

混合波束赋形接收机 动态范围一从理论到实践

Peter Delos, 技术主管 Sam Ringwood, 应用工程师 Mike Jones, 首席电气设计工程师

摘要

本文介绍了相控阵混合波束赋形架构中接收机动态范围指标 的测量与分析的比较。测量使用市售32通道开发平台进行验 证分析。本文回顾了子阵列波束赋形接收机的分析,重点是 处理模拟子阵列中信号合并点处的信号增益与噪声增益之间 的差异。本文分析了开发平台接收机性能,并与测量结果进 行了比较。最后讨论了结果要点,旨在提供一个可用于预测 更大系统性能的测量与建模基准。

引言

相控阵波束赋形架构大致可分为模拟波束赋形系统、数字波 束赋形系统或以上两者的某种组合——采用模拟子阵列,经 过数字处理后形成最终天线波束方向图。后一类(基于数字 组合的子阵列)结合了模拟和数字波束赋形,通常称为混合 波束赋形。 在业界对软件定义天线的探索中,人们非常希望实现全数字相 控阵,以便最大限度地提高天线方向图的可编程性。在实践 中,特别是随着频率提高,封装、功耗和数字处理方面的挑战 迫使人们减少数字通道数。混合波束赋形缓解了实施工程师常 常面对的数字通道密度需求,因此可能会在未来某个时间作为 一种实用方案出现。¹

图1展示了一个代表性混合波束赋形架构,显示了该架构中包含 的主要子系统。大多数混合波束赋形系统都是这一概念的某种 变体。从右到左观察框图,可以直观地理解该架构,空中的波 前入射到天线元件,经过微波电路到达数据转换器,再进行数 字处理后形成最终的数字波束数据。框图将混合波束赋形架构 展示为七个子系统的组合:

图1.混合波束赋形RF一般框图

- ▶1. 天线元件:将空中的微波能量转换为同轴介质上的微波 信号。
- ▶ 2. 发射/接收(T/R)模块:包含接收低噪声放大器(LNA)和发射高 功率放大器(HPA),以及用于在发射和接收之间进行选择的 开关。
- ▶ 3.模拟波束赋形:将选定数量的元件组合成一个模拟子阵列。
- ▶ 4. 微波上/下变频:如果工作频率大于数据转换器的工作范围,则使用频率转换将工作频率转换为适合数据转换器处理的中频(IF)。
- ▶ 5. 数据转换器:将微波频率转换为数字。
- ▶ 6. 数字上/下变频:随着高速数据转换器的普及,数据转换器的速率通常大于处理带宽所需的速率。使用数据转换器集成电路(IC)中嵌入的数字上/下变频特性,将同相/正交相位(I/0)数据流降低到与应用的处理带宽相称的较低速率,可以节省系统功耗。
- ▶ 7. 数字波束赋形:最后,将1/0数据流加权合并,形成最终的 数字波束数据。

微波工程师在混合波束赋形架构中面临的挑战之一是随着系统 架构的演变进行性能预测。级联微波分析已被业界充分理解, 相关文献非常完备。数字波束赋形测量也有文献记载²³⁴,但实 测与建模得到的混合波束赋形微波指标比较方面的文献还很有 限,缺乏一个用于外推到更大系统设计的基准。

本文将讨论混合波束赋形系统的接收机动态范围分析,并比较 一个32元件混合波束赋形测试平台的测量值和预测值。最初开 发的混合波束赋形原型平台是为了在一个代表性架构中验证IC 设计,并支持X波段 (8 GHz至12 GHz) 相控阵架构的快速原型设 计。然而,随着表征的开始,很明显需要一种系统性预测性能 指标的方法。我们的目的是记述分析方法以及测量数据的比 较,使工程师能够利用一个经表征的基准来构建类似但更大的 系统。

原型硬件

我们开发了一个32元件的混合波束赋形原型平台⁵,如图2所示。 详细信号链如图3所示。

前端由32个发射/接收模块和8个模拟波束赋形IC (BFIC)组成。两个 BFIC输出组合产生四个8元件子阵列。四个子阵列连接到一个4通 道微波上/下变频器。该4通道微波上/下变频器再连接到一个包 含四个模数转换器(ADC)和四个数模转换器(DAC)的数字转换器IC。 ADC以4 GSPS采样,而DAC以12 GSPS采样。

微波频率设置为8 GHz至12 GHz。本振(L0)设置为具有固定IF (中心频率为4.5 GHz)的高端L0。在该IF频率时, ADC在第三奈奎斯特区进行采样。

利用一个商用FPGA板进行数据采集。我们开发了一个MATLAB®计 算机控制界面,以便能够在真实硬件中快速表征仿真波形。数 据分析及后续处理在MATLAB中进行。

模拟子阵列级联分析

除信号合并点外,所有传统级联方程均适用于模拟子阵列的级 联分析。如果信号在合并点处的幅度和相位匹配,并且噪声不 相关,那么信号增益和噪声增益将不同。因此,需要一种方法 来以不同方式跟踪这些项。

图2. X波段 (8 GHz至12 GHz) 相控阵原型设计和开发系统

所用方法

图4说明了所使用的方法。图4a显示了信号增益和噪声增益分开 的点。真正的合并器具有插入损耗项和理论合并项。这可以用 图4b来解释。最后,如果跟踪噪声温度(如图4c所示),那么 可以在每一级的输入和输出端跟踪噪声功率。

为了计算任意级输出端的噪声功率,须将器件折合到输入端的 噪声与输入噪声线性相加,然后转换回dBm/Hz并加到器件噪声 增益上。

Component Noise Out $\left(\frac{dBm}{Hz}\right) = Component Noise Gain (dB)$ + $10log10\left(10 \frac{Noise In\left(\frac{\text{dBm}}{\text{Hz}}\right)}{10}\right)$ (1) 其中k为玻尔兹曼常数。 dBm Input Referred Component Noise Hz +10 -10 AD9081 Stingray XUD1a 4:1 Subarray NC0_RX ADAR1000 ADTR1107 HMC903 ADRE5020 Channel 1 Element 1 ADL811 BFCN-5200+ B0960C2S LFCN-123+ HMC773A IMC652 ş \otimes ADC ADRF5020 HMC903 HMC652 F0Y-6-24 HMC652 DSF HMC8411 Element 4 HMC652 DAC LO Ch1 Element 8 4:1 Subarray Channel 2 NCO_TX Channel 3 NCO_RX Channel 4 HMC963 EP2K1+ 1 O Ch1 ADRE5020 ADC, RF32 LO Ch2 DSF Element 32 ADF4371 4:1 Subarray LO Ch3 DAC FP2K1+ LO Ch4 🗌 🕢 vсхо EP2K1+ HMC963 NCO_TX LO IN EXT REF Receiver Measurements After Calibration Receiver Measurements (High Gain Mode) ADC Measurements at 4.5 GHz Input Single Channel On, Other Channels Off G = 15.5 dB. NF = 14.3 dB. 0IP3 = 23 dBm G = 18.5 dB, NF = 4 dB, OIP3 = -4 dBm Full Scale ~ 6 dBm NSD ~ -147 dBFS/Hz IIP3 ~ 35 dBm 图3. 原型硬件详细框图 T/R Module Analog Beamformer 1:N Ideal 1:N Combiner Combiner Input 1 Input 1 Output Output Insertion **Cascaded Analysis Applies** Loss At Combiner, Track Noise Power Input N -Input N and Signal Power Separately (a) Analog Beamforming RF Analysis (b) Separate Combiner Terms to Insertion Loss Plus an Ideal Combiner ▶ T_s: Source Input Noise Temperature T_e: Device Input Referred Noise Temperature T_{OUT} = G(T_S + T_e)
 Noise Power = kT

(c) In Cascaded Noise Budgets, Track Noise Temperature and Noise Power

图4.一种用于模拟相干合并的级联分析方法:分别跟踪信号增益和噪声增益。跟踪器件噪声温度和折合到输入端的器件噪声功率提供了一种分 别跟踪这些增益项的方法。

要根据器件噪声系数计算折合到输入端噪声,须计算噪声温度 并转换为折合到输入端的噪声功率。

噪声温度(T。)可以根据器件噪声系数计算。

$$T_e = T \left(10 \frac{NF(\mathrm{dB})}{10} - 1 \right) \tag{2}$$

其中「为环境温度(单位为K)。

根据噪声温度可以计算折合到输入端的器件噪声.

Input Referred Component Noise =
$$kT_e$$
 (J)
Input Referred Noise Power in $\frac{\text{dBm}}{\text{Hz}} = 10log10(kT_e) + 30$

相干合并的直观描述

信号与噪声合并的直观视图有助于理解该方法的目的。首先假 设校准已执行,因此所有信号的幅度和相位都匹配,并且噪声 不相关,但幅度也相等,合并器输入端的所有通道都是如此。

如果仅使能了部分元件(校准或各种测试和调试配置常常就是 这种情况),那么我们还需要一种方法来跟踪结果。

信号和噪声输出电平可以计算如下:

信号功率=输入功率+信号增益 信号增益=20log (开启的通道数)-插入损耗-10log (合并器输 入端口数)

噪声功率=输入噪声功率+噪声增益

噪声增益 = 10log (开启的通道数) - 插入损耗 - 10log (合并器输 入端口数)

注意这种方法的结果。表1总结了若干模拟合并器通道数的信号 增益和噪声增益,既有每个输入都通电和校准的情况,也有仅 一个输入通电和校准而其他端口端接的情况。

表1. 无损合并器的信号/噪声增益

合并通道数	信号增益 (全开)	噪声增益 (全开)	信号增益 (単开)	噪声增益 (单开)
2	3	0	-3	-3
4	6	0	-6	-6
8	9	0	-9	-9

		S	ingle C	hannel							
	Component Specs			Component Calcs			Cumulative Parameters				
	Signal Gain	Noise Figure	OIP3	Noise Gain	Те	kTe	Signal Gain	Noise Gain	Cum Noise Out	Cum NF	Cum IIP3
	(dB)	dB	dBm	dBm	k	dBm/Hz	dB	dB	dBm/Hz	dB	dBm
Components	-								-174.0		
Front End Loss	-0.2	0.2	50.0	-0.2	13.7	-187.2	-0.2	-0.2	-174.0	-0.2	50.2
Stingray + Comb	18.5	4.0	-4.0	18.5	438.4	-172.2	18.3	18.3	-151.5	4.2	-22.3
Ideal Combiner	0.0	0.0	50.0	0.0	0.1	-210.4	18.3	18.3	-151.5	4.2	-22.3
Cable	-1.0	1.0	50.0	-1.0	75.1	-179.8	17.3	17.3	-152.5	4.2	-22.3
XUD	15.5	14.3	23.0	15.5	7515.5	-159.8	32.8	32.8	-136.2	4.9	-22.5
Cable+Filter	-1.5	1.5	50.0	-1.5	119.6	-177.8	31.3	31.3	-137.7	4.9	-22.5
					r		Signal	Noise	Cum	Cum	Cum

RF Section	Gain	Gain	Noise Out	NF	IIP3
Total	(dB)	(dB)	(dBm/Hz)	(dB)	(dBm
	31.3	31.3	-137.7	4.9	-22.5
	_				
	Full Scale	NSD	IIP3		
A/D Specs	(dBm)	(dBFs/Hz)	(dBm)		
	6	-147	35		
Receiver Total	RX Full Scale Input	NSD	Cum IIP3		
	(dBm)	(dBFs/Hz)	(dBm)	ĺ.	
	-25.3	-142.1	-22.5		
	Input Power (dBm)		-50	-	
Validation	FFT Ma	g (dBFs)	-24.7	-	
	IMD	(dBc)	E4 0		

图5.级联计算

级联电子表格

我们使用所描述的方法,创建了图5所示的级联电子表格,其中 包括关于跟踪已使能元件数量的规定。图中既显示了单个元件 使能的情况,也显示了所有八个元件使能的情况。

在数据转换器捕获数据后,对数字数据进行快速傅里叶变换 (FFT),从而得到测量结果,因此结果中包含数据转换器规格。 跟踪的最终指标是ADC指标,称为接收机输入。为了快速验证测 量结果,还计算了给定输入功率的预期FFT幅度和交调产物。

实测数据

测试设备

测试设置如图2和图3所示。用于提供接收机输入、L0、ADC采样时钟和整个系统参考时钟的具体实验室设备如表2所示。系统内的数字化仪IC用于捕获以下结果中显示的样本。

表2. 用作后文中数据采集部分的测试设备

设备功能	品牌/型号	注释
接收机输入源	Keysight E8267D接 32通道模拟分路器	发射/接收模块的输入 针对-50 dBm的功率水平 进行校准
L0源	Keysight E8267D	上/下变频器板的输入 为5dBm
ADC时钟	Rohde & Schwarz SMA100B	AD9081接受12 GHz输入频率, 内部3分频后提供 4 GSPS ADC时钟
参考时钟	Keysight N5182B	100 MHz频率

		8 (Channe	I Subar	ray							
	Com	ponent S	pecs	Com	ponent C	alcs	Cumulative Parameters					
	Signal Gain	Noise Figure	OIP3	Noise Gain	Те	kTe	Signal Gain	Noise Gain	Cum Noise Out	Cum NF	Cum IIP3	
	(dB)	dB	dBm	dBm	k	dBm/Hz	dB	dB	dBm/Hz	dB	dBm	
omponents					-				-174.0			
ront End Loss	-0.2	0.2	50.0	-0.2	13.7	-187.2	-0.2	-0.2	-174.0	-0.2	50.2	
tingray + Comb	18.5	4.0	-4.0	18.5	438.4	-172.2	18.3	18.3	-151.5	4.2	-22.3	
leal Combiner	18.1	0.0	50.0	9.0	0.1	-210.4	36.4	27.3	-142.4	4.2	-22.3	
able	-1.0	1.0	50.0	-1.0	75.1	-179.8	35.4	26.3	-143.4	4.2	-22.3	
UD.	15.5	14.3	23.0	15.5	7515.5	-159.8	50.9	41.8	-127.8	4.3	-28.9	
able+Filter	-1.5	1.5	50.0	-1.5	119.6	-177.8	49.4	40.3	-129.3	4.3	-28.9	
					RE Section	Signal Gain	Noise Gain	Cum Noise Out	Cum NF	Cum IIP3		
					Total		(dB)	(dB)	(dBm/Hz)	(dB)	(dBm)	
							49.4	40.3	-129.3	4.3	-28.9	
					1							
							Full Scale	NSD	IIP3			
					A/D	Specs	(dBm)	(dBFs/Hz)	(dBm)			
						~	6	-147	35			
					Receiver Total		RX Full Scale Input	NSD	Cum IIP3			
							(dBm)	(dBFs/Hz)	(dBm)			
							-43.4	-135.1	-29.1			
							Input Pov	ver (dBm)	-50			
					Valid	ation	FFT Mag (dBFs)		-6.6			
					1		IMD (dBc)					

校准

对于所有测量,在数据分析之前都会进行校准。该系统由32个 天线元件、8个BFIC和一个包含4个ADC的数字化仪IC组成。每个数 字化仪IC的ADC信号链都包括数字下变频器形式的强化型数字信 号处理(DSP)模块,其中的数字控制振荡器(NCO)能够在子阵列级 别将相移应用于每个数字化通道。因此,8个天线元件形成本 文所定义的单个子阵列,共享一个公共ADC和DSP信号链。系统 提供的相位和幅度调整在模拟域通过BFIC实现,在数字域通过 NCO和可编程有限脉冲响应(PFIR)模块实现。

最初选择通道1作为所有其他通道对齐的基线。在模拟域内, BFIC可变增益放大器(VGA)用于对齐整个阵列的幅度,而BFIC移相 器(PS)用于对齐子阵列内的相位。在数字域内,使用NCO相位偏 移对齐每个子阵列的相位。

校准开始于一次使能每个子阵列的一个模拟通道(例如,通道 1、通道3、通道17和通道19,如图6右侧所示),因此总共四个 信号同时被数字化仪IC上的四个ADC数字化。这样可以计算与每 个子阵列之间的相位误差直接相关的每个子阵列通道的相对相 位偏移误差。计算出所有三个通道相对于基准通道1的相位偏移 误差后,应用所计算的NCO相位偏移,并基于每个通道补偿此 相位误差,以使所有子阵列在相位上对齐。 然后禁用子阵列2、3、4中的三个原始通道,并使能子阵列2、 3、4中的另外三个通道。相对于子阵列1上的基线通道1同时捕获 所有四个通道,可以计算这三个新通道的相位误差。一旦计算 出这些相位误差,就可以使用BFIC移相器补偿此相位误差。重 复该过程,直到所有通道在模拟和数字域中都相位对齐。为了 对齐子阵列1中的每个通道,子阵列2中相位对齐的通道3用作比 较点,因为它在校准序列的第一步之前已经相位对齐。结果是 模拟相位调整补偿子阵列内的相位误差,而NCO相位偏移补偿 跨子阵列的相位误差。

FFT

所有性能测量均基于连续波(CW)数据捕获的FFT进行评估。信号 发生器设置为相干频率,并且在FFT中不应用加权。图7显示了 单音测量的代表性FFT。

从左到右的曲线分别对应如下情况:使能单个元件,子阵列中 的所有八个元件,以及四个子阵列数字合并。从这些FFT可以观 察混合波束赋形对接收机动态范围的影响。

- ▶当子阵列中启用N个元件时,信号功率增加20logN。噪声功率 也会增加,整体SNR会提高。
- ▶ 当子阵列以数字方式合并时,数据有所增长。基于额外位执行FFT会导致相对于满量程的信号电平保持不变,但相对于满量程的噪声降低。
- ▶ 许多元件上的杂散内容的幅度在子阵列级别上会增加,但子 阵列之间不相关,杂散内容在全阵列级别上降低到噪声中。

图6. 校准利用了模拟相位控制和数字相位控制旋钮

图7. 单音FFT, RF输入为~10 GHz、-50 dBm, L0=14.5 GHz、5 dBm, ADC速率为4 GSPS, 粗NC0=550 MHz, DDC: 16倍、250 MSPS I/0数据速率, FFT样本数为4096

图8显示了双音测量的代表性FFT。从左到右的曲线分别对应如下情况:使能单个元件,子阵列中的所有八个元件,以及四个子阵列数字合并。FFT跨度减小以实现交调产物的可视化。

交调产物随使能的元件数量增加而增加。这是因为合并器之 后的电路的功率更高,因此交调产物也更高。然而,当模拟 子阵列以数字方式合并时,双音信号和交调产物的幅度均接 近平均值。 在此测试配置的情况下,观察到主载波边缘外的相位噪声相 关。在该配置中,所有通道都有一个公共L0、一个公共RF输入 和一个公共电源。实际上,对于大型阵列,应该避免这种情 况。有关跟踪阵列中相关噪声与不相关噪声的进一步讨论,请 参见文章: "基于经验的多通道相位噪声模型在16通道演示器 中的验证","相控阵用分布式直接采样S波段接收机测量总 结",以及"带有分布式锁相环的相控阵的系统级 L0相位噪声 模型"。

图8.双音FFT, RF输入: ~10 GHz、-50 dBm, L0 = 14.5 GHz、5 dBm, ADC速率为4 GSPS, 粗NCO = 550 MHz, DDC: 16倍、250 MSPS 1/0数据速率, FFT样本数为4096, 曲线放大至±10 MHz。

性能测量

图9全面总结了接收机性能测量。

图9a是不同频率的FFT相对于满量程的幅度。使用此数据和输入 功率,可以计算接收机满量程电平,如图9b所示。

图9c是在FFT处理中计算的噪声谱密度(NSD),单位为dBFS/Hz。载 波周围的几个FFT频带被移除,因此噪声代表白噪声,不受测试 配置的相位噪声影响。

基于图9a和图9c可以计算信噪比(SNR),如图9d所示。观察到两种效应。第一,在子阵列级别,SNR增幅略高于10logN。这是因为合并后的噪声功率更高,合并器之后器件的噪声系数影响较小。第二,当子阵列以数字方式合并时,SNR增幅为10logN。

图9e显示了单个元件、子阵列和全数字化阵列的无杂散动态范 围(SFDR)。随着更多元件加入阵列,我们看到性能持续改进, 这表明测试配置中的所有杂散都是不相关的。

图9f显示了输入三阶交调截点(IIP3)。此结果直观地来自双音 FFT。由于交调产物增多,子阵列IIP3较低。阵列级IIP3接近子阵 列级的平均值。

请注意,对于所有这些测量,数据都非常接近级联分析中的建 模值。除图9d和9e之外的图形都包含建模值。图9d和9e是间接 确定的,未在电子表格中明确定义,故不包含建模值。

图9. 接收机性能测量

观察结果总结

从所有信号在相位和幅度上对齐的假设开始,测量结果与预测 非常吻合。级联分析要求在模拟合并器处分离信号增益和噪声 增益。基于噪声输入和器件折合到输入端的噪声跟踪噪声功率 是一种有效的方法。

在子阵列级别, 当开启通道时:

- ▶ SNR改善幅度略大于10logN。
 - 信号增加20logN。
 - 噪声增加略小于10logN。
 - 模拟合并器之后的噪声功率较大。
 - 模拟合并器之后器件的NF影响较小。
- ▶ 模拟合并器之后器件的信号较大,因此当信号合并时, IIP3 会降低。
- ▶ 杂散一般在模拟子阵列内部相关。这是因为信号源在模拟 合并器之后,无论微波通道使能与否,都会测量到相同的 杂散。

当子阵列以数字方式合并时:

- ▶ 信噪比提高10logN
 - 信号功率保持不变
 - 噪声功率 (单位为dBFS/Hz) 降低
- ▶ IIP3接近平均值
- ▶ 观察到的杂散在不同数字通道之间是不相关的。

相关的相位噪声项值得注意。在此测试配置中观察到相关的相 位噪声。这可以通过图8中的近载波噪声看出,其中频率轴被放 大到足够大以显示该效应。使用来自测试设备的公共微波输入 和L0输入。这意味着微波信号和L0相位噪声是相关的。共享电 源也可能导致相关贡献,电压在此测试配置中共享。在该测试 配置中,我们在接收机测试期间没有调试相关相位噪声的主要 来源。但是,我们已注意到这一点,它将是该硬件的一个未来 研究领域。

致谢

作者要感谢ADI公司的许多工程师,是他们让这项工作成为可能,其中有IC设计师、电路板设计师、软件开发人员和组装原型硬件的技术人员。我们还要感谢以应用为导向的管理人员,他们对测试平台的价值展示出了远见,耐心等待测试平台变为现实。我们的描述记录了接收机测试结果,但如果没有其他许多人的工作,就不可能有这些描述。

参考资料

- ¹ Prabir Saha. "多波束相控阵接收机 混合波束赋形功耗优势的 定量分析"。ADI公司, 2022年4月。
- ² Peter Delos和Mike Jones。"基于经验的多通道相位噪声模型在16 通道演示器中的验证"。ADI公司,2021年11月。
- ³ Peter Delos、Mike Jones和Hal Owens。"相控阵用分布式 直接采样 S波段接收机测量总结"。ADI公司, 2022年1月。
- ⁴ Peter Delos。"带有分布式锁相环的相控阵的系统级L0相位噪 声模型"。ADI公司,2018年11月。
- ⁵ X/Ku波段波束赋形开发者平台。ADI公司。

Peter Delos和Mike Jones。"使用商用收发器的数字阵列,噪声、 杂散和线性测量。"IEEE相控阵大会,2019年10月。

Delos, Peter, "宽带接收机架构方案综述"。ADI公司, 2017年2月。

作者简介

Peter Delos是ADI公司航空航天和防务部的技术主管,在美国 北卡罗莱纳州格林斯博罗工作。他于1990年获得美国弗吉尼 亚理工大学电气工程学士学位,并于2004年获得美国新泽 西理工学院电气工程硕士学位。Peter拥有超过25年的行业 经验。其职业生涯的大部分时间花在高级RF/模拟系统的架 构、PWB和IC设计上。他目前专注于面向相控阵应用的高性 能接收机、波形发生器和频率合成器设计的小型化工作。

Sam Ringwood是航空航天与防务事业部(位于美国北卡罗来 纳州格林斯博罗)的系统平台应用工程师。加入ADI之前, Sam曾在美国Nuclear Weapons Complex从事RF测试和RF设计工 作。他于2015年和2016年分别获得密苏里大学堪萨斯城分校 的电气工程学士学位和电气工程硕士学位。Sam目前专注 于为相控阵雷达等航空航天与防务应用创建完整的系统解 决方案。

Mike Jones是ADI公司航空航天和防务部的首席电气设计工程 师,在美国北卡罗来纳州格林斯博罗工作。他于2016年加 入ADI公司。从2007年到2016年,他在北卡罗来纳州威尔明 顿的通用电气公司工作,担任微波光子学设计工程师,致 力于研发核工业微波和光学解决方案。他于2004年获得北 卡罗来纳州立大学电气工程学士学位和计算机工程学士学 位,2006年获得北卡罗来纳州立大学电气工程硕士学位。

在线支持社区

访问ADI在线支持社区, 中文技术论坛 与ADI技术专家互动。提出您的 棘手设计问题、浏览常见问题 解答,或参与讨论。

请访问ez.analog.com/cn

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问<u>analog.com/cn/contact</u>。

向我们的ADI技术专家提出棘手问题、浏览常见问题解答,或参与EngineerZone在线支持社区讨论。 请访问ez.analog.com/cn。 ②2022 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。
"超越一切可能"是ADI公司的商标。

TA23910sc-6/22

请访问analog.com/cn