
         

VISIT ANALOG.COM

Wireless Sensing System

Analog
Input

Sensor Amp
OUT AIN+

AIN–REF

ADC
(AD7768-1)

Wi-Fi
Module(ADuCM4050)

MCU

DS28S60

External RAM
SPI Interface MOTT

Cloud

SPI

Security Authenticator

Vol 57, No 1—March 2023

How to Optimize the
MCU SPI Driver to Reach
High Speed ADC Throughput
Denny Wang�, Applications Engineer, and
Sally Tseng�, Applications Engineer

Abstract
With the advancement of technology, the transmission of more precise data
is needed in low power Internet of Things (IoT) and edge/cloud computing. In
Figure 1, the wireless sensing system is a high precision data acquisition sys-
tem with a 24-bit analog-to-digital converter (ADC). In this case, whether the
microcontroller unit (MCU) can afford the serial high speed interface of the data
converter is our problem.

This article describes the process of designing a high speed Serial Peripheral
Interface (SPI) data transaction driver between the MCU and ADC. The following
sections will show a brief description of different ways to optimize the SPI driver
and the required configuration on the ADC and MCU. A detailed description of
the example code of the SPI and direct memory access (DMA) data transac-
tion will be provided after the brief illustration. Finally, a demonstration of
the throughput of ADC with the same driver in a different MCU (ADuCM4050,
MAX32660) will be included.

Figure 1. Condition-based monitoring.

Introduction
Introduction to General SPI Driver
As the name suggests, MCU vendors provide general SPI driver/API in example
code to each MCU. The general SPI driver/API usually can cover most users’ appli-
cations that may conclude many configurations or determine statements. In some
specific scenarios, such as ADC data acquisition, the general SPI driver cannot
satisfy the full speed throughput of the ADC data because too many different
configurations in the general driver are implemented. The configurations that are
not used in the application create additional overhead and cause a time delay.

void adi_spi_MasterSubmitBuffer (struct hDevice, struct *buffer)
{
 if(…)
 *p = xxx;
 else if(…)
 *p = xxx << xxx;
 for (…)

 :

 start_spi_transaction();
}

Config.

Figure 2. Configuration of a general API.

Framework of the Thoughts and Practice
To extract the output data of an ADC through SPI, we would choose an MCU as
the main device for its low power consumption and high speed performance.
However, when a data transaction is based on the ADI SPI driver, the speed can
degrade due to commands that are not functional in the ADC-to-MCU applica-
tion. To fully unleash the potential speed of the ADC, we experiment with the
ADuCM4050 and AD7768-1 and try out possible solutions. Despite the maximum
output data rate of 256 kHz (under the default filter), the ADuCM4050 is currently
limited to 8 kHz. Potential solutions for the acceleration of the output rate include
removing unnecessary commands and activation of the DMA controller. These
ideas are realized in the following sections.

Figure 3. Different ODRs and the relationship between DRDY and SCLK.

https://www.analog.com
https://www.analog.com/en/products/aducm4050.html
https://www.analog.com/en/products/max32660.html
https://www.analog.com/en/products/ad7768-1.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  How to Optimize the MCU SPI Driver to Reach High Speed ADC Throughput

MCU as Main
The ADuCM4050 MCU is an ultra low power microcontroller system with a 26 MHz
main clock rate. The system is driven by the Arm® Cortex®-M4F processor. The
ADuCM4050 is equipped with three SPIs, and each SPI incorporates two DMA chan-
nels, receive and transmit, that interface with the DMA controller. The DMA controller
and DMA channels provide a means to transfer data between memory and peripherals.
This is an efficient way to distribute data freeing up the core to handle other tasks.

ADC as Node
The AD7768-1 is a 24-bit, low power, high performance, sigma-delta (Σ-Δ) ADC.
The output data rate (ODR) and power dissipation mode are adjustable to meet the
users’ requirements. The decimation factor and power mode together determine
the ODR as shown in Table 1.

Table 1. Power Mode Configuration for Output Data Rate

Power Mode Decimation ODR

Fast (MCLK/2) ×32 256 kHz

Fast (MCLK/2) ×64 128 kHz

Median (MCLK/4) ×32 128 kHz

Median (MCLK/4) ×64 64 kHz

Low Power (MCLK/16) ×32 32 kHz

Low Power (MCLK/16) ×64 16 kHz

The AD7768-1’s continuous read mode is also a significant feature. The output
data of the ADC is stored in the register 0x6C. In general, the data in ADC register
requires address specification before each read/write operation. Continuous read
mode enables direct derivation of data from the 0x6C register after each data
ready signal. The ADC output data is a 24-bit digital signal that converts to volts
as shown in Table 2.

Table 2. Output Codes and Ideal Input Voltage

Description Analog Input Digital Output Code

+Full Swing –1 LSB +4.095999512 V 0x7FFFFF

Midscale +1 LSB +488 nV 0x000001

Midscale 0 V 0x000000

Midscale –1 LSB –488 nV 0xFFFFFF

–Full Swing –1 LSB –4.095999512 V 0x800001

–Full Swing +4.096 V 0x800000

Connection Diagram of Data Flow
The ADuCM4050 and AD7768-1 are used as the data transaction example models.
The pin connection is shown in Figure 4.

Their reset signal is sent from the MCU GPIO28 to the ADC RST_1 pin, and the data
ready signal is sent from the ADC DRDY_1 to the MCU GPIO27. The rest of the pins
are connected as a general SPI configuration, where the MCU is the main and ADC
is the node. SDI_1 receives the ADC register read/write commands from the MCU,
and DOUT_1 sends the output data to the MCU.

GPIO28

GPIO27

SPIO_CLK

SPIO_MOSI
ADuCM4050AD7768-1

SPIO_MISO

SPIO_CS2

GND

RST_1

DRDY_1

SCLK-1

SDI_1

DOUT-1

CS_1

GND

Figure 4. An interface pin connection for the AD7768-1 and the ADuCM4050.

Realization of Data Transaction
Interrupt Data Transaction
To realize the continuous data transaction, we use the GPIO27 (connected to DRDY)
as the interrupt trigger. When the ADC sends a data ready signal to the GPIO27, the
MCU runs the callback function, where data transaction commands are included.
As shown in Figure 5, data acquisition must be handled in the interval between
Interrupt A and Interrupt B.

With the ADI SPI driver, we can easily realize the data transaction between the ADC
and MCU. However, the ADC ODR would be limited to 8 kHz due to redundant com-
mands in the driver. To speed up the process, we trim the codes to the slimmest.
We introduce two methods for DMA data transactions: basic mode DMA transac-
tion and ping-pong mode DMA transaction.

Interval

Interrupt A Interrupt B

Figure 5. An interval between two interrupts.

Basic Mode DMA Transaction
Before each DMA transaction, some SPI and DMA settings are required (see
the example code in Figure 6). SPI_CTL is the SPI configuration. SPI_
CTL=0x280f is derived from the value set for the ADI SPI driver. SPI_CNT
is the transfer byte count. Since each DMA transaction can only transmit a fixed bit
number of 16, SPI_CNT must be a multiple of 2. In our case, SPI_CNT=4 is
chosen to cover the 24-bit output data of ADC. SPI_DMA register is the SPI DMA
enable. SPI_DMA=0x5 enables the receive DMA request. pADI_DMA0-
>EN_SET=(1<<5) enables the DMA of the fifth DMA channel - SPI0 RX.

Table 3. DMA Structure Register

Name Description

SRC_END_PTR Source end pointer

DST_END_PTR Destination end pointer

CHNL_CFG Control data configuration

Each DMA channel has a DMA structure register shown in Table 3. Note that the
end of the source address here (that is, SPI0 Rx) needs no increments during the
entire operation since the Rx FIFO pushes the data out of the register automati-
cally. On the other hand, the end of the destination address is calculated by the
function (destination address + SPI_CNT -2) according to the ADI SPI driver.

VISIT ANALOG.COM  3

The current address here is the address of an internal array buffer. DMA control
data configuration includes the settings of source data size, source address
increment, destination address increment, the number of transfers left, and
DMA control mode. The value 0x4D000011 sets the configuration as described
in Table 4.

Table 4. DMA Configuration for the Control Data
Configuration 0x4D00011

Register Description Value

DST_INC Destination address increment 2 bytes

SRC_INC Source address increment 0

SRC_SIZE Source address increment 2 bytes

N_minus_1 Total number of transfers in the current DMS cycle – 1 1 (N = 2)

Cycle_ctrl The operating mode of the DMA cycle Basic mode

With the dummy read command SPI_SPI0 -> RX, SCLK clocking starts, and the
output data is transmitted from ADC to MCU through the MISO line. There are also
some negligible data transfers on the MOSI line. Once the Rx FIFO is filled, the
DMA request is generated, thus activating the DMA controller to transfer the data
from the DMA source (that is, SPI0 Rx FIFO) to the DMA destination (that is, the
internal array buffer). It is worthy of note that the Tc request is generated at
SPI_DMA=0x3.

At last, we maintain the destination address for the next 4-byte transmission by
adding 4 to the current destination address.

Please also be aware that both pADI_DMA0->DSTADDR_CLR and pADI_DMA0-
>RMSK_CLR for SPI0 DMA channel must be set in the main function before the
first interrupt occurs. The prior register is DMA Channel Destination Address
Decrement Enable Clear, which sets the destination address shifting after each
DMA transfer in increment mode (only in increment mode does the function for
destination address calculation works). The latter register is DMA Channel Request
Mask Clear, which clears the DMA request status for the channel.

A time diagram for the basic mode DMA transaction is depicted in Figure 7a. The
time slots represent the DRDY signal, SPI/DMA settings, and DMA data transaction,
respectively. To better utilize the idle time of the CPU, we wish to assign tasks for
the CPU while the DMA controller is handling the data transfer.

//SPI settings
pADI_SPIO–>CTL = 0x280f;
pADI_SPIO–>CNT = (uint16_t)4;
pADI_SPIO–>DMA = 0x5;

//DMA settings
pADI_DMAO–>EN_SET = (1<<5);
pPrimaryCCD[5].DMASRCEND = (uint32_t)&pADI_SPIO–>RX;
pPrimaryCCD[5].DMADSTEND(uint32_t)Current_address;
pPrimaryCCD[5].DMACDC = 0x4D000011;

//Dummy read
pADI_SPIO–>RX;

//Data destination address maintenance
Current address = Current_address + 4;

Figure 6. A code of the basic DMA transaction mode.

Ping-Pong Mode DMA Transaction
After the dummy read command is implemented, the DMA controller starts the
data transaction, leaving the CPU of the MCU idle with no tasks. If we can have
the CPU and DMA controller work simultaneously, the task handling is no longer

serial but parallel. Therefore, we can conduct the DMA configuration (by the CPU)
and the DMA data transaction (by the DMA controller) at the same time. To real-
ize this idea, the so-called ping-pong mode is required for the DMA controller.
Ping-pong mode incorporates two sets of DMA structures—primary and alternate.
The DMA controller switches automatically between the two structures at each
DMA request. Initially set to 0, variable p marks if the primary (p = 0) or alternate
(p = 1) DMA structure is in charge. If p = 0, DMA primary data transaction starts on
the dummy read command. At the same time, we assign values for the alternate
DMA structure, which will be in charge in the next interrupt cycle. If p = 1, the primary
and alternate structures switch their roles. The modification of the DMA structure
during a DMA transaction can fail with only the primary one in basic DMA mode.
The use of ping-pong mode enables the CPU to access and write the alternate DMA
structure while the primary is read by the DMA controller and vice versa. As shown
in Figure 7b, the DMA data transaction can be performed soon after the DRDY
signal got transmitted from the ADC to the MCU since the DMA structure configu-
ration is done in the last cycle. The CPU and DMA are now working simultaneously
without one waiting for the other. We expect that there is now room for the ADC
ODR up-tuning because the total operation time is significantly shortened.

DMA

CPU

ADC

DMA Primary

DMA Alternate

(b)(a)

CPU

ADC

Figure 7. A time diagram for (a) basic DMA mode and (b) ping-pong mode.

Interrupt Handler Optimization
The time interval between the data ready signal does not only include the conduct
time of the commands in the callback function but also the ones in the ADI GPIO
interrupt handler.

At the activation of the MCU, the CPU runs the start-up file (that is, startup.s).
All the event handlers are defined in the file, including the GPIO interrupt han-
dler. Once the GPIO interrupt is triggered, the interrupt handler function (that is,
GPIO_A_INT_HANDLER and GPIO_B_INT_HANDLER in the ADI GPIO driver) is per-
formed. In general interrupt handler functions, the CPU searches through all GPIO
pins for the one that triggers, clears its interrupt status, and runs the registered
callback function. In the ADC-MCU application used, DRDY is the only interrupt
signal. We would thus like to trim the function to speed up the process. Possible
solutions include (1) retargeting in the start-up file and (2) the modification of the
original interrupt handler. Retargeting means to self-define an interrupt handler
and to replace the original one in the start-up file.

Modification, on the other hand, requires a self-defined GPIO driver. We take the
latter option and modify the function as in Figure 8, where it clears only the
interrupt status of the pin connected to the DRDY and goes directly to the call-
back function. Please note that the original GPIO driver needs to be blocked by
unchecking the box of include in build target.

DCD GPIO_A_Int_Handler_Denny ; GPIO Int A /* 9 */
DCD GPIO_B_Int_Handler ; GPIO Int B /* 10 */
DCD GPIO_Tmr0_Int_Handler ; GP Timer 0 /* 11 */
DCD GPIO_Tmr1_Int_Handler ; GP Timer 1 /* 12 */

Figure 8. A nested vectored interrupt controller (NVIC).

https://www.analog.com

4  How to Optimize the MCU SPI Driver to Reach High Speed ADC Throughput

Result

Speed Performance

Assume the user is now reading the 200 24-bit ADC output data. The SPI bit rate
is set at 13 MHz. We connect the pin with the DRDY signal and SCLK to the oscil-
loscope. By observing the time interval between the DRDY signal and the start
of the SPI data transaction (also DMA transaction), we can quantize the speed
improvement in each method introduced in this article. For convenience, we refer
to the time interval from the DRDY signal to the start of the SCLK signal as ∆t. For
the 13 MHz SPI bitrate, the measured Δt are:

	X (a) Basic mode DMA Δt = 3.754 μs
	X (b) Ping-pong mode DMA Δt = 2.8433 μs
	X (c) Ping-pong mode DMA with optimized interrupt handler Δt = 1.694 μs

Methods (a) and (b) can support an ODR of 64 kHz while Method (c) can support an
ODR of 128 kHz. This is because ∆t for Method (c) is the shortest, enabling SCLK to
end earlier. If the SCLK signal—that is, data transaction—is done before the T/2 (T
is the current ADC output data period), multiplication of the ODR will be available.
Compared to the 8 kHz ODR speed performance of the ADI SPI driver, this can be
seen as tremendous progress.

(a)

(b)

(c)

Figure 9. Δt for (a) basic mode DMA, (b) ping-pong mode, and (c) ping-pong mode with an
optimized interrupt handler.

MAX32660 with the AD7768-1
What is the result when using the MAX32660, which is an MCU with 96 MHz of
main clock rate? In this case, we used an interrupt data transaction with interrupt
handler optimization. With this interrupt setup, a 256 kHz output data rate can be
achieved without the DMA function. See Figure 10.

ADuCM4050 with AD7768-1

MAX32660 with AD7768-1

Figure 10. ODR print at MAX32660 without DMA.

Conclusion
With the selected ADC (AD7768-1) and MCU (ADuCM4050 or MAX32660), we can real-
ize a high speed data transaction through SPI. To achieve the goal of speed optimi-
zation, we conduct the data transaction according to the ADI SPI driver but deduct
the redundant commands. Also, the activation of the DMA controller frees the core
and speeds up the continuous data transaction. With DMA ping-pong mode, DMA
configuration time is saved with a proper schedule. On top of acceleration through
DMA, the interrupt handler can also be optimized by direct specification of the inter-
rupted pin. The best performance reaches a 128 kSPS ADC ODR at the 13 MHz SPI
bit rate.

Table 5. High Speed SPI Connection Realized with the
ADuCM405 and the MAX32660

ADuCM4050 (MCU) MAX32660
(MCU)

Data Transaction
Interrupt
Without

Optimization

Basic
Mode
DMA

Ping-Pong
Mode DMA

Interrupt
with

Optimization

Interrupt
with

Optimization

Bus Type SPI SPI SPI SPI SPI

Main Clock Rate 26 MHz 26 MHz 26 MHz 26 MHz 96 MHz

SPI Clock Rate 13 MHz 13 MHz 13 MHz 13 MHz 20 MHz

Interval Between
DRDY and SCLK 6.34 µs 3.754 µs 2.834 µs 1.694 µs 1.464 µs

Output Data Rate 8 kSPS 32 kSPS 64 kSPS 128 kSPS 256 kSPS

Acknowledgments
Throughout the writing of this dissertation, we have received a great deal of sup-
port and assistance.

We would like to thank Charles Lee, whose expertise was invaluable in hardware
experience, software support, and even debugging tips.

We would also like to thank our mentor, William Chen, for his guidance in techni-
cal support.

Finally, we want to thank Frank Chang, who shared with us much of the technical
experience from his career.

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2023 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

About the Author
Denny Wang is an applications engineer who has spent 1.5 years under the NCG program in Analog Devices Taiwan. He holds a
master’s degree in integrated circuit engineering from Peking University. During graduate school, he engaged in semiconductor
processing, BLDC/PMSM motor control, and analog schematic migration. He joined ADI in 2021 and is currently supporting system
solutions, data security and authenticator, and MQTT wireless transmission.

About the Author
Sally Tseng is an applications engineer intern at ADI Taiwan. She’s a senior student at National Taiwan University, majoring in electri-
cal engineering. Her projects at NTU are mainly about analog circuit research. She is also involved in embedded systems during the
duration of her internship at ADI.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com

	Button 7:
	Page 1:

	Button 6:
	Page 1:

	Button 5:
	Page 1:

	Button 4:
	Page 1:

	Button 3:
	Page 1:

	Button 2:
	Page 1:

