
 Analog Dialogue 39-02, February (2005) 1

Enhance Processor Performance
in Open-Source Applications
By David Katz [david.katz@analog.com]
Tomasz Lukasiak [tomasz.lukasiak@analog.com]
Rick Gentile [richard.gentile@analog.com]

As “open source” C/C++ algorithms become an increasingly
popular alternative to royalty-based code in embedded processing
applications, they bring new technical challenges. Foremost among
these is how to optimize the acquired code to work well on the
chosen processor. This issue is paramount because a compiler
written for a given processor family will exploit that processor’s
strengths at the possible expense of inefficiencies in other areas.
Performance can be degraded when the same algorithm is run
directly out-of-the-box on a different platform. This article will
explore the porting of such open-source algorithms to Analog
Devices Blackfin® processors,1 outlining in the process a “plan
of attack” leading to code optimization.

What is Open Source?
The generally understood definition of “open source” refers
to any project with source code that is made available to other
programmers. Open-source software typically is developed
collaboratively within a community of software programmers and
distributed freely. The Linux2 operating system, for example, was
developed this way. If all goes well, the resulting effort provides
a continuously evolving, robust application that is well-tested
because so many different applications take advantage of the
code. Programmers are encouraged to use the code because they
do not have to pay for it or develop it themselves, thus accelerating
their project schedule. Their successful use of the code provides
further test information.

The certification stamp of “Open Source” is owned by the Open
Source Initiative (OSI). Code that is developed to be freely shared
and evolved can use the Open Source trademark if the distribution
terms conform to the OSI’s Open-Source Definition.3 This
requires that the software be redistributed to others under certain
guidelines. For example, under the General Public License (GPL),
source code must be made available so that other developers will
be able to improve or evolve it.

What is Ogg?
There is an entire community of developers who devote their
time to the cause of creating open standards and applications
for digital media. One such group is the Xiph.Org Foundation,4
a non-profit corporation whose purpose is to support and
develop free, open protocols and software to serve the public-,
developer-, and business markets. This umbrella organization
(see Figure 1) oversees the administration of such technologies
as video- (Theora), music- (the lossy Vorbis and lossless Flac),
and speech (Speex) codecs.

xiph.org

Speex
(SPEECH)

Vorbis
(MUSIC)

Flac
(MUSIC)

Theora
(VIDEO)

Figure 1. Xiph.org open-source ‘umbrella’

The term Ogg denotes the container format that holds multimedia
data. It generally serves as a prefix to the specific codec that
generates the data. Vorbis, an audio codec we’ll discuss here,
uses Ogg to store its bitstreams as files, so it is usually called
“Ogg Vorbis.”5 In fact, some portable media players are
advertised as supporting OGG files, where the “Vorbis” part
is implicit. Speex, a speech codec discussed below, also uses
the Ogg format to store its bitstreams as files on a computer.
However, Voice over Internet Protocol (VoIP) and other real-time
communications systems do not require file storage capability,
and a network layer like the Real-Time Transfer Protocol6 (RTP)
is used to encapsulate these streams. As a result, even Vorbis can
lose its Ogg shell when it is transported across a network via a
multicast distribution server.

What is Vorbis?
Vorbis is a fully open, patent-free, royalty-free audio compression
format. In many respects, it is very similar in function to the
ubiquitous MPEG-1/27 layer 3 (MP3) format and the newer
MPEG-48 (AAC) formats. This codec was designed for mid- to
high-quality (8-kHz to 48-kHz bandwidth, >16-bit, polyphonic)
audio at variable bit rates from 16 to 128 kbps/channel, so it is an
ideal format for music.

The original Vorbis implementation was developed using floating-
point arithmetic, mainly because of programming ease that led
to faster release. Since most battery-powered embedded systems
(like portable MP3 players) utilize less expensive, more battery-
efficient fixed-point processors, the open-source community of
developers created a fixed-point implementation of the Vorbis
decoder. Dubbed Tremor, the source code to this fixed-point
Vorbis decoder was released under a license that allows it to be
incorporated into open-source and commercial systems.

Before choosing a specific fixed-point architecture for porting the
Vorbis decoder, it is important to analyze the types of processing
involved in recovering audio from a compressed bitstream. A
generalized processor flow for the Vorbis decode process (and other
similar algorithms) is shown in Figure 2. Like many other decode
algorithms, there are two main stages: front-end and back-end.

UNIFIED MODELTRADITIONAL MODEL

UNPACK
HEADERS

UNPACK
AUDIO

PACKET

INPUT
BITSTREAM

FRONT-END PROCESSING

MCU

DSP

BACK-END PROCESSING

INVERSE
TRANSFORM

OUTPUT PCM
SAMPLES

DECOUPLE
CHANNELS

RECOVER
SPECTRUM

Figure 2. Generalized processor flow for the Vorbis
decode process.

During the front-end stage, the main activities are header and
packet unpacking, table lookups, and Huffman decoding.
Operations of this kind involve a lot of conditional code and a
relatively large amount of program space, so embedded developers
commonly use microcontrollers for the front end.

Back-end processing is defined by filtering functions, inverse
transforms, and general vector operations. In contrast to the front-
end phase, the back-end stage involves more loop constructs and

http://www.analog.com/analogdialogue

http://www.analog.com/processors/processors/blackfin/
http://www.analog.com/processors/processors/blackfin/
http://www.analog.com/processors/processors/blackfin/
http://www.linux.org/
http://www.opensource.org/docs/definition.php
http://www.xiph.org/
http://www.vorbis.com/
http://www.ietf.org/rfc/rfc1889.txt
http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm

2 Analog Dialogue 39-02, February (2005)

memory accesses, often using smaller amounts of code. For these
reasons, back-end processing in embedded systems has historically
been dominated by full-fledged DSPs.

The Blackfin processor architecture unifies microcontroller
(MCU) and DSP functionality, so there is no longer a need for
two separate devices. It can be used efficiently to implement both
front-end and back-end processing on a single chip.

What is Speex?
Speex is an open-source, patent-free audio compression format
designed for speech. While Vorbis is used to compress all types
of music and audio, Speex targets speech only. For that reason,
Speex can achieve much better results than Vorbis on speech at
the same quality level.

Just as Vorbis competes with royalty-based algorithms like
MP3 and AAC, Speex shares space in the speech codec market
with GSM-EFR and the G.72x algorithms, such as G.729
and G.722. Speex also has many features that are not present
in most other codecs. These include variable bit rate (VBR),
integration of multiple sampling rates in the same bitstream
(8 kHz, 16 kHz, and 32 kHz), and stereo encoding support.
Also, the original design goal for Speex was to facilitate
incorporation into Internet applications, so it is a very capable
component of VoIP phone systems.

Besides its unique technical features, Speex has the major advantages
that it costs “nothing”—and can be distributed and modified to
conform to a specific application. The source code is distributed
under a license similar to that of Vorbis. Because the maintainers
of the project realized the importance of embedding Speex into
small fixed-point processors, a fixed-point implementation has
been incorporated into the main code branch.

Optimizing Vorbis and Speex on Blackfin Processors
Immediate “out-of-the-box” code performance is a paramount
consideration when an existing application, such as Vorbis or
Speex, is ported to a new processor. However, software engineers
can reap a big payback by familiarizing themselves with the many
techniques available for optimizing overall performance. Some
require only minimal extra effort.

The first step in porting any piece of software to an embedded
processor like Blackfin is to customize the low-level I/O routines to
fit the system needs. For example, the reference code for both Vorbis
and Speex assumes that data originates from a file and processed
output is stored into a file (mainly because both implementations
were first developed to run on Unix/Linux systems where file I/O
routines were available). In an embedded media system, however,

the input and/or output are often connected to A/D and D/A
data converters that translate between the digital and real-world
analog domains. Figure 3 shows a conceptual overview of a possible
Vorbis-based media player implementation. The input bitstream
is transferred from a flash memory and the decoder output drives
an audio DAC. Also, while some media applications (for example,
portable music players) still use files to store data, many systems
replace storage with a network connection.

When optimizing a system like the Vorbis decoder to run efficiently,
it is a good idea to have an organized plan of attack. One possibility
is to first optimize the algorithm from within C, then to streamline
system data flows, and finally to tweak individual pieces of the code
at an assembly level. Figure 4 illustrates a representative reduction
of processor load through successive optimization steps and shows
how efficient this method can be.

OPTIMIZATION STEPS

P
R

O
C

E
S

S
O

R
 U

T
IL

IZ
A

T
IO

N
 (

%
)

100

0

10

20

30

40

50

60

70

80

90

COMPILER
OPTIMIZATION

SYSTEM
OPTIMIZATION

ASSEMBLY
OPTIMIZATION

USE
SPECIALIZED
INSTRUCTIONS

STREAMLINE
DATA FLOW

LET
COMPILER
OPTIMIZE

PARTITION
MEMORY
EFFICIENTLY

EXPLOIT
ARCHITECTURE

Figure 4. Steps in optimizing Vorbis source code on Blackfin,
leading to significantly reduced processor utilization.

Compiler Optimization
Probably the most useful tool for code optimization is a good profiler.
Using the statistical profiler in VisualDSP++ for Blackfin9 allows
a programmer to quickly focus on hotspots that become apparent
as the processor is executing code. In many implementations,
20% of the code takes 80% of the processing time. Focusing
on these critical sections yields the highest marginal returns.
It turns out that loops are prime candidates for optimization in
media algorithms like Vorbis because intensive number-crunching
usually occurs inside of them.

FLASH
MEMORY

(COMPRESSED
AUDIO DATA)

SDRAM

BOOT FLASH
MEMORY

(FIRMWARE)

Ogg Vorbis STREAM
COMPRESSED AUDIO

DECODED AUDIO
OVER SERIAL PORT

AUDIO
DAC

AUDIO
OUTPUT

Figure 3. Example: Vorbis media player implementation.

http://www.analog.com/en/prod/0%2C2877%2CVISUALDSPBF%2C00.html

 Analog Dialogue 39-02, February (2005) 3

There are also global approaches to code optimization. First, a
compiler can optimize for either memory conservation or speed.
Also, functions can be considered for automatic inlining of assembly
instructions into the C code. (The compiler’s inline keyword is
used to indicate that functions should have code generated inline at
the point of call. Doing this avoids various costs such as program
flow latencies, function entry and exit instructions, and parameter
passing overhead.) This, too, creates a tradeoff between space and
speed. Lastly, compilers like the one available for Blackfin can use
a two-phase process to derive relationships between various source
files within a single project to further speed up code execution
(inter-procedural analysis).

As mentioned above, most reference software for media algorithms
uses floating-point arithmetic. But software written with fractional
fixed-point machines in mind still misses a critical piece. The
language of choice for the majority of codec algorithms is C, but the
C language doesn’t “natively” support the use of fractional fixed-
point data. For this reason, many fractional fixed-point algorithms
are emulated with integer math. This may make the code highly
portable, but it doesn’t approach the performance attainable by
rewriting some math functions with machine-specific compiler
constructs for highest computational efficiency.

A specific example illustrating this point is shown in Figure 5.
The left column shows C code and Blackfin compiler output for
emulated fractional arithmetic that works on all integer machines.
One call to perform a 32-bit fractional multiplication takes
80 cycles. The r ight column shows the improvement in
performance obtainable by utilizing (mult _ fr1x32x32), an
intrinsic function of the Blackfin compiler that takes advantage
of the underlying fractional hardware. With this fairly easy
modification, an 86% speedup is achieved.

System Optimization
System optimization starts with proper memory layout. In the
best case, all code and data would fit inside the processor’s L1
memory. Unfortunately, this is not always possible, especially
when large C-based applications are implemented within a
networked application.

The real dilemma is that processors are optimized to move data
independently of the core via direct memory access (DMA), but
MCU programmers typically run using a cache model instead.
While core fetches are an inescapable reality, using DMA or cache
for large transfers is mandatory to preserve performance.

To introduce the discussion, let’s consider several attributes
inherently supported by the Blackfin bus architecture. The
first is the ability to arbitrate requests without core intervention.

Because internal memory is typically constructed in sub-banks,
simultaneous access by the DMA controller and the core can be
accomplished in a single cycle by placing data in separate banks.
For example, the core can be operating on data in one sub-bank
while the DMA is filling a new buffer in a second sub-bank. Under
certain conditions, simultaneous access to the same sub-bank is
also possible.

There is usually only one physical bus available for access to
external memory. As a result, the arbitration function becomes
more critical. Here’s an example that clarifies the challenge: on any
given cycle, an external memory location may be accessed to fill
the instruction cache at the same time that it serves as the source
and destination for incoming and outgoing data.

Instruction Execution
Blackfin processors use hierarchical memory architectures that
strive to balance several levels of memory having differing sizes
and performance levels. On-chip L1 memory, which is closest to the
core processor, operates at the full clock rate. This memory can be
configured as SRAM and/or cache. Applications that require the
most determinism can access on-chip SRAM in a single core clock
cycle. For systems that require larger code sizes, additional on-chip
and off-chip memory is available—with increased latency.

SDRAM is slower than L1 SRAM, but it’s necessary for storing
large programs and for data buffers. However, there are several
ways for programmers to take advantage of the fast L1 memory.
If the target application fits directly into L1 memory, no special
action is required other than for the programmer to map the
application code directly to this memory space—as in the Vorbis
example described above.

If the application code is too large for internal memory, as is the
case when adding, say, a networking component to a Vorbis codec,
a caching mechanism can be used to allow programmers to access
larger, less expensive external memories. The cache serves as a
way to automatically bring code into L1 memory as it is needed.
Once in L1, the code can be executed in a single core cycle, just
as if it were stored on-chip in the first place. The key advantage
of this process is that the programmer does not have to manage
the movement of code into and out of the cache.

The use of cache is best when the code being executed is somewhat
linear in nature. The instruction cache really performs two roles.
First, it helps pre-fetch instructions from external memory in a
more efficient manner. Also, since caches usually operate with
some type of “least recently used” algorithm, instructions that run
the most often are typically retained in cache. Therefore, if the
code has been fetched once and hasn’t yet been replaced, it will
be ready for execution the next time through the loop.

ORIGINAL
int32 MULT31(int32 a, int32 b) {
 int32 c;
 c = ((long long)a * b) << 1;
 return c;
}

R2 = R0 ; // lo(a)
R0 = R1 ; // lo(b)
R1 >>>= 0x1f ; // hi(a)
R3 = R2 >>> 31 ; // hi(b)
[SP + 0xc] = R3 ;
CALL ___mulli3 ; // 64x64 mult (43 cycles)
R2 = 1 ;
R3 = R2 >>> 31 ;
[SP + 0xc] = R3 ;
CALL ___lshftli ; // 64 shift (28 cycles)
P0 = [FP + 0x4] ;

80 cycles

IMPROVED
fract32 MULT31 (fract32 a, fract32 b) {
 fract32 c;
 c = mult_fr1x32x32(a, b);
 return c;
}

A1 = R0.L * R1.L (FU) || P0 = [FP + 0x4] ;
A1 = A1 >> 16 ; // use of accumulator
R2 = PACK (R0.L , R1.L) ;
CC = R2 ;
A1 += R0.H * R1.L (M) , A0 = R0.H * R1.H ;
CC &= AV0 ;
R2 = CC ;
A1 += R1.H * R0.L (M) ;
A1 = A1 >>> 15 ;
R0 = (A0 += A1) ;
R0 = R0 + R2 ;

11 cycles (14%)

Figure 5. Compiler intrinsic functions are an important optimization tool.

4 Analog Dialogue 39-02, February (2005)

Wary real-time programmers have not trusted cache to obtain
the best system performance because system performance will be
degraded if a block of instructions is not in cache when needed
for execution. This issue can be avoided by taking advantage of
cache-locking mechanisms. When critical instructions are loaded
into cache, the cache lines can be locked to keep the instructions
from being replaced. This allows programmers to keep what they
need in cache and allow less-critical instructions to be managed
by the caching mechanism itself. This capability sets the Blackfin
processor apart from other signal processors.

Data Management
Having discussed how code is best managed to improve
performance on this application, let’s now consider the options for
data movement. As an alternative to cache, data can be moved in
and out of L1 memory using a DMA controller that is independent
of the core. While the core is operating on one section of memory,
the DMA is bringing in the next data buffer to be processed.

The Blackfin data-memory architecture is just as important to
the overall system performance as the instruction-clock speed.
Because there are often multiple data transfers taking place at
any one time in a multimedia application, the bus structure must
support both core and DMA accesses to all areas of internal
and external memory. It is critical that arbitration of the DMA
controller and the core be handled automatically, or performance
will be greatly reduced. Core-to-DMA interaction should only
be required to set up the DMA controller, and later to respond to
interrupts when data is ready to be processed. In addition, a data
cache can also improve overall performance.

In the default mode, a Blackfin performs data fetches as a basic core
function. While this is typically the least efficient mechanism for
transferring data, it leads to the simplest programming model. A
fast scratchpad memory is usually available as part of L1 memory;
but for larger, off-chip buffers, the access time will suffer if the
core must fetch everything. Not only will it take multiple cycles to
fetch the data, but the core will also be busy doing the fetches.

So, wherever possible, DMA should always be employed for moving
data. Blackfin processors have DMA capabilities to transfer data
between peripherals and memory, as well as between different
memory segments. For example, our Vorbis implementation uses
DMA to transfer audio buffers to the audio D/A converter.

For this audio application, a “revolving-door” double-buffer
scheme is used to accommodate the DMA engine. As one half
of the circular double buffer is emptied by the serial port DMA,
the other half is filled with decoded audio data. To throttle the
rate at which the compressed data is decoded, the DMA interrupt
service routine (ISR) modifies a semaphore that the decoder can
read—in order to make sure that it is safe to write to a specific half
of the double buffer. In a design that lacks an operating system
(OS), polling a semaphore means wasted CPU cycles; however,
under an OS, the scheduler can switch to another task (like a user
interface) to keep the processor busy with real work.

The use of DMA can lead to incorrect results if data coherency is
not considered. For this reason, the audio buffer associated with
the audio DAC is placed in a noncacheable memory space, since
the cache might otherwise hold a newer version of the data than
the buffer to be transferred by the DMA.

Assembly Optimization
The final phase of optimization has to do with rewriting isolated
segments of the open-source C code in assembly language. The
best candidates for performance improvement by an assembly
rewrite are usually interrupt service routines (ISRs) and reusable
signal-processing modules.

The impetus for writing interrupt handlers in assembly is that
an inefficient ISR will slow the responses of other interrupt
handlers. For example, some audio designs must use the audio
ISR to format AC97 data bound for the audio DAC. Because
this happens periodically, a long audio ISR can slow down
responses of other events. The best way to reduce the interrupt
handler’s cycle count is to rewrite it in assembly.

A good example of a reusable signal-processing module is the
modified discrete cosine transform (MDCT) used in back-end
Vorbis processing to transform a time-domain signal into a
frequency domain representation. The compiler can never
produce code as “tight” as a skilled assembly programmer can,
so the C version of the MDCT is inefficient. An assembly version
of the same function can exploit the hardware features of the
Blackfin architecture, such as single-cycle butterfly add/subtract
and hardware bit-reversal.

Today, Blackfin ports of both Vorbis and Speex exist and are
available on request. These ports run on the ADSP-BF533
EZ -KIT Lite.10 An open- source port of Clinux is also
available at blackf in.uclinux.org.11 Together, these enable
a wide variety of applications that seek to integrate royalty-
free speech or music capability while retaining plenty of
processing room for additional features and functionality.
For example, the new ADSP-BF536/ADSP-BF537,12 with
its integrated Ethernet MAC, opens the door to low-cost
networked audio and voice applications. Clearly, open-source
code heralds a revolution in the embedded processing world,
and Blackfin processors are poised to take full advantage of
this situation. b

FOR FURTHER READING
Parr is, Cl i f f and Phi l Wr ight. Implementation Issues and
Tradeof fs for Dig i ta l Audio Decoders. Monmouthsh i re,
UK: ESPICO, Ltd.

REFERENCES—VALID AS OF FEBRUARY 2005
1http://www.analog.com/processors/processors/blackfin/
2http://www.linux.org/
3http://www.opensource.org/docs/definition.php
4http://www.xiph.org/
5http://www.vorbis.com/
6http://www.ietf.org/rfc/rfc1889.txt
7http://www.chiariglione.org/mpeg/
8http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
9http://www.analog.com/en/prod/0,2877,VISUALDSPBF,00.html
10http: / /www.analog.com/en /prod /0,2877,BF533 -

HARDWARE,00.html
11http://blackfin.uclinux.org/
12http://www.analog.com/Analog_Root/static /promotions /

blackfin750/index.html

http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://blackfin.uclinux.org/
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html
http://www.analog.com/processors/processors/blackfin/
http://www.linux.org/
http://www.opensource.org/docs/definition.php
http://www.xiph.org/
http://www.vorbis.com/
http://www.ietf.org/rfc/rfc1889.txt
http://www.chiariglione.org/mpeg/
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
http://www.analog.com/en/prod/0%2C2877%2CVISUALDSPBF%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://www.analog.com/en/prod/0%2C2877%2CBF533-HARDWARE%2C00.html
http://blackfin.uclinux.org/
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html
http://www.analog.com/Analog_Root/static/promotions/blackfin750/index.html

	What is Open Source?
	What is Ogg?
	What is Vorbis?
	What is Speex?
	Optimizing Vorbis and Speex on Blackfin Processors
	Compiler Optimization
	System Optimization
	Instruction Execution
	Data Management
	Assembly Optimization
	FOR FURTHER READING
	REFERENCES—VALID AS OF FEBRUARY 2005

