
Analog Dialogue 49-10, October 2015 1

Four Quick Steps to Production:
Using Model-Based Design for
Software-Defined Radio
Part 2—Mode S Detection and Decoding Using MATLAB and Simulink

By Mike Donovan, Andrei Cozma, and Di Pu

Automatic Dependent Surveillance Broadcast
Waveforms

Wireless signals that can be detected and decoded are
everywhere, and they are easily accessible with today’s
Software-Defined Radio (SDR) hardware like the Analog
Devices AD9361/AD9364 integrated RF Agile Transceivers.™1,2
The automatic dependent surveillance broadcast (ADS-B)
transmissions from commercial aircraft provide a readily
available wireless signal that can be used to demonstrate a
rapid prototyping flow based on the AD9361 connected to a
Xilinx® Zynq®-7000 All Programmable SoC. Commercial air-
craft use ADS-B transmitters to report their position, velocity,
altitude, and aircraft ID to air traffic controllers.3 The flight
data format is defined in the International Civil Aviation
Organization’s (ICAO) Mode S Extended Squitter specifi-
cation.4 ADS-B is being introduced throughout the world to
modernize air traffic control and collision avoidance systems.
It has already been adopted in Europe and is being gradually
introduced in the United States.

The Mode S Extended Squitter standard provides details of
the RF transmission format and encoded data fields. The tran-
sponder transmission has the following properties:
• Transmit frequency: 1090 MHz
• Modulation: pulse position modulation (PPM)
• Data rate: 1 Mbps
• Message length: 56 μs or 112 μs
• 24-bit CRC checksum

The tuning frequency and bandwidth are well within the
capabilities of the AD9361 RF transceiver, and the received
I/Q samples can be detected and decoded with a variety of
software or embedded platform options.

In this article we will discuss how to capture these Mode S
signals with a receiver platform based on the AD9361, and
then use MATLAB and Simulink to develop an algorithm that
can decode the messages. The algorithm will be developed
with the ultimate goal of deploying the solution onto a Zynq
SoC platform, such as Avnet’s PicoZed™ SDR System on
Module (SOM).

Receiver Design Challenges

Mode S messages are either short (56 μs) or long (112 μs).
Short messages contain the message type, aircraft identifica-
tion number, and a cyclic redundancy check (CRC) checksum.
Long messages also contain the altitude, position, velocity,
and flight status. In either case, the Mode S transmission
begins with an 8 μs preamble. This preamble pattern is used
by receivers to establish that a valid message is being transmit-
ted and helps the receivers determine when the message bits
start. See Figure 1 for details.5

analog.com/analogdialogue

1 1 1 0 0 0 …

Preamble Message Bits

 0
µs

1 2 3.5 8
µs

10 12 14
µs

4.5
µs

© 1984-2015 The MathWorks, Inc.

Figure 1. Structure of a Mode S message.

The Mode S waveform is fairly simple, but there are still
several challenges involved in successfully receiving and
decoding the transmitted messages.

1. The receive environment typically contains very short mes-
sages interspersed with long idle periods, and the received
signals can be very weak when the transmitting aircraft is
a long distance from the receiver. Legacy waveforms are
also transmitted at 1090 MHz. The receiver needs to use the
preamble to identify both high and low amplitude Mode S
transmissions in a congested frequency band.

2. Bits have one of two possible patterns within the 1 μs bit
interval. A Logic 1 is ON for the first ½ μs and OFF for the
second ½ μs. A Logic 0 is OFF for the first ½ μs and ON for
the second ½ μs. Since the bit decisions, are made based on
time-based patterns, the receiver needs to use the preamble to
accurately find the I/Q sample where the message bits start.

3. The Mode S message is composed of 88 information bits and
24 checksum bits. The receiver needs to be able to clear reg-
isters, make bit decisions, compute the checksum, and read
the checksum registers at the correct times. Timing control
is required for the receiver to function properly.

4. For an embedded design, the decoding process has to work
on a sample by sample basis. Storing large amounts of data
for batch processing is not a realistic receiver design for an
embedded system.

The combination of a powerful RF front end like the AD9361
and a technical computing language like MATLAB® greatly
simplifies the problems associated with detecting and decod-
ing these transmissions. Functions from MATLAB and Signal
Processing Toolbox can be used to identify the sync pattern,
calculate the noise floor, make bit decisions and calculate the
checksum. The conditional and execution control functions
in MATLAB simplify the control logic. Accessing test data is
easy, both from binary or text files, or streamed directly into
MATLAB using the AD9361 SDR platforms. Finally, the inter-
preted nature of MATLAB makes it easy to interact with data,
try different approaches, and interactively develop a solution.

http://www.analog.com/ad9361
http://www.analog.com/ad9364
http://www.analog.com/library/analogDialogue/index.html

Analog Dialogue 49-10, October 20152

We used some code based on these commands to capture
several data sets at a sample rate of 12.5 MHz. The 12.5 MHz
rate was chosen to provide enough samples to fine tune the
alignment of the preamble to the first message bit and average
out some of the noise in the samples used to make bit deci-
sions. The results of a one million sample capture are shown
in Figure 5.

© 1984-2015 The MathWorks, Inc.

Figure 5. Sample data capture at 1090 MHz.

In this short data set there are 14 signals that stand out above
the noise floor. Of those 14 signals, two are Mode S messages.
The rest are legacy or spurious signals that should be rejected.
Zooming in to the region near sample number 604000 shows
one of the valid messages (see Figure 6).

© 1984-2015 The MathWorks, Inc.

Figure 6. Single Mode S message.

In this plot the preamble can clearly be seen, and the bit
transitions due to the PPM modulation are apparent. Even
with a clean signal like this, decoding the bits by inspection
would require good eyesight and a lot of patience. Clearly
an automated program is required to decode these messages.
MATLAB is a good solution for developing this program.

The MATLAB code that can receive and decode Mode S
messages can be summarized as follows:

1. Calculate the noise floor and preamble correlation with the
filter() function over a short time window. In our solution
we use 75 samples, which is equivalent to 6 μs.

Modeling and Verifying Mode S Receiver Algorithms
in MATLAB

Readers who are interested in following along with the MATLAB
source code can find the files on the Analog Devices GitHub
repository. The entry level function is ad9361_ModeS.m, and
the files called by this function are also provided.

The first step in designing a receiver algorithm is to access
some source data. Since many aircraft are now equipped with
Mode S transponders it’s possible to just tune a receiver to the
broadcast frequency of 1090 MHz and capture local transmis-
sions. In our case we can use the Zynq SDR Rapid Prototyping
Platform. Analog Devices provides a MATLAB System
object™ that is capable of receiving data from the FMCOMMS
platform over Ethernet.6 The System object allows a user to
select a tuning frequency and sampling rate, collect receive
samples using the radio hardware, and bring the receive
samples directly into the MATLAB workspace as a MATLAB
variable. The required code is very short; a few lines of code
to set up the MATLAB System object, a few more to set up the
FMCOMMS3, and a few lines of code to capture I/Q samples
and write them to a MATLAB variable. A sample of the code
is shown in Figure 2, Figure 3, and Figure 4.

© 1984-2015 The MathWorks, Inc.

Figure 2. Sample MATLAB code to set up MATLAB System object.

© 1984-2015 The MathWorks, Inc.

Figure 3. Sample MATLAB code to configure FMCOMMS3 board.

© 1984-2015 The MathWorks, Inc.

Figure 4. Sample MATLAB code to capture I/Q samples and write
them to the Rx variable.

https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/

Analog Dialogue 49-10, October 2015 3

2. When the preamble correlation exceeds the noise floor by a
significant factor, launch logic to find the first message bit
sample.
a. The choice of this threshold is subjective. It should be

small enough to detect weak signals but large enough to
prevent a lot of false positives. We chose a value of 10×
above the noise floor as a reasonable threshold that cap-
tures most decodable messages.

b. The preamble pattern produces several peaks. Since the
best match is over the first 6 μs, store the first peak, start
the search for the first message bit, and see if another
larger peak occurs in the next 3 μs. If it does occur, store
the new peak and reset the search for the start of the first
message bit.

c. When the max peak occurs, start the message bit decod-
ing 2 μs later.

d. Figure 7 shows the noise floor in green and the result
of correlating an ideal preamble to the incoming data.
There are several peaks above the noise floor, but the
one of interest is the one with the maximum amplitude.
The sample for the first message bit occurs 2 μs after
that peak.

6.035

–10

–5

0

5

6.040 6.045

Time (s)

A
m

p
lit

ud
e

× 105

× 10–4 Sync Pulse Correlation

Sync Correlation
Noise Floor

6.050 6.055 6.060

6.035

1

0

2

3

4

6.040 6.045

Time (s)

A
m

p
lit

ud
e

× 105

× 10–5 Received Samples (112 µs message)

6.050 6.055 6.060

© 1984-2015 The MathWorks, Inc.

Figure 7. Calculation of noise floor and preamble correlation.

3. For each individual bit, sum the amplitude of the samples
for the first ½ μs and second ½ μs. Whichever sum is larger
determines whether the bit is Logic 1 or Logic 0.

4. Compute the checksum as the bit decisions are made. This
requires some control logic for resetting the CRC registers
when the first bit arrives, calculating the checksum for
88 bits, and then emptying the CRC registers for the final
24 bits. The ADS-B message is valid when the receive bits
match the checksum.

5. Parse the message bits according to the Mode S standard
(see Figure 8).

© 1984-2015 The MathWorks, Inc.

Figure 8. Decoded Mode S messages.

The above figure from the MATLAB command window shows
the two messages that were successfully decoded from the one
million sample data set. The hex characters that make up the
88-bit message and 24-bit checksum are displayed, and the

results of the decoding process show the aircraft ID, message
type, and aircraft velocity, altitude, and position.

MATLAB provides a powerful mathematical and signal pro-
cessing language to make it possible to solve this problem
relatively easily. The MATLAB code needed to process the
data samples and ultimately decode the messages is short—
only 200 lines of MATLAB code. In addition, the interpreted
nature of MATLAB makes it easy to interactively try out
design ideas and quickly settle on a viable solution. Several
timing mechanisms, thresholds, and noise levels were tested
on various data sets to produce a satisfactory program.

This MATLAB code has been tested on signals from aircraft
flying in the local airspace and the decoded messages have
been checked against sources like airframes.org and flight-
aware.com. The hardware and the code perform very well;
we’ve been able to decode transmissions from planes at a
distance of 50 miles.

Path to Implementation

Readers who are interested in following along with the
Simulink model can find the files on the Analog Devices
GitHub repository:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

MATLAB is a great environment for testing design ideas
and running algorithms on a PC, but if the ultimate goal is
to produce software or HDL to be used on an embedded
platform, particularly one like a Zynq SoC, then Simulink
is a good solution. Simulink is well suited to modeling the
hardware specific elaborations needed to target the program-
mable device. A good workflow is to use MATLAB to develop
and verify an algorithm, and then translate the design into
Simulink and continue down the development path to a final
hardware implementation.

Fortunately, the MATLAB code for this algorithm processes
data on a sample by sample basis, so the conversion to Sim-
ulink is fairly straightforward. In contrast to the 200 lines of
MATLAB code, the Simulink model is simple to display and
describe (see Figure 9).

© 1984-2015 The MathWorks, Inc.

Figure 9. Simulink model of Mode S detection and decoding algorithm.

In Figure 9, you can see the first step in the decoding is to
calculate the noise floor and the correlation to the preamble.
Digital filter blocks are used for these calculations. The timing
control block is implemented using Stateflow,® which is a
state machine tool that is used to generate the timing, reset,
and control signals for the rest of the decoding algorithm.
Stateflow is very useful for models where you want to sepa-
rate the control logic from the data flow. Once the timing
and triggers are activated, the block named BitProcess takes

http://www.airframes.org/
http://flightaware.com/
http://flightaware.com/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink

Analog Dialogue 49-10, October 20154

the input I/Q samples and calculates the data bits, and the
CRC_Check block computes the checksum. The message
parsing still takes place in a MATLAB script driven by this
Simulink model.

Digging deeper into the model you can see a few features that
make Simulink suitable for embedded development, especially
for partitioning the design into functions targeted at a Zynq
SoC and for generating HDL code and C code.

1. Simulink has excellent fixed-point support, so you can build
and test a bit-true version of your design. The individual
blocks allow you to set the word length and fractional length
for the mathematical operations in your model. The digital
filter block that is used to calculate the preamble correla-
tion is a good example (Figure 10). You can set the rounding
mode and the overflow behavior for the calculations (Floor
and Wrap are the simplest choices for math being done in
HDL). In addition, you can specify different word lengths
and fractional precisions for the product and accumulator
operations for the filter (Figure 11). You can use word length
choices that map to the receiver ADC and take advantage
of hardware multipliers like the 18 bit × 25-bit multipliers
within the DSP48 slices of the Zynq SoC.

© 1984-2015 The MathWorks, Inc.

Figure 10. Simulink digital filter block used for preamble correlation,
12-bit data types.

© 1984-2015 The MathWorks, Inc.

Figure 11. Fixed-point data type settings.

2. Embedded designs often have many of modes of operation
and conditionally executed algorithms. Stateflow is partic-
ularly good at managing these control signals. Stateflow
gives you a visual representation of the control logic needed
to detect and decode the Mode S messages. In Figure 12
below, you can see the states in the logic are:
a. SyncSearch: look for the preamble in the captured samples
b. WaitForT0: look for the start of the first message bit
c. BitProcess: enable the bit processing
d. EmptyReg: empty the checksum register and compare

the bits to the output of the bit processing

As the detection and decoding algorithm progresses through
the different states, the Stateflow block generates the signals
that enable the bit processing, reset the bit decision counters
and checksum registers, and read out the checksum bits at the
end of the Mode S messages.

© 1984-2015 The MathWorks, Inc.

Figure 12. Stateflow chart for decoding Mode S messages.

3. The Simulink block libraries give engineers options to
work at a very high level or at a very fine level of detail.
Simulink has high level blocks like Digital Filter, FFT, and
Numerically Controlled Oscillator to make it easy to build
signal processing designs. If more precise control of the
design is required, possibly for speed or area optimizations,
engineers can use low level blocks like Unit Delays, Logic
Operators (XOR for example), and Switches. The 24-bit
checksum in this model is a feedback shift register built
using those low level blocks (Figure 13).

© 1984-2015 The MathWorks, Inc.

Figure 13. Feedback shift register for Mode S checksum computation.

Analog Dialogue 49-10, October 2015 5

Andrei Cozma [andrei.cozma@analog.com] is an engineering manager for ADI, supporting the
design and development of system level reference designs. He holds a B.S. degree in industrial
automation and informatics and a Ph.D. in electronics and telecommunications. He has been
involved in the design and development of projects from different industry fields such as
motor control, industrial automation, software-defined radio, and telecommunications.

Andrei Cozma

Also by this Author:

FPGA-Based Systems Increase
Motor-Control Performance

Volume 49, Number 1

This Simulink model is a hardware specific version of the
MATLAB algorithm that detects and decodes Mode S mes-
sages. Simulink is a useful tool for bridging the gap between a
behavioral algorithm written in MATLAB and implementation
code for embedded hardware. You can introduce hardware
specific elaborations into the Simulink model, run the model,
and verify that the changes you’ve made don’t break the
decoding algorithm.

Conclusion

The combination of a Zynq SDR Rapid Prototyping Platform
and MathWorks software gives communication engineers a
new and flexible way to quickly prototype design ideas for
wireless receivers. The high degree of programmability and
performance provided by the AD9361/AD9364 agile wide-
band RF transceiver and the simple connectivity between the
hardware and MATLAB environment makes a wide variety
of interesting wireless signals available to the engineer. Engi-
neers who use MATLAB can quickly try a multitude of design
ideas and settle on a promising solution. If the ultimate target
of the design is an embedded processor, Simulink is a tool that
engineers can use to refine the design with hardware specific
ideas and ultimately produce the code used to program the
processor. This workflow reduces the number of skills needed
to design a wireless receiver and shortens the development
cycle from concept to working prototype.

In the next article in this series, we will show how to use
hardware in the loop (HIL) to validate a receiver design,
capturing signals with the target transceiver while executing
a model of the signal processing system on the host in
Simulink for verification.

References
1 AD9361. Analog Devices.
2 AD9364. Analog Devices.
3 960-1164 MHz. National Telecommunications and Informa-

tion Administration.
4 Technical Provisions for Mode S Services and Extended

Squitter. International Civil Aviation Organization.
5 Surveillance and Collision Avoidance Systems. Aeronautical

Telcommunications, Volume IV. International Civil Aviation
Organization.

6 Pu, Di, Andrei Cozma, and Tom Hill. “Four Quick Steps to
Production: Using Model-Based Design for Software-Defined
Radio.” Analog Dialogue, Volume 49.

Links to Source Code and Models

MATLAB Mode S Decoding Algorithm: https://github.com/
analogdevicesinc/MathWorks_tools/blob/master/hil_models/
ADSB_MATLAB/
Simulink Mode S Decoding Models:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

Acknowledgements

The authors would like to thank Mike Mulligan from
MathWorks who contributed some of the MATLAB code
used in this example.

Di Pu
Di Pu [di.pu@analog.com] is a system modeling applications engineer for ADI, supporting the
design and development of software-defined radio platforms and systems. She has been
working closely with MathWorks to solve mutual end customer challenges. Prior to joining ADI,
she received her B.S. degree from Najing University of Science and Technology (NJUST), Nanjing,
China, in 2007 and her M.S. and Ph.D. degrees from Worcester Polytechnic Institute (WPI),
Worcester, MA, U.S.A., in 2009 and 2013—all in electrical engineering. She is a winner of the 2013
Sigma Xi Research Award for Doctoral Dissertation at WPI.

Mike Donovan [mike.donovan@mathworks.com] is a manager in the Application Engineering
Group at MathWorks. He has a B.S.E.E. from Bucknell University and an M.S.E.E. from the
University of Connecticut. Prior to joining MathWorks, Mike worked on radar and satellite
communications systems and in the broadband telecommunications industry.

Mike Donovan

mailto:andrei.cozma@analog.com
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/library/analogDialogue/archives/49-03/motor_control.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9361.html
http://www.analog.com/en/products/rf-microwave/integrated-transceivers-transmitters-receivers/wideband-transceivers-ic/ad9364.html
http://www.ntia.doc.gov/files/ntia/publications/compendium/0960.00-1164.00_01MAR14.pdf
http://www.cats.com.kh/download.php?path=vdzw4dHS08mjtKi6vNi31Mbn0tnZ2eycn6ydmqPE19rT7Mze4cSYpsetmdXd0w==
http://www.cats.com.kh/download.php?path=vdzw4dHS08mjtKi6vNi31Mbn0tnZ2eycn6ydmqPE19rT7Mze4cSYpsetmdXd0w==
http://www.bazl.admin.ch/experten/regulation/03080/03081/index.html?lang=de&download=NHzLpZeg7t,lnp6I0NTU042l2Z6ln1acy4Zn4Z2qZpnO2Yuq2Z6gpJCDeoB9fWym162epYbg2c_JjKbNoKSn6A--
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
http://www.analog.com/library/analogdialogue/archives/49-09/four-step-sdr-01.html
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html&title=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&p[summary]=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202&p[url]=http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html
https://twitter.com/intent/tweet?text=Four%20Quick%20Steps%20to%20Production:%20Using%20Model-Based%20Design%20for%20Software-Defined%20Radio,%20Part%202%20http://www.analog.com/library/analogdialogue/archives/49-10/four-step-sdr-02.html&source=webclient
mailto:di.pu%40analog.com?subject=
mailto:mike.donovan%40mathworks.com?subject=

	Four Quick Steps to Production: Using Model-Based Design for Software-Defined Radio
	Part 2-Mode S Detection and Decoding Using MATLAB and Simulink
	Automatic Dependent Surveillance Broadcast Waveforms
	Receiver Design Challenges
	Modeling and Verifying Mode S Receiver Algorithms in MATLAB
	Path to Implementation
	References
	Acknowledgements

