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Four Quick Steps to Production:  
Using Model-Based Design for  
Software-Defined Radio 
Part 2—Mode S Detection and Decoding Using MATLAB and Simulink

By Mike Donovan, Andrei Cozma, and Di Pu

Automatic Dependent Surveillance Broadcast 
Waveforms

Wireless signals that can be detected and decoded are  
everywhere, and they are easily accessible with today’s  
Software-Defined Radio (SDR) hardware like the Analog 
Devices AD9361/AD9364 integrated RF Agile Transceivers.™1,2 
The automatic dependent surveillance broadcast (ADS-B) 
transmissions from commercial aircraft provide a readily 
available wireless signal that can be used to demonstrate a 
rapid prototyping flow based on the AD9361 connected to a 
Xilinx® Zynq®-7000 All Programmable SoC. Commercial air-
craft use ADS-B transmitters to report their position, velocity, 
altitude, and aircraft ID to air traffic controllers.3 The flight 
data format is defined in the International Civil Aviation 
Organization’s (ICAO) Mode S Extended Squitter specifi-
cation.4 ADS-B is being introduced throughout the world to 
modernize air traffic control and collision avoidance systems. 
It has already been adopted in Europe and is being gradually 
introduced in the United States.

The Mode S Extended Squitter standard provides details of 
the RF transmission format and encoded data fields. The tran-
sponder transmission has the following properties:
• Transmit frequency: 1090 MHz
• Modulation: pulse position modulation (PPM)
• Data rate: 1 Mbps
• Message length: 56 μs or 112 μs
• 24-bit CRC checksum

The tuning frequency and bandwidth are well within the 
capabilities of the AD9361 RF transceiver, and the received  
I/Q samples can be detected and decoded with a variety of 
software or embedded platform options. 

In this article we will discuss how to capture these Mode S  
signals with a receiver platform based on the AD9361, and 
then use MATLAB and Simulink to develop an algorithm that 
can decode the messages. The algorithm will be developed 
with the ultimate goal of deploying the solution onto a Zynq 
SoC platform, such as Avnet’s PicoZed™ SDR System on 
Module (SOM).

Receiver Design Challenges

Mode S messages are either short (56 μs) or long (112 μs). 
Short messages contain the message type, aircraft identifica-
tion number, and a cyclic redundancy check (CRC) checksum. 
Long messages also contain the altitude, position, velocity, 
and flight status. In either case, the Mode S transmission 
begins with an 8 μs preamble. This preamble pattern is used 
by receivers to establish that a valid message is being transmit-
ted and helps the receivers determine when the message bits 
start. See Figure 1 for details.5
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Figure 1. Structure of a Mode S message.

The Mode S waveform is fairly simple, but there are still 
several challenges involved in successfully receiving and 
decoding the transmitted messages. 

1. The receive environment typically contains very short mes-
sages interspersed with long idle periods, and the received 
signals can be very weak when the transmitting aircraft is 
a long distance from the receiver. Legacy waveforms are 
also transmitted at 1090 MHz. The receiver needs to use the 
preamble to identify both high and low amplitude Mode S 
transmissions in a congested frequency band. 

2. Bits have one of two possible patterns within the 1 μs bit 
interval. A Logic 1 is ON for the first ½ μs and OFF for the 
second ½ μs. A Logic 0 is OFF for the first ½ μs and ON for 
the second ½ μs. Since the bit decisions, are made based on 
time-based patterns, the receiver needs to use the preamble to 
accurately find the I/Q sample where the message bits start.

3. The Mode S message is composed of 88 information bits and 
24 checksum bits. The receiver needs to be able to clear reg-
isters, make bit decisions, compute the checksum, and read 
the checksum registers at the correct times. Timing control 
is required for the receiver to function properly.

4. For an embedded design, the decoding process has to work 
on a sample by sample basis. Storing large amounts of data 
for batch processing is not a realistic receiver design for an 
embedded system.

The combination of a powerful RF front end like the AD9361 
and a technical computing language like MATLAB® greatly 
simplifies the problems associated with detecting and decod-
ing these transmissions. Functions from MATLAB and Signal 
Processing Toolbox can be used to identify the sync pattern, 
calculate the noise floor, make bit decisions and calculate the 
checksum. The conditional and execution control functions 
in MATLAB simplify the control logic. Accessing test data is 
easy, both from binary or text files, or streamed directly into 
MATLAB using the AD9361 SDR platforms. Finally, the inter-
preted nature of MATLAB makes it easy to interact with data, 
try different approaches, and interactively develop a solution.

http://www.analog.com/ad9361
http://www.analog.com/ad9364
http://www.analog.com/library/analogDialogue/index.html
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We used some code based on these commands to capture  
several data sets at a sample rate of 12.5 MHz. The 12.5 MHz 
rate was chosen to provide enough samples to fine tune the 
alignment of the preamble to the first message bit and average 
out some of the noise in the samples used to make bit deci-
sions. The results of a one million sample capture are shown  
in Figure 5. 
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Figure 5. Sample data capture at 1090 MHz.

In this short data set there are 14 signals that stand out above 
the noise floor. Of those 14 signals, two are Mode S messages. 
The rest are legacy or spurious signals that should be rejected. 
Zooming in to the region near sample number 604000 shows 
one of the valid messages (see Figure 6).
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Figure 6. Single Mode S message.

In this plot the preamble can clearly be seen, and the bit  
transitions due to the PPM modulation are apparent. Even 
with a clean signal like this, decoding the bits by inspection 
would require good eyesight and a lot of patience. Clearly 
an automated program is required to decode these messages. 
MATLAB is a good solution for developing this program.

The MATLAB code that can receive and decode Mode S  
messages can be summarized as follows:

1. Calculate the noise floor and preamble correlation with the 
filter() function over a short time window. In our solution 
we use 75 samples, which is equivalent to 6 μs.

Modeling and Verifying Mode S Receiver Algorithms 
in MATLAB

Readers who are interested in following along with the MATLAB 
source code can find the files on the Analog Devices GitHub 
repository. The entry level function is ad9361_ModeS.m, and 
the files called by this function are also provided.

The first step in designing a receiver algorithm is to access 
some source data. Since many aircraft are now equipped with 
Mode S transponders it’s possible to just tune a receiver to the 
broadcast frequency of 1090 MHz and capture local transmis-
sions. In our case we can use the Zynq SDR Rapid Prototyping 
Platform. Analog Devices provides a MATLAB System 
object™ that is capable of receiving data from the FMCOMMS 
platform over Ethernet.6 The System object allows a user to 
select a tuning frequency and sampling rate, collect receive 
samples using the radio hardware, and bring the receive 
samples directly into the MATLAB workspace as a MATLAB 
variable. The required code is very short; a few lines of code 
to set up the MATLAB System object, a few more to set up the 
FMCOMMS3, and a few lines of code to capture I/Q samples 
and write them to a MATLAB variable. A sample of the code  
is shown in Figure 2, Figure 3, and Figure 4. 

© 1984-2015 The MathWorks, Inc. 

Figure 2. Sample MATLAB code to set up MATLAB System object.

© 1984-2015 The MathWorks, Inc. 

Figure 3. Sample MATLAB code to configure FMCOMMS3 board.

© 1984-2015 The MathWorks, Inc. 

Figure 4. Sample MATLAB code to capture I/Q samples and write 
them to the Rx variable.

https://github.com/analogdevicesinc/MathWorks_tools/blob/master/hil_models/ADSB_MATLAB/
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2. When the preamble correlation exceeds the noise floor by a 
significant factor, launch logic to find the first message bit 
sample. 
a. The choice of this threshold is subjective. It should be 

small enough to detect weak signals but large enough to 
prevent a lot of false positives. We chose a value of 10× 
above the noise floor as a reasonable threshold that cap-
tures most decodable messages.

b. The preamble pattern produces several peaks. Since the 
best match is over the first 6 μs, store the first peak, start 
the search for the first message bit, and see if another 
larger peak occurs in the next 3 μs. If it does occur, store 
the new peak and reset the search for the start of the first 
message bit.

c. When the max peak occurs, start the message bit decod-
ing 2 μs later.

d. Figure 7 shows the noise floor in green and the result  
of correlating an ideal preamble to the incoming data. 
There are several peaks above the noise floor, but the  
one of interest is the one with the maximum amplitude. 
The sample for the first message bit occurs 2 μs after  
that peak.
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Figure 7. Calculation of noise floor and preamble correlation.

3. For each individual bit, sum the amplitude of the samples 
for the first ½ μs and second ½ μs. Whichever sum is larger 
determines whether the bit is Logic 1 or Logic 0.

4. Compute the checksum as the bit decisions are made. This 
requires some control logic for resetting the CRC registers 
when the first bit arrives, calculating the checksum for  
88 bits, and then emptying the CRC registers for the final  
24 bits. The ADS-B message is valid when the receive bits 
match the checksum.

5. Parse the message bits according to the Mode S standard 
(see Figure 8).
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Figure 8. Decoded Mode S messages.

The above figure from the MATLAB command window shows 
the two messages that were successfully decoded from the one 
million sample data set. The hex characters that make up the 
88-bit message and 24-bit checksum are displayed, and the 

results of the decoding process show the aircraft ID, message 
type, and aircraft velocity, altitude, and position.

MATLAB provides a powerful mathematical and signal pro-
cessing language to make it possible to solve this problem 
relatively easily. The MATLAB code needed to process the 
data samples and ultimately decode the messages is short— 
only 200 lines of MATLAB code. In addition, the interpreted 
nature of MATLAB makes it easy to interactively try out 
design ideas and quickly settle on a viable solution. Several 
timing mechanisms, thresholds, and noise levels were tested 
on various data sets to produce a satisfactory program. 

This MATLAB code has been tested on signals from aircraft 
flying in the local airspace and the decoded messages have 
been checked against sources like airframes.org and flight-
aware.com. The hardware and the code perform very well; 
we’ve been able to decode transmissions from planes at a  
distance of 50 miles.

Path to Implementation

Readers who are interested in following along with the  
Simulink model can find the files on the Analog Devices 
GitHub repository:
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink

MATLAB is a great environment for testing design ideas 
and running algorithms on a PC, but if the ultimate goal is 
to produce software or HDL to be used on an embedded 
platform, particularly one like a Zynq SoC, then Simulink 
is a good solution. Simulink is well suited to modeling the 
hardware specific elaborations needed to target the program-
mable device. A good workflow is to use MATLAB to develop 
and verify an algorithm, and then translate the design into 
Simulink and continue down the development path to a final 
hardware implementation. 

Fortunately, the MATLAB code for this algorithm processes 
data on a sample by sample basis, so the conversion to Sim-
ulink is fairly straightforward. In contrast to the 200 lines of 
MATLAB code, the Simulink model is simple to display and 
describe (see Figure 9).

© 1984-2015 The MathWorks, Inc. 

Figure 9. Simulink model of Mode S detection and decoding algorithm.

In Figure 9, you can see the first step in the decoding is to 
calculate the noise floor and the correlation to the preamble. 
Digital filter blocks are used for these calculations. The timing 
control block is implemented using Stateflow,® which is a 
state machine tool that is used to generate the timing, reset, 
and control signals for the rest of the decoding algorithm. 
Stateflow is very useful for models where you want to sepa-
rate the control logic from the data flow. Once the timing  
and triggers are activated, the block named BitProcess takes 

http://www.airframes.org/
http://flightaware.com/
http://flightaware.com/
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
https://github.com/analogdevicesinc/MathWorks_tools/tree/master/hil_models/ADSB_Simulink
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the input I/Q samples and calculates the data bits, and the 
CRC_Check block computes the checksum. The message 
parsing still takes place in a MATLAB script driven by this 
Simulink model.

Digging deeper into the model you can see a few features that 
make Simulink suitable for embedded development, especially 
for partitioning the design into functions targeted at a Zynq 
SoC and for generating HDL code and C code.

1. Simulink has excellent fixed-point support, so you can build 
and test a bit-true version of your design. The individual 
blocks allow you to set the word length and fractional length 
for the mathematical operations in your model. The digital 
filter block that is used to calculate the preamble correla-
tion is a good example (Figure 10). You can set the rounding 
mode and the overflow behavior for the calculations (Floor 
and Wrap are the simplest choices for math being done in 
HDL). In addition, you can specify different word lengths 
and fractional precisions for the product and accumulator 
operations for the filter (Figure 11). You can use word length 
choices that map to the receiver ADC and take advantage 
of hardware multipliers like the 18 bit × 25-bit multipliers 
within the DSP48 slices of the Zynq SoC.

© 1984-2015 The MathWorks, Inc. 

Figure 10. Simulink digital filter block used for preamble correlation, 
12-bit data types.
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Figure 11. Fixed-point data type settings.

2. Embedded designs often have many of modes of operation 
and conditionally executed algorithms. Stateflow is partic-
ularly good at managing these control signals. Stateflow 
gives you a visual representation of the control logic needed 
to detect and decode the Mode S messages. In Figure 12 
below, you can see the states in the logic are:
a. SyncSearch: look for the preamble in the captured samples
b. WaitForT0: look for the start of the first message bit
c. BitProcess: enable the bit processing 
d. EmptyReg: empty the checksum register and compare 

the bits to the output of the bit processing

As the detection and decoding algorithm progresses through 
the different states, the Stateflow block generates the signals 
that enable the bit processing, reset the bit decision counters 
and checksum registers, and read out the checksum bits at the 
end of the Mode S messages.

© 1984-2015 The MathWorks, Inc. 

Figure 12. Stateflow chart for decoding Mode S messages.

3. The Simulink block libraries give engineers options to 
work at a very high level or at a very fine level of detail. 
Simulink has high level blocks like Digital Filter, FFT, and 
Numerically Controlled Oscillator to make it easy to build 
signal processing designs. If more precise control of the 
design is required, possibly for speed or area optimizations, 
engineers can use low level blocks like Unit Delays, Logic 
Operators (XOR for example), and Switches. The 24-bit 
checksum in this model is a feedback shift register built 
using those low level blocks (Figure 13).

© 1984-2015 The MathWorks, Inc. 

Figure 13. Feedback shift register for Mode S checksum computation.
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This Simulink model is a hardware specific version of the 
MATLAB algorithm that detects and decodes Mode S mes-
sages. Simulink is a useful tool for bridging the gap between a 
behavioral algorithm written in MATLAB and implementation 
code for embedded hardware. You can introduce hardware 
specific elaborations into the Simulink model, run the model, 
and verify that the changes you’ve made don’t break the 
decoding algorithm. 

Conclusion

The combination of a Zynq SDR Rapid Prototyping Platform 
and MathWorks software gives communication engineers a 
new and flexible way to quickly prototype design ideas for 
wireless receivers. The high degree of programmability and 
performance provided by the AD9361/AD9364 agile wide-
band RF transceiver and the simple connectivity between the 
hardware and MATLAB environment makes a wide variety 
of interesting wireless signals available to the engineer. Engi-
neers who use MATLAB can quickly try a multitude of design 
ideas and settle on a promising solution. If the ultimate target 
of the design is an embedded processor, Simulink is a tool that 
engineers can use to refine the design with hardware specific 
ideas and ultimately produce the code used to program the 
processor. This workflow reduces the number of skills needed 
to design a wireless receiver and shortens the development 
cycle from concept to working prototype.

In the next article in this series, we will show how to use  
hardware in the loop (HIL) to validate a receiver design,  
capturing signals with the target transceiver while executing  
a model of the signal processing system on the host in  
Simulink for verification.
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Links to Source Code and Models

MATLAB Mode S Decoding Algorithm: https://github.com/
analogdevicesinc/MathWorks_tools/blob/master/hil_models/
ADSB_MATLAB/
Simulink Mode S Decoding Models: 
https://github.com/analogdevicesinc/MathWorks_tools/tree/
master/hil_models/ADSB_Simulink
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