

AN-905 应用笔记

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com/cn

VisualAnalog™转换器评估工具1.0版用户手册

简介

VisualAnalog是用于测试和表征数据转换器—ADC和DAC的新途径。虽然过去也有工具可用,但它们只能执行一组有限的测试。这些工具确实提供了许多特性,但其灵活性仅限于几个简单的选项。VisualAnalog支持通过简单的图形用户界面以几乎不受限制的方式定制测试。

VisualAnalog可与DAC模式发生器(DPG)无缝接口以进行DAC评估,并且可与以下ADC数据采集板接口以进行ADC评估:

- HSC-ADC-EVALA
- HSC-ADC-EVALB
- HSC-ADC-EVALC

产品聚焦

- 1. ADC和DAC特性的快速设置
- 2. 用参考DAC (ADC)轻松测试ADC (DAC)
- 3. 轻松配置ADC和DAC的定制信号流测试
- 4. 轻松测试转换器模型并与实际转换器进行比较

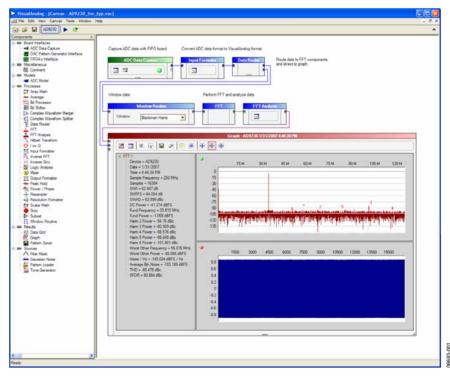


图1. VisualAnalog典型操作界面

下载Visual Analog

https://www.analog.com/cn/visualanalog

目录

简介1
产品聚焦1
安装 VisualAnalog3
使用须知3
ADC 评估快速入门4
VisualAnalog 软件6
启动 VisualAnalog6
使用启动窗体6
打开空白画布7
使用主窗体7
设置画布属性9
放置元件9
连接元件10
调整元件参数12
更新结果13
更改布局14
使用菜单栏14
使用工具栏15
使用选项窗体16
数据类型概述17
实数波形数据17
复数波形数据17
实数 FFT 数据17
复数 FFT 数据17
分析数据17
值采集17
数值17
信号音清单17
组件概述18
板接口18
ADC 数据采集19
DAC 模式发生器接口20
DAC 模式发生器控制窗体20
模式限制21
FIFO4.x 接口21
元件模型23
ADC 模型23
元件处理24
数组操作24
平均值

位	处理器	24
移	位器	24
注	释	24
复	数波形合并器	25
复	数波形分离器	25
数	据路由器	25
FF	Т	25
FF	T 分析	25
希	尔伯特变换	27
输	入格式化器	27
反	向 FFT	27
反	Sinc	27
ΙĖ	₹ Q	27
逻	辑分析	27
混	频器	28
输	出格式化器	28
峰	值保持	28
功	率/相位	28
重	采样器	29
分	辨率格式化器	29
标	量数学	29
停	止	29
子	集	29
波	形分析	29
窗	口例程	29
元件:	结果	30
数	据网格	30
图	形	30
模	式保存器	32
元件	来源	33
滤	波器遮罩	33
高	斯噪声	33
模	式加载器	33
信	号音发生器	34
Visua	lAnalog 画布示例	35
ΑI	DC 和 ADC 数据采集板	35
	DIsimADC 模型文件	
	一个简单向量加载到 DPG	
将	一个复合向量加载到 DPG	39

安装VisualAnalog

要安装VisualAnalog, 必须具备如下条件:

- 管理员权限
- Microsoft® .NET Framework 1.1版
- 最新的.NET Framework 1.1补丁包(Service Pack)

VisualAnalog安装包会安装使用VisualAnalog软件所需的所有组件以及ADC和DAC硬件的必要驱动程序。

使用须知

- 安装软件之前,请断开所有ADI公司ADC数据采集板和/或DPG与计算机的连接。务必先完成软件安装,再尝试连接任何相关硬件,以确保正确安装和注册设备驱动程序。
- 请注意,安装此软件包以及首次将ADC和DAC硬件连接到计算机时,您需要管理员权限。如果使用硬件向导,请按照说明操作以自动安装软件。这样的话, Windows*便能自动完成驱动程序安装。

VisualAnalog是一款Microsoft .NET应用程序。您的计算机 上必须有.NET Framework 1.1版本才能运行VisualAnalog。 获取.NET Framework的首选方法是通过Windows更新程 序。另外还要获取最新的补丁包。 为了确定您的计算机上是否已安装.NET Framework 1.1, 请点击开始(Start), 选择控制面板(Control Panel), 然后点击添加或删除程序(Add or Remove Programs)。在随后出现的窗口中,滚动浏览应用程序列表。如果看到Microsoft .NET Framework 1.1已列出,则说明您的计算机拥有正确的版本,无需再次安装。

- 1. 为了确保正确安装所有组件,您必须有管理员权限。
- 2. 从计算机上断开所有ADC数据采集板和/或DPG的 连接。
- 3. 安装.NET Framework 1.1和最新的.NET Service Pack。
- 4. 运行VisualAnalog可执行安装文件。按照屏幕上的说明 安装所有必需的文件。如果要与DPG连接,务必在安 装过程结束时启动"硬件向导",以设置适当的DPG 设备驱动程序。
- 5. 接通电源,将DPG和/或ADC数据采集板连接到计算机,完成驱动程序安装过程。如果使用DPG,务必先连接DPG,再连接ADC数据采集板。如果不使用DPG,则完成软件安装后,随时可以插入ADC数据采集板。

下载Visual Analog

nttps://www.analog.com/cn/visualanalog

ADC评估快速入门

使用VisualAnalog可以轻松绕过画布接口并立即开始ADC评估。要立即开始与特定ADC的连接、请执行以下步骤.

- 1. 连接评估板、ADC数据采集板以及数据传输所需的任何其他板并供电。您还可以向ADC评估板提供所需的时钟和输入信号。
- 使用高速USB电缆将ADC数据采集板连接到计算机。 如果出现驱动程序安装对话框(首次使用ADC数据采 集板时会出现),请按照对话框所示步骤操作。

如果出现"硬件向导" (参见图2),请按照说明自动 安装软件。这样的话,Windows便能完成驱动程序安装过程。

图2. 硬件向导

- 3. 启动VisualAnalog。有关更多信息,参见"VISUALANALOG软件"部分。
- 4. 随即显示启动窗体。如果使用上述步骤连接了ADC, VisualAnalog会尝试检测它,并在启动窗体上选择支持 该ADC的画布模板。请注意,ADC必须支持SPI*功能, 程序才会自动检测。如果ADC不支持SPI,或者程序因 故未能检测到ADC,请手动选择模板。有关更多信息, 参见"使用启动窗体"部分。

图3. 新建画布窗体

- 5. 选择FFT图标,点击打开(Open)。
- 6. 如果存在HSC-ADC-EVALC数据采集板,可能会出现一个对话框,请求允许配置板载FPGA。如果您更希望使用当前FPGA配置,请点击否以跳过配置。否则,请点击是以配置FPGA。有关更多信息,参见"使用启动窗体"部分。

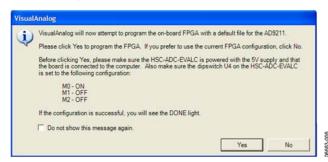


图4. FPGA配置对话框

7. 主窗体以折叠模式显示,画布打开并处于选中状态。 点击**更新(Update)**运行画布。

图5. 更新按钮

图形窗体应随FFT结果一同出现。如果未显示图形,则处理过程中可能出错。检查电路板连接,然后重试。如果这不能解决问题,请展开主窗体并检查画布设置。有关更多信息,参见"使用主窗体"和"组件概述"部分。

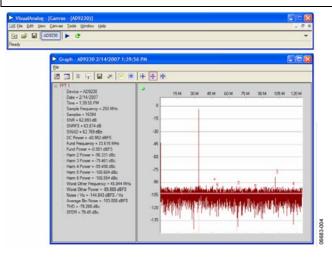


图6. 主窗体和图形窗体

要查看所采集数据的时域表示,请在图形窗体上点击**切换 更多图形(Toggle Additional Plot)**。有关更多信息,参见"组件概述"部分。

图7. 切换更多图形按钮

VisualAnalog软件

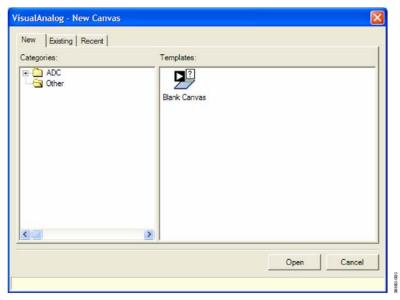


图8. VisualAnalog启动窗体

启动VisualAnalog

安装VisualAnalog软件后,应出现开始(Start)菜单项和桌面 图标。要使用开始(Start)菜单项,请点击开始(Start),选择 程序(Programs), 选择Analog Devices, 点击VisualAnalog, 然后选择VisualAnalog。

要使用桌面图标,请在桌面上点击VisualAnalog图标。

程序启动时, 在加载过程中会显示一个启动画面, 启动画 面消失后会出现启动窗体(Start-Up Form)。

使用启动窗体

随时可选择新建(New)选项卡以加载空白画布或预定义的 画布模板。VisualAnalog维护一个模板列表,模板用于设置 画布以运行常见任务或与特定器件接口。

要选择画布模板, 请展开类别(Categories)树, 直至看到合 适的器件。然后在模板(Templates)列表中选择一个图标, 点击打开(Open)。VisualAnalog随即打开画布。

图9. 选择画布模板

如果所连接的ADC支持可编程SPI接口,VisualAnalog可以 检测到该ADC板。此外,必须使用支持SPI的ADC数据采集 板。为使此自动检测正常工作,必须在启动软件之前将两 块板都通过USB电缆连接到计算机并加电。Windows还必须 识别ADC数据采集板以确保正确操作。如果Windows无法 识别该板,则说明存在USB问题。有关更多信息,参见特 定板的数据手册。

如果VisualAnalog检测到ADC板, 软件会在启动窗体的状态 栏中显示信息。此外,它会在类别树中找到支持该ADC器 件的项目。

图10. Visual Analog — 新画布窗口

如果软件此时未检测到ADC板,请手动选择正确的类别和 模板。

当选择一个代表所检测ADC板的模板时,如果其与HSC-ADC-EVALC数据采集板接口,可能会出现一个对话框,请求允许配置板载FPGA。如果上电时HSC-ADC-EVALC FPGA未针对您要评估的特定ADC进行配置,请点击是(Yes)。点击否(No)会跳过FPGA配置。

如果选中**不再显示此消息(Do not show this message again)**,则将来选择适用的画布模板时,软件会自动执行上次选择的操作。如果要更改此选项,请在VisualAnalog的**选项(Options)**菜单中访问这些设置。

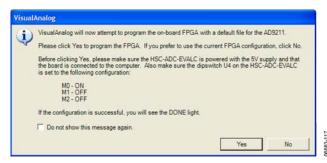


图11. FPGA配置对话框

VisualAnalog维护一个FPGA文件列表,这些文件与ADC的 SPI寄存器映射中存在的器件ID对应。当软件检测到表中存 在的特定器件ID时,它可以选择默认FPGA配置文件。请注 意,仅当使用HSC-ADC-EVALC时,此过程才会发生。

选择现有(Existing)选项卡浏览现有的画布文件。

VisualAnalog维护一个最近访问的最后五个画布文件列表。 要访问此列表并打开其中一个最近文件,请选择**最近** (Recent)选项卡。

点击**打开(Open)**, VisualAnalog将打开选定的画布文件或画布模板。

点击**取消(Cancel)**,主窗体出现,其中无打开的画布。

打开空白画布

要打开空白画布,请浏览到类别树中的**其他(Other)**,然后选择**空白画布(Blank Canvas)**模板图标。点击**打开(Open)**。

图12. 打开空白画布

使用主窗体

VisualAnalog主窗体在MDI环境中维护当前所有打开的画布。屏幕左侧显示可用的**组件(Components)** (参见图14)。此窗体默认停靠在左侧,但可以移动并停靠在VisualAnalog程序的任何角落。此外,**组件(Components)**窗体可以浮动并移动到屏幕上的任何位置,甚至移到VisualAnalog窗口之外。

画布按钮

打开或创建画布时,会在工具栏上创建按钮,每个按钮代表一个画布。这些是画布按钮。您可以使用这些画布按钮来选择或清除要更新的画布。当按钮高亮显示时,画布将在下一次更新时运行。要运行某些画布,您必须选择该画布。

画布按钮上显示的文本是画布的**显示名称(Display Name)**。 选择**画布(Canvas)** > **属性(Properties)**可更改此属性。

主窗体可以折叠 (参见图13)。这在您想要节省屏幕空间时很有用,您不需要调整画布设置。要折叠主窗体,请点击主窗体工具栏右侧的箭头。要展开窗体,只需再次点击此按钮。

图13. 折叠和展开显示区域

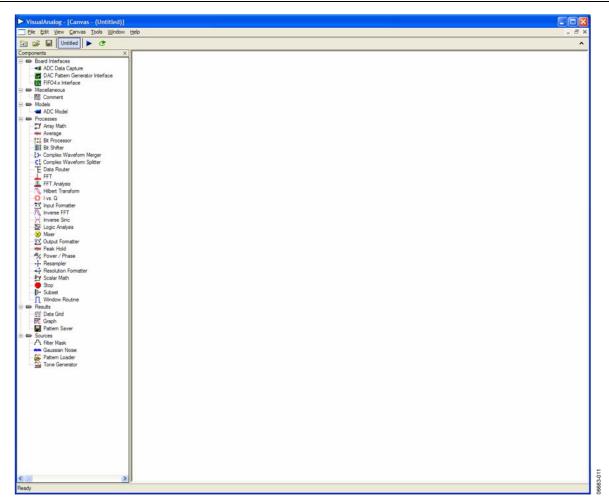


图14. VisualAnalog主窗体

设置画布属性

VisualAnalog允许设置画布及其行为相关的属性。要访问画布属性,请点击**画布(Cancas)** > (显示名称)属性((Display Name) Properties) ...。如果已打开一个空白画布,则(显示名称)(Display Name)将显示为无标题(Untitled)。

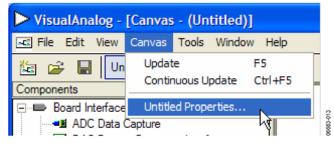


图15. 画布属性菜单

使用**画布属性(Canvas Properties)**窗体来调整特定画布的属性。

图16. 画布属性窗体

显示名称(Display Name)指的是画布按钮上出现的名称。 这是画布的标题。

您也可以输入关于画布的描述。

图18. 描述

打开时折叠窗口(Collapse Window when Opened)允许将来打开此画布时折叠主窗口。它支化的方式打开画布,而无需显示画布本身。

锁定画布(Lock Canvas)可以锁定画布,防止对布局做进一步更改。设置此选项后,您仍然可以更改组件设置,但不能改变画布的物理布局和连接。

放置元件

要将元件放置在画布上,请双击**元件(Components)**树中的项目,或将其拖放到画布上。拖动项目可以更好地控制元件的布局。

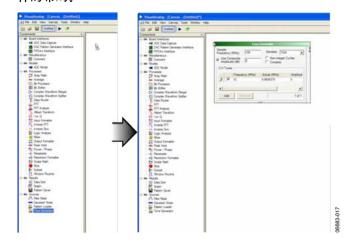


图19. 放置元件

元件的布局示例如图19所示,其顺序如下:信号音发生器 (Tone Generator)、ADC模型(ADC Model)、输入格式化器 (Input Formatter)、数据路由器(Data Router)、窗口例程 (Window Routine)、FFT、FFT分析(FFT Analysis)和图形 (Graph)。

有关每个元件功能的简要说明,参见"元件概述"部分。 画布看起来应类似图20,忽略元件布局方面的差异。

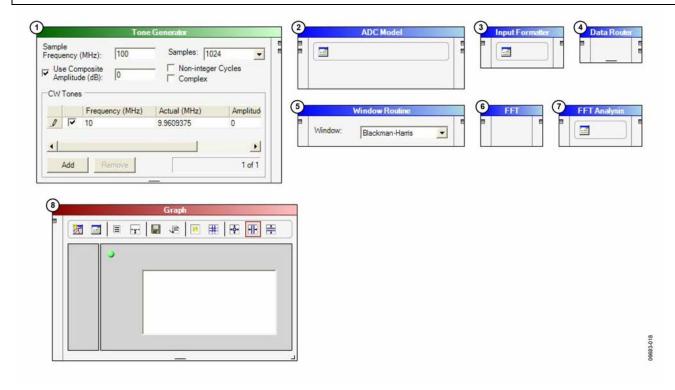


图20. 元件布局示例

连接元件

要将两个元件连接在一起,请将一条导线从一个元件的输出节点连接到另一个元件的输入节点,反之亦然。要放置新导线,请使用以下技巧之一:

- 单击该节点,将新导线拖动到另一个元件,然后再次 单击完成连接。
- 将新导线拖动到另一个元件。

如果导线未连接,它会显示为红色。一旦建立连接,颜色就会改变。

图21显示了将**信号音发生器**的第一输出节点连接到**ADC模型**的第一输入节点的过程。

对于此示例,再连接八条导线。图22显示了完成其余连接 之后的画布。您的画布看起来应类似于图22。

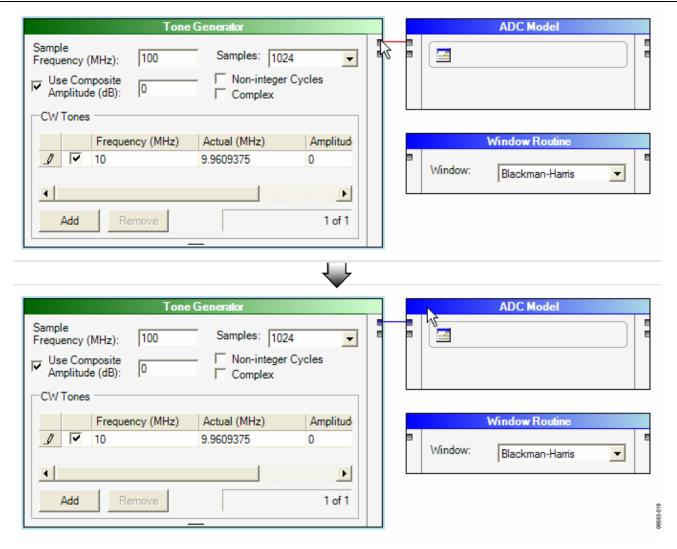


图21. 连接组件

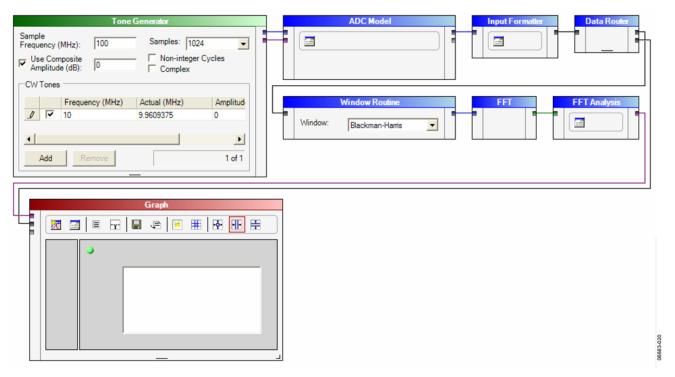


图22. 连接示例

连接和移动组件时, 导线会自动在画布上布线。如果电路 图看起来有些混乱, 请尝试重新放置一些组件以强制导线 重新布线。

要将现有导线的一端连接到新节点, 请执行以下任一操作.

- 单击一个节点,将导线的另一端拖动到另一个节点, 然后再次单击完成连接。
- 将选定的一端拖到另一个节点。

像物理导线一样, VisualAnalog中的导线负责组件之间的信息传输。虽然在大多数情况下它对用户是透明的, 但导线可以传输多种数据类型中的一种。有关更多信息, 参见"数据类型概述"部分。

调整元件参数

- 一些元件具有可调参数。下面的步骤说明了如何生成简单 的波形作为ADC模型的输入,并显示FFT和时域结果。
- 在信号音发生器(Tone Generator)中,将采样频率 (MHz)(Sample Frequency (MHz))设置为105。另外, 通过使用下拉箭头或手动输入文本,将样本数 (Samples)文本更改为16384。将使用复合幅度(dB)(Use Composite Amplitude (dB))更新为-1 (因为您在评估 ADC性能)。

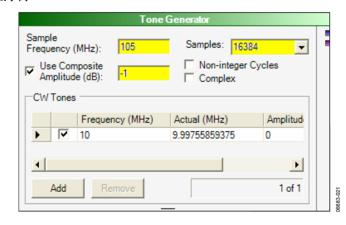
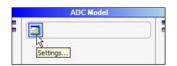



图23. 信号音发生器(Tone Generator)设置

2. 在ADC模型(ADC Model)中,点击设置(Settings)...按钮,然后点击打开(Open)以浏览并选择AD6645_105.adc模型文件。此文件位于VisualAnalog路径的Models\ADC子目录中。模型打开后,文件名出现在模型文件(Model File)文本框中,关于该模型的信息出现在属性(Properties)网格中(参见图24)。点击确定(OK)。

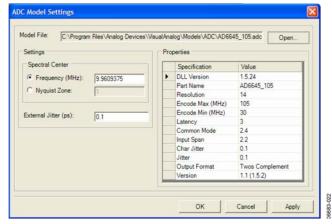
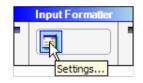



图24. ADC模型和设置窗体

 在输入格式化器(Input Formatter)(见图25至图27)中, 点击设置(Settings)...按钮,然后将数字格式(Number Format)更改为二进制补码。接下来,将分辨率 (Resolution)和对齐(Alignment)均更改为14。点击确定 (OK)。

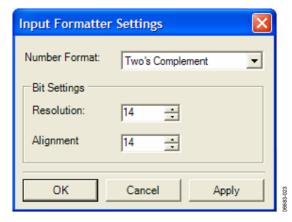


图25. 输入格式化器(Input Formatter)和设置窗体(Settings Form)

4. 将光标放在角落上的大小调整手柄上,调整**图形** (Graph)元件的大小,向外拖动元件使其变大 (参见图 26)。

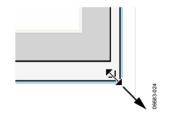


图26. 调整图形大小

接下来,将鼠标光标放在垂直分隔条上并拖动到新的位置, 以调整**图形(Graph)**元件左侧的**分析结果(Analysis Results)** 面板的大小(参见图27)。

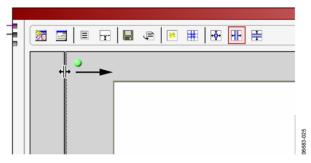


图27. 调整分析结果的大小

请注意,图形连有两条导线。这是因为我们将ADC样本和FFT结果均路由到了图形。若要查看数据的时域表示,可以点击**切换更多图形(Toggle Additional Plot)**按钮来查看第二个图形。

图28. 切换更多图形

更新结果

完成所有必需的调整之后,您就可以更新画布的结果了。 有三种更新画布的方法:

- 按快捷键F5或Ctrl+F5。
- 选择菜单命令画布(Canvas),点击更新或画布(Update or Canvas),然后选择连续更新(Continuous Update)。
- 点击工具栏上的更新(Update)或连续更新(Continuous Update)。

更新之后, 画布看起来应类似于图29。

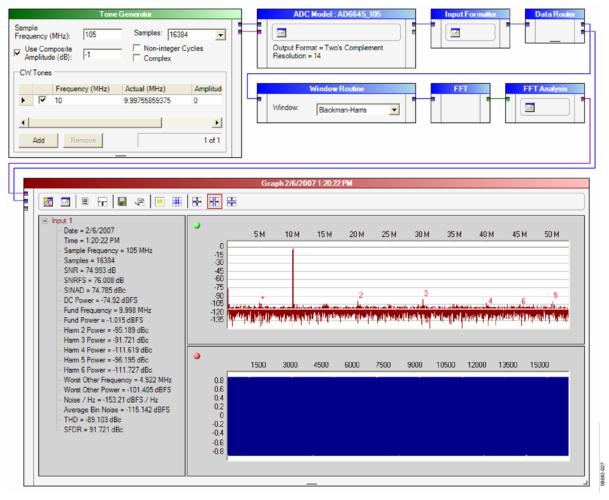


图29. 更新的画布

更改布局

大多数布局更改要求您首先选择一个对象。要选择元件或导线,请在对象上的某处点击鼠标。如果要选择元件,务必点击主体上的某个位置(顶部的标题始终有效)。按住Ctrl键可选择或取消选择多个对象。

或者,您可以在画布上绘制一个框来选择对象。只需在空 白画布上的某处按下鼠标,并在想要选择的对象周围拖动 并释放鼠标即可。

当对象处于选定状态时,可以将其从画布中删除。点击编辑(Edit), 然后选择删除(Delete), 或仅按删除(Delete)键便可删除选定项目。

当元件处于选定状态时,可以将其移动到新位置。按下鼠标左键,点击并按住,将所选元件之一拖到空白位置。任何连接的导线都会相应地自动调整。

某些元件 (例如图形) 可调整大小。只需点击、按住并拖动元件底部的调整大小手柄即可。

您可以剪切、复制或粘贴元件和导线到新位置或其他"画布"窗口。要剪切或复制,请选择所需的元件。如果选定的元件已连接,则软件也会复制连接导线。使用菜单中相应的编辑(Edit)命令,或使用Windows标准快捷键,要执行剪切、复制或粘贴命令,请使用Ctrl+X、Ctrl+C或Ctrl+V。

您可以撤消(或恢复)参数更改和布局更改。VisualAnalog 维护一个多达五层用户操作的撤消堆栈和恢复堆栈。

使用菜单栏

通过菜单栏,使用标准菜单格式可访问各种文件和执行选项,如图30所示。

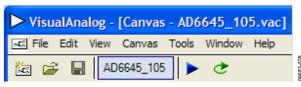


图30. 菜单栏

文件(File)

新建(New) — 打开一个空白画布用于构建新的元件图。

打开(Open) — 使用标准文件浏览器加载现有画布。

关闭(Close) — 关闭当前画布。如果自上次保存以来已更改画布,程序将在关闭前询问是否要保存。

保存(Save) — 以现有画布文件名保存当前画布。如果画布尚无名称,软件会在保存前提示您输入名称。

另存为(Save As) — 用新名称保存当前模板。

最近的文件(Recent Files) — 显示最近打开或保存的五个 画布文件的列表。

退出(Exit) — 退出VisualAnalog。

编辑(Edit)

撤消(Undo) — 最多撤消五个最近的操作,包括删除、参数 更改、元件布置和连接。

恢复(Redo) — 再次执行上次撤消的操作。

剪切(Cut) — 将选定对象复制到剪贴板, 然后将其从画布中删除。

复制(Copy) — 将选定对象复制到剪贴板。

粘贴(Paste) — 将剪贴板中的项目放到画布上。

全选(Select All) — 选择画布上的所有项目。

删除(Delete) — 从画布上删除当前选定的所有项目。

查看(View)

元件 — 显示**元件工具(Components Tool)**窗体 (如果当前不可见)。

画布(Canvas)

更新(Update) — 运行当前选定的画布, 执行每个画布上的元件流。

连续更新(Continuous Update) — 让选定的画布连续运行。启动后,连续更新菜单项变为停止更新(Stop Update)。选择此项将停止所有处理。也可以使用停止元件(Stop Component)自动停止连续更新。有关更多详情,参见关于停止元件的信息。

下载Visual Analog

属性(Properties) — 显示当前激活的画布 (拥有焦点可进行编辑的画布) 的可编辑属性。

工具(Tools)

外部工具(External Tools) — 显示一个窗体, 用户通过该窗体可以选择VisualAnalog可打开的外部程序。利用此窗体添加可执行项目, 将会在**工具(Tools)**菜单下面放置一个新菜单项。

选项(Options) — 打开VisualAnalog选项窗体。

窗口(Window)

水平平铺(Tile Horizontally) — 沿水平方向平铺画布。

垂直平铺(Tile Vertically) — 沿垂直方向平铺画布。

层叠(Cascade) —层叠画布。

画布选择(Canvas Selection) — 提供打开的画布列表。用户可以从该列表中选择要编辑的画布。

帮助(Help)

用户手册(User Manual) — 用相关的PDF查看器打开此用户手册。

关于VisualAnalog(About VisualAnalog) — 显示VisualAnalog 版本号和其他信息。

使用工具栏

通过工具栏可以快速访问菜单栏上的常用功能。

新建画布(New Canvas) — 打开一个空白画布用于构建新的元件图。

图31. 新建画布按钮

文件打开(File Open) — 使用标准文件浏览器加载现有画布。

图32. 文件打开按钮

文件保存(File Save) — 以现有画布文件名保存当前画布。 如果画布尚无名称,软件会在保存前提示您输入名称。

图33. 文件保存按钮

更新(Update) — 运行当前选定的画布,执行每个画布上的元件流。

图34. 更新按钮

连续更新(Continuous Update) — 连续运行选定的画布。 启动后, 连续更新菜单项变为停止更新(Stop Update)。选 择此项将停止所有处理。也可以使用停止元件(Stop Component)自动停止连续更新。有关更多详情,参见关于 停止元件的信息。

图35. 连续更新和停止更新图标

使用选项窗体

选项窗体包含影响VisualAnalog行为的设置。点击工具 (Tools)菜单并选择选项(Options),便可访问VisualAnalog 选项窗体。

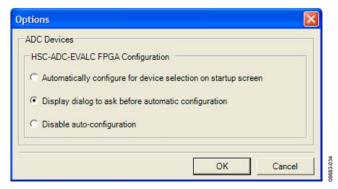


图36. 选项窗体

ADC器件(ADC Devices)

ADC器件包含与ADC数据采集板接口时会影响VisualAnalog 行为的选项。

HSC-ADC-EVALC FPGA 配置 (HSC-ADC-EVALC FPGA Configuration) 允许通过选择三个选项之一来调整 HSC-ADC-EVALC的自动FPGA配置。仅当从启动窗体中选 择一个与检测到的ADC器件相对应的模板时,这些选项才 会有效。有关更多信息,参见"使用启动窗体"部分。

下载Visual Analog

数据类型概述

VisualAnalog元件通过导线传输信息。导线本身可以携带任何类型的数据,但大多数元件输入对其可接受的数据类型有限制。大多数有输出的元件会将某种类型的数据传递给下一个元件。

您可以将任何数据类型传递给**数据网格(Data Grid)**元件,后者会显示数据类型的重要部分。例如,当**数据网格**显示**实数波形数据(Real Waveform Data)**时,它会显示样本列表。

实数波形数据(REAL WAVEFORM DATA)

实数波形数据由一系列实数样本和采样频率组成。

复数波形数据(COMPLEX WAVEFORM DATA)

复数波形数据由一系列复数样本 (I和Q) 及采样频率组成。

实数FFT数据

实数FFT数据由一系列数据(实数波形数据的FFT结果)和采样频率组成。

复数FFT数据

复数FFT数据由一系列数据(复数波形数据的FFT结果)和 采样频率组成。

分析数据

分析数据包括分析结果、图形数据和格式化信息。此类数据的具体行为取决于输出数据的元件。通常,此数据类型直接传递给图形(Graph)元件,因为该元件会显示所有相关信息。如果将此数据发送到数据网格(Data Grid)元件,则只会显示数据的分析结果部分。

值集合

值集合由参数和值对组成。元件使用此数据类型显示信息。

数值

数值仅包含浮点数。但是,某些元件将此数字视为整数。 平均值(Average)和峰值保持(Peak Hold)元件均输出一个数值,以指示其当前序列何时结束。停止(Stop)和图形(Graph)元件均可将此值用于控制输入。有关使用数值的更多信息,参见"元件概述"部分。

信号音清单

信号音发生器(Tone Generator)输出信号音数据类型。信号音清单包含有关生成的信号音的频率、相位和幅度信息。

请注意,使用波形类型时,VisualAnalog中可能会出现两种数字格式,分别为归一化数据(大多数处理元件都使用)和整数数据。

ADC模型(ADC Model)、ADC数据采集(ADC Data Capture)和FIFO4.x接口(FIFO4.x Interface)元件都是输出整数数据。在这些元件之后使用输入格式化器(Input Formatter)元件以使数据归一化。

模式保存器(Pattern Saver)和模式加载器(Pattern Loader) 元件可以支持应用所需的任何一种数据格式。加载矢量文件时,如果格式不确定,请手动检查以确定如何处理该文件。整数格式应该很明显,显示为文本可读的整数或十六进制值,而归一化数据格式显示为文本可读的浮点数。请注意,VisualAnalog仅将扩展名为.hex的文件认定为十六进制格式。要输入十六进制值,请将扩展名重命名为.hex。

最后,**DPG接口(DPG Interface)**总是要求整数类型的格式。如果波形还不是此格式,请在此元件之前放置一个**输出格式化器(Output Formatter)**元件。

有关每个元件的要求的更多具体信息,参见"元件概述" 部分。

元件概述

VisualAnalog提供了各种各样用于完成任务的元件。尽管其中一些具有固定的工作模式,但有些元件具有一系列可调参数,允许定制操作。有些元件要求您访问设置窗体以调整参数。要访问这些窗体,请点击元件上的设置(Settings)按钮。

图37. 设置按钮

板接口

以下各节是对元件功能的基本说明。

图38. DAC模式发生器

图39. HSC-ADC-EVALC (ADC数据采集板)

ADC数据采集

ADC数据采集(ADC Data Capture)元件负责从高速ADC数据采集板获取数据。该元件可与各种ADC接口,包括具有特殊输出(例如功率和其他片内测量结果)的ADC。

如果要在画布中执行处理,则ADC数据采集(Input Formatter)元件之后必须跟随一个输入格式化器(Input Formatter)。此规则的唯一例外是逻辑分析(Logic Analysis)。将数据移入VisualAnalog环境时,输入格式化器会考虑ADC的分辨率和对齐方式。有关设置输入格式化器的更多信息,参见"输入格式化器"部分。

ADI公司的大多数ADC评估板是MSB对齐到16位,因此,输入格式化器中的对齐框应设置为16位。输入格式化器上的分辨率应设置为ADC的原始分辨率。数字格式(Number Format)应根据ADC的数据格式设置。

通过点击设置(Settings)访问ADC数据采集设置(ADC Data Capture Settings)。

使用**常规(General)**选项卡设置关于所使用的器件和要捕获的数据的参数。

图40. ADC数据采集和设置窗体, 常规选项卡

捕获(Capture) — 显示可用的USB器件。使用此下拉框选择要使用的电路板。电路板按连接的顺序显示。如果未找到任何器件,请检查电缆和电源,然后点击**刷新(Refresh)。**

ADC — 显示可用于所用ADC的特殊配置。选择一项或使用默认(Default)设置。

时钟频率(Clock Frequency)(MHz) — 应设置为器件的采样速率。

下载Visual Analog

输出数据(Output Data) — 确定元件将哪些输出传递回画布。您可以选择多个输出,以提供多个核心ADC输出的数据,或者将该输出传递到画布上的多个处理过程,就像数据路由器(Data Router)元件一样。使用添加(Add)、删除(Remove)或清空(Clear)按钮修改输出数据的默认选项。要添加新选择,只需从选择数据(Select Data)下拉框中的可用选择中进行选择,然后点击添加。删除按钮删除现有的输出数据条目。清空按钮删除所有输出,并允许添加一组全新的输出。

在输出数据中,将长度设置为采集板FIFO的样本大小或所需的样本大小,以较小者为准。通常,HSC-ADC-EVALA和HSC-ADC-EVALB板具有32 KB器件。可以使用兼容的256 KB器件重新配置这些板。HSC-ADC-EVALC板可以支持各种样本大小,具体取决于当前FPGA配置。

使用板设置(Board Settings)选项卡设置与板相关的参数。

图41. ADC数据采集设置窗体, 板设置选项卡

FIFO填充(FIFO Fill)允许调整ADC数据填充板载FIFO时所使用的参数。通常,软件将填充命令发送到FIFO,并在读取数据之前等待指定的时间。您可以在填充延迟(ms)(Fill Delay (ms))选项中插入所需的数值来设置延迟时间。

当时钟速率很慢时,有时轮询FIFO的已满标志会很有用,该标志指示FIFO是否填满。选中**轮询已满标志(Poll Full Flag)**复选框,然后设置**最大轮询时间(Maximum Poll)**,这样的话,如果软件从未收到已满标志,则在一定时间后软件将停止轮询。请注意,对于HSC-ADC-EVALC,建议不要使用此设置,因为FPGA配置可能不使用已满标志。

FPGA允许您专门针对HSC-ADC-EVALC板调整FPGA设置。您可以通过USB接口对板载Xilinx°FPGA进行编程,方法是在程序文件(Program File)文本框中输入固件文件(点击浏览(Browse)选择磁盘上的文件),然后点击程序(Program)。您可能会不时收到针对特定ADC的FPGA固件更新,使用此方法手动编程。FPGA固件文件的扩展名为.bin。

DAC模式发生器接口

DAC模式发生器接口(DAC Pattern Generator Interface)可

通过标准USB接口访问物理DPG板。此工具处理将数据从软件数据集(向量)移至硬件所需的所有硬件接口和数据格式化问题。有关DPG的其他信息,请访问www.analog.com。请注意,任何给定时间只能连接一个DPG。在VisualAnalog中使用DPG和其他USB器件时,务必先连接DPG。

图42. DAC模式发生器接口

DAC模式发生器接口元件需要与DAC的分辨率、位对齐和数据格式相匹配的无符号数据。当使用VisualAnalog处理的数据时,需要使用输出格式化器(Output Formatter)以DAC期望的数字格式和分辨率格式化DPG器件的数据。如果设置不当,则发送到DAC的错误数据会导致结果不正确。请查阅DAC产品数据手册,确保输出格式化器设置正确。有关设置输出格式化器的更多信息,参见"输出格式化器"部分。

DAC模式发生器控制窗体

点击DAC模式发生器接口上的设置可打开DAC模式发生器设置(DAC Pattern Generator Settings)窗体。您可以使用此窗体来调整DPG上的设置并控制模板的回放。该窗体包含四个选项卡:设置(Setup)、调谐(Tuning)、调试(Debug)和Tx配置(Tx Config)。

设置

使用**设置(Setup)**选项卡将DPG设置为所需的工作模式并控制数据回放设置。

图43. 设置选项卡

配置(Configuration)允许将DPG设置为所需的工作模式。

表1. DPG工作模式

端口	模式
P1: LVDS串行化	时钟对齐
	时钟居中
P2: LVDS 直连	SDR
	DDR: 居中
	DDR: 重合
P3: LVCMOS	单端口
	双端口

数据回放(Data Playback)控制回放设置和回放的开始/停止,当已完全配置好且加载数据后有效。

表2. 数据回放控件

	~-· XX/4CI/XXXII	
控制	描述	
起始偏移	指定回放相对于第一个向量数据值的起始位	
	置。必须是256位 (32字节) 的倍数。	
播放长度	指定要回放的数据长度。必须是256位(32字节)	
	的倍数。	
模式	回放模式可以设置如下:	
	循环 - 播放并重复文件内容, 直到会话停止。	
	次数 - 播放文件内容并重复"次数"字段中指	
	定的次数。	
	单次 - 文件内容仅在输出端口上播放一次。	
次数	指定回放次数。仅当选择次数模式时有效。	
状态指示器	向用户提供常规播放状态信息。	
播放/停止	开始/停止回放会话。必须加载向量。	
按钮		

调谐

调谐(Tuning)选项卡包含用于数据和时钟调谐的控件。

图44. 调谐选项卡

串行化LVDS调谐(Serialized LVDS Tuning)包含与串行化 LVDS端口调谐相关的控件。

表3. 串行化LVDS调谐控件

控制	描述
重新调谐	手动触发以重新调谐串行LVDS端口上的时钟和
按钮	数据位。对齐类型基于所选模式(对齐或居中)。
	回放开始时会自动执行调谐。

LVCMOS调谐(LVCMOS Tuning)包含与LVCMOS端口调谐相关的控件。

表4. LVCMOS调谐控件

控制	描述
延迟	指定所需的延迟值。取值范围是0到1023
	(0x3FF), 单位为10 ps。这意味着, 最小变化是
	大约10 ns。
加载按钮	手动触发, 用于为LVCMOS端口上的时钟和数据
	位加载指定的延迟值。

调试

调试(Debug)选项卡用于验证DPG的功能。

图45. 调试选项卡

频率计数器(Frequency counter)用于从DPG回读频率计数器,确保操作正确。

表5. 频率计数器控件

控制	描述
端口选择	回读频率之前选择要使用的输出端口
频率指示器	显示从DPG回读的频率
执行按钮	从DPG回读频率计数器

Tx配置

Tx配置(Tx Config)选项卡包含具有发送特性的控件。

图46. Tx配置选项卡

空闲模式(Idle Pattern)指定未进行回放时的发送模式。可以生成一个四样本模式。模式中的四样本值依次播放,然后循环并再次播放,直至回放一个矢量文件或该特性被禁用。

表6. 空闲模式控件

控制	描述
使能	使能/禁用空闲模式生成特性。禁用此特性时,
	输出端口上播放零。
空闲模式	指定模式值。在双流模式下运行时,必须为两
文本	个流中的每个流指定四个模式。这些值从上到
	下依次播放。
更新按钮	更新DPG中的空闲模式。

模式限制

DPG可用于播放各种用户向量模式。但是,对数据有一些基本限制。

- 输出向量的样本大小必须是16的倍数。
- 最小向量长度为640。
- DMM插槽中的可用内存会限制最大向量长度。每个样本占用两字节的内存。复数样本在内存中被视为两个样本。

FIFO4.x接口

FIFO4.x接口元件处理ADC采集板与软件包之间的所有接口,只需将数据从硬件移至软件数据集(向量)。此接口是为了兼容性而存在。首选ADC接口是ADC数据采集元件。

更多信息请访问www.analog.com/fifo。

下载Visual Analog

https://www.analog.com/cn/visualanalog

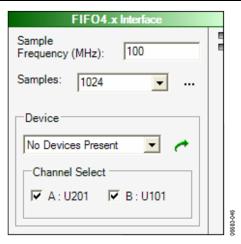


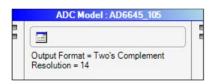
图47. FIFO4.x接口

可以使用ADC数据采集板来捕获高速ADC的数据。通过 USB与数据采集板连接。

FIFO配置允许设置采样速率和样本大小。虽然采样速率是相对的,但采样大小不得大于FIFO可用的物理内存。通常,HSC-ADC-EVALA和HSC-ADC-EVALB板具有32 KB器件。可以使用兼容的256 KB器件重新配置这些板。HSC-ADC-EVALC板可以支持各种样本大小,具体取决于当前FPGA配置。

此外,您可以选择通道以使能现存的器件。该接口同时支持双通道和单通道器件。在元件右侧的输出节点上访问ADC数据输出。A和B通道分别输出,A数据在顶部节点输出,B数据在底部节点输出。

如果要在画布中执行处理,则ADC数据采集(Input Formatter)元件之后必须跟随一个输入格式化器(Input Formatter)。此规则的唯一例外是逻辑分析(Logic Analysis)。将数据移入VisualAnalog环境时,输入格式化器会考虑ADC的分辨率和对齐方式。有关设置输入格式化器的更多信息,参见"输入格式化器"部分。


ADI公司的大多数ADC评估板是MSB对齐到16位,因此,输入格式化器中的对齐(Alignment)复选框应设置为16位。输入格式化器上的分辨率应设置为ADC的原始分辨率。数字格式(Number Format)应根据ADC的数据格式设置。

元件模型

在许多情况下,可能需要使用行为模型来代替实际器件,例如没有测试硬件可用的时候,或器件处于预选阶段的时候。无论如何,VisualAnalog除了支持物理硬件外,还支持转换器模型,因而支持虚拟测试台。目前,使用ADI公司的ADIsimADC™平台时,仅有相应的ADC模型可用。模型无缝集成到评估平台中。还可以同时包含模型和实际器件,以比较预测性能与实际性能。

ADC模型

ADC模型(ADC Model)元件与ADIsimADC连接以模拟ADC性能。模型接口提供从模拟域到数字域的转换。要访问ADC模型设置(ADC Model Settings),请点击设置(Settings)。

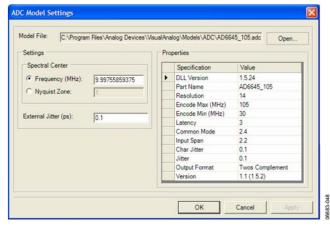


图48. ADC模型和设置窗体

通过模型接口可以选择所需的模型,设置模拟输入范围(检测实际模拟频率或通过选择奈奎斯特区域来覆盖实际模拟频率),以及设置外部时钟抖动(默认值是在ADI公司在表征期间使用的值)。内部器件抖动自动包含在内,无法更改。有关ADIsimADC的更多信息,请访问 www.analog.com/adisimadc。

使用ADC模型元件时,左侧的两个输入端子代表输入波形(顶部)和信号音列表(底部)。连接到VisualAnalog信号音发生器时(参见"信号音发生器"部分),ADIsimADC™模型的输入端子直接映射到信号音发生器的输出端子。ADC模型元件使用信号音清单输入来设置频谱中心频率。将输入连接到其他元件时,下方输入可以不连接,然后手动输入频谱中心频率。

如果要在画布中执行处理,则ADC模型元件之后必须跟随一个输入格式化器。此规则的唯一例外是逻辑分析。将数据移入VisualAnalog环境时,输入格式化器会考虑ADC的分辨率。有关设置输入格式化器的更多信息,参见"输入格式化器"部分。

ADI公司的所有模型都是LSB对齐,因此,输入格式化器中的对齐复选框应设置为模型的原始分辨率。输入格式化器上的分辨率也应设置为模型的原始分辨率。请注意,当输入格式化器与ADC数据采集元件一起使用时,对齐设置有所不同。数字格式应根据ADC模型的数据格式设置。

下载Visual Analog

Rev. 0 | Page 23 of 40

元件处理

这些功能模块提供与转换器测试相关的基本数值处理。这 些模块可以级联以创建更复杂的求值过程。

数组计算

数组计算(Array Math)元件对两个或多个输入执行数组算术运算。数组可以相乘或相加,其大小必须相同。

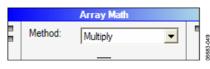
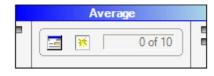



图49. 数组计算

平均值

平均值(Average)元件根据所提供的数据计算频谱平均值。 元件上的指示器显示已发生的平均次数和总平均次数。要 设置总平均次数,请点击设置(Settings)按钮。要复位平均 序列、请点击复位(Reset)按钮。

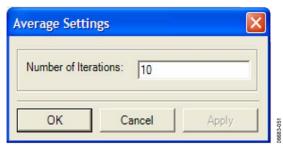


图50.平均值和设置窗体

运行连续更新时,**平均值(Average)**元件效率最高。移动平均发生后会一直进行,直至用户停止画布或运行次数等于终端计数为止。在第二种情况下,**平均值**重复另一系列的平均值,除非停止模块以编程方式暂停画布。

平均值元件有两个输出。上方输出是移动平均FFT数据。第二个输出是一个数值,输出非零值表示平均次数达到终端计数。

停止(Stop)元件 (参阅"停止"部分) 可以使用来自平均值 (Average) 元件的终端值来停止连续更新(Continuous Update)。在这种情况下,当停止元件收到非零值而暂停画布时,最后一次更新提供最终平均值。

其他元件可以将终端值用作指示符,以便仅在非零值时执行处理。有关如何使用此终端值的更多信息,请参阅**图形**元件。

位处理器

位处理器(Bit Processor)将数据集翻转 (LSB变为MSB或相反)或反转。使用VisualAnalog处理过的数据时,输出格式化器应位于此元件之前,以特定的数字格式和分辨率格式化数据。除了处理选择之外,位分辨率(Bit Resolution)也应等于所需的精度。

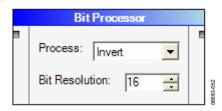


图51. 位处理器

移位器

移位器(Bit Shifter)元件用于将数据集按位上移或下移指定的位数。其效果是乘以或除以2的幂。位分辨率(Bit Resolution)和移位(Shift)量也必须根据需要加以设置。使用VisualAnalog处理过的数据时,输出格式化器应位于此元件之前,以特定的数字格式和分辨率格式化数据。

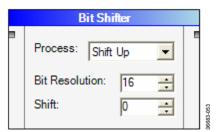


图52. 移位器

注释

注释(Comment)元件允许用户在画布上显示注释。这对于记录信号流、选项或其他操作很有用。**注释**元件不具计算功能。要编辑**注释**,请点击省略号(...)并输入所需的文本。您可以调整窗体大小,使其适应注释的上下文。应当注意,注释框在未选中时是不可见的,仅显示文本。要找到注释框,请点击文本以突出显示注释框。

图53. 注释

复数波形合并器

复数波形合并器(Complex Waveform Merger)元件将两个 实数波形合并为一个复数交错波形。实数输入在顶部. 正 交输入在底部。

图54. 复数波形合并器

复数波形分离器

复数波形分离器(Complex Waveform Splitter)将复数波形 分成两个实数波形。实数输出在顶部, 正交输出在底部。

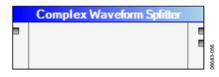


图55. 复数波形分离器

数据路由器

数据路由器(Data Router)元件将单个输入路由到多个目的 地。这适用于所有数据类型。使用两个输出端子时、元件 会自动添加新输出。您可以调整元件大小以为更多输出提 供空间。

图56. 数据路由器

FFT

FFT元件在时域和频域之间转换实数或复数数据。此元件最 适合处理的数据量为2的幂。但是,它也能处理非2的幂的 数量的数据。

图57. FFT

FFT分析

FFT分析(FFT Analysis)元件按照用户要求对FFT输入数据 进行数值分析, 并输出分析数据。默认情况下, 分析包括 对ADC和DAC的常规分析。该元件可以根据具体应用进行 定制,如下所述。要针对您的应用配置分析,请点击设置。

FFT Analysis --

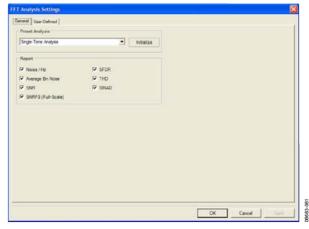


图58. FFT分析设置窗体, 常规选项卡

要访问FFT分析设置、请点击设置。

使用常规(General)选项卡可恢复为预设FFT分析类型。目 前,预设分析列表包括单音分析(Single-Tone Analysis)、 双音分析(Two-Tone Analysis)和基本DAC分析(Basic DAC Analysis).

要使用或初始化为预设分析、请在下拉框中选择类型、然 后点击初始化(Initialize)。退出窗体并保留默认设置,或根 据需要加以修改。

在报告(Report)框中,您可以使能或禁用FFT数据的常用 计算。

您可以使用**用户自定义(User-Defined)**选项卡 (参见图60) 来调整和定制针对FFT数据进行的特定计算。VisualAnalog 支持几乎所有FFT分析。

图59. FFT分析设置窗体, 用户自定义选项卡

用户自定义选项卡中的网格列出了FFT分析元件对输入数据执行的计算。请注意,例程从上到下依次执行这些计算。

名称(Name) — 设置此计算的显示名称。此显示名称会出现在软件向用户报告结果的任何地方,例如**图形(Graph)** 元件、**数据网格(Data Grid)**或输出到文件。它可以是字母、数字和符号的任意组合。如果显示名称为空,则软件不会显示结果。

符号(Symbol) — FFT图形显示区上显示的一个或多个字符。它可以是适合于应用的单个字符或字符串。

定位(Locate) — 确定频谱分量的定位方式。有三种方法可供使用,在很大程度上取决于应用。

- 频率(Frequency) 通过确切频率 (单位为MHz) 查 找频谱分量。重要的是要确保正确设置采样速率,否 则计算出的频率可能有误。模拟频率如果大于奈奎斯 特频率,则会自动进行混叠,以确保其以显示区中的 适当位置为基准。
- 最大功率(Max Power) 查找FFT频谱中处于最大位置的频谱分量。这对于频率经常变化的满量程单音测试最有用。如果信号是调制波形,则此方法的可靠性不如频率。
- 第二最大功率(Next Max Power) 查找列表中之前 尚未选择的下一个最大信号。这对于查找其他杂散音 非常有用,例如单音分析中的最差其他杂散。使用此 选项时,务必将此项放置在频谱中所有其他项之后, 以避免在下一次最大值计算中使用。

频率(Freq MHz) — 当定位方法设置为频率时,分析使用频率(MHz)列。此文本可以是常量,也可以是使用常量或先前定义的变量的任意组合的简单表达式。支持的运算为加、减、乘、除和幂。有一个系统定义的常量f_s,代表频率采样速率。

有效表达式包括2 * fund(假设fund已预先定义)、2 * f2 - f1 (假设f1和f2已预先定义) 和 f_s - fund (假设fund已预先定义)。 另外,简单常量(例如2.3)也有效,f1 - 2.3也是有效的。括号也可以使用,以实现某种运算顺序,例如(2 * (f2 - f1))。

如果定位方法未设置为频率,例程将忽略此列。

单边带(Single-Side Band) — 确定给定计算中包含多少个 频率仓。文本形式可以是常量或简单表达式。单位可以是 频率仓或兆赫兹、具体取决于下一列的设置。

功率用作(Use Power As) — 为分析定义的积分有六个可选操作。

- 参考(Reference) 确定基频能量。如果有多个参考项,FFT分析将合并能量。这在执行有一个以上信号贡献参考功率的测试时可能很有用。
- 谐波(Harmonic) 确定一个功率以参考为基准进行 测量的分量。确定为谐波的信号会被包含在SINAD和 THD测量中。
- 杂散,排除(Spur, Exclude) 确定不应作为噪声包含在总体计算中,而应报告为杂散的频谱内容。这在来自外部的杂散信号会破坏性能的场合很有用。使用此选项可消除杂散信号对整体性能的影响。
- 杂散,包含(Spur, Include) 确定应作为噪声包含在 总体计算中(若作为杂散的话意义有限)的频谱内容。 这包括最差其他杂散之类的杂散。
- 噪声(Noise) 确定应当是频谱中的噪声频带的频谱 内容。此设置对于窄带噪声计算很有用。
- 移除(Remove) 确定要从后续计算中删除的频谱内容。此设置还会从常规FFT计算中移除该频带。
- 自定义(Custom) 确定一个自定义功率计算。当需要 一个无法用之前的计算方法表示的功率计算时,应使 用此设置。

功率(Power) — 当**功率用作**方法设置为**自定义**选项时,分析使用**功率**列。文本格式类似于**频率(MHz)**列,可以是常量或简单表达式。此列也可以使用先前定义的变量。此列中的变量代表其对应行项的功率。

变量(Variable) — 变量定义测量中使用的局部变量。这些代表相应行上的分量。一旦定义,变量在下面的所有计算中均有效。如果引用**频率(MHz)**或**单边带**列中的变量,例程将使用计算的频率部分。如果引用**功率**列中的变量,例程将使用计算的功率部分。

请注意,要在列表中使用一个变量,必须先定义该变量。 因此,请在使用变量之前放置所有已定义的变量。

Rev. 0 | Page 26 of 40

希尔伯特变换

希尔伯特变换(Hilbert Transform)对实数波形执行希尔伯特变换以计算所得到的复数波形。输出为复数波形,包括作为I数据的实数输入波形及对应的Q数据。

图60. 希尔伯特变换

输入格式化器

输入格式化器(Input Formatter)获取数据后将其从整数数据类型转换为大多数VisualAnalog算法模块可接受的规范化格式。要设置格式,请点击**设置**。

图61. 输入格式化器

该元件将整数输入数据从**格雷码(Gray Code)、无符号偏移** (Unsigned Offset)、二进制补码(Two's Complement)和带符号(Signed)格式转换为规范化带符号数据。分辨率和位对齐方式应与输入数据一致。关于如何设置这些参数最佳,请参见"ADC模型"、"ADC数据采集"、"FIFO4.X接口"和"模式加载器"部分。

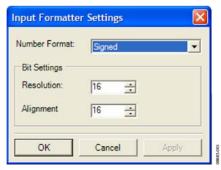


图62. 输入格式化器设置

反向FFT

反向FFT(Inverse FFT)将实数或复数频率数据转换为实数或复数时间波形。

图63. 反向FFT

下载Visual Analog

反SINC

反Sinc(Inverse Sinc)将反Sinc应用于时域序列。输入和输出都是时域序列。此功能用于校正数字数据转换回模拟域时引起的幅度滚降(相对于频率)。此功能可提供最大可能范围的最大平坦度。

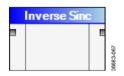


图64. 反Sinc

I与Q

I与Q(I vs. Q)元件将复数时域输入数据格式化为表示星座的形式。该元件输出分析数据,当绘图时,分析数据显示为y轴上的Q数据和x轴上的I数据。

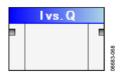
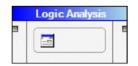



图65. I与Q

逻辑分析

逻辑分析(Logic Analysis)将要显示的数据格式化为逻辑分析。设置高位(High Bit)和低位(Low Bit)字段以代表有效位的范围。

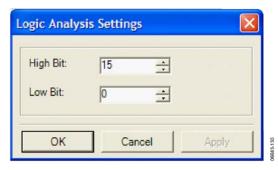


图66. 逻辑分析和设置窗体

使用VisualAnalog处理过的数据时,输出格式化器应位于逻辑分析之前,以将数据转换为特定的数字格式和分辨率。如果数据已经是整数格式且来自文件、ADC模型或ADC数据采集,则输出格式化器不需要在此元件之前。

混频器

混频器(Mixer)对输入波形进行复数频移,并产生实数或复数波形输出。对于复数输入,需要使用复数输出选项。转换频率可以为正或负。

图67. 混频器

输出格式化器

输出格式化器(Output Formatter)将规范化的VisualAnalog数据转换为DPG和模式保存器使用的整数格式。

可能的输出格式包括**格雷码(Gray Code)、无符号偏移** (Unsigned Offset)、二进制补码(Two's Complement)和 带符号数(Signed)。根据需要调整输出位的分辨率和对齐方式。

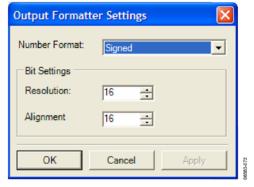


图68. 输出格式化器设置窗体

峰值保持

峰值保持(Peak Hold)从提供的数据中计算峰值数据。元件上的指示器显示已发生的迭代次数和总比较次数。要设置总平均次数,请点击设置。要复位峰值保持系列,请点击复位。

运行连续更新时,**峰值保持**元件效率最高。移动峰值保持 发生后会一直进行,直至用户停止画布或运行次数等于终 端计数为止。在第二种情况下,**峰值保持**重复另一系列的 迭代,除非停止模块以编程方式暂停画布。

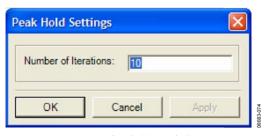


图69. 峰值保持设置窗体

峰值保持元件有两个输出。上方输出是移动峰值FFT数据。 第二个输出是一个数值,输出非零值表示峰值保持次数达 到终端计数。

停止(Stop)元件(参阅"停止"部分)可以使用来自**峰值保持**元件的终端值来停止连续更新。在这种情况下,当**停止**元件收到非零值而暂停画布时,最后一次更新提供最终峰值保持。

其他元件可以将终端值用作指示符,以便仅在非零值时执行处理。有关如何对此终端值使用**图形**元件的更多信息,参见"图形"部分。

功率/相位

功率/相位(Power/Phase)将来自FFT的数据转换为幅度和相位格式。点击**功率/相位**即打开选项窗体,用户可以设置格式。

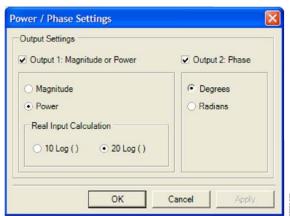


图70. 功率/相位和设置窗体

重采样器

重采样器(Resampler)将输入波形重新采样为给定的输出 采样速率。使用此元件可实现上采样或下采样。

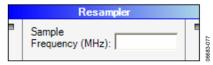


图71. 重采样器

分辨率格式化器

分辨率格式化器(Resolution Formatter)将输入数据舍入或截断为给定的位分辨率。还有一个用于裁剪数据的附加选项。

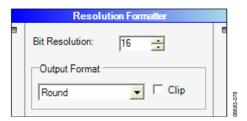


图72. 分辨率格式化器

标量计算

标量计算(Scalar Math)使用用户提供的带符号标量输入对数组执行用户选择的数学运算。可用运算包括乘法、加法、除法和减法。

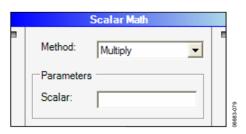


图73. 标量计算

停止

当以连续模式运行时, **停止(Stop)**元件可以停止操作。当终端计数过期时, 某些元件 (例如**平均值**) 会输出一个指示信号。将此指示信号路由到**停止**元件即可停止连续执行。

图74. 停止

下载Visual Analog

子集

子集(Subset)根据给定的起点和长度提取一部分数据以供进一步处理。如果数据集只有一部分包含有效信息,这种操作常常很有用。

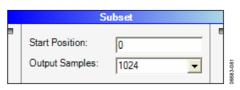


图75. 子集

波形分析

波形分析(Waveform Analysis)对输入的时域波形数据进行分析并输出分析数据。最大值、最小值、范围和平均值都会计算。

图76. 波形分析

窗口例程

窗口例程(Window Routine)允许使用Hanning或Blackman-Harris窗口将一个窗口函数应用于时域数据。还有一个无窗口的选项。

图77. 窗口例程

元件结果

数据网格

数据网格(Data Grid)以表格格式显示数据。它适用于时域 和频域中的所有数据集。它也能处理大多数其他数据类型。

可以复制数据网格中的数据并将其粘贴到其他应用程序, 例如Excel®。可以高亮显示数据,将数据复制到剪贴板,然 后粘贴到新应用程序中。要选择整个网格、请选择列表中 的第一项,再使用Ctrl+Shift+End选择所有项目。然后,您 可以将数据复制到剪贴板。

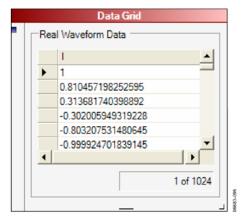


图78. 数据网格窗体

图形

图形显示所有类型处理的绘图数据。它允许同一幅图上出 现多个输入、不同颜色的数据集可以重叠。当有一个以上 数据类型路由到该元件时, 图形支持第二绘图选项。

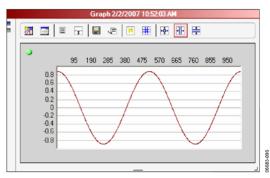


图79. 图形

每个图形的左上方都有一个LED指示灯,用以显示图形的 选定状态。若要选择图形进行缩放, 请点击图形框并确保 LED为绿色。如果未选中图形,则LED为红色。

若有两个图形,则两个图形均会放大或恢复。使用画框法 进行缩放时, 图形按比例缩放。

要使用画框法进行缩放, 请将光标放在目标区域的左上方, 然后拖动到该区域的右下方。

图形工具栏(Graph Toolbar)

图形元件上有多个工具按钮可扩展图形功能。

- 浮动窗体(Float Form)删除元件上的用户界面,并将其 放在一个浮动窗体上。
- 设置(Settings)显示设置窗体。
- 显示分析结果(Show Analysis Results)切换元件左侧 结果面板的可见状态。查看分析结果和绘图数据时, 此面板很有用。
- 切换更多图形(Toggle Additional Plot)切换第二图形 的可见状态。这在查看一种以上类型的数据 (例如FFT 和时间数据)时很有用。
- 数据另存为(Save Data As)允许您从当前绘制的分析 数据中选择并保存到逗号分隔值(.csv)文件中。
- 追加结果文件(Append Results File(s))允许您将分析 结果追加到图形设置中选择的文件。有关更多信息, 参见"图形设置"部分。
- 缩放-恢复(Zoom Restore)将所选图形的缩放状态恢 复为图上当前数据类型的默认坐标。
- 缩放-坐标(Zoom Coordinates)提示用户输入坐标, 并将所选图形的边界设置为这些坐标。
- 缩放-方框(Zoom Box)将当前缩放模式设置为方框。 画一个方框, 使图形缩放到图上绘制的方框的坐标。 如果选择了另一个图形, 它将按比例缩放。
- 缩放-水平(Zoom Horizontal)将当前缩放模式设置 为水平。画一个方框, 使图形缩放到图上绘制的方框 的水平坐标。如果选择了另一个图形,它将按比例缩 放。
- 缩放-垂直(Zoom Vertical)将当前缩放模式设置为垂 直。画一个方框、使图形缩放到图上绘制的方框的垂 直坐标。如果选择了另一个图形,它将按比例缩放。

图形设置

要访问图形设置,请点击设置。

常规

使用常规(General)选项卡设置影响元件行为的参数。

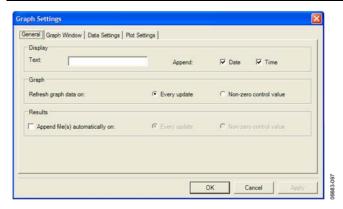


图80. 图形设置窗体, 常规选项卡

常规选项卡的**显示(Display)**部分允许您设置图形元件标题 栏上显示的文本。您还可以附加当前日期和/或时间。

框架的**图形**部分为元件提供了刷新选项。如果选择在每次 更新时刷新图形数据,则每次画布更新时,图形都会刷新。 如果选择**非零控制值(Non-zero control value)**,则仅当画 布上的另一个元件发送非零值时,图形才会更新。此选项 对于**平均值和峰值保持**元件很有用。通过将其中之一的第 二输出路由到图形上的输入节点,可以使图形在一个系列 的最后一个平均值或峰值保持操作上更新。

框架的结果(Results)部分用于设置处理结果文件时的元件行为。例如,要在画布更新期间自动追加到这些文件,请选择每次更新或仅提供非零控制值时更新。要选择数据的结果文件,请使用数据设置(Data Settings)选项卡。

图形窗口

使用**图形窗口(Graph Window)**选项卡可调整设置,这些设置会影响从图形元件访问的浮动窗体的行为。

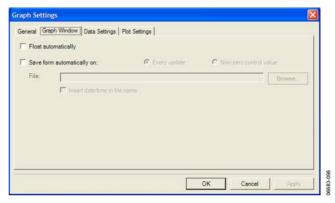


图81. 图形设置窗体, 图形窗口选项卡

如果选择**自动浮动(Float automatically)**,则在画布更新时会自动弹出浮动图形窗体。

下载Visual Analog

选中**自动保存窗体(Save form automatically on)**复选框,可将浮动窗体自动保存到图像文件。您可以选择每次更新或仅提供非零控制值时更新。为了使用此功能,请在文本框中指定文件名。

除非要覆盖以前保存的文件,否则务必选择**在文件名中插入 日期/时间(Insert date/time in file name)**,以便VisualAnalog 在每次保存时创建一个新文件(参见图81)。

数据设置

您可以使用**数据设置(Data Settings)**选项卡来调整设置,这些设置会影响路由到图形的分析数据的行为。

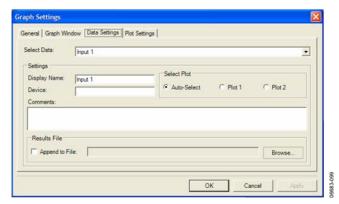


图82. 图形设置窗体, 数据设置选项卡

使用下拉框选择要设置其数据属性的输入节点。输入节点以列表显示,输入1为第一个节点。

- 显示名称(Display Name)显示在图形元件上分析结果 框架中的数据集的顶部。此设置仅影响分析数据。
- 器件(Device)与分析结果一起显示在分析结果框架中。
- 注釋(Comments)允许在分析结果框架中的数据集末 尾显示多行注释。若要输入多行,请按Ctrl+回车键以 开始新行。您还可以选择要将数据路由到哪个图形。
 "自动选择"将根据数据类型选择图形。
- 结果文件(Results File)允许选择一个结果文件,以便您将此数据集追加到该文件。仅选中此框并选择文件名并不会写入文件。该操作仅仅选择用于特定数据集的文件。要将数据集写入选定文件,可以选择**追加结果文件(Append Results File(s))**工具按钮,或使用**设置**窗体常规选项卡上的选项自动追加文件。

绘图设置

使用**绘图设置(Plot Settings)**调整会影响图形元件上的绘图行为的设置。

图83. 图形设置窗体, 绘图设置选项卡

使用下拉框选择要调整其属性的图形。

使用显示高亮(Show Highlights)复选框开启/关闭高亮。高 亮显示用于提请注意图形数据的某些部分。例如, FFT分析 使用高亮显示FFT图上的谐波仓泄漏。

使用显示标签(Show Labels)复选框开启/关闭标签。标签是 图中标示数据的文本。例如, FFT分析可以使用2来标记二 次谐波。

图形窗体

当图形浮动时, 图形元件的内容显示在浮动窗体上。所有 工具栏按钮都会出现, 并且可以像之前所述的那样工作。 您也可以手动保存或打印窗体图像。

文件 > 窗体另存为(File > Save Form As) — 将窗体图像 保存到文件。

文件 > 打印(File > Print) — 将窗体图像发送到打印机。

如果退出窗体,窗体将消失,内容重新显示在元件中。

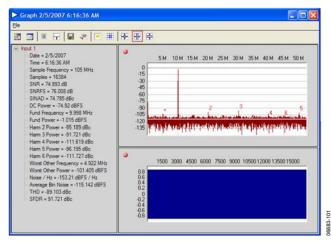


图84. 图形窗体

模式保存器

模式保存器(Pattern Saver)将向量保存到数据文件。数据可 以是I、I/O交错或I/O分开的文件。该元件以十六进制或十 进制格式保存数据。请注意,要以十六进制格式写入,请 使用.hex文件扩展名。

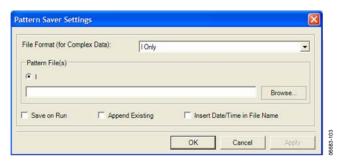


图85. 模式保存器设置窗体

点击设置(Settings)可访问模式保存器设置(Pattern Saver Settings)窗体 (参见图85)。

从设置窗体中加载模式文件。首先,在页面顶部的下拉框 中选择文件格式。其次, 手动输入输出文件名, 或点击浏 览以找到输出目录和文件名。如果使用I/O分开的文件格 式,则还需要输入另一个文件。

您可以选中运行时保存(Save on Run)复选框,以在画布更 新时让元件写入文件。如果未选中此选项、请使用元件前 面的保存按钮手动写入文件。

如果选中**追加现有(Append Existing)**复选框,VisualAnalog 将追加到现有文件,而不是覆盖。如果希望元件写入一系 列文件, 请选中在文件名中插入日期/时间(Insert Date/ Time in File Name)复选框。

元件来源

滤波器遮罩

滤波器遮罩(Filter Mask)定义可应用于任何频域信号的单边频谱遮罩。此遮罩可以是任何类型的滤波器,包括低通、带通、高通、带阻、多通或多阻滤波器。

您可以在**遮罩点(Mask Points)**表中输入频率和功率水平来调整滤波器形状。另外,可以确定初始增益、采样频率和样本大小。图86定义了一个阻带抑制为-100 dB的低通滤波器。

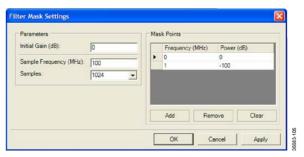
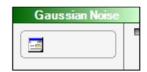



图86. 滤波器遮罩设置窗体

高斯噪声

高斯噪声(Gaussian Noise)生成近似正态分布的高斯时域噪声。

如图87所示,可以设置采样频率和样本大小。此外,如果 需要复数高斯噪声,可以将输出设置为复数。

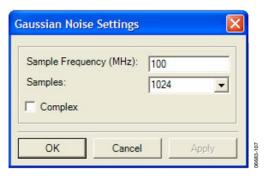


图87. 高斯噪声设置窗体

下载Visual Analog

模式加载器

模式加载器(Pattern Loader)从数据文件加载向量。数据文件格式可以是仅I、I/Q交错或I/Q分开的文件。该元件以十六进制或十进制格式加载数据。请注意,模式加载器仅在遇到.hex文件扩展名时才使用十六进制格式。

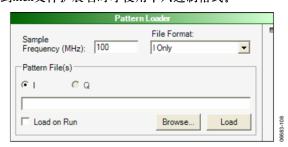


图88. 模式加载器

要使用模式加载器(Pattern Loader)元件,首先应在元件顶部的下拉框中选择文件格式。其次,手动输入输出文件名,或点击浏览以找到输出目录和文件名。如果使用I/Q分开的文件格式,则还需要输入另一个文件。

使用**采样频率(Sample Frequency)**文本框输入数据的采样 频率。

选中**运行时加载(Load on Run)**复选框,以在画布更新时让 元件读取文件。如果未选中此选项,您仍然可以使用元件 前面的**加载(Load)**按钮来读取文件。

信号音发生器

信号音发生器(Tone Generator)产生理想的正弦波。此模块允许指定采样频率和数据大小。使用复合幅度文本设置多个信号音相对于0 dB的幅度。若选中使用复合幅度(Use Composite Amplitude)复选框,则会将每个信号音归一化,以使复合幅度等于在此输入的值。如果您希望每个信号音的幅度反映幅度(Amplitude)列中键入的实际值,请清除使用复合幅度(Use Composite Amplitude)复选框。

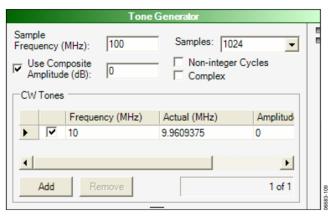


图89. 信号音发生器

在CW信号音(CW Tones)表中设置每个信号音的参数。所需的频率可以键入到频率(MHz)网格中。计算出相干值并将其放在实际(Actual)网格中。除非选中非整数周期(Non-integer Cycles)复选框,否则相干值就是所使用的值。信号音的相对幅度可以在幅度(Amplitude)网格和相位(Phase)网格中设置。如果需要其他信号音,请点击添加(Add)并重复该过程来添加。

P # VISUAL ATTAINS

Rev. 0 | Page 34 of 40

VisualAnalog画布示例

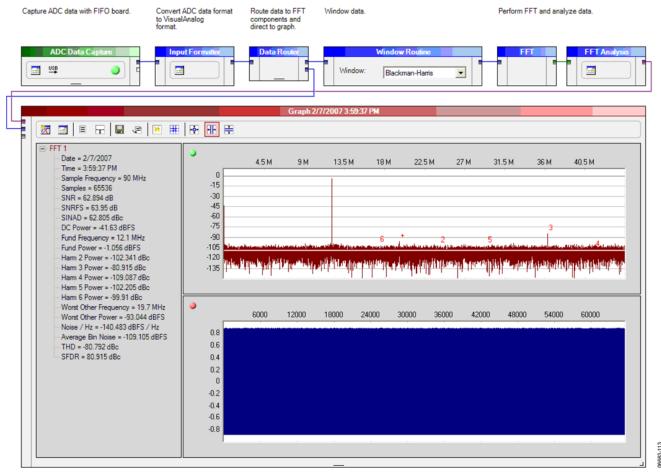


图90. ADC和ADC数据采集板

ADC和ADC数据采集板

VisualAnalog是使用ADI公司提供的ADC数据采集板采集和处理ADC数据的理想选择。图90显示了用于采集和处理ADC数据的模板。在这里,ADC样本被转换为归一化的VisualAnalog数据,对其进行加窗、FFT处理及分析后,产生有关SNR和杂散信号的信息。

ADIsimADC模型文件

图91显示了如何构建并使用VisualAnalog来激励和测试 ADIsimADC模型,这些模型可以从http://www.analog.com/adisimadc下载。此模板允许调整编码速率和模拟激励。信号音发生器支持多个频率,因此它是测试ADC双音性能的理想工具。

选择模型时,确保器件可以支持信号音发生器上指定的采样速率。当以高于指定值的采样速率驱动模型时,模型输出仅产生零。同样,应调整输入格式化器的输出格式和位精度以匹配ADC。通常,输入格式化器的设置应使得分辨率和对齐方式与模型的位精度相同。

下载Visual Analog

https://www.analog.com/cn/visualanalog

Rev. 0 | Page 35 of 40

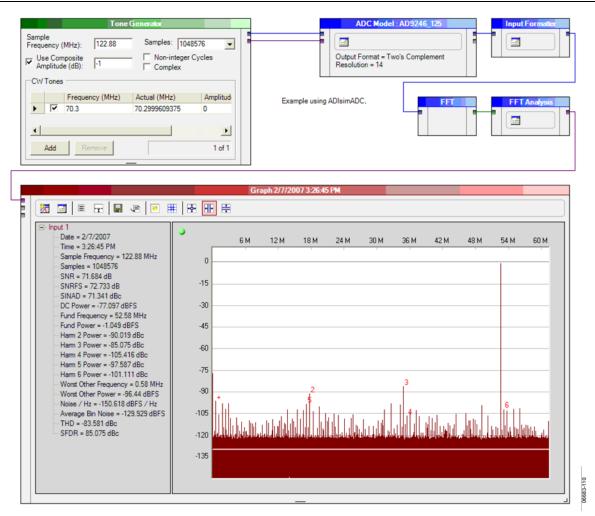


图91. ADIsimADC模型文件

Rev. 0 | Page 36 of 40

在图91中,**信号音发生器**产生单个正弦波,频率为70.3 MHz, 采样时钟为122.88 MSPS。该向量被发送到ADIsimADC转换器模型AD9246,后者将其数字化并转换为比特。然后,输入格式化器将数字化的数据转换为VisualAnalog中的大多数模块处理的规范化格式。FFT元件计算此数据的FFT, FFT分析元件对数据进行分析。所得数据与分析结果一起显示在图形上。

此模板的一种变体可用于测试具有复数输入的转换器。数据可以轻松地从文件加载,因此可以用从文件加载的复数 波形来轻松地激励模型。这对于用复数数据激励ADC从而研究其行为很有用。

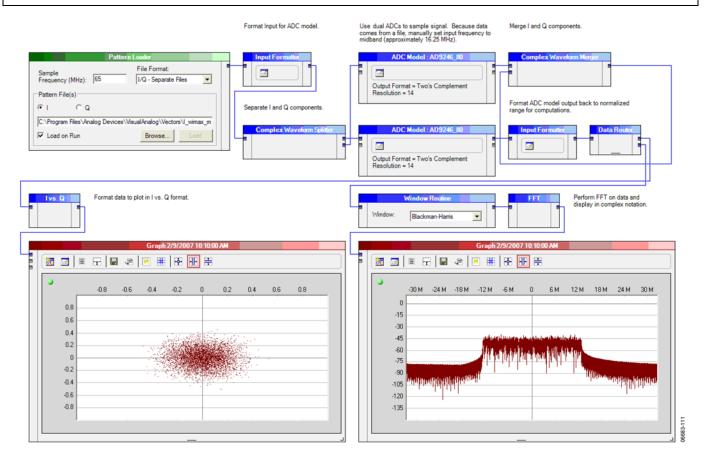


图92. 利用ADIsimADC进行复数数据分析

图92显示了一个复数数据集, 其被加载并分解为实部和虚 部 (I和Q), 然后由双通道ADC进行数字化。ADC的输出 随后格式化回规范化的VisualAnalog格式, 并重新组合为复 数形式。I与Q分量用于绘制星座图信息,数据还使用FFT 元件进行处理,以查看复数信号的频谱内容。

下载Visual Analog

Rev. 0 | Page 37 of 40

https://www.analog.com/cn/visualanalog

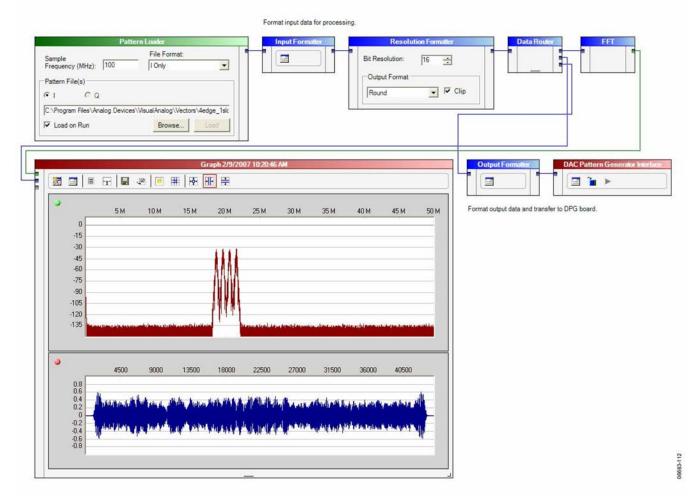


图93. 将一个简单向量加载到DPG

Rev. 0 | Page 38 of 40

将一个简单向量加载到DPG

图93显示了如何从文件中加载简单向量,然后将其传递给DPG以配合许多标准DAC中的某一款使用。取决于DAC,数据可以是实数数据或复数数据。

使用VisualAnalog将向量加载到DPG的好处是,在将信号发送到DPG之前,可以在时域和频域中对其进行查看。这样

就可以比较实际波形和理想波形。在此示例中,加载文件之后,其被转换为规范化的VisualAnalog数据类型,并在时域和频域中进行处理以显示在图形上。然后,数据转换回适当的格式并传递给DPG,以便使用外部DAC硬件重建。

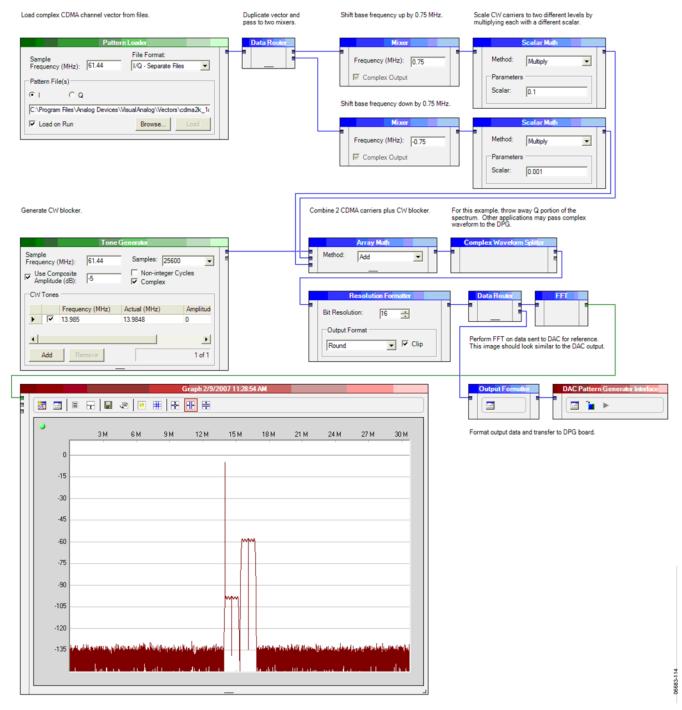


图94. 将一个复杂向量加载到DPG

将一个复杂向量加载到DPG

VisualAnalog可用于从文件加载简单向量, 先处理该文件, 再发送到DPG。图94显示了如何加载文件、复制向量并对

其进行频移,以及如何将一个CW信号音添加到数据集中。 此数据最终被送到DPG。一旦进入DPG,便可将数据传递 到适当的DAC以生成所需的模拟波形。

下载Visual Analog

https://www.analog.com/cn/visualanalog

Rev. 0 | Page 39 of 40

AN-905 应用笔记

注意

