

VISIT ANALOG.COM

Vol 57, No 1—February 2023

Introduction to
Convolutional Neural
Networks: What Is
Machine Learning?—Part 1
Ole Dreessen , Staff Engineer, Field Applications

Abstract
The world of artificial intelligence (AI) is rapidly evolving, and AI is increasingly
enabling applications that were previously unattainable or very difficult to
implement. This series of articles explains convolutional neural networks (CNNs)
and their significance in machine learning within AI systems. CNNs are power-
ful tools for extracting features from complex data. This includes, for example,
complex pattern recognition in audio signals or images. This article discusses
the advantages of CNNs vs. classic linear programming. A subsequent article,
“Training Convolutional Neural Networks: What Is Machine Learning?—Part 2” will
discuss how CNN models are trained. Part 3 will examine a specific use case to
test the model using a dedicated AI microcontroller.

What Are Convolutional Neural Networks?
Neural networks are systems, or structures of neurons, that enable AI to better
understand data, allowing it to solve complex problems. While there are numer-
ous network types, this series of articles will solely focus on convolutional neural
networks (CNNs). The main application areas for CNNs are pattern recognition and
classification of objects contained in input data. CNNs are a type of artificial neu-
ral network used in deep learning. Such networks are composed of an input layer,
several convolutional layers, and an output layer. The convolutional layers are the
most important components, as they use a unique set of weights and filters that
allow the network to extract features from the input data. Data can come in many
different forms, such as images, audio, and text. This feature extraction process
enables the CNN to identify patterns in the data. By extracting features from data,
CNNs enable engineers to create more effective and efficient applications. To bet-
ter understand CNNs, we will first discuss classic linear programming.

Linear Program Execution in Classic
Control Engineering
In control engineering, the task lies in reading data from one or more sensors, process-
ing it, responding to it according to rules, and displaying or forwarding the results.
For example, a temperature regulator measures temperature every second through a
microcontroller unit (MCU) that reads the data from the temperature sensor. The values
derived from the sensor serve as input data for the closed-loop control system and
are compared with the setpoint temperature in a loop. This is an example of a linear
execution, run by the MCU. This technique delivers conclusive outcomes based on a
set of preprogrammed and actual values. In contrast, probabilities play a role in the
operation of AI systems.

Complex Pattern and Signal Processing
There are also numerous applications that work with input data that first must
be interpreted by a pattern recognition system. Pattern recognition can be
applied to different data structures. In our examples, we restrict ourselves to
one- and two-dimensional data structures. Some examples are as follows: audio
signals, electrocardiograms (ECGs), photoplethysmographs (PPGs), vibrations for
one-dimensional data and images, thermal images, and waterfall charts for two-
dimensional data.

In pattern recognition used for the cases mentioned, conversion of the appli-
cation in classic code for the MCU is extremely difficult. An example is the
recognition of an object (for example, a cat) in an image. In this case, it doesn’t
make a difference if the image to be analyzed is from an earlier recording or
one just read by a camera sensor. The analysis software performs a rules-
based search for patterns that can be attributed to those of a cat: the typical

https://www.analog.com
https://www.analog.com
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2 INTrODuCTION TO CONVOLuTIONAL NeurAL NeTWOrkS: WhAT IS MAChINe LeArNING?—PArT 1

pointed ears, the triangular nose, or the whiskers. If these features can be rec-
ognized in the image, the software reports a cat find. Some questions arise here:
What would the pattern recognition system do if the cat is only shown from the
back? What would happen if it didn’t have any whiskers or lost its legs in an
accident? Despite the unlikelihood of these exceptions, the pattern recognition
code would have to check a large number of additional rules covering all pos-
sible anomalies. Even in our simple example, the rules set by the software would
quickly become extensive.

How Machine Learning Replaces Classic Rules
The idea behind AI is to mimic human learning on a small scale. Instead of formu-
lating a large number of if-then rules, we model a universal pattern recognition
machine. The key difference between the two approaches is that AI, in contrast to
a set of rules, does not deliver a clear result. Instead of reporting “I recognized a
cat in the image,” machine learning yields the result “There is a 97.5% probability
that the image shows a cat. It could also be a leopard (2.1%) or a tiger (0.4%).” This
means that the developer of such an application must decide at the end of the
pattern recognition process. A decision threshold is used for this.

Another difference is that a pattern recognition machine is not equipped with
fixed rules. Instead, it is trained. In this learning process, a neural network is
shown a large number of cat images. In the end, this network is capable of inde-
pendently recognizing whether there is a cat in an image or not. The crucial point
is that future recognition is not restricted to already known training images. This
neural network needs to be mapped into an MCU.

What Exactly Does a Pattern Recognition
Machine Look Like on the Inside?
A network of neurons in AI resembles its biological counterpart in the human
brain. A neuron has several inputs and just one output. Basically, such a neuron
is nothing other than a linear transformation of the inputs—multiplication of the
inputs by numbers (weights, w) and addition of a constant (bias, b)—followed by a
fixed nonlinear function that is also known as an activation function.1 This activa-
tion function, as the only nonlinear component of the network, serves to define
the value range in which an artificial neuron fires. The function of a neuron can
be described mathematically as

(1)Out = f(w*x+b)

where f = the activation function, w = weight, x = input data, and b = bias. The
data can occur as individual scalars, vectors, or in matrix form. Figure 1 shows a
neuron with three inputs and a ReLU2 activation function. Neurons in a network
are always arranged in layers.

AF: Activation Function

Input 1

*w1
+b1

AF*w2
+b2

*w3
+b3

Input 2

Input 3

Output

Figure 1. A neuron with three inputs and one output.

As mentioned, CNNs are used for pattern recognition and classification of objects
contained in input data. CNNs are divided into various sections: one input layer,
several hidden layers, and one output layer. A small network with three inputs,
one hidden layer with five neurons, and one output layer with four outputs can be
seen in Figure 2. All neuron outputs are connected to all inputs in the next layer.
The network shown in Figure 2 is not able to process meaningful tasks and is
used here for demonstration purposes only. Even in this small network, there are
32 biases and 32 weights in the equation used to describe the network.

A CIFAR neural network is a type of CNN that is widely used in image recognition
tasks. It consists of two main types of layers: convolutional layers and pooling
layers, which are both utilized to great effect in the training of neural networks.
The convolutional layer uses a mathematical operation called convolution to
identify patterns within an array of pixel values. Convolution occurs in hidden lay-
ers, as can be seen in Figure 3. This process is repeated multiple times until the
desired level of accuracy is achieved. Note that the output value from a convolu-
tion operation is always especially high if the two input values to be compared
(image and filter, in this case) are similar. This is called a filter matrix, which
is also known as a filter kernel or just a filter. The results are then passed into
the pooling layer, which generates a feature map—a representation of the input
data that identifies important features. This is considered to be another filter
matrix. After training—in the operational state of the network—these feature
maps are compared with the input data. Because the feature maps hold object
class-specific characteristics that are compared with the input images, the out-
put of the neurons will only trigger if the contents are alike. By combining these
two approaches, the CIFAR network can be used to recognize and classify various
objects in an image with high accuracy.

1 The functions sigmoid, tanh, or ReLU are typically used.
2 ReLU: rectified linear unit. Negative input values for this function are output as zero and values greater than zero with their input values.

VISIT ANALOG.COM 3

Cat

Dog

Tiger

House

Input Data
Feature Maps

Feature Maps

Feature Maps

32 × 32 × 3 32 × 32 × 32 16 × 16 × 32 16 × 16 × 16 8 × 8 × 16
Folding and
Activation

Folding and
Activation

Pooling Pooling

1024

Flattening
Layer

Feature Maps

Figure 3. A model of the CIFAR network trained with the CIFAR-10 data set.

Hidden Layer

Output LayerInput Layer

Output 1

Output 2

Output 3

Output 4

Input 1

Input 2

Input 3

Figure 2. A small neural network.

CIFAR-10 is one specific dataset commonly used for training CIFAR neural net-
works. It consists of 60,000 32 × 32 color images broken up into 10 classes that
were collected from various sources like web pages, newsgroups, and personal
imagery collections. Each class has 6000 images divided equally between train-
ing, testing, and validation sets, making it an ideal set for testing new computer
vision architectures and other machine learning models.

The main difference between convolutional neural networks and other types of
networks is the way in which they process data. Through filtering, the input data
are successively examined for their properties. As the number of convolutional
layers connected in series increases, so does the level of detail that can be recog-
nized. The process starts with simple object properties, such as edges or points,
after the first convolution and goes on to detailed structures, such as corners,
circles, rectangles, etc., after the second convolution. After the third convolution,
features represent complex patterns that resemble parts of objects in images
and that usually are unique to the given object class. In our initial example, these
are the whiskers or ears of a cat. Visualization of the feature maps—which can
be seen in Figure 4—is not necessary for the application itself, but it helps in the
understanding of the convolution.

Even small networks such as CIFAR consist of hundreds of neurons in each layer
and many layers connected in series. The number of necessary weights and
biases grows rapidly with increasing complexity and size of the network. In the
CIFAR-10 example pictured in Figure 3, there are already 200,000 parameters that
require a determined set of values during the training process. The feature maps
can be further processed by pooling layers that reduce the number of parameters
that need to be trained while still preserving important information.

Image 1
Blossom

Image 2
Blossom

Image 3
Ant

Figure 4. Feature maps for a CNN.

As mentioned, after every convolution in a CNN, pooling, often also referred to in
literature as subsampling, often occurs. This serves to reduce the dimensions
of the data. If you look at the feature maps in Figure 4, you notice that large
regions contain little to no meaningful information. This is because the objects

https://www.analog.com

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the engineerZone Online
Support Community. Visit ez.analog.com.

©2023 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

do not make up the entire image, but only a small part of it. The remaining part
of the image is not used in this feature map and is hence not relevant for the
classification. In a pooling layer, both the pooling type (maximum or average) and
the window matrix size are specified. The window matrix is moved in a stepwise
manner across the input data during the pooling process. In maximum pooling,
for example, the largest data value in the window is taken. All other values are
discarded. In this way, the data is continuously reduced in number, and in the end,
it forms, together with the convolutions, the unique properties of the respective
object class.

However, the result of these convolution and pooling groups is a large number
of two-dimensional matrices. To achieve our actual goal of classification, we
convert the two-dimensional data to a long one-dimensional vector. The conver-
sion is done in a so-called flattening layer, which is followed by one or two fully

connected layers. The neurons in the last two layer types are similar to the struc-
ture shown in Figure 2. The last layer of our neural network has exactly as many
outputs as there are classes to be distinguished. In addition, in the last layer,
the data are also normalized to yield a probability distribution (97.5% cat, 2.1%
leopard, 0.4% tiger, etc.).

This concludes the modeling of our neural network. However, the weights and con-
tents of the kernel and filter matrices are still unknown and must be determined
through network training in order for the model to work. This will be explained in
the subsequent article, “Training Convolutional Neural Networks: What Is Machine
Learning?—Part 2.” Part 3 will explain the hardware implementation for the neural
network we have discussed (for cat recognition, as an example). For this, we will
use the MAX78000 artificial intelligence microcontroller with a hardware-based
CNN accelerator developed by Analog Devices.

About the Author
Ole Dreessen is a field applications staff engineer at Analog Devices. Prior to joining ADI in 2014, he held positions at Avnet Memec
and Macnica, supporting communication technologies and high performance microprocessors. Ole has broad expertise in microcon-
troller and security topics and is an experienced presenter at conferences and distribution events. In his free time, he is an active
member of the Chaos Computer Club, where he has worked on concepts such as reverse engineering and embedded security.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.analog.com/en/products/max78000.html

	Button 13:
	Page 1:

	Button 12:
	Page 1:

	Button 11:
	Page 1:

	Button 10:
	Page 1:

	Button 9:
	Page 1:

	Button 8:
	Page 1:

