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Introduction

Switch-mode power supplies are used throughout modern electronics systems
mainly because of their high efficiency power conversion. One side effect of

the proliferation of switch-mode supplies is the noise they produce. This is
commonly referred to as electromagnetic interference (EMI), EMI noise, or just
noise. For example, the input side switch current of a typical buck converter
is a pulsating current rich in harmanic content. Fast turn-on and turn-off of
power transistors create sudden interruptions of current flow, resulting in high
frequency voltage ringing and spikes.

The problem is that high frequency noise can couple to other devices in the
system, degrading the performance of sensitive analog or digital signal circuits.
Because of this, many standards have arisen to set acceptable limits on EMI.
To meet these limits for a switch-mode supply, one must first quantify its EMI

performance and, if necessary, add proper input EMI filtering to attenuate the
EMI. Unfortunately, EMI analysis and filter design can be a difficult task, typi-
cally requiring a time-consuming iterative process of design, build, testing,

and redesign—that is, assuming one has proper test equipment. To speed up

the process of EMI filter design to meet EMI specifications, this article shows
how conducted EMI noise analysis and filter design can be easily estimated and

prebuilt using ADI's LTpowerCAD® program.

Different Types of EMI: Radiated and Conducted
Noise, Common Mode, and Differential Mode

There are two major type of EMI: radiated and conducted. In a switch-mode
supply, radiated EMI is usually generated by high dv/dt noise at the switching
nodes. Industry standards for radiated emissions usually cover the frequency
band from 30 MHz to 1 GHz. At these frequencies, radiated EMI from switching
regulators is produced mainly by switching voltage ringing and spikes, and can
depend heavily on PCB board layout. Other than what is inherently built into
good layout practices, it is nearly impossible to precisely predict how much
radiated EMI a switch-mode supply will transmit “on paper.” One must simply
build the board and measure its EMI in a sufficiently well-designed EMI lab to
quantify its radiated noise level.

Conducted EMI results from the rapid changes in a switching regulator’s con-

ducted input current, including common-mode (CM) and differential-mode (DM)
noise. Standard industry limits for conducted emissions usually cover a lower
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frequency range than radiated emissions, namely from 150 kHz to 30 MHz. Figure 1
shows the generic conduction paths of the common-mode and differential-
mode noise of a dc-to-dc power supply (the DUT in an EMI lab).

To quantify conducted input EMI, a line impedance stabilization network (LISN)

is placed at the regulator's input, providing a standard input source impedance.
CM conducted noise is measured between each input line and earth ground. CM
noise is generated at high dv/dt switching nodes, couples through the device's
parasitic PCB capacitance, CP, to earth ground, then travels to the supply input
LISN. Like radiated EMI, the high frequency switching nade ringing and parasitic
capacitance cannot be easily and accurately modeled in a paper design.

DM noise is measured differentially between two input lines. DM conducted noise
arises from the high di/dt, pulsating input current of the switch-made supply.
Fortunately, unlike the other EMI types, the pulsating input current and the resulting
relatively low frequency EMI generated at the input capacitors and LISN circuit can
be predicted by software, such as LTpowerCAD, with acceptable accuracy.
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Figure 1. Conceptual overview of LISN-based measurement of differential-mode and
common-mode conducted EMI of a switch-mode supply.

Figure 2 shows a typical EMI noise plot of a switch-mode, step-down buck
supply without an input EMI filter. The most significant EMI spike occurs at the
switching frequency of the supply, followed by additional spikes at its harmonic
frequencies. Figure 2 shows an EMI plot where the peak values of these spikes
exceed the CISPR 22 EMI limits. To meet the standard, an EM filter is required
to attenuate the differential-mode EMI.
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Figure 2. Typical EMI plot of a switch-mode buck supply without an input EMI filter.

Differential-Mode Conducted EMI Filter

Figure 3 shows a typical differential-mode conducted EMI noise filter on the
input side of a switch-mode supply. In this case, we've added a simple first-
order, low-pass L,C; network between the supply’s local input capacitors C,,

(EMI noise source side) and the input source (LISN receiver side). This matches
a standard EMI lab test setup, where the LISN network is inserted on the filter

capacitor C; side of the LC filter. The differential signal across the LISN resistor
R2 is measured by the spectrum analyzer to quantify DM conducted EMI noises.

Figure 4 shows the LC filter attenuation gain plot. At very low frequency, the
inductor is low impedance, essentially shorted, while the capacitor is high
impedance, essentially apen circuit. The resulting LC filter gain is 1(0 dB),
allowing dc to pass through without attenuation. As frequency rises, a gain spike
appears at the resonant frequency of L,C,. As the frequency rises abave the
resonant frequency, the filter attenuates at a rate of -40 dB/decade. At relatively
higher frequencies, the filter gain increasingly becomes a function of parasitic
components: namely, the filter capacitor's ESR and ESL and filter inductor’s
parallel capacitance.

Because this filter's ability to attenuate quickly rises over frequency, the magni-
tude of first few low frequency noise harmonics overwhelmingly determine the
size of the EMI filter—where the fundamental component of the supply’s switch-
ing frequency (fg,) is the most significant target. Therefore, we can focus on the
EMI filter's lower frequency gain in efforts to meet industry standards.
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Figure 3. Differential-mode EMI noise filter (from Node B to Node A).
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Figure 4. Typical single LC EMI filter insertion gain vs. frequency plot.

LTpowerCAD Can Predict Supply-Specific
Filter Performance

LTpowerCAD is a power supply design assistance tool that can be downloaded
at no charge at analog.com/LTpowerCAD. The program is designed to enable
engineers to design and optimize complete power supply parameters in a few
simple steps and in a few minutes.

LTpowerCAD leads a user through the entire power supply selection and design
process, beginning with the user's power supply specifications. From there,
LTpowerCAD narrows the range of suitable solutions and then helps in the selec-
tion of power stage components, as well as optimizes supply efficiency, design
loop compensation, and load transient response.

The feature we are interested in here is LTpowerCAD's input EMI filter design tool,
which enables an engineer to quickly estimate the differential-mode conducted
EMI and determine what filter components may be required to meet EMI stan-
dards. LTpowerCAD's filter tool can significantly reduce design time and cost by
producing realistic results—before a single circuit board is built and tested.
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EMI Filter Design in LTpowerCAD

Overview

Let's look at a DM EMI filter design example. Figure 5 shows the LTpowerCAD
schematic design page, showing the companent selection for a supply using the
LTC3833 buck converter, operating with 12 V input and 5 V/10 A output, running
at 1 MHz switching frequency, fg,. Before designing an EMI filter, design the
buck converter by selecting the switching frequency, power stage inductor,

capacitors, and FETs.

After power

stage components are selected, click the EMI design icon to open

the integrated DM EMI filter tool window, as shown in Figure 6. The EMI design
window shows a detailed input filter network, LC,, between the power supply

circuits, su

input capacitors C,s/Cy and the source LISN. There are optional damping

ch as networks Cg/R,, on the LISN side, network Cg/Rgs 0n the

supply input capacitor side, and the optional damping resistor Rf; across the
filter inductor L. The estimated conducted EMI noise plot and the selected EMI
standard limits appear on the right side of Figure 6.
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Figure 5. The LTpowerCAD schematic design page and the integrated EMI tool icon.
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Figure 6. LTpowerCAD conducted DM EMI filter design window (L, = 0, no filter).
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Select an EMI standard

When designing an EMI filter, you'll want to see the design’s targets—namely, the

EMI standard itself. LTpowerCAD includes built-in plots for CISPR 22 (for IT equip-
ment), CISPR 25 (for automotive devices), and MIL-STD-461G standards. Simply
select your desired standard from the EMI Specification dropdown menu.

For example, in Figure 6, the filter inductor value is set at 0 to show the design's
EMI results without an input filter. EMI spikes at the fundamental and harmonic
frequencies, all exceeding the displayed CISPR 25 limits, resulting in a red warn-
ing on the EMI vs. Specification schematic display.

Set the EMI Filter Parameters

After selecting the desired EMI standard, enter the desired EMI margin—what dis-
tance do you want between the selected standard limits and the peak values of
the fundamental. A 3 dB to 6 dB margin is generally a good starting point. From
these choices, for a given filter capacitor, C;, and supply operating condition, the
program calculates the suggested filter inductor value, L sug., shown in a yellow
cell in LTpowerCAD. Enter an inductor value in the L cell slightly greater than the
suggested value to meet the EMI limit with the desired margin.

In this example, Figure 7 shows the design tool recommending a 0.669 pH filter
inductance, along with the entered 0.72 pH inductance to meet the requirement.
The benefits of the filter can be explored by comparing the results with and
without the filter. Turn on the Show EMI Without Input Filter option to see the
filtered results overlayed above a gray no-filter plot.

There is an important detail in choosing the filter capacitor C.. If it is a multi-
layer ceramic capacitor (MLCC) with X5R, X7R, etc. type of dielectric material,
its capacitance value can drop significantly with dc bias voltage. Because
of this, in addition to the LTpowerCAD nominal capacitance, C(nom), the user
should also enter its real capacitance under the applied dc bias voltage (V,y, or Viye).

The derating curve can be found from capacitor vendors' data sheet. If the MLCC
capacitor is chosen from the LTpowerCAD library, its derating with dc bias volt-
age is automatically estimated by the program.

Another component variation arises in the input filter inductor, which can have
a nonlinear inductance due to its saturation with direct current. The inductance
value may drop noticeably with increased load current, especially for a ferrite
bead type of inductor. Users should enter the real inductance to produce accu-
rate EMI predictions.

Check Filter Attenuation Gain

In the Figure 7 EMI plot with the input filter there is a noise spike due to the LC
input filter resonance at 245 kHz, a frequency lower than the supply switching
frequency. Figure 8 shows the filter attenuation gain plot in place of the EMI
results in the LTpowerCAD EMI window (click the Filter Attenuation tab), reveal-
ing the filter's resonant attenuation gain at 245 kHz.

In some cases, the LC resonance peak can result in a spike that exceeds the EMI

standard. To attenuate this resonant peak, a pair of optional damping compo-
nents Cq, and Ry, can be added in parallel with the filter capacitor C.. In addition

to showing the attenuation plot, LTpowerCAD simplifies the selection process for

these components. In general, choose a damping capacitance, Cy, that is around

two to four times the real filter C; value. LTpowerCAD will suggest a damping

resistor Ry, value to push down the resonant peak.

Check Filter Impedance and Supply Input Impedance

When adding an input EMI filter in front of a switch-mode supply, the filter output
impedance, Zy, can interact with the supply input impedance, Z,, causing undesir-
able oscillation. To avoid this unstable situation, the magnitude of the EMI filter
output impedance, Zy, should be much lower than the magnitude of the supply
input impedance, Z,, with enough margin. Figure 9 shows the concept of Zy; and Z,,
and the stability margin between them.
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Figure 7. Select filter inductor value to meet EMI standard limit.
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To simplify the problem, an ideal power supply with high feedback loop band-
width can be treated as a constant power load; that is, input voltage VIN times
input current is constant. As input voltage increases, its input current decreases.
Therefore, the ideal power supply has a negative input impedance Z,, =V, 2)/P,.

To make it easy to design the input filter, LTpowerCAD displays the filter output
impedance Z; and supply input impedance Z,, on the impedance plot shown in
Figure 10. Note the supply input impedance is a function of input voltage and
input power. The worst case, which is the lowest level of impedance, occurs at
the minimum V,, and maximum P,, condition.

As shown in Figure 10, the EMI filter output impedance has a peak point at the
resonant frequency caused by filter inductor L; and supply input capacitor C,.
In a good design, the magnitude of this peak should be lower than worst-case
L, with enough margin. In case it is necessary reduce this peak level, there is
another pair of optional damping components, capacitor Cy and resistor Ry, in
parallel with the supply input capacitor C,. This C,, side damping network can
effectively reduce the Zy,; peak. The suggested Cy and Ry values are provided
by LTpowerCAD EMI tool.
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Figure 10. LTpowerCAD EMI filter impedance plot (with and without damping).

Accuracy of the LTpowerCAD EMI filter tool

The accuracy of the LTpowerCAD EMI filter tool can be seen by running an
LTpowerCAD design against a real board, lab EMI test. Figure T1 shows the results
of a comparison where the real-world test was performed using a modified
LTC3851 buck supply demo board running at 750 kHz with a 12 V input voltage,
1.5 V output voltage, and 10 A load current. As shown in Figure T, tested EMI data
and LTpowerCAD modeled EMI data match well for lower frequency noise peaks,
while real-world tested peaks are a few dB lower than modeled EMI peaks.

There are larger mismatches at higher frequency noise peaks, but these are of
lower importance because the DM conducted EMI filter size is mainly determined
by lower frequency noise spikes. Some of this discrepancy is due to the accuracy
of inductor and capacitor parasitic models, including PCB layout parasitic values;
accuracy that is beyond what is possible in a PC-based design toal, for now.
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Figure T1. Real board lab measured vs. LTpowerCAD-estimated EMI (12 Vi, to 1.5 Vy,,/10 A buck
example).

Please note the LTpowerCAD filter tool is an estimation tool, providing an initial
design point for EMI filters. Nothing can replace a real lab test of a prototype
supply board for truly accurate EMI data.

Summary

Many industries are using systems that require increasingly careful control of
transmitted electromagnetic signals. To this end, there are a number of published
clear standards on EMI. At the same time, the number of switch-mode power sup-
plies is increasing, and they are being placed ever closer in proximity to sensitive
circuits. Switch-mode power supplies are strong sources of EMI, so their noise
output must be quantified and reduced in many cases. The problem is, EMI filter
design and testing is a time-consuming and costly iterative process.

LTpowerCAD enables designers to save time and cost by precluding real-world

design and test with predictive computer-based design tools. Its easy to use EMI

filter tool predicts the results of differential-mode conducted EM filters, includ-
ing optional damping networks, to minimize EMI while retaining a stable supply.
Lab test results verify the accuracy of predictive models.
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