

利用24 GHz DemoRAD解决方案 实现面向新兴工业大众市场的 新型非接触式传感器

作者: John Morrissey ADI公司

简介

24 GHz硅基毫米波雷达技术正在实现新一代现实世界, 即越来 越多地用于汽车、无人机、泛工业和消费类应用等大众市场应 用的非接触式智能传感器。这类雷达传感器可以提供实时信 息,比如物体存在、运动、角位置、速度以及几厘米到几百米的 传感器范围。直到最近,毫米波雷达传感器仍使用尺寸庞大、复 杂且构建成本高昂的离散解决方案来实现, 这限制了其广泛的 市场采用。ADI公司的新型24 GHz雷达产品提供出色的性能和高 集成度,是小尺寸、低成本且易用的超低功耗解决方案,适用于 物理检测、跟踪、安全控制和防撞警告系统等应用。

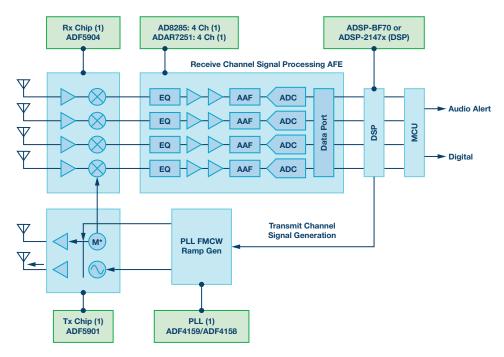
24 GHz雷达系统解决方案解决雷达传感器开发 挑战

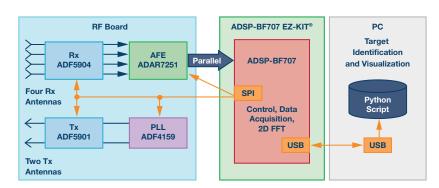
随着新型射频雷达传感器应用的出现, 许多希望快速完成雷达 传感器解决方案评估、设计和制造的公司面临一系列新的开发 挑战。

针对将射频雷达作为一种传感技术着力开发的公司所面临的 挑战, ADI公司最近推出了一款24 GHz雷达系统级原型解决方案 (称为DemoRAD)(图1),可以在整个系统参考设计中实现硬件 和软件应用开发。24 GHz DemoRAD系统是一款新颖的微波雷达 评估平台, 提供开箱即用的软件示例, 可在数分钟内轻松启动 雷达传感器。DemoRAD可对雷达传感器产品进行快速原型制作, 从而测量目标/对象存在、运动、角位置、速度以及传感器范围 等实时信息。

该系统硬件解决方案包括射频天线和一条完整的射频到基 带信号链 (ADF5904 (接收)、ADF5901 (发射), ADF4159 (PLL), ADAR7251 (AFE)), 其中还包括ADI的ADSP-BF707 DSP (数字信 号处理器),可通过易用的图形用户界面和雷达算法软件快速 连接笔记本电脑/PC(图2)。Blackfin® DSP库中提供雷达FFT和 控制固件。用户只需几分钟就可将该平台系统插入加载了软件 的计算机。使用软件图形用户界面 (GUI) 提供全面的24 GHz雷 达IC软件支持, 在DSP雷达支持功能库中, 通过一些额外功能可 利用原始数据,并使用为雷达传感器设计的专用MATLAB®工具 (比如2D/3D 雷达FFT、CFAR和分类算法) 在PC上进行后处理。

图1.24 GHz DemoRAD平台解决方案。





- ► Modular RF front end
- · Analog Devices 24 GHz chipset
- 2 Tx and 4 analog Rx channels plus MIMO
- ► Signal processing
- · Raw data sampling and digital postprocessing

- ► Software and hardware
 - Standardized command interface, GUI
 - Real-time signal processing on Blackfin DSP
 - USB 2.0 interface
- · Data rates up to 1.2 MSPS per IF channel, MIMO processing

图2. DemoRAD射频到基带信号链和简化框图。

欲了解DemoRAD的更多信息,请参阅此产品亮点: DemoRAD: 24 GHz雷达传感器平台。

FMCW雷达系统基础知识

图3所示为雷达发射时产生的调频连续波 (FMCW) 雷达波斜坡, 以及用于定义雷达传感器设计信息的一组重要雷达公式。 距离分辨率取决于发射载波扫描带宽——发射扫描带宽越高,雷达传感器的距离速度越高。速度分辨率取决于停留时间和载波频率——载波频率越高或停留时间越长,速度分辨率越高。角分辨率取决于载波频率——载波频率越高,角分辨率越好。

图4描述了对ADSP-BF707中捕获的数据的后处理。

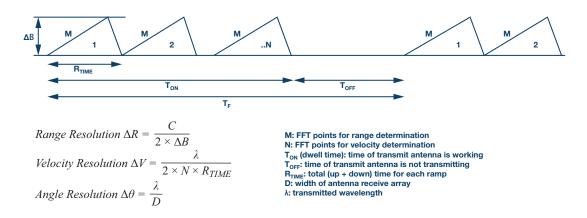
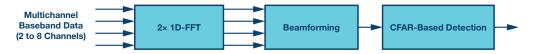



图3. FMCW雷达概念。

- ▶ 2D FFT: transformation to frequency domain for range/velocity estimation
- · Windowing to shape the signal and reduce spectral leakage
- · Performed as 1D FFT on the rows followed by a 1D FFT on the columns
- ▶ Beamforming: estimation of angular position
- · Calculate the magnitude and phase based on the antennae array
- Complex dot product for all the channels in each direction of the beam
- ► CFAR: detection of target against clutter (noise)
- · Separate the signal from the background clutter

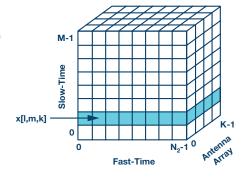


图4. FMCW数字后处理信号链。

DemoRAD系统信号链包括DSP中的一些基本算法,实施用于DSP FFT、波束成形和CFAR。基本目标检测和目标分类在主机PC上运行。DemoRAD主要用于采集时域和频域中的雷达信号。DemoRAD不包括高级目标检测或对象分类算法。这是应用级开发工作的一个例子,通常由终端系统开发人员执行,他们非常了解雷达传感器的工作环境以及所需的对象检测类型。

图5所示为Blackfin ADSP-BF70x的部分优化2D FFT, 具有集成窗口功能, 有助于避免饱和, 实现更高的SNR, 并优化内存布局, 从而实现更高的带宽和更高效的数据处理。DemoRAD提供不同的操作模式。

FMCW雷达模式

在FMCW模式下,可以测量到静止目标的距离。目标的下变频接收信号的频率与到该目标的距离成比例。在GUI中,可以进行FFT处理以确定频率。使用距离-时间显示选项可以查看移动目标,同时显示屏存储多个FMCW扫描。

距离多普勒模式

在距离多普勒模式下,可以分析到目标的距离以及速度。距离 多普勒模式是最强大的操作模式之一,因为它能够通过评估二 维傅里叶变换同时处理多个发射斜坡。距离多普勒处理数据显 示在距离多普勒图中。距离多普勒非常强大,因为它允许分离具 有不同速度的目标,即使这些目标的距离都相同亦是如此。这 对于不同方向上多个快速移动的目标非常有用——例如,解决 汽车朝相反方向移动或超车期间的复杂交通情况。

数字波束成形 (DBF) 模式

在DBF模式下,显示到目标的距离以及与该目标所成的角度。来自四个接收通道的接收信号用于估计目标的角度。显示屏显示xy平面中各目标的空间分布。在DBF模式下,系统配置与FMCW模式下的相同,但对IF下变频信号的处理不同。在计算距离之后,通过评估四个接收通道之间的相位差来计算目标的角度信息。在DBF模式下,需要进行雷达前端系统校准,以消除接收通道之间不必要的确定性相位差。每个DemoRAD系统都具备工厂校准数据,在运行GUI时加载。随后会先校正采样的IF信号,再评估传感器的测量数据。

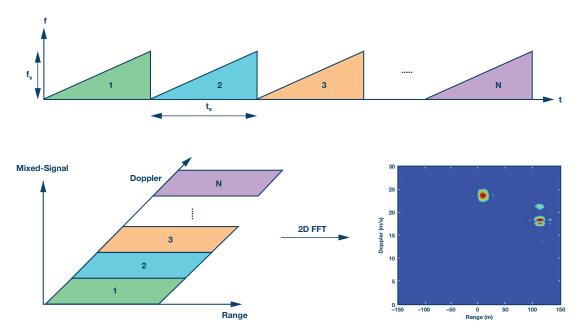


图5. 使用二维傅里叶变换的距离和多普勒频率。

DemoRAD平台的MIMO操作原理是: 使用ADF5901上两个可用的 发射输出并放置相应的天线。这样会产生七个接收通道来提 高传感器的角分辨率——例如四个实际接收通道和四个虚拟 接收通道,在一个通道上重叠。DemoRAD中使用的波形利用 ADF4159 PLL的快速斜坡特性, 其中上升线性调频脉冲为280μs, 下降线性调频脉冲为4, 总共为284μs。ADAR7251 AFE ADC以 1 MSPS运行的情况下, 采集256个采样或在上升沿中进行数据 采样。

DemoRAD使用FMCW雷达监测最远至200 米且分辨率约为75 cm 的对象范围和速度。根据天线阵列设计, 水平 (FOV) 方位角约为 120°, 俯仰角约为15°。通过组合数字波束成形 (DBF) 中的天线, DemoRAD使用DBF来计算FOV中的角度信息。

作者简介

John Morrissey毕业于爱尔兰利默里克大学, 获得电子工 程 (BENG) 学士学位, 并于1984年加入ADI公司。在1984 年至1998年期间, John担任模拟IC设计师一职, 致力于工 业和通信应用的DAC、ADC和混合信号模拟电路新产品开 发。在ADI工作的1999年至2007年期间, 他的设计技能与 工作兴趣延伸到了通信产品的RF和微波设计上。从2007 年开始,他在ADI公司内担任过很多传感器技术工程与业 务管理职位,包括设计和营销。目前他担任ADI公司RF和 微波部门 (RFMG) 产品线总监一职, 支持ADI汽车与工业 雷达等业务。

在线支持社区

访问ADI在线支持社区,与ADI 技术专家互动。提出您的棘手 设计问题、浏览常见问题解答, 或参与讨论。

全球总部 One Technology Way P.O. Box 9106, Norwood, MA

02062-9106 U.S.A. Tel: (1 781) 329 4700 Fax: (1 781) 461 3113 大中华区总部

上海市浦东新区张江高科技园区 祖冲之路 2290 号展想广场 5 楼 邮编:201203

电话: (86 21) 2320 8000 传直:(86.21)2320.8222 深圳分公司 深圳市福田中心区

益田路与福华三路交汇处 深圳国际商会中心 4205-4210 室 邮编:518048

电话: (86 755) 8202 3200 传真: (86 755) 8202 3222 北京分公司

北京市海淀区西小口路 66 号 中关村东升科技园 B-6 号楼 A 座一层 邮编:100191 电话: (86 10) 5987 1000

传真: (86 10) 6298 3574

湖北省武汉市东湖高新区 珞瑜路 889 号光谷国际广场 写字楼 B 座 2403-2405 室 邮编: 430073 由话: (86 27) 8715 9968 传直: (86 27) 8715 9931

武汉分公司

©2017 Analog Devices, Inc. All rights reserved, Trademarks and registered trademarks are the property of their respective owners. Ahead of What's Possible is a trademark of Analog Devices. TA15869sc-0-6/17

analog.com/cn

