
         

VISIT ANALOG.COM

Vol 55, No 3—August 2021

Understanding and
Using the No-OS and
Platform Drivers
Mahesh Phalke�, Senior Software Engineer

Rapidly advancing technology needs software support (firmware drivers and
example code) to simplify the design in process. This article describes the use
of no-OS (no operating system) drivers and platform drivers for building an appli-
cation firmware with Analog Devices precision analog-to-digital converters and
digital-to-analog converters, which offer a high level of performance in terms of
speed, power, size, and resolution.

Embedded firmware examples based on no-OS drivers are provided by ADI to
support precision converters. No-OS drivers are responsible for device configura-
tion, data capture from the converter, performing the calibration, etc., while
firmware examples based on the no-OS drivers facilitate the transfer of data to
a host PC for display, storage, and further processing.

Introduction to No-OS and Platform Drivers
As the name suggests, no-OS drivers are designed for use with generic (or no
specific) operating systems. The name also implies that these drivers can be used
on BareMetal systems without any OS support. No-OS drivers are designed to provide
high-level APIs for digital interface access for the given precision converter. No-OS
drivers using these APIs interface with devices to access, configure, read, and write
data without knowing about the register addresses (memory map) and their contents.

No-OS drivers make use of the platform driver layer to allow the reuse of the
same no-OS drivers across multiple hardware/software platforms, making your
firmware highly portable. The use of a platform driver layer insulates the no-OS
drivers from knowing about the low-level details of platform specific interfaces
such as SPI, I2C, GPIO, etc., which makes the no-OS drivers reusable across multiple
platforms without changing them.

Application

No-OS Drivers

HAL
(BareMetal/RTOS)

Platform
Drivers

GPIO

UART

SPI

I2C

Figure 1. Precision converters firmware stack.

Using No-OS Drivers
Figure 2 shows the typical code structure of no-OS drivers.

Figure 2. No-OS driver code structure.

https://www.analog.com
https://www.analog.com
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  Understanding and Using the No-OS and Platform Drivers

The no-OS driver code for precision converters is typically incorporated within
two source files written in C programming language: adxxxx.c and adxxxx.h,
where xxxx stands in for the device name (for example, AD7606, AD7124, etc.).
The device header file (adxxxx.h) contains the public programming interface of
device-specific structures, enumerations, register addresses, and bit masks,
which are available for public access by including this file into required source
files. The device source file (adxxxx.c) contains the implementation of the inter-
face used to initialize and remove the device, read/write the device registers,
read data from device, get/set device specific parameters, etc.

Typical no-OS drivers are structured around a common set of functionalities:

	X The declaration of device specific register addresses, bit mask macros,
device configuration enumerations, and structures to read/write the device’s
specific parameters (for example, oversampling, gain, reference, etc.).

	X Initializing/de-initializing the physical device through the no-OS driver’s
device initialize/remove functions and device specific init and driver struc-
tures and descriptors.

	X Accessing the device memory map or register details using the device
register read/write functions; for example, adxxxx_read_register()
or adxxxx_write_register(). 

No-OS Driver Code Usage
Using device specific addresses, bit masks, and param-
eter configuration enums and structures:
As stated earlier, the adxxxx.h header file contains the declaration of all
device specific enums and structures, which are passed to device-specific
functions or APIs to configure or access device parameters. This is illustrated
in Figure 3.

The adxxxx_config structure shown in Figure 3 allows users to select the
multiplexer channel and set the oversampling rate for that. Both the members of
this structure (afe_mux_channel and oversampling) are enumerations that
are present in the same header file, which contains the numeric constants of all
the possible values for both the fields that the user can select.

The adxxxx_set_adc_config() function defined in the adxxxx.c file takes
user-passed configurations/parameters through the configuration structure
and further calls the adxxxx_spi_reg_write() function to write the data into the
ADXXXX_REG_CONFIG device register through the digital interface (in the
previous case, SPI).

Initializing the device using the no-OS driver device
structures and initialization function:

Figure 4. Device init and driver structures’ declaration.

Along with the device configuration enumerations and structures, the no-OS
drivers provide two additional structures:

	X Device initialization structure.
	X Device driver structure.

Figure 3. Device configuration enums, structures, and APIs.

VISIT ANALOG.COM  3

The device init structure allows users to define the device specific parameters
and configurations in user application code. The init structure contains the
members of other device-specific parameter structures and enumerations.
Figure 5 shows how the device init structure is defined.

The device driver structure loads the device initialization parameters through
the device init function adxxxx_init(). The device driver structure is allocated
at run-time (dynamic) memory from the heap space. The parameters declared
within the device driver structure and device init structure are almost identical
to each other. The device driver structure is a run-time version of the device
init structure.

The typical device initialization function and initialization flow is described in
the following steps:

	X Step 1: Create a definition (or instance) of the device init structure in your
application (for example, struct adxxxx_init_params) to initialize the user
specific device parameters and platform-dependent driver parameters. The
parameters are defined during compilation time.

Note: The parameters defined in the init structure vary from device to device.

	X Step 2: Create a pointer instance (variable) of the device driver structure in
the application code.

A user application needs to create a single pointer instance of the device
driver structure. This instance is passed to all no-OS driver APIs/functions
to access device specific parameters. This pointer instance defined in the
application code points to a dynamically allocated memory in heap, which is
done through a device init function such as adxxxx_init(), which is defined
in the no-OS drivers.

	X Step 3: Initialize the device and other platform specific peripherals by calling
the device init function.

The adxxxx_init() function defined in the no-OS drivers initializes the device
with the user specific parameters passed through adxxx_init_param struc-
ture. The pointer instance of the device driver structure and the instance of
the device init structure are passed as two arguments to this init function.
The user application code can call the adxxxx_init() function multiple times,
provided the init call is balanced by a call to the device remove function.

Accessing the memory map (register contents) through
device register read/write functions is shown in Figure 6
Users can access the device register contents (such as the product ID, scratch pad
value, OSR, etc.) through no-OS driver device-specific adxxx_read/write() functions.

Most of the time, users don’t use register access functions directly. The device
specific functions call through these register access functions such as adxxxx_
spi_reg_read/write(). The use of device configuration and status APIs to access
the device memory map is recommended when possible instead of using the
direct register access functions, as this ensures the device driver structures are
kept in sync with the configuration in the device.

Platform Drivers
Platform drivers are one of the hardware abstraction layers (HAL) that wrap the
platform specific APIs. They are called by no-OS device drivers or user application
code to provide an independence from the underlying hardware and software
platforms. Platform drivers wrap the low-level platform-specific hardware
functionality such as SPI/I2C initialization and read/write, GPIO initialization
and read/write, UART initialization and receive/transmit, user specific delays,
interrupts, etc.

Figure 5. The device init structure definition in the user application.

Figure 6. Accessing the register contents.

https://www.analog.com

4  Understanding and Using the No-OS and Platform Drivers

The typical file structure of an SPI platform driver module is shown in Figure 7.

Using Platform Drivers
Platform driver code is typically incorporated within three source files written in
C/C++ programming languages.

1) spi.h: This is a platform agnostic file that contains the device structures and
enumerations required for the SPI functionality. The C programming interface
defined in this header has no platform dependencies.

All the parameters declared within the init and device structures are common
to SPI interfaces on any platform.

The void *extra parameter used in device init structure allows users to pass
additional (extra) parameters, which could be specific to the platform that is used.

The parameters declared within the SPI driver structure and SPI init structure
are almost identical to each other. The SPI driver structure is a run-time ver-
sion of the SPI init structure.

2) spi.cpp/.c: This file contains the implementation of the functions declared in
the spi.h file, which are used to initialize the SPI peripheral and read/write
data from it for a specific platform. The term “platform,” in a broader sense,
refers to a combination of a hardware microcontroller (target device) and
software (for example, RTOS or Mbed-OS). This file is platform dependent
and needs to be modified while porting on some other platform.

Figure 9 details the SPI interfaces for the Mbed platform and shows how to initialize
SPI and read/write data using these interfaces and device init/driver structures.

Figure 7. SPI platform driver code structure.

Figure 8. SPI init and driver structures.

Figure 9. SPI APIs or functions. Note: the added code for spi_init() and spi_write_and_read() is abbreviated code and details are omitted for clarity.

Figure 10. SPI extra init and driver structures.

VISIT ANALOG.COM  5

3) spi_extra.h: This file contains the additional device structures or enumerations,
which are specific to a given platform. This allows user application code
to provide the configurations that are not covered in a generic spi.h file. For
example, the SPI pins can vary from platform to platform, which therefore can
be added as part of these platform specific extra structures.

Porting Platform Drivers
The platform drivers can be ported from one platform (microcontroller) to another
by typically creating platform specific .cpp/.c and _extra.h files. Platform drivers
reside one layer above the device-specific hardware abstraction layer (HAL)
provided by the microcontroller unit vendor. Therefore, porting of platform drivers
from one platform to another needs some minimal changes in platform driver code
related to calling the functions or APIs present in the HAL provided by its vendor.

The diagram in Figure 12 distinguishes between Mbed-based SPI platform drivers
and ADuCM410 SPI platform drivers.

The GitHub source code links for ADI’s no-OS repository and platform drivers are
available on the Analog Devices Wiki and GitHub page. 

Contributing to No-OS Drivers
ADI no-OS drivers are open source and hosted on GitHub. The drivers not only
support precision converters, but also many other Analog Devices products such
as accelerometers, transceivers, photoelectronic devices, and more. Anyone
familiar with the source code can contribute to these drivers by committing the
changes and creating a pull request to review those changes.

There are many example projects that can run in Linux and/or Windows environ-
ments. Many example projects are developed with a hardware descriptive language
(HDL) to run on FPGAs developed by Xilinx®, Intel®, etc., and that target processors
developed by different vendors.

No-OS software drivers in C for systems without an operating system can be
accessed at the Analog Devices no-OS GitHub repository.

The Analog Devices Wiki provides examples developed for precision converters
using the Mbed and ADuCMxxx platform.

Figure 11. Mbed platform specific SPI init implementation.

Figure 12. Platform driver differences.

https://www.analog.com
https://www.analog.com/en/products/aducm410.html
https://wiki.analog.com/resources/no-os/drivers
https://github.com/analogdevicesinc/no-OS/tree/master/drivers/platform
https://github.com/analogdevicesinc/no-OS
https://wiki.analog.com/resources/tools-software/product-support-software
https://wiki.analog.com/resources/tools-software/product-support-software

VISIT ANALOG.COM©2021 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

For regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

About the Author
Mahesh Phalke is a senior software engineer at Analog Devices Bangalore in the Precision Converters Technology Software
Group. He graduated from Pune University in 2011 with a bachelor’s degree in electronics engineering. He can be reached at
mahesh.phalke@analog.com.

https://www.analog.com/en/index.html
https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
mailto:mahesh.phalke%40analog.com?subject=

	Button 7:
	Page 1:

	Button 6:
	Page 1:

	Button 5:
	Page 1:

	Button 4:
	Page 1:

	Button 3:
	Page 1:

	Button 2:
	Page 1:

