
a

ADSP-BF535 Blackfin® Processor
Hardware Reference

Revision 3.3, February 2013

Part Number
82-000410-13

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, CrossCore, VisualDSP++, and
EZ-KIT Lite are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

ADSP-BF535 Blackfin Processor Hardware Reference iii

CONTENTS

PREFACE

Purpose of This Manual ... xliii

Intended Audience .. xliii

Manual Contents ... xliv

What’s New in This Manual ... xlviii

Technical Support ... xlviii

Supported Processors .. xlix

Product Information .. l

Analog Devices Web Site .. l

EngineerZone .. li

Notation Conventions .. lii

Register Diagram Conventions .. liii

INTRODUCTION

ADSP-BF535 Peripherals .. 1-1

ADSP-BF535 Core Architecture .. 1-2

Memory Architecture .. 1-5

Internal (On-Chip) Memory .. 1-7

External (Off-Chip) Memory ... 1-8

Contents

iv ADSP-BF535 Blackfin Processor Hardware Reference

PCI .. 1-8

I/O Memory Space .. 1-10

Event Handling .. 1-10

DMA Support ... 1-11

External Bus Interface Unit ... 1-12

PC133 SDRAM Controller ... 1-12

Asynchronous Controller .. 1-13

PCI Interface .. 1-13

PCI Host Function ... 1-14

PCI Target Function ... 1-15

USB Port .. 1-15

Real-Time Clock .. 1-15

Watchdog Timer ... 1-16

Timers ... 1-17

Serial Ports (SPORTs) ... 1-17

Serial Peripheral Interface (SPI) Ports .. 1-19

UART Ports ... 1-20

Programmable Flags .. 1-21

Low Power Operation ... 1-22

Full On Operating Mode (Maximum Performance) 1-22

Active Operating Mode (Low Power Savings) 1-22

Sleep Operating Mode (High Power Savings) 1-23

Deep Sleep Operating Mode (Maximum Power Savings) 1-23

Clock Signals .. 1-23

ADSP-BF535 Blackfin Processor Hardware Reference v

Contents

Boot Modes .. 1-24

Instruction Set Description ... 1-24

Development Tools ... 1-24

COMPUTATIONAL UNITS

Using Data Formats .. 2-3

Binary String ... 2-3

Unsigned ... 2-4

Signed Numbers: Two’s-Complement 2-4

Fractional Representation: 1.15 .. 2-4

Register Files ... 2-5

Data Register File .. 2-6

Accumulator Registers .. 2-6

Pointer Register File .. 2-6

DAG Register Set ... 2-7

Register File Instruction Summary ... 2-8

Data Types .. 2-10

Data Formats .. 2-11

Endianess .. 2-12

ALU Data Types .. 2-12

Multiplier Data Types .. 2-13

Shifter Data Types ... 2-14

Arithmetic Formats Summary .. 2-15

Using Multiplier Integer and Fractional Formats 2-16

Contents

vi ADSP-BF535 Blackfin Processor Hardware Reference

Rounding Multiplier Results ... 2-18

Unbiased Rounding .. 2-18

Biased Rounding .. 2-20

Truncation ... 2-21

Special Rounding Instructions ... 2-21

Using Computational Status ... 2-22

Arithmetic Status Register (ASTAT) .. 2-23

Arithmetic Logic Unit (ALU) .. 2-24

ALU Operations ... 2-24

Single 16-Bit Operations .. 2-25

Dual 16-Bit Operations .. 2-25

Quad 16-Bit Operations ... 2-25

Single 32-Bit Operations .. 2-27

Dual 32-Bit Operations .. 2-27

ALU Instruction Summary .. 2-28

ALU Data Flow Details ... 2-28

Dual 16-Bit Cross Options .. 2-30

ALU Status Signals ... 2-31

ALU Division Support Features ... 2-31

Special SIMD Video ALU Operations 2-32

Multiply Accumulators (Multipliers) ... 2-32

Multiplier Operation ... 2-33

Placing Multiplier Results in Multiplier Accumulator
Registers .. 2-34

Rounding or Saturating Multiplier Results 2-34

ADSP-BF535 Blackfin Processor Hardware Reference vii

Contents

Saturating Multiplier Results on Overflow 2-35

Multiplier Instruction Summary .. 2-35

Multiplier Instruction Options .. 2-35

Multiplier Data Flow Details ... 2-38

Multiply Without Accumulate ... 2-40

Special 32-Bit Integer MAC Instruction 2-42

Dual MAC Operations .. 2-43

Barrel Shifter (Shifter) ... 2-44

Shifter Operations ... 2-44

Two Operand Shifts .. 2-45

Immediate Shifts ... 2-45

Register Shifts ... 2-46

Three Operand Shifts .. 2-46

Immediate Shifts ... 2-46

Register Shifts ... 2-47

Bit Test, Set, Clear, Toggle .. 2-48

Field Extract and Field Deposit ... 2-48

Shifter Instruction Summary .. 2-48

OPERATING MODES AND STATES

User Mode .. 3-3

Protected Resources and Instructions 3-4

Protected Memory ... 3-5

Contents

viii ADSP-BF535 Blackfin Processor Hardware Reference

Entering User Mode .. 3-5

Example Code to Enter User Mode Upon Reset 3-5

Return Instructions That Invoke User Mode 3-5

Supervisor Mode .. 3-6

Non-OS Environments ... 3-7

Example Code to Stay in Supervisor Mode Coming Out of
Reset ... 3-8

Emulation Mode .. 3-9

Idle State .. 3-9

Example Code for Transition to Idle State 3-10

Reset State .. 3-10

System Reset and Power-up Configuration 3-12

Hardware Reset ... 3-13

System Reset Configuration Register (SYSCR) 3-14

Software Resets and Watchdog Timer 3-14

Software Reset Register (SWRST) ... 3-16

Core Only Software Reset ... 3-17

Booting Methods .. 3-17

PROGRAM SEQUENCER

Sequencer Related Registers ... 4-3

Sequencer Status Register (SEQSTAT) 4-4

Zero-Overhead Loop Registers (LC, LT, LB) 4-5

System Configuration Register (SYSCFG) 4-6

Instruction Pipeline .. 4-7

ADSP-BF535 Blackfin Processor Hardware Reference ix

Contents

Branches and Sequencing .. 4-9

Direct Short and Long Jumps .. 4-11

Direct Call ... 4-11

Indirect Branch and Call .. 4-11

PC-Relative Indirect Branch and Call 4-12

Condition Code Flag ... 4-12

Conditional Branches .. 4-13

Conditional Register Move .. 4-13

Branch Prediction .. 4-14

Loops and Sequencing ... 4-15

Events and Sequencing .. 4-17

System Interrupt Processing ... 4-20

System Peripheral Interrupts .. 4-22

System Interrupt Wakeup-Enable Register (SIC_IWR) 4-24

System Interrupt Status Register (SIC_ISR) 4-25

System Interrupt Mask Register (SIC_IMASK) 4-27

System Interrupt Assignment Registers (SIC_IARx) 4-29

Event Controller Registers ... 4-31

Core Interrupt Mask Register (IMASK) 4-32

Core Interrupt Latch Register (ILAT) 4-32

Core Interrupts Pending Register (IPEND) 4-33

Global Enabling/Disabling of Interrupts 4-34

Contents

x ADSP-BF535 Blackfin Processor Hardware Reference

Event Vector Table .. 4-35

Emulation ... 4-36

Reset .. 4-36

NMI (Non-Maskable Interrupt) .. 4-38

Exceptions .. 4-38

Exceptions While Executing an Exception Handler 4-43

Hardware Error Interrupt ... 4-44

Core Timer ... 4-46

General-Purpose Interrupts (IVG7-IVG15) 4-46

Servicing Interrupts .. 4-46

Interrupts With and Without Nesting ... 4-48

Example Prolog Code for Nested Interrupt Service Routine 4-51

Example Epilog Code for Nested Interrupt Service Routine 4-51

Logging of Nested Interrupt Requests 4-52

Self-Nesting Mode .. 4-53

Exception Handling .. 4-54

Deferring Exception Processing ... 4-55

Example Code for an Exception Handler 4-55

Example Code for an Exception Routine 4-57

Executing RTX, RTN, or RTE in a Lower Priority Event ... 4-57

Recommendation for Allocating the System Stack 4-58

Latency in Servicing Events ... 4-58

ADSP-BF535 Blackfin Processor Hardware Reference xi

Contents

DATA ADDRESS GENERATORS

Addressing With DAGs ... 5-4

Frame and Stack Pointers ... 5-5

Addressing Circular Buffers ... 5-6

Addressing With Bit-Reversed Addresses 5-9

Indexed Addressing With Index and Pointer Registers 5-9

Auto-Increment and Auto-Decrement Addressing 5-10

Pre-Modify Stack Pointer Addressing 5-11

Indexed Addressing With Immediate Offset 5-11

Post-Modify Addressing .. 5-11

Modifying DAG and Pointer Registers ... 5-12

Memory Address Alignment ... 5-13

DAG Instruction Summary ... 5-16

MEMORY

Terminology ... 6-1

Memory Architecture .. 6-5

Internal Memory ... 6-9

Overview of L1 Instruction SRAM 6-10

Overview of L1 Data SRAM ... 6-10

Overview of Scratchpad Data SRAM 6-11

Overview of On-Chip L2 Memory 6-11

Level 1 Memory .. 6-12

Data Memory Control Register (DMEM_CONTROL) 6-12

Contents

xii ADSP-BF535 Blackfin Processor Hardware Reference

Instruction Memory Control Register (IMEM_CONTROL) . 6-12

L1 Instruction Memory ... 6-14

L1 Instruction SRAM ... 6-14

L1 Instruction Cache .. 6-17

Cache Lines .. 6-17

Cache Hits and Misses .. 6-19

Cache Line Fills .. 6-20

Line Fill Buffer ... 6-21

Non-Cacheable Accesses ... 6-22

Cache Line Replacement ... 6-22

Instruction Cache Management ... 6-24

Instruction Cache Locking .. 6-24

Instruction Cache Invalidation .. 6-25

Instruction Test Registers .. 6-26

Instruction Test Command Register (ITEST_COMMAND) .. 6-27

Instruction Test Data 1 Register (ITEST_DATA1) 6-28

Instruction Test Data 0 Register (ITEST_DATA0) 6-29

Example Code for Direct Invalidation 6-30

L1 Data Memory .. 6-37

L1 Data SRAM .. 6-38

L1 Data Cache ... 6-40

Example of Mapping Cacheable Address Space into Data
Banks .. 6-41

Data Cache Access .. 6-45

ADSP-BF535 Blackfin Processor Hardware Reference xiii

Contents

Cache Write Method ... 6-46

Data Cache Control Instructions 6-47

Data Test Registers .. 6-47

Data Test Command Register (DTEST_COMMAND) 6-49

Data Test Data 1 Register (DTEST_DATA1) 6-49

Data Test Data 0 Register (DTEST_DATA0) 6-50

On-Chip Level 2 (L2) Memory ... 6-52

On-Chip L2 Bank Access ... 6-52

Latency ... 6-53

Off-Chip L2 Memory .. 6-55

Memory Protection and Properties .. 6-56

Memory Management Unit ... 6-56

Memory Pages ... 6-58

Memory Page Attributes .. 6-58

Page Descriptor Table .. 6-60

CPLB Management ... 6-61

MMU Application ... 6-62

Examples of Protected Memory Regions 6-63

DCPLB Data Registers (DCPLB_DATAx) 6-65

ICPLB Data Registers (ICPLB_DATAx) 6-67

DCPLB Address Registers (DCPLB_ADDRx) 6-69

ICPLB Address Registers (ICPLB_ADDRx) 6-71

DCPLB and ICPLB Status Registers (DCPLB_STATUS,
ICPLB_STATUS) ... 6-72

DCPLB Status Register (DCPLB_STATUS) 6-73

Contents

xiv ADSP-BF535 Blackfin Processor Hardware Reference

ICPLB Status Register (ICPLB_STATUS) 6-74

DCPLB and ICPLB Fault Address Registers
(DCPLB_FAULT_ADDR, ICPLB_FAULT-ADDR) 6-74

DCPLB Fault Address Register (DCPLB_FAULT_ADDR) 6-75

ICPLB Fault Address Register (ICPLB_FAULT_ADDR) 6-76

Memory Transaction Model .. 6-76

Load/Store Operation ... 6-77

Interlocked Pipeline .. 6-78

Ordering of Loads and Stores .. 6-79

Synchronizing Instructions .. 6-80

Speculative Load Execution ... 6-81

Conditional Load Behavior ... 6-82

Working With Memory .. 6-83

Alignment ... 6-83

Atomic Operations .. 6-83

Memory-Mapped Registers .. 6-84

Core MMR Programming Code Example 6-85

CHIP BUS HIERARCHY

Internal Interfaces ... 7-1

ADSP-BF535 Internal Clocks ... 7-2

Core Overview ... 7-3

System Overview .. 7-5

System Bus Interface Unit (SBIU) ... 7-5

On-Chip L2 SRAM Memory Interface 7-7

ADSP-BF535 Blackfin Processor Hardware Reference xv

Contents

System Interfaces .. 7-7

Peripheral Bus (PAB) ... 7-8

PAB Arbitration .. 7-8

PAB Performance .. 7-8

PAB Agents (Masters, Slaves) ... 7-9

DMA Bus (DAB) .. 7-10

DAB Arbitration ... 7-10

DAB Performance ... 7-11

DAB Bus Agents (Masters) .. 7-14

External Access Bus (EAB) ... 7-14

EAB Arbitration .. 7-15

EAB Performance .. 7-15

EAB Bus Agents (Masters, Slaves) 7-17

External Mastered Bus (EMB) .. 7-18

EMB Arbitration ... 7-18

EMB Performance ... 7-18

EMB Bus Agents (Masters, Slaves, Bridges) 7-18

Resources Accessible From EMB .. 7-19

DYNAMIC POWER MANAGEMENT

Clocking ... 8-1

Phase Locked Loop and Clock Control 8-2

PLL Overview ... 8-2

PLL Clock Multiplier Ratios .. 8-3

Core Clock/System Clock Ratio Control 8-5

Contents

xvi ADSP-BF535 Blackfin Processor Hardware Reference

PLL Memory-Mapped Registers (MMRs) 8-7

PLL Control Register (PLL_CTL) 8-7

PLL Status Register (PLL_STAT) .. 8-9

PLL Lock Count Register (PLL_LOCKCNT) 8-10

Dynamic Power Management Controller 8-11

Operating Modes .. 8-12

Full On Mode .. 8-12

Active Mode ... 8-12

Sleep Mode .. 8-13

Deep Sleep Mode ... 8-14

Operating Mode Transitions .. 8-14

Programming Operating Mode Transitions 8-17

PLL Programming Sequence ... 8-17

PLL Programming Sequence Continues 8-19

Examples .. 8-20

Peripheral Clocking ... 8-22

Peripheral Clock Enable Register (PLL_IOCK) 8-22

Dynamic Supply Voltage Control .. 8-23

PCI Power Savings .. 8-24

Changing Voltage ... 8-24

External Voltage Regulator Example 8-25

Power Saving Sequence ... 8-25

High Performance Sequence .. 8-26

ADSP-BF535 Blackfin Processor Hardware Reference xvii

Contents

DIRECT MEMORY ACCESS

Descriptor Based DMA ... 9-3

DMA Descriptor Block Structure ... 9-4

DMA Configuration Word .. 9-6

Setting Up Descriptor Based DMA .. 9-8

Descriptor-Based DMA Operation ... 9-10

Autobuffer Based DMA ... 9-15

Setting Up Autobuffer Based DMA .. 9-15

DMA Control Registers .. 9-16

Peripheral DMA Configuration Register 9-16

Peripheral DMA Transfer Count Register 9-19

Peripheral DMA Start Address Registers 9-21

Peripheral DMA Next Descriptor Pointer Register 9-23

DMA Descriptor Base Pointer Register (DMA_DBP) 9-24

Peripheral DMA Descriptor Ready Register 9-25

Peripheral DMA Current Descriptor Pointer Register 9-26

Peripheral DMA IRQ Status Register 9-28

Memory DMA (MemDMA) .. 9-31

MemDMA Control Registers ... 9-32

Destination Memory DMA Configuration Register
(MDD_DCFG) .. 9-33

Destination Memory DMA Transfer Count Register
(MDD_DCT) .. 9-34

Destination Memory DMA Start Address Registers
(MDD_DSAH, MDD_DSAL) ... 9-35

Contents

xviii ADSP-BF535 Blackfin Processor Hardware Reference

Destination Memory DMA Next Descriptor Pointer
Register (MDD_DND) .. 9-36

Destination Memory DMA Descriptor Ready Register
(MDD_DDR) ... 9-36

Destination Memory DMA Current Descriptor Pointer
Register (MDD_DCP) ... 9-37

Destination Memory DMA Interrupt Register (MDD_DI) 9-38

Source Memory DMA Configuration Register
(MDS_DCFG) .. 9-39

Source Memory DMA Transfer Count Register
(MDD_DCT) .. 9-40

Source Memory DMA Start Address Registers
(MDS_DSAH, MDS_DSAL) ... 9-41

Source Memory DMA Next Descriptor Pointer Register
(MDS_DND) .. 9-42

Source Memory DMA Descriptor Ready Register
(MDS_DDR) .. 9-42

Source Memory DMA Current Descriptor Pointer Register
(MDS_DCP) ... 9-43

Source Memory DMA Interrupt Register (MDS_DI) 9-43

Performance/Throughput for MemDMA 9-44

DMA Abort Conditions .. 9-44

DMA Bus Error Conditions .. 9-45

Data Misalignment ... 9-46

Illegal Memory Access ... 9-46

ADSP-BF535 Blackfin Processor Hardware Reference xix

Contents

SPI COMPATIBLE PORT CONTROLLERS

Interface Signals .. 10-4

Serial Peripheral Interface Clock Signal (SCK) 10-4

Serial Peripheral Interface Slave Select Input Signal 10-5

Master Out Slave In (MOSI) ... 10-5

Master In Slave Out (MISO) ... 10-5

Interrupt Behavior ... 10-6

SPI Registers ... 10-7

Non-DMA Registers .. 10-7

SPIx Baud Rate Register (SPIx_BAUD) 10-7

SPIx Control Register (SPIx_CTL) 10-8

SPIx Flag Register (SPIx_FLG) .. 10-10

Slave Select Inputs ... 10-13

Multiple Slave SPI Systems .. 10-14

SPIx Status Register (SPIx_ST) .. 10-15

SPIx Transmit Data Buffer Register (SPIx_TDBR) 10-17

SPIx Receive Data Buffer Register (SPIx_RDBR) 10-18

SPIx RDBR Shadow Register (SPIx_SHADOW) 10-18

DMA Registers .. 10-19

SPIx DMA Current Descriptor Pointer Register

(SPIx_CURR_PTR) .. 10-20

SPIx DMA Configuration Register (SPIx_CONFIG) 10-21

SPIx DMA Start Address High Register
(SPIx_START_ADDR_HI) and SPIx DMA Start
Address Low Register (SPIx_START_ADDR_LO) 10-22

Contents

xx ADSP-BF535 Blackfin Processor Hardware Reference

SPIx DMA Count Register (SPIx_COUNT) 10-23

SPIx DMA Next Descriptor Pointer Register
(SPIx_NEXT_DESCR) ... 10-24

SPIx DMA Descriptor Ready Register
(SPIx_DESCR_RDY) .. 10-25

SPIx DMA Interrupt Register (SPIx_DMA_INT) 10-26

Register Functions .. 10-26

SPI Transfer Formats .. 10-28

SPI General Operation ... 10-30

Clock Signals .. 10-31

Master Mode Operation .. 10-32

Transfer Initiation From Master (Transfer Modes) 10-33

Slave Mode Operation .. 10-34

Slave Ready for a Transfer ... 10-35

Error Signals and Flags ... 10-35

Mode Fault Error (MODF) ... 10-36

Transmission Error (TXE) ... 10-37

Reception Error (RBSY) .. 10-37

Transmit Collision Error (TXCOL) 10-37

Beginning and Ending an SPI Transfer 10-38

SERIAL PORT CONTROLLERS

SPORT Operation .. 11-7

SPORT Disable .. 11-7

Setting SPORT Modes .. 11-8

ADSP-BF535 Blackfin Processor Hardware Reference xxi

Contents

SPORT Registers .. 11-9

Transmit and Receive Configuration Registers
(SPORTx_TX_CONFIG, SPORTx_RX_CONFIG) 11-10

SPORTx Transmit (SPORTx_TX) Registers 11-18

SPORTx Receive (SPORTx_RX) Registers 11-20

SPORTx Transmit (SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock Divider Registers 11-21

SPORTx Transmit (SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync Divider Registers 11-23

SPORTx Status (SPORTx_STAT) Registers 11-24

SPORTx Multichannel Transmit Select (SPORTx_MTCSx)
Registers .. 11-26

SPORTx Multichannel Receive Select (SPORTx_MRCSx)
Registers ... 11-28

SPORTx Multichannel Configuration (SPORTx_MCMCx)
Registers ... 11-30

SPORTx Receive DMA Current Descriptor Pointer
(SPORTx_CURR_PTR_RX) Registers 11-32

SPORTx Receive DMA Configuration
(SPORTx_CONFIG_DMA_RX) Registers 11-32

SPORTx Receive DMA Start Address High
(SPORTx_START_ADDR_HI_RX) Registers 11-35

SPORTx Receive DMA Start Address Low
(SPORTx_START_ADDR_LO_RX) Registers 11-36

SPORTx Receive DMA Count (SPORTx_COUNT_RX)
Registers ... 11-37

SPORTx Receive DMA Next Descriptor Pointer
(SPORTx_NEXT_DESCR_RX) Registers 11-37

Contents

xxii ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Receive DMA Descriptor Ready
(SPORTx_DESCR_RDY_RX) Registers 11-39

SPORTx Receive DMA IRQ Status
(SPORTx_IRQSTAT_RX) Registers 11-40

SPORTx Transmit DMA Current Descriptor Pointer
(SPORTx_CURR_PTR_TX) Registers 11-41

SPORTx Transmit DMA Configuration
(SPORTx_CONFIG_DMA_TX) Registers 11-42

SPORTx Transmit DMA Start Address High
(SPORTx_START_ADDR_HI_TX) Registers 11-44

SPORTx Transmit DMA Start Address Low
(SPORTx_START_ADDR_LO_TX) Registers 11-45

SPORTx Transmit DMA Count (SPORTx_COUNT_TX)
Registers .. 11-46

SPORTx Transmit DMA Next Descriptor Pointer
(SPORTx_NEXT_DESCR_TX) Registers 11-46

SPORTx Transmit DMA Descriptor Ready
(SPORTx_DESCR_RDY_TX) Registers 11-48

SPORTx Transmit DMA IRQ Status
(SPORTx_IRQSTAT_TX) Registers 11-49

Register Writes and Effect Latency .. 11-50

Clock and Frame Sync Frequencies ... 11-50

Maximum Clock Rate Restrictions 11-51

Data Word Formats .. 11-52

Word Length .. 11-52

Endian Format .. 11-52

ADSP-BF535 Blackfin Processor Hardware Reference xxiii

Contents

Data Type ... 11-53

Companding ... 11-53

Clock Signal Options .. 11-54

Frame Sync Options .. 11-55

Framed Versus Unframed ... 11-55

Internal Versus External Frame Syncs 11-56

Active Low Versus Active High Frame Syncs 11-57

Sampling Edge for Data and Frame Syncs 11-57

Early Versus Late Frame Syncs (Normal Versus Alternate
Timing) .. 11-58

Data Independent Transmit Frame Sync 11-60

Multichannel Operation .. 11-61

Frame Syncs In Multichannel Mode 11-63

Multichannel Frame Delay ... 11-64

Window Size ... 11-65

Window Offset .. 11-65

Other Multichannel Fields in SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG ... 11-65

Channel Selection Registers ... 11-66

Multichannel Enable ... 11-67

Multichannel DMA Data Packing .. 11-68

Moving Data Between SPORTS and Memory 11-69

Support for Standard Protocols .. 11-69

2X Clock Recovery Control ... 11-70

Contents

xxiv ADSP-BF535 Blackfin Processor Hardware Reference

SPORT Pin/Line Terminations ... 11-70

Timing Examples .. 11-70

UART PORT CONTROLLER

Serial Communications ... 12-2

UARTx Control and Status Registers ... 12-2

UARTx Line Control Registers (UARTx_LCR) 12-3

UARTx Line Status Registers (UARTx_LSR) 12-4

UARTx Transmit Holding Registers (UARTx_THR) 12-5

UARTx Receive Buffer Registers (UARTx_RBR) 12-6

UARTx Interrupt Enable Registers (UARTx_IER) 12-7

UARTx Interrupt Identification Registers (UARTx_IIR) 12-9

UARTx Divisor Latch Registers
(UARTx_DLL, UARTx_DLH) ... 12-10

UARTx Modem Control Registers (UARTx_MCR) 12-13

UARTx Modem Status Registers (UARTx_MSR) 12-14

UARTx Scratch Registers (UARTx_SCR) 12-15

Non-DMA Mode ... 12-15

DMA Mode ... 12-17

Mixing Modes .. 12-17

UART DMA Receive Registers .. 12-18

UARTx Receive DMA Current Descriptor Pointer Registers
(UARTx_CURR_PTR_RX) ... 12-19

UARTx Receive DMA Configuration Registers
(UARTx_CONFIG_RX) .. 12-20

ADSP-BF535 Blackfin Processor Hardware Reference xxv

Contents

UARTx Receive DMA Start Address High Registers
(UARTx_START_ADDR_HI_RX) 12-22

UARTx Receive DMA Start Address Low Registers
(UARTx_START_ADDR_LO_RX) 12-23

UARTx Receive DMA Count Registers
(UARTx_COUNT_RX) ... 12-24

UARTx Receive DMA Next Descriptor Pointer Registers
(UARTx_NEXT_DESCR_RX) ... 12-25

UARTx Receive DMA Descriptor Ready Registers
(UARTx_DESCR_RDY_RX) ... 12-26

UARTx Receive DMA IRQ Status Registers
(UARTx_IRQSTAT_RX) .. 12-27

UART DMA Transmit Registers .. 12-27

UARTx Transmit DMA Current Descriptor Pointer Registers
(UARTx_CURR_PTR_TX) .. 12-28

UARTx Transmit DMA Configuration Registers
(UARTx_CONFIG_TX) .. 12-29

UARTx Transmit DMA Start Address High Registers
(UARTx_START_ADDR_HI_TX) 12-30

UARTx Transmit DMA Start Address Low Registers
(UARTx_START_ADDR_LO_TX) 12-31

UARTx Transmit DMA Count Registers
(UARTx_COUNT_TX) ... 12-32

UARTx Transmit DMA Next Descriptor Pointer Registers
(UARTx_NEXT_DESCR_TX) ... 12-33

UARTx Transmit DMA Descriptor Ready Registers
(UARTx_DESCR_RDY_TX) ... 12-34

Contents

xxvi ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Transmit DMA IRQ Status Registers
(UARTx_IRQSTAT_TX) ... 12-35

IrDA Support ... 12-35

UART0 Infrared Control Register (UART0_IRCR) 12-36

IrDA Transmitter Description ... 12-37

IrDA Receiver Description .. 12-38

PCI BUS INTERFACE

PCI Specification .. 13-2

PCI Device Function .. 13-3

PCI Host Function ... 13-3

Processor Core Access to PCI Space ... 13-3

External PCI Requirements ... 13-4

Device Mode Operation ... 13-4

Outbound Transactions (ADSP-BF535 Processor as PCI
Initiator) .. 13-6

General Outbound Operation ... 13-6

Outbound Error Detection and Reporting 13-7

Supported Transactions to PCI ... 13-8

Inbound Transactions (ADSP-BF535 Processor as PCI
Target) ... 13-10

General Inbound Operation .. 13-10

Inbound Error Detection and Reporting 13-12

Supported Transactions From PCI 13-12

Unsupported Transactions From PCI 13-12

ADSP-BF535 Blackfin Processor Hardware Reference xxvii

Contents

Host Mode Operation ... 13-13

Outbound Transactions (ADSP-BF535 Processor as PCI
Initiator) .. 13-13

Inbound Transactions (ADSP-BF535 Processor as PCI
Target) ... 13-14

Outbound Configuration Transactions 13-15

Reset Behavior and Control ... 13-16

Interrupt Behavior and Control ... 13-17

PCI Programming Model .. 13-18

Bus Operation Ordering .. 13-18

System MMR Control and Status Registers 13-19

PCI Bridge Control Register (PCI_CTL) 13-20

PCI Status Register (PCI_STAT) ... 13-21

PCI Interrupt Controller Register (PCI_ICTL) 13-22

PCI Outbound Memory Base Address Register
(PCI_MBAP) ... 13-23

PCI Outbound I/O Base Address Register (PCI_IBAP) 13-23

PCI Outbound I/O Configuration Address Register
(PCI_CBAP) .. 13-24

PCI Inbound Memory Base Address Register
(PCI_TMBAP) ... 13-25

PCI Inbound I/O Base Address Register (PCI_TIBAP) 13-25

Configuration Space Control and Status Registers 13-26

PCI Device Memory BAR Mask Register
(PCI_DMBARM) ... 13-26

PCI Device I/O BAR Mask Register (PCI_DIBARM) 13-27

Contents

xxviii ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Device ID Register (PCI_CFG_DIC) 13-29

PCI Configuration Vendor ID Register (PCI_CFG_VIC) 13-30

PCI Configuration Status Register (PCI_CFG_STAT) 13-31

PCI Configuration Command Register (PCI_CFG_CMD) .. 13-32

PCI Configuration Class Code Register (PCI_CFG_CC) 13-33

PCI Configuration Revision ID Register (PCI_CFG_RID) .. 13-34

PCI Configuration BIST Register (PCI_CFG_BIST) 13-35

PCI Configuration Header Type Register (PCI_CFG_HT) .. 13-36

PCI Configuration Memory Latency Timer Register
(PCI_CFG_MLT) .. 13-36

PCI Configuration Cache Line Size Register
(PCI_CFG_CLS) ... 13-37

PCI Configuration Memory Base Address Register
(PCI_CFG_MBAR) ... 13-38

PCI Configuration I/O Base Address Register
(PCI_CFG_IBAR) ... 13-39

PCI Configuration Subsystem ID Register
(PCI_CFG_SID) ... 13-40

PCI Configuration Subsystem Vendor ID Register
(PCI_CFG_SVID) ... 13-40

PCI Configuration Maximum Latency Register
(PCI_CFG_MAXL) ... 13-41

PCI Configuration Minimum Grant Register
(PCI_CFG_MING) ... 13-42

PCI Configuration Interrupt Pin Register (PCI_CFG_IP) ... 13-42

PCI Configuration Interrupt Line Register (PCI_CFG_IL) .. 13-43

PCI Host Memory Control Register (PCI_HMCTL) 13-43

ADSP-BF535 Blackfin Processor Hardware Reference xxix

Contents

PCI I/O Issues .. 13-44

Reflected Wave Switching .. 13-44

Power Sequencing .. 13-45

PCI Clock Requirements ... 13-45

USB DEVICE

Convention ... 14-1

Requirements .. 14-2

USB Functionality ... 14-2

USB Requirements .. 14-3

Master and Slave Buses .. 14-3

Data Flow and Traffic Scheduling 14-4

USB Implementation ... 14-4

Block Diagram .. 14-6

UDC Block ... 14-6

Front-End Interface Block ... 14-7

Clock Control Block ... 14-7

Transaction Decode and Clock Synchronization Block 14-7

Registers and Control Block ... 14-8

Memory Interface Block .. 14-8

DMA Master Block ... 14-9

PAB Interface Block .. 14-10

Features and Modes ... 14-10

Endpoint Types ... 14-10

Contents

xxx ADSP-BF535 Blackfin Processor Hardware Reference

Data Transfers ... 14-11

Bulk Data Transfers .. 14-11

Isochronous Data Transfers ... 14-11

Control Transfers .. 14-11

UDC Configuration Control ... 14-12

Suspend Operation ... 14-13

Clocking ... 14-13

USB Transceiver .. 14-13

Full Speed vs. Low Speed USB .. 14-14

Registers ... 14-14

USB Device ID Register (USBD_ID) 14-16

Current USB Frame Number Register (USBD_FRM) 14-17

Match Value for USB Frame Number Register
(USBD_FRMAT) ... 14-18

Enable Download of Configuration Into UDC Core Register
(USBD_EPBUF) .. 14-18

USBD Module Status Register (USBD_STAT) 14-19

USBD Module Configuration and Control Register
(USBD_CTRL) ... 14-21

Global Interrupt Register (USBD_GINTR) 14-22

Global Interrupt Mask Register (USBD_GMASK) 14-24

DMA Master Channel Configuration Register
(USBD_DMACFG) ... 14-24

DMA Master Channel Base Address Low Register
(USBD_DMABL) .. 14-25

ADSP-BF535 Blackfin Processor Hardware Reference xxxi

Contents

DMA Master Channel Base Address High Register
(USBD_DMABH) ... 14-26

DMA Master Channel Count Register (USBD_DMACT) 14-26

DMA Master Channel DMA Interrupt Register
(USBD_DMAIRQ) .. 14-27

USB Endpoint x Interrupt Registers (USBD_INTRx) 14-27

USB Endpoint x Mask Registers (USBD_MASKx) 14-30

USB Endpoint x Control Registers (USBD_EPCFGx) 14-31

USB Endpoint x Address Offset Registers
(USBD_EPADRx) .. 14-33

USB Endpoint x Buffer Length Registers
(USBD_EPLENx) .. 14-34

UDC Endpoint Buffer Register .. 14-35

Interrupt Descriptions ... 14-37

USB General Interrupts ... 14-38

USBD_SOF – Start of Frame .. 14-38

USBD_CFG – USB Configuration Change 14-38

USBD_MSOF – Missed Start of Frame 14-39

USBD_RST – Reset Signaling Detected 14-39

USBD_SUSP – Device Suspended 14-39

USBD_RESUME – Resume Signaling 14-39

USBD_FRMAT – Frame Match 14-40

USBD_EPxINT – Endpoint(x) Interrupt 14-40

Contents

xxxii ADSP-BF535 Blackfin Processor Hardware Reference

DMA Master Interrupts .. 14-40

DMA_COMP .. 14-41

DMA_ERROR ... 14-41

Data Misalignment ... 14-41

Illegal Memory Access .. 14-41

USB Endpoint Interrupts .. 14-42

USBD_TC – Transfer Complete 14-42

USBD_PC – Packet Complete .. 14-42

USBD_BCSTAT – Buffer Complete 14-43

USBD_SETUP – Setup Packet Received 14-43

USBD_MSETUP – Multiple Setup Packets Received 14-43

USBD_MERR – Memory Controller Error 14-43

USB Programming Model ... 14-44

Configuration of the UDC Module 14-44

USBD Device Initialization ... 14-46

USB Data Transfers ... 14-47

USB Transfer Concepts ... 14-47

How to Transfer Data ... 14-48

Bulk Transfers ... 14-49

Bulk In ... 14-50

Bulk Out .. 14-51

Isochronous Transfers ... 14-53

Iso In ... 14-54

Iso Out .. 14-55

ADSP-BF535 Blackfin Processor Hardware Reference xxxiii

Contents

Control Transfers .. 14-56

Control Transfer, No Data Phase 14-57

Control Transfer With Data Phase 14-58

Control Transfers Gone Bad .. 14-59

Exception Handling .. 14-60

Small Packets (Less Than 16-Byte Transfers) 14-60

Endpoint Errors .. 14-60

Isochronous Transfers Error Detection 14-61

Reset Signaling Detected on USB 14-61

Suspend/Resume Considerations 14-62

References ... 14-62

PROGRAMMABLE FLAGS

Programmable Flag Memory-Mapped Registers (MMRs) 15-2

Flag Direction Register (FIO_DIR) 15-2

Flag Set (FIO_FLAG_S) and Flag Clear (FIO_FLAG_C)
Registers ... 15-2

Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S) 15-5

Flag Polarity Register (FIO_POLAR) 15-9

Flag Interrupt Sensitivity Register (FIO_EDGE) 15-10

Flag Set on Both Edges Register (FIO_BOTH) 15-10

Performance/Throughput .. 15-11

Contents

xxxiv ADSP-BF535 Blackfin Processor Hardware Reference

TIMERS

General-Purpose Timers .. 16-1

General-Purpose Timer Registers .. 16-2

Timer Status Registers (TIMERx_STATUS) 16-4

Timer Configuration Registers (TIMERx_CONFIG) 16-7

Timer Period Registers (TIMERx_PERIOD) 16-10

Timer Width Registers (TIMERx_WIDTH) 16-11

Timer Counter Registers (TIMERx_COUNTER) 16-11

Timer Modes .. 16-13

Pulse Width Modulation Mode (PWM_OUT) 16-13

Pulse Width Modulation (PWM) Waveform Generation .. 16-14

Single Pulse Generation .. 16-17

Pulse Width Count and Capture Mode (WDTH_CAP) 16-18

Autobaud Detection ... 16-19

External Event Counter Mode (EXT_CLK) 16-21

Core Timer .. 16-21

Core Timer Control Register (TCNTL) 16-22

Core Timer Count Register (TCOUNT) 16-23

Core Timer Period Register (TPERIOD) 16-24

Core Timer Scale Register (TSCALE) 16-24

Watchdog Timer ... 16-25

Watchdog Timer Operation ... 16-25

Watchdog Count Register (WDOG_CNT) 16-26

ADSP-BF535 Blackfin Processor Hardware Reference xxxv

Contents

Watchdog Status Register (WDOG_STAT) 16-26

Watchdog Control Register (WDOG_CTL) 16-27

REAL-TIME CLOCK (RTC)

RTC Programming Model ... 17-2

Interrupts .. 17-7

RTC Memory-Mapped Registers (MMRs) 17-7

RTC Status Register (RTC_STAT) ... 17-7

RTC Interrupt Control Register (RTC_ICTL) 17-8

RTC Interrupt Status Register (RTC_ISTAT) 17-9

RTC Stopwatch Count Register (RTC_SWCNT) 17-10

RTC Alarm Register (RTC_ALARM) 17-11

RTC Enable Register (RTC_FAST) 17-12

EXTERNAL BUS INTERFACE UNIT

Block Diagram .. 18-3

Internal Memory Interfaces ... 18-4

EBIU Arbitration .. 18-5

External Memory Interfaces ... 18-5

EBIU Programming Model ... 18-7

Error Detection ... 18-8

Asynchronous Memory Interface ... 18-9

Asynchronous Memory Address Decode 18-10

Asynchronous Memory Global Control Register
(EBIU_AMGCTL) ... 18-10

Contents

xxxvi ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Memory Bank Control Registers
(EBIU_AMBCTL0, EBIU_AMBCTL1) 18-12

ARDY Input Control .. 18-13

Programmable Timing Characteristics 18-16

Asynchronous Accesses by Core Instructions 18-16

Asynchronous Reads ... 18-16

Asynchronous Writes .. 18-18

Asynchronous Writes Followed by Reads 18-21

Asynchronous Accesses by MemDMA 18-23

Asynchronous Reads ... 18-24

Asynchronous Writes .. 18-26

Adding Additional Wait States .. 18-26

SDRAM Controller (SDC) ... 18-28

Definition of Terms .. 18-29

SDRAM Memory Global Control Register
(EBIU_SDGCTL) ... 18-37

Setting the SDRAM Clock Enables
(SCTLE and SCK1E) .. 18-43

Entering and Exiting Self-Refresh Mode (SRFS) 18-44

Setting the SDRAM Buffering Timing Option
(EBUFE) ... 18-45

Selecting the CAS Latency Value (CL) 18-46

SDQM Operation .. 18-47

Executing a Parallel Refresh Command 18-47

Selecting the Bank Activate Command Delay (TRAS) 18-47

ADSP-BF535 Blackfin Processor Hardware Reference xxxvii

Contents

Selecting the Precharge Delay (TRP) 18-48

Selecting the Write to Precharge Delay (TWR) 18-49

SDRAM Memory Bank Control Register
(EBIU_SDBCTL) .. 18-49

SDRAM Control Status Register (EBIU_SDSTAT) 18-53

SDRAM Refresh Rate Control Register (EBIU_SDRRC) 18-54

SDRAM External Bank Address Decode 18-56

SDRAM Address Mapping .. 18-59

32-Bit Wide SDRAM Address Muxing 18-60

16-Bit Wide SDRAM Address Muxing 18-65

Data Mask (SDQM[3:0]) Encodings 18-68

SDC Operation .. 18-70

SDC Configuration ... 18-70

Read Buffer (Prefetch) Operation ... 18-72

SDC Commands ... 18-75

Precharge Command ... 18-76

Bank Activate Command ... 18-77

Load Mode Register Command 18-77

Read/Write Command .. 18-78

Auto-Refresh Command .. 18-78

Self-Refresh Command ... 18-79

No Operation/Command Inhibit Commands 18-80

SDRAM Timing Specifications .. 18-80

SDRAM Performance ... 18-81

Contents

xxxviii ADSP-BF535 Blackfin Processor Hardware Reference

SYSTEM DESIGN

Pin Descriptions ... 19-1

Recommendations for Unused Pins 19-1

Pins Requiring Termination .. 19-1

Resetting the Processor ... 19-2

Booting the Processor ... 19-2

Managing Clocks .. 19-2

Managing Core and System Clocks .. 19-3

Designing for Multiplexed Clock Pins 19-3

Configuring and Servicing Interrupts .. 19-5

Semaphores .. 19-6

Example Code for Query Semaphore 19-7

Data Delays, Latencies and Throughput 19-8

Bus Priorities .. 19-8

PCI Arbiter .. 19-8

USB Device Connection ... 19-8

External Memory Design Issues ... 19-9

Example Asynchronous Memory Interfaces 19-9

Avoiding Bus Contention ... 19-10

Supported SDRAM Configurations 19-11

Example SDRAM Interfaces .. 19-12

High Frequency Design Considerations 19-14

Point-to-Point Connections on Serial Ports 19-14

Signal Integrity ... 19-15

ADSP-BF535 Blackfin Processor Hardware Reference xxxix

Contents

Decoupling Capacitors and Ground Planes 19-16

Oscilloscope Probes ... 19-16

Recommended Reading ... 19-17

BLACKFIN PROCESSOR’S DEBUG

Watchpoint Unit ... 20-1

Instruction Watchpoints .. 20-4

Watchpoint Instruction Address Registers (WPIAx) 20-5

Watchpoint Instruction Address Count Registers
(WPIACNTx) .. 20-6

Watchpoint Instruction Address Control Register
(WPIACTL) ... 20-7

Data Address Watchpoints ... 20-10

Watchpoint Data Address Registers (WPDAx) 20-11

Watchpoint Data Address Count Value Registers
(WPDACNTx) ... 20-11

Watchpoint Data Address Control Register
(WPDACTL) ... 20-13

Watchpoint Status Register (WPSTAT) 20-14

Trace Unit .. 20-14

Trace Buffer Control Register (TBUFCTL) 20-16

Trace Buffer Status Register (TBUFSTAT) 20-17

Trace Buffer Register (TBUF) .. 20-18

Code to Recreate the Execution Trace in Memory 20-18

Contents

xl ADSP-BF535 Blackfin Processor Hardware Reference

Performance Monitoring Unit ... 20-19

Performance Monitor Counter Registers (PFCNTRx) 20-20

Performance Monitor Control Register (PFCTL) 20-20

Event Monitor Table ... 20-22

Cycle Counter .. 20-24

Execution Cycle Count Registers (CYCLES and
CYCLES2) ... 20-25

Product Identification Registers .. 20-25

Chip ID Register (CHIPID) .. 20-26

DSP Device ID Register (DSPID) 20-27

DMA Bus Debug Registers ... 20-27

DMA Bus Control Comparator Register (DB_CCOMP) 20-28

DMA Bus Address Comparator Register (DB_ACOMP) 20-29

BLACKFIN PROCESSOR CORE MMR ASSIGNMENTS

L1 Data Memory Controller Registers ... A-1

L1 Instruction Memory Controller Registers A-4

Interrupt Controller Registers ... A-7

Core Timer Registers .. A-9

DSP Device ID Register ... A-9

Trace Unit Registers .. A-10

Watchpoint and Patch Registers .. A-10

Performance Monitor Registers ... A-12

ADSP-BF535 Blackfin Processor Hardware Reference xli

Contents

SYSTEM MMR ASSIGNMENTS

Clock and System Control Registers ... B-2

Chip ID Register ... B-2

System Interrupt Controller Registers ... B-3

Watchdog Timer Registers .. B-4

Real-Time Clock Registers ... B-4

UART0 Controller Registers .. B-5

UART1 Controller Registers .. B-8

Timer Registers .. B-11

Programmable Flag Registers .. B-13

SPORT0 Controller Registers ... B-14

SPORT1 Controller Registers ... B-19

SPI0 Controller Registers ... B-23

SPI1 Controller Registers ... B-25

Memory DMA Controller Registers .. B-26

Asynchronous Memory Controller—EBIU B-28

PCI Bridge Registers .. B-28

USB Device Registers ... B-31

System DMA Control Registers .. B-35

SDRAM Controller External Bus Interface Unit B-35

Contents

xlii ADSP-BF535 Blackfin Processor Hardware Reference

TEST FEATURES

Boundary-Scan Architecture ... C-2

Instruction Register ... C-4

Public Instructions .. C-6

EXTEST – Binary Code 00000 ... C-6

SAMPLE/PRELOAD – Binary Code 10000 C-6

IDCODE – Binary Code 00010 .. C-7

BYPASS – Binary Code 11111 .. C-7

Boundary-Scan Register .. C-8

NUMERIC FORMATS

Unsigned or Signed: Two’s-Complement Format D-1

Integer or Fractional .. D-1

Binary Multiplication .. D-4

Fractional Mode and Integer Mode ... D-5

Block Floating-Point Format .. D-6

GLOSSARY

INDEX

ADSP-BF535 Blackfin Processor Hardware Reference xliii

 PREFACE

Thank you for purchasing and developing systems using Blackfin® pro-
cessors from Analog Devices, Inc.

Purpose of This Manual
ADSP-BF535 Blackfin Processor Hardware Reference provides architectural
information about the Blackfin processors. The architectural descriptions
cover functional blocks, buses, and ports, including all features and pro-
cesses that they support.

For programming information, see Blackfin Processor Programming Refer-
ence. For timing, electrical, and package specifications, see ADSP-BF535
Blackfin Embedded Processor Data Sheet.

Intended Audience
The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. The manual assumes the audience has a
working knowledge of the appropriate processor architecture and instruc-
tion set. Programmers who are unfamiliar with Analog Devices processors
can use this manual, but should supplement it with other texts, such as
hardware and programming reference manuals that describe their target
architecture.

Manual Contents

xliv ADSP-BF535 Blackfin Processor Hardware Reference

Manual Contents
This manual contains:

• Chapter 1, Introduction
Provides a high level overview of the Blackfin processor. Architec-
tural descriptions include functional blocks, buses, and ports,
including all features and processes that they support.

• Chapter 2, Computational Units
Describes the arithmetic/logic units (ALUs), multiplier/accumula-
tor units, shifter, and the set of video ALUs. The chapter also
discusses data formats, data types, and register files.

• Chapter 3, Operating Modes and States
Describes the three operating modes of the ADSP-BF535 proces-
sor: Emulation mode, Supervisor mode, and User mode. The
chapter also describes Idle state and Reset state.

• Chapter 4, Program Sequencer
Describes the operation of the program sequencer, which controls
program flow by providing the address of the next instruction to be
executed. The chapter also discusses loops, subroutines, jumps,
interrupts, exceptions, and the IDLE instruction.

• Chapter 5, Data Address Generators
Describes the Data Address Generators (DAGs), addressing modes,
how to modify DAG and Pointer registers, memory address align-
ment, and DAG instructions.

• Chapter 6, Memory
Describes L1 memories and L2 memories. In particular, details
their memory architecture, memory model, memory transaction
model, and memory-mapped registers (MMRs). The L1 section

ADSP-BF535 Blackfin Processor Hardware Reference xlv

Preface

discusses the instruction, data, and scratchpad memory, which are
part of the Blackfin processor core. The L2 section discusses
on-chip and off-chip L2 memories.

• Chapter 7, Chip Bus Hierarchy
Describes on-chip buses, including how data moves through the
system. The chapter also discusses the system memory map, major
system components, and the system interconnects.

• Chapter 8, Dynamic Power Management
Describes system reset and power-up configuration, system clock-
ing and control, and power management.

• Chapter 9, Direct Memory Access
Describes the channel DMA and Memory DMA controllers. The
channel DMA section discusses direct, block data movements
between a peripheral with DMA access and internal or external
memory spaces.

The Memory DMA section discusses memory-to-memory transfer
capabilities among the ADSP-BF535 processor memory spaces
and the L1, L2, external synchronous, and asynchronous
memories.

• Chapter 10, SPI Compatible Port Controllers
Describes the two independent Serial Peripheral Interface (SPI)
ports, SPI0 and SPI1, that provide an I/O interface to a variety of
SPI compatible peripheral devices.

• Chapter 11, Serial Port Controllers
Describes the two independent, synchronous Serial Port Control-
lers (SPORT0 and SPORT1) that provide an I/O interface to a
variety of serial peripheral devices.

Manual Contents

xlvi ADSP-BF535 Blackfin Processor Hardware Reference

• Chapter 12, UART Port Controller

Describes the Universal Asynchronous Receiver/ Transmitter
(UART) ports (UART0 and UART1), which convert data between
serial and parallel formats and include modem control and inter-
rupt handling hardware.

• Chapter 13, PCI Bus Interface
Describes the Peripheral Component Interconnect (PCI) periph-
eral, which supports PCI device and Host-to-PCI bridge functions.

• Chapter 14, USB Device
Discusses the USB Device module in the ADSP- 21535 processor.
The chapter includes a block diagram of the USBD as well as
descriptions of the USBD registers, interrupts, and programming
model.

• Chapter 15, Programmable Flags
Describes the programmable flags, or general-purpose I/O pins, in
the ADSP-BF535 processor, including how to configure the pins as
inputs and outputs and how to generate interrupts.

• Chapter 16, Timers
Describes the three general-purpose timers that can be configured
in any of three modes, the core timer that can generate periodic
interrupts for a variety of timing functions, and the watchdog timer
that can implement software watchdog functions, such as generat-
ing events to the Blackfin processor core.

• Chapter 17, Real-Time Clock (RTC)
Describes a set of digital watch features of the ADSP-BF535 pro-
cessor, including time of day, alarm, and stopwatch countdown.

ADSP-BF535 Blackfin Processor Hardware Reference xlvii

Preface

• Chapter 18, External Bus Interface Unit
Describes the External Bus Interface Unit of the ADSP-BF535 pro-
cessor. The chapter also discusses the asynchronous memory
interface, the SDRAM controller (SDC), related registers, and
SDC configuration and commands.

• Chapter 19, System Design
Describes how to use the processor as part of an overall system. It
includes information about interfacing the ADSP-BF535 processor
to external memory chips, bus timing and latency numbers, sema-
phores, and a discussion of the treatment of unused processor pins.

• Chapter 20, Blackfin Processor’s Debug
Describes the Blackfin processor debug functionality, which can be
used for software debugging and complements some services often
found in an operating system.

• Appendix A, Blackfin Processor Core MMR Assignments
Lists the core memory-mapped registers and their addresses.

• Appendix B, System MMR Assignments
Lists the system memory-mapped registers and their addresses.

• Appendix C, Test Features
Describes test features for the ADSP-BF535 processor; discusses
the JTAG standard, boundary-scan architecture, instruction and
boundary registers, and public instructions.

• Appendix D, Numeric Formats
Describes various aspects of the 16-bit data format. The chapter
also describes how to implement a block floating-point format in
software.

• Appendix G, Glossary
Contains definitions of terms used in this book, including
acronyms.

What’s New in This Manual

xlviii ADSP-BF535 Blackfin Processor Hardware Reference

What’s New in This Manual
This is Revision 3.3 of ADSP-BF535 Blackfin Processor Hardware Refer-
ence. This revision corrects minor typographical errors and the following
issues:

• RETI instructions need not be first in nested interrupts and com-
plete table of hardware conditions causing hardware interrupts in
Chapter 4, “Program Sequencer”

• Note on programming the STOPCK bit in Chapter 8, “Dynamic
Power Management”

• Description of multichannel mode operation in Chapter 11,
“Serial Port Controllers”

• Note on timing dependencies for the TRP and TRAS settings in the
EBIU_SDGCTL register in Chapter 18, “External Bus Interface Unit”

• Clarification of watchpoint ranges in Chapter 20, “Blackfin Pro-
cessor’s Debug”

Technical Support
You can reach Analog Devices processors and DSP technical support in
the following ways:

• Post your questions in the processors and DSP support community
at EngineerZone®:
http://ez.analog.com/community/dsp

• Submit your questions to technical support directly at:
http://www.analog.com/support

http://ez.analog.com/community/dsp
http://www.analog.com/support

ADSP-BF535 Blackfin Processor Hardware Reference xlix

Preface

• E-mail your questions about processors, DSPs, and tools develop-
ment software from CrossCore® Embedded Studio or
VisualDSP++®:

Choose Help > Email Support. This creates an e-mail to
processor.tools.support@analog.com and automatically attaches
your CrossCore Embedded Studio or VisualDSP++ version infor-
mation and license.dat file.

• E-mail your questions about processors and processor applications
to:
processor.support@analog.com or
processor.china@analog.com (Greater China support)

• In the USA only, call 1-800-ANALOGD (1-800-262-5643)

• Contact your Analog Devices sales office or authorized distributor.
Locate one at:
www.analog.com/adi-sales

• Send questions by mail to:
Processors and DSP Technical Support
Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
The name “Blackfin” refers to a family of 16-bit, embedded processors.
Refer to the CCES or VisualDSP++ online help for a complete list of sup-
ported processors.

mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com
http://www.analog.com/adi-sales

Product Information

l ADSP-BF535 Blackfin Processor Hardware Reference

Product Information
Product information can be obtained from the Analog Devices Web site
and the CCES or VisualDSP++ online help.

Analog Devices Web Site
The Analog Devices Web site, www.analog.com, provides information
about a broad range of products—analog integrated circuits, amplifiers,
converters, and digital signal processors.

To access a complete technical library for each processor family, go to
http://www.analog.com/processors/technical_library. The manuals
selection opens a list of current manuals related to the product as well as a
link to the previous revisions of the manuals. When locating your manual
title, note a possible errata check mark next to the title that leads to the
current correction report against the manual.

Also note, myAnalog is a free feature of the Analog Devices Web site that
allows customization of a Web page to display only the latest information
about products you are interested in. You can choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests, including documentation errata against all manuals. myAnalog
provides access to books, application notes, data sheets, code examples,
and more.

Visit myAnalog to sign up. If you are a registered user, just log on. Your
user name is your e-mail address.

http://www.analog.com
http://www.analog.com/processors/technical_library/
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog
http://www.analog.com/MyAnalog

ADSP-BF535 Blackfin Processor Hardware Reference li

Preface

EngineerZone
EngineerZone is a technical support forum from Analog Devices, Inc. It
allows you direct access to ADI technical support engineers. You can
search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar
design challenges. You can also use this open forum to share knowledge
and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

http://ez.analog.com

Notation Conventions

lii ADSP-BF535 Blackfin Processor Hardware Reference

Notation Conventions
Text conventions in this manual are identified and described as follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
IDE environment’s menu system (for example, the Close command
appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets delim-
ited by commas and terminated with an ellipsis; read the example as an
optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

ADSP-BF535 Blackfin Processor Hardware Reference liii

Preface

Register Diagram Conventions
Register diagrams use the following conventions:

• The descriptive name of the register appears at the top, followed by
the short form of the name in parentheses.

• If the register is read-only (RO), write-1-to-set (W1S), or
write-1-to-clear (W1C), this information appears under the name.
Read/write is the default and is not noted. Additional descriptive
text may follow.

• If any bits in the register do not follow the overall read/write con-
vention, this is noted in the bit description after the bit name.

• If a bit has a short name, the short name appears first in the bit
description, followed by the long name in parentheses.

• The reset value appears in binary in the individual bits and in hexa-
decimal to the right of the register.

• Bits marked x have an unknown reset value. Consequently, the
reset value of registers that contain such bits is undefined or depen-
dent on pin values at reset.

• Shaded bits are reserved.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register,
unless otherwise specified.

Register Diagram Conventions

liv ADSP-BF535 Blackfin Processor Hardware Reference

The following figure shows an example of these conventions.

Figure 1. Register Diagram Example

00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

TMODE[1:0] (Timer Mode)

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse.
1 - Positive action pulse.

This bit must be set to 1, when operat-
ing the PPI in GP Output modes.
0 - Use system clock SCLK for counter.
1 - Use PWM_CLK to clock counter.

0 - The effective state of PULSE_HI
is the programmed state.
1 - The effective state of PULSE_HI
alternates each period.

00 - No error.
01 - Counter overflow error.
10 - Period register programming error.
11 - Pulse width register programming error.

00 - Reset state - unused.
01 - PWM_OUT mode.
10 - WDTH_CAP mode.
11 - EXT_CLK mode.

PULSE_HI

CLK_SEL (Timer Clock Select)

TOGGLE_HI (PWM_OUT PULSE_HI Toggle Mode)

ERR_TYP[1:0] (Error Type) - RO

PERIOD_CNT (Period
Count)

0 - Interrupt request
disable.
1 - Interrupt request enable

0 - Count to end of width.
1 - Count to end of period.

IRQ_ENA (Interrupt
Request Enable)

0 - Sample TMRx pin or
PF1 pin.
1 - Sample UART RX pin
or PPI_CLK pin.

TIN_SEL (Timer Input
Select)

0 - Enable pad in PWM_OUT mode.
1 - Disable pad in PWM_OUT mode.

OUT_DIS (Output Pad Disable)

0 - Timer counter stops during emulation.
1 - Timer counter runs during emulation.

EMU_RUN (Emulation Behavior Select)

ADSP-BF535 Blackfin Processor Hardware Reference 1-1

1 INTRODUCTION

The ADSP-BF535 processor is a member of the Blackfin family of prod-
ucts. The core architecture combines a dual-MAC signal processing
engine, an orthogonal RISC-like microprocessor instruction set, and sin-
gle instruction multiple data (SIMD), multimedia capabilities into a single
instruction set architecture.

Blackfin processors feature dynamic power management, the ability to
vary both the voltage and frequency of operation to provide lower overall
power consumption than other DSPs.

Throughout this manual, the words core and system are used to describe
sections of the ADSP-BF535 processor:

• The word core denotes the processor, L1 memory, Event Control-
ler, core timer, and Performance Monitoring registers.

• The word system denotes the peripheral set described in the follow-
ing section plus the Peripheral Component Interconnect (PCI)
controller, the external memory controller (EBIU), the Direct
Memory Access (DMA) controller, and the interfaces between
these, the system, and the optional, external (off chip) resources.

ADSP-BF535 Peripherals
The ADSP-BF535 processor system peripherals include:

• Universal Asynchronous Receiver Transmitters (UARTs)

• Serial Peripheral Interfaces (SPIs)

ADSP-BF535 Core Architecture

1-2 ADSP-BF535 Blackfin Processor Hardware Reference

• Serial Ports (SPORTs)

• General-purpose timers

• Real-Time Clock (RTC)

• General-purpose I/O (Programmable Flags)

• Watchdog Timer

• Universal Serial Bus (USB)

• Peripheral Component Interconnect (PCI) Bus

These peripherals are connected to the core via several high bandwidth
buses, as shown in Figure 1-1.

All DMA capable peripherals benefit from individual DMA channels,
which are integrated into the peripheral. There is also a separate memory
DMA channel dedicated to data transfers among the various chip memory
spaces, including external, synchronous dynamic random access memory
(SDRAM) and asynchronous memory, and internal Level 2 SRAM and
PCI memory spaces. Multiple on-chip 32-bit buses run at up to 133 MHz
to provide bandwidth for the processor core and for on-chip and external
peripherals.

ADSP-BF535 Core Architecture
The ADSP-BF535 processor core contains two multiplier/accumulators
(MACs), two 40-bit arithmetic logic units (ALUs), four video ALUs, and
a single shifter, as shown in Figure 1-2. The computational units process
8-, 16-, or 32-bit data from the register file. Each MAC performs a 16- by
16-bit multiply per cycle, with accumulation to a 40-bit result. This pro-
vides eight bits of extended precision.

ADSP-BF535 Blackfin Processor Hardware Reference 1-3

Introduction

Two ALUs perform all standard arithmetic and logical operations on 16-
or 32-bit data. Each of the two 32-bit input registers can be regarded as
two 16-bit halves. By using the registers as pairs of 16-bit operands, dual
16-bit or single 32-bit operations can occur in a single cycle.

The 40-bit shifter can deposit data and perform shifting, rotating, normal-
ization, and extraction operations.

Data for the computational units is located in a multiported register file of
sixteen 16-bit entries or eight 32-bit entries.

Figure 1-1. ADSP-BF535 Block Diagram

SYSTEM BUS
INTERFACE

UNIT

DMA
CONTROLLER

BLACKFIN
CORE

PCI BUS
INTERFACE

256 KBYTES SRAM

32

64

INTERRUPT
CONTROLLER/

TIMER

REAL TIME CLOCK

UART PORT 1

UART PORT 0
IRDA®

TIMER0, TIMER1,
TIMER2

PROGRAMMABLE
FLAGS

USB INTERFACE

SERIAL PORTS (2)

SPI PORTS (2)

EXTERNAL PORT

BOOT ROM

32

32

32

32

JTAG TEST AND
EMULATION WATCHDOG TIMER

FLASH

SDRAM CONTROL

ADSP-BF535 Core Architecture

1-4 ADSP-BF535 Blackfin Processor Hardware Reference

A program sequencer controls the instruction execution flow, including
instruction alignment and decoding. The sequencer supports conditional
jumps and subroutine calls, as well as zero-overhead looping. A loop buf-
fer stores instructions locally.

Two data address generators (DAGs) provide addresses for simultaneous
dual operand fetches from memory. The DAGs share a register file con-
taining four sets of 32-bit Index, Modify, Length, and Base registers.
Eight additional 32-bit registers provide pointers for general indexing of
variables and stack locations.

Figure 1-2. ADSP-BF535 Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16
88 8 8

40 40

A0 A1

FP

P5

P4

P3

P2

P1

P0

R7

R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

DATA ARITHMETIC UNIT

BARREL
SHIFTER

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT

ADSP-BF535 Blackfin Processor Hardware Reference 1-5

Introduction

Blackfins support a modified Harvard architecture in combination with a
hierarchical memory structure. Level 1 (L1) memories operate at the full
processor speed. On-chip and off-chip Level 2 (L2) memories can take
multiple processor cycles to access. At the L1 level, the instruction mem-
ory holds instructions only. The two data memories hold data, and a
dedicated scratchpad data memory stores stack and local variable informa-
tion. At the L2 level, there is a single unified memory space, holding both
instructions and data.

In addition, the L1 instruction memory and L1 data memories may be
configured as either static RAMs (SRAMs) or caches. The Memory Man-
agement unit (MMU) provides memory protection for individual tasks
that may be operating on the core and may protect system registers from
unintended access.

The architecture provides three modes of operation: User, Supervisor, and
Emulation. User mode has restricted access to a subset of system resources,
thus providing a protected software environment. Supervisor and Emula-
tion modes have unrestricted access to the system and core resources.

The Blackfin instruction set is optimized so that 16-bit opcodes represent
the most frequently used instructions. Complex DSP instructions are
encoded into 32-bit opcodes as multifunction instructions. Blackfins sup-
port a limited multi-issue capability, where a 32-bit instruction can be
issued in parallel to two 16-bit instructions. This allows the programmer
to use many of the core resources in a single instruction cycle.

The Blackfin assembly language uses an algebraic syntax. The architecture
is optimized for use with a C/C++ compiler.

Memory Architecture
The Blackfin architecture structures memory as a single, unified 4 Gbyte
address space using 32-bit addresses. All resources, including internal
memory, external memory, PCI address spaces, and I/O control registers

Memory Architecture

1-6 ADSP-BF535 Blackfin Processor Hardware Reference

occupy separate sections of this common address space. The memory por-
tions of this address space are arranged in a hierarchical structure. Fast,
low latency memory systems for cache or SRAM are located close to the
processor. Figure 1-3 shows the memory map for the ADSP-BF535
processor.

The L1 memory system is the primary highest performance memory avail-
able to the Blackfin core. The L2 memory system provides additional
capacity with slightly lower performance. The off-chip memory system,

Figure 1-3. ADSP-BF535 Processor Internal/External Memory Map

PCI Configuration Space Port (4 byte)

PCI Configuration Registers (64 Kbyte)

Reserved

PCI I/O Space (64 Kbyte)

Reserved

PCI Memory Space (128 Mbyte)

Reserved

Async Memory Bank 3 (64 Mbyte)

Async Memory Bank 2 (64 Mbyte)

Async Memory Bank 1 (64 Mbyte)

Async Memory Bank 0 (64 Mbyte)

SDRAM Memory Bank 3
(16 MB - 128 MB)*

SDRAM Memory Bank 2
(16 MB - 128 MB)*

SDRAM Memory Bank 1
(16 MB - 128 MB)*

SDRAM Memory Bank 0
(16 MB - 128 MB)*

0xEEFF FFFC

0xEEFF FF00

0xEEFE FFFF

0xEEFE 0000

0xE7FF FFFF

0xE000 0000

0x2FFF FFFF

0x2C00 0000

0x2800 0000

0x2400 0000

0x2000 0000

0x1800 0000

0x1000 0000

0x0800 0000

0x0000 0000

0xEF00 0000

External Memory Map

Core Memory-Mapped Registers (2 Mbyte)

Reserved

Scratchpad SRAM (4 Kbyte)

Instruction SRAM (16 Kbyte)

System Memory-Mapped Registers (2 Mbyte)

Reserved

Reserved

Data Bank B SRAM (16 Kbyte)

Reserved

Data Bank A SRAM (16 Kbyte)

Reserved

L2 SRAM Memory (256 Kbyte)

Reserved

0xFFFF FFFF

0xFFE0 0000

0xFFB0 0000

0xFF90 4000

0xFF90 0000

0xFF80 4000

0xFF80 0000

0xF003 FFFF

0xF000 0000

0xEF00 0000

0xFFC0 0000

0xFFB0 1000

0xFFA0 4000

0xFFA0 0000

Internal Memory Map

* The addresses shown for the SDRAM banks reflect a fully populated SDRAM array with 512 Mbytes of memory. If any
bank contains less than 128 Mbytes of memory, it would only extend to the length of the real memory systems and the
end address would become the start address of the next bank. This would continue for all four banks, with any remaining
space between the end of Memory Bank 3 and the beginning of Async Memory Bank 0 at address 0x2000 0000 treated
as reserved address space.

ADSP-BF535 Blackfin Processor Hardware Reference 1-7

Introduction

accessed through the External Bus Interface Unit (EBIU), provides
expansion with SDRAM, flash memory, and SRAM, optionally accessing
more than 768 Mbytes of physical memory.

The memory DMA controller provides high bandwidth data movement
capability. It can perform block transfers of code or data between the
internal L1/L2 memories and the external memory spaces, including PCI
memory space.

Internal (On-Chip) Memory
The ADSP-BF535 processor has four blocks of on-chip memory that pro-
vide high bandwidth access to the core:

• L1 instruction memory consisting of 16 Kbytes of 4-way set asso-
ciative cache memory. In addition, the memory may be configured
as an SRAM. This memory is accessed at full processor speed.

• L1 data memory, consisting of two banks of 16 Kbytes each. Each
L1 data memory bank may be configured as a 1- or 2-way set asso-
ciative cache or as an SRAM, and it is accessed at full speed by the
core.

• 4 Kbyte scratchpad RAM, which runs at the same speed as the L1
memories but is only accessible as data SRAM and cannot be con-
figured as cache memory.

• L2 SRAM memory array, which provides 256 Kbytes of high speed
SRAM at the full bandwidth of the core and slightly longer latency
than the L1 memory banks. The L2 memory is a unified instruc-
tion and data memory and can hold any mixture of code and data
required by the system design.

Memory Architecture

1-8 ADSP-BF535 Blackfin Processor Hardware Reference

The ADSP-BF535 processor core has a dedicated low latency 64-bit wide
datapath port into the L2 SRAM memory. For example, at a core fre-
quency of 300 MHz, the peak data transfer rate across this interface is up
to 2.4 Gbytes per second.

External (Off-Chip) Memory
External memory is accessed via the External Bus Interface Unit. This
interface provides a glueless connection to up to four banks of synchro-
nous DRAM (SDRAM) as well as up to four banks of asynchronous
memory devices including flash memory, EPROM, ROM, SRAM, and
memory-mapped I/O devices.

The PC133-compliant SDRAM controller can be programmed to inter-
face with up to four banks of SDRAM. Each bank contains between
16 Mbytes and 128 Mbytes, providing access to up to 512 Mbytes of
RAM. Each bank can be programmed independently and is contiguous
with adjacent banks, regardless of the size or placement of the banks. This
permits configuration and upgrade of the system memory, and allows the
core to view all SDRAM as a single, contiguous, physical address space.

The asynchronous memory controller can also be programmed to control
up to four banks of devices. Each bank occupies a 64 Mbyte segment
regardless of the size of the devices used, so that these banks are only con-
tiguous if fully populated with 64 Mbytes of memory.

PCI
The PCI bus defines three separate address spaces, which are accessed
through windows in the ADSP-BF535 processor memory space:

• PCI memory

• PCI I/O

• PCI configuration space

ADSP-BF535 Blackfin Processor Hardware Reference 1-9

Introduction

In addition, the PCI interface can either be used as a bridge from the pro-
cessor core as the controlling CPU in the system or as a host port where
another CPU in the system is the host and the ADSP-BF535 processor is
functioning as an intelligent I/O device on the PCI bus.

When the ADSP-BF535 processor acts as the system controller, it views
the PCI address spaces through its mapped windows. It can initialize all
devices in the system and maintain a map of the topology of the
environment.

The PCI memory region is a 4 Gbyte space that appears on the PCI bus
and can be used to map memory on I/O devices on the bus. The
ADSP-BF535 processor uses a 128 Mbyte window in memory space to see
a portion of the PCI memory space. A base address register positions this
window anywhere in the 4 Gbyte PCI memory space while its position
with respect to the processor addresses remains fixed.

The PCI I/O region is also a 4 Gbyte space; however, most systems and
I/O devices use only a 64 Kbyte subset of this space for I/O mapped
addresses. The ADSP-BF535 processor implements a 64 Kbyte window in
this space, along with a base address register that positions the window
anywhere in PCI I/O address space, while the window remains at the same
address in the processor address space.

PCI configuration space is a limited address space that is used for system
enumeration and initialization. It is a very low performance communica-
tion mode between the processor and PCI devices. The ADSP-BF535
processor provides a 1-value window to access a single data value at any
address in PCI configuration space. This window is fixed and receives the
address of the value, and the value if the operation is a write. Otherwise
the device returns the value into the same address on a read operation.

Event Handling

1-10 ADSP-BF535 Blackfin Processor Hardware Reference

I/O Memory Space
Blackfins do not define a separate I/O space. All resources are mapped
through the flat 32-bit address space. On-chip I/O devices have their con-
trol registers mapped into memory-mapped registers (MMRs) at addresses
near the top of the 4 Gbyte address space. These are separated into two
smaller blocks: one that contains the control MMRs for all CPU core
functions and the other contains the registers needed for setup and control
of the on-chip peripherals outside of the CPU core. The core MMRs are
accessible only by the core and only in Supervisor mode. They appear as
reserved space by on-chip peripherals, as well as external devices accessing
resources through the PCI bus. The system MMRs are accessible by the
core in Supervisor mode and can be mapped as either visible or reserved to
other devices, depending on the system protection model.

Event Handling
The event controller on the ADSP-BF535 processor handles all asynchro-
nous and synchronous events to the processor. The ADSP-BF535
processor event handling supports both nesting and prioritization. Nest-
ing allows multiple event service routines to be active simultaneously.
Prioritization ensures that servicing a higher priority event takes prece-
dence over servicing a lower priority event. The controller provides
support for five different types of events:

• Emulation

• Causes the processor to enter Emulation mode, allowing command
and control of the processor via the JTAG interface.

• Reset

• Resets the processor.

• Nonmaskable Interrupt (NMI)

ADSP-BF535 Blackfin Processor Hardware Reference 1-11

Introduction

• The software watchdog timer or the NMI input signal to the pro-
cessor generates this event. The NMI event is frequently used as a
power-down indicator to initiate an orderly shut down of the
system.

• Exceptions

• Synchronous to program flow. That is, the exception is taken
before the instruction is allowed to complete. Conditions such as
data alignment violations, undefined instructions, etc. cause
exceptions.

• Interrupts

• Asynchronous to program flow. These are caused by timers,
peripherals, input pins, etc.

Each event has an associated register to hold the return address and an
associated return-from-event instruction. When an event is triggered, the
state of the processor is saved on the kernel stack.

The ADSP-BF535 processor event controller consists of two stages: the
Core Event Controller (CEC) and the System Interrupt Controller (SIC).
The CEC works with the SIC to prioritize and control all system events.
Conceptually, interrupts from the peripherals arrive at the SIC and are
routed directly into the general-purpose interrupts of the CEC.

DMA Support
The ADSP-BF535 processor has independent DMA channels for each
DMA capable peripheral that supports automated data transfers with min-
imal processor core overhead. DMA transfers can occur between the
ADSP-BF535 internal memories and any of its DMA capable peripherals.
Additionally, DMA transfers can be accomplished between any of the
DMA capable peripherals and external devices connected to the external
memory interfaces. These include the SDRAM controller, asynchronous

External Bus Interface Unit

1-12 ADSP-BF535 Blackfin Processor Hardware Reference

memory controller, and the PCI bus interface. DMA capable peripherals
include the SPORTs, SPIs, UARTs, USBs, and memory DMA controller.
Each individual DMA capable peripheral has at least one dedicated DMA
channel. DMA to and from PCI is accomplished via the memory DMA
channel.

To describe each DMA sequence, the DMA controller uses a set of param-
eters, called a descriptor block. When successive DMA sequences are
needed, these descriptor blocks can be linked or chained together so the
completion of one DMA sequence autoinitiates and starts the next
sequence. The descriptor blocks include full 32-bit addresses for the base
pointers for source and destination, enabling access to the entire Blackfin
address space.

In addition to the dedicated peripheral DMA channels, there is a separate
memory DMA channel provided for transfers between the various
ADSP-BF535 system memories. This enables transfers of blocks of data
between any of the memories, including on-chip Level 2 memory, external
SDRAM, ROM, SRAM and flash memory, and PCI address spaces with
little processor intervention.

External Bus Interface Unit
The External Bus Interface Unit on the ADSP-BF535 processor interfaces
with a wide variety of industry-standard memory devices. The controller
consists of an SDRAM controller and an asynchronous memory
controller.

PC133 SDRAM Controller
The SDRAM controller provides an interface to up to four separate banks
of industry-standard SDRAM devices or DIMMs. Fully compliant with
the PC133 SDRAM standard, each bank can be configured to contain
between 16 and 128 Mbytes of memory.

ADSP-BF535 Blackfin Processor Hardware Reference 1-13

Introduction

The controller maintains all banks as a contiguous address space. The pro-
cessor sees this as a single address space, even if different size devices are
used in different banks. This allows a system to be upgraded with either
similar or different memories.

A set of programmable timing parameters is available to configure
SDRAM banks to support slower memory devices. The memory banks can
be configured as either 32 bits wide for maximum performance and band-
width or 16 bits wide for minimum device count and lower system cost.

All four banks share common SDRAM control signals and have their own
bank select lines, providing a glueless interface for most system
configurations.

Asynchronous Controller
The asynchronous memory controller provides a configurable interface for
up to four separate banks of memory or I/O devices. Each bank can be
independently programmed with different timing parameters. This allows
connection to a wide variety of memory devices, including SRAM, ROM,
and flash EPROM, as well as I/O devices that interface with standard
memory control lines. Each bank occupies a 64 Mbyte window in the pro-
cessor address space, but if not fully populated, these are not made
contiguous by the memory controller. The banks can also be configured as
16- or 32-bit wide buses for interfacing to a range of memories and I/O
devices for high performance or low cost and power.

PCI Interface
The ADSP-BF535 processor provides a 33 MHz, 32-bit, revision 2.2
compliant Peripheral Component Interconnect (PCI) interface. The PCI
provides a bus bridge function between the processor core and on-chip
peripherals and an external PCI bus. The PCI interface of the
ADSP-BF535 processor supports two PCI functions:

PCI Interface

1-14 ADSP-BF535 Blackfin Processor Hardware Reference

• A host to PCI Bridge function, in which the ADSP-BF535 proces-
sor resources (the processor core, internal and external memory,
and the memory DMA controller) provide the necessary hardware
components to emulate a host PC-PCI interface from the perspec-
tive of a PCI target device.

• A PCI target function, in which an ADSP-BF535 processor-based
intelligent peripheral can be designed to easily interface to a revi-
sion 2.2 compliant PCI bus.

PCI Host Function
The ADSP-BF535 processor provides the necessary PCI host (platform)
functions to support and control a variety of off-the-shelf PCI I/O
devices, such as Ethernet controllers, bus bridges, etc. in systems where
the ADSP-BF535 processor is the host.

The three PCI address spaces (memory, I/O, and configuration space) are
mapped into the ADSP-BF535 flat 32-bit memory space. Since the PCI
memory space is as large as the ADSP-BF535 memory address space, a
segmented, or windowed, approach is employed. This uses separate win-
dows in the ADSP-BF535 address space for accessing the three PCI
address spaces. Base address registers are provided so that these windows
can be positioned to view any range in the PCI address spaces while they
remain fixed in position in the ADSP-BF535 processor address range.

For devices on the PCI bus that view the ADSP-BF535 resources, several
mapping registers are provided to allow resources to be viewed in the PCI
address space. The ADSP-BF535 external memory space, internal L2, and
some I/O MMRs can be selectively enabled as target memory spaces.
Devices on the PCI bus can use these as PCI memory transaction targets.

ADSP-BF535 Blackfin Processor Hardware Reference 1-15

Introduction

PCI Target Function
As a PCI target device, the PCI host processor can configure the
ADSP-BF535 subsystem during enumeration of the PCI bus system. The
ADSP-BF535 subsystem then acts as an intelligent I/O device. As a target
device, the PCI controller uses the memory DMA controller to perform
DMA transfers required by the PCI host.

USB Port
The ADSP-BF535 processor provides a USB 1.1-compliant device type
interface to support direct connection to a host system. The USB core
interface provides a programmable environment with up to eight end-
points. Each endpoint can support all of the USB data types, including
Control, Bulk, Interrupt, and Isochronous. Each endpoint provides a
memory-mapped buffer for transferring data to the application. The
ADSP-BF535 USB port has a dedicated DMA controller and interrupt
input to minimize processor polling overhead and to enable asynchronous
requests for CPU attention when only transfer management is required.

Real-Time Clock
The ADSP-BF535 Real-Time Clock (RTC) provides a robust set of digital
watch features, including current time, stopwatch, and alarm. The RTC is
clocked by a 32.768 kHz crystal external to the ADSP-BF535 processor.
The RTC peripheral has dedicated power supply pins, so that it can
remain powered up and clocked even when the rest of the processor is in a
low power state. The RTC provides several programmable interrupt
options, including interrupt per second, minute, or day clock ticks, or
interrupt on programmable stopwatch countdown.

Watchdog Timer

1-16 ADSP-BF535 Blackfin Processor Hardware Reference

The 32.768 kHz input clock frequency is divided down to a 1 Hz signal
by a prescaler. The counter function of the timer consists of four counters:
a 6-bit second counter, a 6-bit minute counter, a 5-bit hours counter, and
an 8-bit day counter.

When enabled, the alarm function generates an interrupt when the output
of the timer matches the programmed value in the alarm control register.

The stopwatch function counts down from a programmed value, with one
minute resolution. When the stopwatch is enabled and the counter under-
flows, the allotted time has expired and an interrupt is generated.

Like the other peripherals, the RTC can wake up the ADSP-BF535 pro-
cessor from a low power state upon generation of any interrupt.

Watchdog Timer
The ADSP-BF535 processor includes a 32-bit timer, which can be used to
implement a software watchdog function. A software watchdog can
improve system availability by forcing the processor to a known state, via
generation of a hardware reset, non-maskable interrupt (NMI), or
general-purpose interrupt, if the timer expires before being reset by soft-
ware. The programmer initializes the count value of the timer, enables the
appropriate interrupt, then enables the timer. Thereafter, the software
must reload the counter before it counts to zero from the programmed
value. This protects the system from remaining in an unknown state
where software, which would normally reset the timer, has stopped run-
ning due to an external noise condition or software error.

If configured to generate a hardware reset, the timer can be programmed
to reset only the ADSP-BF535 CPU, or both the CPU and the
ADSP-BF535 peripherals. After a reset, software can determine if the
watchdog was the source of the hardware reset by interrogating a status bit
in the timer control register, which is set only upon a watchdog generated
reset.

ADSP-BF535 Blackfin Processor Hardware Reference 1-17

Introduction

Timers
There are three general-purpose programmable timer units in the
ADSP-BF535 processor. Each timer has one external pin that can be con-
figured either as a Pulse Width Modulator (PWM) or timer output, as an
input to clock the timer, or for measuring pulse widths of external events.
Each of the three timer units can be independently programmed as a
PWM, internally or externally clocked timer, or pulse width counter.

The timer units can be used in conjunction with either of the UARTs to
measure the width of the pulses in the data stream to provide an autobaud
detect function for a serial channel.

The timers can generate interrupts to the processor core to provide peri-
odic events for synchronization, either to the processor clock or to a count
of external signals.

In addition to the three general-purpose programmable timers, a fourth
timer is also provided. This extra timer is clocked by the internal processor
clock and is typically used as a system tick clock for generation of operat-
ing system periodic interrupts.

The ADSP-BF535 processor uses a programmable interval timer to gener-
ate periodic interrupts. An 8-bit prescale register sets the number of clock
cycles for decrementing a 32-bit count register. The number of clock
cycles per timer decrement can be from 1 to 256. An interrupt is gener-
ated when this count register reaches 0. The count register can be
automatically reloaded from a 16-bit period register and the count
resumed.

Serial Ports (SPORTs)
The ADSP-BF535 processor incorporates two complete synchronous
serial ports (SPORT0 and SPORT1) for serial and multiprocessor com-
munications. The SPORTs support these features:

Serial Ports (SPORTs)

1-18 ADSP-BF535 Blackfin Processor Hardware Reference

• Bidirectional operation

• Each SPORT has independent transmit and receive pins.

• Buffered (8 deep) transmit and receive ports

• Each port has a data register for transferring data words to
and from other processor components and shift registers for
shifting data in and out of the data registers.

• Clocking

• Each transmit and receive port either uses an external serial
clock or generates a wide range of frequencies.

• Word length

• Each SPORT supports serial data words from 3 to 16 bits in
length transferred in most significant bit first or least signif-
icant bit first format.

• Framing

• Each transmit and receive port can run with or without
frame sync signals for each data word. Frame sync signals
can be generated internally or externally, active high or low,
and with either of two pulse widths and early or late frame
sync.

• Companding in hardware

• Each SPORT can perform A-law or µ-law companding
according to ITU recommendation G.711. Companding
can be selected on the transmit and/or receive channel of
the SPORT without additional latencies.

ADSP-BF535 Blackfin Processor Hardware Reference 1-19

Introduction

• DMA operations with single cycle overhead

• Each SPORT can automatically receive and transmit multi-
ple buffers of memory data. The processor can link or chain
sequences of DMA transfers between a SPORT and mem-
ory. The chained DMA can be dynamically allocated and
updated through the descriptor blocks or DMA parameters
that set up the chain.

• Interrupts

• Each transmit and receive port generates an interrupt upon
completing the transfer of a data word or after transferring
an entire data buffer or buffers through DMA.

• Multichannel capability

• Each SPORT supports 128 channels and is compatible with
the H.100, H.110, MVIP-90, and HMVIP standards.

Serial Peripheral Interface (SPI) Ports
The ADSP-BF535 processor has two SPI-compatible ports that enable the
processor to communicate with multiple SPI-compatible devices.

The SPI interface uses three pins for transferring data: two data pins and a
clock pin. Two SPI chip select input pins let other SPI devices select the
processor, and fourteen SPI chip select output pins let the processor select
other SPI devices. The SPI select pins are reconfigured Programmable Flag
pins. Using these pins, the SPI ports provide a full duplex, synchronous
serial interface, which supports both master and slave modes and multi-
master environments.

Each SPI port baud rate and clock phase/polarities are programmable, and
each has an integrated DMA controller, configurable to support either
transmit or receive data streams.

UART Ports

1-20 ADSP-BF535 Blackfin Processor Hardware Reference

During transfers, the SPI ports simultaneously transmit and receive by
serially shifting data in and out on their two serial data lines. The serial
clock line synchronizes the shifting and sampling of data on the two serial
data lines.

UART Ports
The ADSP-BF535 processor provides two full-duplex independent Uni-
versal Asynchronous Receiver/Transmitter (UART) ports: UART0 and
UART1. UART0 enhances the standard functionality and supports the
half duplex IrDA® SIR (9.6/115.2 Kbps rate) protocol. The UART ports
provide a simplified UART interface to other peripherals or hosts. They
provide full duplex, DMA-supported, asynchronous transfers of serial
data. Each UART port includes support for 5 to 8 data bits; 1 or 2 stop
bits; and none, even, or odd parity. The UART ports support two modes
of operation:

• Programmed I/O (PIO)

• The processor sends or receives data by writing or reading
I/O-mapped UART transmit and receive registers, respectively.
The data is double buffered on both transmit and receive.

• Direct Memory Access (DMA)

• The DMA controller transfers both transmit and receive data. This
reduces the number and frequency of interrupts required to trans-
fer data to and from memory. Each UART has two dedicated
DMA channels, one for transmit and one for receive. These DMA
channels have lower priority than most DMA channels because of
their relatively low service rates.

ADSP-BF535 Blackfin Processor Hardware Reference 1-21

Introduction

The UART port baud rate, serial data format, error code generation and
status, and interrupts can be programmed to support the following:

• Wide range of bit rates

• Data formats from 7 to 12 bits per frame

• Generation of maskable interrupts to the processor by both trans-
mit and receive operations

Programmable Flags
The ADSP-BF535 processor supports 16 bidirectional programmable flag
(PF) or general-purpose I/O pins, PF[15:0]. Each pin can be individually
configured as either an input or an output.

Each PF pin can be further configured to generate an interrupt. When a PF
pin is configured as an input, an interrupt can be generated according to
the state of the pin (high or low), an edge transition (low to high or high
to low), or on both edge transitions (low to high and high to low). Input
sensitivity is defined on a per-bit basis.

When a PF pin is configured as an output, enabling interrupts for the pin
provides a software interrupt mechanism. Output sensitivity is defined on
a per-bit basis.

The ADSP-BF535 processor provides two independent interrupt channels
for the PF pins.

The PF pins are also used by the Serial Port Interface (SPI) as a chip select
and by the phase locked loop (PLL) circuitry to determine the multiplica-
tion factor applied. For more information, see “Serial Port Controllers” on
page 11-1 and “Dynamic Power Management” on page 8-1.

Low Power Operation

1-22 ADSP-BF535 Blackfin Processor Hardware Reference

Low Power Operation
The ADSP-BF535 processor provides four operating modes, each with a
different performance/power dissipation profile. In addition, Dynamic
Power Management provides the control functions with the appropriate
external power regulation capability to dynamically alter the processor
core supply voltage to further reduce power dissipation. Control of clock-
ing to each of the ADSP-BF535 peripherals also reduces power
dissipation.

Full On Operating Mode (Maximum Performance)
In the Full On mode, the phase-locked loop (PLL) is enabled, not
bypassed, providing the maximum operational frequency. This is the nor-
mal execution state in which maximum performance can be achieved. The
processor core and all enabled peripherals run at full speed.

Active Operating Mode (Low Power Savings)
In the Active mode, the PLL is enabled, but bypassed. The input clock is
used to directly generate the clocks for the processor core and peripherals.
When running off the input clock rather than the PLL, significant power
savings can be achieved. Before transitioning back to the Full On Operat-
ing mode, software can dynamically change the PLL multiplication ratio
by writing the appropriate values in the PLL Control register, choosing
either to increase performance or reduce power dissipation.

Sleep Operating Mode (High Power Savings)
The Sleep mode reduces power consumption by disabling the clock to the
processor core. The system clock however, continues to operate in this
mode. Any interrupt, typically via some external event or Real-Time clock
(RTC) activity, will wake up the processor. In this mode, the core proces-

ADSP-BF535 Blackfin Processor Hardware Reference 1-23

Introduction

sor is effectively shut down while all peripherals continue to operate.
Without clocking to the processor core, significant power savings are
achieved.

Deep Sleep Operating Mode (Maximum Power
Savings)

The Deep Sleep mode maximizes power savings by disabling the clocks to
the processor core and to all synchronous systems. Asynchronous systems,
such as the RTC, continue to operate but access to processor resources is
limited. This powered-down mode can only be exited by assertion of the
reset interrupt or by an interrupt generated by the RTC.

Clock Signals
The ADSP-BF535 processor can be clocked by a sine wave input or a buff-
ered, shaped clock derived from an external clock oscillator.

The processor provides a user-programmable 1 to 31 multiplication of the
input clock to support external to internal (processor core) clock ratios. At
runtime, the multiplication factor can be controlled in software.

All on-chip peripherals operate at the rate set by the system clock. The sys-
tem clock frequency is programmable by the PLL Control register. The
programmable values define a divide ratio between the core clock (CCLK)
and the system clock (SCLK).

Boot Modes

1-24 ADSP-BF535 Blackfin Processor Hardware Reference

Boot Modes
The ADSP-BF535 processor has three mechanisms for automatically load-
ing internal L2 memory after a reset. A fourth mode is provided to execute
from external memory, bypassing the boot sequence:

• Execute from 16-bit external memory (Bypass boot ROM)

• Boot from 8-bit flash memory

• Boot from SPI0 serial ROM (8-bit address range)

• Boot from SPI0 serial ROM (16-bit address range)

Instruction Set Description
The Blackfin family assembly language instruction set uses an algebraic
syntax that compiles to a small final memory size. The set also provides
multifunction instructions that allow the programmer to use many of the
processor core resources in a single instruction. The architecture supports
both user (algorithm/application code) and supervisor (O/S kernel, device
drivers, debuggers, ISRs) modes of operations.

Development Tools
The processor is supported by a complete set of software and hardware
development tools, including Analog Devices’ emulators and the Cross-
Core Embedded Studio or VisualDSP++ development environment. (The
emulator hardware that supports other Analog Devices processors also
emulates the processor.)

ADSP-BF535 Blackfin Processor Hardware Reference 1-25

Introduction

The development environments support advanced application code devel-
opment and debug with features such as:

• Create, compile, assemble, and link application programs written
in C++, C, and assembly

• Load, run, step, halt, and set breakpoints in application programs

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Analog Devices DSP emulators use the IEEE 1149.1 JTAG test access
port to monitor and control the target board processor during emulation.
The emulator provides full speed emulation, allowing inspection and
modification of memory, registers, and processor stacks. Nonintrusive
in-circuit emulation is assured by the use of the processor JTAG inter-
face—the emulator does not affect target system loading or timing.

Software tools also include Board Support Packages (BSPs). Hardware
tools also include standalone evaluation systems (boards and extenders). In
addition to the software and hardware development tools available from
Analog Devices, third parties provide a wide range of tools supporting the
Blackfin processors. Third party software tools include DSP libraries,
real-time operating systems, and block diagram design tools.

Development Tools

1-26 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 2-1

2 COMPUTATIONAL UNITS

The ADSP-BF535 processor’s computational units perform numeric pro-
cessing for DSP and general control algorithms. The six computational
units are two arithmetic/logic units (ALUs), two multiplier/accumulator
(multiplier) units, a shifter, and a set of video ALUs. These units get data
from registers in the Data Register File. Computational instructions for
these units provide fixed-point operations, and each computational
instruction can execute every cycle.

The computational units handle different types of operations. The ALUs
perform arithmetic and logic operations. The multipliers perform
multiplication and execute multiply/add and multiply/subtract opera-
tions. The shifter executes logical shifts and arithmetic shifts and performs
bit packing and extraction. The video ALUs perform single instruction,
multiple data (SIMD) logical operations on specific 8-bit data operands.

Data moving in and out of the computational units goes through the Data
Register File, which consists of eight registers, each 32 bits wide. In opera-
tions requiring 16-bit operands, the registers are paired, providing sixteen
possible 16-bit registers.

The processor’s assembly language provides access to the Data Register
File. The syntax lets programs move data to and from these registers and
specify a computation’s data format at the same time.

Figure 2-1 provides a graphical guide to the other topics in this chapter.
An examination of each computational unit provides details about its
operation and is followed by a summary of computational instructions.
Tracing inputs to the computational units and considering details about

2-2 ADSP-BF535 Blackfin Processor Hardware Reference

register files and data buses shows how to set up the data flow for
computations. Next, details about the processor’s advanced parallelism
reveal how to take advantage of multifunction instructions.

Figure 2-1 shows the relationship between the ADSP-BF535 Data Regis-
ter File and computational units: multipliers, ALUs, and shifter.

Figure 2-1. ADSP-BF535 Core Architecture

SP

SEQUENCER

ALIGN

DECODE

LOOP BUFFER

DAG0 DAG1

16 16
88 8 8

40 40

A0 A1

BARREL
SHIFTER

DATA ARITHMETIC UNIT

CONTROL
UNIT

ADDRESS ARITHMETIC UNIT

FP

P5

P4
P3

P2

P1

P0

R7
R6

R5

R4

R3

R2

R1

R0

I3

I2

I1

I0

L3

L2

L1

L0

B3

B2

B1

B0

M3

M2

M1

M0

ADSP-BF535 Blackfin Processor Hardware Reference 2-3

Computational Units

Single function multiplier, ALU, and shifter instructions have unrestricted
access to the data registers in the Data Register File. Multifunction opera-
tions may have restrictions that are described in the section for that
operation.

Two additional registers, A0 and A1, provide 40-bit accumulator results.
These registers are dedicated to the ALUs and are used primarily for mul-
tiply-and-accumulate functions.

The traditional modes of arithmetic operations, such as fractional and
integer, are specified directly in the instruction. Rounding modes are set
from the ASTAT register, which also records status/conditions for the
results of the computational operations.

Using Data Formats
Blackfin processors are primarily 16-bit, fixed-point machines. Most oper-
ations assume a two’s-complement number representation, while others
assume unsigned numbers or simple binary strings. Other instructions
support 32-bit integer arithmetic, with further special features supporting
8-bit arithmetic and block floating point. For detailed information about
each number format, see “Numeric Formats” on page D-1.

In the Blackfin processor family arithmetic, signed numbers are always in
two’s-complement format. These processors do not use signed-magnitude,
one’s-complement, BCD, or excess-n formats.

Binary String
The binary string format is the least complex binary notation; in it, sixteen
bits are treated as a bit pattern. Examples of computations using this for-
mat are the logical operations: NOT, AND, OR, XOR. These ALU
operations treat their operands as binary strings with no provision for sign
bit or binary point placement.

Using Data Formats

2-4 ADSP-BF535 Blackfin Processor Hardware Reference

Unsigned
Unsigned binary numbers may be thought of as positive and having nearly
twice the magnitude of a signed number of the same length. The processor
treats the least significant words of multiple precision numbers as
unsigned numbers.

Signed Numbers: Two’s-Complement
In Blackfin processor arithmetic, the word signed refers to two’s-comple-
ment numbers. Most Blackfin processor family operations presume or
support two’s-complement arithmetic.

Fractional Representation: 1.15
Blackfin processor arithmetic is optimized for numerical values in a frac-
tional binary format denoted by 1.15 (“one dot fifteen”). In the 1.15
format, one sign bit (the MSB) and fifteen fractional bits represent values
from –1 up to one LSB less than +1.

Figure 2-2 shows the bit weighting for 1.15 numbers. and some examples
of 1.15 numbers and their decimal equivalents.

Figure 2-2. Bit Weighting for 1.15 Numbers

20 2–1 2–2 2–3 2–4 2–5 2–6 2–7 2–8 2–9 2–10 2–11 2–12 2–13 2–14 2–15

1.15 NUMBER (HEXADECIMAL)
0X0001
0X7FFF
0XFFFF
0X8000

DECIMAL EQUIVALENT
0.000031
0.999969

–0.000031
–1.000000

ADSP-BF535 Blackfin Processor Hardware Reference 2-5

Computational Units

Register Files
The ADSP-BF535 processor’s computational units have three definitive
register groups—a Data Register File, a Pointer Register File, and set of
Data Address Generator (DAG) registers:

• The Data Register File receives operands from the data buses for
the computational units and stores computational results.

• The Pointer Register File has pointers for addressing operations.

• The DAG registers are dedicated registers that manage zero-over-
head circular buffers for DSP operations.

For more information, see “Data Address Generators” on page 5-1.

The ADSP-BF535 processor register files appear in Figure 2-3.

Figure 2-3. ADSP-BF535 Processor Register Files

 Data Registers Data Address Generator Registers (DAGs)

R0

R1

R2

R3

R4

R5

R6

R7

A0

A1

A0.X A0.W

P0

P1

P2

P3

P4

P5

 SP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

A1.X A1.W

FP

M0

M3

M1

M2

Register Files

2-6 ADSP-BF535 Blackfin Processor Hardware Reference

 In the ADSP-BF535 processor, a word is 32 bits long; H denotes
the high order 16 bits of a 32-bit register; L denotes the low order
16 bits of a 32-bit register. For example, A0.W contains the lower
32 bits of the 40-bit A0 register; A0.L contains the lower 16 bits of
A0.W, and A0.H contains the upper 16 bits of A0.W.

Data Register File
The Data Register File consists of eight registers, each of which are 32 bits
wide. Each register may be viewed as a pair of independent 16-bit regis-
ters. Each is denoted as the low half or high half. Thus the 32-bit register
R0 may be regarded as two independent register halves, R0.L and R0.H

Two separate buses connect the register file to the L1 data memory, each
bus being 32 bits wide. Transfers between the Data Register File and the
data memory can move up to four 16-bit words of valid data in each cycle.

Accumulator Registers
In addition to the Data Register File, the ADSP-BF535 processor has two
dedicated, 40-bit accumulator registers. Each may be referred to as its
16-bit low half (An.L) or high half (An.H) plus its 8-bit extension (An.X),
or as a 32-bit register (An.W) consisting of the lower 32 bits, or as a com-
plete 40-bit result register (An).

Pointer Register File
The general-purpose address Pointer registers, also called the P-registers,
are organized as:

• A 6-entry, P-register file P[5:0]

• A Frame Pointer (FP) used to point to the current procedure’s acti-
vation record

ADSP-BF535 Blackfin Processor Hardware Reference 2-7

Computational Units

• A Stack Pointer register (SP) used to point to the last used location
on the runtime stack. See mode dependent registers in “Operating
Modes and States” on page 3-1.

P-registers are 32 bits wide. Although P-registers are primarily used for
address calculations, they may also be used for general integer arithmetic
with a limited set of arithmetic operations, for instance, to maintain coun-
ters. However, unlike the Data registers, P-register arithmetic does not
affect the Arithmetic Status (ASTAT) register status flags.

DAG Register Set
DSP instructions primarily use the Data Address Generator (DAG) regis-
ter set for addressing. The DAG register set consists of these registers:

• I[3:0] contain index addresses

• M[3:0] contain modify values

• B[3:0] contain base addresses

• L[3:0] contain length values

All DAG registers are 32 bits wide.

The I (Index) registers and B (Base) registers always contain addresses of
8-bit bytes in memory. The Index registers contain an effective address.
The M (Modify) registers contain an offset value that is added to one of
the Index registers or subtracted from it.

The B (Base) and L (Length) registers define circular buffers. B contains
the starting address of a buffer, and L contains the length in bytes. Each L
and B register pair is associated with the corresponding I register. For
example, L0 and B0 are always associated with I0. However, any M register
may be associated with any I register. For example, I0 may be modified by
M3. For more information, see “Data Address Generators” on page 5-1.

Register Files

2-8 ADSP-BF535 Blackfin Processor Hardware Reference

Register File Instruction Summary
Table 2-1 lists the register file instructions. For more information about
assembly language syntax, see Blackfin Processor Programming Reference.

In Table 2-1, note the meaning of these symbols:

• Allreg denotes R[7:0], P[5:0], SP, FP, I[3:0], M[3:0], B[3:0],
L[3:0], A0.X, A0.W, A1.X, A1.W, ASTAT, RETS, RETI, RETX, RETN,
RETE, LC[1:0], LT[1:0], LB[1:0], USP, SEQSTAT, SYSCFG, EMUDAT,
CYCLES, and CYCLES2.

• An denotes A0 or A1.

• Dreg denotes any Data Register File register.

• Sysreg denotes ASTAT, SEQSTAT, SYSCFG, RETI, RETX, RETN, RETE, or
RETS, LC[1:0], LT[1:0], LB[1:0], EMUDAT, CYCLES, and CYCLES2.

• Preg denotes any Pointer register, FP or SP register.

• Dreg_even denotes R0, R2, R4, or R6.

• Dreg_odd denotes R1, R3, R5, or R7.

• DPreg denotes any Data Register File register or any Pointer regis-
ter, FP, or SP register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• An.L denotes the lower 16 bits of Accumulator An.W.

• An.H denotes the upper 16 bits of Accumulator An.W.

• Dreg_byte denotes the low order 8 bits of each Data register.

ADSP-BF535 Blackfin Processor Hardware Reference 2-9

Computational Units

• Option (X) denotes sign extended.

• Option (Z) denotes zero extended.

• * Indicates the flag may be set or cleared, depending on the result
of the instruction.

• ** Indicates the flag is cleared.

• – Indicates no effect.

Table 2-1. Register File Instruction Summary

Instruction ASTAT Status Flags

AZ AN AC0
AC1

AV0
AV0S

AV1
AV1S

CC V
VS

allreg = allreg ; 1 * * – – – – *

An = An ; – – – – – – –

An = Dreg ; – – – – – – –

Sysreg = Preg ; – – – – – – –

Dreg_even = A0 ; * * – – – – *

Dreg_odd = A1 ; * * – – – – *

Dreg_even = A0, Dreg_odd = A1 ; * * – – – – *

Dreg_odd = A1, Dreg_even = A0 ; * * – – – – *

Dreg_even = A0.X ; * * – – – – *

Dreg_odd = A1.X ; * * – – – – *

IF CC DPreg = DPreg ; – – – – – – –

IF ! CC DPreg = DPreg ; – – – – – – –

Dreg = Dreg_lo (Z) ; * ** ** – – – **/–

Dreg = Dreg_lo (X) ; * * ** – – – **/–

An.X = Dreg_lo ; * * – – – – *

Dreg_lo = An.X ; * * – – – – *

Data Types

2-10 ADSP-BF535 Blackfin Processor Hardware Reference

Data Types
The ADSP-BF535 processor supports 32-bit words, 16-bit half words,
and bytes. The 32- and 16-bit words can be integer or fractional, but bytes
are always integers. Integer data types can be signed or unsigned, but frac-
tional data types are always signed.

Table 2-2 illustrates the data formats for data that resides in memory, in
the register file, and in the accumulators. In the table, the letter d repre-
sents one bit, and the letter s represents one signed bit.

Some instructions manipulate data in the registers by sign extending or
zero extending the data to 32 bits:

• Instructions zero-extend unsigned data

• Instructions sign-extend signed 16-bit half words and 8-bit bytes

An.L = Dreg_lo ; * * – – – – *

An.H = Dreg_hi ; * * – – – – *

Dreg_lo = A0 ; * * – – – – *

Dreg_hi = A1 ; * * – – – – *

Dreg = Dreg_byte (Z) ; * ** ** – – – **/–

Dreg = Dreg_byte (X) ; * * ** – – – **/–

1 Warning: not all register combinations are allowed. For details, see the Functional Description of
the Move Register instruction in the Blackfin Processor Programming Reference.

Table 2-1. Register File Instruction Summary (Cont’d)

Instruction ASTAT Status Flags

AZ AN AC0
AC1

AV0
AV0S

AV1
AV1S

CC V
VS

ADSP-BF535 Blackfin Processor Hardware Reference 2-11

Computational Units

Other instructions manipulate data as 32-bit numbers. In addition, two
16-bit half words or four 8-bit bytes can be manipulated as 32-bit values.
For details, refer to the instructions in Blackfin Processor Programming
Reference.

Data Formats
In Table 2-2, note the meaning of these symbols:

• s = sign bit(s)

• d = data bit(s)

• “.” = decimal point by convention; however, a decimal point does
not literally appear in the number.

• Italics denotes data from a source other than adjacent bits.

Table 2-2. Data Formats

Format Representation in Memory Representation in 32-Bit Register

32.0 Unsigned
Word

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd
dddd

32.0 Signed
Word

sddd dddd dddd dddd dddd
dddd dddd dddd

sddd dddd dddd dddd dddd dddd dddd
dddd

16.0 Unsigned
Half Word

dddd dddd dddd dddd 0000 0000 0000 0000 dddd dddd dddd
dddd

16.0 Signed
Half Word

sddd dddd dddd dddd ssss ssss ssss ssss sddd dddd dddd dddd

8.0 Unsigned
Byte

dddd dddd 0000 0000 0000 0000 0000 0000 dddd
dddd

8.0 Signed
Byte

sddd dddd ssss ssss ssss ssss ssss ssss sddd dddd

0.16 Unsigned
Fraction

.dddd dddd dddd dddd 0000 0000 0000 0000 .dddd dddd dddd
dddd

Data Types

2-12 ADSP-BF535 Blackfin Processor Hardware Reference

Endianess
Both internal and external memory are accessed in little endian byte order.
For more information, see “Memory Transaction Model” on page 6-76.

ALU Data Types
Operations on each ALU treat operands and results as either 16- or 32-bit
binary strings, except the signed division primitive (DIVS). ALU result sta-
tus bits treat the results as signed, indicating status with the overflow flags
(AV0, AV1) and the negative flag (AN). Each ALU has its own sticky over-
flow flag, AV0S and AV1S. Once set, these bits remain set until cleared by
writing directly to the ASTAT register. An additional V flag is set or cleared
depending on the transfer of the result from both accumulators to the reg-
ister file. Furthermore, the sticky VS bit is set with the V bit and remains
set until cleared.

1.15 Signed
Fraction

s.ddd dddd dddd dddd ssss ssss ssss ssss s.ddd dddd dddd dddd

0.32 Unsigned
Fraction

.dddd dddd dddd dddd dddd
dddd dddd dddd

.dddd dddd dddd dddd dddd dddd dddd
dddd

1.31 Signed
Fraction

s.ddd dddd dddd dddd dddd
dddd dddd dddd

s.ddd dddd dddd dddd dddd dddd dddd
dddd

Packed 8.0
Unsigned Byte

dddd dddd dddd dddd dddd
dddd dddd dddd

dddd dddd dddd dddd dddd dddd dddd dddd

Packed 0.16
Unsigned Frac-
tion

.dddd dddd dddd dddd .dddd
dddd dddd dddd

.dddd dddd dddd dddd .dddd dddd dddd
dddd

Packed 1.15
Signed
Fraction

s.ddd dddd dddd dddd s.ddd
dddd dddd dddd

s.ddd dddd dddd dddd s.ddd dddd dddd dddd

Table 2-2. Data Formats (Cont’d)

Format Representation in Memory Representation in 32-Bit Register

ADSP-BF535 Blackfin Processor Hardware Reference 2-13

Computational Units

The logic of the overflow bits (V, VS, AV0, AV0S, AV1, AV1S) is based on
two’s-complement arithmetic. A bit or set of bits is set if the MSB changes
in a manner not predicted by the signs of the operands and the nature of
the operation. For example, adding two positive numbers must generate a
positive result; a change in the sign bit signifies an overflow and sets AVn,
the corresponding overflow flags. Adding a negative and a positive may
result in either a negative or positive result, but cannot overflow.

The logic of the carry bits (AC0, AC1) is based on unsigned magnitude
arithmetic. The bit is set if a carry is generated from bit 16 (the MSB).
The carry bits (AC0, AC1) are most useful for the lower word portions of a
multiword operation.

ALU results generate status information. For more information about
using ALU status, see “ALU Instruction Summary” on page 2-28.

Multiplier Data Types
Each multiplier produces results that are binary strings. The inputs are
interpreted according to the information given in the instruction itself
(whether it is signed multiplied by signed, unsigned multiplied by
unsigned, a mixture, or a rounding operation). The 32-bit result from the
multipliers is assumed to be signed; it is sign extended across the full
40-bit width of the A0 or A1 registers.

The ADSP-BF535 processors support two modes of format adjustment:
the fractional mode for fractional operands (1.15 format with 1 sign bit
and 15 fractional bits) and the integer mode for integer operands (16.0
format).

When the processor multiplies two 1.15 operands, the result is a 2.30
(2 sign bits and 30 fractional bits) number. In the fractional mode, the
multiplier automatically shifts the multiplier product left one bit before
transferring the result to the multiplier result register (A0, A1). This shift of

Data Types

2-14 ADSP-BF535 Blackfin Processor Hardware Reference

the redundant sign bit causes the multiplier result to be in 1.31 format,
which can be rounded to 1.15 format. The resulting format appears in
Figure 2-4 on page 2-17.

In the integer mode, the left shift does not occur. For example, if the oper-
ands are in the 16.0 format, the 32-bit multiplier result would be in 32.0
format. A left shift is not needed and would change the numerical
representation. This result format appears in Figure 2-5 on page 2-17.

Multiplier results generate status information when they are transferred to
a destination register in the register file. For more information, see “Mul-
tiplier Instruction Summary” on page 2-35.

Shifter Data Types
Many operations in the shifter are explicitly geared to signed (two’s-com-
plement) or unsigned values: logical shifts assume unsigned magnitude or
binary string values, and arithmetic shifts assume two’s-complement
values.

The exponent logic assumes two’s-complement numbers. The exponent
logic supports block floating point, which is also based on two’s-comple-
ment fractions.

Shifter results generate status information. For more information about
using shifter status, see “Shifter Instruction Summary” on page 2-48.

ADSP-BF535 Blackfin Processor Hardware Reference 2-15

Computational Units

Arithmetic Formats Summary
Table 2-3, Table 2-4, Table 2-5, and Table 2-6 summarize some of the
arithmetic characteristics of computational operations.

Table 2-3. ALU Arithmetic Formats

Operation Operand Formats Result Formats

Addition Signed or unsigned Interpret flags

Subtraction Signed or unsigned Interpret flags

Logical Binary String Same as operands

Division Explicitly signed or unsigned Same as operands

Table 2-4. Multiplier Fractional Modes Formats

Operation Operand Formats Result Formats

Multiplication 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication / addition 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Multiplication / subtraction 1.15 explicitly signed or
unsigned

2.30 shifted to 1.31

Table 2-5. Multiplier Arithmetic Integer Modes Formats

Operation Operand Formats Result Formats

Multiplication 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication / addition 16.0 explicitly signed or
unsigned

32.0 not shifted

Multiplication / subtraction 16.0 explicitly signed or
unsigned

32.0 not shifted

Data Types

2-16 ADSP-BF535 Blackfin Processor Hardware Reference

Using Multiplier Integer and Fractional Formats
For multiply-and-accumulate functions, the ADSP-BF535 processor pro-
vides two choices: fractional arithmetic for fractional numbers (1.15) and
integer arithmetic for integers (16.0).

For fractional arithmetic, the 32-bit product output is format adjusted—
sign extended and shifted one bit to the left—before being added to accu-
mulator A0 or A1. For example, bit 31 of the product lines up with bit 32
of A0 (which is bit 0 of A0.X), and bit 0 of the product lines up with bit 1
of A0 (which is bit 1 of A0.W). The LSB is zero filled. The fractional multi-
plier result format appears in Figure 2-4.

For integer arithmetic, the 32-bit product register is not shifted before
being added to A0 or A1. Figure 2-5 shows the integer mode result
placement.

With either fractional or integer operations, the multiplier output product
is fed into a 40-bit adder/subtracter which adds or subtracts the new prod-
uct with the current contents of the A0 or A1 register to produce the final
40-bit result.

Table 2-6. Shifter Arithmetic Formats

Operation Operand Formats Result Formats

Logical Shift Unsigned binary string Same as operands

Arithmetic Shift Signed Same as operands

Exponent Detect Signed Same as operands

ADSP-BF535 Blackfin Processor Hardware Reference 2-17

Computational Units

Figure 2-4. Fractional Multiplier Results Format

Figure 2-5. Integer Multiplier Results Format

3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 0 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 03 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 167 6 5 4 3 2 1 0

P SIGN, 7
BITS MULTIPLIER P OUTPUT

A0.X A0.W

SHIFTED
OUT

ZERO
FILLED

3 1 31 3 1 31 3 1 31 3 1 31 30 2 9 28 2 7 26 2 5 24 2 3 22 2 1 20 1 9 18 1 7 16 1 5 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 03 1

1 5 14 1 3 12 1 1 10 9 8 7 6 5 4 3 2 1 03 1 30 2 9 28 2 7 26 2 5 24 2 3 22 2 1 20 1 9 18 1 7 167 6 5 4 3 2 1 0

P SIGN, 8
BITS MULTIPLIER P OUTPUT

A0.X A0.W

Data Types

2-18 ADSP-BF535 Blackfin Processor Hardware Reference

Rounding Multiplier Results
On many multiplier operations, the processor supports multiplier results
rounding (RND option). Rounding is a means of reducing the precision of a
number by removing a lower order range of bits from that number’s repre-
sentation and possibly modifying the remaining portion of the number to
more accurately represent its former value. For example, the original num-
ber will have N bits of precision, whereas the new number will have only
M bits of precision (where N>M). The process of rounding, then, removes
N-M bits of precision from the number.

The RND_MOD bit in the ASTAT register determines whether the RND option
provides biased or unbiased rounding. For unbiased rounding, set RND_MOD
bit = 0. For biased rounding, set RND_MOD bit = 1.

 For most algorithms, unbiased rounding is preferred.

Unbiased Rounding

The convergent rounding method returns the number closest to the origi-
nal. In cases where the original number lies exactly halfway between two
numbers, this method returns the nearest even number, the one contain-
ing an LSB of 0. For example, when rounding the 3-bit,
two’s-complement fraction 0.25 (binary 0.01) to the nearest 2-bit,
two’s-complement fraction, the result would be 0.0, because that is the
even-numbered choice of 0.5 and 0.0. Since it rounds up and down based
on the surrounding values, this method is called unbiased rounding.

Unbiased rounding uses the multiplier’s capability of rounding the 40-bit
result at the boundary between bit 15 and bit 16. Rounding can be speci-
fied as part of the instruction code. When rounding is selected, A0.H/A1.H
contain the rounded 16-bit result; the rounding effect in A0.H/A1.H
affects A0.X/A1.X as well. The A0.X/A0.H and A1.X/A1.H registers repre-
sent the rounded 24-bit result, including sign extension and overflow.

ADSP-BF535 Blackfin Processor Hardware Reference 2-19

Computational Units

The accumulator uses an unbiased rounding scheme. The conventional
method of biased rounding adds a 1 into bit position 15 of the adder
chain. This method causes a net positive bias because the midway value
(when A0.L/A1.L = 0x8000) is always rounded upward.

The accumulator eliminates this bias by forcing bit 16 in the result output
to zero when it detects this midway point. Forcing bit 16 to zero has the
effect of rounding odd A0.L/A1.L values upward and even values down-
ward, yielding a zero large sample bias, assuming uniformly distributed
values.

The following examples use x to represent any bit pattern (not all zeros).
The example in Figure 2-6 shows a typical rounding operation for A0; the
example also applies for A1.

The compensation to avoid net bias becomes visible when all lower 15 bits
are zero and bit 15 is one (the midpoint value) as shown in Figure 2-7.

Figure 2-6. Typical Unbiased Multiplier Rounding

.........|................|................
xxxxxxxx|xxxxxxxx00100101|1xxxxxxxxxxxxxxx
........|................|1...............
xxxxxxxx|xxxxxxxx00100110|0xxxxxxxxxxxxxxx

Unrounded value:
Add 1 and carry:
Rounded value:

A0.X A0.W

Data Types

2-20 ADSP-BF535 Blackfin Processor Hardware Reference

In Figure 2-7, A0 bit 16 is forced to zero. This algorithm is employed on
every rounding operation, but is evident only when the bit patterns shown
in the lower 16 bits of the next example are present.

Biased Rounding

The round-to-nearest method also returns the number closest to the origi-
nal. However, by convention, an original number lying exactly halfway
between two numbers always rounds up to the larger of the two. For
example, when rounding the 3-bit, two’s-complement fraction 0.25
(binary 0.01) to the nearest 2-bit, two’s-complement fraction, this method
returns 0.5 (binary 0.1). The original fraction lies exactly midway between
0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always
rounds up, this method is called biased rounding.

The RND_MOD bit in the ASTAT register enables biased rounding. When the
RND_MOD bit is cleared, the RND option in multiplier instructions uses the
normal, unbiased rounding operation, as discussed in “Unbiased Round-
ing” on page 2-18.

When the RND_MOD bit is set (=1), the processor uses biased rounding
instead of unbiased rounding. When operating in biased rounding mode,
all rounding operations with A0.L/A1.L set to 0x8000 round up, rather
than only rounding odd values up. For an example of biased rounding, see
Figure 2-8.

Figure 2-7. Avoiding Net Bias in Unbiased Multiplier Rounding

........|................|................
xxxxxxxx|xxxxxxxx01100110|1000000000000000
........|................|1...............
xxxxxxxx|xxxxxxxx01100111|0000000000000000

Unrounded value:
Add 1 and carry:
A0 bit 16=1:

xxxxxxxx|xxxxxxxx01100110|0000000000000000Rounded value:

A0.X A0.W

ADSP-BF535 Blackfin Processor Hardware Reference 2-21

Computational Units

Biased rounding affects the result only when the A0.L/A1.L register con-
tains 0x8000; all other rounding operations work normally. This mode
allows more efficient implementation of bit specified algorithms that use
biased rounding, for example, the Global System for Mobile Communica-
tions (GSM) speech compression routines.

Truncation

Another common way to reduce the significant bits representing a number
is to simply mask off the N-M lower bits. This process is known as trunca-
tion and results in a relatively large bias. Instructions that do not support
rounding revert to truncation. The RND_MOD bit in ASTAT has no effect on
truncation.

Special Rounding Instructions
The ALU provides the ability to round the arithmetic results directly into
a data register with biased or unbiased rounding as described above. It also
provides the ability to round on different bit boundaries. The options

Figure 2-8. Biased Rounding in Multiplier Operation

0x00 0000 8000 0x00 0001 8000 0x00 0000 0000
0x00 0001 8000 0x00 0002 0000 0x00 0002 0000
0x00 0000 8001 0x00 0001 0001 0x00 0001 0001
0x00 0001 8001 0x00 0002 0001 0x00 0002 0001
0x00 0000 7FFF 0x00 0000 FFFF 0x00 0000 FFFF
0x00 0001 7FFF 0x00 0001 FFFF 0x00 0001 FFFF

A0/A1 before RND

Biased RND result

Unbiased RND result

Using Computational Status

2-22 ADSP-BF535 Blackfin Processor Hardware Reference

RND12, RND and RND20 extract 16-bit values from bit 12, bit 16 and bit 20,
respectively, and perform biased rounding regardless of the state of the
RND_MOD bit in ASTAT.

For example:
R3.L = R4 (RND) ;

performs biased rounding at bit 16, depositing the result in a half word.
R3.L = R4 + R5 (RND12) ;

performs an addition of two 32-bit numbers, biased rounding at bit 12,
depositing the result in a half word.
R3.L = R4 + R5 (RND20) ;

performs an addition of two 32-bit numbers, biased rounding at bit 20,
depositing the result in a half word.

Using Computational Status
The multiplier, ALU, and shifter update the overflow and other status
flags in the processor’s Arithmetic Status (ASTAT) register. To use status
conditions from computations in program sequencing, use conditional
instructions to test the CC flag (bit 5, ASTAT register) after the instruction
executes. This method permits monitoring each instruction’s outcome.
The ASTAT register is a 32-bit register, with some bits reserved. To ensure
compatibility with future implementations, writes to this register should
write back the values read from these reserved bits.

ADSP-BF535 Blackfin Processor Hardware Reference 2-23

Computational Units

Arithmetic Status Register (ASTAT)
Figure 2-9 describes the ASTAT register. The processor updates the status
bits in ASTAT, indicating the status of the most recent ALU, multiplier, or
shifter operation.

 See Appendix A, “ADSP-BF535 Considerations”, in the Blackfin
Processor Programming Reference for information regarding how
ALU operations affect this register.

Figure 2-9. Arithmetic Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X 0 X 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X XX X X X X X X X X X X X X X

Arithmetic Status Register (ASTAT)

0 - Last result written to A0
has not overflowed

1 - Last result written to A0
has overflowed

AV0 (A0 Overflow)

Reset = Undefined

0 - Last result written to A1
has not overflowed

1 - Last result written to A1
has overflowed

AV1 (A1 Overflow)

AN (Negative Result)AQ (Quotient)

AZ (Zero Result)
RND_MOD (Rounding Mode)

AC (ALU Carry)

0 - Unbiased rounding
1 - Biased rounding

0 - Result from last ALU0,
ALU1, or shifter operation is
not zero

1 - Result is zero

0 - Result from last ALU0,
ALU1, or shifter operation
is not negative

1 - Result is negative
Multipurpose flag, used
primarily to hold resolution of
arithmetic comparisons. Also
used by some shifter instruc-
tions to hold rotating bits.

Quotient bit

CC (Condition Code)

0 - Operation in ALU does not
generate a carry

1 - Operation generates a
carry

Arithmetic Logic Unit (ALU)

2-24 ADSP-BF535 Blackfin Processor Hardware Reference

Arithmetic Logic Unit (ALU)
The two ALUs perform arithmetic and logical operations on fixed-point
data. ALU fixed-point instructions operate on 16-bit, 32-bit, and 40-bit
fixed-point operands and output 16-bit, 32-bit, or 40-bit fixed-point
results. ALU instructions include:

• Fixed-point addition and subtraction of registers

• Addition and subtraction of immediate values

• Accumulator and subtraction of multiplier results

• Logical AND, OR, NOT, XOR, bitwise XOR, Negate

• Functions: ABS, MAX, MIN, Round, division primitives

ALU Operations
Primary ALU operations occur on ALU0, while parallel operations occur
on ALU1, which performs a subset of ALU0 operations.

Table 2-7 describes the possible inputs and outputs of each ALU.

Combining operations in both ALUs can result in four 16-bit results, two
32-bit results, or two 40-bit results generated in a single instruction.

Table 2-7. Inputs and Outputs of Each ALU

Input Output

Two or four 16-bit operands One or two 16-bit results

Two 32-bit operands One 32-bit result

32-bit result from the multiplier Combination of 32-bit result from the multiplier
with a 40-bit accumulation result

ADSP-BF535 Blackfin Processor Hardware Reference 2-25

Computational Units

Single 16-Bit Operations

In single 16-bit operations, any two 16-bit register halves may be used as
the input to the ALU. An addition, subtraction, or logical operation pro-
duces a 16-bit result that is deposited into an arbitrary destination register
half. ALU0 is used for this operation, because it is the primary resource for
ALU operations.

For example:
R3.H = R1.H + R2.L (NS) ;

adds the 16-bit contents of R1.H (R1 high half) to the contents of R2.L (R2
low half) and deposits the result in R3.H (R3 high half) with no saturation.

Dual 16-Bit Operations

In dual 16-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as pairs of 16-bit operands. An addition,
subtraction, or logical operation produces two 16-bit results that are
deposited into an arbitrary 32-bit destination register. ALU0 is used for
this operation, because it is the primary resource for ALU operations.

For example:
R3 = R1 +|- R2 (S) ;

adds the 16-bit contents of R2.H (R2 high half) to the contents of R1.H (R1
high half) and deposits the result in R3.H (R3 high half) with saturation.

The instruction also subtracts the 16-bit contents of R2.L (R2 low half)
from the contents of R1.L (R1 low half) and deposits the result in R3.L (R3
low half) with saturation (see Figure 2-11 on page 2-30).

Quad 16-Bit Operations

In quad 16-bit operations, any two 32-bit registers may be used as the
inputs to ALU0 and ALU1, considered as pairs of 16-bit operands. A
small number of addition or subtraction operations produces four 16-bit

Arithmetic Logic Unit (ALU)

2-26 ADSP-BF535 Blackfin Processor Hardware Reference

results that are deposited into two arbitrary, 32-bit destination registers.
Both ALU0 and ALU1 are used for this operation. Because there are only
two 32-bit data paths from the Data Register File to the arithmetic units,
the same two pairs of 16-bit inputs are presented to ALU1 as to ALU0.
The instruction construct is identical to that of a dual 16-bit operation,
and input operands must be the same for both ALUs.

For example:
R3 = R0 +|+ R1, R2 = R0 -|- R1 (S) ;

performs four operations:

• Adds the 16-bit contents of R1.H (R1 high half) to the 16-bit con-
tents of the R0.H (R0 high half) and deposits the result in R3.H,
with saturation.

• Adds R1.L + R0.L and deposits the result in R3.L, with saturation.

• Subtracts 16-bit contents of R1.H (R1 high half) from the 16-bit
contents of the R0.H (R0 high half) and deposits the result in R2.H,
with saturation.

• Subtracts R1.L from R0.L and deposits the result in R2.L, with
saturation.

Explicitly, the four equivalent instructions are:

R3.H = R0.H + R1.H (S) ;

R3.L = R0.L + R1.L (S) ;

R2.H = R0.H - R1.H (S) ;

R2.L = R0.L - R1.L (S) ;

ADSP-BF535 Blackfin Processor Hardware Reference 2-27

Computational Units

Single 32-Bit Operations

In single 32-bit operations, any two 32-bit registers may be used as the
input to the ALU, considered as 32-bit operands. An addition, subtrac-
tion, or logical operation produces a 32-bit result that is deposited into an
arbitrary 32-bit destination register. ALU0 is used for this operation,
because it is the primary resource for ALU operations.

In addition to the 32-bit input operands coming from the Data Register
File, operands may be sourced and deposited into the Pointer Register
File, consisting of the eight registers P[5:0], SP, FP.

 Instructions may not intermingle Pointer registers with Data
registers.

For example:
R3 = R1 + R2 (NS) ;

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3 with no saturation.

R3 = R1 + R2 (S) ;

adds the 32-bit contents of R1 to the 32-bit contents of R2 and deposits the
result in R3 with saturation.

Dual 32-Bit Operations

In dual 32-bit operations, any two 32-bit registers may be used as the
input to ALU0 and ALU1, considered as a pair of 32-bit operands. An
addition or subtraction produces two 32-bit results that are deposited into
two 32-bit destination registers. Both ALU0 and ALU1 are used for this
operation. Because only two 32-bit data paths go from the Register File to
the arithmetic units, the same two 32-bit input registers are presented to
ALU0 and ALU1.

For example:
R3 = R1 + R2, R4 = R1 – R2 (NS) ;

Arithmetic Logic Unit (ALU)

2-28 ADSP-BF535 Blackfin Processor Hardware Reference

adds the 32-bit contents of R2 to the 32-bit contents of R1 and deposits the
result in R3.

The instruction also subtracts the 32-bit contents of R2 from that of R1
and deposits the result in R4 with no saturation.

A specialized form of this instruction uses the ALU 40-bit result registers
as input operands, creating the sum and differences of the A0 and A1
registers.

For example:
R3 = A0 +A1, R4 = A0-A1 (S) ;

transfers to the result registers two 32-bit, saturated, sum and difference
values of the ALU registers.

ALU Instruction Summary
For information about assembly language syntax and the effect of ALU
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in the Blackfin Processor Programming Reference.

ALU Data Flow Details
Figure 2-10 shows a more detailed diagram of the Arithmetic Units and
Data Register File, which appears in Figure 2-1 on page 2-2.

ALU0 is described here for convenience. ALU1 is very similar—a subset of
ALU0.

Each ALU performs 40-bit addition for the accumulation of the multiplier
results, as well as 32-bit and dual 16-bit operations. Each ALU has two
32-bit input ports that can be considered a pair of 16-bit operands or a
single 32-bit operand. For single 16-bit operations, any of the four
possible 16-bit operands may be used with any of the other 16-bit oper-
ands presented at the input to the ALU.

ADSP-BF535 Blackfin Processor Hardware Reference 2-29

Computational Units

As shown in Figure 2-11, for dual 16-bit operations, the high halves and
low halves are paired, providing four possible combinations of addition
and subtraction:
(A) H+H, L+L (B) H+H, L-L (C) H-H, L+L (D) H-H, L-L

Figure 2-10. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b 32b32b

32b

32b

OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

Arithmetic Logic Unit (ALU)

2-30 ADSP-BF535 Blackfin Processor Hardware Reference

Dual 16-Bit Cross Options

For dual 16-bit operations, the results may be crossed. Crossing the results
changes where in the result register an operation places the result of a cal-
culation. Usually, the result from the high side calculation is placed in the
high half of the result register, and the result from the low side calculation
is placed in the low half of the result register.

With the cross option, the high result is placed in the low half of the desti-
nation register, and the low result placed in the high half of the
destination register (see Figure 2-12). This is particularly useful when
dealing with complex math and portions of the Fast Fourier Transform
(FFT).

Figure 2-11. Dual 16-Bit ALU Operations

31

Rm

Rp

 Rn

A 31

Rm

Rp

 Rn

B

31

Rm

Rp

 Rn

D31

Rm

Rp

 Rn

C

ADSP-BF535 Blackfin Processor Hardware Reference 2-31

Computational Units

ALU Status Signals

Each ALU generates five status signals: the zero (AZ) status, the negative
(AN) status, the carry (AC) status, immediate overflow (AVn) status and the
quotient (AQ) status. All arithmetic status signals are latched into the arith-
metic status register (ASTAT) at the end of the cycle. For the effect of ALU
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in the Blackfin Processor Programming Reference.

Depending on the instruction, the inputs can come from the Data Regis-
ter File, the Pointer Register File, or the Arithmetic Result registers.
Arithmetic on 32-bit operands directly support multiprecision operations
in the ALU.

ALU Division Support Features
The ALU supports division with two special divide primitives. These
instructions (DIVS, DIVQ) let programs implement a non-restoring, condi-
tional (error checking), add-subtract-division algorithm.

Figure 2-12. Cross Options for Dual 16-Bit ALU Operations

31

Rm

Rp

Rn

Multiply Accumulators (Multipliers)

2-32 ADSP-BF535 Blackfin Processor Hardware Reference

The division can be either signed or unsigned, but both the dividend and
divisor must be of the same type. Details about using division and pro-
gramming examples are available in Blackfin Processor Programming
Reference.

Special SIMD Video ALU Operations
Four 8-bit Video ALUs enable the ADSP-BF535 processor to process
video information with high efficiency. Each Video ALU instruction may
take from one to four pairs of 8-bit inputs and return one to four 8-bit
results. The inputs are presented to the Video ALUs in two 32-bit words
from the Data Register File. The possible operations include:

• Byte alignment

• Quad-byte-sum absolute differences

• Quad-byte averaging

• Quad-byte pack and unpack

• Addition with trimming

For more information about the operation of these instructions, see Black-
fin Processor Programming Reference.

Multiply Accumulators (Multipliers)
The two ADSP-BF535 processor multipliers (MAC0 and MAC1) perform
fixed-point multiplication and multiply and accumulate operations. Mul-
tiply and accumulate operations are available with either cumulative
addition or cumulative subtraction.

Multiplier fixed-point instructions operate on 16-bit fixed-point data and
produce 32-bit results that may be added or subtracted from a 40-bit
accumulator.

ADSP-BF535 Blackfin Processor Hardware Reference 2-33

Computational Units

Inputs are treated as fractional or integer, unsigned or two’s-complement.
Multiplier instructions include:

• Multiplication

• Multiply and accumulate with addition, rounding optional

• Multiply and accumulate with subtraction, rounding optional

• Dual versions of the above

Multiplier Operation
Each multiplier has two 32-bit inputs from which it derives the two 16-bit
operands. For single multiply and accumulate instructions, these operands
can be any data registers in the Data Register File. Each multiplier can
accumulate results in its Accumulator register, A1 or A0. The accumulator
results can be saturated to 32 or 40 bits. The multiplier result can also be
written directly to a 16- or 32-bit destination register with optional
rounding.

Each multiplier instruction determines whether the inputs are either both
in integer format or both in fractional format. The format of the result
matches the format of the inputs. In MAC0, both inputs are treated as
signed or unsigned. In MAC1, there is a mixed-mode option.

If both inputs are fractional and signed, the multiplier automatically shifts
the result left one bit to remove the redundant sign bit. Multiplier instruc-
tion options specify the data format of the inputs:

• FU for Fractional Unsigned

• IS for Integer Signed

• M for Mixed signed and unsigned operands

Also available is the W32 option, which specifies 32-bit saturation of the
accumulation result.

Multiply Accumulators (Multipliers)

2-34 ADSP-BF535 Blackfin Processor Hardware Reference

Placing Multiplier Results in Multiplier Accumulator Registers

As shown in Figure 2-10 on page 2-29, each multiplier has a dedicated
accumulator, A0 or A1. Each accumulator register is divided into three sec-
tions: A0.L/A1.L (bits 15:0), A0.H/A1.H (bits 31:16), and A0.X/A1.X (bits
39:32).

When the multiplier writes to its result accumulator registers, the 32-bit
result is deposited into the lower bits of the combined accumulator regis-
ter, and the MSB is sign extended into the upper eight bits of the register
(A0.X/A1.X).

Multiplier output can be deposited not only in the A0 or A1 registers, but
also in a variety of 16- or 32-bit Data registers in the Data Register File.

Rounding or Saturating Multiplier Results

On a multiply and accumulate operation, the accumulator data can be sat-
urated and, optionally, rounded for extraction to a register or register half.
When a multiply deposits a result only in a register or register half, the sat-
uration and rounding works the same way.

The rounding and saturation operations work as follows:

• Rounding is applied only to fractional results except for the IH
option, which applies rounding and high half extraction to an inte-
ger result.

• The rounded result is obtained by adding 0x8000 to the accumula-
tor (for MAC) or multiply result (for mult) and then saturating to
32-bits. For more information, see “Rounding Multiplier Results”
on page 2-18.

• If an overflow or underflow has occurred, the saturate operation
sets the specified result register to the maximum positive or nega-
tive value. For more information, see the following section.

ADSP-BF535 Blackfin Processor Hardware Reference 2-35

Computational Units

Saturating Multiplier Results on Overflow
These bits in ASTAT indicate multiplier overflow status:

• Bit 3 (AV0) and bit 4 (AV1) record overflow condition (whether the
result has overflowed 32 bits) for the A0 and A1 accumulators,
respectively.

If the bit is cleared (=0), no overflow or underflow has occurred. If
the bit is set (=1), an overflow or underflow has occurred.

Multiplier Instruction Summary
For information about assembly language syntax and the effect of multi-
plier instructions on the status flags, see Appendix A, “ADSP-BF535
Considerations”, in the Blackfin Processor Programming Reference.

Multiplier Instruction Options

The following descriptions of multiplier instruction options provide an
overview. Not all options are available for all instructions. For informa-
tion about how to use these options with their respective instructions, see
Blackfin Processor Programming Reference.

default No option; input data is signed fraction.

(IS) Input data operands are signed integer. No shift
correction is made.

(FU) Input data operands are unsigned fraction. No shift
correction is made.

(IU) Input data operands are unsigned integer. No shift
correction is made.

Multiply Accumulators (Multipliers)

2-36 ADSP-BF535 Blackfin Processor Hardware Reference

(T) Input data operands are signed fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(TFU) Input data operands are unsigned fraction. When
copying to the destination half register, truncates
the lower 16 bits of the Accumulator contents.

(S2RND) If multiplying and accumulating to a register:

Input data operands are signed fraction. When
copying to the destination register, scales Accumu-
lator contents (multiply x2 by a one-place shift-left)
and rounds. If scaling and rounding produce a
signed value larger than 32 bits, the number is satu-
rated to its maximum positive or negative value.

(S2RND) If multiplying and accumulating to a half register:

Input data operands are signed fraction. When
copying to the destination register, scales Accumu-
lator contents (multiply x2 by a one-place shift-left)
and rounds the upper 16 bits before truncating the
lower 16 bits of the Accumulator. If scaling and
rounding produce a signed value larger than 16 bits,
the number is saturated to its maximum positive or
negative value.

(ISS2) If multiplying and accumulating to a register:

Input data operands are signed integer. When copy-
ing to the destination register, scales Accumulator
contents (multiply x2 by a one-place shift-left). If
scaling produces a signed value larger than 32 bits,
the number is saturated to its maximum positive or
negative value.

ADSP-BF535 Blackfin Processor Hardware Reference 2-37

Computational Units

(ISS2) If multiplying and accumulating to a half register:

When copying the lower 16 bits to the destination
half-register, scales the Accumulator contents. If
scaling produces a signed value greater than 16 bits,
the number is saturated to its maximum positive or
negative value.

(IH) This option indicates integer multiplication with
high half word extraction. The Accumulator is satu-
rated at 32 bits, and bits [31:16] of the
Accumulator are rounded, then copied into the des-
tination half register.

(W32) Input data operands are signed fraction with no
extension bits in the Accumulators at 32 bits.

Left-shift correction of the product is performed, as
required. This option is used for legacy GSM
speech vocoder algorithms written for 32-bit
Accumulators.

(M) Operation uses mixed multiply mode. Valid only
for MAC1 versions of the instruction. Multiplies a
signed fraction by an unsigned fractional operand
with no left-shift correction.

Operand one is signed; operand two is unsigned.
MAC0 performs an unmixed multiply on signed
fractions by default or another format, as specified.
The (M) option can be used alone or in conjunction
with one other format option.

Multiply Accumulators (Multipliers)

2-38 ADSP-BF535 Blackfin Processor Hardware Reference

Multiplier Data Flow Details
Figure 2-13 shows the multiplier/accumulators.

Each multiplier has two 16-bit inputs, performs a 16-bit multiplication,
and stores the result in a 40-bit accumulator or extracts to a 16-bit or
32-bit register. Two 32-bit words are available at the MAC inputs, provid-
ing four 16-bit operands to chose from.

Figure 2-13. Register Files and ALUs

MAC0

SHIFTER

MAC1

32b32b

32b

32b

 OPERAND

FROM MEMORY

TO MEMORY

OPERAND

ALUs

A1 A0

R0

R1

R2

R3

R4

R5

R6

R7

R0.H R0.L

R1.H

R2.H

R3.H

R4.H

R5.H

R6.H

R7.H

R1.L

R2.L

R3.L

R4.L

R5.L

R6.L

R7.L

SELECTION SELECTION

32b

ADSP-BF535 Blackfin Processor Hardware Reference 2-39

Computational Units

One of the operands must be selected from the low half or the high half of
one 32-bit word. The other operand must be selected from the low half or
the high half of the other 32-bit word. Thus, each MAC is presented with
four possible input operand combinations. The two 32-bit words can con-
tain the same register information giving the options for squaring and
multiplying the high half and low half of the same register. Figure 2-14
show these possible combinations.

The 32-bit product is passed to a 40-bit adder/subtracter, which may add
or subtract the new product from the contents of the accumulator result
register or pass the new product directly to the Data Register File results
register. For results, the A0 and A1 registers are 40 bits wide. Each of these
registers consists of smaller 32-bit and 8-bit registers: A0.W, A1.W, A0.X,
and A1.X.

Some example instructions follow:
A0 = R3.L * R4.H (S) ;

The MAC0 multiplier/accumulator performs a multiply and puts the result
in the accumulator register.
A1 += R3.H * R4.H (S) ;

The MAC1 multiplier/accumulator performs a multiply and accumulates
the result with the previous results in the A1 accumulator.

Multiply Accumulators (Multipliers)

2-40 ADSP-BF535 Blackfin Processor Hardware Reference

Multiply Without Accumulate
The multiplier may operate without the accumulation function. If accu-
mulation is not used, the result can be directly stored in a register from the
Data Register File or the Accumulator register. The destination register
may be 16 bits or 32 bits. If a 16-bit destination register is a low half, then
MAC0 is used; if it is a high half, then MAC1 is used. For a 32-bit desti-
nation register, either MAC0 or MAC1 is used.

Figure 2-14. Four Possible Combinations of MAC Operations

31 31

Rm

Rp

39 39

MAC0 MAC0

31

39

MAC0

31

39

MAC0

A0

Rm

Rp

A0

Rm

Rp

A0

Rm

Rp

A0

A B

C D

ADSP-BF535 Blackfin Processor Hardware Reference 2-41

Computational Units

If the destination register is 16-bits, then the word that is extracted from
the multiplier depends on the data type of the input:

• If the multiplication uses fractional operands or the IH option, then
the high half of the result is extracted and stored in the 16-bit des-
tination registers (see Figure 2-15).

• If the multiplication uses integer operands, then the low half of the
result is extracted and stored in the 16-bit destination registers.
These extractions provide the most useful information in the resul-
tant 16-bit word for the data type chosen (see Figure 2-16).

This example uses fractional, unsigned operands:
R0.L = R1.L * R2.L (FU) ;

The instruction deposits the upper 16 bits of the multiply answer with
rounding and saturation into the lower half of R0, using MAC0.

This example uses unsigned integer operands:
R0.H = R2.H * R3.H (IU) ;

Figure 2-15. Multiplication of Fractional Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

Multiply Accumulators (Multipliers)

2-42 ADSP-BF535 Blackfin Processor Hardware Reference

The instruction deposits the lower 16 bits of the multiply answer with any
required saturation into the high half of R0, using MAC1.
R0 = R1.L * R2.L (S) ;

Regardless of operand type, the preceding operation deposits 32 bits of the
multiplier answer with saturation into R0, using MAC0.

Special 32-Bit Integer MAC Instruction
The ADSP-BF535 processor supports a multicycle 32-bit MAC instruc-
tion, that is,

Dreg *= Dreg

The single instruction multiplies two 32-bit integer operands and provides
a 32-bit integer result, destroying one of the input operands.

Figure 2-16. Multiplication of Integer Operands

A0.X A0.H A0.L

A0 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

A1.X A1.H A1.L

A1 0000 0000 XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXXXXXX XXXX XXXX XXXX
Destination
Register

ADSP-BF535 Blackfin Processor Hardware Reference 2-43

Computational Units

The instruction takes multiple cycles to execute. Refer to the product data
sheet and Blackfin Processor Programming Reference for more information
about the exact operation of this instruction. This ‘macro’ function is
interruptable and does not modify the data in either accumulator register
A0 or A1.

Dual MAC Operations
The ADSP-BF535 processor has two 16-bit MACs. Both MACs can be
used in the same operation to double the MAC throughput. The same two
32-bit input registers are offered to each MAC unit, providing each with
four possible combinations of 16-bit input operands. Dual MAC opera-
tions are frequently referred to as Vector operations, because a program
could store vectors of samples in the four input operands and perform vec-
tor computations.

An example of a dual multiply and accumulate instruction is
A1 += R1.H * R2.L, A0 += R1.L * R2.H ;

This instruction represents two multiply and accumulate operations:

• In one operation, in MAC1, the high half of R1 is multiplied by the
low half of R2 and added to the contents of the A1 accumulator.

• In the second operation, in MAC0, the low half of R1 is multiplied
by the high half of R2 and added to the contents of A0.

The results of the MAC operations may be written to registers in a num-
ber of ways: as a pair of 16-bit halves, as a pair of 32-bit registers, or as an
independent 16-bit half register or 32-bit register.

For example:
R3.H = (A1 += R1.H * R2.L), R3.L = (A0 += R1.L * R2.L) ;

Barrel Shifter (Shifter)

2-44 ADSP-BF535 Blackfin Processor Hardware Reference

In this instruction, the 40-bit accumulator is packed into a 16-bit half reg-
ister. The result from MAC1 must be transferred to a high half of a
destination register and the result from MAC0 must be transferred to the
low half of the same destination register.

The operand type determines the correct bits to extract from the accumu-
lator and deposit in the 16-bit destination register. See “Multiply Without
Accumulate” on page 2-40.

R3 = (A1 += R1.H * R2.L), R2=(A0 += R1.L * R2.L) ;

In this instruction, the 40-bit accumulators are packed into two 32-bit
registers. The registers must be register pairs (R[1:0] ; R[3:2] ; R[5:4]
; R[7:6])

R3.H = (A1 += R1.H * R2.L), A0 += R1.L * R2.L ;

This instruction is an example of one accumulator—but not the other—
being transferred to a register. Either a 16- or 32-bit register may be speci-
fied as the destination register.

Barrel Shifter (Shifter)
The shifter provides bitwise shifting functions for 16- or 32-bit inputs,
yielding a 16-, 32-, or 40-bit output. These functions include arithmetic
shift, logical shift, rotate, and various bit-test, set, pack, unpack and expo-
nent-detection functions. These shift functions can be combined to
implement numerical format control, including full floating-point
representation.

Shifter Operations
The shifter instructions (>>>, >>, ASHIFT, LSHIFT, ROT) can be used various
ways, depending on the underlying arithmetic requirements. ASHIFT and
>>> represents the arithmetic shift. LSHIFT and >> represent the logical
shift.

ADSP-BF535 Blackfin Processor Hardware Reference 2-45

Computational Units

The arithmetic shift and logical shift operations can be further broken
into subsections. Instructions that are intended to operate on 16-bit single
or paired numeric values, as would occur in many DSP algorithms, can
use the instructions ASHIFT and LSHIFT. These are typically three operand
instructions.

Instructions that are intended to operate on a 32-bit register value and use
two operands, such as instructions frequently used by a compiler, can use
the >>> and >> instructions.

Arithmetic shift, logical shift, and rotate instructions can obtain the shift
argument from a register or directly from an immediate value in the
instruction. For details about shifter-related instructions, see “Shifter
Instruction Summary” on page 2-48.

Two Operand Shifts

Two operand shift instructions shift an input register and deposit the
result in the same register.

Immediate Shifts

An immediate shift instruction shifts the input bit pattern to the right
(down-shift) or left (up-shift) by a given number of bits. Immediate shift
instructions use the data value in the instruction itself to control the
amount and direction of the shifting operation.

The following example shows the input value down-shifted.

R0 = 0x0000 B6A3 ;

R0 >>= 0x04 ;

results in

R0.H = 0x0000 ;

R0.L = 0xB6A3 ;

Barrel Shifter (Shifter)

2-46 ADSP-BF535 Blackfin Processor Hardware Reference

The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R0 <<= 0x04 ;

results in

R0.H = 0x000B ;

R0.L = 0x6A30 ;

Register Shifts

Register based shifts use a register to hold the shift value. The entire
32-bit register is used to derive the shift value, and when the magnitude of
the shift is greater than 32, then the result is either 0 or –1.

The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R2 = 0x0000 0004 ;

R0 <<= R2 ;

results in
R0 = 0x000B 6A30 ;

Three Operand Shifts

Three operand shifter instructions shift an input register and deposit the
result in a destination register.

Immediate Shifts

Immediate shift instructions use the data value in the instruction itself to
control the amount and direction of the shifting operation.

ADSP-BF535 Blackfin Processor Hardware Reference 2-47

Computational Units

The following example shows the input value down-shifted.

R0 = 0x0000 B6A3 ;

R1 = R0 >> 0x04 ;

results in
R1 = 0x0000 0B6A ;

The following example shows the input value up-shifted.

R0.L = 0xB6A3 ;

R1.H = R0.L << 0x04 ;

results in
R1.H = 0x6A30 ;

Register Shifts

Register based shifts use a register to hold the shift value. When a register
is used to hold the shift value, for ASHIFT, LSHIFT or ROT, then the shift
value is always found in the low half of a register (Rn.L). The bottom 6
bits of Rn.L are masked off and used as the shift value.

The following example shows the input value up-shifted.

R0 = 0x0000 B6A3 ;

R2.L = 0x0004 ;

R1 = R0 ASHIFT by R2.L ;

results in
R1 = 0x000B 6A30 ;

The following example shows the input value rotated. Assume the Condi-
tion Code (CC) bit is set to 0. For more information about CC, see
“Condition Code Flag” on page 4-12.

R0 = 0xABCD EF12 ;

R2.L = 0x0004 ;

R1 = R0 ROT by R2.L ;

Barrel Shifter (Shifter)

2-48 ADSP-BF535 Blackfin Processor Hardware Reference

results in
R1 = 0xBCDE F125 ;

Note that the CC bit is included in the result, at bit 3.

Bit Test, Set, Clear, Toggle

The shifter provides the method to test, set, clear, and toggle specific bits
of a data register. All instructions have two arguments—the source register
and the bit-field value. The test instruction does not change the source
register. The result of the test instruction resides in the CC bit.

The following examples show a variety of operations.

BITCLR (R0, 6) ;

BITSET (R2, 9) ;

BITTGL (R3, 2) ;

CC = BITTST (R3, 0) ;

Field Extract and Field Deposit

If the shifter is used, a source field may be deposited anywhere in a 32-bit
destination field. The source field may be from 1 bit to 16 bits in length.
In addition, a 1- to 16-bit field may be extracted from anywhere within a
32-bit source field.

Two register arguments are used for these functions. One holds the 32-bit
destination or 32-bit source. The other holds the extract/deposit value, its
length, and its position within the source.

Shifter Instruction Summary
For information about assembly language syntax and the effect of shifter
instructions on the status flags, see Appendix A, “ADSP-BF535 Consider-
ations”, in Blackfin Processor Programming Reference.

ADSP-BF535 Blackfin Processor Hardware Reference 3-1

3 OPERATING MODES AND
STATES

The ADSP-BF535 processor supports three processor modes:

• User mode

• Supervisor mode

• Emulation mode

Emulation and Supervisor modes have unrestricted access to the core
resources. User mode has restricted access to certain system resources, thus
providing a protected software environment.

User mode is considered the domain of application programs. Supervisor
mode and Emulation mode are usually reserved for the kernel code of an
operating system.

The processor mode is determined by the Event Controller. When servic-
ing an interrupt, non-maskable interrupt (NMI), or exception, the
processor is in Supervisor mode. When servicing an emulation event, the
processor is in Emulation mode. When not servicing any events, the pro-
cessor is in User mode.

The current processor mode may be identified by interrogating the IPEND
memory-mapped register (MMR), as shown in Table 3-1.

 MMRs cannot be read while the processor is in User mode.

3-2 ADSP-BF535 Blackfin Processor Hardware Reference

In addition, the ADSP-BF535 processor supports two nonprocessing
states:

• Idle state

• Reset state

Figure 3-1 illustrates the processor modes and states and the transition
conditions between them.

Table 3-1. Identifying the Current Processor Mode

Event Mode IPEND

Interrupt Supervisor 0x10
but IPEND[0], IPEND[1], IPEND[2], and
IPEND[3] = 0.

Exception Supervisor 0x08
The core is processing an exception event if
IPEND[0] = 0, IPEND[1] = 0, IPEND[2] = 0,
IPEND[3] = 1, and IPEND[15:4] are 0’s or 1’s.

NMI Supervisor 0x04
The core is processing an NMI event if IPEND[0]
= 0, IPEND[1] = 0, IPEND[2] = 1, and
IPEND[15:2] are 0’s or 1’s.

Emulation Emulator 0x01
The processor is in Emulation mode if
IPEND[0] = 1, and the state of the remaining
bits IPEND[15:1] are undefined. Can be 0’s or
1’s.

None User 0x00

ADSP-BF535 Blackfin Processor Hardware Reference 3-3

Operating Modes and States

User Mode
The processor is in User mode when it is not in Reset or Idle state or ser-
vicing an interrupt, NMI, exception, or emulation event. User mode is
used to process application level code that does not require explicit access
to system registers. Any attempt to access restricted system registers causes
an exception event. Table 3-2 lists the registers that may be accessed in
User mode.

Figure 3-1. Processor Modes and States

Interrupt
RTI,

Event

EMULATION

SUPERVISOR

IDLE

RESET

Application Level
Code

System Code,
Event Handlers

USER

Emulation

Event
Emulation

RTX, RTNException

RTERST
Inactive

Emulation Event (1)

(1) Normal exit from Reset is to Supervisor mode. However, emulation hardware may have ini-
tiated a reset. If so, exit from Reset is to Emulation.

RST
Active

IDLE and SSYNC
instructions

or

User Mode

3-4 ADSP-BF535 Blackfin Processor Hardware Reference

Protected Resources and Instructions
System resources consist of a subset of the processor registers, all MMRs,
and a subset of protected instructions. These system and core MMRs are
located starting at address 0xFFC0 0000. This region of memory is pro-
tected from User mode access. Attempts to access MMR space in User
mode cause an exception.

A list of protected instructions appears in Table 3-3. Attempts to issue any
of the protected instructions from User mode causes an exception event.

Table 3-2. Registers Accessible in User Mode

Processor Registers Register Names

Data Registers R[7:0], A[1:0]

Pointer Registers P[5:0], SP, FP, I[3:0], M[3:0], L[3:0], B[3:0]

Sequencer and Status Registers RETS, LC[1:0], LT[1:0], LB[1:0], ASTAT, CYCLES,
CYCLES2

Table 3-3. Protected Instructions

Instruction Description

RTI Return from Interrupt

RTX Return from Exception

RTN Return from NMI

CLI Disable Interrupts

STI Enable Interrupts

RAISE Force Interrupt/Reset

IDLE Idle

RTE Return from Emulation
Causes an exception only if executed outside Emulation mode

ADSP-BF535 Blackfin Processor Hardware Reference 3-5

Operating Modes and States

Protected Memory
Additional memory locations can be protected from User mode access. A
Cacheability Protection Lookaside Buffer (CPLB) entry can be created
and enabled, as described in “Memory Management Unit” on page 6-56.

Entering User Mode
When coming out of reset, the processor is in Supervisor mode because it
is servicing a reset event. To enter User mode from the Reset state, two
steps must be performed. First, a return address must be loaded into the
RETI register. Second, an RTI must be issued.

Example Code to Enter User Mode Upon Reset

Listing 3-1 provides code for entering User mode from the Reset state.

Listing 3-1. Entering User Mode From Reset

P1.L = START ; /* Point to start of user code */

P1.H = START ;

RETI = P1 ;

RTI ; /* Return from Reset Event */

START : /* Place user code here */

Return Instructions That Invoke User Mode

Table 3-4 provides a summary of return instructions that can be used to
invoke User mode from various processor event service routines. When
these instructions are used in service routines, the value of the return
address must be first stored in the appropriate event RETx register. If the

Supervisor Mode

3-6 ADSP-BF535 Blackfin Processor Hardware Reference

service routine is interruptible, the return address is stored on the stack.
For this case, the address can be found by popping the value from the
stack. Once RETx has been loaded, the RTx instruction can be issued.

 Note the stack pop is optional. The service routine becomes
non-interruptible, because the return address is not saved on the
stack.

The processor remains in User mode until one of these events occurs:

• An interrupt, NMI, or exception event invokes Supervisor mode.

• An emulation event invokes Emulation mode.

• A reset event invokes the Reset state.

Supervisor Mode
The processor services all interrupt, NMI, and exception events in Super-
visor mode.

Table 3-4. Return Instructions That can Invoke User Mode

Current Process Activity Return Instruction to Use Execution Resumes at Address
in This Register

Interrupt Service Routine RTI RETI

Exception Service Routine RTX RETX

Nonmaskable Interrupt Service
Routine

RTN RETN

Emulation Service Routine RTE RETE

ADSP-BF535 Blackfin Processor Hardware Reference 3-7

Operating Modes and States

Supervisor mode has full, unrestricted access to all processor system
resources, including all emulation resources unless a CPLB has been con-
figured and enabled, as described in “Memory Management Unit” on
page 6-56. Only Supervisor mode can use the register alias USP, which
locates the User Stack Pointer in memory.

Normal processing begins in Supervisor mode from the Reset state. Deas-
serting the RESET signal switches the processor from the Reset state to
Supervisor mode where it remains until an emulation event or Return
instruction occurs to change the mode. Before the return instruction is
issued, the RETI register must be loaded with a valid return address.

Non-OS Environments
For non-OS environments, application code should remain in Supervisor
mode so that it can access all core and system resources. When RESET is
deasserted, the processor initiates operation by servicing the reset event.
Emulation is the only event that can preempt this activity. Lower priority
events cannot be processed.

One method to keep the processor in Supervisor mode and still allow
lower priority events to be processed can be implemented by setting up
and forcing the lowest priority interrupt (IVG15). Events and interrupts are
described further in “Events and Sequencing” on page 4-17. Once the low
priority interrupt has been forced using the RAISE 15 instruction, RETI
can be loaded with a return address that points to user code that can exe-
cute until IVG15 is issued. Once RETI has been loaded, the RTI instruction
can be issued to return from the reset event.

The interrupt handler for IVG15 can be set to jump to the application code
starting address. An additional RTI is not required. As a result, the proces-
sor remains in Supervisor mode because IPEND[15] remains set. At this
point, the processor is servicing the lowest priority interrupt. This ensures
that higher priority interrupts can be processed.

Supervisor Mode

3-8 ADSP-BF535 Blackfin Processor Hardware Reference

Example Code to Stay in Supervisor Mode Coming Out of
Reset

To remain in Supervisor mode when coming out of Reset state, use code
as shown in Listing 3-2.

Listing 3-2. Staying in Supervisor Mode Coming Out of Reset

P0.L = IVG15_EVT & 0xFFFF ; /* Point to IVG15 in Event Vector

Table */

P0.H = (IVG15_EVT >> 16) & 0xFFFF;

P1.L = START ; /* Point to start of User code */

P1.H = START ;

[P0] = P1 ; /* Place the address of start code in IVG15 of EVT

*/

P0.L = IMASK & 0xFFFF ;

R0 = W[P0] ;

R1.L = IVG15 & 0xFFFF ;

R0 = R0 | R1 ;

W[P0] = R0 ; /* Set (enable) IVG15 bit in SIC Interrupt Mask

Register */

RAISE 15 ; /* Invoke IVG15 interrupt */

P0.L = WAIT_HERE ;

P0.H = WAIT_HERE ;

RETI = P0 ; /* RETI loaded with return address */

RTI ; /* Return from Reset Event */

WAIT_HERE : /* Wait here till IVG15 interrupt is serviced */

JUMP WAIT_HERE ;

START : /* IVG15 vectors here */

[--SP] = RETI ; /* Enables interrupts and saves return address

to stack */

ADSP-BF535 Blackfin Processor Hardware Reference 3-9

Operating Modes and States

Emulation Mode
The processor enters Emulation mode if either of these conditions is met:

• An external emulation event occurs.

• The EMUEXCPT instruction is issued.

The processor remains in Emulation mode until the emulation service
routine executes an RTE instruction. If no interrupts are pending when the
RTE instruction executes, the processor switches to User mode. Otherwise,
the processor switches to Supervisor mode to service the interrupt.

 Emulation mode is the highest priority mode, and the processor
has unrestricted access to all system resources.

Idle State
Idle state stops all processor activity at the user’s discretion, usually to
conserve power during lulls in activity. No processing occurs during the
Idle state. The Idle state is invoked by a sequential combination of the
IDLE and SSYNC instructions in Supervisor mode. The IDLE instruction
notifies the processor hardware that the Idle state is requested. The SSYNC
instruction purges all speculative and transient states in the core and exter-
nal system.

 Without the SSYNC instruction, the IDLE instruction does not place
the processor into an Idle state.

The processor remains in the Idle state until a peripheral or external
device, such as a SPORT or the Real-Time Clock (RTC), generates an
interrupt that requires servicing.

Reset State

3-10 ADSP-BF535 Blackfin Processor Hardware Reference

Idle state can be entered only in Supervisor mode, and the processor
returns to Supervisor mode when transitioning from the Idle state. Appli-
cation programs in User mode cannot invoke the Idle state, except
through a system call provided by an operating system kernel.

In the following code example, core interrupts are disabled and the IDLE
instruction is executed. When all the pending processes have completed,
the core disables its clocks. Idle state can be terminated only by asserting a
WAKEUP signal. For more information, see “System Interrupt
Wakeup-Enable Register (SIC_IWR)” on page 4-24. While not required,
an interrupt could also be enabled in conjunction with the WAKEUP signal.

When the WAKEUP signal is asserted, the processor finishes executing the
SSYNC instruction. The next instruction in this sequence should be the
STI. Interrupts are enabled after this instruction is executed.

Example Code for Transition to Idle State
To transition to the Idle state, use code as shown in Listing 3-3.

Listing 3-3. Transitioning to Idle State

CLI R0 ; /* disable interrupts */

IDLE ; /* source NOPs into pipeline and assert IDLE output on

SSYNC */

SSYNC ; /* drain the pipeline, IDLE asserts after SSYNC_ACK

back from system */

STI R0 ; /* re-enable interrupts after wakeup */

Reset State
Reset state initializes the processor logic. During Reset state, application
programs and the operating system do not execute.

ADSP-BF535 Blackfin Processor Hardware Reference 3-11

Operating Modes and States

The processor remains in the Reset state as long as external logic asserts
the external RESET signal. Upon deassertion, the processor completes the
reset sequence and switches to Supervisor mode, where it executes code
found at the reset event vector identified in the Event Vector Table
(EVT).

Software in Supervisor or Emulation mode can invoke the Reset state
without involving the external RESET signal by issuing the Reset version of
the RAISE instruction. After the reset sequence, the processor returns to
the Supervisor or Emulation mode that issued the RAISE instruction.

Application programs in User mode cannot invoke the Reset state, except
through a system call provided by an operating system kernel. Table 3-5
summarizes the state of the processor upon reset.

Table 3-5. Processor State on Reset

Item Description of Reset State

Core

Operating mode Supervisor mode in reset event

Rounding mode Unbiased rounding

Cycle counters Disabled

DAG registers (I,L,B,M) Random values (must be cleared at initialization)

Data and address registers Random values (must be cleared at initialization)

IPEND, IMASK, ILAT Cleared, interrupts globally disabled with IPEND bit 4

CPLBs Disabled

L1 instruction memory SRAM (cache disabled)

L1 data memory SRAM (cache disabled)

Cache validity bits Random (must be set to invalid prior to cache initialization)

System

Booting methods Determined by the values of BMODE pins at reset

MSEL clock frequency Determined by sampling MSEL pins at reset

System Reset and Power-up Configuration

3-12 ADSP-BF535 Blackfin Processor Hardware Reference

System Reset and Power-up
Configuration

Table 3-6 describes the five types of ADSP-BF535 processor resets. Note
all resets, except System Software, reset the core.

PLL Bypass mode Determined by sampling BYPASS pin at reset

Core clock/system clock ratio Determined by sampling SSEL pins at reset

Peripheral clocks Enabled

Table 3-6. ADSP-BF535 Processor Resets

Reset Source Result

Hardware reset The ADSP-BF535 processor
RESET pin causes a hardware
reset.

Resets both the core and the peripherals,
including the Dynamic Power Manage-
ment Controller (DPMC).
Resets the No Boot on Software Reset bit
in SYSCR. For more information, see
“System Reset Configuration Register
(SYSCR)” on page 3-14.

System Software
reset

Writing b#111 to bits [2:0]
in the system MMR SWRST
at address 0xFFC0 0410
causes a System Software
reset.

Resets only the peripherals, excluding the
RTC (Real-Time Clock) block and most
of the DPMC. The DPMC resets only
the Peripheral Clock Enable register
(PLL_IOCK) and the No Boot on Software
Reset bit in SYSCR. Does not reset the
core.

Table 3-5. Processor State on Reset (Cont’d)

Item Description of Reset State

ADSP-BF535 Blackfin Processor Hardware Reference 3-13

Operating Modes and States

Hardware Reset
The ADSP-BF535 processor chip reset is an asynchronous reset event.
The RESET input pin must be deasserted to perform a Hardware reset. See
ADSP-21535 Blackfin Embedded Processor Data Sheet for more
information.

A hardware initiated reset results in a system wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the ADSP-BF535
processor ensures that all asynchronous peripherals, such as the Universal
Serial Bus (USB), have recognized and completed a reset. After the reset,
the ADSP-BF535 processor transitions into the boot mode sequence con-
figured by the BMODE state.

Watchdog Timer
reset

Programming the watchdog
timer appropriately causes a
Watchdog Timer reset.

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC. The DPMC resets only
PLL_IOCK.
The Software Reset register (SWRST) can
be read to determine whether the reset
source was the watchdog timer.

Core Double-
Fault reset

If the core enters a dou-
ble-fault state, a reset can be
caused by unmasking the
Core Double-Fault Reset
Mask bit in the SIC Inter-
rupt Mask register
(SIC_IMASK).

Resets both the core and the peripherals,
excluding the RTC block and most of the
DPMC. The DPMC resets only
PLL_IOCK.
SWRST can be read to determine whether
the reset source was Core Double-Fault.

Core-Only Soft-
ware reset

Executing a RAISE1 instruc-
tion or writing to an MMR
through the emulator causes
a Core-Only Software reset.

Resets only the core.
The peripherals have no knowledge of
this reset.

Table 3-6. ADSP-BF535 Processor Resets (Cont’d)

Reset Source Result

System Reset and Power-up Configuration

3-14 ADSP-BF535 Blackfin Processor Hardware Reference

The BMODE[2:0] pins are dedicated mode control pins. No other functions
are shared with these pins, and they may be permanently strapped by tie-
ing them directly to either VDD or VSS. The pins and the corresponding bits
in SYSCR configure the boot mode that is employed after Hardware reset or
System Software reset. See also “Reset” on page 4-36, and Table 4-11 on
page 4-40.

The MSEL[6:0], and DF pins are shared with the programmable flag pins
PF[7:0]. During Hardware reset, these pins are sensed for configuration
state. Configuration state may either be directly driven by off-chip hard-
ware or strapped high or low by resistor. The sensed state is used to
configure the phase locked loop. For more information, see “Phase Locked
Loop and Clock Control” on page 8-2.

System Reset Configuration Register (SYSCR)
The values sensed from the BMODE[2:0] pins are latched into the System
Reset Configuration register (SYSCR) upon the deassertion of the RESET
pin. They are made available for software access and modification after the
Hardware reset sequence. Software can modify only the No Boot on Soft-
ware Reset bit.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-2).

Software Resets and Watchdog Timer
A software reset may be initiated in three ways:

• By the watchdog timer, if appropriately configured

• By setting the System Software Reset field in the Software Reset
register (see Figure 3-3)

• By the RAISE1 instruction

ADSP-BF535 Blackfin Processor Hardware Reference 3-15

Operating Modes and States

The watchdog timer resets both the core and the peripherals. A System
Software reset results in a reset of the peripherals without resetting the
core.

 The System Software reset must be performed while executing
from Level 1 memory (either as cache or as SRAM).

When L1 instruction memory is configured as cache, make sure the
System Software reset sequence has been read into the cache.

After either the watchdog or System Software reset is initiated, the
ADSP-BF535 processor ensures that all asynchronous peripherals, such as
USB, have recognized and completed a reset.

For a reset generated by the watchdog timer, the ADSP-BF535 processor
transitions into the boot mode sequence. The boot mode is configured by
the state of the BMODE and the No Boot on Software Reset control bits.

Figure 3-2. System Reset Configuration Register

0000000000 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BMODE 2-0 - RO
000 - Bypass boot ROM,

execute from 16-bit-wide
external memory

001 - Use boot ROM to load
from 8-bit flash

010 - Use boot ROM to configure
and load boot code from
SPI0 serial ROM
(8-bit address range)

011 - Use boot ROM to configure
and load boot code from
SPI0 serial ROM
(16-bit address range)

100-111 - Reserved

0 0 X X X Reset = dependent on
pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
0 - Use BMODE to determine

boot source
1 - Start executing from the

beginning of on-chip L2 memory
(or the beginning of ASYNC Bank 0
when BMODE[2:0] = b#000)

0xFFC0 0414

System Reset and Power-up Configuration

3-16 ADSP-BF535 Blackfin Processor Hardware Reference

If the No Boot on Software Reset bit in SYSCR is cleared, the reset
sequence is determined by the BMODE[2:0] control bits.

Software Reset Register (SWRST)
A software reset can be initiated by setting the System Software Reset field
in the Software Reset register (SWRST), which is shown in Figure 3-3. Bit
15 indicates whether a software reset has occurred since the last time
SWRST was read. Bit 14 and Bit 13, respectively, indicate whether the Soft-
ware Watchdog Timer or a Core Double Fault has generated a software
reset. Bits [15:13] are read-only and cleared when the register is read. Bits
[2:0] are read/write.

When the BMODE pins are not set to b#000 and the No Boot on Software
Reset bit in SYSCR is set, the ADSP-BF535 processor starts executing from
the start of on-chip L2 memory. In this configuration, the core begins
fetching instructions from address 0xF000 0000 (the beginning of
on-chip L2 memory).

Figure 3-3. Software Reset Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Software Reset Register (SWRST)

System Software Reset
0x0 through 0x6 - No SW

reset
0x7 - Triggers SW reset

Software Reset Status - RO
0 - No SW reset since last

SWRST read
1 - SW reset occurred since

last SWRST read

Reset = 0x0000

Core Double Fault Reset
- RO
0 - No SW reset
1 - SW reset generated

Software Watchdog Timer
Source - RO
0 - SW reset not generated by

watchdog
1 - SW reset generated by

watchdog

0xFFC0 0410

ADSP-BF535 Blackfin Processor Hardware Reference 3-17

Operating Modes and States

When the BMODE pins are set to b#000 and the No Boot on Software Reset
bit is set, the core begins fetching instructions from address 0x2000 0000
(the beginning of ASYNC Bank 0).

Core Only Software Reset
A software reset is initiated by executing the RAISE 1 instruction or by set-
ting the Software Reset (SYSRST) bit in the core Debug Control register
(DBGCTL) via emulation software through the JTAG port. (DBGCTL is not
visible to the memory map).

A Core Only Software reset affects only the state of the core. Note the sys-
tem resources may be in an undetermined or even unreliable state,
depending on the system activity during the reset period.

Booting Methods
The internal boot ROM includes a small boot kernel that can either be
bypassed or used to load user code from an external memory device, as
defined in Table 4-10 on page 4-37. The boot kernel reads the
BMODE[2:0] pin state at reset to identify the download source (see
Table 4-7 on page 4-22). When in Bypass mode, the processor is set to
execute from 16-bit wide external memory at address 0x2000 0000
(ASYNC Bank 0).

Several boot methods are available in which user code can be loaded from
an external memory device. For these modes, the boot kernel sets up the
selected peripheral based on the BMODE[0:2] pin settings.

For each boot mode, user code read in from the memory device is placed
at the starting location of L2 memory (0xF000 0000). The boot kernel
terminates the boot process with a jump to the start of the L2 memory
space. The processor then begins execution from this address.

Booting Methods

3-18 ADSP-BF535 Blackfin Processor Hardware Reference

 If booting from SPI0, general-purpose flag pin 10 is used as the SPI
chip select. This line must be connected for proper operation.

A Core Only Software reset also vectors the core to the boot ROM. The
Core Only Software reset resets only the core; it does not affect the rest of
the ADSP-BF535 processor system. The boot ROM kernel detects a No
Boot on Software Reset condition in SYSCR to avoid initiating a download.
If this bit is set on a software reset, the processor skips the normal boot
sequence and jumps to the beginning of L2 memory and begins execution.

The boot kernel assumes these conditions for the flash boot mode:

• Asynchronous Memory Bank (AMB) 0 enabled

• 16-bit packing for AMB 0 enabled

• Bank 0 RDY is set to active high

• Bank 0 hold time
(read/write deasserted to AOE deasserted) = 3 cycles

• Bank 0 read/write access times = 15 cycles

The boot kernel assumes that the SPI baud rate is 500 kHz. Both 8-bit
and 16-bit addressable SPI serial PROMs are supported. A second stage
loader is available to include the SPI baud rate up to 2 MHz.

ADSP-BF535 Blackfin Processor Hardware Reference 4-1

4 PROGRAM SEQUENCER

In the ADSP-BF535 processor, the Program Sequencer controls program
flow, constantly providing the address of the next instruction to be exe-
cuted by other parts of the ADSP-BF535 processor. Program flow in the
chip is mostly linear, with the processor executing program instructions
sequentially.

The linear flow varies occasionally when the program uses nonsequential
program structures, such as those illustrated in Figure 4-1. Nonsequential
structures direct the ADSP-BF535 processor to execute an instruction that
is not at the next sequential address. These structures include:

• Loops. One sequence of instructions executes several times with
zero overhead.

• Subroutines. The processor temporarily interrupts sequential flow
to execute instructions from another part of memory.

• Jumps. Program flow transfers permanently to another part of
memory.

• Interrupts and Exceptions. A runtime event or instruction triggers
the execution of a subroutine.

• Idle. An instruction causes the processor to stop operating and
hold its current state until an interrupt occurs. Then, the processor
services the interrupt and continues normal execution.

4-2 ADSP-BF535 Blackfin Processor Hardware Reference

The Sequencer manages execution of these program structures by selecting
the address of the next instruction to execute.

The fetched address enters the instruction pipeline, ending with the pro-
gram counter (PC). The pipeline contains the 32-bit addresses of the
instructions currently being fetched, decoded, and executed. The PC cou-
ples with the RETn registers, which store return addresses. All addresses
generated by the Sequencer are 32-bit memory instruction addresses.

Figure 4-1. Program Flow Variations

N

N +1

N +2

N +3

N +4

N +5

ADDR ES S:

INS TRU C TION

INS TRU C TION

INS TRU C TION

INS TRU C TION

INS TRU C TION

INS TRU C TION

LINEAR FLOW

INS TRU CTION

INS TRU CTION

INS TRU CTION

INS TRU CTION

INS TRU CTION

LOOP

LOOP

N TIMES

INS TRU CTION

INS TRU CTION

INS TRU CTION

INS TRU CTION

INS TRU CTION

JUMP

JUMP

INS TRU C TION

INS TRU C TION

…

INS TRU C TION

CALL

SUBROUTINE

INS TRU C TION

RT S

INS TRU CTION

INS TRU CTION

…

INS TRU CTION

INS TRU CTION

INS TRU CTION

R TI

INS TRU CTION

INTERRUPT

IRQ

VE CTOR

INS TRU C TION

INS TRU CTION

INS TRU CTION

INS TRU CTION

ID LE

INS TRU CTION

INS TRU CTION

IDLE

INS TRU CTION

INS TRU CTION
W A KE -U P
OR
FOR IRQ
W A ITING

ADSP-BF535 Blackfin Processor Hardware Reference 4-3

Program Sequencer

To manage events, the Sequencer’s event controller handles interrupt and
event processing, determines whether an interrupt is masked, and gener-
ates the appropriate event vector address.

In addition to providing data addresses, the Data Address Generators
(DAGs) can provide instruction addresses for the Sequencer’s indirect
branches.

The Sequencer evaluates conditional instructions and loop termination
conditions. The loop registers support nested loops. The memory-mapped
registers (MMRs) store information used to implement interrupt service
routines.

Sequencer Related Registers
Table 4-1 lists the registers within the ADSP-BF535 processor that are
related to the Sequencer. Except for the PC register, all Sequencer related
registers are directly readable and writable. Manually pushing or popping
registers to or from the stack is done using the explicit instructions
[--SP] = Rn (for push) or Rn = [SP++] (for pop).

Sequencer Related Registers

4-4 ADSP-BF535 Blackfin Processor Hardware Reference

Sequencer Status Register (SEQSTAT)
The Sequencer Status register (SEQSTAT), shown in Figure 4-2, contains
information about the current state of the Sequencer as well as diagnostic
information from the last event. SEQSTAT is a read-only register and is
accessible only in Supervisor mode.

Table 4-1. Sequencer Related Registers

Register Name Description

SEQSTAT Sequencer Status register

Return Address registers: See “Events and Sequencing” on page 4-17.

RETX
RETN
RETI
RETE
RETS

Exception Return
NMI Return
Interrupt Return
Emulation Return
Subroutine Return

Zero-Overhead Loop registers:

LC0, LC1
LT0, LT1
LB0, LB1

Loop Counters
Loop Tops
Loop Bottoms

FP, SP Frame Pointer and Stack Pointer: See “Data Address Generators” on
page 5-1.

SYSCFG System Configuration Register

CYCLES, CYCLES2 Cycle Counters: See “Blackfin Processor’s Debug” on page 20-1.

ADSP-BF535 Blackfin Processor Hardware Reference 4-5

Program Sequencer

Zero-Overhead Loop Registers (LC, LT, LB)
Two sets of zero-overhead loop registers implement loops, using hardware
counters instead of software instructions to evaluate loop conditions. After
evaluation, processing branches to a new target address. Both sets of regis-
ters include the Loop Counter (LC), Loop Top (LT), and Loop Bottom
(LB) registers.

Figure 4-2. Sequencer Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 X X 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sequencer Status Register (SEQSTAT)

IDLE_REQ

EXCAUSE[5:0]
Holds information about the
last-executed exception. See
Table 4-11.

This bit is set by the IDLE
instruction.
0 - No pending request for

idle state
1 - Pending request for idle

state

Reset = 0x0000 0X00

HWERRCAUSE[1:0]
Holds cause of last hardware error
generated by the core. Hardware
errors trigger interrupt number 5
(IVHW).
0x12 - Performance Monitor

overflow
0x15 - Reserved
0x16 - Error accessing reserved or

undefined memory
0x17 - Error accessing reserved or

undefined memory
0x18 - Instruction RAISE
All other values - Reserved

SFTRESET
0 - Last core reset was not a

software-triggered reset
1 - Last core reset was a soft-

ware-triggered reset, rather
than a hardware power-up
reset

HWERRCAUSE[4:2]
See description under bits [1:0],
below

Sequencer Related Registers

4-6 ADSP-BF535 Blackfin Processor Hardware Reference

The 32-bit loop register sets are described in Table 4-2.

System Configuration Register (SYSCFG)
The System Configuration Register (SYSCFG), shown in Figure 4-3, con-
trols the configuration of the processor. This register is accessible only
from the Supervisor mode.

Table 4-2. Loop Registers

Registers Description Function

LC[1:0] Loop Counters Maintain a count of the remaining iterations of the
loop

LT[1:0] Loop Tops Hold the address of the first statement within a loop

LB[1:0] Loop Bottoms Hold the address of the last statement of the loop

Figure 4-3. System Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X X 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

System Configuration Register (SYSCFG)

CCEN (Cycle-Counter Enable)

SSSTEP (Supervisor Single Step)
When set, a Supervisor excep-
tion is taken after each instruction
is executed. It applies only to
User mode, or when processing
interrupts in Supervisor mode. It
is ignored if the core is process-
ing an exception or higher-priority
event. If precise exception timing
is required, CSYNC must be
used after setting this bit.

CCEN must be set after PFPWR is
set (See chapter 20, Blackfin
Debug)
0 - Disable 64-bit, free-running

cycle counter
1 - Enable 64-bit, free-running

cycle counter

Reset = Undefined

SNEN (Self-Nesting Interrupt Enable)
0 - Disable self-nesting interrupts
1 - Enable self-nesting interrupts

ADSP-BF535 Blackfin Processor Hardware Reference 4-7

Program Sequencer

Instruction Pipeline
The Program Sequencer determines the next instruction address by exam-
ining both the current instruction being executed and the current state of
the processor. If no conditions require otherwise, the processor executes
instructions from memory in sequential order by incrementing the look
ahead address.

The ADSP-BF535 processor has an eight-stage instruction pipeline,
shown in Figure 4-4.

Figure 4-4. ADSP-BF535 Processor Pipeline

Table 4-3. Stages of Instruction Pipeline

Pipeline Stage Description

Instruction Fetch 1 (IF1) Start instruction memory access.

Instruction Fetch 2 (IF2) Finish L1 instruction memory access and align
instruction.

Instruction Decode (DEC) Start instruction decode and access Pointer register file.

Address Calculation (AC) Calculate data addresses and branch target address.

Execute 1 (EX1) Read data and start access of data memory.

Execute 2 (EX2) Finish accesses of data memory and start execution of
dual cycle instructions.

Execute 3 (EX3) Execute single cycle instructions.

Write Back (WB) Write states to Data and Pointer register files and process
events.

Inst
Fetch 1

Inst
Fetch 2

Inst
Decode

Address
Calc

Ex1 Ex2 Ex3 WB

Inst
Fetch 1

Inst
Fetch 2

Inst
Decode

Address
Calc

Ex1 Ex2 Ex3 WB

Instruction Pipeline

4-8 ADSP-BF535 Blackfin Processor Hardware Reference

The Sequencer decodes and distributes operations to the Instruction
Memory Unit and Instruction Alignment Unit. It also controls stalling
and invalidating the instructions in the pipeline. The Sequencer ensures
that the pipeline is fully interlocked and that the programmer does not
need to manage the pipeline.

The instruction fetch and branch logic generates 32-bit fetch addresses for
the Instruction Memory Unit. The Instruction Alignment Unit returns
instructions and their width information at the end of the IF2 stage.

For each instruction type (16-, 32-, or 64-bit), the Alignment Unit
ensures that the alignment buffers have enough valid data to be able to
provide an instruction every cycle. Since the instructions can be 16, 32, or
64 bits wide, the Alignment Unit may not need to fetch data from the
cache every cycle. For example, for a series of 16-bit instructions, the
Alignment Unit gets data from the Instruction Memory Unit once in 4
cycles. The alignment logic requests the next instruction address based on
the status of the alignment buffers. The Sequencer responds by generating
the next fetch address in the next cycle, provided there is no change of
flow.

The Sequencer holds the fetch address until it receives a request from the
alignment logic or until a change of flow occurs. It always increments the
previous fetch address by 8 (the next 8 bytes). If a change of flow occurs,
such as a branch or an interrupt, the Sequencer communicates it to the
Instruction Memory Unit, which invalidates the data in the Alignment
Unit. In addition to the change-of-flow indication, the Sequencer can also
kill instructions in IF1 and IF2 stages or stall the Instruction Memory
Unit.

The Execution Unit contains two 16-bit multipliers, two 40-bit ALUs,
two 40-bit accumulators, one 40-bit shifter, a video unit (which adds 8-bit
ALU support), and an 8-entry 32-bit Data Register File.

ADSP-BF535 Blackfin Processor Hardware Reference 4-9

Program Sequencer

Register File reads occur in the EX1 pipeline stage (for operands) and the
EX3 pipeline stage (for stores). Writes occur in the WB stage. The multi-
pliers and the video unit are active in the EX2 stage, and the ALUs and
shifter are active in the EX3 stage. The accumulators are written at the end
of the EX3 stage.

Any nonsequential program flow can potentially decrease the processor’s
instruction throughput. Nonsequential program operations include:

• Program memory data accesses that conflict with instruction
fetches

• Jumps

• Subroutine calls and returns

• Interrupts and returns

• Loops

Branches and Sequencing
One type of nonsequential program flow that the Sequencer supports is
branching. A branch occurs when a JUMP or CALL instruction begins execu-
tion at a new location other than the next sequential address. For
descriptions of how to use the JUMP and CALL instructions, see Blackfin
Processor Programming Reference. Briefly, these instructions operate as
follows:

• A JUMP or a CALL instruction transfers program flow to another
memory location. The difference between a JUMP and a CALL is that
a CALL automatically loads the return address into the RETS register.
The return address is the next sequential address after the CALL
instruction. This push makes the address available for the CALL
instruction’s matching return instruction, allowing easy return
from the subroutine.

Branches and Sequencing

4-10 ADSP-BF535 Blackfin Processor Hardware Reference

• A return instruction causes the Sequencer to fetch the instruction
at the return address, which is stored in the RETS register (for sub-
routine returns). The types of return instructions are return from
subroutine (RTS), return from interrupt (RTI), return from excep-
tion (RTX), return from emulation (RTE), and return from
non-maskable interrupt (RTN). Each return type has its own register
for holding the return address.

• JUMP instructions can be conditional, depending on the status of
the CC bit of the ASTAT register. They are immediate and may not
be delayed. The Program Sequencer can evaluate the CC status bit
to decide whether to execute a branch. If no condition is specified,
the branch is always taken.

• Conditional JUMP instructions use static branch prediction to
reduce the branch latency because of the effects of the pipeline.

Branches can be direct or indirect. The difference is that the Sequencer
generates the address for a direct branch, for example JUMP 0x30, and the
Data Address Generator produces the address for an indirect branch, for
example JUMP (P3).

Direct branches are JUMP or CALL instructions that use a PC-relative
address.

Indirect branches are JUMP or CALL instructions that use a dynamic
address—an address that changes at runtime—that comes from a Data
Address Generator. For more information, see “Data Address Generators”
on page 5-1.

ADSP-BF535 Blackfin Processor Hardware Reference 4-11

Program Sequencer

Direct Short and Long Jumps
The Sequencer supports both short and long jumps. The target of the
branch is a PC-relative address from the location of the instruction, plus
an offset. The PC-relative offset for the short jump is a 13-bit immediate
value that must be a multiple of two (bit zero must be a zero). The 13-bit
value gives an effective dynamic range of –4096 to +4094 bytes.

The PC-relative offset for the long jump is a 25-bit immediate value that
must also be a multiple of two (bit zero must be a zero). The 25-bit value
gives an effective dynamic range of –16,777,216 to +16,777,214 bytes.

If, at the time of writing the program, the destination is known to be less
than a 13-bit offset from the current PC value, then the JUMP.S 0xnnnn

instruction may be used. If the destination requires more than a 13-bit
offset, then the JUMP.L 0xnnnn instruction must be used. If the destination
offset is unknown and development tools must evaluate the offset, then
use the instruction JUMP 0xnnnn. Upon disassembly, the instruction is
replaced by the appropriate JUMP.S or JUMP.L instruction.

Direct Call
The CALL instruction is a branch instruction that copies the location of the
instruction after the call into the RETS register. The CALL instruction has a
25-bit PC-relative offset that must be a multiple of two (bit zero must be a
zero). The 25-bit value gives an effective dynamic range of –16,777,216 to
+16,777,214 bytes.

Indirect Branch and Call
The indirect JUMP and CALL instructions use a dynamic address—an
address that changes at runtime—that comes from the Data Address Gen-
erator. The effective address is stored in a P-register. For the CALL
instruction, the RETS register is loaded with the address of the instruction
following the CALL instruction.

Branches and Sequencing

4-12 ADSP-BF535 Blackfin Processor Hardware Reference

For example:

JUMP (P3) ;

CALL (P0) ;

PC-Relative Indirect Branch and Call
The PC-relative indirect JUMP and CALL instructions use a P-register as an
offset to the branch target. For the CALL instruction, the RETS register is
loaded with the address of the instruction following the CALL instruction.

For example:

JUMP (PC + P3) ;

CALL (PC + P0) ;

Condition Code Flag
The ADSP-BF535 supports a condition code (CC) flag bit, which is used
to resolve the direction of a branch. This flag may be accessed five ways:

• A conditional branch is resolved by the value in CC.

• A Data register value may be copied into CC, and the value in CC
may be copied to a Data register.

• A status flag may be copied into CC, and the value in CC may be
copied to a status flag.

• CC may be set to the result of a Pointer register comparison.

• CC may be set to the result of a Data register comparison.

ADSP-BF535 Blackfin Processor Hardware Reference 4-13

Program Sequencer

These five ways of accessing the CC bit are used to control program flow.
The branch is explicitly separated from the instruction that sets the arith-
metic flags. A single bit resides in the instruction encoding that specifies
the interpretation for the value of CC. The interpretation is branch on true
or false.

The comparison operations have the form CC = expr where expr involves a
pair of registers of the same type (for example, Data registers or Pointer
registers, or a single register and a small immediate constant). The small
immediate constant is a 3-bit (–4 through 3) signed number for signed
comparisons and a 3-bit (0 through 7) unsigned number for unsigned
comparisons.

The sense of CC is determined by equal (==), less than (<), and less than or
equal to (<=). There are also bit test operations that test whether a bit in a
32-bit register is set.

Conditional Branches

The Sequencer supports conditional branches. These are JUMP instructions
whose execution is based on testing an IF condition that is based on the
status of the CC bit. The target of the branch is a PC-relative address from
the location of the instruction plus an offset. The PC-relative offset is an
11-bit immediate value that must be a multiple of two (bit zero must be a
zero). This gives an effective dynamic range of –1024 to +1022 bytes.

For example, the following instruction tests the CC flag and, if it is posi-
tive, jumps to a location identified by the label dest_address.

IF CC JUMP dest_address ;

Conditional Register Move

For condition handling where the value of a register is set based on the
condition code, a conditional move instruction can be used instead of a
branch statement. A register move can be performed, depending on

Branches and Sequencing

4-14 ADSP-BF535 Blackfin Processor Hardware Reference

whether the value of the CC flag is true or false (1 or 0). In some cases,
using this instruction instead of a branch eliminates the cycles lost because
of the branch.

Example code:
IF CC R0 = P0 ;

Branch Prediction
The Sequencer supports static branch prediction to accelerate execution of
conditional branches. These branches are executed based on the state of
the CC bit.

The branch target address calculation takes place in the AC stage of the
instruction pipeline. In the EX3 stage, the Sequencer compares the actual
CC bit value to the predicted value. If the value was mis-predicted, the
branch is corrected, and the correct address is available for the WB stage
of the pipeline.

The branch latency for conditional branches is as follows:

• If prediction was “not to take branch,” and branch was actually not
taken: 0 CCLK cycles.

• If prediction was “not to take branch,” and branch was actually
taken: 6 CCLK cycles.

• If prediction was “to take branch,” and branch was actually taken:
3 CCLK cycles.

• If prediction was “to take branch,” and branch was actually not
taken: 6 CCLK cycles.

For all unconditional branches, the branch target address computed in the
AC stage of the pipeline is sent to the Instruction Fetch address bus at the
beginning of the EX1 stage. All unconditional branches have a latency of 3
CCLK cycles.

ADSP-BF535 Blackfin Processor Hardware Reference 4-15

Program Sequencer

Consider the two examples in Table 4-4.

Loops and Sequencing
Another type of nonsequential program flow that the Sequencer supports
is looping. A loop occurs when the values in a pair of loop top and loop
bottom registers define an address range that includes the currently exe-
cuting instruction. The corresponding loop counter must contain a
nonzero value. One way to load these registers is by using the Loop Setup
(LSETUP) instruction; however, it is also possible to load these registers
directly. The ADSP-BF535 processor provides two sets of dedicated regis-
ters to support two nested loops.

The condition for terminating a loop is that the counter decreases to zero.
This condition tests whether the loop has completed the number of itera-
tions loaded from the Loop Count register (LC[1] or LC[0]).

Table 4-4. Branch Prediction

Instruction Description

If CC JUMP back_dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label,
back_dest.
If back_dest is a prior address and the CC flag is set,
then the branch is correctly predicted and the branch
latency is reduced.

If CC JUMP sub_dest (bp) This instruction tests the CC flag, and if it is set,
jumps to a location, identified by the label,
sub_dest.
If sub_dest is a subsequent address and the CC flag
is set, then the branch is incorrectly predicted and
the branch latency increases.

Loops and Sequencing

4-16 ADSP-BF535 Blackfin Processor Hardware Reference

The zero-overhead loop hardware provides efficient loops without the
overhead of additional instructions to branch, test a condition, or decre-
ment a counter. If the effective range of the loop needs to be larger than
that shown in Table 4-5, the loop can be set up manually by loading the
LCx, LTx, and LBx registers manually.

The code example in Listing 4-1 shows a loop that contains two instruc-
tions and iterates 32 times.

Listing 4-1. Loop

P5 = 0x20 ;

LSETUP (lp_start, lp_end) LCO = P5 ;

lp_start:

R5 = R0 + R1(ns) || R2 = [P2++] || R3 = [I1++] ;

lp_end: R5 = R5 + R2 ;

Two sets of loop registers are used to manage two nested loops:

• LC[1:0] – the Loop Count registers

• LT[1:0] – the Loop Top address registers

• LB[1:0] – the Loop Bottom address registers

When executing an LSETUP instruction, the Program Sequencer loads the
address of the loop’s last instruction into LBx and the address of the loop’s
first instruction into LTx. The top and bottom addresses of the loop are
computed as PC-relative addresses from the LSETUP instruction plus an
offset. In each case, the offset value is added to the location of the LSETUP
instruction.

LC0 and LC1 are unsigned 32-bit registers supporting 232–1 iterations
through the loop.

ADSP-BF535 Blackfin Processor Hardware Reference 4-17

Program Sequencer

 When LCx = 0, the loop is disabled, and a single pass of the code
executes.

The ADSP-BF535 processor supports a four-location instruction loop
buffer that reduces instruction fetches while in loops. If the loop code
contains four or fewer instructions, then no fetches to instruction memory
are necessary for any number of loop iterations, because the instructions
are stored locally. The loop buffer effectively shortens the instruction
fetch time in loops with more than four instructions by allowing fetches to
take place while instructions in the loop buffer are being executed.

Events and Sequencing
The Event Controller of the processor manages five types of activities:

• Emulation

• Reset

• Non-maskable interrupts (NMI)

• Exceptions

• Interrupts

Table 4-5. Loop Registers

First/Last Address of the
Loop

PC-Relative Offset Used to
Compute the Loop Start Address

Effective Range of the Loop
Start Instruction

Top / First 5-bit signed immediate; must be a
multiple of 2.

0 to 30 bytes away from LSETUP
instruction.

Bottom / Last 11-bit signed immediate; must be a
multiple of 2.

0 to 2046 bytes away from
LSETUP instruction (the defined
loop can be 2046 bytes long).

Events and Sequencing

4-18 ADSP-BF535 Blackfin Processor Hardware Reference

Note that the word event describes all five types. The Event Controller
manages fifteen events in all: Emulation, Reset, NMI, Exception, and
eleven interrupts.

An interrupt is an event that changes normal processor instruction flow
and is asynchronous to program flow. In contrast, an exception is a soft-
ware initiated event whose effects are synchronous to program flow.

The event system is nested and prioritized. Consequently, several service
routines may be active at any time, and a low priority event is preempted
by one of higher priority.

The ADSP-BF535 processor employs a two-level event control mecha-
nism. The ADSP-BF535 processor System Interrupt Controller (SIC)
works with the Core Event Controller (CEC) to prioritize and control all
system interrupts. The SIC provides mapping between the many periph-
eral interrupt sources and the prioritized general-purpose interrupt inputs
of the core. This mapping is programmable, and individual interrupt
sources can be masked in the SIC.

The CEC supports nine general-purpose interrupts (IVG7 - IVG15) in addi-
tion to the dedicated interrupt and exception events that are described in
Table 4-6. It is recommended that the lowest two priority interrupts
(IVG14 and IVG15) be reserved for software interrupt handlers, leaving
seven prioritized interrupt inputs (IVG7 - IVG13) to support the
ADSP-BF535 processor system. Refer to Table 4-6.

Note the System Interrupt to Core Event mappings shown are the default
values at reset and can be changed by software.

ADSP-BF535 Blackfin Processor Hardware Reference 4-19

Program Sequencer

Table 4-6. System and Core Event Mapping

Event Source Core Event Name

Core Events Emulation (highest priority) EMU

Reset RST

NMI NMI

Exception EVX

Reserved –

Hardware Error IVHW

Core Timer IVTMR

System Interrupts RTC
USB
PCI

IVG7

SPORT0 RX/TX
SPORT1 RX/TX

IVG8

SPI0
SPI1

IVG9

UART0 RX/TX
UART1 RX/TX

IVG10

Timer0, Timer1, Timer2 IVG11

Programmable Flags Interrupt A/B IVG12

Memory DMA
Watchdog Timer

IVG13

Software Interrupt 1 IVG14

Software Interrupt 2 (lowest priority) IVG15

Events and Sequencing

4-20 ADSP-BF535 Blackfin Processor Hardware Reference

System Interrupt Processing
Referring to Figure 4-5, note that when an interrupt (Interrupt A) is gen-
erated by an interrupt-enabled peripheral:

1. SIC_ISR logs the request and keeps track of system interrupts that
are asserted but not yet serviced (that is, an interrupt service rou-
tine hasn’t yet cleared the interrupt).

2. SIC_IWR checks to see if it should wake up the ADSP-BF535 pro-
cessor core from an idled state based on this interrupt request.

3. SIC_IMASK masks off or enables interrupts from peripherals at the
system level. If Interrupt A is not masked, the request proceeds to
Step 4.

4. The SIC_IARx registers, which map the peripheral interrupts to a
smaller set of general-purpose core interrupts (IVG7-IVG15), deter-
mine the core priority of Interrupt A.

5. ILAT adds Interrupt A to its log of interrupts latched by the core
but not yet actively being serviced.

6. IMASK masks off or enables events of different core priorities. If the
IVGx event corresponding to Interrupt A is not masked, the process
proceeds to Step 7.

7. The Event Vector Table (EVT) is accessed to look up the appropri-
ate vector for Interrupt A’s interrupt service routine (ISR).

8. When the event vector for Interrupt A has entered the core pipe-
line, the appropriate IPEND bit is set, which clears the respective
ILAT bit. Thus, IPEND tracks all pending interrupts, as well as those
being presently serviced.

ADSP-BF535 Blackfin Processor Hardware Reference 4-21

Program Sequencer

9. When the interrupt service routine for Interrupt A has been exe-
cuted, the RTI instruction clears the appropriate IPEND bit.
However, the relevant SIC_ISR bit is not cleared unless the inter-
rupt service routine clears the mechanism that generated Interrupt
A, or if the process of servicing the interrupt clears this bit.

It should be noted that emulation, reset, NMI, and exception events, as
well as hardware error (IVHW) and core timer (IVTMR) interrupt requests,
enter the interrupt processing chain at the ILAT level and are not affected
by the system-level interrupt registers (SIC_IWR, SIC_ISR, SIC_IMASK,
SIC_IARx).

If multiple interrupt sources share a single core interrupt, then the ISR
must identify the peripheral that generated the interrupt. The ISR may
then need to interrogate the peripheral to determine the appropriate
action to take.

Figure 4-5. Interrupt Processing Block Diagram

PERIPHERAL
INTERRU PT
REQUESTS

CORE
EVENT

VECTOR
TABLE

(EVT[15:0])

CORE
INTERR UPT

MASK
(IMASK)

CORE
STATUS
(ILAT)

CORE
PENDING
(IPEND)

ASSIGN
SYSTEM
PRIORITY

(SIC_IAR0..2)

SYSTEM
INTERR UPT

MASK
(SIC_IMASK)

SYSTEM
STATUS

(SIC_ISR)

SYSTEM
WAKE-UP
(SIC_IWR)

CORE EVENT CONTROLLERSYSTEM INTERRUPT CONTROLLER

EMU
RESET
NMI
EVX
IV TMR
IVHW

TO DYN AMIC POWER
MA NAGEME NT
CONTROLLER

Note: Names in parentheses are memory -mapped regis ters .

“INTERRUPT
A”

Events and Sequencing

4-22 ADSP-BF535 Blackfin Processor Hardware Reference

System Peripheral Interrupts
The ADSP-BF535 processor system has numerous peripherals, which
therefore require many supporting interrupts. Table 4-7 lists:

• Peripheral interrupt source

• Peripheral interrupt ID used in the System Interrupt Assignment
registers (SIC_IARx). See “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29.

• General-purpose interrupt of the core to which the interrupt maps
at reset

• The Core Interrupt ID used in the System Interrupt Assignment
registers (SIC_IARx). See “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29.

Table 4-7. Peripheral Interrupt Source Reset State

Peripheral Interrupt Source Peripheral
Interrupt ID

General-purpose
Interrupt (Assignment
at Reset)

Core
Interrupt ID

Real-Time Clock interrupts (alarm,
second, minute, hour, countdown)

0 IVG7 0

Reserved 1 IVG7 0

USB interrupt 2 IVG7 0

PCI interrupts 3 IVG7 0

SPORT0 RX DMA interrupt 4 IVG8 1

SPORT0 TX DMA interrupt 5 IVG8 1

SPORT1 RX DMA interrupt 6 IVG8 1

SPORT1 TX DMA interrupt 7 IVG8 1

SPI0 DMA interrupt 8 IVG9 2

SPI1 DMA interrupt 9 IVG9 2

ADSP-BF535 Blackfin Processor Hardware Reference 4-23

Program Sequencer

The peripheral interrupt structure of the ADSP-BF535 processor is flexi-
ble. By default upon reset, multiple peripheral interrupts share a single,
general-purpose interrupt in the core, as shown in the preceding table.

An interrupt service routine that supports multiple interrupt sources must
interrogate the appropriate system MMRs to determine which peripheral
generated the interrupt.

If the default assignments shown in Table 4-7 are acceptable, then inter-
rupt initialization involves only initialization of the core EVT vector
address entries and IMASK register, and unmasking the specific peripheral
interrupts in SIC_IMASK that the system requires.

UART0 RX interrupt 10 IVG10 3

UART0 TX interrupt 11 IVG10 3

UART1 RX interrupt 12 IVG10 3

UART1 TX interrupt 13 IVG10 3

Timer0 interrupt 14 IVG11 4

Timer1 interrupt 15 IVG11 4

Timer2 interrupt 16 IVG11 4

PF interrupt A 17 IVG12 5

PF interrupt B 18 IVG12 5

Memory DMA interrupt 19 IVG13 6

Software Watchdog Timer interrupt 20 IVG13 6

Table 4-7. Peripheral Interrupt Source Reset State (Cont’d)

Peripheral Interrupt Source Peripheral
Interrupt ID

General-purpose
Interrupt (Assignment
at Reset)

Core
Interrupt ID

Events and Sequencing

4-24 ADSP-BF535 Blackfin Processor Hardware Reference

System Interrupt Wakeup-Enable Register
(SIC_IWR)

The SIC provides the mapping between the peripheral interrupt source
and the Dynamic Power Management Controller (DPMC). Any of the
ADSP-BF535 processor peripherals can be configured to wake up the core
from its idled state to process the interrupt, simply by enabling the appro-
priate bit in the System Interrupt Wakeup-enable register (refer to
Figure 4-6). If a peripheral interrupt source is enabled in SIC_IWR and the
core is idled, the interrupt causes the DPMC to initiate the core wake-up
sequence in order to process the interrupt. Note that this mode of opera-
tion may add latency to interrupt processing, depending on the power
control state. For further discussion of power modes and the idled state of
the core, see “Dynamic Power Management” on page 8-1.

By default, all interrupts generate a wake-up request to the core. However,
for some applications it may be desirable to disable this function for some
peripherals, such as a SPORTx Transmit Interrupt.

The SIC_IWR register has no effect unless the core is idled. The bits in this
register correspond to those of the System Interrupt Mask (SIC_IMASK)
and Interrupt Status (SIC_ISR) registers.

After reset, all valid bits of this register are set to 1, enabling the wake-up
function for all interrupts that are not masked. Before enabling interrupts,
configure this register in the reset initialization sequence. The SIC_IWR
register can be read from or written to at any time. To prevent spurious or
lost interrupt activity, this register should be written only when all periph-
eral interrupts are disabled.

 Note the wake-up function is independent of the interrupt mask
function. If an interrupt source is enabled in SIC_ISR but masked
off in SIC_IMASK, the core wakes up if it is idled, but it does not
generate an interrupt.

ADSP-BF535 Blackfin Processor Hardware Reference 4-25

Program Sequencer

System Interrupt Status Register (SIC_ISR)
The SIC includes a read-only status register, the System Interrupt Status
register, shown in Figure 4-7. Each valid bit in this register corresponds to
one of the peripheral interrupt sources. The bit is set when the SIC detects
the interrupt is asserted and cleared when the SIC detects that the periph-
eral interrupt input has been deasserted. Note that for some peripherals,
such as programmable flag asynchronous input interrupts, many cycles of
latency may pass from the time that an interrupt service routine initiates
the clearing of the interrupt (usually by writing a system MMR) to the
time that the SIC senses that the interrupt has been deasserted.

Figure 4-6. System Interrupt Wakeup-Enable Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

System Interrupt Wakeup-Enable Register (SIC_IWR)

Reset = 0xFFFF FFFF

Timer 2 Interrupt

For all bits, 0 - Wake-up function not enabled, 1 - Wake-up function enabled.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupt

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

0xFFC0 0C18

Events and Sequencing

4-26 ADSP-BF535 Blackfin Processor Hardware Reference

Depending on how interrupt sources map to the general-purpose interrupt
inputs of the core, the interrupt service routine may have to interrogate
multiple interrupt status bits to determine the source of the interrupt.
One of the first instructions executed in an interrupt service routine
should read SIC_ISR to determine whether more than one of the peripher-
als sharing the input has asserted its interrupt output. The service routine
should fully process all pending, shared interrupts before executing the
RTI, which enables further interrupt generation on that interrupt input.

 When an interrupt’s service routine is finished, the RTI instruction
clears the appropriate bit in the IPEND register. However, the rele-
vant SIC_ISR bit is not cleared unless the service routine clears the
mechanism that generated the interrupt.

Many systems need relatively few interrupt-enabled peripherals, allowing
each peripheral to map to a unique core priority level. In these designs,
SIC_ISR will seldom, if ever, need to be interrogated.

The SIC_ISR register is not affected by the state of the Interrupt Mask reg-
ister and can be read at any time. Writes to SIC_ISR have no effect on its
contents.

ADSP-BF535 Blackfin Processor Hardware Reference 4-27

Program Sequencer

System Interrupt Mask Register (SIC_IMASK)
The System Interrupt Mask register, shown in Figure 4-8, allows masking
of any peripheral interrupt source at the SIC, independently of whether it
is enabled at the peripheral itself.

A reset forces the contents of SIC_IMASK to all 0s to mask off all peripheral
interrupts. Writing a 1 to a bit location turns off the mask and enables the
interrupt.

Figure 4-7. System Interrupt Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Status Register (SIC_ISR)

Reset = 0x0000 0000

Timer 2 Interrupt

RO. For all bits, 0 - Deasserted, 1 - Asserted.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupt

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

0xFFC0 0C14

Events and Sequencing

4-28 ADSP-BF535 Blackfin Processor Hardware Reference

Although this register can be read from or written to at any time (in
Supervisor mode), it should be configured in the reset initialization
sequence before enabling interrupts.

 SIC_IMASK[31] provides a mask for the core double-fault
condition:

• If the condition is unmasked and the core detects a double-fault
condition, a hardware reset is generated.

• If the condition is masked and the core detects a double-fault con-
dition, core behavior may be unreliable.

Figure 4-8. System Interrupt Mask Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Mask Register (SIC_IMASK)

Reset = 0x0000 0000

Timer 2 Interrupt

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled.

PF Interrupt A
PF Interrupt B

Memory DMA Interrupt
Software Watchdog Timer
Interrupt

Real-Time Clock Interrupt
USB Interrupt
PCI Interrupts

SPORT0 RX Interrupt

SPORT0 TX Interrupt

SPORT1 RX Interrupt

SPORT1 TX Interrupt

Timer 1 Interrupt
Timer 0 Interrupt
UART1 TX Interrupt

UART1 RX Interrupt

UART0 TX Interrupt
UART0 RX Interrupt
SPI1 Interrupt
SPI0 Interrupt

Core Double-fault
Reset Mask

0xFFC0 0C10

ADSP-BF535 Blackfin Processor Hardware Reference 4-29

Program Sequencer

System Interrupt Assignment Registers (SIC_IARx)
The relative priority of peripheral interrupts can be set by mapping the
peripheral interrupt to the appropriate general-purpose interrupt level in
the core. The mapping is controlled by the System Interrupt Assignment
register settings, as detailed in Figure 4-9, Figure 4-10, and Figure 4-11. If
more than one interrupt source is mapped to the same interrupt, they are
logically OR’ed, with no hardware prioritization. Software can prioritize
the interrupt processing as required for a particular system application.

 For general-purpose interrupts with multiple peripheral interrupts
assigned to them, take special care to ensure that software correctly
processes all pending interrupts sharing that input. Software is
responsible for prioritizing the shared interrupts.

Figure 4-9. System Interrupt Assignment Register 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

System Interrupt Assignment Register 0 (SIC_IAR0)

Real-Time Clock Interrupt
IVG select

PCI Interrupt
IVG select

USB Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 0 0 1 0 0 0 1 0 0 0 1 0 0 0

SPORT 1 TX Interrupt
IVG select

SPORT1 RX Interrupt
IVG select

Reset = 0x1111 0000

SPORT0 RX Interrupt
IVG select

SPORT0 TX Interrupt
IVG select

0xFFC0 0C04

Events and Sequencing

4-30 ADSP-BF535 Blackfin Processor Hardware Reference

These registers can be read or written at any time in Supervisor mode. It is
advisable, however, to configure them in the Reset interrupt service rou-
tine before enabling interrupts. To prevent spurious or lost interrupt
activity, these registers should be written to only when all peripheral inter-
rupts are disabled.

Figure 4-10. System Interrupt Assignment Register 1

Figure 4-11. System Interrupt Assignment Register 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 1 1 0 0 1 1 0 0 1 0 0 0 1

SPI0 Interrupt
IVG select

SPI1 Interrupt
IVG select

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

10 1 0 0 0 1 0 0 0 0 1 1 0 0 1

UART1 RX Interrupt
IVG select

UART1 TX Interrupt
IVG select

Timer 1 Interrupt
IVG select

Timer 0 Interrupt
IVG select

UART0 TX Interrupt
IVG select

UART0 RX Interrupt
IVG select

System Interrupt Assignment Register 1 (SIC_IAR1)

Reset = 0x4433 33220xFFC0 0C08

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 1 1

System Interrupt Assignment Register 2 (SIC_IAR2)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 1 1 0 0 1 0 1 0 1 0 1 0 1 0

Memory DMA Interrupt
IVG select

PF Interrupt B
IVG select

Software Watchdog Timer
Interrupt
IVG select

Reset = 0x0006 6554

Timer 2 Interrupt
IVG select

PF Interrupt A
IVG select

0xFFC0 0C0C

ADSP-BF535 Blackfin Processor Hardware Reference 4-31

Program Sequencer

Table 4-8 defines the value to write in SIC_IARx to configure a peripheral
for a particular IVG priority.

Event Controller Registers
The Event Controller uses three MMRs to coordinate pending event
requests. Each register is 16 bits wide, and each bit, N, corresponds to the
EVT[N] event in the Event Vector Table. The registers are:

• IMASK - interrupt mask

• ILAT - interrupt latch

• IPEND - interrupts pending

The Event Controller updates ILAT and IPEND. The IPEND register is
read-only in Supervisor mode. The ILAT and IMASK registers may be both
read and written in Supervisor mode, with the exception of ILAT[0],
which is read-only. None of the three registers can be accessed in User
mode.

Table 4-8. IVG-Select Definitions

General-purpose Interrupt Value in SIC_IAR

IVG7 0

IVG8 1

IVG9 2

IVG10 3

IVG11 4

IVG12 5

IVG13 6

IVG14 7

IVG15 8

Event Controller Registers

4-32 ADSP-BF535 Blackfin Processor Hardware Reference

Core Interrupt Mask Register (IMASK)
Each bit in IMASK indicates when the corresponding interrupt is enabled
(see Figure 4-12). When an interrupt bit is set in the ILAT register, the
corresponding interrupt is accepted only if the corresponding bit is also set
in the IMASK register. The IMASK register may be read and written in
Supervisor mode.

Only the emulator may mask emulation events. Refer to “Blackfin Proces-
sor’s Debug” on page 20-1.

Core Interrupt Latch Register (ILAT)
Each bit in ILAT indicates when the corresponding event is latched (see
Figure 4-13). The bit is reset before the first instruction in the corre-
sponding ISR is executed. Writes to any ILAT bit can only occur when the
corresponding IMASK bit is set. Otherwise, the write is ignored. This write
functionality to ILAT is provided for cases where latched interrupt requests
need to be cleared (cancelled) instead of servicing them.

Figure 4-12. Core Interrupt Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Core Interrupt Mask Register (IMASK)

IVHW (Hardware Error)

Reset = 0x001F

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10

IVG9

For all bits, 0 - Interrupt masked, 1 - Interrupt enabled.

0xFFE0 2104

ADSP-BF535 Blackfin Processor Hardware Reference 4-33

Program Sequencer

When an event is serviced, its corresponding bit in ILAT is cleared. The
RAISE N instruction causes specific bits in ILAT to be set and can trigger
only events IVG15-IVG7, IVTMR, IVHW, NMI and RST.

Only the JTAG TRST pin can clear ILAT[0].

Core Interrupts Pending Register (IPEND)
The IPEND register keeps track of all currently nested interrupts (see
Figure 4-14). Each bit in IPEND indicates that the corresponding interrupt
is currently active or nested at some level. It may be read in Supervisor
mode, but not written. The IPEND[4] bit is used by the Event Controller
to temporarily disable interrupts on entry and exit to an interrupt service
routine.

When an event is processed, the corresponding bit in IPEND is set. The
least significant bit in IPEND that is currently set indicates the interrupt
that is currently being serviced. At any given time, IPEND holds the current
status of all nested events.

Figure 4-13. Core Interrupt Latch Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Core Interrupt Latch Register (ILAT)

RST (Reset) - RO
NMI (Non-Maskable Interrupt) - RO

EMU (Emulation) - RO

IVHW (Hardware Error)

Reset = 0x000X

EVX (Exception) - RO

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

Reset value for bit 0 is emulator-dependent. For all bits, 0 - Interrupt not latched, 1 - Interrupt latched.

0xFFE0 210C

Global Enabling/Disabling of Interrupts

4-34 ADSP-BF535 Blackfin Processor Hardware Reference

Global Enabling/Disabling of Interrupts
General-purpose interrupts can be globally disabled with the CLI Dreg
instruction and re-enabled with the STI Dreg instruction, both of which
are only available in Supervisor mode. Reset, NMI, emulation, and excep-
tion events cannot be globally disabled. Globally disabling interrupts
clears IMASK[15:5] after saving IMASK’s current state. See “Enable Inter-
rupts” and “Disable Interrupts” in the “External Event Management”
chapter in Blackfin Processor Programming Reference.

When program code is too time critical to be delayed by an interrupt, dis-
able general-purpose interrupts, but be sure to re-enable them at the
conclusion of the code sequence.

Figure 4-14. Core Interrupt Pending Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Core Interrupt Pending Register (IPEND)

RST (Reset)
NMI (Non-Maskable Interrupt)

EMU (Emulation)

IVHW (Hardware Error)

Reset = 0x0010

EVX (Exception)

IVTMR (Core Timer)
IVG7
IVG8

IVG15
IVG14
IVG13
IVG12
IVG11
IVG10
IVG9

RO. For all bits except bit 4, 0 - No interrupt pending, 1 - Interrupt pending or active.

Global Interrupt Disable
0 - Interrupts globally enabled
1 - Interrupts globally disabled

Set and cleared by event
controller only.

0xFFE0 2108

ADSP-BF535 Blackfin Processor Hardware Reference 4-35

Program Sequencer

Event Vector Table
The Event Vector Table (EVT) is a hardware table with sixteen entries
that are each 32 bits wide. The EVT contains an entry for each possible
core event. Entries are accessed as MMRs, and each entry can be pro-
grammed at reset with the corresponding vector address for the interrupt
service routine. When an event occurs, instruction fetch starts at the
address location in the EVT entry for that event.

The ADSP-BF535 processor architecture allows unique addresses to be
programmed into each of the interrupt vectors; that is, interrupt vectors
are not determined by a fixed offset from an interrupt vector table base
address. This approach minimizes latency by not requiring a long jump
from the vector table to the actual ISR code.

Table 4-9 lists events by priority. Each event has a corresponding bit in
the event state registers ILAT, IMASK, and IPEND.

Table 4-9. Core Event Vector Table

Event Number Event Class Name MMR Location Notes

EVT0 Emulation EMU 0xFFE0 2000 Highest priority. Vec-
tor address is provided
by JTAG.

EVT1 Reset RST 0xFFE0 2004 Read-only.

EVT2 NMI NMI 0xFFE0 2008

EVT3 Exception EVX 0xFFE0 200C

EVT4 Reserved Reserved 0xFFE0 2010 Reserved vector.

EVT5 Hardware Error IVHW 0xFFE0 2014

EVT6 Core Timer IVTMR 0xFFE0 2018

EVT7 Interrupt 7 IVG7 0xFFE0 201C

EVT8 Interrupt 8 IVG8 0xFFE0 2020

EVT9 Interrupt 9 IVG9 0xFFE0 2024

Event Vector Table

4-36 ADSP-BF535 Blackfin Processor Hardware Reference

Emulation
An emulation event causes the processor to enter Emulation mode, in
which instructions are read from the JTAG interface. It is the highest pri-
ority interrupt to the core.

For detailed information about emulation, see “Blackfin Processor’s
Debug” on page 20-1.

Reset
The reset interrupt (RST) can be initiated via the RESET pin or through
expiration of the Watchdog timer. The EVT[1] register holds the address
at which the processor begins execution after reset. This location differs
from that of other interrupts in that its content is read-only. Writes to this
address have no effect.

The core has an output that indicates that a double-fault has occurred.
This is a non-recoverable state. The SIC (via SIC_IMASK) can be pro-
grammed to send a reset request if a double-fault condition is detected.
Subsequently, the reset request forces a system reset for core and
peripherals.

EVT10 Interrupt 10 IVG10 0xFFE0 2028

EVT11 Interrupt 11 IVG11 0xFFE0 202C

EVT12 Interrupt 12 IVG12 0xFFE0 2030

EVT13 Interrupt 13 IVG13 0xFFE0 2034

EVT14 Interrupt 14 IVG14 0xFFE0 2038

EVT15 Interrupt 15 IVG15 0xFFE0 203C Lowest priority.

Table 4-9. Core Event Vector Table (Cont’d)

Event Number Event Class Name MMR Location Notes

ADSP-BF535 Blackfin Processor Hardware Reference 4-37

Program Sequencer

The reset vector is determined by the ADSP-BF535 processor system. It
points to the start of the on-chip boot ROM, or to the start of external
asynchronous memory, depending on the state of the BMODE[2:0] pins.
Refer to Table 4-10.

If the BMODE[2:0] pins indicate either booting from flash or serial ROM,
the reset vector points to the start of the internal boot ROM, where a
small bootstrap kernel resides. The bootstrap code reads the System Reset
Configuration register (SYSCR) to determine the value of the BMODE[2:0]
pins, which determine the appropriate boot sequence. For information
about the ADSP-BF535 processor boot ROM, see “Booting Methods” on
page 3-17.

If the BMODE[2:0] pins indicate to bypass boot ROM, the reset vector
points to the start of the external asynchronous memory region. In this
mode, the internal boot ROM is not used. To support reads from this
memory region, the external bus interface unit (EBIU) uses the default
external memory configuration that results from hardware reset.

Table 4-10. Reset Vector Addresses

Boot Source BMODE[2:0] Execution Start
Address

Bypass boot ROM; execute from 16-bit-wide exter-
nal memory (Async Bank 0)

000 0x2000 0000

Use boot ROM to boot from 8-bit flash 001 0xF000 0000

Use boot ROM to configure and load boot code
from SPI0 serial ROM (8-bit address range)

010 0xF000 0000

Use boot ROM to configure and load boot code
from SPI0 serial ROM (16-bit address range)

011 0xF000 0000

Reserved 100-111 N/A

Event Vector Table

4-38 ADSP-BF535 Blackfin Processor Hardware Reference

NMI (Non-Maskable Interrupt)
The NMI entry is reserved for a non-maskable interrupt, which can be
generated by the Watchdog timer or by the NMI input signal to the
ADSP-BF535 processor. An example of an event that requires immediate
processor attention, and thus is appropriate as an NMI, is a power-down
warning. During the execution of the NMI service routine, exceptions are
suspended, as they have a lower priority than the NMI interrupt.

 If an exception occurs during handling of an NMI, servicing the
exception is delayed until completion of the NMI.

Exceptions
Exception events are synchronous to the instruction that generates the
exception; that is, the exception is taken before the instruction is allowed
to complete. Note, however, the architecture can generate exceptions for
memory references that meet any of these criteria:

• Misalign

• Miss the ICPLB (for an instruction fetch), or DCPLB (for a load or
store)

• Violate the protection specification for the CPLB entry

• Generate multiple hits on the respective CPLB

• Receive a bus error response on an instruction fetch

For more information about alignment and CPLBs, see “Memory” on
page 6-1.

ADSP-BF535 Blackfin Processor Hardware Reference 4-39

Program Sequencer

As shown in Table 4-11, exceptions can be services or error conditions.
The value in the Type column indicates whether the exception for that
row is a service or an error condition.

• For services (S), the return address is the address of the instruction
that follows the exception, because a service is never re-executed.

• To allow the program to resume execution on return from a service
routine, the processor state must be preserved before the excepting
instruction.

• For error conditions (E), the return address is the address of the
instruction that caused the exception, because some types of errors,
such as a page fault, require that the offending instruction be
re-executed.

• Determining whether the instruction is re-executed depends on the
excepting instruction and error condition and is determined by the
exception handler. When the instruction should be re-executed,
the return address is used. When the instruction should not be
re-executed, the exception handler must advance the return address
by the instruction length.

• EXCAUSE[5:0] is placed in the Sequencer Status register (SEQSTAT),
depending on the type of event.

Event Vector Table

4-40 ADSP-BF535 Blackfin Processor Hardware Reference

Table 4-11. Events That Cause Exceptions

Exception EXCAUSE[5:0] Type:
(E) error
(S) service
See note 1.

Notes/Examples

Force Exception
instruction EXCPT with
4-bit field m

m-field S Instruction provides 4 bits of
EXCAUSE.

Single step 0x10 S When the processor is in single step
mode, every instruction generates an
exception. Primarily used for debug-
ging.

Exception caused by
an emulation trace
buffer overflow

0x11 S The processor takes this exception
when the trace buffer overflows (only
when enabled by the trace unit con-
trol register).

Undefined instruction 0x21 E May be used to emulate instructions
that are not defined for a particular
processor implementation.

Illegal instruction
combination

0x22 E See section for multi-issue rules in the
Blackfin Processor Programming Refer-
ence.

Data access CPLB pro-
tection violation

0x23 E Attempted read or write to supervisor
resource, or illegal data memory
access. Supervisor resources are regis-
ters and instructions that are reserved
for Supervisor use: Supervisor only
registers, all MMRs, and Supervisor
only instructions. (A simultaneous,
dual access to two MMRs using the
Data Address Generators generates
this type of exception.) In addition,
this entry is used to signal a protec-
tion violation caused by disallowed
memory access, and it is defined by
the Memory Management Unit
(MMU) cacheability protection loo-
kaside buffer (CPLB).

ADSP-BF535 Blackfin Processor Hardware Reference 4-41

Program Sequencer

Data access mis-
aligned address viola-
tion

0x24 E Attempted misaligned data memory
or data cache access.

Unrecoverable event 0x25 E For example, an exception generated
while processing a previous exception.

Data access CPLB miss 0x26 E Used by the MMU to signal a CPLB
miss on a data access.

Data access multiple
CPLB hits

0x27 E More than one CPLB entry matches
data fetch address.

Exception caused by
an emulation watch-
point match

0x28 E There is a watchpoint match, and one
of the EMUSW bits in the Watch-
point Instruction Address Control
register (WPIACTL) is set.

Instruction fetch
access exception

0x29 E Error from instruction fetch, for
example, instruction bus parity error.

Instruction fetch mis-
aligned address viola-
tion

0x2A E Attempted misaligned instruction
cache fetch. On a misaligned instruc-
tion fetch exception, the return
address provided in RETX is the desti-
nation address which is misaligned,
rather than the address of the offend-
ing instruction. For example, if an
indirect branch to a misaligned
address held in P0 is attempted, the
return address in RETX is equal to P0,
rather than to the address of the
branch instruction. (Note that this
exception can never be generated
from PC-relative branches, only from
indirect branches.)

Instruction fetch
CPLB protection vio-
lation

0x2B E Illegal instruction fetch access (mem-
ory protection violation).

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE[5:0] Type:
(E) error
(S) service
See note 1.

Notes/Examples

Event Vector Table

4-42 ADSP-BF535 Blackfin Processor Hardware Reference

Note 1: For services (S), the return address is the address of the instruction
that follows the exception. For errors (E), the return address is the address
of the excepting instruction.

If an instruction causes multiple exceptions, only the exception with the
highest priority is taken. Table 4-12 ranks exceptions by descending
priority.

Instruction fetch
CPLB miss

0x2C E CPLB miss on an instruction fetch.

Instruction fetch mul-
tiple CPLB hits

0x2D E More than one CPLB entry matches
instruction fetch address.

Illegal use of supervi-
sor resource

0x2E E Attempted to use a Supervisor register
or instruction from User mode.
Supervisor resources are registers and
instructions that are reserved for
Supervisor use: Supervisor only regis-
ters, all MMRs, and Supervisor only
instructions.

Table 4-12. Exceptions by Descending Priority

Priority Exception EXCAUSE

1 Unrecoverable Event 0x25

2 I-Fetch Multiple CPLB Hits 0x2D

3 I-Fetch Misaligned Access 0x2A

4 I-Fetch Protection Violation 0x2B

5 I-Fetch CPLB Miss 0x2C

6 I-Fetch Access Exception 0x29

7 Watchpoint Match 0x28

Table 4-11. Events That Cause Exceptions (Cont’d)

Exception EXCAUSE[5:0] Type:
(E) error
(S) service
See note 1.

Notes/Examples

ADSP-BF535 Blackfin Processor Hardware Reference 4-43

Program Sequencer

Exceptions While Executing an Exception Handler
While executing the exception handler, avoid issuing an instruction that
generates another exception. Generating an exception before the exception
handler finishes results in these actions:

• The generated exception is not taken.

• The EXCAUSE field in SEQSTAT is updated with an unrecoverable
event code.

• The address of the offending instruction is saved in RETX.

8 Undefined Instruction 0x21

9 Illegal Combination 0x22

10 Illegal use protected resource 0x2E

11 DAG0 Multiple CPLB Hits 0x27

12 DAG0 Misaligned Access 0x24

13 DAG0 Protection Violation 0x23

14 DAG0 CPLB Miss 0x26

15 DAG1 Multiple CPLB Hits 0x27

16 DAG1 Misaligned Access 0x24

17 DAG1 Protection Violation 0x23

18 DAG1 CPLB Miss 0x26

19 EXCPT instruction m- field

20 Single Step 0x10

21 Trace Buffer 0x11

Table 4-12. Exceptions by Descending Priority (Cont’d)

Priority Exception EXCAUSE

Hardware Error Interrupt

4-44 ADSP-BF535 Blackfin Processor Hardware Reference

To determine whether an exception occurred while an exception handler
was executing, check SEQSTAT at the end of the exception handler. If an
exception has occurred, register RETX holds the address of the instruction
that caused the exception.

At the end of the exception handler, the return address is used to return
normally to lower interrupt level code. Whether an exception occurs dur-
ing the execution of an NMI, emulation, or reset event, the same set of
actions occurs.

Hardware Error Interrupt
The hardware error interrupt indicates a hardware error or system mal-
function. Hardware errors occur when logic external to the core, such as a
memory bus controller, is unable to complete a data transfer (read or
write) and asserts the core’s error input signal. Such hardware errors
invoke the hardware error interrupt (interrupt IVHW in the Event Vector
Table (EVT) and ILAT, IMASK, and IPEND registers). The hardware error
interrupt service routine can then read the cause of the error from the
5-bit HWERRCAUSE field appearing in the Sequencer Status register (SEQ-
STAT) and respond accordingly.

The hardware error interrupt is generated by:

• Attempted access to a reserved memory location

• Attempted access to uninitialized external memory space

• Bus parity errors

• Internal error conditions within the core, such as Performance
Monitor overflow

• The DMA Access Bus Comparator interrupt (attempted write to
an active DMA register)

ADSP-BF535 Blackfin Processor Hardware Reference 4-45

Program Sequencer

• Peripheral errors

• Bus timeout errors

The list of supported hardware conditions, with their related HWERRCAUSE
codes, appears in Table 4-13. The bit code for the most recent error
appears in the HWERRCAUSE field. If multiple hardware errors occur simulta-
neously, only the last one can be recognized and serviced. The core does
not support prioritizing, pipelining, or queuing multiple error codes. The
hardware error interrupt remains active as long as any of the error condi-
tions remain active.

Table 4-13. Hardware Conditions Causing Hardware Error Interrupts

Hardware
Condition

HWERRCAUSE
(binary)

HWERRCAUSE
(hexadecimal)

Notes / Examples

DMA Bus
Comparator
Source

0b00001 0x01 The Compare Hit output is
routed directly to the Hardware
Error interrupt input. The Com-
pare Hit interrupt is maskable by
writing to the DMA Bus Control
Comparator register (DB_CCOMP).
See “DMA Bus Debug Registers”
on page 20-27.

Performance
Monitor
Overflow

0b10010 0x12 Refer to “Performance Monitor-
ing Unit” on page 20-19.

Error accessing
reserved or unde-
fined memory

0b10110 0x16 An access to reserved or uninitial-
ized memory was attempted

Error accessing
reserved or unde-
fined memory

0b10111 0x17 An access to reserved or uninitial-
ized memory was attempted

RAISE instruction 0b11000 0x18 Software issued a RAISE instruc-
tion to invoke the hardware error
interrupt (IVHW).

Reserved All other bit combi-
nations.

All other bit combi-
nations.

Servicing Interrupts

4-46 ADSP-BF535 Blackfin Processor Hardware Reference

Core Timer
The Core Timer Interrupt (IVTMR) is triggered when the core timer value
reaches zero. See “Timers” on page 16-1.

General-Purpose Interrupts (IVG7-IVG15)
General-purpose interrupts are used for any event that requires processor
attention. For instance, a DMA controller may use them to signal the end
of a data transmission, or a serial communications device may use them to
signal transmission errors.

Software can also trigger general-purpose interrupts by using the RAISE
instruction. The RAISE instruction can force events for interrupts
IVG15-IVG7, IVTMR, IVHW, NMI, and RST, but not for exceptions and emula-
tion (EVX and EMU, respectively).

 It is recommended to reserve the two lowest priority interrupts
(IVG15 and IVG14) for software interrupt handlers.

Servicing Interrupts
The CEC has a single interrupt queueing element per event, as a bit in the
ILAT register. The appropriate ILAT bit is set when an interrupt rising edge
is detected (which takes 2 core clock cycles) and cleared when the respec-
tive IPEND register bit is set. The IPEND bit indicates that the event vector
has entered the core pipeline. At this point, the CEC recognizes and
queues the next rising edge event on the corresponding interrupt input.
The minimum latency from the rising edge transition of the general-pur-
pose interrupt to the IPEND output asserted is three core clock cycles.
However, the latency can be much higher, depending on the core’s activ-
ity level and state.

ADSP-BF535 Blackfin Processor Hardware Reference 4-47

Program Sequencer

To determine when to service an interrupt, the controller logically ANDs
the three quantities in ILAT, IMASK, and the current processor priority
level.

Servicing the highest priority interrupt involves these actions:

1. The interrupt vector in the EVT becomes the next fetch address.

On an interrupt, all instructions currently in the pipeline are
aborted. On a service exception, all instructions after the excepting
instruction are aborted. On an error exception, the excepting
instruction and all instructions after it are aborted.

2. The return address is saved in the appropriate return register.

The return register is RETI for interrupts, RETX for exceptions, RETN
for NMIs, and RETE for debug emulation. The return address is the
address of the instruction after the last-executed instruction from
normal program flow.

3. Processor mode is set to the level of the event taken.

If the event is an NMI, exception, or interrupt, the processor mode
is Supervisor. If the event is an emulation exception, the processor
mode is Emulation.

4. Before the first instruction starts execution, the corresponding
interrupt bit in ILAT is cleared and the corresponding bit in IPEND
is set.

Bit IPEND[4] is also set to disable all interrupts until the return
address in RETI is saved.

Interrupts With and Without Nesting

4-48 ADSP-BF535 Blackfin Processor Hardware Reference

Interrupts With and Without Nesting
Interrupts are handled either with or without nesting. If interrupts do not
require nesting, all interrupts are disabled during the interrupt service
routine. Note, however, that emulation, NMI, and exceptions are still
accepted by the system.

When the system does not need to support nested interrupts, there is no
need to store the return address held in RETI. Only the portion of the
machine state used in the interrupt service routine must be saved in the
Supervisor stack. To return from a non-nested interrupt service routine,
only the RTI instruction must be executed, because the return address is
already held in the RETI register.

Figure 4-15 shows an example of interrupt handling where interrupts are
globally disabled for the entire interrupt service routine.

If nested interrupts are desired, the return address to the interrupted point
in the original interrupt service routine (ISR) must be explicitly saved and
subsequently restored when execution of the nested ISR has completed.
Nesting is enabled by pushing the return address currently held in RETI
to the Supervisor stack ([--SP] = RETI), which is typically done early in
the ISR prolog of the lower priority interrupt. This clears the global inter-
rupt disable bit IPEND[4], enabling interrupts. Next, all registers that are
modified by the interrupt service routine are saved onto the Supervisor
stack. Processor state is stored in the Supervisor stack, not in the User
stack. Hence, the instructions to push RETI ([--SP]=RETI) and pop RETI
(RETI=[SP++]) use the Supervisor stack.

ADSP-BF535 Blackfin Processor Hardware Reference 4-49

Program Sequencer

Figure 4-15. Non-Nested Interrupt Handling

Interrupts disabled during
this interval.

A1I3I0 I1A8

ISR return
address A1 is
known after RTI
decode.

A0

Pipeline
stage

IF1
IF2
DC
AC
EX1
EX2
EX3
WB

ILAT

IPEND

0x0100

0x8000

ILAT
IPEND

0x0000
0x8110

ILAT
IPEND

0x0000
0x8000

Instruction I3 is RTI.
Clear IPEND[8],
IPEND[4], jump to
return address.
Instruction A1 is
return address.

Interrupt is accept-
ed. Bit ILAT[8]
cleared and
IPEND[8] set.
Return address
placed in RETI. Bit
IPEND[4] set.
Change processor
mode.

Interrupt 8 is
latched, so bit
ILAT[8] is set. I0
is first instruction
in ISR. Assume
that low priority
interrupt is cur-
rently being ser-
viced. A0 is the
last executed
instruction.
Dashed lines
indicate aborts
(A1-A8), which
are re-issued at
the completion of
the interrupt.

Interrupts With and Without Nesting

4-50 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 4-16 illustrates that by pushing RETI onto the stack, interrupts can
be re-enabled during an ISR, resulting in only a short duration where
interrupts are globally disabled.

Figure 4-16. Nested Interrupt Handling

Interrupts disabled
during this interval.

A1I3I0 I1A8

Note that ISR
return may be
accelerated by
popping RETI ear-
lier, and starting
return address
fetch earlier. The
cost is a longer
per iod during
which interrupt
system is off.

A0

Pipeline
stage

IF1
IF2
DC
AC
EX1
EX2
EX3
WB

ILAT

IPEND

0x0100

0x8000 ILAT
IPEND

0x0000
0x8110

ILAT
IPEND

0x0000
0x8000

Instruction I3 is RTI.
Clear IPEND[8],
IPEND[4], jump to
return address.
Instruction A1 is
return address.

Inter rupt is accepted.
Bit ILAT[8] cleared
and IPEND[8] set.
Return address
placed in RETI. Bit
IPEND[4] set until
RETI is saved.
Change processor
mode.

Interrupt 8 is
latched, so bit
ILAT[8] is set. I0
is first instruc-
tion in ISR.
Assume that
low priority
interrupt is cur-
rently being ser-
viced. A0 is the
last executed
instruction.
Dashed lines
indicate abor ts
(A1-A8), which
are re-issued at
the completion
of the interrupt.

I2

ILAT
IPEND

0x0000
0x8110

Instruction I2 pops
RETI, and sets
IPEND[4] to disable
interrupts until RTI.

Interrupts
disabled during

this interval.

ILAT
IPEND

0x0000
0x8100

Instruction I1 pushes
RETI on stack. Bit
IPEND[4] cleared. All
interrupts of priority
higher than 8 enabled.

ADSP-BF535 Blackfin Processor Hardware Reference 4-51

Program Sequencer

Example Prolog Code for Nested Interrupt Service
Routine

Listing 4-2. Prolog Code for Nested ISR

/* Prolog code for nested interrupt service routine. Push return

address in RETI into Supervisor stack, ensuring that interrupts

are back on. Until now, interrupts have been suspended. */

ISR:

[--SP] = RETI ; /* Enables interrupts and saves return address to

stack */

[--SP] = ASTAT ;

[--SP] = FP ;

[-- SP] = (R7:0, P5:0) ;

/* Body of service routine. Note that none of the processor

resources (accumulators, DAGs, loop counters and bounds) have

been saved. It's assumed that this interrupt service routine does

not use them. */

Example Epilog Code for Nested Interrupt Service
Routine

Listing 4-3. Epilog Code for Nested ISR

/* Epilog code for nested-interrupt service routine. */

/* Restore ASTAT, Data, and Pointer registers. Popping RETI from

Supervisor stack ensures that interrupts are suspended between

load of return address and RTI. */

(R7:0, P5:0) = [SP++] ;

FP = [SP++] ;

ASTAT = [SP++] ;

RETI = [SP++] ;

Interrupts With and Without Nesting

4-52 ADSP-BF535 Blackfin Processor Hardware Reference

/* Execute RTI, which jumps to return address, re-enables inter-

rupts, and switches to User mode if this is the last nested

interrupt in service. */

RTI;

The RTI instruction causes the return from an interrupt. The return
address is popped into the RETI register from the stack, an action that sus-
pends interrupts from the time that RETI is restored until RTI finishes
executing. The suspension of interrupts prevents a subsequent interrupt
from corrupting the RETI register.

Next, the RTI instruction clears the highest priority bit that is currently set
in IPEND. The processor then jumps to the address pointed to by the value
in the RETI register and re-enables the interrupts by clearing IPEND[4].

Logging of Nested Interrupt Requests
The SIC detects level-sensitive interrupt requests from the peripherals.
The CEC provides edge-sensitive detection for its general-purpose inter-
rupts (IVG7-IVG15). Consequently, the SIC generates a synchronous
interrupt pulse to the CEC and then waits for interrupt acknowledgement
from the CEC. When the interrupt has been acknowledged by the core
(via assertion of the appropriate IPEND output), the SIC generates another
synchronous interrupt pulse to the CEC if the peripheral interrupt is still
asserted. This way, the system does not lose peripheral interrupt requests
that occur during servicing of another interrupt.

Because multiple interrupt sources can map to a single core processor gen-
eral-purpose interrupt, multiple pulse assertions from the SIC can occur
simultaneously, before, or during interrupt processing for an interrupt
event that is already detected on this interrupt input. For a shared inter-
rupt, the IPEND interrupt acknowledge mechanism described above
re-enables all shared interrupts. If any of the shared interrupt sources are

ADSP-BF535 Blackfin Processor Hardware Reference 4-53

Program Sequencer

still asserted, at least one pulse is again generated by the SIC. The
Interrupt Status registers indicate the current state of the shared interrupt
sources.

Self-Nesting Mode
The nesting method described in the previous section allows an interrupt
of higher priority to preempt interrupts of lower priority. However, it
does not allow one interrupt to preempt another interrupt of the same pri-
ority, nor does it allow nesting at the same priority level.

When self-nested interrupts are not enabled, general-purpose interrupts
can only preempt general-purpose interrupts of a lower priority (higher
index). For example, when processing interrupt 7, another interrupt 7
request remains pending (ILAT[7] = 1), but the interrupt is not serviced
until the current interrupt 7 service routine executes an RTI.

On the other hand, when self-nesting interrupts are enabled, an event
interrupts processing at the same interrupt service level, provided RETI is
pushed to the stack and interrupts are enabled. For example, when pro-
cessing interrupt 7 (IPEND[7:0] = 0x80), another interrupt 7 request
causes software to again vector to the interrupt 7 service routine.

 Self-nesting of interrupts applies only to core interrupts or inter-
rupts generated using the RAISE instruction; it is not allowed with
peripheral interrupts.

For the interrupt system to allow self-nesting, software must set bit SNEN
(self-nesting enable) in SYSCFG. See Figure 4-3 on page 4-6. In self-nesting
mode, the system sets the LSB of the address in the return register RETI
(RETI[0]) to indicate an incoming interrupt has the same priority as an
interrupt that is currently being serviced. The bit RETI[0] is automatically
set on entry into an interrupt service routine, and it is simply used as a sta-
tus bit to flag the processor that the current ISR is self-nesting.

Interrupts With and Without Nesting

4-54 ADSP-BF535 Blackfin Processor Hardware Reference

The return-from-interrupt instruction, RTI, is sensitive to the state of
RETI[0] and SNEN. When both RETI[0] and SNEN are set, RTI clears only
the global disable bit IPEND[4]. However, when self-nesting mode is dis-
abled (SNEN = 0), RTI clears both IPEND[4] and the IPEND bit that
corresponds to the current interrupt level.

The SNEN bit should be set once in the reset service routine and not
changed again during normal interrupt processing.

Since the LSB of the RETI register is used to store the self-nesting state,
avoid changing the contents of the RETI register when self-nesting is
enabled, except for saving and restoring the register to the stack.

Exception Handling
Interrupts and exceptions treat instructions in the pipeline differently:

• When an interrupt occurs, all instructions in the pipeline are
aborted.

• When an exception occurs, all instructions in the pipeline after the
excepting instruction are aborted. For service exceptions, the
excepting instruction is also aborted.

Because exceptions, NMIs, and emulation events have a dedicated return
register, guarding the return address is optional. Consequently, the push
and pop instructions for exceptions, NMIs, and emulation events do not
affect the interrupt system.

Note, however, the return instructions for exceptions (RTX, RTN, and RTE)
do clear the least significant bit currently set in IPEND.

ADSP-BF535 Blackfin Processor Hardware Reference 4-55

Program Sequencer

Deferring Exception Processing

Exception handlers are usually long routines, because they must discrimi-
nate among several exception causes and take corrective action
accordingly. The length of the routines may result in long periods during
which the interrupt system is, in effect, suspended.

To avoid lengthy suspension of interrupts, write the exception handler to
identify the exception cause, but defer the processing to a low priority
interrupt. To set up the low priority interrupt handler, use the Force
Interrupt / Reset instruction (RAISE).

 When deferring the processing of an exception to lower priority
interrupt IVGx, the system must guarantee that IVGx is entered
before returning to the application-level code that issued the excep-
tion. If a pending interrupt of higher priority than IVGx occurs, it is
acceptable to enter the high priority interrupt before IVGx.

Example Code for an Exception Handler

Listing 4-4. Exception Routine Handler With Deferred Processing

/* Determine exception cause by examining EXCAUSE field in SEQ-

STAT (first save contents of R0, P0, P1 and ASTAT in Supervisor

SP) */

[--SP] = R0 ;

[--SP] = P0 ;

[--SP] = P1 ;

[--SP] = ASTAT ;

R0 = SEQSTAT ;

/* Mask the contents of SEQSTAT, and leave only EXCAUSE in R0 */

R0 <<= 26 ;

R0 >>= 26 ;

/* Using jump table EVTABLE, jump to the event pointed by R0 */

P0 = R0 ;

Interrupts With and Without Nesting

4-56 ADSP-BF535 Blackfin Processor Hardware Reference

P1 = _EVTABLE ;

P0 = P1 + (P0 << 1) ;

R0 = W [P0] (Z) ;

P1 = R0 ;

JUMP (PC + P1) ;

/* The entry point for an event is as follows. Here, processing

is deferred to low-priority interrupt IVG15. Also, parame-

ter-passing would typically be done here. */

_EVENT1:

RAISE 15 ;

JUMP.S _EXIT ;

/* Entry for event at IVG14 */

_EVENT2:

RAISE 14 ;

JUMP.S _EXIT ;

/* comments for other events */

/* At the end of handler, restore R0, P0, P1 and ASTAT, and

return. */

_EXIT:

ASTAT = [SP++] ;

P1 = [SP++] ;

P0 = [SP++] ;

R0 = [SP++] ;

RTX ;

_EVTABLE:

.byte2 addr_event1;

.byte2 addr_event2;

...

.byte2 addr_eventN;

/* The jump table EVTABLE holds 16-bit address offsets for each

event. With offsets, this code is position-independent and the

table is small.

+--------------+

| addr_event1 | _EVTABLE

ADSP-BF535 Blackfin Processor Hardware Reference 4-57

Program Sequencer

+--------------+

| addr_event2 | _EVTABLE + 2

+--------------+

| . . . |

+--------------+

| addr_eventN | _EVTABLE + 2N

+--------------+

*/

Example Code for an Exception Routine

Listing 4-5 provides an example framework for an exception routine that
would be jumped to from an exception handler such as that described
above.

Listing 4-5. Exception Routine

[--SP] = RETX ; /* Push return address on stack. No change to

ILAT or IPEND. */

/* Put body of exception routine here. */

RETX = [SP++] ; /* To return, pop return address and jump. No

change to ILAT or IPEND. */

RTX ; /* Return from exception. Clear IPEND[3] (Exception Pend-

ing bit). */

Executing RTX, RTN, or RTE in a Lower Priority Event

Instructions RTX, RTN, and RTE are designed to return from an exception,
NMI, or emulator event, respectively. Do not use them to return from a
lower-priority event. To return from an interrupt, use the RTI instruction.
Failure to use the correct instruction produces the following results.

Interrupts With and Without Nesting

4-58 ADSP-BF535 Blackfin Processor Hardware Reference

• If a program mistakenly uses RTX, RTN, or RTE to return from an
interrupt, the core branches to the address in the corresponding
return register (RETX, RETN, RETE) and leaves IPEND unaffected.

• If a program mistakenly uses RTI or RTX to return from an NMI
routine, the core branches to the address in the corresponding
return register (RETI, RETX), and clears the bit in IPEND that corre-
sponds to the return instruction.

• In the case of RTX, bit IPEND[3] is cleared. In the case of RTI, the bit
of the highest priority interrupt in IPEND is cleared.

Recommendation for Allocating the System Stack

The software stack model for processing exceptions implies that the
Supervisor stack must never generate an exception while the exception
handler is saving its state. However, if the Supervisor stack grows past a
CPLB entry or SRAM block, it may, in fact, generate an exception.

To guarantee that the Supervisor stack never generates an exception—
never overflows past a CPLB entry or SRAM block while executing the
exception handler—calculate the maximum space that all interrupt service
routines and the exception handler occupy while they are active, and then
allocate this amount of SRAM memory.

Latency in Servicing Events
In some DSP architectures, if instructions are executed from external
memory and an interrupt occurs while the instruction fetch operation is
underway, then the interrupt is held off from being serviced until the cur-
rent fetch operation has completed. Consider a processor operating at
300 MHz and executing code from external memory with 100 ns access
times. Depending on when the interrupt occurs in the instruction fetch
operation, the interrupt service routine (ISR) may be held off for around
30 instruction clock cycles. When cache line fill operations are taken into
account, the ISR could be held off for many hundreds of cycles.

ADSP-BF535 Blackfin Processor Hardware Reference 4-59

Program Sequencer

In order for high-priority interrupts to be serviced with the least latency
possible, the ADSP-BF535 processor allows any high latency fill operation
to be completed at the system level, while an ISR executes from L1 mem-
ory. Figure 4-17 illustrates this concept.

If an ADSP-BF535 processor instruction load operation misses the L1
Instruction Cache and generates a high latency line fill operation on the
SBIU, then when an interrupt occurs, it is not held off until the fill has
completed. Instead, the processor executes the ISR in its new context, and
the cache fill operation completes in the background.

Note the ISR must reside in L1 cache or SRAM memory and must not
generate a cache miss, an L2 memory access, or a peripheral access, as the
SBIU is already busy completing the original cache line fill operation. If a

Figure 4-17. Minimizing Latency in Servicing an ISR

CLOCK

FETCH

INSTRUCTION
DATA

SERVICED
HERE

FETCH

INSTRUCTION
DATA

INTERRUPT
OCCURRING

HERE

SERVICED
HERE

OTHER PROCESSORS

ADSP-BF535 DSP

INTERRUPT
OCCURRING HERE

Interrupts With and Without Nesting

4-60 ADSP-BF535 Blackfin Processor Hardware Reference

load or store operation is executed in the ISR requiring the SBIU, then the
ISR is held off while the original external access is completed, before initi-
ating the new load or store.

If the ISR finishes execution before the load operation has completed,
then the ADSP-BF535 processor continues to stall, waiting for the fill to
complete.

This same behavior is also exhibited for stalls involving reads of slow data
memory or peripherals.

Writes to slow memory generally do not show this behavior, as the writes
are deemed to be single cycle, being immediately transferred to the write
buffer for subsequent execution.

For detailed information about cache and memory structures, see “Mem-
ory” on page 6-1.

ADSP-BF535 Blackfin Processor Hardware Reference 5-1

5 DATA ADDRESS
GENERATORS

The Data Address Generators (DAGs) of the ADSP-BF535 processor gen-
erate addresses for data moves to and from memory. By generating
addresses, the DAGs let programs refer to addresses indirectly, using a
DAG register instead of an absolute address.

The DAG architecture, which appears in Figure 5-1, supports several
functions that minimize overhead in data access routines. These functions
include:

• Supply address and post-modify—provides an address during a
data move and auto-increments/decrements the stored address for
the next move.

• Supply address with offset—provides an address from a base with
an offset without incrementing the original address pointer.

• Modify address—increments or decrements the stored address
without performing a data move.

• Bit-reversed carry address—provides a bit-reversed carry address
during a data move without reversing the stored address.

The DAG subsystem comprises two DAG Arithmetic units, eight Pointer
registers, four Index registers and four complete sets of related Modify,
Base and Length registers. These registers hold the values that the DAGs
use to generate addresses. The types of registers are:

5-2 ADSP-BF535 Blackfin Processor Hardware Reference

• Index registers, I[3:0]. 32-bit Index registers hold an address
pointer to memory. For example, the instruction R3 = [I0] loads
the data value found at the memory location pointed to by the reg-
ister I0. Index registers can be used for 16- and 32-bit memory
accesses.

• Modify registers, M[3:0]. 32-bit Modify registers provide the
increment or step size by which an index register is post-modified
during a register move.

• For example, the R0 = [I0 += M1] instruction directs the DAG to:

• Output the address in register I0

• Load the contents of the memory location pointed to by I0
into R0

• Then modify the contents of I0 by the value contained in
the M1 register.

• Base and Length registers, B[3:0] and L[3:0]. 32-bit Base and
Length registers set up the range of addresses and the starting
address of a circular buffer. For more information on circular buf-
fers, see “Addressing Circular Buffers” on page 5-6.

• Pointer registers, P[5:0], FP, and SP. 32-bit Pointer registers hold
an address pointer to memory. The P[5:0] field, FP (Frame
Pointer), and SP (Stack Pointer) can be manipulated and used in
various instructions. For example, the instruction R3 = [P0] loads
the register R3 with the data value found at the memory location
pointed to by the register P0. The Pointer registers have no effect
on circular buffer addressing. They can be used for 8-, 16-, and
32-bit memory accesses.

ADSP-BF535 Blackfin Processor Hardware Reference 5-3

Data Address Generators

 Do not assume the L-registers are automatically initialized to zero
for linear addressing. The I-, M-, L-, and B-registers contain ran-
dom values after reset. For each I-register used, programs must
initialize the corresponding L-registers to zero for linear addressing
or to the buffer length for circular buffer addressing.

All DAG registers must be initialized individually. Initializing a
B-register does not automatically initialize the I-register.

Figure 5-1. ADSP-BF535 Processor DAG Registers

 Data Address Generator Registers (DAGs)

P0

P1

P2

P3

P4

P5

User SP

Supervisor SP

Supervisor only register. Attempted read or
write in User mode causes an exception error.

FP

I0

I2

I3

L0 B0

B3L3

L2

L1 B1

B2

I1

M0

M3

M1

M2

Addressing With DAGs

5-4 ADSP-BF535 Blackfin Processor Hardware Reference

Addressing With DAGs
The DAGs can generate an address that is incremented by a value or by a
register. In post-modify addressing, the DAG outputs the I-register value
unchanged; then the DAG adds an M-register or immediate value to the
I-register.

In Indexed addressing, the DAG adds a small offset to the value in the
P-register, but does not update the P-register with this new value, thus
providing an offset for that particular memory access.

The ADSP-BF535 processor addressing is always byte aligned. Depending
on the type of data used, increments and decrements to the DAG registers
can be by 1, 2, or 4 to match the 8-bit, 16-bit, or 32-bit accesses.

For example, consider this instruction:
R0 = [P3++] ;

This instruction fetches a 32-bit word, pointed to by the value in P3, and
places it in R0. It then post-increments P3 by four, maintaining alignment
with the 32-bit access.
R0.L = W [I3++] ;

This instruction fetches a 16-bit word, pointed to by the value in I3 and
places it in the low half of the destination register, R0.L. It then
post-increments I3 by two, maintaining alignment with the 16-bit access.
R0 = B [P3++] (X) ;

This instruction fetches an 8-bit word, pointed to by the value in P3 and
places it in the destination register, R0. It then post-increments P3 by one,
maintaining alignment with the 8-bit access. The byte value may be
zero-extended or sign-extended into the 32-bit data register.

Instructions using Index registers use an M-register or a small immediate
value (+/– 2 or 4) as the modifier. Instructions using Pointer registers use
a small immediate value or another P-register as the modifier. For instruc-
tion summary details, see Table 5-3 on page 5-17.

ADSP-BF535 Blackfin Processor Hardware Reference 5-5

Data Address Generators

Frame and Stack Pointers
In many respects, the Frame and Stack Pointer registers perform like the
other P-registers, P[5:0]. They can act as general pointers in any of the
load/store instructions. For example, R1 = B[SP] (Z). However, FP and SP
have additional functionality.

The Stack Pointer registers include:

• a User Stack Pointer (USP in Supervisor mode, SP in User mode)

• a Supervisor Stack Pointer (SP in Supervisor mode)

The User Stack Pointer register and the Supervisor Stack Pointer register
are accessed using the register alias SP. Depending on the current proces-
sor operating mode, only one of these registers is active and accessible as
SP:

• In User mode, any reference to SP (for example, stack pop
R0 = [SP++] ;) implicitly uses the USP as the effective address.

• In Supervisor mode, the same reference to SP (for example,
R0 = [SP++] ;) implicitly uses the Supervisor Stack Pointer as
the effective address.

• To manipulate the User Stack Pointer for code running in Supervi-
sor mode, use the register alias USP. When in Supervisor mode, a
register move from USP (for example, R0 = USP ;) moves the cur-
rent User Stack Pointer into R0. The register alias USP can only be
used in Supervisor mode.

Some load/store instructions use FP and SP exclusively, for example:

• FP-indexed load/store, which extends the addressing range for
16-bit encoded load/stores

• Stack push/pop instructions

Addressing With DAGs

5-6 ADSP-BF535 Blackfin Processor Hardware Reference

Addressing Circular Buffers
The DAGs support addressing circular buffers—a range of addresses con-
taining data that the DAG steps through repeatedly, wrapping around to
repeat stepping through the same range of addresses in a circular pattern.

The DAGs use four types of DAG registers for addressing circular buffers.
For circular buffering, the registers operate this way:

• The Index (I) register contains the value that the DAG outputs on
the address bus.

• The Modify (M) register contains the post-modify amount (posi-
tive or negative) that the DAG adds to the I-register at the end of
each memory access.

• Any M-register can be used with any I-register. The modify value
can also be an immediate value instead of an M-register. The size of
the modify value must be less than or equal to the length (L-regis-
ter) of the circular buffer.

• The Length (L) register sets the size of the circular buffer and the
address range through which the DAG circulates the I-register.

• L is positive and cannot have a value greater than 231 – 1. If an
L-register’s value is zero, its circular buffer operation is disabled.

• The Base (B) register or the B-register plus the L-register is the
value with which the DAG compares the modified I-register value
after each access.

To address a circular buffer, the DAG steps the index pointer (I-register)
through the buffer values, post-modifying and updating the index on each
access with a positive or negative modify value from the M-register.

ADSP-BF535 Blackfin Processor Hardware Reference 5-7

Data Address Generators

If the index pointer falls outside the buffer range, the DAG subtracts the
length of the buffer (L-register) from the value or adds the length of the
buffer to the value, wrapping the index pointer back to a point inside the
buffer.

The starting address that the DAG wraps around is called the buffer’s base
address (B-register). There are no restrictions on the value of the base
address for circular buffers that contains 8-bit data. Circular buffers that
contain 16- and 32-bit data must be 16-bit aligned and 32-bit aligned,
respectively. Circular buffering uses post-modify addressing.

• As seen in Figure 5-2, on the first post-modify access to the buffer,
the DAG outputs the I-register value on the address bus, then
modifies the address by adding the modify value:

• If the updated index value is within the buffer length, the DAG
writes the value to the I-register.

• If the updated index value exceeds the buffer length, the DAG sub-
tracts (for a positive modify value) or adds (for a negative modify
value) the L-register value before writing the updated index value
to the I-register.

In equation form, these post-modify and wraparound operations work as
follows.

• If M is positive:

• Inew = Iold + M

if Iold + M < buffer base + length (end of buffer)

• Inew = Iold + M – L

if Iold + M buffer base + length (end of buffer)

Addressing With DAGs

5-8 ADSP-BF535 Blackfin Processor Hardware Reference

• If M is negative:

• Inew = Iold + M

if Iold + M buffer base (start of buffer)

• Inew = Iold + M + L

if Iold + M < buffer base (start of buffer)

Figure 5-2. Circular Data Buffers

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

1

2

3

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

4

5

6

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

7

8

9

0X0

0X1

0X2

0X3

0X4

0X5

0X6

0X7

0X8

0X9

0XA

10

11

LENGTH = 11
BASE ADDRESS = 0X0
MODIFIER = 4

The columns above show the sequence in order of locations accessed in one pass.
The sequence repeats on subsequent passes.

ADSP-BF535 Blackfin Processor Hardware Reference 5-9

Data Address Generators

Addressing With Bit-Reversed Addresses
To obtain results in sequential order, programs need bit-reversed carry
addressing for some algorithms, particularly Fast Fourier Transform
(FFT) calculations. To satisfy the requirements of these algorithms, the
DAG’s bit-reversed addressing feature permits repeatedly subdividing data
sequences and storing this data in bit-reversed order. For detailed infor-
mation about bit-reversed addressing, see the Modify-Increment
instruction in Blackfin Processor Programming Reference.

Indexed Addressing With Index and
Pointer Registers

Indexed addressing uses the value in the Index or Pointer register as an
effective address. This instruction can load or store 16-bit or 32-bit values.
The default is a 32-bit transfer. If a 16-bit transfer is required, then the W
designator is used to preface the load or store.

For example:

R0 = [I2] ;

loads a 32-bit value from an address pointed to by I2 and stores it in the
destination register R0.

R0.H = W [I2] ;

loads a 16-bit value from an address pointed to by I2 and stores it in the
16-bit destination register R0.H.

[P1] = R0 ;

is an example of a 32-bit store operation.

Pointer registers can be used for 8-bit loads and stores.

Indexed Addressing With Index and Pointer Registers

5-10 ADSP-BF535 Blackfin Processor Hardware Reference

For example:

B [P1++] = R0 ;

stores the 8-bit value from the R0 register in the address pointed to by the
P1 register, then increments the P1 register.

Auto-Increment and Auto-Decrement Addressing
Auto-increment addressing updates the Pointer and Index registers after
the access. The amount of increment depends on the word size. An access
of 32-bit words results in an update of the pointer by 4. A 16-bit word
access updates the pointer by 2, and an access of an 8-bit word updates the
pointer by 1. Both 8-bit and 16-bit read operations may specify either to
sign-extend or zero-extend the contents into the destination register.
Pointer registers may be used for 8-, 16-, and 32-bit accesses while Index
registers may be used only for 16- and 32-bit accesses.

For example:

R0 = W [P1++] (Z) ;

loads a 16-bit word into a 32-bit destination register from an address
pointed to by the P1 Pointer register. The Pointer is then incremented by
2 and the word is zero-extended to fill the 32-bit destination register.

Auto-decrement works the same way by decrementing the address after
the access.

For example:

R0 = [I2--] ;

loads a 32-bit value into the destination register and decrements the Index
register by 4.

ADSP-BF535 Blackfin Processor Hardware Reference 5-11

Data Address Generators

Pre-Modify Stack Pointer Addressing
The only pre-modify instruction in the ADSP-BF535 processor uses the
Stack Pointer register, SP. The address in SP is decremented by four and
then used as an effective address for the store. The instruction
[--SP] = R0 ; is used for stack push operations and can support only a
32-bit word transfer.

Indexed Addressing With Immediate Offset
Indexed addressing allows programs to obtain values from data tables,
with reference to the base of that table. The Pointer register is modified by
the immediate field and then used as the effective address. The value of
the Pointer register is not updated.

For example:
P5 = [P1 + 0x10] ;

is an acceptable offset, but
P5 = [P1 + 0x11] ;

causes an alignment exception.

 Be sure the offset is divisible by the word-transfer size, measured in
bytes; for example, for a 32-bit transfer, the offset should be a mul-
tiple of 4; for a 16-bit transfer, the offset should be a multiple of 2.
Correct offsets ensure memory alignment.

Post-Modify Addressing
Post-modify addressing uses the value in the Index or Pointer registers as
the effective address and then modifies it by the contents of another regis-
ter. Pointer registers are modified by another Pointer register. Index
registers are modified by a Modify register. This instruction does not sup-
port the Pointer registers as a destination register, nor does it support
byte-addressing.

Modifying DAG and Pointer Registers

5-12 ADSP-BF535 Blackfin Processor Hardware Reference

For example:

R5 = [P1++P2] ;

loads a 32-bit value into the R5 register, found in the memory location
pointed to by the P1 register.

The value in the P2 register is then added to the value in the P1 register.

For example:

R2 = W [P4++P5] (Z) ;

loads a 16-bit word into the low half of the destination register R2 and
zero-extends it to 32-bits. It adds the value the pointer P4 by the value of
the pointer P5.

For example:

R2 = [I2++M1] ;

loads a 32-bit word into the destination register R2. It updates the value in
the Index register I2 by the value in the Modify register M1.

Modifying DAG and Pointer Registers
The DAGs support an operation that modifies an address value in an
index register without outputting an address. The operation, address-
modify, is useful for maintaining pointers.

The instruction modifies addresses in any DAG Index and Pointer register
(I[3:0], P[5:0], FP, SP) without accessing memory. If the Index register’s
corresponding B- and L-registers are set up for circular buffering, the
instruction performs the specified buffer wraparound (if needed).

ADSP-BF535 Blackfin Processor Hardware Reference 5-13

Data Address Generators

The syntax is similar to post-modify addressing (index += modifier). For
Index registers, an M-register is used as the modifier. For Pointer registers,
another P-register is used as the modifier.

Consider the example, I1 += M2 ;

This instruction adds M2 to I1 and updates I1 with the new value.

Memory Address Alignment
The ADSP-BF535 processor requires proper memory alignment to be
maintained for the data size being accessed. Unless exceptions are dis-
abled, violations of memory alignment cause an alignment exception.
Some instructions—for example, many of the Video ALU instructions—
automatically disable alignment exceptions because the data may not be
properly aligned when stored in memory. Alignment exceptions may be
disabled by issuing the DISALGNEXPT instruction in parallel with a
load/store operation.

Normally, the memory system requires two address alignments:

• 32-bit word load/stores are accessed on four-byte boundaries,
meaning the two least significant bits of the address are b#00.

• 16-bit word load/stores are accessed on two-byte boundaries,
meaning the least significant bit of the address must be b#0.

Memory Address Alignment

5-14 ADSP-BF535 Blackfin Processor Hardware Reference

Table 5-1 summarizes the types of transfers and transfer sizes that the
addressing modes support.

 Be careful when using the DISALGNEXPT instruction, because it dis-
ables automatic detection of memory alignment errors.

Table 5-1. Types of Transfers Supported and Transfer Sizes

Addressing Mode Types of Transfers
Supported

Transfer Sizes

Auto-increment
Auto-decrement
Indirect
Indexed

To and from Data
Registers

LOADS:
32-bit word
16-bit, zero-extended half word
16-bit, sign-extended half word
8-bit, zero-extended byte
8-bit, sign-extended byte
STORES:
32-bit word
16-bit half word
8-bit byte

To and from Pointer
Registers

LOAD:
32-bit word
STORE:
32-bit word

Post-increment To and from Data
Registers

LOADS:
32-bit word
16-bit half word to Data Register high half
16-bit half word to Data Register low half
16-bit, zero-extended half word
16-bit, sign-extended half word
STORES:
32-bit word
16-bit half word from Data Register high half
16-bit half word from Data Register low half

ADSP-BF535 Blackfin Processor Hardware Reference 5-15

Data Address Generators

Table 5-2 summarizes the addressing modes. In the table, an asterisk (*)
indicates that the ADSP-BF535 processor supports the addressing mode.

Table 5-2. Addressing Modes

P Auto-
inc

P Auto-
dec

P
Indirect

P
Indexed

FP-
Indexed

P
Post-
inc

I Auto-
inc

I
Auto-
dec

I
Indirect

I Post-inc

[P0++] [P0--] [P0] [P0+im] [FP+im] [P0++P1] [I0++] [I0--] [I0] [I0++M0]

32-bit
Word

* * * * * * * * * *

16-bit
Half
Word

* * * * * * * *

8-bit
Byte

* * * *

Sign/
Zero
Extend

* * * * *

Data
Register

* * * * * * * * * *

Pointer
Register

* * * * *

Data
Register
Half

* * * * *

DAG Instruction Summary

5-16 ADSP-BF535 Blackfin Processor Hardware Reference

DAG Instruction Summary
Table 5-3 lists the DAG instructions. For more information on assembly
language syntax, see Blackfin Processor Programming Reference. In the table,
note the meaning of these symbols:

• Dreg denotes any Data Register File register.

• Dreg_lo denotes the lower 16 bits of any Data Register File
register.

• Dreg_hi denotes the upper 16 bits of any Data Register File
register.

• Preg denotes any Pointer register, FP or SP register.

• Ireg denotes any DAG Index register.

• Mreg denotes any DAG Modify register.

• W denotes a 16-bit wide value.

• B denotes an 8-bit wide value.

• immA denotes a signed, A-bits wide, immediate value.

• uimmAmB denotes an unsigned, A-bits wide, immediate value that
is an even multiple of B.

• Z denotes the zero-extension qualifier.

• X denotes the sign-extension qualifier.

• BREV denotes the bit-reversal qualifier.

Blackfin Processor Programming Reference more fully describes the options
that may be applied to these instructions and the sizes of immediate fields.

ADSP-BF535 Blackfin Processor Hardware Reference 5-17

Data Address Generators

DAG instructions do not affect the ASTAT Status flags.

Table 5-3. DAG Instruction Summary

Instruction

Preg = [Preg] ;

Preg = [Preg ++] ;

Preg = [Preg --] ;

Preg = [Preg + uimm6m4] ;

Preg = [Preg + uimm17m4] ;

Preg = [Preg – uimm17m4] ;

Preg = [FP – uimm7m4] ;

Dreg = [Preg] ;

Dreg = [Preg ++] ;

Dreg = [Preg --] ;

Dreg = [Preg + uimm6m4] ;

Dreg = [Preg + uimm17m4] ;

Dreg = [Preg – uimm17m4] ;

Dreg = [Preg ++ Preg] ;

Dreg = [FP – uimm7m4] ;

Dreg = [Ireg] ;

Dreg = [Ireg ++] ;

Dreg = [Ireg --] ;

Dreg = [Ireg ++ Mreg] ;

Dreg =W [Preg] (Z) ;

Dreg =W [Preg ++] (Z) ;

Dreg =W [Preg --] (Z) ;

Dreg =W [Preg + uimm5m2] (Z) ;

Dreg =W [Preg + uimm16m2] (Z) ;

DAG Instruction Summary

5-18 ADSP-BF535 Blackfin Processor Hardware Reference

Dreg =W [Preg – uimm16m2] (Z) ;

Dreg =W [Preg ++ Preg] (Z) ;

Dreg = W [Preg] (X) ;

Dreg = W [Preg ++] (X) ;

Dreg = W [Preg --] (X) ;

Dreg =W [Preg + uimm5m2] (X) ;

Dreg =W [Preg + uimm16m2] (X) ;

Dreg =W [Preg – uimm16m2] (X) ;

Dreg =W [Preg ++ Preg] (X) ;

Dreg_hi = W [Ireg] ;

Dreg_hi = W [Ireg ++] ;

Dreg_hi = W [Ireg --] ;

Dreg_hi = W [Preg] ;

Dreg_hi = W [Preg ++ Preg] ;

Dreg_lo = W [Ireg] ;

Dreg_lo = W [Ireg ++] ;

Dreg_lo = W [Ireg --] ;

Dreg_lo = W [Preg] ;

Dreg_lo = W [Preg ++ Preg] ;

Dreg = B [Preg] (Z) ;

Dreg = B [Preg ++] (Z) ;

Dreg = B [Preg --] (Z) ;

Dreg = B [Preg + uimm15] (Z) ;

Dreg = B [Preg – uimm15] (Z) ;

Dreg = B [Preg] (X) ;

Dreg = B [Preg ++] (X) ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

ADSP-BF535 Blackfin Processor Hardware Reference 5-19

Data Address Generators

Dreg = B [Preg --] (X) ;

Dreg = B [Preg + uimm15] (X) ;

Dreg = B [Preg – uimm15] (X) ;

[Preg] = Preg ;

[Preg ++] = Preg ;

[Preg --] = Preg ;

[Preg + uimm6m4] = Preg ;

[Preg + uimm17m4] = Preg ;

[Preg – uimm17m4] = Preg ;

[FP – uimm7m4] = Preg ;

[Preg] = Dreg ;

[Preg ++] = Dreg ;

[Preg --] = Dreg ;

[Preg + uimm6m4] = Dreg ;

[Preg + uimm17m4] = Dreg ;

[Preg – uimm17m4] = Dreg ;

[Preg ++ Preg] = Dreg ;

[FP – uimm7m4] = Dreg ;

[Ireg] = Dreg ;

[Ireg ++] = Dreg ;

[Ireg --] = Dreg ;

[Ireg ++ Mreg] = Dreg ;

W [Ireg] = Dreg_hi ;

W [Ireg ++] = Dreg_hi ;

W [Ireg --] = Dreg_hi ;

W [Preg] = Dreg_hi ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

DAG Instruction Summary

5-20 ADSP-BF535 Blackfin Processor Hardware Reference

W [Preg ++ Preg] = Dreg_hi ;

W [Ireg] = Dreg_lo ;

W [Ireg ++] = Dreg_lo ;

W [Ireg --] = Dreg_lo ;

W [Preg] = Dreg_lo ;

W [Preg] = Dreg ;

W [Preg ++] = Dreg ;

W [Preg --] = Dreg ;

W [Preg + uimm5m2] = Dreg ;

W [Preg + uimm16m2] = Dreg ;

W [Preg – uimm16m2] = Dreg ;

W [Preg ++ Preg] = Dreg_lo ;

B [Preg] = Dreg ;

B [Preg ++] = Dreg ;

B [Preg --] = Dreg ;

B [Preg + uimm15] = Dreg ;

B [Preg – uimm15] = Dreg ;

Preg = imm7 (X) ;

Preg = imm16 (X) ;

Preg += Preg (BREV) ;

Ireg += Mreg (BREV) ;

Preg –= Preg ;

Ireg –= Mreg ;

Table 5-3. DAG Instruction Summary (Cont’d)

Instruction

ADSP-BF535 Blackfin Processor Hardware Reference 6-1

6 MEMORY

The ADSP-21535 processor supports a hierarchical memory model with
different performance and size parameters, depending on the memory
location within the hierarchy. Level 1 (L1) memories are faster memories
located closer to the processor core, whereas Level 2 (L2) memories are
memory systems farther from the core, typically with longer access laten-
cies. The faster L1 memories, which include an instruction, data, and
scratchpad memory as part of the Blackfin core, are accessed in a single
cycle. The L2 memories, which include an on-chip SRAM and off-chip
mapping to synchronous, asynchronous and PCI devices, provide much
larger memory spaces with higher latencies.

The focus of this chapter is on-chip L1 and L2 memory. The off-chip L2
memory is explained in more detail in “External Bus Interface Unit” on
page 18-1. The PCI memory space, which is also part of the off-chip L2
memory, is further described in “PCI Bus Interface” on page 13-1.

Terminology
The following terminology is used to describe memory.

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

Terminology

6-2 ADSP-BF535 Blackfin Processor Hardware Reference

cache line.

Same as cache block. In this chapter, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

direct mapped.

Cache architecture in which each line has only one place in which it can
appear in the cache. Also described as 1-Way associative.

dirty (or modified).

A state bit, stored along with the tag, indicating whether the data in the
data cache line has been changed since it was copied from the source
memory and, therefore, needs to be updated in that source memory.

exclusive, clean.

The state of a data cache line, indicating that the line is valid and that the
data contained in the line matches that in the source memory. The data in
a clean cache line does not need to be written to source memory before it
is replaced.

fully associative.

Cache architecture in which each line can be placed anywhere in the
cache.

index.

Address portion that is used to select an array element (for example, a line
index).

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

ADSP-BF535 Blackfin Processor Hardware Reference 6-3

Memory

least recently used (LRU) algorithm.

Replacement algorithm, used by cache, that first replaces lines that have
been unused for the longest time.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

little endian.

The native data store format of the ADSP-21535 processor. Words and
half words are stored in memory (and registers) with the least significant
byte at the lowest byte address and the most significant byte in the highest
byte address of the data storage location.

replacement policy.

The function used by the ADSP-BF535 processor to determine which line
to replace on a cache miss. Often, an LRU algorithm is employed.

set.

A group of N-line storage locations in the Ways of an N-Way cache,
selected by the INDEX field of the address (see Figure 6-6 on page 6-18).

set-associative.

Cache architecture that limits line placement to a number of sets (or
Ways).

Terminology

6-4 ADSP-BF535 Blackfin Processor Hardware Reference

tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

valid.

A state bit, stored with the tag, indicating that the corresponding tag and
data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Way.

An array of line storage elements in an N-Way cache (see Figure 6-6 on
page 6-18).

write back.

A cache write policy, also known as copyback. The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to the source memory. The modified cache
line is not written to the source memory when it is replaced.

ADSP-BF535 Blackfin Processor Hardware Reference 6-5

Memory

Memory Architecture
The ADSP-BF535 processor has a unified 4GB address range that spans a
combination of on-chip and off-chip memory and memory-mapped I/O
resources. Of this range, 285 MB of address space are dedicated to inter-
nal, on-chip resources. The ADSP-BF535 processor populates portions of
this internal memory space with:

• A set of L1 and L2 Static Random Access Memories (SRAM)

• A set of memory-mapped registers (MMRs) and

• A boot Read Only Memory (ROM)

A portion of the internal L1 SRAM can also be configured to run as cache.
The ADSP-BF535 processor also provides support for an external memory
space that includes PCI space, asynchronous memory space, and synchro-
nous DRAM (SDRAM) space. See “PCI Bus Interface” on page 13-1 and
“External Bus Interface Unit” on page 18-1, for a detailed discussion of
each of these memory regions and the controllers that support them.

The diagram in Figure 6-1 provides an overview of the ADSP-BF535 pro-
cessor system memory map. Note that the architecture does not define a
separate I/O space. All resources are mapped through the flat 32-bit
address space. The memory is byte addressable.

As shown in Figure 6-1, L1 instruction and data memories occupy 52 KB
of internal memory space:

• 16 KB of instruction SRAM/cache

• 32 KB of data SRAM/cache (two 16 KB banks)

• 4 KB of data scratchpad SRAM

Memory Architecture

6-6 ADSP-BF535 Blackfin Processor Hardware Reference

An on-chip SRAM provides 256 KB of L2 memory space. For systems
using some or all ADSP-BF535 processor L1 memory as cache, the
on-chip L2 SRAM memory system can help provide deterministic,
bounded memory access times.

The upper portion of internal memory space is allocated to the core and
system MMRs of the ADSP-BF535 processor. Accesses to this area are
allowed only when the processor is in Supervisor mode or Emulation
mode (see “Operating Modes and States” on page 3-1).

Figure 6-1. ADSP-BF535 Processor Memory Map

PCI Configuration Space Port (4 byte)

PCI Configuration Registers (64 Kbyte)

Reserved

PCI I/O Space (64 Kbyte)

Reserved

PCI Memory Space (128 Mbyte)

Reserved

Async Memory Bank 3 (64 Mbyte)

Async Memory Bank 2 (64 Mbyte)

Async Memory Bank 1 (64 Mbyte)

Async Memory Bank 0 (64 Mbyte)

SDRAM Memory Bank 3
(16 MB - 128 MB)*

SDRAM Memory Bank 2
(16 MB - 128 MB)*

SDRAM Memory Bank 1
(16 MB - 128 MB)*

SDRAM Memory Bank 0
(16 MB - 128 MB)*

0xEEFF FFFC

0xEEFF FF00

0xEEFE FFFF

0xEEFE 0000

0xE7FF FFFF

0xE000 0000

0x2FFF FFFF

0x2C00 0000

0x2800 0000

0x2400 0000

0x2000 0000

0x1800 0000

0x1000 0000

0x0800 0000

0x0000 0000

0xEF00 0000

External Memory Map

Core Memory-Mapped Registers (2 Mbyte)

Reserved

Scratchpad SRAM (4 Kbyte)

Instruction SRAM (16 Kbyte)

System Memory-Mapped Registers (2 Mbyte)

Reserved

Reserved

Data Bank B SRAM (16 Kbyte)

Reserved

Data Bank A SRAM (16 Kbyte)

Reserved

L2 SRAM Memory (256 Kbyte)

Reserved

0xFFFF FFFF

0xFFE0 0000

0xFFB0 0000

0xFF90 4000

0xFF90 0000

0xFF80 4000

0xFF80 0000

0xF003 FFFF

0xF000 0000

0xEF00 0000

0xFFC0 0000

0xFFB0 1000

0xFFA0 4000

0xFFA0 0000

Internal Memory Map

* The addresses shown for the SDRAM banks reflect a fully populated SDRAM array with 512 Mbytes of memory. If any
bank contains less than 128 Mbytes of memory, it would only extend to the length of the real memory systems and the
end address would become the start address of the next bank. This would continue for all four banks, with any remaining
space between the end of Memory Bank 3 and the beginning of Async Memory Bank 0 at address 0x2000 0000 treated
as reserved address space.

ADSP-BF535 Blackfin Processor Hardware Reference 6-7

Memory

The lowest 1 KB of internal memory space is occupied by the boot ROM
of the ADSP-BF535 processor. Depending on the booting option selected,
the appropriate boot program is executed from this memory space when
the ADSP-BF535 processor is reset (see “Booting Methods” on
page 3-17).

Within the external memory map, the PCI address range consists of PCI
memory, PCI I/O space and PCI configuration space. In addition, four
banks are available for SDRAM. Each bank can vary in size from 16 MB
to 128 MB. An additional four banks of asynchronous memory space are
also available. Each of the asynchronous banks is 64 MB.

Figure 6-2 shows the overall memory architecture for the ADSP-BF535
processor.

Memory Architecture

6-8 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 6-2. ADSP-BF535 Memory Architecture

MEMORY
MANAGEMENT

UNITL1DATA MEMORY L1 INSTRUCTION MEMORY

L
D
0

L
D
1

S
D

D
A
0

D
A
1

IA
B

ID
B

4K SRAM DCACHE/SRAM ICACHE/SRAM

CONTROL

PROCESSOR

CORE D0BUS CORED1 BUS CORE I BUS

32 32 32 32 32 6432

SYSL1 BUS

SYSTEM BUS INTERFACE UNIT (SBIU)

32 KB
BLOCK 0
SRAM

MEMORY

32 KB
BLOCK 7
SRAM

MEMORY

...

256 KB L2 SRAM

CORE L2BUS SYS L2 BUS

PCI

PCI MEMORY
AND I/O

EBIU

ASYNCHRONOUS
AND

SYNCHRONOUS
MEMORY

PERIPHERAL ACCESS BUS
(PAB)

DMAACCESS BUS (DAB)

EXTERNAL ACCESS BUS
(EAB)

EXTERNAL MASTERED BUS
(EMB)

ADSP-BF535 Blackfin Processor Hardware Reference 6-9

Memory

Internal Memory
The ADSP-BF535 processor L1 memory system performance provides
high bandwidth and low latency. Because SRAMs provide deterministic
access time and very high throughput, DSP systems have traditionally
achieved performance improvements by providing fast SRAM on chip.
The ADSP-BF535 processor supports this memory architecture for appli-
cations that require direct control over access time.

The addition of instruction and data caches (SRAMs with cache control
hardware) provides both high performance and a simple programming
model. Caches eliminate the need to explicitly manage data movement
into and out of the L1 memories. Code can be ported to or developed for
the ADSP-BF535 processor quickly without requiring performance opti-
mization for the memory organization.

The ADSP-BF535 processor L1 memory provides:

• A modified Harvard architecture, allowing up to three core mem-
ory accesses per clock cycle (one 64-bit instruction fetch, and two
32-bit data references)

• Simultaneous system DMA and core accesses

• Fast SRAM access for critical processor algorithms and fast context
switching

• Instruction and data cache options for microcontroller code, excel-
lent High-Level Language (HLL) support, and ease of
programming cache control instructions, such as PREFETCH and
FLUSH

• Memory protection

Memory Architecture

6-10 ADSP-BF535 Blackfin Processor Hardware Reference

Overview of L1 Instruction SRAM

The 16 KB L1 instruction SRAM consists of four 4 KB sub-banks. When
configured as cache, the L1 Instruction Memory is 4-Way set associative.
Consequently, instructions can be brought into four different sub-banks
of cache, decreasing the frequency of cache line replacements and increas-
ing overall performance. Although the entire 16 KB L1 memory must be
configured as an SRAM or a cache, individual sub-banks of L1 instruction
cache can be locked down, allowing further control over the location of
time critical code. The cache locking concept is explained further in
“Instruction Cache Locking” on page 6-24. For more information about
L1 instruction SRAM, see “L1 Instruction SRAM” on page 6-14.

Overview of L1 Data SRAM

The ADSP-BF535 processor provides two 16 KB L1 data SRAM banks
(Data Bank A and Data Bank B). Each 16 KB L1 data bank consists of
four 4 KB sub-banks. This organization—like the L1 Instruction mem-
ory—provides an effective dual port capability that gives the system DMA
controller and the core simultaneous access to the SRAMs, provided that
collisions to the same sub-bank do not occur.

Each 16 KB L1 data bank can be configured to operate either as a cache or
an SRAM. Consequently, the ADSP-BF535 processor can be configured
to run in these configurations:

• 32 KB L1 data SRAM

• 32 KB L1 data cache

• 16 KB L1 data SRAM and 16 KB L1 data cache

Each L1 data bank is a 2-Way set associative structure. Even when one
16KB L1 Data Memory bank is configured as SRAM, the other still func-
tions as a 2-Way cache rather than as a 16 KB direct mapped cache. This
also provides two separate locations that can hold cached data, decreasing
the rate of cache line replacements and increasing overall performance.

ADSP-BF535 Blackfin Processor Hardware Reference 6-11

Memory

When both banks are configured as cache, they operate as two indepen-
dent, 16 KB, 2-Way set associative caches that can be independently
mapped into the Blackfin address space. For more information about L1
data SRAM, see “L1 Data SRAM” on page 6-38.

Overview of Scratchpad Data SRAM

The ADSP-BF535 processor provides a dedicated 4 KB bank of scratch-
pad data SRAM. The scratchpad is independent of the configuration of
the other L1 memory banks and cannot be configured as cache. Typical
applications use the scratchpad data memory where speed is critical. For
example, the User and Supervisor stacks should be mapped to the scratch-
pad memory for the fastest context switching during interrupt handling.

 The L1 memories operate at the core clock frequency (CCLK).

Overview of On-Chip L2 Memory

The on-chip Level 2 (L2) memory provides 256 KB of low latency, high
bandwidth capacity. This memory system is referred to as on-chip L2,
because it forms an on-chip memory hierarchy with L1 memory.
On-chip L2 memory provides much more capacity than L1 memory, but
the latency is higher. The on-chip L2 memory of the ADSP-BF535 pro-
cessor is SRAM and cannot be configured as cache.

For more information about on-chip L2 Memory, see “On-Chip Level 2
(L2) Memory” on page 6-52.

 On-chip and off-chip L2 memories are capable of storing both
instructions and data.

Memory Architecture

6-12 ADSP-BF535 Blackfin Processor Hardware Reference

Level 1 Memory
Figure 6-3 and Figure 6-4 show the Data Memory Control register
(DMEM_CONTROL) and Instruction Memory Control register (IMEM_CONTROL),
respectively. The bits in these registers can be used to configure L1 Data
Memory and L1 Instruction Memory.

The sections after the figures describe the instruction and data memories
in more detail—including SRAM and cache configurations for each type
of L1 memory.

 L1 Instruction Memory can be used only to store instructions, and
L1 Data Memory can be used only to store data.

Data Memory Control Register (DMEM_CONTROL)
The Data Memory Control register (DMEM_CONTROL), shown in Figure 6-3,
contains control bits for the L1 Data Memory. The reset values of the
ENDM and DMC bits indicate that the L1 Instruction Memory is enabled and
configured as SRAM after reset. The ENDCPLB bit is used to enable/disable
the sixteen Cacheability Protection Lookaside Buffers (CPLBs) used for
data (see “L1 Data Cache” on page 6-40).

Instruction Memory Control Register
(IMEM_CONTROL)

The Instruction Memory Control register (IMEM_CONTROL), shown in
Figure 6-4, contains control bits for the L1 Instruction Memory. The
reset values of the ENIM and IMC bits indicate that the L1 Instruction Mem-
ory is enabled and configured as SRAM after reset. The ENICPLB bit is used
to enable/disable the sixteen CPLBs used for instructions (see “L1 Instruc-
tion Cache” on page 6-17).

ADSP-BF535 Blackfin Processor Hardware Reference 6-13

Memory

Figure 6-3. L1 Data Memory Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X XX 0 10 0 0 0 0 000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X

Data Memory Control Register (DMEM_CONTROL)

Reset = Undefined

ENDCPLB (Enable DCPLB)

ENDM (Enable Data Memory)
0 - Disable L1 Data Memory
1 - Enable L1 Data Memory

0 - Disable DCPLB. Flush all
dirty cache lines before
disabling

1 - Enable DCPLB. CPLBs
are disabled during reset.
The reset service routine
must enable CPLBs after
adding entries for the
exception and NMI
service routines.

00 - Both data banks are
SRAM
01 - Reserved
10 - Data Bank A is cache,

Data Bank B is SRAM
11 - Both data banks are

cache

DMC[1:0] (L1 Data Memory
Configure)

DCBS (L1 Data Cache
Bank Select)

This bit has no effect except
when the DMC bits are b#11.

Determines whether Address
bit A[14] or A[23] is used to
select the L1 data cache bank.
0 - If Bit 14 of address is 1,

select L1 Data Memory
Data Bank B; if Bit 14 of
address is 0, select L1 Data
Memory Data Bank A

1 - If Bit 23 of address is 1,
select L1 Data Memory
Data Bank B; if Bit 23 of
address is 0, select L1 Data
Memory Data Bank A

See “Example of Mapping
Cacheable Address Space into
Data Banks” on page 6-41.

0xFFE0 0004

Memory Architecture

6-14 ADSP-BF535 Blackfin Processor Hardware Reference

L1 Instruction Memory
Control bits in the IMEM_CONTROL register can be used to organize all four
sub-banks of the L1 Instruction Memory as:

• A simple SRAM

• A 4-Way, set associative instruction cache

• A cache with as many as four locked Ways

L1 Instruction SRAM

L1 Instruction Memory can be configured as a 16 KB SRAM.

Figure 6-4. L1 Instruction Memory Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1X X X X X X X X X 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

 Instruction Memory Control Register (IMEM_CONTROL)

Reset = Undefined

ENICPLB

ENIMILOC[3:0]
(Icache Lock-by-Way)
0 - Unlock
1 - Lock
For details, see “Instruction
Cache Locking” on page 6-24.

L1 Instruction Memory Configure (IMC)
0 - SRAM
1 - Icache

0 - Disable L1 instruction
memory

1 - Enable L1 instruction
memory

0 - Disable ICPLB
1 - Enable ICPLB. CPLBs

are disabled during reset.
The reset service routine
must enable CPLBs after
adding entries for the
exception and NMI
service routines.

0xFFE0 1004

ADSP-BF535 Blackfin Processor Hardware Reference 6-15

Memory

The ADSP-BF535 core reads the 16 KB instruction memory through the
64-bit wide instruction fetch bus. All addresses from this bus are 64-bit
aligned. Each instruction fetch can return any combination of 16-, 32- or
64-bit instructions (for example, four 16-bit instructions, two 16-bit
instructions and one 32-bit instruction, or one 64-bit instruction).

The DAGs, which are described in Chapter 5, cannot access L1 Instruc-
tion Memory directly. If instruction space must be accessed as data, L2
memory must be used, because it serves as a unified space for both instruc-
tions and data. A DAG reference to instruction memory SRAM space
generates an exception (see “Exceptions” on page 4-38).

Write access to the L1 instruction SRAM memory must be made through
the 64-bit wide system DMA port. Because the SRAM is implemented as
four single ported sub-banks, the instruction memory is effectively dual
ported. Provided that system and core accesses do not collide on the same
sub-bank, effective dual porting of the instruction memory is achieved. If
both system and core attempt to access the same bank, the system DMA
controller has priority over the core instruction fetch.

Alternatively, both the IMC and ENIM bits in the IMEM_CONTROL register can
disable these sub-banks entirely. The configuration state in the control
register can be modified only while in Supervisor mode or Emulation
mode.

 Before changing the configuration state, be sure to flush the cache
or move all modified data from the SRAM, if so configured.

Memory Architecture

6-16 ADSP-BF535 Blackfin Processor Hardware Reference

Table 6-1 lists the memory start locations of the L1 Instruction Memory
sub-banks.

Figure 6-5 describes the bank architecture of the L1 Instruction Memory.

Table 6-1. L1 Instruction Memory Sub-Banks

Memory Sub-Bank Memory Start
Location

0 0xFFA0 0000

1 0xFFA0 1000

2 0xFFA0 2000

3 0xFFA0 3000

Figure 6-5. L1 Instruction Memory Bank Architecture

4 KB SUB-BANK 4 KB SUB-BANK

4 KB SUB-BANK 4 KB SUB-BANK

INSTRUCTION

FILL

DMA

ADSP-BF535 Blackfin Processor Hardware Reference 6-17

Memory

L1 Instruction Cache
The L1 Instruction Memory may also be configured as a flexible, 4-Way
set associative instruction cache. To improve the average access latency for
critical code sections, each Way of the cache can be locked independently.
When the memory is configured as cache, it cannot be accessed directly.

When cache is enabled, memory pages must be defined with Cacheability
Protection Lookaside Buffers (CPLBs). When CPLBs are enabled, any
memory location that is accessed must have an associated page definition
available, or an exception will be generated. CPLBs are described in
“Memory Protection and Properties” on page 6-56.

Figure 6-6 shows the overall Blackfin processor instruction cache
organization.

Cache Lines

As shown in Figure 6-6, the cache consists of a collection of cache lines.
Each cache line is made up of a tag component and a data component:

• The tag component incorporates a 20-bit address tag, least recently
used (LRU) bits, and a Valid bit.

• The data component is made up of four 64-bit words of instruction
data.

The tag and data components of cache lines are stored in the tag and data
memory arrays, respectively.

The address tag consists of the upper 18 bits plus bits 11 and 10 of the
physical address. Bits 12 and 13 of the physical address are not part of the
address tag. Instead, these bits are used to identify the 4 KB memory
sub-bank targeted for the access.

The LRU bits are part of an LRU algorithm used to determine which
cache line should be replaced if a cache miss occurs.

Memory Architecture

6-18 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 6-6. Blackfin Instruction Cache Organization

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32-BYTE LINE 1

32-BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32-BYTE LINE 2

LINE 127

. . .

WAY3

. . .

VALID

<1> <20>

TAG

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3

LINE 127

.
32-BYTE LINE 1

32-BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32-BYTE LINE 2

LINE 127

. . .

WAY2

. . .

VALID

<1> <20>

TAG

32-BYTE LINE
5

32-BYTE LINE
4

32-BYTE LINE
3

LINE
127

.
32-BYTE LINE 0

WAY1VALID

<1> <20>

TAG

LINE ADDRESS TAG
LINE

ADDRESS
INDEX

LINE OFFSET 000

<20> <7> <2> <3>

4:1
MUX

DATA

<64>

32-BYTE LINE 5

32-BYTE LINE
4

32-BYTE LINE 3

LINE
127

.
32-BYTE LINE 1

32-BYTE LINE 0

32-BYTE LINE 5

32-BYTE LINE 4

32-BYTE LINE 3
32-BYTE LINE 2

LINE 127

. . .

WAY0

. . .

VALID

<1> <20>

TAG

SHADED BOXES ACROSS EACH WAY CONSTITUTE A SET

32-BYTE LINE 1
32-BYTE LINE 2

ADSP-BF535 Blackfin Processor Hardware Reference 6-19

Memory

The Valid bit indicates the state of a cache line. A cache line is always
valid or invalid:

• Invalid cache lines have their Valid bit cleared, indicating the line
will be ignored during an address tag compare operation.

• Valid cache lines have their Valid bit set, indicating the line con-
tains valid instruction/data that is consistent with the source
memory.

The tag and data components of a cache line are illustrated in Figure 6-7.

Cache Hits and Misses

A cache hit occurs when the address for an instruction fetch request from
the core matches a valid entry in the cache. Specifically, a cache hit is
determined by comparing the upper 18 bits and bits 11 and 10 of the
instruction fetch address to the address tags of valid lines currently stored
in a cache set. The cache set is selected, using bits 9 through 5 of the
instruction fetch address. If the address tag compare operation results in a
match, a cache hit occurs. If the address tag compare operation does not
result in a match, a cache miss occurs.

Figure 6-7. Cache Line – Tag and Data Portions

 TAG LRU V

TAG — 20-BIT ADDRESS TAG
LRU — LRU STATE
V — VALID BIT

WD 3 WD 2 WD 1 WD 0

WD — 64-BIT DATA WORD

Memory Architecture

6-20 ADSP-BF535 Blackfin Processor Hardware Reference

 Note that only valid cache lines (cache lines with their Valid bit
set) are included in the address tag compare operation. For cache
hits to occur:

• The instruction memory unit must be enabled and configured as
cache by setting bit 0 and bit 2 of the IMEM_CONTROL register.

• The CPLB must be enabled, and the page corresponding to the
instruction fetch address must be mapped as cacheable.

When a cache hit occurs, the target 64-bit instruction word is first sent to
the Instruction Alignment Unit where it is stored in one of two 64-bit
instruction buffers.

When a cache miss occurs, the instruction memory unit generates a cache
line fill access to retrieve the missing cache line from memory that is exter-
nal to the core. The address for the external memory access is the address
of the target instruction word. When a cache miss occurs, the core halts
until the target instruction word is returned from external memory.

Cache Line Fills

A cache line fill consists of fetching 32 bytes of data from memory. The
operation starts when the instruction memory unit requests a line-read
data transfer (a burst of four 64-bit words of data) on its external
read-data port. The address for the read transfer is the address of the target
instruction word. When responding to a line-read request from the
instruction memory unit, the L2 memory returns the target instruction
word first. After it has returned the target instruction word, the next three
words are fetched in sequential address order. This fetch will wrap around
if necessary, as shown in Table 6-2.

ADSP-BF535 Blackfin Processor Hardware Reference 6-21

Memory

Line Fill Buffer

As the new cache line is retrieved from L2 memory, each 64-bit word is
buffered in a four-entry line fill buffer before it is written to a 4 KB mem-
ory bank within L1 memory. The line fill buffer allows the core to access
the data from the new cache line as the line is being retrieved from exter-
nal memory, rather than having to wait until the line has been written into
the cache.

The line fill buffer organization is shown in Figure 6-8.

During a line fill operation, the line fill buffer’s address tag contains the
upper 18 bits plus bits 11 and 10 of the instruction fetch address. The
contents of the Way field identify the cache Way selected for replacement
(see Table 6-3). Both fields are loaded at the end of a tag-address compare
operation that results in a cache miss.

Table 6-2. Cache Line Word Fetching Order

Target Word Fetching Order for Next Three Words

WD0 WD0, WD1, WD2, WD3

WD1 WD1, WD2, WD3, WD0

WD2 WD2, WD3, WD0, WD1

WD3 WD3, WD0, WD1, WD2

Figure 6-8. Line Fill Buffer Organization

ADDRESS TAG WAY WORD 0 V WORD 1 V WORD 2 V WORD 3 V

VALID BITS

Memory Architecture

6-22 ADSP-BF535 Blackfin Processor Hardware Reference

Non-Cacheable Accesses

The line fill buffer is also used to support non-cacheable accesses. A
non-cacheable access consists of a single 64-bit word data transfer on the
instruction memory unit’s external read port. Non-cacheable accesses
include:

• External memory accesses performed while the instruction memory
unit is disabled

• External memory accesses performed while the instruction memory
unit is enabled and configured as SRAM

• Accesses to non-cacheable pages

A page is considered non-cacheable if the CPLB_L1_CHBL bit of the associ-
ated CPLB descriptor for the matching address is cleared.

Cache Line Replacement

When the instruction memory unit is configured as cache, bits 9 through
5 of the instruction fetch address are used as the index to select the cache
set for the tag-address compare operation. If the tag-address compare
operation results in a cache miss, the Valid bits for the selected set are
examined by a cache line replacement unit to determine the entry to use
for the new cache line, that is, whether to use Way0, Way1, Way2, or
Way3 (see the cache organization in Figure 6-6 on page 6-18).

Table 6-3. Encoded Cache Ways

Line-Buffer Way [1:0] Cache Way

00 Way 0

01 Way 1

10 Way 2

11 Way 3

ADSP-BF535 Blackfin Processor Hardware Reference 6-23

Memory

The cache line replacement unit first checks for invalid entries (that is,
entries having its Valid bit cleared). If only a single invalid entry is found,
that entry is selected for the new cache line. If multiple invalid entries are
found, the replacement entry for the new cache line is selected based on
this priority:

• Way0 first

• Way1 next

• Way2 next

• Way3 last

For example:

• If Way3 is invalid and Ways0, 1, 2 are valid, Way3 is selected for
the new cache line.

• If Ways0 and 1 are invalid and Ways2 and 3 are valid, Way0 is
selected for the new cache line.

• If Ways2 and 3 are invalid and Ways0 and 1 are valid, Way2 is
selected for the new cache line.

When no invalid entries are found, the cache replacement logic uses an
LRU algorithm.

 The coherency of instruction cache must be explicitly managed. To
accomplish this and ensure that the instruction cache fetches the
latest version of any modified instruction space, invalidate instruc-
tion cache line entries, as required.

Memory Architecture

6-24 ADSP-BF535 Blackfin Processor Hardware Reference

Instruction Cache Management
The system DMA controller and the core DAGs cannot access the instruc-
tion cache directly. By a combination of instructions and the use of core
MMRs, it is possible to initialize the instruction tag and data arrays
indirectly and provide a mechanism for instruction cache test, initializa-
tion, and debug (See the Instruction Test Command Register in
Figure 6-9 on page 6-27 and Data Test Command Register in Figure 6-15
on page 6-49.)

Instruction Cache Locking

The instruction cache has four independent lock bits (ILOC[3:0]) that
control each of the four Ways of the instruction cache. When the cache is
enabled, each sub-bank of L1 Instruction Memory is a Way. Setting the
lock bit for a specific Way prevents state transitions for all the lines in that
Way; that is, lines cannot change state from valid to invalid, or vice versa.
Thus, setting the lock bit for a Way effectively prevents the Way from par-
ticipating in the replacement policy.

An example sequence is provided below to demonstrate how to lock down
Way0:

• If the code of interest may already reside in the instruction cache,
invalidate the entire cache first (for an example, see “Instruction
Cache Invalidation” on page 6-25).

• Disable interrupts, if needed, to prevent Interrupt Service Routines
(ISRs) from potentially corrupting the locked cache.

• Set the locks for the other Ways of the cache by setting ILOC[3:1].
Only Way0 of the instruction cache can now be replaced by new
code.

ADSP-BF535 Blackfin Processor Hardware Reference 6-25

Memory

• Execute the code of interest. Any cacheable exceptions, such as exit
code, traversed by this code execution are also locked into the
instruction cache.

• Upon exit of the critical code, clear ILOC[3:1], and set ILOC[0].
The critical code (and the instructions which set ILOC[0]), are now
locked into Way0.

• Re-enable interrupts, if required.

If all four Ways of the cache are locked, then further allocation into the
cache is prevented.

Instruction Cache Invalidation

The IFLUSH instruction can explicitly invalidate cache lines based on their
tag addresses. The target address of the instruction is generated from the
P-registers. Because the instruction cache never contains modified (dirty)
data, the cache line is simply invalidated.

In the following example, the P2 register contains the address of a valid
memory location. If this address has been brought into cache, the corre-
sponding cache line is invalidated after the execution of this instruction.

Example of ICACHE instruction:
iflush [p2] ; /* Invalidate cache line containing address

that P2 points to */

Because the IFLUSH instruction is used to invalidate a specific address in
the ADSP-BF535 processor memory map, it is impractical to use this
instruction to invalidate an entire bank of cache. A second, faster tech-
nique can be used to invalidate an entire cache bank directly. This second
technique directly invalidates Valid bits, which are in a random state when
the ADSP-BF535 processor comes out of reset; it sets the Valid bit of each
cache line to the invalid state. To implement this technique, additional
MMRs are available to allow arbitrary read/write of all cache entries
directly.

Memory Architecture

6-26 ADSP-BF535 Blackfin Processor Hardware Reference

Instruction Test Registers

The Instruction Test registers allow arbitrary read/write of all L1 cache
entries directly. They make it possible to initialize the instruction tag and
data arrays and provide a mechanism for instruction cache test, initializa-
tion, and debug.

When the Instruction Test Command register (ITEST_COMMAND) is used,
the L1 cache data or tag arrays are accessed and data is transferred through
the Instruction Test Data registers (ITEST_DATA[1:0]). The ITEST_DATAx
registers contain either the 64-bit data that the access is to write to or the
64-bit data that the access is to read from. The lower 32-bits are stored in
the ITEST_DATA[0] register, and the upper 32-bits are stored in the
ITEST_DATA[1] register. When the tag arrays are accessed, ITEST_DATA[0]
is used. Graphic representations of the ITEST registers begin with
Figure 6-9 on page 6-27.

 Before the cache entries are accessed through the ITEST registers,
L1 Instruction Memory should be enabled by setting the ENIM and
IMS bits and clearing the ENICPLB bit in the Instruction Memory
Control register (IMEM_CONTROL).

These figures describe the ITEST registers:

• Instruction Test Command Register in Figure 6-9 on page 6-27

• Instruction Test Data 1 Register in Figure 6-10 on page 6-28

• Instruction Test Data 0 Register in Figure 6-11 on page 6-29

Access to these registers is possible only in Supervisor mode or Emulation
mode. When writing to ITEST registers, always write to the ITEST_DATAx
registers first, then the ITEST_COMMAND register. When reading from ITEST
registers, write the ITEST_COMMAND register first, then read the ITEST_DATA
registers.

ADSP-BF535 Blackfin Processor Hardware Reference 6-27

Memory

Instruction Test Command Register
(ITEST_COMMAND)

When the Instruction Test Command register (ITEST_COMMAND)s, shown
in Figure 6-9, is written to, the L1 cache data or tag arrays are accessed,
and the data is transferred through the Instruction Test Data registers
(ITEST_DATA[1:0]).

Figure 6-9. Instruction Test Command Register

XXX

XXX X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X

X XX X X X XX X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XXX

Instruction Test Command Register (ITEST_COMMAND)

00 - Access sub-bank 0
01 - Access sub-bank 1
10 - Access sub-bank 2
11 - Access sub-bank 3

Sub-bank Access[1:0]

Reset = Undefined

Read/Write Access

Access Way[1:0]

00 - Access Way0
01 - Access Way1
10 - Access Way2
11 - Access Way3

0 - Read access
1 - Write access

Array Access
0 - Access tag array
1 - Access data array

Double-Word Index[1:0]

Selects one of four 64-bit
double words in a 256-bit
line

Set Index[4:0]
Selects one of 32 sets

0xFFE0 1300

Memory Architecture

6-28 ADSP-BF535 Blackfin Processor Hardware Reference

Instruction Test Data 1 Register (ITEST_DATA1)
Instruction Test Data registers (ITEST_DATA[1:0]), shown in Figure 6-10,
are used to access L1 cache data arrays. They contain either the 64-bit data
that the access is to write to or the 64-bit data that the access is to read
from. The Instruction Test Data 1 register (ITEST_DATA1) stores the upper
32 bits.

Figure 6-10. Instruction Test Data 1 Register

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Instruction Test Data 1 Register (ITEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the upper 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-17.

0XFFE0 1404

ADSP-BF535 Blackfin Processor Hardware Reference 6-29

Memory

Instruction Test Data 0 Register (ITEST_DATA0)
The Instruction Test Data 0 register (ITEST_DATA0), shown in
Figure 6-11, stores the lower 32 bits of the 64-bit data to be written to or
read from by the access. The ITEST_DATA0 register is also used to access the
tag arrays and contains the Valid and Dirty bits, which indicate the state
of the cache line.

Figure 6-11. Instruction Test Data 0 Register

XX X X X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Instruction Test Data 0 Register (ITEST_DATA0]

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag[1:0]
Dirty

0 - Cache line
unmodified since it
was copied from
source memory

1 - Cache line modified
since it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access L1 cache data arrays and tag arrays. When accessing a data array, stores the lower 32 bits of
64-bit words of instruction data to be written to or read from by the access. See “Cache Lines” on page 6-17.

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits and bits 11 and 10 of
the physical address. See “Cache Lines” on page 6-17.

Physical address

Physical address

Physical address

Reset = Undefined0XFFE0 1400

Memory Architecture

6-30 ADSP-BF535 Blackfin Processor Hardware Reference

Example Code for Direct Invalidation
The following four listings show how to invalidate instruction cache
(Listing 6-1), how to invalidate data cache (Listing 6-2), how to invalidate
Superbank A (Listing 6-3), and how to invalidate Superbank B
(Listing 6-4).

Listing 6-1. Invalidating Instruction Cache Lines Directly

/* Setting the icache to cache for preloading */

P0.L = (IMEM_CONTROL & 0xFFFF);

P0.H = (IMEM_CONTROL >> 16);

R0.L = 0X5; /* Enable instruction memory as cache. */

R0.H = 0X0;

[P0] = R0;

P1.L = (DMEM_CONTROL & 0xFFFF);

P1.H = (DMEM_CONTROL >> 16);

R0.L = 0XD; /* Enable data bank A and B as caches. */
R0.H = 0X0;

[P1] = R0;

csync;

/* Preloading the Instruction Cache */

/* Registers used: */
/* r0 - contains the command value. written to ITEST COMMAND */

/* r1 - value written to ITEST DATA0 and ITEST DATA1 */

/* * DATA write */

/* - contains the instruction to be written */

/* r2 - contains intermediate values during computation */
/* r3 - contains mask for the double word index (bit[3:4]=00) */

/* r4 - contains mask for the set index (bit[5:9]=00000) */

/* r5 - contains mask for the ways (bit[26:27]=00) */

/* r6 - value written to ITEST DATA0 */

/* * TAG write */

/* - contains the original address */

ADSP-BF535 Blackfin Processor Hardware Reference 6-31

Memory

/* - used to determine sub-banks */

/* i0 - pointer to ITEST_COMMAND */

/* i1 - pointer to ITEST_DATA0 */

/* i2 - pointer to ITEST_DATA1 */

/* i3 - pointer to relocated (instruction) data */

/* p4 - loop counter to perform the writes to DATA and TAGs */

/* m0 - save command for sub-bank 0 */

/* m1 - save command for sub-bank 1 */

/* m2 - save command for sub-bank 2 */

/* m3 - save command for sub-bank 3 */

/* */

R7.L = 0;

R7.H = 0;

L0 = R7;

L1 = R7;

L2 = R7;

L3 = R7;

M0 = R7;

M1 = R7;

M2 = R7;

M3 = R7;

I0.L = (ITEST_COMMAND & 0xFFFF);

I0.H = (ITEST_COMMAND >> 16);

I1.L = (ITEST_DATA0 & 0xFFFF);

I1.H = (ITEST_DATA0 >> 16);

/* Writing zero to the ITEST_DATA0 */

/* Whenever we write to Cache TAG/ARRAY, the value in the

ITEST_DATA0 gets written to the caches. The ITEST_DATA0/1 should

be written to before the write to ITEST_COMMAND register */

Memory Architecture

6-32 ADSP-BF535 Blackfin Processor Hardware Reference

R0.L = 0;

R0.H = 0;

[I1] = R0;

/* The cache lines come out of reset in a random state. The valid

bits of each line must be set to zero at initialization. */

/* Explanation: The invalidation routine is as follows: */

/* Cache setup: */

/* I-CACHE: */

/* 4 sub-banks, */

/* each sub-bank has 4 ways, */

/* each way has 32 lines, */

/* each line (or set) has 4 double words. */

/* Routine: */

/* - Take way 0, and way 1 */

/* - Inner loop: */

/* Invalidate all sets (cache lines) in sub- bank for way 0

and way 1 */
/* Instruction Cache has 32 sets (cache lines), hence loop

count is 32 */
/* - Outer loop: */

/* Increment sub-banks */

/* repeat inner loop */

/* do it 4 times because of 4 sub-banks. */

/* - Repeat again for way 2, way 3 */

R2 = 32; /* Need to increment the set index every loop (Should

be 64 for D-cache) */

R3.L = 0; /* sub-bank increment, at the end of inner loop */

R3.H = 1;

P4 = 4; /* Number of sub-bank - also outer loop counter (Should

be 2 for D-cache) */

P3 = R2; /* Inner loop counter (Number of set index) */

ADSP-BF535 Blackfin Processor Hardware Reference 6-33

Memory

R4 = 2; /* Initial value for ITEST_COMMAND for way 0 - should be

WRITE to TAG */
R5.H = 0x400; /* Initial value for ITEST_COMMAND for way 1 -

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */
lsetup(LBL0A,LBL3A) lc1 = p4;

LBL0A: r0 = r4;

r1 = r5;

lsetup(LBL1A,LBL2A) lc0 = p3;

LBL1A: r0 = r0+|+r2 || [i0]=r0;

LBL2A: r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3A: r5 = r5+r3;

R4.H = 0x800; /* Initial value for ITEST_COMMAND for way 2 -

should be WRITE to TAG */

R4.L = 2;

R5.H = 0xc00; /* Initial value for ITEST_COMMAND for way 3 -

should be WRITE to TAG */

R5.L = 2;

/* Way 2,3 invalidation */

lsetup(LBL0B,LBL3B) lc1 = p4;

LBL0B: r0 = r4;

r1 = r5;

lsetup(LBL1B,LBL2B) lc0 = p3;

LBL1B: r0 = r0+|+r2 || [i0]=r0;

LBL2B: r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3B: r5 = r5+r3;

Memory Architecture

6-34 ADSP-BF535 Blackfin Processor Hardware Reference

Listing 6-2. Invalidating Data Cache

I0.L = (DTEST_COMMAND & 0xFFFF);

I0.H = (DTEST_COMMAND >> 16);

I1.L = (DTEST_DATA0 & 0xFFFF);

I1.H = (DTEST_DATA0 >> 16);

R0.L = 0;

R0.H = 0;

[I1] = R0;

/* Repeat for data cache */

/* Explanation: The invalidation routine is as follows: */

/* Cache construction: */

/* D-CACHE: */

/* 2 data banks, */

/* each data bank has 4 sub-banks, */

/* each sub-bank has 2 ways, */

/* each way has 64 lines, */

/* each line (or set) has 4 double words. */

/* Routine: */

/* - Take way 0, and way1 */

/* - Inner loop: */

/* Invalidate all sets (cache lines) in sub-bank for way 0

and way1 */

/* Instruction Cache has 64 sets (cache lines), hence loop

count is 64 */
/* - Outer loop: */
/* Increment sub-banks */

/* repeat inner loop */

/* do it 4 times because of 4 sub-banks. */

/* - Repeat again for superbank B */

ADSP-BF535 Blackfin Processor Hardware Reference 6-35

Memory

R2 = 64; /* Need to increment the set index every loop (Should

be 64 for D-cache) */

R3.L = 0; /* sub-bank increment, at the end of inner loop */

R3.H = 1;

P4 = 4; /* Number of sub-bank - also outer loop counter (Should

be 2 for D-cache) */

P3 = R2; /* Inner loop counter (Number of set index) */

Listing 6-3. Invalidating Bank A

R4.H = 0x00; /* Initial value for DTEST_COMMAND for way 0 -

should be WRITE to TAG */
R4.L = 2;

R5.H = 0x400; /* Initial value for DTEST_COMMAND for way 1 -

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */

lsetup(LBL0C,LBL3C) lc1 = p4;

LBL0C: r0 = r4;

r1 = r5;

lsetup(LBL1C,LBL2C) lc0 = p3;

LBL1C: r0 = r0+|+r2 || [i0]=r0;

LBL2C: r1 = r1+|+r2 || [i0]=r1;

r4 = r4+r3;

LBL3C: r5 = r5+r3;

Memory Architecture

6-36 ADSP-BF535 Blackfin Processor Hardware Reference

Listing 6-4. Invalidating Bank B

R4.H = 0x080; /* Initial value for DTEST_COMMAND for way 0 -

should be WRITE to TAG */

R4.L = 2;

R5.H = 0x480; /* Initial value for DTEST_COMMAND for way 1 -

should be WRITE to TAG */

R5.L = 2;

/* Way 0,1 invalidation */

lsetup(LBL0D,LBL3D) lc1 = p4;

LBL0D: r0 = r4;

r1 = r5;

lsetup(LBL1D,LBL2D) lc0 = p3;

LBL1D: r0 = r0 +|+ r2 || [i0]=r0;

LBL2D: r1 = r1 +|+ r2 || [i0]=r1;

r4 = r4+r3;

LBL3D: r5 = r5+r3;

/* Configure L1 SRAM data banks as SRAM */

/* - Default to DCBS==0, so LOWBIT (bit14) selects bank A or B

(because that splits L2 across A and B) */

/* - set ENDM==1, so L1 Data Memory is enabled. */

P0.L = (DMEM_CONTROL & 0xFFFF);

P0.H = (DMEM_CONTROL >> 16);

R0 = (ENDM);

[P0] = R0;

/* Configure L1 SRAM code bank as SRAM */

/* - Default to ILOC==0000 */

/* - Set ENIM==1, so Code memory is enabled. */

P0.L = (IMEM_CONTROL & 0xFFFF);

P0.H = (IMEM_CONTROL >> 16);

R0 = (ENIM);

ADSP-BF535 Blackfin Processor Hardware Reference 6-37

Memory

[P0] = R0;

/* L1CACHE */

L1 Data Memory
In addition to the 4 KB scratchpad memory, the ADSP-BF535 processor
has two 16 KB, L1 data SRAM banks. Each 16 KB, L1 data bank consists
of four 4 KB sub-banks.

Each 16 KB L1 Data bank can be configured to operate as either a cache
or an SRAM. As shown in Table 6-4, the data memory banks of the
ADSP-BF535 processor can be configured several ways.

The scratchpad SRAM bank is always enabled. However, DMA access is
not available to the scratchpad memory.

The interaction of the Data Memory Configure bits (DMC[1:0]) and the
Enable Data Memory (ENDM) control bit in the DMEM_CONTROL register
determines how the data banks are configured (see Table 6-5 and
Figure 6-3 on page 6-13). The ENDM bit is used to enable or disable both
L1 data banks.

 If ENDM is cleared, L1 memory is disabled, and all data memory ref-
erences generate exceptions.

Table 6-4. Primary Data Memory Banks

Data Memory
Bank

Description

Data Scratchpad
SRAM

A local memory space particularly suited for Supervisor/User stack allocation.

Data Bank A Can be configured as SRAM, data cache, or disabled. If Data Bank A is
configured as SRAM, the system DMA can also access it directly.

Data Bank B Can be configured as SRAM, data cache, or disabled. If Data Bank B is
configured as SRAM, the system DMA can also access it directly.

Memory Architecture

6-38 ADSP-BF535 Blackfin Processor Hardware Reference

 Critical processor applications can take advantage of this memory
organization so that one data bank can be configured as data cache
to support other software functions.

L1 Data SRAM

Each of the 16 KB SRAM regions implemented for Data Bank A and Data
Bank B is further divided into four sub-banks. Like the organization of L1
Instruction Memory, this organization provides an effective dual port
capability that gives the system DMA simultaneous access to the
SRAMs—provided that collisions to the same sub-bank do not occur.
Each of these regions is single ported, and if address collision is detected,
access is granted first to system DMA, then to the DAGs.

The division of each data bank into four sub-banks allows code optimiza-
tion that permits two simultaneous, parallel DAG references to the same
data bank. The division into sub-banks and subsequent code optimization
also permit system DMA access—for example, to preload or postunload
data buffers. For more information, see“Data Address Generators” on
page 5-1.

Table 6-5. Data Memory Configure Bits

ENDM DMC[1:0] Configuration

0 xx Data Bank A is disabled; Data Bank B is disabled

1 00 Data Bank A is SRAM; Data Bank B is SRAM. This is the
default state at reset.

1 01 Reserved

1 10 Data Bank A is cache; Data Bank B is SRAM

1 11 Data Bank A is cache; Data Bank B is cache

ADSP-BF535 Blackfin Processor Hardware Reference 6-39

Memory

Table 6-6 shows how the sub-bank organization is mapped into memory.

Figure 6-12 describes the L1 Data Memory architecture.

Table 6-6. L1 Data Memory SRAM Sub-Bank Start Addresses

Memory
Sub-Bank

Data Bank A Data Bank B

0 0xFF80 0000 0xFF90 0000

1 0xFF80 1000 0xFF90 1000

2 0xFF80 2000 0xFF90 2000

3 0xFF80 3000 0xFF90 3000

Figure 6-12. L1 Data Memory Architecture

16 KB
DATA BANK A

16 KB
DATA BANK B

4 KB
SRAM

FILL A

FILL B

DMA A

DMA B

DATA 0

DATA 1

Memory Architecture

6-40 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 6-13 describes the L1 data bank architecture.

L1 Data Cache

The L1 Data Memory architecture provides two 16 KB banks that can be
configured as cache. In general, L1 data cache operates like the L1 Instruc-
tion cache described in the previous section. In addition to operating as a
2-Way set associative cache, however, L1 data cache has some unique fea-
tures that are described below.

The DCPLB descriptors control data cacheability. Through these descrip-
tors, the data cache can contain data from any address region that is
defined as cacheable and has a valid CPLB entry. The data cache cannot,
however, contain data from the MMR address space, which is always
cache inhibited. Software must maintain the CPLBs in a manner consis-
tent with the hardware configuration.

Figure 6-13. L1 Data Bank Architecture

DMA

4 KB SUB-BANK 4 KB SUB-BANK

4 KB SUB-BANK4 KB SUB-BANK

DATA 1

DATA 0

FILL

ADSP-BF535 Blackfin Processor Hardware Reference 6-41

Memory

 If one or more L1 data banks are configured as cache, CPLB
descriptors must be present and must describe these things as cache
inhibited:

• The scratchpad SRAM

• Any of the data or instruction banks that are enabled as SRAM

• PCI space

• Peripherals that cannot support burst accesses and that are mapped
into memory outside the system MMR space

If only Data Bank A is configured as cache, then all cacheable memory ref-
erences access that bank. If both data banks are configured as cache, the
bank-select mechanism is programmable. The Data Cache Bank Select
(DCBS) bit in the DMEM_CONTROL register selects either the large bank size or
the small bank size (see Table 6-7).

Example of Mapping Cacheable Address Space into Data Banks

An example of how the cacheable address space maps into the two banks
follows.

When both banks are configured as cache, they operate as two indepen-
dent, 16 KB, 2-Way set associative caches that can be independently
mapped into the Blackfin address space.

Table 6-7. Data Cache Bank-Select Address (DBCS) Bit

DCBS Description

0 Use Address bit A[14] to select Data Cache Bank A or B

1 Use Address bit A[23] to select Data Cache Bank A or B

Memory Architecture

6-42 ADSP-BF535 Blackfin Processor Hardware Reference

If both data banks are configured as cache, DCBS designates Address bit
A[14] or A[23] as the cache selector. Address bit A[14] or A[23] selects the
cache implemented by Data Bank A or the cache implemented by Data
Bank B.

• If DCBS=0, then A[14] is part of the address index, and all addresses
in which A[14]=0 use Data Bank A. All addresses in which A[14]=1
use Data Bank B.

• In this case, A[23] is treated as just another bit in the address that is
stored with the tag in the cache and compared for Hit/Miss pro-
cessing by the cache.

• If DCBS=1, then A[23] is part of the address index, and all addresses
where A[23]=0 use Data Bank A. All addresses where A[23]=1 use
Data Bank B.

• In this case, A[14] is treated as just another bit in the address that is
stored with the tag in the cache and compared for Hit/Miss pro-
cessing by the cache.

The result of choosing DCBS=0 or DCBS=1 is:

• If DCBS=0, A[14] selects Data Bank A instead of Data Bank B.

• Alternating 16 KB pages of memory map into each of the two
16 KB caches implemented by the two data banks. Consequently,
any data in the first 16 KB of memory could be stored only in Data
Bank A. Any data in the next address range (16 KB through
32 KB)–1 could be stored only in Data Bank B. Any data in the
next range (32 KB through 48 KB)–1 would be stored in Data
Bank A. Alternate mapping would continue.

• As a result, the cache operates as if it were a single, contiguous,
2-Way set-associative 32 KB cache. Each Way is 16 KB long and
all data elements having the same first 14 bits of address compete
for two entries that may be used to store them.

ADSP-BF535 Blackfin Processor Hardware Reference 6-43

Memory

• If DCBS=1, A[23] selects Data Bank A instead of Data Bank B.

• With DCBS=1, the system functions more like two independent
caches, each a 16 KB, 2-Way set associative cache. Each Bank
serves an alternating set of 8 MB blocks of memory. For example,
Data Bank A caches all data accesses for the first 8 MB of memory
address range. That is, every 8 MB of range vies for the two line
entries (rather than every 16 KB repeat). Likewise, Data Bank B
caches data located above 8MB and below 16 MB.

• For example, if the application is working from a data set that is
1 MB long and located entirely in the first 8 MB of memory, it is
effectively served by only half the cache, that is, by Data Bank A,
which is a 16 KB, 2-Way set associative cache. In this instance, the
application never derives any benefit from Data Bank B.

 For most applications, it is best to operate with DCBS=0. When
DCBS=1, on-chip L2 memory is cached only in Data Bank A.

However, if the application is working from two data sets, located in two
memory spaces at least 8 MB apart, closer control over how the cache
maps to the data is possible. For example, if the program is doing a series
of dual-MAC operations in which both DAGs are accessing data on every
cycle, by placing DAG0’s data set in one block of memory and DAG1’s
data set in the other, the system can ensure that:

• DAG0 gets its data from Data Bank A for all of its accesses and

• DAG1 gets its data from Data Bank B.

This arrangement causes the core to use both data buses for cache line
transfer and achieves the maximum data bandwidth between the cache
and the core.

Figure 6-14 shows an example of how mapping is performed when
DCBS=1.

Memory Architecture

6-44 ADSP-BF535 Blackfin Processor Hardware Reference

 The DCBS selection can be changed dynamically; however, to ensure
that no data is lost, first flush and invalidate the entire cache.

The ADSP-BF535 processor implements each data cache as a multibank
organization of subcaches. Provided that the dual access DSP instructions
address different subcaches and the cache line fill is not writing to the
same bank, address collision detection does not halt the processor. If a col-
lision is detected, the access priority is:

• System DMA access

• Cache Line Fill

• DAGs

Figure 6-14. Data Cache Mapping When DCBS=1

DATA BANK B

DATA BANK A

WAY0 WAY1

WAY0 WAY1

8MB

8MB

8MB

8MB

ADSP-BF535 Blackfin Processor Hardware Reference 6-45

Memory

Data Cache Access

The cache controller tests the address from either DAG against the tag
bits. If the logical address is present in L1 cache, a cache hit occurs, and
the data is accessed in L1. If the logical address is not present, a cache miss
occurs, and the memory transaction is passed to the next level of memory
via the system interface. The line index and replacement policy for the
cache controller determines the cache tag and data space that are allocated
for the data coming back from L2 memory via the System Bus Interface
Unit (SBIU).

A data cache line is in one of three states: invalid, exclusive (valid and
clean), and modified (valid and dirty). If valid data already occupies the
allocated line space and the cache is configured for write-back storage, the
controller checks the state of the cache line and treats it accordingly:

• If the state of the line is exclusive (clean), the new tag and data
write over the old line.

• If the state of the line is modified (dirty), then the cache contains
the only valid copy of the data.

• If the line is dirty, the current contents of the cache are copied back
to L2 memory before the new data is written to the cache.

The ADSP-BF535 processor provides victim buffers and line fill buffers.
These buffers are used if a cache load miss generates a victim cache line
that should be replaced. The line fill operation goes to the L2 memory via
the SBIU before the victim copyback operation. The data cache performs
the line fill request to the system as critical, or requested, word first and
forwards that data to the waiting DAG as it updates the cache line. In
other words, the cache performs critical word forwarding.

Memory Architecture

6-46 ADSP-BF535 Blackfin Processor Hardware Reference

The ADSP-BF535 processor data cache supports hit-under-a-store miss,
and hit-under-a-prefetch miss. In other words, on a write-miss or execu-
tion of a PREFETCH instruction that misses the cache (and is to a cacheable
region), the instruction pipeline does not stall on the miss. Furthermore, a
subsequent load or store instruction can hit in the L1 cache while the
line-fill completes.

Interrupts of sufficient priority (relative to the current context) cancel a
stalled load instruction. Consequently, if the load operation misses the L1
Data Memory cache and generates a high latency line fill operation on the
system interface, it is possible to interrupt the core, causing it to begin
processing a different context. The system access to fill the cache line is
not cancelled, and the data cache is updated with the new data before any
further cache miss operations to the respective data bank are serviced. For
more information see “Exceptions” on page 4-38.

Cache Write Method

Cache write memory operations can be implemented by using either a
write through method or a write back method:

• For each store operation, write through caches initiate a write to L2
memory immediately upon the write to cache.

• If the cache line is replaced or explicitly flushed by software, the
contents of the cache line are invalidated rather than written back
to L2 memory.

• A write back cache does not write to L2 memory until the line is
replaced by a load operation that needs the line.

The L1 Data Memory employs a full cache line width copyback buffer on
each data bank. In addition, a four-entry write buffer in the L1 Data
Memory accepts all stores with cache inhibited or store through protec-
tion. An SSYNC instruction flushes the write buffer.

ADSP-BF535 Blackfin Processor Hardware Reference 6-47

Memory

Data Cache Control Instructions

The ADSP-BF535 processor defines three data cache control instructions
that are accessible in User and Supervisor modes. The instructions are
PREFETCH, FLUSH, and FLUSHINV:

• PREFETCH (Data Cache Prefetch) attempts to allocate a line into the
L1 cache. If the prefetch hits in the cache, generates an exception,
or addresses a cache inhibited region, PREFETCH functions like a
NOP.

• FLUSH (Data Cache Flush) causes the data cache to synchronize the
specified cache line with L2 memory. If the cached data line is
dirty, the instruction writes the line out and marks the line clean in
the data cache. If the specified data cache line is already clean or
does not exist, FLUSH functions like a NOP.

• FLUSHINV (Data Cache Line Flush and Invalidate) causes the data
cache to perform the same function as the FLUSH instruction and
then invalidate the specified line in the cache. If the line is in the
cache and dirty, the cache line is written out to L2 memory. The
Valid bit in the cache line is then cleared. If the line is not in the
cache, FLUSHINV functions like a NOP.

If software requires synchronization with system hardware, place an SSYNC
instruction after the FLUSH instruction to ensure that the flush operation
has completed. If ordering is desired, to ensure that previous stores have
been pushed through all the queues, place an SSYNC instruction before the
FLUSH.

Data Test Registers
Like L1 Instruction Memory, L1 Data Memory contains additional
MMRs to allow arbitrary read/write of all cache entries directly. They
make provide a mechanism for data cache test, initialization, and debug.

Data Test Registers

6-48 ADSP-BF535 Blackfin Processor Hardware Reference

When the Data Test Command register (DTEST_COMMAND) is written to, the
L1 cache data or tag arrays are accessed and data is transferred through the
Data Test Data registers (DTEST_DATA[1:0]). The DTEST_DATA[1:0] regis-
ters contain the 64-bit data to be written, or they contain the destination
for the 64-bit data read. The lower 32-bits are stored in the
DTEST_DATA[0] and the upper 32-bits are stored in the DTEST_DATA[1] reg-
ister. When the tag arrays are being accessed, then DTEST_DATA[0] is used.

 Before accessing the cache entries through the DTEST registers,
enable the L1 Data memories by setting the ENDM and DMC[1:0] bits
and clearing the ENDCPLB bit in DMEM_CONTROL register.

These figures describe the DTEST registers:

• Data Test Command Register in Figure 6-15 on page 6-49

• Data Test Data 1 Register in Figure 6-16 on page 6-50

• Data Test Data 0 Register in Figure 6-17 on page 6-51

Access to these registers is possible only in Supervisor or Emulation mode.
When writing to DTEST registers, always write to the DTEST_DATA registers
first, then the DTEST_COMMAND register. When reading from DTEST registers,
reverse the sequence. Always read the DTEST_COMMAND register first, then
the DTEST_DATA registers.

ADSP-BF535 Blackfin Processor Hardware Reference 6-49

Memory

Data Test Command Register (DTEST_COMMAND)
When the Data Test Command register (DTEST_COMMAND), shown in
Figure 6-15, is written to, the L1 cache data or tag arrays are accessed, and
the data is transferred through the Data Test Data registers (DTEST
DATA[1:0]).

Data Test Data 1 Register (DTEST_DATA1)
Data Test Data registers (DTEST_DATA[1:0]) contain the 64-bit data to be
written, or they contain the destination for the 64-bit data read. The Data
Test Data 1 register (DTEST_DATA1), shown in Figure 6-16, stores the
upper 32 bits.

Figure 6-15. Data Test Command Register

XX

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X XX X X X X

Data Test Command Register (DTEST_COMMAND)

00 - Access sub-bank 0.
01 - Access sub-bank 1.
10 - Access sub-bank 2.
11 - Access sub-bank 3.

Sub-bank Access

Reset = Undefined

Read/Write Access

Access Way

0 - Access Way0.
1 - Access Way1.

Data Bank Access

0 - Access Data Bank A.
1 - Access Data Bank B.

0 - Read access
1 - Write access

Array Access
0 - Access tag array
1 - Access data array

Double-word Index
Selects one of four 64-bit
double words in a 256-bit line

Set Index
Selects one of 64 sets

0xFFE0 0300

Data Test Registers

6-50 ADSP-BF535 Blackfin Processor Hardware Reference

Data Test Data 0 Register (DTEST_DATA0)
The Data Test Data 0 register (DTEST_DATA0), Figure 6-17, stores the
lower 32 bits of the 64-bit data to be written or of the destination for the
64-bit data read.

The DTEST_DATA0 register is also used to access the tag arrays and contains
the Valid and Dirty bits, which indicate the state of the cache line.

Figure 6-16. Data Test Data 1 Register

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data Test Data 1 Register (DTEST_DATA1)

Reset = Undefined

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reset = Undefined

Data[63:48]

Data[47:32]

When accessing tag arrays, all bits are reserved.

0xFFE0 0404

ADSP-BF535 Blackfin Processor Hardware Reference 6-51

Memory

Figure 6-17. Data Test Data 0 Register

XX X X X XX X

XX X X X X X

X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X XX X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

Data Test Data 0 Register (DTEST_DATA0)

Reset = Undefined

Valid
0 - Cache line invalid
1 - Cache line valid

X

Tag[19:4]

Tag[3:2]

Tag[1:0]
Dirty
0 - Cache line unmodified

since it was copied
from source memory

1 - Cache line modified
after it was copied
from source memory

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

XX X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Data[31:16]

Data[15:0]

Used to access the L1 cache tag arrays. The address tag consists of the upper 18 bits
and bits 11 and 10 of the physical address. See “Cache Lines” on page 6-17.

Physical address

Physical address

Physical address

0xFFE0 0400

On-Chip Level 2 (L2) Memory

6-52 ADSP-BF535 Blackfin Processor Hardware Reference

On-Chip Level 2 (L2) Memory
Configured as SRAM, the on-chip Level 2 (L2) memory of the
ADSP-BF535 processor provides 256 KB of low latency, high bandwidth
storage capacity. For systems that use some or all ADSP-BF535 processor
L1 memory as cache, the on-chip L2 SRAM memory system can help pro-
vide deterministic, bounded memory access times.

Simultaneous access to the multibanked, on-chip L2 memory architecture
from the core processor and peripheral bus can occur in parallel, provided
that they access different banks. A fixed-priority arbitration scheme
resolves conflicts. The on-chip DMA controllers and the PCI controller
share a dedicated 32-bit data path into the L2 memory system. This inter-
face operates at the SCLK frequency. Dedicated L2 access from the
processor core is also supported.

The ADSP-BF535 processor has a dedicated, low latency, 64-bit data path
into the L2 SRAM memory. At a core clock frequency of 300 MHz, the
peak data transfer rate across this interface is 2.4 GB/second.

On-Chip L2 Bank Access
The on-chip L2 memory employs a multibank architecture like that of the
L1 memory (see Figure 6-18). The ADSP-BF535 processor has 256 KB of
SRAM organized as eight SRAM banks of 32 KB each. Figure 6-18 shows
the size and starting location of each L2 bank.

Two L2 access ports, a processor core port and an I/O port, are provided
to allow concurrent access to the L2 memory, provided that the two ports
access different memory sub-banks. If simultaneous access to the same
memory sub-bank is attempted, collision detection logic in the L2 pro-
vides arbitration. This is a fixed priority arbiter; the DMA/PCI port
always has the highest priority, unless the core is granted access to the
sub-bank for a burst transfer. In this case, the L2 finishes the burst transfer
before the system bus is granted access.

ADSP-BF535 Blackfin Processor Hardware Reference 6-53

Memory

Latency
When cache is enabled, the bus between the core and L2 memory is fully
pipelined for contiguous burst transfers. The cache line fill from on-chip
memory behaves the same for instruction and data fetches. Operations
that miss the cache trigger a cache line replacement. This replacement fills
one 256-bit (32-byte) line with four 64-bit reads. Under this condition,
the L1 cache line fills from the L2 SRAM in 7+1+1+1=10 cycles. In other
words, after seven core cycles, the first 64-bit (8-byte) fill is available for
the processor. Figure 6-19 shows an example of L2 latency with cache on.

Figure 6-18. L2 Memory Map

0xF000 0000

Memory Bank 0
(32 KByte)

Memory Bank 1
(32 KByte)

0xF002 0000

0xF002 8000

Memory Bank 2
(32 KByte)

Memory Bank 3
(32 KByte)

0xF000 8000

0xF001 0000

0xF001 8000

0xF003 FFFF

0xF003 0000

0xF003 8000

Memory Bank 4
(32 KByte)

Memory Bank 5
(32 KByte)

Memory Bank 6
(32 KByte)

Memory Bank 7
(32 KByte)

On-Chip Level 2 (L2) Memory

6-54 ADSP-BF535 Blackfin Processor Hardware Reference

In this example, at the end of ten core cycles, 32 bytes of instructions or
data have been brought into cache and are available to the sequencer. If all
the instructions contain 16 bits, sixteen instructions are brought into
cache at the end of ten cycles. In addition, the first instruction that is part
of the cache-line fill executes on the eighth cycle; the second instruction
executes on the ninth cycle, and the third instruction executes on the
tenth cycle—all of them in parallel with the cache line fill.

Each cache line fill is aligned on a 32-byte boundary. When the requested
instruction or data is not 32-byte aligned, the requested item is always
loaded in the first read; each read is forwarded to the core as the line is
filled. Sequential memory accesses miss the cache only when they reach
the end of a cache line.

When on-chip L2 memory is configured as non-cacheable, instruction
fetches and data fetches occur in 64-bit fills. In this case, each fill takes
seven core cycles to complete. As shown in Figure 6-20, on-chip L2

Figure 6-19. L2 Latency With Cache On

64 BITS64 BITS

E F G H

I J K L
M N O P

A B C DA B C D

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+7 ABCD READY
TO EXECUTE

T+8 EFGH READY
TO EXECUTE

T+9 IJKL READY
TO EXECUTE

T+10 MNOP READY
TO EXECUTE

T+8 A EXECUTES

T+9 B EXECUTES

T+10 C EXECUTES

T+11 D EXECUTES

L2 MEMORY

T+13 F EXECUTES

T+12 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT

NOTE: AFTER F EXECUTES, GHIJKLMNOP
EXECUTE ON CONSECUTIVE CYCLES.

AFTER P IS IN PIPELINE,
NEW CACHE LINE FILL IS INITIATED.

CYCLES

64 BITS 64 BITS 64 BITS

T+7 T+8 T+10T+9

EACH INSTRUCTION FETCH IS 32 BYTES

INSTRUCTION ALIGNMENT UNIT

ADSP-BF535 Blackfin Processor Hardware Reference 6-55

Memory

memory is configured as non-cacheable. To illustrate the concept of L2
latency with cache off, simple instructions are used that do not require
additional external data fetches. In this case, consecutive instructions are
issued on consecutive cycles if multiple instructions are brought into the
core in a given fetch. Note also that two of the seven cycles are hidden by
the Blackfin processor pipeline. This is because the sequencer fetches the
next 64-bit fill before executing all available instructions obtained from
the previous fill.

Off-Chip L2 Memory
The external memory space is shown in Figure 20-1 on page 20-5. Four of
the memory regions are dedicated to SDRAM support. The size of each
SDRAM bank is programmable. Each SDRAM bank can range in size
from 16 MB to 128 MB. The start address of bank 0 is 0x0000 0000. The
start addresses of banks 1, 2, and 3 follow contiguously from the previous

Figure 6-20. L2 Latency With Cache Off

64 BITS

E F G H

A B C D

I J K L

A B C D

INSTRUCTION ALIGNMENT UNIT

E F G H A B C D

INSTRUCTION ALIGNMENT UNIT

T+7 ABCD READY
TO EXECUTE

T+8 A EXECUTES

T+9 B EXECUTES

T+10 C EXECUTES

T+11 D EXECUTES

L2 MEMORY

T+16 E EXECUTES

E F G H I J K L

INSTRUCTION ALIGNMENT UNIT
CYCLES T+7

EACH INSTRUCTION FETCH IS 64 BITS

T

Memory Protection and Properties

6-56 ADSP-BF535 Blackfin Processor Hardware Reference

bank. If all four SDRAM banks are not fully populated with 128 MB of
SDRAM, the area from the end of bank 3 to address 0x2000 0000 is
reserved.

Each of the next four banks contains 64 MB and is dedicated to support
asynchronous memories.

The next region is reserved off-chip memory space. References to this
region do not generate external bus transactions. Writes have no effect on
external memory values, and reads return undefined values. The EBIU
generates an error response on the internal bus that generates a hardware
exception for a core access or, optionally, generates an interrupt from PCI
or a DMA channel, depending on where the access originated.

Because the PCI memory space is as large as the full memory address space
of the ADSP-BF535 processor, a segmented, or windowed, approach must
be employed, so that only a portion of one of the PCI address spaces is vis-
ible to the core at one time.

Memory Protection and Properties
This section describes the Memory Management Unit (MMU), memory
pages, CPLB management, MMU management, and CPLB registers.

Memory Management Unit
The Blackfin ADSP-BF535 processor contains a page based Memory
Management Unit (MMU). This mechanism provides control over cache-
ability of memory ranges, as well as management of protection attributes
at a page level. The MMU provides great flexibility in allocating memory
and I/O resources between tasks, with complete control over access rights
and cache behavior.

ADSP-BF535 Blackfin Processor Hardware Reference 6-57

Memory

The MMU is implemented as two 16-entry Content Addressable Memory
(CAM). Each entry is referred to as a Cacheability Protection Lookaside
Buffer (CPLB) descriptor. When enabled, every valid entry in the MMU
is examined on any fetch, load, or store operation to determine whether
there is a match between the address being requested and the page
described by the CPLB entry. If a match occurs, the cacheability and pro-
tection attributes contained in the descriptor are used for the memory
transaction with no additional cycles added to the execution of the
instruction.

Because the Level 1 memories are separated into instruction and data
memories, the CPLB entries are also divided between instruction and data
CPLBs. Sixteen CPLB entries are used for instruction fetch requests; these
are called ICPLBs. Another sixteen CPLB entries are used for data transac-
tions; these are called DCPLBs. The ICPLBs and DCPLBs are enabled by
setting the appropriate bits in the Instruction Memory Control
(IMEM_CONTROL) and Data Memory Control (DMEM_CONTROL) registers,
respectively. These registers are shown in Figure 6-4 on page 6-14 and
Figure 6-3 on page 6-13, respectively.

Each CPLB entry consists of a pair of 32-bit values. For instruction
fetches:

• ICPLB_ADDR[n] defines the start address of the page described by
the CPLB descriptor.

• ICPLB_DATA[n] defines the properties of the page described by the
CPLB descriptor.

For data operations:

• DCPLB_ADDR[m] defines the start address of the page described by
the CPLB descriptor.

• DCPLB_DATA[m] defines the properties of the page described by the
CPLB descriptor.

Memory Protection and Properties

6-58 ADSP-BF535 Blackfin Processor Hardware Reference

Memory Pages
The 4 GB address space of the ADSP-BF535 processor can be divided into
smaller ranges of memory or I/O referred to as memory pages. Every
address within a page shares the attributes defined for that page. The
ADSP-BF535 architecture supports four different page sizes:

• 1 KB

• 4 KB

• 1 MB

• 4 MB

Different page sizes provide a flexible mechanism for matching the map-
ping of attributes to different kinds of memory and I/O. For example, a
large data structure in memory, such as a video frame buffer, would typi-
cally span a significant address range, as large as 16 MB or more. The
entire address range would typically share the same attributes, such as
access protection and cacheability; therefore, ideally only one descriptor
for the entire range is needed. In the case of the ADSP-BF535 processor,
such a video frame buffer could be mapped using four 4 MB pages.

Conversely, when protecting access to different parts of memory between
programs or tasks running on a system, a small memory granularity is
desirable. If a task uses a data structure that is only 1 KB long and needs to
be protected from other tasks, storing it in a 1 MB page would waste
1 MB minus 1 KB of memory, or 1023 KB, to keep this structure isolated
from other tasks.

Memory Page Attributes

Each page is defined by a two-word descriptor, consisting of an address
descriptor word xCPLB_ADDR[n] and a properties descriptor word
xCPLB_DATA[n]. The address descriptor word provides the base address of
the page in memory. Pages must be aligned on page boundaries that are an

ADSP-BF535 Blackfin Processor Hardware Reference 6-59

Memory

integer multiple of their size. For example, a 4 MB page must start on an
address divisible by 4 MB; whereas a 1 KB page can start on any 1 KB
boundary. The second word in the descriptor specifies the other properties
or attributes of the page. These properties include:

• Page size

1 KB, 4 KB, 1 MB, 4 MB

• Cacheable / Non-Cacheable

Accesses to this page use the L1 cache or bypass the cache.

• If cacheable: Write Through / Write Back

Data writes propagate directly to memory or are deferred until the
cache line is reallocated.

• Dirty/Modified

The data in this page in memory has changed since the CPLB was
last loaded.

• Supervisor write access permission

• Enables or disables writes to this page when in Supervisor
mode

• Data pages only

• User write access permission

• Enables or disables writes to this page when in User mode

• Data pages only

• User read access permission

Enables or disables reads from this page when in User mode

Memory Protection and Properties

6-60 ADSP-BF535 Blackfin Processor Hardware Reference

• Valid

Check this bit to determine whether this is valid CPLB data.

• Lock

Keep this entry in MMR; do not participate in CPLB replacement
policy.

Page Descriptor Table
For memory accesses to utilize the cache when CPLBs are enabled for
instruction access, data access, or both, a valid CPLB entry must be avail-
able in an MMR pair. The MMR storage locations for CPLB entries are
limited to 16 descriptors for instruction fetches and 16 descriptors for
data load and store operations.

For small and/or simple memory models, it may be possible to define a set
of CPLB descriptors that fit into these 32 entries, cover the entire address-
able space, and never need to be replaced. This type of definition is
referred to as a static memory management model.

However, operating environments commonly define more CPLB descrip-
tors to cover the addressable memory and I/O spaces than will fit into the
available on-chip CPLB MMRs. When this happens, a memory-based
data structure, called a Page Descriptor Table, is used; in it can be stored
all the potentially required CPLB descriptors. As in many RISC architec-
tures, the specific format for the Page Descriptor Table is not defined as
part of the Blackfin processor architecture. Different operating systems,
which have different memory management models, can implement Page
Descriptor Table structures that are consistent with the OS requirements.
This allows adjustments to be made between the level of protection
afforded versus the performance attributes of the memory-management
support routines.

ADSP-BF535 Blackfin Processor Hardware Reference 6-61

Memory

CPLB Management
When the Blackfin processor issues a memory operation for which no
valid CPLB descriptor exists in an MMR pair, an exception occurs that
places the processor into Supervisor mode and vectors to the MMU excep-
tion handler (see “Exceptions” on page 4-38 for more information). The
handler is typically part of the operating system kernel that implements
the CPLB replacement policy.

 Before CPLBs are enabled, valid CPLB descriptors must be in place
for both the Page Descriptor Table and the MMU exception han-
dler. The LOCK bit of these CPLB descriptors are commonly set so
that they are not inadvertently replaced.

The handler uses the faulting address to index into the Page Descriptor
Table structure to find the correct CPLB descriptor data to load into one
of the on-chip CPLB register pairs. If all on-chip registers contain valid
CPLB entries, the handler selects one of the descriptors to be replaced,
and the new descriptor information is loaded. Before loading new descrip-
tor data into any CPLBs, the corresponding group of sixteen CPLBs must
be disabled by clearing the Enable DCPLB (ENDCPLB) bit in the
DMEM_CONTROL register for data descriptors or the Enable ICPLB (ENICPLB)
bit in the IMEM_CONTROL register for instruction descriptors.

The CPLB replacement policy and algorithm to be used are the responsi-
bility of the system MMU exception handler. This policy, which is
dictated by the characteristics of the operating system, usually implements
a modified LRU (Least Recently Used) policy, a round-robin scheduling
method, or pseudo-random replacement.

After the new CPLB descriptor is loaded, the exception handler returns,
and the faulting memory operation restarted. It should then find a valid
CPLB descriptor for the requested address, and the operation should
proceed.

Memory Protection and Properties

6-62 ADSP-BF535 Blackfin Processor Hardware Reference

A single instruction may generate an instruction fetch as well as one or
two data accesses. It is possible that more than one of these memory oper-
ations references data for which there is no valid CPLB descriptor in an
MMR pair. In this case, the exceptions are prioritized and serviced in this
order:

1. Instruction page miss

2. A miss on DAG0

3. A miss on DAG1

MMU Application
Memory management is an optional feature in the Blackfin architecture.
Its use is predicated on the system requirements of a given application.
Upon reset, all CPLBs are disabled, and the MMU is not used.

If all L1 Memory is configured as SRAM, then the data and instruction
MMU functions are optional, depending on the application’s need for
protection of memory spaces either between tasks or between User and
Supervisor modes. To protect memory between tasks, the operating sys-
tem can maintain separate tables of instruction and/or data memory pages
available for each task and make those pages visible only when the relevant
task is running. When a task switch occurs, the operating system can
ensure the invalidation of any CPLB descriptors on chip that should not
be available to the new task. It can also preload descriptors appropriate to
the new task.

For many operating systems, the application program is run in User mode
while the operating system and its services run in Supervisor mode. It is
desirable to protect code and data structures used by the operating system
from inadvertent modification by a running User mode application. This
protection can be achieved by defining CPLB descriptors for protected
memory ranges that allow write access only when in Supervisor mode. If a
write to a protected memory region is attempted while in User mode, an

ADSP-BF535 Blackfin Processor Hardware Reference 6-63

Memory

exception is generated before the memory is modified. Optionally, the
User mode application may be granted read access for data structures that
are useful to the application. Even Supervisor mode functions can be
blocked from writing some memory pages that contain code that is not
expected to be modified. Because CPLB entries are MMRs that can be
written only while in Supervisor mode, user programs cannot gain access
to resources protected in this way.

If either the L1 Instruction Memory or the L1 Data Memory is configured
partially or entirely as cache, the corresponding CPLBs must be enabled.
When an instruction generates a memory request and the cache is enabled,
the processor first checks the ICPLBs to determine whether the address
requested is in a cacheable address range. If no valid ICPLB entry in an
MMR pair corresponds to the requested address, an MMU exception is
generated to obtain a valid ICPLB descriptor to determine whether the
memory is cacheable or not. As a result, if the L1 Instruction Memory is
enabled as cache, then any memory region that may contain instructions
must have a valid ICPLB descriptor defined for it. These descriptors must
either reside in MMRs at all times or be resident in a memory-based Page
Descriptor Table that is managed by the MMU exception handler.
Likewise, if either or both L1 data banks are configured as cache, all
potential data memory ranges must be supported by DCPLB descriptors.

 Before caches are enabled, the MMU and its supporting data struc-
tures must be set up and enabled.

Examples of Protected Memory Regions
In Figure 6-21, a starting point is provided for basic CPLB allocation for
Instruction and Data CPLBs. Note that some ICPLBs and DCLBs have
common descriptors for the same address space. For example, on-chip L2
memory would typically be configured as cacheable with an instruction
and data CPLB. In such a case, external memory would take advantage of
the page replacement mechanism described in the section above.

Memory Protection and Properties

6-64 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 6-21. Examples of Protected Memory Regions

L1 Instruction: Non-cacheable
1 MB page

INSTRUCTION CPLB SETUP

DATA CPLB SETUP

SDRAM: Cacheable
Eight 4 MB pages

Async: Non-cacheable
One 4 MB page

Async: Cacheable
Two 4 MB pages

MMRs: Non-cacheable
4 MB page

L1 Data: Non-cacheable
One 4 MB page

Scratchpad: Non-cacheable
4 KB page

SDRAM: Cacheable
Eight 4 MB pages

Async: Non-cacheable
One 4 MB page

Async: Cacheable
One 4 MB page

L2 Memory: Cacheable
1 MB page

PCI: Non-cacheable
Two 4 MB pages

L2 Memory: Cacheable
1 MB page

PCI: Non-cacheable
Two 4 MB pages

Reset Area: Non-cacheable
for example 0xEF00 0000

4 MB page

ADSP-BF535 Blackfin Processor Hardware Reference 6-65

Memory

DCPLB Data Registers (DCPLB_DATAx)

Figure 6-22. DCPLB Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX 1 X 0 X X X X 1 0 0 1 1 1 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

DCPLB Data Registers (DCPLB_DATAx)

00 - 1 KB page size
01 - 4 KB page size
10 - 1 MB page size
11 - 4 MB page size

PAGE_SIZE[1:0]

Reset = Undefined

DCPLB_LOCK

DCPLB_USER_WR

DCPLB_VALID

DCPLB_DIRTY

DCPLB_WT
0 - Write back
1 - Write through

DCPLB_L1_CHBL

Clear this bit when L1 memory is
configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - Clean
1 - Dirty
If DCPLB_DIRTY=0 and
DCPLB_WT=0, a Protection Violation
exception is generated on a store
access. The exception service routine
must set this bit.

0 - DCPLB entry not valid
1 - DCPLB entry valid

0 - DCPLB entry may be
replaced

1 - DCPLB entry may not be
replaced

0 - Read access not allowed
in User mode. If a read
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Read access allowed in
User mode

DCPLB_USER_RD

0 - Write access not allowed
in User mode. If a write
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Write access allowed in
User mode

DCPLB_SUPV_WR
0 - Write access not allowed

in Supervisor mode. If a
write access is attempted
in Supervisor mode, a
Protection Violation
exception occurs.

1 - Write access allowed in
Supervisor mode

DCPLB_DA0ACC
0 - Access allowed from either DAG
1 - Access allowed only from DAG0

DCPLB_L1SRAM
0 - SRAM is not mapped into L1

memory
1 - SRAM is mapped into L1 memory

Accesses to non-existent memory
in L1 cause an Illegal Address
exception.

For MMR assign-
ments, see Table 6-8.

Memory Protection and Properties

6-66 ADSP-BF535 Blackfin Processor Hardware Reference

Table 6-8. DCPLB Data Register MMR Assignments

Register Name Memory-Mapped Address

DCPLB_DATA0 0xFFE0 0200

DCPLB_DATA1 0xFFE0 0204

DCPLB_DATA2 0 xFFE0 0208

DCPLB_DATA3 0xFFE0 020C

DCPLB_DATA4 0xFFE0 0210

DCPLB_DATA5 0xFFE0 0214

DCPLB_DATA6 0xFFE0 0218

DCPLB_DATA7 0xFFE0 021C

DCPLB_DATA8 0xFFE0 0220

DCPLB_DATA9 0xFFE0 0224

DCPLB_DATA10 0xFFE0 0228

DCPLB_DATA11 0xFFE0 022C

DCPLB_DATA12 0xFFE0 0230

DCPLB_DATA13 0xFFE0 0234

DCPLB_DATA14 0xFFE0 0238

DCPLB_DATA15 0xFFE0 023C

ADSP-BF535 Blackfin Processor Hardware Reference 6-67

Memory

ICPLB Data Registers (ICPLB_DATAx)

Figure 6-23. ICPLB Data Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X 0 X X X X X X X X X 1 X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

ICPLB Data Registers (ICPLB_DATAx)

00 - 1 KB page size
01 - 4 KB page size
10 - 1 MB page size
11 - 4 MB page size

PAGE_SIZE[1:0]

Reset = Undefined

ICPLB_LOCK

ICPLB_VALID

ICPLB_L1_CHBL

Clear this bit whenever L1 memory
is configured as SRAM
0 - Non-cacheable in L1
1 - Cacheable in L1

0 - ICPLB entry not valid
1 - ICPLB entry valid

0 - ICPLB entry can be
replaced

1 - ICPLB entry cannot be
replaced

0 - Read access not allowed
in User mode. If a read
access is attempted in
User mode, a Protection
Violation exception occurs.

1 - Read access allowed in
User mode

ICPLB_USER_RD

For MMR assign-
ments, see Table 6-9.

Memory Protection and Properties

6-68 ADSP-BF535 Blackfin Processor Hardware Reference

Table 6-9. ICPLB Data Register MMR Assignments

Register Name Memory-Mapped Address

ICPLB_DATA0 0xFFE0 1200

ICPLB_DATA1 0xFFE0 1204

ICPLB_DATA2 0xFFE0 1208

ICPLB_DATA3 0xFFE0 120C

ICPLB_DATA4 0xFFE0 1210

ICPLB_DATA5 0xFFE0 1214

ICPLB_DATA6 0xFFE0 1218

ICPLB_DATA7 0xFFE0 121C

ICPLB_DATA8 0xFFE0 1220

ICPLB_DATA9 0xFFE0 1224

ICPLB_DATA10 0xFFE0 1228

ICPLB_DATA11 0xFFE0 122C

ICPLB_DATA12 0xFFE0 1230

ICPLB_DATA13 0xFFE0 1234

ICPLB_DATA14 0xFFE0 1238

ICPLB_DATA15 0xFFE0 123C

ADSP-BF535 Blackfin Processor Hardware Reference 6-69

Memory

DCPLB Address Registers (DCPLB_ADDRx)

Figure 6-24. DCPLB Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Address Registers (DCPLB_ADDRx)

Address for Match[21:6]

Reset = Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Address for Match[5:0]

For MMR assign-
ments, see
Table 6-10.

Memory Protection and Properties

6-70 ADSP-BF535 Blackfin Processor Hardware Reference

Table 6-10. DCPLB Address Register MMR Assignments

Register Name Memory-Mapped Address

DCPLB_ADDR0 0xFFE0 0100

DCPLB_ADDR1 0xFFE0 0104

DCPLB_ADDR2 0xFFE0 0108

DCPLB_ADDR3 0xFFE0 010C

DCPLB_ADDR4 0xFFE0 0110

DCPLB_ADDR5 0xFFE0 0114

DCPLB_ADDR6 0xFFE0 0118

DCPLB_ADDR7 0xFFE0 011C

DCPLB_ADDR8 0xFFE0 0120

DCPLB_ADDR9 0xFFE0 0124

DCPLB_ADDR10 0xFFE0 0128

DCPLB_ADDR11 0xFFE0 012C

DCPLB_ADDR12 0xFFE0 0130

DCPLB_ADDR13 0xFFE0 0134

DCPLB_ADDR14 0xFFE0 0138

DCPLB_ADDR15 0xFFE0 013C

ADSP-BF535 Blackfin Processor Hardware Reference 6-71

Memory

ICPLB Address Registers (ICPLB_ADDRx)

Figure 6-25. ICPLB Address Registers

X XX X X X X XXX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X

ICPLB Address Registers (ICPLB_ADDRx)

Address for Match[21:6]

Reset = Undefined

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Address for Match[5:0]

For MMR assign-
ments, see
Table 6-11.

Memory Protection and Properties

6-72 ADSP-BF535 Blackfin Processor Hardware Reference

DCPLB and ICPLB Status Registers (DCPLB_STATUS,
ICPLB_STATUS)

Bits in the DCPLB Status register (DCPLB_STATUS) and ICPLB Status reg-
ister (ICPLB_STATUS) identify the CPLB entry that has triggered CPLB
related exceptions. The exception service routine can infer the cause of the
fault by examining the CPLB entries.

Table 6-11. ICPLB Address Register MMR Assignments

Register Name Memory-Mapped Address

ICPLB_ADDR0 0xFFE0 1100

ICPLB_ADDR1 0xFFE0 1104

ICPLB_ADDR2 0xFFE0 1108

ICPLB_ADDR3 0xFFE0 110C

ICPLB_ADDR4 0xFFE0 1110

ICPLB_ADDR5 0xFFE0 1114

ICPLB_ADDR6 0xFFE0 1118

ICPLB_ADDR7 0xFFE0 111C

ICPLB_ADDR8 0xFFE0 1120

ICPLB_ADDR9 0xFFE0 1124

ICPLB_ADDR10 0xFFE0 1128

ICPLB_ADDR11 0xFFE0 112C

ICPLB_ADDR12 0xFFE0 1130

ICPLB_ADDR13 0xFFE0 1134

ICPLB_ADDR14 0xFFE0 1138

ICPLB_ADDR15 0xFFE0 113C

ADSP-BF535 Blackfin Processor Hardware Reference 6-73

Memory

DCPLB Status Register (DCPLB_STATUS)
Bits FAULT_DAG, FAULT_USERSUPV and FAULT_READWRITE in the DCPLB Sta-
tus register (DCPLB_STATUS) are used to identify the DCPLB entry that has
triggered the DCPLB related exception (see Figure 6-26).

Figure 6-26. DCPLB Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X 0 X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DCPLB Status Register (DCPLB_STATUS)

0 - Access was read
1 - Access was write

FAULT_READWRITE

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to non-existent memory

FAULT_DAG

0 - Access was made by DAG0
1 - Access was made by DAG1

Each bit indicates that the
DCPLB associated with that
bit has faulted. DCPLB0 fault
sets FAULT0, DCPLB15 sets
FAULT15.

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 0008

Memory Protection and Properties

6-74 ADSP-BF535 Blackfin Processor Hardware Reference

ICPLB Status Register (ICPLB_STATUS)
Bit FAULT_USERSUPV in the ICPLB Status register (ICPLB_STATUS) is used
to identify the ICPLB entry that has triggered the ICPLB related excep-
tion (see Figure 6-27)

DCPLB and ICPLB Fault Address Registers
(DCPLB_FAULT_ADDR, ICPLB_FAULT-ADDR)

The DCPLB Fault Address register (DCPLB_FAULT_ADDR), shown in
Figure 6-28, and ICPLB Fault Address register (ICPLB_FAULT_ADDR),
shown in Figure 6-29, hold the address that has caused a fault in the L1
Data Memory or L1 Instruction Memory, respectively.

Figure 6-27. ICPLB Status Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ICPLB Status Register (ICPLB_STATUS)

Reset = Undefined

FAULT[15:0]

FAULT_ILLADDR

0 - No fault
1 - Attempted access to non-existent memory

Each bit indicates that the
CPLB associated with that bit
has faulted. ICPLB0 fault sets
FAULT0, ICPLB15 sets
FAULT15.

0 - Access was made in User
mode

1 - Access was made in
Supervisor mode

FAULT_USERSUPV

0xFFE0 1008

ADSP-BF535 Blackfin Processor Hardware Reference 6-75

Memory

DCPLB Fault Address Register (DCPLB_FAULT_ADDR)
The DCPLB Fault Address register holds the address that has caused a
fault in the L1 Data Memory.

Figure 6-28. DCPLB Fault Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

DCPLB Fault Address Register (DCPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Data address that has caused
a fault in the L1 Data Memory

FAULT_ADDR[31:16]
Data address that has caused
a fault in L1 Data Memory

0xFFE0 000C

Memory Transaction Model

6-76 ADSP-BF535 Blackfin Processor Hardware Reference

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)
The Instruction Fault Address Register, shown in Figure 6-29, holds the
address that has caused a fault in the L1 Instruction Memory.

Memory Transaction Model
Both internal and external memory locations are accessed in little endian
byte order. Figure 6-30 shows a data word as it is stored in register R0 and
in memory at address location addr. B0 refers to the least significant byte
of the 32-bit word.

Figure 6-29. ICPLB Fault Address Register

Figure 6-30. Data Stored in Little Endian Order

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

Reset = Undefined

FAULT_ADDR[15:0]
Instruction address that has
caused a fault in L1 Instruc-
tion Memory

FAULT_ADDR[31:16]
Instruction address that has
caused a fault in the L1
Instruction Memory

0xFFE0 100C

R0

DATA IN REGISTER DATA IN MEMORY

B3 B2 B1 B0 B3 B2 B1 B0

addr+3 addr+2 addr+1 addr

ADSP-BF535 Blackfin Processor Hardware Reference 6-77

Memory

Figure 6-31 shows 16-bit and 32-bit instructions stored in memory. The
diagram on the left shows how 16-bit instructions are stored in memory
with the most significant byte of the instruction stored in the high address
(byte B1 in addr+1) and the least significant byte in the low address (byte
B0 in addr).

The diagram on the right shows how 32-bit instructions are stored in
memory. The most significant 16-bit half word of the instruction (bytes
B3 and B2) is stored in the low addresses (addr+1 and addr), and the least
significant half word (bytes B1 and B0) is stored in the high addresses
(addr+3 and addr+2).

Load/Store Operation
The Blackfin processor architecture supports the RISC concept of a
Load/Store machine. This machine is the characteristic in RISC architec-
tures whereby memory operations (loads and stores) are intentionally
separated from the arithmetic functions that use the targets of the memory
operations. The separation is made, because memory operations, particu-
larly instructions that access off-chip memory or I/O devices, often take
multiple cycles to complete and would normally halt the processor, pre-
venting an instruction execution rate of one instruction per cycle.

Figure 6-31. Instructions Stored in Little Endian Order

16-BIT INSTRUCTIONS IN MEMORY 32-BIT INSTRUCTIONS IN MEMORY

B1 B0 B1 B0 B1 B0 B3 B2

addr+3 addr+2 addr+1 addraddr+3 addr+2 addr+1 addr

16-BIT INSTRUCTIONS 32-BIT INSTRUCTIONS

B1 B0 B3 B2 B1 B0
INST 0 INST 0

Load/Store Operation

6-78 ADSP-BF535 Blackfin Processor Hardware Reference

Separating load operations from their associated arithmetic functions
allows compilers or assembly language programmers to place unrelated
instructions between the load and its dependent instructions. The unre-
lated instructions execute in parallel while the processor waits for the
memory system to return the data. If the value is returned before the
dependent operation reaches the execution stage of the pipeline, the oper-
ation completes in one cycle.

In write operations, the store instruction is considered complete as soon as
it executes, even though many cycles may execute before the data is actu-
ally written to an external memory or I/O location. This arrangement
allows the processor to execute one instruction per clock cycle, and it
implies that the synchronization between when writes complete and the
execution of subsequent instructions is not guaranteed and is considered
unimportant in the context of most memory operations.

Interlocked Pipeline
In the execution of instructions, the Blackfin processor architecture imple-
ments an interlocked pipeline. When a load instruction executes, the
target register of the read operation is marked as busy until the value is
returned from the memory system. If a subsequent instruction tries to
access this register before the new value is present, the pipeline will stall
until the memory operation completes. This stall guarantees that instruc-
tions that require the use of data resulting from the load do not use the
previous or invalid data in the register, even though instructions are
allowed to start execution before the memory read completes.

This mechanism allows the execution of independent instructions between
the load and the instruction(s) that use the read target without requiring
the programmer or compiler to know how many cycles are actually needed
for the memory-read operation to complete. If the instruction immedi-
ately following the load uses the same register, it simply stalls until the
value is returned. Consequently, it operates as the programmer expects.

ADSP-BF535 Blackfin Processor Hardware Reference 6-79

Memory

However, if four other instructions are placed after the load before the
instruction that uses the same register, all of them execute, and the overall
throughput of the processor is improved.

Ordering of Loads and Stores
The relaxation of synchronization between memory access instructions
and their surrounding instructions is referred to as weak ordering of loads
and stores. Weak ordering implies that the timing of the actual comple-
tion of the memory operations—even the order in which these events
occur—may not align with how they appear in the sequence of the pro-
gram source code. All that is guaranteed is:

• Load operations will complete before the returned data is used by a
subsequent instruction.

• Load operations using data previously written will use the updated
values.

• Store operations will eventually propagate to their ultimate
destination.

Because of weak ordering, the memory system is allowed to prioritize
reads over writes. In this case, a write that is queued anywhere in the pipe-
line, but not completed, may be deferred by a subsequent read operation,
and the read is allowed to be completed before the write. Reads are priori-
tized over writes because the read operation has a dependent operation
waiting on its completion, whereas the processor considers the write oper-
ation complete, and the write does not stall the pipeline if it takes more
cycles to propagate the value out to memory. This behavior could cause a
read that occurs in the program source code after a write in the program
flow to actually return its value before the write has been completed.
This ordering provides significant performance advantages in the opera-
tion of most memory instructions. However, it can cause side effects that
the programmer must be aware of to avoid improper system operation.

Load/Store Operation

6-80 ADSP-BF535 Blackfin Processor Hardware Reference

When writing to or reading from non-memory locations such as I/O
device registers, the order of how read and write operations complete is
often significant. For example, a read of a status register may depend on a
write to a control register. If the address is the same, the read would return
a value from the write buffer rather than from the actual I/O device regis-
ter, and the order of the read and write at the register may be reversed.
Both these effects could cause undesirable side effects in the intended
operation of the program and peripheral. To ensure that these effects do
not occur in code that requires precise, or strong, ordering of load and
store operations, synchronization instructions (CSYNC or SSYNC) should be
used.

Synchronizing Instructions
When strong ordering of loads and stores is required, as may be the case
for sequential writes to an I/O device for setup and control, use the core or
system synchronization instructions, CSYNC or SSYNC, respectively.

The CSYNC instruction ensures that all pending core operations have com-
pleted and the core buffer (between the processor core and the L1
memories) has been flushed before proceeding to the next instruction.
Pending core operations may include any pending interrupts, speculative
states (such as branch predictions) or exceptions.

Consider this example code sequence:

IF CC JUMP away_from_here

csync;

r0 = [p0];

away_from_here:

ADSP-BF535 Blackfin Processor Hardware Reference 6-81

Memory

In the preceding example code, the CSYNC instruction ensures that

• The conditional branch (IF CC JUMP away_from_here) is resolved,
forcing stalls into the execution pipeline until the condition is
resolved and any entries in the processor store buffer have been
flushed.

• All pending interrupts or exceptions have been processed before
CSYNC completes.

• The load is not fetched from memory speculatively.

The SSYNC instruction ensures that all side effects of previous operations
are propagated out through the interface between the L1 memories and
the rest of the chip. In addition to performing the core synchronization
functions of CSYNC, SSYNC flushes any write buffers between the L1 mem-
ory and the SBIU and generates a sync request to the SBIU. The sync
request requires acknowledgement by the SBIU before SSYNC completes.

Speculative Load Execution
Load operations from memory do not change the state of the memory
value. Consequently, issuing a speculative memory-read operation for a
subsequent load instruction usually has no undesirable side effect. In some
code sequences, such as a conditional branch instruction followed by a
load, performance may be improved by speculatively issuing the read
request to the memory system before the conditional branch is resolved.
For example,

IF CC JUMP away_from_here

RO = [P2];

…

away_from_here:

Load/Store Operation

6-82 ADSP-BF535 Blackfin Processor Hardware Reference

If the branch is taken, then the load is flushed from the pipeline, and any
results that are in the process of being returned can be ignored. Con-
versely, if the branch is not taken, the memory will have returned the
correct value earlier than if the operation were stalled until the branch
condition was resolved.

However, in the case of an I/O device, this could cause an undesirable side
effect for a peripheral that returns sequential data from a FIFO or from a
register that changes value based on the number of reads that are
requested. To avoid this effect, use synchronizing instructions (CSYNC or
SSYNC) to guarantee the correct behavior between read operations.

Store operations never access memory speculatively, because this could
cause modification of a memory value before it is determined whether the
instruction should have executed.

Conditional Load Behavior
The synchronization instructions force all speculative states to be resolved
before a load instruction initiates a memory reference. However, the load
instruction itself may generate more than one memory-read operation,
because it is interruptible. If an interrupt of sufficient priority occurs
between the completion of the synchronization instruction and the com-
pletion of the load instruction, the sequencer cancels the load instruction.
After execution of the interrupt, the interrupted load is re-executed. This
approach minimizes interrupt latency. However, it is possible that a mem-
ory-read cycle was initiated before the load was canceled, and this would
be followed by a second read operation after the load is re-executed. For
most memory accesses, multiple reads of the same memory address have
no side effects. However, for some memory-mapped devices, such as
peripheral data FIFOs, reads are destructive. Each time the device is read,
the FIFO advances, and the data cannot be recovered and re-read.

ADSP-BF535 Blackfin Processor Hardware Reference 6-83

Memory

 When accessing memory-mapped devices that have state dependen-
cies on the number of read or write operations on a given address
location, disable interrupts before performing the load or store
operation.

Working With Memory
This section contains information about alignment of data in memory and
memory operations that support semaphores between tasks. It also con-
tains a brief discussion of MMR registers and a core MMR programming
example.

Alignment
Unaligned memory operations are not directly supported. An unaligned
memory reference generates a Misaligned Access exception event
(see“Exceptions” on page 4-38). However, because some data streams,
such as 8-bit video data, can properly be unaligned in memory, alignment
exceptions may be disabled by using the DISALGNEXCPT instruction. More-
over, some instructions in the Quad 8-Bit group automatically disable
alignment exceptions.

For shared data, software must provide cache coherency support as
required. To accomplish this, use the FLUSH instruction (see “Data Cache
Control Instructions” on page 6-47), and/or explicit line invalidation
through the core MMRs (see “ICPLB Address Registers
(ICPLB_ADDRx)” on page 6-71).

Atomic Operations
Atomic operations are used to provide non-interruptible memory opera-
tions in support of semaphores between tasks.

Working With Memory

6-84 ADSP-BF535 Blackfin Processor Hardware Reference

On the ADSP-BF535 processor, atomic operations use a test and set
instruction (TESTSET). The TESTSET instruction is a two-step process that
no other memory transaction can interrupt. The test portion of the
instruction is a load. The set portion sets the CC bit and stores a 1 to the
MSB at the same memory address. The set portion of the instruction is
conditional; that is, set occurs only if the value tested is 0.

The atomic operation can access the entire logical memory space except
the core MMR address region. However, atomicity may not be guaranteed
for all memory regions. The memory architecture treats atomic operations
as cache inhibited accesses even if the CPLB descriptor for the address
indicates a cache enabled access.

If a cache hit is detected, the line is flushed and invalidated before the
TESTSET is allowed to proceed.

 The ADSP-BF535 processor does not guarantee atomic access to
L1 memory space configured as SRAM. Consequently, semaphores
must not reside in L1 memory.

To ensure that all previous exceptions and interrupts have been processed
before the atomic operation begins, a CSYNC or SSYNC instruction may pre-
cede the TESTSET atomic access instruction.

Memory-Mapped Registers
The MMR reserved space is located at the top of the memory space
(0xFFC0 0000). This region is defined as non-cacheable and is divided
between the system MMRs (0xFFC0 0000-0xFFE0 0000) and core
MMRs (0xFFE0 0000-0xFFFF FFFF).

 If strong ordering is required, place a synchronization instruction
after stores to MMRs. For more information, see “Load/Store
Operation” on page 6-77.

ADSP-BF535 Blackfin Processor Hardware Reference 6-85

Memory

All MMRs are accessible only in Supervisor mode. Access to MMRs in
User mode generates an Illegal Access exception.

All core MMRs are read and written using 32-bit-aligned accesses. How-
ever, some MMRs have fewer than 32 bits defined. In this case, the
unused bits are reserved.

Accesses to nonexistent MMRs generate an exception. The system ignores
writes to read-only MMRs.

Appendix A provides a summary of all Core MMRs. Appendix B provides
a summary of all System MMRs.

 To ensure upward compatibility with future implementations,
write back the value that is read for reserved bits in a register.

Core MMR Programming Code Example

Core MMRs may be accessed only as aligned 32-bit words. Non-aligned
access to MMRs generates an exception event. Listing 6-5 shows the
instructions required to manipulate a generic core MMR.

Listing 6-5. Core MMR Programming

CLI R0; /* stop interrupts and save IMASK */

P0 = MMR_BASE; /* 32-bit instruction to loadbase of MMRs */

R1 = [P0 + TIMER_CONTROL_REG]; /* get value of control reg */

BITSET R1, #N; /* set bit N */

[P0 + TIMER_CONTROL_REG] = R1; /* restore control reg */

CSYNC; /* assures that the control reg is written */

STI R0; /* enable interrupts */

In the code listing, CLI saves the contents of the IMASK register and dis-
ables interrupts by clearing IMASK, while STI restores the contents of the
IMASK register, thus enabling interrupts. The instructions between CLI and
STI are not interruptible.

Working With Memory

6-86 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 7-1

7 CHIP BUS HIERARCHY

This chapter discusses the on-chip buses, including how data moves
through the system and factors that determine the system organization.
The chapter describes the system internal chip interfaces and discusses the
system interconnects, including the System Bus Interface Unit (SBIU) and
the associated system buses.

Internal Interfaces
Figure 7-1 shows the core processor and system boundaries and the inter-
faces between them. In the figure, a box receiving an arrow is a slave on
that bus and a box sourcing an arrow is a master on that bus. The System
Bus Interface Unit (SBIU) functions as the major crossbar switch between
the various buses.

ADSP-BF535 Internal Clocks

7-2 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Internal Clocks
The Peripheral Access Bus (PAB), the DMA Access Bus (DAB), the Exter-
nal Access Bus (EAB), the External Mastered Bus (EMB), and the External
Bus Interface Unit (EBIU) run at the core clock frequency (CCLK domain)
divided by 2, 2.5, 3, or 4. This divided frequency is the frequency of the

Figure 7-1. ADSP-BF535 Processor Bus Hierarchy

PCIUART
1

PROG
FLAG

SPORT
1

SPI 1

BOOT
ROM

EBIUSPI 0SPORT
0

UART
0

USB

TIMERS RTC MEMORY
DMA

WATCHDOG
TIMER

EVENT/ BOOT
CONTROLLER

CLOCK AND
POWER

MANAGEMENT
CONTROLLER

EMULATOR
AND TEST

CONTROLLER

L1
DATA

MEMORY

L1
INSTRUCTION

MEMORY

ADSP-BF535
CORE

PROCESSOR

SYSTEM BUS INTERFACE UNIT (SBIU)

DMA MASTERED BUS CORE MASTERED
BUSES

32 KB
BLOCK 0
SRAM

MEMORY

32 KB
BLOCK 7
SRAM

MEMORY

Peripheral Access
Bus (PAB)

DMA Access Bus
(DAB)

External Access
Bus (EAB)

External Mastered
Bus (EMB)

CORE L2 BUS

SYS L2 BUS

...

256 KB L2 SRAM

ADSP-BF535 Blackfin Processor Hardware Reference 7-3

Chip Bus Hierarchy

SCLK domain. This divider ratio is set using the SSEL parameter of the PLL
Control register. For example, for a 300 MHz core frequency, dividing by
2.5 yields 120 MHz.

These buses can also be cycled at a lower frequency to reduce power con-
sumption. Note that all synchronous peripherals derive their timing from
the SCLK. For example, the UART clock rate is determined by further
dividing this clock frequency.

Core Overview
For the purposes of this discussion, Level 1 memories (L1) are included in
the description of the core; they enjoy full bandwidth access from the pro-
cessor core. The core includes the Level 1 (L1) memory subsystem, with
16 KB Instruction SRAM/cache, a dedicated 4 KB Scratchpad SRAM
block, and 32 KB of data SRAM/cache configured as two independent
banks. Except for the Scratchpad, each independent bank can be config-
ured as either SRAM or cache.

The block diagram in Figure 7-2 shows the core processor and its inter-
faces to the SBIU. The core processor is master to these three off-core
interfaces:

• Instruction Fetch (Core I bus), used to fetch 64 bits of instruction
from memory

• Bank0 Load/Store (Core D0 bus), used to write or store 32 bits of
data to or from memory

• Bank1 Load/Store (Core D1 bus), used to write or store 32 bits of
data to or from memory

The core can generate up to three simultaneous off-core accesses per cycle.

Core Overview

7-4 ADSP-BF535 Blackfin Processor Hardware Reference

The off-core system is master to a dedicated L1 interface (System L1 bus).
This bus provides direct memory access to L1 memory configured as
SRAM, except for the Scratchpad SRAM. L1 memory configured as cache
is not accessible by the off-core system.

The Core I bus, the Core D0 bus, the Core D1 bus, and the System L1
bus run at the full core frequency, have data paths up to 64 bits, and sup-
port burst transfers. All four ports have 32-bit address buses. The Core D0

Figure 7-2. Blackfin Processor Core Block Diagram

INT

ACK

TIMER

EVENT
CONTROLLER

DEBUG AND JTAG INTERFACE

JTAG DSP ID
(8 BITS)

SRAM BASE
ADDRESS

SYSTEM CLOCK
AND POWER

MANAGEMENT

POWER AND
CLOCK

CONTROLLER

PERFORMANCE
MONITOR

MEMORY
MANAGEMENT

UNITL1 DATA MEMORY L1 INSTRUCTION MEMORY

L
D
0

L
D
1

S
D

D
A
0

D
A
1

IA
B

ID
B

4K SRAM DCACHE/SRAM ICACHE/SRAM

SYSTEM BUS INTERFACE UNIT (SBIU)

CORE

CONTROL

PROCESSOR

CORE D0 BUS CORE D1 BUS CORE I BUS

32 32 32 32 32 6432

SYSL1 BUS

RESET
VECTOR

ADSP-BF535 Blackfin Processor Hardware Reference 7-5

Chip Bus Hierarchy

and Core D1 ports can perform single-byte, 2-byte (16-bit), or 4-byte
(32-bit) aligned read/writes on behalf of the core load/store instructions,
or four 64-bit wide, 32-byte burst transfers on behalf of the cache line
fill/write back hardware.

The Core I bus makes only 64-bit read requests (either single, or as part of
a 32-byte line-fill burst operation).

When the request is filled, the 64-bit read can contain a single 64-bit
instruction or any combination of 16-, 32-, or partial 64-bit instructions.

When cache is enabled, four 64-bit read requests are issued to support
32-byte line-fill burst operations. These requests are pipelined so that each
transfer after the first is filled in a single, consecutive cycle. The Core I bus
handles both instruction and data cache fills.

System Overview
The system includes the SBIU, the on-chip L2 SRAM memory, the
peripheral set, and the controllers for system interrupts, test/emulation,
and clock and power management. The SBIU intercepts all bus transfers
to or from the core, the L2 memory, and the ADSP-BF535 processor sys-
tem. The SBIU performs all protocol conversions, including any
synchronous clock domain conversion required to support the transaction.

System Bus Interface Unit (SBIU)
The SBIU functions as a high-speed parallel switch, or router. It provides
crossbar switches between the core buses, operating at the full core fre-
quency, and the system buses, running at the SCLK frequency.

System Overview

7-6 ADSP-BF535 Blackfin Processor Hardware Reference

Table 7-1 describes the interconnect routing supported by the SBIU. The
relative priority of the requesters is shown in the target resource columns.
A value of 1 indicates the highest priority. Empty table cells represent
unsupported interconnects.

Up to five parallel, concurrent bus operations can be in progress in any
one cycle.

For example:

• A peripheral DMA channel is accessing L1 memory.

• PCI is accessing L2 memory.

• The core is fetching instructions from L2 memory.

• Core D0 is accessing a system MMR on the PAB.

• Core D1 is accessing external memory.

Table 7-1. SBIU Internal Routing Priority

Target Resource

Requestor SysL1 CoreL2 SysL2 PAB EAB

CoreD0 1 2 1

CoreD1 2 2

CoreI 3 3

PCI (EMB) 1 1

DAB 1 2 4

MemDMA (EAB) 5

ADSP-BF535 Blackfin Processor Hardware Reference 7-7

Chip Bus Hierarchy

On-Chip L2 SRAM Memory Interface
The on-chip L2 SRAM memory block consists of 256 KB of fast, deter-
ministic access time memory. The L2 memory is unified; that is, it is
directly accessible by both the instruction core port and the data core
ports of the architecture. The L2 is organized as a multibank architecture
of single ported SRAMs, so that multiple accesses to different banks can
occur in parallel. The SBIU has two ports into the L2 memory, one dedi-
cated to core requests (Core L2), the other dedicated to system DMA and
PCI requests (Sys L2). For additional information about L2 memory, see
“Memory” on page 6-1.

System Interfaces
The ADSP-BF535 processor system includes the peripheral set (Timers,
Real Time Clock, USB, programmable flags, UARTs, SPORTs, and
SPIs), the PCI controller, the external memory controller (EBIU), the
Memory DMA controller, and the interfaces between these, the system,
and the optional external (off-chip) resources. See Figure 7-1.

These sections describe the four on-chip interfaces between the system
and the peripherals:

• Peripheral Access Bus (PAB)

• DMA Access Bus (DAB)

• External Access Bus (EAB)

• External Mastered Bus (EMB)

There are also two primary chip pin buses, the PCI Bus and the External
Bus Interface Unit (EBIU). The PCI Bus is discussed in “PCI Bus Inter-
face” on page 13-1. The External Bus Interface Unit is discussed in
“External Bus Interface Unit” on page 18-1.

System Interfaces

7-8 ADSP-BF535 Blackfin Processor Hardware Reference

The system interfaces operate at a divided frequency from that of the core.

Peripheral Bus (PAB)
The ADSP-BF535 processor has a dedicated peripheral bus. A low latency
peripheral bus keeps core stalls to a minimum and allows for manageable
interrupt latencies to time-critical peripherals. All peripheral resources
accessed through the PAB are mapped into the System MMR space of the
ADSP-BF535 processor memory map. Both the core and the PCI Con-
troller can access system MMR space through the PAB bus.

Both the core processor and the PCI masters have byte addressability, but
the programming model is restricted to only 16- or 32-bit (aligned) access
to the system MMRs. Byte access to this region is not supported.

PAB Arbitration

The core, through the Core D0 bus, and the PCI port, through the EMB,
are the only masters on this bus. A fixed priority arbitration policy is sup-
ported. The PCI port interface unit has highest priority. Maximum
arbitration latency for either master is 2 SCLK cycles.

PAB Performance

For PAB, the primary performance criteria is latency. Transfer latencies
for both read and write transfers on the PAB are 2 SCLK cycles.

The core or the PCI controller can transfer up to 32 bits per access to the
PAB slaves. Configured with a 1:2 core clock ratio, the first and subse-
quent system MMR (single cycle) read or write accesses take 4 core clocks
(CCLK) of latency. Configured with a 1:2.5 or 1:3 core clock ratio, the first
and subsequent system MMR (single cycle) read or write accesses take 6
core clocks (CCLK) of latency.

With a 300 MHz core clock and a 1:2.5 bus clock ratio, the peak periph-
eral bus throughput is 240 MBytes per second.

ADSP-BF535 Blackfin Processor Hardware Reference 7-9

Chip Bus Hierarchy

PAB Agents (Masters, Slaves)

The processor core and the PCI controller can master bus operations on
the PAB, through the SBIU. All peripherals have a peripheral bus slave
interface which allows the processor core to access control and status state.
These registers are mapped into the system MMR space of the memory
map. System MMR addresses are listed in Appendix A, “Blackfin Proces-
sor Core MMR Assignments” and Appendix B, “System MMR
Assignments”.

The slaves on the PAB bus are as follows:

• Event Controller

• Emulation/Test Control

• Clock and Power Management Controller

• Watchdog Timer

• Real Time Clock

• Timer 0, 1, and 2

• SPORT0

• SPORT1

• SPI0

• SPI1

• Programmable Flags

• UART0

• UART1

• USB

System Interfaces

7-10 ADSP-BF535 Blackfin Processor Hardware Reference

• PCI Port

• Asynchronous Memory Controller (AMC)

• SDRAM Controller (SDC)

• Memory DMA Controller

• SBIU

DMA Bus (DAB)
The DAB provides a means for DMA capable peripherals to gain access to
on-chip and off-chip memory with little or no degradation in core band-
width to memory.

DAB Arbitration

There are 8 DMA capable peripherals in the ADSP-BF535 processor sys-
tem. Twelve DMA channels and bus masters support these devices. The
peripheral DMA controllers can transfer data between peripherals and one
of:

• Internal memory (L1 or L2 memory, through SBIU)

• External memory (EAB, through SBIU)

Both the read and write channels of the Memory DMA controller access
their descriptor lists through the DAB.

The DAB has priority over the core processor on arbitration into L1 con-
figured as SRAM and L2. For off-chip memory, the core has priority over
the DAB on the EAB bus. The ADSP-BF535 processor uses a fixed prior-
ity arbitration policy on the DAB. Table 7-2 shows the arbitration
priority.

ADSP-BF535 Blackfin Processor Hardware Reference 7-11

Chip Bus Hierarchy

DAB Performance

The ADSP-BF535 processor DAB supports single word accesses of 8-bit,
16-bit, or 32-bit data types as well as 4- and 8-cycle bursts (32-byte trans-
fers on behalf of Memory DMA controller only). The data bus has a
32-bit width. Therefore, maximum throughput on this bus is
(SCLK 4) MBs per second. However, arbitration latencies and memory
read latencies can degrade this peak throughput, particularly to off-chip
memory.

The DAB has a dedicated port into L1 memory. The DAB and PCI share
a port to L2 on-chip memories. No stalls occur as long as the core access,
PCI direct access, and the DMA access are not to the same memory bank
(4 KB size for L1, 32 KB size for L2). If there is a conflict, PCI is the
highest priority requester, followed by the DMA access, then by the core.

Table 7-2. DAB Arbitration Priority

DAB Master Arbitration Priority

SPORT0 RCV DMA Controller 0 - highest

SPORT1 RCV DMA Controller 1

SPORT0 XMT DMA Controller 2

SPORT1 XMT DMA Controller 3

USB DMA Controller 4

SPI0 DMA Controller 5

SPI1 DMA Controller 6

UART0 RCV Controller 7

UART1 RCV Controller 8

UART0 XMT Controller 9

UART1 XMT Controller 10

Memory DMA Controller 11 - lowest

System Interfaces

7-12 ADSP-BF535 Blackfin Processor Hardware Reference

Note that a locked transfer by the core processor (for example, execution
of a TESTSET instruction) effectively disables arbitration for the addressed
memory bank or resource until the memory lock is deasserted. DMA con-
trollers cannot perform locked transfers.

DMA access to L2 memory can only be stalled by:

• An access already in progress from another DMA channel.

• A PCI request (1 cycle stall on L1 or L2 access).

• A core processor access already in progress to the same 32 KB super
bank.

DMA access to L1 memory can only be stalled by:

• An access already in progress from another DMA channel.

DMA read and write latency through the DAB to both on-chip and
off-chip memory is shown in Table 7-3. The latencies shown are the total
number of cycles per memory access including cycles required for
arbitration.

Table 7-3. DAB Latencies

Use of DAB Core Clock to System
Clock Ratio
(CCLK/SCLK)

Latency in SCLKs
Burst of 4

Latency in SCLKs
Burst of 8

Burst Write to L1 Memory Best cases (4:1, 3:1,
2.5:1)

5-2-2-2 5-2-2-2-2-2-2-2

Burst Read from L1 Memory Best case (4:1) 6-2-2-2 6-2-2-2-2-2-2-2

Burst Write to L2 Memory
(16-byte and 32-byte)

All ratios 4-1-1-1 4-1-1-1-1-1-1-1

Burst Read from L2 Memory
(16-byte and 32-byte)

4:1, 3:1 5-1-1-1 5-1-1-1-1-1-1-1

2.5:1, 2:1 6-1-1-1 6-1-1-1-1-1-1-1

ADSP-BF535 Blackfin Processor Hardware Reference 7-13

Chip Bus Hierarchy

 The PCI controller, the core processor, and the DAB must arbi-
trate for access to external memory through the EBIU. This
additional arbitration latency added to the latency required to read
off-chip memory devices can significantly degrade DAB through-
put, potentially causing peripheral data buffers to underflow or
overflow. If you use DMA peripherals other than the Memory
DMA controller, and you target external memory for DMA
accesses, you need to carefully analyze your specific traffic patterns
to ensure that those isochronous peripherals targeting internal
memory have enough allocated bandwidth and the appropriate
maximum arbitration latencies.

When two or more DMA master channels are actively requesting the
DAB, bus utilization is considerably higher due to the DAB’s pipelined
design. Bus arbitration cycles are concurrent with the previous DMA
access’s data cycles.

Memory DMA transfers typically result in repeated accesses to the same
memory location. Because the memory DMA controller has the potential
of simultaneously accessing on-chip and off-chip memory, considerable
throughput can be achieved. The throughput rate for an on-chip/off-chip
memory access is limited by the slower of the two accesses. An additional
1 to 2 cycles per burst access is inherent in the design.

Burst Read from External Mem-
ory (SDRAM)
(16-byte and 32-byte)

All ratios 9-1-1-1 9-1-1-1-1-1-1-1

Write to SDRAM (burst of 8) All ratios 4-2-2-2 4-2-2-2-2-2-2-2

Burst Read from Async Memory All ratios 12-4-4-4 12-4-4-4-4-4-4-4

Burst Write to Async Memory All ratios 12-4-4-4 12-4-4-4-4-4-4-4

Table 7-3. DAB Latencies (Cont’d)

Use of DAB Core Clock to System
Clock Ratio
(CCLK/SCLK)

Latency in SCLKs
Burst of 4

Latency in SCLKs
Burst of 8

System Interfaces

7-14 ADSP-BF535 Blackfin Processor Hardware Reference

In the case where the transfer is from on-chip to on-chip memory or from
off-chip to off-chip memory, the burst accesses cannot occur simultane-
ously. The transfer rate is then determined by adding each transfer plus an
additional cycle between each transfer.

Table 7-4 shows an example of two types of memory DMA transfers.

DAB Bus Agents (Masters)

All peripherals capable of sourcing a DMA access are masters on this bus,
as shown in the DAB arbitration priorities in Table 7-2. A single arbiter
supports a fixed priority arbitration policy for access to the DAB.

External Access Bus (EAB)
The EAB provides a way for the processor core and the Memory DMA
controller to directly access off-chip memory and the PCI memory space
to perform instruction fetches, data loads, data stores, and high through-
put memory-to-memory DMA transfers.

Table 7-4. Memory DMA Transfer Rates

Description of Transfer Primary Burst of
8 Access in
SCLKs

Secondary Burst
of 8 Access in
SCLKs

Total SCLKs

Burst of 8 Transfer from SDRAM to
L1
(Off-chip to On-chip Memory Trans-
fer)

19 Cycles (L1) 16 Cycles
(SDRAM)

21 (19+2)

Burst of 8 Transfer from L2 to L1
(On-chip to On-chip Memory Trans-
fer)

19 Cycles (L1) 12 Cycles (L2) 33 (19+12+2)

ADSP-BF535 Blackfin Processor Hardware Reference 7-15

Chip Bus Hierarchy

EAB Arbitration

The EAB is mastered by the SBIU (on behalf of core processor requests, or
DAB requests), and by the Memory DMA controller. Arbitration for use
of the External Bus Interface Unit (EBIU) resources or the PCI bus
resources is required because of possible contention between the potential
masters of this bus. A fixed priority arbitration scheme is used, with the
SBIU internal routing priorities shown in Table 7-1.

EAB Performance

The EAB supports single word accesses of either 8-bit, 16-bit or 32-bit
data types, as well as 4- and 8-cycle bursts. The EAB operates at the same
frequency as the PAB and the DAB.

Table 7-5 provides EAB latency and bandwidth estimates for PCI, very
slow (100 ns) flash memory, and SDRAM accesses. Because of the wide
range of access parameters supported by the EAB slaves, and the many
possible uses of these resources for different applications, this analysis may
not apply to a particular application. It is presented here for comparative
purposes only.

System Interfaces

7-16 ADSP-BF535 Blackfin Processor Hardware Reference

Table 7-5. EAB Performance

EAB Performance SCLK/
(PCI_CLK)
cycles

Core
cycles at
2.5:1

Peak BW
MB/s at 133
MHz

Notes

133/33 SCLK to PCI
clock ratio

5 13 4 SCLK cycles/PCI cycle
(slight rounding)

PCI read, non-burst 36/
(9)

90 4 PCI cycles for core delay
and synchronization + 1 PCI
cycle for arbitration + 1 PCI
cycle for address + 1 PCI
cycle for data + 2 PCI cycles
for core delay and synchroni-
zation

PCI read, 16-byte burst 48/
(12)

120 44 4 PCI cycles for core delay
and synchronization + 1 PCI
cycle for arbitration + 1 PCI
cycle for address + 4 PCI
cycles for data + 2 PCI cycles
for core delay and synchroni-
zation

PCI read, 32-byte burst 64/
(16)

160 66 4 PCI cycles for core delay
and synchronization + 1 PCI
cycle for arbitration + 1 PCI
cycle for address + 8 PCI
cycles for data + 2 PCI cycles
for core delay and synchroni-
zation

PCI write, non-burst,
FIFO empty

2 5 2128

PCI write, 16-byte burst,
FIFO empty

5 13 851

PCI write, 32-byte burst,
FIFO empty

9 23 472

PCI write, non-burst,
FIFO full

12/
(3)

30 44 1 PCI cycle for arbitration + 1
PCI cycle for address + 1 PCI
cycle for data (4 bytes)

ADSP-BF535 Blackfin Processor Hardware Reference 7-17

Chip Bus Hierarchy

EAB Bus Agents (Masters, Slaves)

The SBIU and the Memory DMA controller devices are masters on this
bus. The PCI, boot ROM, and EBIU are slaves on this bus.

PCI write, 16-byte burst,
FIFO full

24/
(6)

60 88 1 PCI cycle for arbitration + 1
PCI cycle for address + 4 PCI
cycles for data (4 bytes each)

PCI write, 32-byte burst,
FIFO full

40/
(10)

100 106 1 PCI cycle for arbitration + 1
PCI cycle for address + 8 PCI
cycles for data (4 bytes each)

DMA or cache-line read,
32-byte burst access to
16-bit 100 ns flash

258 645 16 Worst-case read latency

DMA read, 32-byte burst,
from SDRAM

13.4 318 10% page misses

DMA read, 16-byte burst,
from SDRAM

9.4 227 10% page misses

DMA write, 32-byte
burst, to SDRAM

16.4 260 10% page misses

DMA write, 16-byte
burst, to SDRAM

8.4 254 10% page misses

Cache line read, 32-byte
burst, from SDRAM

8 533 Continuous Read Buffer full
hits

Cache line read, 32-byte
burst, from SDRAM

13.4 318 Read Buffer disabled, 10%
page misses

Cache line write, 32-byte
burst, to SDRAM

16.4 260 10% page misses

Table 7-5. EAB Performance (Cont’d)

EAB Performance SCLK/
(PCI_CLK)
cycles

Core
cycles at
2.5:1

Peak BW
MB/s at 133
MHz

Notes

System Interfaces

7-18 ADSP-BF535 Blackfin Processor Hardware Reference

External Mastered Bus (EMB)
The EMB provides a means for the PCI to directly access internal L2
memory, off-chip memory, and the system MMRs.

EMB Arbitration

For ADSP-BF535 processors, only the PCI controller can master this bus.

EMB Performance

The EMB supports single word accesses of either 8-bit, 16-bit or 32-bit
data types. The EMB operates at the same frequency as the PAB and the
DAB.

The EMB supports access to the external memory space. PCI-mastered
accesses to internal L2 memory have higher priority than core accesses to
the same bank, unless the core has the memory lock asserted, or the core is
in the middle of a burst.

The EMB provides access to memory-mapped registers from the PCI.
Access to the system MMRs through the SBIU to the PAB is deterministic
and always requires 3 SCLK cycles for the first read, requiring 1 wait state.
Writes require no wait states and are fully pipelined. Burst access is not
supported.

EMB Bus Agents (Masters, Slaves, Bridges)

The PCI is the only master on this bus. The SBIU and EBIU are the slaves
on this bus. The PCI controller is a bridge between the EMB and the PCI
buses.

ADSP-BF535 Blackfin Processor Hardware Reference 7-19

Chip Bus Hierarchy

Resources Accessible From EMB

The EMB provides access to:

• L2 SRAM

• External memory

• System MMR space

The EMB does not have access to:

• L1 memory

• Boot ROM

• PCI space (the PCI EAB slave cannot be accessed by the EMB bus,
but the system MMRs of the PCI can be accessed)

System Interfaces

7-20 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 8-1

8 DYNAMIC POWER
MANAGEMENT

This chapter describes the Dynamic Power Management functionality of
the ADSP-BF535 Blackfin processor. This functionality includes:

• Clocking

• Phase Locked Loop (PLL)

• Dynamic Power Management Controller

• Operating Modes

• Voltage Control

Clocking
The input clock into the ADSP-BF535 processor, CLKIN, provides the nec-
essary clock frequency, duty cycle, and stability to allow accurate internal
clock multiplication by means of an on-chip, Phase Locked Loop (PLL)
module. In normal operation, the user programs the PLL with a multipli-
cation factor for CLKIN. The resulting multiplied signal is the core clock
(CCLK). The CCLK signal clocks the Blackfin core processor.

A user-programmable value then divides the CCLK signal to generate the
system clock (SCLK). The SCLK signal clocks the Peripheral Access Bus
(PAB), DMA Bus (DAB), External Address Bus (EAB), External Mastered
Bus (EMB) and the External Bus Interface Unit (EBIU). To optimize per-
formance and power dissipation, the ADSP-BF535 processor allows the
core and system clock frequencies to be changed dynamically.

Clocking

8-2 ADSP-BF535 Blackfin Processor Hardware Reference

All synchronous peripherals derive their timing from SCLK. For example,
the Universal Asynchronous Receiver/Transmitter (UART) clock rate is
determined by further dividing the SCLK signal. Several of the
ADSP-BF535 peripherals, such as Universal Serial Bus (USB), Peripheral
Control Interface (PCI), and Real-Time Clock (RTC), have their own
clock inputs that operate asynchronously to SCLK.

Phase Locked Loop and Clock Control
To provide the clock generation for the core and system, the
ADSP-BF535 processor uses an analog PLL with programmable state
machine control.

The PLL design serves a wide range of applications. It emphasizes embed-
ded and portable applications in which performance, flexibility and
control of power dissipation are key features. This broad range of applica-
tions requires a wide range of frequencies for the clock generation
circuitry. The PLL interacts with the Dynamic Power Management Con-
troller (DPMC) block to provide power management functions for the
ADSP-BF535 processor.

PLL Overview

The PLL supports a wide range of multiplier ratios, achieving 1–31x mul-
tiplication of the input clock, CLKIN. To achieve this wide multiplication
range, the ADSP-BF535 processor uses a combination of programmable
dividers in the PLL feedback circuit and output configuration blocks.

Figure 8-1 illustrates a conceptual model of the PLL circuitry, configura-
tion inputs, and resulting outputs.

The input clock, CLKIN, is a square wave derived from a crystal oscillator
or external reference clock. The Voltage Controlled Oscillator (VCO) is an
intermediate clock from which the core clock (CCLK) and system clock
(SCLK) are derived.

ADSP-BF535 Blackfin Processor Hardware Reference 8-3

Dynamic Power Management

PLL Clock Multiplier Ratios
The PLL Control register (PLL_CTL) governs the operation of the PLL. For
details about the PLL_CTL register, see “PLL Control Register (PLL_CTL)”
on page 8-7.

The Divide Frequency (DF) bit and Multiplier Select (MSEL[6:0]) field
configure the various PLL clock dividers:

• The DF bit enables the input divider

• The MSEL[6] bit enables the output divider

• The MSEL[5:0] bits control the feedback dividers

• The feedback divider is composed in two stages, a divide by N
(1:32), selected by MSEL[4:0], and a divide by 2, selected by
MSEL[5].

Figure 8-1. PLL Conceptual Block Diagram

P
H

A
S

E
D

E
TE

C
T/1

/2

OR

/1

/2

OR
L

O
O

P
FI

L
TE

R

VCO

CLKIN

DF

MSEL[6:0]

SSEL[1:0]

/N

CCLK

SCLK

/M

/2

MSEL[5] MSEL[4:0]

MSEL[6]

ENABLE /
DISABLE

/1

/2

OR

PDWN

STOPCK

BYPASS

Clocking

8-4 ADSP-BF535 Blackfin Processor Hardware Reference

Table 8-1 illustrates the CCLK and VCO multiplication factors for the vari-
ous MSEL and DF settings. Blank entries in the table indicate MSEL/DF
combinations that are not supported.

As shown in the table, different combinations of MSEL[6:0] and DF can
generate the same CCLK and VCO frequencies. For a given application, one
combination may provide lower power or satisfy the VCO maximum fre-
quency. Under normal conditions, setting DF to 1 typically results in lower
power dissipation. Note that when MSEL[5] is set to 1, DF must also be set
to 1. Whether MSEL[5] and DF are set to 1 or both are set to 0, multiplica-
tion factors are the same. See ADSP-BF535 Blackfin Embedded Processor
Data Sheet for maximum and minimum frequencies for CLKIN, CCLK, and
VCO.

Table 8-1. CCLK/VCO Multiplication Factors

MSEL[4:0] MSEL[6:5]:DF

000 001 010 011 100 101 110 111

00000 – 16x/16x – - 16x/32x 8x/16x – 16x/32x

00001 1x/1x – – 1x/1x – – – –

00010 2x/2x 1x/1x – 2x/2x 1x/2x – – 1x/2x

00011 3x/3x – – 3x/3x – – – –

00100 4x/4x 2x/2x – 4x/4x 2x/4x 1x/2x – 2x/4x

00101 5x/5x – – 5x/5x – – – –

00110 6x/6x 3x/3x – 6x/6x 3x/6x – – 3x/6x

00111 7x/7x – – 7x/7x – – – –

01000 8x/8x 4x/4x – 8x/8x 4x/8x 2x/4x – 4x/8x

01001 9x/9x – – 9x/9x – – – –

01010 10x/10x 5x/5x – 10x/10x 5x/10x – – 5x/10x

01011 11x/11x – – 11x/11x – – – –

01100 12x/12x 6x/6x – 12x/12x 6x/12x 3x/6x – 6x/12x

01101 13x/13x – – 13x/13x – – – –

ADSP-BF535 Blackfin Processor Hardware Reference 8-5

Dynamic Power Management

Core Clock/System Clock Ratio Control

The ADSP-BF535 processor divides down the core clock (CCLK) to gener-
ate the system clock (SCLK). Table 8-2 shows the allowed divide ratios and
various examples of CCLK and SCLK frequencies. Note that the divider ratio
must be chosen so that SCLK does not exceed its maximum frequency. See
ADSP-BF535 Blackfin Embedded Processor Data Sheet for more informa-
tion about the maximum frequency of SCLK.

01110 14x/14x 7x/7x – 14x/14x 7x/14x – – 7x/14x

01111 15x/15x – – 15x/15x – – – –

10000 16x/16x 8x/8x – 16x/16x 8x/16x 4x/8x – 8x/16x

10001 17x/17x – – 17x/17x – – – –

10010 18x/18x 9x/9x – 18x/18x 9x/18x – – 9x/18x

10011 19x/19x – – 19x/19x – – – –

10100 20x/20x 10x/10x – 20x/20x 10x/20x 5x/10x – 10x/20x

10101 21x/21x – – 21x/21x – – – –

10110 22x/22x 11x/11x – 22x/22x 11x/22x – – 11x/22x

10111 23x/23x – – 23x/23x – – – –

11000 24x/24x 12x/12x – 24x/24x 12x/24x 6x/12x – 12x/24x

11001 25x/25x – – 25x/25x – – – –

11010 26x/26x 13x/13x – 26x/26x 13x/26x – – 13x/26x

11011 27x/27x – – 27x/27x – – – –

11100 28x/28x 14x/14x – 28x/28x 14x/28x 7x/14x – 14x/28x

11101 29x/29x – – 29x/29x – – – –

11110 30x/30x 15x/15x – 30x/30x 15x/30x – – 15x/30x

11111 31x/31x – – 31x/31x – – – –

Table 8-1. CCLK/VCO Multiplication Factors (Cont’d)

MSEL[4:0] MSEL[6:5]:DF

000 001 010 011 100 101 110 111

Clocking

8-6 ADSP-BF535 Blackfin Processor Hardware Reference

The System Select field (SSEL[1:0]) of the PLL Control Register
(PLL_CTL) controls the ratio of CCLK to SCLK. Upon reset, the input pins
SSEL[1:0] are sampled. (These pins are shared with flag input pins
PF[9:8].)

 The values on SSEL[1:0] determine the initial system clock ratio.

To change the CCLK-SCLK divider ratio, the SSEL field in the PLL_CTL regis-
ter should be modified with the new value. This field can be changed at
any time, but changes to the divider ratio do not take effect until the PLL
programming sequence is executed. See “PLL Programming Sequence” on
page 8-17.

 The user should ensure that peripheral operation does not suffer
adverse effects when the system clock ratio is changed.

Table 8-2 shows the system clock ratio, or frequency ratio of SCLK relative
to CCLK.

Table 8-2. System Clock Ratio

Signal Name Divider Ratio Example Frequency Ratios
(MHz)

SSEL[1:0] CCLK/SCLK CCLK SCLK

00 2:1 266 133

01 2.5:1 275 110

10 3:1 300 100

11 4:1 300 75

ADSP-BF535 Blackfin Processor Hardware Reference 8-7

Dynamic Power Management

PLL Memory-Mapped Registers (MMRs)
The user interface to the PLL is through three MMRs:

• The PLL Control register (PLL_CTL)

• The PLL Status register (PLL_STAT)

• The PLL Lock Count register (PLL_LOCKCNT)

The PLL_CTL register is a 32-bit MMR and must be accessed with aligned
32-bit reads/writes. The PLL_STAT and PLL_LOCKCNT registers are 16-bit
MMRs and must be accessed with aligned 16-bit reads/writes.

PLL Control Register (PLL_CTL)

The PLL Control register (PLL_CTL), shown in Figure 8-2, controls opera-
tion of the PLL. Note that changes to the PLL_CTL register do not take
effect immediately. In general, the PLL_CTL register is first programmed
with new values, and then a specific PLL programming sequence must be
executed to implement the changes. See “PLL Programming Sequence” on
page 8-17.

These fields of the PLL_CTL register are used to control the PLL:

• SSEL[1:0] – The SCLK Select (SSEL) field defines the core clock
(CCLK) to system clock (SCLK) divider ratio. Upon reset, the value
for this field is sensed from the SSEL pins.

• MSEL[6:0] – The Multiplier Select (MSEL) field defines the input
clock (CLKIN) to core clock (CCLK) multiplier. Upon reset, the value
for this field is sensed from the MSEL pins.

• BYPASS – This bit is used to bypass the PLL. When the PLL is
bypassed, CCLK runs at half the frequency of CLKIN. Upon reset, the
value for this field is sensed from the BYPASS pin.

Clocking

8-8 ADSP-BF535 Blackfin Processor Hardware Reference

• PDWN – The Power Down (PDWN) bit is used to place the
ADSP-BF535 in the Deep Sleep operating mode. For more infor-
mation on operating modes, see “Operating Modes” on page 8-12.

• STOPCK – The Stop Clock (STOPCK) bit is used to enable/disable
CCLK.

• PLL_OFF – This bit is used to enable/disable power to the PLL.

• DF – The Divide Frequency (DF) bit determines whether CLKIN is
passed directly to the PLL or CLKIN/2 is passed. Upon reset, the
value for this field is sensed from the DF pin.

 Note some fields of the PLL_CTL register cannot be updated with a
new value simultaneously. Specifically, the MSEL and DF fields can-
not be updated at the same time as the BYPASS field. Should MSEL

Figure 8-2. The PLL Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

SSEL[1:0] (SCLK Select)
00 - SCLK = CCLK/2
01 - SCLK = CCLK/2.5
10 - SCLK = CCLK/3
11 - SCLK = CCLK/4

See Table 8-1 on page 8-4 for
CCLK/VCO multiplication factors

Reset = undefined

PLL Control Register (PLL_CTL)
X - state is initialized during hardware reset from external pins.

BYPASS

0 - Do not bypass the PLL
1 - Bypass the PLL

MSEL[6:0] (Multiplier Select) DF (Divide Frequency)
0 - Pass CLKIN to PLL
1 - Pass CLKIN/2 to PLL
PLL_OFF
0 - Enable power to PLL
1 - Disable power to PLL

STOPCK (Stop Clock)
0 - CCLK on
1 - CCLK off

PDWN (Power Down)
0 - All internal clocks on
1 - All internal clocks off

0xFFC0 0400

ADSP-BF535 Blackfin Processor Hardware Reference 8-9

Dynamic Power Management

and/or DF and BYPASS need to be modified, the PLL_CTL register
should be written twice—once with the MSEL and/or DF field
changes, then a second time with the BYPASS field change.

PLL Status Register (PLL_STAT)

The PLL Status register (PLL_STAT), shown in Figure 8-3, indicates the
operating mode of the PLL and ADSP-BF535 processor. For more infor-
mation about operating modes, see “Operating Modes” on page 8-12.

These fields are used in the PLL_STAT register:

• CORE_IDLE – This field is set to 1 when the Blackfin processor core
is idled; that is, an IDLE instruction has executed, and the core
awaits a wake-up signal.

• PLL_LOCKED – This field is set to 1 when the internal PLL lock
counter has incremented to the value set in the PLL Lock Count
register (PLL_LOCKCNT). For more information, see “PLL Lock
Count Register (PLL_LOCKCNT)” on page 8-10.

• SLEEP – This field is set to 1 when the ADSP-BF535 processor is in
the Sleep operating mode.

Figure 8-3. PLL Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

PLL Status Register (PLL_STAT)
Read only. 1 - processor operating in this mode. For more information, see “Operating Modes” on page 8-12.

Reset = 0x0001 if BYPASS pin low

ACTIVE_PLLENABLED

FULL_ON

ACTIVE_PLLDISABLED

DEEP_SLEEP

SLEEP

PLL_LOCKED

CORE_IDLE

0xFFC0 0404
0x0002 if BYPASS pin high

Clocking

8-10 ADSP-BF535 Blackfin Processor Hardware Reference

• DEEP_SLEEP – This field is set to 1 when the ADSP-BF535 proces-
sor is in the Deep Sleep operating mode.

• ACTIVE_PLLDISABLED – This field is set to 1 when the ADSP-BF535
processor is in the Active operating mode with the PLL powered
down.

• FULL_ON – This field is set to 1 when the ADSP-BF535 processor is
in the Full On operating mode.

• ACTIVE_PLLENABLED – This field is set to 1 when the ADSP-BF535
processor is in the Active operating mode with the PLL powered
up.

PLL Lock Count Register (PLL_LOCKCNT)

When changing clock frequencies in the PLL, the PLL requires time to
stabilize and lock to the new frequencies.

The PLL Lock Count register (PLL_LOCKCNT), shown in Figure 8-4, defines
the number of SCLK cycles that will occur before the processor sets the
PLL_LOCKED bit in the PLL_STAT register. When executing the PLL pro-
gramming sequence, the internal PLL lock counter begins incrementing
upon execution of the IDLE instruction. The lock counter increments by 1
each SCLK cycle. When the lock counter has incremented to the value
defined in the PLL_LOCKCNT register, the PLL_LOCKED bit is set.

See ADSP-BF535 Blackfin Embedded Processor Data Sheet for more infor-
mation about PLL stabilization time and values that should be
programmed into this register. For more information about operating
modes, see “Operating Modes” on page 8-12. For more about the PLL
programming sequence, see “PLL Programming Sequence” on page 8-17.

ADSP-BF535 Blackfin Processor Hardware Reference 8-11

Dynamic Power Management

Dynamic Power Management Controller
The Dynamic Power Management Controller (DPMC) of the
ADSP-BF535 processor works in conjunction with the PLL, allowing the
user to control the processor’s performance characteristics and power dis-
sipation dynamically. The DPMC provides these features that allow the
user to control performance and power:

• Multiple operating modes – The ADSP-BF535 processor operates
in four different operating modes, each with different performance
characteristics and power dissipation profiles.

• Peripheral clocks – The user controls which peripherals are clocked
and which are not, saving power when a peripheral is idle or not
used.

• Voltage control – The ADSP-BF535 processor has five internal
power domains, allowing an external power management controller
to shut down a power domain if it is not required. Additionally,
logic is provided to allow an external power management controller
to manipulate the Blackfin processor core’s internal voltage, further
reducing power.

Figure 8-4. PLL Lock Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 1 0 0 0 0 0 0 0 0

LOCKCNT[9:0]
Number of SCLK cycles
before PLL Lock Count
timer expires

Reset = 0x0200

PLL Lock Count Register (PLL_LOCKCNT)

0xFFC0 0406

Dynamic Power Management Controller

8-12 ADSP-BF535 Blackfin Processor Hardware Reference

Operating Modes
The ADSP-BF535 processor operates in four operating modes, each with
unique performance and power saving benefits. Table 8-3 summarizes the
operational characteristics of each mode.

Full On Mode

Full On is the maximum performance mode of the ADSP-BF535 proces-
sor. In this mode, the PLL is enabled and not bypassed. This is the normal
execution state of the ADSP-BF535 processor, with the processor and all
enabled peripherals running at full speed. In this mode, the input clock
(CLKIN) to core clock (CCLK) multiplier ratio cannot be changed. DMA
access is available to both L1 and L2 memories. From the Full On mode,
the processor can transition directly to the Active, Sleep or Deep Sleep
modes.

Active Mode

In the Active mode, the PLL is enabled but bypassed. Because the PLL is
bypassed, the processor’s core clock (CCLK) runs at one-half the input clock
(CLKIN) frequency, offering significant power savings. The system clock
(SCLK) frequency is also reduced, because it is derived from

Table 8-3. Operational Characteristics

Operating Mode Power
Savings

PLL
Status Bypassed

CCLK SCLK Allowed
DMA Access

Full On None Enabled No Enabled Enabled L1, L2

Active Medium Enabled 1

1 PLL can also be disabled in this mode.

Yes Enabled Enabled L1, L2

Sleep High Enabled 2

2 Depends on the previous state.

Disabled Enabled L2

Deep Sleep Maximum Disabled – Disabled Disabled –

ADSP-BF535 Blackfin Processor Hardware Reference 8-13

Dynamic Power Management

CCLK (SCLK = CCLK/(SSEL divider)); this reduction further reduces power.
In this mode, the CLKIN to CCLK multiplier ratio can be changed, although
the changes are not realized until the Full On mode is entered. DMA
access is available to both L1 and L2 memories.

In the Active mode, it is possible not only to bypass, but also to disable the
PLL. If disabled, the PLL must be re-enabled before transitioning to the
Full On or Sleep modes.

From the Active mode, the processor can transition directly to the Full
On, Sleep or Deep Sleep modes.

Sleep Mode

The Sleep mode significantly reduces power dissipation by idling the core
processor. The CCLK is disabled in this mode; however, SCLK continues to
run at the same frequency as before transitioning to the Sleep mode. If the
processor transitions from the Active mode to the Sleep mode, SCLK con-
tinues to run at the Active mode SCLK frequency. If the processor
transitions from the Full On mode to the Sleep mode, SCLK continues to
run at the Full On SCLK frequency. As CCLK is disabled, DMA access is
available only to L2 memory in the Sleep mode. From the Sleep mode, a
wake-up event causes the processor to transition to one of these modes:

• Active mode if the BYPASS bit in the PLL_CTL register is set

• Full On mode if the BYPASS bit is cleared

The processor resumes execution from the program counter value present
immediately prior to entering sleep mode.

 The STOPCK bit is not a status bit and is therefore unmodified by
hardware when the wakeup occurs. Software must explicitly clear
STOPCK in the next write to PLL_CTL to avoid going back into sleep
mode.

Dynamic Power Management Controller

8-14 ADSP-BF535 Blackfin Processor Hardware Reference

Deep Sleep Mode

The Deep Sleep mode maximizes power savings by disabling the PLL,
CCLK and SCLK. In this mode, the processor core and all peripherals except
the Real-Time Clock (RTC) are disabled. DMA is not supported in this
mode.

In the Deep Sleep mode, the DEEP_SLEEP output pin is asserted. The Deep
Sleep mode can only be exited by an RTC interrupt or hardware reset
event. An RTC interrupt causes the processor to transition to the Active
mode; a hardware reset begins the hardware reset sequence. For more
information about hardware reset, see “Hardware Reset” on page 3-13.

Note that an RTC interrupt in the Deep Sleep mode automatically resets
some fields of the PLL Control register (PLL_CTL), as shown in Table 8-4.

 When in the Deep Sleep operating mode, clocking to the SDRAM
is turned off. Software should ensure that important information in
SDRAM is saved to a non-volatile memory before entering the
Deep Sleep mode.

Operating Mode Transitions
Figure 8-5 graphically illustrates the operating modes and allowed transi-
tions among them. In the diagram, an ellipse represents an operating
mode. Thin arrows between the ellipses show the allowed transitions into
and out of each mode.

Table 8-4. PLL Control Register Values after RTC Wake-up Interrupt

Field Value

PLL_OFF 0

STOPCK 0

PDWN 0

BYPASS 1

ADSP-BF535 Blackfin Processor Hardware Reference 8-15

Dynamic Power Management

The text next to each transition arrow shows the fields in the PLL Control
Register (PLL_CTL) that must be changed for the transition to occur. For
example, the transition from the Full On mode to Sleep mode indicates
that the STOPCK bit must be set to 1 and the PDWN bit must be set to 0. For
information about how to effect mode transitions, see “Programming
Operating Mode Transitions” on page 8-17.

Figure 8-5. Operating Mode Transitions

Sleep

Full OnActive

Deep
Sleep

Reset

Wake-up &
BYPASS=0

STOPCK=1 &
 PDWN=0

 PDWN=1

RTC_WAKEUP

 PDWN=1

STOPCK=1 &
 PDWN=0

HARDWARE
 RESET

BYPASS=0 & PLL_OFF=0 &
 STOPCK=0 & PDWN=0

BYPASS=1 & STOPCK=0 &
 PDWN=0

MSEL=new & PLL_OFF=0 &
 BYPASS=1

MSEL=new & PLL_OFF=0 &
 BYPASS=0

Wake-up &
BYPASS=1

Dynamic Power Management Controller

8-16 ADSP-BF535 Blackfin Processor Hardware Reference

In addition to the mode transitions shown in Figure 8-5, the PLL can be
modified while in the Active operating mode. Power to the PLL can be
applied and removed, and new clockin (CLKIN) to core clock (CCLK) multi-
plier ratios can be programmed. Described in detail below, these changes
to the PLL do not take effect immediately. As with operating mode
transitions, the PLL programming sequence must be executed for these
changes to take effect. See “PLL Programming Sequence” on page 8-17:

• PLL Disabled: In addition to being bypassed in the Active mode,
power to the PLL can be removed. When power is removed from
the PLL, additional power savings are achieved although they are
relatively small. To remove power to the PLL, set the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.

• PLL Enabled: When the PLL is powered down, power can be reap-
plied later when additional performance is required. Power to the
PLL must be reapplied before transitioning to the Full On or Sleep
operating modes. To apply power to the PLL, clear the PLL_OFF bit
in the PLL_CTL register, and then execute the PLL programming
sequence.

• New Multiplier Ratio: New clockin (CLKIN) to core clock (CCLK)
multiplier ratios can be programmed while in the Active mode.
Although the CLKIN to CCLK multiplier changes are not realized in
the Active mode, forcing the PLL to lock to the new ratio in the
Active mode before transitioning to Full On reduces the transition
time, because the PLL is already locked to the new ratio. Note that
the PLL must be powered up to lock to the new ratio. To program
a new CLKIN to CCLK multiplier, write the new MSEL[6:0] and/or DF
values to the PLL_CTL register; then execute the PLL programming
sequence.

ADSP-BF535 Blackfin Processor Hardware Reference 8-17

Dynamic Power Management

Table 8-5 summarizes the allowed operating mode transitions.

 Attempting to cause mode transitions other than those shown in
Table 8-5 causes unpredictable behavior.

Programming Operating Mode Transitions

The operating mode of the ADSP-BF535 processor is defined by the state
of the PLL_OFF, BYPASS, STOPCK and PDWN bits of the PLL Control register
(PLL_CTL). Simply modifying the bits of the PLL_CTL register does not
change the operating mode or the behavior of the PLL. Changes to the
PLL_CTL register are realized only after executing a specific code sequence,
which is shown below. This code sequence first brings the ADSP-BF535
processor to a known, idled state. Once in this idled state, the PLL recog-
nizes and implements the changes made to the PLL_CTL register. After the
changes take effect, the ADSP-BF535 processor operates with the new set-
tings, including the new operating mode, if one is programmed.

PLL Programming Sequence

Assuming that the PLL Control register (PLL_CTL) has been modified with
the new values, the instruction sequence shown in Listing 8-1 puts those
changes into effect.

Table 8-5. Allowed Operating Mode Transitions

New Modes

Current Mode

Full On Active Sleep Deep Sleep

Full On – Allowed Allowed –

Active Allowed – Allowed Allowed

Sleep Allowed Allowed – –

Deep Sleep Allowed Allowed – –

Dynamic Power Management Controller

8-18 ADSP-BF535 Blackfin Processor Hardware Reference

Listing 8-1. PLL Programming Sequence

CLI Rn; /* disable interrupts, copy IMASK to Rn */

IDLE; /* source NOPs into pipeline, and enter idled state upon

SSYNC */

SSYNC; /* drain pipeline, enter idled state */

STI Rn; /* re-enable interrupts after wakeup, restore IMASK

from Rn */

The first three instructions in the sequence (CLI, IDLE, and SSYNC) take the
core to an idled state with interrupts disabled; the interrupt mask (IMASK)
is saved to the Rn register, and the instruction pipeline is halted. The PLL
state machine then loads the PLL_CTL register changes into the PLL.

If the PLL_CTL register changes include a new CLKIN to CCLK multiplier or
the changes reapply power to the PLL, the PLL needs to relock. To relock,
the PLL lock counter is first cleared, then begins incrementing, once per
SCLK cycle. After the PLL lock counter reaches the value programmed into
the PLL Lock Count register (PLL_LOCKCNT), the PLL sets the PLL_LOCKED
bit in the PLL Status register (PLL_STAT).

Depending on how the PLL_CTL register is programmed, the processor
proceeds in one of four ways:

• If the PLL_CTL register is programmed to enter either the Active or
Full On operating mode, the processor waits for a wake-up signal,
then continues with the STI instruction in the sequence, as
described in “PLL Programming Sequence Continues” on
page 8-19.

• The wake-up signal is an interrupt generated by a peripheral,
watchdog or other timer, RTC, or other source. For more informa-
tion about events that cause the processor to wake-up from being
idled, see “System Interrupt Wakeup-Enable Register (SIC_IWR)”
on page 4-24.

ADSP-BF535 Blackfin Processor Hardware Reference 8-19

Dynamic Power Management

• If the PLL_CTL register is programmed to enter the Sleep operating
mode, the processor immediately transitions to the Sleep mode and
waits for a wake-up signal before continuing. When the wake-up
signal has been asserted, the instruction sequence continues with
the STI instruction, as described in the section, “PLL Programming
Sequence Continues” on page 8-19 causing the processor to transi-
tion to:

• – Active mode if BYPASS in the PLL_CTL register is set

• – Full On mode if the BYPASS bit is cleared

• If the PLL_CTL register is programmed to enter the Deep Sleep
operating mode, the processor immediately transitions to the Deep
Sleep mode and waits for a Real-Time Clock (RTC) interrupt or
hardware reset signal:

• – An RTC interrupt causes the processor to enter the Active
operating mode and continue with the STI instruction in
the sequence, as described below.

• – A hardware reset causes the processor to execute the reset
sequence, as described in “Hardware Reset” on page 3-13.

• If no operating mode transition is programmed, the processor waits
for a wake-up signal to continue with the STI instruction in the
sequence, as described in the section below.

PLL Programming Sequence Continues

The instruction sequence shown in Listing 8-1 on page 8-18 then contin-
ues with the STI instruction. Interrupts are re-enabled, IMASK is restored
and normal program flow resumes.

 To prevent spurious activity, DMA should be suspended while exe-
cuting this instruction sequence.

Dynamic Power Management Controller

8-20 ADSP-BF535 Blackfin Processor Hardware Reference

Examples

The following code examples illustrate how to effect various operating
mode transitions. These examples use the watchdog timer as the wake-up
signal. Some setup code has been removed for clarity, and these assump-
tions are made:

• P0 points to the PLL Control register (PLL_CTL).

• The watchdog timer has been initialized and enabled as a wake-up
signal.

• MSEL[6:0] and DF in PLL_CTL are set to (b#0011111) and (b#0)
respectively, signifying a CLKIN to CCLK multiplier of 31x.

• Core clock (CCLK) to system clock (SCLK) divider ratio (SSEL) is set
at 2 to 1 (b#00).

Listing 8-2. Transitioning From Active Mode to Full On Mode

R1.H = 0x0000; /* clear BYPASS bit in PLL_CTL */

R1.L = 0x3E00;

[P0] = R1;

SSYNC;

CLI R1; /* disable interrupts, copy IMASK to R1 */

IDLE; /* source NOPs into pipeline, prepare to enter idled

state */

SSYNC; /* drain pipeline, enter idled state, wait for watchdog

*/

STI R1; /* after watchdog occurs, restore interrupts and IMASK

*/
... /* processor is now in the Full-On mode */

ADSP-BF535 Blackfin Processor Hardware Reference 8-21

Dynamic Power Management

Listing 8-3. Transitioning from Full On Mode to Active Mode

R1.H = 0x0000; /* set BYPASS bit in PLL_CTL */

R1.L = 0x3F00;

[P0] = R1;

SSYNC;

CLI R1; /* disable interrupts, copy IMASK to R1 */
IDLE; /* source NOPs into pipeline, prepare to enter idled

state */
SSYNC; /* drain pipeline, enter idled state, wait for watchdog

*/

STI R1; /* after watchdog occurs, restore interrupts and IMASK

*/

... /* processor is now in the Active mode */

Listing 8-4. Changing CLKIN to CCLK Multiplier From 31x to 2x in
Full On Mode

R1.H = 0x0000; /* set BYPASS bit in PLL_CTL without modifying

MSEL because we must be in BYPASS to change MSEL */

R1.L = 0x3F00;

[P0] = R1;

SSYNC;

CLI R1; /* disable interrupts, copy IMASK to R1 */

IDLE; /* source NOPs into pipeline, prepare to enter idled

state */

SSYNC; /* drain pipeline, enter idled state, wait for watchdog

*/

STI R1; /* after watchdog occurs, restore interrupts and IMASK
*/
/* processor is now in the Active mode */

R1.H = 0x0000; /* set CLKIN to CCLK multiplier to 2x in PLL_CTL,

keeping BYPASS bit set as both MSEL and BYPASS cannot be changed

simultaneously */

Dynamic Power Management Controller

8-22 ADSP-BF535 Blackfin Processor Hardware Reference

R1.L = 0x0500;

[P0] = R1;

SSYNC;

R1.H = 0x0000; /* clear BYPASS bit in PLL_CTL, satisfying the

requirement of breaking up simultaneous changes to MSEL and

BYPASS */

R1.L = 0x0400;

[P0] = R1;

SSYNC;

CLI R1; /* disable interrupts, copy IMASK to r1 */

IDLE; /* source NOPs into pipeline, prepare to enter idled

state */

SSYNC; /* drain pipeline, enter idled state, wait for watchdog

*/

STI R1; /* after watchdog occurs, restore interrupts and IMASK

*/

... /* processor is now in the Full-On mode with the CLKIN to

CCLK multiplier set to 2x */

Peripheral Clocking
To further reduce power dissipation, the ADSP-BF535 processor allows
software to control the clocking of many peripherals. If a peripheral is not
currently needed, clocking to the peripheral can be disabled, resulting in
lower power dissipation. Clocking to a peripheral can be re-enabled later
when use of the peripheral is required.

Peripheral Clock Enable Register (PLL_IOCK)

As shown in Figure 8-6, the Peripheral Clock Enable register (PLL_IOCK) is
a 16-bit MMR that controls clocking to the peripherals. Each peripheral
whose clocking can be controlled is represented by a bit in the register. A 1

ADSP-BF535 Blackfin Processor Hardware Reference 8-23

Dynamic Power Management

in the bit enables clocking to that peripheral; a 0 in the bit turns off
clocking to that peripheral. This register can be altered at any time in any
operating mode.

After a reset, the PLL_IOCK register defaults to enable clocking for all
peripherals.

Dynamic Supply Voltage Control
In addition to clock frequency control, the ADSP-BF535 processor pro-
vides the capability to run the core processor at different voltage levels. As
power dissipation is proportional to the voltage squared, significant power
reductions can be accomplished when lower voltages are used.

The ADSP-BF535 processor uses five power domains. These power
domains are shown in Table 8-6. Each power domain has a separate VDD
supply. Note the internal logic of the processor and much of the processor
I/O can be run over a range of voltages. See ADSP-BF535 Blackfin Embed-
ded Processor Data Sheet for details on the allowed voltage ranges for each
power domain and power dissipation data.

Figure 8-6. Peripheral Clock Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Reset = 0xFFFF

Peripheral Clock Enable Register (PLL_IOCK)
0 = Disabled, 1 = Enabled

SPI0 Clock

SPORT1 Clock

SPORT0 Clock

Memory DMA Clock

PF Clock

EBIU Clock

PCI Clock

SPI1 Clock

UART0 Clock

UART1 Clock

Timer 0, 1, 2 Clock

USB Clock

0xFFC0 0408

Dynamic Power Management Controller

8-24 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Power Savings

If the PCI controller of the ADSP-BF535 processor is not needed for a
particular application, it does not need to be clocked. For information
about how to disable clocking to the PCI controller, see “Peripheral
Clocking” on page 8-22. Refer to ADSP-BF535 Blackfin Embedded Proces-
sor Data Sheet for the procedure for handling unused pins.

Changing Voltage

Minor changes in operating voltage can be accommodated without requir-
ing special consideration or action by the application program. See
ADSP-BF535 Blackfin Embedded Processor Data Sheet for more informa-
tion about voltage tolerances and allowed rates of change.

Reducing the ADSP-BF535 processor’s operating voltage to greatly con-
serve power, or raising the operating voltage to greatly increase
performance will probably require significant changes to the operating
voltage level. To ensure predictable behavior when varying the operating
voltage, the ADSP-BF535 processor should be brought to a known and
stable state before the operating voltage is modified.

Table 8-6. ADSP-BF535 Power Domains

Power Domain VDD Range

Analog PLL internal logic Fixed

All internal logic except PLL, RTC Variable

RTC internal logic, and crystal I/O Fixed

PCI I/O Fixed

All other I/O Variable

ADSP-BF535 Blackfin Processor Hardware Reference 8-25

Dynamic Power Management

The recommended procedure is to bring the processor to the Sleep operat-
ing mode before substantially varying the voltage. For more information
about the Sleep operating mode, see “Sleep Mode” on page 8-13. This
procedure ensures the integrity and deterministic behavior of the
processor.

As soon as the processor is placed in the Sleep operating mode, the operat-
ing voltage can be safely modified. After the voltage has been changed to
the new level, the processor can safely return to any operational mode so
long as the operating parameters, such as core clock frequency (CCLK), are
within the limits specified in ADSP-BF535 Blackfin Embedded Processor
Data Sheet for the new operating voltage level.

External Voltage Regulator Example

A programmable voltage regulator external to the ADSP-BF535 processor
can be used to modify the operating voltage of the processor dynamically.
A simple handshaking mechanism allows the ADSP-BF535 processor and
the voltage regulator to alter the operating voltage dynamically.

The following examples use a simple signaling mechanism between the
ADSP-BF535 processor and the external voltage regulator to toggle
between a high performance and power saving mode of operation. The
Programmable Flags peripheral of the ADSP-BF535 processor provides a
convenient means for such a mechanism. For more information about
operating modes, see “Operating Modes” on page 8-12. For more infor-
mation about the programmable flag peripheral, see “Programmable
Flags” on page 15-1.

Power Saving Sequence

In the following example, the Full On operating mode represents the high
performance mode of operation, and the Active operating mode represents
the power saving mode.

Dynamic Power Management Controller

8-26 ADSP-BF535 Blackfin Processor Hardware Reference

The sequence for toggling between the high performance mode and power
saving mode works as follows:

• The application software, running on the ADSP-BF535 processor
in the Full On operating mode, determines that the ADSP-BF535
processor should switch to the power saving mode of operation.

• The ADSP-BF535 processor programs the PLL to transition to the
Active operating mode after transitioning through the Sleep mode.

• The processor modifies the PLL Control register (PLL_CTL), setting
BYPASS to 1, STOPCK to 1 and PDWN to 0. Note that the transition
does not occur until the PLL programming sequence is executed.

• The ADSP-BF535 processor signals the voltage regulator, via a
programmable flag, to lower the operating voltage, then immedi-
ately executes the PLL programming sequence to begin the
transition to the Active operating mode.

• As described in the section, “PLL Programming Sequence” on
page 8-17, the ADSP-BF535 processor waits in the Sleep mode for
the wake-up signal before completing the transition to the Active
operating mode.

• While the ADSP-BF535 processor is waiting, the voltage regulator
lowers the voltage.

• After the voltage has stabilized, the voltage regulator signals the
ADSP-BF535 processor, via a programmable flag, that the voltage
has been lowered.

• This signal wakes up the ADSP-BF535 processor, allowing it to
complete the transition to the Active operating mode.

High Performance Sequence

The same sequence used to toggle to power saving mode can be used to
return the ADSP-BF535 into a high performance mode.

ADSP-BF535 Blackfin Processor Hardware Reference 8-27

Dynamic Power Management

• The application software, running on the ADSP-BF535 processor
in the Active operating mode, determines that the ADSP-BF535
processor should switch to the high performance mode of
operation.

• The ADSP-BF535 processor programs the PLL to transition to the
Full On operating mode after transitioning through the Sleep
mode.

• The processor modifies PLL_CTL, setting BYPASS to 0, STOPCK to 1
and PDWN to 0. Again, the transition does not occur until the PLL
programming sequence is executed.

• The ADSP-BF535 processor signals the voltage regulator, via a
programmable flag, to raise the operating voltage, then immedi-
ately executes the PLL programming sequence to begin the
transition to the Full On operating mode.

• The ADSP-BF535 processor again waits in the Sleep mode for the
wake-up signal before completing the transition to the Full On
operating mode.

• While the ADSP-BF535 processor is waiting, the voltage regulator
raises the voltage.

• When the voltage has stabilized, the voltage regulator signals the
ADSP-BF535 processor, via a programmable flag, that the voltage
has been raised.

• The signal from the voltage regulator wakes up the ADSP-BF535
processor, allowing it to complete the transition to the Full On
operating mode.

Dynamic Power Management Controller

8-28 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 9-1

9 DIRECT MEMORY ACCESS

The ADSP-BF535 processor uses Direct Memory Access (DMA) to trans-
fer data within memory spaces or between a memory space and a
peripheral. The fully integrated DMA controller allows the ADSP-BF535
processor or an external device to specify data transfer operations and
return to normal processing while the DMA controller carries out the data
transfers independent from processor activity.

The DMA controller can perform several types of data transfers:

• Memory Memory (MemDMA) (see “Memory DMA (Mem-
DMA)” on page 9-31)

• Memory Serial Peripheral Interface (SPI) Port (Chapter 10)

• Memory Serial Port (Chapter 11)

• Memory UART Port (Chapter 12)

• Memory USB Device (Chapter 14)

The ADSP-BF535 processor system includes eight DMA capable periph-
erals, including the Memory DMA controller (MemDMA). Twelve DMA
channels and bus masters support these devices:

• SPORT0 RCV DMA Controller

• SPORT1 RCV DMA Controller

• SPORT0 XMT DMA Controller

• SPORT1 XMT DMA Controller

9-2 ADSP-BF535 Blackfin Processor Hardware Reference

• USB DMA Controller

• SPI0 DMA Controller

• SPI1 DMA Controller

• UART0 RCV Controller

• UART1 RCV Controller

• UART0 XMT Controller

• UART1 XMT Controller

• Memory DMA Controller

This chapter describes the features common to all the DMA channels and
how DMA operations are set up. For specific peripheral features, see the
appropriate peripheral chapter for additional information. Performance
and bus arbitration for DMA operations can be found in “DAB Perfor-
mance” on page 7-11.

DMA transfers on the ADSP-BF535 processor can be descriptor based or
autobuffer based. Descriptor based DMA transfers require a set of param-
eters stored within memory to initiate a DMA sequence. This sort of
transfer allows chaining multiple DMA sequences together. In descriptor
based DMA operations, a DMA channel can be programmed to set up and
start another DMA transfer automatically after the current sequence com-
pletes. Autobuffer based DMA allows the processor to program DMA
control registers directly to initiate a DMA transfer. Upon completion,
the control registers are automatically updated with their original setup
values.

ADSP-BF535 Blackfin Processor Hardware Reference 9-3

Direct Memory Access

Descriptor Based DMA
Descriptor based DMA is the most common method of controlling DMA
transfers on the ADSP-BF535 processor. To use this method, the DMA
channel requires a set of parameters, called a DMA descriptor block, stored
within memory. Each descriptor block contains all the information
needed for a particular DMA transfer sequence and consists of:

• The 32-bit starting address of the data block to be transferred

• The number of data transfers

• Other miscellaneous control information—for example, the con-
figuration for what the DMA channel does when the transfer is
complete

• A pointer to the next descriptor block

Descriptor Based DMA

9-4 ADSP-BF535 Blackfin Processor Hardware Reference

DMA Descriptor Block Structure
The elements of a DMA descriptor block are defined in Table 9-1, where
BASE refers to the starting address of the descriptor block.

The processor can place multiple sets of descriptor blocks, representing
multiple transfers, in memory. A set of descriptor blocks is called a linked
list (see Figure 9-1). When a linked list has been generated, the DMA
channel has all the information needed to perform multiple transfer
sequences without processor intervention.

Figure 9-1. Linked List Containing Two Descriptor Blocks

CONFIGURATION WORD AA + 0

DESCRIPTOR BLOCK
A

TRANSFER COUNT AA + 2

START ADDRESS[15:0]A + 4

START ADDRESS[31:16]A + 6

B + 0A + 8

B + 0

DESCRIPTOR BLOCK
B

B + 2

B + 4

B + 6

B + 8

DMA_END 0X0001

LINKED LIST

CONFIGURATION WORD B

TRANSFER COUNT B

START ADDRESS[15:0]

START ADDRESS[31:16]

DMA_END

ADSP-BF535 Blackfin Processor Hardware Reference 9-5

Direct Memory Access

To end the sequence of transfers, the Next Descriptor Pointer must point
to a memory location containing a 16-bit data value containing a 0 in bit
15 (0xxx xxxx xxxx xxxx). If bit 0 is a 1 (0xxx xxxx xxxx xxx1), the DMA
channel is still enabled, but stalled, and the remaining FIFO values are not
discarded.

 Note the order of the descriptor block elements differs from that of
the DMA register set. This order allows the 32-bit address pointers
(BASE+4 and BASE+6) to be 32-bit aligned in little endian
memory. The user can configure the DMA Start Address[31:0] as
one 32-bit load into the descriptor block rather than as two 16-bit
loads. For this reason, it is recommended DMA descriptor blocks
be 32-bit aligned within memory. At a minimum, descriptor blocks
must be 16-bit aligned.

Table 9-1. DMA Descriptor Block Parameters

Address Location Name Description

BASE+0 DMA Configuration Word (see
Table 9-2 for bit definitions)

Descriptor ownership, DMA configura-
tion, and completion status

BASE+2 DMA Transfer Count Number of elements (8-bit bytes, 16-bit
half words, or 32-bit words) to be trans-
ferred

BASE+4 DMA Start Address[15:0] 16 LSBs of the transfer start address

BASE+6 DMA Start Address[31:16] 16 MSBs of the transfer start address

BASE+8 Next Descriptor Pointer[15:0] 16 LSBs of the next descriptor block

head address 1

1 16 MSBs of the next descriptor block base address are determined by the global DMA Descriptor
Base Pointer register (DMA_DBP), which is shared across all ADSP-BF535 DMA channels.

Descriptor Based DMA

9-6 ADSP-BF535 Blackfin Processor Hardware Reference

DMA Configuration Word
Table 9-2 describes the bits in the DMA Configuration Word located in
address BASE+0 of the descriptor block within memory.

Table 9-2. DMA Configuration Word

Bit Name Values

0 DMA Enable 0 - Disabled
1 - Enabled

1 Direction Peripheral dependent definition of values

2 Interrupt on Completion Enable (IOC) 0 - Interrupt disabled
1 - Interrupt enabled

3 Data Size Peripheral dependent definition of values (for
data size, see Table 9-3)

4 Autobuffer Peripheral dependent definition of values

5-6 Control State Peripheral dependent definition of values

7 Buffer Clear Must be set to 0 in Configuration Word

8 Interrupt on Error Enable Peripheral dependent definition of values

9-11 Status Peripheral dependent definition of values

12-13 Buffer Status / Data Size1

1 Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit in
some peripherals (see Table 9-3).

Peripheral dependent definition of values

14 DMA Completion Status (DCS) 0 - Successful completion
1 - Error

15 Descriptor Block Ownership (DBO) 0 - Processor has ownership
1 - DMA channel has ownership

ADSP-BF535 Blackfin Processor Hardware Reference 9-7

Direct Memory Access

Each DMA channel has peripheral dependent functionality. The follow-
ing peripheral dependent behavior is controlled or monitored through the
DMA Configuration Word:

• Data transfer direction (bit 1)

• The peripheral dependent direction bit is dedicated as either read
or write. For some peripherals and MemDMA, this bit cannot be
modified.

• Data size (bits 3 and 12)

• The peripheral dependent data size can be 8, 16, or 32 bits. Some
peripherals support only 16- and 32-bit data sizes. With each trans-
fer, the DMA address (stored in the DMA Start Address registers)
increments relative to the data size. The address increments by 1
for 8-bit data transfers, by 2 for 16-bit transfers, or by 4 for 32-bit
transfers.

Table 9-3 shows how to configure the DMA Configuration Word for each
valid data size.

Table 9-3. DMA Configuration Word Data Size Settings

Bit 12 1

1 Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and writ-
ten as a data size bit.

Bit 3 Data Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte

Descriptor Based DMA

9-8 ADSP-BF535 Blackfin Processor Hardware Reference

The DMA controller does not support data packing. For example, in an
8-bit device, if the data size is set up for 32 bits, the upper 3 bytes of the
32-bit transfer are zero-filled.

• Peripheral control (bits 5 and 6)

• Peripheral dependent control bits provide peripheral control
through descriptor blocks. For more information about the use of
these bits in a specific peripheral, see the appropriate peripheral
chapter.

• Peripheral status (bits 9 – 13)

• The peripheral dependent status bits contain peripheral specific
information about the DMA transfer for the current descriptor
block, including buffer status. At the completion of the DMA
transfer, this information is written back to the DMA Configura-
tion Word of the current DMA descriptor block. For more
information about the use of these bits in a specific peripheral, see
the appropriate peripheral chapter.

Setting Up Descriptor Based DMA
The following steps illustrate the typical sequence for setting up descriptor
based DMA.

 Before these steps, the DMA Descriptor Base Pointer register
(DMA_DBP) must be configured with the upper 16 bits (MSBs) of the
descriptor block base address, BASE+0.

1. Write the DMA Configuration Word (with bit 15 set to 1), DMA
Transfer Count, DMA Start Address[15:0], DMA Start
Address[31:16], and Next Descriptor Pointer[15:0] to the descrip-
tor block memory addresses BASE+0 through BASE+8.

ADSP-BF535 Blackfin Processor Hardware Reference 9-9

Direct Memory Access

• If the descriptor block is the last one in a linked list or the
only one (that is, a standalone transfer sequence), the Next
Descriptor Pointer within the descriptor block must point
to a memory location that contains a data value with bit 15
set to 0 (0xxx xxxx xxxx xxxx). If bit 0 is a 1 (0xxx xxxx xxxx
xxx1), the DMA channel is still enabled, but stalled, and the
remaining FIFO values are not discarded. This allows the
DMA engine to finish transferring the remaining values in
the FIFO.

• Because of this requirement, the Next Descriptor Pointer
can point to the base address (BASE+0) of the current DMA
descriptor block. (After the DMA transfer sequence, bit 15
of the DMA Configuration Word is cleared, returning own-
ership to the processor. If ownership returns to the
processor, the DMA channel is still enabled but stalls after
the DMA transfer.)

2. Write the lower 16 bits (LSBs) of the descriptor block base address
(the first descriptor block if in a linked list), BASE+0, to the Next
Descriptor Pointer register of the appropriate peripheral.

3. Set the DMA Enable bit in the appropriate peripheral’s DMA
Configuration register.

• This final write is needed only if this DMA descriptor block
is for a standalone transfer sequence or the first one in a
linked list.

Descriptor-Based DMA Operation
Upon detecting the assertion of the DMA Enable bit in the peripheral’s
DMA Configuration register, the DMA channel fetches the first element
from the descriptor block, the DMA Configuration Word, and copies it to

Descriptor Based DMA

9-10 ADSP-BF535 Blackfin Processor Hardware Reference

the DMA Configuration register. Bit 15, the DBO bit, of this register is
checked to determine whether the descriptor block is configured and
ready for use:

• If bit 15 is not set, the DMA channel stalls and waits until a pro-
cessor write occurs to the peripheral’s DMA Descriptor Ready
register (see “Peripheral DMA Descriptor Ready Register” on
page 9-25).

• This write triggers the DMA controller to recopy the DMA Con-
figuration Word from the current descriptor block into the DMA
Configuration register and to recheck bit 15.

• If bit 15 is set, the DMA channel fetches the remaining four ele-
ments (BASE+2, BASE+4, BASE+6, BASE+8) from the descriptor
block, loads them to the respective DMA control registers, and
begins DMA transfers.

• The status of the transfer sequence is updated every cycle in the
appropriate peripheral’s DMA status registers.

ADSP-BF535 Blackfin Processor Hardware Reference 9-11

Direct Memory Access

The DMA transfer sequence is completed when the count value in the
DMA Transfer Count register has decremented to zero. Upon completion
of the transfer sequence, the DMA channel:

• Clears the DBO bit of the DMA Configuration register, returning
ownership to the processor

• Copies the contents of the DMA Configuration register to the
DMA Configuration Word of the current descriptor block.

• This write-back includes the final status of the transfer sequence.

• Generates an interrupt if interrupts are enabled (see the appropriate
peripheral chapter for more information)

• Fetches the Configuration Word of the next descriptor block

• The process continues.

The flow diagram in Figure 9-2 and Figure 9-3 shows how the DMA
channel performs two consecutive DMA transfers using descriptor blocks.
(The structure of the descriptor blocks is shown in Figure 9-1 on
page 9-4.) Figure 9-4 on page 9-14 illustrates the time segments from the
flow diagram (Time T1 through Time T5).

In Figure 9-4, the actions in T1 and T2 are the same as those in T3 and
T4 except for the name of the descriptor block.

Descriptor Based DMA

9-12 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 9-2. Consecutive DMA Sequences With Descriptor Blocks (1 of 2)

Ownership bit set?

DMA channel copies
Configuration Word A into

DMA Configuration register and tests
Descriptor Block Ownership bit

(bit 15). (See Time T1.)

Y

DMA channel fetches remaining 4 elements
from Descriptor Block A

and performs DMA. (See Time T2.)

N

NEXT
PAGE

Y

N
Did

processor
write to Descriptor

Ready register
occur?

DMA channel writes back contents of
DMA Configuration register to address

A+0 (DMA Configuration Word A) of
Descriptor Block A.

Processor sets up
descriptor blocks in memory.

See Figure 9-1.

Processor configures
DMA Next Descriptor Pointer register and
DMA Descriptor Base Pointer (DMA_DBP)
with the first descriptor block base address

and enables DMA.

ADSP-BF535 Blackfin Processor Hardware Reference 9-13

Direct Memory Access

Figure 9-3. Consecutive DMA Sequences With Descriptor Blocks (2 of 2)

Ownership bit set?

DMA channel copies
Configuration Word B into

DMA Configuration register and tests
Descriptor Block Ownership bit

(bit 15). (See Time T3.)

Y

DMA channel fetches remaining 4 elements
from Descriptor Block B

and performs DMA. (See Time T4.)

N

CONT'D

Y

N
Did

processor
write to Descriptor

Ready register
occur?

DMA channel writes back contents of
DMA Configuration register to address

B+0 (DMA Configuration Word B) of
Descriptor Block B.

DMA channel fetches and copies
DMA_END Word (=0x0001)

into DMA Configuration register
and disables DMA. (See Time T5.)

Descriptor Based DMA

9-14 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 9-4. Time T1 Through T5 of Consecutive DMA Sequences Using
Descriptor Blocks

DMA_END

DMA CONFIGURATION
REGISTER

DESCRIPTOR
BLOCK A

CONFIGURATION WORD A

TRANSFER COUNT A

START ADDRESS[15:0]

START ADDRESS[31:16]

B + 0

DESCRIPTOR
BLOCK A

CONFIGURATION WORD A

TRANSFER COUNT A

START ADDRESS[15:0]

START ADDRESS[31:16]

B + 0

DESCRIPTOR
BLOCK B

CONFIGURATION WORD B

TRANSFER COUNT B

START ADDRESS[15:0]

START ADDRESS[31:16]

DMA_END

DMA CONFIGURATION
REGISTER

DESCRIPTOR
BLOCK B

CONFIGURATION WORD B

TRANSFER COUNT B

START ADDRESS[15:0]

START ADDRESS[31:16]

DMA_END

15 0

DMA T RANSFER COUNT
REGISTER

15 0

15 0

15 0

DMA START ADDRESS
L OW REGISTER

DMA START ADDRESS
HIGH REGISTER

DMA NEXT DESCRIPTOR
POINTER REGISTER

DMA CONFIGURATION
REGISTER

15 0

15 0

15 0

T1 T2

T3 T4

T5

15 0

DMA TRANSFER COUNT
REGIST ER

15 0

15 0

15 0

DMA START ADDRESS
LOW REGISTER

DMA START ADDRESS
HIGH REGISTER

DMA NEXT DESCRIPTOR
POINTER REGISTER

A+0

A+2

A+4

A+6

A+8

B+0

B+2

B+4

B+6

B+8

0x0001

ADSP-BF535 Blackfin Processor Hardware Reference 9-15

Direct Memory Access

Autobuffer Based DMA
Autobuffer based DMA operates like descriptor based DMA except that it
does not require descriptors in memory. In autobuffer mode, DMA con-
trol registers are writable and programmed directly by the processor to
initiate a DMA transfer sequence. Upon completion of the transfer
sequence, the control registers are reloaded with their original setup values
for the next transfer. This effectively creates a circular buffer that contin-
ues to transfer data until disabled by clearing the DMA Enable bit in the
peripheral’s DMA Configuration register. If enabled, interrupts are gener-
ated at the halfway and completion points in the transfer sequence. For
more information about peripheral interrupts, see the appropriate periph-
eral chapter.

Setting Up Autobuffer Based DMA
The following steps illustrate the typical sequence for setting up autobuf-
fer based DMA.

1. Set the Autobuffer Enable bit in the DMA Configuration register.

2. Initialize the DMA Transfer Count, DMA Start Address High, and
DMA Start Address Low registers.

3. Write to the DMA Configuration register, configuring the DMA
transfer and setting the DMA Enable bit.

This final write starts the autobuffer based DMA transfer sequence.

 To disable autobuffering, clear the DMA Enable bit in the Config-
uration register. Clearing the bit during active operation will stop
the current single or burst transfer, but it will not cause a DMA
error abort as it would for descriptor based DMA. The Autobuffer
Enable bit in the DMA Configuration register can then be cleared.

DMA Control Registers

9-16 ADSP-BF535 Blackfin Processor Hardware Reference

Upon detecting that the DMA Enable bit is cleared, the DMA channel
completes the current single or burst transfer and disables DMA. After the
bit is cleared, the DMA Start Address and DMA Transfer Count registers
can be used to monitor the status of the DMA transfers.

DMA Control Registers
The registers in this section are a generic representation of the actual
peripheral DMA control registers, which are listed in Table 9-12 on
page 9-30. The word “peripheral” is used in the register name in place of
the specific peripheral name.

Peripheral DMA Configuration Register
The peripheral’s DMA Configuration register determines whether DMA
is enabled and performs other essential DMA functions, including func-
tions that are peripheral dependent (see Figure 9-5).

The DMA Enable bit enables and activates a DMA channel to begin load-
ing a descriptor block from memory. The processor should write the
DMA Enable bit only during DMA channel initialization and in activat-
ing or terminating autobuffer mode. For descriptor based DMA, if the
processor resets this bit during active operation, the DMA channel termi-
nates with an error condition (see “DMA Abort Conditions” on
page 9-44).

The Buffer Clear bit is used to clear the DMA buffer and should be
accessed only when a DMA channel is not enabled.

 The Buffer Clear bit should not be set when using autobuffer
mode.

ADSP-BF535 Blackfin Processor Hardware Reference 9-17

Direct Memory Access

Figure 9-5. Peripheral DMA Configuration Register

0 0 0 0 0 0 0

Peripheral DMA Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Peripheral Dependent
Autobuffer

0 - Disabled
1 - Enabled

0 - 16-bit half word
1 - 8-bit byte or 32-bit

word

Peripheral Dependent
Direction - RO

IOC (Interrupt on
Completion Enable) - RO

Peripheral Dependent
Data Size Bit 0 - RO

DMA Enable

Peripheral Dependent
Status State[2:0] - RO

Peripheral Dependent
Buffer Status[1:0]

0 - Successful completion
1 - Error

DCS (DMA Completion
Status) - RO

0 - Processor
1 - DMA engine

DBO (Descriptor Block
Ownership)- RO

0 0 0 0 0 0 0 0

0 - Read from memory
1 - Write to memory

Interrupt on Error
Enable - RO

0 - Interrupt disabled
1 - Interrupt enabled

0 - Disabled
1 - Enabled

Peripheral Dependent
Control State[1:0] - RO

Buffer Clear
0 - Normal buffer

operation
1 - Clear buffer

Reset = 0x0000

See peripheral
documentation

See peripheral
documentation

See peripheral
documentation

In autobuffer mode, these bits are R/W. In some peripherals, Bit 12 of the DMA Configuration
Word is read as a FIFO Status bit and written as a data size bit.

Data Size Bit 1
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

See peripheral
documentation

For MMR assign-
ments, see Table 9-4.

DMA Control Registers

9-18 ADSP-BF535 Blackfin Processor Hardware Reference

Table 9-4 lists the MMR assignments for the peripheral DMA Configura-
tion registers.

The Descriptor Block Ownership (DBO) bit can be set only when bit 15 of a
descriptor block’s DMA Configuration Word is set and the DMA Config-
uration Word is loaded into the peripheral’s DMA Configuration register.

When the current DMA transfer sequence has completed, the DMA chan-
nel clears bit 15 in the peripheral’s DMA Configuration register and
writes the contents of the register to the current descriptor block’s Config-
uration Word in memory. Then the next descriptor block’s Configuration
Word is loaded into the peripheral’s DMA Configuration register. If bit
15 of the Configuration Word is set (DMA channel has ownership), a full
descriptor block download is performed, and bit 15 of the peripheral’s
DMA Configuration register is set once again.

Table 9-4. Peripheral DMA Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CONFIG 0xFFC0 3202

SPI1_CONFIG 0xFFC0 3602

SPORT0_RX_CONFIG 0xFFC0 2802

SPORT1_RX_CONFIG 0xFFC0 2C02

SPORT0_TX_CONFIG 0xFFC0 2800

SPORT1_TX_CONFIG 0xFFC0 2C00

UART0_CONFIG_RX 0xFFC0 1A02

UART1_CONFIG_RX 0xFFC0 1E02

UART0_CONFIG_TX 0xFFC0 1B02

UART1_CONFIG_TX 0xFFC0 1F02

USBD_DMACFG 0xFFC0 4440

ADSP-BF535 Blackfin Processor Hardware Reference 9-19

Direct Memory Access

Peripheral DMA Transfer Count Register
The peripheral’s DMA Transfer Count register, shown in Figure 9-6, con-
tains the number of transfers needed to complete the current DMA
sequence. For descriptor based DMA, the value of this register is loaded
when a descriptor block is read from memory. For autobuffer based DMA,
this register is configured directly by the user.

Table 9-5 lists the MMR assignments for the peripheral DMA Transfer
Count registers.

Figure 9-6. Peripheral DMA Transfer Count Register

Table 9-5. Peripheral DMA Transfer Count Register MMR
Assignments

Register Name Memory-Mapped Address

SPI0_COUNT 0xFFC0 3208

SPI1_COUNT 0xFFC0 3608

SPORT0_COUNT_RX 0xFFC0 2A08

SPORT1_COUNT_RX 0xFFC0 2E08

SPORT0_COUNT_TX 0xFFC0 2B08

SPORT1_COUNT_TX 0xFFC0 2F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Block Transfer
Count[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Transfer Count Register
RO. R/W in autobuffer mode.

Reset = 0x0000

The number of transfers
needed to complete the
current DMA transfer
sequence

For MMR assign-
ments, see Table 9-5.

DMA Control Registers

9-20 ADSP-BF535 Blackfin Processor Hardware Reference

The DMA Transfer Count always decrements by 1 for each bus transfer,
independent of the transfer size (8, 16, or 32 bits). A DMA transfer
sequence is complete when the transfer count reaches 0.

UART0_COUNT_RX 0xFFC0 1A08

UART1_COUNT_RX 0xFFC0 1E08

UART0_COUNT_TX 0xFFC0 1B08

UART1_COUNT_TX 0xFFC0 1F08

USBD_DMACT xFFC0 4446

Table 9-5. Peripheral DMA Transfer Count Register MMR
Assignments (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF535 Blackfin Processor Hardware Reference 9-21

Direct Memory Access

Peripheral DMA Start Address Registers
The peripheral’s DMA Start Address range is 32 bits, formed by concate-
nating its DMA Start Address High [15:0] and its DMA Start Address
Low [15:0] registers.

Table 9-6 lists the MMR assignments for the peripheral DMA Start
Address registers.

Figure 9-7. Peripheral DMA Start Address Registers

Table 9-6. Peripheral DMA Start Address Register MMR
Assignments

Register Name Memory-Mapped Address

SPI0_START_ADDR_HI 0xFFC0 3204

SPI1_START_ADDR_HI 0xFFC0 3604

SPI0_START_ADDR_LO 0xFFC0 3206

SPI1_START_ADDR_LO 0xFFC0 3606

SPORT0_START_ADDR_HI_TX 0xFFC0 2B04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address
[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Start Address High Register
RO. R/W in autobuffer mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address
[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Start Address Low Register
RO. R/W in autobuffer mode.

Reset = 0x0000

For MMR assign-
ments, see Table 9-6.

DMA Control Registers

9-22 ADSP-BF535 Blackfin Processor Hardware Reference

The Start Address must be aligned to the transfer size, as shown in
Table 9-7.

Upon completion of the current access, the DMA address generators
increment the start address by 1 for 8-bit transfers, by 2 for 16-bit trans-
fers, or by 4 for 32-bit transfers.

SPORT1_START_ADDR_HI_TX 0xFFC0 2F04

SPORT0_START_ADDR_HI_RX 0xFFC0 2A04

SPORT1_START_ADDR_HI_RX 0xFFC0 2E04

UART0_START_ADDR_HI_RX 0xFFC0 1A04

UART1_START_ADDR_HI_RX 0xFFC0 1E04

UART0_START_ADDR_LO_RX 0xFFC0 1A06

UART1_START_ADDR_LO_RX 0xFFC0 1E06

USBD_DMABH (High) 0xFFC0 4444

USBD_DMABL (Low) 0xFFC0 4442

Table 9-7. Start Address Alignment Requirements

Transfer Size Start Address Alignment Requirements

8 bits Start Address has no alignment restriction.

16 bits Start Address must be 16-bit aligned.

32 bits Start Address must be 32-bit aligned.

Table 9-6. Peripheral DMA Start Address Register MMR
Assignments (Cont’d)

Register Name Memory-Mapped Address

ADSP-BF535 Blackfin Processor Hardware Reference 9-23

Direct Memory Access

No data packing is done on 8- or 16-bit transfers. These modes exist to
support the alignment function, as required. The highest throughput is
achieved with 32-bit transfers.

 Use extreme caution when programming start addresses and trans-
fer count to make sure that the DMA channel does not access
unsupported memory, MMR space, scratchpad, or other critical
system resources. Access to illegal memory ranges causes an
exception.

Peripheral DMA Next Descriptor Pointer Register
The value of the peripheral’s DMA Next Descriptor Pointer register deter-
mines the lower 16 bits of the descriptor block base address for the next
DMA transfer sequence. After initial configuration of the DMA register
set, this register is updated whenever the DMA channel fetches a new
descriptor block from memory. Figure 9-8 describes the peripheral DMA
Next Descriptor Pointer register.

The LSB of this register must always be 0, because the descriptor list must
be 16-bit aligned. This register is not used for autobuffer mode.

Figure 9-8. Peripheral DMA Next Descriptor Pointer Register

Peripheral DMA Next Descriptor Pointer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Next Descriptor
Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

For MMR assign-
ments, see Table 9-8.

DMA Control Registers

9-24 ADSP-BF535 Blackfin Processor Hardware Reference

Table 9-8 lists the MMR assignments for the peripheral DMA Next
Descriptor Pointer registers.

DMA Descriptor Base Pointer Register (DMA_DBP)
In the ADSP-BF535 processor, the linked list of DMA descriptor blocks is
relocatable. By default, the DMA Descriptor Base Pointer register locates
the descriptor block linked list in the top 64 KB of on-chip L2 memory.
This register, shown in Figure 9-9, is not updated on DMA descriptor
block fetches; software controls it directly. The DMA Descriptor Base
Pointer must be restricted to L2 memory space.

This register is not used for autobuffer mode and is shared across all
peripherals.

Table 9-8. Peripheral DMA Next Descriptor Pointer Register MMR
Assignments

Register Name Memory-Mapped Address

SPI0_NEXT_DESCR 0xFFC0 320A

SPI1_NEXT_DESCR 0xFFC0 360A

SPORT0_NEXT_DESCR_RX 0xFFC0 2A0A

SPORT1_NEXT_DESCR_RX 0xFFC0 2E0A

SPORT0_NEXT_DESCR_TX 0xFFC0 2B0A

SPORT1_NEXT_DESCR_TX 0xFFC0 2F0A

UART0_NEXT_DESCR_RX 0xFFC0 1A0A

UART1_NEXT_DESCR_RX 0xFFC0 1E0A

UART0_NEXT_DESCR_TX 0xFFC0 1B0A

UART1_NEXT_DESCR_TX 0xFFC0 1F0A

USB (none)

ADSP-BF535 Blackfin Processor Hardware Reference 9-25

Direct Memory Access

Peripheral DMA Descriptor Ready Register
If a descriptor block’s DBO bit is 0 when the descriptor block Configura-
tion Word is accessed, the DMA channel halts. Writing a 1 to bit 0 of the
peripheral’s DMA Descriptor Ready register synchronizes the DMA chan-
nel, causing the Configuration Word to be reloaded into the DMA
Configuration Register and causing bit 15 to be rechecked. If this bit is
set, processing of the descriptor block resumes. Bit 0 of the peripheral’s
DMA Descriptor Ready register remains set until a descriptor block has
been successfully fetched. After a successful fetch, bit 0 of the DMA
Descriptor Ready register is cleared. Figure 9-10 describes the peripheral
DMA Descriptor Ready register.

This register is not used for autobuffer mode.

Figure 9-9. DMA Descriptor Base Pointer Register

Figure 9-10. Peripheral DMA Descriptor Ready Register

DMA Descriptor Base Pointer Register (DMA_DBP)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

Address[31:16] of
Descriptor Block
Base Pointer

1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 Reset = 0xF0030xFFC0 4880

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Descriptor Ready Register

Reactivate Descriptor
Fetch

Read/write

Reset = 0x0000
For MMR assign-
ments, see Table 9-9.

DMA Control Registers

9-26 ADSP-BF535 Blackfin Processor Hardware Reference

Peripheral DMA Current Descriptor Pointer Register
The peripheral’s DMA Current Descriptor Pointer register contains the
least significant 16 bits of the base address of the descriptor block that the
DMA channel is actively processing. This register, shown in Figure 9-11,
is loaded with the value from the peripheral’s DMA Next Descriptor
Pointer register before each DMA work block is fetched. This register is
not used for autobuffer mode.

Table 9-9. Peripheral DMA Descriptor Ready Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_DESCR_RDY 0xFFC0 320C

SPI1_DESCR_RDY 0xFFC0 360C

SPORT0_DESCR_RDY_RX 0xFFC0 2A0C

SPORT1_DESCR_RDY_RX 0xFFC0 2E0C

SPORT0_DESCR_RDY_TX 0xFFC0 2B0C

SPORT1_DESCR_RDY_TX 0xFFC0 2F0C

UART0_DESCR_RDY_RX 0xFFC0 1A0C

UART1_DESCR_RDY_RX 0xFFC0 1E0C

UART0_DESCR_RDY_TX 0xFFC0 1B0C

UART1_DESCR_RDY_TX 0xFFC0 1F0C

USBD (N/A)

ADSP-BF535 Blackfin Processor Hardware Reference 9-27

Direct Memory Access

Figure 9-11. Peripheral DMA Current Descriptor Pointer Register

Table 9-10. Peripheral DMA Current Descriptor Pointer Register MMR
Assignments

Register Name Memory-Mapped Address

SPI0_CURR_PTR 0xFFC0 3200

SPI1_CURR_PTR 0xFFC0 3600

SPORT0_CURR_PTR_RX 0xFFC0 2A00

SPORT1_CURR_PTR_RX 0xFFC0 2E00

SPORT0_CURR_PTR_TX 0xFFC0 2B00

SPORT1_CURR_PTR_TX 0xFFC0 2F00

UART0_CURR_PTR_RX 0xFFC0 1A00

UART1_CURR_PTR_RX 0xFFC0 1E00

UART0_CURR_PTR_TX 0xFFC0 1B00

UART1_CURR_PTR_TX 0xFFC0 1F00

USBD (N/A)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Current Descriptor
Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peripheral DMA Current Descriptor Pointer Register
RO

Reset = 0x0000
For MMR
assignments, see
Table 9-10.

DMA Control Registers

9-28 ADSP-BF535 Blackfin Processor Hardware Reference

Peripheral DMA IRQ Status Register
The peripheral’s DMA IRQ Status register, shown in Figure 9-12, is a
sticky register that records the occurrence of any of its interrupt sources.

Figure 9-12. Peripheral DMA IRQ Status Register

Table 9-11. Peripheral DMA Interrupt Status Register MMR
Assignments

Register Name Memory-Mapped Address

SPI0_DMA_INT 0xFFC0 320E

SPI1_DMA_INT 0xFFC0 360E

SPORT0_IRQSTAT_RX 0xFFC0 2A0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

SPORT0_IRQSTAT_TX 0xFFC0 2B0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

UART0_IRQSTAT_RX 0xFFC0 1A0E

UART1_IRQSTAT_RX 0xFFC0 1E0E

UART0_IRQSTAT_TX 0xFFC0 1B0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Completion IRQ
Status - W1C

Peripheral DMA IRQ Status Register
RO. W1C.

Peripheral-Dependent
Error IRQ Status - W1C

1 - Interrupt generated
at end of DMA
transfer sequence

Bus Error IRQ Status -
W1C
1 - Bus error interrupt

generated because
of misaligned data
or illegal memory
access

Reset = 0x0000

1 - Peripheral-specific
interrupt generated

For MMR assign-
ments, see
Table 9-11.

ADSP-BF535 Blackfin Processor Hardware Reference 9-29

Direct Memory Access

Each ADSP-BF535 processor DMA channel can produce three types of
interrupts:

• A completion interrupt, generated when a DMA transfer sequence
completes

• A bus error interrupt, generated when one of two events occur:

• Misalignment of an address to data size (see “Data Misalign-
ment” on page 9-46)

• A memory access resulting in an error response (see “Illegal
Memory Access” on page 9-46)

• A peripheral specific interrupt (see the appropriate chapter for
more information)

If the Interrupt on Completion (IOC) bit of the peripheral’s DMA Con-
figuration register is set, an interrupt is generated at the end of a DMA
transfer sequence, and the Completion IRQ Status bit is set in the periph-
eral’s DMA IRQ Status register:

• The Interrupt on Error Enable bit is associated with peripheral spe-
cific interrupts.

• The Bus Error IRQ Status bit is non-maskable because of misalign-
ment or illegal access.

For conditions resulting in a peripheral specific interrupt, see the chapter
that describes the peripheral.

UART1_IRQSTAT_TX 0xFFC0 1F0E

USBD_DMAIRQ 0xFFC0 4446

Table 9-11. Peripheral DMA Interrupt Status Register MMR
Assignments (Cont’d)

Register Name Memory-Mapped Address

DMA Control Registers

9-30 ADSP-BF535 Blackfin Processor Hardware Reference

Table 9-12 lists the peripheral DMA control registers.

Table 9-12. Peripheral DMA Control Registers

Peripheral Config
Register

Next
Descriptor
Pointer
Register

Descriptor
Ready
Register

Interrupt
Status
Register

Current
Descriptor
Pointer
Register

Start
Address
High
Register

Start
Address
Low
Register

Transfer
Count
Register

MemDMA
(Source)

MDS_
DCFG

MDS_
DND

MDS_
DDR

MDS_
DI

MDS_
DCP

MDS_
DSAH

MDS_
DSAL

MDS_
DCT

MemDMA
(Destina-
tion)

MDD_
DCFG

MDD_
DND

MDD_
DDR

MDD_
DI

MDD_
DCP

MDD_
DSAH

MDD_
DSAL

MDD_
DCT

SPI SPIx_
CONFIG

SPIx_
NEXT_
DESCR

SPIx_
DESCR_
RDY

SPIx_
DMA_
INT

SPIx_
CURR_
PTR

SPIx_
START_
ADDR_
HI

SPIx_
START_
ADDR_
LO

SPIx_
COUNT

SPORTx
RX

SPORTx_
CONFIG_
DMA_
RX

SPORTx_
NEXT_
DESCR_
RX

SPORTx_
DESCR_
RDY_
RX

SPORTx_
IRQSTAT_
RX

SPORTx_
CURR_
PTR_RX

SPORTx_
START_
ADDR_
HI_RX

SPORTx_
START_
ADDR_
LO_RX

SPORTx_
COUNT_
RX

SPORTx
TX

SPORTx_
CONFIG_
DMA_
TX

SPORTx_
NEXT_
DESCR_
TX

SPORTx_
DESCR_
RDY_TX

SPORTx_
IRQSTAT_
TX

SPORTx_
CURR_
PTR_TX

SPORTx_
START_
ADDR_
HI_TX

SPORTx_
START_
ADDR_
LO_TX

SPORTx_
COUNT_
TX

UARTx RX UARTx_
CONFIG_
RX

UARTx_
NEXT_
DESCR_
RX

UARTx_
DESCR_
RDY_RX

UARTx_
IRQSTAT_
RX

UARTx_
CURR_
PTR_RX

UARTx_
START_
ADDR_
HI_RX

UARTx_
START_
ADDR_
LO_RX

UARTx_
COUNT_
RX

UARTx TX UARTx_
CONFIG_
TX

UARTx_
NEXT_
DESCR_
TX

UARTx_
DESCR_
RDY_TX

UARTx_
IRQSTAT_
TX

UARTx_
CURR_
PTR_TX

UARTx_
START_
ADDR_
HI_TX

UARTx_
START_
ADDR_
LO_TX

UARTx_
COUNT_
TX

USB USBD_
DMACFG

N/A N/A USBD_
DMAIRQ

N/A USBD_
DMABH

USBD_
DMABL

USBD_
DMACT

ADSP-BF535 Blackfin Processor Hardware Reference 9-31

Direct Memory Access

Memory DMA (MemDMA)
The Memory DMA (MemDMA) controller provides memory-to-memory
DMA transfers among the ADSP-BF535 processor memory spaces. These
memory spaces include the Peripheral Component Interconnect (PCI)
address spaces, L1, L2, external synchronous, and asynchronous
memories.

The MemDMA controller consists of two channels—one for the source,
which is used to read from memory, and one for the destination, which is
used to write to memory. Both channels share a 16-entry, 32-bit FIFO.
The source DMA channel fills the FIFO; the destination DMA channel
empties it. The FIFO depth significantly improves throughput on block
transfers between internal and external memory. The FIFO supports 8-,
16-, and 32-bit transfers. However, 8- and 16-bit transfers use only part of
the 32-bit data bus for each transfer; therefore, the throughput for these
transfer sizes is less than for full, 32-bit DMA operations.

The MemDMA controller does not support autobuffer based DMA.
Transfers using the MemDMA controller must use descriptor based
DMA. Two separate linked lists of descriptor blocks are required—one for
the source DMA channel and one for the destination DMA channel. The
separation of control allows an off-chip host processor to manage one list
through the PCI port bus and the core processor to manage the other list.
For a detailed explanation of descriptor based DMA, see “Descriptor
Based DMA” on page 9-3.

 Because the source and destination DMA channels share a single
FIFO buffer, the descriptor blocks must be configured to have the
same transfer count and data size.

It is preferable to activate interrupts on only one channel. This eliminates
ambiguity when trying to identify the channel (either source or destina-
tion) that requested the interrupt.

MemDMA Control Registers

9-32 ADSP-BF535 Blackfin Processor Hardware Reference

MemDMA Control Registers
MemDMA control registers are like DMA control registers but have fewer
bit assignments. Because MemDMA provides only memory-to-memory
DMA transfers, MemDMA control registers contain no peripheral depen-
dent bits.

MemDMA control registers consist of source registers, used to read from
memory, and destination registers, used to write to memory. This section
shows destination registers first, then source registers. For descriptions of
the registers, see the related DMA register.

ADSP-BF535 Blackfin Processor Hardware Reference 9-33

Direct Memory Access

Destination Memory DMA Configuration Register
(MDD_DCFG)

Figure 9-13 shows the Destination Memory DMA Configuration register.
The related DMA register is described in “Peripheral DMA Configuration
Register” on page 9-16.

Figure 9-13. Destination Memory DMA Configuration Register

000 100

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0

Destination Memory DMA Configuration Register (MDD_DCFG)
Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit.

DMA Enable
0 - Disabled
1 - Enabled

DBO (Descriptor
Block Owner) - RO

Reset = 0x0002

DCS (DMA Completion
Status) - RO
0 - Successful completion
1 - Error

IOC (Interrupt on
Completion) - RO

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit

word

DMA Buffer Status - RO
00 - Buffer empty
01 - 1 to 7 words present
10 - 8 to 15 words present
11 - Buffer full (16 words present,

actively updated)

0 - Processor
1 - DMA engine

1 - Interrupt generated
at end of DMA
transfer sequence

Data Buffer Clear
0 - Normal buffer

operation
1 - Clear buffer

Data Size Bit 1
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

0xFFC0 3802

MemDMA Control Registers

9-34 ADSP-BF535 Blackfin Processor Hardware Reference

Destination Memory DMA Transfer Count Register
(MDD_DCT)

Figure 9-14 shows the Destination Memory DMA Transfer Count regis-
ter. The related DMA register is described in “Peripheral DMA Transfer
Count Register” on page 9-19.

Figure 9-14. Destination Memory DMA Transfer Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Transfer Count (MDD_DCT)
RO

DMA Block Transfer
Count[15:0]

000 Reset = 0x00000xFFC0 3808

ADSP-BF535 Blackfin Processor Hardware Reference 9-35

Direct Memory Access

Destination Memory DMA Start Address Registers
(MDD_DSAH, MDD_DSAL)

Figure 9-15 shows the Destination DMA Start Address registers. The
related DMA registers are found in “Peripheral DMA Start Address Regis-
ters” on page 9-21.

Figure 9-15. Destination Memory DMA Start Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Start Address High Register (MDD_DSAH)
RO

Destination DMA Start
Address High[31:16]

Destination Memory DMA Start Address Low Register (MDD_DSAL)
RO

Destination DMA Start
Address Low [15:0]

Reset = 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

0xFFC0 3804

0xFFC0 3806

MemDMA Control Registers

9-36 ADSP-BF535 Blackfin Processor Hardware Reference

Destination Memory DMA Next Descriptor Pointer
Register (MDD_DND)

Figure 9-16 shows the Destination Memory DMA Next Descriptor
Pointer register. The related DMA register is described in “Peripheral
DMA Next Descriptor Pointer Register” on page 9-23.

Destination Memory DMA Descriptor Ready
Register (MDD_DDR)

Figure 9-17 shows the Destination Memory DMA Descriptor Ready reg-
ister. The related DMA register is described in “Peripheral DMA
Descriptor Ready Register” on page 9-25.

Figure 9-16. Destination Memory DMA Next Descriptor Pointer Register

Figure 9-17. Destination Memory DMA Descriptor Ready Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Next Descriptor Pointer Register (MDD_DND)

Next Descriptor
Pointer[15:0]

Reset = 0x00000xFFC0 380A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Descriptor Ready Register (MDD_DDR)

Reactivate Descriptor
Pointer

Reset = 0x0000

1 - Reactivate Descriptor
Pointer

0xFFC0 380C

ADSP-BF535 Blackfin Processor Hardware Reference 9-37

Direct Memory Access

Destination Memory DMA Current Descriptor
Pointer Register (MDD_DCP)

Figure 9-18 shows the Destination Memory DMA Current Descriptor
Pointer register. The related DMA register is described in “Peripheral
DMA Current Descriptor Pointer Register” on page 9-26.

Figure 9-18. Destination Memory DMA Current Descriptor Pointer
Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Destination Memory DMA Current Descriptor Pointer Register (MDD_DCP)
RO

Reset = 0x0000

Current Descriptor
Pointer[15:0]

0xFFC0 3800

MemDMA Control Registers

9-38 ADSP-BF535 Blackfin Processor Hardware Reference

Destination Memory DMA Interrupt Register
(MDD_DI)

Figure 9-19 shows the Destination Memory DMA Interrupt register. The
related DMA register is described in “Peripheral DMA IRQ Status Regis-
ter” on page 9-28.

Figure 9-19. Destination Memory DMA Interrupt Register

0 00 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0

1 0

0

Destination Memory DMA Interrupt Register (MDD_DI)

Interrupt on Completion
W1C

Reset = 0x0000

Interrupt on DMA Bus
Error - W1C

1 - Interrupt generated
at end of DMA
transfer sequence

1 - Bus error interrupt
generated because
of misaligned data
or illegal memory
access

0xFFC0 380E

ADSP-BF535 Blackfin Processor Hardware Reference 9-39

Direct Memory Access

Source Memory DMA Configuration Register
(MDS_DCFG)

Figure 9-20 shows the Source Memory DMA Configuration register. The
related DMA register is described in “Peripheral DMA Configuration
Register” on page 9-16.

Figure 9-20. Source Memory DMA Configuration Register

0000 0 00 0

Source Memory DMA Configuration Register (MDS_DCFG)

DMA Enable
0 - Disabled
1 - Enabled

DBO (Descriptor Block
Owner) - RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 Reset = 0x0000

DCS (DMA Completion
Status) - RO

DMA Buffer Status[1:0] - RO

IOC (Interrupt on
Completion Enable) -
RO

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit

word

Data Buffer Clear
0 - Normal buffer

operation
1 - Clear buffer

1 - Interrupt generated
at end of DMA
transfer sequence

0 - Processor
1 - DMA engine

0 - Successful completion
1 - Error

00 - Buffer empty
01 - 1 to 7 words present
10 - 8 to 15 words present
11 - Buffer full (16 words

present, actively updated)

Bit 12 of the DMA Configuration Word is read as a FIFO Status bit and written as a data size bit.

Data Size Bit 1
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if autobuffer mode enabled
(Shared with DMA Buffer Status bit)

0xFFC0 3902

MemDMA Control Registers

9-40 ADSP-BF535 Blackfin Processor Hardware Reference

Source Memory DMA Transfer Count Register
(MDD_DCT)

Figure 9-21 shows the Source Memory DMA Transfer Count register.
The related DMA register is described in “Peripheral DMA Transfer
Count Register” on page 9-19.

Figure 9-21. Source Memory DMA Transfer Count Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Transfer Count Register (MDS_DCT)
RO

DMA Block Transfer
Count[12:0]

Reset = 0x00000xFFC0 3908

ADSP-BF535 Blackfin Processor Hardware Reference 9-41

Direct Memory Access

Source Memory DMA Start Address Registers
(MDS_DSAH, MDS_DSAL)

Figure 9-22 shows the Source Memory DMA Start Address registers. The
related DMA registers are described in “Peripheral DMA Start Address
Registers” on page 9-21.

Figure 9-22. Source Memory DMA Start Address Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Start Address High Register (MDS_DSAH)
RO

Source DMA Start
Address High [31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Start Address Low Register (MDS_DSAL)
RO

Source DMA Start
Address Low [15:0]

Reset = 0x0000

Reset = 0x0000

0xFFC0 3904

0xFFC0 3906

MemDMA Control Registers

9-42 ADSP-BF535 Blackfin Processor Hardware Reference

Source Memory DMA Next Descriptor Pointer
Register (MDS_DND)

Figure 9-23 shows the Source Memory DMA Next Descriptor Pointer
register. The related DMA register is described in “Peripheral DMA Next
Descriptor Pointer Register” on page 9-23.

Source Memory DMA Descriptor Ready Register
(MDS_DDR)

Figure 9-24 shows the Source DMA Descriptor Ready register. The
related DMA register is described in “Peripheral DMA Descriptor Ready
Register” on page 9-25.

Figure 9-23. Source Memory DMA Next Descriptor Pointer Register

Figure 9-24. Source Memory DMA Descriptor Ready Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Next Descriptor Pointer Register (MDS_DND)

Next Descriptor
Pointer[15:0]

Reset = 0x00000xFFC0 390A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Descriptor Ready Register (MDS_DDR)

Reactivate Descriptor
Pointer

Reset = 0x0000

1 - Reactivate Descriptor
 Pointer

0xFFC0 390C

ADSP-BF535 Blackfin Processor Hardware Reference 9-43

Direct Memory Access

Source Memory DMA Current Descriptor Pointer
Register (MDS_DCP)

Figure 9-25 shows the Source Memory DMA Current Descriptor Pointer
register. The related DMA register is described in “Peripheral DMA Cur-
rent Descriptor Pointer Register” on page 9-26.

Source Memory DMA Interrupt Register (MDS_DI)
Figure 9-26 shows the Source Memory DMA Interrupt register. The
related DMA register is described in “Peripheral DMA IRQ Status Regis-
ter” on page 9-28.

Figure 9-25. Source Memory DMA Current Descriptor Pointer Register

Figure 9-26. Source Memory DMA Interrupt Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Source Memory DMA Current Descriptor Pointer Register (MDS_DCP)
RO

Current Descriptor
Pointer[15:0] - RO

Reset = 0x00000xFFC0 3900

000000000000 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00

Source Memory DMA Interrupt Register (MDS_DI)

Interrupt on Completion

Reset = 0x0000

Interrupt on DMA Bus
Error

1 - Interrupt generated
at end of DMA
transfer sequence

1 - Bus error interrupt
generated because
of misaligned data
or illegal memory
access

0xFFC0 390E

DMA Abort Conditions

9-44 ADSP-BF535 Blackfin Processor Hardware Reference

Performance/Throughput for MemDMA
Performance and throughput numbers for the MemDMA controller can
be found in “DAB Performance” on page 7-11.

Note that reads from EBIU lower performance because of the higher
latency of off-chip memory reads versus writes. Also, throughput is
reduced for partial bus-width transfers (that is, specifying 8- or 16-bit
DMA transfer widths instead of 32-bit transfer widths). Bus arbitration
induces additional latency.

Note the Memory DMA architecture achieves highest throughput on
block copies between external SDRAM and internal memory. L1-to-L2
transfer throughput is less, because only the DAB bus is employed.

The Memory DMA controller performs a burst transfer across the DAB
bus to fill the FIFO, then a burst transfer across the DAB bus to empty the
FIFO in a serialized fashion. Likewise, external-to-external block copies
are also serialized across the EAB bus.

 Note that DMA descriptor list fetches always occur across the DAB
bus.

DMA Abort Conditions
These conditions cause a DMA abort:

• The processor clears the DMA Enable bit during active DMA
processing.

• The DMA channel does not relinquish the descriptor block back to
the processor, nor does it write back error status information. No
interrupt is generated.

ADSP-BF535 Blackfin Processor Hardware Reference 9-45

Direct Memory Access

• The processor clears the DMA buffer during active DMA process-
ing by setting the Buffer Clear bit (bit 7 of the DMA
Configuration register).

• The DMA channel relinquishes the descriptor block to the proces-
sor and writes back error status information.

• A system software reset occurs during active DMA processing.

• This action causes loss of state and immediate termination of DMA
processing. The DMA channel does not relinquish the descriptor
block back to the processor, nor does it write back error status
information. No interrupt is generated.

• Any other error condition results in a proper error abort.

• The DMA channel relinquishes the descriptor block to the proces-
sor and writes back error status. If enabled, an interrupt is
generated.

DMA Bus Error Conditions
Two general conditions cause DMA bus error conditions:

• Data misalignment

• Illegal memory access

DMA Bus Error Conditions

9-46 ADSP-BF535 Blackfin Processor Hardware Reference

Data Misalignment
Data misalignment occurs when the data size to be transferred is not con-
sistent with the current address. Misalignment includes:

• Descriptor fetch on a byte boundary

• 16-bit data access on other than a half word boundary

• 32-bit data access on other than a word boundary

Data misalignment causes these things to occur:

• The DMA channel does not access the bus for data transfers.

• The DMA Enable bit (bit 0 of the Configuration Word) is cleared.

• A Bus Error interrupt is generated, and Bit 2 of the IRQ Status reg-
ister is set.

• The Configuration Word is not written back to the descriptor
block.

Illegal Memory Access
If an illegal memory access occurs, such as access to MMR space, the pro-
cessor responds with an error, and:

• The DMA channel completes the current single or burst transfer.

• The DMA Enable bit (bit 0 of the Configuration Word) is cleared.

• The Bus Error interrupt is generated, and Bit 2 of the IRQ Status
register is set.

• The Configuration Word is not written back to the descriptor
block.

ADSP-BF535 Blackfin Processor Hardware Reference 10-1

10 SPI COMPATIBLE PORT
CONTROLLERS

The ADSP-BF535 processor has two independent Serial Peripheral Inter-
face (SPI) ports, SPI0 and SPI1, that provide an I/O interface to a wide
variety of SPI compatible peripheral devices. Each SPI port has its own set
of control registers and data buffers.

With a range of configurable options, the SPI ports provide a glueless
hardware interface with other SPI compatible devices. Typical SPI
compatible peripheral devices that can be used to interface to the
ADSP-BF535 SPI compatible interface include:

• Other CPUs or microcontrollers

• Codecs

• A/D converters

• D/A converters

• Sample rate converters

• SP/DIF or AES/EBU digital audio transmitters and receivers

• LCD displays

• Shift registers

• FPGAs with SPI emulation

10-2 ADSP-BF535 Blackfin Processor Hardware Reference

The ADSP-BF535 SPI is an industry-standard synchronous serial link that
supports communication with multiple SPI compatible devices. The SPI
peripheral is a synchronous, 4-wire interface consisting of two data pins
(MOSI and MISO), one device select pin (SPISS), and a gated clock pin (SCK).
The ADSP-BF535 SPI supports these features:

• Full duplex operation

• Master-slave mode multimaster environment

• Open drain outputs

• Programmable baud rates, clock polarities, and phases

• Slave operations with another master SPI device

The SPI can operate in a multimaster environment by interfacing with
several other devices, acting as either a master device or a slave device. In a
multimaster environment, the SPI interface uses open drain outputs to
avoid data bus contention.

Figure 10-1 provides a block diagram of the ADSP-BF535 SPI. The inter-
face is essentially a shift register that serially transmits and receives data
bits, one bit a time at the SCK rate, to and from other SPI devices. SPI data
is transmitted and received at the same time through the use of a shift reg-
ister. When an SPI transfer occurs, data is simultaneously transmitted
(shifted serially out of the shift register) as new data is received (shifted
serially into the other end of the same shift register). The SCK synchronizes
the shifting and sampling of the data on the two serial data pins.

ADSP-BF535 Blackfin Processor Hardware Reference 10-3

SPI Compatible Port Controllers

During SPI data transfers, one SPI device acts as the SPI link master,
where it controls the data flow by generating the SPI serial clock and
asserting the SPI device select signal (SPISS). The other SPI device acts as
the slave and accepts new data from the master into its shift register, while
it transmits requested data out of the shift register through its SPI trans-
mit data pin. Multiple ADSP-BF535 processors can take turns being the
master device, as can other microcontrollers or microprocessors. One mas-
ter device can also simultaneously shift data into multiple slaves (known as
broadcast mode). However, only one slave may drive its output to write
data back to the master at any given time. This must be enforced in broad-
cast mode, where several slaves can be selected to receive data from the
master, but only one slave at a time can be enabled to send data back to
the master.

Figure 10-1. ADSP-BF535 SPI Block Diagram

S P I IN TE RFA CE LO G IC

M OS I MIS O S CK S P IS S

S P IX_ RDBR R E CE IVE
RE GIS T E R

S P I INT E RNA L
C LO CK

G E NE RA TO R

32
P ER IP HE RAL AC CE S S B US

(P AB)

S P IX _CTL

S PIX _S T

S P IX _T DB R T RAN S M IT
RE GIS T ER

S P I IR Q
O R

D M A
R E Q U E S T

S HIFT RE G IS T ER

M MS S

Interface Signals

10-4 ADSP-BF535 Blackfin Processor Hardware Reference

In a multimaster or multidevice ADSP-BF535 environment where multi-
ple ADSP-BF535 processors are connected via their SPI ports, all MOSI
pins are connected together, all MISO pins are connected together, and all
SCK pins are connected together.

For a multislave environment, the ADSP-BF535 processor can make use
of 14 programmable flags, PF2–PF15, that are dedicated SPI slave select
signals for the SPI slave devices. SPI0 and SPI1 each have seven available
slave select signals.

 At reset, the SPI is disabled and configured as a slave.

Interface Signals
The following sections discuss the SPI signals.

Serial Peripheral Interface Clock Signal (SCK)
The SCK signal is the SPI clock signal. This control signal is driven by the
master and controls the rate at which data is transferred. The master may
transmit data at a variety of baud rates. SCK cycles once for each bit trans-
mitted. It is an output signal if the device is configured as a master, and an
input signal if the device is configured as a slave.

The SCK signal is a gated clock that is active during data transfers only for
the length of the transferred word. The number of active clock edges is
equal to the number of bits driven on the data lines. Slave devices ignore
the serial clock if the Serial Peripheral Slave Select Input (SPISS) is driven
inactive (high).

The SCK signal is used to shift out and shift in the data driven on the MISO
and MOSI lines. The data is always shifted out on active edges of the clock
and sampled on inactive edges of the clock. Clock polarity and clock phase
relative to data are programmable in the SPIx Control register (SPIx_CTL)
and define the transfer format.

ADSP-BF535 Blackfin Processor Hardware Reference 10-5

SPI Compatible Port Controllers

Serial Peripheral Interface Slave Select Input
Signal

The SPISS signal is the SPI Serial Peripheral Slave Select Input signal.
This is an active-low signal used to enable an ADSP-BF535 processor
when it is configured as a slave device. This input-only pin behaves like a
chip select and is provided by the master device for the slave devices. For a
master device, it can act as an error signal input in case of the multimaster
environment. In multimaster mode, if the SPISS input signal of a master is
asserted (driven low), an error has occurred. This means that another
device is also trying to be the master device.

Master Out Slave In (MOSI)
The MOSI signal is the Master Out Slave In pin, one of the bidirectional
I/O data pins. If the ADSP-BF535 processor is configured as a master, the
MOSI pin becomes a data transmit (output) pin, transmitting output data.
If the ADSP-BF535 processor is configured as a slave, the MOSI pin
becomes a data receive (input) pin, receiving input data. In an
ADSP-BF535 SPI interconnection, the data is shifted out from the MOSI
output pin of the master and shifted into the MOSI input(s) of the slave(s).

Master In Slave Out (MISO)
The MISO signal is the Master In Slave Out pin, one of the bidirectional
I/O data pins. If the ADSP-BF535 processor is configured as a master, the
MISO pin becomes a data receive (input) pin, receiving input data. If the
ADSP-BF535 is configured as a slave, the MISO pin becomes a data trans-
mit (output) pin, transmitting output data. In a ADSP-BF535 SPI
interconnection, the data is shifted out from the MISO output pin of the
slave and shifted into the MISO input pin of the master.

 Only one slave is allowed to transmit data at any given time.

Interface Signals

10-6 ADSP-BF535 Blackfin Processor Hardware Reference

The SPI configuration example in Figure 10-2 illustrates how the
ADSP-BF535 processor can be used as the slave SPI device. The 8-bit host
microcontroller is the SPI master.

Interrupt Behavior
The behavior of the SPI interrupt signal depends on the transfer initiation
mode bit field (TIMOD) in the SPI Control register. In DMA mode, the
interrupt can be generated upon completion of a DMA multiword transfer
or upon an SPI error condition (MODF, TXE when TRAN = 0, or RBSY when
TRAN = 1). When not using DMA mode, an interrupt is generated when
the SPI is ready to accept new data for a transfer. The TXE and RBSY error
conditions do not generate interrupts in these modes. An interrupt is also
generated in a master when the mode fault error occurs.

For more information about this interrupt output, see the discussion of
the TIMOD bits in “SPIx Control Register (SPIx_CTL)” on page 10-8.

Figure 10-2. ADSP-BF535 Processor as Slave SPI Device

8-bit Host
Microcontroller

ADSP-BF535

SCLK

S_SEL

MOSI

MISO

SCK

SPISS

MOSI

MISO

Slave SPI Device

ADSP-BF535 Blackfin Processor Hardware Reference 10-7

SPI Compatible Port Controllers

SPI Registers
The SPI peripheral on the ADSP-BF535 processor includes a number of
user-accessible registers. Some of these registers are also accessible through
the DMA bus. Four registers contain control and status information:
SPIx_BAUD, SPIx_CTL, SPIx_FLG, and SPIx_ST. Two registers are used for
buffering receive and transmit data: SPIx_RDBR and SPIx_TDBR. Eight reg-
isters are related to DMA functionality. The shift register, SFDR, is internal
to the SPI module and is not directly accessible.

See “Error Signals and Flags” on page 10-35 for more information about
how the bits in these registers are used to signal errors and other condi-
tions. See “Register Functions” on page 10-26 for more information about
SPI register and bit functions.

Non-DMA Registers
The following sections describes the SPI non-DMA registers.

SPIx Baud Rate Register (SPIx_BAUD)

The SPIx Baud Rate register (SPIx_BAUD) is used to set the bit transfer rate
for a master device. When configured as a slave, the value written to this
register is ignored. The serial clock frequency is determined by this
formula:

• SCKx frequency = (System clock frequency)/(2 SPIx_BAUD)

Writing a value of 0 or 1 to the register disables the serial clock. There-
fore, the maximum serial clock rate is one-fourth the system clock rate.

SPI Registers

10-8 ADSP-BF535 Blackfin Processor Hardware Reference

Table 10-2 lists several possible baud rate values for SPIx_BAUD.

SPIx Control Register (SPIx_CTL)

The SPIx_CTL register is used to configure and enable the SPI system. This
register is used to enable the SPI interface, select the device as a master or
slave, and determine the data transfer format and word size.

Figure 10-3. SPIx Baud Rate Registers

Table 10-1. SPIx Baud Rate Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_BAUD 0xFFC0 300A

SPI1_BAUD 0xFFC0 340A

Table 10-2. SPI Master Baud Rate Example

SPIBAUD Decimal Value SPI Clock (SCK) Divide
Factor

Baud Rate for
SCLK at 100 MHz

0 N/A N/A

1 N/A N/A

2 4 25 MHz

3 6 16.7 MHz

4 8 12.5 MHz

65,535 (0xFFFF) 131,070 763 Hz

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Baud Rate
SCLK / (2 xSPIBAUD)

Reset = 0x0000

SPIx Baud Rate Register (SPIx_BAUD)

For MMR assign-
ments, see
Table 10-1.

ADSP-BF535 Blackfin Processor Hardware Reference 10-9

SPI Compatible Port Controllers

Figure 10-4 provides the bit descriptions for SPIx_CTL.

Figure 10-4. SPIx Control Register

Table 10-3. SPIx Control Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CTL 0xFFC0 3000

SPI1_CTL 0xFFC0 3400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 0 0 00

TIMOD (Transfer Initiation
Mode)
00 - Set transfer from read

of receive buffer, interrupt
when receive buffer is full

01 - Set transfer from write
to transmit buffer,
interrupt when
transmit buffer is empty

10 - DMA transfer mode
IRQ configuration from
DMA

11 - Reserved

SZ (Send Zero)
Send 0 or last word when
SPIx_TRBR empty
0 - Send last word
1 - Send 0s

GM (Get More Data)
When SPIx_RDBR full, get
data or discard incoming data
0 - Discard incoming data
1 - Get more data, overwrite
previous data

PSSE (Slave Select Enable)
0 - Disable
1 - Enable

EMISO (Enable MISO)
0 - MISO disabled
1 - MISO enabled

Reset = 0x0400

SPE (SPI Enable)
0 - Disable
1 - Enable

WOM (Open Drain Data)
Output enable (for MOSI
and MISO)
0 - Normal
1 - Open drain

MSTR (Master)
Sets the SPI module as
master or slave
0 - Slave
1 - Master

CPOL (Clock Polarity)
0 - Active high SCK
1 - Active low SCK

CPHA (Clock Phase)
Selects transfer format
0 - SCK toggles at middle

of transfer
1 - SCK toggles from start

of transfer

LSBF (LSB First)
0 - MSB sent/received first
1 - LSB sent/received first

SIZE (Size of Words)
0 - 8 bits
1 - 16 bits

SPIx Control Register (SPIx_CTL)

For MMR
assignments, see
Table 10-3.

SPI Registers

10-10 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx Flag Register (SPIx_FLG)

If the SPI is enabled as a master, the SPI uses SPIx_FLG to enable up to 14
general-purpose programmable flag pins (7 for each SPI) to be used as
individual slave select lines. In slave mode, the SPIx_FLG bits have no
effect, and each SPI uses the SPISS input as a slave select. Figure 10-5
shows the SPIx_FLG register diagram.

Figure 10-5. SPIx Flag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Reset = 0xFF00

FLS1 (Slave Select Enable 1)
0 - SPIxSEL1 disabled
1 - SPIxSEL1 enabled

FLS2 (Slave Select Enable 2)
0 - SPIxSEL2 disabled
1 - SPIxSEL2 enabled

FLS3 (Slave Select Enable 3)
0 - SPIxSEL3 disabled
1 - SPIxSEL3 enabled

FLS4 (Slave Select Enable 4)
0 - SPIxSEL4 disabled
1 - SPIxSEL4 enabled

FLS5 (Slave Select Enable 5)
0 - SPIxSEL5 disabled
1 - SPIxSEL5 enabled

FLS6 (Slave Select Enable 6)
0 - SPIxSEL6 disabled
1 - SPIxSEL6 enabled

FLS7 (Slave Select Enable 7)
0 - SPIxSEL7 disabled
1 - SPIxSEL7 enabled

FLG7 (Slave Select
Value 7)
SPIxSEL7 value

FLG6 (Slave Select
Value 6)
SPIxSEL6 value

FLG5 (Slave Select
Value 5)
SPIxSEL5 value

FLG4 (Slave Select
Value 4)
SPIxSEL4 value

FLG3 (Slave Select
Value 3)
SPIxSEL3 value

FLG2 (Slave Select
Value 2)
SPIxSEL2 value

FLG1 (Slave Select
Value 1)
SPIxSEL1 value

SPIx Flag Register (SPIx_FLG)

For MMR
assignments,
see Table 10-4.

ADSP-BF535 Blackfin Processor Hardware Reference 10-11

SPI Compatible Port Controllers

The SPIx_FLG register consists of two sets of bits that function as follows.

• Slave Select Enable (FLSx) bits

• Each FLSx bit corresponds to a Programmable Flag (PFx) pin.
When an FLSx bit is set, the corresponding PFx pin is driven as a
slave select. For example, if FLS1 is set in SPI0_FLG, PF2 is driven as
a slave select (SPI0SEL1). Table 10-5 and Table 10-6 show the asso-
ciation of the FLSx bits and the corresponding PFx pins.

• If the FLSx bit is not set, the general-purpose programmable flag
registers (FIO_DIR and others) configure and control the corre-
sponding PFx pin.

• Slave Select Value (FLGx) bits

• When a PFx pin is configured as a slave select output, the FLGx bits
can determine the value driven onto the output. If the CPHA bit in
SPIx_CTL is set, the output value is set by software control of the
FLGx bits. The SPI protocol permits the slave select line to either
remain asserted (low) or be deasserted between transferred words.
The user must set or clear the appropriate FLGx bits. For example,
to drive PF3 as a slave select, FLS1 in SPI1_FLG must be set. Clearing
FLG1 in SPI1_FLG drives PF3 low; setting FLG1 drives PF3 high. The
PF3 pin can be cycled high and low between transfers by setting
and clearing FLG1. Otherwise, PF3 remains active (low) between
transfers.

Table 10-4. SPIx Flag Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_FLG 0xFFC0 3002

SPI1_FLG 0xFFC0 3402

SPI Registers

10-12 ADSP-BF535 Blackfin Processor Hardware Reference

• If CPHA = 0, the SPI hardware sets the output value and the FLGx
bits are ignored. The SPI protocol requires that the slave select be
deasserted between transferred words. In this case, the SPI hard-
ware controls the pins. For example, to use PF3 as a slave select pin,
it is only necessary to set the FLS1 bit in SPI1_FLG. It is not neces-
sary to write to the FLG1 bit, because the SPI hardware
automatically drives the PF3 pin. Table 10-5 and Table 10-6,
respectively, list the SPI0_FLG and SPI1_FLG bit mapping to the
PFx pins.

Table 10-5. SPI0_FLG Bit Mapping to PFx Pins

Bit Name Function PFx Pin

0 Reserved

1 FLS1 SPI0SEL1 Enable PF2

2 FLS2 SPI0SEL2 Enable PF4

3 FLS3 SPI0SEL3 Enable PF6

4 FLS4 SPI0SEL4 Enable PF8

5 FLS5 SPI0SEL5 Enable PF10

6 FLS6 SPI0SEL6 Enable PF12

7 FLS7 SPI0SEL7 Enable PF14

8 Reserved

9 FLG1 SPI0SEL1 Value PF2

10 FLG2 SPI0SEL2 Value PF4

11 FLG3 SPI0SEL3 Value PF6

12 FLG4 SPI0SEL4 Value PF8

13 FLG5 SPI0SEL5 Value PF10

14 FLG6 SPI0SEL6 Value PF12

15 FLG7 SPI0SEL7 Value PF14

ADSP-BF535 Blackfin Processor Hardware Reference 10-13

SPI Compatible Port Controllers

Slave Select Inputs

If the SPI is in slave mode, SPISS acts as the slave select input. When
enabled as a master, SPISS can serve as an error detection input for the SPI
in a multimaster environment. The PSSE bit in SPIx_CTL enables this fea-
ture. When PSSE = 1, the SPISS input is the master-mode error input.
Otherwise, SPISS is ignored. The state of these input pins can be observed
in the Flag Clear register (FIO_FLAG_C) or the Flag Set register
(FIO_FLAG_S).

Table 10-6. SPI1_FLG Bit Mapping to PFx Pins

Bit Name Function PFx Pin

0 Reserved

1 FLS1 SPI1SEL1 Enable PF3

2 FLS2 SPI1SEL2 Enable PF5

3 FLS3 SPI1SEL3 Enable PF7

4 FLS4 SPI1SEL4 Enable PF9

5 FLS5 SPI1SEL5 Enable PF11

6 FLS6 SPI1SEL6 Enable PF13

7 FLS7 SPI1SEL7 Enable PF15

8 Reserved

9 FLG1 SPI1SEL1 Value PF3

10 FLG2 SPI1SEL2 Value PF5

11 FLG3 SPI1SEL3 Value PF7

12 FLG4 SPI1SEL4 Value PF9

13 FLG5 SPI1SEL5 Value PF11

14 FLG6 SPI1SEL6 Value PF13

15 FLG7 SPI1SEL7 Value PF15

SPI Registers

10-14 ADSP-BF535 Blackfin Processor Hardware Reference

Multiple Slave SPI Systems

The FLSx bits in SPIx_FLG are used in a multiple slave SPI environment.
For example, if there are eight SPI devices in the system including an
ADSP-BF535 processor master, the master ADSP-BF535 processor can
support the SPI mode transactions across the other seven devices. This
configuration requires only one master ADSP-BF535 processor in this
multislave environment. For example, assume that SPI0 is the master. The
seven flag pins (PF2, PF4, PF6, PF8, PF10, PF12, and PF14) on the
ADSP-BF535 processor master can be connected to each of the slave SPI
device’s SPISS pins. In this configuration, the FLSx bits in SPIx_FLG can be
used in three cases.

In cases 1 and 2, the ADSP-BF535 processor is the master and the seven
microcontrollers/peripherals with SPI interfaces are slaves. The
ADSP-BF535 processor can:

• Transmit to all seven SPI devices at the same time in a broadcast
mode. Here, all FLSx bits are set.

• Receive and transmit from one SPI device by enabling only one
slave SPI device at a time.

In case 3, all eight devices connected via SPI ports can be ADSP-BF535
processors.

• If all the slaves are also ADSP-BF535 processors, then the requestor
can receive data from only one ADSP-BF535 processor (enabled by
clearing the EMISO bit in the six other slave processors) at a time
and transmit broadcast data to all seven at the same time. This
EMISO feature may be available in some other microcontrollers.
Therefore, it is possible to use the EMISO feature with any other SPI
device that includes this functionality.

ADSP-BF535 Blackfin Processor Hardware Reference 10-15

SPI Compatible Port Controllers

Figure 10-6 shows one ADSP-BF535 processor as a master with three
ADSP-BF535 processors (or other SPI compatible devices) as slaves.

SPIx Status Register (SPIx_ST)

The SPI Status register (SPIx_ST) is used to detect when an SPI transfer is
complete or if transmission/reception errors occur. The SPIx_ST register
can be read at any time.

Some of the bits in SPIx_ST are read-only and other bits are sticky. Bits
that just provide information about the SPI are read-only. These bits are
set and cleared by the hardware. Sticky bits are set when an error condi-
tion occurs. These bits are set by hardware and must be cleared by
software. To clear a sticky bit, the user must write a 1 to the desired bit
position of SPIx_ST. For example, if the TXE bit is set, the user must write
a 1 to bit 2 of SPIx_ST to clear the TXE error condition. This allows the
user to read SPIx_ST without changing its value.

Figure 10-6. Single Master, Multiple Slave Configuration

MISO SCK MOSI SPISS MISO SCK MOSI SPISS MISO SCK MOSI SPISS

MISO SCK MOSI SPISS

PF

PF

PF

VDD

Slave
Device

Slave
Device

Slave
Device

Master
Device

SPI Registers

10-16 ADSP-BF535 Blackfin Processor Hardware Reference

Sticky bits can only be cleared by writing a 1 to them. Writing 0 does not
have any effect on a sticky bit. This is known as a write-1-to-clear (W1C)
bit.

The transmit buffer becomes full after it is written to. It becomes empty
when a transfer begins and the transmit value is loaded into the shift regis-
ter. The receive buffer becomes full at the end of a transfer when the shift
register value is loaded into the receive buffer. It becomes empty when the
receive buffer is read.

Figure 10-7. SPIx Status Register

Table 10-7. SPIx Status Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_ST 0xFFC0 3004

SPI1_ST 0xFFC0 3404

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0001

SPIF (SPI Finished) - RO
Set when SPI single word
transfer complete

MODF (Mode Fault Error) -
W1C
Set in a master device when
some other device tries to
become the master

TXE (Transmission Error) -
W1C
Set when transmission
occurred with no new data in
 SPIx_TDBR

TXS (SPIx_TDBR Data Buf-
fer Status) - RO
0 - Empty
1 - Full

SPIx Status Register (SPIx_ST)

TXCOL (Transmit Collision Error) - W1C
When set, corrupt data may
have been transmitted

SPIx_RDBR Data Buffer Status - RO
0 - Empty
1 - Full

RBSY (Reception Error) - W1C
Set when data is received with
receive buffer full

For MMR
assignments,
see Table 10-7.

ADSP-BF535 Blackfin Processor Hardware Reference 10-17

SPI Compatible Port Controllers

SPIx Transmit Data Buffer Register (SPIx_TDBR)

The Transmit Data Buffer register (SPIx_TDBR) is a 16-bit read-write regis-
ter. Data is loaded into this register before being transmitted. Just prior to
the beginning of a data transfer, the data in SPIx_TDBR is loaded into the
Shift Data register (SFDR). A read of SPIx_TDBR can occur at any time and
does not interfere with or initiate SPI transfers.

When the DMA is enabled for transmit operation, the DMA engine loads
data into this register for transmission just prior to the beginning of a data
transfer. A write to SPIx_TDBR should not occur in this mode because this
data will overwrite the DMA data to be transmitted.

When the DMA is enabled for receive operation, the contents of
SPIx_TDBR are repeatedly transmitted. A write to SPIx_TDBR is permitted in
this mode, and this data is transmitted.

If multiple writes to SPIx_TDBR occur while a transfer is already in prog-
ress, only the last data written is transmitted. None of the intermediate
values written to SPIx_TDBR are transmitted. Multiple writes to SPIx_TDBR
are possible, but not recommended.

Figure 10-8. SPIx Transmit Data Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Transmit Data Buffer

SPIx Transmit Data Buffer Register (SPIx_TDBR)

For MMR
assignments,
see Table 10-8.

SPI Registers

10-18 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx Receive Data Buffer Register (SPIx_RDBR)

The Receive Data Buffer register (SPIx_RDBR) is a 16-bit read-only regis-
ter. At the end of a data transfer, the data in the shift register is loaded
into SPIx_RDBR. During a DMA receive operation, the data in SPIx_RDBR
is automatically read by the DMA.

SPIx RDBR Shadow Register (SPIx_SHADOW)

A shadow register for the receive data buffer, SPIx_RDBR, has been pro-
vided for use in debugging software. This register is at a different address
than SPIx_RDBR, but its contents are identical to that of SPIx_RDBR. When
a software read of SPIx_RDBR occurs, the RXS bit in SPIx_ST is cleared and

Table 10-8. SPIx Transmit Data Buffer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_ST 0xFFC0 3004

SPI1_ST 0xFFC0 3404

Figure 10-9. SPIx Receive Data Buffer Register

Table 10-9. SPIx Receive Data Buffer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_RDBR 0xFFC0 3008

SPI1_RDBR 0xFFC0 3408

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

Receive Data Buffer

SPIx Receive Data Buffer Register (SPIx_RDBR)
RO

For MMR
assignments,
see Table 10-9.

ADSP-BF535 Blackfin Processor Hardware Reference 10-19

SPI Compatible Port Controllers

an SPI transfer may be initiated (if TIMOD = 00 in SPIx_CTL). No such
hardware action occurs when the shadow register is read. SPIx_SHADOW is a
read-only register.

DMA Registers
The SPI DMA has two basic modes of operation—autobuffer and descrip-
tor. In autobuffer mode, all registers are read/write except the Current
Descriptor Pointer register, which is read-only. In this mode, the DMA
operates as a simple circular buffer. Autobuffer mode is enabled by writing
to bit 4 of the DMA configuration register. In descriptor mode, descriptor
work blocks are read from memory. In this mode, many registers and con-
figuration bits are no longer writable, since their values are loaded via
descriptors. These include the DMA Start Address and Count registers
and DMA Configuration register bits such as TRAN, DATA SIZE BIT 0,
DATA SIZE BIT 1, and INTERRUPT ENABLE. Descriptor mode is initiated by
writing to the Next Descriptor Pointer register, followed by a write to the
DMA Configuration register. For more information about DMA, see
“Direct Memory Access” on page 9-1.

Figure 10-10. SPIx RDBR Shadow Register

Table 10-10. SPIx RDBR Shadow Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_SHADOW 0xFFC0 300C

SPI1_SHADOW 0xFFC0 340C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

RDBR Shadow

SPIx RDBR Shadow Register (SPIx_SHADOW)
RO

For MMR
assignments, see
Table 10-10.

SPI Registers

10-20 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx DMA Current Descriptor Pointer Register (SPIx_CURR_PTR)

This 16-bit read-only register holds the lower 16 bits of the pointer to the
current descriptor block for the SPI DMA receive operation. The full
32-bit address to the current pointer is formed by concatenating the Next
Descriptor Base Pointer register (DB_NDBP) with the DMA Current
Descriptor Pointer register.

Figure 10-11. SPIx DMA Current Descriptor Pointer Register

Table 10-11. SPIx Current Descriptor Pointer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CURR_PTR 0xFFC0 3200

SPI1_CURR_PTR 0xFFC0 3600

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Current Descriptor Pointer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Current Descriptor Pointer Register (SPIx_CURR_PTR)
RO

For MMR
assignments, see
Table 10-11.

ADSP-BF535 Blackfin Processor Hardware Reference 10-21

SPI Compatible Port Controllers

SPIx DMA Configuration Register (SPIx_CONFIG)

The SPIx_CONFIG register, shown in Figure 10-12, is one of five registers
that make up the descriptor block for a DMA transfer. These registers are
accessible through the DMA bus.

Figure 10-12. SPIx DMA Configuration Register

000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DEN (DMA Enable) - RW
0 - Disabled
1 - Enabled

TRAN (Transfer Direction) -
RO
0 - Memory read
1 - Memory write
Writable if DAUTO = 1

DCOME (Interrupt on
Completion Enable) - RO
0 - Disables the channel’s

DMA complete interrupt
1 - Enables the channel’s

DMA complete interrupt
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

DAUTO
(Autobuffer/Descriptor
Mode) - RW
0 - Descriptor mode
1 - Autobuffer mode

FLSH (DMA Buffer Clear) -
RW
Can be set following a DMA
termination due to an error
condition

DOWN (Ownership) - RO
0 - Core
1 - DMA

DS (DMA Completion Status) -
RO
0 - Successful completion
1 - Error

FS (DMA Buffer Status) - RO
00 - Buffer empty
11 - Buffer full

Data Size Bit 1 - WO
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if Autobuffer/Descriptor
Mode = 1 (Shared with DMA
Buffer Status bit)

MODF (Mode Fault Error) - RO
0 - No error
1 - Error

TXE (Transmit Underrun Error) -
RO
Set = 0 only if TRAN = 1

RBSY (Receive Overflow Error) -
RO
Set = 0 only if TRAN = 0

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

0 0 0 0 0 0 0 0 0 0 00 Reset 0x0000

SPIx DMA Configuration Register (SPIx_CONFIG)

For MMR
assignments, see
Table 10-12.

SPI Registers

10-22 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx DMA Start Address High Register (SPIx_START_ADDR_HI)
and SPIx DMA Start Address Low Register
(SPIx_START_ADDR_LO)

The SPIx_START_ADDR_HI and SPIx_START_ADDR_LO registers, shown in
Figure 10-13, hold a pointer to the DMA address that is being accessed.

Table 10-12. SPIx DMA Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_CONFIG 0xFFC0 3202

SPI1_CONFIG 0xFFC0 3602

Figure 10-13. SPIx DMA Start Address High and Low Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address[31:16]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Start Address High Register (SPIx_START_ADDR_HI)
RW if DAUTO = 1 in SPIx_CONFIG

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Start Address[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Start Address Low Register (SPIx_START_ADDR_LO)
RW if DAUTO = 1 in SPIx_CONFIG

For MMR
assignments, see
Table 10-13.

For MMR
assignments, see
Table 10-13.

ADSP-BF535 Blackfin Processor Hardware Reference 10-23

SPI Compatible Port Controllers

SPIx DMA Count Register (SPIx_COUNT)

The SPIx_COUNT register, shown in Figure 10-14, holds the block word
count (number of remaining words in the transfer).

Table 10-13. SPIx Start Address High and SPIx Start Address Low Register
MMR Assignments

Register Name Memory-Mapped Address

SPI0_START_ADDR_HI 0xFFC0 3204

SPI1_START_ADDR_HI 0xFFC0 3604

SPI0_START_ADDR_LO 0xFFC0 3206

SPI1_START_ADDR_LO 0xFFC0 3606

Figure 10-14. SPIx DMA Count Register

Table 10-14. SPIx DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_COUNT 0xFFC0 3208

SPI1_COUNT 0xFFC0 3608

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

DMA Block Transfer Count

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Count Register (SPIx_COUNT)
RW if DAUTO = 1 in SPIx_CONFIG

For MMR
assignments, see
Table 10-14.

SPI Registers

10-24 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx DMA Next Descriptor Pointer Register (SPIx_NEXT_DESCR)

The SPIx_NEXT_DESCR register, shown in Figure 10-15, is used to write to
the head of a descriptor list. It holds the address for the next transfer con-
trol block in a DMA operation. The Next Descriptor address [31:0],
which provides a pointer to the address of the next descriptor block, is the
concatenation of two registers:

Next Descriptor Address [31:0] = Next Descriptor Base Pointer [15:0] ||
Next Descriptor Pointer [15:0]

Figure 10-15. DMA Next Descriptor Pointer Register

Table 10-15. SPIx Next Descriptor Pointer Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_NEXT_DESCR 0xFFC0 320A

SPI1_NEXT_DESCR 0xFFC0 360A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

Next Descriptor Pointer[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000

SPIx DMA Next Descriptor Pointer Register (SPIx_NEXT_DESCR)

For MMR
assignments, see
Table 10-15.

ADSP-BF535 Blackfin Processor Hardware Reference 10-25

SPI Compatible Port Controllers

SPIx DMA Descriptor Ready Register (SPIx_DESCR_RDY)

The SPIx_DESCR_RDY register, shown in Figure 10-16, is used to reactivate
a descriptor fetch in the event of a stall (DOWN = 0). Write a 1 to bit 0 to
reactivate a descriptor fetch.

Figure 10-16. SPIx DMA Descriptor Ready Register

Table 10-16. SPIx DMA Descriptor Ready Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_DESCR_RDY 0xFFC0 320C

SPI1_DESCR_RDY 0xFFC0 360C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reactivate Descriptor Fetch

Reset = 0x0000

SPIx DMA Descriptor Ready Register (SPIx_DESCR_RDY)

For MMR
assignments, see
Table 10-16.

SPI Registers

10-26 ADSP-BF535 Blackfin Processor Hardware Reference

SPIx DMA Interrupt Register (SPIx_DMA_INT)

The SPIx_DMA_INT register, shown in Figure 10-17, indicates the SPI
DMA interrupt status. Write a 1 to the corresponding bit to clear.

Register Functions
Table 10-18 shows the functions of the SPI registers.

Figure 10-17. SPIx DMA Interrupt Register

Table 10-17. SPIx DMA Interrupt Register MMR Assignments

Register Name Memory-Mapped Address

SPI0_DMA_INT 0xFFC0 320E

SPI1_DMA_INT 0xFFC0 360E

0000000000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 Reset = 0x0000

DCOMI (DMA Interrupt on
Completion)
0 - Inactive
1 - Complete

DERI (DMA Interrupt on Error)
0 - Inactive
1 - Error

Bus Error IRQ Status
0 - Inactive
1 - Bus error

SPIx DMA Interrupt Register (SPIx_DMA_INT)
W1C

For MMR
assignments, see
Table 10-17.

ADSP-BF535 Blackfin Processor Hardware Reference 10-27

SPI Compatible Port Controllers

Table 10-18. SPI Register Mapping

Register Name Function Notes

SPIx_CTL SPI port control SPE and MSTR bits can also be modified by
hardware (when MODF is set)

SPIx_FLG SPI port flag

SPIx_ST SPI port status SPIF bit can be set by clearing SPE in
SPIx_CTL

SPIx_TDBR SPI port transmit
data buffer

Register contents can also be modified by
hardware (by DMA and/or when SZ = 1 in
SPIx_CTL)

SPIx_RDBR SPI port receive
data buffer

When register is read, hardware events are
triggered

SPIx_BAUD SPI port baud
control

SPIx_SHADOW SPI port data Register has the same contents as
SPIx_RDBR, but no action is taken when it
is read

SPIx_CURR_PTR SPI port DMA
current pointer

Register is always read-only

SPIx_CONFIG SPI port DMA con-
figuration

Five of the control bits (TRAN, DCOME,
DERE, DATA SIZE BITS 0 and 1) can only
be written to via software when the DAUTO
bit is set

SPIx_START_ADDR_HI SPI port DMA start
address (upper 16
bits)

Register can only be written to via software
when the DAUTO bit in SPIx_CONFIG is
set

SPIx_START_ADDR_LO SPI port DMA start
address (lower 16
bits)

Register can only be written to via software
when the DAUTO bit in SPIx_CONFIG is
set

SPIx_COUNT SPI port DMA
count

Register can only be written to via software
when the DAUTO bit in SPIx_CONFIG is
set

SPIx_NEXT_DESCR SPI port DMA next
descriptor pointer

Register is concatenated with Next Descrip-
tor Base Pointer register to form head
address

SPI Transfer Formats

10-28 ADSP-BF535 Blackfin Processor Hardware Reference

SPI Transfer Formats
The ADSP-BF535 SPI supports four different combinations of serial clock
phase and polarity, selectable using the CPOL and CPHA bits in SPIx_CTL.

The SPI transfer protocols shown in Figure 10-18 and Figure 10-19 dem-
onstrate the two basic transfer formats as defined by the CPHA bit. Two
waveforms are shown for SCK: one for CPOL = 0 and the other for CPOL =
1. The diagrams may be interpreted as master or slave timing diagrams
since the SCK, MISO, and MOSI pins are directly connected between the mas-
ter and the slave. The MISO signal is the output from the slave (slave
transmission), and the MOSI signal is the output from the master (master
transmission). The SCK signal is generated by the master, and the SPISS
signal is the slave device select input to the slave from the master. The dia-
grams represent an 8-bit transfer (SIZE = 0) with MSB first (LSBF = 0).
Any combination of the SIZE and LSBF bits of SPIx_CTL is allowed. For
example, a 16-bit transfer with LSB first is another possible configuration.

The clock polarity and the clock phase should be identical for the master
device and the slave device involved in the communication link. The
transfer format from the master may be changed between transfers to
adjust to various requirements of a slave device.

SPIx_DESCR_RDY SPI port DMA
descriptor ready

Write a 1 to bit 0 to reactivate a descriptor
fetch

SPIx_DMA_INT SPI port interrupt
status

All three Interrupt Status bits are sticky;
write a 1 to the corresponding bit to clear

Table 10-18. SPI Register Mapping (Cont’d)

Register Name Function Notes

ADSP-BF535 Blackfin Processor Hardware Reference 10-29

SPI Compatible Port Controllers

When CPHA = 0, the slave select line, SPISS, must be inactive (high)
between each serial transfer. This is controlled automatically by the SPI
hardware logic. When CPHA = 1, SPISS may either remain active (low)
between successive transfers or be inactive (high). This must be controlled
by the software by manipulating SPIx_FLG.

Figure 10-18 shows the SPI transfer protocol for CPHA = 0. Note that SCK
starts toggling in the middle of the data transfer, SIZE = 0, and LSBF = 0.

Figure 10-18. SPI Transfer Protocol for CPHA = 0

CL OCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO

(FROM SLAVE)

SPISS
(TO SLAVE)

MSB

MSB

LSB

LSB

* = UNDEFINED

* *

*

1 2 3 4 5 6 7 8

123456

123456

SPI General Operation

10-30 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 10-19 shows the SPI transfer protocol for CPHA = 1. Note that SCK
starts toggling at the beginning of the data transfer, SIZE = 0, and
LSBF = 0.

SPI General Operation
The SPI in ADSP-BF535 processors can be used in a single master as well
as multimaster environment. The MOSI, MISO, and the SCK signals are all
tied together in both configurations. SPI transmission and reception are
always enabled simultaneously, unless the broadcast mode has been
selected. In broadcast mode, several slaves can be enabled to receive, but
only one of the slaves must be in transmit mode driving the MISO line. If
the transmit or receive is not needed, it can simply be ignored. This sec-
tion describes the clock signals, SPI operation as a master and as a slave,
and the error generation.

Figure 10-19. SPI Transfer Protocol for CPHA = 1

CLOCK CYCLE NUMBER

SCK (CPOL=0)

SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO

(FROM SLAVE)

SPISS

(TO SLAVE)

MSB

MSB

LSB

LSB

* =UNDEFINED

* *

1 2 3 4 5 6 7 8

123456

123456*

ADSP-BF535 Blackfin Processor Hardware Reference 10-31

SPI Compatible Port Controllers

Precautions must be taken to avoid data corruption when changing the
SPI module configuration. The configuration must not be changed during
a data transfer. The clock polarity should only be changed when no slaves
are selected (except when an SPI communication link consists of a single
master and a single slave, CPHA = 1, and the slave select input of the slave
is always tied low. In this case, the slave is always selected and data corrup-
tion can be avoided by enabling the slave only after both the master and
slave devices are configured).

In a multimaster or multislave SPI system, the data output pins (MOSI and
MISO) can be configured to behave as open drain outputs, which prevents
contention and possible damage to pin drivers. An external pull-up resis-
tor is required on both the MOSI and MISO pins when this option is
selected.

The WOM bit controls this feature. When WOM is set and the ADSP-BF535
SPI is configured as a master, the MOSI pin is three-stated when the data
driven out on MOSI is a logic high. The MOSI pin is not three-stated when
the driven data is a logic low. Similarly, when WOM is set and the
ADSP-BF535 SPI is configured as a slave, the MISO pin is three-stated if
the data driven out on MISO is a logic high.

Clock Signals
The SCK signal is a gated clock that is only active during data transfers for
the duration of the transferred word. The number of active edges is equal
to the number of bits driven on the data lines. The clock rate can be as
high as one-fourth of the SCLK rate. For master devices, the clock rate is
determined by the 16-bit value of SPIx_BAUD. For slave devices, the value
in SPIx_BAUD is ignored. When the SPI device is a master, SCK is an output
signal. When the SPI is a slave, SCK is an input signal. Slave devices ignore
the serial clock if the slave select input is driven inactive (high).

SPI General Operation

10-32 ADSP-BF535 Blackfin Processor Hardware Reference

The SCK signal is used to shift out and shift in the data driven onto the
MISO and MOSI lines. The data is always shifted out on one edge of the
clock (the active edge) and sampled on the opposite edge of the clock
(the sampling edge). Clock polarity and clock phase relative to data are pro-
grammable into SPIx_CTL and define the transfer format.

Master Mode Operation
When the SPI is configured as a master (and DMA mode is not selected),
the interface operates in the following manner.

• The core writes to SPIx_FLG, setting one or more of the SPI flag
select bits (FLSx). This ensures that the desired slaves are properly
deselected while the master is configured.

• The core writes to the SPIx_CTL and SPIx_BAUD registers, enabling
the device as a master and configuring the SPI system by specifying
the appropriate word length, transfer format, baud rate, and other
necessary information.

• If CPHA = 1, the core activates the desired slaves by clearing one or
more of the SPI flag bits (FLGx) of SPIx_FLG.

• The TIMOD bits in SPIx_CTL determine the SPI transfer initiate
mode. The transfer on the SPI link begins upon either a data write
by the core to the transmit data buffer (SPIx_TDBR) or a data read
of the receive data buffer (SPIx_RDBR).

• The SPI then generates the programmed clock pulses on SCK and
simultaneously shifts data out of MOSI and shifts data in from MISO.
Before a shift, the shift register is loaded with the contents of the
SPIx_TDBR register. At the end of the transfer, the contents of the
shift register are loaded into SPIx_RDBR.

• With each new transfer initiate command, the SPI continues to
send and receive words, according to the SPI transfer initiate mode.

ADSP-BF535 Blackfin Processor Hardware Reference 10-33

SPI Compatible Port Controllers

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MOSI pin. One word is transmitted for each new transfer initiate
command. If SZ = 0 and the transmit buffer is empty, the device repeat-
edly transmits the last word it transmitted before the transmit buffer
became empty. If GM = 1 and the receive buffer is full, the device contin-
ues to receive new data from the MISO pin, overwriting the older data in
the SPIx_RDBR buffer. If GM = 0 and the receive buffer is full, the incoming
data is discarded and SPIx_RDBR is not updated.

Transfer Initiation From Master (Transfer Modes)
When a device is enabled as a master, the initiation of a transfer is defined
by the two TIMOD bits of SPIx_CTL. Based on those two bits and the status
of the interface, a new transfer is started upon either a read of SPIx_RDBR
or a write to SPIx_TDBR. Transfer initiation is summarized in Table 10-19.

Table 10-19. Transfer Initiation

TIMOD Function Transfer Initiated Upon Action, Interrupt

00 Transmit and
Receive

Initiate new single-word trans-
fer upon read of SPIx_RDBR
and previous transfer com-
pleted

Interrupt active when receive
buffer is full

Read of SPIx_RDBR clears
interrupt

01 Transmit and
Receive

Initiate new single-word trans-
fer upon write to SPIx_TDBR
and previous transfer com-
pleted

Interrupt active when transmit
buffer is empty

Writing to SPIx_TDBR clears
interrupt

SPI General Operation

10-34 ADSP-BF535 Blackfin Processor Hardware Reference

Slave Mode Operation

When a device is enabled as a slave (and DMA mode is not selected), the
start of a transfer is triggered by a transition of the SPISS select signal to
the active state (low) or by the first active edge of the clock (SCK), depend-
ing on the state of CPHA.

These steps illustrate SPI operation in the slave mode:

• The core writes to SPIx_CTL to define the mode of the serial link to
be the same as the mode setup in the SPI master.

• To prepare for the data transfer, the core writes data to be trans-
mitted into SPIx_TDBR.

• Once the SPISS falling edge is detected, the slave starts sending and
receiving data on active SCK edges.

• Reception/transmission continues until SPISS is released or until
the slave has received the proper number of clock cycles.

• The slave device continues to receive/transmit with each new fall-
ing edge transition on SPISS and/or active SCK clock edge.

10 Transmit or
Receive with
DMA

Initiate new multiword trans-
fer upon write to DMA enable
bit. Individual word transfers
begin with either a DMA write
to SPIx_TDBR or a DMA read
of SPIx_RDBR (depending on
TRAN bit), and last transfer
complete

Interrupt active upon DMA
error or multiword transfer
complete

Write 1 to SPIx_DMA_INT
register clears interrupt

11 Reserved N/A N/A

Table 10-19. Transfer Initiation (Cont’d)

TIMOD Function Transfer Initiated Upon Action, Interrupt

ADSP-BF535 Blackfin Processor Hardware Reference 10-35

SPI Compatible Port Controllers

If the transmit buffer remains empty or the receive buffer remains full, the
device operates according to the states of the SZ and GM bits in SPIx_CTL. If
SZ = 1 and the transmit buffer is empty, the device repeatedly transmits 0s
on the MISO pin. If SZ = 0 and the transmit buffer is empty, it repeatedly
transmits the last word it transmitted before the transmit buffer became
empty. If GM = 1 and the receive buffer is full, the device continues to
receive new data from the MOSI pin, overwriting the older data in
SPIx_RDBR. If GM = 0 and the receive buffer is full, the incoming data is
discarded, and SPIx_RDBR is not updated.

Slave Ready for a Transfer

Table 10-20 shows the actions necessary to prepare the device for a new
transfer, when a device is enabled as a slave.

Error Signals and Flags
The status of a device is indicated by the SPIx_ST register. See “SPIx Sta-
tus Register (SPIx_ST)” on page 10-15 for more information.

Table 10-20. Transfer Preparation

TIMOD Function Action, Interrupt

00 Transmit and
Receive

Interrupt active when receive buffer is full

Read of SPIx_RDBR clears interrupt

01 Transmit and
Receive

Interrupt active when transmit buffer is empty

Writing to SPIx_TDBR clears interrupt

10 Transmit or
Receive with
DMA

Interrupt configured in SPIx_CONFIG
Interrupt active upon DMA error or multiword transfer com-
plete

Writing 1 to SPI_DMA_INT clears interrupt

11 Reserved N/A

Error Signals and Flags

10-36 ADSP-BF535 Blackfin Processor Hardware Reference

Mode Fault Error (MODF)
The MODF bit is set in SPIx_ST when the SPISS input pin of a device
enabled as a master is driven low by some other device in the system. This
occurs in multimaster systems when another device is also trying to be the
master. To enable this feature, the PSSE bit in SPIx_CTL must be set. This
contention between two drivers can potentially damage the driving pins.
As soon as this error is detected, these actions occur:

• The MSTR control bit in SPIx_CTL is cleared, configuring the SPI
interface as a slave

• The SPE control bit in SPIx_CTL is cleared, disabling the SPI system

• The MODF status bit in SPIx_ST is set

• An SPI interrupt is generated

These four conditions persist until the MODF bit is cleared by software.
Until the MODF bit is cleared, the SPI cannot be re-enabled, even as a slave.
Hardware prevents the user from setting either SPE or MSTR while MODF is
set.

When MODF is cleared, the interrupt is deactivated. Before attempting to
re-enable the SPI as a master, the state of the SPISS input pin should be
checked to make sure the pin is high. Otherwise, once SPE and MSTR are
set, another mode fault error condition immediately occurs. The state of
the input pin is observable in the Flag Clear register (FIO_FLAG_C) or the
Flag Set register (FIO_FLAG_S).

When SPE and MSTR are cleared, the SPI data and clock pin drivers (MOSI,
MISO, and SCK) are disabled. However, the slave select output pins revert to
being controlled by the programmable flag registers. This could lead to
contention on the slave select lines if these lines are still driven by the
ADSP-BF535 processor. To ensure that the slave select output drivers are
disabled once a MODF error occurs, the program must configure the pro-
grammable flag registers appropriately.

ADSP-BF535 Blackfin Processor Hardware Reference 10-37

SPI Compatible Port Controllers

When enabling the MODF feature, the program must configure as inputs all
of the PFx pins that will be used as slave selects. Programs can do this by
writing to the Flag Direction register (FIO_DIR) prior to configuring the
SPI. This ensures that, once the MODF error occurs and the slave selects are
automatically reconfigured as PFx pins, the slave select output drivers are
disabled.

Transmission Error (TXE)
The TXE bit is set in SPIx_ST when all the conditions of transmission are
met, but there is no new data in SPIx_TDBR (SPIx_TDBR is empty). In this
case, the contents of the transmission depend on the state of the SZ bit in
SPIx_CTL. The TXE bit is sticky (W1C).

Reception Error (RBSY)
The RBSY flag is set in SPIx_ST when a new transfer is completed before
the previous data can be read from SPIx_RDBR. The state of the GM bit in
SPIx_CTL determines whether SPIx_RDBR is updated with the newly
received data. The RBSY bit is sticky (W1C).

Transmit Collision Error (TXCOL)
The TXCOL flag is set in SPIx_ST when a write to SPIx_TDBR coincides with
the load of the shift register. The write to SPIx_TDBR can be via software or
the DMA. The TXCOL bit indicates that corrupt data may have been loaded
into the shift register and transmitted. In this case, the data in SPIx_TDBR
may not match what was transmitted. This error can easily be avoided by
proper software control. The TXCOL bit is sticky (W1C).

 The TXCOL bit is never set when the SPI is configured as a slave with
CPHA = 0. A collision may occur, but it cannot be detected.

Beginning and Ending an SPI Transfer

10-38 ADSP-BF535 Blackfin Processor Hardware Reference

Beginning and Ending an SPI Transfer
The start and finish of an SPI transfer depend on whether the device is
configured as a master or a slave, the CPHA mode selected, and the transfer
initiation mode (TIMOD) selected. For a master SPI with CPHA = 0, a trans-
fer starts when either SPIx_TDBR is written to or SPIx_RDBR is read,
depending on TIMOD. At the start of the transfer, the enabled slave select
outputs are driven active (low). However, the SCK signal remains inactive
for the first half of the first cycle of SCK. For a slave with CPHA = 0, the
transfer starts as soon as the SPISS input goes low.

For CPHA = 1, a transfer starts with the first active edge of SCK for both
slave and master devices. For a master device, a transfer is considered fin-
ished after it sends the last data and simultaneously receives the last data
bit. A transfer for a slave device ends after the last sampling edge of SCK.

The RXS bit in SPIx_STATUS defines when the receive buffer can be read.
The TXS bit defines when the transmit buffer can be filled. The end of a
single word transfer occurs when the RXS bit is set, indicating that a new
word has just been received and latched into the receive buffer, SPIx_RDBR.
RXS is set shortly after the last sampling edge of SCK. The latency is typi-
cally a few SCLK cycles and is independent of CPHA, TIMOD, and the baud
rate. If configured to generate an interrupt when SPIx_RDBR is full
(TIMOD = 00), the interrupt goes active one SCLK cycle after RXS is set.
When not relying on this interrupt, the end of a transfer can be detected
by polling the RXS bit.

To maintain software compatibility with other SPI devices, the SPIF bit is
also available for polling. This bit may have a slightly different behavior
from that of other commercially available devices. For a slave device, SPIF
is set at the same time as RXS. For a master device, SPIF is set one-half SCK
period after the last SCK edge, regardless of CPHA or CPOL.

Thus, the time at which SPIF is set depends on the baud rate. In general,
SPIF is set after RXS, but at the lowest baud rate settings (SPIx_BAUD < 4).
SPIF is set before RXS is set, and consequently before new data is latched

ADSP-BF535 Blackfin Processor Hardware Reference 10-39

SPI Compatible Port Controllers

into SPIx_RDBR, because of the latency. Therefore, for SPIx_BAUD = 2 or
SPIx_BAUD = 3, RXS must be set before SPIF to read SPIx_RDBR. For larger
SPIx_BAUD settings, RXS is guaranteed to be set before SPIF is set.

Beginning and Ending an SPI Transfer

10-40 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 11-1

11 SERIAL PORT CONTROLLERS

The ADSP-BF535 processor has two identical synchronous serial ports, or
SPORTs. These support a variety of serial data communications protocols
and can provide a direct interconnection between processors in a multi-
processor system.

 In this text, the naming conventions for registers and pins use a
lowercase x to represent a digit. In this chapter, for example, the
name DTx pins indicates DT0 and DT1 (corresponding to SPORT0
and SPORT1, respectively).

The serial ports (SPORT0 and SPORT1) provide an I/O interface to a
wide variety of peripheral serial devices. SPORTs provide synchronous
serial data transfer only; the ADSP-BF535 processor provides asynchro-
nous RS-232 data transfer via the UARTs. Each SPORT is a full duplex
device, capable of simultaneous data transfer in both directions. Each
SPORT has one group of pins (data, clock, and frame sync) for transmit
and a second set of pins for receive. The receive and transmit functions are
programmed separately. The SPORTs can be programmed for bit rate,
frame sync, and bits per word by writing to memory-mapped registers.

Both SPORTs have the same capabilities and are programmed in the same
way. Each SPORT has its own set of control registers and data buffers.

The SPORTs use frame sync pulses to indicate the beginning of each word
or packet, and the bit clock marks the beginning of each data bit. External
bit clock and frame sync are available for the TX and RX buffers.

11-2 ADSP-BF535 Blackfin Processor Hardware Reference

With a range of clock and frame synchronization options, the SPORTs
allow a variety of serial communication protocols, including H.100, and
provide a glueless hardware interface to many industry-standard data con-
verters and CODECs.

The SPORTs can operate at up to 1/2 the full clock rate of SCLK (where
SCLK is the peripheral clock). Independent transmit and receive functions
provide greater flexibility for serial communications. SPORT data can be
automatically transferred to and from on-chip memory using DMA block
transfers. Additionally, each of the SPORTs offers a TDM (time division
multiplexed) multichannel mode.

SPORT clocks and frame syncs can be internally generated by the core or
received from an external source. The SPORTs can operate with little
endian or big endian transmission formats, with word lengths selectable
from 3 to 16 bits. They offer selectable transmit modes and optional -law
or A-law companding in hardware.

Each of the SPORTs offers these features and capabilities:

• Provides independent transmit and receive functions.

• Transfers serial data words from three to sixteen bits in length,
either most significant bit first (MSB) or least significant bit first
(LSB).

• Double buffers data (both receive and transmit functions have a
data buffer register and a shift register), providing additional time
to service the SPORT.

• Performs A-law and -law hardware companding on transmitted
and received words. (See “Companding” on page 11-52 for more
information.)

• Internally generates serial clock and frame sync signals in a wide
range of frequencies or accepts clock and frame sync input from an
external source.

ADSP-BF535 Blackfin Processor Hardware Reference 11-3

Serial Port Controllers

• Performs interrupt-driven, single word transfers to and from
on-chip memory under core control.

• Provides Direct Memory Access transfer to and from memory
under DMA Master control. DMA can be autobuffer based (a
repeated, identical range of transfers) or descriptor based (individ-
ual or repeated ranges of transfers with differing DMA parameters).

• Executes DMA transfers to and from on-chip memory. Each
SPORT can automatically receive and transmit an entire block of
data.

• Permits chaining of DMA operations for multiple data blocks.

• Has a multichannel mode for TDM interfaces. Each SPORT can
receive and transmit data selectively from channels of a time-divi-
sion-multiplexed serial bitstream multiplexed into up to 128
channels. This mode can be useful as a network communication
scheme for multiple processors.

• Operates with or without frame synchronization signals for each
data word, with internally generated or externally generated frame
signals, with active high or active low frame signals, and with either
of two configurable pulse widths and frame signal timing.

Table 11-1 shows the pins for each SPORT.

Table 11-1. Serial Port (SPORT) Pins

Pin Description

DTx Transmit Data

DRx Receive Data

TCLKx Transmit Clock

RCLKx Receive Clock

TFSx Transmit Frame Sync

RFSx Receive Frame Sync

11-4 ADSP-BF535 Blackfin Processor Hardware Reference

A SPORT receives serial data on its DR input and transmits serial data on
its DT output. It can receive and transmit simultaneously for full duplex
operation. For both transmit and receive data, the data bits (DR or DT) are
synchronous to the serial clocks (RCLK or TCLK); this is an output if the
processor generates this clock or an input if the clock is externally gener-
ated. Frame synchronization signals RFS and TFS are used to indicate the
start of a serial data word or stream of serial words.

In addition to the serial clock signal, data must be signalled by a frame
synchronization signal. The framing signal can occur either at the begin-
ning of an individual word or at the beginning of a block of words.

Figure 11-1 shows a simplified block diagram of a single SPORT. Data to
be transmitted is written from an internal processor register to the
SPORT’s memory-mapped SPORTx_TX register. This data is optionally
compressed by the hardware then automatically transferred to the transmit
shift register. The bits in the shift register are shifted out on the SPORT’s
DT pin, MSB first or LSB first, synchronous to the serial clock on the TCLK
pin. The receive portion of the SPORT accepts data from the DR pin syn-
chronous to the serial clock. When an entire word is received, the data is
optionally expanded, then automatically transferred to the SPORT’s
memory-mapped SPORTx_RX register, where it is available to the processor.

ADSP-BF535 Blackfin Processor Hardware Reference 11-5

Serial Port Controllers

Figure 11-1. SPORT Block Diagram

Comp and ing
Hard ware

D A B B u s fo r D M A A c c e s s

T X D M A M a s te r

R X n
R e c e iv e D a ta

R e g is te r

T X n
T ra n s m it D ata

R e g is te r

T ra n s m it S h if t
R e g is te r

R e c e iv e S h if t
R e g is te r

S e ria l
C o n t ro l

In te rn a l
S C L K

G e n e ra to r

32

D T
T F S S C L K R F S

D R

16 16

1616

Companding
Hardware

R X D M A M as te r

P A B B u s fo r P e r ip h e ra l A c c e ss 32

16 16

T C L K R C L K

SPORT Operation

11-6 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 11-2 shows the port connections for the ADSP-BF535 processor
SPORTs.

SPORT Operation
This section provides an example of SPORT operation, illustrating the
most common use of a SPORT. Since the SPORT functionality is config-
urable, this example represents just one of many possible configurations.

Writing to a SPORT’s SPORTx_TX register readies the SPORT for trans-
mission. The TFS signal initiates the transmission of serial data. Once
transmission has begun, each value written to the SPORTx_TX register is
transferred to the internal transmit shift register. The bits are then sent,
beginning with either the MSB or the LSB as specified. Each bit is shifted
out on the rising edge of SCK. After the first bit of a word has been trans-

Figure 11-2. SPORT Connections

TCLK0

SPORT0

SPORT1

TCLK1

TFS0

TFS1

DT0

RCLK0

RFS0

DR0

DT1

RCLK1

RFS1

DR1

SERIAL
DEVICE

(OPTIONAL)

SERIAL
DEVICE

(OPTIONAL)

ADSP-BF535

ADSP-BF535 Blackfin Processor Hardware Reference 11-7

Serial Port Controllers

ferred, the SPORT generates the transmit interrupt. The SPORTx_TX
register is then available for the next data word, even though the transmis-
sion of the first word continues.

As a SPORT receives bits, they accumulate in an internal receive register.
When a complete word has been received, it is written to the SPORTx_RX
register and the receive interrupt for that SPORT is generated. Interrupts
are generated differently if DMA block transfers are performed. For infor-
mation about DMA, see “Direct Memory Access” on page 9-1.

SPORT Disable
The SPORTs are automatically disabled by a hardware or software reset. A
SPORT can also be disabled directly by clearing the SPORT’s transmit or
receive enable bits (TSPEN in the SPORTx_TX_CONFIG control register and
RSPEN in the SPORTx_RX_CONFIG control register, respectively). Each
method has a different effect on the SPORT.

A reset disables the SPORTs by clearing the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG control registers (including the TSPEN and RSPEN enable
bits) and the TSCLKDIVx, RSCLKDIVx, SPORTx_TFSDIVx, and SPORTx_RFSDIVx
clock and frame sync divisor registers. Any ongoing operations are
aborted.

Disabling the TSPEN and RSPEN enable bits disables the SPORTs and
aborts any ongoing operations. Status bits are also cleared. Configuration
bits remain unaffected and can be read by the software in order to be
altered or overwritten. To disable the SPORT output clock after the
SPORT has been enabled, set the SPORT to receive an external clock.

The SPORTs are ready to start transmitting or receiving data three serial
clock cycles after they are enabled in the SPORTx_TX_CONFIG or
SPORTx_RX_CONFIG control register. No serial clock cycles are lost from this
point on.

Setting SPORT Modes

11-8 ADSP-BF535 Blackfin Processor Hardware Reference

Setting SPORT Modes
SPORT configuration is accomplished by setting bit and field values in
configuration registers. Each SPORT must be configured prior to being
enabled. Once the SPORT is enabled, further writes to the SPORT con-
figuration registers are disabled (except for the SPORTx_TSCLKDIV and
SPORTx_RSCLKDIV registers, which can be modified while the SPORT is
enabled). To change values in all other SPORT configuration registers,
disable the SPORT by clearing TSPEN in SPORTx_TX_CONFIG and/or RSPEN
in SPORTx_RX_CONFIG.

Each SPORT has its own set of control registers and data buffers. These
registers are described in detail in the following sections.

The SPORT control registers are programmed by writing to the appropri-
ate address in memory. All control and status bits in the SPORT registers
are active high unless otherwise noted.

 Most configuration registers can only be changed while the
SPORT is disabled (TSPEN/RSPEN=0). Changes take effect after the
SPORT is re-enabled. The only exceptions to this rule are the
TSCLKDIV/RSCLKDIV registers and multichannel configuration
registers.

SPORT Registers
The following sections describe the SPORT registers.

ADSP-BF535 Blackfin Processor Hardware Reference 11-9

Serial Port Controllers

Transmit and Receive Configuration Registers
(SPORTx_TX_CONFIG, SPORTx_RX_CONFIG)

The main control registers for each SPORT are the transmit configuration
register, SPORTx_TX_CONFIG, shown in Figure 11-3 on page 11-10, and the
receive configuration register, SPORTx_RX_CONFIG, shown in Figure 11-4
on page 11-14.

A SPORT is enabled for transmit if Bit 0 (TSPEN) of the Transmit Config-
uration register is set to 1; it is enabled to receive if Bit 0 (RSPEN) of the
Receive Configuration register is set to 1. Both of these bits are cleared
during either a hard reset or a soft reset, disabling all SPORT channels.

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled except
for SPORTx_RSCLKDIV, SPORTx_TSCLKDIV, and multichannel mode channel
enable registers. Writes are always enabled to the SPORTx_TX buffer.
SPORTx_RX is a read-only register.

After a write to a SPORT register, any changes to the control and mode
bits generally take effect when the SPORT is re-enabled.

When changing operating modes, a SPORT control register should be
cleared before the new mode is written to the register.

The TXS status bit in the SPORT Status register indicates whether the
SPORTx_TX buffer is full (1) or empty (0).

The Transmit Underflow Status bit (TUVF) in the SPORT Status register is
set whenever the TFS signal occurs from either an external or an internal
source while the SPORTx_TX buffer is empty. The internally generated TFS
may be suppressed whenever SPORTx_TX is empty by clearing the DITFS
control bit in the SPORT Configuration register.

When DITFS=0 (the default), the internal transmit frame sync signal (TFS)
is dependent upon new data being present in the SPORTx_TX buffer; the
TFS signal is only generated for new data. Setting DITFS to 1 selects data

SPORT Registers

11-10 ADSP-BF535 Blackfin Processor Hardware Reference

independent frame syncs. This causes the TFS signal to be generated
whether or not new data is present, transmitting the contents of the
SPORTx_TX buffer regardless. SPORT DMA typically keeps the SPORTx_TX
buffer full, and when the DMA operation is complete, the last word in
SPORTx_TX is continuously transmitted. For information about DMA, see
“Direct Memory Access” on page 9-1.

The SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers control the
SPORTs’ operating modes for the I/O processor.

Figure 11-3. SPORTx Transmit Configuration Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit Configuration Register (SPORTx_TX_CONFIG)

SLEN[3:0] (Serial Word
Length Select)

0 - Transmit disabled
1 - Transmit enabled

ITFS (Internal Transmit
Frame Sync Select)

ICLK (Internal Transmit
Clock Select)

DTYPE[1:0] (Data Formatting
Type Select)

SENDN (Endian Format
Select)

TSPEN (Transmit Enable)

LTFS (Low Transmit
Frame Sync Select)

LATFS (Late Transmit
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

CKFE (Clock Drive/
Sample Edge Select)

0 - External transmit clock
selected

1 - Internal transmit clock
selected

00 - Right justify and zero fill
01 - Right justify and sign

extend
10 - Compand using -law
11 - Compand using A-law

0 - Transmit most significant
bit first

1 - Transmit least significant
bit first

Reset = 0x0000

0000 - Illegal value
0001 - Illegal value
Serial word length is value in
this field plus 1

0 - External TFS used
1 - Internal TFS used

0 - Rising edge used to drive,
falling edge used to sample

1 - Falling edge used to drive,
rising edge used to sample

0 - Active high TFS
1 - Active low TFS

TFSR (Transmit Frame Sync
Required Select)

DITFS (Data Independent
Transmit Frame Sync Select)
0 - Data dependent TFS used
1 - Data independent TFS used

0 - Does not require TFS for
every data word

1 - Requires TFS for every data
word

For MMR
assignments, see

ADSP-BF535 Blackfin Processor Hardware Reference 11-11

Serial Port Controllers

Additional information for the SPORTx_TX_CONFIG transmit configuration
register bits:

• Transmit Enable. SPORTx_TX_CONFIG[0] (TSPEN). This bit
selects whether the SPORT is enabled to transmit (if set) or dis-
abled (if cleared).

Setting TSPEN causes an immediate assertion of a SPORT TX inter-
rupt, indicating that the TX data register is empty and needs to be
filled. This is normally desirable because it allows centralization of
the TD write code in the TX interrupt service routine. For this rea-
son, the code should initialize the interrupt service routine and be
ready to service TX interrupts before setting TSPEN.

Clearing TSPEN causes the SPORT to stop driving data and frame
sync pins; it also shuts down the internal SPORT circuitry. In low
power applications, battery life can be extended by clearing TSPEN
whenever the SPORT is not in use.

• Data Formatting Type Select. SPORTx_TX_CONFIG[3:2] (DTYPE).
The DTYPE, SENDN, and SLEN bits configure the format of the data
words transmitted over the SPORTs. The two DTYPE bits specify
one of four data formats used for single and multichannel opera-
tion (00=right justify and zero fill unused most significant bits,
01=right justify and sign extend into unused most significant bits,
10=compand using -law, 11=compand using A-law).

Table 11-2. SPORTx Transmit Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_TX_CONFIG 0xFFC0 2800

SPORT1_TX_CONFIG 0xFFC0 2C00

SPORT Registers

11-12 ADSP-BF535 Blackfin Processor Hardware Reference

• Endian Format Select. SPORTx_TX_CONFIG[4] (SENDN). The DTYPE,
SENDN, and SLEN bits configure the format of the data words trans-
mitted over the SPORTs. The SENDN bit selects the endian format
(0=serial words are transmitted MSB first, 1=serial words are trans-
mitted LSB first).

• Serial Word Length Select. SPORTx_TX_CONFIG[8:5] (SLEN). The
DTYPE, SENDN, and SLEN bits configure the format of the data words
transmitted over the SPORTs. The serial word length (the number
of bits in each word transmitted over the SPORTs) is calculated by
adding 1 to the value of the SLEN field:

Serial Word = SLEN + 1;

The SLEN field can be set to a value of 2 to 15; 0 and 1 are illegal
values for this field. Two common settings for the SLEN field are
15, to transmit a full 16-bit word, and 7, to transmit an 8-bit byte.
The ADSP-BF535 processor is a 16-bit processor, so program
instruction or DMA engine loads of the TX data register always
move 16 bits into the register; the SLEN field tells the SPORT how
many of those 16 bits to shift out of the register over the serial link.

 The frame sync signal is controlled by the Frame Sync Divider reg-
ister, not by SLEN. To produce a frame sync pulse on each byte or
word transmitted, the proper frame sync divider must be pro-
grammed into the Frame Sync Divider register; setting SLEN to 7
does not produce a frame sync pulse on each byte transmitted.

• Internal Transmit Frame Sync Select. SPORTx_TX_CONFIG[9]
(ITFS). This bit selects whether the SPORT uses an internal TFS (if
set) or an external TFS (if cleared).

• Transmit Frame Sync Required Select. SPORTx_TX_CONFIG[10]
(TFSR). This bit selects whether the SPORT requires (if set) or does
not require (if cleared) a transfer frame sync for every data word.

ADSP-BF535 Blackfin Processor Hardware Reference 11-13

Serial Port Controllers

 The TFSR bit is normally set. A frame sync pulse is used to mark the
beginning of each word or data packet, and most systems need
frame sync to function properly.

• Data Independent Transmit Frame Sync Select.
SPORTx_TX_CONFIG[11] (DITFS). This bit selects whether the
SPORT uses a data independent TFS (sync at selected interval, if
set) or uses a data dependent TFS (sync when data in SPORTx_TX, if
cleared).

The frame sync pulse marks the beginning of the data word. If
DITFS is set, the frame sync pulse is issued on time, whether the TX
register has been loaded or not; if DITFS is cleared, the frame sync
pulse is only generated if the TX data register has been loaded. If the
receiver demands regular frame sync pulses, DITFS should be set,
and the core should keep loading the SPORTx_TX register on time. If
the receiver can tolerate occasional late frame sync pulses, DITFS
should be cleared to prevent the SPORT from transmitting old
data twice or transmitting garbled data if the core is late in loading
the TX register.

• Low Transmit Frame Sync Select. SPORTx_TX_CONFIG[12] (LTFS).
This bit selects an active low TFS (if set) or active high TFS (if
cleared).

• Late Transmit Frame Sync. SPORTx_TX_CONFIG[13] (LATFS). This
bit configures late frame syncs (if set) or early frame syncs (if
cleared).

• Clock Drive/Sample Edge Select. SPORTx_TX_CONFIG[14] (CKFE).
This bit selects which edge of the TCLKx signal the SPORT uses for
driving data, for driving internally generated frame syncs, and for
sampling externally generated frame syncs. If set, data and inter-
nally generated frame syncs are driven on the falling edge and
externally generated frame syncs are sampled on the rising edge.

SPORT Registers

11-14 ADSP-BF535 Blackfin Processor Hardware Reference

If cleared, data and internally generated frame syncs are driven on
the rising edge and externally generated frame syncs are sampled on
the falling edge.

Figure 11-4. SPORTx Receive Configuration Register

Table 11-3. SPORTx Receive Configuration Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_RX_CONFIG 0xFFC0 2802

SPORT1_RX_CONFIG 0xFFC0 2C02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive Configuration Register (SPORTx_RX_CONFIG)

Reset = 0x0000

SLEN[3:0] (Serial Word
Length Select)

0 - Receive disabled
1 - Receive enabled

IRFS (Internal Receive Frame
Sync Select)

ICLK (Internal Receive Clock
Select)

DTYPE[1:0] (Data Format-
ting Type Select)

SENDN (Endian Format
Select)

RSPEN (Receive Enable)

LRFS (Low Receive Frame
Sync Select)

LARFS (Late Receive
Frame Sync)
0 - Early frame syncs
1 - Late frame syncs

CKFE (Clock Drive/
Sample Edge Select)

0 - External receive clock
selected

1 - Internal receive clock
selected

00 - Right justify and zero fill
01 - Right justify and sign

extend
10 - Compand using -law
11 - Compand using A-law

0 - Transmit most significant
bits first

1 - Transmit least significant
bits first

0000 - Illegal value
0001 - Illegal value
Serial word length is value in
this field plus 1

0 - External RFS used
1 - Internal RFS used

0 - Rising edge used to drive,
falling edge used to sample

1 - Falling edge used to drive,
rising edge used to sample

0 - Active high RFS
1 - Active low RFS

RFSR (Receive Frame Sync
Required Select)
0 - Does not require RFS for

every data word
1 - Requires RFS for every data

word

For MMR
assignments, see

ADSP-BF535 Blackfin Processor Hardware Reference 11-15

Serial Port Controllers

Additional information for the SPORTx_RX_CONFIG receive configuration
register bits:

• Receive Enable. SPORTx_RX_CONFIG[0] (RSPEN). This bit selects
whether the SPORT is enabled to receive (if set) or disabled (if
cleared).

Setting the RSPEN bit turns on the SPORT and causes it to sample
data from the DRx pin as well as the RX bit clock and receive frame
sync pins if so programmed.

 All SPORT control registers should be programmed before RSPEN is
set. Typical SPORT initialization code first writes
SPORTx_RX_CONFIG with everything except RSPEN, then the last step
in the code is to rewrite SPORTx_RX_CONFIG with all of the necessary
bits including RSPEN.

Setting RSPEN enables the SPORT RX interrupt. For this reason, the
code should initialize the interrupt service routine and be ready to
service RX interrupts before setting RSPEN.

Clearing RSPEN causes the SPORT to stop receiving data; it also
shuts down the internal SPORT circuitry. In low power applica-
tions, battery life can be extended by clearing RSPEN whenever the
SPORT is not in use.

• Internal Receive Clock Select. SPORTx_RX_CONFIG[1] (ICLK). This
bit selects the internal receive clock (if set) or external receive clock
(if cleared).

• Data Formatting Type Select. SPORTx_RX_CONFIG[3:2] (DTYPE).
The DTYPE, SENDN, and SLEN bits configure the format of the data
words received over the SPORTs. The two DTYPE bits specify one
of four data formats used for single and multichannel operation

SPORT Registers

11-16 ADSP-BF535 Blackfin Processor Hardware Reference

(00=right justify and zero fill unused most significant bits,
01=right justify and sign extend into unused MSBs, 10=compand
using -law, 11=compand using A-law).

• Endian Format Select. SPORTx_RX_CONFIG[4] (SENDN). The DTYPE,
SENDN, and SLEN bits configure the format of the data words
received over the SPORTs. The SENDN bit selects the endian format
(0=serial words are received MSB first, 1=serial words are received
LSB first).

• Serial Word Length Select. SPORTx_RX_CONFIG[8:5] (SLEN). The
DTYPE, SENDN, and SLEN bits configure the format of the data words
received over the SPORTs. The serial word length (the number of
bits in each word received over the SPORTs) is calculated by add-
ing 1 to the value of the SLEN field. The SLEN field can be set to a
value of 2 to 15; 0 and 1 are illegal values for this field.

• Internal Receive Frame Sync Select. SPORTx_RX_CONFIG[9] (IRFS).
This bit selects whether the SPORT uses an internal RFS (if set) or
an external RFS (if cleared).

• Receive Frame Sync Required Select. SPORTx_RX_CONFIG[10]
(RFSR). This bit selects whether the SPORT requires (if set) or does
not require (if cleared) a receive frame sync for every data word.

• Low Receive Frame Sync Select. SPORTx_RX_CONFIG[12] (LRFS).
This bit selects an active low RFS (if set) or active high RFS (if
cleared).

• Late Receive Frame Sync. SPORTx_RX_CONFIG[13] (LARFS). This bit
configures late frame syncs (if set) or early frame syncs (if cleared).

• Clock Drive/Sample Edge Select. SPORTx_RX_CONFIG[14] (CKFE).
This bit selects which edge of the RCLK clock signal the SPORT
uses for sampling data, for sampling externally generated frame
syncs, and for driving internally generated frame syncs. If set, inter-
nally generated frame syncs are driven on the falling edge, and data

ADSP-BF535 Blackfin Processor Hardware Reference 11-17

Serial Port Controllers

and externally generated frame syncs are sampled on the rising
edge. If cleared, internally generated frame syncs are driven on the
rising edge, and data and externally generated frame syncs are sam-
pled on the falling edge.

SPORTx Transmit (SPORTx_TX) Registers
The SPORTx_TX register, shown in Figure 11-5, acts as the transmit data
buffer for the SPORT. It is a 16-bit register which must be loaded with
the data to be transmitted; the data is loaded either by the DMA control-
ler or by the program running on the core. Word lengths of less than 16
bits are right justified.

The SPORT transmit registers act like a two-location FIFO because there
is a data register (SPORTx_TX) with an accompanying output shift register
as shown in Figure 11-1 on page 11-5. Two 16-bit words may be stored in
these registers at any one time. When the SPORTx_TX register is loaded and
any previous word has been transmitted, the contents are automatically
loaded into the output shifter. An interrupt is generated when the output
shifter has been loaded, signifying that the SPORTx_TX register is ready to
accept the next word (the SPORTx_TX buffer is “not full”). This interrupt
does not occur if SPORT DMA is enabled.

The transmit underflow status bit (TUVF) is set in the SPORT Status regis-
ter when a transmit frame sync occurs and no new data has been loaded
into the serial shift register. In multichannel mode, TUVF is set whenever
the serial shift register is not loaded, when that transmission should begin
on an enabled channel. The TUVF status bit is cleared on a hard reset. From
that moment on, if it is set, it stays set until the SPORT is re-enabled (dis-
abled and then enabled again). Once the SPORT is enabled, it takes at
least 4 transmit clock cycles to clear the TUVF bit.

SPORT Registers

11-18 ADSP-BF535 Blackfin Processor Hardware Reference

Once the TUVF bit is cleared, the DMA’s Peripheral-Dependent Error IRQ
Status bit in the DMA IRQ Status register can be cleared by writing 1 to
it. See “Peripheral DMA IRQ Status Register” on page 9-28. Follow these
steps:

1. Disable the SPORT.

2. Enable the SPORT.

3. Poll the TUVF bit of the SPORTx_STAT register, waiting for a 0.

4. Write 1 to the Peripheral-Dependent Error IRQ Status bit to clear
it.

If the program causes the core processor to attempt a write to a full
SPORTx_TX register, the new data overwrites the SPORTx_TX register. If it is
not known whether the core processor can access the SPORTx_TX register
without causing such an error, the register’s full or empty status should be
read first (in the SPORT Status register) to determine if the access can be
made. See “SPORTx Status (SPORTx_STAT) Registers” on page 11-23.

The SPORTx_TX register can be read whether or not the SPORT is enabled.

Figure 11-5. SPORTx Transmit Registers

SPORTx Transmit Registers (SPORTx_TX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Transmit Data[15:0]

Reset = 0x0000
For MMR
assignments, see
Table 11-4.

ADSP-BF535 Blackfin Processor Hardware Reference 11-19

Serial Port Controllers

SPORTx Receive (SPORTx_RX) Registers
The SPORTx_RX register, shown in Figure 11-6, acts as the receive data
buffer for the SPORT. It is a 16-bit register which is automatically loaded
from the receive shifter when a complete word has been received. Word
lengths of less than 16 bits are right justified.

The SPORT receive registers act like a two-location FIFO buffer because
there is a data register (SPORTx_RX) with an accompanying input shift reg-
ister as shown in Figure 11-1 on page 11-5. Two 16-bit words may be
stored in these registers at any one time. SPORTx_RX is read-only and the
reset values are undefined.

Two 16-bit words can be stored in the SPORT receive registers at any one
time. The third word overwrites the second if the first word has not been
read out by the Master core or the DMA controller. When this happens,
the receive overflow status bit (ROVF) is set in the SPORT Status register.
The overflow status is generated on the last bit of the second word. The
ROVF status bit is sticky and is only cleared by disabling the serial port.

An interrupt is generated when the SPORTx_RX register has been loaded
with a received word (that is, the SPORTx_RX register is not empty). This
interrupt is masked out if serial port DMA is enabled.

If the program causes the core processor to attempt a read from an empty
SPORTx_RX register, any old data is read. If it is not known whether the
core processor can access the SPORTx_RX register without causing such an
error, the register’s full or empty status should be read first (in the SPORT
Status register) to determine if the access can be made.

Table 11-4. SPORTx Transmit Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_TX 0xFFC0 2804

SPORT1_TX 0xFFC0 2C04

SPORT Registers

11-20 ADSP-BF535 Blackfin Processor Hardware Reference

The RXS and TXS status bits in the SPORT Status register are updated
upon reads and writes from the core processor, even when the SPORT is
disabled.

SPORTx Transmit (SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock Divider Registers

The frequency of an internally generated clock is a function of the system
clock frequency (as determined by SSEL, MSEL, and DF) and the value of the
16-bit serial clock divide modulus registers: SPORTx_TSCLKDIV and
SPORTx_RSCLKDIV. These registers are shown in Figure 11-7 and
Figure 11-8, respectively.

Figure 11-6. SPORTx Receive Registers

Table 11-5. SPORTx Receive Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_RX 0xFFC0 2806

SPORT1_RX 0xFFC0 2C06

SPORTx Receive Registers (SPORTx_RX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Receive Data[15:0]

Reset = Undefined

RO

For MMR
assignments, see
Table 11-5.

ADSP-BF535 Blackfin Processor Hardware Reference 11-21

Serial Port Controllers

Figure 11-7. SPORTx Transmit Serial Clock Divider Register

Table 11-6. SPORTx Transmit Serial Clock Divider Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_TSCLKDIV 0xFFC0 2808

SPORT1_TSCLKDIV 0xFFC0 2C08

Figure 11-8. SPORTx Receive Serial Clock Divider Register

Table 11-7. SPORTx Receive Serial Clock Divider Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_RSCLKDIV 0xFFC0 280A

SPORT1_RSCLKDIV 0xFFC0 2C0A

SPORTx Transmit Serial Clock Divider Register (SPORTx_TSCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
For MMR
assignments, see
Table 11-6.

SPORTx Receive Serial Clock Divider Register (SPORTx_RSCLKDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial Clock Divide
Modulus[15:0]

Reset = 0x0000
For MMR
assignments, see
Table 11-7.

SPORT Registers

11-22 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Transmit (SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync Divider Registers

These 16-bit registers specify how many transmit or receive clock cycles
are counted before generating a TFS or RFS pulse when the frame sync is
internally generated. In this way, a frame sync can be used to initiate peri-
odic transfers. The counting of serial clock cycles applies to either
internally or externally generated serial clocks. The SPORTx_TFDIV register
is shown in Figure 11-9; the SPORTx_RFSDIV register is shown in
Figure 11-10.

Figure 11-9. SPORTx Transmit Frame Sync Divider Register

Table 11-8. SPORTx Transmit Frame Sync Divider Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_TFSDIV 0xFFC0 280C

SPORT1_TFSDIV 0xFFC0 2C0C

SPORTx Transmit Frame Sync Divider Register (SPORTx_TFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of transmit clock
cycles counted before gener-
ating TFS pulse

For MMR
assignments, see
Table 11-8.

ADSP-BF535 Blackfin Processor Hardware Reference 11-23

Serial Port Controllers

SPORTx Status (SPORTx_STAT) Registers
The RXS and TXS status bits in the SPORT Status register are updated
upon reads and writes from the core processor even when the serial port is
disabled. The SPORT Status register is used to determine if the access to a
SPORT RX or TX buffer can be made by determining their full or empty
status. It is a read-only register. The reset value is undefined. The
SPORTx Status register is shown in Figure 11-11.

The transmit underflow status bit (TUVF) is set in the SPORT Status regis-
ter when a transmit frame sync occurs and no new data has been loaded
into the SPORTx_TX register. The TUVF status bit is sticky and is only
cleared by disabling the serial port.

Figure 11-10. SPORTx Receive Frame Sync Divider Register

Table 11-9. SPORTx Receive Frame Sync Divider Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_RFSDIV 0xFFC0 280E

SPORT1_RFSDIV 0xFFC0 2C0E

SPORTx Receive Frame Sync Divider Register (SPORTx_RFSDIV)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Frame Sync Divider[15:0]

Reset = 0x0000

Number of receive clock
cycles counted before gener-
ating RFS pulse

For MMR
assignments, see
Table 11-9.

SPORT Registers

11-24 ADSP-BF535 Blackfin Processor Hardware Reference

When the SPORT RX buffer is full, the receive overflow status bit (ROVF)
is set in the SPORT Status register. The overflow status is generated on
the last bit of the second word. The ROVF status bit is sticky and is only
cleared by disabling the serial port.

The 7-bit CHNL field is the read-only status indicator that shows which
channel is currently selected during multichannel operation. CHNL[6:0]
increments by one as each channel is serviced. Note that in Channel Select
Offset mode, the CHNL value is reset to 0 after the offset has been com-
pleted. For example, with offset equal to 21 and a window of 8, in the
regular mode the counter displays a value between 0 and 28, while in
Channel Select Offset mode, the counter resets to 0 after counting up to
21, and then the frame completes when the CHNL bit reaches the 8th chan-
nel (value of 7).

Figure 11-11. SPORTx Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Status Register (SPORTx_STAT)

0 - Disabled
1 - Enabled

RXS (Receive Status)

TXS (Transmit Status)

ROVF (Sticky Receive Over-
flow Status)

TUVF (Sticky Transmit Underflow
Status)

CHNL[6:0] (Current Channel Indicator)

0 - Empty
1 - Full

0 - Empty
1 - Full

Reset = 0xX000

0 - Disabled
1 - Enabled

RO

For MMR
assignments, see
Table 11-10.

ADSP-BF535 Blackfin Processor Hardware Reference 11-25

Serial Port Controllers

Table 11-10 lists the MMR assignments for the SPORTx Status registers.

SPORTx Multichannel Transmit Select
(SPORTx_MTCSx) Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx_MTCSx register, shown in Figure 11-12,
specifies the active transmit channels. Each register has 16 bits, corre-
sponding to the 16 channels. Setting a bit enables that channel so that the
serial port selects that word for transmit from the multiple word block of
data. For example, setting bit 0 selects word 0, setting bit 12 selects word
12, and so on.

Table 11-10. SPORTx Status Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_STAT 0xFFC0 2810

SPORT1_STAT 0xFFC0 2C10

SPORT Registers

11-26 ADSP-BF535 Blackfin Processor Hardware Reference

Setting a particular bit in a SPORTx_MTCSx register causes the serial port to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSx register causes the serial port’s DT (data trans-
mit) pin to three-state during the time slot of that channel.

Figure 11-12. SPORTx Multichannel Transmit Select Registers

Table 11-11. SPORTx Multichannel Transmit Select Register MMR
Assignments

SPORT0
Register Name

SPORT0
Memory-Mapped
Address

SPORT1
Register Name

SPORT1
Memory-Mapped
Address

SPORT0_MTCS0 0xFFC0 2812 SPORT1_MTCS0 0xFFC0 2C12

SPORT0_MTCS1 0xFFC0 2814 SPORT1_MTCS1 0xFFC0 2C14

SPORT0_MTCS2 0xFFC0 2816 SPORT1_MTCS2 0xFFC0 2C16

SPORT0_MTCS3 0xFFC0 2818 SPORT1_MTCS3 0xFFC0 2C18

SPORT0_MTCS4 0xFFC0 281A SPORT1_MTCS4 0xFFC0 2C1A

SPORT0_MTCS5 0xFFC0 281C SPORT1_MTCS5 0xFFC0 2C1C

SPORT0_MTCS6 0xFFC0 281E SPORT1_MTCS6 0xFFC0 2C1E

SPORT0_MTCS7 0xFFC0 2820 SPORT1_MTCS7 0xFFC0 2C20

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Transmit Select Registers (SPORTx_MTCSx)

Word 0

Word 12

Word 13

Word 14

Word 15

Word 1

Word 2

Word 3

Word 4

Word 5

For all bits, 0 - Channel disabled, 1 - Channel enabled so SPORT selects that word from multiple word block of data.

Word 6

Word 7

Word 11

Word 10

Word 9

Word 8

Reset = 0x0000
For MMR
assignments, see
Table 11-11.

ADSP-BF535 Blackfin Processor Hardware Reference 11-27

Serial Port Controllers

SPORTx Multichannel Receive Select
(SPORTx_MRCSx) Registers

The multichannel selection registers are used to enable and disable indi-
vidual channels. The SPORTx_MRCSx register, shown in Figure 11-13,
specifies the active receive channels. Each register has 16 bits, correspond-
ing to the 16 channels. Setting a bit enables that channel so that the serial
port selects that word for receive from the multiple word block of data.
For example, setting bit 0 selects word 0, setting bit 12 selects word 12,
and so on.

Setting a particular bit in the SPORTx_MRCSx register causes the serial port
to receive the word in that channel’s position of the data stream; the
received word is loaded into the RX buffer. Clearing the bit in the
SPORTx_MRCSx register causes the serial port to ignore the data.

SPORT Registers

11-28 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 11-13. SPORTx Multichannel Receive Select Registers

Table 11-12. SPORTx Multichannel Receive Select Register MMR
Assignments

SPORT0
Register Name

SPORT0
Memory-Mapped
Address

SPORT1
Register Name

SPORT1
Memory-Mapped
Address

SPORT0_MRCS0 0xFFC0 2822 SPORT1_MRCS0 0xFFC0 2C22

SPORT0_MRCS1 0xFFC0 2824 SPORT1_MRCS1 0xFFC0 2C24

SPORT0_MRCS2 0xFFC0 2826 SPORT1_MRCS2 0xFFC0 2C26

SPORT0_MRCS3 0xFFC0 2828 SPORT1_MRCS3 0xFFC0 2C28

SPORT0_MRCS4 0xFFC0 282A SPORT1_MRCS4 0xFFC0 2C2A

SPORT0_MRCS5 0xFFC0 282C SPORT1_MRCS5 0xFFC0 2C2C

SPORT0_MRCS6 0xFFC0 282E SPORT1_MRCS6 0xFFC0 2C2E

SPORT0_MRCS7 0xFFC0 2830 SPORT1_MRCS7 0xFFC0 2C30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Receive Select Registers (SPORTx_MRCSx)

Word 0

Word 12

Word 13

Word 14

Word 15

Word 1

Word 2

Word 3

Word 4

Word 5

For all bits, 0 - Channel disabled, 1 - Channel enabled so SPORT selects that word from multiple word block of data.

Word 6

Word 7

Word 11

Word 10

Word 9

Word 8

Reset = 0x0000
For MMR
assignments, see
Table 11-12.

ADSP-BF535 Blackfin Processor Hardware Reference 11-29

Serial Port Controllers

SPORTx Multichannel Configuration
(SPORTx_MCMCx) Registers

There are two SPORTx_MCMCx registers for each SPORT. The SPORTx_MCMCx
registers, represented in Figure 11-14 and Figure 11-15, are used to enable
multichannel mode. Setting the MCM bit enables multichannel operation
for both receive and transmit sides of the SPORT. A transmitting SPORT
must therefore be in multichannel mode if the receiving SPORT is in
multichannel mode.

The value of MFD is the number of serial clock cycles of the delay. Multi-
channel frame delay allows the processor to work with different types of
T1 interface devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15.

A new frame sync may occur before data from the last frame has been
received because blocks of data occur back-to-back.

Figure 11-14. SPORTx Multichannel Configuration 1 Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration 1 Registers (SPORTx_MCMC1)

0 - Multichannel operations
disabled
1 - Multichannel operations
enabled

MFD[3:0] (Multichannel
Frame Delay)

MCM (Multichannel Mode)

WSIZE[3:0] (Window Size)

WOFF[6:0] (Window Offset)

Delay between frame sync
pulse and first data bit in
multichannel mode

Reset = 0x0000

0 - Use all 128 channels, no offset
Other value - window offset

0 - Minimum window size of 8
channels
Other value 8 to 128 in incre-
ments of 8 - window size

For MMR
assignments, see
Table 11-13.

SPORT Registers

11-30 ADSP-BF535 Blackfin Processor Hardware Reference

Table 11-13. SPORTx Multichannel Configuration 1 Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_MCMC1 0xFFC0 2832

SPORT1_MCMC1 0xFFC0 2C32

Figure 11-15. SPORTx Multichannel Configuration 2 Registers

Table 11-14. SPORTx Multichannel Configuration 2 Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_MCMC2 0xFFC0 2834

SPORT1_MCMC2 0xFFC0 2C34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Multichannel Configuration 2 Registers (SPORTx_MCMC2)

0x - Bypass mode
10 - Recover 2 MHz clock

from 4 MHz
11 - Recover 8 MHz clock

from 16 MHz

MCDTXPE (Multichannel
DMA Transmit Packing)

MCCRM[1:0] (2X Clock
Recovery Mode)

MCFF[1:0] (TX FIFO Prefetch Max Distance)

FSDR (Frame Sync to Data Relationship)

0 - Disabled
1 - Enabled

Reset = 0x0000

0 - Disabled
1 - Enabled

00 - 2 Channels
01 - 4 Channels
10 - 8 Channels
11 - 16 Channels

MCOM (Channel Select Offset Mode)
0 - Disabled
1 - Enabled

MCDRXPE (Multichannel
DMA Receive Packing)
0 - Disabled
1 - Enabled

For MMR
assignments, see
Table 11-14.

ADSP-BF535 Blackfin Processor Hardware Reference 11-31

Serial Port Controllers

SPORTx Receive DMA Current Descriptor Pointer
(SPORTx_CURR_PTR_RX) Registers

This 16-bit read-only register holds the lower 16 bits of the pointer to the
current descriptor block for the SPORT DMA receive operation. The full
32-bit address to the current pointer is formed by concatenating the Next
Descriptor Base Pointer register and the SPORT Receive DMA Current
Descriptor Pointer register. Figure 11-16 shows the SPORTx_CURR_PTR_ RX
registers.

SPORTx Receive DMA Configuration
(SPORTx_CONFIG_DMA_RX) Registers

During SPORT initialization, the program can write the head address of
the first DMA descriptor block to the Receive DMA Next Descriptor
Pointer register and then set the DMA Enable bit in the Receive DMA

Figure 11-16. SPORTx Receive DMA Current Descriptor Pointer Register

Table 11-15. SPORTx Receive DMA Current Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_CURR_PTR_RX 0xFFC0 2A00

SPORT1_CURR_PTR_RX 0xFFC0 2E00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Current Descriptor Pointer register (SPORTx_CURR_PTR_RX)

Pointer to Current Descriptor
Block for SPORT DMA
Operation[15:0]

Reset = 0x0000

RO

For MMR
assignments, see
Table 11-15.

SPORT Registers

11-32 ADSP-BF535 Blackfin Processor Hardware Reference

Configuration register. The DMA Configuration register maintains
real-time DMA buffer status. Figure 11-17 represents the
SPORTx_CONFIG_DMA_RX registers.

Each SPORT DMA channel has a DMA Enable bit (DEN) for each of the
serial ports. When DMA is not enabled for a particular channel, the
SPORT generates an interrupt every time it receives a data word.

When the Interrupt on Completion bit of the SPORTx_CONFIG_DMA_RX reg-
ister is set, bit 0 of the SPORTx_IRQSTAT_RX register is set and a DMA
interrupt is generated after the final transfer of data. Final transfer of data
occurs when DMA count = 0, as specified by the descriptor work block.

DMA transfer size can be set to 8, 16, or 32 bits. This provides flexibility
in how data is packed in memory. For DMA writes to memory in excess of
the 16-bit FIFO size, the upper bits are padded with 0s. For DMA writes
to memory smaller than the 16-bit FIFO size, only the LSBs of the FIFO
are written. A DMA read of memory greater than the 16-bit FIFO size
reads only the LSBs of memory into the FIFO. For DMA reads of memory
smaller than the FIFO size, the least significant bits of the FIFO are
loaded and the remaining FIFO bits have unknown values. DMA data
transfer size is determined by setting the Data Size Bit 0 and Data Size Bit
1 bits in the SPORTx_CONFIG_DMA_RX register.

When the Interrupt on Error bit is set, a receive overflow error results in
bit 1 of the SPORTx_IRQSTAT_RX register being set and a DMA interrupt
being generated.

The Receive Overflow Error bit is set if an overflow condition occurs.
This bit is sticky only during the current work block. It is cleared on the
next descriptor fetch.

The DMA Completion Status bit reflects the current error condition. It is
set if a receive overflow error occurs. When the current descriptor work
block completes (DMA count = 0), the value of this bit is written to
memory as a record of the completion result, and the bit is cleared for the
next data transfer.

ADSP-BF535 Blackfin Processor Hardware Reference 11-33

Serial Port Controllers

Figure 11-17. SPORTx Receive DMA Configuration Registers

Table 11-16. SPORTx Receive DMA Configuration Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_CONFIG_DMA_RX 0xFFC0 2A02

SPORT1_CONFIG_DMA_RX 0xFFC0 2E02

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Configuration Registers (SPORTx_CONFIG_DMA_RX)

0 - Disabled
1 - Enabled

TRAN (Transfer Direction) -
RO

DEN (DMA Enable) - RW

DS (DMA Completion
Status) - RO

DOWN (Ownership) - RO

0 - Memory read
1 - Memory write
Set to 1 for receive DMA
master. Writable if DAUTO = 1.

0 - Processor
1 - DMA engine

0 - No error detected
1 - Error detected (ROVF)

FS[1:0] (DMA Buffer Status) - RO
00 - Buffer empty
01 - One word present
10 - Two words present
11 - Three words present

DCOME (Interrupt on
Completion) - RO

0 - Disabled
1 - Enabled
Writable if DAUTO = 1

DAUTO (Autobuffer/Descrip-
tor Mode) - RW
0 - Descriptor mode enabled
1 - Autobuffer mode enabled

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

FLSH (Buffer Clear Enable) - RW
0 - Normal buffer operation
1 - Clear buffer

Data Size Bit 1 - WO
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if DAUTO = 1
(Shared with DMA Buffer Status bit)

Reset = 0x0000

ROVF (Receive Overflow Error) - RO
0 - No overflow detected
1 - Overflow detected

For MMR
assignments, see
Table 11-16.

SPORT Registers

11-34 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Receive DMA Start Address High
(SPORTx_START_ADDR_HI_RX) Registers

This register, shown in Figure 11-18, holds a running pointer to the
DMA address that is being accessed. This register is read-only. It can be
written in autobuffer mode. Together, SPORTx_START_ADDR_HI_RX and
SPORTx_START_ADDR_LO_RX form the 32-bit address for data access.

Figure 11-18. SPORTx Receive DMA Start Address High Registers

Table 11-17. SPORTx Receive DMA Start Address High Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_HI_RX 0xFFC0 2A04

SPORT1_START_ADDR_HI_RX 0xFFC0 2E04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Start Address High Registers (SPORTx_START_ADDR_HI_RX)

Reset = 0x0000

RO. Writable in autobuffer mode.

DMA Start Address [31:16]

For MMR
assignments, see
Table 11-17.

ADSP-BF535 Blackfin Processor Hardware Reference 11-35

Serial Port Controllers

SPORTx Receive DMA Start Address Low
(SPORTx_START_ADDR_LO_RX) Registers

The DMA Start Address Low register, shown in Figure 11-19, maintains a
running pointer to the DMA address that is being accessed.

It is a read-only register. It can be written in autobuffer mode. Together,
SPORTx_START_ADDR_HI_RX and SPORTx_START_ADDR_LO_RX form the 32-bit
address for data access.

Figure 11-19. SPORTx Receive DMA Start Address Low Registers

Table 11-18. SPORTx Receive DMA Start Address Low Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_LO_RX 0xFFC0 2A06

SPORT1_START_ADDR_LO_RX 0xFFC0 2E06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Start Address Low Registers (SPORTx_START_ADDR_LO_RX)

Reset = 0x0000

RO. Writable in autobuffer mode.

DMA Start Address [15:0]

For MMR
assignments, see
Table 11-18.

SPORT Registers

11-36 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Receive DMA Count (SPORTx_COUNT_RX)
Registers

The SPORT Receive DMA Count register, shown in Figure 11-20, holds
the number of remaining words in the transfer. This is a read-only regis-
ter. It can be written in autobuffer mode.

SPORTx Receive DMA Next Descriptor Pointer
(SPORTx_NEXT_DESCR_RX) Registers

The SPORT Receive DMA Next Descriptor Pointer register, shown in
Figure 11-21, maintains the 16 LSBs of the head address of the next DMA
descriptor block. Together, the SPORTx_NEXT_DESCR_RX and the DB_NDBP
registers form the 32-bit head address of the next descriptor block. During
SPORT initialization, the programmer writes the head address of the first
DMA descriptor block to the Receive DMA Next Descriptor Pointer reg-
ister and then sets the DEN bit in the Transmit or Receive DMA
Configuration Registers.

Figure 11-20. SPORTx Receive DMA Count Registers

Table 11-19. SPORTx Receive DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_COUNT_RX 0xFFC0 2A08

SPORT1_COUNT_RX 0xFFC0 2E08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Count Registers (SPORTx_COUNT_RX)

Words Remaining in
Transfer[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR
assignments, see
Table 11-19.

ADSP-BF535 Blackfin Processor Hardware Reference 11-37

Serial Port Controllers

Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the
SPORT DMA control registers.

 To initialize SPORTx_NEXT_DESCR_RX before starting a descriptor
based DMA operation, first set the DAUTO bit in either the
SPORTx_CONFIG_DMA_TX or the SPORTx_CONFIG_DMA_RX register. If
the DAUTO bit is not set in at least one of these registers, writes to
SPORTx_NEXT_DESCR_RX are ignored.

SPORTx Receive DMA Descriptor Ready
(SPORTx_DESCR_RDY_RX) Registers

The DMA engine stalls if a low level ownership bit is detected during a
descriptor block access. Writing a 1 to bit 0 of the SPORT Receive DMA
Descriptor Ready register reactivates the processing of the descriptor

Figure 11-21. SPORTx Receive DMA Next Descriptor Pointer Registers

Table 11-20. SPORTx Receive DMA Next Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_NEXT_DESCR_RX 0xFFC0 2A0A

SPORT1_NEXT_DESCR_RX 0xFFC0 2E0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Next Descriptor Pointer Registers (SPORTx_NEXT_DESCR_RX)

Head Address of Next DMA
Descriptor Block [15:0]

Reset = 0x0000

RO

For MMR
assignments, see
Table 11-20.

SPORT Registers

11-38 ADSP-BF535 Blackfin Processor Hardware Reference

block. If the ownership bit is set, processing of the descriptor block
resumes and bit 0 of the SPORT Receive DMA Descriptor Ready register
is cleared. Figure 11-22 represents the SPORTx_DESCR_RDY_RX registers.

SPORTx Receive DMA IRQ Status
(SPORTx_IRQSTAT_RX) Registers

Each SPORT DMA unit has three interrupt sources. Two of these sources
are enabled by the Interrupt On Error and Interrupt On Completion bits
within the SPORTx_CONFIG_DMA_RX configuration register. The third
source, bus error, is not maskable at the DMA level. All three interrupt
status bits contained within the SPORTx_IRQSTAT_RX register are sticky.

Figure 11-22. SPORTx Receive DMA Descriptor Ready Registers

Table 11-21. SPORTx Receive DMA Descriptor Ready Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_DESCR_RDY_RX 0xFFC0 2A0C

SPORT1_DESCR_RDY_RX 0xFFC0 2E0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA Descriptor Ready Registers (SPORTx_DESCR_RDY_RX)

Reset = 0x0000

RO

DMA Descriptor Reactivate
0 - No action taken
1 - Reactivate descriptor

block processing

For MMR assign-
ments, see
Table 11-21.

ADSP-BF535 Blackfin Processor Hardware Reference 11-39

Serial Port Controllers

Bits are cleared by writing a 1 to them. All SPORTx_IRQSTAT_RX register
bits are ORed to form a single DMA interrupt. Figure 11-23 represents
the SPORTx_IRQSTAT_RX registers.

Figure 11-23. SPORTx Receive DMA IRQ Status Registers

Table 11-22. SPORTx Receive DMA IRQ Status Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_IRQSTAT_RX 0xFFC0 2A0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Receive DMA IRQ Status Registers (SPORTx_IRQSTAT_RX)

0 - Inactive
1 - Completed

Error IRQ Status - W1C

Completion IRQ Status - W1C

0 - Inactive
1 - Error

Reset = 0x0000

Bus Error IRQ Status - W1C
0 - Inactive
1 - Bus error

For MMR
assignments, see
Table 11-22.

SPORT Registers

11-40 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Transmit DMA Current Descriptor Pointer
(SPORTx_CURR_PTR_TX) Registers

This 16-bit read-only register holds the lower 16 bits of the pointer to the
current descriptor block for the SPORT DMA transmit operation. The
full 32-bit address to the current pointer is formed by concatenating the
Next Descriptor Base Pointer register and the SPORT Transmit DMA
Current Descriptor Pointer register, shown in Figure 11-24.

SPORTx Transmit DMA Configuration
(SPORTx_CONFIG_DMA_TX) Registers

During SPORT initialization, the program can write the head address of
the first DMA descriptor block to the Transmit DMA Next Descriptor
Pointer register, shown in Figure 11-29 on page 11-46, and then set the

Figure 11-24. SPORTx Transmit DMA Current Descriptor Pointer
Registers

Table 11-23. SPORTx Transmit DMA Current Descriptor Pointer
Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_CURR_PTR_TX 0xFFC0 2B00

SPORT1_CURR_PTR_TX 0xFFC0 2F00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Current Descriptor Pointer Registers (SPORTx_CURR_PTR_TX)

Pointer to Current Descriptor
Block for SPORT DMA
Operation[15:0]

Reset = 0x0000
For MMR
assignments, see
Table 11-23.

ADSP-BF535 Blackfin Processor Hardware Reference 11-41

Serial Port Controllers

DMA Enable bit in the Transmit DMA Configuration registers, shown in
Figure 11-25. The DMA Configuration register maintains real time DMA
buffer status.

Each SPORT DMA channel has an enable bit (DEN) in these registers for
each of the serial ports. When DMA is not enabled for a particular chan-
nel, the SPORT generates an interrupt every time it starts to transmit a
data word.

When the Interrupt on Completion bit of the SPORTx_CONFIG_DMA_TX reg-
ister is set, bit 0 of the SPORTx_IRQSTAT_TX register is set and a DMA
interrupt is generated after the final transfer of data. Final transfer of data
occurs when DMA count = 0, as specified by the descriptor work block.

DMA transfer size can be set to 8, 16, or 32 bits. This provides flexibility
in how data is packed in memory. For DMA writes to memory in excess of
the 16-bit FIFO size, the upper bits are padded with zeros. For DMA
writes to memory smaller than the 16-bit FIFO size, only the LSBs of the
FIFO are written. A DMA read of memory greater than the 16-bit FIFO
size reads only the LSBs of memory into the FIFO. For DMA reads of
memory smaller than the FIFO size, the least significant bits of the FIFO
are loaded and the remaining FIFO bits have unknown values. DMA data
transfer size is determined by setting the Data Size Bit 0 and Data Size Bit
1 bits in the SPORTx_CONFIG_DMA_TX register.

When the Interrupt on Error bit is set, a transmit underflow error results
in bit 1 of the SPORTx_IRQSTAT_TX register being set and a DMA interrupt
being generated.

The Transmit Underflow Error bit is set if an underflow condition occurs.
This bit is sticky only during the current work block. It is cleared on the
next descriptor fetch.

SPORT Registers

11-42 ADSP-BF535 Blackfin Processor Hardware Reference

The DMA Completion Status bit reflects the current error condition. It is
set if a transmit underflow error occurs. When the current descriptor work
block completes (DMA count = 0), the value of this bit is written to mem-
ory as a record of the completion result, and the bit is cleared for the next
data transfer.

Figure 11-25. SPORTx Transmit DMA Configuration Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Configuration Registers (SPORTx_CONFIG_DMA_TX)

Reset = 0x0000

0 - Disabled
1 - Enabled

TRAN (Transfer Direction) -
RO

DEN (DMA Enable) - RW

DS (DMA Completion
Status) - RO

DOWN (Ownership) - RO

0 - Memory read
1 - Memory write
Set to 0 for transmit DMA
master. Writable if DAUTO = 1.

0 - Processor
1 - DMA engine

0 - No error detected
1 - Error detected (TUVF)

FS[1:0] (DMA Buffer Status) - RO
00 - Buffer empty
01 - One word present
10 - Two words present
11 - Three words present

DCOME (Interrupt on
Completion) - RO

0 - Disabled
1 - Enabled
Writable if DAUTO = 1

DAUTO (Autobuffer/
Descriptor Mode) - RW
0 - Descriptor mode enabled
1 - Autobuffer mode enabled

DERE (Interrupt on Error) - RO
0 - Disabled
1 - Enabled
Writable if DAUTO = 1

Data Size Bit 0 - RO
0 - 16-bit half word
1 - 8-bit byte or 32-bit word
Writable if DAUTO = 1

FLSH (Buffer Clear Enable) - RW
0 - Normal buffer operation
1 - Clear buffer

Data Size Bit 1 - WO
0 - 16-bit half word or 32-bit word
1 - 8-bit byte
Writable if DAUTO = 1
(Shared with DMA Buffer Status bit)

TUVF (Transmit Underflow Error) - RO
0 - No underflow detected
1 - Underflow detected

For MMR
assignments, see
Table 11-24.

ADSP-BF535 Blackfin Processor Hardware Reference 11-43

Serial Port Controllers

SPORTx Transmit DMA Start Address High
(SPORTx_START_ADDR_HI_TX) Registers

This register, shown in Figure 11-26 holds a running pointer to the DMA
address that is being accessed. This register is read-only. It can be written
in autobuffer mode.

Together, SPORTx_START_ADDR_HI_TX and SPORTx_START_ADDR_LO_TX form
the 32-bit address for data access.

Table 11-24. SPORTx Transmit DMA Configuration Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_CONFIG_DMA_TX 0xFFC0 2B02

SPORT1_CONFIG_DMA_TX 0xFFC0 2F02

Figure 11-26. SPORTx Transmit DMA Start Address High Registers

Table 11-25. SPORTx Transmit DMA Start Address High Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_HI_TX 0xFFC0 2B04

SPORT1_START_ADDR_HI_TX 0xFFC0 2F04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Start Address High Registers (SPORTx_START_ADDR_HI_TX)

DMA Start Address[31:16]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR
assignments, see
Table 11-25.

SPORT Registers

11-44 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Transmit DMA Start Address Low
(SPORTx_START_ADDR_LO_TX) Registers

The DMA Start Address Low register, shown in Figure 11-27, maintains a
running pointer to the DMA address that is being accessed.

It is a read-only register. It can be written in autobuffer mode. Together,
SPORTx_START_ADDR_HI_TX and SPORTx_START_ADDR_LO_TX form the 32-bit
address for data access.

Figure 11-27. SPORTx Transmit DMA Start Address Low Registers

Table 11-26. SPORTx Transmit DMA Start Address Low Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_START_ADDR_LO_TX 0xFFC0 2B06

SPORT1_START_ADDR_LO_TX 0xFFC0 2F06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Start Address Low Registers (SPORTx_START_ADDR_LO_TX)

DMA Start Address[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR
assignments, see
Table 11-26.

ADSP-BF535 Blackfin Processor Hardware Reference 11-45

Serial Port Controllers

SPORTx Transmit DMA Count (SPORTx_COUNT_TX)
Registers

The SPORT Transmit DMA Count register, shown in Figure 11-28,
holds the number of remaining words in the transfer. This is a read-only
register. It can be written in autobuffer mode.

SPORTx Transmit DMA Next Descriptor Pointer
(SPORTx_NEXT_DESCR_TX) Registers

The SPORT Transmit DMA Next Descriptor Pointer register, shown in
Figure 11-29, holds the 16 LSBs of the head address of the next DMA
descriptor block. Together, the SPORTx_NEXT_DESCR_TX and the DB_NDBP
registers form the 32-bit head address of the next descriptor block. During
SPORT initialization, the programmer writes the head address of the first
DMA descriptor block to the Transmit DMA Next Descriptor Pointer
register and then sets the DEN bit in the Transmit or Receive DMA Config-
uration Registers.

Figure 11-28. SPORTx Transmit DMA Count Registers

Table 11-27. SPORTx Transmit DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

SPORT0_COUNT_TX 0xFFC0 2B08

SPORT1_COUNT_TX 0xFFC0 2F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Count Registers (SPORTx_COUNT_TX)

Words Remaining in
Transfer[15:0]

Reset = 0x0000

RO. Writable in autobuffer mode.

For MMR
assignments, see
Table 11-27.

SPORT Registers

11-46 ADSP-BF535 Blackfin Processor Hardware Reference

Once a DMA process has started, no further control of the SPORT con-
troller or the DMA process should be performed by write accesses to the
SPORT DMA control registers.

 To initialize SPORTx_NEXT_DESCR_TX before starting a descriptor
based DMA operation, first set the DAUTO bit in either the
SPORTx_CONFIG_DMA_TX or the SPORTx_CONFIG_DMA_RX register. If
the DAUTO bit is not set in at least one of these registers, writes to
SPORTx_NEXT_DESCR_TX are ignored.

SPORTx Transmit DMA Descriptor Ready
(SPORTx_DESCR_RDY_TX) Registers

The DMA engine stalls if a low level ownership bit is detected during a
descriptor block access. Writing a 1 to bit 0 of the SPORT Transmit
DMA Descriptor Ready register reactivates the processing of the descrip-

Figure 11-29. SPORTx Transmit DMA Next Descriptor Pointer Registers

Table 11-28. SPORTx Transmit DMA Next Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

SPORT0_NEXT_DESCR_TX 0xFFC0 2B0A

SPORT1_NEXT_DESCR_TX 0xFFC0 2F0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Next Descriptor Pointer Registers (SPORTx_NEXT_DESCR_TX)

Head Address of Next DMA
Descriptor Block[15:0]

Reset = 0x0000

RO

For MMR
assignments, see
Table 11-28.

ADSP-BF535 Blackfin Processor Hardware Reference 11-47

Serial Port Controllers

tor block. If the ownership bit is set, processing of the descriptor block
resumes and bit 0 of the SPORT Transmit DMA Descriptor Ready regis-
ter is cleared (see Figure 11-30).

SPORTx Transmit DMA IRQ Status
(SPORTx_IRQSTAT_TX) Registers

Each SPORT DMA unit has three interrupt sources. Two of these sources
are enabled by the Interrupt On Error and Interrupt On Completion bits
within the SPORTx_CONFIG_DMA_TX configuration register. The third
source, bus error, is not maskable at the DMA level. All three interrupt
status bits contained within the SPORTx_IRQSTAT_TX register are sticky.

Figure 11-30. SPORTx Transmit DMA Descriptor Ready Registers

Table 11-29. SPORTx Transmit DMA Descriptor Ready Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_DESCR_RDY_TX 0xFFC0 2B0C

SPORT1_DESCR_RDY_TX 0xFFC0 2F0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA Descriptor Ready Registers (SPORTx_DESCR_RDY_TX)
WO

Reset = 0x0000

DMA Descriptor Reactivate
0 - No action taken
1 - Reactivate descriptor

block processing

For MMR
assignments, see
Table 11-29.

Register Writes and Effect Latency

11-48 ADSP-BF535 Blackfin Processor Hardware Reference

Bits are cleared by writing a 1 to them. All SPORTx_IRQSTAT_TX register
bits are ORed to form a single DMA interrupt. Figure 11-31 shows the
SPORTx_IRQSTAT_TX register.

Register Writes and Effect Latency
When the SPORT is disabled (TSPEN and RSPEN cleared), SPORT register
writes are internally completed at the end of the next SCLK cycle after
which they occurred and the register reads back the newly written value on
the next cycle after that.

Figure 11-31. SPORTx Transmit DMA IRQ Status Registers

Table 11-30. SPORTx Transmit DMA IRQ Status Register MMR
Assignments

Register Name Memory-Mapped Address

SPORT0_IRQSTAT_TX 0xFFC0 2B0E

SPORT1_IRQSTAT_RX 0xFFC0 2E0E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPORTx Transmit DMA IRQ Status Registers (SPORTx_IRQSTAT_TX)

Reset = 0x0000

0 - Inactive
1 - Completed

Error IRQ Status - W1C

Completion IRQ Status - W1C

0 - Inactive
1 - Error

Bus Error IRQ Status - W1C
0 - Inactive
1 - Error

For MMR assign-
ments, see
Table 11-30.

ADSP-BF535 Blackfin Processor Hardware Reference 11-49

Serial Port Controllers

When the SPORT is enabled to transmit (TSPEN set) or receive (RSPEN set),
corresponding SPORT configuration register writes are disabled (except
for SPORTx_RSCLKDIV, SPORTx_TSCLKDIV, and multichannel mode channel
registers). SPORTx_TX register writes are always enabled; SPORTx_RX is a
read-only register.

After a write to a SPORT register, any changes to the control and mode
bits generally take effect when the SPORT is re-enabled.

Clock and Frame Sync Frequencies
The maximum serial clock frequency (for either an internal source or an
external source) is SCLK/2. The frequency of an internally generated clock
is a function of the system clock frequency (as seen at the SCLK0 or
CLKOUT_SCLK1 pin) and the value of the 16-bit serial clock divide modulus
registers, SPORTx_TSCLKDIV and SPORTx_RSCLKDIV.

SPxTCLK frequency = (SCLK frequency) / (2 (SPORTx_TSCLDIV + 1))

SPxRCLK frequency = (SCLK frequency) / (2 (SPORTx_RSCLDIV + 1))

If the value of SPORTx_TSCLKDIV or SPORTx_RSCLKDIV is changed while the
internal serial clock is enabled, the change in TCLK or RCLK frequency takes
effect at the start of the rising edge of TCLK or RCLK that follows the next
leading edge of TFS or RFS.

The SPORTx_TFSDIV and SPORTx_RFSDIV registers specify the number of
transmit or receive clock cycles that are counted before generating a TFS or
RFS pulse (when the frame sync is internally generated). This enables a
frame sync to initiate periodic transfers. The counting of serial clock
cycles applies to either internally or externally generated serial clocks.

The formula for the number of cycles between frame sync pulses is:

of serial clocks between frame sync assertions = xFSDIV + 1

Clock and Frame Sync Frequencies

11-50 ADSP-BF535 Blackfin Processor Hardware Reference

Use the following equations to determine the correct value of xFSDIV,
given the serial clock frequency and desired frame sync frequency:

SPxTFSCLK frequency = (CLKOUT frequency) / (SPORTx_TFSDIV + 1)

SPxRFSCLK frequency = (CLKOUT frequency) / (SPORTx_RFSDIV + 1)

The frame sync would thus be continuously active if xFSDIV=0. However,
the value of xFSDIV should not be less than the serial word length minus
one (the value of the SLEN field in the transmit or receive control register);
a smaller value of xFSDIV could cause an external device to abort the cur-
rent operation or have other unpredictable results. If the SPORT is not
being used, the xFSDIV divisor can be used as a counter for dividing an
external clock or for generating a periodic pulse or periodic interrupt. The
SPORT must be enabled for this mode of operation to work.

Maximum Clock Rate Restrictions
Externally generated late transmit frame syncs also experience a delay from
arrival to data output, and this can limit the maximum serial clock speed.
See ADSP-BF535 Blackfin Embedded Processor Data Sheet for exact timing
specifications.

 Be careful when operating with externally generated clocks near the
frequency of SCLK/2. There is a delay between the clock signal’s
arrival at the TCLK pin and the output of the data, and this delay
may limit the receiver’s speed of operation. See ADSP-BF535
Blackfin Embedded Processor Data Sheet for exact timing
specifications. At full speed serial clock rate, the safest practice is to
use an externally generated clock and externally generated frame
sync (ICLK=0 and IRFS=0).

ADSP-BF535 Blackfin Processor Hardware Reference 11-51

Serial Port Controllers

Data Word Formats
The format of the data words transferred over the SPORTs is configured
by the DTYPE, SENDN, and SLEN bits of the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers.

Word Length
Each SPORT channel (transmit and receive) independently handles word
lengths of 3 to 16 bits. The data is right-justified in the SPORT data reg-
isters if it is fewer than 16 bits long, residing in the LSB positions. The
value of the serial word length (SLEN) field in the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers of each SPORT determines the word length
according to this formula:
Serial Word Length = SLEN + 1

 The SLEN value should not be set to zero or one; values from 2 to
15 are allowed. Continuous operation (when the last bit of the cur-
rent word is immediately followed by the first bit of the next word)
is restricted to word sizes of 4 of longer (so SLEN 3).

Endian Format
Endian format determines whether the serial word is transmitted most sig-
nificant bit (MSB) first or least significant bit (LSB) first. Endian format
is selected by the SENDN bit in the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers. When SENDN=0, serial words are transmitted
(or received) MSB first. When SENDN=1, serial words are transmitted (or
received) LSB first.

Data Word Formats

11-52 ADSP-BF535 Blackfin Processor Hardware Reference

Data Type
The DTYPE field of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers
specifies one of four data formats for both single and multichannel opera-
tion (See Table 11-31).

These formats are applied to serial data words loaded into the SPORTx_RX
and SPORTx_TX buffers. SPORTx_TX data words are not actually zero filled or
sign extended, because only the significant bits are transmitted.

Companding
Companding (a contraction of COMpressing and exPANDing) is the pro-
cess of logarithmically encoding and decoding data to minimize the
number of bits that must be sent. The ADSP-BF535 processor’s SPORTs
support the two most widely used companding algorithms, -law and
A-law. The processor compands data according to the CCITT G.711
specification. The type of companding can be selected independently for
each SPORT.

Table 11-31. DTYPE and Data Formatting

DTYPE Data Formatting

00 Right justify, zero fill unused MSBs

01 Right justify, sign extend into unused MSBs

10 Compand using -law

11 Compand using A-law

ADSP-BF535 Blackfin Processor Hardware Reference 11-53

Serial Port Controllers

When companding is enabled, valid data in the SPORTx_RX register is the
right justified, expanded value of the eight LSBs received and sign
extended. A write to SPORTx_TX causes the 16-bit value to be compressed
to eight LSBs (sign extended to the width of the transmit word) and writ-
ten to the internal transmit register. If the magnitude of the 16-bit value is
greater than the 13-bit A-law or 14-bit -law maximum, the value is auto-
matically compressed to the maximum positive or negative value.

Clock Signal Options
Each SPORT has a transmit clock signal (TCLK) and a receive clock signal
(RCLK). The clock signals are configured by the ICLK and CKFE bits of the
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers. Serial clock frequency
is configured in the SPORTx_TSCLKDIV and SPORTx_RSCLKDIV registers.

 The receive clock pin may be tied to the transmit clock if a single
clock is desired for both input and output.

Both transmit and receive clocks can be independently generated inter-
nally or input from an external source. The ICLK bit of the
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers determines the clock
source.

When ICLK=1, the clock signal is generated internally by the core and the
TCLK or RCLK pin is an output. The clock frequency is determined by the
value of the serial clock divisor in the SPORTx_TSCLKDIV or
SPORTx_RSCLKDIV registers.

When ICLK=0, the clock signal is accepted as an input on the TCLK or RCLK
pins, and the serial clock divisors in the
SPORTx_TSCLKDIV/SPORTx_RSCLKDIV registers are ignored. The externally
generated serial clock need not be synchronous with the core system clock.

Frame Sync Options

11-54 ADSP-BF535 Blackfin Processor Hardware Reference

Frame Sync Options
Framing signals indicate the beginning of each serial word transfer. The
framing signals for each SPORT are TFS (transmit frame synchronization)
and RFS (receive frame synchronization). A variety of framing options are
available; these options are configured in the SPORT control registers.
The TFS and RFS signals of a SPORT are independent and are separately
configured in the control registers.

Framed Versus Unframed
The use of multiple frame sync signals is optional in SPORT communica-
tions. The TFSR (transmit frame sync required) and RFSR (receive frame
sync required) control bits determine whether frame sync signals are
required. These bits are located in the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers.

When TFSR=1 or RFSR=1, a frame sync signal is required for every data
word. To allow continuous transmitting by the SPORT, each new data
word must be loaded into the SPORTx_TX buffer before the previous word
is shifted out and transmitted. “Data Independent Transmit Frame Sync”
on page 11-59.

When TFSR=0 or RFSR=0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but is
ignored after the first bit is transferred. Data words are then transferred
continuously, unframed.

 When DMA is enabled in this mode, with frame syncs not
required, DMA requests may be held off by chaining or may not be
serviced frequently enough to guarantee continuous unframed data
flow.

ADSP-BF535 Blackfin Processor Hardware Reference 11-55

Serial Port Controllers

Figure 11-32 illustrates framed serial transfers, which have these
characteristics:

• TFSR and RFSR bits in the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG
registers determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores a framing signal after the first word.

• Unframed mode is appropriate for continuous reception.

• Active low or active high frame syncs are selected with the LTFS and
LRFS bits of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers.

See “Timing Examples” on page 11-69 for more timing examples.

Internal Versus External Frame Syncs
Both transmit and receive frame syncs can be independently generated
internally or can be input from an external source. The ITFS and IRFS bits
of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers determine the
frame sync source.

Figure 11-32. Framed Versus Unframed Data

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

B
0

B
3

B
2

B
1

xCL K

FR AME D
DAT A

UNFR AME D
DAT A

Frame Sync Options

11-56 ADSP-BF535 Blackfin Processor Hardware Reference

When ITFS=1 or IRFS=1, the corresponding frame sync signal is generated
internally by the SPORT, and the TFS pin or RFS pin is an output. The
frequency of the frame sync signal is determined by the value of the frame
sync divisor in the SPORTx_TFSDIV or SPORTx_RFSDIV registers.

When ITFS=0 or IRFS=0, the corresponding frame sync signal is accepted
as an input on the TFS pin or RFS pins, and the frame sync divisors in the
SPORTx_TFSDIV/SPORTx_RFSDIV registers are ignored.

All of the frame sync options are available whether the signal is generated
internally or externally.

Active Low Versus Active High Frame Syncs
Frame sync signals may be either active high or active low (in other words,
inverted). The LTFS and LRFS bits of the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers determine the frame syncs’ logic level:

• When LTFS=0 or LRFS=0, the corresponding frame sync signal is
active high.

• When LTFS=1 or LRFS=1, the corresponding frame sync signal is
active low.

Active high frame syncs are the default. The LTFS and LRFS bits are initial-
ized to 0 after a processor reset.

Sampling Edge for Data and Frame Syncs
Data and frame syncs can be sampled on either the rising or falling edges
of the SPORT clock signals. The CKFE bit of the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers selects the driving and sampling edges for the
serial data and frame syncs.

ADSP-BF535 Blackfin Processor Hardware Reference 11-57

Serial Port Controllers

For the SPORT transmitter, setting CKFE=1 in the SPORTx_TX_CONFIG reg-
ister selects the falling edge of TCLKx to be used to drive data and internally
generated frame syncs and selects the rising edge of TCLKx to be used to
sample externally generated frame syncs. Setting CKFE=0 selects the rising
edge of TCLKx to be used to drive data and internally generated frame syncs
and selects the falling edge of TCLKx to be used to sample externally gener-
ated frame syncs.

For the SPORT receiver, setting CKFE=1 in the SPORTx_RX_CONFIG register
selects the falling edge of RCLKx to be used to drive internally generated
frame syncs and selects the rising edge of RCLKx to be used to sample data
and externally generated frame syncs. Setting CKFE=0 selects the rising edge
of RCLKx to be used to drive internally generated frame syncs and selects
the falling edge of RCLKx to be used to sample data and externally gener-
ated frame syncs.

 Note: externally generated data and frame sync signals should
change state on the opposite edge than that selected for sampling.
For example, for an externally generated frame sync to be sampled
on the rising edge of clock (CKFE=1 in the SPORTx_TX_CONFIG regis-
ter), the frame sync must be transmitted on the falling edge of
clock.

The transmit and receive functions of two SPORTs connected together
should always select the same value for CKFE in the transmitter and
receiver, so that the transmitter drives the data on one edge and the
receiver samples the data on the opposite edge.

Early Versus Late Frame Syncs (Normal Versus
Alternate Timing)

Frame sync signals can occur during the first bit of each data word (late)
or during the serial clock cycle immediately preceding the first bit (early).
The LATFS and LARFS bits of the SPORTx_TX_CONFIG and SPORTx_RX_CONFIG
registers configure this option.

Frame Sync Options

11-58 ADSP-BF535 Blackfin Processor Hardware Reference

When LATFS=0 or LARFS=0, early frame syncs are configured; this is the
normal mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
serial clock cycle after the frame sync is asserted, and the frame sync is not
checked again until the entire word has been transmitted or received. In
multichannel operation, this is the case when frame delay is 1.

If data transmission is continuous in early framing mode, in other words,
the last bit of each word is immediately followed by the first bit of the next
word, then the frame sync signal occurs during the last bit of each word.
Internally generated frame syncs are asserted for one clock cycle in early
framing mode. Continuous operation is restricted to word sizes of 4 or
longer (so SLEN 3).

When LATFS=1 or LARFS=1, late frame syncs are configured; this is the
alternate mode of operation. In this mode, the first bit of the transmit data
word is available and the first bit of the receive data word is sampled in the
same serial clock cycle that the frame sync is asserted. In multichannel
operation, this is the case when frame delay is 0. Receive data bits are sam-
pled by serial clock edges, but the frame sync signal is only checked during
the first bit of each word. Internally generated frame syncs remain asserted
for the entire length of the data word in late framing mode. Externally
generated frame syncs are only checked during the first bit.

Figure 11-33 illustrates the two modes of frame signal timing. In frame
signal timing:

• The LATFS or LARFS bits of the SPORTx_TX_CONFIG and
SPORTx_RX_CONFIG registers configure early or late frame syncs. A
value of LATFS=0 or LARFS=0 is used for early frame syncs. A value
of LATFS=1 or LARFS=1 is used for late frame syncs.

• With early framing, the frame sync precedes data by one cycle.
With late framing, the frame sync is checked on the first bit only.

ADSP-BF535 Blackfin Processor Hardware Reference 11-59

Serial Port Controllers

• Data is transmitted MSB first (if SENDN=0) or LSB first (if
SENDN=1).

• The frame sync and clock can be generated internally or externally.

See “Timing Examples” on page 11-69 for more timing examples.

Data Independent Transmit Frame Sync
Normally the internally generated transmit frame sync signal (TFS) is out-
put only when the SPORTx_TX buffer has data ready to transmit. The data
independent transmit frame sync mode bit (DITFS) allows the continuous
generation of the TFS signal, with or without new data. The DITFS bit of
the SPORTx_TX_CONFIG register configures this option.

When DITFS=0, the internally generated TFS is only output when a new
data word has been loaded into the SPORTx_TX buffer. The next TFS is gen-
erated once data is loaded into SPORTx_TX. This mode of operation allows
data to be transmitted only when it is available.

When DITFS=1, the internally generated TFS is output at its programmed
interval regardless of whether new data is available in the SPORTx_TX buf-
fer. Whatever data is present in SPORTx_TX is retransmitted with each

Figure 11-33. Normal Versus Alternate Framing

B3 B 2 B1 B 0 ...

xCL K

L AT E
FR AME
S YNC

DAT A

E AR L Y
FR AME
S YNC

Multichannel Operation

11-60 ADSP-BF535 Blackfin Processor Hardware Reference

assertion of TFS. The TUVF transmit underflow status bit in the
SPORTx_STAT register is set when this occurs and old data is retransmitted.
The TUVF status bit is also set if the SPORTx_TX buffer does not have new
data when an externally generated TFS occurs. Note that in this mode of
operation, data is transmitted only at specified times.

If the internally generated TFS is used, a single write to the SPORTx_TX data
register is required to start the transfer.

Multichannel Operation
The SPORTs offer a multichannel mode of operation which allows the
SPORT to communicate in a time-division-multiplexed (TDM) serial sys-
tem. In multichannel communications, each data word of the serial bit
stream occupies a separate channel. Each word belongs to the next consec-
utive channel so that, for example, a 24-word block of data contains one
word for each of 24 channels.

The SPORT can automatically select words for particular channels while
ignoring the others. Up to 128 channels are available for transmitting or
receiving; each SPORT can receive and transmit data selectively from any
of the 128 channels. In other words, the SPORT can do any of these on
each channel:

• transmit data

• receive data

• transmit and receive data

• do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

ADSP-BF535 Blackfin Processor Hardware Reference 11-61

Serial Port Controllers

The DT pin is always driven (not three-stated) if the SPORT is enabled
(TSPEN=1 in the SPORTx_TX_CONFIG register), unless it is in multichannel
mode and an inactive time slot occurs.

In multichannel mode, RSCLK can either be provided externally or gener-
ated internally by the SPORT, and it is used for both transmit and receive
functions. Leave TSCLK disconnected if the SPORT is used only in multi-
channel mode. If RSCLK is externally or internally provided, it will be
internally distributed to both the receiver and transmitter circuitry.

 The SPORT Multichannel Transmit Select register and the
SPORT Multichannel Receive Select register must be programmed
before enabling SPORTx_TX/SPORTx_RX operation. This is especially
important in DMA data unpacked mode, since SPORT FIFO
operation begins immediately after SPORTx_TX/SPORTx_RX is
enabled and depends on the values of these registers. Enable MCM_EN
before enabling SPORTx_TX or SPORTx_RX operation.

Figure 11-34 shows example timing for a multichannel transfer (for exam-
ple, receive on channels 0 and 2, and transmit on channels 1 and 2).
Multichannel transfer has these characteristics:

• Uses TDM method where serial data is sent or received on differ-
ent channels sharing the same serial bus.

• Can independently select transmit and receive channels.

• RFS signals start of frame.

• TFS is used as “Transmit Data Valid” for external logic, true only
during transmit channels.

See “Timing Examples” on page 11-69 for more timing examples.

Multichannel Operation

11-62 ADSP-BF535 Blackfin Processor Hardware Reference

Frame Syncs In Multichannel Mode
All receiving and transmitting devices in a multichannel system must have
the same timing reference. The RFS signal is used for this reference, indi-
cating the start of a block or frame of multichannel data words.

When multichannel mode is enabled on a SPORT, both the transmitter
and the receiver use RFS as a frame sync. This is true whether RFS is gener-
ated internally or externally. The RFS signal is used to synchronize the
channels and restart each multichannel sequence. Assertion of RFS occurs
at the beginning of the channel 0 data word.

Since RFS is used by both the SPORTx_TX and SPORTx_RX channels of the
SPORT in MCM configuration, both SPORTx_RX configuration registers
should always be programmed the same way as the SPORTx_TX configura-
tion register, even if SPORTx_RX operation is not enabled.

Figure 11-34. Multichannel Operation

S CL K

B 3 B 2 B 1 B 2DR

R FS

B 0 IGNOR E D B 3

DT B 2B 3 B 0 B 3 B 2B 1

WOR D 0 WOR D 1 WOR D 2

T FS

ADSP-BF535 Blackfin Processor Hardware Reference 11-63

Serial Port Controllers

In multichannel mode, late (alternative) frame mode is entered automati-
cally; the first bit of the transmit data word is available and the first bit of
the receive data word is sampled in the same serial clock cycle that the
frame sync is asserted, provided that MFD is set to 0.

The TFS signal is used as a transmit data valid signal which is active during
transmission of an enabled word. The SPORT’s DT pin is three-stated
when the time slot is not active, and the TFS signal serves as an output
enabled signal for the DT pin. The SPORT drives TFS in multichannel
mode whether or not ITFS is cleared.

Once the initial FS is received, and a frame transfer has started, all other FS
signals are ignored by the SPORT until the complete frame has been
transferred.

In multichannel mode, the RFS signal is used for the block or frame start
reference, after which the transfers are performed continuously with no FS
required. Therefore, internally generated frame syncs are always data
independent.

Multichannel Frame Delay
The 4-bit MFD field in the multichannel configuration control register
specifies a delay between the frame sync pulse and the first data bit in mul-
tichannel mode. The value of MFD is the number of serial clock cycles of
the delay. Multichannel frame delay allows the processor to work with dif-
ferent types of interface devices.

A value of 0 for MFD causes the frame sync to be concurrent with the first
data bit. The maximum value allowed for MFD is 15. A new frame sync may
occur before data from the last frame has been received, because blocks of
data occur back-to-back.

Multichannel Operation

11-64 ADSP-BF535 Blackfin Processor Hardware Reference

Window Size
The window size defines the range of the channels that can be enabled/dis-
abled in the current configuration. It can be any value in the range of 8 to
128, in increments of 8; the default value of 0 corresponds to a minimum
window size of 8 channels. Since the DMA buffer size is always fixed, it is
possible to define a smaller window size (for example, 32 bits), resulting in
a smaller DMA buffer size (in this example, 32 bits instead of 128 bits) to
save DMA bandwidth. The window size cannot be changed while the
SPORT is enabled.

Window Offset
The window offset specifies where in the 127-channel range to place the
start of the window. A value of 0 specifies no offset and permits using all
128 channels. As an example, a program could define a window with a
window size of 5 and an offset of 93. This 5-channel window would reside
in the range from 93 to 97. The window offset cannot be changed while
the SPORT is enabled.

If the combination of the window size and the window offset would place
the window outside of the range of the channel enable registers, none of
the channels in the frame are enabled, since this combination is invalid.

Other Multichannel Fields in SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG

A multichannel frame contains more than one channel, as specified by the
window size and window offset; the multichannel frame is a combined
sequence of the window offset and the channels contained in the window.
The total number of channels in the frame is calculated by adding the
window size to the window offset.

ADSP-BF535 Blackfin Processor Hardware Reference 11-65

Serial Port Controllers

The channel select offset mode is bit 4 in the SPORTx_MCMC2 register. When
this mode is selected, the first bit of the SPORTx_MTCSx or SPORTx_MRCSx
register is linked to the first bit directly following the offset of the win-
dow. If the channel select offset mode is not enabled, the first bit of the
SPORTx_MTCSx or SPORTx_MRCSx register is placed at offset 0.

The 7-bit CHNL field in the SPORTx_STAT register indicates which channel is
currently selected during multichannel operation. This field is a read-only
status indicator. CHNL[6:0] increments by one as each channel is serviced,
and in channel select offset mode the value of CHNL is reset to 0 after the
offset has been completed. So, as an example, for a window of 8 and an
offset of 21, the counter displays a value between 0 and 28 in the regular
mode, but in channel select offset mode the counter resets to 0 after
counting up to 21 and the frame completes when the CHNL reaches a value
of 7, indicating the eighth channel.

The FSDR bit in the SPORTx_MCMC2 register changes the timing relationship
between the frame sync and the clock received. This change enables the
SPORT to comply with the H.100 protocol.

Normally (FSDR=0), the data is transmitted on the same edge that the TFS
is generated. For example, a positive edge TFS causes data to be transmit-
ted on the positive edge of the SCK, either the same edge or the following
one, depending on when LATFS is set.

When the frame sync/data relationship is used (FSDR=1), the frame sync is
expected to change on the falling edge of the clock and is sampled on the
rising edge of the clock. This is true even though data received is sampled
on the negative edge of the receive clock

Channel Selection Registers
A channel is a multibit word from 3 to 16 bits in length that belongs to
one of the TDM channels. Specific channels can be individually enabled
or disabled to select which words are received and transmitted during mul-
tichannel communications. Data words from the enabled channels are

Multichannel Operation

11-66 ADSP-BF535 Blackfin Processor Hardware Reference

received or transmitted, while disabled channel words are ignored. Up to
128 channels are available. The SPORTx_MRCSx and SPORTx_MTCSx registers
are used to enable and disable individual channels; the SPORTx_MRCSx reg-
isters specify the active receive channels, and the SPORTx_MTCSx registers
specify the active transmit channels.

Each register has 16 bits, corresponding to the 16 channels. Setting a bit
enables that channel, so the SPORT selects its word from the multi-
ple-word block of data (for either receive or transmit). For example,
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.

Setting a particular bit in the SPORTx_MTCSx register causes the SPORT to
transmit the word in that channel’s position of the data stream. Clearing
the bit in the SPORTx_MTCSx register causes the SPORT’s DT (data transmit)
pin to three-state during the time slot of that channel.

Setting a particular bit in the SPORTx_MRCSx register causes the SPORT to
receive the word in that channel’s position of the data stream; the received
word is loaded into the SPORTx_RX buffer. Clearing the bit in the
SPORTx_MRCSx register causes the SPORT to ignore the data.

Companding may be selected on an all-or-none channel basis. A-law or
-law companding is selected with the DTYPE bit 1 in the
SPORTx_TX_CONFIG and SPORTx_RX_CONFIG registers, and applies to all
active channels. (See “Companding” on page 11-52 for more information
about companding.)

Multichannel Enable
Setting the MCM bit in the multichannel mode configuration control regis-
ter 1 enables multichannel mode. When MCM=1, multichannel operation is
enabled; when MCM=0, all multichannel operations are disabled.

ADSP-BF535 Blackfin Processor Hardware Reference 11-67

Serial Port Controllers

Setting the MCM bit enables multichannel operation for both the receive and
transmit sides of the SPORT. Therefore, if a receiving SPORT is in multi-
channel mode, the transmitting SPORT must also be in multichannel
mode.

Multichannel DMA Data Packing
Multichannel DMA data packing and unpacking are specified with the
MCDTXPE and MCDRXPE bits in the SPORTx_MCMC2 multichannel configuration
registers.

If the bits are set, indicating that data is packed, the SPORT expects that
the data contained by the DMA buffer corresponds only to the enabled
SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive
words for each of the frames. It is not possible to change the total number
of enabled channels without changing the DMA buffer size, and reconfig-
uring is not allowed while the SPORT is enabled.

If the bits are cleared (the default, indicating that data is not packed), the
SPORT expects the DMA buffer to have a word for each of the channels
in the window, whether enabled or not, so the DMA buffer size must be
equal to the size of the window. For example, if channels 1 and 10 are
enabled, and the window size is 16, the DMA buffer size would have to be
16 words. The data to be transmitted or received would be placed at
addresses 1 and 10 of the buffer, and the rest of the words in the DMA
buffer would be ignored. This mode has no restrictions on changing the
number of enabled channels while the SPORT is enabled.

Moving Data Between SPORTS and Memory

11-68 ADSP-BF535 Blackfin Processor Hardware Reference

Moving Data Between SPORTS and
Memory

Transmit and receive data can be transferred between the SPORTs and
on-chip memory in one of two ways: with single word transfers or with
DMA block transfers. Both methods are interrupt-driven, using the same
internally generated interrupts.

When SPORT DMA is not enabled in the SPORTx_TX_CONFIG or
SPORTx_RX_CONFIG registers, the SPORT generates an interrupt every time
it has received a data word or has started to transmit a data word. SPORT
DMA provides a mechanism for receiving or transmitting an entire block
or multiple blocks of serial data before the interrupt is generated. The
SPORT’s DMA controller handles the DMA transfer, allowing the pro-
cessor core to continue running until the entire block of data is
transmitted or received. Service routines can then operate on the block of
data rather than on single words, significantly reducing overhead.

For information about DMA, see “Direct Memory Access” on page 9-1.

Support for Standard Protocols
The ADSP-BF535 processor supports the H.100 standard protocol. These
SPORT parameters must be set to support this standard.

• SPORTx_TFSDIVx = SPORTx_RFSDIVx = 0x03FF (1024 clock cycles per
frame, 122 ns wide, 125 s period frame sync)

• TFSR/RFSR set (FS required)

• LTFS/LRFS set (active low FS)

• TSCLKDIV = RSCLKDIV = 8 (for 8.192 MHz (+/- 2%) bit clock)

• MCM set (multichannel mode selected)

ADSP-BF535 Blackfin Processor Hardware Reference 11-69

Serial Port Controllers

• MFD = 0 (no frame delay between frame sync and first data bit)

• SLEN = 7 (8-bit words)

• FSDR = 1 (set for H.100 configuration, enabling half clock cycle
early frame sync)

2X Clock Recovery Control
The SPORTs can recover the data rate clock (SCK) from a provided 2X
input clock. This enables the implementation of H.100 compatibility
modes for MVIP-90 (2 Mbps data) and HMVIP (8 Mbps data), by recov-
ering the 2 MHz or 8 MHz clock from the incoming 4 MHz or 16 MHz
clock with the proper phase relationship. A 2-bit mode signal chooses the
applicable clock mode, which includes a non-divide/bypass mode for nor-
mal operation.

SPORT Pin/Line Terminations
The ADSP-BF535 processor has very fast drivers on all output pins
including the SPORTs. If connections on the data, clock, or frame sync
lines are longer than six inches, consider using a series termination for
strip lines on point-to-point connections. This may be necessary even
when using low speed serial clocks, because of the edge rates.

Timing Examples
Several timing examples are included within the text of this chapter (in the
sections “Framed Versus Unframed” on page 11-54, “Early Versus Late
Frame Syncs (Normal Versus Alternate Timing)” on page 11-57, and
“Frame Syncs In Multichannel Mode” on page 11-62). This section con-
tains additional examples to illustrate more possible combinations of the
framing options.

Timing Examples

11-70 ADSP-BF535 Blackfin Processor Hardware Reference

These timing examples show the relationships between the signals but are
not scaled to show the actual timing parameters of the processor. Consult
the ADSP-BF535 Blackfin Embedded Processor Data Sheet for actual timing
parameters and values.

These examples assume a word length of four bits (SLEN=3). Framing sig-
nals are active high (LRFS=0 and LTFS=0).

Figure 11-35 through Figure 11-40 show framing for receiving data.

In Figure 11-35 and Figure 11-36, the normal framing mode is shown for
non-continuous data (any number of SCK cycles between words) and con-
tinuous data (no SCK cycles between words).

Figure 11-37 and Figure 11-38 show non-continuous and continuous
receiving in the alternate framing mode. These four figures show the input
timing requirement for an externally generated frame sync and also the
output timing characteristic of an internally generated frame sync. Note
the output meets the input timing requirement; therefore, with two
SPORT channels used, one SPORT channel could provide RFS for the
other SPORT channel.

Figure 11-39 and Figure 11-40 show the receive operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
SCK before the first bit (in normal mode) or at the same time as the first bit
(in alternate mode). This mode is appropriate for multiword bursts (con-
tinuous reception).

Figure 11-41 through Figure 11-46 show framing for transmitting data
and are very similar to Figure 11-35 through Figure 11-40.

In Figure 11-41 and Figure 11-42, the normal framing mode is shown for
non-continuous data (any number of SCK cycles between words) and con-
tinuous data (no SCK cycles between words).

ADSP-BF535 Blackfin Processor Hardware Reference 11-71

Serial Port Controllers

Figure 11-43 and Figure 11-44 show non-continuous and continuous
transmission in the alternate framing mode. As noted previously for the
receive timing diagrams, the TFS output meets the TFS input timing
requirement.

Figure 11-45 and Figure 11-46 show the transmit operation with normal
framing and alternate framing, respectively, in the unframed mode. A sin-
gle frame sync signal occurs only at the start of the first word, either one
SCK before the first bit (in normal mode) or at the same time as the first bit
(in alternate mode).

Figure 11-35. SPORT Receive, Normal Framing

Figure 11-36. SPORT Continuous Receive, Normal Framing

B3B3 B2 B1 B0 B2 B1 B0

SCK

OUTPUTRFS

DR

RFS INPU T

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCK

OUTPUTRFS

DR

RFS INPUT

B3 B2 B1 B0 B3 B2 B1 B0 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Timing Examples

11-72 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 11-37. SPORT Receive, Alternate Framing

Figure 11-38. SPORT Continuous Receive, Alternate Framing

Figure 11-39. SPORT Receive, Unframed Mode, Normal Framing

SCK

OUTPUTRFS

DR

RFS INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCK

OUTPUTRFS

DR

RFS INPUT

B3 B2 B1 B0 B3 B2 B1 B0

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

SCK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

ADSP-BF535 Blackfin Processor Hardware Reference 11-73

Serial Port Controllers

Figure 11-40. SPORT Receive, Unframed Mode, Alternate Framing

Figure 11-41. SPORT Transmit, Normal Framing

Figure 11-42. SPORT Continuous Transmit, Normal Framing

SCK

RFS

DR
B3 B2 B1 B0 B3 B2 B1 B0 B2B3

B2 B1 B0

SCK

OUTPUTTFS

DT

TFS INPUT

B3 B2 B1 B0B3

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

B2 B1 B0

SCK

OUTPUTTFS

DT

TFS INPUT

B3 B2 B1 B0B3 B3 B2

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Timing Examples

11-74 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 11-43. SPORT Transmit, Alternate Framing

Figure 11-44. SPORT Continuous Transmit, Alternate Framing

Figure 11-45. SPORT Transmit, Unframed Mode, Normal Framing

SCK

TFS

DT
B2 B1 B0B3 B2 B1 B0B3

TFS

OUTPUT

INPUT

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
datasheet for specifications.

SCK

OUTPUTTFS

DT

TFS INPUT

B2 B1 B0B3 B0B3 B2 B1

SPORT Control Register:

Both Internal Framing Option and External Framing Option Shown

Note: There is an asynchronous delay between TFS input and DT. See the appro-
priate datasheet for specifications.

SCK

TFS

DT
B3 B3B0B1B2 B1 B0 B3B2 B2

ADSP-BF535 Blackfin Processor Hardware Reference 11-75

Serial Port Controllers

Figure 11-46. SPORT Transmit, Unframed Mode, Alternate Framing

SCK

TFS

DT B3 B3B0B1B2 B1 B0 B3B2 B2

Note: There is an asynchronous delay between TFS input and DT. See the appropriate
datasheet for specifications.

Timing Examples

11-76 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 12-1

12 UART PORT CONTROLLER

The ADSP-BF535 processor’s Universal Asynchronous Receiver/Trans-
mitter (UART) is a full duplex peripheral compatible with PC-style
industry standard UARTs. The UART converts data between serial and
parallel formats. The serial communication follows an asynchronous pro-
tocol that supports various word length, stop bits, and parity generation
options. The UART also includes modem control and interrupt handling
hardware. Interrupts can be generated from 12 different events.

The ADSP-BF535 processor features two independent UART devices:
UART0 and UART1. UART0 enhances the standard functionality and
supports the half duplex IrDA® SIR (9.6/115.2 Kbps rate) protocol.

 Modem status and control registers are available, but only the
transmit (TX) and receive (RX) data signals are routed to external
pins.

The UARTs are DMA capable peripherals with support for separate TX
and RX DMA master channels. They can be used in either DMA or pro-
grammed non-DMA mode of operation. The non-DMA mode requires
software management of the data flow using either interrupts or polling.
The DMA method requires minimal software intervention as the DMA
engine itself moves the data. See Chapter 9, “Direct Memory Access” for
more information on DMA.

Timers 0, 1, and 2 can be used to provide a hardware assisted autobaud
detection mechanism for use with the UART. See “Timers” on page 16-1
for more information.

Serial Communications

12-2 ADSP-BF535 Blackfin Processor Hardware Reference

Serial Communications
The UART follows an asynchronous serial communication protocol with
these options:

• 5 – 8 data bits

• 1, 1½, or 2 stop bits

• None, even, or odd parity

• Baud rate = SCLK/(16 x Divisor), where SCLK is the system clock
frequency and Divisor can be a value from 1 to 65536

All data words require a start bit and at least one stop bit. With the
optional parity bit, this creates a 7- to 12-bit range for each word. Data is
always transmitted and received least significant bit (LSB) first.

Figure 12-1 shows a typical physical bit stream measured on the TX pin.

UARTx Control and Status Registers

 The ADSP-BF535 processor provides a set of PC-style industry
standard control and status registers for each UART. These MMRs
are byte-wide registers that are accessed as 16-bit words with the
most significant byte zero filled.

Figure 12-1. Bit Stream on the TX Pin

Start bit Parity Bit (optional, odd or even)

Stop bit(s)Data bits

D0 D1 D2 D3 D4 D5 D6 D7

LSB

ADSP-BF535 Blackfin Processor Hardware Reference 12-3

UART Port Controller

Consistent with industry standard interfaces, multiple registers are
mapped to the same address location. The Divisor Latch registers
(UARTx_DLH and UARTx_DLL) share their addresses with the Transmit Hold-
ing registers (UARTx_THR), the Receive Buffer registers (UARTx_RBR), and the
Interrupt Enable registers (UARTx_IER). The Divisor Latch Access bit
(DLAB) in the Line Control Register (UARTx_LCR) controls which sets of reg-
isters are accessible at a given time.

UARTx Line Control Registers (UARTx_LCR)
The UARTx Line Control register (UARTx_LCR) controls the format of
received and transmitted character frames. Figure 12-2 shows the bits in
this register.

Figure 12-2. UARTx Line Control Registers

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

DLAB (Divisor Latch Access)
1 - Enables access to UARTx_DLL

and UARTx_DLH
0 - Enables access to UARTx_THR/

UARTx_RBR and UARTx_IER

SB (Set Break)
0 - No force
1 - Force TX pin to 0

SP (Stick Parity)
Forces parity to defined value if set and PEN = 1
EPS = 1, parity transmitted and checked as 0
EPS = 0, parity transmitted and checked as 1

EPS (Even Parity Select)
1 - Even parity
0 - Odd parity when PEN = 1 and SP = 0

WLS[1:0] (Word Length Select)
00 - 5 bit word
01 - 6 bit word
10 - 7 bit word
11 - 8 bit word

STB (Stop Bits)
1 - 2 stop bits for non-5-bit word length or

1 1/2 stop bits for 5-bit word length
0 - 1 stop bit

PEN (Parity Enable)
1 - Transmit and check parity
0 - Parity not transmitted or checked

UARTx Line Control Registers (UARTx_LCR)

For MMR assignments,
see Table 12-1.

UARTx Control and Status Registers

12-4 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Line Status Registers (UARTx_LSR)
The UARTx Line Status register contains UART status information, as
shown in Figure 12-3.

Table 12-1. UARTx Line Control Register MMR Assignments

Register Name Memory-Mapped Address

UART0_LCR 0xFFC0 1806

UART1_LCR 0xFFC0 1C06

Figure 12-3. UARTx Line Status Registers

Table 12-2. UARTx Line Status Register MMR Assignments

Register Name Memory-Mapped Address

UART0_LSR 0xFFC0 180A

UART1_LSR 0xFFC0 1C0A

0

DR (Data Ready)

7 6 5 4 3 2 1 0

01 1 0 Reset = 0x6000

TEMT (TSR and UARTx_THR Empty)

0

UARTx Line Status Registers (UARTx_LSR)
RO

0 - Full
1 - Both empty

0 - Not empty
1 - Empty

0 - No break interrupt
1 - Break interrupt. This indicates RX pin

was held low for more than the
maximum word length.

BI (Break Interrupt)

THRE (UARTx_THR Empty)

FE (Framing Error)

0 - No new data
1 - UARTx_RBR holds new data

OE (Overrun Error)
0 - No overrun
1 - UARTx_RBR overwritten before read

PE (Parity Error)
0 - No parity error
1 - Parity error

0 - No error
1 - Invalid stop bit error

For MMR assignments,
see Table 12-2.

ADSP-BF535 Blackfin Processor Hardware Reference 12-5

UART Port Controller

The Break Interrupt (BI), Overrun Error (OE), Parity Error (PE) and Fram-
ing Error (FE) bits are cleared when the UART Line Status register
(UARTx_LSR) is read. The Data Ready (DR) bit is cleared when the UART
Receive Buffer register (UARTx_RBR) is read. Because of the destructive
nature of these read operations, special care should be taken. See “Specula-
tive Load Execution” on page 6-81 and “Conditional Load Behavior” on
page 6-82 for more information.

UARTx Transmit Holding Registers (UARTx_THR)
A write to the UARTx Transmit Holding register (UARTx_THR), shown in
Figure 12-4, initiates the transmit operation. The data is moved to the
internal Transmit Shift register (TSR) where it is shifted out at a baud rate
equal to SCLK/(16 Divisor) with start, stop, and parity bits appended as
required. All data words begin with a 1-to-0-transition start bit. The
transfer of data from UARTx_THR to the Transmit Shift register sets the
Transmit Holding Register Empty (THRE) status flag in the UARTx Line
Status register (UARTx_LSR).

The UARTx_THR register is mapped to the same address as UARTx_RBR and
UARTx_DLL. To access UARTx_THR, the DLAB bit in UARTx_LCR must be
cleared. When the DLAB bit is cleared, writes to this address target the
UARTx_THR register, and reads from this address return the UARTx_RBR
register.

Note that data is transmitted and received least significant bit first (bit 0)
followed by the most significant bits.

Figure 12-4. UARTx Transmit Holding Registers

Transmit Hold[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Transmit Holding Registers (UARTx_THR)
WO

For MMR assignments,
see Table 12-3.

UARTx Control and Status Registers

12-6 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Receive Buffer Registers (UARTx_RBR)
The receive operation uses the same data format as the transmit configura-
tion, except that the number of stop bits is always 1. After detection of the
start bit, the received word is shifted into the Receive Shift register (RSR)
at a bit rate of SCLK/(16 Divisor). After the appropriate number of bits
(including stop bits) is received, the data and any status are updated and
the Receive Shift register is transferred to the UARTx Receive Buffer reg-
ister (UARTx_RBR), shown in Figure 12-5. After the transfer of the received
word to the UARTx_RBR buffer and the appropriate synchronization delay,
the Data Ready (DR) status flag is updated.

A sampling clock equal to 16 times the baud rate samples the data as close
to the midpoint of the bit as possible. Because the internal sample clock
may not exactly match the asynchronous receive data rate, the sampling
point drifts from the center of each bit. The sampling point is resynchro-
nized with each start bit, so the error accumulates only over the length of a
single word. A receive filter removes spurious pulses of less than two times
the sampling clock period.

The UARTx_RBR register is mapped to the same address as UARTx_THR and
UARTx_DLL. To access UARTx_RBR, the DLAB bit in UARTx_LCR must be
cleared. When the DLAB bit is cleared, writes to this address target the
UARTx_THR register, while reads from this address return the UARTx_RBR
register.

Table 12-3. UARTx Transmit Holding Register MMR Assignments

Register Name Memory-Mapped Address

UART0_THR 0xFFC0 1800

UART1_THR 0xFFC0 1C00

ADSP-BF535 Blackfin Processor Hardware Reference 12-7

UART Port Controller

UARTx Interrupt Enable Registers (UARTx_IER)
The UARTx_IER register, shown in Figure 12-6, is used only in non-DMA
mode. Four different interrupt sources are ORed to share a single IRQ
channel, the UART RX interrupt. While the Receive Interrupt itself must
be unmasked within the System Interrupt Controller (SIC), the four
sources can be enabled individually by the control bits in this register. An
Interrupt Service Routine (ISR) evaluates the UARTx_IIR register to deter-
mine the signaling interrupt source.

The UARTx_IER register is mapped to the same address as UARTx_DLH. To
access UARTx_IER, the DLAB bit in UARTx_LCR must be cleared.

Figure 12-5. UARTx Receive Buffer Registers

Table 12-4. UARTx Receive Buffer Register MMR Assignments

Register Name Memory-Mapped Address

UART0_RBR 0xFFC0 1800

UART1_RBR 0xFFC0 1C00

Receive Buffer[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Receive Buffer Registers (UARTx_RBR)
RO

For MMR assignments,
see Table 12-4.

UARTx Control and Status Registers

12-8 ADSP-BF535 Blackfin Processor Hardware Reference

The ELSI bit enables interrupt generation when any of the following con-
ditions are raised by the respective bit in the UARTx Line Status register
(UARTx_LSR):

• Receive Overrun Error (OE)

• Receive Parity Error (PE)

• Receive Framing Error (FE)

• Break Interrupt (BI)

Figure 12-6. UARTx Interrupt Enable Registers

Table 12-5. UARTx Interrupt Enable Register MMR Assignments

Register Name Memory-Mapped Address

UART0_IER 0xFFC0 1802

UART1_IER 0xFFC0 1C02

000 0

ERBFI (Enable Receive Buffer Full Interrupt)

7 6 5 4 3 2 1 0

00 Reset = 0x0000

UARTx Interrupt Enable Registers (UARTx_IER)

ETBEI (Enable Transmit Buffer Empty Interrupt)

ELSI (Enable RX Status Interrupt)

EDDSI (Enable Modem Status Interrupt)

0 - No interrupt
1 - Generate interrupt if DR bit in UARTx_LSR is set

0 - No interrupt
1 - Generate interrupt if THRE bit in UARTx_LSR is

set

0 - No interrupt
1 - Generate interrupt if any of UARTx_LSR[4:1] is set

0 - No interrupt
1 - Generate interrupt if any of UARTx_MSR[3:0] is

set

For MMR assignments,
see Table 12-5.

ADSP-BF535 Blackfin Processor Hardware Reference 12-9

UART Port Controller

The EDDSI bit enables interrupt generation when any of the following con-
ditions are raised by the respective bit in the UARTx Modem Status
register (UARTx_MSR):

• Delta CTS (DCTS)

• Delta DSR (DDSR)

• Trailing Edge RI (TERI)

• Delta DCD (DDCD)

On the ADSP-BF535 processor, the Modem Status interrupt is not gener-
ated if the LOOP bit in the UARTx Modem Control register (UARTx_MCR) is
not set.

UARTx Interrupt Identification Registers (UARTx_IIR)
In non-DMA mode, a UART interrupt service routine (ISR) reads
UARTx_IIR to determine the exact interrupt source, whenever more than
one bit in the UARTx_IER register is set.

When cleared, the Pending Interrupt bit (NINT) signals that an interrupt is
pending. The STATUS field indicates the highest priority pending interrupt
(see Figure 12-7).

UARTx Control and Status Registers

12-10 ADSP-BF535 Blackfin Processor Hardware Reference

Because of the destructive nature of these read operations, special care
should be taken. See “Speculative Load Execution” on page 6-81 and
“Conditional Load Behavior” on page 6-82 for more information.

UARTx Divisor Latch Registers (UARTx_DLL,
UARTx_DLH)

The bit rate is characterized by the system clock (SCLK) and the 16-bit
Divisor. The Divisor is split into the Divisor Latch Low Byte register
(UARTx_DLL) and the Divisor Latch High Byte register (UARTx_DLH), as
shown in Figure 12-8. These registers form a 16-bit divisor. The baud
clock is divided by 16 so that:

BAUD RATE = SCLK/(16 Divisor)

Divisor = 65,536 when UARTx_DLL = UARTx_DLH = 0

Figure 12-7. UARTx Interrupt Identification Registers

Table 12-6. UARTx Interrupt Identification Register MMR Assignments

Register Name Memory-Mapped Address

UART0_IIR 0xFFC0 1804

UART1_IIR 0xFFC0 1C04

00000

NINT (Pending interrupt)

7 6 5 4 3 2 1 0

10 Reset = 0x010

UARTx Interrupt Identification Registers (UARTx_IIR)
RO

STATUS[1:0]

0 - Interrupt pending
1 - No interrupt pending

00 - Modem status interrupt. Read UARTx_MSR to clear.
01 - UARTx_THR empty. Write UARTx_THR or read

UARTx_IIR to clear.
10 - Receive data ready. Read UARTx RBR to clear.
11 - Receive line status. Read UARTx_LSR to clear.

For MMR assignments,
see Table 12-6.

ADSP-BF535 Blackfin Processor Hardware Reference 12-11

UART Port Controller

The UARTx_DLL register is mapped to the same address as the UARTx_THR
and UARTx_RBR registers. The UARTx_DLH register is mapped to the same
address as the Interrupt Enable register (UARTx_IER). The DLAB bit in
UARTx_LCR must be set before the UARTx Divisor Latch registers can be
accessed.

Figure 12-8. UARTx Divisor Latch Low Byte Registers and UARTx
Divisor Latch High Byte Registers

Table 12-7. UARTx Divisor Latch Low Byte Register MMR Assignments

Register Name Memory-Mapped Address

UART0_DLL 0xFFC0 1800

UART1_DLL 0xFFC0 1C00

Table 12-8. UARTx Divisor Latch High Byte Register MMR Assignments

Register Name Memory-Mapped Address

UART0_DLH 0xFFC0 1802

UART1_DLH 0xFFC0 1C02

Divisor Latch Low Byte[7:0]

7 6 5 4 3 2 1 0

10 0 0 0 0 Reset = 0x0100

Divisor Latch High Byte[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0x0000

UARTx Divisor Latch Low Byte Registers (UARTx_DLL)

UARTx Divisor Latch High Byte Registers (UARTx_DLH)

For MMR assignments,
see Table 12-7.

For MMR assignments,
see Table 12-8.

UARTx Control and Status Registers

12-12 ADSP-BF535 Blackfin Processor Hardware Reference

Note the 16-bit divisor resets to 0x0001 resulting in the highest possible
clock frequency by default. If the UART is not used, changing the value of
this register may help save power.

Table 12-9 provides example divide factors required to support most stan-
dard baud rates.

 Careful selection of SCLK frequencies, that is, even multiples of
desired baud rates, can result in lower error percentages.

UARTx Modem Control Registers (UARTx_MCR)
The UARTx_MCR register contains modem control and test signals, as shown
in Figure 12-9.

Loopback mode forces the TX pin to high and disconnects the RX pin
from the Receive Shift register (RSR), so the RSR input is directly connected
to the Transmit Shift register (TSR) output. When Loopback mode is
enabled, modem control signals in the UARTx Modem Control Register

Table 12-9. UART Baud Rate Examples with 100 MHz SCLK

Baud Rate DL Actual % Error

2400 2604 2400.15 .006

4800 1302 4800.31 .007

9600 651 9600.61 .006

19200 326 19171.78 .147

38400 163 38343.56 .147

57600 109 57339.45 .452

115200 54 115740.74 .469

921600 7 892857.14 3.119

6250000 1 6250000 -

ADSP-BF535 Blackfin Processor Hardware Reference 12-13

UART Port Controller

(UARTx_MCR) are directly connected to the fields in the UARTx Modem
Status Register (UARTx_MSR): RTS to CTS, DTR to DSR, OUT1 to RI, OUT2 to
DCD.

The four modem control bits do not have any effect on the processor
when the LOOP bit is not set. This is a read/write register that enables com-
patibility with PC standard UART devices.

Figure 12-9. UARTx Modem Control Registers

Table 12-10. UARTx Modem Control Register MMR Assignments

Register Name Memory-Mapped Address

UART0_MCR 0xFFC0 1808

UART1_MCR 0xFFC0 1C08

000

DTR (Data Terminal Ready)

RTS (Request to Send)

OUT1 (General-purpose Output Function)

OUT2 (General-purpose Output Function)

7 6 5 4 3 2 1 0

00 Reset = 0x0000

LOOP (Loopback Mode Enable)

0

UARTx Modem Control Registers (UARTx_MCR)

0 - Loopback disabled
1 - Loopback enabled

For MMR assignments,
see Table 12-10.

UARTx Control and Status Registers

12-14 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Modem Status Registers (UARTx_MSR)
The UARTx_MSR register contains modem control status bits, as shown
in Figure 12-10.

Figure 12-10. UARTx Modem Status Registers

Table 12-11. UARTx Modem Status Register MMR Assignments

Register Name Memory-Mapped Address

UART0_MSR 0xFFC0 180C

UART1_MSR 0xFFC0 1C0C

DCTS (Delta CTS)
0 - CTS has not changed state since

UARTx_MSR last read
1 - CTS changed state since UARTx_MSR

last read

DDSR (Delta DSR)
0 - DSR has not changed state since

UARTx_MSR last read
1 - DSR changed state since UARTx_MSR

last read

TERI (Trailing Edge RI)
0 - RI has not changed from 0 to 1 since

UARTx_MSR last read
1 - RI changed from 0 to 1 since

UARTx_MSR last read

DDCD (Delta DCD)
0 - DCD has not changed state since

UARTx_MSR last read
1 - DCD changed state since UARTx_MSR

last read

7 6 5 4 3 2 1 0

00 0 0 0 Reset = 0x0000

DCD (Data Carrier Detect)

RI (Ring Indicator)

DSR (Data Set Ready)

CTS (Clear to Send)

0

UARTx Modem Status Registers (UARTx_MSR)
RO

For MMR assignments,
see Table 12-11.

ADSP-BF535 Blackfin Processor Hardware Reference 12-15

UART Port Controller

 The Delta CTS (DCTS), Delta DSR (DDSR), Trailing Edge RI (TERI)
and Delta DCD (DDCD) fields are cleared when the UARTx Modem
Status register (UARTx_MSR) is read.

UARTx Scratch Registers (UARTx_SCR)
The contents of the 8-bit UARTx Scratch register (Figure 12-11) are not
altered on reset. It is used for general-purpose data storage and does not
control the UART hardware in any way.

Non-DMA Mode
In non-DMA mode, data is moved to and from the UART by the proces-
sor core. To transmit a character, load it into UARTx_THR. Received Data
can be read from UARTx_RBR.

The ADSP-BF535 processor must write and read one character at time.

To prevent any loss of data and misalignments of the serial data stream,
the UARTx Line Status Register (UARTx_LSR) provides two status flags for
handshaking: THRE and DR.

Figure 12-11. UARTx Scratch Registers

Table 12-12. UARTx Scratch Register MMR Assignments

Register Name Memory-Mapped Address

UART0_SCR 0xFFC0 180E

UART1_SCR 0xFFC0 1C0E

Scratch[7:0]

7 6 5 4 3 2 1 0

00 0 0 0 0 Reset = 0xXX00

UARTx Scratch Registers (UARTx_SCR)

For MMR assignments,
see Table 12-12.

Non-DMA Mode

12-16 ADSP-BF535 Blackfin Processor Hardware Reference

The THRE flag is set when UARTx_THR is ready for new data and cleared
when the processor loads new data into UARTx_THR. Writing UARTx_THR
when it is not empty overwrites the register with the new value and the
previous character is never transmitted.

The DR flag signals when new data is available in UARTx_RBR. This flag is
cleared automatically when the processor reads from UARTx_RBR. Reading
UARTx_RBR when it is not full returns the previously received value.

With interrupts disabled, these status flags can be polled to determine
when data is ready to move. Note that because polling is processor inten-
sive, it is not typically used in real-time signal processing environments.

Alternatively, UART writes and reads can be accomplished by ISRs. Both
UART devices feature independent interrupt channels. In non-DMA
mode, the UART TX interrupt channel is not used. All interrupt sources
within one UART device share the same interrupt request, the UART RX
interrupt channel. As controlled by UARTx_IER, this interrupt can be raised
by any of the following:

• THR Empty (THRE) event

• RBR Full (DR) event

• Modem Status event

• Receive Error condition

The ISR can evaluate the Status bit field within the UARTx Interrupt
Identification register (UARTx_IIR) to determine the exact interrupt
source. Interrupts also must be assigned and unmasked by the
ADSP-BF535 processor’s interrupt controller.

ADSP-BF535 Blackfin Processor Hardware Reference 12-17

UART Port Controller

DMA Mode
In this mode, separate receive (RX) and transmit (TX) DMA channels
move data between the UART and memory. The processor does not have
to move data, it just has to set up the appropriate transfers either through
the descriptor mechanism or through autobuffer mode.

No additional buffering is provided in the UART DMA channels, so the
latency requirements are the same as in non-DMA mode. However, the
latency is determined by the bus activity and arbitration mechanism and
not by the processor loading and interrupt priorities. For more informa-
tion, see “Direct Memory Access” on page 9-1.

The DMA interrupt mechanism works independently from the UARTx_IER
and the UARTx_IIR registers. The TX DMA has its own dedicated inter-
rupt channel. The receive interrupt channel handles RX DMAs as well as
receive error conditions when enabled in the UARTx Receive DMA Con-
figuration register (UARTx_CONFIG_RX). DMA interrupt routines must
explicitly write ones to the corresponding DMA IRQ status registers
explicitly to clear the latched request of the pending interrupt.

Mixing Modes
Non-DMA and DMA modes use different synchronization mechanisms.
Consequently, any serial communication must be complete before switch-
ing from non-DMA to DMA mode or vice-versa. In other words, before
switching from non-DMA transmission to DMA transmission, make sure
that both UARTx_THR and the internal Transmit Shift register (TSR) are
empty by testing the THRE and the TEMT status bits in UARTx_LSR. Other-
wise, the processor must wait until the 2-bit DMA Buffer Status field
within the appropriate UARTx Transmit DMA Configuration register
(UARTx_CONFIG_TX) is clear.

UART DMA Receive Registers

12-18 ADSP-BF535 Blackfin Processor Hardware Reference

UART DMA Receive Registers
Each of the two UART modules provides two complete independent
DMA channels. The transmit channel reads from memory and the receive
channel writes to memory. Every DMA channel features its own set of
control registers. For more information on DMA registers, see “Direct
Memory Access” on page 9-1.

ADSP-BF535 Blackfin Processor Hardware Reference 12-19

UART Port Controller

UARTx Receive DMA Current Descriptor Pointer
Registers (UARTx_CURR_PTR_RX)

Figure 12-12 shows the UARTx Receive DMA Current Descriptor Point
registers.

 This register defines the lower 16 bits of the Current Descriptor
Pointer. The complete 32-bit address is created by combining this
value with the upper 16 bits from the DMA Descriptor Base
Pointer Register (DMA_DBP). For more information on the DMA
Descriptor Base Pointer Register, see “Direct Memory Access” on
page 9-1.

Figure 12-12. UARTx Receive DMA Current Descriptor Pointer Registers

Table 12-13. UARTx Receive DMA Current Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

UART0_CURR_PTR_RX 0xFFC0 1A00

UART1_CURR_PTR_RX 0xFFC0 1E00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_RX)
RO

Current Descriptor
Pointer[15:0]

Reset 0x0000
For MMR assignments,
see Table 12-13.

UART DMA Receive Registers

12-20 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Receive DMA Configuration Registers
(UARTx_CONFIG_RX)

Figure 12-13 shows the UARTx Receive DMA Configuration registers.

Figure 12-13. UARTx Receive DMA Configuration Registers

000

UARTx Receive DMA Configuration Registers (UARTx_CONFIG_RX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

0 - Disabled
1 - Enabled0 - Processor

1 - DMA engine

0 0 0 0 0 0 0 0 0 0 00 Reset 0x0000

Ownership - RO

DMA Completion Status - RO

DMA Buffer Status[1:0] - RO

Data Size Bit 1

UARFE - RO

UARPE - RO

UAROE - RO

Interrupt on Error - RO

DMA Enable

Direction - RO

Interrupt on Completion - RO

Data Size Bit 0 - RO

Autobuffer

0 - No error detected
1 - Error detected

00 - Buffer empty
11 - Buffer full
Actively updated in register

0 - 16-bit half word or 32-bit word
1 - 8-bit byte
This field is writable if autobuffering
mode is enabled; shared with DMA
Buffer Status bit.

0 - No error
1 - Framing error

0 - No error
1 - Parity error

0 - No error
1 - Overrun error

0 - No interrupt generation
1 - Generate interrupt
This bit is writable if autobuffering
mode is enabled.

0 - Autobuffer mode disabled
1 - Autobuffer mode enabled

0 - Memory read
1 - Memory write

0 - No interrupt generation
1 - Generate interrupt on

completion
This bit is writable if autobuffering
mode is enabled.

0 - 16-bit half word
1 - 8-bit byte or 32-bit word
This field is writable if
autobuffering mode is enabled.

For MMR assignments,
see Table 12-14.

ADSP-BF535 Blackfin Processor Hardware Reference 12-21

UART Port Controller

When autobuffering is enabled, Data Size Bit 0 and Data Size Bit 1 are
used to determine the size of a DMA transfer. Table 12-15 defines the
allowed DMA transfer sizes.

Note the receive DMA always writes to memory, so the Direction bit
should always be set.

If the Interrupt on Error bit is set, a UARTx RX interrupt is issued when
either an overflow error, a parity error, or a framing error has been
detected. The RX interrupt service routine should evaluate bit 1 of the
UARTx_IRQSTAT_RX register in order to determine whether it was requested
by a line error condition rather than by the DMA completion. If this bit is
set, the service routine should read the UARTx_LSR register to determine the
error condition.

 Reading UARTx_LSR also clears the UART’s interrupt request. Since
the error request has also been latched in the DMA engine, the
error handler must also write a 1 to bit 1 of the UARTx_IRQSTAT_RX
afterward.

Table 12-14. UARTx Receive DMA Configuration Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_CONFIG_RX 0xFFC0 1A02

UART1_CONFIG_RX 0xFFC0 1E02

Table 12-15. DMA Transfer Sizes

Data Size Bit 1 Data Size Bit 0 Transfer Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte

UART DMA Receive Registers

12-22 ADSP-BF535 Blackfin Processor Hardware Reference

In descriptor DMA mode, individual descriptors may be configured to
disable interrupt generation. The erroneous DMA sequence can still be
located. In this case, the UART error flags are mirrored in the
UARTx_CONFIG_RX register and this one is copied to DMA descriptor in
memory afterward.

UARTx Receive DMA Start Address High Registers
(UARTx_START_ADDR_HI_RX)

Figure 12-14 shows the UARTx Receive DMA Start Address High
registers.

Figure 12-14. UARTx Receive DMA Start Address High Registers

Table 12-16. UARTx Receive DMA Start Address High Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_HI_RX 0xFFC0 1A04

UART1_START_ADDR_HI_RX 0xFFC0 1E04

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Start Address High Registers (UARTx_START_ADDR_HI_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[31:16]

Reset 0x0000For MMR assignments,
see Table 12-16.

ADSP-BF535 Blackfin Processor Hardware Reference 12-23

UART Port Controller

UARTx Receive DMA Start Address Low Registers
(UARTx_START_ADDR_LO_RX)

Figure 12-15 shows the UARTx Receive DMA Start Address Low
registers.

Figure 12-15. UARTx Receive DMA Start Address Low Registers

Table 12-17. UARTx Receive DMA Start Address Low Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_LO_RX 0xFFC0 1A06

UART1_START_ADDR_LO_RX 0xFFC0 1E06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Start Address Low Registers (UARTx_START_ADDR_LO_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[15:0]

Reset 0x0000For MMR assignments,
see Table 12-17.

UART DMA Receive Registers

12-24 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Receive DMA Count Registers
(UARTx_COUNT_RX)

Figure 12-16 shows the UARTx Receive DMA Count registers.

Figure 12-16. UARTx Receive DMA Count Registers

Table 12-18. UARTx Receive DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

UART0_COUNT_RX 0xFFC0 1A08

UART1_COUNT_RX 0xFFC0 1E08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Count Registers (UARTx_COUNT_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Transfer
Count[15:0]

Reset 0x0000For MMR assignments,
see Table 12-18.

ADSP-BF535 Blackfin Processor Hardware Reference 12-25

UART Port Controller

UARTx Receive DMA Next Descriptor Pointer
Registers (UARTx_NEXT_DESCR_RX)

Figure 12-17 shows the UARTx Receive DMA Next Descriptor Pointer
registers.

 This register defines the lower 16 bits of the Next Descriptor
Pointer. The complete 32-bit address is created by combining this
value with the upper 16 bits from the DMA Descriptor Base
Pointer Register (DMA_DBP). For more information on the DMA
Descriptor Base Pointer Register, see “Direct Memory Access” on
page 9-1.

Figure 12-17. UARTx Receive DMA Next Descriptor Pointer Registers

Table 12-19. UARTx Receive DMA Next Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

UART0_NEXT_DESCR_RX 0xFFC0 1A0A

UART1_NEXT_DESCR_RX 0xFFC0 1E0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_RX)

Next Descriptor
Pointer[15:0]

Reset 0x0000For MMR assignments,
see Table 12-19.

UART DMA Receive Registers

12-26 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Receive DMA Descriptor Ready Registers
(UARTx_DESCR_RDY_RX)

Figure 12-18 shows the UARTx Receive DMA Descriptor Ready registers.

Figure 12-18. UARTx Receive DMA Descriptor Ready Registers

Table 12-20. UARTx Receive DMA Descriptor Ready Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_DESCR_RDY_RX 0xFFC0 1A0C

UART1_DESCR_RDY_RX 0xFFC0 1E0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Receive DMA Descriptor Ready Registers (UARTx_DESCR_RDY_RX)

Descriptor Ready

Reset 0x0000

0 - Not ready
1 - Ready

For MMR assignments,
see Table 12-20.

ADSP-BF535 Blackfin Processor Hardware Reference 12-27

UART Port Controller

UARTx Receive DMA IRQ Status Registers
(UARTx_IRQSTAT_RX)

Figure 12-19 shows the UARTx Receive DMA IRQ Status registers.

UART DMA Transmit Registers
For more information on DMA registers, see “Direct Memory Access” on
page 9-1.

Figure 12-19. UARTx Receive DMA IRQ Status Registers

Table 12-21. UARTx Receive DMA IRQ Status Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_IRQSTAT_RX 0xFFC0 1A0E

UART1_IRQSTAT_RX 0xFFC0 1E0E

0000000000000

UARTx Receive DMA IRQ Status Registers (UARTx_IRQSTAT_RX)

Completion IRQ Status - W1C
0 - Not complete
1 - Complete

Error IRQ Status - W1C
0 - No error
1 - Error
(See UARTx_Config_Rx[11:9])

Bus Error IRQ Status - W1C
0 - No error
1 - Error

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 Reset 0x0000For MMR assignments,
see Table 12-21.

UART DMA Transmit Registers

12-28 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Transmit DMA Current Descriptor Pointer
Registers (UARTx_CURR_PTR_TX)

Figure 12-20 shows the UARTx Transmit DMA Current Descriptor
Pointer registers.

 This register defines the lower 16 bits of the Current Descriptor
Pointer. The complete 32-bit address is created by combining this
value with the upper 16 bits from the DMA Descriptor Base
Pointer Register (DMA_DBP). For more information on the DMA
Descriptor Base Pointer Register, see “Direct Memory Access” on
page 9-1.

Figure 12-20. UARTx Transmit DMA Current Descriptor Pointer
Registers

Table 12-22. UARTx Transmit DMA Current Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

UART0_CURR_PTR_TX 0xFFC0 1B00

UART1_CURR_PTR_TX 0xFFC0 1F00

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_TX)
RO

Current Descriptor
Pointer[15:0]

Reset 0x0000For MMR assignments,
see Table 12-22.

ADSP-BF535 Blackfin Processor Hardware Reference 12-29

UART Port Controller

UARTx Transmit DMA Configuration Registers
(UARTx_CONFIG_TX)

Figure 12-21 shows the UARTx Transmit DMA Configuration registers.

Figure 12-21. UARTx Transmit DMA Configuration Registers

Table 12-23. UARTx Transmit DMA Configuration Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_CONFIG_TX 0xFFC0 1B02

UART1_CONFIG_TX 0xFFC0 1F02

000 000

Ownership - RO

UARTx Transmit DMA Configuration Registers (UARTx_CONFIG_TX)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 Reset 0x0000

0 - Disabled
1 - Enabled

DMA Enable

Direction - RO

Interrupt on Completion - RO

Data Size Bit 0 - RO

Autobuffer
0 - Autobuffer mode disabled
1 - Autobuffer mode enabled

0 - Memory read
1 - Memory write

0 - No interrupt generation
1 - Generate interrupt on

completion
This bit is writable if autobuffering
mode is enabled.

0 - 16-bit half word
1 - 8-bit byte or 32-bit word
This field is writable if
autobuffering mode is enabled.

0 - Processor
1 - DMA engine

DMA Completion Status - RO

DMA Buffer Status[1:0] - RO

Data Size Bit 1

Interrupt on Error - RO

0 - No error detected
1 - Error detected

00 - Buffer empty
11 - Buffer full
Actively updated in register.

0 - 16-bit half word or 32-bit word
1 - 8-bit byte
This field is writable if autobuffering
mode is enabled; shared with DMA
Buffer Status bit.

0 - No interrupt generation
1 - Generate interrupt
This bit is writable if autobuffering mode
is enabled.

For MMR assignments,
see Table 12-23.

UART DMA Transmit Registers

12-30 ADSP-BF535 Blackfin Processor Hardware Reference

When autobuffering is enabled, Data Size Bit 0 and Data Size Bit 1 are
used to determine the size of a DMA transfer. Table 12-24 defines the
allowed DMA transfer sizes.

UARTx Transmit DMA Start Address High Registers
(UARTx_START_ADDR_HI_TX)

Figure 12-22 shows the UARTx Transmit DMA Start Address High
registers.

Table 12-24. DMA Transfer Sizes

Data Size Bit 1 Data Size Bit 0 Transfer Size

0 0 16-bit half word

0 1 32-bit word

1 0 Reserved

1 1 8-bit byte

Figure 12-22. UARTx Transmit DMA Start Address High Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Start Address High Registers (UARTx_START_ADDR_HI_TX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[31:16]

Reset 0x0000For MMR assignments,
see Table 12-25.

ADSP-BF535 Blackfin Processor Hardware Reference 12-31

UART Port Controller

UARTx Transmit DMA Start Address Low Registers
(UARTx_START_ADDR_LO_TX)

Figure 12-23 shows the UARTx Transmit DMA Start Address Low
registers.

Table 12-25. UARTx Transmit DMA Start Address High Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_HI_TX 0xFFC0 1B04

UART1_START_ADDR_HI_TX 0xFFC0 1F04

Figure 12-23. UARTx Transmit DMA Start Address Low Registers

Table 12-26. UARTx Transmit DMA Start Address Low Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_START_ADDR_LO_TX 0xFFC0 1B06

UART1_START_ADDR_LO_TX 0xFFC0 1F06

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Start Address Low Registers (UARTx_START_ADDR_LO_RX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Start Address[15:0]

Reset 0x0000For MMR assignments,
see Table 12-26.

UART DMA Transmit Registers

12-32 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Transmit DMA Count Registers
(UARTx_COUNT_TX)

Figure 12-24 shows the UARTx Transmit DMA Count registers.

Figure 12-24. UARTx Transmit DMA Count Registers

Table 12-27. UARTx Transmit DMA Count Register MMR Assignments

Register Name Memory-Mapped Address

UART0_COUNT_TX 0xFFC0 1B08

UART1_COUNT_TX 0xFFC0 1F08

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Count Registers (UARTx_COUNT_TX)
Writable if autobuffering mode is enabled, otherwise RO.

DMA Transfer Count[15:0]

Reset 0x0000For MMR assignments,
see Table 12-27.

ADSP-BF535 Blackfin Processor Hardware Reference 12-33

UART Port Controller

UARTx Transmit DMA Next Descriptor Pointer
Registers (UARTx_NEXT_DESCR_TX)

Figure 12-25 shows the UARTx Transmit DMA Next Descriptor Pointer
registers.

 This register defines the lower 16 bits of the Next Descriptor
Pointer. The complete 32-bit address is created by combining this
value with the upper 16 bits from the DMA Descriptor Base
Pointer Register (DMA_DBP). For more information on the DMA
Descriptor Base Pointer Register, see “Direct Memory Access” on
page 9-1.

Figure 12-25. UARTx Transmit DMA Next Descriptor Pointer Registers

Table 12-28. UARTx Transmit DMA Next Descriptor Pointer Register
MMR Assignments

Register Name Memory-Mapped Address

UART0_NEXT_DESCR_TX 0xFFC0 1B0A

UART1_NEXT_DESCR_TX 0xFFC0 1F0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_TX)

Next Descriptor Pointer[15:0]

Reset 0x0000For MMR assignments,
see Table 12-28.

UART DMA Transmit Registers

12-34 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Transmit DMA Descriptor Ready Registers
(UARTx_DESCR_RDY_TX)

Figure 12-26 shows the UARTx Transmit DMA Descriptor Ready
registers.

Figure 12-26. UARTx Transmit DMA Descriptor Ready Registers

Table 12-29. UARTx Transmit DMA Descriptor Ready Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_DESCR_RDY_TX 0xFFC0 1B0C

UART1_DESCR_RDY_TX 0xFFC0 1F0C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UARTx Transmit DMA Descriptor Ready Registers (UARTx_DESCR_RDY_TX)

Descriptor Ready

Reset 0x0000For MMR assignments,
see Table 12-29.

ADSP-BF535 Blackfin Processor Hardware Reference 12-35

UART Port Controller

UARTx Transmit DMA IRQ Status Registers
(UARTx_IRQSTAT_TX)

Figure 12-27 shows the UARTx Transmit DMA IRQ Status registers.

IrDA Support
Aside from the standard UART functionality, UART0 also supports half
duplex serial data communication via infrared signals, according to the
recommendations of the Infrared Data Association (IrDA). The physical

Figure 12-27. UARTx Transmit DMA IRQ Status Registers

Table 12-30. UARTx Transmit DMA IRQ Status Register MMR
Assignments

Register Name Memory-Mapped Address

UART0_IRQSTAT_TX 0xFFC0 1B0E

UART1_IRQSTAT_TX 0xFFC0 1F0E

0000000000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000

UARTx Transmit DMA IRQ Status Registers (UARTx_IRQSTAT_TX)

Completion IRQ Status - W1C
0 - Not complete
1 - Complete

Error IRQ Status - W1C
0 - No error
1 - Error

Bus Error IRQ Status - W1C
0 - No error
1 - Error

Reset 0x0000For MMR assignments,
see Table 12-30.

IrDA Support

12-36 ADSP-BF535 Blackfin Processor Hardware Reference

layer known as IrDA SIR (9.6/115.2 Kbps rate) is based on
return-to-zero-inverted (RZI) modulation. Pulse position modulation is
not supported.

Using the 16x date rate clock, RZI modulation is achieved by inverting
and modulating the non-return-to-zero (NRZ) code normally transmitted
by the UART. On the receive side, the 16x clock is used to determine an
IrDA pulse sample window, from which the RZI-modulated NRZ code is
recovered. The minimum pulse duration, that is, the time required for
valid 0 receive data to be detected, is programmable.

IrDA support is enabled by setting the IREN bit in the UART0 Infrared
Control register. The IrDA application requires external transceivers.

UART0 Infrared Control Register (UART0_IRCR)
The UART0_IRCR register, shown in Figure 12-28, contains bits that con-
trol all IrDA related features. These include the enable bit for IrDA mode
of operation, bits to specify the minimum receive pulse width, and a bit to
specify the polarity of the data received.

Figure 12-28. UART0 Infrared Control Register

0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 00

UART0 Infrared Control Register (UART0_IRCR)

IREN (Enable IrDA Mode)
1 - Enable IrDA
0 - Disable IrDA

Reset 0x0000

UART0 Infrared Control Register (UART0_IRCR)

0xFFC0 1810

IRPD[9:0] (IrDA Receive
Pulse Duration)
Minimum number of Serial
In samples required for a
valid pulse to be detected.
IRPD=
((Pulse width(sec)
xSCLK freq)–2).

IRPOL (IrDA Receive
Polarity)
0 - Serial In Idle low
Data 0 = positive pulse
Data 1 = no pulse
1 - Serial In Idle high
Data 0 = negative pulse
Data 1 = no pulse

ADSP-BF535 Blackfin Processor Hardware Reference 12-37

UART Port Controller

IrDA Transmitter Description
To generate the IrDA pulse transmitted by the UART, the normal NRZ
output of the transmitter is first inverted, so a 0 is transmitted as a high
pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for
16 UART clock periods. The leading edge of the pulse is then delayed by
six UART clock periods. Similarly, the trailing edge of the pulse is trun-
cated by eight UART clock periods. This results in the final representation
of the original 0 as a high pulse of only 3/16 clock periods in a 16-cycle
UART clock period. The pulse is centered around the middle of the bit
time, as shown in Figure 12-29. The final IrDA pulse is fed to the off-chip
infrared driver.

This modulation approach ensures a pulse width output from the UART
of three cycles high out of every 16 UART clock cycles. As shown in
Table 12-9 on page 12-12, the error terms associated with the baud rate
generator are very small and well within the tolerance of most infrared
transceiver specifications.

Figure 12-29. IrDA Transmit Pulse

0 1 0

8/16

9/167/16

16/16

NRZ

Inverted

Final
IrDA

8/16

9/167/16

16/16

IrDA Support

12-38 ADSP-BF535 Blackfin Processor Hardware Reference

IrDA Receiver Description
The IrDA receiver function is more complex than the transmit function,
The receiver must discriminate the IrDA pulse and reject noise. In
addition, pulse widths of less than 1 UART clock period must be detected
per existing standards. Consequently, both the position of valid data rela-
tive to the UART clock and the pulse duration must be considered.

The filter function enables IrDA sampling from the sixth through the
eleventh 16x clock periods. The window is wider than the transmitted
IrDA pulse to allow for clock frequency discrepancies between the trans-
mitter and receiver. Within this window, the receiver incorporates
minimum pulse duration logic to detect valid data.

The pulse duration is specified by the IRPD bits using this formula:

IRPD = (Desired Pulse Width(sec) * SLCK frequency)–2

For example, the Infrared Data Association specifies a receive pulse dura-
tion minimum of 1.41 S at 9.6 Kbits/second. For a SCLK frequency of
100 MHz, IRPD should contain a value of 0x8b. In this example, receive
data during the sampling window, whose duration is greater than 141
SCLK cycles, is treated as valid data. Figure 12-30 shows the receiver
functionality.

ADSP-BF535 Blackfin Processor Hardware Reference 12-39

UART Port Controller

The receive sampling window is determined by a counter, clocked at the
16x bit-time sample clock. The sampling window is resynchronized with
each start bit by centering the sampling window around the start bit.

The polarity of receive data is selectable, using the IRPOL bit. Figure 12-30
gives examples of each polarity type.

• IRPOL = 0 assumes that the receive data input idles 0 and each
active 1 transition corresponds to a UART NRZ value of 0.

• IRPOL = 1 assumes that the receive data input idles 1 and each
active 0 transition corresponds to a UART NRZ value of 0.

Figure 12-30. IrDA Receiver Pulse Detection

0 1

16/16

Pulse

Sampling

Received
IrDA
Pulse
IRPOL=0

8/16 16/16

Window

Detector
Output

Recovered
NRZ Input 10

8/16

0 1Received
IrDA
Pulse
IRPOL=1

IrDA Support

12-40 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 13-1

13 PCI BUS INTERFACE

The ADSP-BF535 processor includes a Revision 2.2-compliant, 33 MHz,
32-bit Peripheral Component Interconnect (PCI) bus interface. The PCI
interface provides a bus bridge function between an external PCI bus and
the memories, the peripherals, and the processor core which are internal to
the ADSP-BF535 processor. The PCI bus interface supports these
functions:

• PCI device, in which an ADSP-BF535-processor-based system can
be easily interfaced to a 3.3V Revision 2.2-compliant PCI bus.

• Host-to-PCI bridge, in which ADSP-BF535 processor resources
(the core, internal and external memory, and the memory DMA
controller) provide the necessary hardware components to act as
the system controller of a PCI bus. This provides peripheral expan-
sion for the ADSP-BF535 processor, from the perspective of one or
more PCI devices.

In either configuration, the PCI can function as either the PCI initiator
(master) or the PCI target (slave) for a PCI bus transaction.

The PCI bus interface consists of a PCI controller, interfaces to internal
buses, and drivers for the external PCI bus (see the block diagram in
Figure 13-1).

PCI Specification

13-2 ADSP-BF535 Blackfin Processor Hardware Reference

The PCI Bridge includes the PCI core controller, control and status mem-
ory-mapped registers, and the logic required to interface to the three
internal buses.

The PCI external interface (PADs in the block diagram) includes special
I/O drivers and dedicated power supplies that support the PCI electrical
characteristics. The PCI operates at frequencies up to 33 MHz at 3.3 V,
and is asynchronous with respect to the ADSP-BF535 processor system
clock. The PCI bus multiplexes data transfers on the same bus used for
address transfers and supports a maximum transfer rate of 132
MB/second.

PCI Specification
The PCI bus interface conforms to PCI Local Bus Specification Rev. 2.2.
The specification is maintained by the PCI Special Interest Group and can
be obtained from http://www.pcisig.com.

Figure 13-1. PCI Bridge Block Diagram

PCI CORE
CONTROLLER

SYSTEM
MMRS

IN
T
E
R
N
A
L
B
U
S

IN
T
E
R
F
A
C
E
S

PCI BRIDGE PADS

PCI CLOCK
(33 MHz)

SCLK

PCI BUSPCI BUS

PERIPHERAL
ACCESS BUS

EXTERNAL
ACCESS BUS

EXTERNAL
MASTERED BUS

http://www.pcisig.com

ADSP-BF535 Blackfin Processor Hardware Reference 13-3

PCI Bus Interface

The PCI specification refers to a 32-bit wide word as a double-word, and
to 16 bits as a word. This document defines 32 bits as a word, 16 bits as a
half word, and 8 bits as a byte.

PCI Device Function
The PCI device function supports a glueless logical and electrical interface
to a 3.3V PCI Revision 2.2-compliant bus platform (such as a PC) as a
single function device. This enables the development of intelligent PCI
peripheral systems based on the ADSP-BF535 processor. The
ADSP-BF535 processor PCI bus interface does not support multifunction
device applications; it supports one configuration space. The
ADSP-BF535 processor can also support a PCI/USB bridge function.

As a PCI device, the PCI controller can use the Memory DMA controller
to perform DMA transfers as required by the PCI host.

PCI Host Function
The ADSP-BF535 processor provides the PCI host (platform) functions
required to support and control numerous off-the-shelf PCI device func-
tions (ethernet controllers, bus bridges, and so on) in a system in which
the core processor is the host.

Processor Core Access to PCI Space
The Blackfin architecture defines only memory space; it does not define
I/O or configuration address spaces. The three memory spaces of PCI
space (memory, I/O, and configuration space) are mapped into the flat
32-bit core memory space. Since the PCI memory space is as large as the
full memory address space of the ADSP-BF535 processor, a segmented, or
windowed, approach must be employed, so that only portions of the PCI

External PCI Requirements

13-4 ADSP-BF535 Blackfin Processor Hardware Reference

address spaces are visible to the processor core at any one time. The dia-
gram in Figure 13-2 shows the ADSP-BF535 processor external memory
map, including the PCI-space components, and their address ranges.

External PCI Requirements
Although most functions are integrated into the ADSP-BF535 processor
PCI device, several are not, including:

• PCI bus arbitration. An external device, such as a programmable
array logic (PAL) device, is required to implement this function.

• Pull-up resistors on signals that may not always be driven to a valid
state.

• Non-volatile memory. The intent is that EE/flash PROM require-
ments for a PCI initiator can be supported through programmable
ROM attached to the EBIU.

• Direct method for selecting devices when configured in host mode.
The contents of the PCI_CBAP register are placed directly on the bus
when performing a configuration read or write. External hardware
is needed to generate device selection IDs (IDSELs). ID selecting
device 0 (the ADSP-BF535 processor device) results in a master
abort.

Device Mode Operation
The ADSP-BF535 processor is in device mode when the Host/device bit
in the PCI Bridge Control register is cleared (its default setting).

ADSP-BF535 Blackfin Processor Hardware Reference 13-5

PCI Bus Interface

Figure 13-2. PCI Memory Map

xE7FF FFFF

xEEFE 0000

x0000 0000

PCI Memory Space (128 MByte)

ASYNC Memory Bank 0 (64 MByte)

ASYNC Memory Bank 1 (64 MByte)

SDRAM Memory Bank 0
(16 MB-128 MByte)

SDRAM Memory Bank 1
(16 MB-128 MByte)

x2000 0000

x2400 0000

External Memory Map

SDRAM Memory Bank 2
(16 MB-128 MByte)

SDRAM Memory Bank 3
(16 MB-128 MByte)

x2FFF FFFF

ASYNC Memory Bank 2 (64 MByte)

x2800 0000

x2C00 0000

xE000 0000

xEEFE FFFF

xEEFF FFFC

PCI IO Space (64 KByte)

PCI Config Registers (64 KByte)

xEEFF FF00

xEEFF FFFF PCI Config Space Port (4 Bytes)

Note: Reserved off-chip memory areas are labeled in the diagram above. All other off-chip
system resources are addressable by both the core and the system.
* This reserved block does not exist if all four blocks of SDRAM are configured to their full
128 MByte size.

ASYNC Memory Bank 3 (64 MByte)

Reserved

Reserved

Reserved

Reserved *

PCI Address
Spaces

Device Mode Operation

13-6 ADSP-BF535 Blackfin Processor Hardware Reference

Outbound Transactions (ADSP-BF535 Processor as
PCI Initiator)

This section describes outbound transactions with the ADSP-BF535 pro-
cessor as the PCI initiator.

General Outbound Operation

Read and write transactions to PCI are achieved by first writing to the
appropriate Base Address register to position the mapping windows in
PCI address space. Write to the PCI_MBAP register for memory accesses, to
the PCI_IBAP register for I/O accesses, or to the PCI_CBAP register for con-
figuration accesses. After writing to the appropriate register, a read or
write to the appropriate data window initiates a PCI transaction.

For memory and I/O accesses, the address put onto the PCI Address/Data
bus (PCI AD) is a concatenation of the upper bits of the Base Address
pointer (MBAP or IBAP) and the lower bits of the load or store target
address. These lower bits are actually the offset into the static-sized PCI
Memory or I/O windows. Table 13-1 shows the PCI data windows for
outbound reads and writes.

For all outbound read and write transactions, the control signals of the
transactions are placed into a FIFO that is written in the SCLK domain and
read by the PCI core in the PCI clock domain. For writes, the data written

Table 13-1. Data Windows in EAB for Outbound Transactions

Name Lower Address Upper Address Size

Memory Data Window 0xE000 0000 0xE7FF FFFF 128 MB

I/O Data Window 0xEEFE 0000 0xEEFE FFFF 64 KB

Config Data Port 0xEEFF FFFC 0xEEFF FFFF 1 Word (32 bits)

ADSP-BF535 Blackfin Processor Hardware Reference 13-7

PCI Bus Interface

to the EAB bus is put into the master TX FIFO to be put onto the PCI
AD bus during the data phase. For reads, the PCI AD bus data is placed
into the master RX FIFO during the data phase.

Each of the data FIFOs is 8 32-bit words deep. The transaction FIFO is
4 transactions deep. Writes are posted as long as there is room in both the
transaction and the TX data FIFOs. Reads are delayed (slave inserts wait
states) until there is room in the transaction FIFO, then until the read
transaction makes it through to the PCI side of the FIFO, and then until
the data is returned through the RX FIFO. Thus, reads from PCI space
clear all three of the FIFOs.

If the transaction FIFO is full, all transactions are delayed until the next
spot in the FIFO is opened. Even if the transaction FIFO only has one ele-
ment in it, the TX FIFO could be either full or not have enough space for
the size burst being attempted, so the write is again delayed. Three status
bits have been provided in the PCI_STAT register that let you interrogate
whether the TX FIFO is full or empty and whether the transaction FIFO
is full. The PCI Master TX FIFO Empty status bit is sticky and can be
masked by the PCI_ICTL register to generate an interrupt to improve effi-
ciency when doing burst writes to PCI.

Outbound Error Detection and Reporting

All addresses between 0xE000 0000 and 0xEEFF FFFF are decoded to
select the PCI interface, but only part of this space is valid. There are four
windows in this space that have been marked for specific use by the PCI
interface. Three of these are defined in Table 13-1. The fourth consists of
the PCI configuration registers, from 0xEEFF FF00 through
0xEEFF FFFB. Any accesses made between these four valid areas (that is,
above 0xE000 0000, below 0xEEFF FFFF, and not within one of the win-
dows) results in an error. The logic in the PCI module generates a bus
error and completes the transaction without actually reading or writing
any data. The Unsupported EAB Access sticky bit in the PCI_STAT register
is set, and causes an interrupt if masked to do so in the PCI_ICTL register.

Device Mode Operation

13-8 ADSP-BF535 Blackfin Processor Hardware Reference

Any accesses that are valid on the EAB bus but cause fatal errors on PCI
do not result in a bus error, but the transaction completes without doing
any actual data reads or writes. A fatal error causes the PCI Fatal Error
sticky bit in the PCI_STAT register to be set, and an interrupt occurs to the
core if masked to do so in the PCI_ICTL register. PCI fatal errors occur in
these cases:

• The requested PCI target does not respond. This usually indicates
an invalid address. The core executes a master abort cycle.

• The requested PCI target terminates the cycle with a target abort.

• The requested PCI target responds with a PCI_DEVSEL#, but does
not follow with PCI_TRDY or PCI_STOP to allow the cycle to com-
plete. The master abandons the cycle after 128 cycles.

• The PCI target device retried beyond the retry count. The master
abandons the cycle after 128 retries.

If a parity error occurs for an access to the PCI bus during the actual trans-
action or at the end of the transaction, the PCI Parity Error sticky bit in
the PCI_STAT register is set. An interrupt to the core occurs if masked to
do so in the PCI_ICTL register.

Supported Transactions to PCI

The PCI interface is capable of handling these types of transactions:

• Single 8-bit, 16-bit, and 32-bit

• 4-beat incrementing 8-bit, 16-bit, and 32-bit bursts

• 8-beat incrementing 8-bit, 16-bit, and 32-bit bursts

ADSP-BF535 Blackfin Processor Hardware Reference 13-9

PCI Bus Interface

It is important to note that the PCI interface does not support wrapping
bursts. Any access identified as a wrap signals a bus error and sets the
Unsupported EAB Access bit in the PCI_STAT register. The interface treats
wrapping bursts as incrementing bursts, but this behavior should not be
relied upon for normal operation.

Since core cache burst transactions are wrapping bursts, all core access to
the PCI module must be cache inhibited. This is accomplished by correct
configuration of the core Cacheability Protection Lookaside Buffers
(CPLBs), which describe the access characteristics of the core memory
map. The data CPLB entry or entries used to describe the PCI memory
and I/O spaces must have the CPLB_L1_CHBL bit cleared. Note that core
instruction fetch from PCI space is not supported.

The PCI protocol is incapable of doing a 4-sequential byte burst, or a
2-sequential 16-bit burst. For bursts smaller than 32 bits, the data is
packed into words and bursted to PCI if necessary. Table 13-2 shows the
PCI transaction produced for each supported burst size.

Table 13-2. Burst Transaction Conversion to PCI

Supported EAB Burst Transaction Number and Type of PCI Transaction
Produced

4-beat incrementing 8-bit Single 32-bit word transaction

8-beat incrementing 8-bit Two 32-bit word bursts

4-beat incrementing 16-bit Two 32-bit word bursts

8-beat incrementing 16-bit Four 32-bit word bursts

4-beat incrementing 32-bit Four 32-bit word bursts

8-beat incrementing 32-bit Eight 32-bit word bursts

Device Mode Operation

13-10 ADSP-BF535 Blackfin Processor Hardware Reference

Inbound Transactions (ADSP-BF535 Processor as
PCI Target)

This section describes inbound transactions with the ADSP-BF535 pro-
cessor as the PCI target.

General Inbound Operation

To participate on a PCI bus as a target, the ADSP-BF535 processor must
first be configured. First, the processor core must write to the Memory
and I/O BAR Mask registers. Every bit set by the core in each of these
masks allows the corresponding bit in the memory base address register
(BAR) or I/O BAR, respectively, to be written by the PCI host during
configuration. The number of upper bits writable by the PCI determines
the size in bits of the base address register that configuration software on
the PCI side programs into the BAR. This determines the size of the win-
dow for which the PCI interface can claim the transaction as the intended
target.

Each bit of the mask registers must be set to 1 by the processor core, start-
ing with the uppermost bit (bit 31). To prevent the core from claiming
either memory or I/O transactions, the corresponding mask should be
programmed with all 0s (the default state). The pattern of all 1s is
assumed by the PCI interface to be contiguous, stray 0s make the bit non-
writable, and cause unpredictable results.

The processor core must also program the PCI_TMBAP and PCI_TIBAP regis-
ters. These registers are the base address pointers (BAPs) for incoming
memory and I/O transactions, respectively. The number of bits pro-
grammed into the upper portion of each of these registers must be the
same as the number of bits set in the corresponding mask. Any bits written
in the space where 0s exist in the mask are ignored, but the write to the
BAP completes successfully. If memory or I/O transactions are not
needed, then the corresponding BAP register is ignored and does not need
to be programmed. When the processor core has completed writing to

ADSP-BF535 Blackfin Processor Hardware Reference 13-11

PCI Bus Interface

both masks and both BAPs, it should allow PCI configuration software
running on the host processor to configure the PCI interface from the PCI
bus. This is done by setting the PCI Enable bit in the PCI_CTL register.
Any configuration accesses to the PCI module before this bit is set are
retried by the PCI module. It is a stipulation of the PCI protocol that this

bit must be set. That is, the device has up to 225 PCI cycles to initialize
itself after PCI_RST# is asserted.

When PCI configuration software has configured the PCI interface, it is
configured with a memory and/or I/O address range for which it claims
the current transaction as the target.

There is no incoming transaction FIFO, so only one transaction can occur
at a time. Each of the data FIFOs is 8 32-bit words deep. If a burst
greater than 8 words comes in, then each time the FIFO fills up, the PCI
bus is retried until space is available for the next word.

Two status bits in the PCI_STAT register are set whenever the Slave TX
Data FIFO or Slave RX Data FIFO have data written into them. These
bits are sticky and can be configured by the PCI_ICTL register to generate
interrupts. They can be used to determine PCI target bandwidth effi-
ciency or for general debugging of PCI target operation.

The PCI interface can also perform fast back-to-back accesses, which
make multiple word accesses (not bursts) more efficient by removing the
usually mandatory single idle cycle between transfers. The PCI interface
can only perform fast back-to-back transfers when configuration software
sets the Fast Back-to-Back Enable bit in the command register of the core
PCI configuration space. This bit is set when all of the slaves on the PCI
bus are fast back-to-back capable. The ADSP-BF535 processor must also
enable its own ability to do fast back-to-back transfers by setting the Fast
Back-to-Back Enable bit in the PCI_CTL register. This bit may be set and
cleared at any time during operation to enable and disable fast
back-to-back transfers whenever necessary.

Device Mode Operation

13-12 ADSP-BF535 Blackfin Processor Hardware Reference

Inbound Error Detection and Reporting

Inbound transactions to ADSP-BF535 processor resources that are not
accessible to the PCI bus result in an error. Reads to non-accessible
resources result in the Error on Inbound Read bit being set in the
PCI_STAT register and an interrupt to the processor core, if masked to do
so in the PCI_ICTL register. The waiting read on the PCI side is aborted.
Writes to non-accessible resources result in the Error on Inbound Write
bit being set in the PCI_STAT register and an interrupt to the core, if
masked to do so in the PCI_ICTL register. Writes are posted so that the
transaction may already be finished. However, if the transaction (for
example, a burst) is long enough, it is aborted by the error.

Supported Transactions From PCI

The PCI interface supports single 32-bit word memory and I/O accesses.
It also supports memory bursts of any number of 32-bit words. However,
the data FIFOs for inbound accesses are only 8 words deep, and if the
write data FIFO becomes full in the middle of a burst, the interface retries
the PCI transaction. I/O bursts to the ADSP-BF535 processor are not
supported. The PCI interface also supports inbound fast back-to-back
transactions, a method of doing more than one single 32-bit word transfer
quickly, without the usual idle cycle between transfers. Inbound fast
back-to-back transfers are passed through as ordinary single word accesses.

Unsupported Transactions From PCI

PCI as a protocol is capable of addressing any combination of the 4 bytes
in a single word using its byte enable bits. This means that the
ADSP-BF535 processor could receive a transfer that it does not support,
such as a read or a write to bytes 0 and 2 of a word. On reads, this is not a
problem because the whole word can be read and the master of the trans-
action can take the data it wants.

ADSP-BF535 Blackfin Processor Hardware Reference 13-13

PCI Bus Interface

A problem arises on writes because the internal bus protocols employed on
the ADSP-BF535 processor support only byte, half word, and word
transfers. In an effort to avoid the complexity of breaking writes into mul-
tiple transactions, all writes are assumed to have contiguous byte enables
and the number of bits written to is rounded up to the nearest supported
transfer size. This means that attempting to write from PCI to only the
first and third bytes results in writing to the whole word, with possible
corruption of data.

Host Mode Operation
When the ADSP-BF535 processor is in host mode, the core acts as the sys-
tem processor with the PCI interface acting as its host-to-PCI bridge. The
ADSP-BF535 processor is put into host mode by setting the Host/Device
Switch bit in the PCI_CTL register. In host mode, the core must perform
PCI configuration on any devices attached to the PCI bus. The core must
also configure the ADSP-BF535 processor PCI configuration space, since
it is not accessible from the PCI bus side in host mode. The programmer
should carefully review the values put into the PCI configuration registers
to be sure that all required functionality is enabled correctly.

Outbound Transactions (ADSP-BF535 Processor as
PCI Initiator)

Outbound transactions in host mode are accomplished by the same
method as in device mode. The only difference is that the ADSP-BF535
processor is responsible for configuring the devices on the PCI bus for cer-
tain memory ranges.

Host Mode Operation

13-14 ADSP-BF535 Blackfin Processor Hardware Reference

Inbound Transactions (ADSP-BF535 Processor as
PCI Target)

Inbound transactions in host mode are accomplished by the same method
as in device mode. However, only memory accesses are claimed by the PCI
interface, and PCI memory space is mapped directly to ADSP-BF535
processor memory space. In other words, the ADSP-BF535 processor
memory map becomes the system memory map, and all resources in the
ADSP-BF535 processor memory map that are accessible from PCI lie at
the same address in PCI memory space. In host mode, a register
(PCI_HMCTL) is provided at the bottom of the PCI configuration registers
to configure which ADSP-BF535 processor resources are accessible from
PCI.

This register contains four enable bits, one for each region of
ADSP-BF535 processor space that can be used for PCI accesses in host
mode. The regions are system MMRs, L2 memory, asynchronous mem-
ory, and SDRAM. The register also contains two size fields, one for the
asynchronous memory and one for SDRAM memory, that specify how
much of each of these spaces is available to PCI. For the asynchronous
memory region, the size field is 2 bits and specifies the number of contig-
uous banks that are accessible. For the SDRAM region, the size field is 5
bits and specifies the number of contiguous 32 MB blocks that are accessi-
ble. These size fields are 0 based. This means, for example, enabling
asynchronous memory and leaving its size field all 0s results in a single
bank enabled. The size field can be thought of as the “size minus one”
field. You must write a 0 to the enable bit to completely disable asynchro-
nous memory or SDRAM. This functionality allows the ADSP-BF535
processor to prevent the PCI from accessing space above the valid memory
region when SDRAM or asynchronous memory is not fully populated. It
also allows the ADSP-BF535 processor to protect upper parts of SDRAM
or asynchronous memory from PCI accesses. Any space between these 4
regions is available for assignment to PCI devices during configuration.
Any space made available by disabling one of these regions or by sizing
down one of the RAM regions is also available for assignment to PCI

ADSP-BF535 Blackfin Processor Hardware Reference 13-15

PCI Bus Interface

devices. Do not assign an address range so that one of the enabled regions
in the ADSP-BF535 processor overlaps with any external PCI device.
Doing so would cause contention on the PCI bus, since both the
ADSP-BF535 processor and the external PCI device would assert DEVSEL#
to claim the transaction.

Outbound Configuration Transactions
When in host mode, the ADSP-BF535 processor is responsible for the
configuration of the devices on the PCI bus. The ADSP-BF535 processor
is responsible for determining the memory or I/O window size for each
device, and assigning it a base address where there is sufficient room for
the device window. Because the ADSP-BF535 processor only claims trans-
actions in memory space when in host mode, all of the I/O space is
available for the ADSP-BF535 processor to assign to different devices on
the bus. Memory, however, must be allocated with care. The default con-
figuration of the PCI_HMCTL register disables all ADSP-BF535 processor
resources: system MMRs, asynchronous memory, and SDRAM. Change
this configuration if the PCI system needs these resources. External
devices’ need for memory space must be balanced against the
ADSP-BF535 processor’s need for memory space.

To configure devices on the PCI bus, the ADSP-BF535 processor must
perform Type 0 and Type 1 transactions, depending on whether the tar-
geted device is on the bus directly connected to the PCI core or is on a bus
on the other side of a PCI-to-PCI bridge. See the PCI specification for
more information. The PCI core does not behave as a normal bridge—it
does not convert a Type 1 transaction into a Type 0 transaction if the bus
number connected to the PCI core matches the bus number in the config-
uration address. The PCI core behavior is consistent with that of the
host-to-PCI-bridge behavior.

Reset Behavior and Control

13-16 ADSP-BF535 Blackfin Processor Hardware Reference

The PCI core does not generate IDSEL lines for the bus connected to it.
For accomplishing configuration accesses, the PCI_CBAP address register
and the accompanying Configuration Data port are used. The PCI_CBAP
register contents are placed directly on the address bus during the address
phase, to allow for maximum flexibility. The system designer must decide
how to implement the IDSEL lines. This can be done with the upper
address bits, with external logic, or by other means, and the addresses in
the PCI_CBAP must be formatted according to the system design
requirements.

Reset Behavior and Control
The PCI interface is a bridge between the PCI and the ADSP-BF535 pro-
cessor systems, so it must gracefully handle a reset from either system in
both host and device modes. The PCI reset signal (PCI_RST) comes into
the ADSP-BF535 processor and resets some registers in the PCI clock
domain. PCI registers that are not affected by a PCI reset are PCI_CFG_DIC,
PCI_CFG_VIC, PCI_CFG_STAT, PCI_CFG_CMD, PCI_CFG_MLT, PCI_CFG_CLS,
PCI_CFG_MBAR, and PCI_CFG_IBAR. It signals all state machines interfacing
the PCI with the internal buses to reset to IDLE. This enables the PCI
module to completely recover from a PCI_RST, even if it was asserted dur-
ing a transaction to or from the ADSP-BF535 processor. The assertion of
PCI_RST sets the PCI Reset bit of the PCI_STAT register, and generates an
interrupt to the core if masked to do so in the PCI_ICTL register. This
enables the core to recognize what has happened, especially in the case of
the reset being asserted during a transaction. A system reset running to the
PCI module within the ADSP-BF535 processor resets all logic in the PCI
module, including the registers and state machines in the PCI core. This
method enables PCI core logic to be reset during the reset of either sys-
tem. It also allows the surrounding logic to return to a known state but
register the PCI_RST and only completely reset during an ADSP-BF535
processor reset.

ADSP-BF535 Blackfin Processor Hardware Reference 13-17

PCI Bus Interface

The ADSP-BF535 processor can also cause a reset to the PCI using the
two bits provided in the PCI_CTL register. The first bit is the RST to PCI
Enable bit, which is the output enable on the PCI_RST pad. The second bit
is the RST to PCI bit, which when set, causes the PCI_RST signal to be
asserted. Resetting the PCI system in this manner has the same effect on
the PCI core and surrounding logic as the PCI_RST input signal. The logic
of the PCI module does not restrict the ADSP-BF535 processor from
causing a PCI_RST in device mode, but doing this is recommended only
when the ADSP-BF535 processor is in host mode.

Note all PCI signals are active low, but the bits in the PCI_CTL and the
PCI_STAT registers are active high. This means that setting the RST to PCI
bit in the PCI_CTL register asserts PCI_RST, and the PCI Reset bit in the
PCI_STAT register is set when the PCI_RST line is asserted.

Interrupt Behavior and Control
All four interrupt lines from PCI (INTA-INTD) have associated sticky status
bits in the PCI_STAT register. Whenever one of these interrupt lines is
asserted, the appropriate bit is set and an interrupt is generated if masked
to do so in the PCI_ICTL register. These bits are valid in host or device
mode, but are most useful when the ADSP-BF535 processor is acting as
the system host.

The INTA interrupt line is defined as an input/output because the
ADSP-BF535 processor is capable of generating an interrupt to the system
processor by setting the INTA to PCI bit in the PCI Bridge Control regis-
ter. This bit asserts INTA in device mode or host mode, but it is most
useful in device mode. In host mode it makes more sense to use a core
interrupt, if necessary.

Note all PCI signals are active low, but the bits in the PCI_CTL and the
PCI_STAT registers are active high. So setting the INTA to PCI bit asserts
the INTA signal and the INTA-INTD bits are set when the corresponding line
is asserted.

PCI Programming Model

13-18 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Programming Model
The PCI interface programming model includes memory-mapped control
and status registers, as well as memory-mapped PCI spaces (configuration,
I/O, and memory). The memory-mapped PCI spaces are described in
“Processor Core Access to PCI Space” on page 13-3. This section
describes the memory-mapped control and status registers.

There are two sets of memory-mapped registers (MMRs) on the
ADSP-BF535 processor. The control and status registers clocked in the
internal ADSP-BF535 processor system clock domain are mapped into the
system MMR space. The control and status registers clocked in the PCI
clock domain are mapped into the PCI Configuration Registers memory
range (see the PCI memory map in Figure 13-2 on page 13-5). Each
group of registers is described in the sections that follow.

Bus Operation Ordering
Processor core accesses to the PCI interface always occur in the order that
the processor core initiated the system access. This implies:

• Since the processor core allows reads to occur before writes, with
respect to instruction order, the programmer must explicitly order
the load and store instruction by inserting an SSYNC instruction
between them in the cases where a PCI read must see the effect of a
previous PCI write. This is not required if the load and store
address and size are the same, for example, a write to a PCI Status
register followed by a read from the same register.

• ADSP-BF535 processor hardware does not enforce ordering among
the EAB, PAB, and EMB buses. Software must explicitly manage
any coherency issues among these buses. Shared resources should
be protected by software locks. With respect to program order,
EAB reads and PAB accesses are always completed in order, since
the core is stalled until they complete.

ADSP-BF535 Blackfin Processor Hardware Reference 13-19

PCI Bus Interface

System MMR Control and Status
Registers

This section describes each of the memory-mapped registers (MMRs) for
PCI. All defined registers are writable and readable. Reserved bits within a
register always read 0. Do not access reserved register space. The address
range for these registers is 0xFFC0 4000 - 0xFFC0 43FF. Refer to “System
MMR Assignments” on page B-1 for the address of a particular register.

The PCI peripheral also has several registers mapped into the memory
space. This is because these registers reside in the PCI clock domain,
therefore they have high access latency from the SCLK domain.

See “Configuration Space Control and Status Registers” on page 13-26 for
a description of the configuration space MMRs. Also see “System MMR
Assignments” on page B-1 for the PCI MMRs mapped into the PAB sys-
tem MMR space.

System MMR Control and Status Registers

13-20 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Bridge Control Register (PCI_CTL)
This register, shown in Figure 13-3, controls the operation of the applica-
tion interface logic to the PCI core.

It is used to put the interface in host or device mode. This register
includes the PCI Enable bit used to enable PCI access after the configura-
tion registers have been set up, and it includes the enable bit for outbound
fast back-to-back transactions.

Figure 13-3. PCI Bridge Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Bridge Control Register (PCI_CTL)

0 - Device operation
1 - Host operation

PCI Enable Bit

Fast Back-to-Back Enable

INTA to PCI Enable

Host/Device Switch

INTA to PCI

RST to PCI Enable

RST to PCI

0 - PCI disabled on the PCI
side

1 - PCI enabled on the PCI
side. Set this only after
setting up the
configuration registers.

0 - Do not generate a reset to
PCI (no action)

1 - Generate a reset of the PCI
system by pulling the PCI_RST
pad low (active low)

0 - Disable PCI_RST pad as an
output

1 - Enable PCI_RST pad as an
output

0 - Do not generate interrupt to
PCI (no action)

1 - Generate interrupt to PCI on
the INTA line by pulling it low
(active low)

0 - No fast back-to-back
transfers

1 - Perform fast back-to-back
transfers for as long as
this bit is set

0 - Disable PCI_INTA pad as
an output

1 - Enable PCI_INTA pad as
an output

Reset = 0x0000 00000xFFC0 4000

ADSP-BF535 Blackfin Processor Hardware Reference 13-21

PCI Bus Interface

PCI Status Register (PCI_STAT)
The PCI_STAT register includes all PCI status flags visible to the core (see
Figure 13-4).

Figure 13-4. PCI Status Register

00000000000000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Status Register (PCI_STAT)

0 - No interrupt
1 - Interrupt signaled on INTA

0 - No interrupt
1 - Interrupt signaled on INTC

0 - No parity error
1 - Parity error on PCI

0 - No fatal error
1 - Fatal error condition

occurred

0 - No reset
1 - Reset occurred on PCI

0 - No interrupt
1 - Interrupt signaled on INTD

0 - No interrupt
1 - Interrupt signaled on INTB

PCI Slave RX FIFO got
Data

PCI Slave TX FIFO got
Data
0 - No data
1 - Data written to slave

transmit FIFO

0 - No data
1 - Data written to slave

receive FIFO

0 0

INTA

INTB

INTC

INTD

PCI Parity Error

PCI Fatal Error

PCI Reset

PCI Master TX FIFO Empty

PCI Serr

Unsupported EAB Access

Error on Inbound Write

Error on Inbound Read

Memory Write Invalidate

PCI Master Queue Full

PCI Master TX FIFO Full

0 - Not empty
1 - Transmit FIFO empty

0 - No error
1 - Error

0 - No error
1 - Attempt to read/write to

reserved space on EHB

0 - No error
1 - Error writing to ADSP-BF535

0 - No error
1 - Error reading from ADSP-BF535

0 - No memory write invalidate
1 - A memory write invalidate

transaction occurred to ADSP-BF535

0 - Queue not full
1 - Master transaction FIFO full

0 - Not full
1 - Transmit FIFO full for master

operation

Reset = 0x0000 00000xFFC0 4004

System MMR Control and Status Registers

13-22 ADSP-BF535 Blackfin Processor Hardware Reference

Each of these flags can also generate a PCI interrupt to the core by setting
the corresponding bit in the PCI_ICTL register. The PCI Master Queue
Full bit and the PCI Master TX FIFO Full bit are status bits only. All the
other bits in this register can be configured to cause interrupts via the
PCI_ICTL register. These bits are sticky and all are write-1-to-clear. If these
interrupts are enabled in the PCI_ICTL register, they should be cleared in
the interrupt service routine to prevent them from continuously generat-
ing interrupts, by writing a 1 to the appropriate bits.

PCI Interrupt Controller Register (PCI_ICTL)
The bits in this register, shown in Figure 13-5, enable the flags in PCI Sta-
tus register, except the PCI Master Queue Full bit and the PCI Master TX
FIFO Empty bit. Those two bits are status bits only.

Figure 13-5. PCI Interrupt Controller Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

For all bits, 0 - Not enabled, 1 - Enabled.

PCI Slave RX FIFO got
Data Enable

PCI Slave TX FIFO got
Data Enable

INTA Enable

INTB Enable

INTC Enable

INTD Enable

PCI Parity Error Enable

PCI Fatal Error Enable

PCI Reset Enable

PCI Master TX FIFO
Empty Enable

PCI Serr Enable

Unsupported EAB Access
Enable

Error on Inbound Write Enable

Error on Inbound Read Enable

Memory Write Invalidate Enable

Reset = 0x0000 0000

PCI Interrupt Controller Register (PCI_ICTL)

0xFFC0 4008

ADSP-BF535 Blackfin Processor Hardware Reference 13-23

PCI Bus Interface

PCI Outbound Memory Base Address Register
(PCI_MBAP)

This register, shown in Figure 13-6, is the PCI memory base address
pointer that is prepended to the EAB address for outgoing PCI memory
transfers. The 5-bit PCI Space Address is prepended to the 27-bit offset
into the PCI memory space window in the ADSP-BF535 processor EAB
space. Write to this register before attempting a read or write to or from
PCI memory space.

PCI Outbound I/O Base Address Register
(PCI_IBAP)

This register, shown in Figure 13-7, is the I/O base address pointer.

Figure 13-6. PCI Outbound Memory Base Address Register

Figure 13-7. PCI Outbound I/O Base Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound Memory Base Address Register (PCI_MBAP)

5-bit PCI Space
Address

Reset = 0x0000 00000xFFC0 400C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound Memory Base Address Register (PCI_IBAP)

16-bit PCI Space Base
Address

Reset = 0x0000 00000xFFC0 4010

System MMR Control and Status Registers

13-24 ADSP-BF535 Blackfin Processor Hardware Reference

This address is prepended to the EAB address for outgoing PCI I/O trans-
fers. The 16-bit PCI Space Base Address is prepended to the 16-bit offset
into the PCI I/O space window in ADSP-BF535 processor EAB space.
Write to this register before attempting a read or write to or from PCI I/O
space.

PCI Outbound I/O Configuration Address Register
(PCI_CBAP)

This register, shown in Figure 13-8, is the PCI configuration space
address port. The contents of this register are put directly on the PCI AD
bus during the address phase for outgoing PCI configuration space
transfers. The register can then be used for Type 1 or Type 0 addresses
(with IDSELs on the upper bits) or a combination of the two address types
if IDSEL generation is moved off chip. The software must generate Type 1
and Type 0 accesses. The core has no logic for conversion or IDSEL gener-
ation. External hardware is needed to generate IDSELs.

There is no direct method for selecting devices for doing configuration in
host mode.

Figure 13-8. PCI Outbound I/O Configuration Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Outbound I/O Configuration Address Register (PCI_CBAP)

I/O Configuration
Address [31:16]

I/O Configuration
Address [15:0]

Reset = 0x0000 00000xFFC0 4014

ADSP-BF535 Blackfin Processor Hardware Reference 13-25

PCI Bus Interface

PCI Inbound Memory Base Address Register
(PCI_TMBAP)

This register specifies a base address in the Blackfin ADSP-BF535 proces-
sor’s memory space. This is the base address of the window that a host
processor may use to set for access to a buffer in PCI memory space. This
register has meaning only when the PCI interface is configured as a device.
The address written to this register by the Blackfin processor core is the
start address of the section of memory that will be used by the host proces-
sor on the PCI bus for this purpose. The size of the window is specified by
the mask loaded into the PCI_DMBARM register. The base address loaded
into the PCI_TMBAP register must be aligned on a boundary that is an inte-
ger multiple of this size.

The MMR address for this register is 0xFFC0 4018. Its reset value is
0x0000 0000.

PCI Inbound I/O Base Address Register (PCI_TIBAP)
This register specifies a base address in the Blackfin ADSP-BF535 proces-
sor’s memory space. This is the base address of the window that a host
processor may use to set for access to a buffer in PCI I/O space. This reg-
ister has meaning only when the PCI interface is configured as a device.
The address written to this register by the Blackfin processor core is the
start address of the section of memory that will be used by the host proces-
sor on the PCI bus for this purpose. The size of the window is specified by
the mask loaded into the PCI_DIBARM register. The base address loaded
into the PCI_TIBAP register must be aligned on a boundary that is an inte-
ger multiple of this size.

The MMR address for this register is 0xFFC0 401C. Its reset value is
0x0000 0000.

Configuration Space Control and Status Registers

13-26 ADSP-BF535 Blackfin Processor Hardware Reference

Configuration Space Control and Status
Registers

This section describes each of the MMRs for PCI that are accessible in the
PCI Configuration Registers address space. All defined registers are writ-
able and readable. Reserved bits within a register read 0. Do not access
reserved register name space. The address range for these registers is
0xEEFF FF00 - 0xEEFF FFFF. Refer to “System MMR Assignments” on
page B-1 for the address of a particular register.

The configuration address space-based register space includes all PCI
clock domain MMRs for the PCI peripheral. This includes the PCI device
basic configuration registers consisting of sixty-four 32-bit words.

This register space also includes the memory space and I/O space BAR
masks. These registers define the size of the respective memory areas made
available to the PCI bus when the PCI peripheral functions as a PCI
device. The corresponding BARs are part of the PCI configuration space
and are programmed by the PCI bus host/bridge.

PCI Device Memory BAR Mask Register
(PCI_DMBARM)

This register is a bit mask that specifies the size of the window available to
a host processor on the PCI bus for access into the Blackfin processor’s
memory space using memory space PCI transactions. The PCI_DMBARM reg-
ister is shown in Figure 13-9. It is filled by the Blackfin processor core
with 1s starting from the most significant bit (bit 31) down to the bit
position corresponding to the window size available to the host processor.
For example, if a 16 MB window is available for the host to use as a frame
buffer in the Blackfin processor’s memory space, bits 31 through 24 would
contain 1s and bits 0 through 23 would contain 0s. Bits 0 through 3 of
this register are not writable and always contain 0s. As a result, the small-
est non zero window that can be specified is 16 bytes long. Similarly, bit

ADSP-BF535 Blackfin Processor Hardware Reference 13-27

PCI Bus Interface

31 must always be used, limiting the largest window to 2 GB. Writing all
0s to this register disables PCI memory space access by external bus
masters.

During configuration, the PCI host processor loads the PCI_CFG_MBAR reg-
ister using this mask, setting the base address in PCI memory space of the
window into the Blackfin processor’s memory system.

This register has meaning only when the PCI interface is configured as a
device.

PCI Device I/O BAR Mask Register (PCI_DIBARM)
This register is a bit mask that specifies the size of the window available to
a host processor on the PCI bus for access into the Blackfin processor’s
memory space using I/O space PCI transactions. The PCI_DIBARM register
is shown in Figure 13-10. It is filled by the Blackfin processor core with 1s
starting from the most significant bit (bit 31) down to the bit position
corresponding to the window size available to the host processor. For
example, if a 64 byte window is available for the host to use as an I/O win-
dow in the Blackfin processor’s memory space, bits 31 through 6 would

Figure 13-9. PCI Device Memory BAR Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Bits [3:0] are reserved and always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Size of Memory
Window[31:16]

PCI Device Memory BAR Mask Register (PCI_DMBARM)

Size of Memory
Window[15:4]

0xEEFF FF00
Reset = Never Reset
on PCI Reset

Configuration Space Control and Status Registers

13-28 ADSP-BF535 Blackfin Processor Hardware Reference

contain 1s and bits 0 through 5 would contain 0s. Bits 0 and 1 of this reg-
ister are not writable and always contain 0s. As a result, the smallest
non-zero window that can be specified is 4 bytes long. Similarly, bit 31
through 8 must always be used, limiting the largest window to 256 bytes.
Writing all 0s to this register disables PCI I/O space access by external bus
masters.

During configuration, the PCI host processor loads the PCI_CFG_IBAR reg-
ister using this mask, setting the base address in PCI I/O space of the
window into the Blackfin processor’s memory system.

This register has meaning only when the PCI interface is configured as a
device.

Figure 13-10. PCI Device I/O BAR Mask Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Bits [1:0] are reserved and always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0X X X X X X X X X X X X X X X

Size of I/O Window[31:16]

PCI Device I/O BAR Mask Register (PCI_DIBARM)

Size of I/O Window[15:2]

0xEEFF FF04
Reset = Never Reset
on PCI Reset

ADSP-BF535 Blackfin Processor Hardware Reference 13-29

PCI Bus Interface

PCI Configuration Device ID Register
(PCI_CFG_DIC)

This register, shown in Figure 13-11, is the Device ID from the PCI con-
figuration registers.

It is not used in host mode. Program this register before enabling the PCI
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-11. PCI Configuration Device ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 1 0 1 0 1 0 0 1 1 0 1 0

PCI Configuration Device ID Register (PCI_CFG_DIC)

Device ID[15:0]

Reset = 0x0000 15350xEEFF FF08

Configuration Space Control and Status Registers

13-30 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Vendor ID Register
(PCI_CFG_VIC)

The PCI_CFG_VIC register, shown in Figure 13-12, contains the Vendor
ID from the PCI configuration registers.

It is not used in host mode. Program this register before enabling the PCI
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-12. PCI Configuration Vendor ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 1 0 0 0 1 1 1 0 1 0 1 0

PCI Configuration Vendor ID Register (PCI_CFG_VIC)

Vendor ID[15:0]

Reset = 0x0000 11D40xEEFF FF0C

ADSP-BF535 Blackfin Processor Hardware Reference 13-31

PCI Bus Interface

PCI Configuration Status Register (PCI_CFG_STAT)
This register, shown in Figure 13-13, is the status register for PCI config-
uration registers.

The information in this register applies to both host mode and device
mode. For more information, see the PCI Local Bus Specification Rev.
2.2.

Figure 13-13. PCI Configuration Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 1 0 1 1 0 0 0 0 0 0

PCI Configuration Status Register (PCI_CFG_STAT)

0 - Not fast back-to-back
capable

1 - Fast back-to-back capable

00 - Fast
01 - Medium
10 - Slow
11 - Reserved

0 - No master data parity
1 - Master data parity

Fast Back-to-Back
Capable

Master Data Parity

DEVSEL Timing[1:0]

Detected Parity Error

Signaled System Error

Received Master Abort

Received Target Abort

0 - No parity error detected
1 - Parity error detected

0 - No system error signaled
1 - System error signaled

0 - No master abort received
1 - Master abort received

0 - No target abort received
1 - Target abort received

0 - No target abort signaled
1 - Target abort signaled

Signaled Target Abort

Reset = 0x0000 05800xEEFF FF10

Configuration Space Control and Status Registers

13-32 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Command Register
(PCI_CFG_CMD)

This register, shown in Figure 13-14, is the command register from the
PCI configuration registers.

Figure 13-14. PCI Configuration Command Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Command Register (PCI_CFG_CMD)

0 - Disable response to I/O
access

1 - I/O decoders respond to
access

0 - Disables bus mastering
by device

1 - Enables device as bus
master

0 - Disable response to memory
accesses

1 - Memory decoders respond
to accesses

I/O Space

Memory Space

Bus Master

Fast Back-to-Back Enable

SERR Enable

Stepping Control - RO

Parity Error Response

0 - Disabled
1 - Fast back-to-back enabled

0 - Disabled
1 - Device enabled to generate SERR

0 - Disabled
1 - Address line stepping enabled

0 - Device does not report parity errors
1 - Device enabled to generate parity

errors

0 - Ignore special cycles
1 - Device enabled to monitor

for PCI special cycles

Special Cycles - RO

0 - Device uses memory write
command instead of
memory write and invalidate
command

1 - Device enabled for memory
write and invalidate
command

Memory Write and Invalidate -
RO

VGA Palette Snoop - RO

0 - Snooping disabled
1 - Device performs snooping of I/O

writes to the VGAs color palette
registers

Reset = 0x0000 00000xEEFF FF14

ADSP-BF535 Blackfin Processor Hardware Reference 13-33

PCI Bus Interface

This register is always writable, except for the reserved bits. Write in host
mode only during configuration of the PCI system. In device mode, the
system processor writes to this register. For more information, see the PCI
Local Bus Specification Rev. 2.2.

PCI Configuration Class Code Register
(PCI_CFG_CC)

This register, shown in Figure 13-15, holds the class code from the PCI
configuration registers. It is not used in host mode. Program this register
before enabling the PCI in device mode. For more information, see the
PCI Local Bus Specification Rev. 2.2.

Figure 13-15. PCI Configuration Class Code Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Class Code Register (PCI_CFG_CC)

Class Code[23:16]

Class Code[15:0]

Reset = 0x0000 00000xEEFF FF18

Configuration Space Control and Status Registers

13-34 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Revision ID Register
(PCI_CFG_RID)

This register, shown in Figure 13-16, holds the revision ID from the PCI
configuration registers.

It is not used in host mode. Program this register before enabling the PCI
in device mode. For more information, see the PCI Local Bus Specifica-
tion Rev. 2.2.

Figure 13-16. PCI Configuration Revision ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Revision ID Register (PCI_CFG_RID)

Revision ID[7:0]

Reset = 0x0000 00000xEEFF FF1C

ADSP-BF535 Blackfin Processor Hardware Reference 13-35

PCI Bus Interface

PCI Configuration BIST Register (PCI_CFG_BIST)
This register, shown in Figure 13-17, holds the value for the built-in self
test (BIST) from the PCI configuration registers.

The PCI core does not support BIST. For more information, see the PCI
Local Bus Specification Rev. 2.2.

Figure 13-17. PCI Configuration BIST Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration BIST Register (PCI_CFG_BIST)

BIST[7:0]

Reset = 0x0000 00000xEEFF FF20

Configuration Space Control and Status Registers

13-36 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Header Type Register
(PCI_CFG_HT)

This register, shown in Figure 13-18, holds the header type from the PCI
configuration registers.

The PCI core can only be single function and the configuration registers
conform to Type 0. For more information, see the PCI Local Bus Specifi-
cation Rev. 2.2.

PCI Configuration Memory Latency Timer Register
(PCI_CFG_MLT)

The PCI_CFG_MLT register, shown in Figure 13-19, holds the memory
latency timer from the PCI configuration registers. It is always writable,
except where reserved, and for two hardwired bits. Write to this register
only during PCI system configuration in host mode. In device mode, the
system processor writes to this register. The lowest two bits are read only
and hardwired to 0 so that latency values are always in increments of four
PCI clock cycles.

Figure 13-18. PCI Configuration Header Type Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Header Type Register (PCI_CFG_HT)

0000000 - Type 0

0 - Single
1 - Multifunction

Header Type[6:0] - RO

Single/Multifunction

Reset = 0x0000 00000xEEFF FF24

ADSP-BF535 Blackfin Processor Hardware Reference 13-37

PCI Bus Interface

PCI Configuration Cache Line Size Register
(PCI_CFG_CLS)

The PCI_CFG_CLS register, shown in Figure 13-20, holds the cache line size
from the PCI configuration registers. It is writable from the PCI and from
the EAB side. It is unused because the memory write Invalidate (MWINV)
commands are disabled in the control register and the Inbound Cacheline
Wrap is not supported by the ADSP-BF535 processor. For more informa-
tion, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-19. PCI Configuration Memory Latency Timer Register

Figure 13-20. PCI Configuration Cache Line Size Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Memory Latency Timer Register (PCI_CFG_MLT)

Latency Timer[7:2]

Reset = 0x0000 0000

Latency Timer[1:0] - RO

0xEEFF FF28

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Cache Line Size Register (PCI_CFG_CLS)

Cache Line Size[7:0]

Reset = 0x0000 00000xEEFF FF2C

Configuration Space Control and Status Registers

13-38 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Memory Base Address Register
(PCI_CFG_MBAR)

The PCI_CFG_MBAR register, shown in Figure 13-21, holds the memory
base address from the PCI configuration registers. The lower 4 bits are
hardcoded, and tell the configuration software to use this register for a
prefetchable memory base address and to place it in the lower 4 Gbytes
(32 bits) of address space. The PCI_DMBARM register configures the upper
bits to be writable from the PCI side. Configuration software detects the
size requested by looking at the number of writable upper bits and places a
base address in this space. This register is unused in Host mode. For more
information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-21. PCI Configuration Memory Base Address Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

PCI Configuration Memory Base Address Register (PCI_CFG_MBAR)

Base Address [31:16]

Base Address [15:4]

00 - Lower 4 GB
01 - Below 1 MB
10 - Over 4 GB
11 - Reserved

0 - Memory space
1 - I/O space

Memory Space Indicator
RO

Type[1:0] - RO0 - Not prefetchable
1 - Prefetchable

Prefetchable - RO

RO

Reset = 0x0000 00080xEEFF FF30

ADSP-BF535 Blackfin Processor Hardware Reference 13-39

PCI Bus Interface

PCI Configuration I/O Base Address Register
(PCI_CFG_IBAR)

This register, shown in Figure 13-22, holds the I/O base address from the
PCI configuration registers.

The hardcoded lower bits tell the configuration software to use this regis-
ter for an I/O base address. The PCI_DIBARM register configures the upper
bits to be writable from the PCI side. The configuration software detects
the size by looking at the number of writable upper bits and places a base
address in this space. This register is unused in Host mode. For more
information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-22. PCI Configuration I/O Base Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration I/O Base Address Register (PCI_CFG_IBAR)

Base Address[31:16]

Base Address[15:2] 0 - Memory space
1 - I/O space

I/O Space Indicator

RO

Reset = 0x0000 00010xEEFF FF34

Configuration Space Control and Status Registers

13-40 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Subsystem ID Register
(PCI_CFG_SID)

The PCI_CFG_SID register, shown in Figure 13-23, holds the Subsystem ID
from the PCI configuration registers.

Program this register before enabling the PCI in device mode. This regis-
ter is not used in host mode. For more information, see the PCI Local Bus
Specification Rev. 2.2.

PCI Configuration Subsystem Vendor ID Register
(PCI_CFG_SVID)

The PCI_CFG_SVID register, shown in Figure 13-24, holds the subsystem
vendor ID from the PCI configuration registers. Program this register
before enabling the PCI in device mode. This register is not used in host
mode. For more information, see the PCI Local Bus Specification Rev.
2.2.

Figure 13-23. PCI Configuration Subsystem ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Subsystem ID Register (PCI_CFG_SID)

Subsystem ID[15:0]

Reset = 0x0000 00000xEEFF FF38

ADSP-BF535 Blackfin Processor Hardware Reference 13-41

PCI Bus Interface

PCI Configuration Maximum Latency Register
(PCI_CFG_MAXL)

This register, shown in Figure 13-25, holds Max_Lat from the PCI config-
uration registers. Program this register before enabling the PCI in device
mode. This register is optional for master operation (host or device). For
more information, see the PCI Local Bus Specification Rev. 2.2.

Figure 13-24. PCI Configuration Subsystem Vendor ID Register

Figure 13-25. PCI Configuration Maximum Latency Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Subsystem Vendor ID Register (PCI_CFG_SVID)

Subsystem Vendor ID[15:0]

Reset = 0x0000 00000xEEFF FF3C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Maximum Latency Register (PCI_CFG_MAXL)

Maximum Latency Cycles[15:0]

Reset = 0x0000 00000xEEFF FF40

Configuration Space Control and Status Registers

13-42 ADSP-BF535 Blackfin Processor Hardware Reference

PCI Configuration Minimum Grant Register
(PCI_CFG_MING)

This register, shown in Figure 13-26, holds Min_Gnt from the PCI config-
uration registers. Program this register before enabling the PCI in device
mode. This register is optional for master operation (host or device). For
more information, see the PCI Local Bus Specification Rev. 2.2.

PCI Configuration Interrupt Pin Register
(PCI_CFG_IP)

This register, shown in Figure 13-27, holds the interrupt pin value from
the PCI configuration registers. For more information, see the PCI Local
Bus Specification Rev. 2.2.

Figure 13-26. PCI Configuration Minimum Grant Register

Figure 13-27. PCI Configuration Interrupt Pin Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Minimum Grant Register (PCI_CFG_MING)

Minimum Grant Cycles[7:0]

Reset = 0x0000 00000xEEFF FF44

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Interrupt Pin Register (PCI_CFG_IP)

Interrupt Pin[7:0]

Reset = 0x0000 00000xEEFF FF48

ADSP-BF535 Blackfin Processor Hardware Reference 13-43

PCI Bus Interface

PCI Configuration Interrupt Line Register
(PCI_CFG_IL)

This register, shown in Figure 13-28, holds the interrupt line from the
PCI configuration registers. For more information, see the PCI Local Bus
Specification Rev. 2.2.

PCI Host Memory Control Register (PCI_HMCTL)
This register, shown in Figure 13-29, configures which portions of
ADSP-BF535 processor memory space are accessible from any initiators
on the PCI bus. There is one-to-one mapping of addresses between the
PCI and the ADSP-BF535 processor in host mode. The PCI core asserts
DEVSEL and claims the transaction for any region indicated as enabled in
this register. The asynchronous memory access is valid only if the Async
Mem Access Enable bit is set and specifies the size of the accessible Async
Mem window in 64-MB blocks. The SDRAM access size is valid only if
the SDRAM Access Enable bit is set. It specifies the size of the accessible
SDRAM window in 32-MB blocks. This register is valid only in host
mode.

Figure 13-28. PCI Configuration Interrupt Line Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Configuration Interrupt Line Register (PCI_CFG_IL)

Interrupt Line[7:0]

Reset = 0x0000 00000xEEFF FF4C

PCI I/O Issues

13-44 ADSP-BF535 Blackfin Processor Hardware Reference

PCI I/O Issues
To meet the requirements of the PCI 2.2 specification, the PCI interface
employs special I/O receivers and drivers.

Reflected Wave Switching
PCI specifies reflected wave switching bus topology, such that the output
driver only charges/discharges the signal line part way to the desired logic
level. The reflected wave from the end of the unterminated signal trace
then fully drives the voltage to the desired level, before the next rising edge
of the PCI clock. This approach minimizes noise and termination issues at
the board level, and lowers overall system power consumption.

Figure 13-29. PCI Host Memory Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PCI Host Memory Control Register (PCI_HMCTL)

SDRAM Access Size[4:0]

00 - 64 MB enabled
01 - 128 MB enabled
10 - 192 MB enabled
11 - 256 MB enabled

0 - Disabled
1 - Enabled

System MMR Access Enable

L2 Access Enable
0 - Disabled
1 - Enabled

Async Mem Access Size[1:0]
0 - Disabled
1 - Enabled

SDRAM Access Enable

Async Access Enable
0 - Disabled
1 - Enabled

00000 - 32 MB enabled
00001 - 64 MB enabled (2 x 32 MB)
00010 - 96 MB enabled (3 x 32 MB)
00011 - 128 MB enabled (4 x 32 MB)
00100 - 160 MB enabled (5 x 32 MB)
...
11111 - 2048 MB enabled (64x 32 MB)

Reset = 0x0000 00000xEEFF FF50

ADSP-BF535 Blackfin Processor Hardware Reference 13-45

PCI Bus Interface

Power Sequencing
The PCI interface operates on two power domains. The internal logic is
on the same power domain as the rest of the internal logic of the
ADSP-BF535 processor. The PCI I/O is powered through a dedicated set
of power pins. These two domains can operate at different voltage levels.
In general, it is recommended that power be applied to both domains at
the same time, or to the I/O power domain first then to the internal logic
power domain.

PCI Clock Requirements
The 33 MHz PCI clock requirements are >= 30 ns cycle time, with a max-
imum skew of <= 2 ns across all PCI component clock inputs. The clock
may be stopped, but only in the low state. This clock can be driven com-
pletely asynchronously with respect to the internal ADSP-BF535
processor’s clocks and CLKIN.

PCI I/O Issues

13-46 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 14-1

14 USB DEVICE

The Universal Serial Bus Device (USBD) module in the ADSP-BF535
processor contains a USB Device Controller core (UDC) and a front-end
interface. The UDC handles all USB protocol requirements and provides
a simple read/write interface to the front end. The front end adds hard-
ware to the UDC to connect it to the ADSP-BF535 processor’s peripheral
buses and to support an operating system.

The USBD module also includes memory-mapped registers, an interrupt
subsystem, a configuration and clock control for the UDC, and a DMA
controller for the transfer of USB endpoint data between system memory
and the USB.

On the system side, the USBD module interfaces with the Data Access
Bus (DAB) and the Peripheral Access Bus (PAB). On the USB side, it
interfaces with an off-chip USB transceiver.

This chapter includes a USBD block diagram and functional description.
A list of references is provided at the end of the chapter.

Convention
All transfer directions use the USB host as the point of reference. An IN
transfer indicates the host is receiving data, and an OUT transfer indicates
the host is transmitting data.

Requirements

14-2 ADSP-BF535 Blackfin Processor Hardware Reference

Requirements
The ADSP-BF535 processor supports a wide range of applications,
including, but not limited to, multifunction peripherals such as laser
printer/scanner/copier systems, and personal digital assistants. The USB
device can use up to eight endpoints.

The USB protocol imposes a number of requirements on the design of a
USB device. This is to ensure that USB devices comply with USB
specifications.

USB Functionality
The ADSP-BF535 processor’s USB peripheral includes:

• Eight physical USB endpoints

• The ADSP-BF535 processor can support one configuration, with
the configuration having two interfaces and each interface having
two alternates. There are a total of 64 logical endpoints. All the log-
ical endpoints must be programmed for correct functioning, even if an
application does not require all logical endpoints.

• Support for all USB transfer types

• Low power capabilities, and clocks that can be stopped

• Connection to the ADSP-BF535 interrupt system with a single
interrupt line

• Connection to the PAB as a slave only for system access to registers

• Connection to the DAB as a master only for access to L2 memory,
through a DMA Master module

ADSP-BF535 Blackfin Processor Hardware Reference 14-3

USB Device

• Arbitration granted to the USB DMA channel within 3 to 5 USB
cycles (with SCLK=100 MHz) after the assertion of its request from
a host

If the arbitration requirement is not met, then USB Bulk, Interrupt, and
Control In packet transfers may be terminated prematurely, resulting in
degraded USB performance. Potentially, this can add complexity to the
USB driver code. To minimize degraded USB performance, a system clock
(SCLK) minimum of 100 MHz is recommended, but the ADSP-BF535
Blackfin Embedded Processor Data Sheet should be consulted.

 Because SPORTs have a higher arbitration priority than the USB
on the DAB bus, USB data transfers may be affected when there is
excessive SPORT activity coupled with USB transactions on the
DAB bus. This condition could also occur on an external memory
access using MemDMA to a high latency external memory.

USB Requirements
The references listed at the end of this chapter describe the USB protocol
in detail. This section gives a brief description of some features of the pro-
tocol used for this particular USB device implementation.

Master and Slave Buses

The USB is a master-slave bus, in which a single master generates data
transfer requests to the attached slaves, and allocates bandwidth on the
serial cable according to a specific algorithm.

The bus master is referred to as the USB host, and the bus slaves are
referred to as USB devices. Each USB device implements one or more
USB endpoints, which are similar to virtual data channels. Each endpoint
on a USB device operates independently of all the others.

Requirements

14-4 ADSP-BF535 Blackfin Processor Hardware Reference

Data Flow and Traffic Scheduling

Data flows between the USB host and the attached devices in units of
packets, which are normally 8, 16, 32 or 64 bytes. An exception is the iso-
chronous data type, where packets can be as large as 1023 bytes. The
packets are grouped into larger units called transfers.

To allocate the serial bus bandwidth fairly across all of the attached USB
devices and endpoints, the USB host implements a traffic scheduling algo-
rithm. From the point of view of a USB device, this algorithm is not
deterministic. Although the specific scheduling algorithm is standardized,
the bus dynamically reallocates bandwidth based on factors such as packet
error conditions and flow control. So far as the device is concerned, it can
receive transfer requests for any endpoint at any time.

Depending on the bus loading, the USB host may request packets
back-to-back, or it may request packet transfers to each endpoint in a
round-robin fashion. The USB protocol also allows for detection and
retransmission of packets in cases of bit errors and flow control problems.

Each USB device implementation must maintain state information for
each endpoint that allows large data transfers to occur a packet at a time.
Each device must also maintain state information for each packet to be
retransmitted.

USB Implementation
The ADSP-BF535 processor’s USBD implementation includes:

• The peripheral has a single interrupt output (USBD_INTR).

• System software is responsible for managing interrupt priority and
requeueing low priority events as software interrupts.

• Memory access for the USB endpoints is by means of the DAB as a
bus master.

ADSP-BF535 Blackfin Processor Hardware Reference 14-5

USB Device

• The DMA Master Channel module defines a 2 KB memory region
in the system’s memory space; the region is partitioned into
16-byte blocks. The peripheral requests transfers to individual
blocks within the 2 KB memory space. Allocation of the 16-byte
blocks within the 2 KB memory space is at the discretion of the
programmer.

• Registers within the USB device module maintain the address off-
sets and byte counts for each endpoint.

• The registers are structured to allow multiple buffering of each
endpoint’s data, resulting in streaming operation on the USB. The
registers support the ability of the USB to perform packet retries,
and the ability to break large data buffers into individual USB
packets.

• The suspend capability of the USB device can be exploited by a
clock and power management scheme implemented in software.

• The endpoints are configured as unidirectional. For example, once
an endpoint is configured as a type IN endpoint, it should not be
used as type OUT on any configuration.

 The USBD has multiple clock domains. Although the PLL_IOCK
register allows shutting down the system clock for the front-end
interface in USBD, the suspend capabilities allow for a software
management scheme of the UDC’s clocks.

Block Diagram

14-6 ADSP-BF535 Blackfin Processor Hardware Reference

Block Diagram
A block diagram of the USBD module is shown in Figure 14-1.

UDC Block
The UDC module implements the low-level USB protocol. It manages
interaction with the USB host using the USB serial link, and presents data
and command transactions to the application by means of a simple appli-
cation bus.

Figure 14-1. USBD Module Block Diagram

PAB_HCLK DOMAIN

BUS CLOCK

FRONT-END INTERFACE

T
R

A
N

S
A

C
T

IO
N

D
E

C
O

D
E

A
N

D

C
L

O
C

K
S

Y
N

C
H

R
O

N
IZ

A
T

IO
N

UDC

P
A

B

PAB
INTERFACE

D
A

B

IN
T

E
R

R
U

P
T

C
O

N
T

R
O

L
L

E
R

DMA
MASTER

MEMORY
INTERFACE

REGISTERS
AND

CONTROL

CLOCK
CONTROL

12 MHz DOMAIN

IN TER RUPT REQUEST

PAB_HCLK, DAB_HCLK

TM

USBD_CLK4X

USBD_SPEED

USBD_SUSPEND

USB PORT
INTERFACE

ADSP-BF535 Blackfin Processor Hardware Reference 14-7

USB Device

Front-End Interface Block
The Front-End Interface consists of all blocks in the block diagram except
the UDC. These blocks are:

• Clock Control

• Transaction Decode and Clock Synchronization

• Registers and Control

• Memory Interface

• DMA Master

• PAB Interface

Each is described in the following sections.

Clock Control Block
To reduce power consumption, the UDC module uses gated clocks. The
gated-clock control circuit ensures error-free clocking to the UDC module
in a DFT (design for testability) friendly way.

Transaction Decode and Clock Synchronization
Block

The transaction decode module includes synchronizer elements to connect
the system clock domain logic at the system clock rate to the USB logic at
12 MHz.

It also decodes transactions that occur on the UDC’s application bus for
presentation to the other submodules. This module routes endpoint trans-
actions to and from the Memory Interface module, and control,
configuration, and status functions to and from the Registers and Control
module.

Block Diagram

14-8 ADSP-BF535 Blackfin Processor Hardware Reference

Registers and Control Block
The Registers and Control module implements the general-purpose regis-
ters for the USBD. These registers implement these types of functions:

• Module configuration

• Module status

• Interrupt status and masking

• Frame-related controls such as start of frame, current frame num-
ber, and frame number match

This module is connected to the PAB peripheral bus interface by means of
a simple internal peripheral bus. A single interrupt request line connects
the interrupt subsystem in USBD to the ADSP-BF535 processor’s inter-
rupt controller.

Memory Interface Block
The Memory Interface module connects the USB endpoints to specific
memory resources in the system. It contains registers for software to assign
each USB endpoint to specific regions in system memory and to control
USB transactions. A small FIFO is included in this module to minimize
the effects of DMA latency on USB packet throughput.

The Memory Interface module contains all the endpoint-specific registers
of the USBD. Software uses the endpoint registers to route USB endpoint
data transfers to specific regions within the module’s memory space.

This module is connected to the PAB interface by a simple internal
peripheral bus.

ADSP-BF535 Blackfin Processor Hardware Reference 14-9

USB Device

For each USB packet transfer, the Memory Interface reports this informa-
tion to the DMA master:

• Current USB endpoint number

• Buffer offset

• Transfer direction

• FIFO status

DMA Master Block
The DMA Master module connects the Memory Interface module to the
DAB bus. The USB DMA channel must win arbitration within 22 DAB
cycles of the assertion of its request.

This module maintains registers to indicate:

• Base address of the USBD module’s access space within system
memory

• Burst count for the current transfer

• Direction for the current transfer

• Status of the DMA module

In normal operation, the device software programs the DMA master with
the base address of a 2 KB block of memory that the USBD module can
use to buffer its data transfers. Transfer offset addresses generated by the
Memory Interface module are concatenated with the DMA base address to
produce a physical address on the DAB. Device software is responsible for
allocating the 2 KB buffer space among all active endpoints.

The DMA address, transfer count, direction, and interrupt status are
available for monitoring.

Features and Modes

14-10 ADSP-BF535 Blackfin Processor Hardware Reference

The DMA Master module is a standard component used to implement
DAB bus accesses.

PAB Interface Block
The peripheral bus interface connects the PAB bus to the USBD module’s
internal registers.

Features and Modes
This section describes the functions supported by the USBD module.

Endpoint Types
The USBD module supports four different transfer types using all their
supported packet sizes:

• Bulk

• Interrupt

• Isochronous

• Control

Any endpoint (1 through 7) can be defined as Bulk, Interrupt, or Isochro-
nous. In accordance with the USB specification, endpoint 0 is always
defined as a Control endpoint. After each hard reset, specific hardware
configuration information must be downloaded to the USBD module, as
described in “USBD Device Initialization” on page 14-46.

From the point of view of the USB device, Bulk and Interrupt transfers
function identically on the device. The differences between these transfer
types are implemented in the USB host controller, the USB device’s
descriptor tables, and in the software.

ADSP-BF535 Blackfin Processor Hardware Reference 14-11

USB Device

Data Transfers
The four USB transfer types fall into three broad data transfer categories
which must be implemented in hardware: Bulk, Isochronous, and
Control.

Bulk Data Transfers

Bulk data transfers include Interrupt and Bulk endpoints. Bulk data is
transferred using an error checking protocol. Packet sizes for bulk data are
limited to 8, 16, 32, and 64 bytes. From the USB host’s perspective, the
scheduling rules differ for each endpoint type. However, the data transfer
mechanism is identical.

Isochronous Data Transfers

Isochronous endpoints are generally used for raw audio or video data.
During each 1.0 ms frame, isochronous data transfers are given a guaran-
teed percentage of the USB’s bandwidth. Because of this guaranteed
bandwidth, the isochronous endpoints have no error retry capability.

Depending on the application, isochronous packets can range from 0 to
1023 bytes. Each isochronous endpoint has a specific maximum packet
size that is guaranteed to it in each USB frame. On a frame-by-frame
basis, the application can choose to use all available bandwidth or only
part of it.

Control Transfers

Control transfers implement a COMMAND/DATA/STATUS protocol
so the host can send command sequences to the device. Each DATA trans-
fer within this sequence consists of bulk data; that is, error checking/retry
is included, and the range of packet sizes is limited.

Features and Modes

14-12 ADSP-BF535 Blackfin Processor Hardware Reference

The command sequences include:

• Standard requests from Chapter 9 of the USB specification

• Class requests

• Vendor commands

The UDC module handles almost all standard requests directly without
system intervention. Class requests are standardized and defined in the
USB class specifications (for example, Printer, Imaging, Mass Storage).
Vendor commands are commands that are specific to a vendor or device
and not defined in a class specification.

In the ADSP-BF535 processor’s UDC configuration, device software han-
dles these requests:

• SYNC_FRAME, SET_DESCRIPTOR, GET_DESCRIPTOR standard requests

• All class and vendor requests

Device software must monitor the interrupts to determine when a setup
packet has been received on a control endpoint and respond accordingly.
Interrupts are provided for determining when problems have occurred
during a transfer, and for gracefully recovering from them.

UDC Configuration Control
The UDC module supports one USB configuration. The configuration
can support two interfaces, and each interface can support two alternate
interfaces. The ADSP-BF535 processor has 8 physical endpoints for USB.
Each endpoint can have a different definition depending on the interface
and alternate interface used. For communications to occur, the specific
device configuration must be downloaded into the module after system
startup. See “Configuration of the UDC Module” on page 14-44.

ADSP-BF535 Blackfin Processor Hardware Reference 14-13

USB Device

Suspend Operation
The USBD_SUSPEND output is provided on the module interface to put the
USB transceivers into suspend mode. System hardware can also use this
signal to stop and start the module clocks when the USB is suspended.
When the USBD_SUSPEND signal asserts, the system can stop all clocks.

 On the inactive edge of USBD_SUSPEND, the system must restart all
clocks within 10 ms.

USB Suspend mode is selected by the USB host. When the USB host
wants to put a device into the suspended mode, it stops sending traffic to
the device. After 3 ms of inactivity on the bus, the device automatically
drops into a suspended state. After the USB host generates resume signal-
ing on the bus, the device reenters its active state and resumes
communication on the bus.

Clocking
The 4X USB Clock (USBD_CLK4X) is nominally 48 MHz +/- 500 ppm for
full-speed operation. The UDC uses this clock internally to drive a clock
recovery circuit and to generate a 12 MHz clock (full-speed operation for
the UDC module).

The rest of the USBD module operates at system clock frequencies.

USB Transceiver
A USB buffer chip, such as the Philips PDI USB P11A, must be added in
order to use the USB device functionality of the ADSP-BF535 processor.
The diagram in Figure 14-2 shows how to connect a Philips PDI USB
P11A transceiver to the ADSP-BF535 processor.

Registers

14-14 ADSP-BF535 Blackfin Processor Hardware Reference

If the external transceiver supports a low power mode, it can be controlled
by using one of the programmable flag pins.

Full Speed vs. Low Speed USB
The USB 1.1 specification supports two speed grades: full speed
(12 Mbits/sec) and low speed (1.5 Mbits/sec). The ADSP-BF535 proces-
sor is configured to support full-speed operation at all times. The external
transceiver must also be configured to support the fast slew rate of the
full-speed USB mode.

Registers
This section describes the register set for the USBD module. All USBD
memory-mapped registers are 16 bits wide, and 16-bit aligned.

The registers are grouped into three categories: general registers, DMA
registers, and endpoint registers.

Figure 14-2. Connecting a USB Transceiver

D+

D-

USB PORT TRANSCEIVER USB MODULE

XVER_DATA

DPLS

DMNS

TXDPLS

TXEN

TXDMNS

RCV

VP

VM

VPO

/OE

VMO

ADSP-BF535 Blackfin Processor Hardware Reference 14-15

USB Device

The general registers handle configuration, control, and status. These reg-
isters are described in later sections of this chapter. They are:

• USBD Device ID register (USBD_ID)

• Current USB Frame Number register (USBD_FRM)

• Match Value for USB Frame Number register (USBD_FRMAT)

• Enable Download of Configuration Into UDC Core register
(USBD_EPBUF)

• USBD Module Status register (USBD_STAT)

• USBD Module Configuration and Control register (USBD_CTRL)

• Global Interrupt register (USBD_GINTR)

• Global Interrupt Mask register (USBD_GMASK)

The DMA registers handle configuration and control of the DMA master
channel embedded within the module. These registers are described in
later sections of this chapter. They are:

• DMA Master Channel Configuration register (USBD_DMACFG)

• DMA Master Channel Base Address Low register (USBD_DMABL)

• DMA Master Channel Base Address High register (USBD_DMABH)

• DMA Master Channel Count register (USBD_DMACT)

• DMA Master Channel DMA Count register (USBD_DMAIRQ)

The USB Endpoint registers handle endpoint specific interrupts and con-
trol of the datapath. The number of endpoint specific registers is
dependent on the number of endpoints with which the design is compiled.

Registers

14-16 ADSP-BF535 Blackfin Processor Hardware Reference

The ADSP-BF535 processor’s design is configured for eight endpoints.
The endpoint registers are described in later sections of this chapter. They
are:

• USB Endpoint x Interrupt registers (USBD_INTRx)

• USB Endpoint x Mask registers (USBD_MASKx)

• USB Endpoint x Control registers (USBD_EPCFGx)

• USB Endpoint x Address Offset registers (USBD_EPADRx)

• USB Endpoint x Buffer Length registers (USBD_EPLENx)

USB Device ID Register (USBD_ID)
This register, shown in Figure 14-3, is used to identify the module to the
system. Using binary-coded decimal, the USBD_SPEC field indicates the ver-
sion of the USB specification that the module is compliant to. A value of
0x110 corresponds to the USB Specification, Revision 1.1. The USBD_PID
field indicates the silicon revision of the module. Use this value to allow
software drivers to adapt to different hardware revisions.

 The specific vendor ID (for example, 0x0456 for Analog Devices,
Inc.) and the product ID (for example, 0x2153 for the
ADSP-BF535 processor) should not be programmed using this reg-
ister. They should be programmed using the Device Descriptor set.

ADSP-BF535 Blackfin Processor Hardware Reference 14-17

USB Device

Current USB Frame Number Register (USBD_FRM)
This register, shown in Figure 14-4, reports the current USB frame num-
ber. This number updates each time a start of frame (SOF) token is
received on the USB.

Match Value for USB Frame Number Register
(USBD_FRMAT)

This register, shown in Figure 14-5, provides a mechanism for software to
wait for the arrival of a specific USB frame number. This feature is typi-
cally used with isochronous endpoints for synchronization between the

Figure 14-3. USB Device ID Register

Figure 14-4. Current USB Frame Number Register

USB Device ID Register (USBD_ID)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

USBD_PID[3:0]USBD_SPEC[11:0]

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 Reset = 0x1100

RO

0xFFC0 4400

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Current USB Frame Number Register (USBD_FRM)

USBD_FRMNUM[10:0]

Reset = 0x0000

RO

0xFFC0 4402

Registers

14-18 ADSP-BF535 Blackfin Processor Hardware Reference

data source and sink. When the value in this register matches the value
received on the Current USB Frame Number register (USBD_FRM), an inter-
rupt is generated in the Global Interrupt register (USBD_GINTR).

Enable Download of Configuration Into UDC Core
Register (USBD_EPBUF)

This register, shown in Figure 14-6, allows the system to download end-
point buffer data into the UDC module after hard reset events. The
EpBuf structures hold configuration information for each possible end-
point on the device including the configuration number, packet size,
direction, type, and the interface/alternates to which the endpoint is
attached.

The total number of physical endpoints on the device is hardwired, but
the specific configuration of each endpoint is downloaded into the device
by the firmware.

Figure 14-5. Match Value for USB Frame Number Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Match Value for USB Frame Number Register (USBD_FRMAT)

USBD_FRMAT[10:0]

Reset = 0x00000xFFC0 4404

ADSP-BF535 Blackfin Processor Hardware Reference 14-19

USB Device

The USBD_EPDOWN field allows software to write data into the UDC core’s
internal EpBuf structures. On reads, this field always returns 0s.

USBD Module Status Register (USBD_STAT)
This register reports various status conditions from the USB and from the
module’s internal logic (see Figure 14-7).

The USBD_CFG field contains the current USB configuration number. It is
updated when the USB host sends a SET_CONFIGURATION request to the
USB device.

The USBD_IF field contains the USB interface number. It is updated when
the USB host sends a SET_INTERFACE request to the device. It changes
along with the USBD_AIF field.

The USBD_AIF field contains the alternate interface number. This field is
updated when the USB host sends a SET_INTERFACE request to the device.
It changes along with the USBD_IF field.

Figure 14-6. Enable Download of Configuration Into UDC Core Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Enable Download of Configuration Into UDC Core Register (USBD_EPBUF)

USBD_EPDOWN[7:0] - WO
0 - Endpoint buffer

download complete
1 - Waiting for endpoint

buffer data via
USBD_EPDOWN

USBD_RDY - RO

0 - Cannot accept byte
1 - Ready to accept byte

USBD_CFG - RO

Reset = 0xC0000xFFC0 4406

Registers

14-20 ADSP-BF535 Blackfin Processor Hardware Reference

The USBD_SIP bit is valid when the USBD_PIP bit is set. The USBD_PIP bit
asserts at the start of the packet request from the UDC module to the
front-end interface and deasserts at the end of a packet. It is used to indi-
cate when the UDC module is actively transferring data on the USB.

The USBD_EP field holds the currently accessed endpoint, 0 through 7.
This register bit field is valid only when the USBD_PIP bit is set. Note this
is the endpoint number within the USBD hardware. It may not match the
actual USB endpoint number due to mapping which occurs in the UDC
hardware.

Figure 14-7. USBD Module Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USBD Module Status Register (USBD_STAT)

USBD_EP[2:0]

0 - Packet not in progress
1 - Packet in progress

USBD_RSTSIG

USBD_SIP

USBD_PIP

USBD_SUSPENDED

USBD_AIF[2:0]

USBD_IF[1:0]

USBD_CFG[1:0]
0 - USB not suspended
1 - USB suspended

0 - Reset signaling not
in progress

1 - Reset signaling in
progress

0 - Setup packet not in
progress

1 - Setup packet in progress

USB configuration number

USB interface number

USB alternate interface number

Currently accessed endpoint

Reset = 0x0000

RO

0xFFC0 4408

ADSP-BF535 Blackfin Processor Hardware Reference 14-21

USB Device

USBD Module Configuration and Control Register
(USBD_CTRL)

This register, shown in Figure 14-8, provides software control of various
features of the USBD module. Note when the USBD_ENA bit is pro-
grammed to disable the USBD module, the module does not accept
command and data packets from the USB, but suspend/resume can still
occur, as well as the 1 ms start-of-frame interrupt.

The USBD_EPxSTALL bits assert a stall request on the corresponding end-
point at the next request from the USB host. The bit automatically clears
after the stall takes effect.

Figure 14-8. USBD Module Configuration and Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USBD Module Configuration and Control Register (USBD_CTRL)

USBD_EP2STALL

0 - USBD module disabled
1 - USBD module enabled

USBD_EP3STALL

USBD_UDCRST

USBD_EP0STALL

USBD_EP1STALL

USBD_ENA

USBD_EP4STALL

USBD_EP5STALL

USBD_EP6STALL

USBD_EP7STALL

0 - Do nothing
1 - Execute hard reset for

UDC module only

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

0 - Stall request completed
or no stall pending

1 - Assert a stall request

Reset = 0x00000xFFC0 440A

Registers

14-22 ADSP-BF535 Blackfin Processor Hardware Reference

Global Interrupt Register (USBD_GINTR)
The Global Interrupt register, shown in Figure 14-9, is the top-tier inter-
rupt register for the module. This register tracks the status of all
high-priority interrupts, and it includes one interrupt bit for each
endpoint.

All bits are write-1-to-clear (W1C). Writing a 0 to any bit in this register
has no effect.

The Global Interrupt Mask register (USBD_GMASK) can mask all bits. An
interrupt may be masked or unmasked at any time. When masked, an
interrupt does not affect the state of the module’s USBD_INTR output. To
determine the interrupt status, software must poll a masked interrupt.

The interrupt circuit includes a protection mechanism for simultaneous
clear and set operations. If software tries to clear an interrupt at the same
time as the hardware is trying to set the interrupt, the set operation takes
priority over the clear.

All the interrupts are edge triggered. Modifying the mask bit in an end-
point interrupt register may trigger an interrupt from an earlier endpoint
interrupt.

See “Interrupt Descriptions” on page 14-37 for detailed explanations of
each interrupt.

ADSP-BF535 Blackfin Processor Hardware Reference 14-23

USB Device

Figure 14-9. Global Interrupt Register

Global Interrupt Register (USBD_GINTR)
All bits are write-1-to-clear.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

USBD_SUSP
0 - No USB suspended state

detected
1 - USB suspended state

detected
USBD_RESUME

USBD_CFG

USBD_MSOF

USBD_RST

USBD_SOF

USBD_EP4INT

USBD_EP5INT

0 - No interrupt pending
for endpoint 7

1 - Interrupt pending for
endpoint 7

USBD_EP6INT

USBD_EP7INT

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

USBD_FRMMAT

USBD_DMAIRQ

USBD_EP3INT

USBD_EP2INT

USBD_EP1INT

USBD_EP0INT

0 - No interrupt pending
for endpoint 6

1 - Interrupt pending for
endpoint 6

0 - No interrupt pending
for endpoint 5

1 - Interrupt pending for
endpoint 5

0 - No interrupt pending
for endpoint 4

1 - Interrupt pending for
endpoint 4

0 - No interrupt pending
for endpoint 3

1 - Interrupt pending for
endpoint 3

0 - No interrupt pending
for endpoint 2

1 - Interrupt pending for
endpoint 2

0 - No interrupt pending
for endpoint 1

1 - Interrupt pending for
endpoint 1

0 - No interrupt pending
for endpoint 0

1 - Interrupt pending for
endpoint 0

0 - No interrupt pending
for DMA master channel

1 - Interrupt pending for
DMA master channel

0 - No frame match
condition

1 - Frame match
condition

0 - No resume signaling
detected

1 - Resume signaling
detected

0 - No USB reset signaling
detected

1 - USB reset signaling
detected

0 - No missed start of frame
condition

1 - Start of frame interrupt
received while one
pending

0 - No configuration change
event detected

1 - Configuration change
event detected

0 - No start of frame token
detected

1 - Start of frame token
detected

Reset = 0x00400xFFC0 440C

Registers

14-24 ADSP-BF535 Blackfin Processor Hardware Reference

Global Interrupt Mask Register (USBD_GMASK)
The Global Interrupt Mask register, shown in Figure 14-10, allows mask-
ing of the interrupts in the Global Interrupt register. Setting a bit in the
Global Interrupt Mask register masks the interrupt output from asserting
for that interrupt. Clearing a bit in the Global Interrupt Mask register
enables the interrupt output to assert for that interrupt.

DMA Master Channel Configuration Register
(USBD_DMACFG)

This register, shown in Figure 14-11, is used to configure the DMA mas-
ter channel.

The USBD_DMABC bit is the DMA buffer clear bit. It forces the DMA FIFO
to be cleared. Writing a 1 initiates and holds the buffer in a clear state. A
write of 0 must follow before normal operation can resume. It is recom-
mended that the DMA be disabled and the USB be prevented from
accessing the FIFO before USBD_DMABC is set.

Figure 14-10. Global Interrupt Mask Register

Global Interrupt Mask Register (USBD_GMASK)
For all bits, 0 - Enable interrupt to assert, 1 - Mask the interrupt output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

USBD_SUSPM

USBD_RESUMEM

USBD_CFGM

USBD_MSOFM

USBD_RSTM

USBD_SOFM

USBD_EP4MSK

USBD_EP5MSK

USBD_EP6MSK

USBD_EP7MSK

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

USBD_FRMATM

USBD_DMAIRQM

USBD_EP3MSK

USBD_EP2MSK

USBD_EP1MSK

USBD_EP0MSK

Reset = 0xFFFF0xFFC0 440E

ADSP-BF535 Blackfin Processor Hardware Reference 14-25

USB Device

The USBD_DMAEN bit indicates the DMA-enabled and active status.

DMA Master Channel Base Address Low Register
(USBD_DMABL)

This register, Figure 14-12, contains the low order bits of the base address
for the memory block to be accessed for USB buffers.

To produce a physical address on a per-transfer basis, the DMA master
channel replaces bits [10:0] with an endpoint specific offset value. Bits
[10:0] always read back 0.

Figure 14-11. DMA Master Channel Configuration Register

Figure 14-12. DMA Master Channel Base Address Low Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Master Channel Configuration Register (USBD_DMACFG)
DMA configuration register. USBD_IOE bit has no effect on DMA transactions.

0 - DMA master channel
disabled

1 - DMA master channel
enabled

USBD_IOC - ROUSBD_DMABC

USBD_DMAEN
USBD_DMABS[1:0] - RO
Number of words in FIFO
00 - DMA FIFO has 1 to 15 bytes
01 - DMA FIFO empty, 0 bytes
10 - DMA FIFO full, 16 bytes
11 - Will not occur

0 - Disable interrupt
1 - Interrupt concurrent

with each DMA burst
of 4 words

0 - Do nothing
1 - Clear DMA buffer

Reset = 0x00000xFFC0 4440

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Master Channel Base Address Low Register (USBD_DMABL)
Low order bits of base address.

USBD_BASE_LO[15:11]

Reset = 0x00000xFFC0 4442

Registers

14-26 ADSP-BF535 Blackfin Processor Hardware Reference

DMA Master Channel Base Address High Register
(USBD_DMABH)

This register, shown in Figure 14-13, contains the high order bits of the
base address for the memory block to be accessed for USB buffers.

It is combined with the bits in the DMA Master Channel Base Address
Low register and an endpoint specific offset value to produce a physical
address on the DAB.

DMA Master Channel Count Register
(USBD_DMACT)

This register, shown in Figure 14-14, holds the DMA count for the cur-
rent transfer. This reads back the number of bytes pending for the DMA
transfer on the currently selected endpoint, and its value ranges from 0 to
4 words (16 bytes).

Figure 14-13. DMA Master Channel Base Address High Register

Figure 14-14. DMA Master Channel Count Register

DMA Master Channel Base Address High Register (USBD_DMABH)
High order bits of base address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

USBD_BASE_HI[15:0]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000xFFC0 4444

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 1 0

DMA Master Channel Count Register (USBD_DMACT)

USBD_CT[2:0] - RO

Reset = 0x00040xFFC0 4446

ADSP-BF535 Blackfin Processor Hardware Reference 14-27

USB Device

DMA Master Channel DMA Interrupt Register
(USBD_DMAIRQ)

The DMA Interrupt Request feeds into the Global Interrupt register
(USBD_GINTR). To mask the DMA Complete (DMA_COMP) interrupt in the
USBD_DMAIRQ register (Figure 14-15), program the corresponding enable
bit in the DMA Master Channel Configuration register. DMA_ERROR is not
maskable at the DMA level. All bits are write-1-to-clear. Writing 0 to any
bit in this register has no effect.

USB Endpoint x Interrupt Registers (USBD_INTRx)
The USB Endpoint x Interrupt registers (Figure 14-16) report interrupt
status for endpoint x. All bits are write-1-to-clear.

The USBD_MSETUP bit is set when a UDC_SETUP interrupt is pending, and
another setup packet is received. This condition can occur if the USB
device’s ACK of a setup packet is corrupted, and the USB host retries the
setup packet. If both USBD_MSETUP and USBD_SETUP are pending, and soft-
ware tries to clear them both at the same time, a third setup packet is
received, and USBD_MSETUP clears, while USBD_SETUP remains set.

The USBD_SETUP bit is set when a setup packet is received on the current
endpoint.

Figure 14-15. DMA Master Channel DMA Interrupt Register

DMA Master Channel DMA Interrupt Register (USBD_DMAIRQ)

0 - No IRQ pending
1 - IRQ pending

DMA_COMP
0 - No IRQ pending
1 - IRQ pending

DMA_ERROR

Reset = 0x00000xFFC0 4448

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Registers

14-28 ADSP-BF535 Blackfin Processor Hardware Reference

The USBD_MERR bit is 1 if the USBD_BCSTAT interrupt is set, and another
packet request has come in for the current endpoint. This allows software
to determine whether the device is NAKing requests from the USB host.

The USBD_BCSTAT bit is 1 if the byte count for the endpoint has decre-
mented to 0. This interrupt should be cleared before loading a new value
into the USBD_EPLENx registers.

The USBD_PC bit is 1 if a complete USB packet has just transferred across
the USB on the current endpoint. This interrupt normally asserts at the
end of every USB packet transfer. However, in the case of isochronous
transfers, this interrupt does not assert if the packet transferred with
errors. Software can use the USBD_PC and USBD_TC interrupts, along with
the endpoint configuration registers, to determine the fate of isochronous
packets.

The USBD_TC bit is 1 if a USB transfer has completed on the current end-
point. This interrupt asserts for Bulk and Interrupt endpoints when a
short packet is transferred. For Control endpoints, this interrupt asserts at
the end of the control transfer’s data phase—either from a short packet
transfer or from the expiration of the wLength counter from the setup
packet. For Isochronous endpoints, this interrupt asserts at the end of
every packet. The error detection mechanism used for isochronous
transfers requires the software to examine the endpoint configuration reg-
isters and determine how much data was actually transferred.

ADSP-BF535 Blackfin Processor Hardware Reference 14-29

USB Device

USB Endpoint x Mask Registers (USBD_MASKx)
The USB Endpoint x Mask registers, shown in Figure 14-17, can be used
to mask the interrupts in the USB Endpoint x Interrupt registers
(USBD_INTRx). Setting a bit in the USB Endpoint x Mask registers masks

Figure 14-16. USB Endpoint x Interrupt Registers

Table 14-1. USB Endpoint x Interrupt Register MMR Assignments

Register Name Memory-Mapped Address

USBD_INTR0 0xFFC0 4480

USBD_INTR1 0xFFC0 448A

USBD_INTR2 0xFFC0 4494

USBD_INTR3 0xFFC0 449E

USBD_INTR4 0xFFC0 44A8

USBD_INTR5 0xFFC0 44B2

USBD_INTR6 0xFFC0 44BC

USBD_INTR7 0xFFC0 44C6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Interrupt Registers (USBD_INTRx)

0 - Transfer not completed
1 - Transfer completed

USBD_PC

USBD_BCSTAT

USBD_TC

USBD_SETUP
0 - No setup packet pending
1 - Setup packet pending

USBD_MSETUP

USBD_MERR
0 - No error
1 - Error

0 - Not multiple setup
packets pending

1 - Multiple setup packets
pending

0 - Complete packet has not
transferred

1 - Complete packet
transferred

0 - Byte count not equal to 0
1 - Byte count equal to 0

Reset = 0x0000
For MMR
assignments, see
Table 14-1.

Registers

14-30 ADSP-BF535 Blackfin Processor Hardware Reference

Global Interrupt register (USBD_GINTR) bits from asserting for that inter-
rupt. Clearing a bit in the USB Endpoint x Mask register enables the
interrupt bit to assert for that interrupt.

Figure 14-17. USB Endpoint x Mask Registers

Table 14-2. USB Endpoint x Mask Register MMR Assignments

Register Name Memory-Mapped Address

USBD_MASK0 0xFFC0 4482

USBD_MASK1 0xFFC0 448C

USBD_MASK2 0xFFC0 4496

USBD_MASK3 0xFFC0 44A0

USBD_MASK4 0xFFC0 44AA

USBD_MASK5 0xFFC0 44B4

USBD_MASK6 0xFFC0 44BE

USBD_MASK7 0xFFC0 44C8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 0 0 1 1 1 1 1

USB Endpoint x Mask Registers (USBD_MASKx)

0 - Interrupt enabled
1 - Interrupt disabled

USBD_PC

USBD_BCSTAT

USBD_TC

USBD_SETUP
0 - Interrupt enabled
1 - Interrupt disabled

USBD_MSETUP

USBD_MERRM
0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

0 - Interrupt enabled
1 - Interrupt disabled

Reset = 0x003F
For MMR
assignments, see
Table 14-2.

ADSP-BF535 Blackfin Processor Hardware Reference 14-31

USB Device

USB Endpoint x Control Registers (USBD_EPCFGx)
The USB Endpoint x Control registers, shown in Figure 14-18, allow pro-
gramming the characteristics of individual endpoints.

The USBD_ARM bit is set to 1 to arm an endpoint. When the endpoint is
armed, the USBD module can respond to transfer requests on the
endpoint. If USBD_ARM = 1 and USBD_BC = 0, then the module generates a
0-length data packet. This bit clears automatically when USBD_BC decre-
ments to 0 or when an end-of-transfer condition is detected.

The USBD_ARM bit is set to 0 to disarm an endpoint. If a packet transfer is
in progress, clearing this bit does not stop the current packet transfer, but
it does prevent succeeding packets in a multipacket transfer from occur-
ring. For example, consider a 64-byte packet, 128-byte count. If the
system clears USBD_ARM during the transfer of the first packet, then the first
packet completes normally, but the second one is unable to transfer until
the endpoint is armed again.

The USBD_DIR bit indicates the transfer direction between the USB device
and the USB host. If the USB host requests a packet transfer and the
direction of the request does not agree with the endpoint direction, then
the module NAKs the current packet. This can occur on USB control
transfers when the endpoint is set to OUT for the setup packet and the
USB host requests an IN data-phase packet before the device has recog-
nized the presence of the setup packet.

Registers

14-32 ADSP-BF535 Blackfin Processor Hardware Reference

The USBD_TYP field sets the USB endpoint type. For Endpoint 0, the
USBD_TYP field is hardwired to 00. For all other endpoints, only Bulk,
Interrupt, and Isochronous type codes are valid, with 01 for Bulk, 10 for
Interrupt, and 11 for Isochronous.

Figure 14-18. USB Endpoint x Control Registers

Table 14-3. USB Endpoint x Mask Register MMR Assignments

Register Name Memory-Mapped Address

USBD_EPCFG0 0xFFC0 4484

USBD_EPCFG1 0xFFC0 448E

USBD_EPCFG2 0xFFC0 4498

USBD_EPCFG3 0xFFC0 44A2

USBD_EPCFG4 0xFFC0 44AC

USBD_EPCFG5 0xFFC0 44B6

USBD_EPCFG6 0xFFC0 44C0

USBD_EPCFG7 0xFFC0 44CA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Control Registers (USBD_EPCFGx)

USBD_DIR

USBD_TYP[1:0]

USBD_ARMUSBD_MAX[1:0]
0 - Disarm endpoint
1 - Arm endpoint

0 - Transfer direction out
1 - Transfer direction in

USBD endpoint type
00 - Control
01 - Bulk
10 - Interrupt
11 - Isochronous

Maximum packet size
00 - 8 bytes
01 - 16 bytes
10 - 32 bytes
11 - 64 bytes

Reset = 0x0000

For MMR
assignments, see
Table 14-3.

ADSP-BF535 Blackfin Processor Hardware Reference 14-33

USB Device

USB Endpoint x Address Offset Registers
(USBD_EPADRx)

These registers, represented in Figure 14-19, are used to program the
memory buffer offset for data transfers.

They hold the memory offset within the DMA controller’s memory space
for the transfer associated with this endpoint.

DMA transfers occur on 16-byte aligned offsets within the controller’s
memory space (2 KB). As each packet is transferred on the USB, the
USBD_OFFSET increments by the packet size.

For the USB Endpoint x Address Offset registers and the USB
Endpoint x Buffer Length registers (USBD_EPLENx), it is assumed that soft-
ware is keeping track of the original buffer addresses and can calculate the
bytes transferred and the end of valid data based on reading back these
registers at the end of a transfer.

Figure 14-19. USB Endpoint x Address Offset Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Address Offset Registers (USBD_EPADRx)

USBD_OFFSET[10:0]
Memory offset within the
DMA controller’s memory
space

Reset = 0x0000
For MMR
assignments, see
Table 14-4.

Registers

14-34 ADSP-BF535 Blackfin Processor Hardware Reference

USB Endpoint x Buffer Length Registers
(USBD_EPLENx)

These registers, shown in Figure 14-20, are used to program the memory
buffer byte counts for data transfers.

Packet transfers can be up to 1023 bytes (the maximum size isochronous
packet allowed by USB specification). If the byte count for an endpoint is
larger than the endpoint’s packet size, the transfer is partitioned into a
number of individual packet transfers at the endpoint’s maximum packet
size.

For non-isochronous endpoints, this field decrements by the packet size as
each packet is transferred on the USB. For isochronous endpoints, this
field decrements by the DMA burst size (16 bytes) at the end of each
DMA burst.

Table 14-4. USB Endpoint x Address Offset Register MMR Assignments

Register Name Memory-Mapped Address

USBD_EPADR0 0xFFC0 4486

USBD_EPADR1 0xFFC0 4490

USBD_EPADR2 0xFFC0 449A

USBD_EPADR3 0xFFC0 44A4

USBD_EPADR4 0xFFC0 44AE

USBD_EPADR5 0xFFC0 44B8

USBD_EPADR6 0xFFC0 44C2

USBD_EPADR7 0xFFC0 44CC

ADSP-BF535 Blackfin Processor Hardware Reference 14-35

USB Device

UDC Endpoint Buffer Register
The UDC Endpoint Buffer register, shown in Figure 14-21, holds the
configuration of each logical endpoint. The register is loaded using the
endpoint buffer information in USBD_EPBUF, see “Enable Download of
Configuration Into UDC Core Register (USBD_EPBUF)” on
page 14-18. This register cannot be accessed through the peripheral bus.
This register is not a memory-mapped register.

Figure 14-20. USB Endpoint x Buffer Length Registers

Table 14-5. USB Endpoint x Buffer Length Register MMR Assignments

Register Name Memory-Mapped Address

USBD_EPLEN0 0xFFC0 4488

USBD_EPLEN1 0xFFC0 4492

USBD_EPLEN2 0xFFC0 449C

USBD_EPLEN3 0xFFC0 44A6

USBD_EPLEN4 0xFFC0 44B0

USBD_EPLEN5 0xFFC0 44BA

USBD_EPLEN6 0xFFC0 44C4

USBD_EPLEN7 0xFFC0 44CE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

USB Endpoint x Buffer Length Registers (USBD_EPLENx)

USBD_BC[9:0]
Byte count for the
transfer associated with
this register

Reset = 0x0000

For MMR
assignments, see
Table 14-5.

Registers

14-36 ADSP-BF535 Blackfin Processor Hardware Reference

Each logical endpoint is broken into 5 bytes with each byte loaded with an
access using the USBD_EPBUF register.

 The MSB of the UDC Endpoint Buffer register should be loaded
first.

 All endpoint buffer registers must be programmed for correct func-
tion of the USB device. Program all unused endpoint buffers to
zeros.

The ADSP-BF535 processor supports 8 physical endpoints, one configura-
tion, two interfaces, and two alternate interfaces. Given this
configuration, the EPNUM field (physical endpoints) can hold values from 0
to 7; the EP_CONFIG field can be 0 or 1, the EP_INTERFACE and the
EP_ALTSETTING fields can be 0 or 1.

The EP_MAXPKTSIZE field holds the maximum packet size. It can take val-
ues from 0 to 1023 with 8, 16, 32, or 64 as the only possible values for
physical endpoints defined as Control, Bulk, and Interrupt.

The EP_BUFADRPTR field reflects the endpoint being used for the transac-
tion. For the ADSP-BF535 processor, the EP_BUFADRPTR should reflect the
endpoint on bits [0:2].

ADSP-BF535 Blackfin Processor Hardware Reference 14-37

USB Device

Interrupt Descriptions
This section provides detailed descriptions of each interrupt bit and the
operation of the interrupt subsystem.

The interrupt subsystem is based on a two-tiered approach. The USBD
module presents a single interrupt output to the system, but internally it
manages separate interrupt registers for critical module events, the DMA
master channel, and each endpoint.

Figure 14-21. UDC Endpoint Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 38 37 36 35 34 33 32

00 0 0 0 0 0 0

UDC Endpoint Buffer Register

EP_INTERFACE

EP_BUFADRPTR[2:0]
Same as EPNUM

EP_MAXPKTSIZE[9:0]
Maximum packet size for
this endpoint

EP_DIR
0 - Out endpoint
1 - In endpoint
Ignored for control endpoints

EP_ALTSETTING

Type of endpoint
00 - Control
01 - Isochronous
10 - Bulk
11 - Interrupt

EP_TYPE[1:0]

EP_CONFIG

EPNUM[2:0]

Reset = 0x00 0000 0000

Interrupt Descriptions

14-38 ADSP-BF535 Blackfin Processor Hardware Reference

Software can mask each interrupt individually. Under this scheme, it is
possible to enable software polling of the interrupts or to enable the hard-
ware interrupt.

USB General Interrupts
The general interrupts are the top tier of the interrupt subsystem. This tier
has the general interrupts and an interrupt for each endpoint.

USBD_SOF – Start of Frame

The USBD_SOF interrupt indicates that the USB device has received a Start
of Frame (SOF) token from the USB host. The USB host broadcasts the
SOF token at 1.0 ms intervals as a timebase for isochronous transfers. Iso-
chronous endpoints can use this interrupt as part of their synchronization
mechanism.

USBD_CFG – USB Configuration Change

The USBD_CFG interrupt indicates to the device that a configuration change
event occurred on the USB. The host has requested the device to change
to a different configuration, or it has switched to a different alternate
interface for one of the interfaces in the current configuration.

 Timely service of this interrupt is critical to ensure proper device
operation. Once this interrupt is received, the software must imme-
diately reconfigure itself to match the new configuration settings,
then clear the interrupt.

To prevent the device’s configuration from becoming out of sync with the
intended configuration (from the USB host’s viewpoint), the device
refuses all traffic from the USB while the interrupt is pending. Masking
the interrupt does not disable the USB activity lockout feature.

ADSP-BF535 Blackfin Processor Hardware Reference 14-39

USB Device

USBD_MSOF – Missed Start of Frame

This interrupt, or missed SOF indicator, asserts when a USBD_SOF inter-
rupt is already pending in the device, and another SOF is received.
Software can use this interrupt, in combination with the USBD_SOF inter-
rupt, to help maintain synchronization with application software running
on the USB host system.

USBD_RST – Reset Signaling Detected

This interrupt asserts when reset signaling is present on the USB. Software
can use this interrupt as an indicator that something significant is about to
happen or has happened (and perhaps the software wants to disable
in-progress DMA transfers). Software can monitor the USBD_RSTSIG bit in
the USBD_STAT register to monitor the state of reset signaling.

USBD_SUSP – Device Suspended

This interrupt asserts when the USB device enters suspend mode after
3.0 ms of inactivity on the USB. This interrupt complements the
USBD_SUSPEND signal on the USB Port Interface which can be used by the
system to start and stop the clocks for low power operation.

USBD_RESUME – Resume Signaling

This interrupt asserts when the USB device leaves suspend mode. This
interrupt complements the USBD_SUSPEND signal on the USB Port Inter-
face, which can be used by the system to start and stop the clocks for low
power operation.

Because internal logic is synchronous, this interrupt may not assert when
the module leaves the suspended state, depending on how and when the
system restarts the clocks.

Interrupt Descriptions

14-40 ADSP-BF535 Blackfin Processor Hardware Reference

USBD_FRMAT – Frame Match

The USBD_FRMAT interrupt indicates a match between the current USB
frame number (stored in USBD_FRM) and the match value stored in the USB
Frame Match (USBD_FRMAT) register. This feature is of interest for isochro-
nous applications that need to synchronize operations between the data
source and data sink.

The USBD_FRMMAT bit in the USBD_GINTR register is 1 when there is a frame
match condition between the Current USB Frame Number register
(USBD_FRM) and the Match Value for USB Frame Number register
(USBD_FRMAT). After hard reset, this interrupt is set because both the USB
frame number and the match value are 0.

USBD_EPxINT – Endpoint(x) Interrupt

This interrupt indicates that an unmasked interrupt is present in the
USBD_INTRx register.

DMA Master Interrupts
The DMA Master channel reports two interrupts:

• DMA_COMP

• DMA_ERROR

Each interrupt source is sticky. Thus an enabled interrupt source which
asserts an interrupt request by setting the appropriate bit remains set until
cleared. Clearing an interrupt source is accomplished by writing a 1 to the
corresponding bit.

ADSP-BF535 Blackfin Processor Hardware Reference 14-41

USB Device

DMA_COMP

The DMA_COMP interrupt is generated during a DMA burst transfer of data.
Data is transferred over the DAB bus as a burst of four 32-bit words
(16 bytes total). The interrupt is generated after the first two words have
been transferred. This interrupt is not endpoint specific and is an indica-
tor that the USB device is in the process of a data transfer.

DMA_ERROR

Two general conditions cause a DMA bus error:

• Data misalignment

• Illegal memory access

Data Misalignment

Misalignment of address to data size occurs when the USBD_OFFSET
(USBD_EPADRx) is not word aligned. If the address is misaligned to the data:

• The DMA engine does not access the bus.

• The DMA enable bit (bit 0 of DMA Configuration register) is
cleared.

• Bit 2 of the DMA Master Channel DMA Count register is set.

Illegal Memory Access

If an illegal memory access occurs, such as an access to unimplemented
memory, the DMA engine responds with an error and:

• Completes the current burst transfer.

• Clears the DMA Enable bit (Bit 0 of the Configuration Word).

• Sets bit 2 of the DMA Master Channel DMA Count register.

Interrupt Descriptions

14-42 ADSP-BF535 Blackfin Processor Hardware Reference

USB Endpoint Interrupts
Each endpoint interrupt in the USB General Interrupt register is based on
the interrupt status of all interrupt sources for the endpoint. If any of the
endpoint interrupts is active and unmasked, an interrupt is generated and
sets the corresponding bit in the Global Interrupt register (USBD_GINTR).

The individual interrupt behaviors are described in the following sections.
Note that it is possible to cause the top-tier interrupt to retrigger by tog-
gling the mask bit for the endpoint interrupts.

USBD_TC – Transfer Complete

The USBD_TC interrupt asserts when a transfer completes on the current
endpoint. Because the USB protocol does not maintain a transfer count,
the end of a transfer is assumed whenever a short packet is transferred on
an endpoint. The USB protocol requires all bulk interrupt and control
endpoints to transmit the maximum sized packet for the endpoint (that is,
8, 16, 32, 64) until the end of a data transfer.

At the end of the transfer, the remaining bytes are transmitted in a short
packet. If the data transfer ends on a packet boundary, the short packet
can contain 0 bytes. The 0 byte packet is not required for isochronous
transfers.

This interrupt does not assert when a setup packet is received on a control
endpoint.

USBD_PC – Packet Complete

This interrupt asserts when a packet transfer completes on the current
endpoint. System software can use this interrupt to monitor the progress
of a data transfer.

ADSP-BF535 Blackfin Processor Hardware Reference 14-43

USB Device

USBD_BCSTAT – Buffer Complete

This interrupt asserts when the byte count has counted down to 0 for an
endpoint. Software can examine the USBD_EPADRx and USBD_EPLENx regis-
ters to determine the actual progress of the transfer.

USBD_SETUP – Setup Packet Received

This interrupt asserts when a setup packet is received on the current con-
trol endpoint. See USBD_MSETUP below for the device behavior if a
USBD_SETUP interrupt is already pending and a new one arrives.

USBD_MSETUP – Multiple Setup Packets Received

This interrupt asserts when a USBD_SETUP interrupt is already pending and
another setup packet is received, as could happen when the USB device’s
ACK of the first setup packet is not received by the USB host, and the
USB host retransmits the command.

USBD_MERR – Memory Controller Error

This interrupt covers the case of a buffer overrun or underrun. This inter-
rupt sets when the USBD_BC interrupt is pending for an endpoint and
another packet request has been received from the USB host for the same
endpoint. When this situation occurs, the USB device is NAKing requests
from the USB host and must correct the situation to ensure maximum
bandwidth usage.

The specific problem here is with OUT packets. Each time the USB host
tries to send a 64-byte packet, for example, it sends the whole packet “in
the blind” assuming that the USB device will accept it. If the USB device
is not ready, then this is wasted bus bandwidth that could be given to
another device which is ready to complete a packet transfer.

USB Programming Model

14-44 ADSP-BF535 Blackfin Processor Hardware Reference

USB Programming Model
This section discusses the USBD module from a programming viewpoint,
including programming issues related to device initialization and data
transfers.

Configuration of the UDC Module
The UDC module maintains a set of internal buffers that describe the
endpoints and configurations available on the device. These buffers must
be reloaded whenever a hard reset event occurs. These buffers are referred
to as the logical endpoints or EpBufs.

For each unique physical endpoint on the device, there can be more than
one EpBuf. For example, it is possible to have endpoint 1 in USB configu-
ration 1, as well as endpoint 1 in USB configuration 2. While the two
endpoints have the same physical number as far as the USB is concerned,
they are mapped to two separate EpBufs within the module. Because the
endpoints are mapped to two different buffers, they can have completely
different configurations.

The ADSP-BF535 processor is hardwired to support one configuration,
two interfaces, two alternate interfaces per interface, and it has a pool of
64 logical endpoint buffers to program.

 Note: Even if all 64 endpoint buffers are not used in a specific
product, the core expects all 64 logical endpoint buffers to be allo-
cated data after each hard reset.

ADSP-BF535 Blackfin Processor Hardware Reference 14-45

USB Device

The UDC module gives software access to the endpoint buffers via the
USBD_EPBUF register. The following steps must be followed to ensure
proper download.

1. Verify that the UDC is ready to accept configuration data by read-
ing the USBD_RDY bit from the USB_EPBUF register.

2. Write the first/next byte of the endpoint buffer to the USBD_EPDOWN
field of the USBD_EPBUF register.

This action causes the USBD_RDY bit to change to 0. The USD_CFG bit
remains at 1 until the download process is complete.

3. Wait for the USBD_RDY bit to return to 1.

Depending on the clock frequency of the PAB, the wait can be 30
or more clock periods.

4. Go back to step 2.

After all bytes have been written, read back the USBD_CFG bit from
the USBD_EPBUF register and verify that it has switched from 1 to 0,
indicating that the UDC has received all the bytes expected.

 For each logical endpoint, you must download 5 bytes of data start-
ing with the most significant byte. See the UDC Endpoint Buffer
register in Figure 14-21 on page 14-37 for more information about
the UDC register format.

 For endpoint 0, program the configuration, interface, and alternate
values to 0 in the UDC Endpoint Buffer register.

USB Programming Model

14-46 ADSP-BF535 Blackfin Processor Hardware Reference

USBD Device Initialization
Device initialization consists of several steps that prepare the USBD mod-
ule to transfer data. On a hard reset event, software should perform the
following steps.

1. Program the UDC module’s endpoint buffers. For more informa-
tion, see “Configuration of the UDC Module” on page 14-44.

2. Program interrupt masks in USBD_GINTR, USBD_INTRx and the DMA
interrupt enables in USBD_DMACFG.

3. Program the DMA master interface with the USB module’s base
address (USBD_DMABLO, USBD_DMABHI) in system memory and enable
the DMA.

4. Program the endpoint registers for endpoint 0 in order to receive
commands from the USB host:

a. USBD_EPCFG0 – USBD_MAX = Endpoint’s maximum packet
size, USBD_DIR = OUT, USBD_ARM = 1.

b. USBD_EPADR0 = As desired.

c. USBD_EPLEN0 = As desired. Control endpoints typically spec-
ify an 8 byte packet size.

5. Enable the module for USB activity by setting the USBD_ENA bit in
the USBD_CTRL register.

6. Wait for a USBD_CFG interrupt, or for a SETUP packet on endpoint
0.

The most likely sequence of events from the USB is that the device
comes out of reset and receives a GET_DESCRIPTOR request from the
USB host for the first 8 bytes of the device descriptor, potentially
followed by additional GET_DESCRIPTOR requests. At that point, the

ADSP-BF535 Blackfin Processor Hardware Reference 14-47

USB Device

USB host assigns an address to the device and then selects a config-
uration. Optionally, if the USBD_CFG interrupt is masked, software
can poll the USBD_GINTR register.

7. Read a new USB configuration number from the USBD_STAT regis-
ter, or decode and respond to the setup packet (For more
information, see “Control Transfers” on page 14-11.).

8. Repeat steps 6 and 7 until a device configuration has been
specified.

9. Program endpoint configuration and interrupt registers according
to the current device configuration.

10.Initialization is complete.

USB Data Transfers
This section documents the programming of the endpoint configuration
registers to support USB data transfers. It includes a number of cases typi-
cally encountered, such as Bulk IN/OUT, Isochronous IN/OUT, and
Control transfers. Exception cases, such as packet retries, bad device
requests, corrupted handshakes, and short transfers, are also discussed.

 From the device’s viewpoint, USB Interrupt transfers usually
behave like Bulk transfers. The information that describes Bulk
transfers also applied to USB Interrupt transfers. USB Interrupt
transfers are not discussed separately.

USB Transfer Concepts

In general, the USB does not maintain a transfer count for data transfers
between the device and the host. For isochronous endpoints, the transfer
size is irrelevant, because they get the same bandwidth every frame,
whether they need it or not. Control transfers specify the length of their

USB Programming Model

14-48 ADSP-BF535 Blackfin Processor Hardware Reference

data phase in the setup packet, but the data phase may terminate early.
Bulk and interrupt transfers, however, appear only as a continuous stream
of packets to the USB.

To delineate blocks of data, the USB requires that all packets be sent at
the maximum size for the endpoint, except for the last packet in a group.
For example, if the endpoint’s maximum packet size is 8 bytes, and a
63-byte transfer is being performed, the data source would send 7 packets
at 8 bytes, and one last packet at 7 bytes. The software on the USB host or
the USB device recognizes the shortened data packet as the end of a group
of packets. If the data transfer ends on a packet boundary (that is, a
64-byte transfer, 8-byte packet size), the data source sends a last 0-byte
packet on the USB.

How to Transfer Data

Preparing a USB endpoint to transfer data consists of several steps:

1. For the first memory block, program the buffer offset and length
into the USBD_EPADRx and USBD_EPLENx registers. The offset address
is a word-aligned address in the ADSP-BF535 processor’s L2
memory.

2. Unmask the USBD_BCSTAT, USBD_PC, and USBD_TC interrupts.

3. Program the USB_EPCFGx register with these fields:

• Set the USBD_MAX field to the code for the endpoint’s maxi-
mum packet size.

• Set USBD_TYP to the code for the endpoint type.

• Set USBD_DIR to IN or OUT.

• Set USBD_ARM to 1.

4. Wait for interrupts.

ADSP-BF535 Blackfin Processor Hardware Reference 14-49

USB Device

The USBD_PC interrupt can be used by software to monitor the
progress of a transfer on a packet-by-packet basis. The USBD_BCSTAT
interrupt indicates when the byte count for the transfer has
expired, and a new buffer must be set up. The USBD_TC interrupt
indicates a completed transfer.

5. For multiple block transfers, repeat steps 1 through 4 until all
blocks have been transferred.

If a bulk IN data transfer ends on a packet boundary, an additional
block with a size of 0 bytes must be created to terminate the
transfer.

 Due to packet scheduling on the USB, resetting the endpoint regis-
ters between transfers is a time-critical operation to avoid
generating NAKs on the USB.

Bulk Transfers

Bulk data transfers (as well as interrupt and control transfers) are based
around a limited set of packet sizes. The USB 1.1 specification defines
valid sizes of 8, 16, 32, and 64 bytes. Each USB endpoint is assigned one
of these possible basic packet sizes and cannot switch between them.

All large data transfers are broken down into units of the basic packet
sizes. For example, a 1044-byte file transfer across the USB to a 64-byte
bulk endpoint consists of 17 packet transfers. The first 16 packets are 64
bytes, and the remaining 20 bytes are carried in a short packet. The USB
host automatically assumes that the short packet represents an
end-of-transfer indicator.

Scheduling individual packet transfers on the USB is non-deterministic
from the device’s standpoint. It does not know in advance when the host
is going to make a request. The best the device can do to ensure maximum
bandwidth use of the USB is to be ready for a transfer at all times. This
means setting up multiple buffering for the endpoints.

USB Programming Model

14-50 ADSP-BF535 Blackfin Processor Hardware Reference

Note that the endpoint configuration registers allow software to create
data transfers larger than a single USB packet. The DMA master channel
can address a 2 KB buffer space in system memory. Software must manage
the space as a pool of buffers. By using the endpoint configuration regis-
ters, it can create transfers from 1 to 1023 bytes at various locations in the
2 KB buffer space. This can be a single 1023-byte isochronous endpoint
buffer or many 16-byte bulk endpoint buffers.

Bulk In

Assume 64-byte packet size, packet buffer located at address 0x80 in the
L2 memory space, and buffer size 0x80 (two packets). Programming flow
is:

1. Clear interrupt registers: USBD_EPINTRx and the USBD_EPxINTR bit
of the USBD_GINTR register.

2. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

3. Configure the endpoint:

• USBD_EPCFGx: USBD_TYP = 01, USBD_DIR = 1, USBD_MAX = 11,
USBD_ARM = 1.

• USBD_EPADRx: USBD_OFFSET = 0x0080.

• USBD_EPLEN0: USBD_BC = 0x0080.

ADSP-BF535 Blackfin Processor Hardware Reference 14-51

USB Device

4. Wait for interrupts.

• If USBD_PC interrupt:

• Software can monitor transfer progress on a
packet-by-packet basis. After each packet transfers, software
must clear the USBD_PC and USBD_EPxINTR interrupts. Go
back to step 4.

• If USBD_BCSTAT interrupt and not USBD_TC interrupt:

• If more data is to be sent, clear interrupts and go back to
step 2. Update USBD_EPADRx and USBD_EPLENx to point to
the next buffer of data, then set USBD_ARM = 1 to re-arm the
endpoint.

• If no more data is to be sent, clear interrupts, program
USBD_BC = 0, and set UDBD_ARM = 1. Wait for interrupts.

• If USBD_TC interrupt, the transfer is complete.

Bulk Out

Assume 16-byte packet size, packet buffer located at address 0x80 in the
L2 memory space, and buffer size 0x80 (four packets). Programming flow
is:

1. Clear interrupt registers: USBD_EPINTRx and the USBD_EPxINTR bit
of the USBD_GINTR register.

2. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_TC = 0, USBD_PC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

USB Programming Model

14-52 ADSP-BF535 Blackfin Processor Hardware Reference

3. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 01, USBD_DIR = 0, USBD_MAX = 01, USBD_ARM = 1.

• USBD_EPADRx:

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x0080.

4. Wait for USBD_BCSTAT/USBD_PC/USBD_TC interrupt.

• If USBD_PC:

• Software can monitor transfer progress on a packet by
packet basis. After each packet transfers, software must clear
the USBD_PC and USBD_EPxINTR interrupts.

• If USBD_BCSTAT and not USBD_TC:

• Clear interrupts, then go back to step 2. Update
USBD_EPADRx and USBD_EPLENx to point to a new data buffer
and then set USBD_ARM = 1 to re-arm the endpoint.

• If USBD_TC:

• The transfer is complete. Total length of transfer is equal to
the number of complete buffers transferred multiplied by
the buffer size, plus the buffer size minus the value remain-
ing in the USBD_EPLENx register at the end of the transfer.

5. Clear the endpoint interrupts, take the steps required to complete
the transfer in software, then go back to step 2 and update the reg-
isters for a new data transfer.

ADSP-BF535 Blackfin Processor Hardware Reference 14-53

USB Device

Isochronous Transfers

Isochronous endpoints are guaranteed exactly one packet transfer per USB
frame. The maximum size of the packet is specified in the endpoint’s
descriptors (software), and in the EpBufs (hardware). In any given frame,
the USB may transfer from 0 to the maximum number of bytes allocated
for the endpoint.

The specific timing of the packet within a frame is dynamic based on the
USB traffic load. In the worst-case scenario, a device can get an isochro-
nous packet request at the end of frame X, and then another immediately
at the beginning of frame X+1. For this reason, isochronous applications
should consider prebuffering an entire packet one frame in advance of
when it is needed.

For USB IN endpoints, prebuffering an entire packet involves setting up
the transfer for the next frame as soon as the USBD_TC interrupt is received
for the current frame. For USB OUT endpoints, this translates to putting
a buffer in place as soon as the USBD_TC interrupt is received for the cur-
rent frame.

For USB OUT endpoints, the device software should program the byte
count to the exact size of the maximum packet for the endpoint (1 to
1023 bytes). For USB IN transfers, the device software should program
the byte count to match the amount of data to be transferred in a given
frame (the maximum packet size or less).

If the USB device does not have any data to transfer on a particular frame,
it should disarm the endpoint by clearing the USBD_ARM bit in the
USBD_EPCFGx register.

To monitor the progress of transfers, the device software monitors the
USBD_SOF interrupt, and it can look at the status fields of the USBD_STAT
register to see exactly what is occurring on the bus at any given time.

Specific examples of ISO IN and ISO OUT register programming are
shown in the following sections.

USB Programming Model

14-54 ADSP-BF535 Blackfin Processor Hardware Reference

Iso In

Assume 128-byte packet size, packet buffer located at address 0x80 in the
L2 memory space, and buffer size 0x80 (one packet). Programming flow
is:

1. Clear all interrupts: Write USBD_EPINTRx = all ones. Write
USBD_EPxINTR bit of USBD_GINTR register = 1.

2. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_PC = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

3. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 11, USBD_DIR = 1, USBD_MAX = XX,
USBD_ARM = 1.

• USBD_EPADRx:

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x0080.

ADSP-BF535 Blackfin Processor Hardware Reference 14-55

USB Device

4. Wait for interrupts.

• If USBD_TC interrupt and USBD_PC interrupt, then the packet
transfer was error free.

• If USBD_TC interrupt and not USBD_PC interrupt, then the
packet transfer had a problem of some kind. The specific
problem must be handled by the programmer. Software
must determinate whether this is an error or merely a
warning.

5. Go back to step 2 to prepare for the next frame’s data transfer.

Iso Out

Assume 1023-byte packet size, packet buffer located at address 0x80 in the
memory space, and buffer size 0x3FF (one packet). Programming flow is:

1. Unmask interrupts:

• USBD_MASKx: USBD_BCSTAT = 0, USBD_PC = 0, USBD_TC = 0.

• USBD_GMASK: USBD_EPxMSK = 0.

2. Configure the endpoint:

• USBD_EPCFGx:

• USBD_TYP = 11, USBD_DIR = 0, USBD_MAX = XX,
USBD_ARM = 1.

• USBD_EPADRx:

• USBD_OFFSET = 0x0080.

• USBD_EPLEN0:

• USBD_BC = 0x03FF.

USB Programming Model

14-56 ADSP-BF535 Blackfin Processor Hardware Reference

3. Wait for interrupts.

• If USBD_TC interrupt and USBD_PC interrupt, then the packet
transfer was error free.

• If USBD_TC interrupt and not USBD_PC interrupt, then the
packet transfer had a problem of some kind. The specific
problem must be handled by the programmer. Software
must determine whether this is an error or merely a
warning.

4. Number of bytes received is equal to the buffer size minus the value
remaining in the USBD_EPLENx register when the USBD_TC interrupt
is received. Take the steps required to complete the transfer in soft-
ware, then go back to step 2 and update the registers accordingly.
Note that no error retries are performed.

Control Transfers

In general, Control endpoints (usually endpoint 0) operate like Bulk end-
points. However, Control endpoints are bidirectional and follow a special
protocol that allows the USB host to send commands to the USB device.
Control transfers consist of three phases: a setup phase, a data phase, and a
status phase.

During the setup phase, the USB host sends an 8-byte setup packet to the
USB device. The format and contents of the packet are defined in the
USB specification.

The setup packet specifies information such as the type of command
(standard request, vendor-specific, device-class-specific), the direction of
the data phase (if any), the size of the data phase (if any), and the specific
command code.

After receiving the command, the device can choose to reject the com-
mand by stalling the endpoint, or it can process the command and
proceed through the data and status phases.

ADSP-BF535 Blackfin Processor Hardware Reference 14-57

USB Device

The following sections show example flows for control transfers without a
data phase and with a data phase.

Control Transfer, No Data Phase

A control transfer with no data phase consists of these steps:

1. At initialization time, device software unmasks the USBD_SETUP
interrupt on the control endpoint(s).

2. Device initializes the USBD_EPADRx and USBD_EPLENx registers to
point to storage buffers.

3. Device initializes the USBD_EPCFGx registers for OUT direction,
USBD_TYP = 00, USBD_DIR = 0 (OUT direction). The USBD_MAX field
is programmed to match the endpoint’s maximum packet size. The
USBD_ARM bit is set to 1.

4. Monitor the USBD_SETUP interrupt.

5. On receipt of a USBD_SETUP interrupt, read the setup packet from
the memory buffer and decode the command. If the command is
valid, execute it.

6. To complete the command, a status packet must be returned to the
USB host. For a transfer with no data phase, this is an IN transfer
of 0 bytes, or a STALL handshake. If the command completes suc-
cessfully, set the endpoint registers (USBD_EPCFGx, USBD_EPLENx) for
a 0 byte IN transfer, and set the USBD_ARM bit to 1. If the command
does not complete successfully, set the USBD_EPxSTALL bit in the
USBD_CTRL register.

USB Programming Model

14-58 ADSP-BF535 Blackfin Processor Hardware Reference

Control Transfer With Data Phase

A control transfer can include a data phase between the setup and status
phases. The data phase can run from 0 to 65,535 bytes, in either IN or
OUT direction. The flow is:

1. At initialization time, device software unmasks the USBD_SETUP
interrupt on the control endpoint(s).

2. Device initializes the USBD_EPADRx and USBD_EPLENx registers to
point to a storage buffer.

3. Device initializes the USBD_EPCFGx registers for OUT direction,
USBD_TYP = 00, USBD_DIR = 0 (OUT direction). The USBD_MAX field
is programmed to match the endpoint’s maximum packet size. The
USBD_ARM bit is set to 1.

4. Monitor the USBD_SETUP interrupt.

5. On receipt of a USBD_SETUP interrupt, read the setup packet from
the memory buffer and decode the command. If the command is
valid, execute it. If the wLength field of the setup packet is nonzero,
then a data phase is associated with the transfer. The direction of
the transfer is specified by the bmAttributes[7] bit of the setup
packet.

6. Program the endpoint registers to execute a data transfer as in the
BULK IN example (see “Bulk Data Transfers” on page 14-11).

 Under no circumstances should software attempt to transfer more
bytes than specified in the wLength field of the setup packet. It can
transfer fewer bytes than specified in the wLength field.

7. To complete the command, a status packet must be returned to the
USB host. For a transfer with a data phase, this is a packet with
0 bytes, or a STALL handshake. The direction of the status phase is
opposite that of the data transfer. For example, for a control transfer
with an OUT data phase, set the endpoint registers

ADSP-BF535 Blackfin Processor Hardware Reference 14-59

USB Device

(USBD_EPCFGx, USBD_EPLENx) for a zero-byte IN transfer, and set the
USBD_ARM bit to 1. If the command does not complete successfully,
set the USBD_EPxSTALL bit in the USBD_CTRL register.

Control Transfers Gone Bad

The USB protocol is usually very reliable about ensuring that packets
reach their intended destination. However, in one case the packets can be
confused. The particular corner case occurs when the USB host sends a
command to a USB device.

The host sends a setup packet to the device, and the device acknowledges
it with an ACK handshake. If the ACK handshake is corrupted, the USB
host waits a while, then tries to resend the setup packet. In this case, the
device can wind up with 2 (or more) setup packets in its internal buffer,
and must figure out which is the real one before moving on and processing
the command.

The USBD module includes several features to help deal with this situa-
tion. The features are:

• The UDC correctly handles the situation within its own logic and
understands that the first setup packet is invalid.

• The USBD_SETUP and USBD_MSETUP interrupts can be used to deter-
mine whether two setup packets await service. An internal lockout
mechanism guarantees that if software tries to clear USBD_SETUP and
USBD_MSETUP at the same time that another setup packet is received,
the software gets another USBD_SETUP interrupt indicating the
condition.

• The USBD_SIP and USBD_PIP status bits can be used to determine
whether the USB module is in the process of receiving a new setup
packet. Software can check these bits before moving to the DATA
or STATUS phase of the control transfer to determine whether the
command request that it is processing is about to be invalidated.

USB Programming Model

14-60 ADSP-BF535 Blackfin Processor Hardware Reference

Exception Handling
Software must handle several exception cases. These exceptions consist of
catastrophic endpoint errors, isochronous packets with data errors, and
failed memory access requests.

Small Packets (Less Than 16-Byte Transfers)

The DMA master channel is required to address data in minimum bursts
of 16 bytes.For this reason, using the USBD module with packet sizes of
less than 16 bytes presents a challenge to system software.

To use 16-byte or smaller packets, the USB module pads the data to main-
tain the 16-byte boundary. It is up to the system software to read the
USBD_EPLENx register to determine the valid data.

Endpoint Errors

Under normal circumstances, the hardware handles transfer errors on
individual data packets transparently without software intervention. The
USB protocol supports packet retries for Bulk, Control, and Interrupt
packets.

In cases where a catastrophic problem occurs on a specific endpoint, and
the device needs support from the application software (such as a configu-
ration change), the device has the option to stall individual endpoints.
When a device stalls an endpoint, the USB host is required to clear the
stall condition before further data transfers can occur on the endpoint.
Presumably, while clearing the stall condition, the application also fixes
the underlying condition which caused the stall in the first place.

The USBD module includes a stall bit for each endpoint in the USBD_CTRL
register. When software needs to indicate a stall condition, it sets the
USBD_EPxSTALL bit. After the USBD_EPxSTALL bit has been set, application
behavior is product specific. The application must clear the
USBD_EPxSTALL bit in the USBD_CTRL register.

ADSP-BF535 Blackfin Processor Hardware Reference 14-61

USB Device

Isochronous Transfers Error Detection

While Control, Interrupt, and Bulk data transfers support a method for
error correction, Isochronous transfers have only error detection capabil-
ity. Occasionally, the device can expect that an entire packet is lost, but in
most cases, the device has to deal with CRC errors or bitstuff violations.
In these cases, the entire packet transfers, but the application is responsi-
ble for determining how to handle the error.

Under normal circumstances, the USBD module generates both
end-of-packet and end-of-transfer interrupts (USBD_PC, USBD_TC) for iso-
chronous packets.

If an error occurs (for example, CRC error, or bitstuff error), the module
still asserts the USBD_TC, but it does not assert the USBD_PC. In this way, the
application can detect and compensate for errors.

Reset Signaling Detected on USB

USB reset signaling is generated by the USB host. The Host uses reset sig-
naling when it needs to re-enumerate devices on the bus. This can occur
just after power-up, when devices are initially connected to a hub port,
and any time the USB host runs into a catastrophic failure situation.

The USBD module reports the presence of USB reset signaling to the sys-
tem through the USBD_RSTSIG bit of the USBD_STAT register and by means
of the USBD_RST interrupt of the USBD_GINTR register.

When the system detects one of these cases, it should terminate any activi-
ties currently in progress and prepare for the device to be re-enumerated
by the USB host. The system does not need to re-download the UDC end-
point buffer data, nor does it need to reinitialize the device.

References

14-62 ADSP-BF535 Blackfin Processor Hardware Reference

Suspend/Resume Considerations

During the time that the USB is suspended (USBD_SUSPEND output active),
the system may stop all clocks to the USBD module. If the USB device is
powered by the bus, it may be required to stop all clocks to meet the cur-
rent requirements during the suspended state.

On the inactive edge of USBD_SUSPEND, the module must immediately
restart its clocks and guarantee stability within 10 ms (USB specification,
section 9.2.6.2).

 Note: The 10 ms window is cited in the USB specification and is
supposedly guaranteed by the system software on the USB host.
Because no USB compliance tests exist for USB hosts, the 10 ms
window cannot be guaranteed across all operating system/BIOS
combinations. The system designer is urged to restart the clocks as
quickly as possible.

More information about USB power distribution is given in Chapter 7 of
the USB specification.

References
These reference materials may be of interest to the system integrator:

• Universal Serial Bus System Architecture, Don Anderson, Mindshare
Inc.

• Universal Serial Bus Specification, Rev 1.1, USB Implementers
Forum, www.usb.org. Available online.

• Open Host Controller Interface Specification, Rev 1.0, USB Imple-
menters Forum, www.usb.org. Available online.

ADSP-BF535 Blackfin Processor Hardware Reference 14-63

USB Device

This additional resources is readily available for USB product developers:

• USB Device Class Specifications, www.usb.org. The common class
specifications provide a framework in which device developers can
make use of standardized device drivers on the USB host. Examples
are printers, disk drives, and broadband modems.

References

14-64 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 15-1

15 PROGRAMMABLE FLAGS

The ADSP-BF535 processor supports sixteen bidirectional programmable
flags (PFx) or general-purpose I/O pins, PF[15:0]. Each pin can be indi-
vidually configured as either an input or an output by using the Flag
Direction register (FIO_DIR). When configured as an output, the state
written to the Flag Set (FIO_FLAG_S) and Flag Clear (FIO_FLAG_C) registers
determines the state driven by the output PFx pin. Reading either the Flag
Set or Flag Clear register returns the state of each pin, regardless of
whether each individual pin is configured as an input or an output.

Each PFx pin can be further configured to generate an interrupt. When a
PFx pin is configured as an input, an interrupt can be generated according
to the state of the pin (either high or low), an edge transition (low to high
or high to low), or on both edge transitions (low to high and high to low).
Input sensitivity is defined on a per-bit basis by the Flag Polarity register
(FIO_POLAR), the Flag Interrupt Sensitivity register (FIO_EDGE) and the
Flag Set on Both Edges register (FIO_BOTH). When a PFx pin is configured
as an output, enabling interrupts for the pin allows an interrupt to be gen-
erated by setting the PFx pin.

The ADSP-BF535 processor provides two independent interrupt channels
for the PFx pins. Identical in functionality, these are called Interrupt A
and Interrupt B. Each interrupt has two mask registers associated with it, a
Flag Interrupt Mask Set register (FIO_MASKx_S) and a Flag Interrupt Mask
Clear register (FIO_MASKx_C). This flexible mechanism allows each bit to
generate Flag Interrupt A, Flag Interrupt B, both Flag Interrupts A and B,
or neither.

Programmable Flag Memory-Mapped Registers (MMRs)

15-2 ADSP-BF535 Blackfin Processor Hardware Reference

Each PFx pin is represented by a bit in each of the four registers. Writing a
1 to a bit in a mask set register enables interrupt generation for that PFx
pin, while writing a 1 to a bit in a mask clear register disables interrupt
generation for that PFx pin.

The PFx pins are multiplexed for use by the Serial Port Interface (SPI) and
Phase Locked Loop (PLL) circuitry. Refer to the “SPI” and the “Dynamic
Power Management” chapters for more information.

Programmable Flag Memory-Mapped
Registers (MMRs)

The programmable flag (PFx) registers are part of the system memory-
mapped registers (MMRs). The addresses of the programmable flag
MMRs appear in Appendix B. Core access to the flag configuration regis-
ters is through the system bus.

Flag Direction Register (FIO_DIR)
The Flag Direction register, shown in Figure 15-1, is a read-write register.
Each bit position corresponds to a PFx pin. A logic 1 configures a PFx pin
as an output, and a logic 0 configures a PFx pin as an input. The reset
value of this register is 0x0000, making all PFx pins inputs upon reset.

Flag Set (FIO_FLAG_S) and Flag Clear
(FIO_FLAG_C) Registers

The Flag Set and Flag Clear registers, shown in Figure 15-2 and
Figure 15-3, are used to sense the value of the PFx pins defined as inputs,
to set the state of PFx pins defined as outputs, and to clear interrupts gen-
erated by the PFx pins. Each PFx pin is represented by a bit in each of these
registers.

ADSP-BF535 Blackfin Processor Hardware Reference 15-3

Programmable Flags

Reading either the Flag Set or Flag Clear registers returns the value of the
PFx pins. The value returned shows the state of the PFx pins defined as
outputs and the sense of PFx pins defined as inputs, based on the polarity
and sensitivity settings of each pin.

The Flag Set register is a write-1-to-set register, while the Flag Clear regis-
ter is a write-1-to-clear register. These registers are used to set or clear the
output state associated with each output PFx pin, and to set or clear the
latched interrupt state captured from each input PFx pin. This mechanism
allows for more straightforward coding and is less prone to bit manipula-
tion errors than traditional read-modify-write mechanisms.

As an example, assume PF[0] is configured as an output. Writing 0x0001
to the Flag Set register drives a logic 1 on the PF[0] pin without affecting
the state of any other PFx pins. Writing 0x0001 to the Flag Clear register
drives a logic 0 on the PF[0] pin without affecting the state of any other
PFx pins. Reading either register shows 0s for those PFx pins defined as
outputs and driven low, 1s for those pins (including PF[0]) defined as out-
puts and driven high, and the present sense of those PFx pins defined as
inputs. Input sense is based on FIO_POLAR and FIO_EDGE settings, as well as
the logic level at each pin.

Figure 15-1. Flag Direction Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Direction Register (FIO_DIR)

PF0 Direction

PF12 Direction

PF13 Direction

PF14 Direction

PF15 Direction

PF1 Direction

PF2 Direction

PF3 Direction

PF4 Direction

PF5 Direction

For all bits, 0 - Input, 1 - Output.

PF6 Direction

PF7 Direction

PF11 Direction

PF10 Direction

PF9 Direction

PF8 Direction

Reset = 0x00000xFFC0 2400

Programmable Flag Memory-Mapped Registers (MMRs)

15-4 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 15-2. Flag Set Register

Figure 15-3. Flag Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Flag Set Register (FIO_FLAG_S)

Set PF0

Set PF12

Set PF13

Set PF14

Set PF15

Set PF1

Set PF2

Set PF3

Set PF4

Set PF5

Write-1-to-set.

Set PF6

Set PF7

Set PF11

Set PF10

Set PF9

Set PF8

Reset = The value of
PF pins after reset

0xFFC0 2406

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Flag Clear Register (FIO_FLAG_C)

Clear PF0

Clear PF12

Clear PF13

Clear PF14

Clear PF15

Clear PF1

Clear PF2

Clear PF3

Clear PF4

Clear PF5

Write-1-to-clear.

Clear PF6

Clear PF7

Clear PF11

Clear PF10

Clear PF9

Clear PF8

Reset = The value of
PF pins after reset

0xFFC0 2404

ADSP-BF535 Blackfin Processor Hardware Reference 15-5

Programmable Flags

Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)

Like the Flag Set and Flag Clear registers, the Flag Interrupt Mask regis-
ters are implemented as complementary pairs of write-1-to-set and
write-1-to-clear registers. This implementation provides the ability to
enable or disable a PFx pin to act as a processor interrupt without requir-
ing read-modify-write accesses.

Flag Interrupt A and Flag Interrupt B are each supported by a dedicated
Flag Interrupt Mask Set register and a Flag Interrupt Mask Clear register
(see Figure 15-4, Figure 15-5, Figure 15-6, and Figure 15-7). Each PFx
pin is represented by a bit in each of the four registers. Writing a 1 to a bit
in a mask set register enables interrupt generation for that PFx pin, while
writing a 1 to a bit in a mask clear register disables interrupt generation
for that PFx pin.

Interrupt A and Interrupt B operate independently. For example, writing
a 1 to a bit in the Flag Interrupt A Mask Set register does not affect Flag
Interrupt B. This facility allows PFx pins to generate Flag Interrupt A, Flag
Interrupt B, both Flag Interrupts A and B, or neither.

When using either rising or falling edge-triggered interrupts, the interrupt
condition must be cleared each time a corresponding interrupt is serviced
by writing a 1 to the appropriate FIO_FLAG_C bit.

Programmable Flag Memory-Mapped Registers (MMRs)

15-6 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 15-4. Flag Interrupt A Mask Set Register

Figure 15-5. Flag Interrupt A Mask Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt A Mask Set Register (FIO_MASKA_S)

Enable PF0 Interrupt

Enable PF12 Interrupt

Enable PF13 Interrupt

Enable PF14 Interrupt

Enable PF15 Interrupt

Enable PF1 Interrupt

Enable PF2 Interrupt

Enable PF3 Interrupt

Enable PF4 Interrupt

Enable PF5 Interrupt

For all bits, 1 - Enable.

Enable PF6 Interrupt

Enable PF7 Interrupt

Enable PF11 Interrupt

Enable PF10 Interrupt

Enable PF9 Interrupt

Enable PF8 Interrupt

Reset = 0x00000xFFC0 240A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt A Mask Clear Register (FIO_MASKA_C)

Disable PF0 Interrupt

Disable PF12 Interrupt

Disable PF13 Interrupt

Disable PF14 Interrupt

Disable PF15 Interrupt

Disable PF1 Interrupt

Disable PF2 Interrupt

Disable PF3 Interrupt

Disable PF4 Interrupt

Disable PF5 Interrupt

For all bits, 1 - Disable.

Disable PF6 Interrupt

Disable PF7 Interrupt

Disable PF11 Interrupt

Disable PF10 Interrupt

Disable PF9 Interrupt

Disable PF8 Interrupt

Reset = 0x00000xFFC0 2408

ADSP-BF535 Blackfin Processor Hardware Reference 15-7

Programmable Flags

Figure 15-8 shows the process by which a Flag Interrupt A or a Flag Inter-
rupt B event can be generated. Note that the flow is shown for only one
programmable flag, FlagN. However, a Flag Interrupt is generated by a
logical OR of all unmasked PFx pins for that interrupt. For example, if

Figure 15-6. Flag Interrupt B Mask Set Register

Figure 15-7. Flag Interrupt B Mask Clear Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt B Mask Set Register (FIO_MASKB_S)

Enable PF0 Interrupt

Enable PF12 Interrupt

Enable PF13 Interrupt

Enable PF14 Interrupt

Enable PF15 Interrupt

Enable PF1 Interrupt

Enable PF2 Interrupt

Enable PF3 Interrupt

Enable PF4 Interrupt

Enable PF5 Interrupt

For all bits, 1 - Enable.

Enable PF6 Interrupt

Enable PF7 Interrupt

Enable PF11 Interrupt

Enable PF10 Interrupt

Enable PF9 Interrupt

Enable PF8 Interrupt

Reset = 0x00000xFFC0 240E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt B Mask Clear Register (FIO_MASKB_C)

Disable PF0 Interrupt

Disable PF12 Interrupt

Disable PF13 Interrupt

Disable PF14 Interrupt

Disable PF15 Interrupt

Disable PF1 Interrupt

Disable PF2 Interrupt

Disable PF3 Interrupt

Disable PF4 Interrupt

Disable PF5 Interrupt

For all bits, 1 - Disable.

Disable PF6 Interrupt

Disable PF7 Interrupt

Disable PF11 Interrupt

Disable PF10 Interrupt

Disable PF9 Interrupt

Disable PF8 Interrupt

Reset = 0x00000xFFC0 240C

Programmable Flag Memory-Mapped Registers (MMRs)

15-8 ADSP-BF535 Blackfin Processor Hardware Reference

only PF[0] and PF[1] are unmasked for Flag Interrupt A, this interrupt is
generated when triggered by either PF[0] or PF[1]. At reset, all interrupts
are masked.

Figure 15-8. Flag Interrupt Generation Flow

Is FlagN enabled
for interrupt generation
in FIO_MASKA_S and

FIO_MASKA_C?

Yes

No
(Input)

No
(Input)

Yes

Yes
Yes

Yes

Yes

Yes

Yes

FLAG INTERRUPT A OCCURS FLAG INTERRUPT B OCCURS

START

Is FlagN set as
an output in

FIO_DIR?

Is FlagN
asserted

high?

Based on FIO_EDGE,
FIO_POLAR, and

FIO_BOTH settings, is
FlagN generating

an interrupt
condition?

Is FlagN enabled
for interrupt generation
in FIO_MASKB_S and

FIO_MASKB_C?

Is FlagN set as
an output in

FIO_DIR?

Is FlagN
asserted

high?

Based on FIO_EDGE,
FIO_POLAR, and

FIO_BOTH settings, is
FlagN generating

an interrupt
condition?

ADSP-BF535 Blackfin Processor Hardware Reference 15-9

Programmable Flags

Flag Polarity Register (FIO_POLAR)
The Flag Polarity register, shown in Figure 15-9, is used to configure the
polarity of the flag input source. To select active high or rising edge, set
the bits in this register to 0. To select active low or falling edge, set the bits
in this register to 1. This register has no effect on PFx pins that are defined
as outputs. The contents of this register are cleared at reset, defaulting to
active high polarity.

Figure 15-9. Flag Polarity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Polarity Register (FIO_POLAR)

PF0 Polarity

PF12 Polarity

PF13 Polarity

PF14 Polarity

PF15 Polarity

PF1 Polarity

PF2 Polarity

PF3 Polarity

PF4 Polarity

PF5 Polarity

For all bits, 0 - Active high or rising edge, 1 - Active low or falling edge.

PF6 Polarity

PF7 Polarity

PF11 Polarity

PF10 Polarity

PF9 Polarity

PF8 Polarity

Reset = 0x00000xFFC0 2410

Programmable Flag Memory-Mapped Registers (MMRs)

15-10 ADSP-BF535 Blackfin Processor Hardware Reference

Flag Interrupt Sensitivity Register (FIO_EDGE)
The Flag Interrupt Sensitivity register, shown in Figure 15-10, is used to
configure each of the flags as either a level sensitive or an edge sensitive
source.

When using an edge sensitive mode, an edge detection circuit is used to
prevent a situation where a short event is missed due to the system clock
rate.

The contents of this register are cleared at reset, defaulting to level
sensitivity.

Flag Set on Both Edges Register (FIO_BOTH)
The Flag Set on Both Edges register, shown in Figure 15-11, is used to
enable interrupt generation on both rising and falling edges.

Figure 15-10. Flag Interrupt Sensitivity Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Interrupt Sensitivity Register (FIO_EDGE)

PF0 Sensitivity

PF12 Sensitivity

PF13 Sensitivity

PF14 Sensitivity

PF15 Sensitivity

PF1 Sensitivity

PF2 Sensitivity

PF3 Sensitivity

PF4 Sensitivity

PF5 Sensitivity

For all bits, 0 - Level, 1 - Edge.

PF6 Sensitivity

PF7 Sensitivity

PF11 Sensitivity

PF10 Sensitivity

PF9 Sensitivity

PF8 Sensitivity

Reset = 0x00000xFFC0 2414

ADSP-BF535 Blackfin Processor Hardware Reference 15-11

Programmable Flags

When a given PFx pin has been set to edge-sensitive in the Flag Interrupt
Sensitivity register, setting the PFx pin’s bit in the Flag Set on Both Edges
register to Both edges results in an interrupt being generated on both the
rising and falling edges. This register has no effect on PFx pins that are
defined as level sensitive.

Performance/Throughput
The PFx pins are synchronized to the system clock (SCLK). When config-
ured as outputs, the programmable flags can transition once every 4
system clock cycles.

When configured as inputs, the overall system design should take into
account the potential latency between the core and the system clock.
Changes in the state of PFx pins have a latency of 3 SCLK cycles before
being detectable by the processor. When configured for level-sensitive
interrupt generation, there is a minimum latency of 4 SCLK cycles between
the time the flag is asserted and the time that program flow is interrupted.
When configured for edge-sensitive interrupt generation, an additional

Figure 15-11. Flag Set on Both Edges Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Flag Set on Both Edges Register (FIO_BOTH)

PF0 Both Edges

PF12 Both Edges

PF13 Both Edges

PF14 Both Edges

PF15 Both Edges

PF1 Both Edges

PF2 Both Edges

PF3 Both Edges

PF4 Both Edges

PF5 Both Edges

For all bits, when enabled for edge sensitivity, 0 - Single edge, 1 - Both edges.

PF6 Both Edges

PF7 Both Edges

PF11 Both Edges

PF10 Both Edges

PF9 Both Edges

PF8 Both Edges

Reset = 0x00000xFFC0 2418

Performance/Throughput

15-12 ADSP-BF535 Blackfin Processor Hardware Reference

SCLK cycle of latency is introduced, giving a total latency of 5 SCLK cycles
between the time the edge is asserted and the time that the core program
flow is interrupted.

ADSP-BF535 Blackfin Processor Hardware Reference 16-1

16 TIMERS

The ADSP-BF535 processor features three general-purpose timers, a core
timer, and a watchdog timer.

The general-purpose timers include five registers and can be configured in
any of these three modes:

• Pulse Width Modulation mode (PWM_OUT)

• Pulse Width Count and Capture mode (WDTH_CAP)

• External Event Counter mode (EXT_CLK)

The core timer is available to generate periodic interrupts for a variety of
system timing functions.

The watchdog timer can be used to implement a software watchdog func-
tion. A software watchdog can improve system availability by generating
an event to the Blackfin processor core if the timer expires before being
updated by software.

General-Purpose Timers
Each of the three general-purpose timers has one dedicated bidirectional
pin, TMRx. This pin functions as an output pin in PWM_OUT mode and
as an input pin in WDTH_CAP and EXT_CLK modes. When clocked
internally, the clock source is the ADSP-BF535 processor’s system clock
(SCLK).

General-Purpose Timer Registers

16-2 ADSP-BF535 Blackfin Processor Hardware Reference

General-Purpose Timer Registers
Each general-purpose timer uses these 16-bit registers:

• Timer Status (TIMERx_STATUS)

• Timer Configuration (TIMERx_CONFIG)

• Timer Counter (TIMERx_COUNTER_LO/HI)

• Timer Period (TIMERx_PERIOD_LO/HI)

• Timer Width (TIMERx_WIDTH_LO/HI)

Timer registers are found in the memory range 0xFFC0 2000–
0xFFC0 23FF and are shown in Table 16-1.

 For the sake of readability, this chapter follows the notation speci-
fied in Table 16-2, which removes the LO/HI identifier from the
TIMERx_COUNTER, TIMERx_PERIOD, and TIMERx_WIDTH registers, refer-
ring to each of these MMRs as a 32-bit entity. Table 16-1 shows
the true register mappings that should be used in user code, as all
timer registers are 16 bits wide.

 Always access 16-bit timer registers using 16-bit word read or write
commands.

Table 16-1. Timer Registers

Register Name Memory-Mapped Address Description

TIMER0_STATUS 0xFFC0 2000 Timer0 Status register

TIMER0_CONFIG 0xFFC0 2002 Timer0 Configuration register

TIMER0_COUNTER_LO 0xFFC0 2004 Timer0 Counter register, Low Word

TIMER0_COUNTER_HI 0xFFC0 2006 Timer0 Counter register, High Word

TIMER0_PERIOD_LO 0xFFC0 2008 Timer0 Period register, Low Word

TIMER0_PERIOD_HI 0xFFC0 200A Timer0 Period register, High Word

ADSP-BF535 Blackfin Processor Hardware Reference 16-3

Timers

TIMER0_WIDTH_LO 0xFFC0 200C Timer0 Width register, Low Word

TIMER0_WIDTH_HI 0xFFC0 200E Timer0 Width register, High Word

TIMER1_STATUS 0xFFC0 2010 Timer1 Status register

TIMER1_CONFIG 0xFFC0 2012 Timer1 Configuration register

TIMER1_COUNTER_LO 0xFFC0 2014 Timer1 Counter register, Low Word

TIMER1_COUNTER_HI 0xFFC0 2016 Timer1 Counter register, High Word

TIMER1_PERIOD_LO 0xFFC0 2018 Timer1 Period register, Low Word

TIMER1_PERIOD_HI 0xFFC0 201A Timer1 Period register, High Word

TIMER1_WIDTH_LO 0xFFC0 201C Timer1 Width register, Low Word

TIMER1_WIDTH_HI 0xFFC0 201E Timer1 Width register, High Word

TIMER2_STATUS 0xFFC0 2020 Timer2 Status register

TIMER2_CONFIG 0xFFC0 2022 Timer2 Configuration register

TIMER2_COUNTER_LO 0xFFC0 2024 Timer2 Counter register, Low Word

TIMER2_COUNTER_HI 0xFFC0 2026 Timer2 Counter register, High Word

TIMER2_PERIOD_LO 0xFFC0 2028 Timer2 Period register, Low Word

TIMER2_PERIOD_HI 0xFFC0 202A Timer2 Period register, High Word

TIMER2_WIDTH_LO 0xFFC0 202C Timer2 Width register, Low Word

TIMER2_WIDTH_HI 0xFFC0 202E Timer2 Width register, High Word

Table 16-2. Abbreviated MMR References from Table 16-1

Register Name Memory-Mapped
Address

Description

TIMER0_COUNTER 0xFFC0 2004 Timer0 Counter register

TIMER0_PERIOD 0xFFC0 2008 Timer0 Period register

TIMER0_WIDTH 0xFFC0 200C Timer0 Width register

TIMER1_COUNTER 0xFFC0 2014 Timer1 Counter register

Table 16-1. Timer Registers (Cont’d)

Register Name Memory-Mapped Address Description

General-Purpose Timer Registers

16-4 ADSP-BF535 Blackfin Processor Hardware Reference

Timer Status Registers (TIMERx_STATUS)
Each Timer Status register (TIMERx_STATUS) indicates the status of all
three timers and can be used to check the status of all three timers with a
single read. Each TIMERx_STATUS register contains timer-enable bits that
enable the corresponding timer (for example, TIMER0_STATUS enables
TIMER0). Within a timer’s TIMERx_STATUS register, that timer has a pair
of sticky status bits that require a write-1-to-set (TIMENx) or
write-1-to-clear (TIMDISx) to either enable or disable the timer.

While the timer is enabled, both its TIMENx and TIMDISx bits read 1. The
timer starts counting three peripheral clock cycles after the TIMENx bit is
set. Setting the timer TIMDISx bit stops the timer without waiting for any
additional event.

Each TIMERx_STATUS register also contains a Timer Interrupt bit (IRQx)
and a Timer Overflow bit (OVF_ERRx) for each timer. These sticky bits are
set by the timer hardware and may be monitored by software. They need
to be cleared in TIMERx_STATUS for each timer explicitly. To clear, write a
1 to the bit.

 Interrupt and overflow bits may be cleared at the same time as
timer disable bits.

TIMER1_PERIOD 0xFFC0 2018 Timer1 Period register

TIMER1_WIDTH 0xFFC0 201C Timer1 Width register

TIMER2_COUNTER 0xFFC0 2024 Timer2 Counter register

TIMER2_PERIOD 0xFFC0 2028 Timer2 Period register

TIMER2_WIDTH 0xFFC0 202C Timer2 Width register

Table 16-2. Abbreviated MMR References from Table 16-1 (Cont’d)

Register Name Memory-Mapped
Address

Description

ADSP-BF535 Blackfin Processor Hardware Reference 16-5

Timers

To enable an individual timer, set the timer TIMENx bit in the
TIMERx_STATUS register for that timer. To disable an individual timer, set
the timer TIMDISx bit in the TIMERx_STATUS register for that timer.

For bits descriptions, see Figure 16-1, Figure 16-2, and Figure 16-3.

Figure 16-1. Timer0 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer0 Status Register (TIMER0_STATUS)

IRQ0 (Timer0 Interrupt) - W1C

IRQ1 (Timer1 Interrupt) - RO

1 - Clear Timer0 interrupt flag

0 - No Timer1 interrupt occurred
1 - Timer1 interrupt occurred

TIMDIS2 (Timer2 Disable) -
RO

TIMEN2 (Timer2 Enable) - RO

1 - Timer2 enabled
(if TIMEN2 = 1)

1 - Timer2 enabled
(if TIMDIS2 = 1)

TIMDIS1 (Timer1 Disable) - RO

TIMEN1 (Timer1 Enable) - RO

TIMDIS0 (Timer0 Disable) - W1C

TIMEN0 (Timer0 Enable) - W1S

IRQ2 (Timer2 Interrupt) - RO

OVF_ERR0 (Timer0 Counter
Overflow) - W1C

0 - No Timer2 interrupt occurred
1 - Timer2 interrupt occurred

1 - Clear Timer0 overflow flag

OVF_ERR1 (Timer1 Counter
Overflow) - RO

OVF_ERR2 (Timer2 Counter
Overflow) - RO

0 - No Timer1 overflow occurred
1 - Timer1 overflow occurred

0 - No Timer2 overflow occurred
1 - Timer2 overflow occurred

1 - Timer1 enabled (if TIMEN1 = 1)

1 - Timer1 enabled (if TIMDIS1 = 1)

1 - Disable Timer0

1 - Enable Timer0

0xFFC0 2000

General-Purpose Timer Registers

16-6 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 16-2. Timer1 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer1 Status Register (TIMER1_STATUS)

IRQ0 (Timer0 Interrupt) - RO

IRQ1 (Timer1 Interrupt) - W1C
1 - Clear Timer1 interrupt flag

0 - No Timer0 interrupt occurred
1 - Timer0 interrupt occurred

TIMDIS2 (Timer2 Disable) -
RO

TIMEN2 (Timer2 Enable) - RO

1 - Timer2 enabled
(if TIMEN2 = 1)

1 - Timer2 enabled
(if TIMDIS2 = 1)

TIMDIS1 (Timer1 Disable) - W1C

TIMEN1 (Timer1 Enable) - W1S

TIMDIS0 (Timer0 Disable) - RO

TIMEN0 (Timer0 Enable) - RO

IRQ2 (Timer2 Interrupt) - RO

OVF_ERR0 (Timer0 Counter
Overflow) - RO

0 - No Timer2 interrupt occurred
1 - Timer2 interrupt occurred

1 - Clear Timer1 overflow flag

OVF_ERR1 (Timer1 Counter
Overflow) - W1C

OVF_ERR2 (Timer2 Counter
Overflow) - RO

0 - No Timer0 overflow occurred
1 - Timer0 overflow occurred

0 - No Timer2 overflow occurred
1 - Timer2 overflow occurred

1 - Disable Timer1

1 - Enable Timer1

1 - Timer0 enabled (if TIMEN0 = 1)

1 - Timer0 enabled (if TIMDIS0 = 1)

0xFFC0 2010

ADSP-BF535 Blackfin Processor Hardware Reference 16-7

Timers

Timer Configuration Registers (TIMERx_CONFIG)
To enable timer interrupts, set the IRQ_ENA bit in the Timer Configura-
tion register (TIMERx_CONFIG) and unmask the timer interrupt by setting
the corresponding bit of the System Interrupt Mask register (SIC_IMASK).
If the IRQ_ENA bit is cleared, a timer does not set its IRQx bits. To poll the
IRQx bits without permitting a timer interrupt, set the IRQ_ENA bit while
leaving the SIC_IMASK timer interrupt masked off.

If interrupts are enabled, make sure that the interrupt service routine
(ISR) clears the IRQx bit in the TIMERx_STATUS register before the RTI
instruction executes. This ensures that the interrupt is not reissued.
Remember that writes to system registers are delayed. If only a few
instructions separate the IRQx clear command from the RTI instruction, an

Figure 16-3. Timer2 Status Register

0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x00000

Timer2 Status Register (TIMER2_STATUS)

IRQ0 (Timer0 Interrupt) - RO

IRQ1 (Timer1 Interrupt) - RO

1 - Clear Timer2 interrupt flag

0 - No Timer1 interrupt occurred
1 - Timer1 interrupt occurred

TIMDIS2 (Timer2 Disable) -
W1C

TIMEN2 (Timer2 Enable) - W1S

1 - Disable Timer2

1 - Enable Timer2

TIMDIS1 (Timer1 Disable) - RO

TIMEN1 (Timer1 Enable) - RO

TIMDIS0 (Timer0 Disable) - RO

TIMEN0 (Timer0 Enable) - RO

IRQ2 (Timer2 Interrupt) - W1C

OVF_ERR0 (Timer0 Counter
Overflow) - RO

0 - No Timer0 interrupt occurred
1 - Timer0 interrupt occurred

1 - Clear Timer2 overflow flag

OVF_ERR1 (Timer1 Counter
Overflow) - RO

OVF_ERR2 (Timer2 Counter
Overflow) - W1C

0 - No Timer1 overflow occurred
1 - Timer1 overflow occurred

0 - No Timer0 overflow occurred
1 - Timer0 overflow occurred

1 - Timer1 enabled (if TIMEN1 = 1)

1 - Timer1 enabled (if TIMDIS1 = 1)

1 - Timer0 enabled (if TIMEN0 = 1)

1 - Timer0 enabled (if TIMDIS0 = 1)

0xFFC0 2020

General-Purpose Timer Registers

16-8 ADSP-BF535 Blackfin Processor Hardware Reference

extra SSYNC instruction may be inserted. In External Event Counter mode
(EXT_CLK), reset the IRQx bit in the TIMERx_STATUS register at the very
beginning of the ISR to avoid missing any timer events.

Before enabling a timer, always program the corresponding Timer Config-
uration register (TIMERx_CONFIG). This register defines the timer operating
mode, the polarity of the TMRx pin, and the timer interrupt behavior. Do
not alter the operating mode while the timer is running.

Figure 16-4 describes the Timer Configuration registers.

The UARTy_RX_SEL bit applies to WDTH_CAP mode only. It is intended
for UART autobaud detection. If this bit is set, the UARTy RX pin is cap-
tured instead of the TMRx pin, Timer 0 alternatively captures UART0, Timer
1 alternatively captures UART1, and Timer 2 alternatively captures UART1.

Figure 16-4. Timer Configuration Registers

Table 16-3. Timer Configuration Register MMR Assignments

Register Name Memory-Mapped Address

TIMER0_CONFIG 0xFFC0 2002

TIMER1_CONFIG 0xFFC0 2012

TIMER2_CONFIG 0xFFC0 2022

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

MODE_FIELD[1:0]

Reset = 0x00000

Timer Configuration Registers (TIMERx_CONFIG)

0 - Negative action pulse
1 - Positive action pulse

0 - Count to end of width
1 - Count to end of period

0 - Disable interrupt request
1 - Enable interrupt request

0 - TMR_PIN selected
1 - UARTy RX selected

00 - Reset state
01 - PWM_OUT mode
10 - WDTH_CAP mode
11 - EXT_CLK mode

PULSE_HI

PERIOD_CNT (Period Count)

IRQ_ENA (Interrupt Request Enable)

UARTy_RX_SEL (UARTy Input Select)

For MMR
assignments, see
Table 16-3.

ADSP-BF535 Blackfin Processor Hardware Reference 16-9

Timers

Figure 16-5 shows the timing for enabling and disabling the timers.

Figure 16-5. Timer Enable and Disable Timing

SCLK

PWM_OUT

SCLK
COUN T

= M
C OUN T

=M+ 1
C OUN T

=M+ 1
COUN T
= M+1

Timer Enable

Se t
T IM ENx

T ime r
Ena bled

PER IOD = 0x4
WID TH = 0x1
PU LSE_H I = 0

C OUN T
= xx

COUN T
=xx

CO UNT
=1

C OUN T
=2

C OU NT
=4

COU NT
= 3

C lear
T IMEN x

T ime r
Disab led

Timer Disable

General-Purpose Timer Registers

16-10 ADSP-BF535 Blackfin Processor Hardware Reference

Timer Period Registers (TIMERx_PERIOD)
The Period registers, shown in Figure 16-6, perform these functions in the
three timer modes:

• PWM_OUT: In conjunction with the Timer Width registers, these
registers define output waveform characteristics.

• WDTH_CAP: These registers are read-only registers and contain
the captured period value.

• EXT_CLK: These registers are write-only registers and contain the
maximum timer external count.

Figure 16-6. Timer Period Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Period Lo[15:0]

Timer Period Hi[15:0]

Reset = 0x0000 0000

Timer Period Registers (TIMERx_PERIOD_HI, TIMERx_PERIOD_LO)

For MMR
assignments, see
Table 16-1 on
page 16-2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ADSP-BF535 Blackfin Processor Hardware Reference 16-11

Timers

Timer Width Registers (TIMERx_WIDTH)
The Timer Width registers, shown in Figure 16-7, perform these func-
tions in the three timer modes:

• PWM_OUT: In conjunction with the Timer Period registers, these
registers define output waveform characteristics.

• WDTH_CAP: These registers are read-only registers and contain
the captured pulse width value.

• EXT_CLK: Not used.

Timer Counter Registers (TIMERx_COUNTER)
These read-only registers retain their state when disabled. When enabled,
the counter is reinitialized from the Timer Period and Timer Width regis-
ters based on the mode selected in TIMERx_CONFIG.

Figure 16-7. Timer Width Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Width Lo[15:0]

Timer Width Hi[31:16]

Reset = 0x0000 0000

Timer Width Registers (TIMERx_WIDTH_HI, TIMERx_WIDTH_LO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For MMR
assignments, see
Table 16-1 on
page 16-2.

General-Purpose Timer Registers

16-12 ADSP-BF535 Blackfin Processor Hardware Reference

The timer counter value cannot be set directly by the software. The coun-
ter should be read only when the respective timer is disabled. This
prevents erroneous data from being returned.

 If it is necessary to read the TIMERx_COUNTER registers while that
timer is running, this algorithm must be followed to guarantee
valid results:

1. Read TIMERx_COUNTER_HI

2. Read TIMERx_COUNTER_LO

3. Read TIMERx_COUNTER_HI again

4. Compare the two TIMERx_COUNTER_HI values

5. Repeat from step 1 if they are not equal

In External Event Capture mode (EXT_CLK), the TMRx pin (RX1 or RX0
for autobaud detection) is used to clock the timer counter. The counter is
initialized with the period value and counts until the period expires. For
more information about autobaud detection see “Autobaud Detection” on
page 16-19.

Figure 16-8 describes the Timer Counter registers.

Figure 16-8. Timer Counter Registers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Timer Counter Lo[15:0]

Timer Counter Hi[31:16]

Reset = 0x0000 0000

Timer Counter Registers (TIMERx_COUNTER_HI, TIMERx_COUNTER_LO)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
For MMR
assignments, see
Table 16-1 on
page 16-2.

ADSP-BF535 Blackfin Processor Hardware Reference 16-13

Timers

Timer Modes
The TMRx pins function as outputs in PWM_OUT mode and as inputs in
WDTH_CAP and EXT_CLK modes. The timer mode is determined by
the value of the MODE_FIELD bits in the TIMERx_CONFIG register.

Pulse Width Modulation Mode (PWM_OUT)
Setting the MODE_FIELD bits to 01 in TIMERx_CONFIG enables PWM Output
mode (PWM_OUT). In PWM_OUT, the timer TMRx pin is an output.

 In PWM_OUT mode, the TMRx pin is always driven low when the
timer is disabled, regardless of the state of the PULSE_HI bit. When
the timer is running, however, the TMRx pin polarity corresponds to
the PULSE_HI bit setting.

The timer is clocked internally by SCLK. Depending on the state of the
PERIOD_CNT bit in TIMERx_CONFIG, PWM_OUT either generates pulse
width modulation waveforms or generates a single pulse on the TMRx pin.

When the timer is enabled, the timer checks the period and width values
for validity (independent of PERIOD_CNT) and does not start to count when
any of these invalid conditions is true:

• Width = 0

• Period value is lower than width value

• Width = period

The timer module tests these conditions on writes to the TIMERx_WIDTH_LO
register. Before writing to TIMERx_WIDTH_LO, make sure that the
TIMERx_WIDTH_HI and the TIMERx_PERIOD are set accordingly. On invalid
conditions, the timer sets both the IRQx and the OVF_ERRx bits in
TIMERx_STATUS after two SCLK cycles. The Timer Counter register is not
altered. Note that after reset, the timer registers are all 0.

Timer Modes

16-14 ADSP-BF535 Blackfin Processor Hardware Reference

If period and width values are valid after the timer is enabled, the Timer
Counter register is loaded with the value (0xFFFF FFFF – width). The
timer counts upward to 0xFFFF FFFE. The timer then reloads the Timer
Counter register with the value (0xFFFF FFFF – (period – width)) and
repeats.

Pulse Width Modulation (PWM) Waveform Generation

If the PERIOD_CNT bit in the TIMERx_CONFIG register is set, the internally
clocked timer generates rectangular signals with well-defined period and
duty cycle. This mode also generates periodic interrupts for real-time core
processing.

The Timer Period and Timer Width registers are programmed with the
values of the timer count period and the pulse-width-modulated output
pulse width.

When the timer is enabled in this mode, the TMRx pin is pulled to a deas-
serted state each time the pulse width expires and the pin is asserted again
when the period expires (or when the timer gets started).

To control the assertion sense of the TMRx pin, the PULSE_HI bit in the
TIMERx_CONFIG register is used. For a low assertion level, clear this bit. For
a high assertion level, set this bit.

 Writes to TIMERx_PERIOD_HI, TIMERx_PERIOD_LO, and
TIMERx_WIDTH_HI do not become active until TIMERx_WIDTH_LO is
written. Therefore, TIMERx_WIDTH_LO must always be written after
changing TIMERx_PERIOD. When the TIMERx_WIDTH_LO value is not
subject to change, the ISR may read back the current value of
TIMERx_WIDTH_LO and write it again.

ADSP-BF535 Blackfin Processor Hardware Reference 16-15

Timers

Listing 16-1. PWM Mode Initialization Sequence

/* A typical PWM mode initialization: */

#define lo(const32) (const32 & 0xFFFF)

#define hi(const32) ((const32 >> 16) & 0xFFFF)

PO.H = hi(TIMER0_CONFIG);

PO.L = lo(TIMER0_CONFIG);

R0.L = 0x0019;

W[P0] = R0.L;

/* */

PO.L = lo(TIMER0_PERIOD_HI);

W[P0] = R1.H;

PO.L = lo(TIMER0_PERIOD_LO);

W[P0] = R1.L;

/* */

PO.L = lo(TIMER0_WIDTH_HI);

W[P0] = R2.H;

PO.L = lo(TIMER0_WIDTH_LO);

W[P0] = R2.L;

/* */

PO.L = lo(TIMER0_STATUS);

R0.L = 0x0100;

W[P0] = R0.L;

SSYNC;

If enabled, a timer interrupt is generated at the end of each period. An
interrupt service routine must clear the interrupt latch bit (IRQx) and
might alter the period and/or width values. In PWM applications, the
software may need to update period and width values while the timer is
running. To guarantee coherency between Timer Period and Timer
Width registers, a buffer mechanism is used.

Timer Modes

16-16 ADSP-BF535 Blackfin Processor Hardware Reference

 In PWM_OUT, the counter is reloaded at the end of every period
as well as at the end of every pulse. The generated waveform
depends on whether TIMERx_WIDTH_LO is updated before or after the
pulse width expires, due to the reload sequence described in “Pulse
Width Modulation Mode (PWM_OUT)” on page 16-13.

Changing the pulse width while the timer is running is typically accom-
plished by having an interrupt service routine write new values to the
width registers. As seen in Figure 16-9, this causes the generation of one
incorrect period if the write to the TIMERx_WIDTH_LO register occurs before
the ongoing pulse width expires. This is very likely because the interrupt is
requested at the end of a period.

If an application forbids single misaligned PWM patterns, the procedure
illustrated in Figure 16-10 can be used. It alters the period value tempo-
rarily and restores the original period value the very next PWM cycle in
order to obtain constant PWM periods.

Figure 16-9. Possible Period Failure Due to Width Update with Timer
Running

Width
Old

Period
Wrong
Period Period

Width
Old

Width
New

Width
New

Period -
Width Old

Period -
Width New

Period -
Width New

WIDTH = Width New

ADSP-BF535 Blackfin Processor Hardware Reference 16-17

Timers

Note the period settings can be altered without similar impacts.

 When a timer is running in PWM_OUT mode with the
PERIOD_CNT bit set, and it is subsequently stopped, it does not wait
for the end of the current period before stopping. Once disabled,
the TMRx pin goes low, and the last PWM cycle is not completed.

To generate the maximum frequency on the TMRx output pin, set the
TIMERx_PERIOD value to 2 and the TIMERx_WIDTH value to 1. This makes
TMRx toggle each SCLK cycle, producing a duty cycle of 50%.

Single Pulse Generation

If the PERIOD_CNT bit in TIMERx_CONFIG is cleared, PWM_OUT generates
a single pulse on the TMRx pin. This mode can also be used to implement a
precise delay. The pulse width is defined by the Timer Width register and
the Timer Period register is not used.

At the end of the pulse the interrupt latch bit (IRQx) is set and the timer is
stopped automatically. If the PULSE_HI bit is set, an active high pulse is
generated on the TMRx pin. If PULSE_HI is not set, the pulse is active low.

 The active low pulse configuration is not recommended, since the
TMRx pin is always driven low when the timer is not running,
regardless of the PULSE_HI bit.

Figure 16-10. Recommended Width Update Procedure

Width
Old

Period Period

Width
Old

Width
New

Period -
Width Old

Period -
Width

Period -
Width Old +
Width New -
Width New

WIDTH = Width New

PERIOD = Period Old - Width Old + Width New

PERIOD = Period Old

Period

Timer Modes

16-18 ADSP-BF535 Blackfin Processor Hardware Reference

Pulse Width Count and Capture Mode (WDTH_CAP)
In WDTH_CAP mode, the TMRx pin is an input pin. The internally
clocked timer is used to determine the period and pulse width of
externally applied rectangular waveforms. Setting the MODE_FIELD bit in
TIMERx_CONFIG to b#10 enables this mode. The period and width registers
are read-only in WDTH_CAP mode.

When enabled in this mode, the timer resets the value in the
TIMERx_COUNTER register to 0x0000 0001 and does not start counting until
it detects the leading edge on the TMRx pin.

When the timer detects a first leading edge, it starts incrementing. When
it detects the trailing edge of a waveform, the timer captures the current
32-bit value of TIMERx_COUNTER into TIMERx_WIDTH. At the next leading
edge, the timer transfers the current 32-bit value of TIMERx_COUNTER into
TIMERx_PERIOD. The TIMERx_COUNTER register is reset to 0x0000 0001, and
the timer continues counting until it is either disabled or the count value
reaches 0xFFFF FFFF.

In WDTH_CAP mode, software can simultaneously measure both the
pulse width and the pulse period of a waveform. To control the definition
of leading edge and trailing edge of the TMRx pin, the PULSE_HI bit in
TIMERx_CONFIG is set or cleared. If the PULSE_HI bit is cleared, the mea-
surement is initiated by a falling edge, the value in the TIMERx_COUNTER
register is captured to the TIMERx_WIDTH register on the rising edge, and
the period is captured on the next falling edge.

 With IRQ_ENA set, the width registers become sticky in
WDTH_CAP mode. Once a pulse width event (trailing edge) has
been detected and properly latched, the width registers do not
update anymore unless the IRQx bit is cleared by software. The
period registers still update every time a leading edge is detected.

ADSP-BF535 Blackfin Processor Hardware Reference 16-19

Timers

The PERIOD_CNT bit in TIMERx_CONFIG controls whether an enabled inter-
rupt is generated when the pulse width or pulse period is captured. If the
PERIOD_CNT bit is set, the IRQx bit is set when the pulse period value is cap-
tured. If the PERIOD_CNT bit is cleared, the IRQx bit is set when the pulse
width value is captured.

If the PERIOD_CNT bit is cleared, the first interrupt is generated before the
first period value has been measured, so the period value is not valid. If the
ISR reads the period value in this case, the timer returns a period value of
0.

If enabled, a timer interrupt is also generated if the TIMERx_COUNTER regis-
ter reaches a value of 0xFFFF FFFF. At that point, the timer is disabled
automatically, and the OVF_ERRx status bit is set, indicating a count over-
flow. IRQx and OVF_ERRx are sticky bits, and software must clear them
explicitly.

Because of synchronizer latency, insert two NOP instructions between set-
ting WDTH_CAP and setting the TIMENx bit. The timer can be
subsequently disabled and re-enabled without additional NOP
instructions.

Autobaud Detection

Timer0 provides autobaud detection for UART0, and Timer1 and Timer2
provide autobaud detection for UART1. When UARTx_RX_SEL is set in
TIMERx_CONFIG, the timer samples the appropriate UART port receive data
pin (RX0 or RX1) instead of the TMRx pin while enabled for WDTH_CAP
mode. A software routine can measure the pulse widths of the bits received
on the serial data line (RX). Because the timers operate synchronously with
the UART operation (all are derived from the phase-locked loop (PLL)
clock), the pulse widths can be used to calculate the baud-rate divider for
the UART. To determine the UART baud rate, use this equation:

DIVISOR = TIMERx_WIDTH/(16 x (Number of captured UART bits))

Timer Modes

16-20 ADSP-BF535 Blackfin Processor Hardware Reference

Use the equation above if you are capturing either the pulse width of a sin-
gle bit or the duration of a NULL-character frame, as shown in
Figure 16-11.

Because the example frame in Figure 16-11 encloses 8 data bits and 1 start
bit, apply the formula:

DIVISOR = TIMERx_WIDTH/(16 9)

At higher bit rates such pulse-width-based autobaud detection might not
return sufficient results without additional analog signal conditioning.
Therefore, it is strongly recommended to measure signal periods instead.
For example, predefine ASCII character “@” (40h) as an autobaud detec-
tion byte and measure the period between the falling edge of the start bit
and the falling edge after bit 6, as shown in Figure 16-12. Since this
period enclosed 8 bits, apply the formula:

DIVISOR = TIMERx_PERIOD/(16 8)

Figure 16-11. Autobaud Detection Character 0x00

Figure 16-12. Autobaud Detection Character 0x40

Frame Wid th

S 0 1 2 3 4 5 6 7 STOP

P erio d

S 0 1 2 3 4 5 6 7 STOP

ADSP-BF535 Blackfin Processor Hardware Reference 16-21

Timers

External Event Counter Mode (EXT_CLK)
In EXT_CLK mode, the TMRx pin is an input. The timer works as a coun-
ter clocked by any external source, which can also be asynchronous to the
core clock. Setting the MODE_FIELD bits in TIMERx_CONFIG to b#11 enables
this mode. The TIMERx_PERIOD register is programmed with the value of
the maximum timer external count.

After the timer is enabled, it waits for the first rising edge on the TMRx pin.
This edge forces the Timer Count register to be loaded by the value
(0xFFFF FFFF – period). Every subsequent rising edge increments the
count register. After reaching the count value 0xFFFF FFFE, the IRQx bit
is set and an interrupt is generated. The next rising edge reloads the count
register again by (0xFFFF FFFF – period).

The PULSE_HI and the PERIOD_CNT configuration bits have no effect in this
mode, and the OVF_ERRx bits are never set. The Timer Width register is
not used.

Core Timer
The core timer is a programmable interval timer which can generate peri-
odic interrupts. The core timer runs at the core clock (CCLK) rate. The
timer includes four core MMRs, the Timer Control register (TCNTL), the
Timer Count register (TCOUNT), the Timer Period register (TPERIOD), and
the Timer Scale register (TSCALE).

Figure 16-13 provides a block diagram of the core timer.

Core Timer

16-22 ADSP-BF535 Blackfin Processor Hardware Reference

Core Timer Control Register (TCNTL)
When the timer is enabled by setting the TMREN bit in the TCNTL register,
shown in Figure 16-14, the TCOUNT register is decremented once every
TSCALE+1 number of clock cycles. When the value of the TCOUNT register
reaches 0, an interrupt is generated and the TINT bit is set in the TCNTL reg-
ister. If the TAUTORLD bit in the TCNTL register is set, then the TCOUNT
register is reloaded with the contents of the TPERIOD register and the count
begins again.

The core timer can be put into low power mode by clearing the TMPWR bit
in the TCNTL register. Before using the timer, set the TMPWR bit. This
restores clocks to the timer unit. When TMPWR is set, the core timer may
then be enabled by setting the TMREN bit in the TCNTL register.

 Hardware behavior is undefined if TMREN is set when TMPWR = 0.

Figure 16-13. Core Timer Block Diagram

DEC

TSCALE

CCLK TIMER ENABLE
AND PRESCALE

LOGIC
ZERO

TCOUNT

TCNTL TPERIOD

COUNT REGISTER
LOAD LOGIC

TIMER
INTERRUPT

TI
N

T

T
M

R
E

N

CORE MMR BUS

ADSP-BF535 Blackfin Processor Hardware Reference 16-23

Timers

Core Timer Count Register (TCOUNT)
This register, shown in Figure 16-15, decrements once every TSCALE + 1
clock cycles. When the value of TCOUNT reaches 0, an interrupt is generated
and the TINT bit of the TCNTL register is set.

Figure 16-14. Core Timer Control Register

Figure 16-15. Core Timer Count Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0X X X X X X X X X X X X 0 0 0

TMPWR

Core Timer Control Register (TCNTL)

Reset = Undefined

TMREN

0 - Puts the timer in low power
mode

1 - Active state. Timer can be
enabled using the TMREN
bit.

Meaningful only when TMPWR = 1
0 - Disable timer
1 - Enable timer

TINT

TAUTORLD

Sticky status bit
0 - Timer has not generated an interrupt
1 - Timer has generated an interrupt

0 - Disable auto-reload feature. When TCOUNT
reaches zero, the timer generates an interrupt
and halts.

1 - Enable auto-reload feature. When TCOUNT
reaches zero and the timer generates an interrupt,
TCOUNT is automatically reloaded with the contents
of TPERIOD and the timer continues to count.

0xFFE0 3000

Core Timer Count Register (TCOUNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Count Value[31:16]

Count Value[15:0]

0xFFE0 300C

Core Timer

16-24 ADSP-BF535 Blackfin Processor Hardware Reference

Core Timer Period Register (TPERIOD)
When auto-reload is enabled, the TCOUNT register is reloaded with the
value of TPERIOD (shown in Figure 16-16) whenever TCOUNT reaches 0.

Core Timer Scale Register (TSCALE)
The TSCALE register, shown in Figure 16-17, stores the scaling value that is
one less than the number of cycles between decrements of TCOUNT. For
example, if the value in the TSCALE register is zero, the counter register
decrements once every clock cycle. If TSCALE is 1, the counter decrements
once every 2 cycles.

Figure 16-16. Core Timer Period Register

Figure 16-17. Core Timer Scale Register

Core Timer Period Register (TPERIOD)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Period Value[31:16]

Period Value[15:0]

0xFFE0 3004

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XX X X X X X X X X X X X X X X

Core Timer Scale Register (TSCALE)

Reset = Undefined

Scale Value

0xFFE0 3008

ADSP-BF535 Blackfin Processor Hardware Reference 16-25

Timers

Watchdog Timer
The ADSP-BF535 processor includes a 32-bit timer that can be used to
implement a software watchdog function. A software watchdog can
improve system reliability by generating an event to the Blackfin core if
the timer expires before being updated by software. Depending on how
the watchdog timer is programmed, the event that is generated may be a
reset, a non-maskable interrupt, or a general-purpose interrupt. The
watchdog timer is clocked by the system clock (SCLK).

Watchdog Timer Operation
To use the watchdog timer:

1. Set the count value for the watchdog timer by writing the count
value into the Watchdog Count register (WDOG_CNT).

2. Copy the count value from WDOG_CNT into the Watchdog Status
register (WDOG_STAT) by executing a write to WDOG_STAT. For more
information, see “Watchdog Status Register (WDOG_STAT)” on
page 16-26.

3. In the Watchdog Control register (WDOG_CTL), select the event to be
generated upon timeout.

4. Enable the watchdog timer in WDOG_CTL.

5. The watchdog timer then begins counting down, decrementing the
value in the WDOG_STAT register. When the WDOG_STAT reaches 0, the
programmed event is generated. To prevent the event from being
generated, software must reload the count value from WDOG_CNT to
WDOG_STAT by executing a write (of any value) to WDOG_STAT, or
must disable the watchdog timer in WDOG_CTL before the watchdog
timer expires.

Watchdog Timer

16-26 ADSP-BF535 Blackfin Processor Hardware Reference

Watchdog Count Register (WDOG_CNT)
The Watchdog Count register (WDOG_CNT), shown in Figure 16-18, con-
tains a 32-bit unsigned count value that is copied into WDOG_STAT. The
WDOG_CNT register must be accessed with 32-bit read/writes only.

Watchdog Status Register (WDOG_STAT)
The Watchdog Status register (WDOG_STAT), shown in Figure 16-19, con-
tains the current value of the watchdog timer. Reads to WDOG_STAT return
this value. When the watchdog timer is enabled, WDOG_STAT is decre-
mented by 1 on each SCLK cycle. When WDOG_STAT reaches 0, the watchdog
timer stops counting and the event selected in the Watchdog Control reg-
ister (WDOG_CTL) is generated.

Values cannot be stored directly in WDOG_STAT, but are instead copied from
WDOG_CNT. When the processor executes a write (of an arbitrary value) to
WDOG_STAT, the value in WDOG_CNT is copied into WDOG_STAT. Typically,
software sets the value of WDOG_CNT at initialization, then periodically
writes to WDOG_STAT before the timer expires. This reloads the timer with
the value from WDOG_CNT and prevents generation of the selected event.

Figure 16-18. Watchdog Count Register

Watchdog Count Register (WDOG_CNT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset = 0x0000 0000

Watchdog Count[31:16]

Watchdog Count[15:0]

0xFFC0 1004

ADSP-BF535 Blackfin Processor Hardware Reference 16-27

Timers

The WDOG_STAT register is a 32-bit unsigned system MMR that must be
accessed with 32-bit reads and writes.

Watchdog Control Register (WDOG_CTL)
The Watchdog Control register (WDOG_CTL), shown in Figure 16-20, is a
16-bit system MMR used to control the watchdog timer.

The ICTL[1:0] field is used to select the event that is generated when the
watchdog timer expires. Note that if the general-purpose interrupt option
is selected, the System Interrupt Mask register (SIC_IMASK) should be
appropriately configured to unmask that interrupt. If the generation of
watchdog events is disabled, the watchdog timer operates as described,
except that no event is generated when the watchdog timer expires.

The TMR_EN[3:0] field is used to enable and disable the watchdog timer.
Writing any value other than the disable value into this field enables the
watchdog timer. This multibit disable key minimizes the chance of inad-
vertently disabling the watchdog timer.

Figure 16-19. Watchdog Status Register

Watchdog Status Register (WDOG_STAT)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset = 0x0000 0000

Watchdog Status[31:16]

Watchdog Status[15:0]

0xFFC0 1008

Watchdog Timer

16-28 ADSP-BF535 Blackfin Processor Hardware Reference

The TRO bit is a sticky bit that is set when the watchdog timer expires.
Note that this bit is cleared by both hardware and software resets. If the
reset event is selected in ICTL and subsequently generated by the watchdog
timer, software must check the Software Watchdog Timer Source bit
(SWTS) in the Software Reset register (SWRST) to determine if the reset was
caused by the watchdog timer. For more information, see “Software Resets
and Watchdog Timer” on page 3-14. The TRO bit can also be manually
cleared by writing a 1 to it.

 When the processor is in Emulation mode, the watchdog timer will
not decrement even if it is enabled.

Figure 16-20. Watchdog Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 0 1 0 0 0

Watchdog Control Register (WDOG_CTL)

ICTL[1:0]
00 - Generate reset event
01 - Generate NMI
10 - Generate GP interrupt
11 - Disable event generation

TMR_EN[3:0]
0000-1000, 1110-1111 -

Counter enabled
1101 - Counter disabled

TRO - W1C
0 - Watchdog timer has not expired.
1 - Watchdog timer has expired.

Reset = 0x00D00xFFC0 1000

ADSP-BF535 Blackfin Processor Hardware Reference 17-1

17 REAL-TIME CLOCK (RTC)

The Real-Time Clock (RTC) provides a set of digital watch features to the
ADSP-BF535 processor, including time of day, alarm, and stopwatch
countdown.

The RTC is clocked by a 32.768 kHz crystal external to the ADSP-BF535
processor. The RTC uses dedicated power supply pins, which enable it to
maintain functionality even when the rest of the ADSP-BF535 processor
is powered down.

The RTC input clock is divided down to a 1 Hz signal by a prescaler,
which can be bypassed. When bypassed, the RTC is clocked at the
32.768 kHz crystal rate. In normal operation, the prescaler is enabled.

The primary function of the RTC is to maintain an accurate day count
and time of day. The RTC accomplishes this by means of four counters:

• 60-second counter

• 60-minute counter

• 24-hour counter

• 255-day counter

The RTC increments the 60-second counter once per second and incre-
ments the other three counters when appropriate. The 255-day counter is
incremented each day at midnight (0 hours, 0 minutes, 0 seconds). The
RTC can generate an interrupt once per second, once per minute, and
once per day.

RTC Programming Model

17-2 ADSP-BF535 Blackfin Processor Hardware Reference

The RTC provides two alarm features. The application can program an
exact time (hour, minute, and second) into the RTC Alarm register
(RTC_ALARM). When the alarm interrupt is enabled, the RTC generates an
interrupt each day at the specified time. The second alarm feature allows
the application to specify a day as well as a time. When the day alarm
interrupt is enabled, the RTC generates an interrupt on the day and time
specified by the application. The alarm interrupt and day-alarm interrupt
can be enabled or disabled independently.

The RTC provides a stopwatch function that acts a countdown timer. The
application can program a minute count into the RTC Stopwatch Count
register (RTC_SWCNT). When the stopwatch interrupt is enabled and the
specified number of minutes have elapsed, the RTC generates an
interrupt.

The RTC can also generate an interrupt once every second, minute, and
day. Each of these interrupts can be independently controlled.

Note that although each of the RTC counters operates continually and
cannot be stopped by the application, no interrupts are generated unless
enabled in the RTC Interrupt Control register (RTC_ICTL).

RTC Programming Model
The RTC programming model consists of a set of system MMRs. Soft-
ware can configure the RTC and can determine the status of the RTC
through reads and writes to these registers. The RTC Interrupt Control
register (RTC_ICTL) and the RTC Interrupt Status register (RTC_ISTAT)
provide RTC interrupt management capability.

Note that software cannot disable the RTC counting function. However,
all RTC interrupts can be disabled, or masked. The RTC state can be read
via the system MMR status registers at any time.

ADSP-BF535 Blackfin Processor Hardware Reference 17-3

Real-Time Clock (RTC)

Writes to all RTC MMRs, except the RTC Interrupt Status register
(RTC_ISTAT), are synchronized to the RTC clock. If the prescaler is
enabled, writes are synchronized at a 1 Hz rate. If the prescaler is disabled,
writes are synchronized to the 32.768 kHz crystal rate. The Write Pending
Status bit in RTC_ISTAT indicates the progress of the write. The Write
Pending Status bit is set when a write occurs and is cleared when the write
is complete. The falling edge of the Write Pending Status bit causes the
Write Complete flag in RTC_ISTAT to be set. This flag can be configured in
RTC_ICTL to cause an interrupt. Software does not have to wait for writes
to one RTC MMR to complete before writing to another RTC MMR.
There is no latency when reading RTC MMRs. The Write Pending Status
bit is set if any writes are in progress, and the Write Complete flag is set
only when all writes are complete.

 Do not attempt another write to the same register without waiting
for the previous write to complete. Subsequent writes to the same
register are ignored if the previous write is not complete.

 Do not read a register that has been written to until the Write
Complete flag is set. Always check the Write Pending Status bit
before attempting a read or write.

Writes to the RTC MMRs are synchronized to the RTC clock. When set-
ting the time of day with the prescaler enabled, do not factor in the delay
when writing to the RTC MMRs. The most accurate method of setting
the Real-Time Clock when the prescaler is enabled is to monitor the Sec-
onds (1 Hz) Event flag or to program an interrupt for this event and then
write the current time plus two seconds to the RTC Status register
(RTC_STAT) in the interrupt service routine (ISR).

The Seconds (1 Hz) Event flag is set on every positive edge of the RTC
clock. Because of this, the write to RTC_STAT occurs almost immediately
following the positive edge of the RTC clock. Since the value is registered
into the actual RTC_STAT register on the second clock edge after the write
occurs, adding two seconds to the real time before writing accounts for the
synchronization delay.

RTC Programming Model

17-4 ADSP-BF535 Blackfin Processor Hardware Reference

Writes to clear bits in RTC_ISTAT take effect immediately.

The single active bit of the RTC Enable register (RTC_FAST) is set using a
synchronization path. Clearing the bit is accomplished with a clear signal
that is synchronized by the 32.768 kHz clock. This faster synchronization
allows the module to be put into high-speed mode (bypassing the pres-
caler) without waiting the 1 to 2 seconds for the write to complete if the
module is already running with the prescaler enabled. The first positive
edge of the 1 Hz clock occurs 2 to 3 cycles of the 32.768 kHz clock after
the prescaler is enabled.

Note the clear path does not clear the synchronization path for the bit that
is set. Setting, then immediately clearing, the Prescaler Enable bit could
result in its being set.

 Clear all flags at power-up and when setting the RTC Status regis-
ter (RTC_STAT), the RTC Alarm register (RTC_ALARM), or the RTC
Stopwatch Count register (RTC_SWCNT). Wait for the write to com-
plete for all of these registers before clearing the flags and enabling
the Alarm interrupt, Day Alarm interrupt, or Stopwatch interrupt.

The unknown values in the registers at power-up can cause interrupts to
occur before the correct value is written into each of the registers. By
catching the slow clock edge, the write to RTC_STAT can occur a full second
before the write to RTC_ALARM. This would cause an extra second of delay
between the validity of RTC_STAT and RTC_ALARM, if the value of the
RTC_ALARM out of reset is the same as the value written to RTC_STAT. Wait
for the writes to complete on these registers before using the flags and
interrupts associated with their values.

ADSP-BF535 Blackfin Processor Hardware Reference 17-5

Real-Time Clock (RTC)

The following is a list of flags along with the conditions under which they
are valid:

• Seconds (1 Hz) Event Flag

• Always set on the positive edge of the slow clock. This is
valid as long as the RTC clock is running. Use this flag or
interrupt to validate the other flags.

• Write Complete

• Always valid, except before the first edge of the slow clock.
Not valid for up to one second after power-up and at the
start of the slow clock. Use the Seconds (1 Hz) Event flag to
check for the first edge of the RTC clock. The Seconds (1
Hz) interrupt may also be used, but this causes a delay of up
to two seconds.

• Write Pending Status

• Same as Write Complete.

• Minutes Event Flag

• Valid only after the minute field in RTC_STAT is valid. Use
the Write Complete and Write Pending Status flags or
interrupts to validate the RTC_STAT value before using this
flag value or enabling the interrupt.

• 24 Hours Event Flag

• Valid only after the hour field in RTC_STAT is valid. Use the
Write Complete and Write Pending Status flags or inter-
rupts to validate the RTC_STAT value before using this flag
value or enabling the interrupt.

RTC Programming Model

17-6 ADSP-BF535 Blackfin Processor Hardware Reference

• Stopwatch Event Flag

• Valid only after the RTC_SWCNT register is valid. Use the
Write Complete and Write Pending Status flags or interrupt
to validate the RTC_SWCNT value before using this flag value
or enabling the interrupt.

• Alarm Event Flag

• Valid only after the RTC_STAT and RTC_ALARM registers are
valid. Use the Write Complete and Write Pending Status
flags or interrupts to validate the RTC_STAT and RTC_ALARM
values before using this flag value or enabling its interrupt.

• Day Alarm Event Flag

• Same as Alarm.

Wait for the RTC_STAT, RTC_ALARM, and RTC_SWCNT fields to be valid before
enabling the alarm interrupt, so that no spurious interrupts occur before
the values of these registers are updated.

 Do not disable the prescaler by clearing the bit in RTC_FAST with-
out making sure that there are no writes in progress. Do not switch
between fast and slow mode during normal operation by setting
and clearing this bit, because this introduces errors in the operation
of the counters. To avoid these potential errors, initialize the RTC
during startup and do not dynamically alter the state of the pres-
caler during normal operation.

ADSP-BF535 Blackfin Processor Hardware Reference 17-7

Real-Time Clock (RTC)

Interrupts
The RTC should be programmed to provide interrupts at several pro-
grammable intervals, including:

• Per second

• Per minute

• Per day

• On countdown from a programmable value

• Daily at a specific time

• On a specific day and time

Interrupts can be individually enabled or disabled using the RTC Inter-
rupt Control register (RTC_ICTL). Interrupt status can be determined by
reading the RTC Interrupt Status register (RTC_STAT).

RTC Memory-Mapped Registers (MMRs)
This section describes the memory-mapped registers for the RTC.

RTC Status Register (RTC_STAT)
The RTC Status register, shown in Figure 17-1, is used to read or write
the current time. Reads and writes to this register can occur at any time.
To ensure that a valid read occurred, software should read the register
twice and compare for equal results (within one second). The hours, min-
utes, and seconds fields are usually set to match the real time of day. The
day counter value is incremented every day at midnight to record how
many days have elapsed since it was last modified. Its value does not corre-
spond to a particular calendar day.

RTC Memory-Mapped Registers (MMRs)

17-8 ADSP-BF535 Blackfin Processor Hardware Reference

RTC Interrupt Control Register (RTC_ICTL)
The RTC provides up to six independently enabled (unmasked) interrupts
in this register. At reset, all interrupts are disabled (masked). The stop-
watch and alarm interrupts have their own dedicated control registers to
determine count values. The seconds interrupt is generated on each 1 Hz
clock tick, if enabled. The minutes interrupt is generated as the minute
counter counts through sixty 1 Hz clock ticks. The 24-hour interrupt
occurs once per 24-hour period (at midnight). Any of these interrupts can
generate a wake-up request to the processor. All bits are read/write. This
register, shown in Figure 17-2, is cleared at reset.

Figure 17-1. RTC Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 X X X X X X 0 0 X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X 0 0 0 X X X X

Hours
(0-23)

Day Counter
(0-255)

Seconds
(0-59)

Minutes
(0-59)

Reset = Undefined

RTC Status Register (RTC_STAT)

0xFFC0 1400

ADSP-BF535 Blackfin Processor Hardware Reference 17-9

Real-Time Clock (RTC)

RTC Interrupt Status Register (RTC_ISTAT)
The RTC Interrupt Status register, shown in Figure 17-3, provides the
status of all RTC interrupts. These bits are sticky. Once set by the corre-
sponding interrupt event, each bit remains set until cleared by a software
write to this register. Values are cleared by writing a 1 to the respective bit
location, except for the Write Pending Status bit, which is read-only.
Writes of 0 to any bit of the register have no effect. This register is cleared
at reset.

Figure 17-2. RTC Interrupt Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Interrupt
Enable

Alarm Interrupt Enable

Seconds (1Hz) Inter-
rupt Enable

Minutes Interrupt
Enable

Write Complete Enable

Day Alarm Interrupt Enable

24 Hours Interrupt Enable

0 - Interrupt disabled, 1 - Interrupt enabled

Reset = 0x0000

RTC Interrupt Control Register (RTC_ICTL)

0xFFC0 1404

RTC Memory-Mapped Registers (MMRs)

17-10 ADSP-BF535 Blackfin Processor Hardware Reference

RTC Stopwatch Count Register (RTC_SWCNT)
The RTC Stopwatch Count register, shown in Figure 17-4, contains the
countdown value for the stopwatch. The stopwatch counts down minutes
from the programmed value and generates an interrupt when the count
reaches 0. The counter stops counting at this point and does not resume
counting until a new value is written to RTC_SWCNT. The register can be
programmed to any value between 0 and 255 minutes.

Figure 17-3. RTC Interrupt Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Stopwatch Event Flag
0 - No event
1 - Event occurred

Alarm Event Flag
0 - No event
1 - Event occurred

Seconds (1 Hz) Event Flag
0 - No event
1 - Event occurred

Minutes Event Flag
0 - No event
1 - Event occurred

Write Complete
0 - Write not yet complete
or no write pending
1 - All pending writes
complete

Write Pending Status (RO)
0 - No writes pending
1 - At least one write
pending

Day Alarm Event Flag
0 - No event
1 - Event occurred

24 Hours Event Flag
0 - No event
1 - Event occurred

Reset = 0x0000

RTC Interrupt Status Register (RTC_ISTAT)
All bits are write-1-to-clear, except bit 14.

0xFFC0 1408

ADSP-BF535 Blackfin Processor Hardware Reference 17-11

Real-Time Clock (RTC)

RTC Alarm Register (RTC_ALARM)
The RTC Alarm register, shown in Figure 17-5, is programmed by soft-
ware for the time (in hours, minutes, and seconds) the alarm interrupt
occurs. Reads and writes can occur at any time. The alarm interrupt
occurs whenever the hour, minute, and second fields match those of the
RTC Status register. The day interrupt occurs whenever the day, hour,
minute, and second fields match those of the RTC Status register.

Figure 17-4. RTC Stopwatch Count Register

Figure 17-5. RTC Alarm Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 X X X X X X X

Stopwatch Count
(0–255)

Reset = Undefined

RTC Stopwatch Count Register (RTC_SWCNT)

0xFFC0 140C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 X X X X X X 0 0 X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X 0 0 0 X X X X

Hours
(0–23)

Day
(0-255)

Seconds
(0–59)

Minutes
(0-59)

Reset = Undefined

RTC Alarm Register (RTC_ALARM)

0xFFC0 1410

RTC Memory-Mapped Registers (MMRs)

17-12 ADSP-BF535 Blackfin Processor Hardware Reference

RTC Enable Register (RTC_FAST)
The RTC Enable register, shown in Figure 17-6, has one active bit. When
this bit is set, the prescaler is enabled, and the RTC runs at a frequency of
1 Hz. When this bit is cleared, the prescaler is disabled, and the RTC runs
at the 32.768 kHz crystal frequency. Software must set this bit for the
RTC to operate at the proper rate.

 Do not disable the prescaler by clearing the bit in RTC_FAST with-
out making sure that there are no writes in progress. Do not switch
between fast and slow mode during normal operation by setting
and clearing this bit, because this introduces errors in the operation
of the counters. To avoid these potential errors, initialize the RTC
during startup and do not dynamically alter the state of the pres-
caler during normal operation.

Figure 17-6. RTC Enable Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Prescaler Enable

Reset = Undefined

RTC Enable Register (RTC_FAST)

0xFFC0 1414

ADSP-BF535 Blackfin Processor Hardware Reference 18-1

18 EXTERNAL BUS INTERFACE
UNIT

The ADSP-BF535 processor’s External Bus Interface Unit (EBIU) pro-
vides glueless interfaces to external memories. The ADSP-BF535
processor supports synchronous DRAM (SDRAM) and is compliant with
the PC100 and PC133 SDRAM standards. The EBIU also supports asyn-
chronous interfaces such as SRAM, ROM, FIFOs, flash memory, and
ASIC/FPGA designs.

The EBIU is clocked by the system clock (SCLK). All synchronous memo-
ries interfaced to the ADSP-BF535 processor operate at the SCLK
frequency. The ratio between core frequency and SCLK frequency is pro-
grammable using a PLL system MMR. For more information, see “Core
Clock/System Clock Ratio Control” on page 8-5.

The external memory space is shown in Figure 18-1. Four of the memory
regions are dedicated to SDRAM support. SDRAM interface timing and
the size of each SDRAM region are programmable. Each SDRAM bank
can range in size from 16 MBytes to 128 MBytes. The start address of
bank 0 is 0x0000 0000. The start addresses of banks 1, 2, and 3 follow
contiguously from the previous bank. If all four SDRAM banks are not
fully populated with 128 MBytes of SDRAM, the area from the end of
bank 3 to address 0x2000 0000 is reserved.

The next four regions are dedicated to supporting asynchronous memo-
ries. Each asynchronous memory region can be independently
programmed to support different memory device characteristics. Each
region has its own memory-select output pin from the EBIU.

18-2 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 18-1. External Memory Map

0xE7FF FFFF

0xEEFE 0000

0x0000 0000

PCI Memory Space (128 MByte)

ASYNC Memory Bank 0 (64 MByte)

ASYNC Memory Bank 1 (64 MByte)

SDRAM Memory Bank 0
(16 MB-128 MByte)

SDRAM Memory Bank 1
(16 MB-128 MByte)

0x2000 0000

0x2400 0000

External Memory Map

SDRAM Memory Bank 2
(16 MB-128 MByte)

SDRAM Memory Bank 3
(16 MB-128 MByte)

0x2FFF FFFF

ASYNC Memory Bank 2 (64 MByte)

0x2800 0000

0x2C00 0000

0xE000 0000

0xEEFE FFFF

0xEEFF FFFC

PCI IO Space (64 KByte)

PCI Config Registers (64 KByte)

0xEEFF FF00

0xEEFF FFFF PCI Config Space Port (4 Bytes)

* This reserved block does not exist if all four blocks of SDRAM are configured to their full
128 MByte size.

ASYNC Memory Bank 3 (64 MByte)

Reserved

Reserved

Reserved

Reserved *

ADSP-BF535 Blackfin Processor Hardware Reference 18-3

External Bus Interface Unit

The next region is reserved memory space. References to this region do
not generate external bus transactions. Writes have no effect on external
memory values, and reads return undefined values. The EBIU generates
an error response on the internal bus, which will generate a hardware
exception for a core access or will optionally generate an interrupt from
PCI or a DMA channel, depending on where the access originated.

The PCI space shown at the top of the external memory map is supported
by the PCI Controller, not the EBIU. For more information, refer to
Chapter 15, “PCI.”

Block Diagram
Figure 18-2 is a conceptual block diagram of the EBIU and its interfaces.
Since only one ADSP-BF535 processor can be accessed at a time, control,
address, and data pins for each memory type are multiplexed together at
the pins of the device. The Asynchronous Memory Controller (AMC) and
the SDRAM Controller (SDC) effectively arbitrate for the shared pin
resources.

Internal Memory Interfaces

18-4 ADSP-BF535 Blackfin Processor Hardware Reference

Internal Memory Interfaces
The EBIU functions as a slave on three buses internal to the ADSP-BF535
processor:

• External Access Bus (EAB), mastered by the System Bus Interface
Unit (SBIU) on behalf of external bus requests from the core or the
DMA bus or mastered by the MemDMA controller.

• External Mastered Bus (EMB), mastered by the PCI bridge.

• Peripheral Access Bus (PAB), mastered by the SBIU on behalf of
system MMR requests from the core or from the PCI master.

Figure 18-2. External Bus Interface Unit (EBIU)

ABE [2:0]/SDQM [2:0]

EBIU

ASYNCHRONOUS

MEMORY

CONTROLLER

(AMC)

SDRAM

CONTROLLER

(SDC)

E
X

T
E

R
N

A
L

B
U

S
C

O
N

T
R

O
L

L
E

R

(E
B

C
)

EAB

EMB

PAB

E
B

IU
P

O
R

T

DATA [31:0]

ADDR [25:2]
ABE [3]/SDQM [3]/ADDR[1]

CLKOUT/SCLK [1]
AMS [3:0]

ARDY

AOE
ARE

AWE
SMS [3:0]

SCLK [0]
SCKE

SA10
SRAS

SCAS

SWE

ADSP-BF535 Blackfin Processor Hardware Reference 18-5

External Bus Interface Unit

EBIU Arbitration
The SDC and the AMC can accept transaction requests in parallel, if
queue capacity is available. However, the External Bus Controller (EBC)
serializes requests from the EMB and the EAB internal buses. The EMB
bus is strictly for PCI accesses. The EMB and EAB buses have equal prior-
ity. However, once the EBIU grants a bus request to either the EMB or
the EAB bus, the arbitration algorithm favors the opposite bus for subse-
quent requests if both buses are requesting EBIU access.

External Memory Interfaces
Both the AMC and the SDC share the external interface address and data
pins, as well as some of the control signals. Table 18-1 and Table 18-2
describe the signals associated with each interface. Pin types are abbrevi-
ated with “I” for input and “O” for output.

No other signals are multiplexed between the two controllers.

Table 18-1. Description of Shared EBIU Port Pins

EBIU Port Pins Pin Type Description

DATA[31:0] I/O Data Bus

ADDR[19:2] O Address Bus

ABE[3]/SDQM[3]/ADDR[1] O AMC Byte Enable 3/SDC Data Mask 3/Address 1

ABE[2:0]/SDQM[2:0] O AMC Byte Enables/SDC Data Masks

CLKOUT/SCLK[1] O AMC System Clock Output/SDC Clock 1

External Memory Interfaces

18-6 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-2. Asynchronous Memory Interface Signals

EBIU Port Pins Pin Type Description

DATA[31:0] I/O External Data Bus

ADDR[25:2] O External Address Bus

AMS[3:0] O Asynchronous Memory Selects

AWE O Asynchronous Memory Write Enable

ARE O Asynchronous Memory Read Enable

AOE O Asynchronous Memory Output Enable
Asynchronous Memory Output Enable. In most
cases, the AOE pin should be connected to the OE
pin of an external memory-mapped asynchronous
device. Refer to ADSP-BF535 Blackfin Embedded
Processor Data Sheet for specific timing informa-
tion between the AOE and ARE signals to deter-
mine which interface signal should be used in
your system.

ARDY I Asynchronous Memory Ready Response
Note this is a synchronous input.

ABE[3]/ADDR[1] O Byte Enables
For 16 bit wide asynchronous memories ADDR[1]
is output on ABE[3]. Shared with SDC.

ABE[2:0] O Byte Enables

CLKOUT O System Clock Output

Table 18-3. SDRAM Interface Signals

EBIU Port Pins Pin Type Description

DATA[31:0] I/O External Data Bus

ADDR[19:18],
ADDR[16:2]

O External Address Bus
Connect to SDRAM Address pins. Bank address is output
on ADDR[19:18] and should be connected to SDRAM
BA[1:0] pins.

SRAS O SDRAM Row Address Strobe pin
Connect to SDRAM’s RAS pin.

ADSP-BF535 Blackfin Processor Hardware Reference 18-7

External Bus Interface Unit

EBIU Programming Model
This section describes the programming model of the EBIU. This model is
based on system memory-mapped registers (MMRs) used to program the
EBIU.

SCAS O SDRAM Column Address Strobe pin
Connect to SDRAM’s CAS pin.

SWE O SDRAM Write Enable pin
Connect to SDRAM’s WE pin.

SDQM[3]/ADDR[1]
SDQM[2:0]

O SDRAM Data Mask pins
Connect to SDRAM’s DQM pins. For 16-bit wide SDRAM
configurations ADDR[1] is output on SDQM[3] and
should be connected to SDRAM A[0] pin.

SMS[3:0] O Memory select pin of external memory bank configured
for SDRAM
Connect to SDRAM’s CS (chip select) pin.

SA10 O SDRAM A10 pin
SDRAM interface uses this pin to make refreshes possible
while the AMC is using the bus. Connect to SDRAM’s
A[10] pin.

SCKE O SDRAM Clock Enable pin
Connect to SDRAM’s CKE pin.

SCLK[0] O SDRAM Clock output pin 0
Switches at system clock frequency. Connect to the
SDRAM’s CLK pin.

SCLK[1] O SDRAM Clock output pin 1
Same frequency and timing as SCLK[0]. Provided to
reduce capacitive loading on SCLK[0]. Connect to the
SDRAM’s CLK pin.

Table 18-3. SDRAM Interface Signals (Cont’d)

EBIU Port Pins Pin Type Description

EBIU Programming Model

18-8 ADSP-BF535 Blackfin Processor Hardware Reference

There are 6 control registers and 1 status register in the EBIU. They are:

• Asynchronous Memory Global Control register (EBIU_AMGCTL)

• Asynchronous Memory Bank Control 0 register (EBIU_AMBCTL0)

• Asynchronous Memory Bank Control 1 register (EBIU_AMBCTL1)

• SDRAM Memory Global Control register (EBIU_SDGCTL)

• SDRAM Memory Bank Control register (EBIU_SDBCTL)

• SDRAM Refresh Rate Control register (EBIU_SDRRC)

• SDRAM Control Status register (EBIU_SDSTAT)

Each of these registers is described in detail in the AMC and SDC sections
later in this chapter.

In addition to the EBIU control and status registers (system MMRs)
described in this chapter, the clock distributed to the EBIU has a
dedicated enable, located in the IOCK register of the PLL control. For more
information, see “Peripheral Clock Enable Register (PLL_IOCK)” on
page 8-22.

Error Detection
The EBIU responds to any operation which addresses the range of 0x0000
0000 - 0xDFFF FFFF, even if that bus operation addresses reserved or dis-
abled memory. It responds by completing the bus operation (asserting the
appropriate number of acknowledges as specified by the bus master) and
by asserting the EAB or EMB bus error signal for these error conditions:

• Any access to reserved memory space

• Any access to a disabled external memory bank

ADSP-BF535 Blackfin Processor Hardware Reference 18-9

External Bus Interface Unit

• Any access to an unpopulated area of an SDRAM memory bank

• Any access to SDRAM memory space before the SDC is enabled or
before the power-up sequence has been initiated

If the core requested the faulting bus operation, the bus error response
from the EBIU generates a hardware error interrupt (IVHW) internal to the
core (this interrupt can be masked off in the core). If PCI requested the
faulting bus operation, then the bus error is captured in that controller,
and can optionally generate an interrupt to the core. For more informa-
tion, refer to “PCI Bus Interface” on page 13-1. If a DMA master
requested the faulting bus operation, then the bus error is captured in that
controller and can optionally generate an interrupt to the core. For more
information, refer to “Direct Memory Access” on page 9-1.

Asynchronous Memory Interface
The asynchronous memory interface allows a glueless interface to a variety
of memory and peripheral types. These include SRAM, ROM, EPROM,
flash memory, and FPGA/ASIC designs. Four asynchronous memory
regions are supported. Each has a unique memory select associated with it,
shown in Table 18-4.

Table 18-4. Asynchronous Memory Bank Address Range

Memory Bank Select Address Start Address End

AMS[3] 2C00 0000 2FFF FFFF

AMS[2] 2800 0000 2BFF FFFF

AMS[1] 2400 0000 27FF FFFF

AMS[0] 2000 0000 23FF FFFF

Asynchronous Memory Interface

18-10 ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Memory Address Decode
The address range allocated to each asynchronous memory bank is fixed at
64 MB; however, not all of an enabled memory bank need be populated.
It should be relatively easy to constrain code and data structures to fit
within one of the supported asynchronous memory banks, because of the
nature of the types of code or data that is stored here.

 Note that accesses to unpopulated memory of partially populated
AMC banks do not result in a bus error and will alias to valid AMC
addresses.

The asynchronous memory signals are defined in Table 18-2 on
page 18-6. The timing of these pins is programmable to allow a flexible
interface to devices of different speeds. For example interfaces, see “Sys-
tem Design” on page 19-1.

Asynchronous Memory Global Control Register
(EBIU_AMGCTL)

The Asynchronous Memory Global Control register configures global
aspects of the controller. It contains bank enables and other information
as described in this section. This register should not be programmed while
the AMC is in use. The EBIU_AMGCTL register should be the last control
register written to when configuring the ADSP-BF535 processor to access
external memory-mapped asynchronous devices. Figure 18-3 shows the
Asynchronous Memory Global Control register.

ADSP-BF535 Blackfin Processor Hardware Reference 18-11

External Bus Interface Unit

For external devices that need a clock, the CLKOUT pin can be enabled by
setting the AMCKEN bit in the EBIU_AMGCTL register. In systems that do not
use CLKOUT, set the AMCKEN bit to zero.

The BxPEN bits allow software to enable 16-bit packing mode for each
bank independently. When 16-bit packing is enabled, ABE[3] becomes
ADDR[1] and ABE[2] is held deasserted. Only the lower 16 bits of the exter-
nal data bus are used, DATA[15:0].

In 16-bit packing mode, 32-bit transactions to AMC space that are
requested on internal buses are converted to two sequential 16-bit accesses
on the external bus. All 8-bit and 16-bit requests are still processed with a
single external transaction. When 32-bit packing is enabled, all 32-bit
transactions are processed with a single transfer.

Figure 18-3. Asynchronous Memory Global Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 1 1 1 1 0 0 1

Asynchronous Memory Global Control Register (EBIU_AMGCTL)

AMBEN[1:0]

B0PEN

AMCKEN

B1PEN

B2PEN

B3PEN
0 - Disable CLKOUT for

asynchronous memory
region accesses

1 - Enable CLKOUT for
asynchronous memory
region accesses

Bank 3 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 2 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 1 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Bank 0 16-bit packing enable
0 - 32-bit datapath enabled
1 - 16-bit packing enabled

Enable asynchronous
memory banks
00 - All banks disabled
01 - Bank0 enabled
10 - Bank0 and Bank1

enabled
11 All banks enabled

Reset = 0x00F20xFFC0 3C00

Asynchronous Memory Interface

18-12 ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Memory Bank Control Registers
(EBIU_AMBCTL0, EBIU_AMBCTL1)

The EBIU Asynchronous Memory Controller has two memory bank con-
trol registers. They contain bits for counters for setup, strobe, and hold
time, bits to determine memory type and size, and bits to configure use of
ARDY. These registers should not be programmed while the AMC is in use.

The timing characteristics of the AMC can be programmed using these
four parameters:

• Setup: the time between the beginning of a memory cycle (AMS[x]
low) and the read-enable assertion (ARE low) or write-enable asser-
tion (AWE low).

• Read Access: the time between read-enable assertion (ARE low) and
deassertion (ARE high).

• Write Access: the time between write-enable assertion (AWE low)
and deassertion (AWE high).

• Hold: the time between read-enable deassertion (ARE high) or
write-enable deassertion (AWE high) and the end of the memory
cycle (AMS[x] high).

Each of these parameters can be programmed in terms of EBIU clock
cycles. In addition, there are minimum values for these parameters:

• Setup 1 cycle.

• Read Access 1 cycle.

• Write Access 1 cycle.

• Hold 0 cycles.

ADSP-BF535 Blackfin Processor Hardware Reference 18-13

External Bus Interface Unit

For bit descriptions of the two registers, see Figure 18-4 (Asynchronous
Memory Bank Control 0 Register) and Figure 18-5 (Asynchronous Mem-
ory Bank Control 1 Register).

ARDY Input Control

Each bank can be programmed to sample the ARDY input after the read or
write access timer has counted down or to ignore this input signal. If
enabled and disabled at the sample window, ARDY can be used to extend
the access time as required. Note that ARDY is synchronously sampled,
therefore:

• Assertion and deassertion of ARDY to the ADSP-BF535 processor
must meet the data sheet setup and hold times. Failure to meet
these synchronous specifications could result in meta-stable behav-
ior internally. The ADSP-BF535 processor’s CLKOUT signal should
be used to ensure synchronous transitions of ARDY.

• The ARDY pin must be stable (either asserted or deasserted) at the
external interface on the cycle before the internal bank counter
reaches zero. That is, more than one CLKOUT cycle before the sched-
uled rising edge of AWE or ARE. This will determine whether the
access is extended or not.

• Once the transaction has been extended by the assertion of ARDY,
the transaction completes in the cycle after ARDY is sampled
asserted.

The polarity of ARDY is programmable on a per-bank basis. Since ARDY is
not sampled until an access is in progress to a bank in which the ARDY
enable is asserted, ARDY does not need to be driven by default. For more
information, see “Adding Additional Wait States” on page 18-26.

Asynchronous Memory Interface

18-14 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 18-4. Asynchronous Memory Bank Control 0 Register

Asynchronous Memory Bank Control 0 Register (EBIU_AMBCTL0)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B1RDYPOL

B1TT[1:0]

B1ST[1:0]

B1RDYEN

B1HT[1:0]

B1RAT[3:0]

B1WAT[3:0]
Bank 1 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 1 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 1 memory transition time
(number of cycles inserted after
a read access to this bank, and
before a write access to this bank
or a read access to another bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 1 ARDY polarity
0 - Transition completes if ARDY

sampled low
1 - Transaction completes if

ARDY sampled high

Bank 1 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B0RDYPOL

B0TT[1:0]

B0ST[1:0]

B0RDYEN

B0HT[1:0]

B0RAT[3:0]

B0WAT[3:0]
Bank 0 write access time (number of
cycles AWE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 read access time (number of
cycles ARE is held asserted)
0000 - Not supported
0001 to 1111 - 1 to 15 cycles

Bank 0 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted)
00 - 0 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted)
00 - 4 cycles
01 - 1 cycle
10 - 2 cycles
11 - 3 cycles

Bank 0 memory transition time
(number of cycles inserted after a
read access to this bank, and
before a write access to this bank
or a read access to another
bank)
00 - 4 cycles for bank transition
01 - 1 cycle for bank transition
10 - 2 cycles for bank transition
11 - 3 cycles for bank transition

Bank 0 ARDY polarity
0 - Transition completes if ARDY

sampled low
1 - Transaction completes if

ARDY sampled high

Bank 0 ARDY enable
0 - Ignore ARDY for accesses to

this memory bank
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access

0xFFC0 3C04

ADSP-BF535 Blackfin Processor Hardware Reference 18-15

External Bus Interface Unit

Figure 18-5. Asynchronous Memory Bank Control 1 Register

Asynchronous Memory Bank Control 1 Register (EBIU_AMBCTL1)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B3RDYPOL

B3TT[1:0]

B3ST[1:0]

B3RDYEN

B3HT[1:0]

B3RAT[3:0]

B3WAT[3:0]
Bank 3 write access time (number of
cycles AWE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 3 read access time (number of
cycles ARE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 3 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted).
00 - 0 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 3 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted).
00 - 4 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 3 memory transition time
(number of cycles inserted after
a read access to this bank, and
before a write access to this bank
or a read access to another bank).
00 - 4 cycles for bank transition.
01 - 1 cycle for bank transition.
10 - 2 cycles for bank transition.
11 - 3 cycles for bank transition.

Bank 3 ARDY polarity.
0 - Transition completes if ARDY

sampled low.
1 - Transaction completes if

ARDY sampled high.

Bank 3 ARDY enable.
0 - Ignore ARDY for accesses to

this memory bank.
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access.

Reset = 0xFFC2 FFC2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

01 1 1 1 1 1 1 1 1 1 0 0 0 0 1

B2RDYPOL

B2TT[1:0]

B2ST[1:0]

B2RDYEN

B2HT[1:0]

B2RAT[3:0]

B2WAT[3:0]
Bank 2 write access time (number of
cycles AWE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 2 read access time (number of
cycles ARE is held asserted).
0000 - Not supported.
0001 to 1111 - 1 to 15 cycles.

Bank 2 hold time (number of cycles between AWE
or ARE deasserted, and AOE deasserted).
00 - 0 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 2 setup time (number of cycles after AOE
asserted, before AWE or ARE asserted).
00 - 4 cycles.
01 - 1 cycle.
10 - 2 cycles.
11 - 3 cycles.

Bank 2 memory transition time
(number of cycles inserted after
a read access to this bank, and
before a write access to this bank
or a read access to another bank).
00 - 4 cycles for bank transition.
01 - 1 cycle for bank transition.
10 - 2 cycles for bank transition.
11 - 3 cycles for bank transition.

Bank 2 ARDY polarity.
0 - Transition completes if ARDY

sampled low.
1 - Transaction completes if

ARDY sampled high.

Bank 2 ARDY enable.
0 - Ignore ARDY for accesses to

this memory bank.
1 - After access time countdown,

use state of ARDY to deter-
mine completion of access.

0xFFC0 3C08

Asynchronous Memory Interface

18-16 ADSP-BF535 Blackfin Processor Hardware Reference

Programmable Timing Characteristics
This section describes the programmable timing characteristics for the
EBIU. Timing relationships depend on the programming of the AMC,
whether initiation is from the core or from MemDMA, and the sequence
of transactions (read followed by read, read followed by write, etc.).

Asynchronous Accesses by Core Instructions

Some external memory accesses are caused by core instructions of the type:

R0 = [P0++] ; /* Read from external memory, where P0 points to

a location in external memory */

or:

[P0++] = R0 ; /* Write to external memory */

Asynchronous Reads

Figure 18-6 shows two core-initiated asynchronous read bus cycles to the
same bank, with timing programmed with setup = 1 cycle, read access = 3
cycles, hold = 2 cycles, and transition time = 1 cycle.

Asynchronous read bus cycles proceed as:

• At the start of the setup period, AMS[x], the address bus, and
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle,
ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of CLKOUT. The ARE pin deasserts after this rising edge.

ADSP-BF535 Blackfin Processor Hardware Reference 18-17

External Bus Interface Unit

• At the end of the hold period, AOE and AMS[x] deassert.

• Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

Figure 18-6. Core-Initiated Asynchronous Read Bus Cycles

Setup
3 cycles

Read Access
2 cycles

TimeHold
1 cycle

Transition

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

ARE

1 cycle
Setup

3 cycles
Read Access

2 cycles
TimeHold

1 cycle

Transition

1 cycle

Asynchronous Memory Interface

18-18 ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Writes

Write accesses can only be initiated by the AMC every 5th SCLK cycle. If
the setup period plus the access period plus the hold period is less than 5
cycles, AMS[x] deasserts between accesses. This is shown in the next two
examples.

Figure 18-7 shows two core-initiated asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 2 cycles, and transition time = 1 cycle.

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] remains low for the next setup period
of the next access.

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x] is still asserted. The address
and data buses, and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-8 shows two higher-speed asynchronous write bus cycles to the
same bank, with timing programmed with setup = 1 cycle, write access = 2
cycles, hold = 0 cycles, and transition time = 1 cycle.

ADSP-BF535 Blackfin Processor Hardware Reference 18-19

External Bus Interface Unit

The first asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-7. Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

AWE

Setup
2 cycles

Write
Access

2 cycles
Hold

1 cycle

Asynchronous Memory Interface

18-20 ADSP-BF535 Blackfin Processor Hardware Reference

The second asynchronous write bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• After the hold period, AMS[x] deasserts.

Figure 18-8. High Speed Core-Initiated Asynchronous Write Bus Cycles

Setup
2 cycles

Write
Access

1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

AWE

Setup
2 cycles

Write
Access

1 cycle

ADSP-BF535 Blackfin Processor Hardware Reference 18-21

External Bus Interface Unit

Asynchronous Writes Followed by Reads

Figure 18-9 shows an asynchronous write bus cycle followed by two asyn-
chronous read cycles to the same bank, with timing programmed with
setup = 1 cycle, write access = 2 cycles, read access = 2 cycles, hold = 2
cycles, and transition time = 1 cycle.

The asynchronous write bus cycles proceed as:

• At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[3:0] become valid.

• At the beginning of the write access period, AWE asserts.

• At the beginning of the hold period, AWE deasserts and AMS[x]
remains low for the setup period of the next access.

The first asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMS[x] is still asserted. The address
bus, and ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

The second asynchronous read bus cycle proceeds as:

• At the start of the setup period, AMS[x], the address bus, and
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period, ARE asserts again.

Asynchronous Memory Interface

18-22 ADSP-BF535 Blackfin Processor Hardware Reference

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

• Unless another read of the same memory bank is queued internally,
the AMC appends the programmed number of memory transition
time cycles.

ADSP-BF535 Blackfin Processor Hardware Reference 18-23

External Bus Interface Unit

Asynchronous Accesses by MemDMA

External memory accesses are also caused by MemDMA. MemDMA
transfers to external memory space occur in bursts of 8 accesses. There are
6 SCLK cycles inserted between bursts due to internal bus transactions.

Figure 18-9. Core-Initiated Write and Read Bus Cycles

Setup
2 cycles

Write Access
2 cycles

Hold
1 cycle

SCLK[1]/
CLKOUT

AMS[x]

ABE[3:0]

ADDR [25:2]

DATA[31:0]

AOE

ARE

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

1 cycle
Setup

2 cycles
Read Access

2 cycles
Hold

AWE

Asynchronous Memory Interface

18-24 ADSP-BF535 Blackfin Processor Hardware Reference

Within each burst, the accesses may be back-to-back (AMS[x] continually
asserted) or there may be separation between accesses (AMS[x] deasserted
after each access), depending on the programming of the AMC.

Asynchronous Reads

Figure 18-10 shows a MemDMA read access of 16 words from external
memory. The asynchronous memory controller is programmed with setup
= 1 cycle, read access = 3 cycles, hold = 3 cycles, and transition time = 1
cycle.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, and
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle,
ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert if the trans-
action is the last in the burst, otherwise AOE and AMS[x] remain
asserted for the setup period of the next read.

Figure 18-10. MemDMA Read With 3-Cycle Hold

AMS[x]

AOE

ARE

ADSP-BF535 Blackfin Processor Hardware Reference 18-25

External Bus Interface Unit

For MemDMA accesses through AMC, 2 SCLK cycles are required from
the time the read data is sampled until the next setup period begins. As a
result, if the hold period programmed is less than 2 cycles, AMS[x] and AOE
deassert between accesses within a burst. Regardless of hold period pro-
gramming, if the access is the last in the burst, AMS[x] and AOE deassert for
6 cycles before the next burst begins.

Figure 18-11 also shows a MemDMA read access of 16 words from exter-
nal memory. In this case, the asynchronous memory controller is
programmed with setup = 1 cycle, read access = 3 cycles, hold = 1 cycle,
and transition time = 1 cycle. This is a smaller number of hold cycles than
programmed in Figure 18-10.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, and
ABE[3:0] become valid, and AOE asserts.

• At the beginning of the read access period and after the setup cycle,
ARE asserts.

• At the beginning of the hold period, read data is sampled on the
rising edge of the EBIU clock. The ARE pin deasserts after this ris-
ing edge.

• At the end of the hold period, AOE and AMS[x] deassert.

Figure 18-11. MemDMA Read With 1-Cycle Hold

AMS[x]

AOE

ARE

Asynchronous Memory Interface

18-26 ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Writes

Figure 18-12 shows a MemDMA write access of 16 words to external
memory. The asynchronous memory controller is programmed with setup
= 1 cycle, write access = 3 cycles, hold = 0 cycles, and transition time = 1
cycle.

The MemDMA access proceeds as:

• At the start of the setup period, AMS[x], the address bus, data buses,
and ABE[3:0] become valid.

• At the beginning of the write access period and after the setup
cycle, AWE asserts.

• At the beginning of the hold period, AWE deasserts.

• At the end of the hold period, AMS[x] deasserts if the transaction is
the last in the burst, otherwise AMS[x] remains asserted for the
setup period of the next write.

Adding Additional Wait States

The ARDY pin is used to insert extra wait states. The input is sampled syn-
chronously with the EBIU internal clock. The EBIU starts sampling ARDY
on the clock cycle before the end of the programmed strobe period. If
ARDY is sampled deasserted, the access period is extended. The ARDY pin is
then sampled on each subsequent clock edge. Read data is latched on the
clock edge after ARDY is sampled asserted. The read- or write-enable
remains asserted for one clock cycle after ARDY is sampled asserted. An

Figure 18-12. MemDMA Write

AMS[x]

AWE

ADSP-BF535 Blackfin Processor Hardware Reference 18-27

External Bus Interface Unit

example of this behavior is shown in Figure 18-13, where setup = 2 cycles,
read access = 4 cycles, and hold = 1 cycle. Note that the read access period
must be programmed to a minimum of two cycles to make use of the ARDY
input.

Figure 18-13. Inserting Wait States Using ARDY

Setup
2 cycles

Programmed Read Access
4 cycles

Access Extended
3 cycles

Hold
1 cycle

CLKOUT

AMS
[x]

ABE
[3:0]

ADDR
[25:2]

DATA
[31:0]

AOE

ARE

AWE

Read

BE

ARDY

Address

Ready Sampled
Data

Latched

SDRAM Controller (SDC)

18-28 ADSP-BF535 Blackfin Processor Hardware Reference

SDRAM Controller (SDC)
The SDRAM Controller (SDC) enables the ADSP-BF535 processor to
transfer data to and from Synchronous DRAM (SDRAM). The
ADSP-BF535 processor supports a glueless interface with up to four banks
of standard SDRAMs of 64 Mbit, 128 Mbit, 256 Mbit, and 512 Mbit
with configurations x4, x8, and x16. Each bank supports up to 128
MByte, with a maximum total capacity of 512 MBytes (MB) of SDRAM.
The interface can also support DIMMs and includes timing options to
support additional buffers between the ADSP-BF535 processor and
SDRAM, to handle the capacitive loads of large memory arrays.

All inputs are sampled and all outputs are valid on the rising edge of the
SDRAM clock output SCLK[0] (or SCLK[1], which has the same timing).
The SDRAM interface is able to connect to as many as four external mem-
ory banks of SDRAM. All banks share the same SDRAM timing
parameters.

 Do not confuse the “SDRAM internal banks” which are internal to
the SDRAM and are selected with the bank address, with the four
“SDRAM banks,” or “external banks,” that are enabled by the
SMS[3:0] pins.

The EBIU SDC provides a glueless interface with standard SDRAMs. The
ADSP-BF535 processor’s SDRAM controller:

• Supports SDRAMs of 64 Mbit, 128 Mbit, 256 Mbit, and
512 Mbit with configurations of x4, x8, and x16.

• Supports up to two x64 DIMM modules, or up to four x32 DIMM
modules.

• Supports up to 512 MB total array size with 128 MB of SDRAM
on each of the four external SDRAM banks.

ADSP-BF535 Blackfin Processor Hardware Reference 18-29

External Bus Interface Unit

• Supports SDRAM page sizes of 1 KB, 2 KB, 4 KB, and 8 KB for
32-bit wide SDRAM banks and 1 KB, 2 KB, and 4 KB for 16-bit
wide SDRAM banks.

• Supports four internal banks within the SDRAMs.

• Uses a programmable refresh counter to coordinate between vary-
ing clock frequencies and the SDRAM’s required refresh rate.

• Provides multiple timing options to support additional buffers
between the ADSP-BF535 processor and SDRAM. The same tim-
ing options are applied to all four external memory banks.

• Provides two clock output pins to drive capacitive loads of larger
memory arrays.

• Uses a separate pin (SA10) that enables the SDC to precharge
SDRAM before issuing an Auto-Refresh or Self-Refresh command
while the Asynchronous Memory Controller has control of the
EBIU port.

• Supports self-refresh mode.

• Provides two SDRAM power-up options.

Definition of Terms
These definitions used in the remainder of this chapter.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the Bank Activate command is issued to the SDRAM, the SDRAM
opens a new row address in the dedicated bank. The memory in the open
internal bank and row is referred to as the open page. Therefore, only one

SDRAM Controller (SDC)

18-30 ADSP-BF535 Blackfin Processor Hardware Reference

internal bank is open at a time, which means the banks are accessed
sequentially. The Bank Activate command must be applied before a read
or write command.

The SDC does not interleave SDRAM accesses, so only one internal bank
in a row is open at a time.

Burst Length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s
mode register during the SDRAM power-up sequence.

 The SDC supports only Burst Length = 1 mode. During a burst to
SDRAM, the SDC applies the read or write command every cycle
and keeps accessing the data. The Burst Length is independent
from the performance throughput.

Burst Stop Command.

The Burst Stop command is one of several ways to terminate or interrupt a
burst read or write operation.

 Since the SDRAM burst length is always hardwired to be 1, the
SDC does not support the Burst Stop command.

Burst Type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after
detecting a write command. The burst type is programmed in the
SDRAM during the SDRAM power-up sequence.

 Since the SDRAM burst length is always programmed to be 1, the
burst type does not matter. However, the SDC always sets the
burst type to sequential-accesses-only during the SDRAM
power-up sequence.

ADSP-BF535 Blackfin Processor Hardware Reference 18-31

External Bus Interface Unit

CAS Latency (also tAA, tCAC, CL).

The column address strobe (CAS) latency is the delay in clock cycles
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the
SDRAM Mode register during the power-up sequence.

The speed grade of the SDRAM and the SCLK[0] frequency determine the
value of the CAS latency. The SDC can support CAS latency of 2 or 3
clock cycles. The selected CAS latency value must be programmed into
the SDRAM Memory Global Control register (EBIU_SDGCTL) before the
SDRAM power-up sequence. See “SDRAM Memory Global Control Reg-
ister (EBIU_SDGCTL)” on page 18-37.

CBR (CAS before RAS) Refresh or Auto-Refresh.

When the SDC refresh counter times out, the SDC precharges all four
banks of SDRAM and then issues an Auto-Refresh command to them.
This causes the SDRAMs to generate an internal CBR refresh cycle. When
the internal refresh completes, all four SDRAM banks are precharged.

DQM Data I/O Mask Function.

The SDQM[3:0] pins provide a byte-masking capability on 8- or 16-bit
writes to SDRAM. The DQM pins are used to block the output buffer of the
SDRAM during precharge and certain write operations. The SDQM[3:0]
pins are not used to mask data on read cycles. For 16-bit wide SDRAM,
only SDQM[1:0] are needed for byte masking.

Internal Bank.

There are several internal memory banks on a given SDRAM row. An
internal bank in a specific row cannot be activated (opened) until the pre-
vious internal bank in that row has been precharged.

SDRAM Controller (SDC)

18-32 ADSP-BF535 Blackfin Processor Hardware Reference

The SDC does not support interleaved accesses. The bank address can be
thought of as part of the row address. The SDC also assumes that all
SDRAMs to which it interfaces have four internal banks. You cannot con-
nect two-bank (16 Mbit) SDRAMs to the interface.

 Do not confuse the “SDRAM internal banks” which are internal to
the SDRAM and are selected with the bank address, with the four
“SDRAM banks,” or “external banks,” that are enabled by the
SMS[3:0] pins.

Mode Register.

SDRAM devices contain an internal configuration register which allows
specification of the SDRAM device’s functionality. After power-up and
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s mode register. The
write of the SDRAM’s mode register is triggered by writing a 1 to the PSSE
bit in the SDRAM Memory Global Control register (EBIU_SDGCTL) and
then issuing a read or write transfer to the SDRAM address space. The ini-
tial read or write triggers the SDRAM power-up sequence to be run,
which programs the SDRAM’s mode register with the CAS latency from
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many
cycles to complete. Note for most applications, the SDRAM power-up
sequence and writing of the mode register needs to be done only once.
Once the power-up sequence has completed, the PSSE bit should not be
set again unless a change to the mode register is desired.

Page Size.

Page size is the amount of memory which has the same row address and
can be accessed with successive read or write commands without needing
to activate another row. The page size can be calculated for 32-bit and
16-bit SDRAM banks with these formulas:

• 32-bit SDRAM banks: page size = 2(CAW + 2)

ADSP-BF535 Blackfin Processor Hardware Reference 18-33

External Bus Interface Unit

• where CAW is the column address width of the SDRAM, plus
2 because the SDRAM bank is 32 bits wide (2 address bits =
4 bytes).

• 16-bit SDRAM banks: page size = 2(CAW + 1)

• where CAW is the column address width of the SDRAM, plus
1 because the SDRAM bank is 16 bits wide (1 address bit =
2 bytes).

Precharge Command.

The Precharge command closes a specific internal bank in the active page
or all internal banks in the page. The SDC always does a Precharge All,
closing all internal banks.

SDRAM banks.

The SDRAM banks are four regions of memory that can be configured to
be 16 MB, 32 MB, 64 MB, or 128 MB and are selected by the SMS[3:0]
pins. Each bank can be selected to be either all 32 bits wide or all 16 bits
wide.

 Do not confuse the “SDRAM internal banks” which are internal to
the SDRAM and are selected with the bank address, with the
“SDRAM banks,” or “external banks,” that are enabled by the
SMS[3:0] pins.

SDRAM DIMMs.

Dual In-line Memory Modules, or DIMMs, are an industry-standard
SDRAM packaging option. The DIMM consists of a small, standardized
form factor board, populated with SDRAM devices on one or both sides.
DIMMs are populated with sufficient SDRAM to provide either 32-bit or
64-bit data paths, with some configurations supporting additional data
bits for parity protection.

SDRAM Controller (SDC)

18-34 ADSP-BF535 Blackfin Processor Hardware Reference

Many DIMMs also include a serial presence detect port, which provides
access to an on-DIMM serial ROM which includes information describ-
ing the type and characteristics of SDRAMs on the DIMM. This
information can be read to determine the type, size, and timing parame-
ters of installed DIMMs at boot time. One of the SPI or SPORT
peripherals of the ADSP-BF535 processor can be used to interface to the
DIMM serial-presence-detect port, if dynamic boot time determination of
SDRAM configuration is required.

Self-Refresh.

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer
initiates Auto-Refresh cycles periodically, without external control input.
The SDC must issue a series of commands including the Self-Refresh
command to put the SDRAM into this low power mode, and it must issue
another series of commands to exit Self-Refresh mode. Entering
Self-Refresh mode is programmable in the SDRAM Memory Global Con-
trol register (EBIU_SDGCTL) and any access to the SDRAM address space
causes the SDC to exit the SDRAM from Self-Refresh mode. See “Enter-
ing and Exiting Self-Refresh Mode (SRFS)” on page 18-44.

tRAS.

Required delay between issuing a Bank Activate command and issuing a
Precharge command, and between the Self-Refresh command and the exit
from Self-Refresh. The TRAS bit field in the SDRAM Memory Global
Control register (EBIU_SDGCTL) is 4 bits wide and can be programmed to
be 1 to 15 clock cycles long. “Selecting the Bank Activate Command
Delay (TRAS)” on page 18-47.

ADSP-BF535 Blackfin Processor Hardware Reference 18-35

External Bus Interface Unit

tRP.

Required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register
(EBIU_SDGCTL) is 3 bits wide and can be programmed to be 1 to 7 clock
cycles long. “Selecting the Precharge Delay (TRP)” on page 18-48.

tRCD.

Required delay between a Bank Activate command and the start of the
first Read or Write command. The TRCD bit field in the SDRAM Memory
Global Control register (EBIU_SDGCTL) is 3 bits wide and can be pro-
grammed to be from 1 to 7 clock cycles long.

tWR.

Required delay between a Write command (driving write data) and a Pre-
charge command. The TWR bit field in the SDRAM Memory Global
Control register (EBIU_SDGCTL) is 2 bits wide and can be programmed to
be from 1 to 3 clock cycles long.

tRC.

Required delay between issuing successive Bank Activate commands to the
same SDRAM internal bank. This delay is not directly programmable.
The tRC delay must be satisfied by programming the TRAS and TRP fields
to ensure that tRAS + tRP tRC.

SDRAM Controller (SDC)

18-36 ADSP-BF535 Blackfin Processor Hardware Reference

tRFC.

Required delay between issuing an Auto-Refresh command and a Bank
Activate command and between issuing successive Auto-Refresh
commands. This delay is not directly programmable and is assumed to be
equal to tRC. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP tRC.

tXSR.

Required delay between exiting Self-Refresh mode and issuing the
Auto-Refresh command. This delay is not directly programmable and is
assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the tRAS and tRP fields to ensure that tRAS + tRP tRC.

ADSP-BF535 Blackfin Processor Hardware Reference 18-37

External Bus Interface Unit

SDRAM Memory Global Control Register
(EBIU_SDGCTL)

The SDRAM Memory Global Control register includes all programmable
parameters associated with the SDRAM access timing and configuration.

SDRAM Controller (SDC)

18-38 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 18-14 shows the SDRAM Global Control register bit definitions.

ADSP-BF535 Blackfin Processor Hardware Reference 18-39

External Bus Interface Unit

Figure 18-14. SDRAM Memory Global Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 0 0 0 0 0 0 0 0 0 0 1 0 1

SDRAM Memory Global Control Register (EBIU_SDGCTL)

TWR[1:0]

PSM

PSSE

TRCD[2:1]X16DE

EBUFE

SRFS

SDRAM external datapath width
0 - 32 bits
1 - 16 bits

SDRAM timing for external buffering
of address and control
0 - External buffering timing disabled
1 - External buffering timing enabled

SDRAM self-refresh mode start
Always reads 0
0 - No effect
1 - Starts SDRAM self-refresh mode

SDRAM tRCD in SCLK
cycles
000 - Reserved
001-111 - 1 to 7 cycles

SDRAM tWR in SCLK
cycles
00 - Reserved
01-11 - 1 to 3 cycles

SDRAM power-up sequence
0 - Precharge, 8 CBR refresh

cycles, mode register set
1 - Precharge, mode register

set, 8 CBR refresh cycles

SDRAM power-up sequence
start enable. Always reads 0.
0 - No effect
1 - Enables SDRAM power-up

sequence on next SDRAM
access

Reset = 0x0008 800B

SCK1E

CL[1:0]

PFE

SCTLE

TRAS[3:0]

TRP[2:0]

TRCD[0]

PFP
SDRAM prefetch priority
0 - Prefetch does not have priority
over AMC requests
1 - Prefetch has priority over AMC
requests

SDRAM tRCD in SCLK cycles
000 - Reserved
001-111 - 1 to 7 cycles

Enable SCLK[0], SRAS,
SCAS, SWE, SDQM[3:0]
0 - Disabled
1 - Enabled

SDRAM tRP in SCLK cycles
000 - No effect
001-111 - 1 to 7 cycles

SDRAM tRAS in SCLK cycles
0000 - No effect
0001-1111 - 1 to 15 cycles

Enable SCLK[1]
0 - Disabled
1 - Enabled

SDRAM CAS latency
00-01 - Reserved
10 - 2 cycles
11 - 3 cycles

SDRAM prefetch enable
0 - Prefetch disabled
1 - Prefetch enabled

0xFFC0 4C00

SDRAM Controller (SDC)

18-40 ADSP-BF535 Blackfin Processor Hardware Reference

The SCTLE bit is used to enable or disable the SDC. If SCTLE is disabled,
any access to SDRAM address space generates an internal bus error, and
the access does not occur externally. For more information, see “Error
Detection” on page 18-8. When SCTLE is disabled, all SDC control pins
are in their inactive states and the SDRAM clock is not running. The
SCTLE bit must be enabled for SDC operation.

To support higher clock load requirements, two SDRAM clock pins
(SCLK[0] and SCLK[1]) are provided. The clock timing of these two pins is
identical, and the clock load on SCLK[0] and SCLK[1] should be balanced.
SCLK[0] runs whenever the SDC is enabled (SCTLE = 1). SCLK[1] runs
whenever SCK1E is enabled. Both the SCTLE and SCK1E bits are enabled dur-
ing reset, so SCLK[0] and SCLK[1] are running after reset deasserts. If the
SDC will not be used, the SCTLE and SCK1E bits can be disabled to stop the
clocks and reduce power dissipation. Even though the SDC is enabled
(SCTLE = 1) at reset, the power-up sequence (PSSE = 1) must be executed
before reading or writing to SDRAM address space.

 Failure to execute the power-up sequence before reading or writing
to SDRAM address space results in unpredictable operation.

The CAS latency (CL), SDRAM tRAS timing (TRAS), SDRAM tRP timing
(TRP), SDRAM tRCD timing (TRCD), and SDRAM tWR timing (TWR) bits
should be programmed based on the system clock frequency and the tim-
ing specifications of the SDRAM used. Note that all SDRAM banks use
the same timing. All timing parameters must be written with valid values
based on the clock frequency and the timing specifications of the SDRAM
before any access to SDRAM address space, including the power-up
sequence.

ADSP-BF535 Blackfin Processor Hardware Reference 18-41

External Bus Interface Unit

 The user must ensure that tRAS + tRP >= max(tRC,tRFC,tXSR).

Note that these timing parameters should not be changed while the
SDC is active. Therefore, since the SDC is enabled by default upon
reset, the SDC must be disabled after reset to allow for modifica-
tions to the default EBIU_SDGCTL bit values.

The PFE bit is used to enable or disable the SDC read buffer. When
PFE = 1, the SDC speculatively prefetches (reads) a subsequent cache line
in order to improve performance on cache misses. Clearing the PFE bit
causes any data in the read buffer to be invalidated and disables
prefetching.

When the read buffer is enabled (PFE = 1), SDC prefetching can poten-
tially take bus bandwidth away from the Asynchronous Memory
Controller (AMC), because the external bus is shared between the SDC
and the AMC. By clearing the PFP bit, the amount of bandwidth taken
from the AMC is limited; when an AMC access needs the external bus,
prefetching halts, and the AMC can use the pins immediately after the
completion of prefetch reads that were already in progress. It should be
noted that although clearing PFP limits the bandwidth taken from the
AMC, it does not restore the AMC bandwidth to what it is when prefetch-
ing is disabled (PFE = 0). When PFP is set to 1, prefetching takes priority
over AMC accesses. This means that the read buffer prefetches an entire
cache line before releasing the external bus to the AMC for a pending
AMC access.

Refer to “Read Buffer (Prefetch) Operation” on page 18-72 for more
information.

The PSM and PSSE bits work together to specify and trigger an SDRAM
power-up (initialization) sequence. If the PSM bit is set to 1, the SDC does
a Precharge All command, followed by a Load Mode Register command,
and then does eight Auto-Refresh cycles. If the PSM bit is cleared, the SDC

SDRAM Controller (SDC)

18-42 ADSP-BF535 Blackfin Processor Hardware Reference

does a Precharge All command, followed by eight Auto-Refresh cycles,
and then a Load Mode Register command. Two events must occur before
the SDC does the SDRAM power-up sequence:

• The PSSE bit must be set to 1 to enable the SDRAM power-up
sequence.

• A read or write access must be done to enabled SDRAM address
space in order to have the external bus granted to the SDC so that
the SDRAM power-up sequence may occur. The SDRAM
power-up sequence is performed for all four SDRAM banks.

The SDRAM power-up sequence occurs and is followed immediately by
the read or write transfer to SDRAM that was used to trigger the SDRAM
power-up sequence. Note that there is a long latency for this first access to
SDRAM because the SDRAM power-up sequence takes many cycles to
complete.

 Before executing the SDC power-up sequence, ensure that the
SDRAM receives stable power and is clocked for the proper
amount of time, as specified by the SDRAM specification.

When the SRFS bit is set to 1, Self-Refresh mode is triggered. Once the
SDC completes any active transfers, the SDC executes the sequence of
commands to put the SDRAM into Self-Refresh mode. The next access to
an enabled SDRAM bank causes the SDC to execute the commands to
exit the SDRAM from Self-Refresh and execute the access. See “Entering
and Exiting Self-Refresh Mode (SRFS)” on page 18-44 for more informa-
tion about the SRFS bit.

The EBUFE bit is used to enable or disable external buffer timing. When
buffered SDRAM modules or discrete register-buffers are used to drive the
SDRAM control inputs, EBUFE should be set to 1. Using this setting adds a
cycle of data buffering to read and write accesses. See “Setting the
SDRAM Buffering Timing Option (EBUFE)” on page 18-45 for more
information about the EBUFE bit.

ADSP-BF535 Blackfin Processor Hardware Reference 18-43

External Bus Interface Unit

The X16DE bit is used to select whether the SDRAM interface is 32 bits
wide or 16 bits wide. If X16DE is 0, DATA[31:0] should be connected to the
SDRAM. If X16DE is 1, DATA[15:0] should be connected to the SDRAM.
Note that all SDRAM banks must be either all 32 bits wide or all 16 bits
wide.

Setting the SDRAM Clock Enables (SCTLE and SCK1E)

To meet higher clock load requirements for systems with multiple
SDRAM devices, the ADSP-BF535 processor provides two SDRAM clock
control pins, SCLK[0] and SCLK[1]. These pins eliminate the need for
off-chip clock buffers for most system memory configurations. The SCTLE
and SCK1E bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) provide control for the SDRAM clock control pins.

The SCTLE bit disables all of the SDRAM control pins: SDQM[3:0], SCAS,
SRAS, SWE, SCKE, and the SCLK[0].

SCTLE = 0 Disable all SDRAM control pins (control pins deas-
serted, SCLK[0] low)

SCTLE = 1 Enable all SDRAM control pins (SCLK[0] toggles)

The SCK1E bit disables the SCLK[1] pin independently:

SCK1E = 0 Disable SCLK[1] (SCLK[1] low)

SCK1E = 1 Enable SCLK[1] (SCLK[1] toggles)

Note the SCLK[1] function is also shared with the Asynchronous Memory
Controller (AMC). Even if SCTLE and SCK1E are disabled, SCLK[1] can be
enabled independently by the CLKOUT enable in the AMC (AMCKEN in the
EBIU_AMGCTL register).

If the system does not use SDRAM, both SCTLE and SCK1E should be 0.

SDRAM Controller (SDC)

18-44 ADSP-BF535 Blackfin Processor Hardware Reference

If the system uses SDRAM, but the clock load is minimal, SCTLE should be
1 and SCK1E should be 0. This setting enables the SCLK[0] pin and all
related SDRAM control pins, but disables (holds low) the second clock
pin SCLK[1].

If the system uses SDRAM and the clock loading is high, both SCTLE and
SCK1E should be set to 1. This setting enables SCLK[0], SCLK[1], and all
SDRAM control pins. In this configuration, SCLK[0] and SCLK[1] should
each share half of the clock load.

If an access occurs to the SDRAM address space while SCTLE is 0, the
access generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 18-8. With
careful software control, the SCTLE and SCK1E bits can be used in conjunc-
tion with Self-Refresh mode to further lower the power consumption.
However, SCTLE must remain enabled at all times when the SDC is needed
to generate Auto-Refresh commands to SDRAM.

Entering and Exiting Self-Refresh Mode (SRFS)

The SDC supports SDRAM Self-Refresh mode. In Self-Refresh mode, the
SDRAM performs refresh operations internally—without external con-
trol—reducing the SDRAM’s power consumption.

The SRFS bit in EBIU_SDGCTL enables the start of Self-Refresh mode:

SRFS = 0 No effect

SRFS = 1 Start Self-Refresh mode

When SRFS is set to 1, once the SDC enters an idle state it issues a Pre-
charge command if necessary and then issues a Self-Refresh command. If
an internal access is pending, the SDC delays issuing the Self-Refresh
command until it completes the pending SDRAM access and any subse-
quent pending access requests. Refer to “SDC Commands” on page 18-75
for more information.

ADSP-BF535 Blackfin Processor Hardware Reference 18-45

External Bus Interface Unit

Once the SDRAM device enters into Self-Refresh mode, the SDRAM
controller asserts the SDSRA bit in the SDRAM Control Status register
(EBIU_SDSTAT). The SDRAM controller ignores another Self-Refresh
request (SRFS = 1) when the SDRAM device is already in Self-Refresh
mode.

The SDRAM device exits Self-Refresh mode only when the SDC receives
a core, DMA, or PCI access request.

Note once the SRFS bit is set to 1, the SDC enters Self-Refresh mode when
it finishes pending accesses. There is no way to cancel the entry into
Self-Refresh mode.

Setting the SDRAM Buffering Timing Option (EBUFE)

To meet overall system timing requirements, systems that employ several
SDRAM devices connected in parallel may require buffering between the
ADSP-BF535 processor and multiple SDRAM devices. This buffering
generally consists of a register and driver.

To meet such timing requirements, the SDC supports pipelining of
SDRAM address and control signals.

The EBUFE bit in the EBIU_SDGCTL register enables this mode:

EBUFE = 0 Disable external buffering timing

EBUFE = 1 Enable external buffering timing

When EBUFE = 1, the SDRAM controller delays the data in write accesses
by one cycle, enabling external buffer registers to latch the address and
controls. In read accesses, the SDRAM controller samples data one cycle
later to account for the one-cycle delay added by the external buffer regis-
ters. When external buffering timing is enabled, the latency of all accesses
is increased by one cycle.

SDRAM Controller (SDC)

18-46 ADSP-BF535 Blackfin Processor Hardware Reference

Selecting the CAS Latency Value (CL)

The CAS latency value defines the delay, in number of SCLK cycles,
between the time the SDRAM detects the Read command and the time it
provides the data at its output pins.

CAS latency does not apply to write cycles.

The CL bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the CAS latency value:

CL = 00 Reserved

CL = 01 Reserved

CL = 10 2 clock cycles

CL = 11 3 clock cycles

Generally, the frequency of operation determines the value of the CAS
latency. For specific information about setting this value, consult the
SDRAM device documentation.

ADSP-BF535 Blackfin Processor Hardware Reference 18-47

External Bus Interface Unit

SDQM Operation

The SDQM[3:0] (Data I/O Mask) pins enable the SDC to mask off bytes
during byte and half word (two-byte) write transfers. For write cycles, the
data masks have a latency of zero cycles, permitting data writes when the
corresponding SDQM[x] pin is sampled low and blocking data writes when
the SDQM[x] pin is sampled high on a byte-by-byte basis. The SDQM[x] pin
should be asserted during Precharge.

Executing a Parallel Refresh Command

The SDC includes a separate address pin (SA10) to enable the execution of
Auto-Refresh commands in parallel with any asynchronous memory
access. This separate pin allows the SDC to Precharge the SDRAM before
it issues an Auto-Refresh command. In addition, the SA10 pin allows the
SDC to enter and exit Self-Refresh mode in parallel with any asynchro-
nous memory access.

The SA10 pin should be directly connected to the A10 pin of the SDRAM
(instead of to the ADDR[10] pin). During the Precharge command, SA10 is
used to indicate that a Precharge All should be done. During a Bank Acti-
vate command, SA10 outputs the internal row address bit, which should be
multiplexed to the A10 SDRAM input. During Read and Write com-
mands, SA10 is used to disable the auto-precharge function of SDRAMs.

Selecting the Bank Activate Command Delay (TRAS)

The tRAS value (Bank Activate command delay) defines the required delay,
in number of SCLK cycles, between the time the SDC issues a Bank Acti-
vate command and the time it issues a Precharge command. The SDRAM
must also remain in Self-Refresh mode for a period of time of at least tRAS.
The tRP and tRAS values define the tRFC, tRC, and tXSR values. See the
tRFC, tRC, and tXSR descriptions on page 18-36 for more information.

SDRAM Controller (SDC)

18-48 ADSP-BF535 Blackfin Processor Hardware Reference

The tRAS parameter allows the ADSP-BF535 processor to adapt to the
timing requirements of the system’s SDRAM devices.

The TRAS bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tRAS value. Any value between 1 and 15 SCLK
cycles can be selected. For example:

TRAS = 0000 No effect

TRAS = 0001 1 clock cycle

TRAS = 0010 2 clock cycles

TRAS = 1111 15 clock cycles

For specific information on setting this value, consult the SDRAM device
documentation.

Selecting the Precharge Delay (TRP)

The tRP value (Precharge delay) defines the required delay, in number of
SCLK cycles, between the time the SDC issues a Precharge command and
the time it issues a Bank Activate command. The tRP also specifies the
time required between Precharge and Auto-Refresh, and between Pre-
charge and Self-Refresh. The tRP and tRAS values define the tRFC, tRC, and
tXSR values.

This parameter enables the application to accommodate the SDRAM’s
timing requirements.

The TRP bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tRP value. Any value between 1 and 7 SCLK cycles
may be selected. For example:

TRP = 000 No effect

TRP = 001 1 clock cycle

ADSP-BF535 Blackfin Processor Hardware Reference 18-49

External Bus Interface Unit

TRP = 010 2 clock cycles

TRP = 111 7 clock cycles

Selecting the Write to Precharge Delay (TWR)

The tWR value defines the required delay, in number of SCLK cycles,
between the time the SDC issues a Write command (drives write data) and
a Precharge command.

This parameter enables the application to accommodate the SDRAM’s
timing requirements.

The TWR bits in the SDRAM Memory Global Control register
(EBIU_SDGCTL) select the tWR value. Any value between 1 and 3 SCLK cycles
may be selected. For example:

TWR = 00 Reserved

TWR = 01 1 clock cycle

TWR = 10 2 clock cycles

TWR = 11 3 clock cycles

SDRAM Memory Bank Control Register
(EBIU_SDBCTL)

The SDRAM Memory Bank Control register (Figure 18-15) includes
external bank-specific programmable parameters. It allows software to
control some parameters of the SDRAM on a per-external-bank basis.
Each external bank can be individually configured for a different size of
SDRAM; however, note that all external banks use the same access timing
parameters, as defined in the SDRAM Memory Global Control register
(EBIU_SDGCTL). The EBIU_SDBCTL register should be programmed before
power-up and should be changed only when the SDC is idle.

SDRAM Controller (SDC)

18-50 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 18-15. SDRAM Memory Bank Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SDRAM Memory Bank Control Register (EBIU_SDBCTL)

EB0SZ

EB0CAW

EB0E

EB1E

EB1SZ

EB1CAW

EB2SZ

EB2CAW

EB2E

EB3E

EB3SZ

EB3CAW

SDRAM external bank 3 enable
0 - Disabled
1 - Enabled

SDRAM external bank 3 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 3 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 2 enable
0 - Disabled
1 - Enabled

SDRAM external bank 2 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 2 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 1 enable
0 - Disabled
1 - Enabled

SDRAM external bank 1 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 1 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

SDRAM external bank 0 enable
0 - Disabled
1 - Enabled

SDRAM external bank 0 size
00 - 16 MB
01 - 32 MB
10 - 64 MB
11 - 128 MB

SDRAM external bank 0 column
address width
00 - 8 bits
01 - 9 bits
10 - 10 bits
11 - 11 bits

Reset = 0x0000 00000xFFC0 4C04

ADSP-BF535 Blackfin Processor Hardware Reference 18-51

External Bus Interface Unit

The EBIU_SDBCTL register stores the configuration information for each
SDRAM bank interface. The EBIU supports 64 Mbit, 128 Mbit, 256
Mbit, and 512 Mbit SDRAM devices with x4, x8, x16 configurations. See
“SDRAM External Bank Address Decode” on page 18-56 for more infor-
mation on bank starting address decodes.

The SDC determines the internal SDRAM page size from the X16DE and
EBxCAW parameters. Page sizes of 1 KB, 2 KB, 4 KB, and 8 KB are sup-
ported. Table 18-5 shows the page size and breakdown of the internal
address (IA[31:0], as seen from the core, DMA, or PCI) into the row,
bank, column, and byte address. The column address and the byte address
together make up the address inside the page.

The bank address can be thought of as part of the row address. The com-
binations of external bank width (X16DE), external bank size (EBxSZ) and
column address width (EBxCAW) which are not supported are also indicated
in this table. Programming the SDC with non-supported values produces
unpredictable results.

The EBxE bits in the EBIU_SDBCTL register are used to enable or disable a
bank. If a bank is disabled, any access to the address space of that disabled
bank generates an internal bus error, and the access does not occur exter-
nally. For more information, see “Error Detection” on page 18-8. Note
that the size (EBxSZ) of all banks, regardless of whether they are enabled or
disabled, is used in determining the bank starting addresses.

Table 18-5. Internal Address Mapping

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips

32 128 11 8 IA[26:15] IA[14:13] IA[12:2] IA[1:0] 128 4 8

32 128 10 4 IA[26:14] IA[13:12] IA[11:2] IA[1:0] 256 8 4

512 16 2

SDRAM Controller (SDC)

18-52 ADSP-BF535 Blackfin Processor Hardware Reference

32 128 9
Not Supported - Reserved

32 128 8

32 64 11

32 64 10 4 IA[25:14] IA[13:12] IA[11:2] IA[1:0] 64 4 8

128 8 4

32 64 9 2 IA[25:13] IA[12:11] IA[10:2] IA[1:0] 256 16 2

32 64 8
Not Supported - Reserved

32 32 11

32 32 10

32 32 9 2 IA[24:13] IA[12:11] IA[10:2] IA[1:0] 64 8 4

128 16 2

32 32 8

Not Supported - Reserved32 16 11

32 16 10

32 16 9

32 16 8 1 IA[23:12] IA[11:10] IA[9:2] IA[1:0] 64 16 2

16 128 11 4 IA[26:14] IA[13:12] IA[11:1] IA[0] 256 4 4

512 8 2

16 128 10
Not Supported - Reserved

16 128 9

16 128 8

16 64 11 4 IA[25:14] IA[13:12] IA[11:1] IA[0] 128 4 4

16 64 10 2 IA[25:13] IA[12:11] IA[10:1] IA[0] 256 8 2

512 16 1

Table 18-5. Internal Address Mapping (Cont’d)

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips

ADSP-BF535 Blackfin Processor Hardware Reference 18-53

External Bus Interface Unit

SDRAM Control Status Register (EBIU_SDSTAT)
The SDRAM Control Status register, shown in Figure 18-16, provides
information on the state of the SDC. This information can be used to
determine when it is safe to alter SDC control parameters or as a debug
aid. The error bits of this register are sticky. Once an error bit has been
set, software must explicitly write a 1 to the bit to clear it.

16 64 9
Not Supported - Reserved

16 64 8

16 32 11

16 32 10 2 IA[24:13] IA[12:11] IA[10:1] IA[0] 64 4 4

128 8 2

16 32 9 1 IA[24:12] IA[11:10] IA[9:1] IA[0] 256 16 1

16 32 8
Not Supported - Reserved

16 16 11

16 16 10

16 16 9 1 IA[23:12] IA[11:10] IA[9:1] IA[0] 64 8 2

128 16 1

16 16 8 Not Supported - Reserved

Table 18-5. Internal Address Mapping (Cont’d)

Bank
Width
Bits

Bank
Size
Mbyte

Col
Addr
Width
(CAW

Page
Size
kbyte

Row
Address

Bank
Address

Page SDRAM Config

Column
Address

Byte
Address

Size
Mbit

Width
Bits

Num
Chips

SDRAM Controller (SDC)

18-54 ADSP-BF535 Blackfin Processor Hardware Reference

SDRAM Refresh Rate Control Register (EBIU_SDRRC)
The SDRAM Refresh Rate Control register, shown in Figure 18-17, pro-
vides a flexible mechanism for specifying the Auto-Refresh timing. The
SDC provides a programmable refresh counter which has a period based
on the value programmed into the RDIV field of this register, that coordi-
nates the supplied clock rate with the SDRAM device’s required refresh
rate.

The delay (in number of SCLK cycles) desired between consecutive refresh
counter time-outs must be written to the RDIV field. A refresh counter
time-out triggers an Auto-Refresh command to all external SDRAM
banks. Write the RDIV value to the EBIU_SDRRC register before the SDRAM
power-up sequence is triggered. Change this value only when the SDC is
idle.

Figure 18-16. SDRAM Control Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 1 0 0

SDRAM Control Status Register (EBIU_SDSTAT)

SDSRA

SDPUA

SDCI

SDRS

SDEASE - W1C

SDEMSE - W1C
SDRAM EMB sticky error status
0 - No error detected
1 - EMB access generated an error

SDRAM EAB sticky error status
0 - No error detected
1 - EAB access generated an error

SDRAMs in reset state
0 - A power-up sequence has been

initiated since the last SDC reset
1 - A power-up sequence has not

occurred since an SDC reset
occurred

SDRAM controller idle
0 - SDC is busy performing

an access or an auto
refresh

1 - SDC is idle

SDRAM self-refresh active
0 - SDRAMs not in self-

refresh mode
1 - SDRAMs in self-refresh
mode

SDRAM power-up active
0 - SDC not in power-up

sequence
1 - SDC in power-up

sequence

Reset = 0x00080xFFC0 4C0E

ADSP-BF535 Blackfin Processor Hardware Reference 18-55

External Bus Interface Unit

To calculate the value that should be written to the EBIU_SDRRC register,
use this equation:

RDIV = ((fSCLK tREF)/NRA) - (tRAS + tRP)

Where:

• fSCLK = SCLK frequency (system clock frequency)

• tREF = SDRAM refresh period

• NRA = Number of row addresses in SDRAM (refresh cycles to
refresh whole SDRAM)

• tRAS = Active to Precharge time (TRAS in the SDRAM Memory
Global Control register) in number of clock cycles

• tRP = RAS to Precharge time (TRP in the SDRAM Memory Global
Control register) in number of clock cycles

This equation calculates the number of clock cycles between required
refreshes and subtracts the required delay between Bank Activate com-
mands to the same bank (tRC = tRAS + tRP). The tRC value is subtracted, so
that in the case where a refresh time-out occurs while an SDRAM cycle is
active, the SDRAM refresh rate specification is guaranteed to be met. The
result from the equation should always be rounded down to an integer.

Figure 18-17. SDRAM Refresh Rate Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 1 0 0 0 0 0 0 1 1 0 1

SDRAM Refresh Rate Control Register (EBIU_SDRRC)

RDIV

Reset = 0x081A0xFFC0 4C0A

SDRAM Controller (SDC)

18-56 ADSP-BF535 Blackfin Processor Hardware Reference

Below is an example of the calculation of RDIV for a typical SDRAM in a
system with a 133 MHz clock:

• fSCLK = 133 MHz

• tREF = 64 ms

• NRA = 4096 row addresses

• tRAS = 2

• tRP = 2

The equation for RDIV yields:

RDIV = ((133 106 64 10-3) / 4096) – (2 + 2) = 2074 clock cycles.

This means RDIV is 0x81A (hex) and the SDRAM Refresh Rate Control
register should be written with 0x081A.

Note that RDIV must be programmed to a nonzero value if the SDRAM
controller is enabled. When RDIV = 0, operation of the SDRAM controller
is not supported and can produce undesirable behavior. Values for RDIV
can range from 0x001 to 0xFFF.

SDRAM External Bank Address Decode
The memory address space for each SDRAM bank is contiguous. There-
fore, the starting addresses for each of the SDRAM banks and for the
beginning of the unpopulated/reserved space is determined by adding up
the sizes of each bank that precedes that bank. This can be done by simply
summing the Bank Size Encodings listed in Table 18-6 for each bank as
shown in Table 18-7. If every SDRAM bank is 128 MB, the SDRAM
address space is fully populated. If any bank is less than 128 MB, the
address space after bank3 is referred to as “unpopulated/reserved” space.

ADSP-BF535 Blackfin Processor Hardware Reference 18-57

External Bus Interface Unit

Any access to unpopulated/reserved space generates an internal bus error
and the access does not occur externally. For more information, see “Error
Detection” on page 18-8.

Table 18-6. Bank Size Encodings

EBxSZ Bank Size
(Mbyte)

bank_x_size[4:0]

00 16 00001

01 32 00010

10 64 00100

11 128 01000

Table 18-7. Start Address Calculation

SDRAM
Bank

bank_x_start_addr[28:24]

0 00000

1 00000 + bank_0_size[4:0]

2 00000 + bank_0_size[4:0] + bank_1_size[4:0]

3 00000 + bank_0_size[4:0] + bank_1_size[4:0] + bank_2_size[4:0]

Unpopu-
lated/
Reserved

00000 + bank_0_size[4:0] + bank_1_size[4:0] + bank_2_size[4:0] +
bank_3_size[4:0]

Note:
1. bank_x_start_addr[31:29] = 000 and bank_x_start_addr[23:0] = all 0’s
2. If there is a carry out on the reserved space start address, then the SDRAM address space is
fully populated and therefore, no bus error from unpopulated/reserved space is possible.

SDRAM Controller (SDC)

18-58 ADSP-BF535 Blackfin Processor Hardware Reference

For example, if the SDRAM memory configuration is as follows:

• Bank0 and bank1 are connected to a 64 MByte SDRAM DIMM
(EB0E=1, EB0SZ=01, EB1E=1, EB1SZ=01).

• Bank2 is unpopulated, but is set to be 16 MB (EB2E=0, EB2SZ=00).

• Bank3 is connected to a 64 MByte discrete SDRAM memory array
(EB3E=0, EB3SZ=10).

The start addresses for the SDRAM banks and reserved spaces are calcu-
lated as:

Figure 18-18. Bank Start Address Calculation

00101

00100

bank_0_start_addr[28:24] =

bank_1_start_addr[28:24] =

bank_2_start_addr[28:24] =

bank_3_start_addr[28:24] =

00000

00000

00010

00010

00010

00010

00010

00010

00000

00100

00000

00001

00101

bank0

bank0

bank1

bank0

bank1

bank2

unpopulated_start_addr[28:24] =
00010

00010

00000

00001

bank0

bank1

bank2
bank3

ADSP-BF535 Blackfin Processor Hardware Reference 18-59

External Bus Interface Unit

For all banks, bank_x_start_addr[31:29] = 000 and
bank_x_start_addr[32:0] = all zeros. Therefore, the bank size encodings
are as shown in Table 18-8.

Note even though bank2 is disabled (EB2E=0), the bank size (EB2SZ=00) is
used to determine the start addresses of successive banks and unpopu-
lated/reserved space.

SDRAM Address Mapping
To access SDRAM, the SDC multiplexes the internal 32-bit non-multi-
plexed address into a row address, a column address, a bank address, and
the byte data masks for the SDRAM device, as shown in Figure 18-19.
The lowest bit or bits are mapped to byte data masks, the next bits are
mapped into the column address, the next 2 bits are mapped into the bank
address, and the remaining bits are mapped into the row address. This
mapping is based on the EBxSZ and EBxCAW parameters programmed into
the SDRAM Memory Bank Control register, and the X16DE bit in the
EBIU_SDGTL register.

Table 18-8. Bank Size Encodings

SDRAM
Bank

Bank Size
(MB)

Start Address (hex)

0 32 0x00000000

1 32 0x02000000

2 16 0x04000000

3 64 0x05000000

Reserved 368 0x09000000

SDRAM Controller (SDC)

18-60 ADSP-BF535 Blackfin Processor Hardware Reference

The following sections have tables which describe the muxing of the Inter-
nal Address (from the EAB or EMB buses) into the Row Address, Bank
Address, and Column Address, for all the combinations of SDRAM bank
width, and number of column address pins on the SDRAMs, and whether
the SDRAM is 16- or 32-bits wide. This muxing assumes the SDRAMs
have 4 internal banks.

All the possible configurations of SDRAM sizes and number of chips con-
nected in parallel are given for each muxing table.

Note there is no separate ADDR[1] pin on the ADSP-BF535 processor. The
ADDR[1] pin is muxed onto the pin ABE[3]/SDQM[3]/ADDR[1] for 16-bit
SDRAM banks. This is further described in “Data Mask (SDQM[3:0])
Encodings” on page 18-67.

32-Bit Wide SDRAM Address Muxing

Table 18-9, Table 18-10, Table 18-11, and Table 18-12 show address
muxing for 32-bit wide SDRAM banks using SDRAMs with 8, 9, 10, or
11 column address pins.

Figure 18-19. Multiplexed SDRAM Addressing Scheme

Row
Address

31 25 0

Internal 32-bit Address

Bank
Select

Column
Address

Byte
Mask

ADSP-BF535 Blackfin Processor Hardware Reference 18-61

External Bus Interface Unit

Table 18-9. 32-Bit SDRAM Bank, 8 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[16] IA[26] A[14]

ADDR[15] IA[25] A[13]

ADDR[14] IA[24] A[12]

ADDR[13] IA[23] A[11]

SA[10] IA[22] A[10]

ADDR[11] IA[21] A[9]

ADDR[10] IA[20] A[8]

ADDR[9] IA[19] IA[9] A[7]

ADDR[8] IA[18] IA[8] A[6]

ADDR[7] IA[17] IA[7] A[5]

ADDR[6] IA[16] IA[6] A[4]

ADDR[5] IA[15] IA[5] A[3]

ADDR[4] IA[14] IA[4] A[2]

ADDR[3] IA[13] IA[3] A[1]

ADDR[2] IA[12] IA[2] A[0]

ADDR[19] IA[11] IA[11] BA[1]

ADDR[18] IA[10] IA[10] BA[0]

Possible configurations:

2 chips: 64 Mb - 1 M 16 4 banks (16 MB)

SDRAM Controller (SDC)

18-62 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-10. 32-Bit SDRAM Bank, 9 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[15] IA[26] A[13]

ADDR[14] IA[25] A[12]

ADDR[13] IA[24] A[11]

SA[10] IA[23] A[10]

ADDR[11] IA[22] A[9]

ADDR[10] IA[21] IA[10] A[8]

ADDR[9] IA[20] IA[9] A[7]

ADDR[8] IA[19] IA[8] A[6]

ADDR[7] IA[18] IA[7] A[5]

ADDR[6] IA[17] IA[6] A[4]

ADDR[5] IA[16] IA[5] A[3]

ADDR[4] IA[15] IA[4] A[2]

ADDR[3] IA[14] IA[3] A[1]

ADDR[2] IA[13] IA[2] A[0]

ADDR[19] IA[12] IA[12] BA[1]

ADDR[18] IA[11] IA[11] BA[0]

Possible configurations:

2 chips: 256 Mb - 4 M 16 4 banks (64 MB)

2 chips: 128 Mb - 2 M 16 4 banks (32 MB)

4 chips: 64 Mb - 2 M 8 4 banks (32 MB)

ADSP-BF535 Blackfin Processor Hardware Reference 18-63

External Bus Interface Unit

Table 18-11. 32-Bit SDRAM Bank, 10 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[14] IA[26] A[12]

ADDR[13] IA[25] A[11]

SA[10] IA[24] A[10]

ADDR[11] IA[23] IA[11] A[9]

ADDR[10] IA[22] IA[10] A[8]

ADDR[9] IA[21] IA[9] A[7]

ADDR[8] IA[20] IA[8] A[6]

ADDR[7] IA[19] IA[7] A[5]

ADDR[6] IA[18] IA[6] A[4]

ADDR[5] IA[17] IA[5] A[3]

ADDR[4] IA[16] IA[4] A[2]

ADDR[3] IA[15] IA[3] A[1]

ADDR[2] IA[14] IA[2] A[0]

ADDR[19] IA[13] IA[13] BA[1]

ADDR[18] IA[12] IA[12] BA[0]

Possible configurations:

2 chips: 256 Mb - 8 M 8 4 banks (128 MB)

2 chips: 512 Mb - 8 M 16 4 banks (128 MB)

2 chips: 128 Mb - 4 M 8 4 banks (64 MB)

2 chips: 64 Mb - 4 M 4 4 banks (64 MB)

SDRAM Controller (SDC)

18-64 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-12. 32-Bit SDRAM Bank, 11 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[13] IA[26] IA[12] A[11]

SA[10] IA[25] A[10]

ADDR[11] IA[24] IA[11] A[9]

ADDR[10] IA[23] IA[10] A[8]

ADDR[9] IA[22] IA[9] A[7]

ADDR[8] IA[21] IA[8] A[6]

ADDR[7] IA[20] IA[7] A[5]

ADDR[6] IA[19] IA[6] A[4]

ADDR[5] IA[18] IA[5] A[3]

ADDR[4] IA[17] IA[4] A[2]

ADDR[3] IA[16] IA[3] A[1]

ADDR[2] IA[15] IA[2] A[0]

ADDR[19] IA[14] IA[14] BA[1]

ADDR[18] IA[13] IA[13] BA[0]

Possible configurations:

8 chips: 128 Mb - 8 M 4 4 banks (128 MB)

ADSP-BF535 Blackfin Processor Hardware Reference 18-65

External Bus Interface Unit

16-Bit Wide SDRAM Address Muxing

Table 18-13, Table 18-14, and Table 18-15 show address muxing for
16-bit wide SDRAM banks using SDRAMs with 9, 10, or 11 column
address pins.

Table 18-13. 16-Bit SDRAM Bank, 9 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[15] IA[26] A[14]

ADDR[14] IA[25] A[13]

ADDR[13] IA[24] A[12]

ADDR[12] IA[23] A[11]

SA[10] IA[22] A[10]

ADDR[10] IA[21] A[9]

ADDR[9] IA[20] IA[9] A[8]

ADDR[8] IA[19] IA[8] A[7]

ADDR[7] IA[18] IA[7] A[6]

ADDR[6] IA[17] IA[6] A[5]

ADDR[5] IA[16] IA[5] A[4]

ADDR[4] IA[15] IA[4] A[3]

ADDR[3] IA[14] IA[3] A[2]

ADDR[2] IA[13] IA[2] A[1]

ADDR[1] IA[12] IA[1] A[0]

ADDR[19] IA[11] IA[11] BA[1]

ADDR[18] IA[10] IA[10] BA[0]

Possible configurations:

1 chip: 256 Mb - 4 M 16 4 banks (32 MB)

1 chip: 128 Mb - 2 M 16 4 banks (16 MB)

2 chips: 64 Mb - 2 M 8 4 banks (16 MB)

SDRAM Controller (SDC)

18-66 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-14. 16-Bit SDRAM Bank, 10 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[14] IA[26] A[13]

ADDR[13] IA[25] A[12]

ADDR[12] IA[24] A[11]

SA[10] IA[23] A[10]

ADDR[10] IA[22] IA[10] A[9]

ADDR[9] IA[21] IA[9] A[8]

ADDR[8] IA[20] IA[8] A[7]

ADDR[7] IA[19] IA[7] A[6]

ADDR[6] IA[18] IA[6] A[5]

ADDR[5] IA[17] IA[5] A[4]

ADDR[4] IA[16] IA[4] A[3]

ADDR[3] IA[15] IA[3] A[2]

ADDR[2] IA[14] IA[2] A[1]

ADDR[1] IA[13] IA[1] A[0]

ADDR[19] IA[12] IA[12] BA[1]

ADDR[18] IA[11] IA[11] BA[0]

Possible configurations:

1 chip: 512 Mb - 8 M 16 4 banks (64 MB)

2 chips: 256 Mb - 8 M 8 4 banks (64 MB)

2 chips: 128 Mb - 4 M 8 4 banks (32 MB)

4 chips: 64 Mb - 4 M 4 4 banks (32 MB)

ADSP-BF535 Blackfin Processor Hardware Reference 18-67

External Bus Interface Unit

Data Mask (SDQM[3:0]) Encodings
During write transfers to SDRAM, the SDQM[3:0] pins are used to mask
writes to bytes that are not accessed. Table 18-16 shows the SDQM[3:0]
encodings for 32-bit wide SDRAM banks based on the internal transfer
address bits IA[1:0] and the transfer size.

Table 18-15. 16-Bit SDRAM Bank, 11 Column Address Pins

ADSP-BF535
Processor Address Pin

Internal Address
for RAS

Internal Address
for CAS

SDRAM Address
Pin

ADDR[13] IA[26] A[12]

ADDR[12] IA[25] IA[11] A[11]

SA[10] IA[24] A[10]

ADDR[10] IA[23] IA[10] A[9]

ADDR[9] IA[22] IA[9] A[8]

ADDR[8] IA[21] IA[8] A[7]

ADDR[7] IA[20] IA[7] A[6]

ADDR[6] IA[19] IA[6] A[5]

ADDR[5] IA[18] IA[5] A[4]

ADDR[4] IA[17] IA[4] A[3]

ADDR[3] IA[16] IA[3] A[2]

ADDR[2] IA[15] IA[2] A[1]

ADDR[1] IA[14] IA[1] A[0]

ADDR[19] IA[13] IA[13] BA[1]

ADDR[18] IA[12] IA[12] BA[0]

Possible configurations:

2 chips: 512 Mb - 16 M 8 4 banks (128 MB)

4 chips: 256 Mb - 16 M 4 4 banks (128 MB)

4 chips: 128 Mb - 8 M 4 4 banks (64 MB)

SDRAM Controller (SDC)

18-68 ADSP-BF535 Blackfin Processor Hardware Reference

During read transfers to SDRAM banks, reads are always done of all bytes
in the bank regardless of the transfer size. This means for 32-bit SDRAM
banks, SDQM[3:0] are all zeros and for 16-bit SDRAM banks, SDQM[1:0]
are zeros, SDQM[2] is 1, and SDQM[3] outputs IA[1].

The only time that the SDQM[3:0] pins are high is when bytes are masked
during write transfers to the SDRAM banks. At all other times, the
SDQM[3:0] pins are held low (with the exception of SDQM[3] when the
SDRAM banks are 16-bit wide). This means for 32-bit SDRAM banks,
SDQM[3:0] are all zeros, and for 16-bit SDRAM banks SDQM[1:0] are zeros,
SDQM[2] is 1, and SDQM[3] outputs IA[1].

The pin configurations in Table 18-16 are internally set up and not
programmable.

ADSP-BF535 Blackfin Processor Hardware Reference 18-69

External Bus Interface Unit

Table 18-17 shows the SDQM[1:0] encodings during writes for 16-bit
SDRAM banks.

Table 18-16. SDQM[3:0] Encodings During Writes for 32-bit SDRAM
Banks

Internal Address
IA[1:0]

Internal Transfer Size

byte 2 bytes 4 bytes

00 SDQM[3]=1
SDQM[2]=1
SDQM[1]=1
SDQM[0]=0

SDQM[3]=1
SDQM[2]=1
SDQM[1]=0
SDQM[0]=0

SDQM[3]=0
SDQM[2]=0
SDQM[1]=0
SDQM[0]=0

01 SDQM[3]=1
SDQM[2]=1
SDQM[1]=0
SDQM[0]=1

10 SDQM[3]=1
SDQM[2]=0
SDQM[1]=1
SDQM[0]=1

SDQM[3]=0
SDQM[2]=0
SDQM[1]=1
SDQM[0]=1

11 SDQM[3]=0
SDQM[2]=1
SDQM[1]=1
SDQM[0]=1

Table 18-17. SDQM[1:0] Encodings During Writes for 16-bit SDRAM
Banks

Internal Address
IA[0]

Internal Transfer Size

byte 2 bytes 4 bytes

0 SDQM[1]=1
SDQM[0]=0

SDQM[1]=0
SDQM[0]=0

SDQM[1]=0
SDQM[0]=0

1 SDQM[1]=0
SDQM[0]=1

Note: SDQM[3] outputs IA[1] and SDQM[2] always outputs 1 for 16-bit
SDRAM banks.

SDRAM Controller (SDC)

18-70 ADSP-BF535 Blackfin Processor Hardware Reference

SDC Operation
The ADSP-BF535 processor’s SDC uses a burst length = 1 for read and
write operations. Whenever a page miss occurs, the SDC executes a Pre-
charge command followed by a Bank Activate command before executing
the Read or Write command. If there is a page hit, the Read or Write
command can be given immediately without requiring the Precharge
command.

For SDRAM Read commands, there is a latency from the start of the Read
command to the availability of data from the SDRAM, equal to the CAS
latency. This latency is always present for the first read in a burst and for
any single read transfer. Subsequent reads in a burst do not have latency.

A programmable refresh counter is provided. It can be programmed to
generate background Auto-Refresh cycles at the required refresh rate based
on the clock frequency used. The refresh counter period is specified with
the RDIV field in the SDRAM Refresh Rate Control register.

To allow Auto-Refresh commands to execute in parallel with any AMC
access, a separate A10 pin (SA10) is provided. All the SDRAM internal
banks are precharged before issuing an Auto-Refresh command, and all
external banks are refreshed at the same time. For more information, see
“Executing a Parallel Refresh Command” on page 18-47.

SDC Configuration
After an ADSP-BF535 processor is reset, the SDC clocks are enabled;
however, the SDC must be configured and initialized. Before program-
ming the SDC and executing the power-up sequence, ensure the clock to
the SDRAM is enabled after the power has stabilized for the proper
amount of time (as specified by the SDRAM). In order to set up the SDC
and start the SDRAM power-up sequence for the SDRAMs, the SDRAM
Refresh Rate Control register (EBIU_SDRRC), the SDRAM Memory Bank
Control register (EBIU_SDBCTL), and SDRAM Memory Global Control

ADSP-BF535 Blackfin Processor Hardware Reference 18-71

External Bus Interface Unit

register (EBIU_SDGCTL) must be written, and a transfer must be started to
SDRAM address space. The SDRS bit of the SDRAM Control Status regis-
ter can be checked to determine the current state of the SDC. If this bit is
set, the SDRAM power-up sequence has not been initiated.

The RDIV field of the EBIU_SDRRC register should be written to set the
SDRAM refresh rate.

The EBIU_SDBCTL register should be written to describe the sizes and
SDRAM memory configuration used (EBxSZ and EBxCAW) and to enable
the external banks which are populated (EBxE). Note until the SDRAM
power-up sequence has been started, any access to SDRAM address space,
regardless of the state of the EBxE bits, generates an internal bus error, and
the access does not occur externally. For more information, see “Error
Detection” on page 18-8. After the SDRAM power-up sequence has com-
pleted, any transfer to a disabled external bank results in a hardware error
interrupt, and the SDRAM transfer does not occur.

The EBIU_SDGCTL register should be written:

• to set the SDRAM cycle timing options (CL, TRAS, TRP, TRCD, TWR,
EBUFE)

• to enable the SDRAM clocks (SCTLE, SCLK1)

• to set the prefetch functionality (PFE, PFP)

• to set the datapath width (X16DE)

• to select and enable the start of the SDRAM power-up sequence
(PSM, PSSE)

Note if SCTLE is disabled, any access to SDRAM address space generates an
internal bus error and the access does not occur externally. For more infor-
mation, see “Error Detection” on page 18-8.

SDRAM Controller (SDC)

18-72 ADSP-BF535 Blackfin Processor Hardware Reference

Once the PSSE bit in the EBIU_SDGCTL register is set to 1, and a transfer
occurs to enabled SDRAM address space, the SDC initiates the SDRAM
power-up sequence. The exact sequence is determined by the PSM bit in
the EBIU_SDGCTL register. The transfer that is used to trigger the SDRAM
power-up sequence can be either a read or a write. This transfer occurs
when the SDRAM power-up sequence has completed. This initial transfer
takes many cycles to complete since the SDRAM power-up sequence must
take place.

Read Buffer (Prefetch) Operation
When a cache line fill completes, the SDC launches speculative read
accesses, or prefetches, in order to minimize the latency seen by L1 cache
line fills. The SDC stores the read data from these prefetches into a read
buffer. A cache line fill fetches 32 bytes, or 8 words, from memory. If a
cache line fill hits (the address matches) at least 5 words (12 half words for
16-bit wide SDRAM), the maximum throughput of 1 word per cycle is
achieved.

Prefetches start only after a cache line fill if all of these conditions are met:

• Prefetching is enabled (PFE = 1 in the SDRAM Memory Global
Control register).

• The AMC does not have priority over prefetches (PFP = 1 in the
SDRAM Memory Global Control register), or the AMC has prior-
ity over prefetches (PFP = 0), but the AMC is not requesting use of
the shared external pins.

• The successive memory line is in the page which is currently open.

• No Auto-Refresh or Self-Refresh request is pending.

ADSP-BF535 Blackfin Processor Hardware Reference 18-73

External Bus Interface Unit

After the prefetch reads start, they continue until one of these conditions
is met:

• The SDC read buffer is full.

• The AMC has a pending request and the AMC has priority over
prefetches (PFP = 0 in the SDRAM Memory Global Control
register).

• An Auto-Refresh or Self-Refresh request occurs.

• Another SDC access occurs from the core, a DMA, or PCI.

• Prefetching is disabled (PFE = 0 in the SDRAM Memory Global
Control register).

If a cache line fill access starts to the address of the line stored in the read
buffer, data from the read buffer starts being returned every cycle. At the
same time, the SDC determines the address of the first word which is not
in the read buffer and then starts this transfer from the SDRAM. As long
as there are enough words that hit in the read buffer to cover the latency of
reading the remaining addresses that did not hit in the read buffer, the
maximum throughput can be achieved. If there are not enough hits to
cover the latency, wait states are inserted in the middle of the cache line
fill until read data for the remaining words can be returned. When the
read accesses for the words that were not in the read buffer complete, the
SDC begins launching prefetch reads of the next sequential line in
memory.

If a cache line fill access starts to an address that does not match any of the
addresses of the data in the read buffer (a read buffer miss), the read buffer
data is invalidated, the accesses required to service the cache line fill are
launched, and then prefetches of the next line begin.

SDRAM Controller (SDC)

18-74 ADSP-BF535 Blackfin Processor Hardware Reference

The read buffer is invalidated if any of these things occur:

• A cache line fill misses the read buffer.

• A write is done to any word in the line that is stored in the read
buffer.

• Prefetching is disabled (PFE = 0 in the SDRAM Memory Global
Control register).

Cache line fills always start at the address that missed in the cache. This
word is referred to as the critical word. For a cache line fill to have a par-
tial read buffer hit, the address of the critical word of the line being filled
must be in the read buffer.

A prefetch may be interrupted; therefore, it is possible to have a partially
filled read buffer. Words that are successfully prefetched into the read buf-
fer are considered valid words. All valid words which follow the critical
word in a line wrapping manner are counted as read buffer hits. For exam-
ple, prefetch begins and stores words 7, 0, 1, 2, and 3 into the read buffer,
and then it is interrupted. If the critical word of a cache line fill is word 3,
then only word 3 is a read buffer hit, since word 4 is not a valid word in
the read buffer. If the critical word of a cache line fill is word 7 in the same
prefetch, than all five words in the read buffer (words 7, 0, 1, 2, 3) would
be read-buffer hits. In this case, the maximum throughput of 1 word per
cycle is achieved.

Prefetch accesses are started only after a cache line fill access occurs. The
address of the first prefetch read is always the corresponding address of the
current critical word in the next line. For example, if a cache line fill access
starts with word 5, then the next prefetch would be from word 5 in the
following line.

ADSP-BF535 Blackfin Processor Hardware Reference 18-75

External Bus Interface Unit

SDC Commands
This section provides a description of each of the commands that the SDC
uses to manage the SDRAM interface. These commands are handled auto-
matically by the SDC. A summary of the various commands used by the
on-chip controller for the SDRAM interface is as follows:

• Precharge: Closes all internal banks.

• Activate: Activates a page in the required SDRAM internal bank.

• Load Mode Register: Initializes the SDRAM operation parameters
during the power-up sequence.

• Read/Write.

• Auto-Refresh: Causes the SDRAM to execute a CAS before RAS
refresh.

• Self-Refresh: Places the SDRAM in self-refresh mode, in which the
SDRAM powers down and controls its refresh operations
internally.

• NOP/Command Inhibit: No operation.

Table 18-18 shows the SDRAM pin state during SDC commands.

SDRAM Controller (SDC)

18-76 ADSP-BF535 Blackfin Processor Hardware Reference

Precharge Command

The Precharge command is given to precharge an active internal bank.
The SDC always issues the Precharge command to all internal SDRAM
banks (this is controlled by asserting the SA10 pin high). The Precharge
command is executed by the SDC if the address to be accessed falls in a
different page in the same external bank or before an Auto-Refresh or
Self-Refresh. A Precharge is not done if the address to be accessed falls in
an open page in another external bank or to an external bank with no page
open. For page miss reads or writes, only the external bank to be accessed
by the read or write is precharged. For Auto-Refresh and Self-Refresh, all
external SDRAM banks are precharged at one time.

Table 18-18. Pin State During SDC Commands

Command SMS[x] SCAS SRAS SWE SCKE SA10

Precharge low high low low high high

Bank Activate low high low high high

Load Mode Reg-
ister

low low low low high

Read low low high high high low

Write low low high low high low

Auto-Refresh low low low high high

Self-Refresh low low low high low

NOP low high high high high

Command
Inhibit

high high high high high

ADSP-BF535 Blackfin Processor Hardware Reference 18-77

External Bus Interface Unit

Bank Activate Command

The Bank Activate command is required if the next data access is in a dif-
ferent page. The SDC executes the Precharge command, followed by a
Bank Activate command, to activate the page in the desired SDRAM
internal bank. Only one SDRAM internal bank in each external bank may
be active at a time.

Load Mode Register Command

The Load Mode Register command initializes SDRAM operation parame-
ters. This command is a part of the SDRAM power-up sequence. Load
Mode Register uses the address bus of the SDRAM as data input. The
power-up sequence is initiated by writing 1 to the PSSE bit in the SDRAM
Memory Global Control register (EBIU_SDGCTL) and then writing or read-
ing from any enabled address within the SDRAM address space to trigger
the power-up sequence. The exact order of the power-up sequence is
determined by the PSM bit of the EBIU_SDGCTL register.

The Load Mode Register command initializes these parameters:

• Burst length = 1, bits 2-0, always zero

• Wrap type = sequential, bit 3, always zero

• Ltmode = latency mode (CAS latency), bits 6-4, programmable in
the EBIU_SDGCTL register

• Bits 14-7, always zero

While executing the Load Mode Register command, the unused address
pins are set to zero. During the two SCLK cycles following Load Mode Reg-
ister, the SDC issues only NOP commands.

SDRAM Controller (SDC)

18-78 ADSP-BF535 Blackfin Processor Hardware Reference

Read/Write Command

A Read/Write command is executed if the next read/write access is in the
present active page. During the Read command, the SDRAM latches the
column address. The delay between Activate and Read commands is deter-
mined by the tRCD parameter. Data is available from the SDRAM after
the CAS latency has been met.

In the Write command, the SDRAM latches the column address. The
write data is also valid in the same cycle. The delay between Activate and
Write commands is determined by the tRCD parameter.

In cases where the internal bus transfer is an L1 cache line fill burst-read
operation, the SDC attempts to service the line fill with data stored in the
read buffer. For each part of the line fill not available in the read buffer,
the SDC issues a Read command. The SDC then speculatively issues Read
commands if certain conditions are met. For more information, see “Read
Buffer (Prefetch) Operation” on page 18-72.

The SDC never speculatively issues a write command to the SDRAM.

In the case of a page miss, the SDRAM is precharged and activated before
issuing the Read or Write command. If the internal refresh counter asserts
a refresh request, any new access is delayed until the Auto-Refresh cycle
completes.

The SDC does not use the auto-precharge function of SDRAMs, which is
enabled by asserting SA10 high during a Read or Write command.

Auto-Refresh Command

The SDRAM internally increments the refresh address counter and causes
a CAS before RAS (CBR) refresh to occur internally for that address when
the Auto-Refresh command is given. The SDC generates an Auto-Refresh
command after the SDC refresh counter times out. The RDIV value in the
SDRAM Refresh Rate Control register must be set so that all addresses are

ADSP-BF535 Blackfin Processor Hardware Reference 18-79

External Bus Interface Unit

refreshed within the tREF period specified in the SDRAM timing specifi-
cations. This command is issued to all the external banks whether or not
they are enabled (EBxE in the SDRAM Memory Global Control register).
Before executing the Auto-Refresh command, the SDC executes a Pre-
charge All command to all external banks. The next Activate command is
not given until the tRFC specification (tRFC = tRAS + tRP) is met.

Auto-Refresh commands are also issued by the SDC as part of the
power-up sequence and after exiting Self-Refresh mode.

Self-Refresh Command

The Self-Refresh command causes refresh operations to be performed
internally by the SDRAM, without any external control. This means that
the SDC does not generate any Auto-Refresh cycles while the SDRAM is
in Self-Refresh mode. Before executing the Self-Refresh command, all
external banks are precharged. Self-Refresh mode is enabled by writing a 1
to the SRFS bit of the SDRAM Memory Global Control register
(EBIU_SDGCTL). The SDRAM remains in Self-Refresh mode for at least
tRAS and until an internal access to SDRAM space occurs. When an inter-
nal access occurs causing the SDC to exit the SDRAM from Self-Refresh
mode, the SDC waits to meet the tXSR specification (tXSR = tRAS + tRP)
and then issues an Auto-Refresh command. After the Auto-Refresh com-
mand, the SDC waits for the tRFC specification (tRFC = tRAS + tRP) to be
met before executing the Activate command for the transfer that caused
the SDRAM to exit Self-Refresh mode. Therefore the latency from when a
transfer is received by the SDC while in Self-Refresh mode until the Acti-
vate command occurs for that transfer is 2 (tRC + tRP).

Note the SCLK[0] and SCLK[1] are not disabled by the SDC during
Self-Refresh mode. However, software may disable the clocks by clearing
the SCTLE and SCK1E bits in EBIU_SDGCTL. The application software should
ensure that all applicable clock timing specifications are met before the
transfer to SDRAM address space which causes the controller to exit

SDRAM Controller (SDC)

18-80 ADSP-BF535 Blackfin Processor Hardware Reference

Self-Refresh mode. If a transfer occurs to SDRAM address space when the
SCTLE bit is cleared, an internal bus error is generated, and the access does
not occur externally, leaving the SDRAM in Self-Refresh mode. For more
information, see “Error Detection” on page 18-8.

No Operation/Command Inhibit Commands

The No Operation (NOP) command to the SDRAM has no effect on
operations currently in progress. The Command Inhibit command is the
same as a NOP command; however, the SDRAM is not chip-selected.
When the SDC is actively accessing the SDRAM but needs to insert addi-
tional commands with no effect, the NOP command is given. When the
SDC is not accessing any SDRAM external banks, the Command Inhibit
command is given.

SDRAM Timing Specifications
To support key timing requirements and power-up sequences for different
SDRAM vendors, the SDC provides programmability for tRAS, tRP, tRCD,
tWR and the power-up sequence mode. (For more information, see
“SDRAM Memory Global Control Register (EBIU_SDGCTL)” on
page 18-37.) CAS latency should be programmed in the EBIU_SDGCTL reg-
ister based on the frequency of operation. (Refer to the SDRAM vendor’s
data sheet for more information.)

For other parameters, the SDC assumes:

• Bank Cycle Time: tRC = tRAS + tRP

• Refresh Cycle Time: tRFC = tRAS + tRP

• Exit Self-Refresh Time: tXSR = tRAS + tRP

• Load Mode Register to Activate Time: tMRD = 2 SCLK cycles

ADSP-BF535 Blackfin Processor Hardware Reference 18-81

External Bus Interface Unit

SDRAM Performance
Table 18-19 lists the data throughput rates for the core, DMA, or PCI
read/write accesses to 32-bit wide SDRAM. For this example, assume all
cycles are SCLK cycles and the following SCLK frequency and SDRAM
parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)

SDRAM Controller (SDC)

18-82 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-19. Throughput for Accesses to 32-Bit Wide SDRAM

Accesses Read/Write Page Hit/Miss1 Throughput

L1 Cache Line Fill
(5 word Read Buffer Hit)

Read Page Hit 8 words/8 cycles

L1 Cache Line Fill
(N word Read Buffer Hit, where
N < 5)

Read Page Hit N word hit: 8
words/(13-N) cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Hit 8 words/13 cycles

L1 Cache Copyback Write Page Hit 8 words/16 cycles

DMA Burst Read (4 words) Read Page Hit 4 words/9 cycles

DMA Burst Write (4 words) Write Page Hit 4 words/8 cycles

DMA Burst Read (8 words) Read Page Hit 8 words/13 cycles

DMA Burst Write (8 words) Write Page Hit 8 words/16 cycles

Single Read Read Page Hit 1 word/6 cycles

Single Write Write Page Hit 1 word/2 cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Miss 8 words/17 cycles

L1 Cache Copyback Write Page Miss 8 words/20 cycles

DMA Burst Read (4 words) Read Page Miss 4 words/13 cycles

DMA Burst Write (4 words) Write Page Miss 4 words/12 cycles

DMA Burst Read (8 words) Read Page Miss 8 words/17 cycles

DMA Burst Write (8 words) Write Page Miss 8 words/20 cycles

Single Read Read Page Miss 1 word/10 cycles

Single Write Write Page Miss 1 word/6 cycles

1 Page Miss Penalty = tRP + tRCD

ADSP-BF535 Blackfin Processor Hardware Reference 18-83

External Bus Interface Unit

When the external buffer timing (EBUFE = 1 in the SDRAM Memory
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM
Memory Global Control register) is used, all accesses take one extra cycle
for each feature selected. Accesses that hit in the Read Buffer follow these
rules:

If either EBUFE = 1 or CL = 11:

• For N = 8 to 6, N half word hit: 8 words/8 cycles

• For N = 5 to 0, N half word hit: 8 words/(14 – N) cycles

If both EBUFE = 1 and CL = 11:

• For N = 8 to 7, N half word hit: 8 words/8 cycles

• For N = 6 to 0, N half word hit: 8 words/(15 – N) cycles

Table 18-20 lists the data throughput rates for the core or DMA
read/write accesses to 16-bit wide SDRAM. For this example, assume all
cycles are SCLK cycles and the following SCLK frequency and SDRAM
parameters are used:

• SCLK frequency = 133 MHz

• CAS latency = 2 cycles (CL = 2)

• No SDRAM buffering (EBUFE = 0)

• RAS precharge (tRP) = 2 cycles (TRP = 2)

• RAS to CAS delay (tRCD) = 2 cycles (TRCD = 2)

• Active command time (tRAS) = 5 cycles (TRAS = 5)

SDRAM Controller (SDC)

18-84 ADSP-BF535 Blackfin Processor Hardware Reference

Table 18-20. Throughput for Accesses to 16-Bit Wide SDRAM

Accesses Read/
Write

Page Hit/Miss1 Throughput

L1 Cache Line Fill
(12 half word Read Buffer Hit)

Read Page Hit 8 words/8 cycles

L1 Cache Line Fill
(N half word Read Buffer Hit, where
N < 12)

Read Page Hit N half word hit: 8
words/(21-N) cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Hit 8 words/21 cycles

L1 Cache Copyback Write Page Hit 8 words/24 cycles

DMA Burst Read (4 words) Read Page Hit 4 words/13 cycles

DMA Burst Write (4 words) Write Page Hit 4 words/12 cycles

DMA Burst Read (8 words) Read Page Hit 8 words/21 cycles

DMA Burst Write (8 words) Write Page Hit 8 words/20 cycles

Single Read Read Page Hit 1 word/7 cycles

Single Write Write Page Hit 1 word/3 cycles

L1 Cache Line Fill
(Read Buffer Miss)

Read Page Miss 8 words/25 cycles

L1 Cache Copyback Write Page Miss 8 words/28 cycles

DMA Burst Read (4 words) Read Page Miss 4 words/17 cycles

DMA Burst Write (4 words) Write Page Miss 4 words/16 cycles

DMA Burst Read (8 words) Read Page Miss 8 words/25 cycles

DMA Burst Write (8 words) Write Page Miss 8 words/24 cycles

Single Read Read Page Miss 1 words/11 cycles

Single Write Write Page Miss 1 words/7 cycles

1 Page-Miss Penalty = tRP + tRCD

ADSP-BF535 Blackfin Processor Hardware Reference 18-85

External Bus Interface Unit

When the external buffer timing (EBUFE = 1 in the SDRAM Memory
Global Control register) and/or CAS latency of 3 (CL = 11 in the SDRAM
Memory Global Control register) is used, all accesses take one extra cycle
for each feature selected. Accesses that hit in the Read Buffer follow these
rules:

If either EBUFE = 1 or CL = 11:

• For N = 16 to 13, N half word hit: 8 words/8 cycles

• For N = 12 to 0, N half word hit: 8 words/(22 – N) cycles

If both EBUFE = 1 and CL = 11:

• For N = 16 to 14, N half word hit: 8 words/8 cycles

• For N = 13 to 0, N half word hit: 8 words/(23 – N) cycles

SDRAM Controller (SDC)

18-86 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 18-87

External Bus Interface Unit

SDRAM Controller (SDC)

18-88 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference 19-1

19 SYSTEM DESIGN

This chapter provides hardware, software and system design information
to aid users in developing systems based on the ADSP-BF535 processor.
The design options implemented in a system are influenced by cost, per-
formance, and system requirements. In many cases, design issues cited
here are discussed in detail in other sections of this manual. In such cases,
a reference appears to the corresponding section of the text, instead of
repeating the discussion in this chapter.

Pin Descriptions
Refer to ADSP-BF535 Blackfin Embedded Processor Data Sheet for pin
information, including pin numbers for the 260-Lead PBGA package.

Recommendations for Unused Pins
Refer to ADSP-BF535 Blackfin Embedded Processor Data Sheet for detailed
pin descriptions.

Pins Requiring Termination
ADSP-BF535 Blackfin Embedded Processor Data Sheet provides guidelines
on pins that require termination during normal operation of the
ADSP-BF535 processor.

Resetting the Processor

19-2 ADSP-BF535 Blackfin Processor Hardware Reference

Resetting the Processor
In addition to the hardware reset mode provided via the RESET pin, the
ADSP-BF535 processor supports several software reset modes. For
detailed information on the various modes, see “System Reset and
Power-up Configuration” on page 3-12.

The processor state of the ADSP-BF535 processor after reset is described
in “Reset State” on page 3-10.

Booting the Processor
The ADSP-BF535 processor can be booted via a variety of methods.
These include executing from external 16-bit memory, or booting from a
ROM configured to load code from 8-bit FLASH memory or a serial
ROM (8-bit or 16-bit address range). For more information on boot
modes, see “Booting Methods” on page 3-17.

Managing Clocks
Systems can drive the ADSP-BF535 processor’s clock inputs with a crystal
oscillator or a buffered, shaped clock derived from an external clock oscil-
lator. The external clock connects to the processor’s CLKIN pin. It is not
possible to halt, change, or operate CLKIN below the specified frequency
during normal operation. The processor uses the clock input (CLKIN) to
generate on-chip clocks. These include the core clock (CCLK) and the
peripheral clock (SCLK).

ADSP-BF535 Blackfin Processor Hardware Reference 19-3

System Design

Managing Core and System Clocks
The ADSP-BF535 processor produces a 1x-31x multiplication of the
clock input provided on the CLKIN pin to generate the core clock (CCLK).
Additionally, the system clock (SCLK) is derived from the core clock. This
clock is based on a divider ratio that is programmed via the SSEL bit set-
tings. For detailed information about how to set and change CCLK and
SCLK frequencies, see “Dynamic Power Management” on page 8-1.

Designing for Multiplexed Clock Pins
The ADSP-BF535 processor’s MSEL6–0 pins are multiplexed with the PF6–
0 pins; SSEL1–0 pins are multiplexed with the PF9–8 pins. During reset,
these pins act as multiplier selects when in multiplier mode and as pro-
grammable flags after reset. This multiplexing influences system design as
follows.

• For systems selecting Bypass mode during reset, MSELx pin states do
not need to be managed during reset. The multiplexed nature of
these pins does not influence system design for the PFx pins.

• For systems using Multiplier mode during reset and not using PFx
pins at runtime, use pull-up or pull-down resistors to select the
MSELx and SSELx values. Do not leave these pins unconnected.

• For systems using Multiplier mode during reset and using the PFx
pins at runtime, use pull-up or pull-down resistors to select the
MSELx values during reset. Ensure that the system permits the MSELx
and SSELx pins to stabilize to a valid multiplier value in compli-
ance with the timing for RESET in the data sheet.

Managing Clocks

19-4 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 19-1 shows an example clock pin configuration.

 All of the core and peripheral clocks are enabled during reset. This
results in a momentary power surge after reset. To avoid this condi-
tion, use the MSEL pins to select a lower processor clock (CCLK)
speed upon reset. Adjust the clock to the desired operating speed in
the software.

Figure 19-1. External Clock Connections

CLKIN

25 MHz ~
Oscillator

ADSP-BF535

MSEL5 (PF5)

MSEL4 (PF4)

MSEL3 (PF3)

MSEL2 (PF2)

MSEL1 (PF1)

MSEL0 (PF0)

RESET

MSEL6 (PF6)

DF (PF7)

VDD

VDD

BYPASS

RESET
SOURCE

RUNTIME
PF PIN I/O

The pull-up/pull-down resis-
tors on the MSEL, SSEL, DF,
and BYPASS pins select the
core and system clock ratio.

The MSEL[6:0] selection and
25 MHz input clock produce a
150 MHz core clock.

Setting SSEL[1:0] to 00
selects a core clock to sys-
tem clock ratio of 2:1. This
produces a 75 MHz system
clock.

SSEL1 (PF9)

SSEL0 (PF8)

ADSP-BF535 Blackfin Processor Hardware Reference 19-5

System Design

The timing for the SSELx, MSELx, BYPASS, and DF pins during reset is iden-
tical and has these features (as shown in Figure 19-2).

• tPFD—Delay from RESET asserted to PFx input or output is termi-
nated. From this point, the pin values begin stabilizing to a valid
state.

• tMSD—Delay from RESET asserted to the appearance of valid data
values on the pin. The values can change from this point, but only
from one valid value to another.

• tMSS—Setup for pin value before RESET deasserted. The value must
be held from this point until hold time completes.

• tMSH—Hold for pin value after RESET deasserted.

Configuring and Servicing Interrupts
A variety of interrupts are available on the ADSP-BF535 processor. They
include both core and peripheral interrupts. The ADSP-BF535 processor
assigns default core priorities to system-level interrupts. However, these
system interrupts can be remapped via the System Interrupt Assignment
Registers (SIC_IARx). For more information, see “System Interrupt Assign-
ment Registers (SIC_IARx)” on page 4-29.

Figure 19-2. SSELx, MSELx, BYPASS, and DF Timing

RESET

SSEL1– 0
MSEL6– 0
BYPASS

DF

tMSD

tPFD tMSS tMSH

Semaphores

19-6 ADSP-BF535 Blackfin Processor Hardware Reference

The ADSP-BF535 processor supports nested and non-nested interrupts,
as well as self-nested interrupts. For explanations of the various modes of
servicing events, see “Interrupts With and Without Nesting” on
page 4-48.

Semaphores
Semaphores provide a mechanism for communication between multiple
processors or processes/threads running in the same system. They are used
to coordinate resource sharing. For instance, if a process is using a particu-
lar resource and another process requires that same resource, it must wait
until the first process signals that it is no longer using the resource. This
signaling is accomplished via semaphores.

Semaphore coherency is guaranteed by using the Test and Set Byte
(Atomic) instruction (TESTSET). The TESTSET instruction performs these
functions.

• Loads the byte at memory location pointed to by a P-register.

• Sets CC if the value is equal to zero.

• Stores the value back in its original location (but with the most sig-
nificant bit set to 1).

The events triggered by TESTSET are atomic operations. The bus for the
memory where the address is located is acquired and not relinquished
until the store operation completes. In multithreaded systems, the
TESTSET instruction is required to maintain semaphore consistency.

To ensure that the store operation is flushed through any store or write
buffers, issue an SSYNC immediately after semaphore release.

ADSP-BF535 Blackfin Processor Hardware Reference 19-7

System Design

The TESTSET instruction can be used to implement binary semaphores or
any other type of mutual exclusion method (for example, counting
semaphores). TESTSET represents a system-level requirement for a multicy-
cle bus lock mechanism.

The ADSP-BF535 processor restricts use of the TESTSET instruction to the
L2 memory and external memory regions only. Use of the TESTSET
instruction to address any other area of the ADSP-BF535 memory map
may result in unreliable behavior.

Example Code for Query Semaphore
Listing 19-1 provides an example of a query semaphore that checks the
availability of a shared resource.

Listing 19-1. Query Semaphore

/* Query semaphore. Denotes "Busy" if its value is non-zero. Wait

until free (or re-schedule thread-- see note below). P0 holds

address of semaphore. */

QUERY:

TESTSET (P0) ;

IF !CC JUMP QUERY ;

/* At this point, semaphore has been granted to current thread,

and all other contending threads are postponed because semaphore

value at [P0] is non-zero. Current thread could write thread_id

to semaphore location to indicate current owner of resource. */

R0.L = THREAD_ID ;

B[P0]=R0 ;

/* When done using shared resource, write a zero-byte to [P0] */

R0 = 0 ;

B[P0] = R0 ;

SSYNC ;

Data Delays, Latencies and Throughput

19-8 ADSP-BF535 Blackfin Processor Hardware Reference

/* NOTE: Instead of busy idling in the QUERY loop, one can use an

operating system call to reschedule the current thread. */

Data Delays, Latencies and Throughput
For detailed information on latencies and performance estimates on the
DMA and External Memory/PCI buses, refer to “Chip Bus Hierarchy” on
page 7-1.

Bus Priorities
For an explanation of prioritization between the various internal SBIU
buses, refer to “Chip Bus Hierarchy” on page 7-1.

PCI Arbiter
If the ADSP-BF535 processor is intended for use as a PCI host in a given
application, an external PCI arbiter chip is required to connect to the
on-chip PCI interface. There is no additional circuitry necessary in order
for the ADSP-BF535 processor to act as a slave on the PCI bus.

USB Device Connection
The ADSP-BF535 processor’s USB peripheral supports USB device mode,
but not USB host mode. For USB device operation, use an external USB
buffer/driver chip and oscillator.

ADSP-BF535 Blackfin Processor Hardware Reference 19-9

System Design

External Memory Design Issues
This section describes design issues related to external memory including
supported SDRAM configurations, examples of SDRAM and SRAM
interfaces, and how to avoid bus contention on the external memory bus.

Example Asynchronous Memory Interfaces
This section shows glueless connections to 32-bit and 16-bit wide SRAM.
Note this interface does not require external assertion of ARDY, since the
internal wait state counter is sufficient for deterministic access times of
memories.

Figure 19-3 shows the glueless interface to 32-bit SRAM. Note that this
application requires the 32-bit datapath mode to be enabled for this bank
of memory in the Asynchronous Memory Global Control Register.

Figure 19-4 shows the system interconnect required to support 16-bit
memories. Note this application requires that the 16-bit packing mode be
enabled for this bank of memory. Otherwise, the programming model
must ensure that every other 16-bit memory location is accessed starting
on an even (byte address[1:0]=00) 16-bit address.

Figure 19-3. Interface to 32-bit SRAM

ADSP-BF535

AMS[X]

AOE

AWE

ABE[3:0]

ADDR[N+2:2]

DATA[31:0]

ARE

ARDY

CE

OE

R/W

32-BIT SRAM

UB[1:0], LB[1:0]

A[N:0]

D[31:0]

External Memory Design Issues

19-10 ADSP-BF535 Blackfin Processor Hardware Reference

Avoiding Bus Contention
Because the tristatable data bus is shared by multiple devices in a system,
be careful to avoid contention. Contention causes excessive power dissipa-
tion and can lead to device failure. Contention occurs during the time one
device is getting off the bus and another is getting on. If the first device is
slow to tristate and the second device is quick to drive, the devices
contend.

There are two cases where contention can occur. The first case is a read
followed by a write to the same memory space. In this case, the
ADSP-BF535 processor’s data bus drivers can potentially contend with
those of the memory device addressed by the read. The second case is
back-to-back reads from two different memory spaces. In this case, the
two memory devices addressed by the two reads can potentially contend at
the transition between the two read operations.

To avoid contention, program the turnaround time (Bank Transition
Time) appropriately in the Asynchronous Memory Bank Control Regis-
ters. This feature allows software to set the number of clock cycles
between these types of accesses on a bank by bank basis. Minimally, the
EBIU provides one cycle for the transition to occur.

Figure 19-4. Interface to 16-bit SRAM

ADSP-BF535

AMS[X]

AOE

AWE

ABE[1:0]

ADDR[N+1:2]

DATA[15:0]

ARE

ARDY

CE

OE

R/W

16-BIT SRAM

B[1:0]

A[N:1]

D[15:0]

ABE[3]/ADDR[1] A[0]

ADSP-BF535 Blackfin Processor Hardware Reference 19-11

System Design

Supported SDRAM Configurations
Table 19-1 shows all possible bank sizes, bank widths and SDRAM dis-
crete component configurations that can be gluelessly interfaced to the
SDC.

Table 19-1. SDRAM Discrete Component Configurations
Supported

Bank Size
(MByte)

Bank
Width
(Bits)

SDRAM

Size (Mbit) Configuration Number of
Chips

Number of
Column Address
Pins

16 32 64 1M 16 4banks 2 8

32 32 64 2M 8 4banks 4 9

32 32 128 2M 16 4banks 2 9

64 32 64 4M 4 4banks 8 10

64 32 128 4M 8 4banks 4 10

64 32 256 4M 16 4banks 2 9

128 32 128 8M 4 4banks 8 11

128 32 256 8M 8 4banks 4 10

128 32 512 8M 16 4banks 2 10

16 16 64 2M 8 4banks 2 9

16 16 128 2M 16 4banks 1 9

32 16 64 4M 4 4banks 4 10

32 16 128 4M 8 4banks 2 10

32 16 256 4M 16 4banks 1 9

64 16 128 8M 4 4banks 4 11

External Memory Design Issues

19-12 ADSP-BF535 Blackfin Processor Hardware Reference

Example SDRAM Interfaces
Figure 19-5 shows a block diagram of the ADSP-BF535 processor’s
SDRAM interface. In this example, the SDRAM interface connects to
four 64 Mbit (x8) SDRAM devices, to form one external bank of 32
Mbytes of memory. The same address and control bus feeds all four
SDRAM devices.

The ADSP-BF535 processor’s SDRAM controller supports industry stan-
dard 32-bit and 64-bit wide data bus DIMMs. These DIMMs generally
have multiple chip select inputs with each connected to a portion of the
chips on the DIMM. Most DIMMs can be interfaced to the ADSP-BF535
processor gluelessly by using the SMS[3:0] bank selects, the SDQM[3:0]
data masks, and careful connection of the data bus.

Divide the DIMM into multiple banks and connect it based on the
SDRAM chip enables. Since the data bus is only 32 bits wide at the most,
64-bit DIMMs must be connected as two banks. Note the range of num-
bers for the DQM and DATA signals on the SDRAM DIMM may not match
the corresponding range on the ADSP-BF535 processor.

64 16 256 8M 8 4banks 2 10

64 16 512 8M 16 4banks 1 10

128 16 256 16M 4 4banks 4 11

128 16 512 16M 8 4banks 2 11

Table 19-1. SDRAM Discrete Component Configurations
Supported (Cont’d)

Bank Size
(MByte)

Bank
Width
(Bits)

SDRAM

Size (Mbit) Configuration Number of
Chips

Number of
Column Address
Pins

ADSP-BF535 Blackfin Processor Hardware Reference 19-13

System Design

The SDRAM DIMM system example in Figure 19-6 shows a glueless
interface to a 64 MB DIMM. The DIMM is connected to the
ADSP-BF535 processor as bank 0 (SMS[0]) and bank 1 (SMS[1]) with each
bank having 32 MB.

Figure 19-5. 64 MB SDRAM System Example

SCKE

ADSP-BF535

SWE
SCAS

SRAS
SMSx[0]

ADDR[19]
ADDR[18]

SA10
ADDR[13,11:2]

WE
CAS
RAS

SDRAM 1

CS
A13[BS1]

A[10]

SCLK[0]
SDQM[0]

DATA[31:0]

A12[BS0]

A[11,9:0]
CKE

CLK
DQM

DQ[7:0]

WE

CAS
RAS

SDRAM 2

CS
A13[BS1]

A[10]
A12[BS0]

A[11,9:0]

CKE

CLK
DQM

DQ[7:0]

WE

CAS
RAS

SDRAM 3

CS
A13[BS1]

A[10]
A12[BS0]

A[11,9:0]

CKE

CLK
DQM

DQ[7:0]

WE
CAS
RAS

SDRAM 4

CS
A13[BS1]

A[10]
A12[BS0]

A[11,9:0]
CKE
CLK
DQM

DQ[7:0]

SDQM[1]
SDQM[2]
SDQM[3]

DATA[31:24]

DATA[15:8]

DATA[23:16]

DATA[7:0]

High Frequency Design Considerations

19-14 ADSP-BF535 Blackfin Processor Hardware Reference

High Frequency Design Considerations
Because the processor can operate at very fast clock frequencies, signal
integrity and noise problems must be considered for circuit board design
and layout. The following sections discuss these topics and suggest various
techniques to use when designing and debugging processor systems.

Point-to-Point Connections on Serial Ports
Although the processor’s serial ports may be operated at a slow rate, the
output drivers still have fast edge rates and for longer distances may
require source termination.

Figure 19-6. SDRAM DIMM System Example

ADSP-BF535

SWE
SCAS_B

SRAS_B
SMS[0]
SMS[1]

ADDR[19:18]
SA10

ADDR[13,11:2]

WE
CAS

RAS

UNBUFFERED DIMM

S0
S2
BA[1:0]

SCKE

SCLK[0]

SDQM[3]

A[10]
A[11,9:0]
CKE0

CK0

DQM[7]
DQM[5]

DATA[31:16]
DATA[15:0]

DATA[15:0]

64 MB OR 128 MB SDRAM

SDQM[2] DQM[6]
DQM[4]

SDQM[1] DQM[3]
DQM[1]

SDQM[0] DQM[2]
DQM[0]
DATA[63:48]
DATA[47:32]

DATA[31:16]

CKE1

CLKOUT/SCLK[1] CK2

ADSP-BF535 Blackfin Processor Hardware Reference 19-15

System Design

You can add a series termination resistor near the pin for point-to-point
connections. Typically, serial port applications use this termination
method when distances are greater than six inches. For details, see the ref-
erence source in “Recommended Reading” on page 19-17 for suggestions
on transmission-line termination. Also, see ADSP-BF535 Blackfin Embed-
ded Processor Data Sheet for output drivers’ rise and fall time data.

Signal Integrity
The capacitive loading on high-speed signals should be reduced as much
as possible. Loading of buses can be reduced by using a buffer for devices
that operate with wait states (for example, DRAMs). This reduces the
capacitance on signals tied to the zero-wait-state devices, allowing these
signals to switch faster and reducing noise-producing current spikes.

Signal run length (inductance) should also be minimized to reduce ring-
ing. Extra care should be taken with certain signals such as external
memory, read, write and acknowledge strobes.

Other recommendations and suggestions to promote signal integrity:

• Use more than one ground plane on the PCB to reduce crosstalk.
Be sure to use lots of vias between the ground planes. These planes
should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a
signal layer next to a ground plane and away from or laid out per-
pendicular to other non-critical signals to reduce crosstalk.

• Design for lower transmission line impedances to reduce crosstalk
and to allow better control of impedance and delay.

• Experiment with the board and isolate crosstalk and noise issues
from reflection issues. This can be done by driving a signal wire
from a pulse generator and studying the reflections while other
components and signals are passive.

High Frequency Design Considerations

19-16 ADSP-BF535 Blackfin Processor Hardware Reference

Decoupling Capacitors and Ground Planes
Ground planes must be used for the ground and power supplies. The
capacitors should be placed very close to the VDDEXT and VDDINT pins of the
package as shown in Figure 19-7. Use short and fat traces for this. The
ground end of the capacitors should be tied directly to the ground plane
inside the package footprint of the processor (underneath it, on the bot-
tom of the board), not outside the footprint. A surface-mount capacitor is
recommended because of its lower series inductance.

Connect the power plane to the power supply pins directly with minimum
trace length. The ground planes must not be densely perforated with vias
or traces as their effectiveness is reduced. In addition, there should be sev-
eral large tantalum capacitors on the board.

 Designs can use either bypass placement case shown in Figure 19-6
or combinations of the two. Designs should try to minimize signal
feedthroughs that perforate the ground plane.

Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet” type
or similarly short (< 0.5 inch) ground clip, attached to the tip of the oscil-
loscope probe. The probe should be a low-capacitance active probe
with 3 pF or less of loading. The use of a standard ground clip with
4 inches of ground lead causes ringing to be seen on the displayed trace
and makes the signal appear to have excessive overshoot and undershoot.
To see the signals accurately, a 1 GHz or better sampling oscilloscope is
needed.

ADSP-BF535 Blackfin Processor Hardware Reference 19-17

System Design

Recommended Reading
High-Speed Digital Design: A Handbook of Black Magic, Johnson & Gra-
ham, Prentice Hall, Inc., ISBN 0-13-395724-1.

Figure 19-7. Bypass Capacitor Placement

CASE 1:
BYPASS CAPACITORS ON NON-
COMPONENT (BOTTOM) SIDE OF
BOARD, BENEATH DSP PACKAGE

a

B
ADS P-B F 535

CASE 2:
BYPASS CAPACITORS ON
COMPONENT (TOP) SIDE OF
BOARD, AROUND DSP PACKAGE

High Frequency Design Considerations

19-18 ADSP-BF535 Blackfin Processor Hardware Reference

This book is a technical reference that covers the problems encountered in
state of the art, high-frequency digital circuit design. It is an excellent
source of information and practical ideas. Topics covered in the book
include:

• High-speed Properties of Logic Gates

• Measurement Techniques

• Transmission Lines

• Ground Planes & Layer Stacking

• Terminations

• Vias

• Power Systems

• Connectors

• Ribbon Cables

• Clock Distribution

• Clock Oscillators

ADSP-BF535 Blackfin Processor Hardware Reference 20-1

20 BLACKFIN PROCESSOR’S
DEBUG

The Blackfin processor’s debug functionality can be used for software
debugging. It also complements some services often found in an operating
system (OS) kernel. The functionality is implemented in the processor
hardware and is grouped into multiple levels.

A summary of available debug features is shown in Table 20-1.

Watchpoint Unit
By monitoring the addresses on both the instruction bus and the data bus,
the Watchpoint Unit provides several mechanisms for examining program
behavior. After counting the number of times a particular address is
matched, the unit schedules an event based on this count.

Table 20-1. Blackfin Debug Features

Debug Feature Description

Watchpoints Specify address ranges and conditions that halt the processor when
satisfied.

Trace History Stores the last 16 discontinuous values of the Program Counter in
an on-chip trace buffer.

Cycle Count Provides functionality for all code profiling functions.

Performance Monitoring Allows internal resources to be monitored and measured
non-intrusively.

Watchpoint Unit

20-2 ADSP-BF535 Blackfin Processor Hardware Reference

In addition, information that the Watchpoint Unit can provide helps
optimize code. The unit can also make it easier to maintain executables
through code patching.

The Watchpoint Unit contains these MMRs, which are accessible in
Supervisor and Emulator modes:

• The Watchpoint Status register (WPSTAT)

• Six Watchpoint Instruction Address registers (WPIA[5:0])

• Six Watchpoint Instruction Address Count registers
(WPIACNT[5:0])

• The Watchpoint Instruction Address Control register (WPIACTL)

• Two Watchpoint Data Address registers (WPDA[1:0])

• Two Watchpoint Data Address Count registers (WPDACNT[1:0])

• The Watchpoint Data Address Control register (WPDACTL)

Two operations implement instruction watchpoints:

• The values in the six Watchpoint Instruction Address registers,
WPIA[5:0], are compared to the address on the instruction bus.

• Corresponding count values in the Watchpoint Instruction
Address Count registers, WPIACNT[5:0], are decremented on each
match.

The six Watchpoint Instruction Address registers may be further grouped
into three ranges of instruction-address-range watchpoints. The ranges are
identified by the addresses in WPIA0 to WPIA1, WPIA2 to WPIA3, and WPIA4
to WPIA5.

ADSP-BF535 Blackfin Processor Hardware Reference 20-3

Blackfin Processor’s Debug

 The address ranges stored in WPIA0, WPIA1, WPIA2, WPIA3, WPIA4 and
WPIA5 must satisfy these conditions:

• WPIA0 <= WPIA1

• WPIA2 <= WPIA3

• WPIA4 <= WPIA5

Two operations implement data watchpoints:

• The values in the two Watchpoint Data Address registers,
WPDA[1:0], are compared to the address on the data buses.

• Corresponding count values in the Watchpoint Data Address
Count registers, WPDACNT[1:0], are decremented on each match.

The two Watchpoint Data Address registers may be further grouped
together into one data-address-range watchpoint, WPDA[1:0].

The instruction and data count value registers must be loaded with one
less than the number of times the watchpoint must match. After the count
value reaches zero, the subsequent watchpoint match results in an excep-
tion or emulation event.

 Note count values must be reinitialized after the event has
occurred.

An event can also be triggered on a combination of the instruction and
data watchpoints. If the WPAND bit in the WPIACTL register is set, then an
event is triggered only when both an instruction address watchpoint
matches and a data address watchpoint matches. If the WPAND bit is 0, then
an event is triggered when any of the enabled watchpoints or watchpoint
ranges match.

Watchpoint Unit

20-4 ADSP-BF535 Blackfin Processor Hardware Reference

To enable the Watchpoint Unit, the WPPWR bit in the WPIACTL register
must be set. If WPPWR=1, then the individual watchpoints and watchpoint
ranges may be enabled using the specific enable bits in the WPIACTL and
WPDACTL MMRs. If WPPWR=0, then all watchpoint activity is disabled.

Instruction Watchpoints
Each instruction watchpoint is controlled by three bits in the WPIACTL reg-
ister, as shown in Table 20-2.

When two watchpoints are associated to form a range, two additional bits
are used, as shown in Table 20-3.

Code patching allows software to replace sections of existing code with
new code. The watchpoint registers are used to trigger an exception at the
start addresses of the earlier code. The exception routine then vectors to
the location in memory that contains the new code.

Table 20-2. WPIACTL Control Bits

Bit Names Description

EMUSWx Determines whether an instruction-address match causes either an
emulation event or an exception event.

WPICNTENx Enables the 16-bit counter that counts the number of address
matches. If the counter is disabled, then every match causes an
event.

WPIAENx Enables the address watchpoint activity.

Table 20-3. WPIACTL Watchpoint Range Control Bits

Bit Names Description

WPIRENxy Indicates the two watchpoints that are to be associated to form a
range.

WPIRINVxy Determines whether an event is caused by an address within the
range identified or outside of the range identified.

ADSP-BF535 Blackfin Processor Hardware Reference 20-5

Blackfin Processor’s Debug

On the ADSP-BF535 processor, code patching can be achieved by writing
the start address of the earlier code to one of the WPIAx registers and set-
ting the corresponding EMUSWx bit to trigger an exception. In the exception
service routine, the WPSTAT register is read to determine which watchpoint
triggered the exception. Next, the code writes the start address of the new
code in the RETX register and then returns from the exception to the new
code. Because the exception mechanism is used for code patching, event
service routines of the same or higher priority (exception, NMI, and reset
routines) cannot be patched.

A write to the WPSTAT MMR clears all the sticky status bits. The data value
written is ignored.

Watchpoint Instruction Address Registers (WPIAx)
When the Watchpoint Unit is enabled, the values in the WPIAx registers
are compared to the address on the instruction bus. Corresponding count
values in the Watchpoint Instruction Address Count registers (WPIACNTx)
are decremented on each match.

Figure 20-1 shows the Watchpoint Instruction Address registers,
WPIA[5:0].

Figure 20-1. Watchpoint Instruction Address Registers

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Instruction Address Registers (WPIAx)

Reset = Undefined

WPIA (Instruction Address)[30:15]

WPIA (Instruction Address)[14:0]

For MMR assign-
ments, see
Table 20-4.

Watchpoint Unit

20-6 ADSP-BF535 Blackfin Processor Hardware Reference

Watchpoint Instruction Address Count Registers
(WPIACNTx)

When the Watchpoint Unit is enabled, the count values in the Watch-
point Instruction Address Count registers (WPIACNT[5:0]) are
decremented each time the address or the address bus matches a value in
the WPIAx registers. Load the WPIACNTx register with a value that is one less
than the number of times the watchpoint must match before triggering an
event (see Figure 20-2).

Table 20-4. Watchpoint Instruction Address Register MMR Assignments

Register Name Memory-Mapped Address

WPIA0 0xFFE0 7040

WPIA1 0xFFE0 7044

WPIA2 0xFFE0 7048

WPIA3 0xFFE0 704C

WPIA4 0xFFE0 7050

WPIA5 0xFFE0 7054

Figure 20-2. Watchpoint Instruction Address Count Registers

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Watchpoint Instruction Address Count Registers (WPIACNTx)

Reset = Undefined

WPIACNT (Count Value)[15:0]

For MMR assign-
ments, see
Table 20-5.

ADSP-BF535 Blackfin Processor Hardware Reference 20-7

Blackfin Processor’s Debug

Watchpoint Instruction Address Control Register
(WPIACTL)

Three bits in the Watchpoint Instruction Address Control register (WPI-
ACTL) control each instruction watchpoint.

 The bits in the WPIACTL register have no effect unless the WPPWR bit
is set.

Figure 20-3 shows the upper half of the register, and Figure 20-4 shows
the lower half of the register. For more information about the bits in this
register, see “Instruction Watchpoints” on page 20-4.

Table 20-5. Watchpoint Instruction Address Count Register MMR
Assignments

Register Name Memory-Mapped Address

WPIACNT0 0xFFE0 7080

WPIACNT1 0xFFE0 7084

WPIACNT2 0xFFE0 7088

WPIACNT3 0xFFE0 708C

WPIACNT4 0xFFE0 7090

WPIACNT5 0xFFE0 7094

Watchpoint Unit

20-8 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 20-3. Watchpoint Instruction Address Control Register [31:16]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X 0 0 X 0

Watchpoint Instruction Address Control Register (WPIACTL)

Reset = Undefined

EMUSW3
0 - Match on WPIA3 causes an

exception event
1 - Match on WPIA3 causes an

emulation event
WPIREN45
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA4,
End address = WPIA5)

WPIRINV45
0 - Inclusive range comparison:

WPIA4<IA <= WPIA5
1 - Exclusive range comparison:

IA <= WPIA4 || IA >WPIA5

WPIAEN4
0 - Disable instruction address

watchpoint, WPIA4
1 - Enable instruction address

watchpoint, WPIA4
WPIAEN5
0 - Disable instruction address

watchpoint, WPIA5
1 - Enable instruction address

watchpoint, WPIA5

WPAND
0 - Any enabled watchpoint

triggers an exception or
emulation event

1 - Any enabled instruction
address watchpoint AND
any enabled data address
watchpoint trigger an
exception or emulation
event

EMUSW5

WPICNTEN4
0 - Disable watchpoint

instruction address counter 4
1 - Enable watchpoint

instruction address counter 4

WPICNTEN5
0 - Disable watchpoint

instruction address counter 5
1 - Enable watchpoint

instruction address counter 5

EMUSW4
0 - Match on WPIA4 causes an

exception event
1 - Match on WPIA4 causes an

emulation event

0 - Match on WPIA5 causes an
exception event

1 - Match on WPIA5 causes an
emulation event

In range comparisons, IA = instruction address.

0xFFE0 7000

ADSP-BF535 Blackfin Processor Hardware Reference 20-9

Blackfin Processor’s Debug

Figure 20-4. Watchpoint Instruction Address Control Register [15:0]

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X 0 0 X 0 X X X X 0 0 X 0

Watchpoint Instruction Address Control Register (WPIACTL)

WPPWR
0 - Watchpoint Unit disabled
1 - Watchpoint Unit enabled
WPIREN01
0 - Disable range comparison
1 - Enable range comparison:

(Start address = WPIA0,
End address = WPIA1)

WPIRINV01

WPIAEN0
0 - Disable instruction address

watchpoint, WPIA0
1 - Enable instruction address

watchpoint, WPIA0
WPIAEN1
0 - Disable instruction address

watchpoint, WPIA1
1 - Enable instruction address

watchpoint, WPIA1
WPICNTEN0
0 - Disable watchpoint

instruction address counter 0
1 - Enable watchpoint

instruction address counter 0
WPICNTEN1
0 - Disable watchpoint

instruction address counter 1
1 - Enable watchpoint

instruction address counter 1
EMUSW0

EMUSW1
0 - Match on WPIA1 causes an

exception event
1 - Match on WPIA1 causes an

emulation event

WPIREN23
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA2,
End address = WPIA3)

WPIRINV23

WPIAEN2
0 - Disable instruction address

watchpoint, WPIA2
1 - Enable instruction address

watchpoint, WPIA2

WPIAEN3
0 - Disable instruction address

watchpoint, WPIA3
1 - Enable instruction address

watchpoint, WPIA3

WPICNTEN2
0 - Disable watchpoint

instruction address counter 2
1 - Enable watchpoint

instruction address counter 2

WPICNTEN3
0 - Disable watchpoint

instruction address counter 3
1 - Enable watchpoint

instruction address counter 3

EMUSW2
0 - Match on WPIA2 causes an

exception event
1 - Match on WPIA2 causes an

emulation event

0 - Match on WPIA0 causes an
exception event

1 - Match on WPIA0 causes an
emulation event

0 - Inclusive range comparison:
WPIA0<IA <= WPIA1

1 - Exclusive range comparison:
IA <= WPIA0 || IA >WPIA1

In range comparisons, IA = instruction address.

0 - Inclusive range comparison:
WPIA2<IA <= WPIA3

1 - Exclusive range comparison:
IA <= WPIA2 || IA >WPIA3

Reset = Undefined0xFFE0 7000

Watchpoint Unit

20-10 ADSP-BF535 Blackfin Processor Hardware Reference

Data Address Watchpoints
Each data watchpoint is controlled by four bits in the WPDACTL register, as
shown in Table 20-6.

Alternatively, the watchpoint unit can be configured to monitor a range of
data addresses. To enable this function, the WPDAEN0 and WPDAEN1 bits are
not used and must be set to 0. Instead, the WPDREN01 and WPDRINV01 bits
are used to configure the watchpoint unit, as described in Table 20-7.

 Note Data address watchpoints always trigger emulation events.

 To enable the Data address watchpoints, the WPPWR bit of the
WPIACTL register must be set to 1.

Table 20-6. Data Address Watchpoints

Bit Names Description

WPDACCx Determines whether the match should be on a read or write access.

WPDSRCx Determines which DAG the unit should monitor.

WPDCNTENx Enables the counter that counts the number of address matches. If the coun-
ter is disabled, then every match causes an event.

WPDAENx Enables the data watchpoint activity.

Table 20-7. WPDACTL Watchpoint Control Bits

Bit Name Description

WPDREN01 Indicates the two watchpoints that are to be associated to form a range.

WPDRINV01 Determines whether an event is caused by an address within the range iden-
tified or outside the range.

ADSP-BF535 Blackfin Processor Hardware Reference 20-11

Blackfin Processor’s Debug

Watchpoint Data Address Registers (WPDAx)
When the Watchpoint Unit is enabled, the values in the WPDAx registers
are compared to the address on the data buses. Corresponding count
values in the Watchpoint Data Address Count registers (WPDACNTx) are
decremented on each match.

Figure 20-5 shows the Watchpoint Data Address registers, WPDA[1:0].

Watchpoint Data Address Count Value Registers
(WPDACNTx)

When the Watchpoint Unit is enabled, the count values in these registers
are decremented each time the address or the address bus matches a value
in the WPDAx registers. Load this WPDACNTx register with a value that is one
less than the number of times the watchpoint must match before trigger-
ing an event.

Figure 20-5. Watchpoint Data Address Registers

Table 20-8. Watchpoint Data Address Register MMR Assignments

Register Name Memory-Mapped Address

WPDA0 0xFFE0 7140

WPDA1 0xFFE0 7144

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

Watchpoint Data Address Registers (WPDAx)

Reset = Undefined

WPDA (Data Address) [31:16]

WPDA (Data Address) [15:0]

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

For MMR assign-
ments, see
Table 20-8.

Watchpoint Unit

20-12 ADSP-BF535 Blackfin Processor Hardware Reference

Figure 20-6 shows the Watchpoint Data Address Count Value registers,
WPDACNT[1:0].

Figure 20-6. Watchpoint Data Address Count Value Registers

Table 20-9. Watchpoint Data Address Count Value Register MMR
Assignments

Register Name Memory-Mapped Address

WPDACNT0 0xFFE0 7180

WPDACNT1 0xFFE0 7184

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X X X X

Watchpoint Data Address Count Value Registers (WPDACNTx)

Reset = Undefined

WPDACNT (Count Value)[15:0]

For MMR assign-
ments, see
Table 20-9.

ADSP-BF535 Blackfin Processor Hardware Reference 20-13

Blackfin Processor’s Debug

Watchpoint Data Address Control Register (WPDACTL)

For more information about the bits in the WPDACTL register (Figure 20-7),
see “Data Address Watchpoints” on page 20-10.

Figure 20-7. Watchpoint Data Address Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

Watchpoint Data Address Control Register (WPDACTL)

Reset = Undefined

00 - Reserved
01 - Match on write access only

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or

write accesses on WPDA1

WPDACC1[1:0]

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1
range

WPDACC0[1:0]

WPDREN01
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA0,
End address = WPIA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0

WPDAEN1
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0 or

on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0 or

on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1

on WPDA0 or on the WPDA0 to WPDA1
range

0xFFE0 7100

Trace Unit

20-14 ADSP-BF535 Blackfin Processor Hardware Reference

Watchpoint Status Register (WPSTAT)
The WPSTAT register monitors the status of the watchpoints. It may be read
and written in Supervisor or Emulator modes only. When a watchpoint or
watchpoint range matches, this register reflects the source of the watch-
point. The status bits in the WPSTAT register are sticky, and all of them are
cleared when any write, regardless of the value, is performed to the
register.

Figure 20-8 shows the Watchpoint Status register.

Trace Unit
The Trace Unit stores a history of the last sixteen changes in program flow
taken by the program sequencer. The history allows the user to recreate
the program sequencer’s recent path.

The trace buffer can be enabled to cause an exception when full. The
exception service routine associated with the exception saves trace buffer
entries to memory. Thus, the complete path of the program sequencer
since the trace buffer was enabled can be recreated.

Changes in program flow because of zero-overhead loops are not stored in
the trace buffer. For debugging code that is halted within a zero-overhead
loop, the iteration count is available in the loop count registers, LC0 and
LC1.

The trace buffer can be configured to omit recording of changes in pro-
gram flow that match either the last entry or one of the last two entries.
Omitting one of these entries from the record prevents the trace buffer
from overflowing because of loops in the program. Because zero-overhead
loops are not recorded in the trace buffer, this feature can be used to pre-
vent trace overflow from loops that are nested four deep.

ADSP-BF535 Blackfin Processor Hardware Reference 20-15

Blackfin Processor’s Debug

When read, the Trace Buffer register (TBUF) returns the top value from the
Trace Unit stack, which contains as many as sixteen entries. Each entry
contains a pair of branch source and branch target addresses. A read of
TBUF returns the newest entry first, starting with the branch destination.
The next read provides the branch source address.

Figure 20-8. Watchpoint Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X 0 0 X

Watchpoint Data Address Control Register (WPDACTL)

Reset = Undefined

00 - Reserved
01 - Match on write access only

on WPDA1
10 - Match on read access only

on WPDA1
11 - Match on either read or

write accesses on WPDA1

WPDACC1[1:0]

00 - Reserved
01 - Watch addresses on DAG0

on WPDA1
10 - Watch addresses on DAG1

on WPDA1
11 - Watch addresses on either

DAG0 or DAG1 on WPDA1

WPDSRC1[1:0]

00 - Reserved
01 - Match on write access only on WPDA0

or on the WPDA0 to WPDA1 range
10 - Match on read access only on WPDA0

or on the WPDA0 to WPDA1 range
11 - Match on either read or write accesses

on WPDA0 or on the WPDA0 to WPDA1
range

WPDACC0[1:0]

WPDREN01
0 - Disable range comparison
1 - Enable range comparison

(Start address = WPIA0,
End address = WPIA1)

WPDRINV01
0 - Inclusive range comparison:

inside the WPDA0 to
WPDA1 range

1 - Exclusive range
comparison: outside the
WPDA0 to WPDA1 range

WPDAEN0
0 - Disable data address

watchpoint, WPDA0
1 - Enable data address

watchpoint, WPDA0

WPDAEN1
0 - Disable data address

watchpoint, WPDA1
1 - Enable data address

watchpoint, WPDA1
WPDCNTEN0
0 - Disable watchpoint

data address counter 0
1 - Enable watchpoint

data address counter 0
WPDCNTEN1
0 - Disable watchpoint

data address counter 1
1 - Enable watchpoint

data address counter 1

WPDSRC0[1:0]
00 - Reserved
01 - Watch addresses on DAG0 on WPDA0 or

on the WPDA0 to WPDA1 range
10 - Watch addresses on DAG1 on WPDA0 or

on the WPDA0 to WPDA1 range
11 - Watch addresses on either DAG0 or DAG1

on WPDA0 or on the WPDA0 to WPDA1
range

0xFFE0 7100

Trace Unit

20-16 ADSP-BF535 Blackfin Processor Hardware Reference

The number of valid entries in TBUF is held in the TBUFCNT field of the
TBUFSTAT register. On every second read, TBUFCNT is decremented. Because
each entry corresponds to two pieces of data, a total of 2 TBUFCNT reads
empties TBUF.

 Discontinuities that are the same as either of the last two entries in
the trace buffer are not recorded.

 Because reading the trace buffer is a destructive operation, it is rec-
ommended that TBUF be read in a non-interruptible section of
code.

Note if single-level compression has occurred, the LSB of the branch tar-
get address is set. If two-level compression has occurred, the LSB of the
branch source address is set.

Trace Buffer Control Register (TBUFCTL)
The Trace Unit is enabled by two control bits in the Trace Buffer Control
register (TBUFCTL) register. First, the Trace Unit must be activated by set-
ting the TBUFPWR bit. If TBUFPWR=1, then setting TBUFEN to 1 enables the
Trace Unit.

Figure 20-9 shows the Trace Buffer Control register (TBUFCTL). If
TBUFOVF = 1, then the Trace Unit does not record discontinuities in the
exception, NMI, and reset routines.

ADSP-BF535 Blackfin Processor Hardware Reference 20-17

Blackfin Processor’s Debug

Trace Buffer Status Register (TBUFSTAT)
Figure 20-10 shows the Trace Buffer Status register (TBUFSTAT). Two reads
from TBUF decrements TBUFCNT by 1.

Figure 20-9. Trace Buffer Control Register

Figure 20-10. Trace Buffer Status Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X X

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Control Register (TBUFCTL)

TBUFPWR
0 - Trace buffer is off
1 - Trace buffer is active

TBUFEN
0 - Trace buffer disabled
1 - Trace buffer enabled

TBUFOVF
0 - Overflows are ignored
1 - Trace buffer overflow

causes an exception event

CMPLP[1:0]

X

00 - Compression disabled
Record all discontinuities

01 - Compress single-level
loops

10 - Compress two-level loops

0xFFE0 6000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X XX

Reset = Undefined

X 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X 0 0 0 0

Trace Buffer Status Register (TBUFSTAT)

TBUFCNT[4:0]
Number of valid discontinuities
stored in the trace buffer

0xFFE0 6004

Trace Unit

20-18 ADSP-BF535 Blackfin Processor Hardware Reference

Trace Buffer Register (TBUF)
Figure 20-11 shows the Trace Buffer register (TBUF). The first read returns
the latest branch target address. The second read returns the latest branch
source address.

The Trace Unit does not record changes in program flow in:

• Emulator mode

• The reset service routine

• The exception or higher priority service routines (if TBUOVF = 1)

• In the exception service routine, the program flow discontinuities
may be read from TBUF and stored in memory by using the follow-
ing code.

 While TBUF is being read, be sure to disable the trace buffer from
recording new discontinuities.

Code to Recreate the Execution Trace in Memory

Listing 20-1 provides code that can be used to recreate the entire execu-
tion trace in memory.

Figure 20-11. Trace Buffer Register

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100

ADSP-BF535 Blackfin Processor Hardware Reference 20-19

Blackfin Processor’s Debug

Listing 20-1. Recreating the Execution Trace in Memory

[--sp] = (r7:7, p5:2); /* save registers used in this routine

*/

p5 = 32; /* 32 reads are needed to empty TBUF pointer to the

header (first location) of the software trace buffer */

p2.l = buf;

p2.h = buf; /* the header stores the first available empty buf

location for subsequent trace dumps */

p4 = [p2++]; /* get the first available empty buf location from

the buf header */

p3.l = TBUF & 0xffff; /* low 16-bits of TBUF */

p3.h = TBUF >> 16; /* high 16-bits of TBUF */

lsetup(loop1_start, loop1_end) lc0 = p5;

loop1_start: r7 = [p3]; /* read from TBUF */

loop1_end: [p4++] = r7; /* write to memory and increment */

[p2] = p4; /* pointer to the next available buf location is

saved in the header of buf */

(r7:7, p5:3) = [sp++]; /* restore saved registers */

Performance Monitoring Unit
Two 32-bit counters, the Performance Monitor Counter registers
(PFCNTR[1:0]) and the Performance Control register (PFCTL), count the
number of occurrences of an event from within a processor core unit dur-
ing a performance monitoring period. These registers provide feedback
indicating the measure of load balancing between the various resources on
the chip so that expected and actual usage can be compared and analyzed.
In addition, events such as mispredictions and hold cycles can also be
monitored.

Performance Monitoring Unit

20-20 ADSP-BF535 Blackfin Processor Hardware Reference

Performance Monitor Counter Registers (PFCNTRx)
Figure 20-12 shows the Performance Monitor Counter registers,
PFCNTR[1:0]. The PFCNTR0 register contains the count value of perfor-
mance counter 0. The PFCNTR1 register contains the count value of
performance counter 1.

Performance Monitor Control Register (PFCTL)
To enable the Performance Monitoring Unit, set the PFPWR bit in the
PFCTL register (Figure 20-13). Once the unit is enabled, individual
count-enable bits (PFCENx) take effect. Use the PFCENx bits to enable or
disable the performance monitors in User mode, Supervisor mode, or
both. Use the PEMUSWx bits to select the type of event triggered.

Figure 20-12. Performance Monitor Counter Registers

Table 20-10. Performance Monitor Counter Register MMR Assignments

Register Name Memory-Mapped Address

PFCNTR0 0xFFE0 8100

PFCNTR1 0xFFE0 8104

X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

X X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X X X X X

Trace Buffer Register (TBUF)

TBUF[15:0]

X

TBUF[31:16]

Alias to all trace buffer entries

0xFFE0 6100

ADSP-BF535 Blackfin Processor Hardware Reference 20-21

Blackfin Processor’s Debug

Figure 20-13. Performance Monitor Control Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0

XX X X

XXX

15 14 13 12 11 10 9 8 7 6

X X X X X X X X

X XX X X X X X X X X X

Performance Monitor Control Register (PFCTL)

Reset = Undefined

PFMON1[7:0]
Refer to Event Monitor table
(Table 20-11)

0

5 4 3 2 1 0

0 0 0

PFPWR
0 - Performance Monitor

disabled
1 - Performance Monitor

enabled
PEMUSW0
0 - Count down of performance

counter PFCNTR0 causes
exception event

1 - Count down of performance
counter PFCNTR0 causes
emulation event

PFCEN0[1:0]
00 - Disable Performance

Monitor 0
01 - Enable Performance

Monitor 0 in User mode
only

10 - Enable Performance
Monitor 0 in Supervisor
mode only

11 - Enable Performance
Monitor 0 in both User and
Supervisor modes

PFCEN1[1:0]

Refer to Event Monitor table
(Table 20-11)

PFMON0[7:0]

00 - Disable Performance
Monitor 1

01 - Enable Performance
Monitor 1 in User mode
only

10 - Enable Performance
Monitor 1 in Supervisor
mode only

11 - Enable Performance
Monitor 1 in both User and
Supervisor modes

PEMUSW1
0 - Count down of performance

counter PFCNTR1 causes
exception event

1 - Count down of performance
counter PFCNTR1 causes
emulation event

0xFFE0 8000

Performance Monitoring Unit

20-22 ADSP-BF535 Blackfin Processor Hardware Reference

Event Monitor Table
Table 20-11 identifies events that cause the Performance Monitor Coun-
ter registers (PFMON[1:0]) to increment.

Table 20-11. Event Monitor Table

PFMONx Fields Events That Cause the PFCNTRx Counter Registers
to Increment

0x00 Stalls caused by L1 Instruction Cache (IC) misses

0x01 L1 IC misses

0x02 L1 IC hits

0x04 L1 IC bank conflicts

0x05 L1 IC fill buffer hits

0x20 Loop0 iterations

0x21 Loop1 iterations

0x22 Loop buffer 0 invalidates (because of branches, jumps,
and similar operations)

0x23 Loop buffer 1 invalidates (because of branches, jumps,
and similar operations)

0x24 PC-relative branches

0x25 Indirect branches

0x26 Mispredicted branches

0x27 Taken branches

0x28 Not taken branches

0x29 Total branches

0x2A Stalls because of CSYNC, SSYNC

0x2B EXCPT instructions

0x2C CSYNC, SSYNC instructions

0x2D Committed instructions

0x2E Interrupts taken

ADSP-BF535 Blackfin Processor Hardware Reference 20-23

Blackfin Processor’s Debug

0x2F Misaligned Address Violation exceptions

0x40 Stall cycles because of read-after-write hazards on DAG
registers

0x41 Stall cycles because of write-after-write hazards on
DAG registers

0x60 Load hits

0x61 Load misses

0x62 Store hits

0x63 Store misses

0x64 Data Bank A load hits

0x65 Data Bank A store hits

0x66 Data Bank B load hits

0x67 Data Bank B store hits

0x68 L1 data memory hits

0x69 L1 data memory misses

0x6A Store buffer is full

0x6B Write buffer is full

0x6C Core/system bank conflicts

0x6D DAG0 & DAG1 bank conflicts

0x6E Scratch SRAM hits

0x6F DMA reads

0x70 DMA writes

0x71 LMU stalls in EX2

0x72 LMU stalls in EX3

0x73 LMU exceptions

0x74 Stall cycles because of store buffer cancels

Table 20-11. Event Monitor Table (Cont’d)

PFMONx Fields Events That Cause the PFCNTRx Counter Registers
to Increment

Cycle Counter

20-24 ADSP-BF535 Blackfin Processor Hardware Reference

Cycle Counter
The cycle counter counts CCLK cycles while the program is executing. All
cycles, including execution, wait state, interrupts, and events, are counted
while the processor is in User or Supervisor mode, but the cycle counter
stops counting in Emulator mode.

The cycle counter is a 64-bit counter that increments every cycle. The
count value is stored in two 32-bit registers, CYCLES and CYCLES2. The
least significant 32 bits are stored in CYCLES. The most significant 32 bits
are stored in CYCLES2.

 To ensure the correct cycle count, a read from CYCLES must occur
before reading from CYCLES2.

In User mode, these two registers may be read, but not written. In Super-
visor and Emulator modes, they are read/write registers.

To enable the cycle counters, set the CCEN bit in the SYSCFG register.

This example shows how to turn on the cycle counter:

r2 = 0 ;

cycles = r2 ;

cycles2 = r2 ;

r2 = SYSCFG ;

bitset(r2, 1) ;

SYSCFG = r2 ;

/* Insert code to be benchmarked */

0x75 Store to load forwarding

0x80 Stall cycles because of EX stage data hazards

Table 20-11. Event Monitor Table (Cont’d)

PFMONx Fields Events That Cause the PFCNTRx Counter Registers
to Increment

ADSP-BF535 Blackfin Processor Hardware Reference 20-25

Blackfin Processor’s Debug

r2 = SYSCFG ;

bitclr(r2, 1) ;

SYSCFG = r2 ;

Execution Cycle Count Registers (CYCLES and
CYCLES2)

The Execution Cycle Count registers, shown in Figure 20-14, consist of
CYCLES and CYCLES2. This 64-bit counter increments every CCLK cycle. The
CYCLES register contains the least significant 32 bits of the cycle counter’s
64-bit count value. The CYCLES2 register contains the most significant 32
bits.

Product Identification Registers
The 32-bit Chip ID register (CHIPID) is a system MMR that contains the
product identification and revision fields for the ADSP-BF535 processor.
The 32-bit DSP Device ID register (DSPID) is a core MMR that contains
core identification and revision fields for the core.

Figure 20-14. Execution Cycle Count Registers

X X XX X X X X X X X X X X XX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X Reset = Undefined

Execution Cycle Count Registers (CYCLES and CYCLES2)

CYCLES / CYCLES2[15:0]

CYCLES / CYCLES2[31:16]

RO in User mode. RW in Supervisor and Emulator modes.

Product Identification Registers

20-26 ADSP-BF535 Blackfin Processor Hardware Reference

Chip ID Register (CHIPID)
The Chip ID register (CHIPID), shown in Figure 20-15, is a read-only reg-
ister. The definition of this register complies with Joint Electronic Device
Engineering Council (JEDEC) standard JEP106, Standard Manufac-
turer’s Identification Code:

• CHIPID[31:28]: silicon revision number

• CHIPID[27:12]: part number 0x4000

• CHIPID[11:1]: Analog Devices, Inc., ID number 0xE5 – drop the
MSB (parity) and set MSBs to 0 (no ID extension) in accordance
with the JTAG standard: 0x065.

• CHIPID[0]: set to 1

Figure 20-15. Chip ID Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 0 0 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

0X X X X 0 1 0 0 0 0 0 0 0 0 0

Chip ID Register (CHIPID)

Manufacturer ID[10:0]Part Number[3:0]

Part Number[15:4]Version[3:0]

Reset = See Data Sheet

RO

0xFFC0 48C0

ADSP-BF535 Blackfin Processor Hardware Reference 20-27

Blackfin Processor’s Debug

DSP Device ID Register (DSPID)
The DSP Device ID register (DSPID), shown in Figure 20-16, is read-only
and part of the core. The DSPID value is an input to the core.

DMA Bus Debug Registers
During normal operation, the core has no direct visibility into the DMA
bus. However, the SBIU includes two registers that provide visibility into
the bus and control of it. Additional information about the SBIU is avail-
able in “Chip Bus Hierarchy” on page 7-1.

If a DMA channel does not behave as expected, these two registers provide
a debug capability:

• DMA Bus Control Comparator register (DB_CCOMP)

• DMA Bus Address Comparator register (DB_ACOMP)

Figure 20-16. DSP Device ID Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

XX X X X X X X X X X X X X X X

X

DSP Device ID Register (DSPID)

DSPID[7:0]

Reset = 0x0000 0000

RO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1X X X X X X X 0 0 0 0 0 0 0

0xFFE0 5000

DMA Bus Debug Registers

20-28 ADSP-BF535 Blackfin Processor Hardware Reference

DMA Bus Control Comparator Register
(DB_CCOMP)

The DMA Bus Control Comparator register (DB_CCOMP), shown in
Figure 20-17, provides control for the debug register pair. Program this
register with the type of bus operation that you wish to detect. Program
the address associated with this control field into the DMA Bus Address
Comparator register (DB_ACOMP). See “DMA Bus Address Comparator
Register (DB_ACOMP)” on page 20-29.

When enabled, this function compares the address and control fields of
each bus operation on the DMA bus to those programmed into the
address and control comparator fields. If a match occurs, the function sets
the Compare Hit (CH) status bit in DB_CCOMP. If the interrupt is unmasked,
the hit also generates a Hardware Error interrupt to the core. The source
of the interrupt can be determined by reading the core MMR HWE Cause
field in SEQSTAT, and/or by reading DB_CCOMP status.

Figure 20-17. DMA Bus Control Comparator Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Bus Control Comparator Register (DB_CCOMP)

0 - Look for write operation
1 - Look for read operation

Compare Read

Compare Burst

0 - Comparator function is
disabled

1 - Comparator function is
enabled

Enable Compare and Count
0 - Look for burst operation
1 - Look for nonburst operation

CH (Compare Hit) - W1C

Enable HWE Interrupt

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Cycle Count[15:0]

Read/write

0 - No interrupt generated
on hit

1 - Interrupt generated on hit
detect

0 - No match detected
1 - Match detected

Reset = 0x0000 00000xFFC0 4888

ADSP-BF535 Blackfin Processor Hardware Reference 20-29

Blackfin Processor’s Debug

The upper 16 bits of the DMA Bus Control Comparator register provide a
cycle count function that helps determine when a given DMA access has
occurred. The counter is clocked by the DMA bus clock.

The counter can be cleared in either of two ways:

• By a hardware reset

• By clearing the Enable Compare and Count bit (DB_CCOMP[0])

When enabled, the counter increments from 0 to a maximum value of
65,535 until a match is detected or the compare-and-count function is
disabled. A comparison match freezes the counter within two cycles of the
assertion of CH.

DMA Bus Address Comparator Register
(DB_ACOMP)

Figure 20-18 shows the DMA Bus Address Comparator register
(DB_ACOMP). Program into this register the DMA address that is associated
with the type of bus information that you wish to detect.

Figure 20-18. DMA Bus Address Comparator Register

DMA Bus Address Comparator Register (DB_ACOMP)
Read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Address[15:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA Address[31:16]

Reset = 0x0000 00000xFFC0 4884

DMA Bus Debug Registers

20-30 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference A-1

A BLACKFIN PROCESSOR
CORE MMR ASSIGNMENTS

The Blackfin processor’s memory-mapped registers are in the address
range 0xFFE0 0000–0xFFFF FFFF. All MMRs are 32-bits and can be
accessed only with 32-bit aligned memory operations.

This appendix lists core MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to the additional information
about the MMR.

L1 Data Memory Controller Registers
Table A-1 lists the MMR assignments for the L1 Data Memory Controller
registers (0xFFE0 0000–0xFFE0 0040C).

Table A-1. L1 Data Memory Controller Registers

Memory- Mapped
Address

Register Name See Section

0xFFE0 0004 DMEM_CONTROL “Data Memory Control Register
(DMEM_CONTROL)” on page 6-12

0xFFE0 0008 DCPLB_STATUS “DCPLB Status Register
(DCPLB_STATUS)” on page 6-73

0xFFE0 000C DCPLB_FAULT_ADDR “DCPLB Fault Address Register
(DCPLB_FAULT_ADDR)” on page 6-75

0xFFE0 0100 DCPLB_ADDR0 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

L1 Data Memory Controller Registers

A-2 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFE0 0104 DCPLB_ADDR1 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0108 DCPLB_ADDR2 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 010C DCPLB_ADDR3 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0110 DCPLB_ADDR4 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0114 DCPLB_ADDR5 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0118 DCPLB_ADDR6 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 011C DCPLB_ADDR7 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0120 DCPLB_ADDR8 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0124 DCPLB_ADDR9 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0128 DCPLB_ADDR10 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 012C DCPLB_ADDR11 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0130 DCPLB_ADDR12 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0134 DCPLB_ADDR13 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 0138 DCPLB_ADDR14 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

0xFFE0 013C DCPLB_ADDR15 “DCPLB Address Registers
(DCPLB_ADDRx)” on page 6-69

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference A-3

Blackfin Processor Core MMR Assignments

0xFFE0 0200 DCPLB_DATA0 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0204 DCPLB_DATA1 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0 xFFE0 0208 DCPLB_DATA2 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 020C DCPLB_DATA3 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0210 DCPLB_DATA4 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0214 DCPLB_DATA5 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0218 DCPLB_DATA6 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 021C DCPLB_DATA7 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0220 DCPLB_DATA8 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0224 DCPLB_DATA9 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0228 DCPLB_DATA10 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 022C DCPLB_DATA11 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0230 DCPLB_DATA12 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0234 DCPLB_DATA13 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0238 DCPLB_DATA14 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

A-4 ADSP-BF535 Blackfin Processor Hardware Reference

L1 Instruction Memory Controller
Registers

Table A-2 lists the MMR assignments for the L1 Instruction Memory
Controller registers (0xFFE0 1004–0xFFE0 6100).

0xFFE0 023C DCPLB_DATA15 “DCPLB Data Registers (DCPLB_DATAx)”
on page 6-65

0xFFE0 0300 DTEST_COMMAND “Data Test Command Register
(DTEST_COMMAND)” on page 6-49

0xFFE0 0400 DTEST_DATA0 “Data Test Data 0 Register
(DTEST_DATA0)” on page 6-50

0xFFE0 0404 DTEST_DATA1 “Data Test Data 1 Register
(DTEST_DATA1)” on page 6-49

0xFFE0 0408 DTEST_DATA2 “Data Test Data 0 Register
(DTEST_DATA0)” on page 6-50

0xFFE0 040C DTEST_DATA3 “Data Test Data 1 Register
(DTEST_DATA1)” on page 6-49

Table A-2. L1 Instruction Memory Controller Registers

Memory- Mapped
Address

Register Name See Section

0xFFE0 1004 IMEM_CONTROL “Instruction Memory Control Register
(IMEM_CONTROL)” on page 6-12

0xFFE0 1008 ICPLB_STATUS “ICPLB Status Register (ICPLB_STATUS)”
on page 6-74

0xFFE0 100C ICPLB_FAULT_ADDR “ICPLB Fault Address Register
(ICPLB_FAULT_ADDR)” on page 6-76

Table A-1. L1 Data Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference A-5

Blackfin Processor Core MMR Assignments

0xFFE0 1100 ICPLB_ADDR0 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1104 ICPLB_ADDR1 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1108 ICPLB_ADDR2 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 110C ICPLB_ADDR3 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1110 ICPLB_ADDR4 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1114 ICPLB_ADDR5 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1118 ICPLB_ADDR6 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 111C ICPLB_ADDR7 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1120 ICPLB_ADDR8 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1124 ICPLB_ADDR9 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1128 ICPLB_ADDR10 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 112C ICPLB_ADDR11 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1130 ICPLB_ADDR12 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1134 ICPLB_ADDR13 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1138 ICPLB_ADDR14 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

L1 Instruction Memory Controller Registers

A-6 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFE0 113C ICPLB_ADDR15 “ICPLB Address Registers (ICPLB_ADDRx)”
on page 6-71

0xFFE0 1200 ICPLB_DATA0 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1204 ICPLB_DATA1 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1208 ICPLB_DATA2 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 120C ICPLB_DATA3 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1210 ICPLB_DATA4 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1214 ICPLB_DATA5 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1218 ICPLB_DATA6 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 121C ICPLB_DATA7 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1220 ICPLB_DATA8 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 12245 ICPLB_DATA9 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1228 ICPLB_DATA10 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 122C ICPLB_DATA11 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1230 ICPLB_DATA12 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1234 ICPLB_DATA13 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference A-7

Blackfin Processor Core MMR Assignments

Interrupt Controller Registers
Table A-3 lists the MMR assignments for the Interrupt Controller regis-
ters (0xFFE0 2000–0xFFE0 210C).

0xFFE0 1238 ICPLB_DATA14 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 123C ICPLB_DATA15 “ICPLB Data Registers (ICPLB_DATAx)” on
page 6-67

0xFFE0 1300 ITEST_COMMAND “Instruction Test Command Register
(ITEST_COMMAND)” on page 6-27

0XFFE0 1400 ITEST_DATA0 “Instruction Test Data 0 Register
(ITEST_DATA0)” on page 6-29

0XFFE0 1404 ITEST_DATA1 “Instruction Test Data 1 Register
(ITEST_DATA1)” on page 6-28

Table A-3. Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 2000 EVT0
(EMU)

“Core Event Vector Table” on page 4-35

0xFFE0 2004 EVT1
(RST)

“Core Event Vector Table” on page 4-35

0xFFE0 2008 EVT2
(NMI)

“Core Event Vector Table” on page 4-35

0xFFE0 200C EVT3
(EVX)

“Core Event Vector Table” on page 4-35

0xFFE0 2010 EVT4 “Core Event Vector Table” on page 4-35

Table A-2. L1 Instruction Memory Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

Interrupt Controller Registers

A-8 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFE0 2014 EVT5
(IVHW)

“Core Event Vector Table” on page 4-35

0xFFE0 2018 EVT6
(TMR)

“Core Event Vector Table” on page 4-35

0xFFE0 201C EVT7
(IVG7)

“Core Event Vector Table” on page 4-35

0xFFE0 2020 EVT8
(IVG8)

“Core Event Vector Table” on page 4-35

0xFFE0 2024 EVT9
(IVG9)

“Core Event Vector Table” on page 4-35

0xFFE0 2028 EVT10
(IVG10)

“Core Event Vector Table” on page 4-35

0xFFE0 202C EVT11
(IVG11)

“Core Event Vector Table” on page 4-35

0xFFE0 2030 EVT12
(IVG12)

“Core Event Vector Table” on page 4-35

0xFFE0 2034 EVT13
(IVG13)

“Core Event Vector Table” on page 4-35

0xFFE0 2038 EVT14
(IVG14)

“Core Event Vector Table” on page 4-35

0xFFE0 203C EVT15
(IVG15)

“Core Event Vector Table” on page 4-35

0xFFE0 2104 IMASK
(EVT_IMASK)

“Core Interrupt Mask Register” on page 4-32

0xFFE0 2108 IPEND
(EVT_IPEND)

“Core Interrupt Pending Register” on
page 4-34

0xFFE0 210C ILAT
(EVT_ILAT)

“Core Interrupt Latch Register” on page 4-33

Table A-3. Interrupt Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference A-9

Blackfin Processor Core MMR Assignments

Core Timer Registers
Table A-4 lists the MMR assignments for the Core Timer registers
(0xFFE0 3000–0xFFE0 300C).

DSP Device ID Register
Table A-5 lists the MMR assignments for the DSP Device ID register
(0xFFE0 5000–0xFFE0 500C).

Table A-4. Core Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 3000 TCNTL “Core Timer Control Register (TCNTL)” on
page 16-22

0xFFE0 3004 TPERIOD “Core Timer Period Register (TPERIOD)”
on page 16-24

0xFFE0 3008 TSCALE “Core Timer Scale Register (TSCALE)” on
page 16-24

0xFFE0 300C TCOUNT “Core Timer Count Register (TCOUNT)”
on page 16-23

Table A-5. DSPID Register

Memory- Mapped
Address

Register Name See Section

0xFFE0 5000 DSPID “DSP Device ID Register (DSPID)” on
page 20-27

Trace Unit Registers

A-10 ADSP-BF535 Blackfin Processor Hardware Reference

Trace Unit Registers
Table A-6 lists the MMR assignments for the Trace Unit registers
(0xFFE0 6000–0xFFE0 6100).

Watchpoint and Patch Registers
Table A-7 lists the MMR assignments for the Watchpoint and Patch regis-
ters (0xFFE0 1C00–0xFFE0 7200).

Table A-6. Trace Unit Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 6000 TBUFCTL “Trace Buffer Control Register (TBUFCTL)”
on page 20-16

0xFFE0 6004 TBUFSTAT “Trace Buffer Status Register (TBUFSTAT)”
on page 20-17

0xFFE0 6100 TBUF “Trace Buffer Register (TBUF)” on
page 20-18

Table A-7. Watchpoint and Patch Registers

Memory- Mapped
Address

Register Name See Section

0xFFE0 7000 WPIACTL “Watchpoint Instruction Address Control
Register (WPIACTL)” on page 20-7

0xFFE0 7040 WPIA0 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7044 WPIA1 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7048 WPIA2 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

ADSP-BF535 Blackfin Processor Hardware Reference A-11

Blackfin Processor Core MMR Assignments

0xFFE0 704C WPIA3 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7050 WPIA4 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7054 WPIA5 “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7080 WPIACNT0 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7084 WPIACNT1 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7088 WPIACNT2 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 708C WPIACNT3 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7090 WPIACNT4 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7094 WPIACNT5 “Watchpoint Instruction Address Count Reg-
isters (WPIACNTx)” on page 20-6

0xFFE0 7100 WPDACTL “Watchpoint Instruction Address Registers
(WPIAx)” on page 20-5

0xFFE0 7140 WPDA0 “Watchpoint Data Address Registers
(WPDAx)” on page 20-11

0xFFE0 7144 WPDA1 “Watchpoint Data Address Registers
(WPDAx)” on page 20-11

0xFFE0 7180 WPDACNT0 “Watchpoint Data Address Count Value Reg-
isters (WPDACNTx)” on page 20-11

0xFFE0 7184 WPDACNT1 “Watchpoint Data Address Count Value Reg-
isters (WPDACNTx)” on page 20-11

0xFFE0 7200 WPSTAT “Trace Buffer Status Register (TBUFSTAT)”
on page 20-17

Table A-7. Watchpoint and Patch Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

Performance Monitor Registers

A-12 ADSP-BF535 Blackfin Processor Hardware Reference

Performance Monitor Registers
Table A-8 lists the MMR assignments for the Performance Monitor regis-
ters (0xFFE0 8000–0xFFE0 8104).

Table A-8. Performance Monitor Registers

Memory-Mapped
Address

Register Name See Section

0xFFE0 8000 PFCTL “Performance Monitor Control Register
(PFCTL)” on page 20-20

0xFFE0 8100 PFCNTR0 “Performance Monitor Control Register
(PFCTL)” on page 20-20

0xFFE0 8104 PFCNTR1 “Performance Monitor Control Register
(PFCTL)” on page 20-20

ADSP-BF535 Blackfin Processor Hardware Reference B-1

B SYSTEM MMR ASSIGNMENTS

These notes provide general information about the ADSP-BF535 system
memory-mapped registers (MMRs):

• The system MMR address range is 0xFFC00000–0xFFDFFFFF.

• All system MMRs are either 16-bit, or 32-bit register widths.

• 32-bit system MMRs can only be accessed with 32-bit aligned
memory operations.

• A dedicated set of PCI registers reside at 0xEEFFFF00–
0xEEFFFFFF.

• All system MMR space that is not defined in this appendix is
reserved for internal use only.

This appendix lists MMR addresses and register names. To find more
information about an MMR, refer to the page shown in the “See Section”
column. When viewing the PDF version of this document, click a refer-
ence in the “See Section” column to jump to the additional information
about the MMR.

Clock and System Control Registers

B-2 ADSP-BF535 Blackfin Processor Hardware Reference

Clock and System Control Registers
Table B-1 lists the MMR assignments for the Clock and System Control
registers (0xFFC0 0400–0xFFC0 07FF).

Chip ID Register
Table B-2 lists the MMR assignment for the Chip ID register (0xFFC0
48C0).

Table B-1. Clock and System Control Registers

Memory- Mapped
Address

Register Name See Section

0xFFC0 0400 PLL_CTL “PLL Control Register (PLL_CTL)” on
page 8-7

0xFFC0 0404 PLL_STAT “PLL Status Register (PLL_STAT)” on
page 8-9

0xFFC0 0406 PLL_LOCKCNT “PLL Lock Count Register
(PLL_LOCKCNT)” on page 8-10

0xFFC0 0408 PLL_IOCK “Peripheral Clock Enable Register
(PLL_IOCK)” on page 8-22

0xFFC0 0410 SWRST “Software Reset Register (SWRST)” on
page 3-16

0xFFC0 0414 SYSCR “System Reset Configuration Register
(SYSCR)” on page 3-14

Table B-2. Chip ID Register

Memory- Mapped
Address

Register Name See Section

0xFFC0 48C0 CHIPID “Chip ID Register (CHIPID)” on page 20-26

ADSP-BF535 Blackfin Processor Hardware Reference B-3

System MMR Assignments

System Interrupt Controller Registers
Table B-3 lists the MMR assignments for the System Interrupt Controller
registers (0xFFC0 0C00–0xFFC0 0FFF).

Table B-3. System Interrupt Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 0C04 SIC_IAR0 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

0xFFC0 0C08 SIC_IAR1 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

0xFFC0 0C0C SIC_IAR2 “System Interrupt Assignment Registers
(SIC_IARx)” on page 4-29

0xFFC0 0C10 SIC_IMASK “System Interrupt Status Register (SIC_ISR)”
on page 4-25

0xFFC0 0C14 SIC_ISR “System Interrupt Status Register (SIC_ISR)”
on page 4-25

0xFFC0 0C18 SIC_IWR “System Interrupt Wakeup-Enable Register
(SIC_IWR)” on page 4-24

Watchdog Timer Registers

B-4 ADSP-BF535 Blackfin Processor Hardware Reference

Watchdog Timer Registers
Table B-4 lists the MMR assignments for the Watchdog Timer registers
(0xFFC0 1000–0xFFC0 13FF).

Real-Time Clock Registers
Table B-5 lists the MMR assignments for the Real-Time Clock registers
(0xFFC0 1400–0xFFC0 17FF).

Table B-4. Watchdog Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1000 WDOG_CTL “Watchdog Control Register (WDOG_CTL)” on
page 16-27

0xFFC0 1004 WDOG_CNT “Watchdog Count Register (WDOG_CNT)” on
page 16-26

0xFFC0 1008 WDOG_STAT “Watchdog Status Register (WDOG_STAT)” on
page 16-26

Table B-5. Real-Time Clock Registers

Memory- Mapped
Address

Register Name See Section

0xFFC0 1400 RTC_STAT “RTC Status Register (RTC_STAT)” on
page 17-7

0xFFC0 1404 RTC_ICTL “RTC Interrupt Control Register
(RTC_ICTL)” on page 17-8

0xFFC0 1408 RTC_ISTAT “RTC Interrupt Status Register
(RTC_ISTAT)” on page 17-9

0xFFC0 140C RTC_SWCNT “RTC Stopwatch Count Register
(RTC_SWCNT)” on page 17-10

ADSP-BF535 Blackfin Processor Hardware Reference B-5

System MMR Assignments

UART0 Controller Registers
Table B-6 lists the MMR assignments for the UART0 Controller registers
(0xFFC0 1800–0xFFC0 1BFF).

0xFFC0 1410 RTC_ALARM “RTC Alarm Register (RTC_ALARM)” on
page 17-11

0xFFC0 1414 RTC_FAST “RTC Enable Register (RTC_FAST)” on
page 17-12

Table B-6. UART0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1800 UART0_THR “UARTx Transmit Holding Regis-
ters (UARTx_THR)” on page 12-5

0xFFC0 1800 UART0_RBR “UARTx Receive Buffer Registers
(UARTx_RBR)” on page 12-6

0xFFC0 1800 UART0_DLL “UARTx Divisor Latch Registers
(UARTx_DLL, UARTx_DLH)” on
page 12-10

0xFFC0 1802 UART0_DLH “UARTx Divisor Latch Registers
(UARTx_DLL, UARTx_DLH)” on
page 12-10

0xFFC0 1802 UART0_IER “UARTx Interrupt Enable Registers
(UARTx_IER)” on page 12-7

0xFFC0 1804 UART0_IIR “UARTx Interrupt Identification
Registers (UARTx_IIR)” on
page 12-9

0xFFC0 1806 UART0_LCR “UARTx Line Control Registers
(UARTx_LCR)” on page 12-3

Table B-5. Real-Time Clock Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

UART0 Controller Registers

B-6 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 1808 UART0_MCR “UARTx Modem Control Registers
(UARTx_MCR)” on page 12-12

0xFFC0 180A UART0_LSR “UARTx Line Status Registers
(UARTx_LSR)” on page 12-4

0xFFC0 180C UART0_MSR “UARTx Modem Status Registers
(UARTx_MSR)” on page 12-14

0xFFC0 180E UART0_SCR “UARTx Scratch Registers
(UARTx_SCR)” on page 12-15

0xFFC0 1810 UART0_IRCR “UART0 Infrared Control Register
(UART0_IRCR)” on page 12-36

0xFFC0 1A00 UART0_CURR_PTR_RX “UARTx Receive DMA Current
Descriptor Pointer Registers
(UARTx_CURR_PTR_RX)” on
page 12-19

0xFFC0 1A02 UART0_CONFIG_RX “UARTx Receive DMA Configura-
tion Registers
(UARTx_CONFIG_RX)” on
page 12-20

0xFFC0 1A04 UART0_START_ADDR_HI_RX “UARTx Receive DMA Start Address
High Registers
(UARTx_START_ADDR_HI_RX)”
on page 12-22

0xFFC0 1A06 UART0_START_ADDR_LO_RX “UARTx Receive DMA Start Address
Low Registers
(UARTx_START_ADDR_LO_RX)”
on page 12-23

0xFFC0 1A08 UART0_COUNT_RX “UARTx Receive DMA Count Regis-
ters (UARTx_COUNT_RX)” on
page 12-24

0xFFC0 1A0A UART0_NEXT_DESCR_RX “UARTx Receive DMA Next
Descriptor Pointer Registers
(UARTx_NEXT_DESCR_RX)” on
page 12-25

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-7

System MMR Assignments

0xFFC0 1A0C UART0_DESCR_RDY_RX “UARTx Receive DMA Descriptor
Ready Registers
(UARTx_DESCR_RDY_RX)” on
page 12-26

0xFFC0 1A0E UART0_IRQSTAT_RX “UARTx Receive DMA IRQ Status
Registers (UARTx_IRQSTAT_RX)”
on page 12-27

0xFFC0 1B00 UART0_CURR_PTR_TX “UARTx Transmit DMA Current
Descriptor Pointer Registers
(UARTx_CURR_PTR_TX)” on
page 12-28

0xFFC0 1B02 UART0_CONFIG_TX “UARTx Transmit DMA Configura-
tion Registers
(UARTx_CONFIG_TX)” on
page 12-29

0xFFC0 1B04 UART0_START_ADDR_HI_TX “UARTx Transmit DMA Start
Address High Registers
(UARTx_START_ADDR_HI_TX)”
on page 12-30

0xFFC0 1B06 UART0_START_ADDR_LO_TX “UARTx Transmit DMA Start
Address Low Registers
(UARTx_START_ADDR_LO_TX)”
on page 12-31

0xFFC0 1B08 UART0_COUNT_TX “UARTx Transmit DMA Count Reg-
isters (UARTx_COUNT_TX)” on
page 12-32

0xFFC0 1B0A UART0_NEXT_DESCR_TX “UARTx Transmit DMA Next
Descriptor Pointer Registers
(UARTx_NEXT_DESCR_TX)” on
page 12-33

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

UART1 Controller Registers

B-8 ADSP-BF535 Blackfin Processor Hardware Reference

UART1 Controller Registers
Table B-7 lists the MMR assignments for the UART1 Controller registers
(0xFFC0 1C00–0xFFC0 1FFF).

0xFFC0 1B0C UART0_DESCR_RDY_TX “UARTx Transmit DMA Descriptor
Ready Registers
(UARTx_DESCR_RDY_TX)” on
page 12-34

0xFFC0 1B0E UART0_IRQSTAT_TX “UARTx Transmit DMA IRQ Status
Registers (UARTx_IRQSTAT_TX)”
on page 12-35

Table B-7. UART1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 1C00 UART1_THR “UARTx Transmit Holding Regis-
ters (UARTx_THR)” on page 12-5

0xFFC0 1C00 UART1_RBR “UARTx Receive Buffer Registers
(UARTx_RBR)” on page 12-6

0xFFC0 1C00 UART1_DLL “UARTx Divisor Latch Registers
(UARTx_DLL, UARTx_DLH)” on
page 12-10

0xFFC0 1C02 UART1_DLH “UARTx Divisor Latch Registers
(UARTx_DLL, UARTx_DLH)” on
page 12-10

0xFFC0 1C02 UART1_IER “UARTx Interrupt Enable Registers
(UARTx_IER)” on page 12-7

0xFFC0 1C04 UART1_IIR “UARTx Interrupt Identification
Registers (UARTx_IIR)” on
page 12-9

Table B-6. UART0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-9

System MMR Assignments

0xFFC0 1C06 UART1_LCR “UARTx Line Control Registers
(UARTx_LCR)” on page 12-3

0xFFC0 1C08 UART1_MCR “UARTx Modem Control Registers
(UARTx_MCR)” on page 12-12

0xFFC0 1C0A UART1_LSR “UARTx Line Status Registers
(UARTx_LSR)” on page 12-4

0xFFC0 1C0C UART1_MSR “UARTx Modem Status Registers
(UARTx_MSR)” on page 12-14

0xFFC0 1C0E UART1_SCR “UARTx Scratch Registers
(UARTx_SCR)” on page 12-15

0xFFC0 1E00 UART1_CURR_PTR_RX “UARTx Receive DMA Current
Descriptor Pointer Registers
(UARTx_CURR_PTR_RX)” on
page 12-19

0xFFC0 1E02 UART1_CONFIG_RX “UARTx Receive DMA Configura-
tion Registers
(UARTx_CONFIG_RX)” on
page 12-20

0xFFC0 1E04 UART1_START_ADDR_HI_RX “UARTx Receive DMA Start Address
High Registers
(UARTx_START_ADDR_HI_RX)”
on page 12-22

0xFFC0 1E06 UART1_START_ADDR_LO_RX “UARTx Receive DMA Start Address
Low Registers
(UARTx_START_ADDR_LO_RX)”
on page 12-23

0xFFC0 1E08 UART1_COUNT_RX “UARTx Receive DMA Count Regis-
ters (UARTx_COUNT_RX)” on
page 12-24

0xFFC0 1E0A UART1_NEXT_DESCR_RX “UARTx Receive DMA Next
Descriptor Pointer Registers
(UARTx_NEXT_DESCR_RX)” on
page 12-25

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

UART1 Controller Registers

B-10 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 1E0C UART1_DESCR_RDY_RX “UARTx Receive DMA Descriptor
Ready Registers
(UARTx_DESCR_RDY_RX)” on
page 12-26

0xFFC0 1E0E UART1_IRQSTAT_RX “UARTx Receive DMA IRQ Status
Registers (UARTx_IRQSTAT_RX)”
on page 12-27

0xFFC0 1F00 UART1_CURR_PTR_TX “UARTx Transmit DMA Current
Descriptor Pointer Registers
(UARTx_CURR_PTR_TX)” on
page 12-28

0xFFC0 1F02 UART1_CONFIG_TX “UARTx Transmit DMA Configura-
tion Registers
(UARTx_CONFIG_TX)” on
page 12-29

0xFFC0 1F04 UART1_START_ADDR_HI_TX “UARTx Transmit DMA Start
Address High Registers
(UARTx_START_ADDR_HI_TX)”
on page 12-30

0xFFC0 1F06 UART1_START_ADDR_LO_TX “UARTx Transmit DMA Start
Address Low Registers
(UARTx_START_ADDR_LO_TX)”
on page 12-31

0xFFC0 1F08 UART1_COUNT_TX “UARTx Transmit DMA Count Reg-
isters (UARTx_COUNT_TX)” on
page 12-32

0xFFC0 1F0A UART1_NEXT_DESCR_TX “UARTx Transmit DMA Next
Descriptor Pointer Registers
(UARTx_NEXT_DESCR_TX)” on
page 12-33

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-11

System MMR Assignments

Timer Registers
Table B-8 lists the MMR assignments for the Timer registers
(0xFFC0 2000–0xFFC0 23FF).

0xFFC0 1F0C UART1_DESCR_RDY_TX “UARTx Transmit DMA Descriptor
Ready Registers
(UARTx_DESCR_RDY_TX)” on
page 12-34

0xFFC0 1F0E UART1_IRQSTAT_TX “UARTx Transmit DMA IRQ Status
Registers (UARTx_IRQSTAT_TX)”
on page 12-35

Table B-8. Timer Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2000 TIMER0_STATUS “Timer Status Registers
(TIMERx_STATUS)” on page 16-4

0xFFC0 2002 TIMER0_CONFIG “Timer Configuration Registers
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2004 TIMER0_COUNTER_LO “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2006 TIMER0_COUNTER_HI “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2008 TIMER0_PERIOD_LO “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

0xFFC0 200A TIMER0_PERIOD_HI “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

0xFFC0 200C TIMER0_WIDTH_LO “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

Table B-7. UART1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Timer Registers

B-12 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 200E TIMER0_WIDTH_HI “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

0xFFC0 2010 TIMER1_STATUS “Timer Status Registers
(TIMERx_STATUS)” on page 16-4

0xFFC0 2012 TIMER1_CONFIG “Timer Configuration Registers
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2014 TIMER1_COUNTER_LO “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2016 TIMER1_COUNTER_HI “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2018 TIMER1_PERIOD_LO “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

0xFFC0 201A TIMER1_PERIOD_HI “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

0xFFC0 201C TIMER1_WIDTH_LO “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

0xFFC0 201E TIMER1_WIDTH_HI “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

0xFFC0 2020 TIMER2_STATUS “Timer Status Registers
(TIMERx_STATUS)” on page 16-4

0xFFC0 2022 TIMER2_CONFIG “Timer Configuration Registers
(TIMERx_CONFIG)” on page 16-7

0xFFC0 2024 TIMER2_COUNTER_LO “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2026 TIMER2_COUNTER_HI “Timer Counter Registers
(TIMERx_COUNTER)” on page 16-11

0xFFC0 2028 TIMER2_PERIOD_LO “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

0xFFC0 202A TIMER2_PERIOD_HI “Timer Period Registers
(TIMERx_PERIOD)” on page 16-10

Table B-8. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-13

System MMR Assignments

Programmable Flag Registers
Table B-9 lists the MMR assignments for the Programmable Flag registers
(0xFFC0 2400–0xFFC0 27FF).

0xFFC0 202C TIMER2_WIDTH_LO “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

0xFFC0 202E TIMER2_WIDTH_HI “Timer Width Registers
(TIMERx_WIDTH)” on page 16-11

Table B-9. Programmable Flags Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2400 FIO_DIR “Flag Direction Register (FIO_DIR)” on
page 15-2

0xFFC0 2404 FIO_FLAG_C “Flag Set (FIO_FLAG_S) and Flag Clear
(FIO_FLAG_C) Registers” on page 15-2

0xFFC0 2406 FIO_FLAG_S “Flag Set (FIO_FLAG_S) and Flag Clear
(FIO_FLAG_C) Registers” on page 15-2

0xFFC0 2408 FIO_MASKA_C “Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)” on
page 15-5

0xFFC0 240A FIO_MASKA_S “Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)” on
page 15-5

0xFFC0 240C FIO_MASKB_C “Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)” on
page 15-5

Table B-8. Timer Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT0 Controller Registers

B-14 ADSP-BF535 Blackfin Processor Hardware Reference

SPORT0 Controller Registers
Table B-10 lists the MMR assignments for the SPORT0 Controller regis-
ters (0xFFC0 2800–0xFFC0 2BFF).

0xFFC0 240E FIO_MASKB_S “Flag Interrupt Mask Registers
(FIO_MASKA_C, FIO_MASKA_S,
FIO_MASKB_C, FIO_MASKB_S)” on
page 15-5

0xFFC0 2410 FIO_POLAR “Flag Polarity Register (FIO_POLAR)” on
page 15-9

0xFFC0 2414 FIO_EDGE “Flag Interrupt Sensitivity Register
(FIO_EDGE)” on page 15-10

0xFFC0 2418 FIO_BOTH “Flag Set on Both Edges Register
(FIO_BOTH)” on page 15-10

Table B-10. SPORT0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2800 SPORT0_TX_CONFIG “Transmit and Receive Configuration
Registers (SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG)” on
page 11-9

0xFFC0 2802 SPORT0_RX_CONFIG “Transmit and Receive Configuration
Registers (SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG)” on
page 11-9

0xFFC0 2804 SPORT0_TX “SPORTx Transmit (SPORTx_TX)
Registers” on page 11-17

0xFFC0 2806 SPORT0_RX “SPORTx Receive (SPORTx_RX)
Registers” on page 11-19

Table B-9. Programmable Flags Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-15

System MMR Assignments

0xFFC0 2808 SPORT0_TSCLKDIV “SPORTx Transmit
(SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock
Divider Registers” on page 11-20

0xFFC0 280A SPORT0_RSCLKDIV “SPORTx Transmit
(SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock
Divider Registers” on page 11-20

0xFFC0 280C SPORT0_TFSDIV “SPORTx Transmit
(SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync
Divider Registers” on page 11-22

0xFFC0 280E SPORT0_RFSDIV “SPORTx Transmit
(SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync
Divider Registers” on page 11-22

0xFFC0 2810 SPORT0_STAT “SPORTx Status (SPORTx_STAT)
Registers” on page 11-23

0xFFC0 2812 SPORT0_MTCS0 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2814 SPORT0_MTCS1 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2816 SPORT0_MTCS2 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2818 SPORT0_MTCS3 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 281A SPORT0_MTCS4 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT0 Controller Registers

B-16 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 281C SPORT0_MTCS5 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 281E SPORT0_MTCS6 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2820 SPORT0_MTCS7 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2822 SPORT0_MRCS0 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2824 SPORT0_MRCS1 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2826 SPORT0_MRCS2 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2828 SPORT0_MRCS3 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 282A SPORT0_MRCS4 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 282C SPORT0_MRCS5 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 282E SPORT0_MRCS6 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2830 SPORT0_MRCS7 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-17

System MMR Assignments

0xFFC0 2832 SPORT0_MCMC1 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2834 SPORT0_MCMC2 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers”
on page 11-29

0xFFC0 2A00 SPORT0_CURR_PTR_RX “SPORTx Receive DMA Current
Descriptor Pointer
(SPORTx_CURR_PTR_RX) Regis-
ters” on page 11-31

0xFFC0 2A02 SPORT0_CONFIG_DMA_RX “SPORTx Receive DMA Configura-
tion
(SPORTx_CONFIG_DMA_RX)
Registers” on page 11-31

0xFFC0 2A04 SPORT0_START_ADDR_HI_RX “SPORTx Receive DMA Start
Address High
(SPORTx_START_ADDR_HI_RX)
Registers” on page 11-34

0xFFC0 2A06 SPORT0_START_ADDR_LO_RX “SPORTx Receive DMA Start
Address Low
(SPORTx_START_ADDR_LO_RX)
Registers” on page 11-35

0xFFC0 2A08 SPORT0_COUNT_RX “SPORTx Receive DMA Count
(SPORTx_COUNT_RX) Registers”
on page 11-36

0xFFC0 2A0A SPORT0_NEXT_DESCR_RX “SPORTx Receive DMA Next
Descriptor Pointer
(SPORTx_NEXT_DESCR_RX)
Registers” on page 11-36

0xFFC0 2A0C SPORT0_DESCR_RDY_RX “SPORTx Receive DMA Descriptor
Ready (SPORTx_DESCR_RDY_RX)
Registers” on page 11-37

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT0 Controller Registers

B-18 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 2A0E SPORT0_IRQSTAT_RX “SPORTx Receive DMA IRQ Status
(SPORTx_IRQSTAT_RX) Registers”
on page 11-38

0xFFC0 2B00 SPORT0_CURR_PTR_TX “SPORTx Transmit DMA Current
Descriptor Pointer
(SPORTx_CURR_PTR_TX) Regis-
ters” on page 11-39

0xFFC0 2B02 SPORT0_CONFIG_DMA_TX “SPORTx Transmit DMA Configu-
ration
(SPORTx_CONFIG_DMA_TX)
Registers” on page 11-40

0xFFC0 2B04 SPORT0_START_ADDR_HI_TX “SPORTx Transmit DMA Start
Address High
(SPORTx_START_ADDR_HI_TX)
Registers” on page 11-43

0xFFC0 2B06 SPORT0_START_ADDR_LO_TX “SPORTx Transmit DMA Start
Address Low
(SPORTx_START_ADDR_LO_TX)
Registers” on page 11-44

0xFFC0 2B08 SPORT0_COUNT_TX “SPORTx Transmit DMA Count
(SPORTx_COUNT_TX) Registers”
on page 11-45

0xFFC0 2B0A SPORT0_NEXT_DESCR_TX “SPORTx Transmit DMA Next
Descriptor Pointer
(SPORTx_NEXT_DESCR_TX)
Registers” on page 11-45

0xFFC0 2B0C SPORT0_DESCR_RDY_TX “SPORTx Transmit DMA Descriptor
Ready (SPORTx_DESCR_RDY_TX)
Registers” on page 11-46

0xFFC0 2B0E SPORT0_IRQSTAT_TX “SPORTx Transmit DMA IRQ Sta-
tus (SPORTx_IRQSTAT_TX) Regis-
ters” on page 11-47

Table B-10. SPORT0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-19

System MMR Assignments

SPORT1 Controller Registers
Table B-11 lists the MMR assignments for the SPORT1 Controller regis-
ters (0xFFC0 2C00–0xFFC0 2FFF).

Table B-11. SPORT1 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 2C00 SPORT1_TX_CONFIG “Transmit and Receive Configuration
Registers (SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG)” on
page 11-9

0xFFC0 2C02 SPORT1_RX_CONFIG “Transmit and Receive Configuration
Registers (SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG)” on
page 11-9

0xFFC0 2C04 SPORT1_TX “SPORTx Transmit (SPORTx_TX)
Registers” on page 11-17

0xFFC0 2C06 SPORT1_RX “SPORTx Receive (SPORTx_RX)
Registers” on page 11-19

0xFFC0 2C08 SPORT1_TSCLKDIV “SPORTx Transmit
(SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock
Divider Registers” on page 11-20

0xFFC0 2C0A SPORT1_RSCLKDIV “SPORTx Transmit
(SPORTx_TSCLKDIV) and Receive
(SPORTx_RSCLKDIV) Serial Clock
Divider Registers” on page 11-20

0xFFC0 2C0C SPORT1_TFSDIV “SPORTx Transmit
(SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync
Divider Registers” on page 11-22

0xFFC0 2C0E SPORT1_RFSDIV “SPORTx Transmit
(SPORTx_TFSDIV) and Receive
(SPORTx_RFSDIV) Frame Sync
Divider Registers” on page 11-22

SPORT1 Controller Registers

B-20 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 2C10 SPORT1_STAT “SPORTx Status (SPORTx_STAT)
Registers” on page 11-23

0xFFC0 2C12 SPORT1_MTCS0 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C14 SPORT1_MTCS1 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C16 SPORT1_MTCS2 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C18 SPORT1_MTCS3 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C1A SPORT1_MTCS4 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C1C SPORT1_MTCS5 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C1E SPORT1_MTCS6 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C20 SPORT1_MTCS7 “SPORTx Multichannel Transmit
Select (SPORTx_MTCSx) Registers”
on page 11-25

0xFFC0 2C22 SPORT1_MRCS0 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C24 SPORT1_MRCS1 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-21

System MMR Assignments

0xFFC0 2C26 SPORT1_MRCS2 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C28 SPORT1_MRCS3 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C2A SPORT1_MRCS4 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C2C SPORT1_MRCS5 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C2E SPORT1_MRCS6 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C30 SPORT1_MRCS7 “SPORTx Multichannel Receive
Select (SPORTx_MRCSx) Registers”
on page 11-27

0xFFC0 2C32 SPORT1_MCMC1 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers”
on page 11-29

0xFFC0 2C34 SPORT1_MCMC2 “SPORTx Multichannel Configura-
tion (SPORTx_MCMCx) Registers”
on page 11-29

0xFFC0 2E00 SPORT1_CURR_PTR_RX “SPORTx Receive DMA Current
Descriptor Pointer
(SPORTx_CURR_PTR_RX) Regis-
ters” on page 11-31

0xFFC0 2E02 SPORT1_CONFIG_DMA_RX “SPORTx Receive DMA Configura-
tion
(SPORTx_CONFIG_DMA_RX)
Registers” on page 11-31

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPORT1 Controller Registers

B-22 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 2E04 SPORT1_START_ADDR_HI_RX “SPORTx Receive DMA Start
Address High
(SPORTx_START_ADDR_HI_RX)
Registers” on page 11-34

0xFFC0 2E06 SPORT1_START_ADDR_LO_RX “SPORTx Receive DMA Start
Address Low
(SPORTx_START_ADDR_LO_RX)
Registers” on page 11-35

0xFFC0 2E08 SPORT1_COUNT_RX “SPORTx Receive DMA Count
(SPORTx_COUNT_RX) Registers”
on page 11-36

0xFFC0 2E0A SPORT1_NEXT_DESCR_RX “SPORTx Receive DMA Next
Descriptor Pointer
(SPORTx_NEXT_DESCR_RX)
Registers” on page 11-36

0xFFC0 2E0C SPORT1_DESCR_RDY_RX “SPORTx Receive DMA Descriptor
Ready (SPORTx_DESCR_RDY_RX)
Registers” on page 11-37

0xFFC0 2E0E SPORT1_IRQSTAT_RX “SPORTx Receive DMA IRQ Status
(SPORTx_IRQSTAT_RX) Registers”
on page 11-38

0xFFC0 2F00 SPORT1_CURR_PTR_TX “SPORTx Transmit DMA Current
Descriptor Pointer
(SPORTx_CURR_PTR_TX) Regis-
ters” on page 11-39

0xFFC0 2F02 SPORT1_CONFIG_DMA_TX “SPORTx Transmit DMA Configu-
ration
(SPORTx_CONFIG_DMA_TX)
Registers” on page 11-40

0xFFC0 2F04 SPORT1_START_ADDR_HI_TX “SPORTx Transmit DMA Start
Address High
(SPORTx_START_ADDR_HI_TX)
Registers” on page 11-43

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-23

System MMR Assignments

SPI0 Controller Registers
Table B-12 lists the MMR assignments for the SPI0 Controller registers
(0xFFC0 3000–0xFFC0 33FF).

0xFFC0 2F06 SPORT1_START_ADDR_LO_TX “SPORTx Transmit DMA Start
Address Low
(SPORTx_START_ADDR_LO_TX)
Registers” on page 11-44

0xFFC0 2F08 SPORT1_COUNT_TX “SPORTx Transmit DMA Count
(SPORTx_COUNT_TX) Registers”
on page 11-45

0xFFC0 2F0A SPORT1_NEXT_DESCR_TX “SPORTx Transmit DMA Next
Descriptor Pointer
(SPORTx_NEXT_DESCR_TX)
Registers” on page 11-45

0xFFC0 2F0C SPORT1_DESCR_RDY_TX “SPORTx Transmit DMA Descriptor
Ready (SPORTx_DESCR_RDY_TX)
Registers” on page 11-46

0xFFC0 2F0E SPORT1_IRQSTAT_TX “SPORTx Transmit DMA IRQ Sta-
tus (SPORTx_IRQSTAT_TX) Regis-
ters” on page 11-47

Table B-12. SPI0 Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 3000 SPI0_CTL “SPIx Control Register (SPIx_CTL)” on
page 10-8

0xFFC0 3002 SPI0_FLG “SPIx Flag Register (SPIx_FLG)” on
page 10-10

Table B-11. SPORT1 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

SPI0 Controller Registers

B-24 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 3004 SPI0_ST “SPIx Status Register (SPIx_ST)” on
page 10-15

0xFFC0 3006 SPI0_TDBR “SPIx Transmit Data Buffer Register
(SPIx_TDBR)” on page 10-17

0xFFC0 3008 SPI0_RDBR “SPIx Receive Data Buffer Register
(SPIx_RDBR)” on page 10-18

0xFFC0 300A SPI0_BAUD “SPIx Baud Rate Register (SPIx_BAUD)” on
page 10-7

0xFFC0 300C SPI0_SHADOW “SPIx RDBR Shadow Register
(SPIx_SHADOW)” on page 10-18

0xFFC0 3200 SPI0_CURR_PTR “SPIx DMA Current Descriptor Pointer Reg-
ister (SPIx_CURR_PTR)” on page 10-20

0xFFC0 3202 SPI0_CONFIG “SPIx DMA Configuration Register
(SPIx_CONFIG)” on page 10-21

0xFFC0 3204 SPI0_START_ADDR_HI “SPIx DMA Start Address High Register
(SPIx_START_ADDR_HI) and SPIx DMA
Start Address Low Register
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3206 SPI0_START_ADDR_LO “SPIx DMA Start Address High Register
(SPIx_START_ADDR_HI) and SPIx DMA
Start Address Low Register
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3208 SPI0_COUNT “SPIx DMA Count Register
(SPIx_COUNT)” on page 10-23

0xFFC0 320A SPI0_NEXT_DESCR “SPIx DMA Next Descriptor Pointer Register
(SPIx_NEXT_DESCR)” on page 10-24

0xFFC0 320C SPI0_DESCR_RDY “SPIx DMA Descriptor Ready Register
(SPIx_DESCR_RDY)” on page 10-25

0xFFC0 320E SPI0_DMA_INT “SPIx DMA Interrupt Register
(SPIx_DMA_INT)” on page 10-26

Table B-12. SPI0 Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-25

System MMR Assignments

SPI1 Controller Registers
Table B-13 lists the MMR assignments for the SPI1 Controller registers
(0xFFC0 3400–0xFFC0 37FF).

Table B-13. SPI1 Controller Registers

Memory- Mapped
Address

Register Name See Section

0xFFC0 3400 SPI1_CTL “SPIx Control Register (SPIx_CTL)” on
page 10-8

0xFFC0 3402 SPI1_FLG “SPIx Flag Register (SPIx_FLG)” on
page 10-10

0xFFC0 3404 SPI1_ST “SPIx Status Register (SPIx_ST)” on
page 10-15

0xFFC0 3406 SPI1_TDBR “SPIx Transmit Data Buffer Register
(SPIx_TDBR)” on page 10-17

0xFFC0 3408 SPI1_RDBR “SPIx Receive Data Buffer Register
(SPIx_RDBR)” on page 10-18

0xFFC0 340A SPI1_BAUD “SPIx Baud Rate Register (SPIx_BAUD)” on
page 10-7

0xFFC0 340C SPI1_SHADOW “SPIx RDBR Shadow Register
(SPIx_SHADOW)” on page 10-18

0xFFC0 3600 SPI1_CURR_PTR “SPIx DMA Current Descriptor Pointer Reg-
ister (SPIx_CURR_PTR)” on page 10-20

0xFFC0 3602 SPI1_CONFIG “SPIx DMA Configuration Register
(SPIx_CONFIG)” on page 10-21

0xFFC0 3604 SPI1_START_ADDR_HI “SPIx DMA Start Address High Register
(SPIx_START_ADDR_HI) and SPIx DMA
Start Address Low Register
(SPIx_START_ADDR_LO)” on page 10-22

0xFFC0 3606 SPI1_START_ADDR_LO “SPIx DMA Start Address High Register
(SPIx_START_ADDR_HI) and SPIx DMA
Start Address Low Register
(SPIx_START_ADDR_LO)” on page 10-22

Memory DMA Controller Registers

B-26 ADSP-BF535 Blackfin Processor Hardware Reference

Memory DMA Controller Registers
Table B-14 lists the MMR assignments for the Memory DMA Controller
registers (0xFFC0 3800–0xFFC0 3BFF).

0xFFC0 3608 SPI1_COUNT “SPIx DMA Count Register
(SPIx_COUNT)” on page 10-23

0xFFC0 360A SPI1_NEXT_DESCR “SPIx DMA Next Descriptor Pointer Register
(SPIx_NEXT_DESCR)” on page 10-24

0xFFC0 360C SPI1_DESCR_RDY “SPIx DMA Descriptor Ready Register
(SPIx_DESCR_RDY)” on page 10-25

0xFFC0 360E SPI1_DMA_INT “SPIx DMA Interrupt Register
(SPIx_DMA_INT)” on page 10-26

Table B-14. Memory DMA Controller Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 3800 MDD_DCP “Destination Memory DMA Current
Descriptor Pointer Register (MDD_DCP)”
on page 9-37

0xFFC0 3802 MDD_DCFG “Destination Memory DMA Configuration
Register (MDD_DCFG)” on page 9-33

0xFFC0 3804 MDD_DSAH “Destination Memory DMA Start Address
Registers (MDD_DSAH, MDD_DSAL)” on
page 9-35

0xFFC0 3806 MDD_DSAL “Destination Memory DMA Start Address
Registers (MDD_DSAH, MDD_DSAL)” on
page 9-35

0xFFC0 3808 MDD_DCT “Source Memory DMA Transfer Count Reg-
ister (MDD_DCT)” on page 9-40

Table B-13. SPI1 Controller Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-27

System MMR Assignments

0xFFC0 380A MDD_DND “Destination Memory DMA Next Descrip-
tor Pointer Register (MDD_DND)” on
page 9-36

0xFFC0 380C MDD_DDR “Destination Memory DMA Descriptor
Ready Register (MDD_DDR)” on page 9-36

0xFFC0 380E MDD_DI “Source Memory DMA Interrupt Register
(MDS_DI)” on page 9-43

0xFFC0 3900 MDS_DCP “Source Memory DMA Current Descriptor
Pointer Register (MDS_DCP)” on page 9-43

0xFFC0 3902 MDS_DCFG “Source Memory DMA Configuration Regis-
ter (MDS_DCFG)” on page 9-39

0xFFC0 3904 MDS_DSAH “Source Memory DMA Start Address Regis-
ters (MDS_DSAH, MDS_DSAL)” on
page 9-41

0xFFC0 3906 MDS_DSAL “Source Memory DMA Start Address Regis-
ters (MDS_DSAH, MDS_DSAL)” on
page 9-41

0xFFC0 3908 MDS_DCT “Source Memory DMA Transfer Count Reg-
ister (MDD_DCT)” on page 9-40

0xFFC0 390A MDS_DND “Destination Memory DMA Next Descrip-
tor Pointer Register (MDD_DND)” on
page 9-36

0xFFC0 390C MDS_DDR “Destination Memory DMA Descriptor
Ready Register (MDD_DDR)” on page 9-36

0xFFC0 390E MDS_DI “Destination Memory DMA Interrupt Regis-
ter (MDD_DI)” on page 9-38

Table B-14. Memory DMA Controller Registers (Cont’d)

Memory-Mapped
Address

Register Name See Section

Asynchronous Memory Controller—EBIU

B-28 ADSP-BF535 Blackfin Processor Hardware Reference

Asynchronous Memory Controller—EBIU
Table B-15 lists the MMR assignments for the Asynchronous Memory
Controller - External Bus Interface Unit registers (0xFFC0 3C00–
0xFFC0 3FFF).

PCI Bridge Registers
Table B-16 lists the MMR assignments for the PCI Bridge registers
(ranges 0xFFC0 4000–0xFFC0 43FF and 0xEEFF FF00–0xEEFF FFFF).

Table B-15. External Bus Interface Unit Registers

Memory- Mapped
Address

Register Name See Section

0xFFC0 3C00 EBIU_AMGCTL “Asynchronous Memory Global Control Reg-
ister (EBIU_AMGCTL)” on page 18-10

0xFFC0 3C04 EBIU_AMBCTL0 “Asynchronous Memory Bank Control Regis-
ters (EBIU_AMBCTL0, EBIU_AMBCTL1)”
on page 18-12

0xFFC0 3C08 EBIU_AMBCTL1 “Asynchronous Memory Bank Control Regis-
ters (EBIU_AMBCTL0, EBIU_AMBCTL1)”
on page 18-12

Table B-16. PCI Bridge Registers

Memory- Mapped
Address

Register Name See Section

0xFFC0 4000 PCI_CTL “PCI Bridge Control Register (PCI_CTL)”
on page 13-20

0xFFC0 4004 PCI_STAT “PCI Status Register (PCI_STAT)” on
page 13-21

0xFFC0 4008 PCI_ICTL “PCI Interrupt Controller Register
(PCI_ICTL)” on page 13-22

ADSP-BF535 Blackfin Processor Hardware Reference B-29

System MMR Assignments

0xFFC0 400C PCI_MBAP “PCI Outbound Memory Base Address Regis-
ter (PCI_MBAP)” on page 13-23

0xFFC0 4010 PCI_IBAP “PCI Outbound I/O Base Address Register
(PCI_IBAP)” on page 13-23

0xFFC0 4014 PCI_CBAP “PCI Outbound I/O Configuration Address
Register (PCI_CBAP)” on page 13-24

0xFFC0 4018 PCI_TMBAP “PCI Inbound Memory Base Address Register
(PCI_TMBAP)” on page 13-25

0xFFC0 401C PCI_TIBAP “PCI Inbound I/O Base Address Register
(PCI_TIBAP)” on page 13-25

0xEEFF FF00 PCI_DMBARM “PCI Device Memory BAR Mask Register
(PCI_DMBARM)” on page 13-26

0xEEFF FF04 PCI_DIBARM “PCI Device I/O BAR Mask Register
(PCI_DIBARM)” on page 13-27

0xEEFF FF08 PCI_CFG_DIC “PCI Configuration Device ID Register
(PCI_CFG_DIC)” on page 13-29

0xEEFF FF0C PCI_CFG_VIC “PCI Configuration Vendor ID Register
(PCI_CFG_VIC)” on page 13-30

0xEEFF FF10 PCI_CFG_STAT “PCI Configuration Status Register
(PCI_CFG_STAT)” on page 13-31

0xEEFF FF14 PCI_CFG_CMD “PCI Configuration Command Register
(PCI_CFG_CMD)” on page 13-32

0xEEFF FF18 PCI_CFG_CC “PCI Configuration Class Code Register
(PCI_CFG_CC)” on page 13-33

0xEEFF FF1C PCI_CFG_RID “PCI Configuration Revision ID Register
(PCI_CFG_RID)” on page 13-34

0xEEFF FF20 PCI_CFG_BIST “PCI Configuration BIST Register
(PCI_CFG_BIST)” on page 13-35

0xEEFF FF24 PCI_CFG_HT “PCI Configuration Header Type Register
(PCI_CFG_HT)” on page 13-36

Table B-16. PCI Bridge Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

PCI Bridge Registers

B-30 ADSP-BF535 Blackfin Processor Hardware Reference

0xEEFF FF28 PCI_CFG_MLT “PCI Configuration Memory Latency Timer
Register (PCI_CFG_MLT)” on page 13-36

0xEEFF FF2C PCI_CFG_CLS “PCI Configuration Cache Line Size Register
(PCI_CFG_CLS)” on page 13-37

0xEEFF FF30 PCI_CFG_MBAR “PCI Configuration Memory Base Address
Register (PCI_CFG_MBAR)” on page 13-38

0xEEFF FF34 PCI_CFG_IBAR “PCI Configuration I/O Base Address Regis-
ter (PCI_CFG_IBAR)” on page 13-39

0xEEFF FF38 PCI_CFG_SID “PCI Configuration Subsystem ID Register
(PCI_CFG_SID)” on page 13-40

0xEEFF FF3C PCI_CFG_SVID “PCI Configuration Subsystem Vendor ID
Register (PCI_CFG_SVID)” on page 13-40

0xEEFF FF40 PCI_CFG_MAXL “PCI Configuration Maximum Latency Reg-
ister (PCI_CFG_MAXL)” on page 13-41

0xEEFF FF44 PCI_CFG_MING “PCI Configuration Minimum Grant Regis-
ter (PCI_CFG_MING)” on page 13-42

0xEEFF FF48 PCI_CFG_IP “PCI Configuration Interrupt Pin Register
(PCI_CFG_IP)” on page 13-42

0xEEFF FF4C PCI_CFG_IL “PCI Configuration Interrupt Line Register
(PCI_CFG_IL)” on page 13-43

0xEEFF FF50 PCI_HMCTL “PCI Host Memory Control Register
(PCI_HMCTL)” on page 13-43

Table B-16. PCI Bridge Registers (Cont’d)

Memory- Mapped
Address

Register Name See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-31

System MMR Assignments

USB Device Registers
Table B-17 lists the MMR assignments for the USB Device registers
(0xFFC0 4400–0xFFC0 47FF).

Table B-17. USB Device Registers

Memory-Mapped
Address

Register
Name

See Section

0xFFC0 4400 USBD_ID “USB Device ID Register (USBD_ID)” on
page 14-16

0xFFC0 4402 USBD_FRM “Current USB Frame Number Register
(USBD_FRM)” on page 14-17

0xFFC0 4404 USBD_FRMAT “Match Value for USB Frame Number Regis-
ter (USBD_FRMAT)” on page 14-17

0xFFC0 4406 USBD_EPBUF “Enable Download of Configuration Into
UDC Core Register (USBD_EPBUF)” on
page 14-18

0xFFC0 4408 USBD_STAT “USBD Module Status Register
(USBD_STAT)” on page 14-19

0xFFC0 440A USBD_CTRL “USBD Module Configuration and Control
Register (USBD_CTRL)” on page 14-21

0xFFC0 440C USBD_GINTR “Global Interrupt Register (USBD_GINTR)”
on page 14-22

0xFFC0 440E USBD_GMASK “Global Interrupt Mask Register
(USBD_GMASK)” on page 14-24

0xFFC0 4440 USBD_DMACFG “DMA Master Channel Configuration Regis-
ter (USBD_DMACFG)” on page 14-24

0xFFC0 4442 USBD_DMABL “DMA Master Channel Base Address Low
Register (USBD_DMABL)” on page 14-25

0xFFC0 4444 USBD_DMABH “DMA Master Channel Base Address High
Register (USBD_DMABH)” on page 14-26

0xFFC0 4446 USBD_DMACT “DMA Master Channel Count Register
(USBD_DMACT)” on page 14-26

USB Device Registers

B-32 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 4448 USBD_DMAIRQ “DMA Master Channel DMA Interrupt Reg-
ister (USBD_DMAIRQ)” on page 14-27

0xFFC0 4480 USBD_INTR0 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 4482 USBD_MASK0 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 4484 USBD_EPCFG0 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 4486 USBD_EPADR0 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 4488 USBD_EPLEN0 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 448A USBD_INTR1 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 448C USBD_MASK1 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 448E USBD_EPCFG1 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 4490 USBD_EPADR1 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 4492 USBD_EPLEN1 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 4494 USBD_INTR2 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 4496 USBD_MASK2 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 4498 USBD_EPCFG2 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 449A USBD_EPADR2 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped
Address

Register
Name

See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-33

System MMR Assignments

0xFFC0 449C USBD_EPLEN2 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 449E USBD_INTR3 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 44A0 USBD_MASK3 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 44A2 USBD_EPCFG3 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 44A4 USBD_EPADR3 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 44A6 USBD_EPLEN3 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 44A8 USBD_INTR4 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 44AA USBD_MASK4 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 44AC USBD_EPCFG4 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 44AE USBD_EPADR4 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 44B0 USBD_EPLEN4 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 44B2 USBD_INTR5 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 44B4 USBD_MASK5 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 44B6 USBD_EPCFG5 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 44B8 USBD_EPADR5 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped
Address

Register
Name

See Section

USB Device Registers

B-34 ADSP-BF535 Blackfin Processor Hardware Reference

0xFFC0 44BA USBD_EPLEN5 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 44BC USBD_INTR6 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 44BE USBD_MASK6 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 44C0 USBD_EPCFG6 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 44C2 USBD_EPADR6 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 44C4 USBD_EPLEN6 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

0xFFC0 44C6 USBD_INTR7 “USB Endpoint x Interrupt Registers
(USBD_INTRx)” on page 14-27

0xFFC0 44C8 USBD_MASK7 “USB Endpoint x Mask Registers
(USBD_MASKx)” on page 14-29

0xFFC0 44CA USBD_EPCFG7 “USB Endpoint x Control Registers
(USBD_EPCFGx)” on page 14-31

0xFFC0 44CC USBD_EPADR7 “USB Endpoint x Address Offset Registers
(USBD_EPADRx)” on page 14-33

0xFFC0 44CE USBD_EPLEN7 “USB Endpoint x Buffer Length Registers
(USBD_EPLENx)” on page 14-34

Table B-17. USB Device Registers (Cont’d)

Memory-Mapped
Address

Register
Name

See Section

ADSP-BF535 Blackfin Processor Hardware Reference B-35

System MMR Assignments

System DMA Control Registers
Table B-18 lists the MMR assignments for the System DMA Control reg-
isters (0xFFC0 4880–0xFFC0 488F).

SDRAM Controller External Bus Interface
Unit

Table B-19 lists the MMR assignments for the SDRAM Controller Exter-
nal Bus Interface Unit registers (0xFFC0 4C00–0xFFC0 4FFF).

Table B-18. System DMA Control Registers

Memory-Mapped
Address

Register Name See Section

0xFFC0 4880 DMA_DBP “DMA Descriptor Base Pointer Register
(DMA_DBP)” on page 9-24

0xFFC0 4884 DB_ACOMP “DMA Bus Address Comparator Register
(DB_ACOMP)” on page 20-29

0xFFC0 4888 DB_CCOMP “DMA Bus Control Comparator Register
(DB_CCOMP)” on page 20-28

Table B-19. SDRAM Controller External Bus Interface Unit

Memory- Mapped
Address

Register Name See Section

0xFFC0 4C00 EBIU_SDGCTL “SDRAM Memory Global Control Register
(EBIU_SDGCTL)” on page 18-37

0xFFC0 4C04 EBIU_SDBCTL “SDRAM Memory Bank Control Register
(EBIU_SDBCTL)” on page 18-49

0xFFC0 4C0A EBIU_SDRRC “SDRAM Refresh Rate Control Register
(EBIU_SDRRC)” on page 18-54

0xFFC0 4C0E EBIU_SDSTAT “SDRAM Control Status Register
(EBIU_SDSTAT)” on page 18-53

SDRAM Controller External Bus Interface Unit

B-36 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 Blackfin Processor Hardware Reference C-1

C TEST FEATURES

The ADSP-BF535 processor is fully compatible with the IEEE 1149.1
Standard, also known as the Joint Test Action Group (JTAG) Standard.

The JTAG standard defines circuitry that may be built to assist in the test,
maintenance, and support of assembled printed circuit boards.The cir-
cuitry includes a standard interface through which instructions and test
data are communicated. A set of test features is defined, including a
Boundary-Scan register, such that the component can respond to a mini-
mum set of instructions designed to help test printed circuit boards.

The standard defines test logic that can be included in an integrated cir-
cuit to provide standardized approaches to:

• Testing the interconnections between integrated circuits once they
have been assembled onto a printed circuit board

• Testing the integrated circuit itself

• Observing or modifying circuit activity during normal component
operation

The test logic consists of a Boundary-Scan register and other building
blocks and is accessed through a Test Access port (TAP).

Full details of the JTAG standard can be found in the document IEEE
Standard Test Access Port and Boundary-Scan Architecture, ISBN
1-55937-350-4.

Boundary-Scan Architecture

C-2 ADSP-BF535 Blackfin Processor Hardware Reference

Boundary-Scan Architecture
The boundary-scan test logic consists of:

• A TAP, comprised of five pins (see Table C-1)

• A TAP controller that controls all sequencing of events through the
test registers

• An Instruction register (IR) that interprets 5-bit instruction codes
to select the test mode that performs the desired test operation

• Several data registers defined by the JTAG standard

The TAP controller is a synchronous, 16-state, finite-state machine con-
trolled by the TCK and TMS pins. Transitions to the various states in the
diagram occur on the rising edge of TCK and are defined by the state of the
TMS pin, here denoted by either a logic 1 or logic 0 state. For full details of
the operation, see the JTAG standard.

Figure C-1 shows the state diagram for the TAP controller.

Table C-1. Test Access Port Pins

Pin Name Input/Output Description

TDI Input Test Data Input

TMS Input Test Mode Select

TCK Input Test Clock

TRST Input Test Reset

TDO Output Test Data Out

ADSP-BF535 Blackfin Processor Hardware Reference C-3

Test Features

Note:

• The TAP controller enters the Test-Logic-Reset state when TMS is
held high after five (5) TCK cycles.

• The TAP controller enters the Test-Logic-Reset state when TRST is
asynchronously asserted.

• An external system reset does not affect the state of the TAP con-
troller, nor does the state of the TAP controller affect an external
system reset.

Figure C-1. TAP Controller State Diagram

Test-Logic_Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

1

1 1 1

1

1

1

1

1

1 1

1

1

1

1

1

0

0
0 0

0 0
0 0

0 0

0

0 0

0
0

0

Boundary-Scan Architecture

C-4 ADSP-BF535 Blackfin Processor Hardware Reference

Instruction Register
The instruction register is five bits wide and accommodates up to 32
boundary-scan instructions.

The instruction register holds both public and private instructions. The
JTAG standard requires some of the public instructions; other public
instructions are optional. Private instructions are reserved for the manu-
facturer’s use.

The Binary Decode column of Table C-2 shows the decode for the public
instructions. The Register column shows the serial scan paths.

Table C-2. Decode for Public JTAG-Scan Instructions

Instruction Name Binary Decode
01234

Register

EXTEST 00000 Boundary-Scan

MBIST_SCAN 00001

IDCODE 00010 CHIPID

MEMTEST_SCAN 00011

DBG_SCAN 00100

WRAPPER_SCAN 00101

RUNMBIST 00111

EMUIR_SCAN 01000

RESMBIST 01001

DC_MBIST_SOF 01011

IC_MBIST_SOF 01101

WRAPPER_MODE 01111

SAMPLE/PRELOAD 00001 Boundary-Scan

RS_WRAPPER_MODE 10010

EMUDAT_SCAN 10100

ADSP-BF535 Blackfin Processor Hardware Reference C-5

Test Features

Figure C-2 shows the instruction bit scan ordering for the paths shown in
Table C-2.

EMUPC_SCAN 10110

BYPASS 11111 Bypass

Figure C-2. Serial Scan Paths

Table C-2. Decode for Public JTAG-Scan Instructions (Cont’d)

Instruction Name Binary Decode
01234

Register

TDOTDI

468

467

466 2

1

0

31
30

CHIPID

1
0

4

3

2

1

0

1

Bypass Register

Boundary-Scan Register

JTAG Instruction Register

Boundary-Scan Architecture

C-6 ADSP-BF535 Blackfin Processor Hardware Reference

Public Instructions
The following are descriptions of the public JTAG scan instructions.

EXTEST – Binary Code 00000

The EXTEST instruction selects the Boundary-Scan register to be con-
nected between the TDI and TDO pins. This instruction allows testing of
on-board circuitry external to the device.

EXTEST allows internal data to be driven to the boundary outputs and
external data to be captured on the boundary inputs.

 To protect the internal logic when the boundary outputs are over-
driven or signals are received on the boundary inputs, make sure
that nothing else drives data on the ADSP-BF535 processor’s out-
put pins.

SAMPLE/PRELOAD – Binary Code 10000

The SAMPLE/PRELOAD instruction performs two functions and selects
the Boundary-Scan register to be connected between TDI and TDO. The
instruction has no effect on internal logic.

The SAMPLE part of the instruction allows a snapshot of the inputs and
outputs captured on the boundary-scan cells. Data is sampled on the ris-
ing edge of TCK.

The PRELOAD part of the instruction allows data to be loaded on the
device pins and driven out on the board with the EXTEST instruction.
Data is preloaded on the pins on the falling edge of TCK.

ADSP-BF535 Blackfin Processor Hardware Reference C-7

Test Features

IDCODE – Binary Code 00010

To connect with TDI and TDO, the IDCODE instruction selects the Chip ID
register (CHIPID), shown in Figure C-3. The instruction has no effect on
the internal logic.

As shown in Figure C-2, CHIPID is scanned out MSB first. For more infor-
mation on CHIPID, see “Product Identification Registers” on page 20-25.

Per the JTAG standard, CHIPID is selected by default during the
Test-Logic-Reset controller state.

BYPASS – Binary Code 11111

The BYPASS instruction selects the BYPASS register to be connected to TDI
and TDO. The instruction has no effect on the internal logic. No data
inversion should occur between TDI and TDO.

Figure C-3. Chip ID Register

Set to 1

Manufacturer ID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10 0 0 0 0 0 0 0 1 1 0 0 1 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

00 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Part Number

Part NumberVersion

Reset = 0x00CB

Reset = 0x0400

Chip ID Register (CHIPID)

Boundary-Scan Architecture

C-8 ADSP-BF535 Blackfin Processor Hardware Reference

Boundary-Scan Register
The Boundary-Scan register is 469 bits long. Table C-3 lists and defines
the latch type and function of each position in the scan path. The posi-
tions are numbered from 0 to 468. Bit 0 is the first bit output (closest to
TDO) and bit 468 is the last bit output (closest to TDI).

Table C-3. Scan Path Position Definitions

Position Type Signal Name

0 I NMI

1 O SUSPEND

2 OE SUSPEND OE

3 O TXEN

4 OE TXEN OE

5 O TXDMNS

6 OE TXDMNS OE

7 O TXDPLS

8 OE TXDPLS OE

9 I DMNS

10 I DPLS

11 I RESET

12 I XVER_DATA

13 I USB_CLK

14 O TX1

15 OE TX1 OE

16 I RX1

17 O TX0

18 OE TX0 OE

19 I RX0

ADSP-BF535 Blackfin Processor Hardware Reference C-9

Test Features

20 O TMR(2)

21 OE TMR(2) OE

22 I TMR(2)

23 O TMR(1)

24 OE TMR(1) OE

25 I TMR(1)

26 O TMR(0)

27 OE TMR(0) OE

28 I TMR(0)

29 O ADDR(2)

30 OE ADDR(2) OE

31 O ADDR(3)

32 OE ADDR(3) OE

33 O ADDR(4)

34 OE ADDR(4) OE

35 O ADDR(5)

36 OE ADDR(5) OE

37 O ADDR(6)

38 OE ADDR(6) OE

39 O ADDR(7)

40 OE ADDR(7) OE

41 O ADDR(8)

42 OE ADDR(8) OE

43 O ADDR(9)

44 OE ADDR(9) OE

45 O ADDR(10)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-10 ADSP-BF535 Blackfin Processor Hardware Reference

46 OE ADDR(10) OE

47 O ADDR(11)

48 OE ADDR(11) OE

49 O ADDR(12)

50 OE ADDR(12) OE

51 O ADDR(13)

52 OE ADDR(13) OE

53 O ADDR(14)

54 OE ADDR(14) OE

55 O ADDR(15)

56 OE ADDR(15) OE

57 O ADDR(16)

58 OE ADDR(16) OE

59 O ADDR(17)

60 OE ADDR(17) OE

61 O ADDR(18)

62 OE ADDR(18) OE

63 O ADDR(19)

64 OE ADDR(19) OE

65 O ADDR(20)

66 OE ADDR(20) OE

67 O ADDR(21)

68 OE ADDR(21) OE

69 O ADDR(22)

70 OE ADDR(22) OE

71 O ADDR(23)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-11

Test Features

72 OE ADDR(23) OE

73 O ADDR(24)

74 OE ADDR(24) OE

75 O ADDR(25)

76 OE ADDR(25) OE

77 O ABE_SDQM(0)

78 OE ABE_SDQM(0) OE

79 O ABE_SDQM(1)

80 OE ABE_SDQM(1) OE

81 O ABE_SDQM(2)

82 OE ABE_SDQM(2) OE

83 O ABE_SDQM(3)

84 OE ABE_SDQM(3) OE

85 O AMS(0)

86 OE AMS(0) OE

87 O AMS(1)

88 OE AMS(1) OE

89 O AMS(2)

90 OE AMS(2) OE

91 O AMS(3)

92 OE AMS(3) OE

93 O AOE

94 OE AOE OE

95 O ARE

96 OE ARE OE

97 O AWE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-12 ADSP-BF535 Blackfin Processor Hardware Reference

98 OE AWE OE

99 O CLKOUT_SCLK1

100 -- Reserved

101 O SCLK0

102 -- Reserved

103 O SCKE

104 OE SCKE OE

105 O SA10

106 OE SA10 OE

107 O SRAS

108 OE SRAS OE

109 O SWE

110 OE SWE OE

111 O SMS(3)

112 OE SMS(3) OE

113 O SMS(2)

114 OE SMS(2) OE

115 O SMS(1)

116 OE SMS(1) OE

117 O SMS(0)

118 OE SMS(0) OE

119 O SCAS

120 OE SCAS OE

121 I ARDY

122 O DATA(0)

123 OE DATA(0) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-13

Test Features

124 I DATA(0)

125 O DATA(1)

126 OE DATA(1) OE

127 I DATA(1)

128 O DATA(2)

129 OE DATA(2) OE

130 I DATA(2)

131 O DATA(3)

132 OE DATA(3) OE

133 I DATA(3)

134 O DATA(4)

135 OE DATA(4) OE

136 I DATA(4)

137 O DATA(5)

138 OE DATA(5) OE

139 I DATA(5)

140 O DATA(6)

141 OE DATA(6) OE

142 I DATA(6)

143 O DATA(7)

144 OE DATA(7) OE

145 I DATA(7)

146 O DATA(8)

147 OE DATA(8) OE

148 I DATA(8)

149 O DATA(9)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-14 ADSP-BF535 Blackfin Processor Hardware Reference

150 OE DATA(9) OE

151 I DATA(9)

152 O DATA(10)

153 OE DATA(10) OE

154 I DATA(10)

155 O DATA(11)

156 OE DATA(11) OE

157 I DATA(11)

158 O DATA(12)

159 OE DATA(12) OE

160 I DATA(12)

161 O DATA(13)

162 OE DATA(13) OE

163 I DATA(13)

164 O DATA(14)

165 OE DATA(14) OE

166 I DATA(14)

167 O DATA(15)

168 OE DATA(15) OE

169 I DATA(15)

170 O DATA(16)

171 OE DATA(16) OE

172 I DATA(16)

173 O DATA(17)

174 OE DATA(17) OE

175 I DATA(17)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-15

Test Features

176 O DATA(18)

177 OE DATA(18) OE

178 I DATA(18)

179 O DATA(19)

180 OE DATA(19) OE

181 I DATA(19)

182 O DATA(20)

183 OE DATA(20) OE

184 I DATA(20)

185 O DATA(21)

186 OE DATA(21) OE

187 I DATA(21)

188 O DATA(22)

189 OE DATA(22) OE

190 I DATA(22)

191 O DATA(23)

192 OE DATA(23) OE

193 I DATA(23)

194 O DATA(24)

195 OE DATA(24) OE

196 I DATA(24)

197 O DATA(25)

198 OE DATA(25) OE

199 I DATA(25)

200 O DATA(26)

201 OE DATA(26) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-16 ADSP-BF535 Blackfin Processor Hardware Reference

202 I DATA(26)

203 O DATA(27)

204 OE DATA(27) OE

205 I DATA(27)

206 O DATA(28)

207 OE DATA(28) OE

208 I DATA(28)

209 O DATA(29)

210 OE DATA(29) OE

211 I DATA(29)

212 O DATA(30)

213 OE DATA(30) OE

214 I DATA(30)

215 O DATA(31)

216 OE DATA(31) OE

217 I DATA(31)

218 O PF(0)

219 OE PF(0) OE

220 I PF(0)

221 O PF(1)

222 OE PF(1) OE

223 I PF(1)

224 O PF(2)

225 OE PF(2) OE

226 I PF(2)

227 O PF(3)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-17

Test Features

228 OE PF(3) OE

229 I PF(3)

230 O PF(4)

231 OE PF(4) OE

232 I PF(4)

233 O PF(5)

234 OE PF(5) OE

235 I PF(5)

236 O PF(6)

237 OE PF(6) OE

238 I PF(6)

239 O PF(7)

240 OE PF(7) OE

241 I PF(7)

242 O PF(8)

243 OE PF(8) OE

244 I PF(8)

245 O PF(9)

246 OE PF(9) OE

247 I PF(9)

248 O PF(10)

249 OE PF(10) OE

250 I PF(10)

251 O PF(11)

252 OE PF(11) OE

253 I PF(11)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-18 ADSP-BF535 Blackfin Processor Hardware Reference

254 O PF(12)

255 OE PF(12) OE

256 I PF(12)

257 O PF(13)

258 OE PF(13) OE

259 I PF(13)

260 O PF(14)

261 OE PF(14) OE

262 I PF(14)

263 O PF(15)

264 OE PF(15) OE

265 I PF(15)

266 O RSCLK0

267 OE RSCLK0 OE

268 I RSCLK0

269 O RFS0

270 OE RFS0 OE

271 I RFS0

272 I DR0

273 O TSCLK0

274 OE TSCLK0 OE

275 I TSCLK0

276 O TFS0

277 OE TFS0 OE

278 I TFS0

279 O DT0

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-19

Test Features

280 OE DT0 OE

281 O RSCLK1

282 OE RSCLK1 OE

283 I RSCLK1

284 O RFS1

285 OE RFS1 OE

286 I RFS1

287 I DR1

288 O TSCLK1

289 OE TSCLK1 OE

290 I TSCLK1

291 O TFS1

292 OE TFS1 OE

293 I TFS1

294 O DT1

295 OE DT1 OE

296 O MOSI0

297 OE MOSI0 OE

298 I MOSI0

299 O MISO0

300 OE MISO0 OE

301 I MISO0

302 O SCK0

303 OE SCK0 OE

304 I SCK0

305 O MOSI1

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-20 ADSP-BF535 Blackfin Processor Hardware Reference

306 OE MOSI1 OE

307 I MOSI1

308 O MISO1

309 OE MISO1 OE

310 I MISO1

311 O SCK1

312 OE SCK1 OE

313 I SCK1

314 O PCI_AD(31)

315 OE PCI_AD(31) OE

316 I PCI_AD(31)

317 O PCI_AD(30)

318 OE PCI_AD(30) OE

319 I PCI_AD(30)

320 O PCI_AD(29)

321 OE PCI_AD(29) OE

322 I PCI_AD(29)

323 O PCI_AD(28)

324 OE PCI_AD(28) OE

325 I PCI_AD(28)

326 O PCI_AD(27)

327 OE PCI_AD(27) OE

328 I PCI_AD(27)

329 O PCI_AD(26)

330 OE PCI_AD(26) OE

331 I PCI_AD(26)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-21

Test Features

332 O PCI_AD(25)

333 OE PCI_AD(25) OE

334 I PCI_AD(25)

335 O PCI_AD(24)

336 OE PCI_AD(24) OE

337 I PCI_AD(24)

338 O PCI_AD(23)

339 OE PCI_AD(23) OE

340 I PCI_AD(23)

341 O PCI_AD(22)

342 OE PCI_AD(22) OE

343 I PCI_AD(22)

344 O PCI_AD(21)

345 OE PCI_AD(21) OE

346 I PCI_AD(21)

347 O PCI_AD(20)

348 OE PCI_AD(20) OE

349 I PCI_AD(20)

350 O PCI_AD(19)

351 OE PCI_AD(19) OE

352 I PCI_AD(19)

353 O PCI_AD(18)

354 OE PCI_AD(18) OE

355 I PCI_AD(18)

356 O PCI_AD(17)

357 OE PCI_AD(17) OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-22 ADSP-BF535 Blackfin Processor Hardware Reference

358 I PCI_AD(17)

359 O PCI_AD(16)

360 OE PCI_AD(16) OE

361 I PCI_AD(16)

362 O PCI_AD(15)

363 OE PCI_AD(15) OE

364 I PCI_AD(15)

365 O PCI_AD(14)

366 OE PCI_AD(14) OE

367 I PCI_AD(14)

368 O PCI_AD(13)

369 OE PCI_AD(13) OE

370 I PCI_AD(13)

371 O PCI_AD(12)

372 OE PCI_AD(12) OE

373 I PCI_AD(12)

374 O PCI_AD(11)

375 OE PCI_AD(11) OE

376 I PCI_AD(11)

377 O PCI_AD(10)

378 OE PCI_AD(10) OE

379 I PCI_AD(10)

380 O PCI_AD(9)

381 OE PCI_AD(9) OE

382 I PCI_AD(9)

383 O PCI_AD(8)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-23

Test Features

384 OE PCI_AD(8) OE

385 I PCI_AD(8)

386 O PCI_AD(7)

387 OE PCI_AD(7) OE

388 I PCI_AD(7)

389 O PCI_AD(6)

390 OE PCI_AD(6) OE

391 I PCI_AD(6)

392 O PCI_AD(5)

393 OE PCI_AD(5) OE

394 I PCI_AD(5)

395 O PCI_AD(4)

396 OE PCI_AD(4) OE

397 I PCI_AD(4)

398 O PCI_AD(3)

399 OE PCI_AD(3) OE

400 I PCI_AD(3)

401 O PCI_AD(2)

402 OE PCI_AD(2) OE

403 I PCI_AD(2)

404 O PCI_AD(1)

405 OE PCI_AD(1) OE

406 I PCI_AD(1)

407 O PCI_AD(0)

408 OE PCI_AD(0) OE

409 I PCI_AD(0)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-24 ADSP-BF535 Blackfin Processor Hardware Reference

410 O PCI_CBE(0)

411 OE PCI_CBE(0) OE

412 I PCI_CBE(0)

413 O PCI_CBE(1)

414 OE PCI_CBE(1) OE

415 I PCI_CBE(1)

416 O PCI_CBE(2)

417 OE PCI_CBE(2) OE

418 I PCI_CBE(2)

419 O PCI_CBE(3)

420 OE PCI_CBE(3) OE

421 I PCI_CBE(3)

422 O PCI_IRDY

423 OE PCI_IRDY OE

424 I PCI_IRDY

425 O PCI_RST

426 OE PCI_RST OE

427 I PCI_RST

428 O PCI_REQ

429 OE PCI_REQ OE

430 I PCI_GNT

431 I PCI_IDSEL

432 O PCI_FRAME

433 OE PCI_FRAME OE

434 I PCI_FRAME

435 O PCI_TRDY

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference C-25

Test Features

436 OE PCI_TRDY OE

437 I PCI_TRDY

438 O PCI_DEVSEL

439 OE PCI_DEVSEL OE

440 I PCI_DEVSEL

441 O PCI_STOP

442 OE PCI_STOP OE

443 I PCI_STOP

444 O PCI_PERR

445 OE PCI_PERR OE

446 I PCI_PERR

447 O PCI_PAR

448 OE PCI_PAR OE

449 I PCI_PAR

450 O PCI_SERR

451 OE PCI_SERR OE

452 I PCI_SERR

453 I PCI_LOCK

454 I PCI_CLK

455 O PCI_INTA

456 OE PCI_INTA OE

457 I PCI_INTA

458 I PCI_INTB

459 I PCI_INTC

460 I PCI_INTD

461 I BMODE(0)

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

Boundary-Scan Architecture

C-26 ADSP-BF535 Blackfin Processor Hardware Reference

462 I BMODE(1)

463 I BMODE(2)

464 O SLEEP

465 OE SLEEP OE

466 I BYPASS

467 O EMU

468 OE EMU OE

Table C-3. Scan Path Position Definitions (Cont’d)

Position Type Signal Name

ADSP-BF535 Blackfin Processor Hardware Reference D-1

D NUMERIC FORMATS

Blackfin family processors support 8-, 16-, and 32-bit fixed-point data in
hardware. Special features in the computation units allow support of other
formats in software. This appendix describes various aspects of these data
formats. It also describes how to implement a block floating-point format
in software.

Unsigned or Signed: Two’s-Complement
Format

Unsigned integer numbers are positive, and no sign information is con-
tained in the bits. Therefore, the value of an unsigned integer is
interpreted in the usual binary sense. The least significant words of multi-
ple-precision numbers are treated as unsigned numbers.

Signed numbers supported by the Blackfin family are in two’s-comple-
ment format. Signed-magnitude, one’s-complement, BCD or excess-n
formats are not supported.

Integer or Fractional
The Blackfin family supports both fractional and integer data formats. In
an integer, the radix point is assumed to lie to the right of the LSB, so that
all magnitude bits have a weight of 1 or greater. This format is shown in
Figure D-1. Note in two’s-complement format, the sign bit has a negative
weight.

Integer or Fractional

D-2 ADSP-BF535 Blackfin Processor Hardware Reference

In a fractional format, the assumed radix point lies within the number, so
that some or all of the magnitude bits have a weight of less than 1. In the
format shown in Figure D-2, the assumed radix point lies to the left of the
3 LSBs, and the bits have the weights indicated.

The native formats for the Blackfin family are a signed fractional 1.M for-
mat and an unsigned fractional 0.N format, where N is the number of bits
in the data word and M = N–1.

Figure D-1. Integer Format

Signed Integer

Unsigned Integer

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214- (215)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 202122213214215

ADSP-BF535 Blackfin Processor Hardware Reference D-3

Numeric Formats

The notation used to describe a format consists of two numbers separated
by a period (.); the first number is the number of bits to the left of the
radix point, the second is the number of bits to the right of the radix
point. For example, 16.0 format is an integer format; all bits lie to the left
of the radix point. The format in Figure D-2 is 13.3.

Figure D-2. Example of Fractional Format

Signed Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211- (212)

34

2021

Unsigned Fractional (13.3)

Bit

Weight

Sign Bit

Radix Point

01215 14 13

. . . 2-32-22-1210211212

34

2021

Binary Multiplication

D-4 ADSP-BF535 Blackfin Processor Hardware Reference

Table D-1 shows the ranges of signed numbers representable in the frac-
tional formats that are possible with 16 bits.

Binary Multiplication
In addition and subtraction, both operands must be in the same format
(signed or unsigned, radix point in the same location) and the result for-
mat is the same as the input format. Addition and subtraction are
performed the same way whether the inputs are signed or unsigned.

Table D-1. Fractional Formats and Their Ranges

Format # of
Integer
Bits

of
Fractional
Bits

Max Positive Value
(0x7FFF) In Decimal

Max Negative
Value (0x8000)
In Decimal

Value of 1 LSB
(0x0001) In Decimal

1.15 1 15 0.999969482421875 –1.0 0.000030517578125

2.14 2 14 1.999938964843750 –2.0 0.000061035156250

3.13 3 13 3.999877929687500 –4.0 0.000122070312500

4.12 4 12 7.999755859375000 –8.0 0.000244140625000

5.11 5 11 15.999511718750000 –16.0 0.000488281250000

6.10 6 10 31.999023437500000 –32.0 0.000976562500000

7.9 7 9 63.998046875000000 –64.0 0.001953125000000

8.8 8 8 127.996093750000000 –128.0 0.003906250000000

9.7 9 7 255.992187500000000 –256.0 0.007812500000000

10.6 10 6 511.984375000000000 –512.0 0.015625000000000

11.5 11 5 1023.968750000000000 –1024.0 0.031250000000000

12.4 12 4 2047.937500000000000 –2048.0 0.062500000000000

13.3 13 3 4095.875000000000000 –4096.0 0.125000000000000

14.2 14 2 8191.750000000000000 –8192.0 0.250000000000000

15.1 15 1 16383.500000000000000 –16384.0 0.500000000000000

16.0 16 0 32767.000000000000000 –32768.0 1.000000000000000

ADSP-BF535 Blackfin Processor Hardware Reference D-5

Numeric Formats

In multiplication, however, the inputs can have different formats, and the
result depends on their formats. The Blackfin family assembly language
allows you to specify whether the inputs are both signed, both unsigned,
or one of each (mixed-mode). The location of the radix point in the result
can be derived from its location in each of the inputs. This is shown in
Figure D-3. The product of two 16-bit numbers is a 32-bit number. If the
inputs’ formats are M.N and P.Q, the product has the format
(M+P).(N+Q). For example, the product of two 13.3 numbers is a 26.6
number. The product of two 1.15 numbers is a 2.30 number.

Fractional Mode and Integer Mode
A product of 2 two’s-complement numbers has two sign bits. Since one of
these bits is redundant, you can shift the entire result left one bit. Addi-
tionally, if one of the inputs was a 1.15 number, the left shift causes the
result to have the same format as the other input (with 16 bits of addi-
tional precision). For example, multiplying a 1.15 number by a 5.11
number yields a 6.26 number. When shifted left one bit, the result is a
5.27 number, or a 5.11 number plus 16 LSBs.

Figure D-3. Format of Multiplier Result

General Rule 4-Bit Example 16-Bit Examples

M.N
x P.Q

(M+P).(N+Q)

1.111 (1.3 Format)
x 11.11 (2.2 Format)

1111
1111

1111
1111

111.00001 (3.5 Format = (1+2).(2+3))

5.3
x 5.3

10.6

1.15
x 1.15

2.30

Block Floating-Point Format

D-6 ADSP-BF535 Blackfin Processor Hardware Reference

The Blackfin family provides a means (a signed fractional mode) by which
the multiplier result is always shifted left one bit before being written to
the result register. This left shift eliminates the extra sign bit when both
operands are signed, yielding a correctly formatted result.

When both operands are in 1.15 format, the result is 2.30 (30 fractional
bits). A left shift causes the multiplier result to be 1.31 which can be
rounded to 1.15. Thus, if you use a signed fractional data format, it is
most convenient to use the 1.15 format.

For more information about data formats, see the data formats listed in
Table 2-2 on page 2-11.

Block Floating-Point Format
A block floating-point format enables a fixed-point processor to gain some
of the increased dynamic range of a floating-point format without the
overhead needed to do floating-point arithmetic. Some additional pro-
gramming is required to maintain a block floating-point format, however.

A floating-point number has an exponent that indicates the position of the
radix point in the actual value. In block floating-point format, a set
(block) of data values share a common exponent. A block of fixed-point
values can be converted to block floating-point format by shifting each
value left by the same amount and storing the shift value as the block
exponent.

Typically, block floating-point format allows you to shift out non-signifi-
cant MSBs, increasing the precision available in each value. Block
floating-point format can also be used to eliminate the possibility of a data
value overflowing. Figure D-4 shows an example. In the example, each of
the three data samples has at least two non-significant, redundant sign
bits. Each data value can grow by these two bits (two orders of magnitude)
before overflowing; thus, these bits are called guard bits.

ADSP-BF535 Blackfin Processor Hardware Reference D-7

Numeric Formats

If it is known that a process will not cause any value to grow by more than
the two guard bits, then the process can be run without loss of data. After-
ward, however, the block must be adjusted to replace the guard bits before
the next process.

Figure D-5 shows the data after processing but before adjustment. The
block floating-point adjustment is performed as follows.

• Assume that the output of the SIGNBITS instruction is SB and SB is
used as an argument in the EXPADJ instruction (see Blackfin Proces-
sor Programming Reference for the usage and syntax of these
instructions). Initially, the value of SB is –2, corresponding to the 2
guard bits. During processing, each resulting data value is
inspected by the EXPADJ instruction, which counts the number of
redundant sign bits and adjusts SB if the number of redundant sign
bits is less than 2. In this example, SB = –1 after processing, indi-
cating that the block of data must be shifted right one bit to
maintain the 2 guard bits.

• If SB were 0 after processing, the block would have to be shifted
two bits right. In either case, the block exponent is updated to
reflect the shift.

Figure D-4. Data With Guard Bits

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

To detect bit growth into 2 guard bits, set SB = –2

Block Floating-Point Format

D-8 ADSP-BF535 Blackfin Processor Hardware Reference

Figure D-5. Block Floating-Point Adjustment

Sign Bit

1 Guard Bit

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x3FFF = 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x07FF = 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

2. Shift right to restore guard bits

Sign Bit

2 Guard Bits

0x0FFF = 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

0x1FFF = 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0x03FF = 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

1. Check for bit growth

Exponent = –2, SB = –2

Exponent = –1, SB = –1

Exponent = –4, SB = –1

EXPADJ instruction checks
exponent, adjusts SB

ADSP-BF535 Blackfin Processor Hardware Reference G-1

G GLOSSARY

ALU.

See Arithmetic/Logic Unit

AMC (Asynchronous Memory Controller).

A configurable memory controller for separate banks of memory, where
each bank can be independently programmed with different timing
parameters.

Arithmetic/Logic Unit (ALU).

A processor component that performs arithmetic, comparative and logical
functions.

asynchronous transfers.

Host accesses of the processor that occur intermittently rather than as a
steady stream.

Bank Activate command.

The Bank Activate command causes the SDRAM to open an internal bank
(specified by the bank address) in a row (specified by the row address).
When the Bank Activate command is issued to the SDRAM, the SDRAM
opens a new row address and the new bank address. The memory in the
open internal bank and row is referred to as the open page. The Bank
Activate command must be applied before a read or write command. The
SDC does not interleave SDRAM accesses, so only one internal bank in a
row is open at a time.

G-2 ADSP-BF535 Blackfin Processor Hardware Reference

base address.

The starting address of a circular buffer that the DAG wraps around.

Base register.

A DAG register that sets up the starting address for a circular buffer.

bit-reversed addressing.

The process in which the DAG provides a bit-reversed address during a
data move without reversing the stored address.

Boot memory space.

Internal memory space designated for a program that is loaded by the
EPROM after powerup or after a software reset.

burst length.

The burst length determines the number of words that the SDRAM device
stores or delivers after detecting a single write or read command, respec-
tively. The burst length is selected by writing certain bits in the SDRAM’s
mode register during the SDRAM power-up sequence.

The SDC supports only Burst Length = 1 mode. During a burst to
SDRAM, the SDC applies the read or write command every cycle and
keeps accessing the data.

Burst Stop command.

The Burst Stop command is one of several ways to terminate a burst read
or write operation.

Since the SDRAM burst length is always programmed to be 1, the SDC
does not support the Burst Stop command.

ADSP-BF535 Blackfin Processor Hardware Reference G-3

burst type.

The burst type determines the address order in which the SDRAM deliv-
ers burst data after detecting a read command or stores burst data after
detecting a write command. The burst type is programmed in the
SDRAM during the SDRAM power-up sequence.

Since the SDRAM burst length is always programmed to be 1, the burst
type does not matter. However, the SDC always sets the burst type to
sequential-accesses-only during the SDRAM power-up sequence.

cache block.

The smallest unit of memory that is transferred to/from the next level of
memory from/to a cache as a result of a cache miss.

cache hit.

A memory access that is satisfied by a valid, present entry in the cache.

cache line.

Same as block. In this document, cache line is used for cache block.

cache miss.

A memory access that does not match any valid entry in the cache.

Cacheability Protection Lookaside Buffer (CPLB).

Storage area that describes the access characteristics of the core memory
map.

CAM (Content Addressable Memory).

Also called Associative Memory. A memory device that includes compari-
son logic with each bit of storage. A datum is broadcast to all words in
memory; the datum is compared with the stored values; and values that
match are flagged.

G-4 ADSP-BF535 Blackfin Processor Hardware Reference

CAS (Column Address Strobe).

A signal sent from the memory management unit (MMU) to a DRAM
device to indicate that the column address lines are valid.

CAS latency (also tAA, tCAC, CL).

The column address strobe (CAS) latency is the delay in clock cycles
between when the SDRAM detects the read command and when it pro-
vides the data at its output pins. The CAS latency is programmed in the
SDRAM Mode register during the power-up sequence.

The speed grade of the SDRAM and the SCLK[0] frequency determine the
value of the CAS latency. The SDC can support CAS latency of 2 or 3
clock cycles. The selected CAS latency value must be programmed into
the SDRAM Memory Global Control register (EBIU_SDGCTL) before the
SDRAM power-up sequence. See “SDRAM Memory Global Control Reg-
ister (EBIU_SDGCTL)” on page 18-37.

CBR (CAS Before RAS) memory refresh.

DRAM devices have a built-in counter for the refresh row address. By
activating CAS before activating RAS, this counter is selected to supply
the row address instead of the address inputs.

CEC.

See Core Event Controller

circular buffer addressing.

The process by which the DAG “wraps around” or repeatedly steps
through a range of registers.

companding

(compressing/expanding). The process of logarithmically encoding and
decoding data to minimize the number of bits that must be sent.

ADSP-BF535 Blackfin Processor Hardware Reference G-5

conditional branches.

Jump or call/return instructions whose execution is based on testing an if
condition.

core.

For the ADSP-BF535 processor, the processor, L1 memory, Event Con-
troller, core timer, and Performance Monitoring registers.

Core Event Controller (CEC).

Part of the ADSP-BF535 processor’s 2-stage event-control mechanism.
The CEC works with the System Interrupt Controller (SIC) to prioritize
and control all system interrupts. The CEC handles general-purpose inter-
rupts and interrupts routed from the SIC.

CPLB.

See Cacheability Protection Lookaside Buffer

DAB.

See DMA access bus

DAG.

See Data Address Generator

Data Address Generator (DAG).

Processing component that provides memory addresses when data is trans-
ferred between memory and registers.

Data Register File.

A set of data registers that transfers data between the data buses and the
computation units and provide local storage for operands.

G-6 ADSP-BF535 Blackfin Processor Hardware Reference

data registers (Dreg).

Registers located in the computational units that hold operands for multi-
plier, ALU, or shifter operations.

delayed branch.

Jump or call/return instruction with the delayed branches modifier. In
delayed branches, two (instead of four) instruction cycles are lost in the
pipeline, because the processor executes the two instructions after the
branch while the pipeline fills with instructions from the new branch.

descriptor block, DMA.

A set of parameters used by the DMA controller to describe a set of DMA
sequences. When successive DMA sequences are needed, the descriptor
blocks are chained together so that the completion of one DMA sequence
autoinitiates and starts the next sequence.

descriptor loading, DMA.

The process in which the processor’s DMA controller downloads a DMA
descriptor from data memory and autoinitializes the DMA parameter
registers.

DFT (Design For Testability).

A set of techniques that help designers of digital systems ensure that those
system will be testable.

Digital Signal Processor.

An integrated circuit designated for high-speed manipulation of analog
information that has been converted into digital form.

direct branches.

Jump or call/return instructions that use an absolute address that does not
change at runtime, such as a program label, or use a PC-relative address.

ADSP-BF535 Blackfin Processor Hardware Reference G-7

direct-mapped.

Cache architecture where each line has only one place that it can appear in
the cache. Also described as 1-Way associative.

Direct Memory Access (DMA).

A way of moving data between system devices and memory in which the
data are transferred through a DMA port without involving the processor
(see PIO).

dirty, modified.

A state bit, stored along with the tag, indicating whether the data in the
data cache line has been changed since it was copied from the source
memory and, therefore, needs to be updated in that source memory.

DMA.

See Direct Memory Access

DMA Access Bus (DAB).

A peripheral bus that allows DMA capable peripherals to gain access to
memory.

DMA chaining.

The linking or chaining of multiple DMA sequences. In chained DMA,
the I/O processor loads the next DMA descriptor into the DMA parame-
ter registers when the current DMA finishes and autoinitializes the next
DMA sequence.

DMA descriptor registers.

Registers that hold the setup information for a DMA process.

G-8 ADSP-BF535 Blackfin Processor Hardware Reference

DPMC (Dynamic Power Management Controller).

An ADSP-BF535 processor’s control block that allows the user to dynam-
ically control the processor’s performance characteristics and power
dissipation.

DQM Data I/O Mask Function.

The SDQM[3:0] pins provide a byte-masking capability on 8- or 16-bit
writes to SDRAM. The SDQM[3:0] pins are not used to mask data on read
cycles. For 16-bit wide SDRAM, only SDQM[1:0] are needed for byte
masking.

DRAM (Dynamic Random-Access Memory).

A type of semiconductor memory in which the data are stored as electrical
charges in an array of cells, each consisting of a capacitor and a transistor.
The cells are arranged on a chip in a grid of rows and columns. Since the
capacitors discharge gradually—and the cells lose their information—the
array of cells has to be refreshed periodically.

DSP.

See Digital Signal Processor

EAB.

See External Access Bus

EBC.

See External Bus Controller

EBIU.

See External Bus Interface Unit

EMB.

See External Mastered Bus

ADSP-BF535 Blackfin Processor Hardware Reference G-9

EPROM (Erasable Programmable Read-Only Memory).

A type of semiconductor memory in which the data is stored as electrical
charges in isolated (“floating”) transistor gates that retain their charges
almost indefinitely without an external power supply. An EPROM is pro-
grammed by “injecting” charge into the floating gates, a process that
requires relatively high voltage (usually 12V – 25V). Ultraviolet light,
applied to the chip’s surface through a quartz window in the package, will
discharge the floating gates, allowing the chip to be reprogrammed.

EVT (Event Vector Table).

A table stored in low memory that contains sixteen 32-bit entries; each
entry contains a vector address for an interrupt service routine (ISR).
When an event occurs, instruction fetch starts at the address location in
the corresponding EVT entry. See ISR.

exclusive, clean.

The state of a data cache line, indicating that the line is valid and that the
data contained in the line matches that in the source memory. The data in
a clean cache line does not need to be written to source memory before it
is replaced.

External Bus Interface Unit (EBIU).

A component that provides glueless interfaces to external memories. It ser-
vices requests for external memory from the core, from the PCI bridge, or
from a DMA channel.

External Access Bus (EAB).

A line or bus that allows the processor core and Memory DMA controller
to directly access off-chip memory and PCI memory space to perform
instruction fetches, data loads, data stores, and high-throughput mem-
ory-to-memory DMA transfers.

G-10 ADSP-BF535 Blackfin Processor Hardware Reference

External Bus Controller (EBC).

A component that provides arbitration between the EAB and EMB buses,
granting at most one requester per cycle.

External Mastered Bus (EMB).

A line or bus that allows the PCI to directly access internal L2 memory,
off-chip memory, and the system MMRs.

edge-sensitive interrupt.

A signal or interrupt that the processor detects if the input signal is high
(inactive) on one cycle and low (active) on the next cycle when sampled on
the rising edge of CLKIN.

Endian format.

The ordering of bytes in a multibyte number. The processor uses big
endian format—moves data starting with most-significant-bit and finish-
ing with least significant bit—in almost all instances. The two exceptions
are bit order for data transfer through the serial port and word order for
packing through the external port. For compatibility with little endian
(least significant first) peripherals, the processor supports both big and lit-
tle endian bit order data transfers. Also for compatibility little endian
hosts, the processor supports both big and little endian word order data
transfers.

external port.

A channel or port that extends the processors internal address and data
buses off-chip, providing the processor’s interface to off-chip memory and
peripherals.

ADSP-BF535 Blackfin Processor Hardware Reference G-11

FFT (Fast Fourier Transform).

An algorithm for computing the Fourier transform of a set of discrete data
values. The FFT expresses a finite set of data points, for example a
periodic sampling of a real-world signal, in terms of its component fre-
quencies. Or conversely, the FFT reconstructs a signal from the frequency
data. The FFT can also be used to multiply two polynomials. (For Jean
Baptiste Joseph Fourier, 1768 – 1830, a French mathematician.)

FIFO (First In, First Out).

A hardware buffer or data structure from which items are taken out in the
same order they were put in. Also known as a “shelf” from the analogy of
pushing items onto one end of a shelf so that they fall off the other.

flag update.

A refresh from the processor to the status flags that occurs at the end of
the cycle in which the status is generated. The flag update is available on
the next cycle.

flash memory.

A type of single transistor cell, erasable memory in which erasing can only
be done in blocks or for the entire chip.

Field Programmable Gate Array (FPGA).

A digital logic chip that can be programmed after production and that
contains many thousands of gates.

FPGA.

See Field Programmable Gate Array.

fully associative.

Cache architecture where each line can be placed anywhere in the cache.

G-12 ADSP-BF535 Blackfin Processor Hardware Reference

glueless.

No external hardware is required.

GSM (Global System for Mobile Communications).

A digital mobile telephone system that is widely used in Europe and other
parts of the world. GSM uses a variation of time division multiple access
(TDMA) and operates at either the 900 MHz or 1800 MHz frequency
band.

Harvard architecture.

A memory architecture that uses separate buses for program and data stor-
age. The two buses let the processor get a data word and an instruction
simultaneously.

HLL (High Level Language).

A programming language that provides some level of abstraction above
assembly language, often using English-like statements, where each com-
mand or statement corresponds to several machine instructions.

IDLE.

An instruction that causes the processor to cease operations, holding its
current state until an interrupt occurs. Then, the processor services the
interrupt and continues normal execution.

IEEE (Institute of Electrical and Electronics Engineers).

An international technical professional society, based in the United States.

index.

Address portion that is used to select an array element (for example, line
index)

ADSP-BF535 Blackfin Processor Hardware Reference G-13

Index registers.

A DAG register that holds an address and acts as a pointer to memory.

indirect branches.

Jump or call/return instructions that use a dynamic address from the data
address generator, evaluated at runtime.

I/O processor.

DMA controllers, DMA channel arbitration, and peripheral-to-bus con-
nections that handle input and output operations relieving the burden on
the processor. The ADSP-BF535 processor uses a distributed DMA archi-
tecture with DMA controllers for each DMA capable peripheral. Most
ports have some direct (non-DMA) access to internal memory and I/O
memory.

I/O processor register.

One of the control, status, or data buffer registers of the processor’s
on-chip I/O processor.

input clock.

Device that generates a steady stream of timing signals to provide the fre-
quency, duty cycle, and stability to allow accurate internal clock
multiplication via the PLL module.

internal memory bank.

There are several internal memory banks on a given SDRAM row. An
internal bank in a specific row cannot be activated (opened) until the pre-
vious internal bank in that row has been precharged.

The SDC does not support interleaved accesses. The bank address can be
thought of as part of the row address. The SDC also assumes that all
SDRAMs to which it interfaces have four internal banks.

G-14 ADSP-BF535 Blackfin Processor Hardware Reference

Do not confuse these “SDRAM internal banks” which are internal to the
SDRAM and are selected with the bank address, with the four “SDRAM
banks,” or “external banks,” that are enabled by the SMS[3:0] pins.

interrupt.

An event that suspends normal processing and temporarily diverts the flow
of control through an interrupt service routine (ISR). See ISR.

invalid.

Describes the state of a cache line. When a cache line is invalid, a cache
line match cannot occur.

IrDA (Infrared Data Association).

A nonprofit trade association that established standards for ensuring the
quality and interoperability of devices using the infrared spectrum.

isochronous.

Processes where data must be delivered within certain time constraints.

ISR (Interrupt Service Routine).

Software that is executed when a specific interrupt occurs. A table stored
in low memory contains pointers, also called vectors, that direct the pro-
cessor to the corresponding ISR. See EVT.

JEDEC.

(formerly known as the Joint Electronic Device Engineering Council, now
called the JEDEC Solid State Technology Association) The semiconductor
engineering standardization body of the Electronic Industries Alliance
(EIA), an electronic industry trade association.

ADSP-BF535 Blackfin Processor Hardware Reference G-15

JTAG (Joint Test Action Group).

An IEEE Standards working group that defines the IEEE 1149.1 standard
for a test access port for testing electronic devices.

JTAG port.

A channel or port that supports the IEEE standard 1149.1 JTAG standard
for system test. This standard defines a method for serially scanning the
I/O status of each component in a system.

jump.

A permanent transfer of the program flow to another part of program
memory.

latency.

The overhead time used to find the correct place for memory access and
preparing to access it.

Least Recently Used algorithm.

Replacement algorithm used by cache that first replaces lines that have
been unused for the longest time.

Least Significant Bit (LSB).

The last or rightmost bit in the normal representation of a binary num-
ber—the bit of a binary number giving the number of ones.

Length registers.

A DAG register that sets up the range of addresses in a circular buffer.

Level 1 (L1) memory.

Memory that is directly accessed by the core with no intervening memory
subsystems between it and the core.

G-16 ADSP-BF535 Blackfin Processor Hardware Reference

Level 2 (L2) memory.

Memory that is at least one level removed from the core. L2 memory has a
larger capacity than L1 memory, but it requires additional latency to
access.

level sensitive interrupts.

A signal or interrupt that the processor detects if the input signal is low
(active) when sampled on the rising edge of CLKIN.

LIFO (Last In, First Out).

A data structure from which the next item taken out is the most recent
item put in. Also known as a “stack” from the analogy with the stack of
plates in a cafeteria in which the most recent plate placed on the stack is
on top and thus will be the next plate removed. See Stack.

little endian.

The native data store format of the ADSP-BF535 processor. Words and
half words are stored in memory (and registers) with the least significant
byte at the lowest byte address and the most significant byte in the highest
byte address of the data storage location.

loop.

A sequence of instructions that executes several times with 0 overhead.

LRU (Least Recently Used algorithm).

A rule based on the observation that, in general, the cache entry that has
not been accessed for longest is least likely to be accessed in the near
future.

LSB.

See Least Significant Bit.

ADSP-BF535 Blackfin Processor Hardware Reference G-17

MAC (Multiply/Accumulate).

A floating-point operation that multiplies two numbers and then adds a
third to get the result. See Multiply Accumulator.

memory bank.

A unit of the processor’s external memory space, which may be addressed
by either data address generator. External memory banks also may be con-
figured for size and access waitstates.

memory block.

A unit of the processor’s internal memory space, which is associated with a
DAG.

Memory Management Unit (MMU).

A component of the ADSP-BF535 processor that supports protection and
selective caching of memory by using CPLBs.

Mode Register.

SDRAM devices contain an internal configuration register which allows
specification of the SDRAM device’s functionality. After power-up and
before executing a read or write to the SDRAM memory space, the appli-
cation must trigger the SDC to write the SDRAM’s mode register. The
write of the SDRAM’s mode register is triggered by writing a 1 to the PSSE
bit in the SDRAM Memory Global Control register (EBIU_SDGCTL) and
then issuing a read or write transfer to the SDRAM address space. The ini-
tial read or write triggers the SDRAM power-up sequence to be run,
which programs the SDRAM’s mode register with the CAS latency from
the EBIU_SDGCTL register. This initial read or write to SDRAM takes many
cycles to complete. Note that for most applications the SDRAM power-up
sequence and writing of the mode register needs to be done only once.
Once the power-up sequence has completed, the PSSE bit should not be
set again unless a change to the mode register is desired.

G-18 ADSP-BF535 Blackfin Processor Hardware Reference

modified addressing.

The process whereby the DAG generates an address that is incremented by
a value or a register.

Modify address.

The process by which a DAG increments the stored address without per-
forming a data move.

Modify register.

A DAG register that provides the increment or step size by which an index
register is pre- or post-modified during a register move.

MMR (Memory-mapped Register).

A location in main memory used by the processor as if it were a register.
Registers are high-speed memory locations in the processor that can be
addressed with just a few bits; memory-mapped registers must be
addressed in the same way as other memory locations and the speed of
MMR accesses is limited to the speed of the system’s data bus.

MMU.

See Memory Management Unit

MSB (Most Significant Bit).

The first or leftmost bit in the normal representation of a binary num-
ber—the bit of a binary number with the greatest weight (2(n-1)).

multifunction computations.

The parallel execution of multiple computational instructions. These
instructions complete in a single cycle, and they combine parallel opera-
tion of the computational units and memory accesses. The multiple
operations perform the same as if they were in corresponding single func-
tion computations.

ADSP-BF535 Blackfin Processor Hardware Reference G-19

multiplier.

A computational unit that performs fixed-point multiplication and exe-
cutes fixed-point multiply/add and multiply/subtract operations.

Multiply Accumulator.

An accumulator register in which operands are multiplied and added to
the contents.

NMI (Non-maskable Interrupt).

A high priority interrupt that cannot be disabled by another interrupt.

NRZ (Non-return to Zero).

A binary encoding scheme in which a one (1) is represented by a change in
the signal and a zero (0) by no change—there is no return to a reference
(zero) voltage between encoded bits. This method eliminates the need for
a clock signal.

NRZI (Non-return to Zero Inverted).

A binary encoding scheme in which a zero (0) is represented by a change
in the signal and a one (1) by no change—there is no return to a reference
(zero) voltage between encoded bits. This method eliminates the need for
a clock signal.

orthogonal.

The characteristic of being independent. An orthogonal instruction set
allows any register to be used in an instruction that references a register.

PAB.

See Peripheral Access Bus

G-20 ADSP-BF535 Blackfin Processor Hardware Reference

page size.

The amount of memory which has the same row address and can be
accessed with successive read or write commands without needing to
activate another row. The page size can be calculated for 32-bit and 16-bit
SDRAM banks with these formulas:

• 32-bit SDRAM banks: page size = 2(CAW + 2)

• where CAW is the column address width of the SDRAM, plus 2
because the SDRAM bank is 32 bits wide (2 address bits = 4 bytes).

• 16-bit SDRAM banks: page size = 2(CAW + 1)

• where CAW is the column address width of the SDRAM, plus 1
because the SDRAM bank is 16 bits wide (1 address bit = 2 bytes).

PC (Program Counter).

A register that contains the address of the next instruction to be executed.
The PC is automatically incremented after each instruction is fetched to
point to the following instruction.

PCI.

See Peripheral Component Interconnect

peripheral.

The ADSP-BF535 processor’s peripherals include timers, Real-Time
Clock, USB, programmable flags, UARTs, SPORTs, and SPIs.

Peripheral Access Bus (PAB).

A low and predictable latency bus that keeps core stalls to a minimum and
allows for manageable interrupt latencies to time critical peripherals.

ADSP-BF535 Blackfin Processor Hardware Reference G-21

Peripheral Component Interconnect (PCI).

A bus system that provides a bus bridge between the EAB and the EMB
internal to the ADSP-BF535 processor and an external PCI bus.

PF (Programmable Flag).

General-purpose I/O pins. Each PF pin can be individually configured as
either an input or an output pin, and each PF pin can be further config-
ured to generate an interrupt.

Phase Locked Loop (PLL).

An on-chip frequency synthesizer that produces a full-speed master clock
from a lower frequency input clock signal.

PIO (Programmed Input/Output).

A way of moving data between system devices and memory in which all
data must pass through the processor (see Direct Memory Access).

PLL.

See Phase Locked Loop.

precision.

The number of bits after the binary point in the storage format for the
number.

post-modify addressing.

The process in which the DAG provides an address during a data move
and autoincrements the stored address for the next move.

Precharge command.

The Precharge command closes a specific internal bank in the active page
or all internal banks in the page. The SDC always does a Precharge All,
closing all internal banks.

G-22 ADSP-BF535 Blackfin Processor Hardware Reference

pre-modify addressing.

The process in which the DAG provides an address during a data move
without incrementing the stored address.

PWM (Pulse Width Modulation).

Also called Pulse Duration Modulation (PDM), a pulse modulation tech-
nique in which the duration of the pulses is varied by the modulating
voltage.

RAS (Row Address Strobe).

A signal sent from the memory management unit (MMU) to a DRAM
device to indicate that the row address lines are valid.

Real-Time Clock (RTC).

A component that generates timing pulses for the digital watch features of
the ADSP-BF535 processor, including time of day, alarm, and stopwatch
countdown features.

replacement policy.

The function used by the ADSP-BF535 processor to determine which line
to replace on a cache miss. Often, a least recently used (LRU) algorithm is
employed.

ROM (Read-Only Memory).

A data storage device manufactured with fixed contents. This term is most
often used to refer to non-volatile semiconductor memory.

RTC.

See Real-Time Clock

ADSP-BF535 Blackfin Processor Hardware Reference G-23

RZ (Return to Zero modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A zero (0) is represented by a change from the low voltage level to the
high voltage level; a one (1) is represented by a change from the high volt-
age level to the low voltage level. A return to a reference (zero) voltage is
made between encoded bits.

RZI (Return to Zero Inverted modulation).

A binary encoding scheme in which two signal pulses are used for every
bit. A one (1) is represented by a change from the low voltage level to the
high voltage level; a zero (0) is represented by a change from the high volt-
age level to the low voltage level. A return to a reference (zero) voltage is
made between encoded bits.

saturation (ALU saturation mode).

A state in which all positive fixed-point overflows return the maximum
positive fixed-point number, and all negative overflows return the maxi-
mum negative number.

SBIU.

See System Bus Interface Unit.

SDRAM (Synchronous Dynamic Random Access Memory).

A form of DRAM that includes a clock signal with its other control sig-
nals. This clock signal allows SDRAM devices to support “burst” access
modes that clock out a series of successive bits.

SDRAM banks.

Four regions of memory that can be configured to be 16 MB, 32 MB,
64 MB, or 128 MB and are selected by the SMS[3:0] pins. Each bank can
be selected to be either all 32 bits wide or all 16 bits wide.

G-24 ADSP-BF535 Blackfin Processor Hardware Reference

Do not confuse the “SDRAM internal banks” which are internal to the
SDRAM and are selected with the bank address, with the “SDRAM
banks,” or “external banks,” that are enabled by the SMS[3:0] pins.

SDRAM DIMMs.

Dual In-line Memory Modules, or DIMMs, are an industry-standard
SDRAM packaging option. The DIMM consists of a small, standardized
form factor board, populated with SDRAM devices on one or both sides.
DIMMs are populated with sufficient SDRAM to provide either 32-bit or
64-bit data paths, with some configurations supporting additional data
bits for parity protection.

Many DIMMs also include a serial presence detect port, which provides
access to an on-DIMM serial ROM that includes information describing
the type and characteristics of SDRAMs on the DIMM. This information
can be read to determine the type, size, and timing parameters of installed
DIMMs at boot time. One of the SPI or SPORT peripherals of the
ADSP-BF535 processor can be used to interface to the DIMM serial pres-
ence detect port, if dynamic boot time determination of SDRAM
configuration is required.

Self-Refresh.

When the SDRAM is in Self-Refresh mode, the SDRAM’s internal timer
initiates Auto-Refresh cycles periodically, without external control input.
The SDC must issue a series of commands including the Self-Refresh
command to put the SDRAM into this low power mode, and it must issue
another series of commands to exit Self-Refresh mode. Entering
Self-Refresh mode is programmable in the SDRAM Memory Global Con-
trol register (EBIU_SDGCTL) and any access to the SDRAM address space
causes the SDC to exit the SDRAM from Self-Refresh mode. See “Enter-
ing and Exiting Self-Refresh Mode (SRFS)” on page 18-44.

Serial Peripheral Interface (SPI).

A synchronous serial protocol used to connect integrated circuits.

ADSP-BF535 Blackfin Processor Hardware Reference G-25

serial ports.

An input/output location on the processor. The ADSP-BF535 processor
uses three synchronous serial ports that provide an inexpensive interface to
a wide variety of digital and mixed-signal peripheral devices.

set.

A group of N-line storage locations in the Ways of an N-Way cache,
selected by the Index field of the address.

set associative.

Cache architecture that limits line placement to a number of sets (or
Ways).

shifter.

A computational unit that completes logical and arithmetic shifts on
16-bit operands and derives exponents.

SIC (System Interrupt Controller).

Part of the ADSP-BF535 processor’s 2-level event control mechanism.
The SIC works with the Core Event Controller (CEC) to prioritize and
control all system interrupts. The SIC provides mapping between the
peripheral interrupt sources and the prioritized general-purpose interrupt
inputs of the core.

SIMD (Single Instruction, Multiple Data).

A parallel computer architecture in which a collection of data is processed
simultaneously under one instruction.

G-26 ADSP-BF535 Blackfin Processor Hardware Reference

SP (Stack Pointer).

A register that points to the top of a stack. If the stack contains data, the
SP points to the most recently pushed item; if the stack does not contain
data, the SP points to the first empty location, where the next item will be
pushed.

SPI.

See Serial Peripheral Interface

SRAM.

See Static Random Access Memory

stack.

A data structure for storing items that are to be accessed in last-in first-out
(LIFO) order. When a data item is added to the stack, it is said to be
“pushed”; when a data item is removed from the stack, it is “popped”.

Static Random Access Memory (SRAM).

Very fast memory that does not require periodic refreshing.

synchronous process.

A process that runs only as a result of some other process being completed
or a handing-off operation.

system.

For the ADSP-BF535 processor, the peripheral set (Timers, Real-Time
Clock, USB, programmable flags, UARTs, SPORTs, and SPIs), the PCI
controller, the external memory controller (EBIU), the Memory DMA
controller, and the interfaces between these, the system, and the optional,
external (off-chip) resources.

ADSP-BF535 Blackfin Processor Hardware Reference G-27

System Bus Interface Unit (SBIU).

A unit that performs bus bridging functions, clock domain conversion,
routes requests, and provides data transfer capability.

System clock (SCLK).

A component that delivers pulses at a frequency determined by a program-
mable divider ratio from the core clock.

System Interrupt Controller (SIC).

Component that maps and routes events from peripheral interrupt sources
to the prioritized, general-purpose interrupt inputs of the CIC.

subroutine.

A self-contained section of a program, with an entry point and an exit,
that usually performs a single task. The main program flow branches to a
subroutine when its task is required, and the subroutine returns (branches
back) to the main flow when its task has been completed.

tRAS.

Required delay between issuing a Bank Activate command and issuing a
Precharge command, and between the Self-Refresh command and the exit
from Self-Refresh. The TRAS bit field in the SDRAM Memory Global
Control register (EBIU_SDGCTL) is 4 bits wide and can be programmed to
be 1 to 15 clock cycles long. “Selecting the Bank Activate Command
Delay (TRAS)” on page 18-47.

G-28 ADSP-BF535 Blackfin Processor Hardware Reference

tRP.

Required delay between issuing a Precharge command and:

• issuing a Bank Activate command

• issuing an Auto-Refresh command

• issuing a Self-Refresh command

The TRP bit field in the SDRAM Memory Global Control register
(EBIU_SDGCTL) is 3 bits wide and can be programmed to be 1 to 7 clock
cycles long. “Selecting the Precharge Delay (TRP)” on page 18-48.

tRCD.

Required delay between a Bank Activate command and the start of the
first Read or Write command. The TRCD bit field in the SDRAM Memory
Global Control register (EBIU_SDGCTL) is 3 bits wide and can be pro-
grammed to be from 1 to 7 clock cycles long.

tWR.

Required delay between a Write command (driving write data) and a Pre-
charge command. The TWR bit field in the SDRAM Memory Global
Control register (EBIU_SDGCTL) is 2 bits wide and can be programmed to
be from 1 to 3 clock cycles long.

tRC.

Required delay between issuing successive Bank Activate commands to the
same SDRAM internal bank. This delay is not directly programmable.
The tRC delay must be satisfied by programming the TRAS and TRP fields
to ensure that tRAS + tRP tRC.

ADSP-BF535 Blackfin Processor Hardware Reference G-29

tRFC.

Required delay between issuing an Auto-Refresh command and a Bank
Activate command and between issuing successive Auto-Refresh com-
mands. This delay is not directly programmable and is assumed to be
equal to tRC. The tRC delay must be satisfied by programming the TRAS
and TRP fields to ensure that tRAS + tRP tRC.

tXSR

Required delay between exiting Self-Refresh mode and issuing the
Auto-Refresh command. This delay is not directly programmable and is
assumed to be equal to tRC. The tRC delay must be satisfied by program-
ming the tRAS and tRP fields to ensure that tRAS + tRP tRC.

tag.

Upper address bits, stored along with the cached data line, to identify the
specific address source in memory that the cached line represents.

TAP (Test Access Port).

See JTAG port

TDM.

See Time Division Multiplexing

three-state versus Tristate.

Analog Devices documentation uses the word three-state instead of tristate.
Tristate™ is a trademarked term owned by National Semiconductor.

G-30 ADSP-BF535 Blackfin Processor Hardware Reference

Time Division Multiplexing (TDM).

A method used for transmitting separate signals over a single channel.
Transmission time is broken into segments, each of which carries one ele-
ment. Each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of 24
channels.

UART.

See Universal Asynchronous Receiver Transmitter

UDC (USB Device Controller).

Part of the USBD, a module that implements the low level USB protocol.
It manages interaction with the USB host using the USB serial link, and
presents data and command transactions to the application.

Universal Serial Bus (USB).

A module that handles USB protocol requirements. It also contains hard-
ware to connect it to the processor’s peripheral buses and to support an
operating system.

Universal Asynchronous Receiver Transmitter (UART).

A module that contains both the receiving and transmitting circuits
required for asynchronous serial communication.

USB.

See Universal Serial Bus

USBD (Universal Serial Bus Device).

The module in the ADSP-BF535 processor that controls the Universal
Serial Bus. The USBD consists of the UDC core module and a front-end
interface. The USBD connects the DAB and the PAB with and off-chip
USB transceiver.

ADSP-BF535 Blackfin Processor Hardware Reference G-31

Valid.

A state bit, stored along with the tag, indicating the corresponding tag and
data are current and correct and can be used to satisfy memory access
requests.

victim.

A dirty cache line that must be written to memory before it can be
replaced to free space for a cache line allocation.

Von Neumann architecture.

The architecture used by most non-DSP microprocessors. This architec-
ture uses a single address and data bus for memory access. (For John von
Neumann, 1903-1957, a Hungarian-born mathematician.)

Way.

An array of line storage elements in an N-Way cache.

W1C.

See Write-1-to-Clear

W1S.

See Write-1-to-Set

Write-1-to-Clear (W1C) bit.

A control or status bit that can be cleared (= 0) by being written to with 1.

Write-1-to-Set (W1S) bit.

A control or status bit that is set by writing a 1 to it. It cannot be cleared
by writing a 0 to it.

G-32 ADSP-BF535 Blackfin Processor Hardware Reference

write back.

A cache write policy (also known as copyback). The write data is written
only to the cache line. The modified cache line is written to source mem-
ory only when it is replaced.

write through.

A cache write policy (also known as store through). The write data is writ-
ten to both the cache line and to the source memory. The modified cache
line is not written to the source memory when it is replaced.

ADSP-BF535 Blackfin Processor Hardware Reference I-1

I INDEX

Numerics
16-bit operations, 2-25, 2-29, 2-30
16-Bit Wide SDRAM Address Muxing,

18-60
2X clock recovery control, 11-70
32-bit operations, 2-27

A
A10 pin of SDRAM, 18-47
AC (Address Calculation), 4-7
accumulator result registers A[1: 0], 2-6,

2-33, 2-39
active low/high frame syncs, serial port,

11-57
active low versus active high frame syncs,

11-57
Active mode, 1-22, 8-12
Address Calculation (AC), 4-7
addresses

PCI, 13-6
PCI type 1 or type 0, 13-24

addressing
See also auto-decrement; auto-increment;

bit-reversed; circular-buffer; indexed;
indirect; modified; post-increment;
post-modify; pre-modify; Data
Address Generators

addressing modes, 5-15
address tag compare operation, 6-19

ADSP-21535
boot modes, 1-24
clock signals, 1-23
instruction set, 1-24
operating modes, 1-22

ADSP-21535 bus hierarchy figure, 7-1
ADSP-21535 internal clocks, 7-2
ADSP-BF535 processor

as PCI initiator, 13-6, 13-13
as PCI target, 13-10, 13-14
block diagram, 1-2
computational units, 2-1 to 2-48
core, definition, 1-1
core architecture, 1-2, 1-4
Data Address Generators (DAGs), 5-1 to

5-20
direct memory access (DMA), 1-11, 9-1

to 9-46
event handling, 1-10, 4-17
External Bus Interface Unit (EBIU),

1-12, 18-1
external memory, 1-8, 6-55
internal memory, 1-7, 6-9
low power operation, 1-22, 8-25
memory architecture, 1-5, 6-5
memory map, 6-5
numeric formats, D-1 to D-7
operating modes, 3-1 to 3-18, 8-12
PCI, 1-8, 13-1
PCI interface, 1-13
peripherals, 1-1 to 1-2
programmable flags, 1-21, 15-1

Index

I-2 ADSP-BF535 Blackfin Processor Hardware Reference

ADSP-BF535 processor (continued)
Real-Time Clock (RTC), 1-15, 17-1
registers, core, A-1 to A-12
registers, system, B-1 to B-35
serial peripheral interface ports (SPIs),

1-19, 10-1
serial ports (SPORTs), 1-17, 11-1
software watchdog timer, 1-16, 16-25
system, definition, 1-1
system design, 19-1 to 19-18
test features, C-1 to C-26
UART ports, 1-20, 12-1
USB port, 1-15

ADSP-BF535 processor Pipeline (figure),
4-7

alarm clock, RTC, 17-2
alarm interrupts, 17-8
A-law companding, 11-2, 11-53, 11-67
alignment exceptions, 6-83
allocating system stack, 4-58
alternate frame sync signals, defined, 11-59
alternate timing, serial port, 11-58
ALU (arithmetic logic unit), 1-2
ALU. See Arithmetic Logic Unit (ALU)
AMC

EBIU block diagram, 18-3
SCLK[1] function, 18-43
timing parameters, 18-12

AND, logical, 2-24
arbitration

DAB, 7-10
EAB, 7-15
EMB, 7-18
latency, 7-13
PAB, 7-8
SPORTs and USB, 14-3
USB DMA channel, 14-3

ARDY, 18-13, 18-26

arithmetic
formats summary, 2-15 to 2-16
operations, 2-24
shifts, 2-1

Arithmetic Logic Unit (ALU), 2-1, 2-24 to
2-32

arithmetic, 2-13
arithmetic formats, 2-15
data flow, 2-28
data types, 2-12
functions, 2-24
inputs and outputs, 2-24
instructions, 2-24, 2-28, 2-32
operations, 2-24 to 2-28
status, 2-22, 2-28

arithmetic logic unit (ALU), 1-2
Arithmetic Shift (ASHIFT) instruction,

2-14, 2-44
Arithmetic Status register (ASTAT), 2-23
ASIC/FPGA designs, 18-1
Assembly language, 2-1
ASTAT (Arithmetic Status register), 2-23
Asynchronous Controller, 1-13
asynchronous interfaces supported, 18-1
asynchronous memory, 1-2

interface, 18-9
PCI access, 13-43
region, 18-1

Asynchronous Memory Bank Address
Range (table), 18-9

Asynchronous Memory Bank Control
registers (EBIU_AMBCTLx), 18-12

asynchronous memory controller. See AMC
Asynchronous Memory Global Control

register (EBIU_AMGCTL), 18-10
Asynchronous Memory Interface Signals

(table), 18-5
asynchronous serial communications, 12-2
ASYNC memory banks, 18-3
atomic operations, 6-83

ADSP-BF535 Blackfin Processor Hardware Reference I-3

Index

autobaud detection, 12-1
timer, 16-19

auto-decrement addressing, 5-10, 5-14
auto-increment addressing, 5-10, 5-14
Auto-Refresh

command, 18-31, 18-78
description, 18-70
timing, 18-54

B
back-to-back accesses, 13-11
Bank0 Load/Store (Core D0 bus), 7-3
Bank1 Load/Store (Core D1 bus), 7-3
Bank Activate command, 18-29, 18-77

selecting delay, 18-47
bank address, 18-51
bank size, 18-51
Bank Size Encodings (table), 18-57, 18-59
bank width, 18-51
barrel shifter. See shifter
base address, USB buffers, 14-25, 14-26
base address pointer

PCI I/O, 13-23
PCI I/O space, 13-25
PCI memory space, 13-25

Base registers, 2-7, 5-2, 5-6
B (Base) registers, 2-7, 5-2, 5-6
biased rounding, 2-18
binary decode, C-4
binary multiplication, D-4
binary numbers, 2-3
BIST, 13-35
bit manipulation, 2-1

bit set, 2-48
bit test, 2-48
bit toggle, 2-48

bit-reversed addressing, 5-1, 5-9
bit stream on the TxD pin (figure), 12-2
bitstuff violations, 14-61
Blackfin DSP family

instruction set, 1-24
I/O memory space, 1-10

Blackfin processor family
core architecture, 1-1
dynamic power management, 1-1
memory architecture, 1-5

block diagrams
ADSP-BF535 processor, 1-2
bus hierarchy, 7-1
core, 7-3
EBIU, 18-3
interrupt processing, 4-21
L1 Data Memory, 6-39
L1 Instruction Memory banks, 6-16
memory architecture, 6-7
PCI, 13-1
PLL, 8-2
SDRAM, 19-12
SPI, 10-2
USBD module, 14-6

block floating point format, D-6
BMODE bits, 3-14
BMODE pins, 4-37
BMODE state, 3-13
Booting Methods, 3-17
boot kernel, 3-17
boot mode, 1-24
boot ROM

loading user code, 3-17
reading in user code, 3-17

boundary-scan architecture, C-2
Boundary-Scan register, C-4, C-8
branch, 4-9
branch, conditional, 4-13
Branches & Sequencing, 4-9
branch latency, 4-10

conditional branches, 4-14
unconditional branches, 4-14

Branch Prediction, 4-14
branch prediction, 4-14

Index

I-4 ADSP-BF535 Blackfin Processor Hardware Reference

branch target, 4-12
branch target address

conditional branches, 4-14
unconditional branches, 4-14

B-registers (Base), 2-7, 5-2, 5-6
Broadcast mode, 10-3, 10-14, 10-30
buffers

Cacheability Protection Lookaside
Buffers (CPLBs), 6-17, 6-57

length, USB data transfers, 14-34
overrun, USB, 14-43
timing, external, 18-83, 18-85
UDC, 14-44
underrun, USB, 14-43

built-in self test, 13-35
bulk data transfers, USB, 14-11, 14-48,

14-49
bulk endpoint, 14-10
burst length, 18-30, 18-70
Burst Stop command, 18-30
Burst Transaction Conversion to PCI

(table), 13-9
burst transactions, PCI, 13-9
burst type, 18-30
bus agents

DAB, 7-14
EAB, 7-17
EMB, 7-18
PAB, 7-9

bus contention, avoiding, 19-10
bus error

EBIU, 18-9
from PCI, 13-7

buses
concurrent operations, 7-6
hierarchy, 7-1
on-chip, 7-1
PCI AD, 13-6
peripheral, 7-8

buses (continued)

USB master-slave, 14-3
See also DAB, EAB, EMB, PAB

bus loading, 14-4
bus operation ordering, PCI core access,

13-18
bus operations, PCI, 13-18
BYPASS field, 8-7
Bypass mode, 3-17
Bypass register, C-5, C-7
byte, 13-3
byte address, 18-51
byte order, 2-12

C
cache, 6-17

coherency support, 6-83
instruction cache organization (figure),

6-19
L1 data, 6-40
mapping into data banks, 6-41
non-cacheable accesses, 6-22
validity of cache lines, 6-19

Cacheability Protection Lookaside Buffers
(CPLBs), 3-5, 3-11, 6-17, 6-57

ENDCPLB (Enable DCPLB) bit, 6-61
Enable ICPLB (ENICPLB) bit, 6-61

management, 6-61
replacement policy, 6-61
requirements for cache, 6-40

cache block (definition), 6-1
cache hit, 6-1

address tag compare, 6-19
data cache access, 6-45
definition, 6-19
in atomic operations, 6-84
processing, 6-20
requirements, 6-20

cache inhibited accesses, 6-84

ADSP-BF535 Blackfin Processor Hardware Reference I-5

Index

cache line
components, 6-17
definition, 6-2
size, PCI, 13-37
states, 6-45

cache miss, 6-2
definition, 6-45
replacement policy, 6-22

CALL instruction, 4-9, 4-11
range, 4-11

capacitive loads, 18-28
capacitors

bypass placement, 19-16
decoupling, 19-16
loading, 19-15
recommendation, 19-16

CAS before RAS, 18-31
CAS latency, 18-31

selecting, 18-46
CAW, 18-33, 18-51
CBR refresh, 18-31
CC flag bit, 4-12
CCITT G.711 specification, 11-53
CCLK (core clock), 7-2

derivation, 8-1
status by operating mode, 8-12

CC status bit, 4-10
Channel, Current Serial (CHNL) bit,

11-66
channels

defined, serial, 11-66
DMA, 1-2, 12-17
memory DMA, 1-2
serial port TDM, 11-67
serial select offset, 11-66

channel selection registers, 11-66
CH (Compare Hit) bit, 20-28
CHIPID (Chip ID register), 20-26, C-4,

C-7

Chip ID register (CHIPID), 20-26, C-4,
C-7

circuit board testing, C-1, C-6
circular buffer addressing, 5-6

registers, 5-6
wrap-around, 5-7

class code, PCI, 13-33
CL bit, 18-31, 18-40
clean data cache line (definition), 6-2
CLKIN (input clock), 8-1, 8-2
CLKIN to CCLK, changing the multiplier,

8-18
clock

control, UDC, 14-7
core-to-peripheral ratio, 8-5
designing for multiplexed clock pins,

19-3
domain, USBD, 14-5
EBIU, 18-1
external clock connections (figure), 19-4
frequency, 7-2
gated clocks in UDC module, 14-7
load, 18-44
managing clocks, 19-2
multiplier, 8-4, 19-3
PCI, 13-2
requirements, PCI, 13-45
speeds, 7-2, 8-2, 14-13
types, 19-2
USB, 14-62

clock and frame sync frequencies, 11-50
Clock Falling Edge Select (CKFE) bit,

11-14, 11-17, 11-54, 11-57
clocking

peripheral, 8-22
UDC, 14-13
USB, 14-13

clock input (CLKIN) pin, 19-2
clock phase, SPI, 10-28, 10-30
clock polarity, SPI, 10-28

Index

I-6 ADSP-BF535 Blackfin Processor Hardware Reference

clock signal options, 11-54
code examples

Active mode to Full On mode, 8-20
CSYNC, 6-85
Epilog code for nested ISR, 4-51
Execution Trace recreation, 20-18
Full On mode to Active mode, 8-21
interrupt enabling and disabling, 6-85
load base of MMRs, 6-85
modification of PLL, 8-17
Prolog code for nested ISR, 4-51
restoration of the control register, 6-85
transition to Idle state, 3-10

code patching, 20-4
column address, 18-51
column address strobe latency, 18-31
column address width, SDRAM, 18-33
Command Inhibit command, 18-80
commands

Auto-Refresh, 18-78
Bank Activate, 18-77
Command Inhibit, 18-80
Load Mode Register, 18-77
No Operation, 18-80
Precharge, 18-76
Read/Write, 18-78
SDC, 18-75
Self-Refresh, 18-79

command sequences, USB, 14-12
companding, 11-53, 11-61, 11-67

defined, 11-53
multichannel operations, 11-67

Compare Hit (CH) bit, 20-28
computation

instructions, 2-1
status, 2-22

concurrent bus operations, 7-6
conditional

JUMP instruction, 4-10

move instruction, 4-13
conditional branches, 4-13, 4-14, 6-81

branch latency, 4-14
branch target address, 4-14

conditional instructions, 2-22, 4-3
condition code (CC) flag bit, 4-12
Condition Code Flag, 4-12
Config Data Port, PCI, 13-6
configuration

ADSP-BF535 processor memory, 6-10
bits used to configure L1 memories, 6-12
DMA master channel, 14-24
L1 data banks, 6-10
L1 Instruction Memory, 6-17
L1 Instruction SRAM, 6-10
L1 SRAM, 6-5
on-chip L2 memory, 6-11
PCI outbound, 13-15
precautions before changing, 6-15
SDRAM, 18-28
USB, 14-2, 14-12
USB logical endpoint, 14-35

Content-Addressable Memory (CAM),
6-57

control and status registers, PAB, 13-19
control data transfers, 14-11
control endpoint, USB, 14-10
control register

data memory, 6-12
instruction memory, 6-12
PLL, 8-3
restoration, 6-85

control registers
EBIU, 18-8

control transfer
problems, USB, 14-59
USB, 14-47, 14-56
with data phase, USB, 14-58
with no data phase, USB, 14-57

ADSP-BF535 Blackfin Processor Hardware Reference I-7

Index

core
accesses to PCI, 13-18
access to flag configuration, 15-2
clock/system clock ratio control, 8-5
double-fault condition, 4-28, 4-36
overview, 7-3
waking up from idled state, 4-24

core architecture, 1-2
core clock (CCLK), 7-2
core clock/system clock ratio control, 8-5
Core D0 bus, 7-3
Core D0 port, 7-4
Core D1 bus, 7-3
Core D1 port, 7-4
Core Double-Fault reset, 3-13
core event

in EVT, 4-35
MMR location, 4-35

Core Event Controller (CEC), 4-18
Core Event Vector Table (table), 4-35
Core I bus, 7-3, 7-5
Core Interrupt Latch Register (ILAT), 4-32
Core Interrupt Latch register (ILAT), 4-32
Core Interrupt Mask Register (IMASK),

4-32
Core Interrupt Mask register (IMASK),

4-32
Core Interrupt Pending Register (IPEND),

4-33
Core Interrupts Pending register (IPEND),

3-1, 4-33
Core-Only Software reset, 3-13, 3-17, 3-18
Core Timer, 4-46
Core Timer Control register (TCNTL),

16-22
Core Timer Count register (TCOUNT),

16-23
Core Timer Period register (TPERIOD),

16-24

Core Timer Scale register (TSCALE),
16-24

count, DMA for USB transfer, 14-26
counter

cycle, 4-4, 20-24
RTC, 17-1

CPLB_L1_CHBL bit, 6-22
CRC errors, 14-61
CROSSCORE software, 1-24
cross options, 2-30
crosstalk, 19-15
CSYNC, 6-81

code example, 6-85
instruction, 6-84

Current USB Frame Number register
(USBD_FRM), 14-17

cycle counters, 4-4, 20-24, 20-25
CYCLES and CYCLES2 (Execution Cycle

Count registers), 20-25

D
DAB arbitration, 7-10
DAB bus agents (masters, slaves, bridges),

7-14
DAB (DMA Access bus)

and USB, 14-9
arbitration, 7-10
bus agents (masters, slaves, bridges), 7-14
latencies (table), 7-12
performance, 7-11

DAB (DMA access bus)
clocking, 8-1

DAB latencies, 7-13
DAG0 CPLB Miss, 4-43
DAG0 Misaligned Access, 4-43
DAG0 Multiple CPLB Hits, 4-43
DAG0 Protection Violation, 4-43
DAG1 CPLB Miss, 4-43
DAG1 Misaligned Access, 4-43
DAG1 Multiple CPLB Hits, 4-43

Index

I-8 ADSP-BF535 Blackfin Processor Hardware Reference

DAG1 Protection Violation, 4-43
DAG (data address generator), 1-4
DAG. See Data Address Generators

(DAGs)
Data, 5-1
data address generator (DAG), 1-4
Data Address Generators (DAGs), 2-7,

3-11, 5-1
address for indirect branch, 4-10
addressing modes, 5-15
instructions, 5-13, 5-16
support for branches, 4-3

data bursts, DMA, 7-11
Data Cacheability Protection Lookaside

Buffer Data registers
(DCPLB_DATAx), 6-65

data cache control instructions, 6-47
data errors, USB, 14-60
data flow, 2-1
data formats, 2-3 to 2-4, 2-11

serial data, 11-52, 11-53
Data Formatting Type Select (DTYPE)

bits, 11-16
data-independent transmit frame sync,

11-60
data-independent transmit frame sync,

serial port, 11-60
Data Independent Transmit Frame Sync

(DITFS) bit, 11-10, 11-14, 11-60
Data I/O Mask pins, 18-47
data mask encodings, 18-68
Data Memory Control register

(DMEM_CONTROL), 6-12, 6-57
data move, serial port operations, 11-69
data packet, shortened, USB, 14-48
Data Receive, serial (DRx) pins, 11-3, 11-4
Data Register File, 2-5
data registers, 2-5, 3-4
data sampling, serial, 11-57
data store format, 6-3

Data Test Command register
(DTEST_COMMAND), 6-49

Data Test Data registers
(DTEST_DATAx), 6-49

data throughput, core or DMA, 18-83
data transfers

bulk, 14-11
control, 14-11
Data Register File, 2-6
DMA, 9-1
isochronous, 14-11
isochronous, USB, 14-53
Memory DMA (MemDMA), 9-31
SPI, 10-3
USB, 14-11, 14-47, 14-48
USB, buffer length, 14-34

Data Transmit, serial (DTx) pins, 11-3,
11-4, 11-62, 11-64

data type, 11-53
Data Type, serial (DTYPE) bits, 11-12,

11-52, 11-53
data types, 2-10 to 2-21
Data Windows in EAB for Outbound

Transactions (table), 13-6
data word formats, 11-52
DAT modification, 5-12
DB_ACOMP (DMA Bus Address

Comparator register), 20-28, 20-29
DB_CCOMP (DMA Bus Control

Comparator register), 20-28, 20-29
DBCS (L1 Data Cache Bank Select) bit,

6-12, 6-42
DBGCTL (Debug Control register), 3-17
DBO (Descriptor Block Ownership bit),

9-10
DCPLB Address registers

(DCPLB_ADDRx), 6-69, 6-70
DCPLB_ADDRx (Data Cacheability

Protection Lookaside Buffer Address
registers), 6-70

ADSP-BF535 Blackfin Processor Hardware Reference I-9

Index

DCPLB_ADDRx (DCPLB Address
registers), 6-69, 6-70

DCPLB Data registers (DCPLB_DATAx),
6-65, 6-66

DCPLB_DATAx (Data Cacheability
Protection Lookaside Buffer Data
registers), 6-65

DCPLB_DATAx (DCPLB Data registers),
6-66

DCPLB_FAULT_ADDR (DCPLB Fault
Address register), 6-75

DCPLB Fault Address register
(DCPLB_FAULT_ADDR), 6-75

DCPLB_STATUS (DCPLB Status
register), 6-73

DCPLB Status register
(DCPLB_STATUS), 6-73

Debug Control register (DBGCTL), 3-17
debug features, 20-1
DEC (Instruction Decode), 4-7
Deep Sleep mode, 1-23, 8-14
deferring exception processing, 4-55
delayed transactions, PCI, 13-7
Descriptor Block Ownership bit (DBO),

9-10, 9-18
Destination Memory DMA Configuration

register (MDD_DCFG), 9-33
Destination Memory DMA Current

Descriptor Pointer register
(MDD_DCP), 9-37

Destination Memory DMA Descriptor
Ready register (MDD_DDR), 9-36

Destination Memory DMA Interrupt
register (MDD_DI), 9-38

Destination Memory DMA Next
Descriptor Pointer register
(MDD_DND), 9-36

Destination Memory DMA Start Address
High register (MDD_DSAH), 9-35

Destination Memory DMA Start Address
Low register (MDD_DSAL), 9-35

Destination Memory DMA Transfer
Count register (MDD_DCT), 9-34

development tools, 1-24
device initialization, USBD, 14-46
device mode operation, 13-4
device software, UDC, 14-12
DF (Divide Frequency), 8-3, 8-8
direct branch, 4-10
Direct Call, 4-11
direct mapped (definition), 6-2
direct memory access, 9-1
Direct Memory Access. See DMA
Direct Short and Long Jumps, 4-11
dirty state bit (definition), 6-2
Disable Interrupts (CLI) instruction, 3-4,

6-85
disabling

autobuffering, 9-15
CPLBs, 6-12
interrupts, global, 4-34
PLL, 8-16
timer, 16-5
USB, 14-21

DISALGNEXPT instruction, 5-13
Divide Frequency (DF) bit, 8-3, 8-8
divide primitives (DIVS, DIVQ), 2-12,

2-31
DIVQ instruction, 2-31
DIVS instruction, 2-31
DMA, 9-1 to 9-46

abort conditions, 9-44
autobuffer based operation, 9-15
buffer size, multichannel, 11-68
bus, 20-27
Bus Debug registers, 20-27
bus error conditions, 9-45
channel latency requirement, 12-17
channels, 12-17

Index

I-10 ADSP-BF535 Blackfin Processor Hardware Reference

DMA (continued)
Configuration Word, 9-6
controller, 9-1
control registers, 9-16 to 9-30
data misalignment, 9-46
data size, 9-7
data transfer direction, 9-7
data transfer types, 9-1
descriptor based operation, 9-10
descriptor block structure, 9-4
DMA capable peripherals, 9-1
flow diagram, 9-11
illegal memory access, 9-46
linked list, 9-4
memory access, illegal, 9-46
Memory DMA, 9-31 to 9-44
mode, 12-17
parameter sets, 9-2
peripheral dependent control bits, 9-8
peripheral dependent functionality, 9-7
peripheral dependent status bits, 9-8
serial port, 11-69
stalls, 7-12

DMA Bus Address Comparator register
(DB_ACOMP), 20-28, 20-29

DMA Bus Control Comparator register
(DB_CCOMP), 20-28, 20-29

DMA bus (DAB), 7-10
DMA bus error, USB, 14-41
DMA Bus. See DAB
DMA capable peripheral, 12-1
DMA channel, 1-2
DMA_COMP interrupt, 14-41
DMA Configuration register, 9-16
DMA controller, 1-11
DMA control registers (table), 9-30
DMA Current Descriptor Pointer register,

9-26
DMA_DBP (DMA Descriptor Base

Pointer register), 9-24

DMA Descriptor Base Pointer register
(DMA_DBP), 9-24

DMA Descriptor Ready register, 9-25
DMA_ERROR interrupt, 14-41
DMA IRQ Status register, 9-28
DMA Master Channel, configuring, 14-24
DMA Master Channel Base Address High

register (USBD_DMABH), 14-26
DMA Master Channel Base Address Low

register (USBD_DMABL), 14-25
DMA Master Channel Configuration

register (USBD_DMACFG), 14-24
DMA Master Channel Count register

(USBD_DMACT), 14-26
DMA Master Channel DMA Interrupt

register (USBD_DMAIRQ), 14-27
DMA Master Channel module, 14-5
DMA Master module, USB, 14-9
DMA Mode, 12-17
DMA Next Descriptor Pointer register,

9-23
DMA registers, USB, 14-15
DMA Start Address registers, 9-21
DMA Transfer Count register, 9-19
DMA transfers, USB, 14-33
DMEM_CONTROL (Data Memory

Control register), 6-12, 6-57
double-fault condition, 4-36
DPMC (Dynamic Power Management

Controller), 4-24, 8-2, 8-11
DQM Data I/O Mask function, 18-31
DRAM (dynamic random-access memory),

1-2
DSP Device ID register (DSPID), 20-27
DSPID (DSP Device ID register), 20-27
DTEST_COMMAND (Data Test

Command register), 6-49
DTEST_DATAx (Data Test Data

registers), 6-49
dual 16-bit operations, 2-25

ADSP-BF535 Blackfin Processor Hardware Reference I-11

Index

dynamic address, for indirect JUMP and
CALL, 4-11

dynamic power management, 1-1, 8-1, 8-1
to 8-27

Dynamic Power Management Controller
(DPMC), 4-24, 8-2, 8-11

dynamic random-access memory (DRAM),
1-2

E
EAB arbitration, 7-15
EAB (External Access bus)

and EBIU, 18-4
arbitration, 7-15
bus agents (masters, slaves, bridges), 7-17
frequency, 7-15
masters and slaves, 7-17
performance, 7-15
performance estimates (table), 7-15

EAB (external access bus)
clocking, 8-1

EAB performance, 7-15
EAB performance estimates, 7-15
early frame sync. See frame sync
Early Versus Late Frame Syncs (Normal

Versus Alternate Timing), 11-58
EBIU_AMBCTL0 (Asynchronous

Memory Bank Control 0 register),
18-12

EBIU_AMBCTL1 (Asynchronous
Memory Bank Control 1 register),
18-12

EBIU_AMGCTL (Asynchronous Memory
Global Control register), 18-10

EBIU (External Bus Interface Unit)
as slave, 18-4
asynchronous interfaces supported, 18-1
block diagram, 18-3
bus error, 18-9
clock, 18-1

EBIU (External Bus Interface
Unit)) (continued)

clocking, 8-1
control registers, 18-8
overview, 18-1
programming model, 18-7
status register, 18-8

EBIU_SDBCTL (SDRAM Memory Bank
Control register), 18-49

EBIU_SDGCTL (SDRAM Memory
Global Control register), 18-37

EBIU_SDRRC (SDRAM Refresh Rate
Control register), 18-54

EBIU_SDSTAT (SDRAM Control Status
register), 18-53

EBUFE bit, 18-42
setting, 18-45

effective range, loop, 4-16
EMB arbitration, 7-18
EMB bus agents (masters, slaves, bridges),

7-18
EMB (External Mastered bus)

and EBIU, 18-4
arbitration, 7-18
bus agents (masters, slaves, bridges), 7-18
clocking, 8-1
frequency, 7-18
masters and slaves, 7-18
performance, 7-18
resources accessible, 7-19

EMB performance, 7-18
EMC (External Memory Controller), 1-7
EMU core event, 4-19
Emulation, 4-36
Emulation mode, 3-9

entering, 3-6
emulator mode, 1-5
Enable Download of Configuration into

UDC Core register (USBD_EPBUF),
14-18

Index

I-12 ADSP-BF535 Blackfin Processor Hardware Reference

Enable ICPLB (ENICPLB) bit, 6-61
Enable Interrupts (STI) instruction, 3-4,

6-85, 8-18, 8-19
enabling interrupts, global, 4-34
enabling timer, 16-5
ENDCPLB (Enable DCPLB) bit, 6-61
endian format, 11-52

data and instruction storage, 6-76
serial data, 11-52

Endian Format Select (SENDN) bit,
11-13, 11-17, 11-52

endpoint buffer data, USB, 14-18
endpoint errors, USB, 14-60
endpoint interrupts, USB, 14-27
endpoint registers, USB, 14-8, 14-15
endpoints, USB, 14-10, 14-20, 14-44

programming, 14-31
EpBufs, 14-44

UDC, 14-18
EPROM, 1-8
error condition, type of exception, 4-39
error detection, USB, 14-61
errors

bus, 9-29
DMA, 9-15, 9-16
EBIU, on internal bus, 6-56
fatal, PCI, 13-8
illegal memory access, 9-29
misalignment of data, 6-83
multiple hardware, 4-45
PCI inbound, 13-12

error signals, SPI, 10-6, 10-35
evaluation of loop conditions, 4-5
event

definition, 4-18
exception, 4-38
latency in servicing, 4-58
nested, 4-33

Event Controller, 3-1, 4-17
MMRs, 4-31
Sequencer, 4-3

Event Controller Registers, 4-31
event handling, 1-10
event monitor, 20-22
event processing, 4-3
events by priority (table), 4-18
Events & Sequencing, 4-17
Events That Cause Exceptions (table), 4-39
Event Vector Table, 4-35
Event Vector Table (EVT), 4-35
Event Vector Table registers (EVTx), 4-31
EVT (Event Vector Table), 4-35
EVX core event, 4-19
EX1 (Execute 1), 4-7
EX2 (Execute 2), 4-7
EX3 (Execute 3), 4-7
examples

RDIV calculation, 18-56
SDRAM start address calculation, 18-58

exception, 4-1
events, 4-38
events causing, 4-40
for memory reference, 4-38
multiple, 4-42
while exception handler executing, 4-44

exception events, User mode violations, 3-4
exception handler, executing, 4-43
Exception Handling, 4-54
exception handling

instructions in pipeline, 4-54
USB, 14-60

exception processing, deferring, 4-55
exception routine, example code, 4-57
Exceptions, 4-38
Exceptions by Descending Priority (table),

4-42
Exceptions While Executing an Exception

Handler, 4-43

ADSP-BF535 Blackfin Processor Hardware Reference I-13

Index

exclusive data cache line (definition), 6-2
EXCPT instruction, 4-43
Execute 1 (EX1), 4-7
Execute 2 (EX2), 4-7
Execute 3 (EX3), 4-7
Execution Cycle Count registers (CYCLES

and CYCLES2), 20-25
Execution Unit, components, 4-8
exponent derivation, 2-1
EXT_CLK (External Event Counter

mode), 16-10, 16-11, 16-21
External Access Bus. See EAB
external buffer timing, 18-83

SDRAM, 18-85
External Bus Interface Unit (EBIU)

(figure), 18-3
External Bus Interface Unit. See EBIU
External Event Counter mode

(EXT_CLK), 16-10, 16-11, 16-21
External Mastered bus. See EMB
external memory, 1-8

design issues, 19-9
interfaces, 18-5

External Memory Controller, 1-12
External Memory Controller (EMC), 1-7
External Memory Map (figure), 18-3
external PCI requirements, 13-4

F
fast back-to-back accesses, 13-11
fast back-to-back transactions, PCI, 13-20
Fast Fourier Transform, 2-30, 5-9
fatal errors, PCI, 13-8
fetch address, 4-8

incrementation, 4-8
fetched address, 4-2
FFT calculations, 5-9
FIFO, 18-1

PCI transaction, 13-7
figure, Core Interrupt Latch Register, 4-33

figure, Core Interrupt Mask Register, 4-32
figure, Core Interrupt Pending Register,

4-33
figure, Minimizing Latency in Servicing an

ISR, 4-59
figure, Nested Interrupt Handling, 4-50
figure, Non-Nested Interrupt Handling,

4-48
figure, SPORT Continuous Receive,

Alternate Framing, 11-72
figure, SPORT Continuous Receive,

Normal Framing, 11-72
figure, SPORT Continuous Transmit,

Alternate Framing, 11-72
figure, SPORT Continuous Transmit,

Normal Framing, 11-72
figure, SPORT Receive, Alternate Framing,

11-72
figure, SPORT Receive, Normal Framing,

11-72
figure, SPORT Receive, Unframed Mode,

Alternate Framing, 11-72
figure, SPORT Receive, Unframed Mode,

Normal Framing, 11-72
figure, SPORT Transmit, Alternate

Framing, 11-72
figure, SPORT Transmit, Normal

Framing, 11-72
figure, SPORT Transmit, Unframed

Mode, Alternate Framing, 11-72
figure, SPORT Transmit, Unframed

Mode, Normal Framing, 11-72
figure, System Interrupt Assignment

Register 2, 4-29
figure, System Interrupt Mask Register,

4-28
figure, System Interrupt Status Register,

4-26
figure, System Interrupt Wakeup-Enable

Register, 4-24

Index

I-14 ADSP-BF535 Blackfin Processor Hardware Reference

figure System Interrupt Assignment
Register 0, 4-29

FIO_BOTH (Flag Set on Both Edges
register), 15-10

FIO_DIR (Flag Direction register), 15-2
FIO_EDGE (Flag Interrupt Sensitivity

register), 15-10
FIO_FLAG_C (Flag Clear register), 15-2
FIO_FLAG_S (Flag Set register), 15-2
FIO_MASKA_C (Flag Interrupt A Mask

Clear register), 15-5
FIO_MASKA_S (Flag Interrupt A Mask

Set register), 15-5
FIO_MASKB_C (Flag Interrupt B Mask

Clear register), 15-5
FIO_MASKB_S (Flag Interrupt B Mask

Set register), 15-5
FIO_POLAR (Flag Polarity register), 15-9
fixed-point ALU instructions, 2-28
Flag Clear register (FIO_FLAG_C), 15-2
Flag Configuration register, core access to,

15-2
Flag Direction register (FIO_DIR), 15-2
Flag Interrupt A Mask Clear register

(FIO_MASKA_C), 15-5
Flag Interrupt A Mask Set register

(FIO_MASKA_S), 15-5
Flag Interrupt B Mask Clear register

(FIO_MASKB_C), 15-5
Flag Interrupt B Mask Set register

(FIO_MASKB_S), 15-5
Flag Interrupt Mask registers, 15-5
Flag Interrupt Sensitivity register

(FIO_EDGE), 15-10
Flag Polarity register (FIO_POLAR), 15-9
flags

PCI status register, 13-22
programmable, 15-1
Transmit Holding Register Empty

status, 12-5

flags (continued)
Write Complete, 17-3

Flag Set on Both Edges register
(FIO_BOTH), 15-10

Flag Set register (FIO_FLAG_S), 15-2
flash boot source, 1-24
flash memory, 1-8, 18-1
FLUSH instruction, 6-47
FLUSHINV instruction, 6-47
Force Interrupt / Reset (RAISE)

instruction, 3-4, 3-11
fractional mode, 2-4, 2-13, D-5
fractions, multiplication, 2-42
framed/unframed data, 11-55
framed versus unframed, 11-55
Framed Versus Unframed Data (figure),

11-56
frame number, USB, 14-17, 14-18
Frame Pointer (FP), 4-4

registers, 5-5
frame sync

active high/low, 11-57
early/late, 11-58
external/internal, 11-56
frequencies, 11-50
late, defined, 11-58
multichannel mode, 11-63
options, 11-55
sampling, 11-57

frame sync options, 11-55
frame syncs in multichannel mode, 11-63
Frame Sync to Data Relationship (FSDR)

bit, 11-66
frequencies, clock and frame sync, 11-50
frequency

clock, 7-2
EAB, 7-15
EMB, 7-18

Front-End Interface, USB, 14-7
Full On mode, 1-22

ADSP-BF535 Blackfin Processor Hardware Reference I-15

Index

full speed, USB, 14-14

G
general-purpose interrupt, 4-18, 4-46

with multiple peripheral interrupts, 4-29
General-Purpose Interrupts

(IVG7-IVG15), 4-46
general-purpose I/O (GPIO), 1-2

pins, 15-1
general-purpose timers, 1-2
general registers, USB, 14-15
global enabling and disabling interrupts,

4-34
Global Enabling/Disabling of Interrupts,

4-34
Global Interrupt Mask register

(USBD_GMASK), 14-24
Global Interrupt register

(USBD_GINTR), 14-22
ground plane, 19-15
GSM

speech compression routines, 2-21
speech vocoder algorithms, 2-37

H
H.100 protocol, 11-66, 11-69
half word, 13-3
Hardware Conditions Causing Hardware

Error Interrupts (table), 4-45
Hardware-Error Interrupt, 4-44
hardware error interrupt (HWE), 4-44,

20-28
causes, 4-44

hardware errors, multiple, 4-45
Hardware reset, 3-12, 3-13
hardware reset, 3-13
Harvard architecture, 6-9
header type, PCI, 13-36
heavy clock load and SDRAM, 18-44

hierarchical memory structure, 1-5
hold, for EBIU asynchronous memory

controller, 18-12
host mode, PCI

inbound transactions, 13-14
outbound transactions, 13-13

HWE (hardware error interrupt), 4-44,
20-28

I
ICPLB Address registers

(ICPLB_ADDRx), 6-71
ICPLB_ADDRx (ICPLB Address

registers), 6-71, 6-72
ICPLB Data registers (ICPLB_DATAx),

6-68
ICPLB_DATAx (ICPLB Data registers),

6-68
ICPLB_DATAx (Instruction Cacheability

Protection Lookaside Buffer Data
registers), 6-67

ICPLB Fault Address register
(ICPLB_FAULT_ADDR), 6-76

ICPLB_FAULT_ADDR (ICPLB Fault
Address register), 6-76

ICPLB_STATUS (ICPLB Status register),
6-74

ICPLB Status register (ICPLB_STATUS),
6-74

idled state, wake up core from, 4-24
IDLE instruction, 3-4
Idle state, 3-9, 4-1
IEEE 1149.1 standard. See JTAG standard
IF1 (Instruction Fetch 1), 4-7
IF2 (Instruction Fetch 2), 4-7
I-Fetch Access Exception, 4-42
I-Fetch CPLB Miss, 4-42
I-Fetch Misaligned Access, 4-42
I-Fetch Multiple CPLB Hits, 4-42
I-Fetch Protection Violation, 4-42

Index

I-16 ADSP-BF535 Blackfin Processor Hardware Reference

ILAT (Core Interrupt Latch register), 4-32
illegal combination, 4-43
illegal use protected resource, 4-43
IMASK (Core Interrupt Mask register),

4-32
IMEM_CONTROL (Instruction Memory

Control register), 6-12, 6-57
inbound operation, PCI, 13-10
inbound transactions

ADSP-BF535 processor as PCI target,
13-10, 13-14

PCI, errors, 13-12
incrementing bursts, 13-9
index (definition), 6-2
indexed addressing, 5-9, 5-14

with immediate offset, 5-11
Index registers (I[3:0]), 2-7, 5-2, 5-6
indirect addressing, 5-14
indirect branch, 4-10
Indirect Branch and Call, 4-11
inductance (run length), 19-15
initialization

of interrupts, 4-23
initialization, USB device, 14-46
input clock (CLKIN), 8-1
inputs and outputs, 2-24
Inserting Wait States using ARDY (figure),

18-27
instruction address, 4-3
Instruction Alignment Unit, 4-8
instruction bit scan ordering, C-5
instruction cache

coherency, 6-23
Instruction Cacheability Protection

Lookaside Buffer Data registers
(ICPLB_DATAx), 6-67

Instruction Decode (DEC), 4-7
Instruction Fetch 1 (IF1), 4-7
Instruction Fetch 2 (IF2), 4-7
Instruction Fetch (Core I bus), 7-3

instruction fetches, 6-57
instruction fetch time loop, 4-17
instruction in pipeline when interrupt

occurs, 4-54
instruction loop buffer, 4-17
Instruction Memory Control register

(IMEM_CONTROL), 6-12, 6-57
Instruction Memory Unit, 4-8
Instruction Pipeline, 4-7
instruction pipeline, 4-2, 4-7
Instruction register, C-2, C-4
instructions

ALU, 2-28
DAG, 5-16, 5-17
instruction set, 1-24
interlocked pipeline, 6-78
load • store, 6-77
multiplier, 2-35
re-execution, 4-39
Register File, 2-8, 2-9
shifter, 2-48
stored in memory, 6-77
synchronizing, 6-80

instruction set, 1-5, 1-24
Instruction Test Command register

(ITEST_COMMAND), 6-27
Instruction Test Data registers

(ITEST_DATAx), 6-28
Instruction Test registers, 6-26
instruction watchpoints, 20-4
instruction width, 4-8
integer mode, 2-14, 2-16, D-5
integers, multiplication, 2-42
interconnect routing, 7-6
interfaces, 7-7

external memory, 18-5
internal, 7-1
USB, 14-12

Interface Signals, Asynchronous Memory
(table), 18-5

ADSP-BF535 Blackfin Processor Hardware Reference I-17

Index

interleave accesses, 18-32
Internal Address Mapping (table), 18-51
internal bank, 18-31
internal/external frame syncs. See frame

sync
internal interfaces, 7-1
internal memory, 1-7
Internal Receive Frame Sync Select (IRFS)

bit, 11-17, 11-56
Internal Transmit Clock Select (ICLK) bit,

11-16, 11-54
Internal Transmit Frame Sync Select

(ITFS) bit, 11-13, 11-56, 11-64
internal versus external frame syncs, 11-56
interrupt

for peripheral, 4-22
general-purpose, 4-22
initialization, 4-23

interrupt endpoint, 14-10
interrupt ID, core, 4-22
interrupt ID, peripheral, 4-22
interrupt lines, PCI, 13-17, 13-43
Interrupt Processing Block Diagram, 4-21
Interrupt Processing Block Diagram

(figure), 4-21
interrupts, 4-1

alarm, 17-8
behavior and control, PCI, 13-17
control of system, 4-18
definition, 4-18
determining source of interrupt, 4-26
enabling and disabling, 6-85
general-purpose, 4-18, 4-46
generated by peripheral, 4-20
global enabling and disabling, 4-34
handling instructions in pipeline, 4-54
hardware error, 4-44
masking, USB, 14-30
multiple sources, 4-21
nested, 4-33

interrupts (continued)
non-nested, 4-48
PCI configuration, 13-42
peripheral, 4-18
PF pins, 15-1
processing, 4-3, 4-20
processor, 15-5
self-nesting, 4-53
servicing, 4-46
shared, 4-29
signals, SPI, 10-6
sources, peripheral, 4-25
stopwatch, 17-8
timer, 16-7
USB, 14-12, 14-22, 14-24, 14-37
USB buffer complete, 14-43
USB configuration change, 14-38
USB device suspended, 14-39
USB DMA bus error, 14-41
USB DMA comp, 14-41
USB endpoints, 14-27
USB endpoint x, 14-40
USB frame match, 14-40
USB memory controller error, 14-43
USB missed start of frame, 14-39
USB module, 14-4
USB multiple setup packets received,

14-43
USB packet complete, 14-42
USB reset signalling detected, 14-39
USB resume signalling, 14-39
USB setup packet received, 14-43
USB start of frame, 14-38
USB transfer complete, 14-42
USB transfers, 14-48

invalidating instructions, 4-8
invalid cache line (definition), 6-2
I/O Data Window, PCI, 13-6
I/O drivers, PCI, 13-44
I/O memory space, 1-10

Index

I-18 ADSP-BF535 Blackfin Processor Hardware Reference

I/O pins, general purpose, 15-1
I/O receivers, PCI, 13-44
IPEND (Core Interrupts Pending register),

3-1, 4-33
IrDA, 12-36

receiver, 12-38
receiver pulse, 12-38
SIR protocol, 1-20, 12-1
support, 12-35
transmit pulse, 12-37
transmitter, 12-37

IrDA Receiver Description, 12-38
IrDA Support, 12-35
IrDA Transmit Pulse (figure), 12-37
IrDA Transmitter Description, 12-37
I-registers (Index), 2-7
isochronous data transfers, 14-11
isochronous endpoint, 14-10
isochronous packets, size, 14-11
isochronous transfers, 14-28

USB, 14-53
ISR

supporting multiple interrupt sources,
4-23

ISR and multiple interrupt sources, 4-21
ITEST_COMMAND (Instruction Test

Command register), 6-27
ITEST_DATAx (Instruction Test Data

registers), 6-28
ITEST registers, 6-26
IVG core events, 4-19
IVHW core event, 4-19
IVHW interrupt, 4-44
IVTMR core event, 4-19

J
JTAG

port, 3-17
standard, 20-26, C-1, C-2, C-4

jump, 4-1

JUMP instructions, 4-9
conditional, 4-10
range, 4-11

L
L1 interface (System L1 bus), 7-4
L1 memory. See Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory

L2 memory, 7-7
latched interrupt request, 4-32
latency, 18-81

DAB (table), 7-12
in interrupt processing, 4-24
maximum for PCI, 13-41
PCI memory, 13-36
programmable flags, 15-11
requirement, DMA channel, 12-17
SDRAM Read command, 18-70
serial port registers, 11-50
servicing events, 4-58
setting CAS value, 18-46
when servicing interrupts, 4-46

Latency in Servicing Events, 4-58
Late Receive Frame Sync (LARFS) bit,

11-17
Late Transmit Frame Sync (LATFS) bit,

11-14, 11-58
LB (Loop Bottom registers), 4-5
LC (Loop Counter registers), 4-5
least recently used algorithm (definition),

6-3
Length registers (L[3:0]), 2-7, 5-2, 5-6
Level 1 (L1) Data Memory, 3-11

access, 6-38
architecture, 6-39
configuration, 6-10
control registers, 6-12
Data Banks A and B, 6-37, 6-38
dual port capability, 6-38

ADSP-BF535 Blackfin Processor Hardware Reference I-19

Index

Level 1 (L1) Data Memory (continued)
sub-banks, 6-39

Level 1 (L1) Instruction Memory, 3-11,
3-15, 6-14

access, 6-15
architecture, 6-17
changing configuration, 6-15
configuration, 6-14, 6-17
control registers, 6-12
DAG reference exception, 6-15
dual port capability, 6-15
instruction cache, 6-17
sub-bank organization, 6-14
sub-banks, 6-16

Level 1 (L1) memory, 1-5, 7-3, 7-4
address alignment, 6-15
architecture, 6-9
configuration, 6-12
data cache, 6-40
data memory configuration bits, 6-37
definition, 6-3
L1 Data SRAM, 6-10
L1 Instruction SRAM, 6-10
scratchpad data SRAM, 6-11
See also Level 1 (L1) Data Memory; Level

1 (L1) Instruction Memory
Level 2 (L2) memory, 1-5, 6-52 to 6-56

definition, 6-3
latency, 6-53, 6-55
latency with cache off, 6-55
latency with cache on, 6-53
off-chip, 6-55
on-chip, 6-11
SRAM, 1-7

Level 2 (L2) SRAM, 7-5, 7-7
little endian data ordering, 6-3
load, speculative execution, 6-81
Load Mode Register, 18-77
Load Mode Register command, 18-77

load operation, 6-77
load ordering, 6-79
locked transfers, DMA, 7-12
logging nested interrupt, 4-52
logical endpoints

configuration, USB, 14-35
USB, 14-2

logical operations, 2-24
Logical Shift (LSHIFT) instruction, 2-14,

2-44
logical shifts, 2-1
long jump (JUMP.L) instruction, 4-11
loop, 4-1, 4-15

buffer, 4-17
conditions, evaluation, 4-5
counter, 4-15
disabling, 4-17
effective range, 4-16
instruction fetch time, 4-17
registers, 4-4, 4-6
termination, 4-3
top and bottom addresses, 4-16

Loop Bottom registers (LB), 4-5
Loop Counter registers (LC), 4-5
Loop Registers (table), 4-17
Loop Setup (LSETUP) instruction, 4-15
Loops & Sequencing, 4-15
Loop Top registers (LT), 4-5
low power operation, 1-22
Low Receive Frame Sync (LRFS) bit,

11-56, 11-57
Low Receive Frame Sync Select (LRFS) bit,

11-17
low speed, USB, 14-14
Low Transmit Frame Sync Select (LTFS)

bit, 11-14, 11-56, 11-57
L-registers (Length), 2-7
LSETUP (loop setup) instruction, 4-15
LT (Loop Top registers), 4-5

Index

I-20 ADSP-BF535 Blackfin Processor Hardware Reference

M
MACs (multiplier-accumulators), 1-2,

2-32 to 2-44
dual operations, 2-43
multicycle 32-bit instruction, 2-42
operations, 2-38
See also multiply without accumulate

mask interrupts, USB, 14-30
master abort cycle, PCI, 13-8
Master In Slave Out (MISO) pin, 10-4,

10-5, 10-28, 10-30, 10-32, 10-35,
10-36

Master Out Slave In (MOSI) pin, 10-4,
10-5, 10-28, 10-30, 10-32, 10-35,
10-36

masters
DAB, 7-14
EAB, 7-17
EMB, 7-18
PAB, 7-9

Match Value for USB Frame Number
register (USBD_FRMAT), 14-18

maximum clock rate restrictions, 11-51
maximum latency, PCI, 13-41
MDD_DCFG (Destination Memory

DMA Configuration register), 9-33
MDD_DCP (Destination Memory DMA

Current Descriptor Pointer register),
9-37

MDD_DCT (Destination Memory DMA
Transfer Count register), 9-34

MDD_DDR (Destination Memory DMA
Descriptor Ready register), 9-36

MDD_DI (Destination Memory DMA
Interrupt register), 9-38

MDD_DND (Destination Memory DMA
Next Descriptor Pointer register),
9-36

MDD_DSAH (Destination Memory
DMA Start Address High register),
9-35

MDD_DSAL (Destination Memory DMA
Start Address Low register), 9-35

MDS_DCFG (Source Memory DMA
Configuration register), 9-39

MDS_DCP (Source Memory DMA
Current Descriptor Pointer register),
9-43

MDS_DCT (Source Memory DMA
Transfer Count register), 9-40

MDS_DDR (Source Memory DMA
Descriptor Ready register), 9-42

MDS_DI (Source Memory DMA
Interrupt register), 9-43

MDS_DND (Source Memory DMA Next
Descriptor Pointer register), 9-42

MDS_DSAH (Source Memory DMA Start
Address High register), 9-41

MDS_DSAL (Source Memory DMA Start
Address Low register), 9-41

MemDMA, 9-31 to 9-44
performance and throughput, 9-44

Memory, 6-1
memory

access types, 11-69
allocation for USB endpoints, 14-4
architecture, 1-5, 6-1 to 6-40
asynchronous, 1-2
asynchronous region, 18-1
base address, PCI, 13-38
base address pointer, 13-25
buffer offset, USB, 14-33
DMA channel, 1-2
external, 1-8
how instructions are stored, 6-77
internal, 1-7
internal bank, 18-31
L2 SRAM, 7-7

ADSP-BF535 Blackfin Processor Hardware Reference I-21

Index

memory (continued)
Level 1 (L1), 6-9 to 6-50
Level 2 (L2), 6-52 to 6-56
management, 6-56
off-chip, 1-8
page attributes, 6-58
Page Descriptor Table, 6-60
pages, 6-58
PCI space, 13-3
protected locations, 3-5
protection and properties, 6-56 to 6-76
scratchpad data SRAM, 6-11
space accessible to PCI, 13-43
start locations of L1 Instruction Memory

sub-banks, 6-16
terminology, 6-1
transaction model, 6-76
See also cache; Level 1 (L1) memory;

Level 1 (L1) Data Memory; Level 1
(L1) Instruction Memory; Level 2
(L2) memory

memory access requests, USB, failed, 14-60
memory address alignment, 5-13
memory architecture, 1-5
Memory Data Window, PCI, 13-6
Memory DMA. See MemDMA
Memory Interface module, USB, 14-8
memory latency timer, PCI, 13-36
Memory Management Unit (MMU), 6-56
Memory Management unit (MMU), 1-5
memory map

PCI, 13-4
memory-mapped registers (MMRs), 6-84

to 6-85
PCI on EAB, 13-26

memory reference, exception for, 4-38
microcontroller load/store instructions, 5-5
minimal clock load and SDRAM, 18-44

miss, read buffer, 18-73
Mixing Modes, 12-17
-law companding, 11-2, 11-53, 11-67
MMR location of core events, 4-35
MMU (memory management unit), 1-5
mode

boot, 1-24, 3-17
Broadcast, 10-3, 10-14, 10-30
Bypass, 3-17
DMA, 12-17
emulator, 1-5
Non-DMA, 12-15
serial port, 11-8
SPI Master, 10-3, 10-32
SPI Slave, 10-3, 10-34
Supervisor, 1-5
User, 1-5

mode fault error (MODF), 10-36
Mode register, 18-32
MODF, 10-36
modified addressing, 5-4
modified state bit (definition), 6-2
Modify address, 5-1
Modify instruction, 5-12
Modify registers (M[3:0]), 2-7, 5-2, 5-6
move instruction, conditional, 4-13
moving data, serial port, 11-69
moving data between SPORTS and

memory, 11-69
M-registers (Modify), 2-7
MSEL clock frequency, 3-11
MSEL (Multiplication Select) field, 8-7
multichannel DMA data packing, 11-68
multichannel enable, 11-67
multichannel frame delay, 11-64
Multichannel Frame Delay (MFD) field,

11-64

Index

I-22 ADSP-BF535 Blackfin Processor Hardware Reference

multichannel mode, 11-61
DMA data packing, 11-68
enable/disable, 11-67
frame syncs, 11-63
serial port, 11-63

Multichannel Mode (MCM) bit, 11-67
multichannel operation, 11-61
multichannel operation, serial port, 11-61
Multichannel Operation (figure), 11-62
multiple exception, for an instruction, 4-42
multiple interrupt sources, 4-21, 4-52
multiple slave SPI systems, 10-14
multiplexed clock pins, system design, 19-3
multiplier, 2-1

accumulator result registers A[1: 0],
2-33, 2-34

arithmetic fractional modes formats,
2-15

arithmetic integer modes formats, 2-15
clock, 19-3
data types, 2-13
fractional modes format, 2-15
instruction options, 2-35
operations, 2-33
results, 2-34, 2-35, 2-38
rounding, 2-34
saturation, 2-34
status, 2-22
status bits, 2-35

multiplier-accumulator. See MACs
Multiplier Select (MSEL) field, 8-3
multiply without accumulate, 2-40
muxing SDRAM addressing, 18-60

N
nested interrupt, 4-33

logging, 4-52
Nested Interrupt Handling (figure), 4-50

Nested Interrupts, 4-48
nested ISR

example Epilog code, 4-51
example Prolog code, 4-51

Nesting of Interrupts, 4-48
Next Descriptor Pointer field, 9-36
NMI, 4-38

core event, 4-19
NMI (Non-Maskable Interrupt), 4-38
nonaccessible resources, inbound, PCI,

13-12
Non-DMA Mode, 12-15
Non-DMA mode, 12-15
non-maskable interrupt, 4-38
non-nested interrupt, 4-48
Non-Nested Interrupt Handling (figure),

4-48
Non-Nested Interrupts, 4-48
non-OS environments

Supervisor mode, 3-7
nonsequential program operation, 4-9
nonsequential program structures, 4-1
No Operation command, 18-80
NOP command, 18-80
normal frame syncs, defined, 11-59
normal timing, serial port, 11-58
Normal Versus Alternate Framing (figure),

11-60
NOT, logical, 2-24
numbers

binary, 2-3
data formats, 2-11
two’s complement, 2-4
unsigned, 2-4

numeric formats, D-1 to D-7
binary multiplication, D-4
block floating point, D-6
integer mode, D-5
two’s complement, D-1

ADSP-BF535 Blackfin Processor Hardware Reference I-23

Index

O
off-chip memory, 1-8
on-chip L2 SRAM memory, 7-7
open drain drivers, 10-31
open page, 18-29
operands for input, 2-33
operating modes, 3-1, 8-12

Active, 1-22, 8-12
Deep Sleep, 1-23, 8-14
Full On, 1-22, 8-12
high performance, 8-26
power saving, 8-26
Sleep, 1-23, 8-13

OR, logical, 2-24
order, PCI operations, 13-18
ordering, weak and strong, 6-79
ordering of loads and stores, 6-79
oscilloscope probes, 19-16
other multichannel fields in

SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG, 11-65

Other Usability Issues, 4-57
outbound operation, PCI in device mode,

13-6
outbound transactions

ADSP-BF535 processor as PCI initiator,
13-6, 13-13

PCI bus device configuration, 13-15
output, PF pin configured as, 15-1
overflow

flags, 2-12
saturation of multiplier results, 2-35

overrun, USB buffer, 14-43
overview, 4-1, 7-1, 11-1

P
PAB Agents (Masters, Slaves), 7-9

PAB (Peripheral Access bus), 7-8
and EBIU, 18-4
and USB, 14-10
arbitration, 7-8
bus agents (masters, slaves), 7-9
clocking, 8-1
performance, 7-8

packet request, USB, 14-20
packets, USB, 14-48
packet transfers, USB, scheduling, 14-49
packing, serial port, 11-53, 11-68
packing data, multichannel DMA, 11-68
page size, 18-32, 18-51
parallel refresh command, 18-47
parallel switch, 7-5
parity error, PCI, 13-8
PC100 SDRAM standard, 18-1
PC133 SDRAM Controller, 1-12
PC133 SDRAM standard, 18-1
PCI, 1-8

addresses for outbound, 13-24
arbiter, 19-8
asynchronous memory access, 13-43
back-to-back accesses, 13-11
BIST, 13-35
block diagram, 13-1
bus, configuring devices on, 13-15
bus device configuration, outbound

transactions, 13-15
bus operation ordering, 13-18
cache line size, 13-37
class code, 13-33
clock, 13-2
clock requirements, 13-45
core access, 13-3, 13-18
core access, bus operation ordering,

13-18
core application interface logic, 13-20
data windows, 13-6
delayed transactions, 13-7

Index

I-24 ADSP-BF535 Blackfin Processor Hardware Reference

PCI (continued)
device function, 13-3
EAB MMRs, 13-26
errors, inbound, 13-12
errors in outbound transactions, 13-7
external interface, 13-2
external requirements, 13-4
fatal errors, 13-8
general outbound operation, 13-6
header type, 13-36
host function, 1-14, 13-3
host mode operation, 13-13
inbound operation, 13-10
initiator, 13-6, 13-13
interface, 1-13
interface programming model, 13-18
interrupt behavior and control, 13-17
interrupt configuration, 13-42
interrupt lines, 13-17, 13-43
interrupts to core, 13-22
I/O base address pointer, 13-23
I/O drivers, 13-44
I/O issues, 13-44
I/O receivers, 13-44
I/O window size, 13-27
master abort cycle, 13-8
maximum latency, 13-41
memory, 13-14
memory base address, 13-38
memory latency timer, 13-36
memory spaces, 1-2, 13-3
memory window size, 13-26
MMRs, 13-18
nonaccessible resources, 13-12
outbound configuration, 13-15
overview, 13-1
parity error, 13-8
power domains, 13-45
power savings, 8-24
programming model, 13-18

PCI (continued)
reflected wave switching, 13-44
requirements, external, 13-4
reset, 13-16
retries, 13-8
revision ID, 13-34
SDRAM, 13-43
setting host or device mode, 13-20
signals, 13-17
specification, 13-2
status bits, 13-11
status flags, 13-21
status register flags, 13-22
subsystem ID, 13-40
subsystem vendor ID, 13-40
supported transactions, 13-12
target, 13-10, 13-14
target function, 1-15
timing and clock inputs, 8-2
transaction FIFO, 13-7
transaction for burst size, 13-9
transaction types, 13-8
unsupported transactions, 13-12
vendor ID, 13-30

PCI AD bus, 13-6
PCI Bridge Block Diagram (figure), 13-1
PCI Bridge Control register (PCI_CTL),

13-20
PCI_CBAP (PCI Outbound I/O

Configuration Address register),
13-24

PCI_CFG_BIST (PCI Configuration
BIST register), 13-35

PCI_CFG_CC (PCI Configuration Class
Code register), 13-33

PCI_CFG_CLS (PCI Configuration
Cache Line Size register), 13-37

PCI_CFG_CMD (PCI Configuration
Command register), 13-32

ADSP-BF535 Blackfin Processor Hardware Reference I-25

Index

PCI_CFG_DIC (PCI Configuration
Device ID register), 13-29

PCI_CFG_HT (PCI Configuration
Header Type register), 13-36

PCI_CFG_IBAR (PCI Configuration I/O
Base Address register), 13-39

PCI_CFG_IL (PCI Configuration
Interrupt Line register), 13-43

PCI_CFG_IP (PCI Configuration
Interrupt Pin register), 13-42

PCI_CFG_MAXL (PCI Configuration
Maximum Latency register), 13-41

PCI_CFG_MBAR (PCI Configuration
Memory Base Address register), 13-38

PCI_CFG_MLT (PCI Configuration
Memory Latency Timer register),
13-36

PCI_CFG_RID (PCI Configuration
Revision ID register), 13-34

PCI_CFG_SID (PCI Configuration
Subsystem ID register), 13-40

PCI_CFG_STAT (PCI Configuration
Status register), 13-31

PCI_CFG_SVID (PCI Configuration
Subsystem Vendor ID register), 13-40

PCI_CFG_VIC (PCI Configuration
Vendor ID register), 13-30

PCI Configuration BIST register
(PCI_CFG_BIST), 13-35

PCI Configuration Cache Line Size register
(PCI_CFG_CLS), 13-37

PCI Configuration Class Code register
(PCI_CFG_CC), 13-33

PCI Configuration Command register
(PCI_CFG_CMD), 13-32

PCI Configuration Device ID register
(PCI_CFG_DIC), 13-29

PCI Configuration Header Type register
(PCI_CFG_HT), 13-36

PCI Configuration Interrupt Line register
(PCI_CFG_IL), 13-43

PCI Configuration Interrupt Pin register
(PCI_CFG_IP), 13-42

PCI Configuration I/O Base Address
register (PCI_CFG_IBAR), 13-39

PCI Configuration Maximum Latency
register (PCI_CFG_MAXL), 13-41

PCI Configuration Memory Base Address
register (PCI_CFG_MBAR), 13-38

PCI Configuration Memory Latency
Timer register (PCI_CFG_MLT),
13-36

PCI Configuration Minimum Grant
register (PCI_CFG_MING), 13-42

PCI Configuration Revision ID register
(PCI_CFG_RID), 13-34

PCI Configuration Status register
(PCI_CFG_STAT), 13-31

PCI Configuration Subsystem ID register
(PCI_CFG_SID), 13-40

PCI Configuration Subsystem Vendor ID
register (PCI_CFG_SVID), 13-40

PCI Configuration Vendor ID register
(PCI_CFG_VIC), 13-30

PCI_CTL (PCI Bridge Control register),
13-20

PCI Device I/O BAR Mask register
(PCI_DIBARM), 13-27

PCI Device Memory BAR Mask register
(PCI_DMBARM), 13-26

PCI_DIBARM (PCI Device I/O BAR
Mask register), 13-27

PCI_DMBARM (PCI Device Memory
BAR Mask register), 13-26

PCI Enable bit, 13-20
PCI_HMCTL (PCI Host Memory

Control register), 13-14, 13-43
PCI Host Memory Control register

(PCI_HMCTL), 13-43

Index

I-26 ADSP-BF535 Blackfin Processor Hardware Reference

PCI_IBAP (PCI Outbound I/O Base
Address register), 13-23

PCI_ICTL (PCI Interrupt Controller
register), 13-22

PCI Inbound I/O Base Address register
(PCI_TIBAP), 13-25

PCI Inbound Memory Base Address
register (PCI_TMBAP), 13-25

PCI Interrupt Controller register
(PCI_ICTL), 13-22

PCI Local Bus Specification Rev. 2.2, 13-2
PCI_MBAP (PCI Outbound Memory Base

Address register), 13-23
PCI Memory Map (figure), 13-4
PCI memory space, 18-3
PCI Outbound I/O Base Address register

(PCI_IBAP), 13-23
PCI Outbound I/O Configuration Address

register (PCI_CBAP), 13-24
PCI Outbound Memory Base Address

register (PCI_MBAP), 13-23
PCI (Peripheral Component Interconnect)

bus, 1-2
PCI Reset bit, 13-17
PCI space, 18-3
PCI Specification, 13-2
PCI_STAT (PCI Status register), 13-21
PCI Status register (PCI_STAT), 13-21
PCI_TIBAP (PCI Inbound I/O Base

Address register), 13-25
PCI_TMBAP (PCI Inbound Memory Base

Address register), 13-25
PCI-to-PCI bridge, 13-15
PC-Relative Indirect Branch and Call, 4-12
PDWN bit, 8-8
performance

DAB, 7-11
EAB, 7-15
EAB estimates (table), 7-15
EMB, 7-18

performance (continued)
PAB, 7-8
programmable flags, 15-11
SDRAM, 18-81

Performance Monitor Control register
(PFCTL), 20-20

Performance Monitor Counter registers
(PFCNTRx), 20-20

Performance Monitoring Unit, 20-19 to
20-24

peripheral
configuring for an IVG priority, 4-31
interrupt generated by, 4-20
interrupt sources, 4-25
supporting interrupts, 4-22
timing, 7-3
waking up core, 4-24

peripheral bus interface
USB, 14-10

Peripheral Bus (PAB)
Performance, 7-8

peripheral bus (PAB), 7-8
Peripheral Bus. See PAB
Peripheral Clock Enable register

(PLL_IOCK), 8-22, 8-23
peripheral clocking, 8-22
peripheral DMA Configuration register,

9-16
peripheral DMA control registers (table),

9-30
peripheral DMA Current Descriptor

Pointer register, 9-26
peripheral DMA IRQ Status register, 9-28
peripheral DMA Next Descriptor Pointer

register, 9-23
peripheral DMA Start Address registers,

9-21
peripheral DMA Transfer Count register,

9-19

ADSP-BF535 Blackfin Processor Hardware Reference I-27

Index

peripheral interrupts, 4-18
relative priority, 4-29
source masking, 4-27

Peripheral Interrupt Source Reset State
(table), 4-22

PFCNTRx (Performance Monitor Counter
registers), 20-20

PFCTL (Performance Monitor Control
register), 20-20

PFE bit, 18-41
PF. See programmable flags
pins, 19-1
Pin State during SDC Commands (table),

18-75
pipeline

figure, 4-7
instruction, 4-2, 4-7
instructions when interrupt occurs, 4-54
interlocked, 6-78

pipelining, SDC supported, 18-45
PLL

Active mode, 8-12, 8-18
applying power to the PLL, 8-16
block diagram, 8-2
BYPASS bit, 8-13, 8-19
Bypass mode, 3-12
CCLK • VCO multiplication factors, 8-4
CCLK derivation, 8-1, 8-2
changing CLKIN to CCLK multiplier,

8-16
clock counter, 8-10
clock dividers, 8-3
clock frequencies, changing, 8-10
clocking to SDRAM, 8-14
clock multiplier ratios, 8-3
code example, Active mode to Full On

mode, 8-21
code example, changing clock multiplier,

8-21

PLL (continued)
code example, Full On mode to Active

mode, 8-21
configuration, 8-2
control bits, 8-15
Deep Sleep mode, effect of programming

for, 8-19
DEEP_SLEEP output pin, 8-14
disabled, 8-16
Divide Frequency (DF) bit, 8-3
DMA access, 8-12, 8-13, 8-19
Dynamic Power Management Controller

(DPMC), 8-11
enabled, 8-12, 8-16
external voltage regulator, 8-25
Full On mode, 8-12, 8-18
high performance sequence, 8-26
lock counter, 8-10
maximum performance mode, 8-12
modification, 8-16, 8-17
Multiplier Select (MSEL) field, 8-3, 8-16
new multiplier ratio, 8-16
operating mode, 8-12, 8-15, 8-17
PCI clock input, 8-2
PCI power savings, 8-24
PDWN bit, 8-15
peripheral clocking, 8-22
PLL_LOCKED bit, 8-18
PLL_OFF bit, 8-16
PLL status (table), 8-12
power dissipation, reducing, 8-22
power domains, 8-23
power savings by operating mode (table),

8-12
power saving sequence, 8-25
processing during PLL programming

sequence, 8-18
relocking after changes, 8-18
removing power to the PLL, 8-16
RTC clock input, 8-2

Index

I-28 ADSP-BF535 Blackfin Processor Hardware Reference

PLL (continued)
RTC interrupt, 8-14, 8-19
RTC wake-up bit values, 8-14
SCLK derivation, 8-1, 8-2
Sleep mode, 8-13, 8-19
STOPCK bit, 8-15
UART clock rate, 8-2
USB clock input, 8-2
voltage control, 8-11, 8-24
wake-up signal, 8-18

PLL Control register (PLL_CTL), 8-7
PLL_CTL (PLL Control register), 8-7
PLL_IOCK (Peripheral Clock Enable

register), 8-22, 8-23
PLL_LOCKCNT (PLL Lock Count

register), 8-7, 8-10
PLL Lock Count register

(PLL_LOCKCNT), 8-10
PLL_OFF bit, 8-8
PLL (phase-locked loop)

configuration, 3-14
PLL programming sequence, 8-17
PLL_STAT (PLL Status register), 8-7, 8-9
PLL Status register (PLL_STAT), 8-7, 8-9
Pointer Register File, 2-5
Pointer register modification, 5-12
Pointer registers, 2-6, 3-4
polarity, programmable flags, 15-9
popping, manual, 4-3
port, serial presence detect, 18-34
post-increment addressing, 5-14
post-modify addressing, 5-1, 5-4, 5-7, 5-11
post-modify buffer access, 5-7
power dissipation, 8-23
power domains, 8-23

PCI, 13-45
power-down warning, as NMI, 4-38
power management, 8-1 to 8-27
power sequencing, 13-45

power up, 18-32
sequence, 18-77, 18-80

prebuffering, for isochronous USB
applications, 14-53

Precharge command, 18-33, 18-76
Precharge delay, selecting, 18-48
prefetches, operation, 18-72
PREFETCH instruction, 6-9, 6-47
pre-modify addressing, 5-1
pre-modify instruction, 5-11
prescaler, RTC, 17-1
primary registers, 2-6
private instructions, C-4
probes, oscilloscope, 19-16
processor interrupts, 15-5
processor mode

determination, 3-1
Emulation, 3-9
figure, 3-2
identification, 3-2
IPEND interrogation, 3-1
Supervisor, 3-6
User, 3-3

processor state
Idle, 3-9
Reset, 3-10

product identification registers, 20-25
Program Counter register (PC), 4-2

PC-relative address, 4-10
PC-relative indirect JUMP and CALL,

4-12
PC-relative offset, 4-11

program flow, 4-1
Program Flow Variations (figure), 4-1
programmable flags, 1-2, 1-21, 15-1

edge sensitive, 15-10
latency, 15-11
level sensitive, 15-10
pins, interrupt, 15-1
polarity, 15-9

ADSP-BF535 Blackfin Processor Hardware Reference I-29

Index

programmable flags (continued)
shared pins, 3-14
slave select, 10-11
throughput, 15-11

programming model
cache memory, 6-9
EBIU, 18-7
PCI, 13-18

program sequencer, 4-1
program structures, nonsequential, 4-1
protected instructions, 3-4
protected resources and instructions, 3-4
protocols, standard, support for, 11-69
PSSE bit, 18-41
public instructions, C-4, C-6
Pulse Width Count and Capture mode

(WDTH_CAP), 16-10, 16-11, 16-18
pulse width modulation, 16-14
Pulse Width Modulation mode

(PWM_OUT), 16-10, 16-11, 16-13
pushing, manual, 4-3
PWM_OUT (Pulse Width Modulation

mode), 16-10, 16-11, 16-13
PWM. See pulse width modulation

Q
quad 16-bit operations, 2-25

R
RAISE (Force Interrupt / Reset)

instruction, 3-4
range

CALL instruction, 4-11
conditional branches, 4-13
JUMP instructions, 4-11

RDIV
equation for value, 18-55
field, 18-54, 18-70

read access, for EBIU asynchronous
memory controller, 18-12

read buffer miss, 18-73
read buffer operation, 18-72
read transfers to SDRAM banks, 18-68
Read/Write command, 18-78
Real-Time Clock. See RTC
Receive Clock, serial (RCLKx) pins, 11-3,

11-4, 11-54
Receive Enable (RSPEN) bit, 11-7, 11-8,

11-9, 11-16
Receive Frame Sync Required Select

(RFSR) bit, 11-17, 11-55
Receive Frame Sync (RFSx) pins, 11-3,

11-55, 11-63
Receive Overflow Status (ROVF) bit,

11-20
reception error (RBSY), 10-37
re-execution of instruction, 4-39
reflected wave switching, PCI, 13-44
refresh, parallel, 18-47
register file instructions, 2-8
register files, 2-5 to 2-10
register instructions, conditional branch,

4-10
register move, 4-13
registers

accessible in User mode, 3-4
and control, USB, 14-8
core, A-1 to A-12
memory-mapped, A-1 to A-12, B-1 to

B-35
product identification, 20-25
system, B-1 to B-35

register writes and effect latency, 11-50
replacement policy, 6-3, 6-45
reserved SDRAM, 18-1
reset

Core Double-Fault, 3-13
Core-Only Software, 3-13, 3-17, 3-18

Index

I-30 ADSP-BF535 Blackfin Processor Hardware Reference

reset (continued)
effect on memory configuration, 6-12
effect on PLL Control register pins, 8-7
Hardware, 3-12, 8-14
hardware, 3-13
PCI, 13-16
peripheral clock enablement, 8-23
System Software, 3-12, 3-14
timing of pins, 19-5
USB signalling, 14-61
Watchdog Timer, 3-13, 3-14

reset initialization sequence
programming for interrupts, 4-28

reset interrupt (RST), 4-36
RESET signal, 3-11
Reset state, 3-6, 3-10
reset vector, 4-37
Reset Vector Addresses (table), 4-37
resources accessible from EMB, 7-19
retries, PCI, 13-8
RETS register, 4-11
return

from emulation (RTE) instruction, 3-4,
4-10

from exception (RTX) instruction, 3-4,
4-10

from interrupt (RTI) instruction, 3-4,
4-10

from non-maskable interrupt (RTN)
instruction, 3-4, 4-10

from subroutine (RTS) instruction, 4-10
return address, 4-2, 4-9
Return Address registers, 4-4
return instructions, 4-10
RETx register, 3-5
revision ID, PCI, 13-34
RND_MOD bit, 2-18, 2-20
ROM, 1-8, 1-12, 18-1

rounding
biased, 2-18, 2-20
convergent, 2-18
instructions, 2-18, 2-21
unbiased, 2-18

router, 7-5
routing, 7-6
row address, 18-51
RST

core event, 4-19
reset interrupt, 4-36

RTC, 1-2, 1-15, 17-1
alarm clock features, 17-2
counters, 17-1
digital watch features, 17-1
prescaler, 17-1
programming model, 17-2
stopwatch function, 17-2
timing and clock inputs, 8-2

RTC Alarm register (RTC_ALARM),
17-11

RTC_ALARM (RTC Alarm register),
17-11

RTC Enable register (RTC_FAST), 17-12
RTC_FAST (RTC Enable register), 17-12
RTC_ICTL (RTC Interrupt Control

register), 17-8
RTC Interrupt Control register

(RTC_ICTL), 17-8
RTC Interrupt Status register

(RTC_ISTAT), 17-9
RTC_ISTAT (RTC Interrupt Status

register), 17-9
RTC_STAT (RTC Status register), 17-7
RTC Status register (RTC_STAT), 17-7
RTC Stopwatch Count register

(RTC_SWCNT), 17-10
RTC_SWCNT (RTC Stopwatch Count

register), 17-10

ADSP-BF535 Blackfin Processor Hardware Reference I-31

Index

RTE (return from emulation) instruction,
3-4, 4-10

RTI instruction, use, 4-57
RTI (return from interrupt) instruction,

3-4, 4-10
RTN (return from non-maskable interrupt)

instruction, 3-4, 4-10
RTS (return from subroutine) instruction,

4-10
RTX (return from exception) instruction,

3-4, 4-10
RZI modulation, 12-36

S
SA10 pin, 18-47
sampling, serial port, 11-57
sampling clock period, UART, 12-6
sampling edge for data and frame syncs,

11-57
SBIU, 7-5
SBIU internal routing priority, 7-6
SBIU (System Bus Interface Unit), 7-1,

7-3, 7-5
Internal Routing Priority (table), 7-6

scheduling USB data packets, 14-49
SCK1E bit, 18-43
SCK. See Serial Peripheral Interface Clock

signal
SCLK[1] function and AMC, 18-43
SCLK (system clock)

derivation, 8-1
EBIU, 18-1
status by operating mode (table), 8-12

scratchpad SRAM, 6-11, 6-37
SCTLE bit, 18-40, 18-43
SDC, 18-28, 18-53

commands, 18-75
EBIU block diagram, 18-3
glueless interface features, 18-28
operation, 18-70

SDC (continued)
set up, 18-70

SDC Commands, 18-75
SDC Configuration, 18-70
SDC Operation, 18-70
SDQM[1:0] Encodings During Writes for

16-bit SDRAM Banks (table), 18-69
SDQM[3:0] (Data I/O Mask) pins, 18-47
SDQM[3:0] Encodings During Writes for

32-bit SDRAM Banks (table), 18-68
SDQM[3:0] pins, 18-68
SDRAM

A10 pin, 18-47
address mapping, 18-59
auto-refresh, 18-78
banks, 6-7, 6-55, 18-33
bank size, 18-1
block diagram, 19-12
Buffering Timing Option (EBUFE),

setting, 18-45
clock enables, setting, 18-43
column address width, 18-33
configuration, 18-28
devices supported, 18-50
DIMMs, 18-33, 19-13
discrete component configurations

supported (table), 19-11
example of start address calculation,

18-58
external buffer timing, 18-85
external memory space, 6-5
interface commands, 18-75
interfaces, 19-12
memory banks, 18-3
memory regions, 6-55
no operation command, 18-80
operation parameters, initializing, 18-77
PCI, 13-43
performance, 18-81
read command latency, 18-70

Index

I-32 ADSP-BF535 Blackfin Processor Hardware Reference

SDRAM (continued)
read transfers, 18-68
read/write, 18-78
reserved, 18-1
sizes supported, 6-55, 18-28
start addresses, 18-1
supported configurations, 19-11
throughput, 18-81
timing specifications, 18-80

SDRAM Address Mapping, 18-68
SDRAM controller. See SDC
SDRAM Control Status register

(EBIU_SDSTAT), 18-53
SDRAM External Bank Address Decode,

18-56
SDRAM Interface Signals (table), 18-6
SDRAM Memory Bank Control register

(EBIU_SDBCTL), 18-49
SDRAM Memory Global Control register

(EBIU_SDGCTL), 18-37
SDRAM Refresh Rate Control register

(EBIU_SDRRC), 18-54
Selecting the Activate Command Delay

(TRAS), 18-47
self-nesting mode for interrupts, 4-53
Self-Refresh command, 18-79
Self-Refresh mode, 18-34

entering, 18-44
exiting, 18-44

semaphores, 19-6
example code, 19-7

sensitivity, programmable flags, 15-10
SEQSTAT (Sequencer Status register), 4-4
Sequencer, 4-8
sequencer registers accessible in User mode,

3-4
Sequencer-Related Registers, 4-3
Sequencer Status Register (SEQSTAT), 4-4
Sequencer Status register (SEQSTAT), 4-4
Serial communications, 12-2

serial communications, 12-2
Serial Peripheral Interface Clock signal

(SCK), 10-2, 10-4, 10-28, 10-30,
10-31, 10-36

Serial Peripheral Interface Slave Select
Input signal (SPISS), 10-5, 10-13,
10-14, 10-28

Serial Peripheral Interface (SPI) ports, 1-1,
1-19

serial port, 1-2, 1-17, 11-1, 11-7, 11-50
channels, 11-61
clock, 11-2, 11-50, 11-51, 11-54
companding, 11-53
data buffering, 11-18
data formats, 11-52, 11-53
enable/disable, 11-7
frame sync, 11-56, 11-58
internal memory access, 11-69
modes, setting, 11-8
multichannel operation, 11-61 to 11-68
sampling, 11-57
single-word transfers, 11-69
termination, 11-70
window, 11-65
word length, 11-52

serial port (SPORT) pins, table, 11-3
serial presence detect port, 18-34
serial ROM, 18-34
serial scan paths, C-4
Serial Word Length Select (SLEN) bits,

11-13, 11-17, 11-52
restrictions, 11-52
word length formula, 11-52

service, type of exception, 4-39
servicing interrupt, 4-46
Servicing Interrupts, 4-46
set

definition, 6-3
set-associative (definition), 6-3
setting EBUFE, 18-45

ADSP-BF535 Blackfin Processor Hardware Reference I-33

Index

setting SPORT modes, 11-8
set up

for EBIU asynchronous memory
controller, 18-12

SDC, 18-70
SDRAM clock enables, 18-43

setup packet, USB, 14-27
shared interrupt, 4-29, 4-52
shifter, 1-2, 2-1, 2-44 to 2-48

data types, 2-14
immediate shifts, 2-45, 2-46
operations, 2-44
register shifts, 2-46
status flags, 2-48
three-operand shifts, 2-46
two-operand shifts, 2-45

short jump (JUMP.S) instruction, 4-11
SIC, 4-25
SIC_IAR0 (System Interrupt Assignment

register 0), 4-29
SIC_IAR1 (System Interrupt Assignment

register 1), 4-30
SIC_IARx (System Interrupt Assignment

registers), 4-29
SIC_IMASK (System Interrupt Mask

register), 4-27, 16-7
SIC_ISR (System Interrupt Status register),

4-25
SIC_IWR (System Interrupt Wakeup

Enable register), 4-24
Signal, 19-15
signal integrity, 19-15
signed numbers, 2-3
sign extending data, 2-10
SIMD video ALU operations, 2-32
single 16-bit operations, 2-25
single-master, multiple-slave SPI

configuration diagram, 10-15
Single Step exception, 4-43

slaves
DAB, 7-14
EAB, 7-17
EBIU, 18-4
EMB, 7-18
PAB, 7-9

slave select, SPI, 10-11
Sleep mode, 1-23
SNEN bit, 4-53
software interrupt handlers, 4-18
Software Reset Register (figure), 3-16
Software Reset register (SWRST), 3-16
Software Resets and Watchdog Timer, 3-14
Source Memory DMA Configuration

register (MDS_DCFG), 9-39
Source Memory DMA Current Descriptor

Pointer register (MDS_DCP), 9-43
Source Memory DMA Descriptor Ready

register (MDS_DDR), 9-42
Source Memory DMA Interrupt register

(MDS_DI), 9-43
Source Memory DMA Next Descriptor

Pointer register (MDS_DND), 9-42
Source Memory DMA Start Address High

register (MDS_DSAH), 9-41
Source Memory DMA Start Address Low

register (MDS_DSAL), 9-41
Source Memory DMA Transfer Count

register (MDS_DCT), 9-40
speech compression routines, 2-21
SPI

beginning and ending transfers, 10-38
block diagram, 10-2
clock phase, 10-28, 10-30, 10-32
clock polarity, 10-28, 10-32
data transfer, 10-3
detecting transfer complete, 10-15
error signals, 10-6, 10-35
interrupt signals, 10-6
Master mode, 10-3, 10-32

Index

I-34 ADSP-BF535 Blackfin Processor Hardware Reference

SPI (continued)
point-to-point connections, 19-14
registers, table, 10-26
Slave mode, 10-3, 10-34
slave select function, 10-11
slave transfer preparation, 10-35
transfer formats, 10-28
transfer modes, 10-33
transmission/reception errors, 10-15

SPI-compatible peripherals, 10-1
SPI (Serial Peripheral Interface) ports, 1-1,

1-19
SPI slave select, 10-11
SPISS. See Serial Peripheral Interface Slave

Select Input signal.
SPI status register (SPIx_ST), 10-15
SPI transfer formats, 10-28
SPIx Baud Rate registers (SPIx_BAUD),

10-7, 10-27
SPIx_BAUD (SPIx Baud Rate registers),

10-7, 10-27
SPIx_CONFIG (SPIx DMA

Configuration registers), 10-21, 10-27
SPIx Control registers (SPIx_CTL), 10-4,

10-8, 10-27
SPIx_COUNT (SPIx DMA Count

registers), 10-23, 10-27
SPIx_CTL (SPIx Control registers), 10-4,

10-8, 10-27
SPIx_CURR_PTR (SPIx DMA Current

Descriptor Pointer registers), 10-20,
10-27

SPIx_DESCR_RDY (SPIx DMA
Descriptor Ready registers), 10-25,
10-28

SPIx DMA Configuration registers
(SPIx_CONFIG), 10-21, 10-27

SPIx DMA Count registers
(SPIx_COUNT), 10-23, 10-27

SPIx DMA Current Descriptor Pointer
registers (SPIx_CURR_PTR), 10-20,
10-27

SPIx DMA Descriptor Ready registers
(SPIx_DESCR_RDY), 10-25, 10-28

SPIx DMA Interrupt registers
(SPIx_DMA_INT), 10-26, 10-28

SPIx_DMA_INT (SPIx DMA Interrupt
registers), 10-26, 10-28

SPIx DMA Next Descriptor Pointer
registers (SPIx_NEXT_DESCR),
10-24, 10-27

SPIx DMA Start Address High registers
(SPIx_START_ADDR_HI), 10-22,
10-27

SPIx DMA Start Address Low registers
(SPIx_START_ADDR_LO), 10-22,
10-27

SPIx Flag registers (SPIx_FLG), 10-10,
10-27

SPIx_FLG (SPIx Flag registers), 10-10,
10-27

SPIx_NEXT_DESCR (SPIx DMA Next
Descriptor Pointer registers), 10-24,
10-27

SPIx RDBR Shadow registers
(SPIx_SHADOW), 10-18, 10-27

SPIx_RDBR (SPIx Receive Data Buffer
registers), 10-18, 10-27

SPIx Receive Data Buffer registers
(SPIx_RDBR), 10-18, 10-27

SPIx_SHADOW (SPIx RDBR Shadow
registers), 10-18, 10-27

SPIx_START_ADDR_HI (SPIx DMA
Start Address High registers), 10-22,
10-27

SPIx_START_ADDR_LO (SPIx DMA
Start Address Low registers), 10-22,
10-27

ADSP-BF535 Blackfin Processor Hardware Reference I-35

Index

SPIx Status registers (SPIx_ST), 10-15,
10-27

SPIx_ST (SPIx Status registers), 10-15,
10-27

SPIx_TDBR (SPIx Transmit Data Buffer
registers), 10-17, 10-27

SPIx Transmit Data Buffer registers
(SPIx_TDBR), 10-17, 10-27

SPORT block diagram, 11-4
SPORT disable, 11-7
SPORT multichannel configuration

(SPORTx_MCMCx) registers, 11-30
SPORT multichannel receive select

(SPORTx_MRCSx) registers, 11-28
SPORT multichannel transmit select

(SPORTx_MTCSx) registers, 11-26
SPORT operation, 11-7
SPORT pin/line terminations, 11-70
SPORT receive DMA configuration

(SPORTx_CONFIG_DMA_RX)
registers, 11-32

SPORT receive DMA count
(SPORTx_COUNT_RX) registers,
11-37

SPORT receive DMA current descriptor
pointer (SPORTx_CURR_PTR_RX)
registers, 11-32

SPORT receive DMA descriptor ready
(SPORTx_DESCR_RDY_RX)
registers, 11-39

SPORT receive DMA IRQ status
(SPORTx_IRQSTAT_RX) registers,
11-40

SPORT receive DMA next descriptor
pointer
(SPORTx_NEXT_DESC_RX)
registers, 11-37

SPORT receive DMA start address high
(SPORTx_START_ADDR_HI_RX)
registers, 11-35

SPORT receive DMA start address low
(SPORTx_START_ADDR_LO_RX
) registers, 11-36

SPORT receive (SPORTx_RX) registers,
11-20

SPORT registers, 11-9
SPORTs (serial ports), 1-2, 1-17
SPORT status (SPORTx_STAT) registers,

11-24
SPORT transmit DMA configuration

(SPORTx_CONFIG_DMA_TX)
registers, 11-42

SPORT transmit DMA count
(SPORTx_COUNT_TX) registers,
11-46

SPORT transmit DMA current descriptor
pointer (SPORTx_CURR_PT_TX)
registers, 11-41

SPORT transmit DMA descriptor ready
(SPORTx_DESCR_RDY_TX)
registers, 11-48

SPORT Transmit DMA IRQ Status
(SPORTx_IRQSTAT_TX) Registers,
11-49

SPORT transmit DMA next descriptor
pointer
(SPORTx_NEXT_DESCR_TX)
registers, 11-46

SPORT transmit DMA start address high
(SPORTx_START_ADDR_HI_TX)
registers, 11-44

SPORT transmit DMA start address low
(SPORTx_START_ADDR_LO_TX
) registers, 11-45

SPORT transmit (SPORTx_TFSDIV) and
receive (SPORTx_RFSDIV) frame
sync divider registers, 11-23

SPORT transmit (SPORTx_TSCLKDIV)
and receive (SPORTx_RSCLKDIV)
Serial clock divider registers, 11-21

Index

I-36 ADSP-BF535 Blackfin Processor Hardware Reference

SPORT transmit (SPORTx_TX) registers,
11-18

SPORTx_CONFIG_DMA_RX (SPORTx
Receive DMA Configuration
registers), 11-32

SPORTx_CONFIG_DMA_TX
(SPORTx Transmit DMA
Configuration registers), 11-42

SPORTx_COUNT_RX (SPORTx
Receive DMA Count registers), 11-37

SPORTx_COUNT_TX (SPORTx
Transmit DMA Count registers),
11-46

SPORTx_CURR_PTR_RX (SPORTx
Receive DMA Current Descriptor
Pointer registers), 11-32

SPORTx_CURR_PTR_TX (SPORTx
Transmit DMA Current Descriptor
Pointer registers), 11-41

SPORTx_DESCR_RDY_RX (SPORTx
Receive DMA Descriptor Ready
registers), 11-39

SPORTx_DESCR_RDY_TX (SPORTx
Transmit DMA Descriptor Ready
registers), 11-48

SPORTx Frame Sync Divider registers
(SPORTx_TFSDIV and
SPORTx_RFSDIV), 11-51

SPORTx_IRQSTAT_RX (SPORTx
Receive DMA IRQ Status registers),
11-40

SPORTx_IRQSTAT_TX (SPORTx
Transmit DMA IRQ Status registers),
11-49

SPORTx_MCMCx (SPORTx
Multichannel Configuration
registers), 11-30, 11-31

SPORTx_MRCSx (SPORTx
Multichannel Receive Select registers),
11-28

SPORTx_MTCSx (SPORTx
Multichannel Transmit Select
registers), 11-26, 11-27, 11-29

SPORTx Multichannel Configuration
registers (SPORTx_MCMCx), 11-30

SPORTx Multichannel Receive Select
registers (SPORTx_MRCSx), 11-28,
11-67

SPORTx Multichannel Transmit Select
registers (SPORTx_MTCSx), 11-26,
11-67

SPORTx_NEXT_DESCR_RX (SPORTx
Receive DMA Next Descriptor
Pointer registers), 11-37

SPORTx_NEXT_DESCR_TX (SPORTx
Transmit DMA Next Descriptor
Pointer registers), 11-46

SPORTx Receive Configuration registers
(SPORTx_RX_CONFIG), 11-9,
11-16

SPORTx Receive DMA Configuration
registers
(SPORTx_CONFIG_DMA_RX),
11-32

SPORTx Receive DMA Count registers
(SPORTx_COUNT_RX), 11-37

SPORTx Receive DMA Current
Descriptor Pointer registers
(SPORTx_CURR_PTR_RX), 11-32

SPORTx Receive DMA Descriptor Ready
registers
(SPORTx_DESCR_RDY_RX),
11-39

SPORTx Receive DMA IRQ Status
registers (SPORTx_IRQSTAT_RX),
11-40

SPORTx Receive DMA Next Descriptor
Pointer registers
(SPORTx_NEXT_DESCR_RX),
11-37

ADSP-BF535 Blackfin Processor Hardware Reference I-37

Index

SPORTx Receive DMA Start Address High
registers
(SPORTx_START_ADDR_HI_RX)
, 11-35

SPORTx Receive DMA Start Address Low
registers
(SPORTx_START_ADDR_LO_RX
), 11-36

SPORTx Receive Frame Sync Divider
registers (SPORTx_RFSDIV), 11-23,
11-51

SPORTx Receive registers (SPORTx_RX),
11-20, 11-53, 11-63

SPORTx Receive Serial Clock Divider
registers (SPORTx_RSCLKDIV),
11-21, 11-50

SPORTx_RFSDIV (SPORTx Receive
Frame Sync Divider registers), 11-23

SPORTx_RSCLKDIV (SPORTx Receive
Serial Clock Divider registers), 11-21

SPORTx_RX_CONFIG (SPORTx
Receive Configuration registers), 11-9

SPORTx_RX (SPORTx Receive registers),
11-20

SPORTx_START_ADDR_HI_RX
(SPORTx Receive DMA Start
Address High registers), 11-35

SPORTx_START_ADDR_HI_TX
(SPORTx Transmit DMA Start
Address High registers), 11-44

SPORTx_START_ADDR_LO_RX
(SPORTx Receive DMA Start
Address Low registers), 11-36

SPORTx_START_ADDR_LO_TX
(SPORTx Transmit DMA Start
Address Low registers), 11-45

SPORTx_STAT (SPORTx Status
registers), 11-24

SPORTx Status registers
(SPORTx_STAT), 11-24

SPORTx_TFSDIV (SPORTx Transmit
Frame Sync Divider registers), 11-23

SPORTx Transmit Configuration registers
(SPORTx_TX_CONFIG), 11-9,
11-12

SPORTx Transmit DMA Configuration
registers
(SPORTx_CONFIG_DMA_TX),
11-42

SPORTx Transmit DMA Count registers
(SPORTx_COUNT_TX), 11-46

SPORTx Transmit DMA Current
Descriptor Pointer registers
(SPORTx_CURR_PTR_TX), 11-41

SPORTx Transmit DMA Descriptor
Ready registers
(SPORTx_DESCR_RDY_TX),
11-48

SPORTx Transmit DMA IRQ Status
registers (SPORTx_IRQSTAT_TX),
11-49

SPORTx Transmit DMA Next Descriptor
Pointer registers
(SPORTx_NEXT_DESCR_TX),
11-46

SPORTx Transmit DMA Start Address
High registers
(SPORTx_START_ADDR_HI_TX)
, 11-44

SPORTx Transmit DMA Start Address
Low registers
(SPORTx_START_ADDR_LO_TX
), 11-45

SPORTx Transmit Frame Sync Divider
registers (SPORTx_TFSDIV), 11-23,
11-51

SPORTx Transmit registers
(SPORTx_TX), 11-10, 11-18, 11-19,
11-53, 11-60, 11-63

Index

I-38 ADSP-BF535 Blackfin Processor Hardware Reference

SPORTx Transmit Serial Clock Divider
registers (SPORTx_TSCLKDIV),
11-21, 11-50

SPORTx_TSCLKDIV (SPORTx
Transmit Serial Clock Divider
registers), 11-21

SPORTx_TX_CONFIG (SPORTx
Transmit Configuration registers),
11-9

SPORTx_TX (SPORTx Transmit
registers), 11-18

SR2Information, 2-3
SRAM, 18-1

interface, 19-9
L1 Data Memory, 6-10, 6-38
L1 instruction access, 6-15
L1 Instruction Memory, 6-10, 6-14
scratchpad, 6-11

SRFS bit, 18-42
SSEL bit, 7-3

SCLK select, 8-7
SSYNC instruction, 6-84, 8-18
stack, 4-3
Stack Pointer registers, 5-5
Stack Pointer (SP), 4-4
Stages of Instruction Pipeline (table), 4-7
stalling instructions, 4-8
stall request, USB, 14-21
stalls

DMA, 7-12, 9-25
pipeline, 6-78

standard, 12-1
JTAG, 20-26, C-1, C-2, C-4

Start Address Calculation (table), 18-57
status, USB, 14-19
status bits, PCI, 13-11
status flags, PCI, 13-21
status register, EBIU, 18-8
status registers accessible in User mode, 3-4
STI. See Enable Interrupts (STI)

STOPCK field, 8-8
stopwatch function, RTC, 17-2
stopwatch interrupt, 17-8
store operation, 6-77
store ordering, 6-79
strong ordering requirement, 6-84
subroutines, 4-1
subsystem ID, PCI, 13-40
subsystem vendor ID, PCI, 13-40
Supervisor, 1-5
Supervisor mode, 1-5, 3-6

code example, 3-8
entering, 3-6, 3-9
non-OS environments, 3-7

Supervisor Stack Pointer, 5-5
Support for Standard Protocols, 11-69
support for standard protocols, 11-69
suspended, USB, 14-62
suspend mode, USB, 14-13
SWRST (Software Reset register), 3-16
SYSCFG figure, 4-6
SYSCFG (System Configuration register),

4-6
SYSCR (System Reset Configuration

register), 3-14
system, 7-5
System and Core Event Mapping, 4-18
System and Core Event Mapping (table),

4-18
System Bus Interface Unit. See SBIU
system clock (SCLK), 8-1
System Configuration Register (SYSCFG),

4-6
System Configuration register (SYSCFG),

4-6
system design, 19-1 to 19-18

high frequency considerations, 19-14
point-to-point connections, 19-14
recommendations and suggestions,

19-15

ADSP-BF535 Blackfin Processor Hardware Reference I-39

Index

system design (continued)
recommended reading, 19-17

system interfaces, 7-7
system internal interfaces, 7-1
System Interrupt Assignment register 0

(SIC_IAR0), 4-29
System Interrupt Assignment register 1

(SIC_IAR1), 4-30
System Interrupt Assignment Registers

(SIC_IARx), 4-29
System Interrupt Assignment registers

(SIC_IARx), 4-29
System Interrupt Controller (SIC), 4-18
System Interrupt Mask Register

(SIC_IMASK), 4-27
System Interrupt Mask register

(SIC_IMASK), 4-27, 16-7
System Interrupt Processing, 4-20
system interrupt processing, 4-20
system interrupts, 4-18
System Interrupt Status Register

(SIC_ISR), 4-25
System Interrupt Status register (SIC_ISR),

4-25
System Interrupt Wakeup-Enable Register

(figure), 4-24
System Interrupt Wakeup-Enable Register

(SIC_IWR), 4-24
System Interrupt Wakeup Enable register

(SIC_IWR), 4-24
System L1 bus, 7-4
system overview, 7-5
System Peripheral Interrupts, 4-22
System Reset Configuration register

(SYSCR), 3-14
System Software reset, 3-12, 3-14
system stack, recommendation for

allocating, 4-58

T
tAA, 18-31
table

Events That Cause Exceptions, 4-39
Hardware Conditions Causing

Hardware Error Interrupts, 4-45
Loop Registers, 4-6
Peripheral Interrupt Source Reset State,

4-22
tag (definition), 6-4
TAP registers

Boundary-Scan, C-4, C-8
Bypass, C-5, C-7
CHIPID, 20-26, C-4, C-7
Instruction, C-2, C-4

TAP (Test Access port), C-1, C-2
controller, C-2

TBUFCTL (Trace Buffer Control register),
20-16

TBUFSTAT (Trace Buffer Status register),
20-17

TBUF (Trace Buffer register), 20-18
tCAC, 18-31
TCNTL (Core Timer Control register),

16-22
TCOUNT (Core Timer Count register),

16-23
technical support, xlviii
terminations, serial port pin/line, 11-70
termination values, serial port, 11-70
Test Access port (TAP), C-1, C-2

controller, C-2
Test Clock (TCK), C-6
test features, C-1 to C-26
testing circuit boards, C-1, C-6
Test-Logic-Reset state, C-3
TESTSET instruction, 6-84, 7-12
the PLL control register (PLLCTL)

(figure), 8-7

Index

I-40 ADSP-BF535 Blackfin Processor Hardware Reference

throughput
achieved by interlocked pipeline, 6-78
achieved by SRAM, 6-9
core, 18-83
DAB, 7-13
DMA, 9-23, 18-83
Memory DMA (MemDMA), 9-31, 9-44
programmable flags, 15-11
SDRAM, 18-81, 18-83

Throughput for Accesses to 16-bit Wide
SDRAM (table), 18-83

Throughput for Accesses to 32-bit Wide
SDRAM (table), 18-81

Time-Division-Multiplexed (TDM) mode,
11-61

See also serial port, multichannel
operation

timer
autobaud detection, 16-19
disabling, 16-5
enabling, 16-5
interrupts, 16-7
modes, 16-1
Pulse Width Count and Capture mode

(WDTH_CAP), 16-10, 16-18
registers, 16-1
watchdog, 16-25

Timer Configuration registers
(TIMERx_CONFIG), 16-2, 16-3,
16-7

Timer Counter registers
(TIMERx_COUNTER), 16-2, 16-3,
16-4, 16-11

Timer Period registers
(TIMERx_PERIOD), 16-2, 16-3,
16-4, 16-10

timers, 1-17
general-purpose, 1-2
UART, 12-1
watchdog, 1-2, 1-16

Timer Status registers
(TIMERx_STATUS), 16-2, 16-3,
16-4

Timer Width registers
(TIMERx_WIDTH), 16-3, 16-4,
16-11

TIMERx_CONFIG (Timer Configuration
registers), 16-2, 16-3, 16-7

TIMERx_COUNTER (Timer Counter
registers), 16-2, 16-3, 16-4, 16-11

TIMERx_PERIOD (Timer Period
registers), 16-10

TIMERx_STATUS (Timer Status
registers), 16-2, 16-3, 16-4

TIMERx_WIDTH (Timer Width
registers), 16-11

timing
Auto-Refresh, 18-54
external buffer, 18-83, 18-85
peripherals, 7-3
SDRAM specifications, 18-80

timing examples, 11-70
timing examples, for serial ports, 11-70
tools, development, 1-24
TPERIOD (Core Timer Period register),

16-24
Trace Buffer Control register (TBUFCTL),

20-16
Trace Buffer exception, 4-43
Trace Buffer register (TBUF), 20-18
Trace Buffer Status register (TBUFSTAT),

20-17
Trace Unit, 20-14 to 20-18

changes not recorded, 20-26
traffic scheduling algorithm, USB, 14-4
transaction decode module, USB, 14-7
transaction FIFO, PCI, 13-7
transactions

PCI, delayed, 13-7
PCI inbound, 13-11

ADSP-BF535 Blackfin Processor Hardware Reference I-41

Index

transactions (continued)
PCI outbound read and write, 13-6
types of PCI, 13-8
unsupported, PCI, 13-12

transceiver, USB, 14-1
transfer direction, USB, 14-31
transfer initiation from SPI master, 10-33
transfer latencies

PAB, 7-8
transfers, USB, 14-47
transfers supported (table), 5-14
transfer types, USB, 14-10
transmission error (TXE), 10-37
transmit and receive configuration registers

(SPORTx_TX_CONFIG,
SPORTx_RX_CONFIG), 11-9

Transmit Clock, serial (TCLKx) pins, 11-3,
11-4, 11-54

transmit collision error (TXCOL), 10-37
transmit enable, 11-12
Transmit Enable (TSPEN) bit, 11-7, 11-8,

11-9, 11-12
Transmit Frame Sync Required (TFSR)

bit, 11-13, 11-55
Transmit Frame Sync (TFSx) pins, 11-3,

11-10, 11-55, 11-60, 11-64
Transmit Holding Register Empty status

flag, 12-5
Transmit Serial Data Status (TXS) bits,

11-10
Transmit Underflow Status (TUVF) bit,

11-10, 11-18, 11-61
tRAS, 18-34
TRAS bits, 18-40, 18-48
tRC, 18-35
tRCD, 18-35
TRCD bits, 18-40
tRFC, 18-36
tRP, 18-35
TRP bits, 18-40, 18-48

TSCALE (Core Timer Scale register),
16-24

tWR, 18-35
TWR bits, 18-40, 18-49
tXSR, 18-36

U
UART

clock rate, 7-3, 8-2
control registers, 12-13
DMA receive registers, 12-19
sampling clock period, 12-6
standard, 12-1
timers, 12-1
Universal Asynchronous Receiver

Transmitter ports, 1-1, 1-20
UART0 Infrared Control Register

(UART0_IRCR), 12-36
UART0 Infrared Control register

(UART0_IRCR), 12-36
UART0_IRCR (UART0 Infrared Control

register), 12-36
UART Baud Rate Examples (table), 12-12
UART DMA Receive Registers, 12-18
UART DMA Transmit Registers, 12-27
UART Port Controller, 12-1
UARTx, 12-30
UARTx_CONFIG_RX (UARTx Receive

DMA Configuration registers), 12-20
UARTx_CONFIG_TX (UARTx

Transmit DMA Configuration
registers), 12-29

UARTx control and status registers, 12-2
UARTx_COUNT_RX (UARTx Receive

DMA Count registers), 12-24
UARTx_COUNT_TX (UARTx Transmit

DMA Count registers), 12-32
UARTx_CURR_PTR_RX (UARTx

Receive DMA Current Descriptor
Pointer registers), 12-19

Index

I-42 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx_CURR_PTR_TX (UARTx
Transmit DMA Current Descriptor
Pointer registers), 12-28

UARTx_DESCR_RDY_TX (UARTx
Transmit DMA Descriptor Ready
registers), 12-34

UARTx Divisor Latch High Byte registers
(UARTx_DLH), 12-10

UARTx Divisor Latch Low-Byte Registers
and UARTx Divisor Latch High-Byte
Registers (figure), 12-11

UARTx Divisor Latch Low Byte registers
(UARTx_DLL), 12-10

UARTx_DLH (UARTx Divisor Latch
High Byte registers), 12-10

UARTx_DLL (UARTx Divisor Latch Low
Byte registers), 12-10

UARTx_IER (UARTx Interrupt Enable
registers), 12-7

UARTx_IIR (UARTx Interrupt
Identification registers), 12-9

UARTx Interrupt Enable registers
(UARTx_IER), 12-7

UARTx Interrupt Identification Registers
(UARTx_IIR), 12-9

UARTx Interrupt Identification registers
(UARTx_IIR), 12-9

UARTx_IRQSTAT_RX (UARTx Receive
DMA IRQ Status registers), 12-27

UARTx_IRQSTAT_TX (UARTx
Transmit DMA IRQ Status registers),
12-35

UARTx_LCR (UARTx Line Control
registers), 12-3

UARTx Line Control registers
(UARTx_LCR), 12-3

UARTx line control registers
(UARTx_LCR), 12-3

UARTx Line Status Registers
(UARTx_LSR), 12-4

UARTx Line Status registers
(UARTx_LSR), 12-4

UARTx_LSR (UARTx Line Status
registers), 12-4

UARTx_MCR (UARTx Modem Control
registers), 12-13

UARTx Modem Control Registers
(UARTx_MCR), 12-13

UARTx Modem Control registers
(UARTx_MCR), 12-13

UARTx Modem Control Register (figure),
12-13

UARTx Modem Status Registers, 12-14
UARTx Modem Status Registers

(UARTx_MSR), 12-14
UARTx Modem Status registers

(UARTx_MSR), 12-14
UARTx_MSR (UARTx Modem Status

registers), 12-14
UARTx_NEXT_DESCR_RX (UARTx

Receive DMA Next Descriptor
Pointer registers), 12-25

UARTx_NEXT_DESCR_TX (UARTx
Transmit DMA Next Descriptor
Pointer registers), 12-33

UARTx_RBR (UARTx Receive Buffer
registers), 12-6

UARTx Receive Buffer Registers (figure),
12-6

UARTx Receive Buffer Registers
(UARTx_RBR), 12-6

UARTx Receive Buffer registers
(UARTx_RBR), 12-6

UARTx Receive DMA Configuration
Registers (UARTx_CONFIG_RX),
12-20

UARTx Receive DMA Configuration
registers (UARTx_CONFIG_RX),
12-20

ADSP-BF535 Blackfin Processor Hardware Reference I-43

Index

UARTx Receive DMA Count registers
(UARTx_COUNT_RX), 12-24

UARTx Receive DMA Current Descriptor
Pointer Registers
(UARTx_CURR_PTR_RX), 12-19

UARTx Receive DMA Current Descriptor
Pointer registers
(UARTx_CURR_PTR_RX), 12-19

UARTx Receive DMA Descriptor Ready
Registers
(UARTx_DESCR_RDY_RX), 12-26

UARTx Receive DMA IRQ Status
Registers (UARTx_IRQSTAT_RX),
12-27

UARTx Receive DMA IRQ Status registers
(UARTx_IRQSTAT_RX), 12-27

UARTx Receive DMA Next Descriptor
Pointer registers
(UARTx_NEXT_DESCR_RX),
12-25

UARTx Receive DMA Next Descriptor
Pointer Registers
(UARTx_NEXT_DESC_RX), 12-25

UARTx Receive DMA Start Address High
Registers
(UARTx_START_ADDR_HI_RX),
12-22

UARTx Receive DMA Start Address High
registers
(UARTx_START_ADDR_HI_RX),
12-22

UARTx Receive DMA Start Address Low
Registers
(UARTx_START_ADDR_LO_RX),
12-23

UARTx Receive DMA Start Address Low
registers
(UARTx_START_ADDR_LO_RX),
12-23

UARTx Receive DMA Transfer Count
Registers (UARTx_COUNT_RX),
12-24

UARTx Scratch Registers (UARTx_SCR),
12-15

UARTx Scratch registers (UARTx_SCR),
12-15

UARTx_SCR (UARTx Scratch registers),
12-15

UARTx_START_ADDR_HI_RX
(UARTx Receive DMA Start Address
High registers), 12-22

UARTx_START_ADDR_LO_RX
(UARTx Receive DMA Start Address
Low registers), 12-23

UARTx_START_ADDR_LO_TX
(UARTx Transmit DMA Start
Address Low registers), 12-31

UARTx_THR (UARTx Transmit Holding
registers), 12-5

UARTx Transmit DMA Configuration
Registers (UARTx_CONFIG_TX),
12-29

UARTx Transmit DMA Configuration
registers (UARTx_CONFIG_TX),
12-29

UARTx Transmit DMA Count Registers
(UARTx_COUNT_TX), 12-32

UARTx Transmit DMA Count registers
(UARTx_COUNT_TX), 12-32

UARTx Transmit DMA Current
Descriptor Pointer Registers
(UARTx_CURR_PTR_TX), 12-28

UARTx Transmit DMA Current
Descriptor Pointer registers
(UARTx_CURR_PTR_TX), 12-28

UARTx Transmit DMA Descriptor Ready
Registers
(UARTx_DESCR_RDY_TX), 12-34

Index

I-44 ADSP-BF535 Blackfin Processor Hardware Reference

UARTx Transmit DMA Descriptor Ready
registers
(UARTx_DESCR_RDY_TX), 12-34

UARTx Transmit DMA IRQ Status
Registers (UARTx_IRQSTAT_TX),
12-35

UARTx Transmit DMA IRQ Status
registers (UARTx_IRQSTAT_TX),
12-35

UARTx Transmit DMA Next Descriptor
Pointer Registers
(UARTx_NEXT_DESCR_TX),
12-33

UARTx Transmit DMA Next Descriptor
Pointer registers
(UARTx_NEXT_DESCR_TX),
12-33

UARTx Transmit DMA Start Address
High Registers
(UARTx_START_ADDR_HI_TX),
12-30

UARTx Transmit DMA Start Address Low
Registers
(UARTx_START_ADDR_LO_TX),
12-31

UARTx Transmit DMA Start Address Low
registers
(UARTx_START_ADDR_LO_TX),
12-31

UARTx Transmit Holding Registers
(UARTx_THR), 12-5

UARTx Transmit Holding registers
(UARTx_THR), 12-5

UARTx Transmit Shift registers
(UARTx_TSR), 12-5

UARTx_TSR (UARTx Transmit Shift
registers), 12-5

UDC, 14-1
clock control, 14-7
clocking, 14-13

UDC (continued)
configuration, 14-44
device software, 14-12
module in USB, 14-6

UDC Endpoint Buffer register, 14-35
unbiased rounding, 2-18
unconditional branches

branch latency, 4-14
branch target address, 4-14

undefined instruction, 4-43
underrun, USB buffer, 14-43
unframed/framed, serial data, 11-55
Universal Asynchronous Receiver

Transmitter (UART) ports, 1-1, 1-20
Universal Serial Bus. See USB
unpacking data, multichannel DMA,

11-68
Unrecoverable Event, 4-42
unsigned numbers, 2-4, 2-11
USB, 1-15, 14-1

alternate interface number, 14-19
base address, 14-25, 14-26
buffer chip, 14-13
buffer length for data transfers, 14-34
buffer overrun, 14-43
buffer underrun, 14-43
bulk data transfers, 14-11, 14-49
bulk in, 14-50
bulk out, 14-51
clock domains, 14-5
clocking, 14-13
clock speed, 14-13
command sequences, 14-12
configuration, 14-2, 14-12
configuration number, 14-19
connection to the PAB, 14-8
control data transfers, 14-11
control transfer problems, 14-59
control transfers, 14-56
control transfer with data phase, 14-58

ADSP-BF535 Blackfin Processor Hardware Reference I-45

Index

USB (continued)
control transfer with no data phase,

14-57
data flows, 14-4
data transfer preparation, 14-48
data transfers, 14-11, 14-47
device connection, 19-8
device initialization, 14-46
disable, 14-21
DMA channel arbitration, 14-3
DMA Master module, 14-9
DMA registers, 14-15
DMA transfers, 14-33
endpoint errors, 14-60
endpoint interrupts, 14-27
endpoint registers, 14-15
endpoints, 14-2
endpoint types, 14-10
error detection, 14-61
exception handling, 14-60
frame number, 14-17, 14-18
Front-End Interface, 14-7
full speed, 14-14
general registers, 14-15
implementation, 14-4
interface number, 14-19
interfaces, 14-12
interrupts, 14-4, 14-12, 14-22, 14-24,

14-37
isochronous data transfer errors, 14-60
isochronous data transfers, 14-11, 14-53
ISO IN endpoints, 14-54
ISO OUT endpoints, 14-55
logical endpoint configuration, 14-35
low speed, 14-14
memory allocation for endpoints, 14-4
memory buffer offset, 14-33
Memory Interface module, 14-8
packet request, 14-20

USB (continued)
programming endpoint configuration

registers, 14-47
protocol, 14-2
references, 14-62
Registers and Control module, 14-8
reset signalling, 14-61
small packets, exception handling, 14-60
stall request, 14-21
status, 14-19
suspend, 14-5
suspended, 14-62
suspend mode, 14-13
suspend/resume considerations, 14-62
suspension of USB transceivers, 14-13
timing and clock inputs, 8-2
traffic load, 14-53
transaction decode module, 14-7
transceiver connection, 14-13
transfer concepts, 14-47
transfer direction, 14-31
transfers and SPORT, 14-3
UDC module, 14-6
USBD stall bit, 14-60
USB IN endpoints, 14-53
USB OUT endpoints, 14-53

USBD_AIF field, 14-19
USBD_BCSTAT interrupt, 14-43
USBD_CFG field, 14-19
USBD_CFG interrupt, 14-38
USBD_CTRL (USBD Module

Configuration and Control register),
14-21

USBD_DMABH (DMA Master Channel
Base Address, High register), 14-26

USBD_DMABL (DMA Master Channel
Base Address, Low register), 14-25

USBD_DMACFG (DMA Master Channel
Configuration register), 14-24

Index

I-46 ADSP-BF535 Blackfin Processor Hardware Reference

USBD_DMACT (DMA Master Channel
Count register), 14-26

USBD_DMAIRQ (DMA Master Channel
DMA Interrupt register), 14-27

USBD_EPADRx (USB Endpoint x
Address Offset registers), 14-33

USBD_EPBUF (Enable Download of
Configuration into UDC Core
register), 14-18

USBD_EPCFGx (USB Endpoint x
Control registers), 14-31

USBD_EP field, 14-20
USBD_EPLENx (USB Endpoint x Buffer

Length registers), 14-34
USBD_EPxINT interrupt, 14-40
USB Device connection, 19-8
USB Device Controller. See UDC
USB Device ID register (USBD_ID),

14-16
USB Device module

registers, 14-5
USB devices, 14-3
USBD_FRMAT interrupt, 14-40
USBD_FRMAT (Match Value for USB

Frame Number register), 14-18
USBD_FRM (Current USB Frame

Number register), 14-17
USBD_GINTR (Global Interrupt

register), 14-22
USBD_GMASK (Global Interrupt Mask

register), 14-24
USBD_ID (USB Device ID register),

14-16
USBD_IF field, 14-19
USBD_INTRx (USB Endpoint x Interrupt

registers), 14-27
USBD_MASKx (USB Endpoint x Mask

registers), 14-30
USBD_MERR interrupt, 14-43

USBD Module Configuration and Control
register (USBD_CTRL), 14-21

USBD Module Status register
(USBD_STAT), 14-19

USBD_MSETUP interrupt, 14-43
USBD_MSOF interrupt, 14-39
USBD_PC interrupt, 14-42
USBD_RESUME interrupt, 14-39
USBD_RST interrupt, 14-39
USBD. See USB
USBD_SETUP interrupt, 14-43
USBD_SIP bit, 14-20
USBD_SOF interrupt, 14-38
USBD_STAT (USBD Module Status

register), 14-19
USBD_SUSPEND signal, 14-13
USBD_SUSP interrupt, 14-39
USBD_TC interrupt, 14-42
USB Endpoint x Address Offset registers

(USBD_EPADRx), 14-33
USB Endpoint x Buffer Length registers

(USBD_EPLENx), 14-34
USB Endpoint x Control registers

(USBD_EPCFGx), 14-31
USB Endpoint x Interrupt registers

(USBD_INTRx), 14-27
USB Endpoint x Mask registers

(USBD_MASKx), 14-30
USB host, 14-3
USB specification, version, 14-16
USDB stall bit, 14-60
use of RTI instruction, 4-57
User mode, 1-5

accessible registers, 3-3
entering, 3-9
entering and leaving, 3-5, 3-6
protected instructions, 3-4

User Stack Pointer (USP), 3-7, 5-5

ADSP-BF535 Blackfin Processor Hardware Reference I-47

Index

V
Valid bit

clearing, 6-47
figure, 6-29
function, 6-19
function of, 6-60
in address tag compare operation, 6-20
in cache line replacement, 6-22
in instruction cache invalidation, 6-25
in line fill buffer, 6-21
in tag of cache line, 6-19

valid (definition), 6-4
vendor ID, PCI, 13-30
victim (definition), 6-4
video ALU instructions, 5-13
video ALU operations, 2-32
video data, 14-11
VisualDSP++

development environment, 1-24
voltage, 8-23

changing, 8-24
dynamic control, 8-23
external regulator, 8-25

Voltage-Controlled Oscillator (VCO), 8-2

W
wait states, additional, 18-26
WAKEUP signal, 3-10, 8-18
Watchdog Control register

(WDOG_CTL), 16-27
Watchdog Count register

(WDOG_CNT), 16-26
Watchdog Status register

(WDOG_STAT), 16-26
watchdog timer, 8-20, 16-25

functionality, 1-16
Watchdog Timer reset, 3-13, 3-14
Watchpoint Data Address Control register

(WPDACTL), 20-13

Watchpoint Data Address Count Value
registers (WPDACNTx), 20-11

Watchpoint Data Address registers
(WPDAx), 20-11

Watchpoint Instruction Address Control
register (WPIACTL), 20-7

Watchpoint Instruction Address Count
registers (WPIACNTx), 20-6

Watchpoint Instruction Address registers
(WPIAx), 20-5

Watchpoint Match, 4-42
Watchpoint Status register (WPSTAT),

20-14
Watchpoint Unit, 20-1 to 20-14

combination of instruction and data
watchpoints, 20-3

data watchpoints, 20-10
instruction watchpoints, 20-4
memory-mapped registers, 20-2
WPIACTL watchpoint ranges, 20-4

Way
1-Way associative (direct mapped), 6-2
definition, 6-4
L1 data banks as 2-Way set associative,

6-10
L1 instruction memory as 4-Way set

associative, 6-10
priority in cache line replacement, 6-23

WB (Write Back), 4-7
WDOG_CNT (Watchdog Count

register), 16-26
WDOG_CTL (Watchdog Control

register), 16-27
WDOG_STAT (Watchdog Status

register), 16-26
WDTH_CAP (Pulse Width Count and

Capture mode), 16-11
window offset, 11-65
Window Offset (WOFF) bits, 11-65
window size, 11-65

Index

I-48 ADSP-BF535 Blackfin Processor Hardware Reference

Window Size (WSIZE) bits, 11-65
word, 13-3

definition, 2-6
word length, 11-52
WPDACNTx (Watchpoint Data Address

Count Value registers), 20-11
WPDACTL (Watchpoint Data Address

Control register), 20-13
WPDAx (Watchpoint Data Address

registers), 20-11
WPIACNTx (Watchpoint Instruction

Address Count registers), 20-6
WPIACTL (Watchpoint Instruction

Address Control register), 20-7
WPIAx (Watchpoint Instruction Address

registers), 20-5
WPSTAT (Watchpoint Status register),

20-14
wrap-around buffer, 5-7
wrapping bursts, 13-9

write access for EBIU asynchronous
memory controller, 18-12

write back (definition), 6-4
Write Back (WB), 4-7
Write Complete flag, 17-3
write through (definition), 6-4
write to precharge delay, selecting, 18-49

X
X16DE bit, 18-43
XOR, logical, 2-24

Z
zero extending data, 2-10
zero-overhead loop registers, 4-5
Zero-Overhead Loop Registers (LC, LT,

LB), 4-5
µ-law companding, 11-2, 11-53, 11-67

	ADSP-BF535 Blackfin Processor Hardware Reference, Revision 3.3
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Diagram Conventions

	1 Introduction
	ADSP-BF535 Peripherals
	ADSP-BF535 Core Architecture
	Memory Architecture
	Internal (On-Chip) Memory
	External (Off-Chip) Memory
	PCI
	I/O Memory Space

	Event Handling
	DMA Support
	External Bus Interface Unit
	PC133 SDRAM Controller
	Asynchronous Controller

	PCI Interface
	PCI Host Function
	PCI Target Function

	USB Port
	Real-Time Clock
	Watchdog Timer
	Timers
	Serial Ports (SPORTs)
	Serial Peripheral Interface (SPI) Ports
	UART Ports
	Programmable Flags
	Low Power Operation
	Full On Operating Mode (Maximum Performance)
	Active Operating Mode (Low Power Savings)
	Sleep Operating Mode (High Power Savings)
	Deep Sleep Operating Mode (Maximum Power Savings)

	Clock Signals
	Boot Modes
	Instruction Set Description
	Development Tools

	2 Computational Units
	Using Data Formats
	Binary String
	Unsigned
	Signed Numbers: Two’s-Complement
	Fractional Representation: 1.15

	Register Files
	Data Register File
	Accumulator Registers
	Pointer Register File
	DAG Register Set
	Register File Instruction Summary

	Data Types
	Data Formats
	Endianess
	ALU Data Types
	Multiplier Data Types
	Shifter Data Types
	Arithmetic Formats Summary
	Using Multiplier Integer and Fractional Formats
	Rounding Multiplier Results
	Unbiased Rounding
	Biased Rounding
	Truncation

	Special Rounding Instructions

	Using Computational Status
	Arithmetic Status Register (ASTAT)
	Arithmetic Logic Unit (ALU)
	ALU Operations
	Single 16-Bit Operations
	Dual 16-Bit Operations
	Quad 16-Bit Operations
	Single 32-Bit Operations
	Dual 32-Bit Operations

	ALU Instruction Summary
	ALU Data Flow Details
	Dual 16-Bit Cross Options
	ALU Status Signals

	ALU Division Support Features
	Special SIMD Video ALU Operations

	Multiply Accumulators (Multipliers)
	Multiplier Operation
	Placing Multiplier Results in Multiplier Accumulator Registers
	Rounding or Saturating Multiplier Results

	Saturating Multiplier Results on Overflow
	Multiplier Instruction Summary
	Multiplier Instruction Options

	Multiplier Data Flow Details
	Multiply Without Accumulate
	Special 32-Bit Integer MAC Instruction
	Dual MAC Operations

	Barrel Shifter (Shifter)
	Shifter Operations
	Two Operand Shifts
	Immediate Shifts
	Register Shifts

	Three Operand Shifts
	Immediate Shifts
	Register Shifts

	Bit Test, Set, Clear, Toggle
	Field Extract and Field Deposit

	Shifter Instruction Summary

	3 Operating Modes and States
	User Mode
	Protected Resources and Instructions
	Protected Memory
	Entering User Mode
	Example Code to Enter User Mode Upon Reset
	Return Instructions That Invoke User Mode

	Supervisor Mode
	Non-OS Environments
	Example Code to Stay in Supervisor Mode Coming Out of Reset

	Emulation Mode
	Idle State
	Example Code for Transition to Idle State

	Reset State
	System Reset and Power-up Configuration
	Hardware Reset
	System Reset Configuration Register (SYSCR)
	Software Resets and Watchdog Timer
	Software Reset Register (SWRST)
	Core Only Software Reset

	Booting Methods

	4 Program Sequencer
	Sequencer Related Registers
	Sequencer Status Register (SEQSTAT)
	Zero-Overhead Loop Registers (LC, LT, LB)
	System Configuration Register (SYSCFG)

	Instruction Pipeline
	Branches and Sequencing
	Direct Short and Long Jumps
	Direct Call
	Indirect Branch and Call
	PC-Relative Indirect Branch and Call
	Condition Code Flag
	Conditional Branches
	Conditional Register Move

	Branch Prediction

	Loops and Sequencing
	Events and Sequencing
	System Interrupt Processing
	System Peripheral Interrupts
	System Interrupt Wakeup-Enable Register (SIC_IWR)
	System Interrupt Status Register (SIC_ISR)
	System Interrupt Mask Register (SIC_IMASK)
	System Interrupt Assignment Registers (SIC_IARx)

	Event Controller Registers
	Core Interrupt Mask Register (IMASK)
	Core Interrupt Latch Register (ILAT)
	Core Interrupts Pending Register (IPEND)

	Global Enabling/Disabling of Interrupts
	Event Vector Table
	Emulation
	Reset
	NMI (Non-Maskable Interrupt)
	Exceptions
	Exceptions While Executing an Exception Handler

	Hardware Error Interrupt
	Core Timer
	General-Purpose Interrupts (IVG7-IVG15)

	Servicing Interrupts
	Interrupts With and Without Nesting
	Example Prolog Code for Nested Interrupt Service Routine
	Example Epilog Code for Nested Interrupt Service Routine
	Logging of Nested Interrupt Requests
	Self-Nesting Mode
	Exception Handling
	Deferring Exception Processing
	Example Code for an Exception Handler
	Example Code for an Exception Routine
	Executing RTX, RTN, or RTE in a Lower Priority Event
	Recommendation for Allocating the System Stack

	Latency in Servicing Events

	5 Data Address Generators
	Addressing With DAGs
	Frame and Stack Pointers
	Addressing Circular Buffers
	Addressing With Bit-Reversed Addresses

	Indexed Addressing With Index and Pointer Registers
	Auto-Increment and Auto-Decrement Addressing
	Pre-Modify Stack Pointer Addressing
	Indexed Addressing With Immediate Offset
	Post-Modify Addressing

	Modifying DAG and Pointer Registers
	Memory Address Alignment
	DAG Instruction Summary

	6 Memory
	Terminology
	Memory Architecture
	Internal Memory
	Overview of L1 Instruction SRAM
	Overview of L1 Data SRAM
	Overview of Scratchpad Data SRAM
	Overview of On-Chip L2 Memory

	Level 1 Memory
	Data Memory Control Register (DMEM_CONTROL)
	Instruction Memory Control Register (IMEM_CONTROL)
	L1 Instruction Memory
	L1 Instruction SRAM

	L1 Instruction Cache
	Cache Lines
	Cache Hits and Misses
	Cache Line Fills
	Line Fill Buffer
	Non-Cacheable Accesses
	Cache Line Replacement

	Instruction Cache Management
	Instruction Cache Locking
	Instruction Cache Invalidation
	Instruction Test Registers

	Instruction Test Command Register (ITEST_COMMAND)
	Instruction Test Data 1 Register (ITEST_DATA1)
	Instruction Test Data 0 Register (ITEST_DATA0)
	Example Code for Direct Invalidation
	L1 Data Memory
	L1 Data SRAM
	L1 Data Cache
	Example of Mapping Cacheable Address Space into Data Banks
	Data Cache Access
	Cache Write Method
	Data Cache Control Instructions

	Data Test Registers
	Data Test Command Register (DTEST_COMMAND)
	Data Test Data 1 Register (DTEST_DATA1)
	Data Test Data 0 Register (DTEST_DATA0)

	On-Chip Level 2 (L2) Memory
	On-Chip L2 Bank Access
	Latency
	Off-Chip L2 Memory

	Memory Protection and Properties
	Memory Management Unit
	Memory Pages
	Memory Page Attributes

	Page Descriptor Table
	CPLB Management
	MMU Application
	Examples of Protected Memory Regions
	DCPLB Data Registers (DCPLB_DATAx)
	ICPLB Data Registers (ICPLB_DATAx)
	DCPLB Address Registers (DCPLB_ADDRx)
	ICPLB Address Registers (ICPLB_ADDRx)
	DCPLB and ICPLB Status Registers (DCPLB_STATUS, ICPLB_STATUS)
	DCPLB Status Register (DCPLB_STATUS)
	ICPLB Status Register (ICPLB_STATUS)
	DCPLB and ICPLB Fault Address Registers (DCPLB_FAULT_ADDR, ICPLB_FAULT-ADDR)
	DCPLB Fault Address Register (DCPLB_FAULT_ADDR)
	ICPLB Fault Address Register (ICPLB_FAULT_ADDR)

	Memory Transaction Model
	Load/Store Operation
	Interlocked Pipeline
	Ordering of Loads and Stores
	Synchronizing Instructions
	Speculative Load Execution
	Conditional Load Behavior

	Working With Memory
	Alignment
	Atomic Operations
	Memory-Mapped Registers
	Core MMR Programming Code Example

	7 Chip Bus Hierarchy
	Internal Interfaces
	ADSP-BF535 Internal Clocks
	Core Overview
	System Overview
	System Bus Interface Unit (SBIU)
	On-Chip L2 SRAM Memory Interface

	System Interfaces
	Peripheral Bus (PAB)
	PAB Arbitration
	PAB Performance
	PAB Agents (Masters, Slaves)

	DMA Bus (DAB)
	DAB Arbitration
	DAB Performance
	DAB Bus Agents (Masters)

	External Access Bus (EAB)
	EAB Arbitration
	EAB Performance
	EAB Bus Agents (Masters, Slaves)

	External Mastered Bus (EMB)
	EMB Arbitration
	EMB Performance
	EMB Bus Agents (Masters, Slaves, Bridges)
	Resources Accessible From EMB

	8 Dynamic Power Management
	Clocking
	Phase Locked Loop and Clock Control
	PLL Overview

	PLL Clock Multiplier Ratios
	Core Clock/System Clock Ratio Control

	PLL Memory-Mapped Registers (MMRs)
	PLL Control Register (PLL_CTL)
	PLL Status Register (PLL_STAT)
	PLL Lock Count Register (PLL_LOCKCNT)

	Dynamic Power Management Controller
	Operating Modes
	Full On Mode
	Active Mode
	Sleep Mode
	Deep Sleep Mode

	Operating Mode Transitions
	Programming Operating Mode Transitions
	PLL Programming Sequence
	PLL Programming Sequence Continues
	Examples

	Peripheral Clocking
	Peripheral Clock Enable Register (PLL_IOCK)

	Dynamic Supply Voltage Control
	PCI Power Savings
	Changing Voltage
	External Voltage Regulator Example
	Power Saving Sequence
	High Performance Sequence

	9 Direct Memory Access
	Descriptor Based DMA
	DMA Descriptor Block Structure
	DMA Configuration Word
	Setting Up Descriptor Based DMA
	Descriptor-Based DMA Operation

	Autobuffer Based DMA
	Setting Up Autobuffer Based DMA

	DMA Control Registers
	Peripheral DMA Configuration Register
	Peripheral DMA Transfer Count Register
	Peripheral DMA Start Address Registers
	Peripheral DMA Next Descriptor Pointer Register
	DMA Descriptor Base Pointer Register (DMA_DBP)
	Peripheral DMA Descriptor Ready Register
	Peripheral DMA Current Descriptor Pointer Register
	Peripheral DMA IRQ Status Register

	Memory DMA (MemDMA)
	MemDMA Control Registers
	Destination Memory DMA Configuration Register (MDD_DCFG)
	Destination Memory DMA Transfer Count Register (MDD_DCT)
	Destination Memory DMA Start Address Registers (MDD_DSAH, MDD_DSAL)
	Destination Memory DMA Next Descriptor Pointer Register (MDD_DND)
	Destination Memory DMA Descriptor Ready Register (MDD_DDR)
	Destination Memory DMA Current Descriptor Pointer Register (MDD_DCP)
	Destination Memory DMA Interrupt Register (MDD_DI)
	Source Memory DMA Configuration Register (MDS_DCFG)
	Source Memory DMA Transfer Count Register (MDD_DCT)
	Source Memory DMA Start Address Registers (MDS_DSAH, MDS_DSAL)
	Source Memory DMA Next Descriptor Pointer Register (MDS_DND)
	Source Memory DMA Descriptor Ready Register (MDS_DDR)
	Source Memory DMA Current Descriptor Pointer Register (MDS_DCP)
	Source Memory DMA Interrupt Register (MDS_DI)
	Performance/Throughput for MemDMA

	DMA Abort Conditions
	DMA Bus Error Conditions
	Data Misalignment
	Illegal Memory Access

	10 SPI Compatible Port Controllers
	Interface Signals
	Serial Peripheral Interface Clock Signal (SCK)
	Serial Peripheral Interface Slave Select Input Signal
	Master Out Slave In (MOSI)
	Master In Slave Out (MISO)
	Interrupt Behavior

	SPI Registers
	Non-DMA Registers
	SPIx Baud Rate Register (SPIx_BAUD)
	SPIx Control Register (SPIx_CTL)
	SPIx Flag Register (SPIx_FLG)
	Slave Select Inputs
	Multiple Slave SPI Systems

	SPIx Status Register (SPIx_ST)
	SPIx Transmit Data Buffer Register (SPIx_TDBR)
	SPIx Receive Data Buffer Register (SPIx_RDBR)
	SPIx RDBR Shadow Register (SPIx_SHADOW)

	DMA Registers
	SPIx DMA Current Descriptor Pointer Register (SPIx_CURR_PTR)
	SPIx DMA Configuration Register (SPIx_CONFIG)
	SPIx DMA Start Address High Register (SPIx_START_ADDR_HI) and SPIx DMA Start Address Low Register (SPIx_START_ADDR_LO)
	SPIx DMA Count Register (SPIx_COUNT)
	SPIx DMA Next Descriptor Pointer Register (SPIx_NEXT_DESCR)
	SPIx DMA Descriptor Ready Register (SPIx_DESCR_RDY)
	SPIx DMA Interrupt Register (SPIx_DMA_INT)

	Register Functions

	SPI Transfer Formats
	SPI General Operation
	Clock Signals
	Master Mode Operation
	Transfer Initiation From Master (Transfer Modes)
	Slave Mode Operation
	Slave Ready for a Transfer

	Error Signals and Flags
	Mode Fault Error (MODF)
	Transmission Error (TXE)
	Reception Error (RBSY)
	Transmit Collision Error (TXCOL)

	Beginning and Ending an SPI Transfer

	11 Serial Port Controllers
	SPORT Operation
	SPORT Disable
	Setting SPORT Modes
	SPORT Registers
	Transmit and Receive Configuration Registers (SPORTx_TX_CONFIG, SPORTx_RX_CONFIG)
	SPORTx Transmit (SPORTx_TX) Registers
	SPORTx Receive (SPORTx_RX) Registers
	SPORTx Transmit (SPORTx_TSCLKDIV) and Receive (SPORTx_RSCLKDIV) Serial Clock Divider Registers
	SPORTx Transmit (SPORTx_TFSDIV) and Receive (SPORTx_RFSDIV) Frame Sync Divider Registers
	SPORTx Status (SPORTx_STAT) Registers
	SPORTx Multichannel Transmit Select (SPORTx_MTCSx) Registers
	SPORTx Multichannel Receive Select (SPORTx_MRCSx) Registers
	SPORTx Multichannel Configuration (SPORTx_MCMCx) Registers
	SPORTx Receive DMA Current Descriptor Pointer (SPORTx_CURR_PTR_RX) Registers
	SPORTx Receive DMA Configuration (SPORTx_CONFIG_DMA_RX) Registers
	SPORTx Receive DMA Start Address High (SPORTx_START_ADDR_HI_RX) Registers
	SPORTx Receive DMA Start Address Low (SPORTx_START_ADDR_LO_RX) Registers
	SPORTx Receive DMA Count (SPORTx_COUNT_RX) Registers
	SPORTx Receive DMA Next Descriptor Pointer (SPORTx_NEXT_DESCR_RX) Registers
	SPORTx Receive DMA Descriptor Ready (SPORTx_DESCR_RDY_RX) Registers
	SPORTx Receive DMA IRQ Status (SPORTx_IRQSTAT_RX) Registers
	SPORTx Transmit DMA Current Descriptor Pointer (SPORTx_CURR_PTR_TX) Registers
	SPORTx Transmit DMA Configuration (SPORTx_CONFIG_DMA_TX) Registers
	SPORTx Transmit DMA Start Address High (SPORTx_START_ADDR_HI_TX) Registers
	SPORTx Transmit DMA Start Address Low (SPORTx_START_ADDR_LO_TX) Registers
	SPORTx Transmit DMA Count (SPORTx_COUNT_TX) Registers
	SPORTx Transmit DMA Next Descriptor Pointer (SPORTx_NEXT_DESCR_TX) Registers
	SPORTx Transmit DMA Descriptor Ready (SPORTx_DESCR_RDY_TX) Registers
	SPORTx Transmit DMA IRQ Status (SPORTx_IRQSTAT_TX) Registers

	Register Writes and Effect Latency
	Clock and Frame Sync Frequencies
	Maximum Clock Rate Restrictions

	Data Word Formats
	Word Length
	Endian Format
	Data Type
	Companding

	Clock Signal Options
	Frame Sync Options
	Framed Versus Unframed
	Internal Versus External Frame Syncs
	Active Low Versus Active High Frame Syncs
	Sampling Edge for Data and Frame Syncs
	Early Versus Late Frame Syncs (Normal Versus Alternate Timing)
	Data Independent Transmit Frame Sync

	Multichannel Operation
	Frame Syncs In Multichannel Mode
	Multichannel Frame Delay
	Window Size
	Window Offset
	Other Multichannel Fields in SPORTx_TX_CONFIG, SPORTx_RX_CONFIG
	Channel Selection Registers
	Multichannel Enable
	Multichannel DMA Data Packing

	Moving Data Between SPORTS and Memory
	Support for Standard Protocols
	2X Clock Recovery Control

	SPORT Pin/Line Terminations
	Timing Examples

	12 UART Port Controller
	Serial Communications
	UARTx Control and Status Registers
	UARTx Line Control Registers (UARTx_LCR)
	UARTx Line Status Registers (UARTx_LSR)
	UARTx Transmit Holding Registers (UARTx_THR)
	UARTx Receive Buffer Registers (UARTx_RBR)
	UARTx Interrupt Enable Registers (UARTx_IER)
	UARTx Interrupt Identification Registers (UARTx_IIR)
	UARTx Divisor Latch Registers (UARTx_DLL, UARTx_DLH)
	UARTx Modem Control Registers (UARTx_MCR)
	UARTx Modem Status Registers (UARTx_MSR)
	UARTx Scratch Registers (UARTx_SCR)

	Non-DMA Mode
	DMA Mode
	Mixing Modes
	UART DMA Receive Registers
	UARTx Receive DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_RX)
	UARTx Receive DMA Configuration Registers (UARTx_CONFIG_RX)
	UARTx Receive DMA Start Address High Registers (UARTx_START_ADDR_HI_RX)
	UARTx Receive DMA Start Address Low Registers (UARTx_START_ADDR_LO_RX)
	UARTx Receive DMA Count Registers (UARTx_COUNT_RX)
	UARTx Receive DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_RX)
	UARTx Receive DMA Descriptor Ready Registers (UARTx_DESCR_RDY_RX)
	UARTx Receive DMA IRQ Status Registers (UARTx_IRQSTAT_RX)

	UART DMA Transmit Registers
	UARTx Transmit DMA Current Descriptor Pointer Registers (UARTx_CURR_PTR_TX)
	UARTx Transmit DMA Configuration Registers (UARTx_CONFIG_TX)
	UARTx Transmit DMA Start Address High Registers (UARTx_START_ADDR_HI_TX)
	UARTx Transmit DMA Start Address Low Registers (UARTx_START_ADDR_LO_TX)
	UARTx Transmit DMA Count Registers (UARTx_COUNT_TX)
	UARTx Transmit DMA Next Descriptor Pointer Registers (UARTx_NEXT_DESCR_TX)
	UARTx Transmit DMA Descriptor Ready Registers (UARTx_DESCR_RDY_TX)
	UARTx Transmit DMA IRQ Status Registers (UARTx_IRQSTAT_TX)

	IrDA Support
	UART0 Infrared Control Register (UART0_IRCR)
	IrDA Transmitter Description
	IrDA Receiver Description

	13 PCI Bus Interface
	PCI Specification
	PCI Device Function
	PCI Host Function
	Processor Core Access to PCI Space
	External PCI Requirements
	Device Mode Operation
	Outbound Transactions (ADSP-BF535 Processor as PCI Initiator)
	General Outbound Operation
	Outbound Error Detection and Reporting
	Supported Transactions to PCI

	Inbound Transactions (ADSP-BF535 Processor as PCI Target)
	General Inbound Operation
	Inbound Error Detection and Reporting
	Supported Transactions From PCI
	Unsupported Transactions From PCI

	Host Mode Operation
	Outbound Transactions (ADSP-BF535 Processor as PCI Initiator)
	Inbound Transactions (ADSP-BF535 Processor as PCI Target)

	Outbound Configuration Transactions
	Reset Behavior and Control
	Interrupt Behavior and Control
	PCI Programming Model
	Bus Operation Ordering

	System MMR Control and Status Registers
	PCI Bridge Control Register (PCI_CTL)
	PCI Status Register (PCI_STAT)
	PCI Interrupt Controller Register (PCI_ICTL)
	PCI Outbound Memory Base Address Register (PCI_MBAP)
	PCI Outbound I/O Base Address Register (PCI_IBAP)
	PCI Outbound I/O Configuration Address Register (PCI_CBAP)
	PCI Inbound Memory Base Address Register (PCI_TMBAP)
	PCI Inbound I/O Base Address Register (PCI_TIBAP)

	Configuration Space Control and Status Registers
	PCI Device Memory BAR Mask Register (PCI_DMBARM)
	PCI Device I/O BAR Mask Register (PCI_DIBARM)
	PCI Configuration Device ID Register (PCI_CFG_DIC)
	PCI Configuration Vendor ID Register (PCI_CFG_VIC)
	PCI Configuration Status Register (PCI_CFG_STAT)
	PCI Configuration Command Register (PCI_CFG_CMD)
	PCI Configuration Class Code Register (PCI_CFG_CC)
	PCI Configuration Revision ID Register (PCI_CFG_RID)
	PCI Configuration BIST Register (PCI_CFG_BIST)
	PCI Configuration Header Type Register (PCI_CFG_HT)
	PCI Configuration Memory Latency Timer Register (PCI_CFG_MLT)
	PCI Configuration Cache Line Size Register (PCI_CFG_CLS)
	PCI Configuration Memory Base Address Register (PCI_CFG_MBAR)
	PCI Configuration I/O Base Address Register (PCI_CFG_IBAR)
	PCI Configuration Subsystem ID Register (PCI_CFG_SID)
	PCI Configuration Subsystem Vendor ID Register (PCI_CFG_SVID)
	PCI Configuration Maximum Latency Register (PCI_CFG_MAXL)
	PCI Configuration Minimum Grant Register (PCI_CFG_MING)
	PCI Configuration Interrupt Pin Register (PCI_CFG_IP)
	PCI Configuration Interrupt Line Register (PCI_CFG_IL)
	PCI Host Memory Control Register (PCI_HMCTL)

	PCI I/O Issues
	Reflected Wave Switching
	Power Sequencing
	PCI Clock Requirements

	14 USB Device
	Convention
	Requirements
	USB Functionality
	USB Requirements
	Master and Slave Buses
	Data Flow and Traffic Scheduling

	USB Implementation

	Block Diagram
	UDC Block
	Front-End Interface Block
	Clock Control Block
	Transaction Decode and Clock Synchronization Block
	Registers and Control Block
	Memory Interface Block
	DMA Master Block
	PAB Interface Block

	Features and Modes
	Endpoint Types
	Data Transfers
	Bulk Data Transfers
	Isochronous Data Transfers
	Control Transfers

	UDC Configuration Control
	Suspend Operation
	Clocking
	USB Transceiver
	Full Speed vs. Low Speed USB

	Registers
	USB Device ID Register (USBD_ID)
	Current USB Frame Number Register (USBD_FRM)
	Match Value for USB Frame Number Register (USBD_FRMAT)
	Enable Download of Configuration Into UDC Core Register (USBD_EPBUF)
	USBD Module Status Register (USBD_STAT)
	USBD Module Configuration and Control Register (USBD_CTRL)
	Global Interrupt Register (USBD_GINTR)
	Global Interrupt Mask Register (USBD_GMASK)
	DMA Master Channel Configuration Register (USBD_DMACFG)
	DMA Master Channel Base Address Low Register (USBD_DMABL)
	DMA Master Channel Base Address High Register (USBD_DMABH)
	DMA Master Channel Count Register (USBD_DMACT)
	DMA Master Channel DMA Interrupt Register (USBD_DMAIRQ)
	USB Endpoint x Interrupt Registers (USBD_INTRx)
	USB Endpoint x Mask Registers (USBD_MASKx)
	USB Endpoint x Control Registers (USBD_EPCFGx)
	USB Endpoint x Address Offset Registers (USBD_EPADRx)
	USB Endpoint x Buffer Length Registers (USBD_EPLENx)
	UDC Endpoint Buffer Register

	Interrupt Descriptions
	USB General Interrupts
	USBD_SOF – Start of Frame
	USBD_CFG – USB Configuration Change
	USBD_MSOF – Missed Start of Frame
	USBD_RST – Reset Signaling Detected
	USBD_SUSP – Device Suspended
	USBD_RESUME – Resume Signaling
	USBD_FRMAT – Frame Match
	USBD_EPxINT – Endpoint(x) Interrupt

	DMA Master Interrupts
	DMA_COMP
	DMA_ERROR
	Data Misalignment
	Illegal Memory Access

	USB Endpoint Interrupts
	USBD_TC – Transfer Complete
	USBD_PC – Packet Complete
	USBD_BCSTAT – Buffer Complete
	USBD_SETUP – Setup Packet Received
	USBD_MSETUP – Multiple Setup Packets Received
	USBD_MERR – Memory Controller Error

	USB Programming Model
	Configuration of the UDC Module
	USBD Device Initialization
	USB Data Transfers
	USB Transfer Concepts
	How to Transfer Data
	Bulk Transfers
	Bulk In
	Bulk Out
	Isochronous Transfers
	Iso In
	Iso Out
	Control Transfers
	Control Transfer, No Data Phase
	Control Transfer With Data Phase
	Control Transfers Gone Bad

	Exception Handling
	Small Packets (Less Than 16-Byte Transfers)
	Endpoint Errors
	Isochronous Transfers Error Detection
	Reset Signaling Detected on USB
	Suspend/Resume Considerations

	References

	15 Programmable Flags
	Programmable Flag Memory-Mapped Registers (MMRs)
	Flag Direction Register (FIO_DIR)
	Flag Set (FIO_FLAG_S) and Flag Clear (FIO_FLAG_C) Registers
	Flag Interrupt Mask Registers (FIO_MASKA_C, FIO_MASKA_S, FIO_MASKB_C, FIO_MASKB_S)
	Flag Polarity Register (FIO_POLAR)
	Flag Interrupt Sensitivity Register (FIO_EDGE)
	Flag Set on Both Edges Register (FIO_BOTH)

	Performance/Throughput

	16 Timers
	General-Purpose Timers
	General-Purpose Timer Registers
	Timer Status Registers (TIMERx_STATUS)
	Timer Configuration Registers (TIMERx_CONFIG)
	Timer Period Registers (TIMERx_PERIOD)
	Timer Width Registers (TIMERx_WIDTH)
	Timer Counter Registers (TIMERx_COUNTER)

	Timer Modes
	Pulse Width Modulation Mode (PWM_OUT)
	Pulse Width Modulation (PWM) Waveform Generation
	Single Pulse Generation

	Pulse Width Count and Capture Mode (WDTH_CAP)
	Autobaud Detection

	External Event Counter Mode (EXT_CLK)

	Core Timer
	Core Timer Control Register (TCNTL)
	Core Timer Count Register (TCOUNT)
	Core Timer Period Register (TPERIOD)
	Core Timer Scale Register (TSCALE)

	Watchdog Timer
	Watchdog Timer Operation
	Watchdog Count Register (WDOG_CNT)
	Watchdog Status Register (WDOG_STAT)
	Watchdog Control Register (WDOG_CTL)

	17 Real-Time Clock (RTC)
	RTC Programming Model
	Interrupts

	RTC Memory-Mapped Registers (MMRs)
	RTC Status Register (RTC_STAT)
	RTC Interrupt Control Register (RTC_ICTL)
	RTC Interrupt Status Register (RTC_ISTAT)
	RTC Stopwatch Count Register (RTC_SWCNT)
	RTC Alarm Register (RTC_ALARM)
	RTC Enable Register (RTC_FAST)

	18 External Bus Interface Unit
	Block Diagram
	Internal Memory Interfaces
	EBIU Arbitration
	External Memory Interfaces
	EBIU Programming Model
	Error Detection

	Asynchronous Memory Interface
	Asynchronous Memory Address Decode
	Asynchronous Memory Global Control Register (EBIU_AMGCTL)
	Asynchronous Memory Bank Control Registers (EBIU_AMBCTL0, EBIU_AMBCTL1)
	ARDY Input Control

	Programmable Timing Characteristics
	Asynchronous Accesses by Core Instructions
	Asynchronous Reads
	Asynchronous Writes
	Asynchronous Writes Followed by Reads

	Asynchronous Accesses by MemDMA
	Asynchronous Reads
	Asynchronous Writes

	Adding Additional Wait States

	SDRAM Controller (SDC)
	Definition of Terms
	SDRAM Memory Global Control Register (EBIU_SDGCTL)
	Setting the SDRAM Clock Enables (SCTLE and SCK1E)
	Entering and Exiting Self-Refresh Mode (SRFS)
	Setting the SDRAM Buffering Timing Option (EBUFE)
	Selecting the CAS Latency Value (CL)
	SDQM Operation
	Executing a Parallel Refresh Command
	Selecting the Bank Activate Command Delay (TRAS)
	Selecting the Precharge Delay (TRP)
	Selecting the Write to Precharge Delay (TWR)

	SDRAM Memory Bank Control Register (EBIU_SDBCTL)
	SDRAM Control Status Register (EBIU_SDSTAT)
	SDRAM Refresh Rate Control Register (EBIU_SDRRC)
	SDRAM External Bank Address Decode
	SDRAM Address Mapping
	32-Bit Wide SDRAM Address Muxing
	16-Bit Wide SDRAM Address Muxing

	Data Mask (SDQM[3:0]) Encodings
	SDC Operation
	SDC Configuration
	Read Buffer (Prefetch) Operation
	SDC Commands
	Precharge Command
	Bank Activate Command
	Load Mode Register Command
	Read/Write Command
	Auto-Refresh Command
	Self-Refresh Command
	No Operation/Command Inhibit Commands

	SDRAM Timing Specifications
	SDRAM Performance

	19 System Design
	Pin Descriptions
	Recommendations for Unused Pins
	Pins Requiring Termination

	Resetting the Processor
	Booting the Processor
	Managing Clocks
	Managing Core and System Clocks
	Designing for Multiplexed Clock Pins

	Configuring and Servicing Interrupts
	Semaphores
	Example Code for Query Semaphore

	Data Delays, Latencies and Throughput
	Bus Priorities
	PCI Arbiter
	USB Device Connection
	External Memory Design Issues
	Example Asynchronous Memory Interfaces
	Avoiding Bus Contention
	Supported SDRAM Configurations
	Example SDRAM Interfaces

	High Frequency Design Considerations
	Point-to-Point Connections on Serial Ports
	Signal Integrity
	Decoupling Capacitors and Ground Planes
	Oscilloscope Probes
	Recommended Reading

	20 Blackfin Processor’s Debug
	Watchpoint Unit
	Instruction Watchpoints
	Watchpoint Instruction Address Registers (WPIAx)
	Watchpoint Instruction Address Count Registers (WPIACNTx)
	Watchpoint Instruction Address Control Register (WPIACTL)
	Data Address Watchpoints
	Watchpoint Data Address Registers (WPDAx)
	Watchpoint Data Address Count Value Registers (WPDACNTx)
	Watchpoint Data Address Control Register (WPDACTL)

	Watchpoint Status Register (WPSTAT)

	Trace Unit
	Trace Buffer Control Register (TBUFCTL)
	Trace Buffer Status Register (TBUFSTAT)
	Trace Buffer Register (TBUF)
	Code to Recreate the Execution Trace in Memory

	Performance Monitoring Unit
	Performance Monitor Counter Registers (PFCNTRx)
	Performance Monitor Control Register (PFCTL)
	Event Monitor Table

	Cycle Counter
	Execution Cycle Count Registers (CYCLES and CYCLES2)

	Product Identification Registers
	Chip ID Register (CHIPID)
	DSP Device ID Register (DSPID)

	DMA Bus Debug Registers
	DMA Bus Control Comparator Register (DB_CCOMP)
	DMA Bus Address Comparator Register (DB_ACOMP)

	A Blackfin Processor Core MMR Assignments
	L1 Data Memory Controller Registers
	L1 Instruction Memory Controller Registers
	Interrupt Controller Registers
	Core Timer Registers
	DSP Device ID Register
	Trace Unit Registers
	Watchpoint and Patch Registers
	Performance Monitor Registers

	B System MMR Assignments
	Clock and System Control Registers
	Chip ID Register
	System Interrupt Controller Registers
	Watchdog Timer Registers
	Real-Time Clock Registers
	UART0 Controller Registers
	UART1 Controller Registers
	Timer Registers
	Programmable Flag Registers
	SPORT0 Controller Registers
	SPORT1 Controller Registers
	SPI0 Controller Registers
	SPI1 Controller Registers
	Memory DMA Controller Registers
	Asynchronous Memory Controller—EBIU
	PCI Bridge Registers
	USB Device Registers
	System DMA Control Registers
	SDRAM Controller External Bus Interface Unit

	C Test Features
	Boundary-Scan Architecture
	Instruction Register
	Public Instructions
	EXTEST – Binary Code 00000
	SAMPLE/PRELOAD – Binary Code 10000
	IDCODE – Binary Code 00010
	BYPASS – Binary Code 11111

	Boundary-Scan Register

	D Numeric Formats
	Unsigned or Signed: Two’s-Complement Format
	Integer or Fractional
	Binary Multiplication
	Fractional Mode and Integer Mode

	Block Floating-Point Format

	G Glossary
	I Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

