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As “open source” C/C++ algorithms become an increasingly 
popular alternative to royalty-based code in embedded processing 
applications, they bring new technical challenges. Foremost among 
these is how to optimize the acquired code to work well on the 
chosen processor. This issue is paramount because a compiler 
written for a given processor family will exploit that processor’s 
strengths at the possible expense of inefficiencies in other areas. 
Performance can be degraded when the same algorithm is run 
directly out-of-the-box on a different platform. This article will 
explore the porting of such open-source algorithms to Analog 
Devices Blackfin® processors,1 outlining in the process a “plan 
of attack” leading to code optimization. 

What is Open Source?
The generally understood definition of “open source” refers 
to any project with source code that is made available to other 
programmers. Open-source software typically is developed 
collaboratively within a community of software programmers and 
distributed freely. The Linux2 operating system, for example, was 
developed this way. If all goes well, the resulting effort provides 
a continuously evolving, robust application that is well-tested 
because so many different applications take advantage of the 
code. Programmers are encouraged to use the code because they 
do not have to pay for it or develop it themselves, thus accelerating 
their project schedule. Their successful use of the code provides 
further test information.

The certification stamp of “Open Source” is owned by the Open 
Source Initiative (OSI). Code that is developed to be freely shared 
and evolved can use the Open Source trademark if the distribution 
terms conform to the OSI’s Open-Source Definition.3 This 
requires that the software be redistributed to others under certain 
guidelines. For example, under the General Public License (GPL), 
source code must be made available so that other developers will 
be able to improve or evolve it. 

What is Ogg?
There is an entire community of developers who devote their 
time to the cause of creating open standards and applications 
for digital media. One such group is the Xiph.Org Foundation,4 
a non-profit corporation whose purpose is to support and 
develop free, open protocols and software to serve the public-, 
developer-, and business markets. This umbrella organization 
(see Figure 1) oversees the administration of such technologies 
as video- (Theora), music- (the lossy Vorbis and lossless Flac), 
and speech (Speex) codecs.

xiph.org

Speex
(SPEECH)

Vorbis
(MUSIC)

Flac
(MUSIC)

Theora
(VIDEO)

Figure 1. Xiph.org open-source ‘umbrella’

The term Ogg denotes the container format that holds multimedia 
data. It generally serves as a prefix to the specific codec that 
generates the data. Vorbis, an audio codec we’ll discuss here, 
uses Ogg to store its bitstreams as files, so it is usually called 
“Ogg Vorbis.”5 In fact, some portable media players are 
advertised as supporting OGG files, where the “Vorbis” part 
is implicit. Speex, a speech codec discussed below, also uses 
the Ogg format to store its bitstreams as files on a computer. 
However, Voice over Internet Protocol (VoIP) and other real-time 
communications systems do not require file storage capability, 
and a network layer like the Real-Time Transfer Protocol6 (RTP) 
is used to encapsulate these streams. As a result, even Vorbis can 
lose its Ogg shell when it is transported across a network via a 
multicast distribution server. 

What is Vorbis?
Vorbis is a fully open, patent-free, royalty-free audio compression 
format. In many respects, it is very similar in function to the 
ubiquitous MPEG-1/27 layer 3 (MP3) format and the newer 
MPEG-48 (AAC) formats. This codec was designed for mid- to 
high-quality (8-kHz to 48-kHz bandwidth, >16-bit, polyphonic) 
audio at variable bit rates from 16 to 128 kbps/channel, so it is an 
ideal format for music.

The original Vorbis implementation was developed using floating-
point arithmetic, mainly because of programming ease that led 
to faster release. Since most battery-powered embedded systems 
(like portable MP3 players) utilize less expensive, more battery-
efficient fixed-point processors, the open-source community of 
developers created a fixed-point implementation of the Vorbis 
decoder. Dubbed Tremor, the source code to this fixed-point 
Vorbis decoder was released under a license that allows it to be 
incorporated into open-source and commercial systems.

Before choosing a specific fixed-point architecture for porting the 
Vorbis decoder, it is important to analyze the types of processing 
involved in recovering audio from a compressed bitstream. A 
generalized processor flow for the Vorbis decode process (and other 
similar algorithms) is shown in Figure 2. Like many other decode 
algorithms, there are two main stages: front-end and back-end.
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Figure 2. Generalized processor flow for the Vorbis 
decode process.

During the front-end stage, the main activities are header and 
packet unpacking, table lookups, and Huffman decoding. 
Operations of this kind involve a lot of conditional code and a 
relatively large amount of program space, so embedded developers 
commonly use microcontrollers for the front end.

Back-end processing is defined by filtering functions, inverse 
transforms, and general vector operations. In contrast to the front-
end phase, the back-end stage involves more loop constructs and 
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memory accesses, often using smaller amounts of code. For these 
reasons, back-end processing in embedded systems has historically 
been dominated by full-fledged DSPs.

The Blackfin processor architecture unifies microcontroller 
(MCU) and DSP functionality, so there is no longer a need for 
two separate devices. It can be used efficiently to implement both 
front-end and back-end processing on a single chip. 

What is Speex?
Speex is an open-source, patent-free audio compression format 
designed for speech. While Vorbis is used to compress all types 
of music and audio, Speex targets speech only. For that reason, 
Speex can achieve much better results than Vorbis on speech at 
the same quality level.

Just as Vorbis competes with royalty-based algorithms like 
MP3 and AAC, Speex shares space in the speech codec market 
with GSM-EFR and the G.72x algorithms, such as G.729 
and G.722. Speex also has many features that are not present 
in most other codecs. These include variable bit rate (VBR), 
integration of multiple sampling rates in the same bitstream 
(8 kHz, 16 kHz, and 32 kHz), and stereo encoding support. 
Also, the original design goal for Speex was to facilitate 
incorporation into Internet applications, so it is a very capable 
component of VoIP phone systems.

Besides its unique technical features, Speex has the major advantages 
that it costs “nothing”—and can be distributed and modified to 
conform to a specific application. The source code is distributed 
under a license similar to that of Vorbis. Because the maintainers 
of the project realized the importance of embedding Speex into 
small fixed-point processors, a fixed-point implementation has 
been incorporated into the main code branch.

Optimizing Vorbis and Speex on Blackfin Processors
Immediate “out-of-the-box” code performance is a paramount 
consideration when an existing application, such as Vorbis or 
Speex, is ported to a new processor. However, software engineers 
can reap a big payback by familiarizing themselves with the many 
techniques available for optimizing overall performance. Some 
require only minimal extra effort. 

The first step in porting any piece of software to an embedded 
processor like Blackfin is to customize the low-level I/O routines to 
fit the system needs. For example, the reference code for both Vorbis 
and Speex assumes that data originates from a file and processed 
output is stored into a file (mainly because both implementations 
were first developed to run on Unix/Linux systems where file I/O 
routines were available). In an embedded media system, however, 

the input and/or output are often connected to A/D and D/A 
data converters that translate between the digital and real-world 
analog domains. Figure 3 shows a conceptual overview of a possible 
Vorbis-based media player implementation. The input bitstream 
is transferred from a flash memory and the decoder output drives 
an audio DAC. Also, while some media applications (for example, 
portable music players) still use files to store data, many systems 
replace storage with a network connection.

When optimizing a system like the Vorbis decoder to run efficiently, 
it is a good idea to have an organized plan of attack. One possibility 
is to first optimize the algorithm from within C, then to streamline 
system data flows, and finally to tweak individual pieces of the code 
at an assembly level. Figure 4 illustrates a representative reduction 
of processor load through successive optimization steps and shows 
how efficient this method can be.
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Figure 4. Steps in optimizing Vorbis source code on Blackfin, 
leading to significantly reduced processor utilization.

Compiler Optimization
Probably the most useful tool for code optimization is a good profiler. 
Using the statistical profiler in VisualDSP++ for Blackfin9 allows 
a programmer to quickly focus on hotspots that become apparent 
as the processor is executing code. In many implementations, 
20% of the code takes 80% of the processing time. Focusing 
on these critical sections yields the highest marginal returns. 
It turns out that loops are prime candidates for optimization in 
media algorithms like Vorbis because intensive number-crunching 
usually occurs inside of them.
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Figure 3. Example: Vorbis media player implementation.
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There are also global approaches to code optimization. First, a 
compiler can optimize for either memory conservation or speed. 
Also, functions can be considered for automatic inlining of assembly 
instructions into the C code. (The compiler’s inline keyword is 
used to indicate that functions should have code generated inline at 
the point of call. Doing this avoids various costs such as program 
flow latencies, function entry and exit instructions, and parameter 
passing overhead.) This, too, creates a tradeoff  between space and 
speed. Lastly, compilers like the one available for Blackfin can use 
a two-phase process to derive relationships between various source 
files within a single project to further speed up code execution 
(inter-procedural analysis).

As mentioned above, most reference software for media algorithms 
uses floating-point arithmetic. But software written with fractional 
fixed-point machines in mind still misses a critical piece. The 
language of choice for the majority of codec algorithms is C, but the 
C language doesn’t “natively” support the use of fractional fixed-
point data. For this reason, many fractional fixed-point algorithms 
are emulated with integer math. This may make the code highly 
portable, but it doesn’t approach the performance attainable by 
rewriting some math functions with machine-specific compiler 
constructs for highest computational efficiency.

A specific example illustrating this point is shown in Figure 5. 
The left column shows C code and Blackfin compiler output for 
emulated fractional arithmetic that works on all integer machines. 
One call to perform a 32-bit fractional multiplication takes 
80 cycles. The r ight column shows the improvement in 
performance obtainable by utilizing (mult _ fr1x32x32), an 
intrinsic function of the Blackfin compiler that takes advantage 
of the underlying fractional hardware. With this fairly easy 
modification, an 86% speedup is achieved.

System Optimization
System optimization starts with proper memory layout. In the 
best case, all code and data would fit inside the processor’s L1 
memory. Unfortunately, this is not always possible, especially 
when large C-based applications are implemented within a 
networked application.

The real dilemma is that processors are optimized to move data 
independently of the core via direct memory access (DMA), but 
MCU programmers typically run using a cache model instead. 
While core fetches are an inescapable reality, using DMA or cache 
for large transfers is mandatory to preserve performance. 

To introduce the discussion, let’s consider several attributes 
inherently supported by the Blackfin bus architecture. The 
first is the ability to arbitrate requests without core intervention. 

Because internal memory is typically constructed in sub-banks, 
simultaneous access by the DMA controller and the core can be 
accomplished in a single cycle by placing data in separate banks. 
For example, the core can be operating on data in one sub-bank 
while the DMA is filling a new buffer in a second sub-bank. Under 
certain conditions, simultaneous access to the same sub-bank is 
also possible. 

There is usually only one physical bus available for access to 
external memory. As a result, the arbitration function becomes 
more critical. Here’s an example that clarifies the challenge: on any 
given cycle, an external memory location may be accessed to fill 
the instruction cache at the same time that it serves as the source 
and destination for incoming and outgoing data. 

Instruction Execution
Blackfin processors use hierarchical memory architectures that 
strive to balance several levels of memory having differing sizes 
and performance levels. On-chip L1 memory, which is closest to the 
core processor, operates at the full clock rate. This memory can be 
configured as SRAM and/or cache. Applications that require the 
most determinism can access on-chip SRAM in a single core clock 
cycle. For systems that require larger code sizes, additional on-chip 
and off-chip memory is available—with increased latency. 

SDRAM is slower than L1 SRAM, but it’s necessary for storing 
large programs and for data buffers. However, there are several 
ways for programmers to take advantage of the fast L1 memory. 
If the target application fits directly into L1 memory, no special 
action is required other than for the programmer to map the 
application code directly to this memory space—as in the Vorbis 
example described above. 

If the application code is too large for internal memory, as is the 
case when adding, say, a networking component to a Vorbis codec, 
a caching mechanism can be used to allow programmers to access 
larger, less expensive external memories. The cache serves as a 
way to automatically bring code into L1 memory as it is needed. 
Once in L1, the code can be executed in a single core cycle, just 
as if it were stored on-chip in the first place. The key advantage 
of this process is that the programmer does not have to manage 
the movement of code into and out of the cache. 

The use of cache is best when the code being executed is somewhat 
linear in nature. The instruction cache really performs two roles. 
First, it helps pre-fetch instructions from external memory in a 
more efficient manner. Also, since caches usually operate with 
some type of “least recently used” algorithm, instructions that run 
the most often are typically retained in cache. Therefore, if the 
code has been fetched once and hasn’t yet been replaced, it will 
be ready for execution the next time through the loop. 

ORIGINAL
int32 MULT31(int32 a, int32 b) {
 int32 c;
 c = ((long long)a * b) << 1;
 return c;
}

R2 = R0 ; // lo(a)
R0 = R1 ; // lo(b)
R1 >>>= 0x1f ; // hi(a)
R3 = R2 >>> 31 ; // hi(b)
[ SP + 0xc ] = R3 ;
CALL ___mulli3 ; // 64x64 mult (43 cycles)
R2 = 1 ;
R3 = R2 >>> 31 ;
[ SP + 0xc ] = R3 ;
CALL ___lshftli ; // 64 shift (28 cycles)
P0 = [ FP + 0x4 ] ;

80 cycles

IMPROVED
fract32 MULT31 (fract32 a, fract32 b) {
 fract32 c;
 c = mult_fr1x32x32(a, b);
 return c;
}

A1 = R0.L * R1.L ( FU ) || P0 = [ FP + 0x4 ] ;
A1 = A1 >> 16 ; // use of accumulator
R2 = PACK ( R0.L , R1.L ) ;
CC = R2 ;
A1 += R0.H * R1.L ( M ) , A0 = R0.H * R1.H ;
CC &= AV0 ;
R2 = CC ;
A1 += R1.H * R0.L ( M ) ;
A1 = A1 >>> 15 ;
R0 = ( A0 += A1 ) ;
R0 = R0 + R2 ;

11 cycles (14%)

Figure 5. Compiler intrinsic functions are an important optimization tool.
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Wary real-time programmers have not trusted cache to obtain 
the best system performance because system performance will be 
degraded if a block of instructions is not in cache when needed 
for execution. This issue can be avoided by taking advantage of 
cache-locking mechanisms. When critical instructions are loaded 
into cache, the cache lines can be locked to keep the instructions 
from being replaced. This allows programmers to keep what they 
need in cache and allow less-critical instructions to be managed 
by the caching mechanism itself. This capability sets the Blackfin 
processor apart from other signal processors.

Data Management
Having discussed how code is best managed to improve 
performance on this application, let’s now consider the options for 
data movement. As an alternative to cache, data can be moved in 
and out of L1 memory using a DMA controller that is independent 
of the core. While the core is operating on one section of memory, 
the DMA is bringing in the next data buffer to be processed. 

The Blackfin data-memory architecture is just as important to 
the overall system performance as the instruction-clock speed. 
Because there are often multiple data transfers taking place at 
any one time in a multimedia application, the bus structure must 
support both core and DMA accesses to all areas of internal 
and external memory. It is critical that arbitration of the DMA 
controller and the core be handled automatically, or performance 
will be greatly reduced. Core-to-DMA interaction should only 
be required to set up the DMA controller, and later to respond to 
interrupts when data is ready to be processed. In addition, a data 
cache can also improve overall performance. 

In the default mode, a Blackfin performs data fetches as a basic core 
function. While this is typically the least efficient mechanism for 
transferring data, it leads to the simplest programming model. A 
fast scratchpad memory is usually available as part of L1 memory; 
but for larger, off-chip buffers, the access time will suffer if the 
core must fetch everything. Not only will it take multiple cycles to 
fetch the data, but the core will also be busy doing the fetches. 

So, wherever possible, DMA should always be employed for moving 
data. Blackfin processors have DMA capabilities to transfer data 
between peripherals and memory, as well as between different 
memory segments. For example, our Vorbis implementation uses 
DMA to transfer audio buffers to the audio D/A converter. 

For this audio application, a “revolving-door” double-buffer 
scheme is used to accommodate the DMA engine. As one half 
of the circular double buffer is emptied by the serial port DMA, 
the other half is filled with decoded audio data. To throttle the 
rate at which the compressed data is decoded, the DMA interrupt 
service routine (ISR) modifies a semaphore that the decoder can 
read—in order to make sure that it is safe to write to a specific half 
of the double buffer. In a design that lacks an operating system 
(OS), polling a semaphore means wasted CPU cycles; however, 
under an OS, the scheduler can switch to another task (like a user 
interface) to keep the processor busy with real work.

The use of DMA can lead to incorrect results if data coherency is 
not considered. For this reason, the audio buffer associated with 
the audio DAC is placed in a noncacheable memory space, since 
the cache might otherwise hold a newer version of the data than 
the buffer to be transferred by the DMA. 

Assembly Optimization
The final phase of optimization has to do with rewriting isolated 
segments of the open-source C code in assembly language. The 
best candidates for performance improvement by an assembly 
rewrite are usually interrupt service routines (ISRs) and reusable 
signal-processing modules. 

The impetus for writing interrupt handlers in assembly is that 
an inefficient ISR will slow the responses of other interrupt 
handlers. For example, some audio designs must use the audio 
ISR to format AC97 data bound for the audio DAC. Because 
this happens periodically, a long audio ISR can slow down 
responses of other events. The best way to reduce the interrupt 
handler’s cycle count is to rewrite it in assembly. 

A good example of a reusable signal-processing module is the 
modified discrete cosine transform (MDCT) used in back-end 
Vorbis processing to transform a time-domain signal into a 
frequency domain representation. The compiler can never 
produce code as “tight” as a skilled assembly programmer can, 
so the C version of the MDCT is inefficient. An assembly version 
of the same function can exploit the hardware features of the 
Blackfin architecture, such as single-cycle butterfly add/subtract 
and hardware bit-reversal.

Today, Blackfin ports of both Vorbis and Speex exist and are 
available on request. These ports run on the ADSP-BF533 
EZ -KIT Lite.10 An open- source port of Clinux is also 
available at blackf in.uclinux.org.11 Together, these enable 
a wide variety of applications that seek to integrate royalty-
free speech or music capability while retaining plenty of 
processing room for additional features and functionality. 
For example, the new ADSP-BF536/ADSP-BF537,12 with 
its integrated Ethernet MAC, opens the door to low-cost 
networked audio and voice applications. Clearly, open-source 
code heralds a revolution in the embedded processing world, 
and Blackfin processors are poised to take full advantage of 
this situation. b
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