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Abstract
The world of artificial intelligence (AI) is rapidly evolving, and AI is increasingly 
enabling applications that were previously unattainable or very difficult to 
implement. This series of articles explains convolutional neural networks (CNNs) 
and their significance in machine learning within AI systems. CNNs are power-
ful tools for extracting features from complex data. This includes, for example, 
complex pattern recognition in audio signals or images. This article discusses 
the advantages of CNNs vs. classic linear programming. A subsequent article, 
“Training Convolutional Neural Networks: What Is Machine Learning?—Part 2” will 
discuss how CNN models are trained. Part 3 will examine a specific use case to 
test the model using a dedicated AI microcontroller.

What Are Convolutional Neural Networks?
Neural networks are systems, or structures of neurons, that enable AI to better 
understand data, allowing it to solve complex problems. While there are numer-
ous network types, this series of articles will solely focus on convolutional neural 
networks (CNNs). The main application areas for CNNs are pattern recognition and 
classification of objects contained in input data. CNNs are a type of artificial neu-
ral network used in deep learning. Such networks are composed of an input layer, 
several convolutional layers, and an output layer. The convolutional layers are the 
most important components, as they use a unique set of weights and filters that 
allow the network to extract features from the input data. Data can come in many 
different forms, such as images, audio, and text. This feature extraction process 
enables the CNN to identify patterns in the data. By extracting features from data, 
CNNs enable engineers to create more effective and efficient applications. To bet-
ter understand CNNs, we will first discuss classic linear programming.

Linear Program Execution in Classic  
Control Engineering
In control engineering, the task lies in reading data from one or more sensors, process-
ing it, responding to it according to rules, and displaying or forwarding the results.  
For example, a temperature regulator measures temperature every second through a 
microcontroller unit (MCU) that reads the data from the temperature sensor. The values 
derived from the sensor serve as input data for the closed-loop control system and 
are compared with the setpoint temperature in a loop. This is an example of a linear 
execution, run by the MCU. This technique delivers conclusive outcomes based on a 
set of preprogrammed and actual values. In contrast, probabilities play a role in the 
operation of AI systems.

Complex Pattern and Signal Processing
There are also numerous applications that work with input data that first must 
be interpreted by a pattern recognition system. Pattern recognition can be 
applied to different data structures. In our examples, we restrict ourselves to 
one- and two-dimensional data structures. Some examples are as follows: audio  
signals, electrocardiograms (ECGs), photoplethysmographs (PPGs), vibrations for 
one-dimensional data and images, thermal images, and waterfall charts for two-
dimensional data.

In pattern recognition used for the cases mentioned, conversion of the appli-
cation in classic code for the MCU is extremely difficult. An example is the  
recognition of an object (for example, a cat) in an image. In this case, it doesn’t 
make a difference if the image to be analyzed is from an earlier recording or 
one just read by a camera sensor. The analysis software performs a rules-
based search for patterns that can be attributed to those of a cat: the typical 

https://www.analog.com
https://www.analog.com
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices


2 INTrODuCTION TO CONVOLuTIONAL NeurAL NeTWOrkS: WhAT IS MAChINe LeArNING?—PArT 1

pointed ears, the triangular nose, or the whiskers. If these features can be rec-
ognized in the image, the software reports a cat find. Some questions arise here:  
What would the pattern recognition system do if the cat is only shown from the 
back? What would happen if it didn’t have any whiskers or lost its legs in an 
accident? Despite the unlikelihood of these exceptions, the pattern recognition 
code would have to check a large number of additional rules covering all pos-
sible anomalies. Even in our simple example, the rules set by the software would 
quickly become extensive.

How Machine Learning Replaces Classic Rules
The idea behind AI is to mimic human learning on a small scale. Instead of formu-
lating a large number of if-then rules, we model a universal pattern recognition 
machine. The key difference between the two approaches is that AI, in contrast to 
a set of rules, does not deliver a clear result. Instead of reporting “I recognized a 
cat in the image,” machine learning yields the result “There is a 97.5% probability 
that the image shows a cat. It could also be a leopard (2.1%) or a tiger (0.4%).” This 
means that the developer of such an application must decide at the end of the 
pattern recognition process. A decision threshold is used for this.

Another difference is that a pattern recognition machine is not equipped with 
fixed rules. Instead, it is trained. In this learning process, a neural network is 
shown a large number of cat images. In the end, this network is capable of inde-
pendently recognizing whether there is a cat in an image or not. The crucial point 
is that future recognition is not restricted to already known training images. This 
neural network needs to be mapped into an MCU.

What Exactly Does a Pattern Recognition 
Machine Look Like on the Inside?
A network of neurons in AI resembles its biological counterpart in the human 
brain. A neuron has several inputs and just one output. Basically, such a neuron 
is nothing other than a linear transformation of the inputs—multiplication of the 
inputs by numbers (weights, w) and addition of a constant (bias, b)—followed by a 
fixed nonlinear function that is also known as an activation function.1 This activa-
tion function, as the only nonlinear component of the network, serves to define 
the value range in which an artificial neuron fires. The function of a neuron can 
be described mathematically as

(1)Out = f(w*x+b)

where f = the activation function, w = weight, x = input data, and b = bias. The 
data can occur as individual scalars, vectors, or in matrix form. Figure 1 shows a 
neuron with three inputs and a ReLU2 activation function. Neurons in a network 
are always arranged in layers.
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Figure 1. A neuron with three inputs and one output.

As mentioned, CNNs are used for pattern recognition and classification of objects 
contained in input data. CNNs are divided into various sections: one input layer, 
several hidden layers, and one output layer. A small network with three inputs, 
one hidden layer with five neurons, and one output layer with four outputs can be 
seen in Figure 2. All neuron outputs are connected to all inputs in the next layer. 
The network shown in Figure 2 is not able to process meaningful tasks and is 
used here for demonstration purposes only. Even in this small network, there are  
32 biases and 32 weights in the equation used to describe the network.

A CIFAR neural network is a type of CNN that is widely used in image recognition 
tasks. It consists of two main types of layers: convolutional layers and pooling 
layers, which are both utilized to great effect in the training of neural networks. 
The convolutional layer uses a mathematical operation called convolution to  
identify patterns within an array of pixel values. Convolution occurs in hidden lay-
ers, as can be seen in Figure 3. This process is repeated multiple times until the 
desired level of accuracy is achieved. Note that the output value from a convolu-
tion operation is always especially high if the two input values to be compared 
(image and filter, in this case) are similar. This is called a filter matrix, which 
is also known as a filter kernel or just a filter. The results are then passed into 
the pooling layer, which generates a feature map—a representation of the input 
data that identifies important features. This is considered to be another filter 
matrix. After training—in the operational state of the network—these feature 
maps are compared with the input data. Because the feature maps hold object 
class-specific characteristics that are compared with the input images, the out-
put of the neurons will only trigger if the contents are alike. By combining these 
two approaches, the CIFAR network can be used to recognize and classify various 
objects in an image with high accuracy.

1 The functions sigmoid, tanh, or ReLU are typically used.
2 ReLU: rectified linear unit. Negative input values for this function are output as zero and values greater than zero with their input values.
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Figure 3. A model of the CIFAR network trained with the CIFAR-10 data set.
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Figure 2. A small neural network.

CIFAR-10 is one specific dataset commonly used for training CIFAR neural net-
works. It consists of 60,000 32 × 32 color images broken up into 10 classes that 
were collected from various sources like web pages, newsgroups, and personal 
imagery collections. Each class has 6000 images divided equally between train-
ing, testing, and validation sets, making it an ideal set for testing new computer 
vision architectures and other machine learning models. 

The main difference between convolutional neural networks and other types of 
networks is the way in which they process data. Through filtering, the input data 
are successively examined for their properties. As the number of convolutional 
layers connected in series increases, so does the level of detail that can be recog-
nized. The process starts with simple object properties, such as edges or points, 
after the first convolution and goes on to detailed structures, such as corners, 
circles, rectangles, etc., after the second convolution. After the third convolution, 
features represent complex patterns that resemble parts of objects in images 
and that usually are unique to the given object class. In our initial example, these 
are the whiskers or ears of a cat. Visualization of the feature maps—which can 
be seen in Figure 4—is not necessary for the application itself, but it helps in the 
understanding of the convolution.

Even small networks such as CIFAR consist of hundreds of neurons in each layer 
and many layers connected in series. The number of necessary weights and 
biases grows rapidly with increasing complexity and size of the network. In the 
CIFAR-10 example pictured in Figure 3, there are already 200,000 parameters that 
require a determined set of values during the training process. The feature maps 
can be further processed by pooling layers that reduce the number of parameters 
that need to be trained while still preserving important information.
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Figure 4. Feature maps for a CNN.

As mentioned, after every convolution in a CNN, pooling, often also referred to in 
literature as subsampling, often occurs. This serves to reduce the dimensions 
of the data. If you look at the feature maps in Figure 4, you notice that large 
regions contain little to no meaningful information. This is because the objects 
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do not make up the entire image, but only a small part of it. The remaining part 
of the image is not used in this feature map and is hence not relevant for the 
classification. In a pooling layer, both the pooling type (maximum or average) and 
the window matrix size are specified. The window matrix is moved in a stepwise 
manner across the input data during the pooling process. In maximum pooling, 
for example, the largest data value in the window is taken. All other values are 
discarded. In this way, the data is continuously reduced in number, and in the end, 
it forms, together with the convolutions, the unique properties of the respective 
object class.

However, the result of these convolution and pooling groups is a large number 
of two-dimensional matrices. To achieve our actual goal of classification, we 
convert the two-dimensional data to a long one-dimensional vector. The conver-
sion is done in a so-called flattening layer, which is followed by one or two fully 

connected layers. The neurons in the last two layer types are similar to the struc-
ture shown in Figure 2. The last layer of our neural network has exactly as many 
outputs as there are classes to be distinguished. In addition, in the last layer, 
the data are also normalized to yield a probability distribution (97.5% cat, 2.1% 
leopard, 0.4% tiger, etc.).

This concludes the modeling of our neural network. However, the weights and con-
tents of the kernel and filter matrices are still unknown and must be determined 
through network training in order for the model to work. This will be explained in 
the subsequent article, “Training Convolutional Neural Networks: What Is Machine 
Learning?—Part 2.” Part 3 will explain the hardware implementation for the neural 
network we have discussed (for cat recognition, as an example). For this, we will 
use the MAX78000 artificial intelligence microcontroller with a hardware-based 
CNN accelerator developed by Analog Devices.
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