

VISIT ANALOG.COM

Vol 57, No 1—March 2023

Training Convolutional
Neural Networks: What Is
Machine Learning?—Part 2
Ole Dreessen , Staff Engineer, Field Applications

Abstract
This is part 2 in a series of articles focusing on the properties and applications
of convolutional neural networks (CNNs), which are mainly used for pattern
recognition and the classification of objects. In the first article “Introduction to
Convolutional Neural Networks: What Is Machine Learning?—Part 1,” we showed
how a classic linear program execution in a microcontroller differs from a CNN
and its advantages. We discussed the CIFAR network, with which it is possible to
classify objects such as cats, houses, or bicycles in images or to perform simple
voice pattern recognition. Part 2 explains how these neural networks can be
trained to solve problems.

The Training Process for Neural Networks
The CIFAR network, which is discussed in the first part of the series, is made up of dif-
ferent layers of neurons, as shown in Figure 1. The image data from 32 pixels × 32 pixels
are presented to the network and passed through the network layers. The first step in
a CNN is to detect and investigate the unique features and structures of the objects
to be differentiated. Filter matrices are used for this. Once a neural network such as
the CIFAR has been modeled by a designer, these filter matrices are initially still unde-
termined and the network at this stage is still unable to detect patterns and objects.

To facilitate this, it is first necessary to determine all parameters and elements
of the matrices to maximize the accuracy with which objects are detected or to
minimize the loss function. This process is known as neural network training. For
common applications as described in the first part of this series, the networks
are trained once during development and testing. After that, they are ready for
use and the parameters no longer need to be adjusted. If the system is classifying
familiar objects, no additional training is necessary. Training is only necessary
when the system is required to classify completely new objects.

Training data is required to train a network, and later, a similar set of data is
used to test the accuracy of the network. In our CIFAR-10 network dataset, for
example, the data are the set of images within the ten object classes: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. However—and this is
the most complicated part of the overall development of an AI application—these
images must be named before training a CNN. The training process, which will
be discussed in this article, works according to the principle of backpropaga-
tion; the network is shown numerous images in succession and simultaneously
conveyed a target value each time. In our example, this value is the associated
object class. Each time an image is shown, the filter matrices are optimized so
that the target and actual values for the object class match. After this process has
been completed, the network can also detect objects in images that it did not see
during training.

Figure 1. CIFAR CNN architecture.

Cat

Dog

Tiger

House

Input Data
Feature Maps

Feature Maps

Feature Maps

32 × 32 × 3 32 × 32 × 32 16 × 16 × 32 16 × 16 × 16 8 × 8 × 16
Convolution and

Activation
Convolution and

Activation
Pooling Pooling

1024

Flattening
Layer

Feature Maps

https://www.analog.com
https://www.analog.com
https://www.analog.com/en/analog-dialogue/articles/max78000-article-series-part-1.html
https://www.analog.com/en/analog-dialogue/articles/max78000-article-series-part-1.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2 TrAINING CONVOLuTIONAL NeurAL NeTWOrkS: WhAT IS MAChINe LeArNING?—PArT 2

Overfitting and Underfitting
In neural network modeling, questions often arise around how complex a neural
network should be—that is, how many layers it should have, or how large its filter
matrices should be. There is no easy answer to this question. In connection with
this, it is important to discuss network overfitting and underfitting. Overfitting is
the result of an overly complex model with too many parameters. We can deter-
mine whether a prediction model fits the training data too poorly or too well by
comparing the training data loss with the test data loss. If the loss is low during
training and increases excessively when the network is presented with test data
that it has never been shown before, this is a strong indication that the network
has memorized the training data instead of generalizing the pattern recognition.
This mainly happens when the network has too much storage for parameters or
too many convolution layers. In this case, the network size should be reduced.

Loss Function and Training Algorithms
Learning is done in two steps. In the first step, the network is shown an image,
which is then processed by a network of neurons to generate an output vector.
The highest value of the output vector represents the detected object class, like a
dog in our example, which in the training case does not yet necessarily have to be
correct. This step is referred to as feedforward.

The difference between the target and actual values arising at the output is
referred to as the loss and the associated function is the loss function. All ele-
ments and parameters of the network are included in the loss function. The goal
of the neural network learning process is to define these parameters in such a
way that the loss function is minimized. This minimization is achieved through
a process in which the deviation arising at the output (loss = target value minus
actual value) is fed backward through all components of the network until it

reaches the starting layer of the network. This part of the learning process is also
known as backpropagation.

A loop that determines the parameters of the filter matrices in a stepwise
manner is thus yielded during the training process. This process of feedforward
and backpropagation is repeated until the loss value drops below a previously
defined value.

Optimization Algorithm, Gradient, and Gradient
Descent Method
To illustrate our training process, Figure 3 shows a loss function consisting of just
the two parameters x and y. The z-axis corresponds to the loss. The function itself
does not play a role here and is used for illustration purposes only. If we look more
closely at the three-dimensional function plot, we can see that the function has a
global minimum as well as a local minimum.

A large number of numerical optimization algorithms can be used to determine
weights and biases. The simplest one is the gradient descent method. The gradi-
ent descent method is based on the idea of finding a path from a randomly chosen
starting point in the loss function that leads to the global minimum, in a stepwise
process using the gradient. The gradient, as a mathematical operator, describes
the progression of a physical quantity. It delivers, at each point of our loss func-
tion, a vector—also known as a gradient vector—that points in the direction of the
greatest change in the function value. The magnitude of the vector corresponds
to the amount of change. In the function in Figure 3, the gradient vector would
point toward the minimum at a point somewhere in the lower right (red arrow).
The magnitude would be low due to the flatness of the surface. The situation
would be different close to the peak in the further region. Here, the vector (green
arrow) points steeply downward and has a large magnitude because the relief
is large.

Figure 2. A training loop consisting of feedforward and backpropagation.

Feedforward

Backpropagation

Correction Values

Repeat Until
Error Falls

Below Threshold

Adjusted Weights and Biases

Input Data

Deer

Truck

Automobile

Horse

Dog

Ship

Bird

Cat

Airplane

Frog

Loss Function

Actual Values

Automobile

Airplane

Deer

Horse

Dog

Ship

Bird

Cat

Truck

Frog

Target Values

Deer

Truck

Automobile

Horse

Dog

Ship

Bird

Cat

Airplane

Frog

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the engineerZone Online
Support Community. Visit ez.analog.com.

©2023 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

Local Minimum

Starting Point 1Starting Point 2

Starting Point 3

Global Minimum

Figure 3. Different paths to the target using the gradient descent method.

With the gradient descent method, the path that leads into the valley with the
steepest descent is iteratively sought—starting from an arbitrarily chosen point.
This means that the optimization algorithm calculates the gradient at the start-
ing point and takes a small step in the direction of the steepest descent. At this
intermediate point, the gradient is recalculated and the path into the valley is con-
tinued. In this way, a path is created from the starting point to a point in the valley.
The problem here is that the starting point is not defined in advance but must be
chosen at random. In our two-dimensional map, the attentive reader will place
the starting point somewhere on the left side of the function plot. This will ensure
that the end of the (for example, blue) path is at the global minimum. The other
two paths (yellow and orange) are either much longer or end at a local minimum.
Because the optimization algorithm must optimize not just two parameters, but
hundreds of thousands of parameters, it quickly becomes clear that the choice
of the starting point can only be correct by chance. In practice, this approach

does not appear to be helpful. This is because, depending on the selected starting
point, the path, and thus, the training time may be long, or the target point may not
be at the global minimum, in which case the network’s accuracy will be reduced.

As a result, numerous optimization algorithms have been developed over the past
few years to bypass the two problems described above. Some alternatives include
the stochastic gradient descent method, momentum, AdaGrad, RMSProp, and
Adam—just to name a few. The algorithm that is used in practice is determined
by the developer of the network because each algorithm has specific advantages
and disadvantages.

Training Data
As discussed, during the training process, we supply the network with images
marked with the right object classes such as automobile, ship, etc. For our exam-
ple, we used an already existing CIFAR-10 dataset. In practice, AI may be applied
beyond the recognition of cats, dogs, and automobiles. If a new application must
be developed to detect the quality of screws during the manufacturing process,
for example, then the network also has to be trained with training data from good
and bad screws. Creating such a dataset can be extremely laborious and time-
consuming and is often the most expensive step in developing an AI application.
Once the dataset has been compiled, it is divided up into training data and test
data. The training data are used for training as previously described. The test data
are used at the end of the development process to check the functionality of the
trained network.

Conclusion
In the first part of this series “Introduction to the World of Artificial Intelligence:
What Is Machine Learning?—Part 1,” we described a neural network and examined
its design and its functions in detail. Now that we have defined all the required
weights and biases for the function, we can assume that the network can work
properly. In a subsequent article (part 3), we will test our neural network for rec-
ognizing cats by converting it into hardware. For this, we will use the MAX78000
artificial intelligence microcontroller with a hardware-based CNN accelerator
developed by Analog Devices.

About the Author
Ole Dreessen is a field applications staff engineer at Analog Devices. Prior to joining ADI in 2014, he held positions at Avnet Memec
and Macnica, supporting communication technologies and high performance microprocessors. Ole has broad expertise in microcon-
troller and security topics and is an experienced presenter at conferences and distribution events. In his free time, he is an active
member of the Chaos Computer Club, where he has worked on concepts such as reverse engineering and embedded security.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.analog.com/en/products/max78000.html

	Button 13:
	Page 1:

	Button 12:
	Page 1:

	Button 11:
	Page 1:

	Button 10:
	Page 1:

	Button 9:
	Page 1:

	Button 8:
	Page 1:

