
Analog Dialogue 49-12, December 2015 1

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 4—Rapid Prototyping Using the Zynq SDR Kit and Simulink Code
Generation Workflow

By Mike Donovan, Andrei Cozma, and Di Pu

Introduction

The previous parts of this article series introduced the Zynq
SDR rapid prototyping platform,1 presented the steps of
using MATLAB and Simulink to develop an algorithm that
can successfully process and decode ADS-B transmissions,2
and showed how to verify the algorithm both in simulation
and with live data acquired from the SDR platform.3 The ulti-
mate goal of all stages is to create a verified model that can be
translated into C and HDL code and is ready to be integrated
in the SDR platform’s software and hardware infrastructure.

The Simulink model discussed in Part 2 of the series (“Mode
S Detection and Decoding Using MATLAB and Simulink”)2 is
a simulation model with enough hardware specific fidelity
to verify that the design will successfully decode ADS-B
messages. Using that model as a starting point, the final steps
required to produce a working receiver design that runs on
the Zynq SDR Rapid Prototyping Platform will be discussed.
As in the previous articles in this series, the skills needed to
develop this working design include: proficiency in MATLAB
and Simulink, knowledge of the Zynq radio hardware, and
software/hardware integration skills.

The steps to follow in this article include:
• Partition the Simulink model into functions that will target

the FPGA fabric and the ARM® processing system on the
Zynq SoC.

• Introduce design changes to the Simulink model to improve
the performance of the generated HDL code.

• Generate the source HDL and C code for the ADS-B
receiver algorithm.

• Integrate the generated source code in the Zynq radio
platform design.

• Test the embedded design on the target hardware with
live aircraft signals.

At the end of this process, a fully verified SDR system will be
produced, running C and HDL code automatically generated
from a Simulink ADS-B model and receiving and decoding
live commercial aircraft signals in real time.

Partitioning a Model into Hardware and Software
Components

The first step in the process of generating the implementation
code is to partition the design into the functionality that will
run on the programmable logic and the ARM processing
system of the Zynq SoC.

analog.com/analogdialogue

Partitioning usually begins by identifying the processing
requirements of the different components of the design and
the required execution rates and times. Components (such as
data modulation/demodulation algorithms) that are compu-
tationally intensive and need to run in real time at the sample
rate are best suited to be implemented in the programmable
logic. Less intensive processing tasks (such as data decod-
ing and rendering, and system monitoring and diagnosis),
are better suited for software implementation. Some other
aspects to consider are: the data types and complexity of the
operations and the precision of the input and output data. All
the operations that target the programmable logic work on
fixed-point, integer, or Boolean data types. In the case of more
complex operations such as trigonometric functions or square
root, approximations are used to implement them efficiently
using the available hardware resources. All these constraints
result in precision loss that can adversely affect system func-
tionality if not properly assessed and implemented. However,
the components that target the processing system can work on
floating-point numbers and implement operations of any com-
plexity with the highest degree of fidelity, but usually at the
expense of slower execution speed.

Using those constraints as a guideline, the partitioning of the
ADS-B decoding algorithm is fairly obvious. The functionality
in the Detector block in the ModeS_Simulink_Decode.slx model,
which includes the front-end processing of the I/Q samples all
the way through to the checksum computation, is well suited
for implementation on the programmable logic of the Zynq SoC
(Figure 1). The decoding of the message bits, which is imple-
mented in the Modified Buffer and Decode and Display blocks,
is easily implemented in the processing system.

Figure 1. ModeS_Simulink_Decode.slx: FPGA and ARM
processor partition.

http://www.analog.com/library/analogDialogue/index.html

Analog Dialogue 49-12, December 2015 2

• The block names, port names, signal names, data types,
and complexity used in the model are preserved in the
generated code.

Links between the model and source code allow a designer
to click on a block in the Simulink model and automatically
navigate to the generated HDL code. Similarly, there are
hyperlinks in the generated code that will open the Simulink
model and highlight the block associated with that segment
of code.

Figure 3. Source HDL code for ModeS_ADI_CodeGen.slx.

Optimizing the ADS-B Model to Produce HDL Code
with a Higher Clock Speed

Although the ModeS_ADI_CodeGen.slx model successfully
generates HDL code, it is rare that a designer will not want to
improve the initial results. Designers typically need to meet
speed and area constraints, which usually involves optimizing
the initial Simulink model to achieve the desired results. A
major advantage of Simulink and code generation is that the
designer can make those optimizations in the model, run a
simulation to ensure the changes do not break the algorithm,
and then re-generate the HDL code. This is usually much
simpler and less error prone than making changes in the HDL
source code and potentially breaking the algorithm.

In the case of this design, the HDL code generated by the
model easily fit on the available FPGA fabric, but ran at a rel-
atively low clock rate. This is common in many initial designs.
A built-in analysis tool in HDL Coder shows that the critical
path in the model extended from the I/Q sample input to the
first register in the CalcCRC subsystem. Inserting pipeline
registers in the design is one common method to increase the
clock speed (Figure 4). Pipelining shortens the path between
signal operations at the expense of adding delay to the overall
processing. This trade-off is usually acceptable since a slight
delay is typically a small price to pay for higher clock rates.

Figure 4. Pipeline registers inserted into detector design.

Readers interested in following along with the Simulink model
can find the files on the Analog Devices GitHub repository.4

Generating HDL Code from a Simulink Model

The Detector block in the Mode S Decoder model (Figure 2)
is comprised of several subsystems: CalcSyncCorr, CalcNF,
SyncAndControl, BitProcess, CalcCRC, and FameDetect. HDL
Coder from MathWorks5 is used to produce the source HDL
code for this design.

Figure 2. Detector block used for HDL code generation.

A Simulink model must satisfy several conditions to success-
fully generate HDL code using HDL Coder. A few of the most
significant requirements are:
• Use blocks that support HDL code generation. HDL Coder

supports code generation for approximately 200 Simulink
blocks.6 In the detector design, all the blocks, including
the Stateflow diagram and the Digital Filter blocks, support
HDL code generation.

• Use fixed-point data types. In the detector design, the
signals use 12-bit, 24-bit, and Boolean data types. The 12-bit
data type matches the bit width of the analog-to-digital
converters on the Analog Devices AD9361 transceiver.

• Use scalar or vector signals. Vector signals can be used
for multichannel signals or resource sharing.

• Avoid algebraic loops in the model. The HDL Coder
software does not support HDL code generation for models
in which algebraic loop conditions exist.

The ModeS_Simulink_Decode.slx model did not satisfy all
these conditions, so the part of the CalcCRC block that com-
pares the received bits to the computed checksum was moved
outside the Detector block and ultimately implemented in
C. The resulting model, ModeS_ADI_CodeGen.slx, was used
to generate the HDL code. In contrast to a manual coding
process, it only takes a couple minutes to generate several
thousand lines of HDL code. The source code produced by
HDL Coder is a bit true, cycle accurate version of the Simulink
model. This is one of the major productivity gains in using
model-based design; the generated code is an accurate transla-
tion of the Simulink model.

In addition, the code is designed to be readable and traceable
so engineers can easily map the generated code to their design
model. This is achieved in several ways (Figure 3):

• The hierarchy of the model is preserved in the HDL code
files that get generated. In this example, the top level block
is named Detector.vhd, and the subsystems at the next level
of hierarchy are named CalcNF.vhd, Bit_Process.vhd, and
so on.

http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html

Analog Dialogue 49-12, December 2015 3

The pipeline registers in between the subsystems help improve
the clock rate of the design, but better clock rates can be
achieved by making favorable architecture choices for the Digi-
tal Filter blocks. Many of the Simulink blocks have architecture
choices that enable a designer to optimize the design for speed
or area. In the case of the digital filters used for the calculation
of the noise floor and the preamble correlation (Figure 5),
pipelining the output multipliers can shorten the critical path
within the digital filter and improve the design clock rate.

Figure 5. HDL block choices for the Digital Filter block.

After making these two simple pipeline changes, the clock
rate of the generated HDL code exceeded 140 MHz. This is
a useful lesson for engineers using code generation tools:
applying a little knowledge of hardware design principles to
the code generation models can have a significant impact on
the results of the generated code. Further optimization of this
design was possible, but deemed unnecessary, as the HDL
code easily met the relatively simple timing and resource
objectives for this design.

In a traditional radio design process, a large percentage of
the development time is spent testing and debugging the
HDL code. In the model-based design approach, used in this
example, more time was spent on developing the simulation
and code generation models. However, there was a signif-
icant savings in development time because the generated
source code identically matched the validated behavior of the
simulation; only a minimal amount of debugging had to be
performed on the embedded hardware.

Generating C Code with MATLAB Coder7

Similar to HDL code generation, there are several conditions
that must be satisfied in order to generate C code for the
decoding functionality of this design. The two most important
requirements are:

• Use functions supported by MATLAB Coder. MATLAB
Coder supports most of the MATLAB language and a wide
range of toolboxes,8 but you may unknowingly use functions
that are not supported for code generation. MATLAB Coder
provides tools, such as the Code Readiness Tool,9 to help
find any unsupported functions.

• Ensure that once a MATLAB variable is declared, its size
and type do not change. This is necessary to make sure that
memory allocations are made correctly in the generated code.

The easiest way to generate C code from MATLAB is to open
a new MATLAB Coder Project, which can be accessed from
the Apps tab on the MATLAB Toolstrip. The final output of
the MATLAB Coder Project can be seen in Figure 6.

Figure 6. MATLAB Coder project for DecodeBits_ADI.m.

In this project, the top level MATLAB function is DecodeBits_
ADI.m. The user needs to specify the data types and sizes
required by this function as input arguments. Figure 6 shows
that the input arguments of this function are 112 Boolean
data bits and two double precision values (to provide the
user’s current latitude and longitude). The output sizes and
data types for DecodeBits_ADI.m (such as *nV for North
Velocity, *eV for East Velocity, and *alt for altitude) are auto-
matically determined by MATLAB Coder. MATLAB Coder
finds all other functions called by the top level entry point
file DecodeBits_ADI.m, including AltVelCalc_ADI.m and
LatLongCalc_ADI.m, and then generates the source C code
for the entire decoding algorithm.

The C code generated by MATLAB Coder is a fairly straight-
forward translation of the MATLAB functionality to the
C language. As in the case of HDL code generation, the source
code produced by MATLAB Coder is readable and traceable,
so engineers can easily identify the relationship between the
original MATLAB code and the generated C code. The C code
from this example can be produced from the MATLAB
command prompt and compiled by any ANSI C compiler.

HDL Code Platform Deployment

After partitioning the design into the functionalities that will
run on the programmable logic and processing system of the
Zynq, optimizing the design for HDL and C code generation,
and verifying in simulation that the optimized design is func-
tional and meets the performance criteria, it is now time to
deploy the design on to the actual SDR hardware platform and
verify the system’s functionality under real-world conditions.

http://www.mathworks.com/help/coder/language-supported-for-code-generation.html

Analog Dialogue 49-12, December 2015 4

For this purpose, an Analog Devices AD-FMCOMMS3-EBZ
SDR platform10 connected to a Xilinx ZC706 board11 running
the Analog Devices Linux distribution is used.

The AD-FMCOMMS3-EBZ board is accompanied by an
open-source Vivado HDL reference design provided by
Analog Devices.12 This reference design contains all the IP
blocks needed to configure and transfer data to and from
the AD9361 transceiver on the AD-FMCOMMS3-EBZ board.
Figure 7 presents a block diagram of the HDL reference design.

The AD9361 IP core implements the LVDS receive and trans-
mit data interfaces between the AD9361 transceiver chip and
the Zynq device, as well as the data interfaces to the rest of
the design. DMA blocks are used for high speed data trans-
fer between the AD9361 IP and the DDR memory. The data
interface to the AD9361 IP block consists of four data lines for
receive and four data lines for transmit, corresponding to the
I&Q data for the two receive and two transmit channels of the
AD9361. Each data line is 16 bits wide. To make the data trans-
fers inside the system more efficient, the receive and transmit
data is packed into 64-bit wide buses that are managed by the
DMA blocks. Pack and unpack blocks are used to connect the
16-bit parallel data lines of the AD9361 IP to the DMAs.

Deploying the HDL code of the ADS-B model into the existing
HDL infrastructure of the SDR platform requires creating an
IP core that can be inserted into the data path; this is done to
process the received data in real time and pass the processed
data to the software layer. The deployment process can prove
to be a difficult and time consuming task because it requires
deep understanding of the HDL design’s functionality and also
adequate HDL programming skills. To simplify these steps,
MathWorks includes a utility in HDL Coder called HDL Work-

flow Advisor, and Analog Devices provides a board support
package (BSP) for the AD-FMCOMMS2-EBZ/AD-FMCOM-
MS3-EBZ SDR platform and Xilinx ZC706 board.13

The HDL Workflow Advisor guides the user through the steps
needed to generate HDL code from a Simulink model. The
user can choose from a selection of several different Target
Workflows, including “ASIC/FPGA,” “FPGA-in-the-Loop,”
and “IP Core Generation.” Target Platform selections include
Xilinx Evaluation Boards, Altera Evaluation Boards, or the
FMCOMMS2/3 ZC706 SDR Platform. The rest of the code
generation and target integration process can then be auto-
mated by the HDL Workflow Advisor.

The BSP provided by Analog Devices is a collection of board
definitions and reference designs14 that provide the HDL
Workflow Advisor the required information and tools to
generate an IP block compatible with the existing HDL
reference design, and also insert the generated IP into the
HDL reference design. Figure 8 shows how to configure
the Workflow Advisor to generate the IP core for the ADS-B
model. Please note that the IP Core Generation workflow
must be selected, targeting the Analog Devices AD-FMCOM-
MS3-EBZ SDR platform and the Xilinx ZC706 board.

Figure 8. Workflow Advisor configuration.

Figure 7. HDL reference design block diagram.

FIFO

AD9361 IP

Programmable Logic

ARM Cortex A9 Processing System

Linux

Zynq All Programmable SoC

16-Bit 16-Bit

64-Bit

64-BitData
Pack

FIFO

FIFO

Rx

LV
D

S
 In

te
rf

ac
e

Tx

DMA

DMA

HDMI

I2C

Data CLK
245.6 MHz

Data
Unpack

U
se

r
S

p
ac

e
K

er
ne

l

Kernel Drivers

Kernel
Drivers

libIIO User Space
Apps

 DDR Controller
Ethernet

 Intr. Controller
I2C
SPI

Timer

AXI4-Stream

AXI4-Lite

16-Bit 16-Bit

http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-AD-FMCOMMS3-EBZ.html

Analog Dialogue 49-12, December 2015 5

The next step is to configure the interfaces between the IP and
the reference design. On the input side, the model accepts raw
I&Q samples; this connects the model’s input ports directly
to the AD9361 receiver data ports. Of all the model’s output
signals, the only ones of interest at this stage are the data,
frame_valid, and bit_clk signals. The data and frame_valid
are 16 bits wide and are clocked by the bit_clk signal. These
signals can be connected to the “DUT Data x Out” interfaces
of the BSP, which means they will receive direct access to
the DMA blocks; data can then be transferred into the DDR,
which is accessible by the software layer. The bit_clk signal
is connected to the “DUT Data Valid Out” BSP interface and
controls the DMA sampling rate. Figure 9 shows how the HDL
interface must be configured.

Figure 9. HDL interface configuration.

Once the target interface has been defined, Step 2 and Step 3
of the HDL Workflow Advisor can be left in their default state
and the project generation process can be started by running
Step 4.1 (Create Project). The result of this step is a Vivado
project that has the ADS-B IP core integrated into the Analog
Devices HDL reference design. Figure 10 depicts the connec-
tions between the ADS-B IP core and the rest of the blocks in
the design.

FIFO

AD9361 IP 16-Bit
16-Bit 16-Bit 64-BitData

Pack

ADS-B IPFIFORx DMA

Data CLK
245.6 MHz

Clock Divider
Data CLK/4

Figure 10. ADS-B IP connections in the HDL reference design.

Generating the bitstream from the Vivado project concludes
the HDL integration process, but the final goal is to have
Linux running on the system. For this purpose, after generat-
ing the bitstream, a Linux boot file can be created by following
the standard Xilinx SDK first stage boot loader (fsbl) and
Linux boot file creation process. The Linux device tree and
image files corresponding to the newly created HDL design
are distributed with the AD-FMCOMMS3-EBZ BSP. All files
must be copied together with the Linux boot file on the boot
partition of the SD card; this is used to store all files needed
to run the Analog Devices Linux Distribution on the Xilinx
ZC706 board.

C Code Platform Deployment

Now that the ADS-B HDL IP has been integrated into the SDR
platform’s HDL design, and the Linux SD card is created, it is
time to implement the software application that decodes the
ADS-B data. This application is based on the C code generated
in Section 5 and performs the following tasks:

• Configure the AD9361 for ADS-B signals reception.

• Read the data from the ADS-B IP core.

• Detect the valid ADS-B frames in the read data.

• Decode and display the ADS-B information.

The easiest way to implement Task 1 and Task 2 is to use the
functionality provided by the libiio library.15 This library
provides interface functions that enable users to easily con-
figure the AD9361 as well as receive and transmit data. The
configuration sequence sets the following system parameters:

• LO frequency—1.09 GHz

• Sampling rate—12.5 MHz

• Analog bandwidth—4.0 MHz

• AGC—fast attack mode

Besides the parameters mentioned above, a digital FIR filter
with data rate of 12.5 MSPS, a pass band frequency of
3.25 MHz, and a stop band frequency of 4 MHz is loaded into
the AD9361 to ensure that the received data contains only
the band of interest. The system parameters and the design
methodology of this FIR filter are described in Part 3 of this
article series.3

The output data of the ADS-B IP is transferred into the
system’s DDR memory by the DMA block. The libiio library
provides the following functions: position the data acquired
from the ADS-B IP into a memory buffer with a specified size;
wait for the buffer to be filled; gain access the buffer through
pointers. Once the buffer is filled, the ADS-B decoding algo-
rithm can process the data. The ADS-B IP core has two output
channels: one channel corresponding to the ADS-B bitstream,
and the other channel indicating where a valid data frame
ends in the bitstream. Both channels contain the same data
rate and are synchronized with each other. A sample equal
to “1” in the valid channel denotes the last bit of a valid frame
in the data channel. By parsing both channels, the software
can extract the valid ADS-B data frames from the bitstream
and pass the data to the decoding function generated by
MATLAB Coder. The decoding function uses the ADS-B data
frame and the latitude and longitude of the current location as
input when computing the aircraft’s coordinates. The current
latitude and longitude are specified as parameters of the appli-
cation. The decoded ADS-B data is displayed similarly to the
Simulink model.

The ADS-B data decoding application is built under Linux using
a makefile. The source code of the application and the makefile
can be found on the Analog Devices github repository.16

This completes the platform deployment steps for both the
HDL and C code generated from the ADS-B model using HDL
Coder and MATLAB Coder from MathWorks. The next step is
to verify the system’s functionality and evaluate the results.

System Validation

To validate the system’s functionality, begin by creating a
loopback connection between one receive and one transmit
port of the AD-FMCOMMS3-EBZ board and transmit the
same ADS-B signal that was used during simulation. By
receiving and decoding this data, it can be verified that the
output of the algorithm running on the SDR platform matches

Analog Dialogue 49-12, December 2015 6

the simulation results. Figure 11 displays the output of the
ADS-B data decoding application; the results are identical to
those shown in Part 3 of the article series for HIL simulation
using precaptured data. This provides confidence that the
system is running as expected and is ready to be used with
real-world data.

Figure 11. Loopback results.

For the actual field test, the SDR receiver was placed
outside the MathWorks headquarters in Natick, MA and
compared against ADS-B information decoded by the system
with the data provided by airplane live tracking websites
(such as flightradar24.com). It was observed that the system
was able to decode data received from the airplanes within
the antenna’s line of sight. Figure 12 shows a comparison
between the aircraft information detected by the system and
the online airplane tracking data; the decoding algorithm
displays the correct aircraft ID, altitude, speed, and latitude/
longitude coordinates.

Figure. 12 Live data results.

Conclusion
This article concludes the four part article series demonstrat-
ing how model-based design can be used to take an SDR
system all the way from simulation to production. The series
addressed all the stages of developing a “hardware ready”
ADS-B Simulink model. We designed a simulation model
to prove we could decode recorded ADS-B messages, and
then validated the model with live data acquired from the
SDR hardware platform. This validated not only the model
but also the SDR platform’s settings for the analog front end
and digital receiver chain; it also gave us confidence that the
platform was properly tuned for receiving ADS-B signals.
Afterward, we partitioned the model into the functionalities
that run on the Zynq processing system and programmable
logic, and optimized the model for automatic C and HDL code
generation. Finally, we integrated the C and HDL code into
the SDR design and validated the system’s functionality with
live commercial air traffic. The end result is a design process
that uses modelling and code generation tools from Math-
Works, together with the Zynq SDR platform, to create a fully
functional SDR system.

This example system shows that the model-based design
workflow in combination with the Analog Devices AD9361/
AD9364 integrated RF Agile Transceiver™ programmable radio
hardware can help design teams develop working radio proto-
types more quickly and less expensively than using traditional
design methodologies. This prototype was built by the authors
in a relatively short time with minimal obstacles, drawing on
the following resources:

• The ability to build a model of an ADS-B receiver in
MATLAB and Simulink that can generate usable C and
HDL source code.

• Functions within HDL Workflow Advisor to automate
many of the hardware/software integration steps.

• Libraries (such as libiio) that assist in the remaining
integration steps to deploy the SDR prototype.

• Product help and technical support that are available
from MathWorks and Analog Devices.

ADS-B is a relatively simple standard and provides a good test
case to demonstrate this approach to building an SDR proto-
type. Engineers who adopt model-based design and the
Zynq SDR platform should be able to follow the workflow
presented in this series of articles to develop much more com-
plex and powerful QPSK-, QAM-, and LTE-based SDR systems.

http://www.flightradar24.com/
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html

Analog Dialogue 49-12, December 2015 7

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Mike Donovan [mike.donovan@mathworks.com] is a manager in the Application Engineering
Group at MathWorks. He has a B.S.E.E. from Bucknell University and an M.S.E.E. from the
University of Connecticut. Prior to joining MathWorks, Mike worked on radar and satellite
communications systems and in the broadband telecommunications industry.

Mike Donovan

References
1 Di Pu, Andrei Cozma, and Tom Hill. “Four Quick Steps to

Production: Using Model-Based Design for Software-De-
fined Radio. Part 1—the Analog Devices/Xilinx SDR Rapid
Prototyping Platform: Its Capabilities, Benefits, and Tools.”
Analog Dialogue, Volume 49, Number 3.

2 Mike Donovan, Andrei Cozma, and Di Pu. “Four Quick
Steps to Production Using Model-Based Design for
Software-Defined Radio. Part 2—Mode S Detection and
Decoding Using MATLAB and Simulink.” Analog Dialogue,
Volume 49, Number 4.

3 Di Pu, Andrei Cozma. “Four Quick Steps to Production
Using Model-Based Design for Software-Defined Radio.
Part 3—Mode S Signals Decoding Algorithm Validation
Using Hardware in the Loop.” Analog Dialogue, Volume 49,
Number 4.

4 Analog Devices GitHub repository.

5 HDL Coder.

6 HDL Coder Block Support.

7 MATLAB Coder.

8 MATLAB Toolboxes.

9 MATLAB Code Generation Readiness Tool.

10 AD-FMCOMMS3-EBZ User Guide.

11 Xilinx Zynq-7000 All Programmable SoC ZC706
Evaluation Kit.

12 AD-FMCOMMS2-EBZ/AD-FMCOMMS3-EBZ/
AD-FMCOMMS4-EBZ HDL/AD-FMCOMMS5-EBZ HDL
Reference Design.

13 Analog Devices BSP for MathWorks HDL Workflow Advisor.

14 Board and Reference Design Registration System.

15 What Is Libiio?

16 MathWorks Targeting Models—ADSB.

mailto:andrei.cozma%40analog.com?subject=
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
mailto:di.pu%40analog.com?subject=
mailto:mike.donovan%40mathworks.com?subject=
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-10/four-step-sdr-02.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
http://www.analog.com/library/analogDialogue/archives/49-11/four-step-sdr-03.pdf
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/help/hdlcoder/block-support.html
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/simulink/ug/code-generation-readiness-tool.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms3-ebz/
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
http://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/reference_hdl
https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/software/matlab_bsp
http://www.mathworks.com/help/hdlcoder/ug/board-and-reference-design-system.html
https://wiki.analog.com/resources/tools-software/linux-software/libiio
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/targeting_models/ADSB
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204&p[url]=http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%204%20http://www.analog.com/library/analogdialogue/archives/49-12/four-step-sdr-04.html&source=webclient

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio Part 4-Rapid
	Introduction
	Partitioning a Model into Hardware and Software Components
	Generating HDL Code from a Simulink Model
	Optimizing the ADS-B Model to Produce HDL Code with a Higher Clock Speed
	Generating C Code with MATLAB Coder
	HDL Code Platform Deployment
	C Code Platform Deployment
	System Validation
	Conclusion
	References

