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when the input voltage rails drop significantly. This article details a method 
for using a simple buck controller in SEPIC, Cuk, and boost converters.

Generating Negative and Positive Voltage from a 
Common Input Rail
Figure 1 illustrates the design of a bipolar power supply based on a single 
buck controller with two outputs.

For maximum utilization of this chip, one output must be employed to 
generate a positive voltage and a second to generate negative voltage. The 
input voltage range of this circuit is 6 V to 40 V. The VOUT1 generates positive 
3.3 V at 10 A and VOUT2 negative voltage –12 V at 3 A. Both outputs are 
controlled by U1. The first output VOUT1 is the straightforward buck converter. 
The second output has a more complex structure. Because VOUT2 is negative 
relative to GND, the differential amplifier U2 is employed to sense negative 
voltage and scale it to the 0.8 V reference. In this approach, both U1 and 
U2 are referenced to the system GND, which significantly simplifies the 
power supply’s control and functionality. The following expressions help 
to calculate the resistor values for RF2 and RF3 in case a different output 
voltage is required.

analogdialogue.com

Introduction
Industrial, automotive, IT, and networking companies are major purchas-
ers and consumers of power electronics, semiconductors, devices, and 
systems. These companies use the full array of available topologies for 
dc-to-dc converters that employ buck, boost, and SEPIC in different varia-
tions. In an ideal world, these companies or firms would use a specialized 
controller for each new project. However, adopting new chips requires 
significant investment due to the lengthy and costly process of testing new 
devices for compliance with automotive standards, verification function-
ality in the specific applications, conditions, and equipment. The obvious 
solution for reducing development and design cost is employing already 
approved and verified controllers in different applications.

The most used topology for generating a power supply is for step-down 
converters. However, employment of this topology is limited to generating 
positive outputs from the input voltages that are greater than the output. It 
cannot be used in a straightforward way for generating negative voltages 
or providing stable outputs when the input voltage drops below the output. 
Both aspects to generating output are important in automotive electronics 
when negative voltage is needed for supplying amplifiers or when a com-
plete system must continuously work properly in case of cold cranking 
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Figure 1. An electrical schematic of LTC3892 that is generating positive and negative voltages. VOUT1 is 3.3 V at 10 A and VOUT2 is –12 V at 3 A.
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KR = 

RF1 = 5.11 k

0.8 V
|VO|

RF2 = RF1
KR

RF3 = RF1 × RF2
RF1 + RF2

The VOUT2 power train employs a Cuk topology, which is widely covered in 
the relevant technical literature. The following basic equations are required 
to understand the voltage stress on the power train components.

 

D = 
|VO|

|VO| + VIN

VDS =  VD =  VC

VC = 
VIN

1 – D

The VOUT2 efficiency curve is presented in Figure 2. The LTspice® simulation 
model of this approach is available here. In this example, the LTC3892 
converter’s input is 10 V to 20 V. The output voltages are +5 V at 10 A  
and –5 V at 5 A.
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Figure 2. Efficiency curve of the negative output at 14 V input voltage.

Generating Stable Voltages from a Fluctuating  
Input Rail
The electrical schematic of the converter shown in Figure 3 supports two 
outputs: VOUT1 with 3.3 V at 10 A and VOUT2 with 12 V at 3 A. The input voltage 
range is 6 V to 40 V. VOUT1 is created in a similar fashion, as shown in Figure 1. 
The second output is a SEPIC converter. This SEPIC converter, as with Cuk 
above, is based on noncoupled, dual discrete inductor solutions. Use of the 
discrete chocks significantly expands the range of the available magnetics, 
which is very important for cost-sensitive devices.
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Figure 3. Electrical schematic of LTC3892 in a SEPIC and in buck applications.

http://www.analog.com/media/en/simulation-models/LTspice-demo-circuits/LTC3892_BuckCuk.asc
http://analog.com/LTC3892


Analog Dialogue 52-12, December 2018 3

 

D = 
VO

VO + VIN
VC = VIN 

VDS =  VD =  VIN + VO

Figure 4 and Figure 5 illustrate the functionality of this converter at voltage 
drops and spikes; for example, at cold cranking or load dumps. The rail 
voltage VIN drops or rises at a relatively nominal 12 V. However, both VOUT1 
and VOUT2 stay in regulation and provide a stable power supply to the critical 
loads. The two-inductor SEPIC converter can be easily rewired to a single 
inductor boost converter.

CH1: VIN, 2 V/div; 1 ms/div
CH2: VOUT2, 5 V/div; 1 ms/div
CH3: VOUT1, 2 V/div; 1 ms/div

Figure 4. If the rail voltage drops from 14 V to 7 V, both VOUT1 and VOUT2 
stay in regulation.

CH1: VIN, 5 V/div; 1 ms/div
CH2: VOUT2, 5 V/div; 1 ms/div
CH3: VOUT1, 2 V/div; 1 ms/div

Figure 5. The rail voltage rises from 14 V to 24 V. However, both VOUT1 
and VOUT2 stay in regulation.

The relevant LTspice simulation model can be found here. It shows the 
LTC3892 converter’s input is 10 V to 20 V. The output voltages are +5 V  
at 10 A and –5 V at 5 A.

Conclusion
This article explained the methods of building bipolar and dual-output 
power supplies based on the step-down controller. This approach allows 
for the use of the same controller in buck, boost, SEPIC, and Cuk topologies. 
This is very important for vendors of automotive and industrial electronics, 
as they can design power supplies with a variety of output voltages based 
on the same controller, once it is approved.
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