

在开关模式电源中. 当脉冲被忽略时

Frederik Dostal. 现场应用工程师

即使是具有固定开关频率的开关电源、也并非总是显示连续的 脉冲。在某些情况下, 由于各种原因, 脉冲会被忽略。在考虑 输出纹波电压和EMI效应时,这一点非常重要。

用于电压转换的开关稳压器通常采用可调的或固定的开关频 率。这个值通常在开关稳压器IC数据手册的第一页列出。对于 电源电路来说, 开关频率的选择是很重要的, 因为它会影响到 外部无源器件的尺寸和成本。此外,开关频率还会影响可实现 的转换效率。对于整个电路(不仅是功率转换器,还包括系统 中的其他电路部分), 开关频率的选择也非常重要。我们通常 在整个系统受干扰最小的频率范围内选择开关频率。受印刷电 路板的寄生效应影响, 电源的开关频率通常通过电容和电感耦 合方式与电路的许多部分耦合。

在选择了正确的开关频率之后、电路设计人员在评估实际电路 时, 往往会得出令人惊讶的结果。在选定的开关频率下, 所设 计的电路常常不能按预期开关。通常有以下两方面原因。

突发模式

许多应用需要非常高的转换效率,即使在低输出负载下也是如 此。如果所需的输出功率只有几mW,开关稳压器本身的供电电 流是严重不成比例的。如果以百分比表示效率,这一点尤其明 显。为了提高这些情况下的效率,开关稳压器IC通常会配置特 殊的突发模式。图1显示在突发模式®下, 开关稳压器的电压随 时间的变化。在切换到较长的暂停阶段之前、开关节点会开关 一次。在这个暂停阶段,开关稳压器IC的许多功能进入睡眠模 式、只需消耗极少量的电能。图1显示了开关节点电压、电感电 流和输出电压。

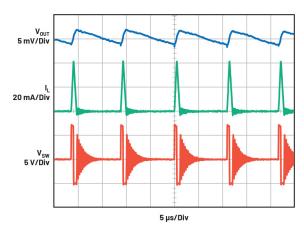


图1. 开关模式电源中的突发模式概念。

在突发模式下工作时、输出电压的纹波更大。相比在正常工作 条件下由开关频率设置的电压纹波,其频率要低得多。根据电 压转换器IC和电路条件、在突发阶段操作时、通常会存在极少 量的脉冲, 例如, 一个脉冲或大量脉冲。通常, 在输出电压达 到设定的上限阈值之前, 会产生尽可能多的脉冲。之后会暂停 一段时间, 直到输出电压降到低于阈值下限。在这种情况下. 在脉冲期间, 仍然会按照选定的开关频率进行开关, 但由突发 阶段定义的更低的频率和暂停阶段也会出现在频谱中。

脉冲跳频模式

另一种模式是脉冲跳频模式。许多类型的功率转换器都提供这 种模式。在许多拓扑设计中, 开关节点上每出现一次脉冲时, 会有一定量的电能基于正常的最低导通时间从功率转换器的输 入端移动到输出端。但是, 如果在这时候, 负载不需要或只需 要很少量的电能、输出电压会上升。一些脉冲会被跳过、以防 输出电压上升过多。此时,输出电压的电压纹波也会增大。脉 冲跳频模式通常由反馈节点上的过压比较器激活。例如,如果 跳过每秒脉冲, 即可在频谱中看到相当于设置开关频率一半的 开关频率 (FFT表示法)。

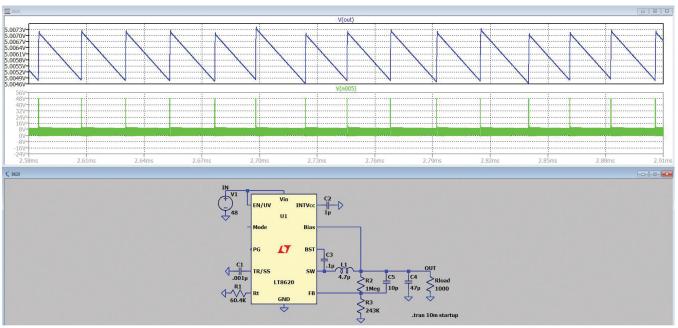


图2. 使用LTspice®,仿真处于突发模式下的LT8620降压型开关稳压器。

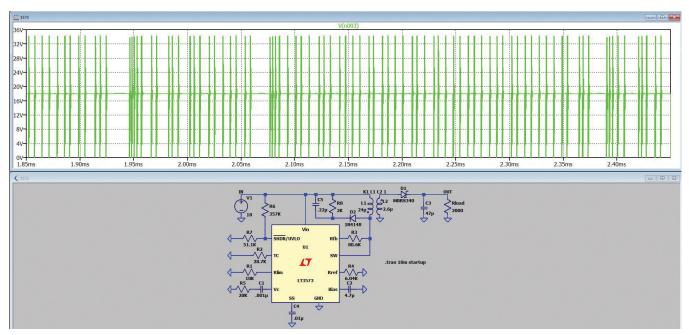


图3.处于脉冲跳频模式下的LT3573, 负载很低。

与突发模式相比,在脉冲跳频模式下,只需让输出电压保持 在特定范围内,不会节省大量电能。所以,转换效率只会稍 稍提高。

因此,如果开关稳压器以不同于设置频率的开关频率开关,可能是因为电路处于突发模式或脉冲跳频模式。

但是,可能有其他原因导致在开关节点出现非连续脉冲。其中包括:一般控制环路不稳定、达到现有的限流值、温度超过热 关断限值等。

结论

开关模式电源能够以不同于预期开关频率的脉冲运行。这一般 发生在低负载条件下。理解这种行为背后的机制,这在评估开 关模式电源电路时是非常有用的。设计人员可以以此为依据, 准确推断电源是否正在可靠运行。

作者简介

Frederik Dostal曾就读于德国埃尔兰根大学微电子学专业。他于2001年开始工作,涉足电源管理业务,曾担任各种应用工程师职位,并在亚利桑那州凤凰城工作了4年,负责开关模式电源。他于2009年加入ADI公司,并在慕尼黑ADI公司担任电源管理现场应用工程师。联系方式:frederik.dostal@analog.com。

在线支持社区

► ADI EngineerZone™ 中文技术论坛

访问ADI在线支持社区, 中文技术论坛、 与ADI技术专家互动。提出您的 棘手设计问题、浏览常见问题 解答,或参与讨论。

请访问ez.analog.com/cn

