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PLC DCS Analog Input Module Design Breaks 
Barriers in Channel-to-Channel Isolation and 
High Density
By Van Yang, Songtao Mu, and Derrick Hartmann

Share on

With a channel-to-channel isolation design, every channel needs dedicated 
power isolation and signal isolation. The isolation is one of the key limita-
tions for input module channel density, EMI, cost, and reliability. In modern 
designs, a digital isolator is used per channel for data isolation. A typical 
digital isolator, such as the ADuM141E, would have four isolated data 
channels in a 16-lead SOIC (6.2 mm × 10 mm) package. Power isolation 
is still required per channel, though, so let’s discuss three traditional 
approaches to power isolation: multitaps transformer, push-pull design, 
and isolated dc-to-dc modules.

Figure 2 shows a flyback isolation dc-to-dc architecture with a multitap 
transformer. A flyback converter drives the transformer to generate multiple 
outputs on the taps. It’s a mature power architecture but has six major 
disadvantages for process control applications, which are:

1.	 It needs a customized transformer with multitaps and a shield 
to control EMI. This is hard to achieve in a small form factor with 
sufficient reliability.

2.	 Only one channel could be used for a feedback control loop, meaning 
that the other channels are more loosely regulated. This needs to be 
carefully evaluated to ensure reliable operation.

3.	 Channel density is limited by specific transformer placement. For the 
power coming from each tap output, the transformer is placed as the 
center of the analog input module with each input channel laid out in 
fanout sectors around the transformer, limiting the analog input module 
card channels to four or eight.

4.	 Interference from one channel can be coupled into other channels 
through the coupling capacitors between the taps of the transformer.

5.	 The isolation voltage level. Multitap transformers can only achieve 
hundreds of volts of channel-to-channel isolation unless special 
insulation materials or design are incorporated, which significantly 
increases the transformer cost.

6.	 The high cost of achieving UL/CSA certification for the customized 
transformer.
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Introduction
In high end factory automation applications such as gas and oil plants 
and power plants, the requirements of low EMI, small size, high reliability, 
and low cost are especially challenging for channel-to-channel isolated 
designs. For this reason, the standard module implementation has a chan-
nel density that is typically limited to only four or eight channels, with only 
hundreds of volts of channel-to-channel isolation.

This article will briefly discuss isolation in the process control analog input 
module and the traditional approaches to achieving this. It then outlines an 
alternative high density, easy to design channel-to-channel isolation analog 
input module architecture. Test results are included that show that the 
16-channel, 2.5 kV rms channel-to-channel isolation demo module easily 
passes the EN55022, Class B isolation standard.

Isolation in the Process Control Analog Input Module
Galvanic isolation is the principle of physically and electrically separat-
ing two circuits, so that there is no direct conduction path but data and 
power can still be exchanged. This is typically achieved using transform-
ers, optocouplers, or capacitors. Isolation is used to protect circuitry and 
human beings, break ground loops, and improve common-mode voltage 
and noise rejection performance.

Typically process control inputs are either group isolated or channel-to-
channel isolated (see Figure 1). For group isolation, a number of input 
channels are grouped together to share a single isolation barrier, including 
power isolation and signal isolation. This saves cost over channel-to-channel 
isolation, but it limits the common-mode voltage difference between 
channels in the group, meaning they should all be placed in the same zone. 
Channel-to-channel isolation, as in the right of Figure 1, is always favorable 
for its improved robustness. That said, it comes at a much higher cost per-
channel, so this trade-off must be carefully assessed by plant builders.
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Figure 1. Group isolation and channel-to-channel isolation.
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Figure 2. Multitap transformer power isolation design.

Another approach is to use a separate transformer per channel and use 
a push-pull approach to isolating each channel. In this approach, no 
feedback is used. Instead, a well-regulated supply (for example, 7 V) is 
used to drive each of the transformers, which is then further regulated on 
the secondary side using an LDO. This approach is feasible as the current 
draw on the secondary side is relatively low, which makes adequate 
regulation possible.

Some of the drawbacks of this approach are the requirement for prereg-
ulation as well as additional components per channel. The transformer 
selected must meet the isolation rating required. The preregulation, as well 
as a transformer, switches, and an LDO per channel take up board space 
and add cost. There is also a significant evaluation effort required to ensure 
that the regulation is sufficient under all conditions.
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Figure 3. Push-pull isolation design.

Using surface-mount isolated dc-to-dc modules certified by UL/CSA make 
the isolated power design much easier and can improve channel density 

while increasing isolation voltage to thousands of volts. That said, the cost 
is relatively high and typically these can only pass the EN55022 Class A. 
These modules may also have conducted electromagnetic interference 
issues as most of the modules PWM frequency are below 1 MHz to mini-
mize the electromagnetic radiation interference. Also, the majority of the 
process control analog input modules consume less than 10 mA current, 
far less than most of the isolated power modules in the market.

All three traditional approaches discussed struggle to meet the required 
isolation performance and cost. These approaches also still require sepa-
rate data isolators per channel, adding additional space and cost. What if 
the power isolation could be included as part of the data isolator? It can, 
and it is.

ADI iCoupler® techology and isoPower® technology are widely used in 
the industrial and automotive market and these two technologies can be 
integrated into a single package. Taking the ADuM5411 as an example, 
per the block diagram shown in Figure 4, this device includes complete 
power isolation and four channels of data isolation in a 7.8 mm × 8.2 mm, 
24-lead TSSOP package. It offers up to 150 mW output, enough for analog 
input signal conditioning and digitizing and passes the 2500 V rms UL1577 
isolation standard. What’s more, the CMTI (common-mode transient 
immunity) is greater than 75 kV/μs, making it ideal for harsh industrial 
environments, such as power plants, where high transient voltages and 
currents exist.
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Figure 4. ADuM5411 block diagram.

Due to the high integration of both data and power isolation, the analog 
input module design is greatly simplified and higher channel densities are 
possible. It enables the possibility of providing 16 or more channels in the 
same space as eight channels using older isolation methods.

A 16-channel, channel-to-channel isolation temperature input module 
was designed and tested using this isolation approach (see Figure 5). 
The ADuM5411 devices in the module provide isolated power and data to 
each of the 16 temperature input channels. The thermocouple and/or RTD 
measurements are performed by highly integrated temperature front-end 
ICs (AD7124, or AD7792) providing additional space saving over more 
discrete designs. The ADP2441 converts the 24 V backplane supply to 3.3 V 
to power the MCU, touchscreen, and the ADuM5411. Each input channel 
requires an area of only 63.5 mm × 17.9 mm.
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Layout Design for ADuM5411
The ADuM5411 uses a switching frequency of 125 MHz. Due to the high 
number of channels, special care was taken to ensure the board would pass 
the electromagnetic radiation interference test per EN55022 to Class B.

To minimize the radiated emission, the principles used were to minimize 
the power draw and minimize the current loop return path. The power was 
minimized by using low power integrated temperature front-end ICs. This 
means less power will be drawn across the isolation barrier, meaning there 
will also be less energy radiated. The AD7124 only draws 0.9 mA when fully 
active. To minimize the current return loop, both ferrite beads as well as a 
small amount of stitching capacitance were used.

 

Ferrite beads are a useful method to control the radiating signal at its source 
by presenting a much higher impedance than a PCB trace. Referring to 
Figure 6, ferrite beads were placed in series with the ADuM5411’s pins. 
The frequency response of the ferrite beads is a very important consider-
ation. The ferrite bead used is BLM15HD182SN1, which provides greater than 
2 kΩ—between 100 MHz and 1 GHz frequency range. The ferrite beads 
should be placed as close to the ADuM5411’s pad as possible. E9 on the 
VISO path and E10 on the GNDISO path are the most critical ferrite beads.
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Figure 6. ADuM5411 schematic.
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Figure 5. 16-channel temperature channel-to-channel isolation input module block diagram.
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Capacitance can also be used to provide a low impedance return path, thus 
reducing emissions. One method to do this is to use a surface-mounted 
safety rated capacitor crossing the barrier, guaranteed to meet standards 
for creepage, clearance, and withstand voltage. These capacitors are avail-
able from suppliers like Murata or Vishay. This method is only effective up 
to around 200 MHz, though, due to the inductance introduced by mounting 
the capacitor. For this reason, a more effective technique is to build a 
stitching capacitance internal to the PCB under the ADuM5411. This could 
be a floating stitching capacitor or an overlapping stitching capacitor, as 
shown in Figure 7.

d

I

w1 w2

d

I
w

Figure 7. Floating stitching capacitor and overlapping stitching 
capacitor.

For the floating stitching capacitor, two serial capacitors are built in, C1 
and C2. The total capacitance is calculated by Equation 1.

 , C2 = lw2ε
d

C1 × C2
C1 + C2

 , C1 = C = lw1ε
d

where: 
ε is the permittivity of the PCB insulation material, 4.5 for FR4 material

For the overlapping stitching capacitor, the capacitance is calculated by 
Equation 2.

C1 = , εlwε
d

where: 
ε is the permittivity of the PCB insulation material, 4 × 10–1 1 F/m for FR4 
material

With the same material, area, and distance, the total capacitance value of 
floating stitching is half that of the overlapping stitching, but the thickness 
of the insulation material is doubled. Reinforced insulation, per IEC60950 
2.10.6.4, requires 0.4 mm (15.74 mils) minimum insulation material thick-
ness in the interior layers but basic insulation has no such requirement. 
As the ADuM5411 only provides 2.5 kV rms basic isolation, an overlapping 
stitching capacitor was chosen to maximize the capacitance. The thickness 
of the interior layers has also been controlled to 5 mils for the same reason.

The 16-channel, channel-to-channel temperature input module PCB uses 
a 6-layer board. To maintain mechanical and EMI performance, the top and 
bottom layers were controlled to 20 mils and interior layers to 5 mils, as 
per Figure 8.
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Figure 8. Six-layer PCB stack assignment.

As per Figure 9, the overlap stitching capacitors’ planes are built in the 
GND1, SIG, PWR, and GND2. The planes on GND1 and PWR are connected 
to the ADuM5411’s secondary side and the planes in the SIG and GND2 are 
connected to ADuM5411’s primary side. This means three parallel stitching 
capacitors are formed between GND1 and SIG, SIG and PWR, PWR and 
GND2. The width of the overlap area is 4.5 mm, and the length is 17 mm, 
meaning the total stitching capacitance is 72 pF.

Figure 9. Six-layer PCB layout of the ADuM5411 area.
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Test Results Against the EN55022 Specification
Two sets of EMI tests were performed at 10 m, as per the EN55022 spec-
ification. For the first test, a board with stitching capacitance was used, as 
shown in Figure 10. Figure 11 shows the results, it passed the EN55022 
Class B standard with about 11.59 dB margin. For the second test, a board 
with no stitching capacitance was used, and, instead, external safety 
capacitors, KEMET C1812C102KHRACTU 3 kV, 150 pF, were mounted on 
the board. Figure 12 shows the results—it passed the EN55022 Class B 
standard with 0.82 dB margin.

Figure 10. Stitching capacitors built into the PCB without safety capacitors.
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Figure 11. Stitching capacitors built into PCB EN55022 Class B test result.
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Figure 12. The no stitching capacitance, but with safety capacitors 
PCB, EN55022 Class B test result.

The results proved that stitching capacitors under the IC is a more effective 
decoupling method than the safety capacitors.

Conclusion
Channel-to-channel isolation is often viewed as a design challenge in high 
end process control systems. ADI’s isoPower technology and iCoupler tech-
nology enables significant increases in channel density over traditional digital 
and power isolation approaches. They also greatly simplify the design task 
and can improve channel robustness and reliability. With stitching capacitor 
built into the PCB, or safety capacitor mounted aside the PCB, EMI radiation 
can be easily controlled to pass EN55022 Class B or Class A. It’s a break-
though in technology.
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