0 1E04 UART1_START_ADDR_HI_RX “UARTx Receive DMA Start Address 
High Registers 
(UARTx_START_ADDR_HI_RX)” 
on page 12-22

0xFFC0 1E06 UART1_START_ADDR_LO_RX “UARTx Receive DMA Start Address 
Low Registers 
(UARTx_START_ADDR_LO_RX)” 
on page 12-23

0xFFC0 1E08 UART1_COUNT_RX “UARTx Receive DMA Count Regis-
ters (UARTx_COUNT_RX)” on 
page 12-24

0xFFC0 1E0A UART1_NEXT_DESCR_RX “UARTx Receive DMA Next 
Descriptor Pointer Registers 
(UARTx_NEXT_DESCR_RX)” on 
page 12-25

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 1E0C UART1_DESCR_RDY_RX “UARTx Receive DMA Descriptor 
Ready Registers 
(UARTx_DESCR_RDY_RX)” on 
page 12-26

0xFFC0 1E0E UART1_IRQSTAT_RX “UARTx Receive DMA IRQ Status 
Registers (UARTx_IRQSTAT_RX)” 
on page 12-27

0xFFC0 1F00 UART1_CURR_PTR_TX “UARTx Transmit DMA Current 
Descriptor Pointer Registers 
(UARTx_CURR_PTR_TX)” on 
page 12-28

0xFFC0 1F02 UART1_CONFIG_TX “UARTx Transmit DMA Configura-
tion Registers 
(UARTx_CONFIG_TX)” on 
page 12-29

0xFFC0 1F04 UART1_START_ADDR_HI_TX “UARTx Transmit DMA Start 
Address High Registers 
(UARTx_START_ADDR_HI_TX)” 
on page 12-30

0xFFC0 1F06 UART1_START_ADDR_LO_TX “UARTx Transmit DMA Start 
Address Low Registers 
(UARTx_START_ADDR_LO_TX)” 
on page 12-31

0xFFC0 1F08 UART1_COUNT_TX “UARTx Transmit DMA Count Reg-
isters (UARTx_COUNT_TX)” on 
page 12-32

0xFFC0 1F0A UART1_NEXT_DESCR_TX “UARTx Transmit DMA Next 
Descriptor Pointer Registers 
(UARTx_NEXT_DESCR_TX)” on 
page 12-33

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Timer Registers
Table B-8 lists the MMR assignments for the Timer registers 
(0xFFC0 2000–0xFFC0 23FF). 

0xFFC0 1F0C UART1_DESCR_RDY_TX “UARTx Transmit DMA Descriptor 
Ready Registers 
(UARTx_DESCR_RDY_TX)” on 
page 12-34

0xFFC0 1F0E UART1_IRQSTAT_TX “UARTx Transmit DMA IRQ Status 
Registers (UARTx_IRQSTAT_TX)” 
on page 12-35

Table B-8. Timer Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 2000 TIMER0_STATUS “Timer Status Registers 
(TIMERx_STATUS)” on page 16-4

0xFFC0 2002 TIMER0_CONFIG “Timer Configuration Registers 
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2004 TIMER0_COUNTER_LO “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2006 TIMER0_COUNTER_HI “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2008 TIMER0_PERIOD_LO “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

0xFFC0 200A TIMER0_PERIOD_HI “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

0xFFC0 200C TIMER0_WIDTH_LO “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 200E TIMER0_WIDTH_HI “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

0xFFC0 2010 TIMER1_STATUS “Timer Status Registers 
(TIMERx_STATUS)” on page 16-4

0xFFC0 2012 TIMER1_CONFIG “Timer Configuration Registers 
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2014 TIMER1_COUNTER_LO “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2016 TIMER1_COUNTER_HI “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2018 TIMER1_PERIOD_LO “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

0xFFC0 201A TIMER1_PERIOD_HI “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

0xFFC0 201C TIMER1_WIDTH_LO “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

0xFFC0 201E TIMER1_WIDTH_HI “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

0xFFC0 2020 TIMER2_STATUS “Timer Status Registers 
(TIMERx_STATUS)” on page 16-4

0xFFC0 2022 TIMER2_CONFIG “Timer Configuration Registers 
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2024 TIMER2_COUNTER_LO “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2026 TIMER2_COUNTER_HI “Timer Counter Registers 
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2028 TIMER2_PERIOD_LO “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

0xFFC0 202A TIMER2_PERIOD_HI “Timer Period Registers 
(TIMERx_PERIOD)” on page 16-10

Table B-8. Timer Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Programmable Flag Registers
Table B-9 lists the MMR assignments for the Programmable Flag registers 
(0xFFC0 2400–0xFFC0 27FF).

0xFFC0 202C TIMER2_WIDTH_LO “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

0xFFC0 202E TIMER2_WIDTH_HI “Timer Width Registers 
(TIMERx_WIDTH)” on page 16-11

Table B-9. Programmable Flags Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 2400 FIO_DIR “Flag Direction Register (FIO_DIR)” on 
page 15-2

0xFFC0 2404 FIO_FLAG_C “Flag Set (FIO_FLAG_S) and Flag Clear 
(FIO_FLAG_C) Registers” on page 15-2

0xFFC0 2406 FIO_FLAG_S “Flag Set (FIO_FLAG_S) and Flag Clear 
(FIO_FLAG_C) Registers” on page 15-2

0xFFC0 2408 FIO_MASKA_C “Flag Interrupt Mask Registers 
(FIO_MASKA_C, FIO_MASKA_S, 
FIO_MASKB_C, FIO_MASKB_S)” on 
page 15-5

0xFFC0 240A FIO_MASKA_S “Flag Interrupt Mask Registers 
(FIO_MASKA_C, FIO_MASKA_S, 
FIO_MASKB_C, FIO_MASKB_S)” on 
page 15-5

0xFFC0 240C FIO_MASKB_C “Flag Interrupt Mask Registers 
(FIO_MASKA_C, FIO_MASKA_S, 
FIO_MASKB_C, FIO_MASKB_S)” on 
page 15-5

Table B-8. Timer Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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SPORT0 Controller Registers
Table B-10 lists the MMR assignments for the SPORT0 Controller regis-
ters (0xFFC0 2800–0xFFC0 2BFF). 

0xFFC0 240E FIO_MASKB_S “Flag Interrupt Mask Registers 
(FIO_MASKA_C, FIO_MASKA_S, 
FIO_MASKB_C, FIO_MASKB_S)” on 
page 15-5

0xFFC0 2410 FIO_POLAR “Flag Polarity Register (FIO_POLAR)” on 
page 15-9

0xFFC0 2414 FIO_EDGE “Flag Interrupt Sensitivity Register 
(FIO_EDGE)” on page 15-10

0xFFC0 2418 FIO_BOTH “Flag Set on Both Edges Register 
(FIO_BOTH)” on page 15-10

Table B-10. SPORT0 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 2800 SPORT0_TX_CONFIG “Transmit and Receive Configuration 
Registers (SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG)” on 
page 11-9

0xFFC0 2802 SPORT0_RX_CONFIG “Transmit and Receive Configuration 
Registers (SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG)” on 
page 11-9

0xFFC0 2804 SPORT0_TX “SPORTx Transmit (SPORTx_TX) 
Registers” on page 11-17

0xFFC0 2806 SPORT0_RX “SPORTx Receive (SPORTx_RX) 
Registers” on page 11-19

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 2808 SPORT0_TSCLKDIV “SPORTx Transmit 
(SPORTx_TSCLKDIV) and Receive 
(SPORTx_RSCLKDIV) Serial Clock 
Divider Registers” on page 11-20

0xFFC0 280A SPORT0_RSCLKDIV “SPORTx Transmit 
(SPORTx_TSCLKDIV) and Receive 
(SPORTx_RSCLKDIV) Serial Clock 
Divider Registers” on page 11-20

0xFFC0 280C SPORT0_TFSDIV “SPORTx Transmit 
(SPORTx_TFSDIV) and Receive 
(SPORTx_RFSDIV) Frame Sync 
Divider Registers” on page 11-22

0xFFC0 280E SPORT0_RFSDIV “SPORTx Transmit 
(SPORTx_TFSDIV) and Receive 
(SPORTx_RFSDIV) Frame Sync 
Divider Registers” on page 11-22

0xFFC0 2810 SPORT0_STAT “SPORTx Status (SPORTx_STAT) 
Registers” on page 11-23

0xFFC0 2812 SPORT0_MTCS0 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2814 SPORT0_MTCS1 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2816 SPORT0_MTCS2 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2818 SPORT0_MTCS3 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 281A SPORT0_MTCS4 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 281C SPORT0_MTCS5 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 281E SPORT0_MTCS6 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2820 SPORT0_MTCS7 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2822 SPORT0_MRCS0 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2824 SPORT0_MRCS1 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2826 SPORT0_MRCS2 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2828 SPORT0_MRCS3 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 282A SPORT0_MRCS4 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 282C SPORT0_MRCS5 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 282E SPORT0_MRCS6 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2830 SPORT0_MRCS7 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 2832 SPORT0_MCMC1 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2834 SPORT0_MCMC2 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers” 
on page 11-29

0xFFC0 2A00 SPORT0_CURR_PTR_RX “SPORTx Receive DMA Current 
Descriptor Pointer 
(SPORTx_CURR_PTR_RX) Regis-
ters” on page 11-31

0xFFC0 2A02 SPORT0_CONFIG_DMA_RX “SPORTx Receive DMA Configura-
tion 
(SPORTx_CONFIG_DMA_RX) 
Registers” on page 11-31

0xFFC0 2A04 SPORT0_START_ADDR_HI_RX “SPORTx Receive DMA Start 
Address High 
(SPORTx_START_ADDR_HI_RX) 
Registers” on page 11-34

0xFFC0 2A06 SPORT0_START_ADDR_LO_RX “SPORTx Receive DMA Start 
Address Low 
(SPORTx_START_ADDR_LO_RX) 
Registers” on page 11-35

0xFFC0 2A08 SPORT0_COUNT_RX “SPORTx Receive DMA Count 
(SPORTx_COUNT_RX) Registers” 
on page 11-36

0xFFC0 2A0A SPORT0_NEXT_DESCR_RX “SPORTx Receive DMA Next 
Descriptor Pointer 
(SPORTx_NEXT_DESCR_RX) 
Registers” on page 11-36

0xFFC0 2A0C SPORT0_DESCR_RDY_RX “SPORTx Receive DMA Descriptor 
Ready (SPORTx_DESCR_RDY_RX) 
Registers” on page 11-37

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 2A0E SPORT0_IRQSTAT_RX “SPORTx Receive DMA IRQ Status 
(SPORTx_IRQSTAT_RX) Registers” 
on page 11-38

0xFFC0 2B00 SPORT0_CURR_PTR_TX “SPORTx Transmit DMA Current 
Descriptor Pointer 
(SPORTx_CURR_PTR_TX) Regis-
ters” on page 11-39

0xFFC0 2B02 SPORT0_CONFIG_DMA_TX “SPORTx Transmit DMA Configu-
ration 
(SPORTx_CONFIG_DMA_TX) 
Registers” on page 11-40

0xFFC0 2B04 SPORT0_START_ADDR_HI_TX “SPORTx Transmit DMA Start 
Address High 
(SPORTx_START_ADDR_HI_TX) 
Registers” on page 11-43

0xFFC0 2B06 SPORT0_START_ADDR_LO_TX “SPORTx Transmit DMA Start 
Address Low 
(SPORTx_START_ADDR_LO_TX) 
Registers” on page 11-44

0xFFC0 2B08 SPORT0_COUNT_TX “SPORTx Transmit DMA Count 
(SPORTx_COUNT_TX) Registers” 
on page 11-45

0xFFC0 2B0A SPORT0_NEXT_DESCR_TX “SPORTx Transmit DMA Next 
Descriptor Pointer 
(SPORTx_NEXT_DESCR_TX) 
Registers” on page 11-45

0xFFC0 2B0C SPORT0_DESCR_RDY_TX “SPORTx Transmit DMA Descriptor 
Ready (SPORTx_DESCR_RDY_TX) 
Registers” on page 11-46

0xFFC0 2B0E SPORT0_IRQSTAT_TX “SPORTx Transmit DMA IRQ Sta-
tus (SPORTx_IRQSTAT_TX) Regis-
ters” on page 11-47 

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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SPORT1 Controller Registers
Table B-11 lists the MMR assignments for the SPORT1 Controller regis-
ters (0xFFC0 2C00–0xFFC0 2FFF).

Table B-11. SPORT1 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 2C00 SPORT1_TX_CONFIG “Transmit and Receive Configuration 
Registers (SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG)” on 
page 11-9

0xFFC0 2C02 SPORT1_RX_CONFIG “Transmit and Receive Configuration 
Registers (SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG)” on 
page 11-9

0xFFC0 2C04 SPORT1_TX “SPORTx Transmit (SPORTx_TX) 
Registers” on page 11-17

0xFFC0 2C06 SPORT1_RX “SPORTx Receive (SPORTx_RX) 
Registers” on page 11-19

0xFFC0 2C08 SPORT1_TSCLKDIV “SPORTx Transmit 
(SPORTx_TSCLKDIV) and Receive 
(SPORTx_RSCLKDIV) Serial Clock 
Divider Registers” on page 11-20

0xFFC0 2C0A SPORT1_RSCLKDIV “SPORTx Transmit 
(SPORTx_TSCLKDIV) and Receive 
(SPORTx_RSCLKDIV) Serial Clock 
Divider Registers” on page 11-20

0xFFC0 2C0C SPORT1_TFSDIV “SPORTx Transmit 
(SPORTx_TFSDIV) and Receive 
(SPORTx_RFSDIV) Frame Sync 
Divider Registers” on page 11-22

0xFFC0 2C0E SPORT1_RFSDIV “SPORTx Transmit 
(SPORTx_TFSDIV) and Receive 
(SPORTx_RFSDIV) Frame Sync 
Divider Registers” on page 11-22
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0xFFC0 2C10 SPORT1_STAT “SPORTx Status (SPORTx_STAT) 
Registers” on page 11-23

0xFFC0 2C12 SPORT1_MTCS0 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C14 SPORT1_MTCS1 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C16 SPORT1_MTCS2 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C18 SPORT1_MTCS3 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C1A SPORT1_MTCS4 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C1C SPORT1_MTCS5 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C1E SPORT1_MTCS6 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C20 SPORT1_MTCS7 “SPORTx Multichannel Transmit 
Select (SPORTx_MTCSx) Registers” 
on page 11-25

0xFFC0 2C22 SPORT1_MRCS0 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C24 SPORT1_MRCS1 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 2C26 SPORT1_MRCS2 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C28 SPORT1_MRCS3 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C2A SPORT1_MRCS4 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C2C SPORT1_MRCS5 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C2E SPORT1_MRCS6 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C30 SPORT1_MRCS7 “SPORTx Multichannel Receive 
Select (SPORTx_MRCSx) Registers” 
on page 11-27

0xFFC0 2C32 SPORT1_MCMC1 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers” 
on page 11-29

0xFFC0 2C34 SPORT1_MCMC2 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers” 
on page 11-29

0xFFC0 2E00 SPORT1_CURR_PTR_RX “SPORTx Receive DMA Current 
Descriptor Pointer 
(SPORTx_CURR_PTR_RX) Regis-
ters” on page 11-31

0xFFC0 2E02 SPORT1_CONFIG_DMA_RX “SPORTx Receive DMA Configura-
tion 
(SPORTx_CONFIG_DMA_RX) 
Registers” on page 11-31

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 2E04 SPORT1_START_ADDR_HI_RX “SPORTx Receive DMA Start 
Address High 
(SPORTx_START_ADDR_HI_RX) 
Registers” on page 11-34

0xFFC0 2E06 SPORT1_START_ADDR_LO_RX “SPORTx Receive DMA Start 
Address Low 
(SPORTx_START_ADDR_LO_RX) 
Registers” on page 11-35

0xFFC0 2E08 SPORT1_COUNT_RX “SPORTx Receive DMA Count 
(SPORTx_COUNT_RX) Registers” 
on page 11-36

0xFFC0 2E0A SPORT1_NEXT_DESCR_RX “SPORTx Receive DMA Next 
Descriptor Pointer 
(SPORTx_NEXT_DESCR_RX) 
Registers” on page 11-36

0xFFC0 2E0C SPORT1_DESCR_RDY_RX “SPORTx Receive DMA Descriptor 
Ready (SPORTx_DESCR_RDY_RX) 
Registers” on page 11-37

0xFFC0 2E0E SPORT1_IRQSTAT_RX “SPORTx Receive DMA IRQ Status 
(SPORTx_IRQSTAT_RX) Registers” 
on page 11-38

0xFFC0 2F00 SPORT1_CURR_PTR_TX “SPORTx Transmit DMA Current 
Descriptor Pointer 
(SPORTx_CURR_PTR_TX) Regis-
ters” on page 11-39

0xFFC0 2F02 SPORT1_CONFIG_DMA_TX “SPORTx Transmit DMA Configu-
ration 
(SPORTx_CONFIG_DMA_TX) 
Registers” on page 11-40

0xFFC0 2F04 SPORT1_START_ADDR_HI_TX “SPORTx Transmit DMA Start 
Address High 
(SPORTx_START_ADDR_HI_TX) 
Registers” on page 11-43

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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SPI0 Controller Registers
Table B-12 lists the MMR assignments for the SPI0 Controller registers 
(0xFFC0 3000–0xFFC0 33FF). 

0xFFC0 2F06 SPORT1_START_ADDR_LO_TX “SPORTx Transmit DMA Start 
Address Low 
(SPORTx_START_ADDR_LO_TX) 
Registers” on page 11-44

0xFFC0 2F08 SPORT1_COUNT_TX “SPORTx Transmit DMA Count 
(SPORTx_COUNT_TX) Registers” 
on page 11-45

0xFFC0 2F0A SPORT1_NEXT_DESCR_TX “SPORTx Transmit DMA Next 
Descriptor Pointer 
(SPORTx_NEXT_DESCR_TX) 
Registers” on page 11-45

0xFFC0 2F0C SPORT1_DESCR_RDY_TX “SPORTx Transmit DMA Descriptor 
Ready (SPORTx_DESCR_RDY_TX) 
Registers” on page 11-46

0xFFC0 2F0E SPORT1_IRQSTAT_TX “SPORTx Transmit DMA IRQ Sta-
tus (SPORTx_IRQSTAT_TX) Regis-
ters” on page 11-47 

Table B-12. SPI0 Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 3000 SPI0_CTL “SPIx Control Register (SPIx_CTL)” on 
page 10-8

0xFFC0 3002 SPI0_FLG “SPIx Flag Register (SPIx_FLG)” on 
page 10-10

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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0xFFC0 3004 SPI0_ST “SPIx Status Register (SPIx_ST)” on 
page 10-15

0xFFC0 3006 SPI0_TDBR “SPIx Transmit Data Buffer Register 
(SPIx_TDBR)” on page 10-17

0xFFC0 3008 SPI0_RDBR “SPIx Receive Data Buffer Register 
(SPIx_RDBR)” on page 10-18

0xFFC0 300A SPI0_BAUD “SPIx Baud Rate Register (SPIx_BAUD)” on 
page 10-7

0xFFC0 300C SPI0_SHADOW “SPIx RDBR Shadow Register 
(SPIx_SHADOW)” on page 10-18

0xFFC0 3200 SPI0_CURR_PTR “SPIx DMA Current Descriptor Pointer Reg-
ister (SPIx_CURR_PTR)” on page 10-20

0xFFC0 3202 SPI0_CONFIG “SPIx DMA Configuration Register 
(SPIx_CONFIG)” on page 10-21

0xFFC0 3204 SPI0_START_ADDR_HI “SPIx DMA Start Address High Register 
(SPIx_START_ADDR_HI) and SPIx DMA 
Start Address Low Register 
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3206 SPI0_START_ADDR_LO “SPIx DMA Start Address High Register 
(SPIx_START_ADDR_HI) and SPIx DMA 
Start Address Low Register 
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3208 SPI0_COUNT “SPIx DMA Count Register 
(SPIx_COUNT)” on page 10-23

0xFFC0 320A SPI0_NEXT_DESCR “SPIx DMA Next Descriptor Pointer Register 
(SPIx_NEXT_DESCR)” on page 10-24

0xFFC0 320C SPI0_DESCR_RDY “SPIx DMA Descriptor Ready Register 
(SPIx_DESCR_RDY)” on page 10-25

0xFFC0 320E SPI0_DMA_INT “SPIx DMA Interrupt Register 
(SPIx_DMA_INT)” on page 10-26

Table B-12. SPI0 Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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SPI1 Controller Registers
Table B-13 lists the MMR assignments for the SPI1 Controller registers 
(0xFFC0 3400–0xFFC0 37FF). 

Table B-13. SPI1 Controller Registers

Memory- Mapped 
Address

Register Name See Section

0xFFC0 3400 SPI1_CTL “SPIx Control Register (SPIx_CTL)” on 
page 10-8

0xFFC0 3402 SPI1_FLG “SPIx Flag Register (SPIx_FLG)” on 
page 10-10

0xFFC0 3404 SPI1_ST “SPIx Status Register (SPIx_ST)” on 
page 10-15

0xFFC0 3406 SPI1_TDBR “SPIx Transmit Data Buffer Register 
(SPIx_TDBR)” on page 10-17

0xFFC0 3408 SPI1_RDBR “SPIx Receive Data Buffer Register 
(SPIx_RDBR)” on page 10-18

0xFFC0 340A SPI1_BAUD “SPIx Baud Rate Register (SPIx_BAUD)” on 
page 10-7

0xFFC0 340C SPI1_SHADOW “SPIx RDBR Shadow Register 
(SPIx_SHADOW)” on page 10-18

0xFFC0 3600 SPI1_CURR_PTR “SPIx DMA Current Descriptor Pointer Reg-
ister (SPIx_CURR_PTR)” on page 10-20

0xFFC0 3602 SPI1_CONFIG “SPIx DMA Configuration Register 
(SPIx_CONFIG)” on page 10-21

0xFFC0 3604 SPI1_START_ADDR_HI “SPIx DMA Start Address High Register 
(SPIx_START_ADDR_HI) and SPIx DMA 
Start Address Low Register 
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3606 SPI1_START_ADDR_LO “SPIx DMA Start Address High Register 
(SPIx_START_ADDR_HI) and SPIx DMA 
Start Address Low Register 
(SPIx_START_ADDR_LO)” on page 10-22
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Memory DMA Controller Registers
Table B-14 lists the MMR assignments for the Memory DMA Controller 
registers (0xFFC0 3800–0xFFC0 3BFF).

0xFFC0 3608 SPI1_COUNT “SPIx DMA Count Register 
(SPIx_COUNT)” on page 10-23

0xFFC0 360A SPI1_NEXT_DESCR “SPIx DMA Next Descriptor Pointer Register 
(SPIx_NEXT_DESCR)” on page 10-24

0xFFC0 360C SPI1_DESCR_RDY “SPIx DMA Descriptor Ready Register 
(SPIx_DESCR_RDY)” on page 10-25

0xFFC0 360E SPI1_DMA_INT “SPIx DMA Interrupt Register 
(SPIx_DMA_INT)” on page 10-26

Table B-14. Memory DMA Controller Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 3800 MDD_DCP “Destination Memory DMA Current 
Descriptor Pointer Register (MDD_DCP)” 
on page 9-37

0xFFC0 3802 MDD_DCFG “Destination Memory DMA Configuration 
Register (MDD_DCFG)” on page 9-33

0xFFC0 3804 MDD_DSAH “Destination Memory DMA Start Address 
Registers (MDD_DSAH, MDD_DSAL)” on 
page 9-35

0xFFC0 3806 MDD_DSAL “Destination Memory DMA Start Address 
Registers (MDD_DSAH, MDD_DSAL)” on 
page 9-35

0xFFC0 3808 MDD_DCT “Source Memory DMA Transfer Count Reg-
ister (MDD_DCT)” on page 9-40

Table B-13. SPI1 Controller Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xFFC0 380A MDD_DND “Destination Memory DMA Next Descrip-
tor Pointer Register (MDD_DND)” on 
page 9-36

0xFFC0 380C MDD_DDR “Destination Memory DMA Descriptor 
Ready Register (MDD_DDR)” on page 9-36

0xFFC0 380E MDD_DI “Source Memory DMA Interrupt Register 
(MDS_DI)” on page 9-43

0xFFC0 3900 MDS_DCP “Source Memory DMA Current Descriptor 
Pointer Register (MDS_DCP)” on page 9-43

0xFFC0 3902 MDS_DCFG “Source Memory DMA Configuration Regis-
ter (MDS_DCFG)” on page 9-39

0xFFC0 3904 MDS_DSAH “Source Memory DMA Start Address Regis-
ters (MDS_DSAH, MDS_DSAL)” on 
page 9-41

0xFFC0 3906 MDS_DSAL “Source Memory DMA Start Address Regis-
ters (MDS_DSAH, MDS_DSAL)” on 
page 9-41

0xFFC0 3908 MDS_DCT “Source Memory DMA Transfer Count Reg-
ister (MDD_DCT)” on page 9-40

0xFFC0 390A MDS_DND “Destination Memory DMA Next Descrip-
tor Pointer Register (MDD_DND)” on 
page 9-36

0xFFC0 390C MDS_DDR “Destination Memory DMA Descriptor 
Ready Register (MDD_DDR)” on page 9-36

0xFFC0 390E MDS_DI “Destination Memory DMA Interrupt Regis-
ter (MDD_DI)” on page 9-38

Table B-14. Memory DMA Controller Registers (Cont’d)

Memory-Mapped 
Address

Register Name See Section
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Asynchronous Memory Controller—EBIU
Table B-15 lists the MMR assignments for the Asynchronous Memory 
Controller - External Bus Interface Unit registers (0xFFC0 3C00–
0xFFC0 3FFF).

PCI Bridge Registers
Table B-16 lists the MMR assignments for the PCI Bridge registers 
(ranges 0xFFC0 4000–0xFFC0 43FF and 0xEEFF FF00–0xEEFF FFFF).

Table B-15. External Bus Interface Unit Registers

Memory- Mapped 
Address

Register Name See Section

0xFFC0 3C00 EBIU_AMGCTL “Asynchronous Memory Global Control Reg-
ister (EBIU_AMGCTL)” on page 18-10

0xFFC0 3C04 EBIU_AMBCTL0 “Asynchronous Memory Bank Control Regis-
ters (EBIU_AMBCTL0, EBIU_AMBCTL1)” 
on page 18-12

0xFFC0 3C08 EBIU_AMBCTL1 “Asynchronous Memory Bank Control Regis-
ters (EBIU_AMBCTL0, EBIU_AMBCTL1)” 
on page 18-12

Table B-16. PCI Bridge Registers

Memory- Mapped 
Address

Register Name See Section

0xFFC0 4000 PCI_CTL “PCI Bridge Control Register (PCI_CTL)” 
on page 13-20

0xFFC0 4004 PCI_STAT “PCI Status Register (PCI_STAT)” on 
page 13-21

0xFFC0 4008 PCI_ICTL “PCI Interrupt Controller Register 
(PCI_ICTL)” on page 13-22
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0xFFC0 400C PCI_MBAP “PCI Outbound Memory Base Address Regis-
ter (PCI_MBAP)” on page 13-23

0xFFC0 4010 PCI_IBAP “PCI Outbound I/O Base Address Register 
(PCI_IBAP)” on page 13-23

0xFFC0 4014 PCI_CBAP “PCI Outbound I/O Configuration Address 
Register (PCI_CBAP)” on page 13-24

0xFFC0 4018 PCI_TMBAP “PCI Inbound Memory Base Address Register 
(PCI_TMBAP)” on page 13-25

0xFFC0 401C PCI_TIBAP “PCI Inbound I/O Base Address Register 
(PCI_TIBAP)” on page 13-25

0xEEFF FF00 PCI_DMBARM “PCI Device Memory BAR Mask Register 
(PCI_DMBARM)” on page 13-26

0xEEFF FF04 PCI_DIBARM “PCI Device I/O BAR Mask Register 
(PCI_DIBARM)” on page 13-27

0xEEFF FF08 PCI_CFG_DIC “PCI Configuration Device ID Register 
(PCI_CFG_DIC)” on page 13-29

0xEEFF FF0C PCI_CFG_VIC “PCI Configuration Vendor ID Register 
(PCI_CFG_VIC)” on page 13-30

0xEEFF FF10 PCI_CFG_STAT “PCI Configuration Status Register 
(PCI_CFG_STAT)” on page 13-31

0xEEFF FF14 PCI_CFG_CMD “PCI Configuration Command Register 
(PCI_CFG_CMD)” on page 13-32

0xEEFF FF18 PCI_CFG_CC “PCI Configuration Class Code Register 
(PCI_CFG_CC)” on page 13-33

0xEEFF FF1C PCI_CFG_RID “PCI Configuration Revision ID Register 
(PCI_CFG_RID)” on page 13-34

0xEEFF FF20 PCI_CFG_BIST “PCI Configuration BIST Register 
(PCI_CFG_BIST)” on page 13-35

0xEEFF FF24 PCI_CFG_HT “PCI Configuration Header Type Register 
(PCI_CFG_HT)” on page 13-36

Table B-16. PCI Bridge Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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0xEEFF FF28 PCI_CFG_MLT “PCI Configuration Memory Latency Timer 
Register (PCI_CFG_MLT)” on page 13-36

0xEEFF FF2C PCI_CFG_CLS “PCI Configuration Cache Line Size Register 
(PCI_CFG_CLS)” on page 13-37

0xEEFF FF30 PCI_CFG_MBAR “PCI Configuration Memory Base Address 
Register (PCI_CFG_MBAR)” on page 13-38

0xEEFF FF34 PCI_CFG_IBAR “PCI Configuration I/O Base Address Regis-
ter (PCI_CFG_IBAR)” on page 13-39

0xEEFF FF38 PCI_CFG_SID “PCI Configuration Subsystem ID Register 
(PCI_CFG_SID)” on page 13-40

0xEEFF FF3C PCI_CFG_SVID “PCI Configuration Subsystem Vendor ID 
Register (PCI_CFG_SVID)” on page 13-40

0xEEFF FF40 PCI_CFG_MAXL “PCI Configuration Maximum Latency Reg-
ister (PCI_CFG_MAXL)” on page 13-41

0xEEFF FF44 PCI_CFG_MING “PCI Configuration Minimum Grant Regis-
ter (PCI_CFG_MING)” on page 13-42

0xEEFF FF48 PCI_CFG_IP “PCI Configuration Interrupt Pin Register 
(PCI_CFG_IP)” on page 13-42

0xEEFF FF4C PCI_CFG_IL “PCI Configuration Interrupt Line Register 
(PCI_CFG_IL)” on page 13-43

0xEEFF FF50 PCI_HMCTL “PCI Host Memory Control Register 
(PCI_HMCTL)” on page 13-43

Table B-16. PCI Bridge Registers (Cont’d)

Memory- Mapped 
Address

Register Name See Section
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USB Device Registers
Table B-17 lists the MMR assignments for the USB Device registers 
(0xFFC0 4400–0xFFC0 47FF).

Table B-17. USB Device Registers

Memory-Mapped 
Address

Register
Name

See Section

0xFFC0 4400 USBD_ID “USB Device ID Register (USBD_ID)” on 
page 14-16

0xFFC0 4402 USBD_FRM “Current USB Frame Number Register 
(USBD_FRM)” on page 14-17

0xFFC0 4404 USBD_FRMAT “Match Value for USB Frame Number Regis-
ter (USBD_FRMAT)” on page 14-17

0xFFC0 4406 USBD_EPBUF “Enable Download of Configuration Into 
UDC Core Register (USBD_EPBUF)” on 
page 14-18

0xFFC0 4408 USBD_STAT “USBD Module Status Register 
(USBD_STAT)” on page 14-19

0xFFC0 440A USBD_CTRL “USBD Module Configuration and Control 
Register (USBD_CTRL)” on page 14-21

0xFFC0 440C USBD_GINTR “Global Interrupt Register (USBD_GINTR)” 
on page 14-22

0xFFC0 440E USBD_GMASK “Global Interrupt Mask Register 
(USBD_GMASK)” on page 14-24

0xFFC0 4440 USBD_DMACFG “DMA Master Channel Configuration Regis-
ter (USBD_DMACFG)” on page 14-24

0xFFC0 4442 USBD_DMABL “DMA Master Channel Base Address Low 
Register (USBD_DMABL)” on page 14-25

0xFFC0 4444 USBD_DMABH “DMA Master Channel Base Address High 
Register (USBD_DMABH)” on page 14-26

0xFFC0 4446 USBD_DMACT “DMA Master Channel Count Register 
(USBD_DMACT)” on page 14-26
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0xFFC0 4448 USBD_DMAIRQ “DMA Master Channel DMA Interrupt Reg-
ister (USBD_DMAIRQ)” on page 14-27

0xFFC0 4480 USBD_INTR0 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 4482 USBD_MASK0 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 4484 USBD_EPCFG0 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 4486 USBD_EPADR0 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

0xFFC0 4488 USBD_EPLEN0 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 448A USBD_INTR1 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 448C USBD_MASK1 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 448E USBD_EPCFG1 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 4490 USBD_EPADR1 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

0xFFC0 4492 USBD_EPLEN1 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 4494 USBD_INTR2 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 4496 USBD_MASK2 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 4498 USBD_EPCFG2 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 449A USBD_EPADR2 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped 
Address

Register
Name

See Section
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0xFFC0 449C USBD_EPLEN2 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 449E USBD_INTR3 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 44A0 USBD_MASK3 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 44A2 USBD_EPCFG3 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 44A4 USBD_EPADR3 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

0xFFC0 44A6 USBD_EPLEN3 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 44A8 USBD_INTR4 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 44AA USBD_MASK4 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 44AC USBD_EPCFG4 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 44AE USBD_EPADR4 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

0xFFC0 44B0 USBD_EPLEN4 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 44B2 USBD_INTR5 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 44B4 USBD_MASK5 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 44B6 USBD_EPCFG5 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 44B8 USBD_EPADR5 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped 
Address

Register
Name

See Section
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0xFFC0 44BA USBD_EPLEN5 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 44BC USBD_INTR6 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 44BE USBD_MASK6 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 44C0 USBD_EPCFG6 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 44C2 USBD_EPADR6 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33

0xFFC0 44C4 USBD_EPLEN6 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

0xFFC0 44C6 USBD_INTR7 “USB Endpoint x Interrupt Registers 
(USBD_INTRx)” on page 14-27

0xFFC0 44C8 USBD_MASK7 “USB Endpoint x Mask Registers 
(USBD_MASKx)” on page 14-29

0xFFC0 44CA USBD_EPCFG7 “USB Endpoint x Control Registers 
(USBD_EPCFGx)” on page 14-31

0xFFC0 44CC USBD_EPADR7 “USB Endpoint x Address Offset Registers 
(USBD_EPADRx)” on page 14-33 

0xFFC0 44CE USBD_EPLEN7 “USB Endpoint x Buffer Length Registers 
(USBD_EPLENx)” on page 14-34

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped 
Address

Register
Name

See Section
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System DMA Control Registers
Table B-18 lists the MMR assignments for the System DMA Control reg-
isters (0xFFC0 4880–0xFFC0 488F).

SDRAM Controller External Bus Interface 
Unit

Table B-19 lists the MMR assignments for the SDRAM Controller Exter-
nal Bus Interface Unit registers (0xFFC0 4C00–0xFFC0 4FFF).

Table B-18. System DMA Control Registers

Memory-Mapped 
Address

Register Name See Section

0xFFC0 4880 DMA_DBP “DMA Descriptor Base Pointer Register 
(DMA_DBP)” on page 9-24

0xFFC0 4884 DB_ACOMP “DMA Bus Address Comparator Register 
(DB_ACOMP)” on page 20-29

0xFFC0 4888 DB_CCOMP “DMA Bus Control Comparator Register 
(DB_CCOMP)” on page 20-28

Table B-19. SDRAM Controller External Bus Interface Unit

Memory- Mapped 
Address

Register Name See Section

0xFFC0 4C00 EBIU_SDGCTL “SDRAM Memory Global Control Register 
(EBIU_SDGCTL)” on page 18-37

0xFFC0 4C04 EBIU_SDBCTL “SDRAM Memory Bank Control Register 
(EBIU_SDBCTL)” on page 18-49

0xFFC0 4C0A EBIU_SDRRC “SDRAM Refresh Rate Control Register 
(EBIU_SDRRC)” on page 18-54

0xFFC0 4C0E EBIU_SDSTAT “SDRAM Control Status Register 
(EBIU_SDSTAT)” on page 18-53
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C TEST FEATURES

The ADSP-BF535 processor is fully compatible with the IEEE 1149.1 
Standard, also known as the Joint Test Action Group (JTAG) Standard. 

The JTAG standard defines circuitry that may be built to assist in the test, 
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test 
data are communicated. A set of test features is defined, including a 
Boundary-Scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they 
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component 
operation

The test logic consists of a Boundary-Scan register and other building 
blocks and is accessed through a Test Access port (TAP).

Full details of the JTAG standard can be found in the document IEEE 
Standard Test Access Port and Boundary-Scan Architecture, ISBN 
1-55937-350-4.
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Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP, comprised of five pins (see Table C-1)

• A TAP controller that controls all sequencing of events through the 
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes 
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the 
diagram occur on the rising edge of TCK and are defined by the state of the 
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of 
the operation, see the JTAG standard.

Figure C-1 shows the state diagram for the TAP controller. 

Table C-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out
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Note:

• The TAP controller enters the Test-Logic-Reset state when TMS is 
held high after five (5) TCK cycles.

• The TAP controller enters the Test-Logic-Reset state when TRST is 
asynchronously asserted. 

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external 
system reset. 

Figure C-1. TAP Controller State Diagram
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Instruction Register
The instruction register is five bits wide and accommodates up to 32 
boundary-scan instructions.

The instruction register holds both public and private instructions. The 
JTAG standard requires some of the public instructions; other public 
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The Binary Decode column of Table C-2 shows the decode for the public 
instructions. The Register column shows the serial scan paths. 

Table C-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

MBIST_SCAN 00001

IDCODE 00010 CHIPID

MEMTEST_SCAN 00011

DBG_SCAN 00100

WRAPPER_SCAN 00101

RUNMBIST 00111

EMUIR_SCAN 01000

RESMBIST 01001

DC_MBIST_SOF 01011

IC_MBIST_SOF 01101

WRAPPER_MODE 01111

SAMPLE/PRELOAD 00001 Boundary-Scan

RS_WRAPPER_MODE 10010

EMUDAT_SCAN 10100
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Figure C-2 shows the instruction bit scan ordering for the paths shown in 
Table C-2. 

EMUPC_SCAN 10110

BYPASS 11111 Bypass

Figure C-2. Serial Scan Paths

Table C-2. Decode for Public JTAG-Scan Instructions (Cont’d)

Instruction Name Binary Decode
01234

Register

TDOTDI

468

467

466 2

1

0

31
30

CHIPID

1
0

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register
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Public Instructions
The following are descriptions of the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the Boundary-Scan register to be con-
nected between the TDI and TDO pins. This instruction allows testing of 
on-board circuitry external to the device. 

EXTEST allows internal data to be driven to the boundary outputs and 
external data to be captured on the boundary inputs. 

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure 
that nothing else drives data on the ADSP-BF535 processor’s out-
put pins.

SAMPLE/PRELOAD – Binary Code 10000 

The SAMPLE/PRELOAD instruction performs two functions and selects 
the Boundary-Scan register to be connected between TDI and TDO. The 
instruction has no effect on internal logic. 

The SAMPLE part of the instruction allows a snapshot of the inputs and 
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK. 

The PRELOAD part of the instruction allows data to be loaded on the 
device pins and driven out on the board with the EXTEST instruction. 
Data is preloaded on the pins on the falling edge of TCK. 
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IDCODE – Binary Code 00010 

To connect with TDI and TDO, the IDCODE instruction selects the Chip ID 
register (CHIPID), shown in Figure C-3. The instruction has no effect on 
the internal logic. 

As shown in Figure C-2, CHIPID is scanned out MSB first. For more infor-
mation on CHIPID, see “Product Identification Registers” on page 20-25.

Per the JTAG standard, CHIPID is selected by default during the 
Test-Logic-Reset controller state.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI 
and TDO. The instruction has no effect on the internal logic. No data 
inversion should occur between TDI and TDO.

Figure C-3. Chip ID Register

Set to 1

Manufacturer ID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 0 0 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Part Number

Part NumberVersion

Reset = 0x00CB

Reset = 0x0400

Chip ID Register (CHIPID)
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Boundary-Scan Register
The Boundary-Scan register is 469 bits long. Table C-3 lists and defines 
the latch type and function of each position in the scan path. The posi-
tions are numbered from 0 to 468. Bit 0 is the first bit output (closest to 
TDO) and bit 468 is the last bit output (closest to TDI).

Table C-3. Scan Path Position Definitions

Position Type Signal Name

0 I NMI

1 O SUSPEND

2 OE SUSPEND OE

3 O TXEN

4 OE TXEN OE

5 O TXDMNS

6 OE TXDMNS OE

7 O TXDPLS

8 OE TXDPLS OE

9 I DMNS

10 I DPLS

11 I RESET

12 I XVER_DATA

13 I USB_CLK

14 O TX1

15 OE TX1 OE

16 I RX1

17 O TX0

18 OE TX0 OE

19 I RX0
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20 O TMR(2)

21 OE TMR(2) OE

22 I TMR(2)

23 O TMR(1)

24 OE TMR(1) OE

25 I TMR(1)

26 O TMR(0)

27 OE TMR(0) OE

28 I TMR(0)

29 O ADDR(2)

30 OE ADDR(2) OE

31 O ADDR(3)

32 OE ADDR(3) OE

33 O ADDR(4)

34 OE ADDR(4) OE

35 O ADDR(5)

36 OE ADDR(5) OE

37 O ADDR(6)

38 OE ADDR(6) OE

39 O ADDR(7)

40 OE ADDR(7) OE

41 O ADDR(8)

42 OE ADDR(8) OE

43 O ADDR(9)

44 OE ADDR(9) OE

45 O ADDR(10)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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46 OE ADDR(10) OE

47 O ADDR(11)

48 OE ADDR(11) OE

49 O ADDR(12)

50 OE ADDR(12) OE

51 O ADDR(13)

52 OE ADDR(13) OE

53 O ADDR(14)

54 OE ADDR(14) OE

55 O ADDR(15)

56 OE ADDR(15) OE

57 O ADDR(16)

58 OE ADDR(16) OE

59 O ADDR(17)

60 OE ADDR(17) OE

61 O ADDR(18)

62 OE ADDR(18) OE

63 O ADDR(19)

64 OE ADDR(19) OE

65 O ADDR(20)

66 OE ADDR(20) OE

67 O ADDR(21)

68 OE ADDR(21) OE

69 O ADDR(22)

70 OE ADDR(22) OE

71 O ADDR(23)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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72 OE ADDR(23) OE

73 O ADDR(24)

74 OE ADDR(24) OE

75 O ADDR(25)

76 OE ADDR(25) OE

77 O ABE_SDQM(0)

78 OE ABE_SDQM(0) OE

79 O ABE_SDQM(1)

80 OE ABE_SDQM(1) OE

81 O ABE_SDQM(2)

82 OE ABE_SDQM(2) OE

83 O ABE_SDQM(3)

84 OE ABE_SDQM(3) OE

85 O AMS(0)

86 OE AMS(0) OE

87 O AMS(1)

88 OE AMS(1) OE

89 O AMS(2)

90 OE AMS(2) OE

91 O AMS(3)

92 OE AMS(3) OE

93 O AOE

94 OE AOE OE

95 O ARE

96 OE ARE OE

97 O AWE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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98 OE AWE OE

99 O CLKOUT_SCLK1

100 -- Reserved

101 O SCLK0

102 -- Reserved

103 O SCKE

104 OE SCKE OE

105 O SA10

106 OE SA10 OE

107 O SRAS

108 OE SRAS OE

109 O SWE

110 OE SWE OE

111 O SMS(3)

112 OE SMS(3) OE

113 O SMS(2)

114 OE SMS(2) OE

115 O SMS(1)

116 OE SMS(1) OE

117 O SMS(0)

118 OE SMS(0) OE

119 O SCAS

120 OE SCAS OE

121 I ARDY

122 O DATA(0)

123 OE DATA(0) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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124 I DATA(0)

125 O DATA(1)

126 OE DATA(1) OE

127 I DATA(1)

128 O DATA(2)

129 OE DATA(2) OE

130 I DATA(2)

131 O DATA(3)

132 OE DATA(3) OE

133 I DATA(3)

134 O DATA(4)

135 OE DATA(4) OE

136 I DATA(4)

137 O DATA(5)

138 OE DATA(5) OE

139 I DATA(5)

140 O DATA(6)

141 OE DATA(6) OE

142 I DATA(6)

143 O DATA(7)

144 OE DATA(7) OE

145 I DATA(7)

146 O DATA(8)

147 OE DATA(8) OE

148 I DATA(8)

149 O DATA(9)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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150 OE DATA(9) OE

151 I DATA(9)

152 O DATA(10)

153 OE DATA(10) OE

154 I DATA(10)

155 O DATA(11)

156 OE DATA(11) OE

157 I DATA(11)

158 O DATA(12)

159 OE DATA(12) OE

160 I DATA(12)

161 O DATA(13)

162 OE DATA(13) OE

163 I DATA(13)

164 O DATA(14)

165 OE DATA(14) OE

166 I DATA(14)

167 O DATA(15)

168 OE DATA(15) OE

169 I DATA(15)

170 O DATA(16)

171 OE DATA(16) OE

172 I DATA(16)

173 O DATA(17)

174 OE DATA(17) OE

175 I DATA(17)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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176 O DATA(18)

177 OE DATA(18) OE

178 I DATA(18)

179 O DATA(19)

180 OE DATA(19) OE

181 I DATA(19)

182 O DATA(20)

183 OE DATA(20) OE

184 I DATA(20)

185 O DATA(21)

186 OE DATA(21) OE

187 I DATA(21)

188 O DATA(22)

189 OE DATA(22) OE

190 I DATA(22)

191 O DATA(23)

192 OE DATA(23) OE

193 I DATA(23)

194 O DATA(24)

195 OE DATA(24) OE

196 I DATA(24)

197 O DATA(25)

198 OE DATA(25) OE

199 I DATA(25)

200 O DATA(26)

201 OE DATA(26) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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202 I DATA(26)

203 O DATA(27)

204 OE DATA(27) OE

205 I DATA(27)

206 O DATA(28)

207 OE DATA(28) OE

208 I DATA(28)

209 O DATA(29)

210 OE DATA(29) OE

211 I DATA(29)

212 O DATA(30)

213 OE DATA(30) OE

214 I DATA(30)

215 O DATA(31)

216 OE DATA(31) OE

217 I DATA(31)

218 O PF(0)

219 OE PF(0) OE

220 I PF(0)

221 O PF(1)

222 OE PF(1) OE

223 I PF(1)

224 O PF(2)

225 OE PF(2) OE

226 I PF(2)

227 O PF(3)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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228 OE PF(3) OE

229 I PF(3)

230 O PF(4)

231 OE PF(4) OE

232 I PF(4)

233 O PF(5)

234 OE PF(5) OE

235 I PF(5)

236 O PF(6)

237 OE PF(6) OE

238 I PF(6)

239 O PF(7)

240 OE PF(7) OE

241 I PF(7)

242 O PF(8)

243 OE PF(8) OE

244 I PF(8)

245 O PF(9)

246 OE PF(9) OE

247 I PF(9)

248 O PF(10)

249 OE PF(10) OE

250 I PF(10)

251 O PF(11)

252 OE PF(11) OE

253 I PF(11)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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254 O PF(12)

255 OE PF(12) OE

256 I PF(12)

257 O PF(13)

258 OE PF(13) OE

259 I PF(13)

260 O PF(14)

261 OE PF(14) OE

262 I PF(14)

263 O PF(15)

264 OE PF(15) OE

265 I PF(15)

266 O RSCLK0

267 OE RSCLK0 OE

268 I RSCLK0

269 O RFS0

270 OE RFS0 OE

271 I RFS0

272 I DR0

273 O TSCLK0

274 OE TSCLK0 OE

275 I TSCLK0

276 O TFS0

277 OE TFS0 OE

278 I TFS0

279 O DT0

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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Test Features

280 OE DT0 OE

281 O RSCLK1

282 OE RSCLK1 OE

283 I RSCLK1

284 O RFS1

285 OE RFS1 OE

286 I RFS1

287 I DR1

288 O TSCLK1

289 OE TSCLK1 OE

290 I TSCLK1

291 O TFS1

292 OE TFS1 OE

293 I TFS1

294 O DT1

295 OE DT1 OE

296 O MOSI0

297 OE MOSI0 OE

298 I MOSI0

299 O MISO0

300 OE MISO0 OE

301 I MISO0

302 O SCK0

303 OE SCK0 OE

304 I SCK0

305 O MOSI1

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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306 OE MOSI1 OE

307 I MOSI1

308 O MISO1

309 OE MISO1 OE

310 I MISO1

311 O SCK1

312 OE SCK1 OE

313 I SCK1

314 O PCI_AD(31)

315 OE PCI_AD(31) OE

316 I PCI_AD(31)

317 O PCI_AD(30)

318 OE PCI_AD(30) OE

319 I PCI_AD(30)

320 O PCI_AD(29)

321 OE PCI_AD(29) OE

322 I PCI_AD(29)

323 O PCI_AD(28)

324 OE PCI_AD(28) OE

325 I PCI_AD(28)

326 O PCI_AD(27)

327 OE PCI_AD(27) OE

328 I PCI_AD(27)

329 O PCI_AD(26)

330 OE PCI_AD(26) OE

331 I PCI_AD(26)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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Test Features

332 O PCI_AD(25)

333 OE PCI_AD(25) OE

334 I PCI_AD(25)

335 O PCI_AD(24)

336 OE PCI_AD(24) OE

337 I PCI_AD(24)

338 O PCI_AD(23)

339 OE PCI_AD(23) OE

340 I PCI_AD(23)

341 O PCI_AD(22)

342 OE PCI_AD(22) OE

343 I PCI_AD(22)

344 O PCI_AD(21)

345 OE PCI_AD(21) OE

346 I PCI_AD(21)

347 O PCI_AD(20)

348 OE PCI_AD(20) OE

349 I PCI_AD(20)

350 O PCI_AD(19)

351 OE PCI_AD(19) OE

352 I PCI_AD(19)

353 O PCI_AD(18)

354 OE PCI_AD(18) OE

355 I PCI_AD(18)

356 O PCI_AD(17)

357 OE PCI_AD(17) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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358 I PCI_AD(17)

359 O PCI_AD(16)

360 OE PCI_AD(16) OE

361 I PCI_AD(16)

362 O PCI_AD(15)

363 OE PCI_AD(15) OE

364 I PCI_AD(15)

365 O PCI_AD(14)

366 OE PCI_AD(14) OE

367 I PCI_AD(14)

368 O PCI_AD(13)

369 OE PCI_AD(13) OE

370 I PCI_AD(13)

371 O PCI_AD(12)

372 OE PCI_AD(12) OE

373 I PCI_AD(12)

374 O PCI_AD(11)

375 OE PCI_AD(11) OE

376 I PCI_AD(11)

377 O PCI_AD(10)

378 OE PCI_AD(10) OE

379 I PCI_AD(10)

380 O PCI_AD(9)

381 OE PCI_AD(9) OE

382 I PCI_AD(9)

383 O PCI_AD(8)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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Test Features

384 OE PCI_AD(8) OE

385 I PCI_AD(8)

386 O PCI_AD(7)

387 OE PCI_AD(7) OE

388 I PCI_AD(7)

389 O PCI_AD(6)

390 OE PCI_AD(6) OE

391 I PCI_AD(6)

392 O PCI_AD(5)

393 OE PCI_AD(5) OE

394 I PCI_AD(5)

395 O PCI_AD(4)

396 OE PCI_AD(4) OE

397 I PCI_AD(4)

398 O PCI_AD(3)

399 OE PCI_AD(3) OE

400 I PCI_AD(3)

401 O PCI_AD(2)

402 OE PCI_AD(2) OE

403 I PCI_AD(2)

404 O PCI_AD(1)

405 OE PCI_AD(1) OE

406 I PCI_AD(1)

407 O PCI_AD(0)

408 OE PCI_AD(0) OE

409 I PCI_AD(0)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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410 O PCI_CBE(0)

411 OE PCI_CBE(0) OE

412 I PCI_CBE(0)

413 O PCI_CBE(1)

414 OE PCI_CBE(1) OE

415 I PCI_CBE(1)

416 O PCI_CBE(2)

417 OE PCI_CBE(2) OE

418 I PCI_CBE(2)

419 O PCI_CBE(3)

420 OE PCI_CBE(3) OE

421 I PCI_CBE(3)

422 O PCI_IRDY

423 OE PCI_IRDY OE

424 I PCI_IRDY

425 O PCI_RST

426 OE PCI_RST OE

427 I PCI_RST

428 O PCI_REQ

429 OE PCI_REQ OE

430 I PCI_GNT

431 I PCI_IDSEL

432 O PCI_FRAME

433 OE PCI_FRAME OE

434 I PCI_FRAME

435 O PCI_TRDY

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name



ADSP-BF535 Blackfin Processor Hardware Reference C-25 
 

Test Features

436 OE PCI_TRDY OE

437 I PCI_TRDY

438 O PCI_DEVSEL

439 OE PCI_DEVSEL OE

440 I PCI_DEVSEL

441 O PCI_STOP

442 OE PCI_STOP OE

443 I PCI_STOP

444 O PCI_PERR

445 OE PCI_PERR OE

446 I PCI_PERR

447 O PCI_PAR

448 OE PCI_PAR OE

449 I PCI_PAR

450 O PCI_SERR

451 OE PCI_SERR OE

452 I PCI_SERR

453 I PCI_LOCK

454 I PCI_CLK

455 O PCI_INTA

456 OE PCI_INTA OE

457 I PCI_INTA

458 I PCI_INTB

459 I PCI_INTC

460 I PCI_INTD

461 I BMODE(0)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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462 I BMODE(1)

463 I BMODE(2)

464 O SLEEP

465 OE SLEEP OE

466 I BYPASS

467 O EMU

468 OE EMU OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name
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D NUMERIC FORMATS

Blackfin family processors support 8-, 16-, and 32-bit fixed-point data in 
hardware. Special features in the computation units allow support of other 
formats in software. This appendix describes various aspects of these data 
formats. It also describes how to implement a block floating-point format 
in software.

Unsigned or Signed: Two’s-Complement 
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is 
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the Blackfin family are in two’s-comple-
ment format. Signed-magnitude, one’s-complement, BCD or excess-n 
formats are not supported.

Integer or Fractional
The Blackfin family supports both fractional and integer data formats. In 
an integer, the radix point is assumed to lie to the right of the LSB, so that 
all magnitude bits have a weight of 1 or greater. This format is shown in 
Figure D-1. Note in two’s-complement format, the sign bit has a negative 
weight.
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In a fractional format, the assumed radix point lies within the number, so 
that some or all of the magnitude bits have a weight of less than 1. In the 
format shown in Figure D-2, the assumed radix point lies to the left of the 
3 LSBs, and the bits have the weights indicated.

The native formats for the Blackfin family are a signed fractional 1.M for-
mat and an unsigned fractional 0.N format, where N is the number of bits 
in the data word and M = N–1.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215
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Numeric Formats

The notation used to describe a format consists of two numbers separated 
by a period (.); the first number is the number of bits to the left of the 
radix point, the second is the number of bits to the right of the radix 
point. For example, 16.0 format is an integer format; all bits lie to the left 
of the radix point. The format in Figure D-2 is 13.3.

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021
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Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits. 

Binary Multiplication
In addition and subtraction, both operands must be in the same format 
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are 
performed the same way whether the inputs are signed or unsigned.

Table D-1. Fractional Formats and Their Ranges

Format # of 
Integer 
Bits

# of 
Fractional 
Bits

Max Positive Value 
(0x7FFF) In Decimal

Max Negative 
Value (0x8000) 
In Decimal

Value of 1 LSB     
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000
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Numeric Formats

In multiplication, however, the inputs can have different formats, and the 
result depends on their formats. The Blackfin family assembly language 
allows you to specify whether the inputs are both signed, both unsigned, 
or one of each (mixed-mode). The location of the radix point in the result 
can be derived from its location in each of the inputs. This is shown in 
Figure D-3. The product of two 16-bit numbers is a 32-bit number. If the 
inputs’ formats are M.N and P.Q, the product has the format 
(M+P).(N+Q). For example, the product of two 13.3 numbers is a 26.6 
number. The product of two 1.15 numbers is a 2.30 number.

Fractional Mode and Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of 
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the 
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11 
number yields a 6.26 number. When shifted left one bit, the result is a 
5.27 number, or a 5.11 number plus 16 LSBs.

Figure D-3. Format of Multiplier Result

General Rule 4-Bit Example 16-Bit Examples

M.N
x  P.Q

(M+P).(N+Q)

1.111  (1.3 Format)
x  11.11  (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1+2).(2+3))

5.3
x  5.3

10.6

1.15
x  1.15

2.30
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The Blackfin family provides a means (a signed fractional mode) by which 
the multiplier result is always shifted left one bit before being written to 
the result register. This left shift eliminates the extra sign bit when both 
operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional 
bits). A left shift causes the multiplier result to be 1.31 which can be 
rounded to 1.15. Thus, if you use a signed fractional data format, it is 
most convenient to use the 1.15 format.

For more information about data formats, see the data formats listed in 
Table 2-2 on page 2-11.

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some 
of the increased dynamic range of a floating-point format without the 
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

A floating-point number has an exponent that indicates the position of the 
radix point in the actual value. In block floating-point format, a set 
(block) of data values share a common exponent. A block of fixed-point 
values can be converted to block floating-point format by shifting each 
value left by the same amount and storing the shift value as the block 
exponent. 

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs, increasing the precision available in each value. Block 
floating-point format can also be used to eliminate the possibility of a data 
value overflowing. Figure D-4 shows an example. In the example, each of 
the three data samples has at least two non-significant, redundant sign 
bits. Each data value can grow by these two bits (two orders of magnitude) 
before overflowing; thus, these bits are called guard bits. 
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If it is known that a process will not cause any value to grow by more than 
the two guard bits, then the process can be run without loss of data. After-
ward, however, the block must be adjusted to replace the guard bits before 
the next process.

Figure D-5 shows the data after processing but before adjustment. The 
block floating-point adjustment is performed as follows.

• Assume that the output of the SIGNBITS instruction is SB and SB is 
used as an argument in the EXPADJ instruction (see Blackfin Proces-
sor Programming Reference for the usage and syntax of these 
instructions). Initially, the value of SB is –2, corresponding to the 2 
guard bits. During processing, each resulting data value is 
inspected by the EXPADJ instruction, which counts the number of 
redundant sign bits and adjusts SB if the number of redundant sign 
bits is less than 2. In this example, SB = –1 after processing, indi-
cating that the block of data must be shifted right one bit to 
maintain the 2 guard bits. 

• If SB were 0 after processing, the block would have to be shifted 
two bits right. In either case, the block exponent is updated to 
reflect the shift.

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF  =  0 0 0 0   1 1 1 1   1 1 1 1   1 1 1 1

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x07FF  =  0 0 0 0   0 1 1 1   1 1 1 1   1 1 1 1

To detect bit growth into 2 guard bits, set SB = –2
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Figure D-5. Block Floating-Point Adjustment

Sign Bit

1 Guard Bit

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x3FFF  =  0 0 1 1   1 1 1 1   1 1 1 1   1 1 1 1

0x07FF  =  0 0 0 0   0 1 1 1   1 1 1 1   1 1 1 1

2. Shift right to restore guard bits

Sign Bit

2 Guard Bits

0x0FFF  =  0 0 0 0   1 1 1 1   1 1 1 1   1 1 1 1

0x1FFF  =  0 0 0 1   1 1 1 1   1 1 1 1   1 1 1 1

0x03FF  =  0 0 0 0   0 0 1 1   1 1 1 1   1 1 1 1

1. Check for bit growth

Exponent = –2, SB = –2

Exponent = –1, SB = –1

Exponent = –4, SB = –1

EXPADJ instruction checks 
exponent, adjusts SB
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G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller for separate banks of memory, where 
each bank can be independently programmed with different timing 
parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative and logical 
functions.

asynchronous transfers.

Host accesses of the processor that occur intermittently rather than as a 
steady stream.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank 
(specified by the bank address) in a row (specified by the row address). 
When the Bank Activate command is issued to the SDRAM, the SDRAM 
opens a new row address and the new bank address. The memory in the 
open internal bank and row is referred to as the open page. The Bank 
Activate command must be applied before a read or write command. The 
SDC does not interleave SDRAM accesses, so only one internal bank in a 
row is open at a time.
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base address.

The starting address of a circular buffer that the DAG wraps around.

Base register.

A DAG register that sets up the starting address for a circular buffer.

bit-reversed addressing.

The process in which the DAG provides a bit-reversed address during a 
data move without reversing the stored address.

Boot memory space.

Internal memory space designated for a program that is loaded by the 
EPROM after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device 
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s 
mode register during the SDRAM power-up sequence.

The SDC supports only Burst Length = 1 mode. During a burst to 
SDRAM, the SDC applies the read or write command every cycle and 
keeps accessing the data.

Burst Stop command.

The Burst Stop command is one of several ways to terminate a burst read 
or write operation. 

Since the SDRAM burst length is always programmed to be 1, the SDC 
does not support the Burst Stop command.
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burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after 
detecting a write command. The burst type is programmed in the 
SDRAM during the SDRAM power-up sequence.

Since the SDRAM burst length is always programmed to be 1, the burst 
type does not matter. However, the SDC always sets the burst type to 
sequential-accesses-only during the SDRAM power-up sequence.

cache block.

The smallest unit of memory that is transferred to/from the next level of 
memory from/to a cache as a result of a cache miss.

cache hit. 

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as block. In this document, cache line is used for cache block.

cache miss. 

A memory access that does not match any valid entry in the cache.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory 
map.

CAM (Content Addressable Memory). 

Also called Associative Memory. A memory device that includes compari-
son logic with each bit of storage. A datum is broadcast to all words in 
memory; the datum is compared with the stored values; and values that 
match are flagged.
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CAS (Column Address Strobe). 

A signal sent from the memory management unit (MMU) to a DRAM 
device to indicate that the column address lines are valid.

CAS latency (also tAA, tCAC, CL). 

The column address strobe (CAS) latency is the delay in clock cycles 
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the 
SDRAM Mode register during the power-up sequence.

The speed grade of the SDRAM and the SCLK[0] frequency determine the 
value of the CAS latency. The SDC can support CAS latency of 2 or 3 
clock cycles. The selected CAS latency value must be programmed into 
the SDRAM Memory Global Control register (EBIU_SDGCTL) before the 
SDRAM power-up sequence. See “SDRAM Memory Global Control Reg-
ister (EBIU_SDGCTL)” on page 18-37.

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By 
activating CAS before activating RAS, this counter is selected to supply 
the row address instead of the address inputs. 

CEC.

See Core Event Controller

circular buffer addressing.

The process by which the DAG “wraps around” or repeatedly steps 
through a range of registers.

companding

(compressing/expanding). The process of logarithmically encoding and 
decoding data to minimize the number of bits that must be sent.
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conditional branches.

Jump or call/return instructions whose execution is based on testing an if 
condition.

core.

For the ADSP-BF535 processor, the processor, L1 memory, Event Con-
troller, core timer, and Performance Monitoring registers.

Core Event Controller (CEC). 

Part of the ADSP-BF535 processor’s 2-stage event-control mechanism. 
The CEC works with the System Interrupt Controller (SIC) to prioritize 
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

DAB.

See DMA access bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that transfers data between the data buses and the 
computation units and provide local storage for operands.
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data registers (Dreg).

Registers located in the computational units that hold operands for multi-
plier, ALU, or shifter operations.

delayed branch.

Jump or call/return instruction with the delayed branches modifier. In 
delayed branches, two (instead of four) instruction cycles are lost in the 
pipeline, because the processor executes the two instructions after the 
branch while the pipeline fills with instructions from the new branch. 

descriptor block, DMA.

A set of parameters used by the DMA controller to describe a set of DMA 
sequences. When successive DMA sequences are needed, the descriptor 
blocks are chained together so that the completion of one DMA sequence 
autoinitiates and starts the next sequence. 

descriptor loading, DMA.

The process in which the processor’s DMA controller downloads a DMA 
descriptor from data memory and autoinitializes the DMA parameter 
registers.

DFT (Design For Testability).

A set of techniques that help designers of digital systems ensure that those 
system will be testable.

Digital Signal Processor.

An integrated circuit designated for high-speed manipulation of analog 
information that has been converted into digital form.

direct branches.

Jump or call/return instructions that use an absolute address that does not 
change at runtime, such as a program label, or use a PC-relative address.
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direct-mapped. 

Cache architecture where each line has only one place that it can appear in 
the cache. Also described as 1-Way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the 
data are transferred through a DMA port without involving the processor 
(see PIO).

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the 
data cache line has been changed since it was copied from the source 
memory and, therefore, needs to be updated in that source memory.

DMA. 

See Direct Memory Access

DMA Access Bus (DAB).

A peripheral bus that allows DMA capable peripherals to gain access to 
memory.

DMA chaining.

The linking or chaining of multiple DMA sequences. In chained DMA, 
the I/O processor loads the next DMA descriptor into the DMA parame-
ter registers when the current DMA finishes and autoinitializes the next 
DMA sequence.

DMA descriptor registers.

Registers that hold the setup information for a DMA process.
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DPMC (Dynamic Power Management Controller).

An ADSP-BF535 processor’s control block that allows the user to dynam-
ically control the processor’s performance characteristics and power 
dissipation.

DQM Data I/O Mask Function.

The SDQM[3:0] pins provide a byte-masking capability on 8- or 16-bit 
writes to SDRAM. The SDQM[3:0] pins are not used to mask data on read 
cycles. For 16-bit wide SDRAM, only SDQM[1:0] are needed for byte 
masking.

DRAM (Dynamic Random-Access Memory). 

A type of semiconductor memory in which the data are stored as electrical 
charges in an array of cells, each consisting of a capacitor and a transistor. 
The cells are arranged on a chip in a grid of rows and columns. Since the 
capacitors discharge gradually—and the cells lose their information—the 
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit 

EMB.

See External Mastered Bus
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EPROM (Erasable Programmable Read-Only Memory). 

A type of semiconductor memory in which the data is stored as electrical 
charges in isolated (“floating”) transistor gates that retain their charges 
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates, a process that 
requires relatively high voltage (usually 12V – 25V). Ultraviolet light, 
applied to the chip’s surface through a quartz window in the package, will 
discharge the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in low memory that contains sixteen 32-bit entries; each 
entry contains a vector address for an interrupt service routine (ISR). 
When an event occurs, instruction fetch starts at the address location in 
the corresponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line, indicating that the line is valid and that the 
data contained in the line matches that in the source memory. The data in 
a clean cache line does not need to be written to source memory before it 
is replaced.

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core, from the PCI bridge, or 
from a DMA channel.

External Access Bus (EAB).

A line or bus that allows the processor core and Memory DMA controller 
to directly access off-chip memory and PCI memory space to perform 
instruction fetches, data loads, data stores, and high-throughput mem-
ory-to-memory DMA transfers.
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External Bus Controller (EBC).

A component that provides arbitration between the EAB and EMB buses, 
granting at most one requester per cycle.

External Mastered Bus (EMB).

A line or bus that allows the PCI to directly access internal L2 memory, 
off-chip memory, and the system MMRs.

edge-sensitive interrupt.

A signal or interrupt that the processor detects if the input signal is high 
(inactive) on one cycle and low (active) on the next cycle when sampled on 
the rising edge of CLKIN.

Endian format.

The ordering of bytes in a multibyte number. The processor uses big 
endian format—moves data starting with most-significant-bit and finish-
ing with least significant bit—in almost all instances. The two exceptions 
are bit order for data transfer through the serial port and word order for 
packing through the external port. For compatibility with little endian 
(least significant first) peripherals, the processor supports both big and lit-
tle endian bit order data transfers. Also for compatibility little endian 
hosts, the processor supports both big and little endian word order data 
transfers.

external port.

A channel or port that extends the processors internal address and data 
buses off-chip, providing the processor’s interface to off-chip memory and 
peripherals.
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FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data 
values. The FFT expresses a finite set of data points, for example a 
periodic sampling of a real-world signal, in terms of its component fre-
quencies. Or conversely, the FFT reconstructs a signal from the frequency 
data. The FFT can also be used to multiply two polynomials. (For Jean 
Baptiste Joseph Fourier, 1768 – 1830, a French mathematician.)

FIFO (First In, First Out). 

A hardware buffer or data structure from which items are taken out in the 
same order they were put in. Also known as a “shelf” from the analogy of 
pushing items onto one end of a shelf so that they fall off the other. 

flag update.

A refresh from the processor to the status flags that occurs at the end of 
the cycle in which the status is generated. The flag update is available on 
the next cycle.

flash memory. 

A type of single transistor cell, erasable memory in which erasing can only 
be done in blocks or for the entire chip.

Field Programmable Gate Array (FPGA).

A digital logic chip that can be programmed after production and that 
contains many thousands of gates.

FPGA.

See Field Programmable Gate Array.

fully associative. 

Cache architecture where each line can be placed anywhere in the cache.
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glueless.

No external hardware is required. 

GSM (Global System for Mobile Communications). 

A digital mobile telephone system that is widely used in Europe and other 
parts of the world. GSM uses a variation of time division multiple access 
(TDMA) and operates at either the 900 MHz or 1800 MHz frequency 
band.

Harvard architecture.

A memory architecture that uses separate buses for program and data stor-
age. The two buses let the processor get a data word and an instruction 
simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above 
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions. 

IDLE.

An instruction that causes the processor to cease operations, holding its 
current state until an interrupt occurs. Then, the processor services the 
interrupt and continues normal execution.

IEEE (Institute of Electrical and Electronics Engineers).

An international technical professional society, based in the United States.

index.

Address portion that is used to select an array element (for example, line 
index)
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Index registers.

A DAG register that holds an address and acts as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data 
address generator, evaluated at runtime.

I/O processor.

DMA controllers, DMA channel arbitration, and peripheral-to-bus con-
nections that handle input and output operations relieving the burden on 
the processor. The ADSP-BF535 processor uses a distributed DMA archi-
tecture with DMA controllers for each DMA capable peripheral. Most 
ports have some direct (non-DMA) access to internal memory and I/O 
memory.

I/O processor register.

One of the control, status, or data buffer registers of the processor’s 
on-chip I/O processor.

input clock. 

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock 
multiplication via the PLL module.

internal memory bank.

There are several internal memory banks on a given SDRAM row. An 
internal bank in a specific row cannot be activated (opened) until the pre-
vious internal bank in that row has been precharged.

The SDC does not support interleaved accesses. The bank address can be 
thought of as part of the row address. The SDC also assumes that all 
SDRAMs to which it interfaces have four internal banks.
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Do not confuse these “SDRAM internal banks” which are internal to the 
SDRAM and are selected with the bank address, with the four “SDRAM 
banks,” or “external banks,” that are enabled by the SMS[3:0] pins.

interrupt.

An event that suspends normal processing and temporarily diverts the flow 
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache 
line match cannot occur.

IrDA (Infrared Data Association). 

A nonprofit trade association that established standards for ensuring the 
quality and interoperability of devices using the infrared spectrum. 

isochronous.

Processes where data must be delivered within certain time constraints.

ISR (Interrupt Service Routine). 

Software that is executed when a specific interrupt occurs. A table stored 
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JEDEC.

(formerly known as the Joint Electronic Device Engineering Council, now 
called the JEDEC Solid State Technology Association) The semiconductor 
engineering standardization body of the Electronic Industries Alliance 
(EIA), an electronic industry trade association.
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JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard 
for a test access port for testing electronic devices.

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard 
for system test. This standard defines a method for serially scanning the 
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program 
memory.

latency.

The overhead time used to find the correct place for memory access and 
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have 
been unused for the longest time.

Least Significant Bit (LSB). 

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones. 

Length registers.

A DAG register that sets up the range of addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory 
subsystems between it and the core.
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Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a 
larger capacity than L1 memory, but it requires additional latency to 
access.

level sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low 
(active) when sampled on the rising edge of CLKIN. 

LIFO (Last In, First Out). 

A data structure from which the next item taken out is the most recent 
item put in. Also known as a “stack” from the analogy with the stack of 
plates in a cafeteria in which the most recent plate placed on the stack is 
on top and thus will be the next plate removed. See Stack. 

little endian.

The native data store format of the ADSP-BF535 processor. Words and 
half words are stored in memory (and registers) with the least significant 
byte at the lowest byte address and the most significant byte in the highest 
byte address of the data storage location.

loop.

A sequence of instructions that executes several times with 0 overhead.

LRU (Least Recently Used algorithm).

A rule based on the observation that, in general, the cache entry that has 
not been accessed for longest is least likely to be accessed in the near 
future.

LSB.

See Least Significant Bit. 
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MAC (Multiply/Accumulate).

A floating-point operation that multiplies two numbers and then adds a 
third to get the result. See Multiply Accumulator.

memory bank.

A unit of the processor’s external memory space, which may be addressed 
by either data address generator. External memory banks also may be con-
figured for size and access waitstates.

memory block.

A unit of the processor’s internal memory space, which is associated with a 
DAG. 

Memory Management Unit (MMU).

A component of the ADSP-BF535 processor that supports protection and 
selective caching of memory by using CPLBs.

Mode Register.

SDRAM devices contain an internal configuration register which allows 
specification of the SDRAM device’s functionality. After power-up and 
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s mode register. The 
write of the SDRAM’s mode register is triggered by writing a 1 to the PSSE 
bit in the SDRAM Memory Global Control register (EBIU_SDGCTL) and 
then issuing a read or write transfer to the SDRAM address space. The ini-
tial read or write triggers the SDRAM power-up sequence to be run, 
which programs the SDRAM’s mode register with the CAS latency from 
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many 
cycles to complete. Note that for most applications the SDRAM power-up 
sequence and writing of the mode register needs to be done only once. 
Once the power-up sequence has completed, the PSSE bit should not be 
set again unless a change to the mode register is desired.
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modified addressing.

The process whereby the DAG generates an address that is incremented by 
a value or a register. 

Modify address.

The process by which a DAG increments the stored address without per-
forming a data move.

Modify register.

A DAG register that provides the increment or step size by which an index 
register is pre- or post-modified during a register move.

MMR (Memory-mapped Register). 

A location in main memory used by the processor as if it were a register. 
Registers are high-speed memory locations in the processor that can be 
addressed with just a few bits; memory-mapped registers must be 
addressed in the same way as other memory locations and the speed of 
MMR accesses is limited to the speed of the system’s data bus.

MMU.

See Memory Management Unit

MSB (Most Significant Bit). 

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)). 

multifunction computations.

The parallel execution of multiple computational instructions. These 
instructions complete in a single cycle, and they combine parallel opera-
tion of the computational units and memory accesses. The multiple 
operations perform the same as if they were in corresponding single func-
tion computations.
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multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

Multiply Accumulator. 

An accumulator register in which operands are multiplied and added to 
the contents.

NMI (Non-maskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt. 

NRZ (Non-return to Zero).

A binary encoding scheme in which a one (1) is represented by a change in 
the signal and a zero (0) by no change—there is no return to a reference 
(zero) voltage between encoded bits. This method eliminates the need for 
a clock signal.

NRZI (Non-return to Zero Inverted). 

A binary encoding scheme in which a zero (0) is represented by a change 
in the signal and a one (1) by no change—there is no return to a reference 
(zero) voltage between encoded bits. This method eliminates the need for 
a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set 
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus
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page size.

The amount of memory which has the same row address and can be 
accessed with successive read or write commands without needing to 
activate another row. The page size can be calculated for 32-bit and 16-bit 
SDRAM banks with these formulas:

• 32-bit SDRAM banks: page size = 2(CAW + 2)

• where CAW is the column address width of the SDRAM, plus 2 
because the SDRAM bank is 32 bits wide (2 address bits = 4 bytes).

• 16-bit SDRAM banks: page size = 2(CAW + 1)

• where CAW is the column address width of the SDRAM, plus 1 
because the SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

PC (Program Counter). 

A register that contains the address of the next instruction to be executed. 
The PC is automatically incremented after each instruction is fetched to 
point to the following instruction.

PCI. 

See Peripheral Component Interconnect

peripheral.

The ADSP-BF535 processor’s peripherals include timers, Real-Time 
Clock, USB, programmable flags, UARTs, SPORTs, and SPIs.

Peripheral Access Bus (PAB). 

A low and predictable latency bus that keeps core stalls to a minimum and 
allows for manageable interrupt latencies to time critical peripherals.
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Peripheral Component Interconnect (PCI). 

A bus system that provides a bus bridge between the EAB and the EMB 
internal to the ADSP-BF535 processor and an external PCI bus.

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as 
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase Locked Loop (PLL). 

An on-chip frequency synthesizer that produces a full-speed master clock 
from a lower frequency input clock signal.

PIO (Programmed Input/Output).

A way of moving data between system devices and memory in which all 
data must pass through the processor (see Direct Memory Access).

PLL.

See Phase Locked Loop.

precision.

The number of bits after the binary point in the storage format for the 
number.

post-modify addressing.

The process in which the DAG provides an address during a data move 
and autoincrements the stored address for the next move.

Precharge command.

The Precharge command closes a specific internal bank in the active page 
or all internal banks in the page. The SDC always does a Precharge All, 
closing all internal banks.
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pre-modify addressing.

The process in which the DAG provides an address during a data move 
without incrementing the stored address.

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), a pulse modulation tech-
nique in which the duration of the pulses is varied by the modulating 
voltage.

RAS (Row Address Strobe).

A signal sent from the memory management unit (MMU) to a DRAM 
device to indicate that the row address lines are valid.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of 
the ADSP-BF535 processor, including time of day, alarm, and stopwatch 
countdown features. 

replacement policy.

The function used by the ADSP-BF535 processor to determine which line 
to replace on a cache miss. Often, a least recently used (LRU) algorithm is 
employed.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most 
often used to refer to non-volatile semiconductor memory. 

RTC.

See Real-Time Clock
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RZ (Return to Zero modulation).

A binary encoding scheme in which two signal pulses are used for every 
bit. A zero (0) is represented by a change from the low voltage level to the 
high voltage level; a one (1) is represented by a change from the high volt-
age level to the low voltage level. A return to a reference (zero) voltage is 
made between encoded bits.

RZI (Return to Zero Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every 
bit. A one (1) is represented by a change from the low voltage level to the 
high voltage level; a zero (0) is represented by a change from the high volt-
age level to the low voltage level. A return to a reference (zero) voltage is 
made between encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum 
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SBIU.

See System Bus Interface Unit.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access 
modes that clock out a series of successive bits.

SDRAM banks.

Four regions of memory that can be configured to be 16 MB, 32 MB, 
64 MB, or 128 MB and are selected by the SMS[3:0] pins. Each bank can 
be selected to be either all 32 bits wide or all 16 bits wide.
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Do not confuse the “SDRAM internal banks” which are internal to the 
SDRAM and are selected with the bank address, with the “SDRAM 
banks,” or “external banks,” that are enabled by the SMS[3:0] pins.

SDRAM DIMMs.

Dual In-line Memory Modules, or DIMMs, are an industry-standard 
SDRAM packaging option. The DIMM consists of a small, standardized 
form factor board, populated with SDRAM devices on one or both sides. 
DIMMs are populated with sufficient SDRAM to provide either 32-bit or 
64-bit data paths, with some configurations supporting additional data 
bits for parity protection.

Many DIMMs also include a serial presence detect port, which provides 
access to an on-DIMM serial ROM that includes information describing 
the type and characteristics of SDRAMs on the DIMM. This information 
can be read to determine the type, size, and timing parameters of installed 
DIMMs at boot time. One of the SPI or SPORT peripherals of the 
ADSP-BF535 processor can be used to interface to the DIMM serial pres-
ence detect port, if dynamic boot time determination of SDRAM 
configuration is required.

Self-Refresh. 

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer 
initiates Auto-Refresh cycles periodically, without external control input. 
The SDC must issue a series of commands including the Self-Refresh 
command to put the SDRAM into this low power mode, and it must issue 
another series of commands to exit Self-Refresh mode. Entering 
Self-Refresh mode is programmable in the SDRAM Memory Global Con-
trol register (EBIU_SDGCTL) and any access to the SDRAM address space 
causes the SDC to exit the SDRAM from Self-Refresh mode. See “Enter-
ing and Exiting Self-Refresh Mode (SRFS)” on page 18-44.

Serial Peripheral Interface (SPI). 

A synchronous serial protocol used to connect integrated circuits.
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serial ports.

An input/output location on the processor. The ADSP-BF535 processor 
uses three synchronous serial ports that provide an inexpensive interface to 
a wide variety of digital and mixed-signal peripheral devices.

set. 

A group of N-line storage locations in the Ways of an N-Way cache, 
selected by the Index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or 
Ways).

shifter.

A computational unit that completes logical and arithmetic shifts on 
16-bit operands and derives exponents.

SIC (System Interrupt Controller). 

Part of the ADSP-BF535 processor’s 2-level event control mechanism. 
The SIC works with the Core Event Controller (CEC) to prioritize and 
control all system interrupts. The SIC provides mapping between the 
peripheral interrupt sources and the prioritized general-purpose interrupt 
inputs of the core.

SIMD (Single Instruction, Multiple Data). 

A parallel computer architecture in which a collection of data is processed 
simultaneously under one instruction. 
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SP (Stack Pointer).

A register that points to the top of a stack. If the stack contains data, the 
SP points to the most recently pushed item; if the stack does not contain 
data, the SP points to the first empty location, where the next item will be 
pushed. 

SPI. 

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

stack.

A data structure for storing items that are to be accessed in last-in first-out 
(LIFO) order. When a data item is added to the stack, it is said to be 
“pushed”; when a data item is removed from the stack, it is “popped”. 

Static Random Access Memory (SRAM). 

Very fast memory that does not require periodic refreshing.

synchronous process.

A process that runs only as a result of some other process being completed 
or a handing-off operation.

system.

For the ADSP-BF535 processor, the peripheral set (Timers, Real-Time 
Clock, USB, programmable flags, UARTs, SPORTs, and SPIs), the PCI 
controller, the external memory controller (EBIU), the Memory DMA 
controller, and the interfaces between these, the system, and the optional, 
external (off-chip) resources.
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System Bus Interface Unit (SBIU). 

A unit that performs bus bridging functions, clock domain conversion, 
routes requests, and provides data transfer capability.

System clock (SCLK).

A component that delivers pulses at a frequency determined by a program-
mable divider ratio from the core clock. 

System Interrupt Controller (SIC). 

Component that maps and routes events from peripheral interrupt sources 
to the prioritized, general-purpose interrupt inputs of the CIC.

subroutine.

A self-contained section of a program, with an entry point and an exit, 
that usually performs a single task. The main program flow branches to a 
subroutine when its task is required, and the subroutine returns (branches 
back) to the main flow when its task has been completed.

tRAS.

Required delay between issuing a Bank Activate command and issuing a 
Precharge command, and between the Self-Refresh command and the exit 
from Self-Refresh. The TRAS bit field in the SDRAM Memory Global 
Control register (EBIU_SDGCTL) is 4 bits wide and can be programmed to 
be 1 to 15 clock cycles long. “Selecting the Bank Activate Command 
Delay (TRAS)” on page 18-47.
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tRP.

Required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register 
(EBIU_SDGCTL) is 3 bits wide and can be programmed to be 1 to 7 clock 
cycles long. “Selecting the Precharge Delay (TRP)” on page 18-48.

tRCD.

Required delay between a Bank Activate command and the start of the 
first Read or Write command. The TRCD bit field in the SDRAM Memory 
Global Control register (EBIU_SDGCTL) is 3 bits wide and can be pro-
grammed to be from 1 to 7 clock cycles long.

tWR.

Required delay between a Write command (driving write data) and a Pre-
charge command. The TWR bit field in the SDRAM Memory Global 
Control register (EBIU_SDGCTL) is 2 bits wide and can be programmed to 
be from 1 to 3 clock cycles long.

tRC.

Required delay between issuing successive Bank Activate commands to the 
same SDRAM internal bank. This delay is not directly programmable. 
The tRC delay must be satisfied by programming the TRAS and TRP fields 
to ensure that tRAS + tRP  tRC.
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tRFC.

Required delay between issuing an Auto-Refresh command and a Bank 
Activate command and between issuing successive Auto-Refresh com-
mands. This delay is not directly programmable and is assumed to be 
equal to tRC. The tRC delay must be satisfied by programming the TRAS 
and TRP fields to ensure that tRAS + tRP  tRC.

tXSR

Required delay between exiting Self-Refresh mode and issuing the 
Auto-Refresh command. This delay is not directly programmable and is 
assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the tRAS and tRP fields to ensure that tRAS + tRP  tRC.

tag.

Upper address bits, stored along with the cached data line, to identify the 
specific address source in memory that the cached line represents.

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

three-state versus Tristate.

Analog Devices documentation uses the word three-state instead of tristate. 
Tristate™ is a trademarked term owned by National Semiconductor.
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Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel. 
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for 
example, a 24-word block of data contains one word for each of 24 
channels.

UART. 

See Universal Asynchronous Receiver Transmitter

UDC (USB Device Controller).

Part of the USBD, a module that implements the low level USB protocol. 
It manages interaction with the USB host using the USB serial link, and 
presents data and command transactions to the application.

Universal Serial Bus (USB).

A module that handles USB protocol requirements. It also contains hard-
ware to connect it to the processor’s peripheral buses and to support an 
operating system. 

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits 
required for asynchronous serial communication.

USB.

See Universal Serial Bus

USBD (Universal Serial Bus Device). 

The module in the ADSP-BF535 processor that controls the Universal 
Serial Bus. The USBD consists of the UDC core module and a front-end 
interface. The USBD connects the DAB and the PAB with and off-chip 
USB transceiver.
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Valid.

A state bit, stored along with the tag, indicating the corresponding tag and 
data are current and correct and can be used to satisfy memory access 
requests.

victim. 

A dirty cache line that must be written to memory before it can be 
replaced to free space for a cache line allocation.

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access. (For John von 
Neumann, 1903-1957, a Hungarian-born mathematician.)

Way. 

An array of line storage elements in an N-Way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

Write-1-to-Set (W1S) bit. 

A control or status bit that is set by writing a 1 to it. It cannot be cleared 
by writing a 0 to it.
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write back.

A cache write policy (also known as copyback). The write data is written 
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to the source memory. The modified cache 
line is not written to the source memory when it is replaced.
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PCI, 13-6
PCI type 1 or type 0, 13-24

addressing
See also auto-decrement; auto-increment; 

bit-reversed; circular-buffer; indexed; 
indirect; modified; post-increment; 
post-modify; pre-modify; Data 
Address Generators

addressing modes, 5-15
address tag compare operation, 6-19

ADSP-21535
boot modes, 1-24
clock signals, 1-23
instruction set, 1-24
operating modes, 1-22

ADSP-21535 bus hierarchy figure, 7-1
ADSP-21535 internal clocks, 7-2
ADSP-BF535 processor

as PCI initiator, 13-6, 13-13
as PCI target, 13-10, 13-14
block diagram, 1-2
computational units, 2-1 to 2-48
core, definition, 1-1
core architecture, 1-2, 1-4
Data Address Generators (DAGs), 5-1 to 

5-20
direct memory access (DMA), 1-11, 9-1 

to 9-46
event handling, 1-10, 4-17
External Bus Interface Unit (EBIU), 

1-12, 18-1
external memory, 1-8, 6-55
internal memory, 1-7, 6-9
low power operation, 1-22, 8-25
memory architecture, 1-5, 6-5
memory map, 6-5
numeric formats, D-1 to D-7
operating modes, 3-1 to 3-18, 8-12
PCI, 1-8, 13-1
PCI interface, 1-13
peripherals, 1-1 to 1-2
programmable flags, 1-21, 15-1
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ADSP-BF535 processor (continued)
Real-Time Clock (RTC), 1-15, 17-1
registers, core, A-1 to A-12
registers, system, B-1 to B-35
serial peripheral interface ports (SPIs), 

1-19, 10-1
serial ports (SPORTs), 1-17, 11-1
software watchdog timer, 1-16, 16-25
system, definition, 1-1
system design, 19-1 to 19-18
test features, C-1 to C-26
UART ports, 1-20, 12-1
USB port, 1-15

ADSP-BF535 processor Pipeline (figure), 
4-7

alarm clock, RTC, 17-2
alarm interrupts, 17-8
A-law companding, 11-2, 11-53, 11-67
alignment exceptions, 6-83
allocating system stack, 4-58
alternate frame sync signals, defined, 11-59
alternate timing, serial port, 11-58
ALU (arithmetic logic unit), 1-2
ALU. See Arithmetic Logic Unit (ALU)
AMC

EBIU block diagram, 18-3
SCLK[1] function, 18-43
timing parameters, 18-12

AND, logical, 2-24
arbitration

DAB, 7-10
EAB, 7-15
EMB, 7-18
latency, 7-13
PAB, 7-8
SPORTs and USB, 14-3
USB DMA channel, 14-3

ARDY, 18-13, 18-26

arithmetic
formats summary, 2-15 to 2-16
operations, 2-24
shifts, 2-1

Arithmetic Logic Unit (ALU), 2-1, 2-24 to 
2-32

arithmetic, 2-13
arithmetic formats, 2-15
data flow, 2-28
data types, 2-12
functions, 2-24
inputs and outputs, 2-24
instructions, 2-24, 2-28, 2-32
operations, 2-24 to 2-28
status, 2-22, 2-28

arithmetic logic unit (ALU), 1-2
Arithmetic Shift (ASHIFT) instruction, 

2-14, 2-44
Arithmetic Status register (ASTAT), 2-23
ASIC/FPGA designs, 18-1
Assembly language, 2-1
ASTAT (Arithmetic Status register), 2-23
Asynchronous Controller, 1-13
asynchronous interfaces supported, 18-1
asynchronous memory, 1-2

interface, 18-9
PCI access, 13-43
region, 18-1

Asynchronous Memory Bank Address 
Range (table), 18-9

Asynchronous Memory Bank Control 
registers (EBIU_AMBCTLx), 18-12

asynchronous memory controller. See AMC
Asynchronous Memory Global Control 

register (EBIU_AMGCTL), 18-10
Asynchronous Memory Interface Signals 

(table), 18-5
asynchronous serial communications, 12-2
ASYNC memory banks, 18-3
atomic operations, 6-83



ADSP-BF535 Blackfin Processor Hardware Reference I-3
 

Index

autobaud detection, 12-1
timer, 16-19

auto-decrement addressing, 5-10, 5-14
auto-increment addressing, 5-10, 5-14
Auto-Refresh

command, 18-31, 18-78
description, 18-70
timing, 18-54

B
back-to-back accesses, 13-11
Bank0 Load/Store (Core D0 bus), 7-3
Bank1 Load/Store (Core D1 bus), 7-3
Bank Activate command, 18-29, 18-77

selecting delay, 18-47
bank address, 18-51
bank size, 18-51
Bank Size Encodings (table), 18-57, 18-59
bank width, 18-51
barrel shifter. See shifter
base address, USB buffers, 14-25, 14-26
base address pointer

PCI I/O, 13-23
PCI I/O space, 13-25
PCI memory space, 13-25

Base registers, 2-7, 5-2, 5-6
B (Base) registers, 2-7, 5-2, 5-6
biased rounding, 2-18
binary decode, C-4
binary multiplication, D-4
binary numbers, 2-3
BIST, 13-35
bit manipulation, 2-1

bit set, 2-48
bit test, 2-48
bit toggle, 2-48

bit-reversed addressing, 5-1, 5-9
bit stream on the TxD pin (figure), 12-2
bitstuff violations, 14-61
Blackfin DSP family

instruction set, 1-24
I/O memory space, 1-10

Blackfin processor family
core architecture, 1-1
dynamic power management, 1-1
memory architecture, 1-5

block diagrams
ADSP-BF535 processor, 1-2
bus hierarchy, 7-1
core, 7-3
EBIU, 18-3
interrupt processing, 4-21
L1 Data Memory, 6-39
L1 Instruction Memory banks, 6-16
memory architecture, 6-7
PCI, 13-1
PLL, 8-2
SDRAM, 19-12
SPI, 10-2
USBD module, 14-6

block floating point format, D-6
BMODE bits, 3-14
BMODE pins, 4-37
BMODE state, 3-13
Booting Methods, 3-17
boot kernel, 3-17
boot mode, 1-24
boot ROM

loading user code, 3-17
reading in user code, 3-17

boundary-scan architecture, C-2
Boundary-Scan register, C-4, C-8
branch, 4-9
branch, conditional, 4-13
Branches & Sequencing, 4-9
branch latency, 4-10

conditional branches, 4-14
unconditional branches, 4-14

Branch Prediction, 4-14
branch prediction, 4-14
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branch target, 4-12
branch target address

conditional branches, 4-14
unconditional branches, 4-14

B-registers (Base), 2-7, 5-2, 5-6
Broadcast mode, 10-3, 10-14, 10-30
buffers

Cacheability Protection Lookaside 
Buffers (CPLBs), 6-17, 6-57

length, USB data transfers, 14-34
overrun, USB, 14-43
timing, external, 18-83, 18-85
UDC, 14-44
underrun, USB, 14-43

built-in self test, 13-35
bulk data transfers, USB, 14-11, 14-48, 

14-49
bulk endpoint, 14-10
burst length, 18-30, 18-70
Burst Stop command, 18-30
Burst Transaction Conversion to PCI 

(table), 13-9
burst transactions, PCI, 13-9
burst type, 18-30
bus agents

DAB, 7-14
EAB, 7-17
EMB, 7-18
PAB, 7-9

bus contention, avoiding, 19-10
bus error

EBIU, 18-9
from PCI, 13-7

buses
concurrent operations, 7-6
hierarchy, 7-1
on-chip, 7-1
PCI AD, 13-6
peripheral, 7-8

buses (continued)

USB master-slave, 14-3
See also DAB, EAB, EMB, PAB

bus loading, 14-4
bus operation ordering, PCI core access, 

13-18
bus operations, PCI, 13-18
BYPASS field, 8-7
Bypass mode, 3-17
Bypass register, C-5, C-7
byte, 13-3
byte address, 18-51
byte order, 2-12

C
cache, 6-17

coherency support, 6-83
instruction cache organization (figure), 

6-19
L1 data, 6-40
mapping into data banks, 6-41
non-cacheable accesses, 6-22
validity of cache lines, 6-19

Cacheability Protection Lookaside Buffers 
(CPLBs), 3-5, 3-11, 6-17, 6-57

ENDCPLB (Enable DCPLB) bit, 6-61
Enable ICPLB (ENICPLB) bit, 6-61

management, 6-61
replacement policy, 6-61
requirements for cache, 6-40

cache block (definition), 6-1
cache hit, 6-1

address tag compare, 6-19
data cache access, 6-45
definition, 6-19
in atomic operations, 6-84
processing, 6-20
requirements, 6-20

cache inhibited accesses, 6-84
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cache line
components, 6-17
definition, 6-2
size, PCI, 13-37
states, 6-45

cache miss, 6-2
definition, 6-45
replacement policy, 6-22

CALL instruction, 4-9, 4-11
range, 4-11

capacitive loads, 18-28
capacitors

bypass placement, 19-16
decoupling, 19-16
loading, 19-15
recommendation, 19-16

CAS before RAS, 18-31
CAS latency, 18-31

selecting, 18-46
CAW, 18-33, 18-51
CBR refresh, 18-31
CC flag bit, 4-12
CCITT G.711 specification, 11-53
CCLK (core clock), 7-2

derivation, 8-1
status by operating mode, 8-12

CC status bit, 4-10
Channel, Current Serial (CHNL) bit, 

11-66
channels

defined, serial, 11-66
DMA, 1-2, 12-17
memory DMA, 1-2
serial port TDM, 11-67
serial select offset, 11-66

channel selection registers, 11-66
CH (Compare Hit) bit, 20-28
CHIPID (Chip ID register), 20-26, C-4, 

C-7

Chip ID register (CHIPID), 20-26, C-4, 
C-7

circuit board testing, C-1, C-6
circular buffer addressing, 5-6

registers, 5-6
wrap-around, 5-7

class code, PCI, 13-33
CL bit, 18-31, 18-40
clean data cache line (definition), 6-2
CLKIN (input clock), 8-1, 8-2
CLKIN to CCLK, changing the multiplier, 

8-18
clock

control, UDC, 14-7
core-to-peripheral ratio, 8-5
designing for multiplexed clock pins, 

19-3
domain, USBD, 14-5
EBIU, 18-1
external clock connections (figure), 19-4
frequency, 7-2
gated clocks in UDC module, 14-7
load, 18-44
managing clocks, 19-2
multiplier, 8-4, 19-3
PCI, 13-2
requirements, PCI, 13-45
speeds, 7-2, 8-2, 14-13
types, 19-2
USB, 14-62

clock and frame sync frequencies, 11-50
Clock Falling Edge Select (CKFE) bit, 

11-14, 11-17, 11-54, 11-57
clocking

peripheral, 8-22
UDC, 14-13
USB, 14-13

clock input (CLKIN) pin, 19-2
clock phase, SPI, 10-28, 10-30
clock polarity, SPI, 10-28
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clock signal options, 11-54
code examples

Active mode to Full On mode, 8-20
CSYNC, 6-85
Epilog code for nested ISR, 4-51
Execution Trace recreation, 20-18
Full On mode to Active mode, 8-21
interrupt enabling and disabling, 6-85
load base of MMRs, 6-85
modification of PLL, 8-17
Prolog code for nested ISR, 4-51
restoration of the control register, 6-85
transition to Idle state, 3-10

code patching, 20-4
column address, 18-51
column address strobe latency, 18-31
column address width, SDRAM, 18-33
Command Inhibit command, 18-80
commands

Auto-Refresh, 18-78
Bank Activate, 18-77
Command Inhibit, 18-80
Load Mode Register, 18-77
No Operation, 18-80
Precharge, 18-76
Read/Write, 18-78
SDC, 18-75
Self-Refresh, 18-79

command sequences, USB, 14-12
companding, 11-53, 11-61, 11-67

defined, 11-53
multichannel operations, 11-67

Compare Hit (CH) bit, 20-28
computation

instructions, 2-1
status, 2-22

concurrent bus operations, 7-6
conditional

JUMP instruction, 4-10

move instruction, 4-13
conditional branches, 4-13, 4-14, 6-81

branch latency, 4-14
branch target address, 4-14

conditional instructions, 2-22, 4-3
condition code (CC) flag bit, 4-12
Condition Code Flag, 4-12
Config Data Port, PCI, 13-6
configuration

ADSP-BF535 processor memory, 6-10
bits used to configure L1 memories, 6-12
DMA master channel, 14-24
L1 data banks, 6-10
L1 Instruction Memory, 6-17
L1 Instruction SRAM, 6-10
L1 SRAM, 6-5
on-chip L2 memory, 6-11
PCI outbound, 13-15
precautions before changing, 6-15
SDRAM, 18-28
USB, 14-2, 14-12
USB logical endpoint, 14-35

Content-Addressable Memory (CAM), 
6-57

control and status registers, PAB, 13-19
control data transfers, 14-11
control endpoint, USB, 14-10
control register

data memory, 6-12
instruction memory, 6-12
PLL, 8-3
restoration, 6-85

control registers
EBIU, 18-8

control transfer
problems, USB, 14-59
USB, 14-47, 14-56
with data phase, USB, 14-58
with no data phase, USB, 14-57
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core
accesses to PCI, 13-18
access to flag configuration, 15-2
clock/system clock ratio control, 8-5
double-fault condition, 4-28, 4-36
overview, 7-3
waking up from idled state, 4-24

core architecture, 1-2
core clock (CCLK), 7-2
core clock/system clock ratio control, 8-5
Core D0 bus, 7-3
Core D0 port, 7-4
Core D1 bus, 7-3
Core D1 port, 7-4
Core Double-Fault reset, 3-13
core event

in EVT, 4-35
MMR location, 4-35

Core Event Controller (CEC), 4-18
Core Event Vector Table (table), 4-35
Core I bus, 7-3, 7-5
Core Interrupt Latch Register (ILAT), 4-32
Core Interrupt Latch register (ILAT), 4-32
Core Interrupt Mask Register (IMASK), 

4-32
Core Interrupt Mask register (IMASK), 

4-32
Core Interrupt Pending Register (IPEND), 

4-33
Core Interrupts Pending register (IPEND), 

3-1, 4-33
Core-Only Software reset, 3-13, 3-17, 3-18
Core Timer, 4-46
Core Timer Control register (TCNTL), 

16-22
Core Timer Count register (TCOUNT), 

16-23
Core Timer Period register (TPERIOD), 

16-24

Core Timer Scale register (TSCALE), 
16-24

count, DMA for USB transfer, 14-26
counter

cycle, 4-4, 20-24
RTC, 17-1

CPLB_L1_CHBL bit, 6-22
CRC errors, 14-61
CROSSCORE software, 1-24
cross options, 2-30
crosstalk, 19-15
CSYNC, 6-81

code example, 6-85
instruction, 6-84

Current USB Frame Number register 
(USBD_FRM), 14-17

cycle counters, 4-4, 20-24, 20-25
CYCLES and CYCLES2 (Execution Cycle 

Count registers), 20-25

D
DAB arbitration, 7-10
DAB bus agents (masters, slaves, bridges), 

7-14
DAB (DMA Access bus)

and USB, 14-9
arbitration, 7-10
bus agents (masters, slaves, bridges), 7-14
latencies (table), 7-12
performance, 7-11

DAB (DMA access bus)
clocking, 8-1

DAB latencies, 7-13
DAG0 CPLB Miss, 4-43
DAG0 Misaligned Access, 4-43
DAG0 Multiple CPLB Hits, 4-43
DAG0 Protection Violation, 4-43
DAG1 CPLB Miss, 4-43
DAG1 Misaligned Access, 4-43
DAG1 Multiple CPLB Hits, 4-43
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DAG1 Protection Violation, 4-43
DAG (data address generator), 1-4
DAG. See Data Address Generators 

(DAGs)
Data, 5-1
data address generator (DAG), 1-4
Data Address Generators (DAGs), 2-7, 

3-11, 5-1
address for indirect branch, 4-10
addressing modes, 5-15
instructions, 5-13, 5-16
support for branches, 4-3

data bursts, DMA, 7-11
Data Cacheability Protection Lookaside 

Buffer Data registers 
(DCPLB_DATAx), 6-65

data cache control instructions, 6-47
data errors, USB, 14-60
data flow, 2-1
data formats, 2-3 to 2-4, 2-11

serial data, 11-52, 11-53
Data Formatting Type Select (DTYPE) 

bits, 11-16
data-independent transmit frame sync, 

11-60
data-independent transmit frame sync, 

serial port, 11-60
Data Independent Transmit Frame Sync 

(DITFS) bit, 11-10, 11-14, 11-60
Data I/O Mask pins, 18-47
data mask encodings, 18-68
Data Memory Control register 

(DMEM_CONTROL), 6-12, 6-57
data move, serial port operations, 11-69
data packet, shortened, USB, 14-48
Data Receive, serial (DRx) pins, 11-3, 11-4
Data Register File, 2-5
data registers, 2-5, 3-4
data sampling, serial, 11-57
data store format, 6-3

Data Test Command register 
(DTEST_COMMAND), 6-49

Data Test Data registers 
(DTEST_DATAx), 6-49

data throughput, core or DMA, 18-83
data transfers

bulk, 14-11
control, 14-11
Data Register File, 2-6
DMA, 9-1
isochronous, 14-11
isochronous, USB, 14-53
Memory DMA (MemDMA), 9-31
SPI, 10-3
USB, 14-11, 14-47, 14-48
USB, buffer length, 14-34

Data Transmit, serial (DTx) pins, 11-3, 
11-4, 11-62, 11-64

data type, 11-53
Data Type, serial (DTYPE) bits, 11-12, 

11-52, 11-53
data types, 2-10 to 2-21
Data Windows in EAB for Outbound 

Transactions (table), 13-6
data word formats, 11-52
DAT modification, 5-12
DB_ACOMP (DMA Bus Address 

Comparator register), 20-28, 20-29
DB_CCOMP (DMA Bus Control 

Comparator register), 20-28, 20-29
DBCS (L1 Data Cache Bank Select) bit, 

6-12, 6-42
DBGCTL (Debug Control register), 3-17
DBO (Descriptor Block Ownership bit), 

9-10
DCPLB Address registers 

(DCPLB_ADDRx), 6-69, 6-70
DCPLB_ADDRx (Data Cacheability 

Protection Lookaside Buffer Address 
registers), 6-70
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DCPLB_ADDRx (DCPLB Address 
registers), 6-69, 6-70

DCPLB Data registers (DCPLB_DATAx), 
6-65, 6-66

DCPLB_DATAx (Data Cacheability 
Protection Lookaside Buffer Data 
registers), 6-65

DCPLB_DATAx (DCPLB Data registers), 
6-66

DCPLB_FAULT_ADDR (DCPLB Fault 
Address register), 6-75

DCPLB Fault Address register 
(DCPLB_FAULT_ADDR), 6-75

DCPLB_STATUS (DCPLB Status 
register), 6-73

DCPLB Status register 
(DCPLB_STATUS), 6-73

Debug Control register (DBGCTL), 3-17
debug features, 20-1
DEC (Instruction Decode), 4-7
Deep Sleep mode, 1-23, 8-14
deferring exception processing, 4-55
delayed transactions, PCI, 13-7
Descriptor Block Ownership bit (DBO), 

9-10, 9-18
Destination Memory DMA Configuration 

register (MDD_DCFG), 9-33
Destination Memory DMA Current 

Descriptor Pointer register 
(MDD_DCP), 9-37

Destination Memory DMA Descriptor 
Ready register (MDD_DDR), 9-36

Destination Memory DMA Interrupt 
register (MDD_DI), 9-38

Destination Memory DMA Next 
Descriptor Pointer register 
(MDD_DND), 9-36

Destination Memory DMA Start Address 
High register (MDD_DSAH), 9-35

Destination Memory DMA Start Address 
Low register (MDD_DSAL), 9-35

Destination Memory DMA Transfer 
Count register (MDD_DCT), 9-34

development tools, 1-24
device initialization, USBD, 14-46
device mode operation, 13-4
device software, UDC, 14-12
DF (Divide Frequency), 8-3, 8-8
direct branch, 4-10
Direct Call, 4-11
direct mapped (definition), 6-2
direct memory access, 9-1
Direct Memory Access. See DMA
Direct Short and Long Jumps, 4-11
dirty state bit (definition), 6-2
Disable Interrupts (CLI) instruction, 3-4, 

6-85
disabling

autobuffering, 9-15
CPLBs, 6-12
interrupts, global, 4-34
PLL, 8-16
timer, 16-5
USB, 14-21

DISALGNEXPT instruction, 5-13
Divide Frequency (DF) bit, 8-3, 8-8
divide primitives (DIVS, DIVQ), 2-12, 

2-31
DIVQ instruction, 2-31
DIVS instruction, 2-31
DMA, 9-1 to 9-46

abort conditions, 9-44
autobuffer based operation, 9-15
buffer size, multichannel, 11-68
bus, 20-27
Bus Debug registers, 20-27
bus error conditions, 9-45
channel latency requirement, 12-17
channels, 12-17
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DMA (continued)
Configuration Word, 9-6
controller, 9-1
control registers, 9-16 to 9-30
data misalignment, 9-46
data size, 9-7
data transfer direction, 9-7
data transfer types, 9-1
descriptor based operation, 9-10
descriptor block structure, 9-4
DMA capable peripherals, 9-1
flow diagram, 9-11
illegal memory access, 9-46
linked list, 9-4
memory access, illegal, 9-46
Memory DMA, 9-31 to 9-44
mode, 12-17
parameter sets, 9-2
peripheral dependent control bits, 9-8
peripheral dependent functionality, 9-7
peripheral dependent status bits, 9-8
serial port, 11-69
stalls, 7-12

DMA Bus Address Comparator register 
(DB_ACOMP), 20-28, 20-29

DMA Bus Control Comparator register 
(DB_CCOMP), 20-28, 20-29

DMA bus (DAB), 7-10
DMA bus error, USB, 14-41
DMA Bus. See DAB
DMA capable peripheral, 12-1
DMA channel, 1-2
DMA_COMP interrupt, 14-41
DMA Configuration register, 9-16
DMA controller, 1-11
DMA control registers (table), 9-30
DMA Current Descriptor Pointer register, 

9-26
DMA_DBP (DMA Descriptor Base 

Pointer register), 9-24

DMA Descriptor Base Pointer register 
(DMA_DBP), 9-24

DMA Descriptor Ready register, 9-25
DMA_ERROR interrupt, 14-41
DMA IRQ Status register, 9-28
DMA Master Channel, configuring, 14-24
DMA Master Channel Base Address High 

register (USBD_DMABH), 14-26
DMA Master Channel Base Address Low 

register (USBD_DMABL), 14-25
DMA Master Channel Configuration 

register (USBD_DMACFG), 14-24
DMA Master Channel Count register 

(USBD_DMACT), 14-26
DMA Master Channel DMA Interrupt 

register (USBD_DMAIRQ), 14-27
DMA Master Channel module, 14-5
DMA Master module, USB, 14-9
DMA Mode, 12-17
DMA Next Descriptor Pointer register, 

9-23
DMA registers, USB, 14-15
DMA Start Address registers, 9-21
DMA Transfer Count register, 9-19
DMA transfers, USB, 14-33
DMEM_CONTROL (Data Memory 

Control register), 6-12, 6-57
double-fault condition, 4-36
DPMC (Dynamic Power Management 

Controller), 4-24, 8-2, 8-11
DQM Data I/O Mask function, 18-31
DRAM (dynamic random-access memory), 

1-2
DSP Device ID register (DSPID), 20-27
DSPID (DSP Device ID register), 20-27
DTEST_COMMAND (Data Test 

Command register), 6-49
DTEST_DATAx (Data Test Data 

registers), 6-49
dual 16-bit operations, 2-25
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dynamic address, for indirect JUMP and 
CALL, 4-11

dynamic power management, 1-1, 8-1, 8-1 
to 8-27

Dynamic Power Management Controller 
(DPMC), 4-24, 8-2, 8-11

dynamic random-access memory (DRAM), 
1-2

E
EAB arbitration, 7-15
EAB (External Access bus)

and EBIU, 18-4
arbitration, 7-15
bus agents (masters, slaves, bridges), 7-17
frequency, 7-15
masters and slaves, 7-17
performance, 7-15
performance estimates (table), 7-15

EAB (external access bus)
clocking, 8-1

EAB performance, 7-15
EAB performance estimates, 7-15
early frame sync. See frame sync
Early Versus Late Frame Syncs (Normal 

Versus Alternate Timing), 11-58
EBIU_AMBCTL0 (Asynchronous 

Memory Bank Control 0 register), 
18-12

EBIU_AMBCTL1 (Asynchronous 
Memory Bank Control 1 register), 
18-12

EBIU_AMGCTL (Asynchronous Memory 
Global Control register), 18-10

EBIU (External Bus Interface Unit)
as slave, 18-4
asynchronous interfaces supported, 18-1
block diagram, 18-3
bus error, 18-9
clock, 18-1

EBIU (External Bus Interface 
Unit)) (continued)

clocking, 8-1
control registers, 18-8
overview, 18-1
programming model, 18-7
status register, 18-8

EBIU_SDBCTL (SDRAM Memory Bank 
Control register), 18-49

EBIU_SDGCTL (SDRAM Memory 
Global Control register), 18-37

EBIU_SDRRC (SDRAM Refresh Rate 
Control register), 18-54

EBIU_SDSTAT (SDRAM Control Status 
register), 18-53

EBUFE bit, 18-42
setting, 18-45

effective range, loop, 4-16
EMB arbitration, 7-18
EMB bus agents (masters, slaves, bridges), 

7-18
EMB (External Mastered bus)

and EBIU, 18-4
arbitration, 7-18
bus agents (masters, slaves, bridges), 7-18
clocking, 8-1
frequency, 7-18
masters and slaves, 7-18
performance, 7-18
resources accessible, 7-19

EMB performance, 7-18
EMC (External Memory Controller), 1-7
EMU core event, 4-19
Emulation, 4-36
Emulation mode, 3-9

entering, 3-6
emulator mode, 1-5
Enable Download of Configuration into 

UDC Core register (USBD_EPBUF), 
14-18
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Enable ICPLB (ENICPLB) bit, 6-61
Enable Interrupts (STI) instruction, 3-4, 

6-85, 8-18, 8-19
enabling interrupts, global, 4-34
enabling timer, 16-5
ENDCPLB (Enable DCPLB) bit, 6-61
endian format, 11-52

data and instruction storage, 6-76
serial data, 11-52

Endian Format Select (SENDN) bit, 
11-13, 11-17, 11-52

endpoint buffer data, USB, 14-18
endpoint errors, USB, 14-60
endpoint interrupts, USB, 14-27
endpoint registers, USB, 14-8, 14-15
endpoints, USB, 14-10, 14-20, 14-44

programming, 14-31
EpBufs, 14-44

UDC, 14-18
EPROM, 1-8
error condition, type of exception, 4-39
error detection, USB, 14-61
errors

bus, 9-29
DMA, 9-15, 9-16
EBIU, on internal bus, 6-56
fatal, PCI, 13-8
illegal memory access, 9-29
misalignment of data, 6-83
multiple hardware, 4-45
PCI inbound, 13-12

error signals, SPI, 10-6, 10-35
evaluation of loop conditions, 4-5
event

definition, 4-18
exception, 4-38
latency in servicing, 4-58
nested, 4-33

Event Controller, 3-1, 4-17
MMRs, 4-31
Sequencer, 4-3

Event Controller Registers, 4-31
event handling, 1-10
event monitor, 20-22
event processing, 4-3
events by priority (table), 4-18
Events & Sequencing, 4-17
Events That Cause Exceptions (table), 4-39
Event Vector Table, 4-35
Event Vector Table (EVT), 4-35
Event Vector Table registers (EVTx), 4-31
EVT (Event Vector Table), 4-35
EVX core event, 4-19
EX1 (Execute 1), 4-7
EX2 (Execute 2), 4-7
EX3 (Execute 3), 4-7
examples

RDIV calculation, 18-56
SDRAM start address calculation, 18-58

exception, 4-1
events, 4-38
events causing, 4-40
for memory reference, 4-38
multiple, 4-42
while exception handler executing, 4-44

exception events, User mode violations, 3-4
exception handler, executing, 4-43
Exception Handling, 4-54
exception handling

instructions in pipeline, 4-54
USB, 14-60

exception processing, deferring, 4-55
exception routine, example code, 4-57
Exceptions, 4-38
Exceptions by Descending Priority (table), 

4-42
Exceptions While Executing an Exception 

Handler, 4-43
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exclusive data cache line (definition), 6-2
EXCPT instruction, 4-43
Execute 1 (EX1), 4-7
Execute 2 (EX2), 4-7
Execute 3 (EX3), 4-7
Execution Cycle Count registers (CYCLES 

and CYCLES2), 20-25
Execution Unit, components, 4-8
exponent derivation, 2-1
EXT_CLK (External Event Counter 

mode), 16-10, 16-11, 16-21
External Access Bus. See EAB
external buffer timing, 18-83

SDRAM, 18-85
External Bus Interface Unit (EBIU) 

(figure), 18-3
External Bus Interface Unit. See EBIU
External Event Counter mode 

(EXT_CLK), 16-10, 16-11, 16-21
External Mastered bus. See EMB
external memory, 1-8

design issues, 19-9
interfaces, 18-5

External Memory Controller, 1-12
External Memory Controller (EMC), 1-7
External Memory Map (figure), 18-3
external PCI requirements, 13-4

F
fast back-to-back accesses, 13-11
fast back-to-back transactions, PCI, 13-20
Fast Fourier Transform, 2-30, 5-9
fatal errors, PCI, 13-8
fetch address, 4-8

incrementation, 4-8
fetched address, 4-2
FFT calculations, 5-9
FIFO, 18-1

PCI transaction, 13-7
figure, Core Interrupt Latch Register, 4-33

figure, Core Interrupt Mask Register, 4-32
figure, Core Interrupt Pending Register, 

4-33
figure, Minimizing Latency in Servicing an 

ISR, 4-59
figure, Nested Interrupt Handling, 4-50
figure, Non-Nested Interrupt Handling, 

4-48
figure, SPORT Continuous Receive, 

Alternate Framing, 11-72
figure, SPORT Continuous Receive, 

Normal Framing, 11-72
figure, SPORT Continuous Transmit, 

Alternate Framing, 11-72
figure, SPORT Continuous Transmit, 

Normal Framing, 11-72
figure, SPORT Receive, Alternate Framing, 

11-72
figure, SPORT Receive, Normal Framing, 

11-72
figure, SPORT Receive, Unframed Mode, 

Alternate Framing, 11-72
figure, SPORT Receive, Unframed Mode, 

Normal Framing, 11-72
figure, SPORT Transmit, Alternate 

Framing, 11-72
figure, SPORT Transmit, Normal 

Framing, 11-72
figure, SPORT Transmit, Unframed 

Mode, Alternate Framing, 11-72
figure, SPORT Transmit, Unframed 

Mode, Normal Framing, 11-72
figure, System Interrupt Assignment 

Register 2, 4-29
figure, System Interrupt Mask Register, 

4-28
figure, System Interrupt Status Register, 

4-26
figure, System Interrupt Wakeup-Enable 

Register, 4-24
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figure System Interrupt Assignment 
Register 0, 4-29

FIO_BOTH (Flag Set on Both Edges 
register), 15-10

FIO_DIR (Flag Direction register), 15-2
FIO_EDGE (Flag Interrupt Sensitivity 

register), 15-10
FIO_FLAG_C (Flag Clear register), 15-2
FIO_FLAG_S (Flag Set register), 15-2
FIO_MASKA_C (Flag Interrupt A Mask 

Clear register), 15-5
FIO_MASKA_S (Flag Interrupt A Mask 

Set register), 15-5
FIO_MASKB_C (Flag Interrupt B Mask 

Clear register), 15-5
FIO_MASKB_S (Flag Interrupt B Mask 

Set register), 15-5
FIO_POLAR (Flag Polarity register), 15-9
fixed-point ALU instructions, 2-28
Flag Clear register (FIO_FLAG_C), 15-2
Flag Configuration register, core access to, 

15-2
Flag Direction register (FIO_DIR), 15-2
Flag Interrupt A Mask Clear register 

(FIO_MASKA_C), 15-5
Flag Interrupt A Mask Set register 

(FIO_MASKA_S), 15-5
Flag Interrupt B Mask Clear register 

(FIO_MASKB_C), 15-5
Flag Interrupt B Mask Set register 

(FIO_MASKB_S), 15-5
Flag Interrupt Mask registers, 15-5
Flag Interrupt Sensitivity register 

(FIO_EDGE), 15-10
Flag Polarity register (FIO_POLAR), 15-9
flags

PCI status register, 13-22
programmable, 15-1
Transmit Holding Register Empty 

status, 12-5

flags (continued)
Write Complete, 17-3

Flag Set on Both Edges register 
(FIO_BOTH), 15-10

Flag Set register (FIO_FLAG_S), 15-2
flash boot source, 1-24
flash memory, 1-8, 18-1
FLUSH instruction, 6-47
FLUSHINV instruction, 6-47
Force Interrupt / Reset (RAISE) 

instruction, 3-4, 3-11
fractional mode, 2-4, 2-13, D-5
fractions, multiplication, 2-42
framed/unframed data, 11-55
framed versus unframed, 11-55
Framed Versus Unframed Data (figure), 

11-56
frame number, USB, 14-17, 14-18
Frame Pointer (FP), 4-4

registers, 5-5
frame sync

active high/low, 11-57
early/late, 11-58
external/internal, 11-56
frequencies, 11-50
late, defined, 11-58
multichannel mode, 11-63
options, 11-55
sampling, 11-57

frame sync options, 11-55
frame syncs in multichannel mode, 11-63
Frame Sync to Data Relationship (FSDR) 

bit, 11-66
frequencies, clock and frame sync, 11-50
frequency

clock, 7-2
EAB, 7-15
EMB, 7-18

Front-End Interface, USB, 14-7
Full On mode, 1-22
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full speed, USB, 14-14

G
general-purpose interrupt, 4-18, 4-46

with multiple peripheral interrupts, 4-29
General-Purpose Interrupts 

(IVG7-IVG15), 4-46
general-purpose I/O (GPIO), 1-2

pins, 15-1
general-purpose timers, 1-2
general registers, USB, 14-15
global enabling and disabling interrupts, 

4-34
Global Enabling/Disabling of Interrupts, 

4-34
Global Interrupt Mask register 

(USBD_GMASK), 14-24
Global Interrupt register 

(USBD_GINTR), 14-22
ground plane, 19-15
GSM

speech compression routines, 2-21
speech vocoder algorithms, 2-37

H
H.100 protocol, 11-66, 11-69
half word, 13-3
Hardware Conditions Causing Hardware 

Error Interrupts (table), 4-45
Hardware-Error Interrupt, 4-44
hardware error interrupt (HWE), 4-44, 

20-28
causes, 4-44

hardware errors, multiple, 4-45
Hardware reset, 3-12, 3-13
hardware reset, 3-13
Harvard architecture, 6-9
header type, PCI, 13-36
heavy clock load and SDRAM, 18-44

hierarchical memory structure, 1-5
hold, for EBIU asynchronous memory 

controller, 18-12
host mode, PCI

inbound transactions, 13-14
outbound transactions, 13-13

HWE (hardware error interrupt), 4-44, 
20-28

I
ICPLB Address registers 

(ICPLB_ADDRx), 6-71
ICPLB_ADDRx (ICPLB Address 

registers), 6-71, 6-72
ICPLB Data registers (ICPLB_DATAx), 

6-68
ICPLB_DATAx (ICPLB Data registers), 

6-68
ICPLB_DATAx (Instruction Cacheability 

Protection Lookaside Buffer Data 
registers), 6-67

ICPLB Fault Address register 
(ICPLB_FAULT_ADDR), 6-76

ICPLB_FAULT_ADDR (ICPLB Fault 
Address register), 6-76

ICPLB_STATUS (ICPLB Status register), 
6-74

ICPLB Status register (ICPLB_STATUS), 
6-74

idled state, wake up core from, 4-24
IDLE instruction, 3-4
Idle state, 3-9, 4-1
IEEE 1149.1 standard. See JTAG standard
IF1 (Instruction Fetch 1), 4-7
IF2 (Instruction Fetch 2), 4-7
I-Fetch Access Exception, 4-42
I-Fetch CPLB Miss, 4-42
I-Fetch Misaligned Access, 4-42
I-Fetch Multiple CPLB Hits, 4-42
I-Fetch Protection Violation, 4-42
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ILAT (Core Interrupt Latch register), 4-32
illegal combination, 4-43
illegal use protected resource, 4-43
IMASK (Core Interrupt Mask register), 

4-32
IMEM_CONTROL (Instruction Memory 

Control register), 6-12, 6-57
inbound operation, PCI, 13-10
inbound transactions

ADSP-BF535 processor as PCI target, 
13-10, 13-14

PCI, errors, 13-12
incrementing bursts, 13-9
index (definition), 6-2
indexed addressing, 5-9, 5-14

with immediate offset, 5-11
Index registers (I[3:0]), 2-7, 5-2, 5-6
indirect addressing, 5-14
indirect branch, 4-10
Indirect Branch and Call, 4-11
inductance (run length), 19-15
initialization

of interrupts, 4-23
initialization, USB device, 14-46
input clock (CLKIN), 8-1
inputs and outputs, 2-24
Inserting Wait States using ARDY (figure), 

18-27
instruction address, 4-3
Instruction Alignment Unit, 4-8
instruction bit scan ordering, C-5
instruction cache

coherency, 6-23
Instruction Cacheability Protection 

Lookaside Buffer Data registers 
(ICPLB_DATAx), 6-67

Instruction Decode (DEC), 4-7
Instruction Fetch 1 (IF1), 4-7
Instruction Fetch 2 (IF2), 4-7
Instruction Fetch (Core I bus), 7-3

instruction fetches, 6-57
instruction fetch time loop, 4-17
instruction in pipeline when interrupt 

occurs, 4-54
instruction loop buffer, 4-17
Instruction Memory Control register 

(IMEM_CONTROL), 6-12, 6-57
Instruction Memory Unit, 4-8
Instruction Pipeline, 4-7
instruction pipeline, 4-2, 4-7
Instruction register, C-2, C-4
instructions

ALU, 2-28
DAG, 5-16, 5-17
instruction set, 1-24
interlocked pipeline, 6-78
load • store, 6-77
multiplier, 2-35
re-execution, 4-39
Register File, 2-8, 2-9
shifter, 2-48
stored in memory, 6-77
synchronizing, 6-80

instruction set, 1-5, 1-24
Instruction Test Command register 

(ITEST_COMMAND), 6-27
Instruction Test Data registers 

(ITEST_DATAx), 6-28
Instruction Test registers, 6-26
instruction watchpoints, 20-4
instruction width, 4-8
integer mode, 2-14, 2-16, D-5
integers, multiplication, 2-42
interconnect routing, 7-6
interfaces, 7-7

external memory, 18-5
internal, 7-1
USB, 14-12

Interface Signals, Asynchronous Memory 
(table), 18-5
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interleave accesses, 18-32
Internal Address Mapping (table), 18-51
internal bank, 18-31
internal/external frame syncs. See frame 

sync
internal interfaces, 7-1
internal memory, 1-7
Internal Receive Frame Sync Select (IRFS) 

bit, 11-17, 11-56
Internal Transmit Clock Select (ICLK) bit, 

11-16, 11-54
Internal Transmit Frame Sync Select 

(ITFS) bit, 11-13, 11-56, 11-64
internal versus external frame syncs, 11-56
interrupt

for peripheral, 4-22
general-purpose, 4-22
initialization, 4-23

interrupt endpoint, 14-10
interrupt ID, core, 4-22
interrupt ID, peripheral, 4-22
interrupt lines, PCI, 13-17, 13-43
Interrupt Processing Block Diagram, 4-21
Interrupt Processing Block Diagram 

(figure), 4-21
interrupts, 4-1

alarm, 17-8
behavior and control, PCI, 13-17
control of system, 4-18
definition, 4-18
determining source of interrupt, 4-26
enabling and disabling, 6-85
general-purpose, 4-18, 4-46
generated by peripheral, 4-20
global enabling and disabling, 4-34
handling instructions in pipeline, 4-54
hardware error, 4-44
masking, USB, 14-30
multiple sources, 4-21
nested, 4-33

interrupts (continued)
non-nested, 4-48
PCI configuration, 13-42
peripheral, 4-18
PF pins, 15-1
processing, 4-3, 4-20
processor, 15-5
self-nesting, 4-53
servicing, 4-46
shared, 4-29
signals, SPI, 10-6
sources, peripheral, 4-25
stopwatch, 17-8
timer, 16-7
USB, 14-12, 14-22, 14-24, 14-37
USB buffer complete, 14-43
USB configuration change, 14-38
USB device suspended, 14-39
USB DMA bus error, 14-41
USB DMA comp, 14-41
USB endpoints, 14-27
USB endpoint x, 14-40
USB frame match, 14-40
USB memory controller error, 14-43
USB missed start of frame, 14-39
USB module, 14-4
USB multiple setup packets received, 

14-43
USB packet complete, 14-42
USB reset signalling detected, 14-39
USB resume signalling, 14-39
USB setup packet received, 14-43
USB start of frame, 14-38
USB transfer complete, 14-42
USB transfers, 14-48

invalidating instructions, 4-8
invalid cache line (definition), 6-2
I/O Data Window, PCI, 13-6
I/O drivers, PCI, 13-44
I/O memory space, 1-10
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I/O pins, general purpose, 15-1
I/O receivers, PCI, 13-44
IPEND (Core Interrupts Pending register), 

3-1, 4-33
IrDA, 12-36

receiver, 12-38
receiver pulse, 12-38
SIR protocol, 1-20, 12-1
support, 12-35
transmit pulse, 12-37
transmitter, 12-37

IrDA Receiver Description, 12-38
IrDA Support, 12-35
IrDA Transmit Pulse (figure), 12-37
IrDA Transmitter Description, 12-37
I-registers (Index), 2-7
isochronous data transfers, 14-11
isochronous endpoint, 14-10
isochronous packets, size, 14-11
isochronous transfers, 14-28

USB, 14-53
ISR

supporting multiple interrupt sources, 
4-23

ISR and multiple interrupt sources, 4-21
ITEST_COMMAND (Instruction Test 

Command register), 6-27
ITEST_DATAx (Instruction Test Data 

registers), 6-28
ITEST registers, 6-26
IVG core events, 4-19
IVHW core event, 4-19
IVHW interrupt, 4-44
IVTMR core event, 4-19

J
JTAG

port, 3-17
standard, 20-26, C-1, C-2, C-4

jump, 4-1

JUMP instructions, 4-9
conditional, 4-10
range, 4-11

L
L1 interface (System L1 bus), 7-4
L1 memory. See Level 1 (L1) memory; 

Level 1 (L1) Data Memory; Level 1 
(L1) Instruction Memory

L2 memory, 7-7
latched interrupt request, 4-32
latency, 18-81

DAB (table), 7-12
in interrupt processing, 4-24
maximum for PCI, 13-41
PCI memory, 13-36
programmable flags, 15-11
requirement, DMA channel, 12-17
SDRAM Read command, 18-70
serial port registers, 11-50
servicing events, 4-58
setting CAS value, 18-46
when servicing interrupts, 4-46

Latency in Servicing Events, 4-58
Late Receive Frame Sync (LARFS) bit, 

11-17
Late Transmit Frame Sync (LATFS) bit, 

11-14, 11-58
LB (Loop Bottom registers), 4-5
LC (Loop Counter registers), 4-5
least recently used algorithm (definition), 

6-3
Length registers (L[3:0]), 2-7, 5-2, 5-6
Level 1 (L1) Data Memory, 3-11

access, 6-38
architecture, 6-39
configuration, 6-10
control registers, 6-12
Data Banks A and B, 6-37, 6-38
dual port capability, 6-38
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Level 1 (L1) Data Memory (continued)
sub-banks, 6-39

Level 1 (L1) Instruction Memory, 3-11, 
3-15, 6-14

access, 6-15
architecture, 6-17
changing configuration, 6-15
configuration, 6-14, 6-17
control registers, 6-12
DAG reference exception, 6-15
dual port capability, 6-15
instruction cache, 6-17
sub-bank organization, 6-14
sub-banks, 6-16

Level 1 (L1) memory, 1-5, 7-3, 7-4
address alignment, 6-15
architecture, 6-9
configuration, 6-12
data cache, 6-40
data memory configuration bits, 6-37
definition, 6-3
L1 Data SRAM, 6-10
L1 Instruction SRAM, 6-10
scratchpad data SRAM, 6-11
See also Level 1 (L1) Data Memory; Level 

1 (L1) Instruction Memory
Level 2 (L2) memory, 1-5, 6-52 to 6-56

definition, 6-3
latency, 6-53, 6-55
latency with cache off, 6-55
latency with cache on, 6-53
off-chip, 6-55
on-chip, 6-11
SRAM, 1-7

Level 2 (L2) SRAM, 7-5, 7-7
little endian data ordering, 6-3
load, speculative execution, 6-81
Load Mode Register, 18-77
Load Mode Register command, 18-77

load operation, 6-77
load ordering, 6-79
locked transfers, DMA, 7-12
logging nested interrupt, 4-52
logical endpoints

configuration, USB, 14-35
USB, 14-2

logical operations, 2-24
Logical Shift (LSHIFT) instruction, 2-14, 

2-44
logical shifts, 2-1
long jump (JUMP.L) instruction, 4-11
loop, 4-1, 4-15

buffer, 4-17
conditions, evaluation, 4-5
counter, 4-15
disabling, 4-17
effective range, 4-16
instruction fetch time, 4-17
registers, 4-4, 4-6
termination, 4-3
top and bottom addresses, 4-16

Loop Bottom registers (LB), 4-5
Loop Counter registers (LC), 4-5
Loop Registers (table), 4-17
Loop Setup (LSETUP) instruction, 4-15
Loops & Sequencing, 4-15
Loop Top registers (LT), 4-5
low power operation, 1-22
Low Receive Frame Sync (LRFS) bit, 

11-56, 11-57
Low Receive Frame Sync Select (LRFS) bit, 

11-17
low speed, USB, 14-14
Low Transmit Frame Sync Select (LTFS) 

bit, 11-14, 11-56, 11-57
L-registers (Length), 2-7
LSETUP (loop setup) instruction, 4-15
LT (Loop Top registers), 4-5
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M
MACs (multiplier-accumulators), 1-2, 

2-32 to 2-44
dual operations, 2-43
multicycle 32-bit instruction, 2-42
operations, 2-38
See also multiply without accumulate

mask interrupts, USB, 14-30
master abort cycle, PCI, 13-8
Master In Slave Out (MISO) pin, 10-4, 

10-5, 10-28, 10-30, 10-32, 10-35, 
10-36

Master Out Slave In (MOSI) pin, 10-4, 
10-5, 10-28, 10-30, 10-32, 10-35, 
10-36

masters
DAB, 7-14
EAB, 7-17
EMB, 7-18
PAB, 7-9

Match Value for USB Frame Number 
register (USBD_FRMAT), 14-18

maximum clock rate restrictions, 11-51
maximum latency, PCI, 13-41
MDD_DCFG (Destination Memory 

DMA Configuration register), 9-33
MDD_DCP (Destination Memory DMA 

Current Descriptor Pointer register), 
9-37

MDD_DCT (Destination Memory DMA 
Transfer Count register), 9-34

MDD_DDR (Destination Memory DMA 
Descriptor Ready register), 9-36

MDD_DI (Destination Memory DMA 
Interrupt register), 9-38

MDD_DND (Destination Memory DMA 
Next Descriptor Pointer register), 
9-36

MDD_DSAH (Destination Memory 
DMA Start Address High register), 
9-35

MDD_DSAL (Destination Memory DMA 
Start Address Low register), 9-35

MDS_DCFG (Source Memory DMA 
Configuration register), 9-39

MDS_DCP (Source Memory DMA 
Current Descriptor Pointer register), 
9-43

MDS_DCT (Source Memory DMA 
Transfer Count register), 9-40

MDS_DDR (Source Memory DMA 
Descriptor Ready register), 9-42

MDS_DI (Source Memory DMA 
Interrupt register), 9-43

MDS_DND (Source Memory DMA Next 
Descriptor Pointer register), 9-42

MDS_DSAH (Source Memory DMA Start 
Address High register), 9-41

MDS_DSAL (Source Memory DMA Start 
Address Low register), 9-41

MemDMA, 9-31 to 9-44
performance and throughput, 9-44

Memory, 6-1
memory

access types, 11-69
allocation for USB endpoints, 14-4
architecture, 1-5, 6-1 to 6-40
asynchronous, 1-2
asynchronous region, 18-1
base address, PCI, 13-38
base address pointer, 13-25
buffer offset, USB, 14-33
DMA channel, 1-2
external, 1-8
how instructions are stored, 6-77
internal, 1-7
internal bank, 18-31
L2 SRAM, 7-7
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memory (continued)
Level 1 (L1), 6-9 to 6-50
Level 2 (L2), 6-52 to 6-56
management, 6-56
off-chip, 1-8
page attributes, 6-58
Page Descriptor Table, 6-60
pages, 6-58
PCI space, 13-3
protected locations, 3-5
protection and properties, 6-56 to 6-76
scratchpad data SRAM, 6-11
space accessible to PCI, 13-43
start locations of L1 Instruction Memory 

sub-banks, 6-16
terminology, 6-1
transaction model, 6-76
See also cache; Level 1 (L1) memory; 

Level 1 (L1) Data Memory; Level 1 
(L1) Instruction Memory; Level 2 
(L2) memory

memory access requests, USB, failed, 14-60
memory address alignment, 5-13
memory architecture, 1-5
Memory Data Window, PCI, 13-6
Memory DMA. See MemDMA
Memory Interface module, USB, 14-8
memory latency timer, PCI, 13-36
Memory Management Unit (MMU), 6-56
Memory Management unit (MMU), 1-5
memory map

PCI, 13-4
memory-mapped registers (MMRs), 6-84 

to 6-85
PCI on EAB, 13-26

memory reference, exception for, 4-38
microcontroller load/store instructions, 5-5
minimal clock load and SDRAM, 18-44

miss, read buffer, 18-73
Mixing Modes, 12-17
-law companding, 11-2, 11-53, 11-67
MMR location of core events, 4-35
MMU (memory management unit), 1-5
mode

boot, 1-24, 3-17
Broadcast, 10-3, 10-14, 10-30
Bypass, 3-17
DMA, 12-17
emulator, 1-5
Non-DMA, 12-15
serial port, 11-8
SPI Master, 10-3, 10-32
SPI Slave, 10-3, 10-34
Supervisor, 1-5
User, 1-5

mode fault error (MODF), 10-36
Mode register, 18-32
MODF, 10-36
modified addressing, 5-4
modified state bit (definition), 6-2
Modify address, 5-1
Modify instruction, 5-12
Modify registers (M[3:0]), 2-7, 5-2, 5-6
move instruction, conditional, 4-13
moving data, serial port, 11-69
moving data between SPORTS and 

memory, 11-69
M-registers (Modify), 2-7
MSEL clock frequency, 3-11
MSEL (Multiplication Select) field, 8-7
multichannel DMA data packing, 11-68
multichannel enable, 11-67
multichannel frame delay, 11-64
Multichannel Frame Delay (MFD) field, 

11-64



Index

I-22 ADSP-BF535 Blackfin Processor Hardware Reference
 

multichannel mode, 11-61
DMA data packing, 11-68
enable/disable, 11-67
frame syncs, 11-63
serial port, 11-63

Multichannel Mode (MCM) bit, 11-67
multichannel operation, 11-61
multichannel operation, serial port, 11-61
Multichannel Operation (figure), 11-62
multiple exception, for an instruction, 4-42
multiple interrupt sources, 4-21, 4-52
multiple slave SPI systems, 10-14
multiplexed clock pins, system design, 19-3
multiplier, 2-1

accumulator result registers A[1: 0], 
2-33, 2-34

arithmetic fractional modes formats, 
2-15

arithmetic integer modes formats, 2-15
clock, 19-3
data types, 2-13
fractional modes format, 2-15
instruction options, 2-35
operations, 2-33
results, 2-34, 2-35, 2-38
rounding, 2-34
saturation, 2-34
status, 2-22
status bits, 2-35

multiplier-accumulator. See MACs
Multiplier Select (MSEL) field, 8-3
multiply without accumulate, 2-40
muxing SDRAM addressing, 18-60

N
nested interrupt, 4-33

logging, 4-52
Nested Interrupt Handling (figure), 4-50

Nested Interrupts, 4-48
nested ISR

example Epilog code, 4-51
example Prolog code, 4-51

Nesting of Interrupts, 4-48
Next Descriptor Pointer field, 9-36
NMI, 4-38

core event, 4-19
NMI (Non-Maskable Interrupt), 4-38
nonaccessible resources, inbound, PCI, 

13-12
Non-DMA Mode, 12-15
Non-DMA mode, 12-15
non-maskable interrupt, 4-38
non-nested interrupt, 4-48
Non-Nested Interrupt Handling (figure), 

4-48
Non-Nested Interrupts, 4-48
non-OS environments

Supervisor mode, 3-7
nonsequential program operation, 4-9
nonsequential program structures, 4-1
No Operation command, 18-80
NOP command, 18-80
normal frame syncs, defined, 11-59
normal timing, serial port, 11-58
Normal Versus Alternate Framing (figure), 

11-60
NOT, logical, 2-24
numbers

binary, 2-3
data formats, 2-11
two’s complement, 2-4
unsigned, 2-4

numeric formats, D-1 to D-7
binary multiplication, D-4
block floating point, D-6
integer mode, D-5
two’s complement, D-1
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O
off-chip memory, 1-8
on-chip L2 SRAM memory, 7-7
open drain drivers, 10-31
open page, 18-29
operands for input, 2-33
operating modes, 3-1, 8-12

Active, 1-22, 8-12
Deep Sleep, 1-23, 8-14
Full On, 1-22, 8-12
high performance, 8-26
power saving, 8-26
Sleep, 1-23, 8-13

OR, logical, 2-24
order, PCI operations, 13-18
ordering, weak and strong, 6-79
ordering of loads and stores, 6-79
oscilloscope probes, 19-16
other multichannel fields in 

SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG, 11-65

Other Usability Issues, 4-57
outbound operation, PCI in device mode, 

13-6
outbound transactions

ADSP-BF535 processor as PCI initiator, 
13-6, 13-13

PCI bus device configuration, 13-15
output, PF pin configured as, 15-1
overflow

flags, 2-12
saturation of multiplier results, 2-35

overrun, USB buffer, 14-43
overview, 4-1, 7-1, 11-1

P
PAB Agents (Masters, Slaves), 7-9

PAB (Peripheral Access bus), 7-8
and EBIU, 18-4
and USB, 14-10
arbitration, 7-8
bus agents (masters, slaves), 7-9
clocking, 8-1
performance, 7-8

packet request, USB, 14-20
packets, USB, 14-48
packet transfers, USB, scheduling, 14-49
packing, serial port, 11-53, 11-68
packing data, multichannel DMA, 11-68
page size, 18-32, 18-51
parallel refresh command, 18-47
parallel switch, 7-5
parity error, PCI, 13-8
PC100 SDRAM standard, 18-1
PC133 SDRAM Controller, 1-12
PC133 SDRAM standard, 18-1
PCI, 1-8

addresses for outbound, 13-24
arbiter, 19-8
asynchronous memory access, 13-43
back-to-back accesses, 13-11
BIST, 13-35
block diagram, 13-1
bus, configuring devices on, 13-15
bus device configuration, outbound 

transactions, 13-15
bus operation ordering, 13-18
cache line size, 13-37
class code, 13-33
clock, 13-2
clock requirements, 13-45
core access, 13-3, 13-18
core access, bus operation ordering, 

13-18
core application interface logic, 13-20
data windows, 13-6
delayed transactions, 13-7
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PCI (continued)
device function, 13-3
EAB MMRs, 13-26
errors, inbound, 13-12
errors in outbound transactions, 13-7
external interface, 13-2
external requirements, 13-4
fatal errors, 13-8
general outbound operation, 13-6
header type, 13-36
host function, 1-14, 13-3
host mode operation, 13-13
inbound operation, 13-10
initiator, 13-6, 13-13
interface, 1-13
interface programming model, 13-18
interrupt behavior and control, 13-17
interrupt configuration, 13-42
interrupt lines, 13-17, 13-43
interrupts to core, 13-22
I/O base address pointer, 13-23
I/O drivers, 13-44
I/O issues, 13-44
I/O receivers, 13-44
I/O window size, 13-27
master abort cycle, 13-8
maximum latency, 13-41
memory, 13-14
memory base address, 13-38
memory latency timer, 13-36
memory spaces, 1-2, 13-3
memory window size, 13-26
MMRs, 13-18
nonaccessible resources, 13-12
outbound configuration, 13-15
overview, 13-1
parity error, 13-8
power domains, 13-45
power savings, 8-24
programming model, 13-18

PCI (continued)
reflected wave switching, 13-44
requirements, external, 13-4
reset, 13-16
retries, 13-8
revision ID, 13-34
SDRAM, 13-43
setting host or device mode, 13-20
signals, 13-17
specification, 13-2
status bits, 13-11
status flags, 13-21
status register flags, 13-22
subsystem ID, 13-40
subsystem vendor ID, 13-40
supported transactions, 13-12
target, 13-10, 13-14
target function, 1-15
timing and clock inputs, 8-2
transaction FIFO, 13-7
transaction for burst size, 13-9
transaction types, 13-8
unsupported transactions, 13-12
vendor ID, 13-30

PCI AD bus, 13-6
PCI Bridge Block Diagram (figure), 13-1
PCI Bridge Control register (PCI_CTL), 

13-20
PCI_CBAP (PCI Outbound I/O 

Configuration Address register), 
13-24

PCI_CFG_BIST (PCI Configuration 
BIST register), 13-35

PCI_CFG_CC (PCI Configuration Class 
Code register), 13-33

PCI_CFG_CLS (PCI Configuration 
Cache Line Size register), 13-37

PCI_CFG_CMD (PCI Configuration 
Command register), 13-32
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PCI_CFG_DIC (PCI Configuration 
Device ID register), 13-29

PCI_CFG_HT (PCI Configuration 
Header Type register), 13-36

PCI_CFG_IBAR (PCI Configuration I/O 
Base Address register), 13-39

PCI_CFG_IL (PCI Configuration 
Interrupt Line register), 13-43

PCI_CFG_IP (PCI Configuration 
Interrupt Pin register), 13-42

PCI_CFG_MAXL (PCI Configuration 
Maximum Latency register), 13-41

PCI_CFG_MBAR (PCI Configuration 
Memory Base Address register), 13-38

PCI_CFG_MLT (PCI Configuration 
Memory Latency Timer register), 
13-36

PCI_CFG_RID (PCI Configuration 
Revision ID register), 13-34

PCI_CFG_SID (PCI Configuration 
Subsystem ID register), 13-40

PCI_CFG_STAT (PCI Configuration 
Status register), 13-31

PCI_CFG_SVID (PCI Configuration 
Subsystem Vendor ID register), 13-40

PCI_CFG_VIC (PCI Configuration 
Vendor ID register), 13-30

PCI Configuration BIST register 
(PCI_CFG_BIST), 13-35

PCI Configuration Cache Line Size register 
(PCI_CFG_CLS), 13-37

PCI Configuration Class Code register 
(PCI_CFG_CC), 13-33

PCI Configuration Command register 
(PCI_CFG_CMD), 13-32

PCI Configuration Device ID register 
(PCI_CFG_DIC), 13-29

PCI Configuration Header Type register 
(PCI_CFG_HT), 13-36

PCI Configuration Interrupt Line register 
(PCI_CFG_IL), 13-43

PCI Configuration Interrupt Pin register 
(PCI_CFG_IP), 13-42

PCI Configuration I/O Base Address 
register (PCI_CFG_IBAR), 13-39

PCI Configuration Maximum Latency 
register (PCI_CFG_MAXL), 13-41

PCI Configuration Memory Base Address 
register (PCI_CFG_MBAR), 13-38

PCI Configuration Memory Latency 
Timer register (PCI_CFG_MLT), 
13-36

PCI Configuration Minimum Grant 
register (PCI_CFG_MING), 13-42

PCI Configuration Revision ID register 
(PCI_CFG_RID), 13-34

PCI Configuration Status register 
(PCI_CFG_STAT), 13-31

PCI Configuration Subsystem ID register 
(PCI_CFG_SID), 13-40

PCI Configuration Subsystem Vendor ID 
register (PCI_CFG_SVID), 13-40

PCI Configuration Vendor ID register 
(PCI_CFG_VIC), 13-30

PCI_CTL (PCI Bridge Control register), 
13-20

PCI Device I/O BAR Mask register 
(PCI_DIBARM), 13-27

PCI Device Memory BAR Mask register 
(PCI_DMBARM), 13-26

PCI_DIBARM (PCI Device I/O BAR 
Mask register), 13-27

PCI_DMBARM (PCI Device Memory 
BAR Mask register), 13-26

PCI Enable bit, 13-20
PCI_HMCTL (PCI Host Memory 

Control register), 13-14, 13-43
PCI Host Memory Control register 

(PCI_HMCTL), 13-43



Index

I-26 ADSP-BF535 Blackfin Processor Hardware Reference
 

PCI_IBAP (PCI Outbound I/O Base 
Address register), 13-23

PCI_ICTL (PCI Interrupt Controller 
register), 13-22

PCI Inbound I/O Base Address register 
(PCI_TIBAP), 13-25

PCI Inbound Memory Base Address 
register (PCI_TMBAP), 13-25

PCI Interrupt Controller register 
(PCI_ICTL), 13-22

PCI Local Bus Specification Rev. 2.2, 13-2
PCI_MBAP (PCI Outbound Memory Base 

Address register), 13-23
PCI Memory Map (figure), 13-4
PCI memory space, 18-3
PCI Outbound I/O Base Address register 

(PCI_IBAP), 13-23
PCI Outbound I/O Configuration Address 

register (PCI_CBAP), 13-24
PCI Outbound Memory Base Address 

register (PCI_MBAP), 13-23
PCI (Peripheral Component Interconnect) 

bus, 1-2
PCI Reset bit, 13-17
PCI space, 18-3
PCI Specification, 13-2
PCI_STAT (PCI Status register), 13-21
PCI Status register (PCI_STAT), 13-21
PCI_TIBAP (PCI Inbound I/O Base 

Address register), 13-25
PCI_TMBAP (PCI Inbound Memory Base 

Address register), 13-25
PCI-to-PCI bridge, 13-15
PC-Relative Indirect Branch and Call, 4-12
PDWN bit, 8-8
performance

DAB, 7-11
EAB, 7-15
EAB estimates (table), 7-15
EMB, 7-18

performance (continued)
PAB, 7-8
programmable flags, 15-11
SDRAM, 18-81

Performance Monitor Control register 
(PFCTL), 20-20

Performance Monitor Counter registers 
(PFCNTRx), 20-20

Performance Monitoring Unit, 20-19 to 
20-24

peripheral
configuring for an IVG priority, 4-31
interrupt generated by, 4-20
interrupt sources, 4-25
supporting interrupts, 4-22
timing, 7-3
waking up core, 4-24

peripheral bus interface
USB, 14-10

Peripheral Bus (PAB)
Performance, 7-8

peripheral bus (PAB), 7-8
Peripheral Bus. See PAB
Peripheral Clock Enable register 

(PLL_IOCK), 8-22, 8-23
peripheral clocking, 8-22
peripheral DMA Configuration register, 

9-16
peripheral DMA control registers (table), 

9-30
peripheral DMA Current Descriptor 

Pointer register, 9-26
peripheral DMA IRQ Status register, 9-28
peripheral DMA Next Descriptor Pointer 

register, 9-23
peripheral DMA Start Address registers, 

9-21
peripheral DMA Transfer Count register, 

9-19
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peripheral interrupts, 4-18
relative priority, 4-29
source masking, 4-27

Peripheral Interrupt Source Reset State 
(table), 4-22

PFCNTRx (Performance Monitor Counter 
registers), 20-20

PFCTL (Performance Monitor Control 
register), 20-20

PFE bit, 18-41
PF. See programmable flags
pins, 19-1
Pin State during SDC Commands (table), 

18-75
pipeline

figure, 4-7
instruction, 4-2, 4-7
instructions when interrupt occurs, 4-54
interlocked, 6-78

pipelining, SDC supported, 18-45
PLL

Active mode, 8-12, 8-18
applying power to the PLL, 8-16
block diagram, 8-2
BYPASS bit, 8-13, 8-19
Bypass mode, 3-12
CCLK • VCO multiplication factors, 8-4
CCLK derivation, 8-1, 8-2
changing CLKIN to CCLK multiplier, 

8-16
clock counter, 8-10
clock dividers, 8-3
clock frequencies, changing, 8-10
clocking to SDRAM, 8-14
clock multiplier ratios, 8-3
code example, Active mode to Full On 

mode, 8-21
code example, changing clock multiplier, 

8-21

PLL (continued)
code example, Full On mode to Active 

mode, 8-21
configuration, 8-2
control bits, 8-15
Deep Sleep mode, effect of programming 

for, 8-19
DEEP_SLEEP output pin, 8-14
disabled, 8-16
Divide Frequency (DF) bit, 8-3
DMA access, 8-12, 8-13, 8-19
Dynamic Power Management Controller 

(DPMC), 8-11
enabled, 8-12, 8-16
external voltage regulator, 8-25
Full On mode, 8-12, 8-18
high performance sequence, 8-26
lock counter, 8-10
maximum performance mode, 8-12
modification, 8-16, 8-17
Multiplier Select (MSEL) field, 8-3, 8-16
new multiplier ratio, 8-16
operating mode, 8-12, 8-15, 8-17
PCI clock input, 8-2
PCI power savings, 8-24
PDWN bit, 8-15
peripheral clocking, 8-22
PLL_LOCKED bit, 8-18
PLL_OFF bit, 8-16
PLL status (table), 8-12
power dissipation, reducing, 8-22
power domains, 8-23
power savings by operating mode (table), 

8-12
power saving sequence, 8-25
processing during PLL programming 

sequence, 8-18
relocking after changes, 8-18
removing power to the PLL, 8-16
RTC clock input, 8-2
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PLL (continued)
RTC interrupt, 8-14, 8-19
RTC wake-up bit values, 8-14
SCLK derivation, 8-1, 8-2
Sleep mode, 8-13, 8-19
STOPCK bit, 8-15
UART clock rate, 8-2
USB clock input, 8-2
voltage control, 8-11, 8-24
wake-up signal, 8-18

PLL Control register (PLL_CTL), 8-7
PLL_CTL (PLL Control register), 8-7
PLL_IOCK (Peripheral Clock Enable 

register), 8-22, 8-23
PLL_LOCKCNT (PLL Lock Count 

register), 8-7, 8-10
PLL Lock Count register 

(PLL_LOCKCNT), 8-10
PLL_OFF bit, 8-8
PLL (phase-locked loop)

configuration, 3-14
PLL programming sequence, 8-17
PLL_STAT (PLL Status register), 8-7, 8-9
PLL Status register (PLL_STAT), 8-7, 8-9
Pointer Register File, 2-5
Pointer register modification, 5-12
Pointer registers, 2-6, 3-4
polarity, programmable flags, 15-9
popping, manual, 4-3
port, serial presence detect, 18-34
post-increment addressing, 5-14
post-modify addressing, 5-1, 5-4, 5-7, 5-11
post-modify buffer access, 5-7
power dissipation, 8-23
power domains, 8-23

PCI, 13-45
power-down warning, as NMI, 4-38
power management, 8-1 to 8-27
power sequencing, 13-45

power up, 18-32
sequence, 18-77, 18-80

prebuffering, for isochronous USB 
applications, 14-53

Precharge command, 18-33, 18-76
Precharge delay, selecting, 18-48
prefetches, operation, 18-72
PREFETCH instruction, 6-9, 6-47
pre-modify addressing, 5-1
pre-modify instruction, 5-11
prescaler, RTC, 17-1
primary registers, 2-6
private instructions, C-4
probes, oscilloscope, 19-16
processor interrupts, 15-5
processor mode

determination, 3-1
Emulation, 3-9
figure, 3-2
identification, 3-2
IPEND interrogation, 3-1
Supervisor, 3-6
User, 3-3

processor state
Idle, 3-9
Reset, 3-10

product identification registers, 20-25
Program Counter register (PC), 4-2

PC-relative address, 4-10
PC-relative indirect JUMP and CALL, 

4-12
PC-relative offset, 4-11

program flow, 4-1
Program Flow Variations (figure), 4-1
programmable flags, 1-2, 1-21, 15-1

edge sensitive, 15-10
latency, 15-11
level sensitive, 15-10
pins, interrupt, 15-1
polarity, 15-9
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programmable flags (continued)
shared pins, 3-14
slave select, 10-11
throughput, 15-11

programming model
cache memory, 6-9
EBIU, 18-7
PCI, 13-18

program sequencer, 4-1
program structures, nonsequential, 4-1
protected instructions, 3-4
protected resources and instructions, 3-4
protocols, standard, support for, 11-69
PSSE bit, 18-41
public instructions, C-4, C-6
Pulse Width Count and Capture mode 

(WDTH_CAP), 16-10, 16-11, 16-18
pulse width modulation, 16-14
Pulse Width Modulation mode 

(PWM_OUT), 16-10, 16-11, 16-13
pushing, manual, 4-3
PWM_OUT (Pulse Width Modulation 

mode), 16-10, 16-11, 16-13
PWM. See pulse width modulation

Q
quad 16-bit operations, 2-25

R
RAISE (Force Interrupt / Reset) 

instruction, 3-4
range

CALL instruction, 4-11
conditional branches, 4-13
JUMP instructions, 4-11

RDIV
equation for value, 18-55
field, 18-54, 18-70

read access, for EBIU asynchronous 
memory controller, 18-12

read buffer miss, 18-73
read buffer operation, 18-72
read transfers to SDRAM banks, 18-68
Read/Write command, 18-78
Real-Time Clock. See RTC
Receive Clock, serial (RCLKx) pins, 11-3, 

11-4, 11-54
Receive Enable (RSPEN) bit, 11-7, 11-8, 

11-9, 11-16
Receive Frame Sync Required Select 

(RFSR) bit, 11-17, 11-55
Receive Frame Sync (RFSx) pins, 11-3, 

11-55, 11-63
Receive Overflow Status (ROVF) bit, 

11-20
reception error (RBSY), 10-37
re-execution of instruction, 4-39
reflected wave switching, PCI, 13-44
refresh, parallel, 18-47
register file instructions, 2-8
register files, 2-5 to 2-10
register instructions, conditional branch, 

4-10
register move, 4-13
registers

accessible in User mode, 3-4
and control, USB, 14-8
core, A-1 to A-12
memory-mapped, A-1 to A-12, B-1 to 

B-35
product identification, 20-25
system, B-1 to B-35

register writes and effect latency, 11-50
replacement policy, 6-3, 6-45
reserved SDRAM, 18-1
reset

Core Double-Fault, 3-13
Core-Only Software, 3-13, 3-17, 3-18
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reset (continued)
effect on memory configuration, 6-12
effect on PLL Control register pins, 8-7
Hardware, 3-12, 8-14
hardware, 3-13
PCI, 13-16
peripheral clock enablement, 8-23
System Software, 3-12, 3-14
timing of pins, 19-5
USB signalling, 14-61
Watchdog Timer, 3-13, 3-14

reset initialization sequence
programming for interrupts, 4-28

reset interrupt (RST), 4-36
RESET signal, 3-11
Reset state, 3-6, 3-10
reset vector, 4-37
Reset Vector Addresses (table), 4-37
resources accessible from EMB, 7-19
retries, PCI, 13-8
RETS register, 4-11
return

from emulation (RTE) instruction, 3-4, 
4-10

from exception (RTX) instruction, 3-4, 
4-10

from interrupt (RTI) instruction, 3-4, 
4-10

from non-maskable interrupt (RTN) 
instruction, 3-4, 4-10

from subroutine (RTS) instruction, 4-10
return address, 4-2, 4-9
Return Address registers, 4-4
return instructions, 4-10
RETx register, 3-5
revision ID, PCI, 13-34
RND_MOD bit, 2-18, 2-20
ROM, 1-8, 1-12, 18-1

rounding
biased, 2-18, 2-20
convergent, 2-18
instructions, 2-18, 2-21
unbiased, 2-18

router, 7-5
routing, 7-6
row address, 18-51
RST

core event, 4-19
reset interrupt, 4-36

RTC, 1-2, 1-15, 17-1
alarm clock features, 17-2
counters, 17-1
digital watch features, 17-1
prescaler, 17-1
programming model, 17-2
stopwatch function, 17-2
timing and clock inputs, 8-2

RTC Alarm register (RTC_ALARM), 
17-11

RTC_ALARM (RTC Alarm register), 
17-11

RTC Enable register (RTC_FAST), 17-12
RTC_FAST (RTC Enable register), 17-12
RTC_ICTL (RTC Interrupt Control 

register), 17-8
RTC Interrupt Control register 

(RTC_ICTL), 17-8
RTC Interrupt Status register 

(RTC_ISTAT), 17-9
RTC_ISTAT (RTC Interrupt Status 

register), 17-9
RTC_STAT (RTC Status register), 17-7
RTC Status register (RTC_STAT), 17-7
RTC Stopwatch Count register 

(RTC_SWCNT), 17-10
RTC_SWCNT (RTC Stopwatch Count 

register), 17-10
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RTE (return from emulation) instruction, 
3-4, 4-10

RTI instruction, use, 4-57
RTI (return from interrupt) instruction, 

3-4, 4-10
RTN (return from non-maskable interrupt) 

instruction, 3-4, 4-10
RTS (return from subroutine) instruction, 

4-10
RTX (return from exception) instruction, 

3-4, 4-10
RZI modulation, 12-36

S
SA10 pin, 18-47
sampling, serial port, 11-57
sampling clock period, UART, 12-6
sampling edge for data and frame syncs, 

11-57
SBIU, 7-5
SBIU internal routing priority, 7-6
SBIU (System Bus Interface Unit), 7-1, 

7-3, 7-5
Internal Routing Priority (table), 7-6

scheduling USB data packets, 14-49
SCK1E bit, 18-43
SCK. See Serial Peripheral Interface Clock 

signal
SCLK[1] function and AMC, 18-43
SCLK (system clock)

derivation, 8-1
EBIU, 18-1
status by operating mode (table), 8-12

scratchpad SRAM, 6-11, 6-37
SCTLE bit, 18-40, 18-43
SDC, 18-28, 18-53

commands, 18-75
EBIU block diagram, 18-3
glueless interface features, 18-28
operation, 18-70

SDC (continued)
set up, 18-70

SDC Commands, 18-75
SDC Configuration, 18-70
SDC Operation, 18-70
SDQM[1:0] Encodings During Writes for 

16-bit SDRAM Banks (table), 18-69
SDQM[3:0] (Data I/O Mask) pins, 18-47
SDQM[3:0] Encodings During Writes for 

32-bit SDRAM Banks (table), 18-68
SDQM[3:0] pins, 18-68
SDRAM

A10 pin, 18-47
address mapping, 18-59
auto-refresh, 18-78
banks, 6-7, 6-55, 18-33
bank size, 18-1
block diagram, 19-12
Buffering Timing Option (EBUFE), 

setting, 18-45
clock enables, setting, 18-43
column address width, 18-33
configuration, 18-28
devices supported, 18-50
DIMMs, 18-33, 19-13
discrete component configurations 

supported (table), 19-11
example of start address calculation, 

18-58
external buffer timing, 18-85
external memory space, 6-5
interface commands, 18-75
interfaces, 19-12
memory banks, 18-3
memory regions, 6-55
no operation command, 18-80
operation parameters, initializing, 18-77
PCI, 13-43
performance, 18-81
read command latency, 18-70
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SDRAM (continued)
read transfers, 18-68
read/write, 18-78
reserved, 18-1
sizes supported, 6-55, 18-28
start addresses, 18-1
supported configurations, 19-11
throughput, 18-81
timing specifications, 18-80

SDRAM Address Mapping, 18-68
SDRAM controller. See SDC
SDRAM Control Status register 

(EBIU_SDSTAT), 18-53
SDRAM External Bank Address Decode, 

18-56
SDRAM Interface Signals (table), 18-6
SDRAM Memory Bank Control register 

(EBIU_SDBCTL), 18-49
SDRAM Memory Global Control register 

(EBIU_SDGCTL), 18-37
SDRAM Refresh Rate Control register 

(EBIU_SDRRC), 18-54
Selecting the Activate Command Delay 

(TRAS), 18-47
self-nesting mode for interrupts, 4-53
Self-Refresh command, 18-79
Self-Refresh mode, 18-34

entering, 18-44
exiting, 18-44

semaphores, 19-6
example code, 19-7

sensitivity, programmable flags, 15-10
SEQSTAT (Sequencer Status register), 4-4
Sequencer, 4-8
sequencer registers accessible in User mode, 

3-4
Sequencer-Related Registers, 4-3
Sequencer Status Register (SEQSTAT), 4-4
Sequencer Status register (SEQSTAT), 4-4
Serial communications, 12-2

serial communications, 12-2
Serial Peripheral Interface Clock signal 

(SCK), 10-2, 10-4, 10-28, 10-30, 
10-31, 10-36

Serial Peripheral Interface Slave Select 
Input signal (SPISS), 10-5, 10-13, 
10-14, 10-28

Serial Peripheral Interface (SPI) ports, 1-1, 
1-19

serial port, 1-2, 1-17, 11-1, 11-7, 11-50
channels, 11-61
clock, 11-2, 11-50, 11-51, 11-54
companding, 11-53
data buffering, 11-18
data formats, 11-52, 11-53
enable/disable, 11-7
frame sync, 11-56, 11-58
internal memory access, 11-69
modes, setting, 11-8
multichannel operation, 11-61 to 11-68
sampling, 11-57
single-word transfers, 11-69
termination, 11-70
window, 11-65
word length, 11-52

serial port (SPORT) pins, table, 11-3
serial presence detect port, 18-34
serial ROM, 18-34
serial scan paths, C-4
Serial Word Length Select (SLEN) bits, 

11-13, 11-17, 11-52
restrictions, 11-52
word length formula, 11-52

service, type of exception, 4-39
servicing interrupt, 4-46
Servicing Interrupts, 4-46
set

definition, 6-3
set-associative (definition), 6-3
setting EBUFE, 18-45
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setting SPORT modes, 11-8
set up

for EBIU asynchronous memory 
controller, 18-12

SDC, 18-70
SDRAM clock enables, 18-43

setup packet, USB, 14-27
shared interrupt, 4-29, 4-52
shifter, 1-2, 2-1, 2-44 to 2-48

data types, 2-14
immediate shifts, 2-45, 2-46
operations, 2-44
register shifts, 2-46
status flags, 2-48
three-operand shifts, 2-46
two-operand shifts, 2-45

short jump (JUMP.S) instruction, 4-11
SIC, 4-25
SIC_IAR0 (System Interrupt Assignment 

register 0), 4-29
SIC_IAR1 (System Interrupt Assignment 

register 1), 4-30
SIC_IARx (System Interrupt Assignment 

registers), 4-29
SIC_IMASK (System Interrupt Mask 

register), 4-27, 16-7
SIC_ISR (System Interrupt Status register), 

4-25
SIC_IWR (System Interrupt Wakeup 

Enable register), 4-24
Signal, 19-15
signal integrity, 19-15
signed numbers, 2-3
sign extending data, 2-10
SIMD video ALU operations, 2-32
single 16-bit operations, 2-25
single-master, multiple-slave SPI 

configuration diagram, 10-15
Single Step exception, 4-43

slaves
DAB, 7-14
EAB, 7-17
EBIU, 18-4
EMB, 7-18
PAB, 7-9

slave select, SPI, 10-11
Sleep mode, 1-23
SNEN bit, 4-53
software interrupt handlers, 4-18
Software Reset Register (figure), 3-16
Software Reset register (SWRST), 3-16
Software Resets and Watchdog Timer, 3-14
Source Memory DMA Configuration 

register (MDS_DCFG), 9-39
Source Memory DMA Current Descriptor 

Pointer register (MDS_DCP), 9-43
Source Memory DMA Descriptor Ready 

register (MDS_DDR), 9-42
Source Memory DMA Interrupt register 

(MDS_DI), 9-43
Source Memory DMA Next Descriptor 

Pointer register (MDS_DND), 9-42
Source Memory DMA Start Address High 

register (MDS_DSAH), 9-41
Source Memory DMA Start Address Low 

register (MDS_DSAL), 9-41
Source Memory DMA Transfer Count 

register (MDS_DCT), 9-40
speech compression routines, 2-21
SPI

beginning and ending transfers, 10-38
block diagram, 10-2
clock phase, 10-28, 10-30, 10-32
clock polarity, 10-28, 10-32
data transfer, 10-3
detecting transfer complete, 10-15
error signals, 10-6, 10-35
interrupt signals, 10-6
Master mode, 10-3, 10-32
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SPI (continued)
point-to-point connections, 19-14
registers, table, 10-26
Slave mode, 10-3, 10-34
slave select function, 10-11
slave transfer preparation, 10-35
transfer formats, 10-28
transfer modes, 10-33
transmission/reception errors, 10-15

SPI-compatible peripherals, 10-1
SPI (Serial Peripheral Interface) ports, 1-1, 

1-19
SPI slave select, 10-11
SPISS. See Serial Peripheral Interface Slave 

Select Input signal.
SPI status register (SPIx_ST), 10-15
SPI transfer formats, 10-28
SPIx Baud Rate registers (SPIx_BAUD), 

10-7, 10-27
SPIx_BAUD (SPIx Baud Rate registers), 

10-7, 10-27
SPIx_CONFIG (SPIx DMA 

Configuration registers), 10-21, 10-27
SPIx Control registers (SPIx_CTL), 10-4, 

10-8, 10-27
SPIx_COUNT (SPIx DMA Count 

registers), 10-23, 10-27
SPIx_CTL (SPIx Control registers), 10-4, 

10-8, 10-27
SPIx_CURR_PTR (SPIx DMA Current 

Descriptor Pointer registers), 10-20, 
10-27

SPIx_DESCR_RDY (SPIx DMA 
Descriptor Ready registers), 10-25, 
10-28

SPIx DMA Configuration registers 
(SPIx_CONFIG), 10-21, 10-27

SPIx DMA Count registers 
(SPIx_COUNT), 10-23, 10-27

SPIx DMA Current Descriptor Pointer 
registers (SPIx_CURR_PTR), 10-20, 
10-27

SPIx DMA Descriptor Ready registers 
(SPIx_DESCR_RDY), 10-25, 10-28

SPIx DMA Interrupt registers 
(SPIx_DMA_INT), 10-26, 10-28

SPIx_DMA_INT (SPIx DMA Interrupt 
registers), 10-26, 10-28

SPIx DMA Next Descriptor Pointer 
registers (SPIx_NEXT_DESCR), 
10-24, 10-27

SPIx DMA Start Address High registers 
(SPIx_START_ADDR_HI), 10-22, 
10-27

SPIx DMA Start Address Low registers 
(SPIx_START_ADDR_LO), 10-22, 
10-27

SPIx Flag registers (SPIx_FLG), 10-10, 
10-27

SPIx_FLG (SPIx Flag registers), 10-10, 
10-27

SPIx_NEXT_DESCR (SPIx DMA Next 
Descriptor Pointer registers), 10-24, 
10-27

SPIx RDBR Shadow registers 
(SPIx_SHADOW), 10-18, 10-27

SPIx_RDBR (SPIx Receive Data Buffer 
registers), 10-18, 10-27

SPIx Receive Data Buffer registers 
(SPIx_RDBR), 10-18, 10-27

SPIx_SHADOW (SPIx RDBR Shadow 
registers), 10-18, 10-27

SPIx_START_ADDR_HI (SPIx DMA 
Start Address High registers), 10-22, 
10-27

SPIx_START_ADDR_LO (SPIx DMA 
Start Address Low registers), 10-22, 
10-27
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SPIx Status registers (SPIx_ST), 10-15, 
10-27

SPIx_ST (SPIx Status registers), 10-15, 
10-27

SPIx_TDBR (SPIx Transmit Data Buffer 
registers), 10-17, 10-27

SPIx Transmit Data Buffer registers 
(SPIx_TDBR), 10-17, 10-27

SPORT block diagram, 11-4
SPORT disable, 11-7
SPORT multichannel configuration 

(SPORTx_MCMCx) registers, 11-30
SPORT multichannel receive select 

(SPORTx_MRCSx) registers, 11-28
SPORT multichannel transmit select 

(SPORTx_MTCSx) registers, 11-26
SPORT operation, 11-7
SPORT pin/line terminations, 11-70
SPORT receive DMA configuration 

(SPORTx_CONFIG_DMA_RX) 
registers, 11-32

SPORT receive DMA count 
(SPORTx_COUNT_RX) registers, 
11-37

SPORT receive DMA current descriptor 
pointer (SPORTx_CURR_PTR_RX) 
registers, 11-32

SPORT receive DMA descriptor ready 
(SPORTx_DESCR_RDY_RX) 
registers, 11-39

SPORT receive DMA IRQ status 
(SPORTx_IRQSTAT_RX) registers, 
11-40

SPORT receive DMA next descriptor 
pointer 
(SPORTx_NEXT_DESC_RX) 
registers, 11-37

SPORT receive DMA start address high 
(SPORTx_START_ADDR_HI_RX) 
registers, 11-35

SPORT receive DMA start address low 
(SPORTx_START_ADDR_LO_RX
) registers, 11-36

SPORT receive (SPORTx_RX) registers, 
11-20

SPORT registers, 11-9
SPORTs (serial ports), 1-2, 1-17
SPORT status (SPORTx_STAT) registers, 

11-24
SPORT transmit DMA configuration 

(SPORTx_CONFIG_DMA_TX) 
registers, 11-42

SPORT transmit DMA count 
(SPORTx_COUNT_TX) registers, 
11-46

SPORT transmit DMA current descriptor 
pointer (SPORTx_CURR_PT_TX) 
registers, 11-41

SPORT transmit DMA descriptor ready 
(SPORTx_DESCR_RDY_TX) 
registers, 11-48

SPORT Transmit DMA IRQ Status 
(SPORTx_IRQSTAT_TX) Registers, 
11-49

SPORT transmit DMA next descriptor 
pointer 
(SPORTx_NEXT_DESCR_TX) 
registers, 11-46

SPORT transmit DMA start address high 
(SPORTx_START_ADDR_HI_TX) 
registers, 11-44

SPORT transmit DMA start address low 
(SPORTx_START_ADDR_LO_TX
) registers, 11-45

SPORT transmit (SPORTx_TFSDIV) and 
receive (SPORTx_RFSDIV) frame 
sync divider registers, 11-23

SPORT transmit (SPORTx_TSCLKDIV) 
and receive (SPORTx_RSCLKDIV) 
Serial clock divider registers, 11-21
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SPORT transmit (SPORTx_TX) registers, 
11-18

SPORTx_CONFIG_DMA_RX (SPORTx 
Receive DMA Configuration 
registers), 11-32

SPORTx_CONFIG_DMA_TX 
(SPORTx Transmit DMA 
Configuration registers), 11-42

SPORTx_COUNT_RX (SPORTx 
Receive DMA Count registers), 11-37

SPORTx_COUNT_TX (SPORTx 
Transmit DMA Count registers), 
11-46

SPORTx_CURR_PTR_RX (SPORTx 
Receive DMA Current Descriptor 
Pointer registers), 11-32

SPORTx_CURR_PTR_TX (SPORTx 
Transmit DMA Current Descriptor 
Pointer registers), 11-41

SPORTx_DESCR_RDY_RX (SPORTx 
Receive DMA Descriptor Ready 
registers), 11-39

SPORTx_DESCR_RDY_TX (SPORTx 
Transmit DMA Descriptor Ready 
registers), 11-48

SPORTx Frame Sync Divider registers 
(SPORTx_TFSDIV and 
SPORTx_RFSDIV), 11-51

SPORTx_IRQSTAT_RX (SPORTx 
Receive DMA IRQ Status registers), 
11-40

SPORTx_IRQSTAT_TX (SPORTx 
Transmit DMA IRQ Status registers), 
11-49

SPORTx_MCMCx (SPORTx 
Multichannel Configuration 
registers), 11-30, 11-31

SPORTx_MRCSx (SPORTx 
Multichannel Receive Select registers), 
11-28

SPORTx_MTCSx (SPORTx 
Multichannel Transmit Select 
registers), 11-26, 11-27, 11-29

SPORTx Multichannel Configuration 
registers (SPORTx_MCMCx), 11-30

SPORTx Multichannel Receive Select 
registers (SPORTx_MRCSx), 11-28, 
11-67

SPORTx Multichannel Transmit Select 
registers (SPORTx_MTCSx), 11-26, 
11-67

SPORTx_NEXT_DESCR_RX (SPORTx 
Receive DMA Next Descriptor 
Pointer registers), 11-37

SPORTx_NEXT_DESCR_TX (SPORTx 
Transmit DMA Next Descriptor 
Pointer registers), 11-46

SPORTx Receive Configuration registers 
(SPORTx_RX_CONFIG), 11-9, 
11-16

SPORTx Receive DMA Configuration 
registers 
(SPORTx_CONFIG_DMA_RX), 
11-32

SPORTx Receive DMA Count registers 
(SPORTx_COUNT_RX), 11-37

SPORTx Receive DMA Current 
Descriptor Pointer registers 
(SPORTx_CURR_PTR_RX), 11-32

SPORTx Receive DMA Descriptor Ready 
registers 
(SPORTx_DESCR_RDY_RX), 
11-39

SPORTx Receive DMA IRQ Status 
registers (SPORTx_IRQSTAT_RX), 
11-40

SPORTx Receive DMA Next Descriptor 
Pointer registers 
(SPORTx_NEXT_DESCR_RX), 
11-37
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SPORTx Receive DMA Start Address High 
registers 
(SPORTx_START_ADDR_HI_RX)
, 11-35

SPORTx Receive DMA Start Address Low 
registers 
(SPORTx_START_ADDR_LO_RX
), 11-36

SPORTx Receive Frame Sync Divider 
registers (SPORTx_RFSDIV), 11-23, 
11-51

SPORTx Receive registers (SPORTx_RX), 
11-20, 11-53, 11-63

SPORTx Receive Serial Clock Divider 
registers (SPORTx_RSCLKDIV), 
11-21, 11-50

SPORTx_RFSDIV (SPORTx Receive 
Frame Sync Divider registers), 11-23

SPORTx_RSCLKDIV (SPORTx Receive 
Serial Clock Divider registers), 11-21

SPORTx_RX_CONFIG (SPORTx 
Receive Configuration registers), 11-9

SPORTx_RX (SPORTx Receive registers), 
11-20

SPORTx_START_ADDR_HI_RX 
(SPORTx Receive DMA Start 
Address High registers), 11-35

SPORTx_START_ADDR_HI_TX 
(SPORTx Transmit DMA Start 
Address High registers), 11-44

SPORTx_START_ADDR_LO_RX 
(SPORTx Receive DMA Start 
Address Low registers), 11-36

SPORTx_START_ADDR_LO_TX 
(SPORTx Transmit DMA Start 
Address Low registers), 11-45

SPORTx_STAT (SPORTx Status 
registers), 11-24

SPORTx Status registers 
(SPORTx_STAT), 11-24

SPORTx_TFSDIV (SPORTx Transmit 
Frame Sync Divider registers), 11-23

SPORTx Transmit Configuration registers 
(SPORTx_TX_CONFIG), 11-9, 
11-12

SPORTx Transmit DMA Configuration 
registers 
(SPORTx_CONFIG_DMA_TX), 
11-42

SPORTx Transmit DMA Count registers 
(SPORTx_COUNT_TX), 11-46

SPORTx Transmit DMA Current 
Descriptor Pointer registers 
(SPORTx_CURR_PTR_TX), 11-41

SPORTx Transmit DMA Descriptor 
Ready registers 
(SPORTx_DESCR_RDY_TX), 
11-48

SPORTx Transmit DMA IRQ Status 
registers (SPORTx_IRQSTAT_TX), 
11-49

SPORTx Transmit DMA Next Descriptor 
Pointer registers 
(SPORTx_NEXT_DESCR_TX), 
11-46

SPORTx Transmit DMA Start Address 
High registers 
(SPORTx_START_ADDR_HI_TX)
, 11-44

SPORTx Transmit DMA Start Address 
Low registers 
(SPORTx_START_ADDR_LO_TX
), 11-45

SPORTx Transmit Frame Sync Divider 
registers (SPORTx_TFSDIV), 11-23, 
11-51

SPORTx Transmit registers 
(SPORTx_TX), 11-10, 11-18, 11-19, 
11-53, 11-60, 11-63
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SPORTx Transmit Serial Clock Divider 
registers (SPORTx_TSCLKDIV), 
11-21, 11-50

SPORTx_TSCLKDIV (SPORTx 
Transmit Serial Clock Divider 
registers), 11-21

SPORTx_TX_CONFIG (SPORTx 
Transmit Configuration registers), 
11-9

SPORTx_TX (SPORTx Transmit 
registers), 11-18

SR2Information, 2-3
SRAM, 18-1

interface, 19-9
L1 Data Memory, 6-10, 6-38
L1 instruction access, 6-15
L1 Instruction Memory, 6-10, 6-14
scratchpad, 6-11

SRFS bit, 18-42
SSEL bit, 7-3

SCLK select, 8-7
SSYNC instruction, 6-84, 8-18
stack, 4-3
Stack Pointer registers, 5-5
Stack Pointer (SP), 4-4
Stages of Instruction Pipeline (table), 4-7
stalling instructions, 4-8
stall request, USB, 14-21
stalls

DMA, 7-12, 9-25
pipeline, 6-78

standard, 12-1
JTAG, 20-26, C-1, C-2, C-4

Start Address Calculation (table), 18-57
status, USB, 14-19
status bits, PCI, 13-11
status flags, PCI, 13-21
status register, EBIU, 18-8
status registers accessible in User mode, 3-4
STI. See Enable Interrupts (STI)

STOPCK field, 8-8
stopwatch function, RTC, 17-2
stopwatch interrupt, 17-8
store operation, 6-77
store ordering, 6-79
strong ordering requirement, 6-84
subroutines, 4-1
subsystem ID, PCI, 13-40
subsystem vendor ID, PCI, 13-40
Supervisor, 1-5
Supervisor mode, 1-5, 3-6

code example, 3-8
entering, 3-6, 3-9
non-OS environments, 3-7

Supervisor Stack Pointer, 5-5
Support for Standard Protocols, 11-69
support for standard protocols, 11-69
suspended, USB, 14-62
suspend mode, USB, 14-13
SWRST (Software Reset register), 3-16
SYSCFG figure, 4-6
SYSCFG (System Configuration register), 

4-6
SYSCR (System Reset Configuration 

register), 3-14
system, 7-5
System and Core Event Mapping, 4-18
System and Core Event Mapping (table), 

4-18
System Bus Interface Unit. See SBIU
system clock (SCLK), 8-1
System Configuration Register (SYSCFG), 

4-6
System Configuration register (SYSCFG), 

4-6
system design, 19-1 to 19-18

high frequency considerations, 19-14
point-to-point connections, 19-14
recommendations and suggestions, 

19-15
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system design (continued)
recommended reading, 19-17

system interfaces, 7-7
system internal interfaces, 7-1
System Interrupt Assignment register 0 

(SIC_IAR0), 4-29
System Interrupt Assignment register 1 

(SIC_IAR1), 4-30
System Interrupt Assignment Registers 

(SIC_IARx), 4-29
System Interrupt Assignment registers 

(SIC_IARx), 4-29
System Interrupt Controller (SIC), 4-18
System Interrupt Mask Register 

(SIC_IMASK), 4-27
System Interrupt Mask register 

(SIC_IMASK), 4-27, 16-7
System Interrupt Processing, 4-20
system interrupt processing, 4-20
system interrupts, 4-18
System Interrupt Status Register 

(SIC_ISR), 4-25
System Interrupt Status register (SIC_ISR), 

4-25
System Interrupt Wakeup-Enable Register 

(figure), 4-24
System Interrupt Wakeup-Enable Register 

(SIC_IWR), 4-24
System Interrupt Wakeup Enable register 

(SIC_IWR), 4-24
System L1 bus, 7-4
system overview, 7-5
System Peripheral Interrupts, 4-22
System Reset Configuration register 

(SYSCR), 3-14
System Software reset, 3-12, 3-14
system stack, recommendation for 

allocating, 4-58

T
tAA, 18-31
table

Events That Cause Exceptions, 4-39
Hardware Conditions Causing 

Hardware Error Interrupts, 4-45
Loop Registers, 4-6
Peripheral Interrupt Source Reset State, 

4-22
tag (definition), 6-4
TAP registers

Boundary-Scan, C-4, C-8
Bypass, C-5, C-7
CHIPID, 20-26, C-4, C-7
Instruction, C-2, C-4

TAP (Test Access port), C-1, C-2
controller, C-2

TBUFCTL (Trace Buffer Control register), 
20-16

TBUFSTAT (Trace Buffer Status register), 
20-17

TBUF (Trace Buffer register), 20-18
tCAC, 18-31
TCNTL (Core Timer Control register), 

16-22
TCOUNT (Core Timer Count register), 

16-23
technical support, xlviii
terminations, serial port pin/line, 11-70
termination values, serial port, 11-70
Test Access port (TAP), C-1, C-2

controller, C-2
Test Clock (TCK), C-6
test features, C-1 to C-26
testing circuit boards, C-1, C-6
Test-Logic-Reset state, C-3
TESTSET instruction, 6-84, 7-12
the PLL control register (PLLCTL) 

(figure), 8-7
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throughput
achieved by interlocked pipeline, 6-78
achieved by SRAM, 6-9
core, 18-83
DAB, 7-13
DMA, 9-23, 18-83
Memory DMA (MemDMA), 9-31, 9-44
programmable flags, 15-11
SDRAM, 18-81, 18-83

Throughput for Accesses to 16-bit Wide 
SDRAM (table), 18-83

Throughput for Accesses to 32-bit Wide 
SDRAM (table), 18-81

Time-Division-Multiplexed (TDM) mode, 
11-61

See also serial port, multichannel 
operation

timer
autobaud detection, 16-19
disabling, 16-5
enabling, 16-5
interrupts, 16-7
modes, 16-1
Pulse Width Count and Capture mode 

(WDTH_CAP), 16-10, 16-18
registers, 16-1
watchdog, 16-25

Timer Configuration registers 
(TIMERx_CONFIG), 16-2, 16-3, 
16-7

Timer Counter registers 
(TIMERx_COUNTER), 16-2, 16-3, 
16-4, 16-11

Timer Period registers 
(TIMERx_PERIOD), 16-2, 16-3, 
16-4, 16-10

timers, 1-17
general-purpose, 1-2
UART, 12-1
watchdog, 1-2, 1-16

Timer Status registers 
(TIMERx_STATUS), 16-2, 16-3, 
16-4

Timer Width registers 
(TIMERx_WIDTH), 16-3, 16-4, 
16-11

TIMERx_CONFIG (Timer Configuration 
registers), 16-2, 16-3, 16-7

TIMERx_COUNTER (Timer Counter 
registers), 16-2, 16-3, 16-4, 16-11

TIMERx_PERIOD (Timer Period 
registers), 16-10

TIMERx_STATUS (Timer Status 
registers), 16-2, 16-3, 16-4

TIMERx_WIDTH (Timer Width 
registers), 16-11

timing
Auto-Refresh, 18-54
external buffer, 18-83, 18-85
peripherals, 7-3
SDRAM specifications, 18-80

timing examples, 11-70
timing examples, for serial ports, 11-70
tools, development, 1-24
TPERIOD (Core Timer Period register), 

16-24
Trace Buffer Control register (TBUFCTL), 

20-16
Trace Buffer exception, 4-43
Trace Buffer register (TBUF), 20-18
Trace Buffer Status register (TBUFSTAT), 

20-17
Trace Unit, 20-14 to 20-18

changes not recorded, 20-26
traffic scheduling algorithm, USB, 14-4
transaction decode module, USB, 14-7
transaction FIFO, PCI, 13-7
transactions

PCI, delayed, 13-7
PCI inbound, 13-11
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transactions (continued)
PCI outbound read and write, 13-6
types of PCI, 13-8
unsupported, PCI, 13-12

transceiver, USB, 14-1
transfer direction, USB, 14-31
transfer initiation from SPI master, 10-33
transfer latencies

PAB, 7-8
transfers, USB, 14-47
transfers supported (table), 5-14
transfer types, USB, 14-10
transmission error (TXE), 10-37
transmit and receive configuration registers 

(SPORTx_TX_CONFIG, 
SPORTx_RX_CONFIG), 11-9

Transmit Clock, serial (TCLKx) pins, 11-3, 
11-4, 11-54

transmit collision error (TXCOL), 10-37
transmit enable, 11-12
Transmit Enable (TSPEN) bit, 11-7, 11-8, 

11-9, 11-12
Transmit Frame Sync Required (TFSR) 

bit, 11-13, 11-55
Transmit Frame Sync (TFSx) pins, 11-3, 

11-10, 11-55, 11-60, 11-64
Transmit Holding Register Empty status 

flag, 12-5
Transmit Serial Data Status (TXS) bits, 

11-10
Transmit Underflow Status (TUVF) bit, 

11-10, 11-18, 11-61
tRAS, 18-34
TRAS bits, 18-40, 18-48
tRC, 18-35
tRCD, 18-35
TRCD bits, 18-40
tRFC, 18-36
tRP, 18-35
TRP bits, 18-40, 18-48

TSCALE (Core Timer Scale register), 
16-24

tWR, 18-35
TWR bits, 18-40, 18-49
tXSR, 18-36

U
UART

clock rate, 7-3, 8-2
control registers, 12-13
DMA receive registers, 12-19
sampling clock period, 12-6
standard, 12-1
timers, 12-1
Universal Asynchronous Receiver 

Transmitter ports, 1-1, 1-20
UART0 Infrared Control Register 

(UART0_IRCR), 12-36
UART0 Infrared Control register 

(UART0_IRCR), 12-36
UART0_IRCR (UART0 Infrared Control 

register), 12-36
UART Baud Rate Examples (table), 12-12
UART DMA Receive Registers, 12-18
UART DMA Transmit Registers, 12-27
UART Port Controller, 12-1
UARTx, 12-30
UARTx_CONFIG_RX (UARTx Receive 

DMA Configuration registers), 12-20
UARTx_CONFIG_TX (UARTx 

Transmit DMA Configuration 
registers), 12-29

UARTx control and status registers, 12-2
UARTx_COUNT_RX (UARTx Receive 

DMA Count registers), 12-24
UARTx_COUNT_TX (UARTx Transmit 

DMA Count registers), 12-32
UARTx_CURR_PTR_RX (UARTx 

Receive DMA Current Descriptor 
Pointer registers), 12-19
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UARTx_CURR_PTR_TX (UARTx 
Transmit DMA Current Descriptor 
Pointer registers), 12-28

UARTx_DESCR_RDY_TX (UARTx 
Transmit DMA Descriptor Ready 
registers), 12-34

UARTx Divisor Latch High Byte registers 
(UARTx_DLH), 12-10

UARTx Divisor Latch Low-Byte Registers 
and UARTx Divisor Latch High-Byte 
Registers (figure), 12-11

UARTx Divisor Latch Low Byte registers 
(UARTx_DLL), 12-10

UARTx_DLH (UARTx Divisor Latch 
High Byte registers), 12-10

UARTx_DLL (UARTx Divisor Latch Low 
Byte registers), 12-10

UARTx_IER (UARTx Interrupt Enable 
registers), 12-7

UARTx_IIR (UARTx Interrupt 
Identification registers), 12-9

UARTx Interrupt Enable registers 
(UARTx_IER), 12-7

UARTx Interrupt Identification Registers 
(UARTx_IIR), 12-9

UARTx Interrupt Identification registers 
(UARTx_IIR), 12-9

UARTx_IRQSTAT_RX (UARTx Receive 
DMA IRQ Status registers), 12-27

UARTx_IRQSTAT_TX (UARTx 
Transmit DMA IRQ Status registers), 
12-35

UARTx_LCR (UARTx Line Control 
registers), 12-3

UARTx Line Control registers 
(UARTx_LCR), 12-3

UARTx line control registers 
(UARTx_LCR), 12-3

UARTx Line Status Registers 
(UARTx_LSR), 12-4

UARTx Line Status registers 
(UARTx_LSR), 12-4

UARTx_LSR (UARTx Line Status 
registers), 12-4

UARTx_MCR (UARTx Modem Control 
registers), 12-13

UARTx Modem Control Registers 
(UARTx_MCR), 12-13

UARTx Modem Control registers 
(UARTx_MCR), 12-13

UARTx Modem Control Register (figure), 
12-13

UARTx Modem Status Registers, 12-14
UARTx Modem Status Registers 

(UARTx_MSR), 12-14
UARTx Modem Status registers 

(UARTx_MSR), 12-14
UARTx_MSR (UARTx Modem Status 

registers), 12-14
UARTx_NEXT_DESCR_RX (UARTx 

Receive DMA Next Descriptor 
Pointer registers), 12-25

UARTx_NEXT_DESCR_TX (UARTx 
Transmit DMA Next Descriptor 
Pointer registers), 12-33

UARTx_RBR (UARTx Receive Buffer 
registers), 12-6

UARTx Receive Buffer Registers (figure), 
12-6

UARTx Receive Buffer Registers 
(UARTx_RBR), 12-6

UARTx Receive Buffer registers 
(UARTx_RBR), 12-6

UARTx Receive DMA Configuration 
Registers (UARTx_CONFIG_RX), 
12-20

UARTx Receive DMA Configuration 
registers (UARTx_CONFIG_RX), 
12-20
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UARTx Receive DMA Count registers 
(UARTx_COUNT_RX), 12-24

UARTx Receive DMA Current Descriptor 
Pointer Registers 
(UARTx_CURR_PTR_RX), 12-19

UARTx Receive DMA Current Descriptor 
Pointer registers 
(UARTx_CURR_PTR_RX), 12-19

UARTx Receive DMA Descriptor Ready 
Registers 
(UARTx_DESCR_RDY_RX), 12-26

UARTx Receive DMA IRQ Status 
Registers (UARTx_IRQSTAT_RX), 
12-27

UARTx Receive DMA IRQ Status registers 
(UARTx_IRQSTAT_RX), 12-27

UARTx Receive DMA Next Descriptor 
Pointer registers 
(UARTx_NEXT_DESCR_RX), 
12-25

UARTx Receive DMA Next Descriptor 
Pointer Registers 
(UARTx_NEXT_DESC_RX), 12-25

UARTx Receive DMA Start Address High 
Registers 
(UARTx_START_ADDR_HI_RX), 
12-22

UARTx Receive DMA Start Address High 
registers 
(UARTx_START_ADDR_HI_RX), 
12-22

UARTx Receive DMA Start Address Low 
Registers 
(UARTx_START_ADDR_LO_RX), 
12-23

UARTx Receive DMA Start Address Low 
registers 
(UARTx_START_ADDR_LO_RX), 
12-23

UARTx Receive DMA Transfer Count 
Registers (UARTx_COUNT_RX), 
12-24

UARTx Scratch Registers (UARTx_SCR), 
12-15

UARTx Scratch registers (UARTx_SCR), 
12-15

UARTx_SCR (UARTx Scratch registers), 
12-15

UARTx_START_ADDR_HI_RX 
(UARTx Receive DMA Start Address 
High registers), 12-22

UARTx_START_ADDR_LO_RX 
(UARTx Receive DMA Start Address 
Low registers), 12-23

UARTx_START_ADDR_LO_TX 
(UARTx Transmit DMA Start 
Address Low registers), 12-31

UARTx_THR (UARTx Transmit Holding 
registers), 12-5

UARTx Transmit DMA Configuration 
Registers (UARTx_CONFIG_TX), 
12-29

UARTx Transmit DMA Configuration 
registers (UARTx_CONFIG_TX), 
12-29

UARTx Transmit DMA Count Registers 
(UARTx_COUNT_TX), 12-32

UARTx Transmit DMA Count registers 
(UARTx_COUNT_TX), 12-32

UARTx Transmit DMA Current 
Descriptor Pointer Registers 
(UARTx_CURR_PTR_TX), 12-28

UARTx Transmit DMA Current 
Descriptor Pointer registers 
(UARTx_CURR_PTR_TX), 12-28

UARTx Transmit DMA Descriptor Ready 
Registers 
(UARTx_DESCR_RDY_TX), 12-34
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UARTx Transmit DMA Descriptor Ready 
registers 
(UARTx_DESCR_RDY_TX), 12-34

UARTx Transmit DMA IRQ Status 
Registers (UARTx_IRQSTAT_TX), 
12-35

UARTx Transmit DMA IRQ Status 
registers (UARTx_IRQSTAT_TX), 
12-35

UARTx Transmit DMA Next Descriptor 
Pointer Registers 
(UARTx_NEXT_DESCR_TX), 
12-33

UARTx Transmit DMA Next Descriptor 
Pointer registers 
(UARTx_NEXT_DESCR_TX), 
12-33

UARTx Transmit DMA Start Address 
High Registers 
(UARTx_START_ADDR_HI_TX), 
12-30

UARTx Transmit DMA Start Address Low 
Registers 
(UARTx_START_ADDR_LO_TX), 
12-31

UARTx Transmit DMA Start Address Low 
registers 
(UARTx_START_ADDR_LO_TX), 
12-31

UARTx Transmit Holding Registers 
(UARTx_THR), 12-5

UARTx Transmit Holding registers 
(UARTx_THR), 12-5

UARTx Transmit Shift registers 
(UARTx_TSR), 12-5

UARTx_TSR (UARTx Transmit Shift 
registers), 12-5

UDC, 14-1
clock control, 14-7
clocking, 14-13

UDC (continued)
configuration, 14-44
device software, 14-12
module in USB, 14-6

UDC Endpoint Buffer register, 14-35
unbiased rounding, 2-18
unconditional branches

branch latency, 4-14
branch target address, 4-14

undefined instruction, 4-43
underrun, USB buffer, 14-43
unframed/framed, serial data, 11-55
Universal Asynchronous Receiver 

Transmitter (UART) ports, 1-1, 1-20
Universal Serial Bus. See USB
unpacking data, multichannel DMA, 

11-68
Unrecoverable Event, 4-42
unsigned numbers, 2-4, 2-11
USB, 1-15, 14-1

alternate interface number, 14-19
base address, 14-25, 14-26
buffer chip, 14-13
buffer length for data transfers, 14-34
buffer overrun, 14-43
buffer underrun, 14-43
bulk data transfers, 14-11, 14-49
bulk in, 14-50
bulk out, 14-51
clock domains, 14-5
clocking, 14-13
clock speed, 14-13
command sequences, 14-12
configuration, 14-2, 14-12
configuration number, 14-19
connection to the PAB, 14-8
control data transfers, 14-11
control transfer problems, 14-59
control transfers, 14-56
control transfer with data phase, 14-58
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USB (continued)
control transfer with no data phase, 

14-57
data flows, 14-4
data transfer preparation, 14-48
data transfers, 14-11, 14-47
device connection, 19-8
device initialization, 14-46
disable, 14-21
DMA channel arbitration, 14-3
DMA Master module, 14-9
DMA registers, 14-15
DMA transfers, 14-33
endpoint errors, 14-60
endpoint interrupts, 14-27
endpoint registers, 14-15
endpoints, 14-2
endpoint types, 14-10
error detection, 14-61
exception handling, 14-60
frame number, 14-17, 14-18
Front-End Interface, 14-7
full speed, 14-14
general registers, 14-15
implementation, 14-4
interface number, 14-19
interfaces, 14-12
interrupts, 14-4, 14-12, 14-22, 14-24, 

14-37
isochronous data transfer errors, 14-60
isochronous data transfers, 14-11, 14-53
ISO IN endpoints, 14-54
ISO OUT endpoints, 14-55
logical endpoint configuration, 14-35
low speed, 14-14
memory allocation for endpoints, 14-4
memory buffer offset, 14-33
Memory Interface module, 14-8
packet request, 14-20

USB (continued)
programming endpoint configuration 

registers, 14-47
protocol, 14-2
references, 14-62
Registers and Control module, 14-8
reset signalling, 14-61
small packets, exception handling, 14-60
stall request, 14-21
status, 14-19
suspend, 14-5
suspended, 14-62
suspend mode, 14-13
suspend/resume considerations, 14-62
suspension of USB transceivers, 14-13
timing and clock inputs, 8-2
traffic load, 14-53
transaction decode module, 14-7
transceiver connection, 14-13
transfer concepts, 14-47
transfer direction, 14-31
transfers and SPORT, 14-3
UDC module, 14-6
USBD stall bit, 14-60
USB IN endpoints, 14-53
USB OUT endpoints, 14-53

USBD_AIF field, 14-19
USBD_BCSTAT interrupt, 14-43
USBD_CFG field, 14-19
USBD_CFG interrupt, 14-38
USBD_CTRL (USBD Module 

Configuration and Control register), 
14-21

USBD_DMABH (DMA Master Channel 
Base Address, High register), 14-26

USBD_DMABL (DMA Master Channel 
Base Address, Low register), 14-25

USBD_DMACFG (DMA Master Channel 
Configuration register), 14-24
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USBD_DMACT (DMA Master Channel 
Count register), 14-26

USBD_DMAIRQ (DMA Master Channel 
DMA Interrupt register), 14-27

USBD_EPADRx (USB Endpoint x 
Address Offset registers), 14-33

USBD_EPBUF (Enable Download of 
Configuration into UDC Core 
register), 14-18

USBD_EPCFGx (USB Endpoint x 
Control registers), 14-31

USBD_EP field, 14-20
USBD_EPLENx (USB Endpoint x Buffer 

Length registers), 14-34
USBD_EPxINT interrupt, 14-40
USB Device connection, 19-8
USB Device Controller. See UDC
USB Device ID register (USBD_ID), 

14-16
USB Device module

registers, 14-5
USB devices, 14-3
USBD_FRMAT interrupt, 14-40
USBD_FRMAT (Match Value for USB 

Frame Number register), 14-18
USBD_FRM (Current USB Frame 

Number register), 14-17
USBD_GINTR (Global Interrupt 

register), 14-22
USBD_GMASK (Global Interrupt Mask 

register), 14-24
USBD_ID (USB Device ID register), 

14-16
USBD_IF field, 14-19
USBD_INTRx (USB Endpoint x Interrupt 

registers), 14-27
USBD_MASKx (USB Endpoint x Mask 

registers), 14-30
USBD_MERR interrupt, 14-43

USBD Module Configuration and Control 
register (USBD_CTRL), 14-21

USBD Module Status register 
(USBD_STAT), 14-19

USBD_MSETUP interrupt, 14-43
USBD_MSOF interrupt, 14-39
USBD_PC interrupt, 14-42
USBD_RESUME interrupt, 14-39
USBD_RST interrupt, 14-39
USBD. See USB
USBD_SETUP interrupt, 14-43
USBD_SIP bit, 14-20
USBD_SOF interrupt, 14-38
USBD_STAT (USBD Module Status 

register), 14-19
USBD_SUSPEND signal, 14-13
USBD_SUSP interrupt, 14-39
USBD_TC interrupt, 14-42
USB Endpoint x Address Offset registers 

(USBD_EPADRx), 14-33
USB Endpoint x Buffer Length registers 

(USBD_EPLENx), 14-34
USB Endpoint x Control registers 

(USBD_EPCFGx), 14-31
USB Endpoint x Interrupt registers 

(USBD_INTRx), 14-27
USB Endpoint x Mask registers 

(USBD_MASKx), 14-30
USB host, 14-3
USB specification, version, 14-16
USDB stall bit, 14-60
use of RTI instruction, 4-57
User mode, 1-5

accessible registers, 3-3
entering, 3-9
entering and leaving, 3-5, 3-6
protected instructions, 3-4

User Stack Pointer (USP), 3-7, 5-5
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V
Valid bit

clearing, 6-47
figure, 6-29
function, 6-19
function of, 6-60
in address tag compare operation, 6-20
in cache line replacement, 6-22
in instruction cache invalidation, 6-25
in line fill buffer, 6-21
in tag of cache line, 6-19

valid (definition), 6-4
vendor ID, PCI, 13-30
victim (definition), 6-4
video ALU instructions, 5-13
video ALU operations, 2-32
video data, 14-11
VisualDSP++

development environment, 1-24
voltage, 8-23

changing, 8-24
dynamic control, 8-23
external regulator, 8-25

Voltage-Controlled Oscillator (VCO), 8-2

W
wait states, additional, 18-26
WAKEUP signal, 3-10, 8-18
Watchdog Control register 

(WDOG_CTL), 16-27
Watchdog Count register 

(WDOG_CNT), 16-26
Watchdog Status register 

(WDOG_STAT), 16-26
watchdog timer, 8-20, 16-25

functionality, 1-16
Watchdog Timer reset, 3-13, 3-14
Watchpoint Data Address Control register 

(WPDACTL), 20-13

Watchpoint Data Address Count Value 
registers (WPDACNTx), 20-11

Watchpoint Data Address registers 
(WPDAx), 20-11

Watchpoint Instruction Address Control 
register (WPIACTL), 20-7

Watchpoint Instruction Address Count 
registers (WPIACNTx), 20-6

Watchpoint Instruction Address registers 
(WPIAx), 20-5

Watchpoint Match, 4-42
Watchpoint Status register (WPSTAT), 

20-14
Watchpoint Unit, 20-1 to 20-14

combination of instruction and data 
watchpoints, 20-3

data watchpoints, 20-10
instruction watchpoints, 20-4
memory-mapped registers, 20-2
WPIACTL watchpoint ranges, 20-4

Way
1-Way associative (direct mapped), 6-2
definition, 6-4
L1 data banks as 2-Way set associative, 

6-10
L1 instruction memory as 4-Way set 

associative, 6-10
priority in cache line replacement, 6-23

WB (Write Back), 4-7
WDOG_CNT (Watchdog Count 

register), 16-26
WDOG_CTL (Watchdog Control 

register), 16-27
WDOG_STAT (Watchdog Status 

register), 16-26
WDTH_CAP (Pulse Width Count and 

Capture mode), 16-11
window offset, 11-65
Window Offset (WOFF) bits, 11-65
window size, 11-65



Index

I-48 ADSP-BF535 Blackfin Processor Hardware Reference
 

Window Size (WSIZE) bits, 11-65
word, 13-3

definition, 2-6
word length, 11-52
WPDACNTx (Watchpoint Data Address 

Count Value registers), 20-11
WPDACTL (Watchpoint Data Address 

Control register), 20-13
WPDAx (Watchpoint Data Address 

registers), 20-11
WPIACNTx (Watchpoint Instruction 

Address Count registers), 20-6
WPIACTL (Watchpoint Instruction 

Address Control register), 20-7
WPIAx (Watchpoint Instruction Address 

registers), 20-5
WPSTAT (Watchpoint Status register), 

20-14
wrap-around buffer, 5-7
wrapping bursts, 13-9

write access for EBIU asynchronous 
memory controller, 18-12

write back (definition), 6-4
Write Back (WB), 4-7
Write Complete flag, 17-3
write through (definition), 6-4
write to precharge delay, selecting, 18-49

X
X16DE bit, 18-43
XOR, logical, 2-24

Z
zero extending data, 2-10
zero-overhead loop registers, 4-5
Zero-Overhead Loop Registers (LC, LT, 

LB), 4-5
µ-law companding, 11-2, 11-53, 11-67
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