

AN-764 应用笔记

用做匹配的ADF7020 RF端口阻抗值

作者:Austin Harney和Guido Retz

概述

ADF7020是一款全集成式收发器IC,支持US、EU、ISM频段 的工作频率915 MHz、868 MHz和433 MHz。该IC具有差分 LNA输入和单端PA输出。为了实现最佳性能,LNA输入和PA 输出必须同时与源/负载阻抗相匹配,并考虑装配IC的印刷电 路板的属性。匹配最好采用专用的RF仿真套件,如Ansoft Designer[™]、Eagleware Genesys[™]、AWR Microwave Office[®]或CST Microwave Studio[®]。为了使客户能使用这些设计工具,必须提 供针对不同RF端口的模型。本应用笔记提供这些必要信息。

简介

ADF7020有两个RF端口:一个LNA输入端口和一个PA输出端口。这些RF端口的特性和功能取决于收发器的工作模式,即 Tx模式或Rx模式。端口及不同状态为

PA输出(单端、以地为参考) Tx模式:最佳PA负载阻抗 Rx模式:PA空闲阻抗

LNA输入(差分、以地为参考)
Rx模式:
增益= 30x: LNA输入匹配
增益= 10x: LNA输入匹配
Tx模式: Rx/Tx开关阻抗

通过为每个RF端口提供简单的集总元件模型,无需考虑复杂 的宽带模型。这种简化的缺点是这些模型仅在较窄的频带内 有效。本文档将考虑以下频带:

433 MHz, 带宽2 MHz 868 MHz, 带宽2 MHz

915 MHz, 带宽26 MHz

ADF7020端口模型是基于固定模型结构推导而出。去嵌入程 序消除了封装下方焊盘对印刷电路板的影响,因此,在 ADF7020仿真时需要包括焊盘。

测量结果

LNA输入、Rx模式

图1所示为LNA输入的集总元件模型。这一简化模型反映了采 用尽量简单的等效电路测得的端口阻抗值。下面将用一节的 篇幅分别讨论高灵敏度模式(LNAGAIN=30)和低电流模式 (LNAGAIN=10)的测量结果。

图1. LNA集总元件模型, Rx模式

为了获得最佳灵敏度,源阻抗应与建议CLC结构相匹配,使 RFIN和RFINB端口的差分电压摆幅达到最大。这一任务须使 用内置优化器的RF仿真器来实现。该匹配条件一般会导致略 具无功特征的输入反射系数。

LNA输入、Rx模式、LNAGAIN=30

表1列出了图1所示等效电路的元件值,适用于Rx模式和 LNAGAIN= 30 ([R9.DB20, R9.DB21] = [1,0])。

表1.LNA等效电路(图1)的元件(Rx模式, LNAGAIN=30)

频率 (MHz)	Rplnarx (Ω)	Cplnarx (pF)	Cslnarx (pF)
433 至 435	300	2.0	0.1
868 至 870	180	2.3	0.1
902 至 928	175	2.3	0.1

AN-764

由于电容Cslnarx较低,因此可以近似认为LNA输入阻抗为 RFIN至GND与RFINB至GND之间的两个独立阻抗。这种简化 模型足以解决多数匹配问题。阻抗值如表2所示。

表2. LNA以地为基准的输入阻抗(Rx模式, LNAGAIN= 30)

频率 (MHz)	Zlnarx_gnd (Ω)
433 至 435	71 – j128
868 至 870	26 – j63
902 至 928	24 – j60

LNA输入、Rx模式、LNAGAIN=10

表1列出了图1所示等效电路的元件值,适用于Rx模式和 LNAGAIN= 30 ([R9.DB20, R9.DB21] = [1,0])。

表3. LNA等效电路(图1)的元件(Rx模式, LNAGAIN=10)

频率 (MHz)	Rplnarx (Ω)	Cplnarx (pF)	Cslnarx (pF)
433 至 435	200	2.0	0.1
868 至 870	125	2.4	0.1
902 至 928	120	2.4	0.1

同样地,如果输入RFIN和RFINB之间的耦合分路中的元件体 现为两个以地为基准的单端分路,则该模型可以简化。值如 表4所示。

表4. LNA以地为基准的输入阻抗(Rx模式,LNAGAIN= 10)

频率 (MHz)	Zlnarx_gnd (Ω)
433 至 435	82 – j98
868 至 870	30 – j53
902 至 928	28 – j51

LNA输入、Tx模式

当ADF7020进入Tx模式时, Rx/Tx开关闭合, 在引脚RFIN和 RFINB之间提供一个低阻抗的路径。对于匹配网络的设计, Tx模式下的LNA输入阻抗可以如图2模拟。

图2. LNA集总元件模型, Tx模式

表5列出了三个目标频带下的估计元件值。

表5.LNA等效电路(图2)的元件(Tx模式)

频率 (MHz)	Cplnatx (pF)	Rslnatx (Ω)
433 至 435	2.2	10
868 至 870	2.6	10
902 至 928	2.6	10

PA输出、Rx模式

Rx模式下,偏置PA输出的寄生电容对于设计组合式Rx/Tx匹 配网络具有一定的意义。图3显示了Rx模式下偏置PA的集总 元件模型,元件数量已减至最低。由于PA模块的接地连接直 接焊接至IC封装的焊盘上,因此,如果在焊盘接地与印刷电 路板地平面之间使用多个过孔,则地阻抗将十分低。因此, RFGND引脚与印刷电路板的理想化公用地节点之间的阻抗可 以忽略不计。表6列出了图3所示等效电路适用的以频率而异 的元件值,其中使用的偏置电压为3 V。数据显示,PA端口阻 抗对该偏置电压具有一定的依存性。

图3. PA集总元件模型, Rx模式

表6. PA等效电路(图3)的元件(Rx模式)

频率 (MHz)	Rpparx (Ω)	Cpparx (pF)
433 至 435	2000	2.2
868 至 870	680	2.1
902 至 928	650	2.1

PA输出、Tx模式、最佳负载阻抗

PA负载阻抗值已通过分支调谐器模式优化,以便在电源电压 为3.0 V时以尽可能低的功耗获得10 dBm输出功率。

图4. 最佳PA负载阻抗和集总元件模型的定义

表4. LNA以地为基准的输入阻抗(Rx模式,LNAGAIN= 10)

频率 (MHz)	Zppatx_opt (Ω)	
433 至 435	54 + j94	
868 至 870	48 + j54	
902 至 928	39 + j61	

表7列出了针对每个频带的最佳PA负载阻抗值,符合前面提到的条件。图4所示为最佳负载阻抗和集总元件等效电路的定义。代表最佳负载阻抗的元件值如表8所示。

表8.最佳PA负载阻抗(图4)的集总元件模型

频率 (MHz)	Rppatx (Ω)	Lppatx (pF)
433 至 435	218	46
868 至 870	110	18
902 至 925	134	15

结束语

本应用笔记讨论了ADF7020的测得端口阻抗值。测量值涵盖 了LNA输入处于不同模式的情况,涉及多数重要频率和不同 增益设置。对于PA端口,讨论了其在Rx模式下处于空闲状态 时的阻抗。对于Tx工作模式,我们量化了最佳PA负载阻抗 值。文中提供的数据可以满足组合式Rx/Tx匹配网络的设计需 要。

AN-764

注释

©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. AN05297sc-0-5/11(0)

REV. 0 | Page 4 of 4

www.analog.com