

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

概述

MAX15026同步降压控制器工作在4.5V至28V输入电压范 围内,可产生调节范围为输入电压的85%到低至0.6V的输 出电压,支持高达25A的负载电流。器件允许单调启动至 预偏置而不对输出放电,并具有自适应的内部数字软启动 功能。

MAX15026可通过外部电阻在200kHz至2MHz范围内调节 开关频率。MAX15026的自适应同步整流无需外部续流肖 特基二极管。该器件用外部低边MOSFET的导通电阻作 为电流检测元件,省去了电流检测电阻。这样无需检流 电阻即可在输出过载或输出短路故障情况下保护DC-DC 元件不受损坏。打嗝模式限流降低了短路情况下的功耗。 MAX15026包括一个电源就绪输出和一个具有精确开启/关 断门限的使能输入,可用于输入电源监测和电源排序。

其它保护功能包括吸电流模式限流及热关断。

当器件从输出吸电流时,吸电流模式限流功能可防止反向 电感电流达到危险值。

MAX15026采用节省空间且增强散热的3mm x 3mm、14 引脚TDFN-EP封装。MAX15026工作在-40°C至+85°C扩展 级温度范围以及-40°C至+125°C汽车级温度范围。

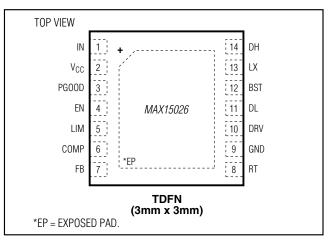
MAX15026C设计提供额外的先断后通时间裕量。

MAX15026B/MAX15026C设计提供软停止功能,在关断时缓降输出电压。MAX15026D无软停止功能。

应用

- 机顶盒
- 用于LCD TV的二次变换电源
- 交换机/路由器
- 电源模块
- DSP电源
- 负载点稳压器

特性


- 4.5V至28V或5V ±10%输入电压范围
- 0.6V至(0.85 x V_{IN})可调输出
- 200kHz至2MHz可调开关频率
- 可启动至预偏置负载
- 具有可调温度补偿门限的无损、逐周期、谷电流模式 限流
- 吸电流模式限流保护
- 自适应的内部数字软启动
- ±1%精度的电压基准
- 内部自举二极管
- 自适应同步整流无需外部续流肖特基二极管
- 打嗝模式短路保护
- 热关断
- 电源就绪输出及使能输入用于电源排序
- ±5%精度的使能输入门限

定购信息

器件	温度范围	引脚–封装
MAX15026BETD+	-40°C至+85°C	14 TQFN-EP*
MAX15026BETD/V+T	-40°C至+85°C	14 TQFN-EP*
MAX15026CETD+	-40°C至+85°C	14 TQFN-EP*
MAX15026BATD+	-40°C至+125°C	14 TQFN-EP*
MAX15026CATD+	-40°C至+125°C	14 TQFN-EP*
MAX15026DATD+	-40°C至+125°C	14 TQFN-EP*

+表示无铅(Pb)/符合RoHS标准的封装。 *EP = 裸焊盘。T = 卷带包装。 /V表示通过汽车标准认证的器件。 新设计推荐使用MAX15026D。

引脚配置

本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心: 10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站: www.maximintegrated.com/cn。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

Absolute Maximum Ratings

IN to GND0.3V to +30V BST to GND0.3V to +36V LX to GND1V to +30V	DRV Input Current
EN to GND0.3V to +6V	14-Pin TDFN-EP, Multilayer Board
PGOOD to GND0.3V to +30V	(derate 24.4mW/°C above +70°C)1951mW
BST to LX0.3V to +6V	Operating Temperature Range
DH to LX0.3V to (V _{BST} + 0.3V)	MAX15026B/CETD+, MAX15026BETD/V+40°C to +85°C
DRV to GND0.3V to +6V	MAX15026B/C/DATD+40°C to +125°C
DL to GND0.3V to $(V_{DRV} + 0.3V)$	Junction Temperature+150°C
V _{CC} to GND0.3V to the lower of +6V and $(V_{IN} + 0.3V)$	Storage Temperature Range60°C to +150°C
All Other Pins to GND0.3V to $(V_{CC} + 0.3V)$	Lead Temperature (soldering, 10s)+300°C
V _{CC} Short Circuit to GNDContinuous	Soldering Temperature (reflow)+260°C

Note 1: Dissipation wattage values are based on still air with no heatsink. Actual maximum power dissipation is a function of heat extraction technique and may be substantially higher. Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{IN} = 12V, R_{RT} = 27k\Omega, R_{LIM} = 30k\Omega, C_{VCC} = 4.7\mu\text{F}, C_{IN} = 1\mu\text{F}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (MAX15026B/CETD+, MAX15026BETD/V+)}, \\ T_A = T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \text{ (MAX15026B/C/DATD+)}, \\ unless otherwise noted. Typical values are at T_A = +25^{\circ}\text{C}.) \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
GENERAL		•					
Input Voltage Dange	Mar.		4.5		28	V	
Input Voltage Range	VIN	$V_{IN} = V_{CC} = V_{DRV}$	4.5		5.5		
Quiescent Supply Current		$V_{FB} = 0.9V$, no switching		1.75	2.75	mA	
Shutdown Supply Current	I _{IN_SBY}	EN = GND		290	500	μA	
Enable to Output Delay				480		μs	
V _{CC} High to Output Delay		$EN = V_{CC}$		375		μs	
V _{CC} REGULATOR							
		$6V < V_{IN} < 28V, I_{LOAD} = 25mA$	5.0	5.25	5.5	V	
Output Voltage	Vcc	$V_{IN} = 12V$, 1mA < I_{LOAD} < 70mA	5.0				
V _{CC} Regulator Dropout		$V_{IN} = 4.5V$, $I_{LOAD} = 70$ mA			0.28	V	
V _{CC} Short-Circuit Output Current		$V_{IN} = 5V$	100	200	300	mA	
V _{CC} Undervoltage Lockout	VCC_UVLO	V _{CC} rising	3.8	4.0	4.2	V	
V _{CC} Undervoltage Lockout Hysteresis				400		mV	
ERROR AMPLIFIER (FB, COMP)		•					
FB Input Voltage Set-Point	VFB		585	591	597	mV	
FB Input Bias Current	I _{FB}	$V_{FB} = 0.6V$	-250		+250	nA	
FB to COMP Transconductance	ЯМ	$I_{COMP} = \pm 20 \mu A$	600	1200	1800	μS	
Amplifier Open-Loop Gain				80		dB	
Amplifier Unity-Gain Bandwidth		Capacitor from COMP to GND = 50pF		4		MHz	
VCOMP-RAMP Minimum Voltage				160		mV	
COMP Source/Sink Current	ICOMP	V _{COMP} = 1.4V	50	80	110	μA	

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

Electrical Characteristics (continued)

 $(V_{IN} = 12V, R_{RT} = 27k\Omega, R_{LIM} = 30k\Omega, C_{VCC} = 4.7\mu\text{F}, C_{IN} = 1\mu\text{F}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (MAX15026B/CETD+, MAX15026BETD/V+)}, \\ T_A = T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \text{ (MAX15026B/C/DATD+)}, \\ unless otherwise noted. Typical values are at T_A = +25^{\circ}\text{C}.) \text{ (Note 2)}$

PARAMETER	SYMBOL	CON	IDITIONS	MIN	ТҮР	МАХ	UNITS
ENABLE (EN)				1			
EN Input High	V _{EN_H}	V _{EN} rising		1.14	1.20	1.26	V
EN Input Low	V _{EN_L}	V _{EN} falling		0.997	1.05	1.103	V
EN Input Leakage Current	ILEAK_EN	$V_{EN} = 5.5V$		-1		+1	μA
OSCILLATOR				•			•
Switching Frequency	fsw	$R_{RT} = 27k\Omega$		540	600	660	kHz
1MHz Switching Frequency		$R_{RT} = 15.7 k\Omega$		0.9	1	1.1	MHz
2MHz Switching Frequency		$R_{RT} = 7.2 k\Omega$		1.8	2.0	2.4	MHz
Switching Frequency Adjustment Range (Note 3)				200		2000	kHz
RT Voltage	V _{RT}			1.19	1.205	1.22	V
PWM Ramp Peak-to-Peak Amplitude	VRAMP				1.8		V
PWM Ramp Valley	VVALLEY				0.8		V
Minimum Controllable On-Time					65	100	ns
Maximum Duty Cycle		$f_{SW} = 600 \text{kHz}$		85	88		%
Minimum Low-Side On-Time		$R_{RT} = 15.7 k\Omega$		75	110	150	ns
OUTPUT DRIVERS/DRIVER SUP	PLY (DRV)						
DRV Undervoltage Lockout	VDRV_UVLO	V _{DRV} rising		4.0	4.2	4.4	V
DRV Undervoltage Lockout Hysteresis					400		mV
		Low, sinking 100mA, V _{BST} = 5V			1	3	Ω
DH On-Resistance		High, sourcing 100mA, V _{BST} = 5V			1.5	4.5	
		Low, sinking 100mA, V _{BST} = 5.2V			1	3	_
DL On-Resistance		High, sourcing 100)mA, V _{BST} = 5.2V		1.5	4.5	Ω
			Sinking		4		<u> </u>
DH Peak Current		$C_{LOAD} = 10nF$	Sourcing		3		A
		0 10 5	Sinking		4		- A
DL Peak Current		$C_{LOAD} = 10nF$	Sourcing		3		
DH/DL Break-Before-Make Time		DH at 1V (falling) to DL at 1V (rising)		10	(18, Note	e 5)	ns
DL/DH Break-Before-Make Time		DL at 1V (falling) to DH at 1V (rising)		10	(20, Note	e 6)	ns
SOFT-START							
Soft-Start Duration					2048		Switchir Cycles
Reference Voltage Steps					64		Steps
CURRENT LIMIT/HICCUP							
Current-Limit Threshold Adjustment Range		Cycle-by-cycle valley current-limit threshold adjustment range valley limit = V _{LIM} /10		30		300	mV

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

Electrical Characteristics (continued)

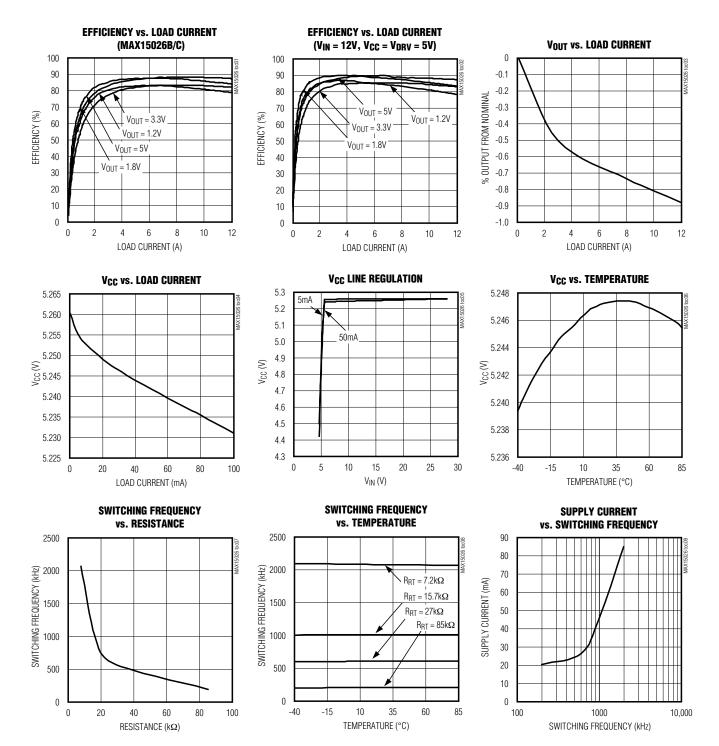
 $(V_{IN} = 12V, R_{RT} = 27k\Omega, R_{LIM} = 30k\Omega, C_{VCC} = 4.7\mu\text{F}, C_{IN} = 1\mu\text{F}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C} \text{ (MAX15026B/CETD+, MAX15026BETD/V+)}, \\ T_A = T_J = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C} \text{ (MAX15026B/C/DATD+)}, \\ unless otherwise noted. Typical values are at T_A = +25^{\circ}\text{C}.) \text{ (Note 2)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS
LIM Reference Current	I _{LIM}	V _{LIM} = 0.3V to 3V (Note 4)	45	50	55	μA
LIM Reference Current Tempco		$V_{LIM} = 0.3V$ to $3V$		2300		ppm/°C
Number of Consecutive Current- Limit Events to Hiccup				7		Events
Soft-Start Timeout				4096		Switching Cycles
Soft-Start Restart Timeout				8192		Switching Cycles
Hiccup Timeout		Out of soft-start		4096		Switching Cycles
Peak Low-Side Sink Current Limit		Sink limit = 1.5V, $R_{LIM} = 30k\Omega$ (Note 4)		75		mV
BOOST		·				
Boost Switch Resistance		$V_{IN} = V_{CC} = 5V$, $I_{BST} = 10mA$		3	8	Ω
POWER-GOOD OUTPUT		·				
PGOOD Threshold Rising			90	94.5	97.5	%V _{FB}
PGOOD Threshold Falling			88	92	94.5	%V _{FB}
PGOOD Output Leakage	ILEAK_PGD	$V_{IN} = V_{PGOOD} = 28V, V_{EN} = 5V, V_{FB} = 1V$	-1		+1	μA
PGOOD Output Low Voltage	Vpgood_l	I _{PGOOD} = 2mA, EN = GND			0.4	V
THERMAL SHUTDOWN						
Thermal-Shutdown Threshold		Temperature rising		+150		°C
Thermal-Shutdown Hysteresis		Temperature falling		20		°C

Note 2: All devices are 100% tested at room temperature and guaranteed by design over the specified temperature range.

Note 3: Select R_{RT} as: $R_{RT} = \frac{17.3 \times 10^9}{f_{SW} + (1 \times 10^{-7}) x (f_{SW}^2)}$ where f_{SW} is in Hertz.

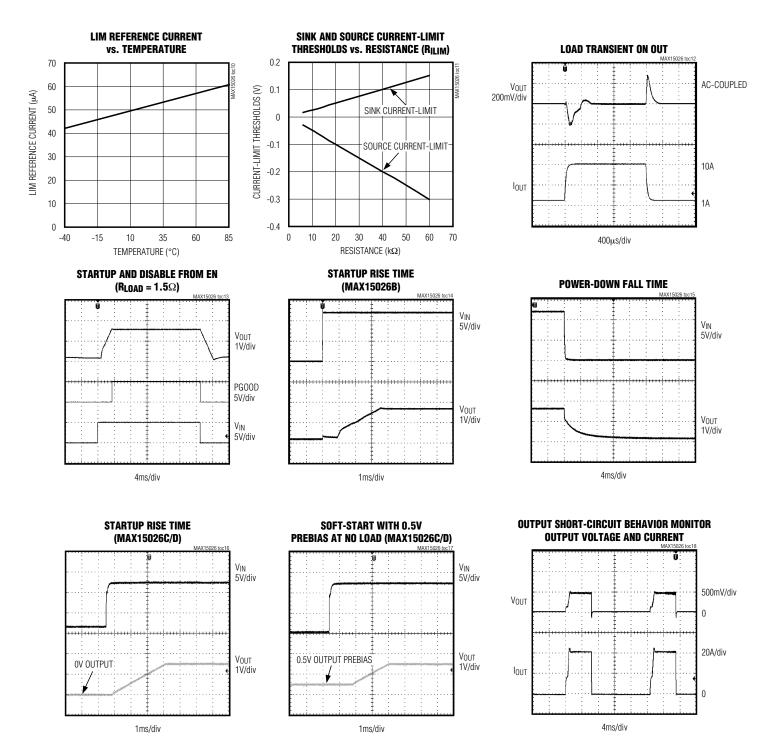
Note 4: $T_A = +25^{\circ}C$.


Note 5: 10ns for MAX15026B, 18ns for the MAX15026C/D.

Note 6: 10ns for MAX15026B, 20ns for the MAX15026C/D.

MAX15026 低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

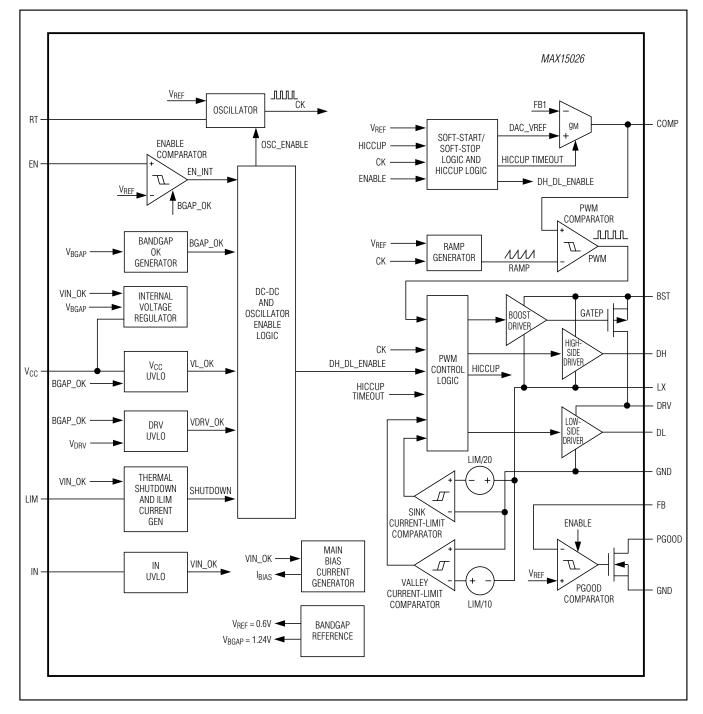
典型工作特性


 $(V_{IN} = 12V, T_A = +25^{\circ}C.$ The following TOCs are for MAX15026B/C/D, unless otherwise noted.) (See the circuit of Figure 5.)

MAX15026 低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

典型工作特性(续)

(VIN = 12V, TA = +25°C. The following TOCs are for MAX15026B/C/D, unless otherwise noted.) (See the circuit of Figure 5.)


低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

引脚说明

引脚	名称	功能
1	IN	调节器的输入。采用一只最小值为1µF的陶瓷电容将IN旁路至GND。工作于5V ±10%电源时,连接IN至V _{CC} 。
2	V _{CC}	5.25V线性稳压器输出。当V _{CC} 为DRV提供驱动电流时,使用最小值为4.7μF的低ESR陶瓷电容将V _{CC} 旁路至 GND,以确保最大额定电流下的稳定性。当V _{CC} 为器件提供核静态电流时,使用最小值为2.2μF的陶瓷电容将 V _{CC} 旁路至GND。
3	PGOOD	漏极开路的电源就绪输出。采用外部电阻将PGOOD上拉至任意电源电压。
4	EN	高电平有效的使能输入。连接EN至GND时,关断输出。连接EN至V _{CC} 时,保持正常工作。EN可用于电源排序 以及UVLO调节输入。
5	LIM	限流调节。在LIM和GND之间连接一个电阻,在30mV (R _{LIM} = 6kΩ)至300mV (R _{LIM} = 60kΩ)范围内调节限流 门限。参见 <i>设置谷电流门限</i> 部分。
6	COMP	补偿输入。将补偿网络连接至COMP和FB之间或COMP和GND之间。参见补偿部分。
7	FB	反馈输入。将FB连接至输出和GND之间的电阻分压器,在0.6V与(0.85 x 输入电压)范围之间调节输出电压。请 参见 <i>设置输出电压</i> 部分。
8	RT	振荡器定时电阻输入。在RT至GND之间连接一个电阻,在200kHz至2MHz范围内设置振荡器频率。参见 <i>设置 开关频率</i> 部分。
9	GND	地。
10	DRV	驱动电源电压。DRV内部连接至内部自举二极管的阳极。使用最小值为2.2µF的陶瓷电容将DRV旁路至GND (参见 <i>典型应用电路</i>)。
11	DL	低边栅极驱动器输出。DL电压在DRV电压至GND之间摆动。在UVLO过程中,DL为低。
12	BST	自举飞电容连接。在BST和LX之间连接至少100nF的陶瓷电容。
13	LX	外部电感连接。将LX连接至电感的开关侧。LX用作高边栅极驱动器的低电源轨,也作为同步MOSFET的漏极 至源极电压降的检测输入。
14	DH	高边栅极驱动器输出。DH电压在LX电压至BST电压之间摆动。在UVLO过程中,DH为低。
_	EP	裸焊盘。内部连接至GND。将EP连接至在GND的大面积覆铜层以提高散热性能。勿要将EP用作唯一的GND接 地连接。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

功能框图

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

详细说明

MAX15026同步降压控制器工作在4.5V至28V输入电压范 围内,可产生调节范围为输入电压的85%到低至0.6V的输 出电压,支持高达25A的负载电流。只要器件的电源电压 处于5.0V至5.5V范围内,输入电源总线(VIN)可低至3.3V。

MAX15026可通过外部电阻在200kHz至2MHz的范围内调 节开关频率。可调节的开关频率为选择无源元件提供设 计灵活性。MAX15026具有自适应同步整流功能,省去了 外部续流肖特基二极管并提高了效率。该器件用外部低边 MOSFET的导通电阻作为电流检测元件。限流门限电压可 通过电阻独立设置,范围为30mV至300mV,并且已进行 温度补偿,从而降低了MOSFET的RDS(ON)随温度变化的 影响。该检流方案无需外部检流电阻,可在输出过载或输 出短路故障情况下保护外部元件不受损坏。打嗝模式限流 降低了短路情况下的功耗。MAX15026包括一个电源就绪 输出和一个具有精确开启/关断门限的使能输入,可用于输 入电源监测和电源排序。

MAX15026还具有内部数字软启动,允许预偏置启动,而 无需进行输出放电。当预偏置电压超过了预设的稳态调节 电压时,数字软启动功能使用吸收限流来防止调节器吸入 过多的电流。当调节器从输出吸入电流时,数字软启动功 能可避免同步整流MOSFET和高边MOSFET的体二极管流 过危险的电流。当结温达到+150°C时,MAX15026关断, 以防止损坏器件。

DC-DC PWM控制器

MAX15026降压控制器采用PWM电压模式控制方案(参见 功能框图)。控制环路补偿为外部补偿,这在选择工作频率 和输出LC滤波器组件方面提供最大的灵活性。内部跨导误 差放大器在COMP引脚处产生一个积分误差电压,有助于 提供更高的直流精度。COMP引脚处的电压通过PWM比 较器和斜坡发生器调节占空比。在其内部时钟的上升沿, 高边n沟道MOSFET开启,直到达到合适的占空比或到达 最大占空比。在高边MOSFET开启期间,电感电流会斜坡 上升。在开关周期的后半阶段,高边MOSFET关断,低边 n沟道MOSFET开启。此时,电感电流斜坡下降,释放储存的能量,同时向输出端提供电流。在过载条件下,当电感电流超过所选的谷电流限流门限(请参见*限流电路(LIM)*部分)时,高边MOSFET不会在随后的时钟上升沿处开启,而低边MOSFET则会保持导通以使电感电流斜坡下降。

内部5.2V线性稳压器

内部线性稳压器(V_{CC})为内部功能和低边MOSFET驱动器提 供标称为5.25V电源。采用外部5V ±10%电源电压时,可 将IN与V_{CC}连接到一起。稳压器最大输入电压(V_{IN})为28V。 采用1µF的陶瓷电容将IN旁路至GND。同时采用4.7µF的 陶瓷电容将线性稳压器的输出(V_{CC})旁路至GND。V_{CC}压 降通常为125mV。因此当V_{IN}大于5.5V时,V_{CC}为5.25V。 MAX15026还带有欠压锁定电路,该电路可在V_{CC}低于 3.6V (典型值)时关闭内部线性稳压器。400mV的UVLO滞 回可防止在上电/断电时出现抖动。

内部V_{CC}线性稳压器可为IC提供高达70mA的电流,用于低 边栅极驱动器供电、对外部自举电容充电以及为一定的外 部负载供电。可向外部负载提供的电流取决于MOSFET栅 极驱动所消耗的电流。

例如,开关工作频率为600kHz时,总栅极电荷为18nC的单 个MOSFET (V_{GS} = 5V时)需要的驱动电流为(18nC x 600kHz) = 11mA。内部控制电路消耗的电流为5mA (最大值),因此, 可用于外部负载的电流为:

 $(70 - (2 \times 11) - 5)mA = 43mA$

MOSFET栅极驱动器(DH、DL)

DH和DL驱动器经过优化用于驱动大尺寸n沟道功率 MOSFET。正常工作状态下启动后,DL低边驱动器的波形 始终与DH高边驱动器的波形保持互补(受控死区时间能够 防止穿通或直通)。自适应死区电路监测DH和DL输出,并 防止在一个MOSFET完全断开之前,对应侧的MOSFET导 通。因此,该电路只允许在DL栅极驱动器关断时开启高边 驱动器。同样,它也可以避免低边(DL)驱动器在DH栅极驱 动器关断之前开启。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

驱动器的自适应死区控制能够在使用不同MOSFET时保证 无直通工作,大大降低了延迟时间,保持较高的转换效率。 为了确保自适应死区检测电路正常工作,从DL和DH驱动 器到MOSFET栅极之间必须保持低电阻、低电感路径。否 则,如果栅极放电通路存在较大的寄生电阻,检测电路会 在MOSFET的V_{GS}仍然很高时误以为MOSFET栅极已关断。 须使用短且宽的走线,使寄生电阻降至最小。

同步整流中利用低阻MOSFET开关代替常用的低边肖特基 续流二极管,降低了传导损耗。采用R_{DS(ON)}为1Ω(典型值)、 内部下拉的晶体管将DL可靠地驱动到低电平。LX节点快 速上升期间,由于低边同步整流MOSFET的漏极到栅极之 间存在耦合电容,低导通电阻有助于防止DL上拉。

高边栅极驱动电源(BST)和内部升压开关

闭合BST和DH之间的内部开关可将栅极驱动信号提升到 V_{IN}以上,为高边MOSFET的导通提供了必要的栅-源电压。 BST和LX之间连接的自举电容可在高边MOSFET导通期间 保持栅极驱动器两端的电压。

当高边MOSFET断开,LX节点电压达到地电位时,将补充 自举电容由于提供栅极电荷而失去的电荷。当LX节点为低 电平时,V_{DRV}和BST之间连接的内部高压开关会将自举电 容重新充电。参考应用信息中的自举电容,以选择适当的 自举电容。

使能输入(EN)、软启动和软停止

驱动EN至高电平,开启MAX15026。然后,通过逐步 提高误差放大器的基准电压使能软启动过程。软启动斜 坡的持续时间为2048个开关周期,分辨率为稳态调节电 压的1/64,从而平稳地提升输出电压。EN引脚的逻辑低 电平将启动软停止过程,逐步降低误差放大器的基准电 压。软停止过程完成后,关断MOSFET驱动器,参见图1。 MAX15026D无软停止功能。

将EN连接至V_{CC},将始终保持开启状态。由于EN具有精确的通、断控制门限,可将EN用作UVLO可调输入,或用来配合PGOOD输出提供电源排序。

在软启动过程中,当电流达到谷电流门限时,MAX15026 会调节至输出阻抗乘以电感电流门限值并在4096个时钟周 期后关闭。当在大的容性负载下启动时,浪涌电流不会超 出电流门限值。如果软启动在4096个时钟周期之前没有完 成,则器件关闭。器件在重试软启动之前的8192个时钟周 期内保持关闭。该操作允许自适应调节软启动时间,在对 输出电容充电的过程中保持电感电流不会超过极限值。

电源就绪指示(PGOOD_)

MAX15026包含了一个电源就绪指示比较器,用于监控调 节器的输出电压并检测电源就绪门限,即固定为FB电压的 94.5%。PGOOD为开漏输出,需要外部上拉电阻。为低 电平时,PGOOD输出可以吸入最高2mA的电流。

当调节器输出上升到其标称稳压值的94.5%时,PGOOD 置为高电平(高阻态);当调节器输出电压低于其标称稳 压值的92%时,PGOOD将变为低电平。打嗝超时阶段, PGOOD触发为低电平。

启动到预偏置输出

当MAX15026启动进入预偏置输出时,DH和DL会保持关断,使转换器不会从输出吸入电流。DH/DL会停止开关操作,直到PWM比较器发出第一个PWM脉冲。当斜坡上升的基准电压增至FB电压以上时,将会产生第一个PWM脉冲。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

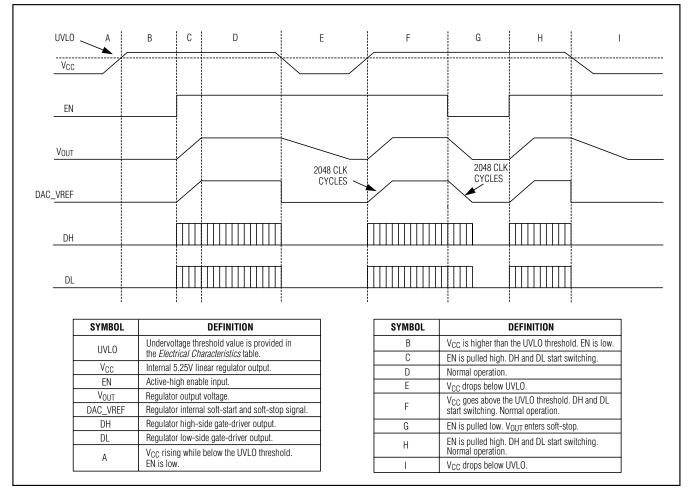


图1. MAX15023详细的上电/断电顺序

限流电路(LIM)

限流电路使用谷电流和吸入电流检测算法,该算法将低边 MOSFET的导通电阻用作检流元件,无需使用昂贵的检流 电阻。限流电路具有温度补偿,可以在整个温度范围内跟 踪MOSFET导通电阻的变化。限流门限可通过LIM处的外 部电阻调节,能够配合各种具有不同导通电阻的MOSFET 工作(请参考设置谷电流门限部分)。谷电流门限的调节 范围为30mV至300mV,对应电阻为6kΩ至60kΩ。低边 MOSFET两端的谷电流门限恰好等于LIM引脚电压的1/10, 而吸入电流门限则为LIM引脚电压的1/20。 当电感电流流向负载时,并且在低边MOSFET导通期间LX 电位低于GND时,谷电流限制才起作用。在低边MOSFET 导通阶段的末期,如果电流检测信号幅度超过谷电流门限, MAX15026将不会启动新的PWM周期,而是在下一周期 降低电感电流。该控制器还降低内部基准电压,所以控制 器可找到由限流值和短路电阻决定的调节点。这种情况下, 控制器用作恒流源。该方法大大降低了短路情况下的电感 纹波电流,从而可降低电感尺寸限制,以及降低出现可闻 噪声的可能性。超时过后,器件进入打嗝模式。一旦短路 情况消失,内部基准电压软启动恢复至正常基准电压并且 继续调节。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

当LX电压高于GND时,吸入电流限制也可通过监控低边 MOSFET两端的压降实现。在低边MOSFET导通期间,如 果低边MOSFET两端的压降超过了LIM引脚电压的1/20, 则会关断低边MOSFET,电感电流将从输出通过高边 MOSFET的体二极管返回。使能吸入限流时,DH和DL开 关顺序不再为互补关系。

请务必遵守PCB布局指南,以确保噪声及直流误差不会破坏LX和GND端的电流检测信号。采用短的、直接走线将MAX15026安装至靠近低边MOSFET的位置,采用开尔文检测连接方式,以使布线阻抗不会增加至低边MOSFET的检流阻抗。

打嗝模式过流保护

在较长的短路期间或深度过载情况下,打嗝模式过流保护 能够降低功耗。三位计数器在每个达到谷电流限流门限的 开关操作中递增。并且在未达到门限的开关操作中递减, 直至归零(000)时停止。如果谷电流限流条件一直存在,则 计数器将累积至111 (7次动作后)。在开始新的软启动顺序 之前,MAX15026就会停止DL和DH驱动器并等待4096个 开关周期(打嗝超时延迟)。软启动期间,打嗝模式保护电 路保持有效工作状态。

欠压锁定

MAX15026使用内部欠压锁定(UVLO)电路监控V_{CC}电压。 UVLO电路能够避免MAX15026在V_{CC}电压低于V_{UVLO}时工 作。UVLO门限为4V,400mV的滞回可防止电源电压在上 升/下降沿时出现抖动。器件处于欠压锁定期间,DL和DH 会保持低电平,禁止开关操作。

热过载保护

MAX15026的热过载保护能够限制总体功耗,当器件结温 超过+150°C时,片上温度传感器会关断器件,并把DL和 DH强制为低电平,从而使器件冷却。结温降低20°C后, 温度传感器将再次启动器件工作。热关断期间,调节器将 处于关断状态,软启动复位。LDO稳压器的耗散功率以及 DH/DL过大的驱动损耗都会触发热过载保护。因此,需要 充分估计总体功耗(请参考功耗部分),以免在正常工作时 触发不必要的热过载保护。

应用信息

有效输入电压范围

尽管MAX15026控制器能够工作在高达28V的输入电源, 并可将其降压至0.6V。最小电压转换比(V_{OUT}/V_{IN})受限于 最低导通时间。为了保持正常的固定频率PWM操作,电 压转换比应符合下列条件:

$$\frac{V_{OUT}}{V_{IN}} > t_{ON(MIN)} \times f_{SW}$$

其中,t_{ON(MIN)}为125ns;f_{SW}为开关频率,单位为Hz。如 果所要求的转换电压不能满足以上条件,则会发生跳脉冲, 以降低有效的占空比。为了避免这一现象的发生,可降低 开关频率或降低输入电压V_{IN}。

最大电压转换比由最大占空比(Dmax)决定:

$$\frac{V_{OUT}}{V_{IN}} < D_{max} - \frac{D_{max} \times V_{DROP2} + (1 - D_{max}) \times V_{DROP1}}{V_{IN}}$$

其中,V_{DROP1}是电感放电通路的寄生电阻压降之和,其中 包括同步整流器、电感和PCB电阻。V_{DROP2}是充电通路电 阻压降之和,其中包括高边开关、电感和PCB电阻。设计 中,应满足上述条件并留有足够裕量,以得到较好的负载 瞬态响应。

设置输出电压

通过在输出和FB到GND之间连接电阻分压器,可以设置 MAX15026的输出电压(见图2)。在1kΩ和50kΩ之间选择 R₂,利用下式计算R₁:

$$R_1 = R_2 \left[\left(\frac{V_{OUT}}{V_{FB}} \right) - 1 \right]$$

其中, V_{FB} 为0.591V(请参考Electrical Characteristics表), V_{OUT}介于0.591V到(0.85 x V_{IN})之间。电阻R₁也在III类补偿 网络设计中起作用。如果采用III类补偿网络(参见*III类补偿* 网络(见图4)部分),应确保按照III类补偿网络检验R₁与R₂的 电阻值。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

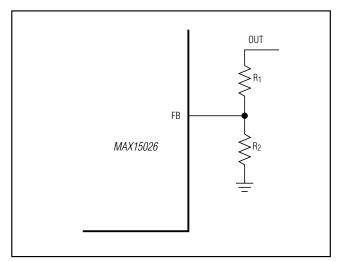


图2. 可调输出电压

设置开关频率

开关频率f_{SW}可通过RT与GND之间的电阻设置,f_{SW}与R_{RT} 之间的关系如下:

$$R_{\rm RT} = \frac{17.3 \times 10^9}{f_{\rm SW} + (1 \times 10^{-7}) \times (f_{\rm SW}^2)}$$

其中,f_{SW}单位为kHz,R_{RT}单位为kΩ。例如,设置600kHz 的开关频率时可使用R_{RT} = 27.2kΩ。频率越高,设计中允 许使用电感和输出电容越小。因此,在较高开关频率下峰 值电流和I²R损耗会降低,但内部损耗、栅极充电电流和开 关损耗会增加。

电感选择

配合MAX15026工作的电感必须满足下列三个关键参数: 电感值(L)、电感饱和电流(I_{SAT})和直流电阻(R_{DC})。选择电 感值必须首先确定电感峰峰交流电流和直流平均电流的比 值(LIR)。LIR值越大,RMS电流越高,因此I²R功耗就大。 采用大的电感来获得低LIR值。典型情况下,对于给定的 封装类型其电感值正比于阻抗,也会导致对应低LIR值的 I²R功耗较大。选择30%(LIR = 0.3)的峰峰纹波电流与平 均电流之比可以在尺寸与损耗之间达到较好的折衷。然后, 通过开关频率、输入电压、输出电压以及所选择的LIR确 定电感值,如下所示:

$$L = \frac{V_{OUT}(V_{IN} - V_{OUT})}{V_{IN}f_{SW}I_{OUT}LIR}$$

其中,VIN、VOUT和IOUT为典型值(从而针对典型条件优化 效率)。开关频率由RaT设置(请参考设置开关频率部分)。 并不要求精确的电感值,可根据尺寸、成本、效率进行调 整。较低的电感值能够减小系统尺寸、降低成本,由于较 高的峰值电流而改善瞬态响应,但会降低效率。另一方面, 较高的电感值会由于RMS电流的降低而提高效率。

选择低损耗电感,在适当尺寸下应具有尽可能低的直流电阻。电感额定饱和电流(I_{SAT})必须足够高,以确保在电流低于最大限流值(I_{CL(MAX}))时不会发生饱和,最大限流值由低边MOSFET导通电阻与LIM参考电流(I_{LIM})的容差决定。综合上述条件,电感饱和电流(I_{SAT})应采用下式确定:

$I_{SAT} \ge 1.35 \times I_{CL(TYP)}$

其中,I_{CL(TYP)}为限流设置点典型值。因子1.35包括25%的R_{DS(ON)}和10%的LIM基准电流误差变化。可选择不同厂商生产的各种电感来满足此类要求(例如Coilcraft的MSS1278-142ML以及同一系列中的其他电感)。

设置谷电流门限

由于将低边MOSFET的导通电阻R_{DS(ON)}用作电流检测元件,最小检流门限必须足够高,以确保最差情况下低边 MOSFET的导通电阻能够支持所要求的最大负载电流。电 感的谷电流可通过I_{LOAD(MAX)}减去纹波电流的一半得到。 在纹波电流处于谷值期间,检流门限电压(V_{ITH})的最小值应 大于低边MOSFET的电压:

$$V_{\text{TH}} > R_{\text{DS}(\text{ON},\text{MAX})} \times I_{\text{LOAD}(\text{MAX})} \times \left(1 - \frac{\text{LIR}}{2}\right)$$

其中,R_{DS(ON)}为低边MOSFET的导通电阻,单位为欧姆。 从低边MOSFET的数据资料选择最大R_{DS(ON)}。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

为了调整电流门限,在LIM和GND之间连接一个外部电阻 (R_{LIM})。电流门限(V_{ITH})和R_{LIM}之间的关系如下:

$$R_{LIM} = \frac{10 \times V_{ITH}}{50 \mu A}$$

其中, R_{LIM}的单位为kΩ, V_{ITH}的单位为mV。

R_{LIM}电阻介于6kΩ到60kΩ之间,对应的电流门限为30mV 到300mV。调整限流时,应使用容差为1%的电阻,以使 电流门限设置的误差最小。

输入电容

输入滤波电容可降低从电源吸入的峰值电流,并降低开关 电路产生的噪声和输入电压纹波。输入电容必须符合由开 关电路造成的纹波电流(I_{RMS})要求,由下式决定:

$$I_{\rm RMS} = I_{\rm LOAD(MAX)} \frac{\sqrt{V_{\rm OUT}(V_{\rm IN} - V_{\rm OUT})}}{V_{\rm IN}}$$

当输入电压等于输出电压两倍(V_{IN} = 2V_{OUT})时, I_{RMS}具有 最大值,此时I_{RMS(MAX}) = I_{LOAD(MAX)}/2。对于多数应用, 输入上优先考虑非钽电容(陶瓷、铝、聚合物或OS-CON), 因为非钽电容的耐用性可抑制极低阻抗电源上电时的大浪 涌电流。另外,为降低成本,可选择两个(或多个)小容值、 低ESR的电容并联。

输出电容

输出电容的关键选择参数为电容值、ESR和额定电压。这 些参数会影响到总体稳定性、输出纹波电压和瞬态响应。 输出纹波由两部分组成,即输出电容存储电荷变化引起的 压降以及电容ESR引起的压降,由流入和流出电容的电流 产生:

$\Delta \mathsf{VRIPPLE} \cong \Delta \mathsf{VESR} + \Delta \mathsf{VQ}$

由于ESR和输出电容而形成的输出电压纹波为:

$$\begin{split} \Delta V_{ESR} &= I_{P-P} \times ESR \\ \Delta V_Q &= \frac{I_{P-P}}{8 \times C_{OUT} \times f_{SW}} \\ I_{P-P} &= \left(\frac{V_{IN} - V_{OUT}}{f_{SW} \times L}\right) \times \left(\frac{V_{OUT}}{V_{IN}}\right) \end{split}$$

其中, I_{P-P}为电感纹波电流峰峰值(参见电感选择部分)。这 些公式适合初始电容的选择,最终数值应通过原型或评估 电路进行测试得到。

检查确认输出电容满足负载瞬态响应的要求。在快速负 载瞬变期间,输出电压所允许的偏差也决定了输出电容、 ESR及其等效串联电感(ESL)。负载阶跃期间,由输出电 容为负载供电,直至控制器以更大的占空比进行响应。响 应时间(t_{RESPONSE})取决于转换器的环路带宽(参考补偿部 分)。输出电容ESR产生的阻性压降、电容ESL产生的压降 (ΔVESL)以及电容放电都会在负载阶跃期间导致电压下降。

采用低ESR的钽/铝电解电容与陶瓷电容并联使用,有助 于改善瞬态负载和电压纹波的性能。使用表贴电容和并联 电容能够降低ESL,将最大输出电压偏差保持在负载能够 允许的范围内。可以利用下式计算负载阶跃期间所要求的 ESR、ESL以及电容值:

$$ESR = \frac{\Delta V_{ESR}}{I_{STEP}}$$

$$C_{OUT} = \frac{I_{STEP} \times I_{RESPONSE}}{\Delta V_Q}$$

$$ESL = \frac{\Delta V_{ESL} \times I_{STEP}}{I_{STEP}}$$

$$I_{RESPONSE} \cong \frac{1}{3 \times f_Q}$$

其中,I_{STEP}为负载阶跃,t_{STEP}为负载阶跃的上升时间, t_{RESPONSE}为控制器的响应时间,并且f_O为闭环单位增益频 率。

补偿

MAX15026提供了一个内部跨导放大器,用户可以利用放 大器的反相输入和输出进行外部频率补偿。外部补偿能够 允许用户灵活选择输出滤波元件,特别是输出电容。对于 成本敏感应用,可采用高ESR的铝电解电容;对于尺寸要 求苛刻的应用,可以在输出端选择低ESR的钽电容或陶瓷 电容。MAX15026的高开关频率允许在输出端使用陶瓷电 容。选择所有无源元件以满足输出纹波、元件尺寸以及元 件成本的要求。可选择适合误差放大器的小信号元件,以 获得所要求的闭环带宽和相位裕量。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

要选择合适的补偿网络类型,就必须确定电源的零点和极 点、单位增益频率以及输出电容的类型。

在buck转换器中,输出级的LC滤波器在如下频率引入一对 复数极点:

$$f_{PO} = \frac{1}{2\pi \times \sqrt{L_{OUT} \times C_{OUT}}}$$

输出电容也引入一个零点:

$$f_{ZO} = \frac{1}{2\pi \times \text{ESR} \times \text{C}_{OUT}}$$

其中,ESR为输出电容的等效串联阻抗。

环路单位增益频率(f_O),该频点处环路增益等于1 (0dB), 应将其设置在1/10的开关频率以下:

选择较低的单位增益频率有助于降低噪声对反馈环路的影 响,例如占空比抖动。

为了保持系统稳定,必须满足下列两个稳定性准则:

- 1)单位增益频率fo处的相移必须小于180°。换句话说,环路的相位裕量必须大于零。
- 2) 在相移为-180°(增益裕量)处,增益必须小于1。

建议相位裕量选择在大约60°,以便保持可靠的环路稳定 性和卓越的瞬态响应。

如果使用电解电容或较高ESR的输出钽电容,则在LC极点 和单位增益频率fo之间通常会出现电容ESR产生的零点fzo (fpo < fzo < fo)。这种情况下,应采用II类补偿网络(PI— 比例–积分型)。

如果使用陶瓷或低ESR输出钽电容,通常会在高于单位增益频率fo处出现电容ESR产生的零点,即fpo < fo < fzo。这种情况下,应采用III类补偿网络(PID—比例–积分–微分型)。

||类补偿网络(见图3)

如果f_{ZO}低于f_O且接近f_{PO},电容ESR零点的相位超前几乎 可以抵消单位增益频率附近LC滤波器所产生的复数极点 的相位损失。因此,可采用具有中频零点、高频极点的II 类补偿网络保持环路稳定。图3中,R_F和C_F引入了一个中 频零点(f_{Z1})。II类补偿网络的R_F与C_{CF}还提供一个高频极点 (f_{P1}),该极点会影响输出高频纹波的幅度。

请按照下列步骤计算图3中II类补偿网络的元件值:

1) 计算由脉冲宽度调制器、LC滤波器、反馈分压器以及 相关电路组成的调制器在系统单位增益频率处的增益 (GAIN_{MOD}):

$$GAIN_{MOD} = \frac{V_{IN}}{V_{RAMP}} \times \frac{ESR}{(2\pi \times f_O \times L_{OUT})} \times \frac{V_{FB}}{V_{OUT}}$$

其中,V_{IN}为调节器输入电压,V_{RAMP}为脉宽调制器的斜坡 幅度,V_{FB}是FB输入电压设置点(典型值为0.591V,请参考 *Electrical Characteristics*表),V_{OUT}是所要求的输出电压。

误差放大器在中频处的增益(GAINEA)为:

$$GAIN_{EA} = g_M \times R_F$$

其中,g_M是误差放大器的跨导。

总环路增益为fo处调制器增益与误差放大器增益的乘积, 应等于1。

$$GAIN_{MOD} \times GAIN_{EA} = 1$$

公式如下:

$$\frac{V_{IN}}{V_{BAMP}} \times \frac{ESR}{(2\pi \times f_O \times L_{OUT})} \times \frac{V_{FB}}{V_{OUT}} \times g_M \times R_F = 1$$

计算R_F:

$$R_{F} = \frac{V_{RAMP} \times (2\pi \times f_{O} \times L_{OUT}) \times V_{OUT}}{V_{FB} \times V_{IN} \times g_{M} \times ESR}$$

2) 在0.75 x f_{PO}处设置一个中频零点f_{Z1} (用于抵消一个LC 极点):

$$f_{Z1} = \frac{1}{2\pi \times R_F \times C_F} = 0.75 \times f_{PO}$$

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

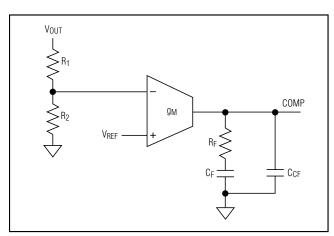
计算CF:

$$C_{\rm F} = \frac{1}{2\pi \times R_{\rm F} \times f_{\rm PO} \times 0.75}$$

 在f_{P1} = 0.5 x f_{SW}处放置一个高频极点(用于衰减开关频 率f_{SW}处的纹波),然后用下式计算C_{CF}:

$$C_{CF} = \frac{1}{\pi \times R_F \times f_{SW} - \frac{1}{C_F}}$$

III类补偿网络(见图4)


如果所使用的输出电容为低ESR钽电容或陶瓷电容,ESR 引入的零点频率通常高于目标单位增益频率(f_O)。采用III类 补偿。III类补偿能够在以下频率提供三个极点和两个零点:

$$f_{Z1} = \frac{1}{2\pi \times R_F \times C_F}$$
$$f_{Z2} = \frac{1}{2\pi \times C_I \times (R_1 + R_I)}$$

两个中频零点(f_{Z1}与f_{Z2})可抵消LC滤波器引入的一对复数极点:

 $f_{P1} = 0$

f_{P1}在零频处(积分器)引入一个极点,主要用于消除直流输 出电压误差:

 $f_{P2} = \frac{1}{2\pi \times R_{I} \times C_{I}}$

根据ESR零点(f_{ZO})的具体位置,f_{P2}可用于抵消f_{ZO},或提 供额外的高频输出纹波衰减。

$$f_{P3} = \frac{1}{2\pi \times R_F \times \frac{C_F \times C_{CF}}{C_F + C_{CF}}}$$

fP3用于衰减高频输出纹波。

零点和极点位置应使相位裕量峰值出现在fo附近。

确保R_F>>2/g_M和R₁、R₂的并联电阻,R₁应大于1/g_M。否则,将在频响中引入180°相移,造成环路不稳定。 推荐采用下列步骤设计:

1) R_F ≥ 10kΩ时,在0.8 x f_{PO}处放置第一个零点(f_{Z1}):

$$f_{Z1} = \frac{1}{2\pi \times R_F \times C_F} = 0.8 \times f_{PO}$$

因此:

$$GAIN_{MOD} = \frac{V_{IN}}{V_{RAMP}} \times \frac{1}{(2\tau)}$$

2) 由脉宽调制器、LC滤波器、反馈分压器以及相关的电路组成的调制器在系统单位增益频率处的增益 (GAIN_{MOD})为:

$$GAIN_{MOD} = \frac{V_{IN}}{V_{RAMP}} \times \frac{1}{(2\pi \times f_0)^2 \times L_{OUT} \times C_{OUT}}$$

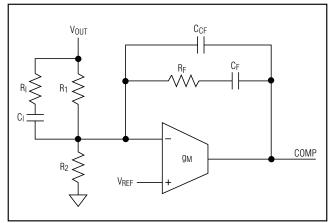


图4. III类补偿网络

图3. II类补偿网络

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

误差放大器在中频处的增益(GAINEA)为:

 $GAIN_{EA} = 2\pi \times f_O \times C_1 \times R_F$

调制器和误差放大器在fo处的增益乘积构成总环路增益, 应等于1。

$$GAIN_{MOD} \times GAIN_{EA} = 1$$

因此:

$$\frac{V_{\text{IN}}}{V_{\text{RAMP}}} \times \frac{1}{(2\pi \times f_{\text{O}})^2 \times C_{\text{OUT}} \times L_{\text{OUT}}}$$

计算Cl:

$$C_{I} = \frac{V_{RAMP} \times (2\pi \times f_{O} \times L_{OUT} \times C_{OUT})}{V_{IN} \times R_{F}}$$

3) 如果fpo < fo < fzo < fsw/2,则使用第二个极点(fp2)抵 消fzo。这样,环路增益曲线的波特图就不会在0dB单位 增益频率后立即变得平坦,而会保持-20dB/十倍频程的 滚降直到1/2的开关频率。如果输出电容采用低ESR钽电 容,就很可能发生这种情况。设置fp2 = fzo。

如果使用陶瓷电容,那么电容的ESR零点 f_{ZO} 很可能位于 1/2的开关频率以上,即: $f_{PO} < f_O < f_{SW}/2 < f_{ZO}$ 。这种情况下,为了不明显影响单位增益频率处的相位裕量,应将 第二个极点(f_{P2})放置在足够高的频率。例如,可以设置在5 x f_O,这样在单位增益频率(f_O)处引起的相位损失仅为11° 左右:

$$f_{P2} = 5 \times f_{PO}$$

一旦得到fP2值,即可计算RI:

$$R_{\rm I} = \frac{1}{2\pi \times f_{\rm P2} \times C_{\rm I}}$$

 4) 在0.2 x fo或fpo中较低的频率处放置第二个零点(fz2), 利用下式计算R₁:

$$\mathsf{R}_1 = \frac{1}{2\pi \times \mathsf{f}_{Z2} \times \mathsf{C}_{\mathsf{I}}} - \mathsf{R}_{\mathsf{I}}$$

$$C_{CF} = \frac{C_{F}}{(2\pi \times 0.5 \times f_{SW} \times R_{F} \times C_{F}) - 1}$$

6) 计算R₂:

$$R_2 = \frac{V_{FB}}{V_{OUT} - V_{FB}} \times R_1$$

MOSFET选择

MAX15026降压控制器可驱动两个外部逻辑电平控制的n 沟道MOSFET。选择此类MOSFET的关键参数包括:

- 导通电阻(R_{DS(ON)})
- 最大漏-源电压(V_{DS(MAX)})
- 最小门限电压(V_{TH(MIN)})
- 总栅极电荷(Q_G)
- 反向传输电容(C_{RSS})
- 功耗

两个n沟道MOSFET必须为逻辑电平控制型,能够在 VGS = 4.5V时确保导通电阻满足要求。为了获得最大效 率,应选择传导损耗等于典型输入电压下开关损耗的高 边MOSFET。确保最低输入电压下的传导损耗不超过 MOSFET封装的散热极限,或整体的散热容限。此外,还 应确保最大输入电压下的传导损耗加上开关损耗不会超出 封装的额定值或总体的散热容限。确保DL栅极驱动器能 够驱动低边MOSFET。尤其要确保高边MOSFET导通时 产生的dv/dt不会通过低边MOSFET的漏-栅电容上拉低边 MOSFET的栅极,这是产生交叉导通的关键因素。

当驱动器电流来自内部LDO稳压器,则必须考虑因驱动损 耗产生的功耗。须仔细选择每个MOSFET,使总栅极电荷 足够低,由此保证Vcc足以支持两个驱动器的供电,而不 会使器件过热:

$P_{DRIVE} = V_{CC} \times Q_{G_{TOTAL}} \times f_{SW}$

其中,Q_{G_TOTAL}为两个外部MOSFET的栅极电荷之和。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

自举电容

MAX15026采用自举电路生成导通高边MOSFET所需的 栅-源电压。选定n沟道高边MOSFET后,可根据下式确定 适当的自举电容(*典型应用电路*中的C_{BST}):

$$C_{BST} = \frac{QG}{\Delta V_{BST}}$$

其中,Q_G为高边MOSFET的总栅极电荷, ΔV_{BST} 为高边 MOSFET驱动器导通之后所允许的电压变化。决定C_{BST}时,选择适当的 ΔV_{BST} (例如, ΔV_{BST} = 100mV至300mV), 使栅极驱动电压不会明显下降。该自举飞电容应选择低 ESR陶瓷电容,推荐的最小电容值为100nF。

功耗

器件的最大功耗取决于从管芯到周围环境的热阻以及环境 温度,而热阻取决于器件的封装、PCB覆铜面积、其它热 源及空气流通条件。

封装需要耗散的功率(PT)取决于电源配置(请参考典型应用 电路),此功率可通过下式计算:

$$P_T = (V_{IN} - V_{CC}) \times I_{LDO} + V_{DRV} \times I_{DRV} + V_{CC} \times I_{IN}$$

其中,ILDO为内部稳压器电流;IDRV为DRV驱动器上消耗 的电源电流;IIN为MAX15026的电源电流,不包括IDRV。 参见*典型工作特性*。例如,图5中的典型应用电路,ILDO = IDRV + IIN,且VDRV = VCC,所以PT = VIN x (IDRV + IIN)。 利用下式估算管芯温度上升情况:

 $T_{J} = T_{A} + (P_{T} \times \theta_{JA})$

其中,V_{IN}和V_{CC}为各自引脚的电压,I_{IN}为内部LDO输入 电流(图7和图8中,I_{IN}实际为零),I_{VCC}是工作在5V时(IN = V_{CC}),内部电路和驱动器消耗的电流,内部稳压器不工作。 请参考典型工作特性中关于不同负载电容下,I_{IN}和IV_{CC}电 流损耗与工作频率的典型关系曲线。

利用下式估算管芯温度上升情况:

$$T_J = T_A + (P_T \times \theta_{JA})$$

其中,θ_{JA}为封装的结到环境的热阻,PT为器件需要耗散的 功率,TA为环境温度。根据相应的JEDEC标准(JESD51-5 和JESD51-7),对于多层电路板的14引脚TDFN封装,其 θ_{JA}为24.4°C/W。如果实际工作条件与JEDEC标准规定的 条件相差较大,则需要直接测量外壳温度(T_C)估算结温。 然后,可通过下式计算结温。

$T_J = T_C + (P_T \times \theta_{JC})$

对于14引脚的TDFN封装,可选择8.7°C/W作为其θ_{JC}热阻。 外壳到环境的热阻(θ_{CA})取决于热量在PCB到环境散热条 件。因此,将TDFN封装的裸焊盘焊接到较大面积的覆铜 区域有助于通过电路板散热,从而使外壳到环境的热阻最 小。可使用面积较大的覆铜区域来保持较低的PCB温度。

PCB布局指南

将所有功率元件放置在电路板顶层,功率级的电流仅通过 顶层引线或覆铜区域。将电路板顶层的接GND走线布成星 型,以降低信号通道上的电压降。

电源线和负载线应保持尽可能短,尤其是接地端。这对 实现高效率、无抖动工作至关重要。采用较厚的覆铜 PCB (2oz或更高)有助于提高效率。

将MAX15026靠近同步整流器MOSFET放置,最好是在背面上,并确保LX、GND、DH和DL引线短且宽。使用多个小过孔连接顶层和底层之间的信号线。采用内部干净的 覆铜层来保护底层上的模拟元件不受顶层上的功率元件影响。

按照以下方法连接MAX15026的接地:在器件附近构建一个较小的模拟地平面。将该层接到GND,并将其作为V_{IN} 旁路电容、补偿元件、反馈分压电路、V_{CC}电容、RT电阻 以及LIM电阻的接地连接端。

LX和GND采用Kelvin检测连接至同步整流器MOSFET进行 限流,以便确保限流精度。

高速开关节点(BST、LX、DH和DL)的引线应远离敏感的模 拟区域(RT、COMP、LIM和FB)。将所有以GND为参考的 元件和反馈元件靠近器件放置,确保FB和补偿网络的布线 区域尽可能小,以防止引入噪声。

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

典型应用电路

4.5V至28V单电源工作

图5所示为工作于4.5V至28V单电源的典型应用电路。

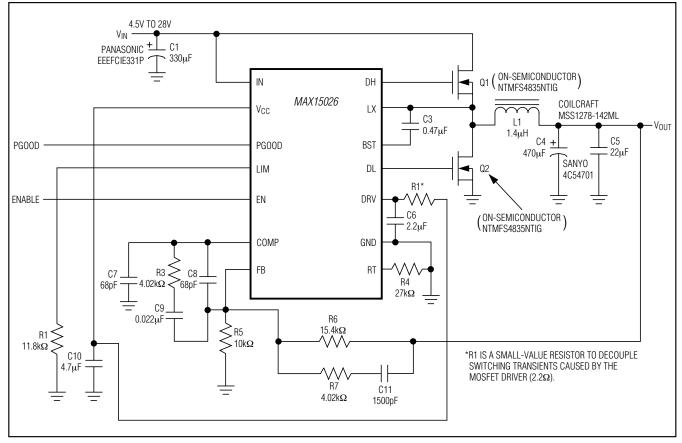


图5. V_{IN} = 4.5V至28V

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

典型应用电路(续)

4.5V至5.5V单电源工作

图6所示为工作于4.5V至5.5V单电源的典型应用电路。

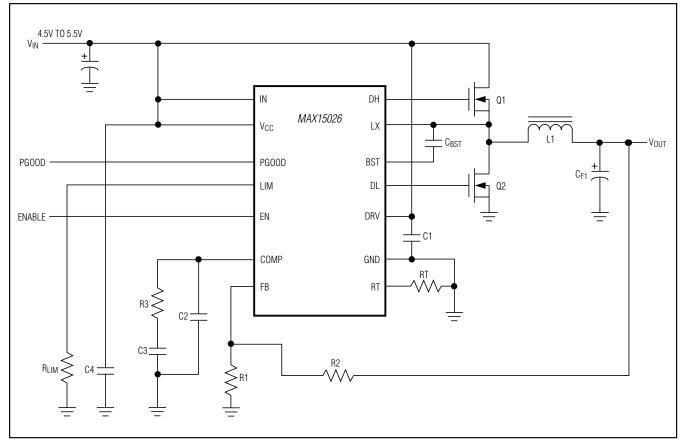


图6. V_{CC} = V_{IN} = V_{DRV} = 4.5V至5.5V

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

典型应用电路(续)

辅助5V电源工作

图7所示为+12V电源驱动外部MOSFET以及带有+5V电源为器件供电的典型应用电路。

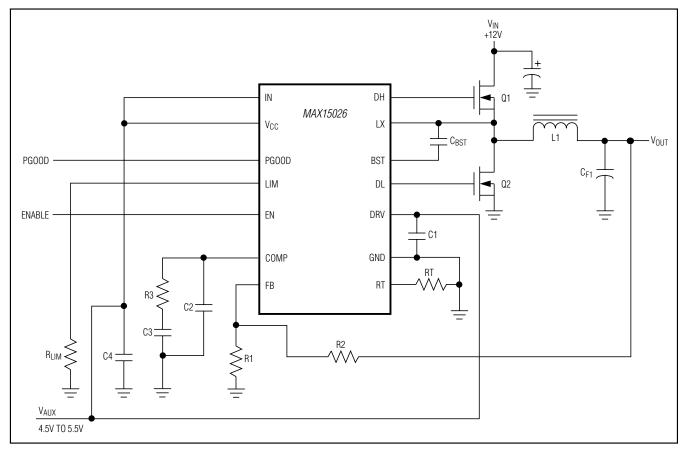


图7.工作于5V辅助电源

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

芯片信息 PROCESS: BiCMOS

封装信息

如需最近的封装外形信息和焊盘布局(占位面积),请查询<u>www.</u> maximintegrated.com/cn/design/packaging。请注意,封装 编码中的"+"、"#"或"-"仅表示RoHS状态。封装图中可能包含不 同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。

封装类型	封装编码	外形编号	焊盘布局编号
14 TDFN-EP	T1433+2	21-0137	<u>90-0063</u>

低成本、小尺寸、4.5V至28V宽工作范围的 DC-DC同步buck控制器

修订历史

修订号	修订日期	说明	修改页
0	5/08	最初版本。	—
1	5/09	修改了概述、定购信息、Absolute Maximum Ratings、Electrical Characteristics、电源就绪指示(PGOOD)部分以及典型应用电路。	1–4, 10, 15, 19
2	9/10	增加了MAX15026C;修改了 <i>概述、定购信息、Electrical</i> <i>Characteristics、典型工作特性和启动到预偏置输出</i> 部分。	1–6, 10
3	4/11	<i>订购信息</i> 、Absolute Maximum Ratings以及Electrical Characteristics 部分增加汽车级器件。	1, 2, 3
4	2/12	为满足客户需求,更改设计,定购信息部分增加新OPN。 1-6,10	
5	11/12	推荐新设计中采用 MAX15026D。	1

Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。电气 特性表中列出的参数值(最小值和最大值)均经过设计验证,数据资料其它章节引用的参数值供设计人员参考。

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-10 00

© 2016 Maxim Integrated

23