

如何利用模态分析 设计出色的振动 传感器外壳

Richard Anslow,系统应用工程师

摘要

为MEMS加速度计设计一个结构良好的机械外壳,确保从受监 控资产中提取高质量的CbM振动数据。用于封装MEMS加速度计 的机械外壳需要具备比集成式MEMS更出色的频率响应。本文 利用模态分析,提供外壳设计可能实现的固有频率。通过理 论和ANSYS模态仿真示例,提供振动传感器设计指导。结果显 示,几何效应,例如外壳形状(圆柱形或矩形等)和高度主 导了外壳设计的固有频率。本文给出了封装单轴和三轴MEMS 加速度计的机械设计示例,其谐振频率为21kHz。本文还提供 在外壳中集成环氧树脂的指导以及传感器的电缆安装和安装 选项。

什么是模态分析,为什么它如此重要?

MEMS振动传感器的封装采用钢材或铝材外壳,能够牢固连接在 受监控资产上,并提供防水和防尘性能(IP67)。良好的金属外壳 设计将确保从资产中测量出高质量的振动数据。理解模态分析 是设计出良好机械外壳的必要条件。

模态分析用于了解结构的振动特性。模态分析可以提供设计的 固有频率和正常模式(相对变形)。使用模态分析时,最主要 的问题是要避免谐振,此时结构设计的固有频率与施加的振动 负载的固有频率非常接近。对于振动传感器,外壳的固有频率 必须大于由MEMS传感器测量的所施加振动负载的固有频率。

ADXL1002 MEMS加速度计的频率响应图如图1所示。ADXL1002 3 dB带 宽为11 kHz,提供21 kHz谐振频率。用于封装ADXL1002的保护外壳需 要具有21 kHz或更高的首级固有频率。

振动传感器外壳模型

在模态分析和设计中,可以将振动传感器看做一个粗短的悬臂 梁圆柱。此外,将使用Timoshenko振动方程进行仿真。我们将在 文章后面更为详细地介绍这一点。一个粗短的悬臂圆柱就类似 于安装在工业设备上的振动传感器,如图2所示。振动传感器 通过螺栓固定在工业设备上。螺栓安装和外壳设计都需要仔细 表征,以免机械谐振影响相关的MEMS振动频率。采用ANSYS或类 似程序的有限元方法(FEM)可以用作求解粗短圆柱的振动方程的 高效方法。

图2.振动传感器外壳建模。

仿真工具

在模态分析中, ANSYS和其他仿真工具假定设计中每个点的谐波 运动。设计中所有点的位移和加速度被求解为特征值和特征向 量, 在本例中, 分别是固有频率和振型。

固有频率和振型

方程1为质量矩阵M、刚度矩阵K、角频率ω_i和振型{Φ_i}的关系 式,用于FEM程序中,例如ANSYS。¹ω_i除以2π,可以计算得出固 有频率f_i,振型{Φ_i}提供在特定固有频率下,材料的相对变形 模式。

$$([K] - \omega_i^2 [M]) \{\phi_i\} = \{0\}$$
⁽¹⁾

对于单自由度系统,频率可以简单表示为:

$$\omega = \sqrt{\frac{K}{M}} \tag{2}$$

方程2提供了一种简单、直观的设计评估方法。如果降低传感器外壳的高度,刚度增大,质量减小,因此,固有频率提高。 此外,如果增加外壳的高度,刚度减小,质量增大,固有频率 随之降低。

大多数设计都具有多个自由度。有些设计具有数百自由度。利用FEM,可以快速得出方程1的计算结果,如果是手动计算,则非常耗费时间。

模式参与因子

模式参与因子(MPF)用于确定哪些模式和固有频率对于您的设计 最为重要。方程3¹是振型{Φi}、质量矩阵M和激励方向矢量D的关 系式,用于求解MPF。参与因子的平方即是有效质量。

$$\gamma i = \{\phi\}_i [M] \{D\}$$
(3)

MPF和有效质量测量每种模式下在每个方向移动的质量数。一 个方向上的值较高意味着在该方向上,模式将被力 (例如振 动)激励。

将MPF与固有频率结合使用,可以帮助设计人员发现潜在的设计问题。例如,模式分析得出的最低固有频率可能不是最大的设计问题,因为相对于所有其他模式,相关的方向(x、y或z轴面)上的参与因子可能不够大。

表1所示的示例显示,在仿真中预测到x轴的固有频率为500 Hz 时,模式为弱激励,不可能成为问题。在外壳x轴激励800 Hz强 模式时,如果MEMS敏感轴的方向和外壳x轴的方向一致,这将是 个问题。但是,如果设计人员将MEMS传感器PCB的方向定位在外 壳的z轴上测量,那么这个x轴的800 Hz强模式可能无关紧要。

表1. 固有频率(Freq.)、模式参与因子(MPF)和相关轴

模式	频率(Hz)	轴	MPF	MPF注释
1	500	Х	0.001	弱模式
2	800	Х	0.45	强模式
3	1500	Y	0.6	强模式
4	3000	Y	0.002	弱模式
5	10,000	Z	0.33	强模式

解析模态分析结果

在上一部分中,我们了解到可以使用模态分析来计算得出相 关轴的固有频率。此外,设计人员可以利用MPF来确定在设计 中是否可以忽略某个频率。为了完成模态分析解析,您需要 了解结构上的所有点都按会相同频率(全局变量)振动,但 每个点的振动幅度(或振型)是不同的。例如,18 kHz频率对 机械外壳顶部的影响比底部大。振型(局部变量)在外壳顶 部的振幅比底部要强,如图3所示。这意味着,虽然外壳结构 的顶部位置受到18 kHz频率的强激励,位于外壳底部的MEMS传 感器也会受到该频率影响,只是受影响的程度更低。

图3. 振动传感器外壳的固有频率、相关轴上的振型, 以及外壳顶部和 底部的相对振幅。

Timoshenko差分振动方程

Timoshenko方程适用于粗短梁或受到几千赫振动影响的梁的建 模。图2所示的振动传感器类似于一个粗短的圆柱截面,可以 使用Timoshenko方程进行建模。该方程是一个四阶差分方程,具 有针对限制情形的分析解。如方程1到方程3所示,FEM提供了求 解使用多维矩阵的Timoshenko方程的简便方法,这些矩阵会随设 计自由度数缩放。

控制方程

虽然FEM在高效求解Timoshenko振动方程方面颇具优势,但是, 要了解在设计振动传感器外壳时面临的取舍,则需要更深入地 研究方程的4²个参数。

$$EI\frac{\partial^4 y}{\partial x^4} - \rho A\omega^2 y + \left(pI + \frac{\rho EI}{kG}\right)\omega^2 \frac{\partial^2 y}{\partial x^2} + \frac{\rho^2 I}{kG}\omega^4 y = 0 \quad (4)$$

使用不同的材料或几何外形会影响设计结构的固有频率(ω)。

材料和几何形状相关性

Timoshenko方程的参数可以分为几何形状相关性或材料相关性。

材料相关性包括:

- ▶ 杨氏模量(E):这是一种材料弹性测量方法,也即是使其变形 所需的拉力。变形拉力与表面呈直角。
- ▶ 剪切模量(G): 这是一种材料剪切刚度测量方法,也即是物体 承受与表面平行施加的剪切变形应力的能力。
- ▶ 材料密度(p): 每单位体积的质量。

几何形状相关性包括:

- ▶ 剪切系数(k):剪切是一种材料特性,而剪切系数是指剪切应 力在横截面上的变化。矩形截面一般为5/6,圆形截面一般 为9/10。
- 面积惯性矩(1):面积的几何特性,反映几何形状是如何围绕 轴进行分布的。这一特性有助于了解结构对外加弯曲力矩的 抵抗能力。在模态分析中,这可以看作是抗变形能力。
- ▶ 横截面积(A): 所定义的形状 (例如圆柱)的横截面积。

Timoshenko方程预测方程5给出的临界频率f_c。³因为方程4为4阶方程,所以在f_c下,有4个独立的解。为了进行分析,可以使用方程5的f_c来比较不同的外壳几何形状和材料。

$$f_C = \frac{1}{2\pi} \sqrt{\frac{kGA}{\rho I}} \tag{5}$$

可以使用多种方法和解决方案来确定f_c下的所有频率。"由单 差分方程描述的Timoshenko梁的自由振动和强迫振动"³和"使 用分布式集总建模技术的驱动轴的弯曲振动"⁴中提及了一些方 法。这些方法用到多维矩阵,例如FEM。

我的设计应该使用什么材料?

表2详细列出了一些常用的工业金属材料的信息,例如不锈钢 和铝。

在列出的4种材料中,铜的重量最重,且与不锈钢相比,它并 不具备任何优势,因不锈钢更轻、更强韧,价格也更低。

对于重量敏感型应用,铝是一种不错的选择。它的密度比钢低 66%。缺点是,每千克铝的价格是钢的20倍。对于关注成本的 应用,钢是不二选择。

虽然钛比铝重三分之二,但它本身的强度意味着所需的量更 少。但是,除了需要减重的专业应用,钛的成本太高。

表2. 常用工业材料的杨氏模量(E)、剪切模量(G)、密度 (ρ)和每千克成本

材料	E (N/m²)	G (N/m²)	ρ (kg/m³)	\$/千克
不锈钢	2E11	7.7E10	7850	0.11
铜	1.1E11	4.5E10	8300	9.06
铝	7.1E10	2.4E10	2770	2.18
钛	9.6E10	3.6E10	4620	25

仿真示例

图4所示的矩形金属振动传感器外壳设计高40 mm,长43 mm,宽 37 mm。为了进行模态分析,底面(z, x)为固定约束条件。

图4.矩形外壳,通过改变材料类型以进行仿真研究。

图5.矩形外壳,包含材料类型和首级有效固有频率(Hz)。

图5显示各种外壳材料的FEM模态分析结果。图中显示首级固有 频率、有效MPF (系统的有效质量与总质量之比大于0.1) 与材料 类型的关系。很显然,铝和不锈钢具有最高的首级有效固有频 率。对于低成本或低重量应用,它们也是不错的材料选择。

我应该设计矩形外壳还是圆柱形外壳?

图6显示空心矩形和圆柱形不锈钢挤压件,壁厚2mm,高40mm。 圆柱形的外径为43mm,矩形模型的x和y轴的尺寸也均为43mm。

图6.相似的矩形和圆柱形,用于模型设计研究。

图7.相似的矩形和圆柱形的首级有效固有频率(Hz)。

在模态分析中,整个2 mm壁厚(或者x、y横截面积)为固定约 束条件。图7显示FEM模态分析结果。图中显示首级固有频率、 有效MPF(系统的有效质量与总质量之比大于0.1)与材料形状的 关系。圆柱形在x和y轴上具有最高的首级有效固有频率,在z方 向上具有相似性能。

几何形状一面积和惯性

材料和几何形状相关性均包含在方程4中。由于矩形和圆柱形 模型的仿真都采用不锈钢参数,所以圆柱形性能更优的唯一原 因在于其几何形状。图8显示用于计算模型的面积惯性矩和横 截面积的圆柱形和矩形横截面。

图8. 面积惯性矩(Iyy)和横截面积。

矩形的面积惯性矩l₁₁几乎比圆柱形大50%,如表3所示。矩形的 抗变形能力更强。但是,圆柱形的横截面积A是矩形的三倍。 A参数的值越大,意味着在仿真和现实中,固定的约束条件越 大,所以圆柱形设计有助于提高硬度或刚度。

使用表3中的值和方程5,可以得出圆柱形的临界频率为60.74 kHz, 矩形为26.56 kHz。方程5是显示不同几何形状的相对性能的一个 有用工具。方程4和5可预测临界频率下的4个独立解。表4总结 了FEM结果,并确认4个首级有效模式。

表3. 圆柱形和矩形模型的面积惯性矩(l_{γγ})、剪切模量(G)、 密度(ρ)和横截面积(A)

形状	Ι _{γγ} (m⁴)	G (N/m²)	ρ (kg/m³)	A (m²)
圆柱形	6.24E-8	7.7E10	7850	1.03E-3
矩形	9.21E-8	7.7E10	7850	0.33E-3

表4. 圆柱形和矩形的4个首级有效模式

模式	圆柱形(Hz)	矩形(Hz)
1	11,890	5030.4
2	30,077	10,559
3	40,506	14,270
4	50,777	15,750

加粗 = 模式参与因子 > 0.1 不加粗 = 0.01 < 模式参与因子 < 0.1

传感器的最大推荐高度是多少?

方程4和5很有用,但它们无法就外壳垂直高度和可用的首级有 效固有频率之间的取舍提供分析指导。从方程2中可以直观看 到,传感器外壳越高,首级固有频率越低。

分析模型的局限性

方程4和5假定梁的截面宽度至少是梁的长度的15%。⁵其他用于 细长梁的方法(例如Bernoulli方程)⁶假定梁的截面宽度低于梁 的长度的1%。⁵对于细长梁,可以使用方程6⁶,其中包含长度(L) 或传感器高度。方程6不考虑剪切力,但它们对于粗短梁很重 要。对于首级有效固有频率,在用于实心圆柱形时,方程4、5 和6总体上保持一致性。对于空心形状,方程6会将首级有效固 有频率低估50%。

表5. 与Bernoulli方程相比空心和实心圆柱形的首级有效 模式

30 mm直径的 圆柱形	高度/长度(mm)	方程6(Hz)	仿真(Hz)
实心	60	5872	5267
空心,2mm壁厚	60	2930	5911

方程^{6⁶}使用的参数包括杨氏模量(E)的刚度、直径(d)、长度(或 高度)、使用的材料密度(ρ),以及给定配置的K_n常数。

$$f_n = \frac{K_n}{\pi} \sqrt{\frac{Ed^2}{16\rho L^4}} \tag{6}$$

由于分析模型无法提供有关空心外壳的高度约束的指导,所以 一般借助FEM来进行高度研究。

高度研究

为了针对外壳高度的增加引起性能降低的问题提供指导,我们 对图9所示的模型进行了仿真。

Y, X, 43 mm Outer Diameter

图9.采用5mm底座的外壳高度研究。

该不锈钢挤压件采用一个5 mm底座,可用于安装外壳和受监 控设备(例如电机)之间的螺钉。将圆柱的高度从40 mm增加 到100 mm,导致x轴和y轴的首级有效固有频率从12.5 kHz降低至 3.3 kHz,如图10所示。z轴的值也从31.2 kHz降低至12.7 kHz。要实 现高性能传感器,很显然需要尽可能降低外壳高度。

图10. 采用5 mm底座、高度增加的外壳的首级有效固有频率(Hz)。

降低外壳壁厚或直径会有什么影响?

降低外壳壁厚

表6显示了如果将图6所示的圆柱形的壁厚从2 mm降低至1 mm,但 保留40 mm高度和43 mm外径,其几何形状和材料性质会如何。

表6. 高度为40 mm、壁厚分别为1 mm和2 mm的圆柱形的 面积惯性矩(I_{γγ})、剪切模量(G)、密度(ρ)和横截面积(A)

形状	I _{vr} (m⁴)	G (N/m²)	ρ (kg/m³)	A (m²)
圆柱形, 2mm壁厚	6.24E-8	7.7E10	7850	1.03E-3
圆柱形, 1mm壁厚	3.12E-8	7.7E10	7850	5.28E-4

使用表6中的值和方程5,可以得出壁厚2 mm的圆柱形的临界频 率为60.74 kHz,壁厚1 mm为61.48 kHz。l_{vr}和A参数都降低约50%的 情况下,对于壁厚为1 mm的圆柱形,方程5的分子和分母受到 同等的影响。基于该计算,假定在FEM模态分析中,两个圆柱 形的表现将类似。

图11中显示首级固有频率、有效MPF (系统的有效质量与总质 量之比大于0.1) 与圆柱形壁厚的关系。与固有频率相比,降 低圆柱形壁厚带来的影响非常微小。

图11. 壁厚为1mm或2mm的圆柱形的首级有效固有频率(Hz)。

降低外壳直径

目前给出的所有示例都以外径为43 mm的圆柱形外壳为主。有些 设计可能只需要30 mm或26 mm外径。图12显示仿真模型,图13显 示改变外壳外径带来的影响。

将圆柱形外径从43 mm降低至26 mm时, x和y轴的首级固有频率降低约1.5 kHz, z轴的首级固有频率增大1.9 kHz。在改变圆柱形外径时,面积惯性矩(I_{YY})和横截面积(A)都会降低。I_{YY}参数的下降幅度高于A参数。

图12.外壳直径研究。

将直径从43 mm降低到30 mm时, l_{vv}降低2/3, A参数降低1/3。还是 参考方程5, 最终影响是首级固有频率逐渐降低。直观来看, 降低圆柱形直径会降低结构硬度,所以固有频率也会降低。但 是,通过仿真,很明显可以看出首级固有频率的降幅并不大, 改变直径之后,首级固有频率仍然保持在几十kHz。

图13.首级有效固有频率与圆柱形外径的关系。

改变传感器外壳的方向可以提高性能吗?

本文前几个部分表明,增加外壳高度会降低首级固有频率。此 外还表明,建议使用圆柱形外壳,而非矩形外壳。但是,在有 些情况下,矩形会很有用。

假设有一个场景,需要在一个规定了高60 mm,长和宽43 mm × 37 mm的外壳中封装一个传感器和电路。如果使用矩形外壳,通 过改变固定约束条件(设备连接)的方向可以帮助提高性能。 图14所示的矩形外壳包含多个连接孔,所以外壳可以从多个方 向安装至设备。如果外壳安装在x、z平面,那么外壳的有效高 度为60 mm。但是,如果外壳安装在y、z平面,那么有效高度仅 为37 mm。此方式适用于矩形外壳,但不适用于圆柱形曲面。

图14.可以在x和z轴,或者y和z轴约束矩形外壳,以降低高度。

图15显示,通过改变外壳的方向, x轴的首级谐振频率会增大, y轴则优于圆柱形。与x轴、z轴固定方向相比, y轴、z轴固定方 向的z轴首级谐振频率更高,频率模式几乎翻倍。但是,就z轴 固有频率来看,圆柱形目前表现最佳。与圆柱形相比,矩形是 一种可以在三个轴上获得相似性能的好方法。

	X-axis, Hz	Y-axis, Hz	Z-axis, Hz
Rectangle, Y,Z Fixed	8183	11,382	11,382
Rectangle, X,Z Fixed	7009	15,068	6222
Similar Cylinder	7313	7314	21,192

图15. 首级有效固有频率与圆柱形或矩形方向的关系。

具有21kHz谐振频率的单轴11kHz MEMS传感器

根据本文显示的仿真和分析结果,在封装具有21 kHz谐振频率的 单轴ADXL1002 MEMS传感器时,圆柱形外壳表现最佳。MEMS传感器 的灵敏度轴的方向定位应使其能够利用圆柱形外壳在z轴的首级 固有频率性能。

外壳原型和总成概念

目前显示的仿真模型都未将连接器选择及其对外壳设计的固有 频率的影响考虑在内。图16显示M12 4线连接器,TE的零件号为 T4171010004-001。这个连接器具有IP67防水和防尘等级,包含来自 TE的.STEP文件,可以轻松集成到外壳设计文件中。这个接口可 以与M12-转-M12电缆搭配使用,例如来自TE的TAA545B1411-002。

良好的机械安装对于保证出色的振动传输以及避免可能会影响 性能的谐振都很关键。一般只需将螺栓旋入到传感器外壳和受 监控设备即可实现良好的安装。图16所示的不锈钢模型具有一 个7 mm实心底座,提供行业标准的^{1/2}-28螺纹孔,以将螺栓连接 件安装到受监控设备上。

图16.外壳原型。

外壳直径为24 mm,具有25 mm六边形底座,可用于将传感器连接到受监控设备上。采用M12连接器的外壳的总高度可能介于 48 mm至57 mm之间,具体由制造容差和内部接线装配或者连接 器与MEMS PCB之间的焊接选项决定。例如,如果在M12螺栓帽和 MEMS PCB之间使用直线连接,那么高度至少需达到5 mm。

图17. MEMS传感器PCB、M12连接器和外壳的一种可行组装概念。

图17显示外壳、M12连接器和MEMS PCB的一种可行组装选项的分解 图。可以使用M3螺丝将MEMS PCB组装到外壳壁上,然后连接到M12 连接器,最后通过激光将两半外壳焊接在一起。如图所示,PCB 垂直安装,ADXL1002 MEMS的灵敏度轴与外壳的z轴垂直对准。从系 统测量角度来看,垂直安装也很重要,因为在测量电机上的轴 承故障(例如,辐射振动测量)时,一般要求从此方向测量。

模型仿真

在进行模型仿真之前,应先使用图17所示的组件创建一个实心体。这样形成的仿真模型能与组装和焊接的传感器密切匹配。 对于精准的FEM数值仿真,尤其对于连接器的几何形状,应选择 精细网格。选择Fine Span Angle Center ANSYS Mesh (精细跨度角中心 ANSYS 网格)选项,以实现出色性能。图18显示FEM网格,以及在 仿真后外壳的相对变形。

图18.FEM网格详情和外壳的相对变形。

图18中,从蓝色到橙色,再到红色的渐变梯度显示,外壳和连 接器顶部的相对结构变形程度更大。

图19和图20显示首级固有频率、有效MPF(系统的有效质量与总质量之比大于0.1)的FEM结果与z轴上的总传感器高度的关系。 z轴性能至关重要,当外壳高度为52 mm时,首级有效固有频率 为19.38 kHz。总高度为48 mm时,性能提高至22.44 kHz。外壳高度 为50 mm时,性能约为21 kHz。

图19. 首级有效固有频率 (z轴) 与外壳高度的关系。

图20. 首级有效固有频率与外壳高度(X、y和z轴)的关系。

具有21 kHz谐振频率的三轴10 kHz MEMS传感器

与单轴传感器相比,跨三个轴控制外壳设计的固有频率更加困难,特别是当需要21kHz性能时。

ADcmXL3021

幸运的是, ADI公司开发出了ADcmXL3021 ±50 g、10 kHz三轴数字 输出MEMS振动检测模块, 如图21所示。ADcmXL3021采用23.7 mm × 27.0 mm × 12.4 mm铝制封装, 配有四个安装法兰, 可使用标准M2.5 机器螺丝进行安装。ADcmXL3021封装的铝材和几何形状支持x、y 和z轴上高于21 kHz的谐振频率。

图21. ADcmXL3021三轴数字输出MEMS传感器,采用铝材封装和柔性连接器。

将ADcmXL3021附加到IP67等级的外壳上

在工业环境中部署ADcmXL3021时,需要使用IP67等级(防水和防 尘)的外壳和连接器。此外,ADcmXL3021的SPI输出不适合与长电 缆搭配使用。需要使用工业以太网或RS-485收发器电路来转换 SPI输出,以实现长电缆驱动。

基于本文中的研究,无法将ADcmXL3021、RS-485或以太网PCB以及 一个连接器部署在同一个外壳中,并在所有三个轴 (x、y和z) 上实现21 kHz谐振频率。通过组件组合,可以尽可能缩小外壳尺 寸,如前面图2所示(40 mm × 43 mm × 37 mm)。图2显示,三个轴上 的首级有效固有频率在约10 kHz至11 kHz之间。此外,图2中的仿 真未使用连接器,而连接器会使实际高度增加,且会进一步降 低固有频率。

如果使用FEM仿真简单的矩形铝材外壳,其尺寸为23.7 mm × 27 mm × 12.4 mm (比如ADcmXL3021),壁厚为2 mm,那么所有轴上的首级 有效固有频率会超过21 kHz。

图22. 增加一个形状 (例如ADcmXL3021) 的高度。

如果将12.4 mm高度增加一倍和两倍,以便为额外的电路提供 空间,那么固有频率会大幅下降,如图22所示。即使只留下 12.4 mm的空间来容纳额外的电路,首级有效固有频率也会降 到低于15 kHz。

分布式系统

我们建议使用图23所示的分布式系统,而不是尝试将所有组件 集成到一个矩形外壳中。根据此概念,ADcmXL3021被封装到一个 IP67等级的外壳中,SPI数据在短距离(不到10 cm)内路由到一 个单独的IP67等级的外壳中,该外壳中集成了电缆接口PCB、以 太网或RS-485收发器,以及相关的电源IC和其他电路。

使用此方法时,几何外形大幅减小,也可以显著简化将外壳的固有频率与ADcmXL3021的固有频率匹配的问题。

图23. ADcmXL3021和接口电路封装在单独的外壳中。

设计和模态分析

如之前所示,与圆柱形相比,矩形是一种可以在三个轴上实现 相似固有频率性能的好方法。在图23中,ADcmXL3021封装在一个 小尺寸的空心矩形外壳中,在ADcmXL3021柔性电缆和工业连接器 之间使用微型PCB进行连接。该模型可以使用小型M8接口,例 如TE 7-1437719-5。矩形外壳具有4个M2.5安装孔,用于固定安装到 设备上。外壳的总尺寸为40.8 mm × 33.1 mm × 18.5 mm。重要的是, z轴高度为18.5 mm,这有助于实现更高频率模式。 在图24中, y、x面和4个M2.5孔是受约束的, 用于进行模态仿 真。z方向是整个设计中最弱的一环, 即使高度在20 mm以下。 图25显示FEM模态仿真的主导模式之一, 该图显示外壳顶部的相 对结构变形程度更大。

图24.用于封装ADcmXL3021的空心外壳。

图25.用于封装ADcmXL3021的空心外壳仿真的主导模式。

图26. z轴的首级有效固有频率与壁厚的关系。

可以通过增加壁厚来增大z方向的刚度。例如,如果使用2 mm壁 厚,z方向的首级有效固有频率为14.76 kHz。使用3 mm壁厚时,该 频率将增加到 19.83 kHz。如图26所示,使用3.5 mm壁厚时,z方向 的固有频率会超过21 kHz。

在外壳中加入环氧树脂

可以在振动传感器外壳中加入环氧树脂,将硬件PCB保持在固定位置,并防止连接器和内部接线移动。

为研究环氧树脂对外壳固有频率的影响,采用固定壁厚为2 mm 的40 mm × 40 mm空心不锈钢立方体来创建简单的FEM模型。立 方体中填充36 mm × 36 mm环氧树脂。将外壳高度从40 mm增加到 80 mm,再到100 mm,在填充和不填充环氧树脂的情况下,交替 进行仿真。进行FEM仿真时,将x、y面作为固定约束条件。

表7显示仿真结果,其中有些发现非常有趣:

- ▶ 当传感器高度较低,且高度等于长度/宽度时,环氧树脂使 得悬臂轴(z)的首级有效固定频率增加75%。
- ▶ 当传感器高度为80 mm,为长度/宽度的2倍时,如果使用环 氧树脂填充,悬臂轴(z)的首级有效固有频率增加16%。但 是,x和y径向轴的频率降低10%。
- ▶ 当高度增加到长度/宽度的3倍时,环氧树脂会使首级有效固有频率降低。

表7. 壁厚为2 mm、40 mm(长)× 40 mm(宽)的不锈 钢立方体的高度(mm)、环氧树脂填充(是/否)和首级 有效固有频率

高度(mm)	是否填充 环氧树脂?	X轴频率(Hz)	Y轴频率(Hz)	Z轴频率(Hz)
40	否	8547	8450	9291
40	是	8586	8585	16,259
80	否	3943	3943	9716
80	是	3567	3530	11,272
120	否	2208	2208	9293
120	是	1906	1906	8045

高度增加时,质量增加,刚度下降。在某个点,质量增加带来 的影响比环氧树脂增加的刚性更大。在给定的仿真示例中,这 个拐点对应的高度大于80 mm。但是,大多数传感器的高度一般 都低于80 mm。由此可以得出结论,在大多数情况下,加入环氧 树脂可以帮助改善振动传感器外壳解决方案的固有频率性能。

外部电缆仿真

在机器表面安装振动传感器后,应将电缆固定,以降低电缆终端的应力,防止电缆振动导致的错误信号。固定电缆时,留下 足够的松弛度,以自由移动加速度计。⁷ 这个部分仿真振动电缆对系统响应的影响,并指导应在何处夹 紧电缆 (在什么电缆长度)。

按照图27所示的材料属性创建仿真模型。TE提供连接器和电缆 模型,例如TAA545B1411-002,可将其用作基准。电缆连接器由尼 龙(尼龙6/6)制成,采用铜芯线和PVC绝缘层。连接的传感器 采用不锈钢设计,并填充了环氧树脂。该仿真模型支持在传感 器连接处有一个固定约束条件,且0.15 m电缆的整个长度可以自 由振动。为了进行仿真,可以将0.15 m电缆长度增加到1m。

表8显示仿真结果,其中有些重要发现:

- ▶ 如果电缆在短于0.15 m的长度夹紧,那么电缆对振动传感器 频率响应的影响最小。无论有没有0.15 m电缆,传感器外壳 的频率响应都高于11 kHz。
- ▶ 如果给传感器连接1m电缆,并且允许该电缆沿整个长度自由移动和振动,那么增加的电缆重量将会决定系统的频率响应。500 Hz电缆频率响应将成为主导模式。

事实上,不可能整根1m电缆都会振动,因为振动会随电缆长度 增加而减弱。但是,本仿真示例显示,在约0.15m的位置固定有 助于实现精准的系统响应。

表8. 在连接和不连接振动传感器外壳时的电缆长度(m)和 首级有效固有频率(Hz)

电缆长度(m)	仿真中使用的传感器?	Z频率(Hz)
1	是	464
1	否	508
0.15	是	11,272
0.15	否	11,568

图27. 电缆和传感器模型,包含材料属性和0.15m电缆长度。

振动传感器安装

图28显示对安装谐振的影响,以及图29所示的螺栓、粘合剂、 粘合剂安装垫以及扁平磁铁技巧的典型可用频率范围。螺栓和 粘合剂安装可使传感器尽可能接近机器,在机器和MEMS传感器 之间实现出色的振动信号耦合。使用带粘合剂安装垫的夹具 时,会在机器和传感器之间加入额外的金属材料。这些额外材 料会减弱传感器解决方案中的频率响应。扁平磁铁安装也会减 弱频率响应,且在固定连接到设备时,不如其他方法可靠。

图28仅提供典型指南,应通过实验室测量或仿真确定每个传感器的特征。

图28.安装技巧对传感器谐振的影响。

使用默认的粘结接触约束条件,通过ANSYS模态分析来仿真螺栓 安装。此时,振动传感器底部,特别是¼⁻²⁸英寸安装孔被指定 为使用ANSYS时的固定约束条件。约束条件类型为默认的粘结或 螺栓连接。

对粘结接触进行仿真是一个进阶话题,需要使用ANSYS内聚力建模(C2M),还需要了解接触力学。为了确保准确性,ANSYS CZM要求 输入的参数以实验室测试数据为基础。例如,可以将文章"使用刚性双悬臂梁技术直接测量粘合剂内聚力关系"⁸作为ANSYS的 输入。如果您未找到针对您选择的粘合剂发布的实验数据,您 将需要做一些实验室测量。此外,需要在ANSYS中设置正确的接触公式,并提供短课程指导,例如接触力学基本主题。⁸最后,需要在ANSYS工作台中结合使用CZM和模型技术。

可以使用ANSYS Maxwell10来仿真磁场。但是,由于磁力是非接触 力(它们推动或拉动物体,但没有"实际"接触),所以无法 生成相应的接触约束条件,以进行数值模态分析。可以在有粘 结、无摩擦、有摩擦和无分离接触的情况下进行模态分析。如 之前所述,也许能够实现CZM接触。

图29. 振动传感器的安装技术。

结论

为MEMS加速度计设计一个良好的机械外壳,确保从受监控资产中提取高质量的CbM振动数据。

理解模态分析是为MEMS加速度计设计出良好机械外壳的必要条件。模态分析提供振动传感器外壳在相关轴上的固有频率。此外,设计人员可以利用模式参与因子(MPF)来确定在设计中是否可以忽略某个频率。

在设计振动传感器外壳以满足固有频率目标时,需要考虑材料特性和几何形状。需要尽可能降低外壳高度,以实现更高的固有频率。降低壁厚或外壳直径会对外壳的固有频率产生次要影响。

与矩形相比,圆柱形的横截面积更大,其设计更有助于在所有 轴上实现更高的刚度和固有频率。与圆柱形相比,矩形提供更 多的传感器安装方向和设备连接选项。矩形有助于在三个轴上 保持类似的固有频率性能。

在大多数情况下,加入环氧树脂可以帮助改善振动传感器外壳 解决方案的固有频率性能。使用螺栓或粘合剂安装可以为振动 传感器提供出色的可用频率范围,而使用磁铁或粘合剂垫则会 降低传感器性能。

参考资料

¹ ANSYS创新课程: 模态分析。ANSYS, 2021年。

- ² Stephen Timoshenko。*工程中的振动问题*,第4版。John Wiley and Sons Inc., 纽约, 1974年。
- ³ Leszek Majkut。"由单差分方程描述的Timoshenko梁的自由振动和 强迫振动"。理论与应用力学学报,第47卷第1期,2009年1月。

- ⁴ Mohammad Hossein Abolbashari、Somayeh Soheili、Anoshirvan Farshidianfar。 "使用分布式集总建模技术的驱动轴的弯曲振动"。第16届国际声音与振动大会,克拉科夫,2009年。
- ⁵ Saida Hamioud、Salah Khalfallah。"Timoshenko梁的自由振动谱元素 分析"。国际工程杂志, 2018年。
- ⁶ Olivier A. Bauchau、James I. Craig。*结构分析: 航空航天结构应用*, 斯普林格, 2009年。
- ⁷ TN17: 振动传感器安装, Wilcoxon Sensing Technologies, 2018年。
- ⁸ A. Khayer Dastjerdi、E. Tan、F. Barthelat。"使用刚性双悬臂梁技术 直接测量粘合剂内聚力关系。"实验力学学会,2013年5月。
- ⁹ ANSYS创新课程: 接触力学基本主题。ANSYS, 2021年。
- ¹⁰ Ansys Maxwell: 低频率EM场仿真。ANSYS, 2021年。

作者简介

Richard Anslow是ADI公司自动化与能源业务部互连运动和机器人团队的系统应用工程师。他的专长领域是基于状态的监测和工业通信设计。他拥有爱尔兰利默里克大学颁发的工程学士学位和工程硕士学位。联系方式:richard.anslow@analog.com。

在线支持社区

访问ADI在线支持社区, 中 文 技 术 论 与ADI技术专家互动。提出您的 棘手设计问题、浏览常见问题 解答,或参与讨论。

请访问ez.analog.com/cn

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问analog.com/cn/contact。

向我们的ADI技术专家提出棘手问题、浏览常见问题解答,或参与EngineerZone在线支持社区讨论。 请访问ez.analog.com/cn。 ©2022 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。 "超越一切可能"是ADI公司的商标。

请访问analog.com/cn

TA23321sc-2/22